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CHAPTER 1

Introduction

The �rst three sections of this chapter constitute a brief (non-exhaustive) over-
view of well-known results and previously developed methods in the spectral theory
of non-selfadjoint operators and operator matrices. To put the mathematical con-
tributions in this thesis into a context within the area of research, they are shortly
introduced in Section 1.4 and further illustrated in Section 1.5 based on their out-
lined application to a particular spectral problem. While the subsequent chapters
contain a more substantial summary of the results achieved in the course of this
thesis and are thus more technical, the present chapter is intended for a reader who
might not be fully familiar with spectral theory.

1.1. Mathematical physics and spectral theory

In the past centuries, fundamental research has led to an incredible progress
in science by interpreting phenomena and patterns in the nature surrounding us.
The ground to this understanding is for instance laid in theoretical physics, where
certain processes are modeled with systems of di�erential equations. To gain further
insight, it is then crucial to determine whether or not these equations have solutions
and describe the latter, if existent. This is one instance when mathematics and
physics interact, when mathematicians are given an equation to analyse it in a
suitable context or setting.

For ordinary di�erential equations involving functions of only one variable,
questions like solvability, stability of the solutions or their continuous dependence
with respect to the data are historically well understood in a certain classical sense.
However, for partial di�erential equations involving functions of multiple variables,
analogous problems are much harder to address, especially as there is already quite
some freedom in the mathematical de�nition of a solution.

Certain types of linear (partial) di�erential equations can be written as a so-
called abstract Cauchy problem

∂tu(x, t) = Au(x, t), x ∈ Ω ⊆ Rn, t > 0, u(·, 0) = u0. (1.1)

The above can be viewed as an initial value problem in the time variable t with
a di�erential expression A on the right hand side, which contains all derivatives
with respect to the spatial variable x and is understood together with a boundary
condition, like e.g. a so-called Dirichlet boundary condition

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (1.2)

In case that A ∈ C is only a scalar, the solution of (1.1) can easily be found by
means of the exponential function as

u(t, x) = etA u0(x), x ∈ Ω, t ≥ 0. (1.3)

1



2 1. INTRODUCTION

Following this idea, the standard approach to the analysis of (1.1) is to associate a
linear operator with the di�erential expression A which acts in a suitable function
space, whilst respecting the boundary condition (1.2); an appropriate notion of
solvability for (1.1) can then be related to a generalisation of the formula (1.3).
The existence of the latter depends on qualitative and quantitative properties of the
di�erential operator A, in particular on the structure and location of its spectrum
and the behaviour of its resolvent norm.

While the described approach leaves quite some room for �exibility, the choice
of the functional space and the speci�c realisation of A therein are particularly
challenging as they can dramatically in�uence the (spectral) properties of the re-
sulting operator. In fact, since the considered di�erential expressions typically lead
to unbounded operators, choosing their domain of de�nition is already a crucial
part of the analysis. In the sequel, we describe a selection of important aspects of
spectral theory in relation to the Cauchy problem (1.1) and highlight some of the
challenges therein, in particular the ones addressed in this thesis.

1.2. Non-selfadjoint spectral theory

For further details about the following well-known results, we refer the reader
to the standard literature on operator and semigroup theory, see e.g. [Kat95, EE87,
EN00, Dav07, Hel13].

1.2.1. The selfadjoint case. Consider again the Cauchy problem (1.1) and
suppose that the di�erential expression A therein, together with the underlying
boundary condition, is formally symmetric in a Hilbert space H. Then one can
give rise to a sensible solution by �nding a self-adjoint realisation of A (if it exists),
i.e. by identifying a suitable domain on which A becomes selfadjoint in H.

Indeed, already on abstract level, the spectral theorem for selfadjoint operators
has numerous powerful implications, which can go very far when applied to a speci�c
problem. In particular, the selfadjoint functional calculus for A justi�es (1.3) as
a solution of the Cauchy problem, provided that the initial condition u0 lies in
the domain of A. The norm and in-/stability in time evolution (with respect to
perturbations of the initial value u0) of this solution are governed by

‖etA‖ = eta, a = sup
λ∈σ(A)

λ, t ≥ 0, (1.4)

including the case a = ∞ where the exponential above is an unbounded operator.
Note that similarly, if A = − iB with a selfadjoint operator B (which is the case
e.g. for the Schrödinger equation in quantum mechanics), formula (1.3) de�nes a
unitary solution operator, which can be understood even for negative times.

Once a suitable selfadjoint realisation of A is found, by (1.4) the further analysis
essentially reduces to locating the various parts of σ(A). It is well-known that the
spectrum of a selfadjoint operator is a closed, non-empty subset of R, consists only
of point and continuous spectrum, and is purely discrete if and only if the resolvent
is a compact operator. Moreover, due to the identity

‖(A− λ)−1‖ =
1

dist(λ, σ(A))
, λ ∈ ρ(A),

�nding the location of the spectrum is equivalent to determining the behaviour
of the resolvent norm. Finally, in the semi-bounded case, the powerful min-max
principle, see [Hel13, Thm. 11.7], even provides a variational characterisation of
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the eigenvalues below or above the essential spectrum (which can have intuitive
interpretations in particular in quantum physics).

1.2.2. The non-selfadjoint case. While self-adjoint problems are motivated
by quantum physics and have historically been most relevant, the spectral theory of
non-selfadjoint operators is recently gaining importance driven by several applica-
tions; these for instance include magnetohydrodynamics, �uid mechanics, damped
systems, superconductivity or even MRI, see e.g. [BT20, MT07, GGHT12, AHP13,
GH18], as well as [Tre08] and the references therein. In absence of the spectral the-
orem, however, for non-selfadjoint (or rather non-normal) operators the situation
becomes much more complex. Nevertheless, an analogous connection between A
and the Cauchy problem (1.1) still prevails via the following result due to Feller,
Miyadera and Phillips (which generalises the classical Hille-Yosida theorem for con-
traction semigroups, see [EN00, Thm. II.3.5]).

Theorem 1.1 ([EN00, Thm. II.3.8]). Let M ≥ 1 and a ∈ R. A linear opera-
tor A in a Hilbert space H generates a strongly continuous one-parameter semigroup

T (t) = etA, ‖T (t)‖ ≤Meta, t ≥ 0, (1.5)

if and only if A is closed, its domain is dense in H and the powers of its resolvent
are bounded on a semi-axis by

‖(A− λ)−m‖ ≤ M

(a− λ)m
, λ ∈ (−∞, a) ⊆ ρ(A), m ∈ N.

While a suitable Hilbert space H might be indicated by the physical model
itself, the �rst truly non-trivial task in view of the above is to determine an appro-
priate dense domain for the di�erential expression A such that (together with the
boundary condition) the resulting operator is closed and has non-empty resolvent
set. Further information about the possible semigroup generation and the behaviour
of the solutions of the Cauchy problem can then be obtained from the location of
the spectrum and the behaviour of the resolvent norm. The strong relation between
the latter and the long time behaviour of the semigroup is enforced by the classical
Gearhart-Prüss Theorem (which was further generalised, e.g. in [BBT16]).

Theorem 1.2 ([Hel13, Thm. 13.26]). If the resolvent of the generator A of a
strongly continuous semigroup on H is uniformly bounded on a half plane, i.e. if

Ha := {λ ∈ C : Reλ ≥ a} ⊆ ρ(A), sup
λ∈Ha

‖(A− λ)−1‖ <∞,

with some a ∈ R, then there exists M > 0 such that (1.5) holds.

Note that unlike in the selfadjoint case, the spectral properties of a non-
selfadjoint operator can be arbitrarily non-trivial within the framework described
above. Some pathologies can for instance be illustrated based on Schrödinger op-
erators of the form

A = −∂2
x + ixk

in the space L2(R), starting with the imaginary Airy operator (k = 1) which has
empty spectrum and generates a strongly continuous semigroup whose norm decays
super-exponentially in time, see e.g. [Hel13, Sec. 14.3]. Moreover, the Davies oscil-
lator (k = 2) shows that the resolvent norm cannot be bounded above in terms of
the distance to the spectrum as in the selfadjoint case, see [Dav99]. For the imagi-
nary cubic oscillator (k = 3), even though A has real and purely discrete spectrum,
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the operator − iA does not generate a semigroup (and thus certainly not a unitary
group as in the selfadjoint case), see [KSTV15].

1.2.3. Form representation theorems. A standard and widely successful
approach in constructing operators with the above described desirable properties
is the representation by their sesquilinear form. Roughly speaking, the idea is to
consider the sesquilinear form associated with the di�erential expression A (with re-
spect to the underlying inner product) on a suitable set of functions and to formally
integrate by parts. If one can associate the resulting formula with a sesquilinear
form in H having certain properties, the latter gives rise to a closed, densely de�ned
linear operator in H with non-empty resolvent set. A classical method to achieve
this connection is the following Lax-Milgram theorem.

Theorem 1.3 ([Hel13, Thm. 3.6]). Let V and H be Hilbert spaces such that
V ⊆ H is continuously embedded and dense in H, and let a be a bounded sesquilinear
form on V. If a is coercive, i.e. if there exists m > 0 such that

|a(f, f)| ≥ m‖f‖2V , f ∈ V,

then the operator A in H de�ned by

domA := {f ∈ V : ∃ ηf ∈ H, ∀ g ∈ V, a(f, g) = 〈η, g〉H},
Af := ηf ,

(1.6)

is boundedly invertible and its domain is dense in V and H.

The above theorem can for instance be employed to introduce (non-selfadjoint)
Dirichlet realisations in the space L2(Ω) of the Schrödinger operator

A = −∆ + V

with a sectorial complex-valued potential V , see e.g. [Kat95]. For accretive poten-
tials, i.e. if the range of V is contained only in a complex half plane, the domain V
of the form can in general not be chosen such that the latter becomes coercive.
A generalisation of the Lax-Milgram theorem due to Almog and Hel�er, which in
particular covers the described case of accretive potentials, reads as follows.

Theorem 1.4 ([AH15, Thm. 2.1, Thm. 2.2]). Let V and H be Hilbert spaces
such that V ⊆ H is continuously embedded and dense in H, and let a be a bounded
sesquilinear form on V. If there exist m > 0 and Φ1,Φ2 ∈ B(V) which extend to
bounded operators on H such that

|a(f, f)|+ |a(Φ1f, f)| ≥ m‖f‖2V ,
|a(f, f)|+ |a(f,Φ2f)| ≥ m‖f‖2V ,

f ∈ V, (1.7)

then the operator A in H de�ned by (1.6) is boundedly invertible and its domain is
dense in V and H.

In case of the accretive Schrödinger operators in [AH15], the estimates in (1.7)
are achieved by correcting the inde�nite imaginary part of the potential by a mul-
tiplier Φ1 = Φ2 which is essentially the sign of ImV . Further generalisations of the
Lax-Milgram representation theorem can be found in [McI68, BBDCZ10, GKMV13,
Sch15, tESV15].
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1.2.4. The numerical range. Besides its obvious importance in numerical
computations, the numerical range

W (A) = {〈Af, f〉H : f ∈ domA, ‖f‖H = 1} ⊆ C,

of a linear operator in a Hilbert space is also a powerful tool in its a priori spectral
analysis. Knowing fairly little about the operator, it o�ers information on the
location of the (approximate) point spectrum via the enclosures

σp(A) ⊆W (A), σap ⊆W (A). (1.8)

Moreover, provided that every connected component of C \W (A) contains a point
in the resolvent set, it gives an enclosure of the full spectrum and even an upper
bound for the resolvent norm,

σ(A) ⊆W (A), ‖(A− λ)−1‖ ≤ 1

dist(λ,W (A))
, λ ∈ C \W (A);

note that the numerical range is convex and the complement of its closure thus con-
sists of at most two connected components. The above properties are in particular
useful in non-selfadjoint spectral problems due to the non-trivial relation between
spectrum and resolvent norm therein. For instance, considering the Hille-Yosida
theorem, it follows that if −A is m-accretive, i.e. if ReW (A) ≤ 0 and the open
right half plane contains a point in the resolvent set, then A generates a strongly
continuous contraction semigroup.

1.3. Operator matrices

Details on the following, as well as an extensive collection of results about opera-
tor matrices together with several examples can be found in the monograph [Tre08].

1.3.1. Spectral equivalence. Many applications in physics lead to systems
of equations where the di�erential expression on the right hand side of the Cauchy
problem is in fact given by a matrix acting on a two component vector function, see
e.g. [Tre08] and the references therein. In these cases, the basic spectral analysis
described in Section 1.2 becomes substantially more complicated. However, we
point out that the challenges are not necessarily due to a lack of symmetry with
respect to the underlying inner product, but rather intrinsic to the matrix structure
of the problem. For instance, even if the di�erential expression is symmetric and
the diagonal entries are semi-bounded, the resulting matrix expression need not be
semi-bounded; no standard variational principles for the discrete spectrum are thus
available, while analogous min-max principles for operator matrices are already
quite involved, see e.g. [Tre08, Sec. 2.10].

More generally speaking, even having suitably well-behaved operator realisa-
tions of the entries A, B, C and D at hand (acting between the respective Hilbert
spaces H1 and/or H2), the resulting operator matrix

A =

(
A B
C D

)
: H ⊃ domA = (domA ∩ domC)⊕ (domB ∩ domD)→ H, (1.9)

de�ned naively on the domain above in the product space H = H1 ⊕H2, can have
arbitrary properties in general. Actually, even if the entries are all densely de�ned
and closed, it is unclear if the matrix domain is dense in H, or if it is large enough
such that A is closed; in fact, A might not be closable at all. Several ill-behaved
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examples can be found in the pioneering work [Nag89] on operator matrices, or
in [Tre08] and the references therein.

A successful approach to the above issues was proposed in [Nag89] and has
been employed ever since in di�erent variations. Inspired by the properties of scalar
matrices, the author suggests to relate the qualitative and quantitative properties
of the operator matrix to its Schur complements. The �rst one of the latter can be
employed whenever D is invertible and is the following operator family in H1

S1(λ) = A− λ−B(D − λ)−1C, λ ∈ ρ(D),

domS1(λ) = {f ∈ domA ∩ domC : (D − λ)−1Cf ∈ domB};

the second Schur complement S2(·) is de�ned analogously. Indeed, for λ ∈ ρ(D), a
relation between the inverses of A−λ and S1(λ) is provided by the Frobenius-Schur
factorisation of the matrix resolvent, which is the following formal identity

(A− λ)−1 = (1.10)

=

(
S1(λ)−1 −S1(λ)−1B(D − λ)−1

−(D − λ)−1CS1(λ)−1 (D − λ)−1 + (D − λ)−1CS1(λ)−1B(D − λ)−1

)
.

In order to give sense to the above representation on operator level, typically
suitable patterns of relative boundedness are assumed within the matrix entries.
For the notion of relative boundedness, which essentially measures the unbound-
edness of an operator with respect to another, we refer the reader to e.g. [Kat95,
Sec. IV.1.1]. The �rst result of this type employs both Schur complements under
the assumption that the o�-diagonal of A is relatively bounded with respect to its
diagonal.

Theorem 1.5 ([Nag89, Thm. 2.4]). Let A be closed and let C and B, respec-
tively, be A- and D-bounded. Then on the common resolvent set of the diagonal
elements, the spectra of A and both its Schur complements coincide, i.e.

σ(A) ∩ ρ(A) ∩ ρ(D) = σ(S1(·)) ∩ ρ(A) = σ(S2(·)) ∩ ρ(D). (1.11)

In the above, the spectrum of an operator family is de�ned as usual, e.g.

σ(S1(·)) = {λ ∈ ρ(D) : 0 ∈ σ(S1(λ))}.

Without going into further details, we mention that imposing various other domi-
nance patterns and employing one or both Schur complements, also the closedness
and closability of A, as well as di�erent parts of its spectrum (point, continuous,
residual, essential), can be related equivalently to the analogous notions for the con-
sidered Schur complement. Moreover, similar results hold employing the so-called
quadratic complements of the operator matrix. For a concise collection of these
spectral equivalence results, we refer the reader to [Tre08, Sec. 2.2 � 2.4].

Due to this approach to the analysis of the matrix via its Schur complements,
one can �nd a closed operator matrix realisation of A with non-empty resolvent set
for instance by applying the representation theorems in Section 1.2.3 to S1(λ) and
S2(λ) with a suitable λ ∈ ρ(A) ∩ ρ(D). The various parts of the spectrum of the
operator matrix can then further be analysed in terms of the Schur complements.
Moreover, by formula (1.10) and its analogue for S2(·), even the resolvent norm
of A can be related to the latter.
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1.4. Contributions

In this section, we brie�y sketch the main ideas behind the works [Ger21,
GT21, GS21] which constitute this thesis, and put them in relation to the issues
and methods in the previous introductory section. A more extensive and detailed
summary of the presented research work can be found in Chapters 2 � 4.

1.4.1. Schur complement dominance. It is crucial to observe that in order
to rigorously justify the Frobenius-Schur factorisation of the resolvent, the matrix
entries themselves do not need to be in direct relation to each other. Indeed, it
su�ces that e.g. the �rst Schur complement dominates the neighbouring factors
in (1.10) in a suitable sense. This approach, which was applied successfully in
[EL07, FST18, IST16, Ibr17, IT17] to particular problems, inspires us to introduce
a new abstract framework for the study of operator matrices in Chapter 2 below.
Besides the new non-standard dominance structure therein, we go even further and
do not require the matrix entries to act as operators in the respective Hilbert spaces
(which in particular allows for problems with distributional coe�cients).

The idea of extending the entries to take values in spaces of distributions
has been employed before in several matrix problems, e.g. for damped systems
in [JTTV18, AN15]. In fact, this method is already hidden behind the represen-
tation theorems in Section 1.2.3 and has proven to be essential whenever a formal
sum of unbounded operators needs to be implemented. However, so far only the
work [EL07] seems to share our approach to determine the distributional spaces
according to the properties of the Schur complement. Indeed, in other works the
involved spaces have consistently been determined by the entries themselves accord-
ing to the underlying patterns of relative boundedness (e.g. as the form domain of
one of the entries and its dual space in [JTTV18, AN15]); see Section 2.1 for more
details on the above.

We point out that the operator matrices constructed by our method (together
with e.g. the representation theorems in Section 1.2.3) in general do not have a
domain which decomposes as in (1.9) with respect to the underlying product space,
compare also [Nag90] for operator matrices whose domain is non-diagonal due to
the imposed boundary conditions.

1.4.2. The pseudo (quadratic) numerical range. Having established a
spectral equivalence between an operator matrix A and e.g. its �rst Schur comple-
ment S1(·) on ρ(D) similarly to (1.11), there are several possibilities to employ nu-
merical ranges for locating the spectrum of A. The most straightforward approach
is to directly study the numerical range of the matrix itself; nonetheless, since the
latter is convex and contains the numerical ranges of the diagonal elements, it can
be quite large and might not lead to satisfactory results.

Another (often more successful) possibility to locate at least the part of σ(A)
in ρ(D) is to employ the numerical range of its Schur complement,

W (S1(·)) = {λ ∈ ρ(D) : 0 ∈W (S1(λ))}.

For non-trivial operator families, however, the relation between the numerical range
and the spectrum can be more complicated than in the operator case discussed in
Section 1.2.4. While the numerical range still contains the eigenvalues, its closure
might fail to include the approximate point spectrum. In order to overcome this, we
introduce the new notion of pseudo numerical range for families of linear operators.



8 1. INTRODUCTION

With this new notion, indeed both the enclosure property for the approximate
point spectrum, as well as the relation to the resolvent norm prevail in general, see
Section 3.2.1 below.

For operator matrices with diagonal domain, i.e. if A admits a matrix repre-
sentation as in (1.9) in the underlying product space H = H1 ⊕H2, the quadratic
numerical range can provide a tighter spectral enclosure than the numerical range.
By its de�nition

W 2(A) =
⋃

(f,g)∈domA, ‖f‖H1
=‖g‖H2

=1

σp

(
〈Af, f〉H1 〈Bg, f〉H1

〈Cf, g〉H2 〈Dg, g〉H2

)
, (1.12)

the quadratic numerical range exploits the matrix structure of A and is indeed
contained in the usual numerical range. The above notion was originally introduced
in [LT98] (for bounded o�-diagonal entries, see also [Tre09, TW03, RT18] for further
generalisations).

Nevertheless, even though the point spectrum remains inside the quadratic nu-
merical range, the approximate point spectrum is in general no longer contained
in the closure of the latter. Unlike for the numerical range, this might happen not
only for families of operator matrices, but already in the operator matrix case. We
resolve this issue by introducing the pseudo quadratic numerical range for operator
matrix families (which trivially includes the operator matrix case) along the lines
of the pseudo numerical range. Indeed, this new notion shares both the spectral en-
closure property and the connection to the resolvent norm with its scalar analogue,
see Section 3.2.4 below.

1.4.3. Schrödinger operators with accretive potentials in weighted
spaces. In Chapter 4 below, we employ the form representation Theorem 1.4 to
construct Dirichlet realisations of Schrödinger-type operators

Aw = −∇ · (P∇) + V (1.13)

with sectorial matrix functions P and accretive potentials V in suitably weighted
function spaces. In our analysis, the admissible weights w have to satisfy certain
regularity and growth conditions related to the coe�cients, see Assumption 4.1. De-
pending on the imposed admissible weight w, we investigate the spectral properties
of the operators Aw; in particular, we study the Schatten class of their resolvent,
prove the invariance of their discrete spectra and eigenfunctions with respect to the
weight and describe their operator domain.

Concerning the spectral analysis of operator matrices, the constructed weighted
operators are of signi�cant importance. In applications where the Schur comple-
ment is given by operators of the type (1.13), the Frobenius Schur factorisation of
the resolvent might contain terms of the form

w1(−∇ · (P∇) + V )−1w2

with multiplication operators w1 and w2, see (1.10). In order to give rise to a
resolvent operator by the latter formula, a successful approach can be to implement
the Schur complement in a suitably weighted space, see also Theorem 4.4 where
bounded extensions of operator compositions as above are discussed. We employ
this particular method to a second order matrix di�erential operator in Section 4.3.1
below; notice that for the wave equation in Section 1.5.3, we realise the Schur
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complement in a weighted space for another reason, namely due to the fact that
the underlying Hilbert space itself carries a weight.

1.5. Linearly damped wave equation

We illustrate the results achieved in this thesis by revisiting a particular spectral
problem several times throughout the subsequent chapters, see Sections 2.2, 3.3,
and 4.2 below. More precisely, we consider a linearly damped wave equation

∂2
t u(t, x) + 2a(x)∂tu(t, x) = (∆x − q(x))u(t, x), t > 0, x ∈ Ω, (1.14)

with non-negative damping a and potential q on an open set Ω ⊆ Rn. After
standard transformations, the corresponding Cauchy problem reads

∂t

(
u1(t, x)
u2(t, x)

)
=

(
0 1

∆x − q(x) −2a(x)

)(
u1(t, x)
u2(t, x)

)
, (1.15)

where the matrix di�erential operator on its right hand side is traditionally imple-
mented in a certain product Hilbert space W(Ω)⊕ L2(Ω), see (2.2).

1.5.1. Semigroup generation. The �rst goal is to �nd a Dirichlet realisation
of the operator matrix in (1.15) without imposing any relation between damping and
potential, under the sole assumption that the latter are locally integrable (which is
the natural minimal assumption to apply the standard form representation methods
in Section 1.2.3 to the Schur complement).

While the case where the damping is relatively bounded with respect to ∆− q
has been studied extensively, see e.g. [AN15, JTTV18], to our knowledge non-
standard dominance patterns allowing stronger dampings have been considered
only in the works [FST18, IT20] so far. In [FST18], the spectral equivalence to the
dominant second Schur complement and the Lax-Milgram representation theorem
were employed to de�ne the operator matrix and establish its semigroup generation.
However, since no distributional approach was taken, the operator domain of the
Schur complement had to be described, resulting in seemingly unnatural restrictions
on the regularity and growth of the damping, see [FST18, Asm. I]. In the second
work [IT20] on the other hand, a di�erent (non-spectral theoretic) approach was
taken to construct a unique weak solution and show a polynomial decay of its norm
in time.

Assuming merely the minimal assumptions mentioned above, we use our new
results on Schur complement dominance to introduce a Dirichlet realisation of the
operator matrix

A =

(
0 I

∆− q −2a

)
in the spaceW(Ω)⊕L2(Ω). We therefore employ the spectral equivalence to its sec-
ond Schur complement, which is the Dirichlet realisation (due to the Lax-Milgram
theorem) of

S2(λ) = − 1

λ
(−∆ + q + 2λa+ λ2), λ ∈ C \ {0}, (1.16)

acting in the space L2(Ω). We show that not only is the resulting operator matrix
closed, densely de�ned and has non-empty resolvent set, but that actually −A
is m-accretive and A thus generates a strongly continuous contraction semigroup
according to the Hille-Yosida theorem. Under the more restrictive assumptions
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imposed in [FST18], we show that the generator de�ned therein coincides with our
realisation of the operator matrix; for more details, see Section 2.2 below.

1.5.2. Spectral enclosure. By the above described spectral equivalence, the
matrix problem can be reduced to the analysis of the Schur complement in (1.16).
In Section 3.3 below, we derive an enclosure for the spectrum of the latter by
employing its pseudo numerical range. To this end, we assume a certain form
subordination property (3.5) of the damping with respect to the term−∆+q. Notice
that this assumption implies relative form-boundedness of order zero (see [Kat95,
Sec. VI.1.5] for relative boundedness of forms) and is used to obtain an estimate
for the pseudo numerical range of S2(·), while no relation between damping and
potential is assumed for the spectral correspondence and semigroup generation
described in Section 1.5.1.

As mentioned before, instead of studying the Schur complement, one can of
course directly investigate the operator matrix. In general, however, the numerical
range of A is the whole left complex half plane (even if the damping is form-
subordinate as described above). The quadratic numerical range of A, on the other
hand, can give much tighter enclosures, see [JTTV18] for the case of accretive
(−∆ + q)-bounded damping.

1.5.3. Accretive damping in a weighted space. Combining our results on
Schur complement dominance with the weighted Schrödinger operators constructed
in Chapter 4, we can study the case of accretive dampings in weighted spaces. More
precisely, in Section 4.2 below, we consider another wave equation

utt(t, x) + 2(a1(x) + ia2(x)−∇x · (a0(x)∇x))ut(t, x) = ∆xu(t, x) (1.17)

for x ∈ Ω and t > 0. While in comparison to (1.14), we choose the potential to be
zero, on the other hand we allow accretive (di�erential) damping, i.e. we assume a1

to be non-negative and the matrix function a0 to be positive semi-de�nite. On the
right hand side of the corresponding Cauchy problem, we �nd the following matrix
di�erential expression

A =

(
0 I
∆ −2(a1 + ia2 −∇ · (a0∇))

)
.

For a suitable weight w, we introduce a Dirichlet realisation of A in the weighted
product spaceWw(Ω)⊕L2

w2(Ω), see (4.13) for the weighted analogue ofW(Ω), and
show that it generates a strongly continuous semigroup. We therefore employ the
dominance of its second Schur complement

S2(λ) = − 1

λ
(−∇ · ((ICn + λa0)∇) + 2λ(a1 + i a2) + λ2), λ ∈ C \ {0},

which we implement in the weighted space L2
w2(Ω) by means of Theorem 4.2 below.

The arising conditions on the damping and the admissible weight can be found
in (4.12), (4.14) and (4.16).



CHAPTER 2

Schur complement dominant operator matrices

The results in this chapter are based on the research paper [Ger21]. While in
Section 2.1 the abstract results obtained in the latter are summarised, in Section 2.2
we sketch their application to the damped wave equation. Section 2.3 contains a
layout of further applications to second order matrix di�erential operators with un-
bounded and/or singular coe�cients and to Klein-Gordon and Dirac operators. We
stress that not all results from [Ger21] are included below and the ones mentioned
are widely simpli�ed.

2.1. Main results

We implement (unbounded) operator matrices A0 acting in the orthogonal sum
H = H1⊕H2 of two complex Hilbert spaces H1 and H2. More precisely, we identify
a domain domA0 such that the resulting operator is densely de�ned, closed and
has a non-empty resolvent set. To this end, we establish an equivalence of (point
and essential) spectra of A0 and its �rst Schur complement S0(·), which is a family
of (unbounded) operators acting in H1, see Theorem 2.3 below. Note that we
employ only one Schur complement (which we denote by S0(·)). The presented
results hold accordingly for the second Schur complement and can be translated in
a straightforward way, see [Ger21, Rem. 2.4].

The core concepts of our approach are on one hand the dominance of the Schur
complement over neighbouring terms in the Frobenius-Schur factorisation of the
resolvent. On the other hand, we extend the action of the matrix entries and of the
Schur complement to certain distributional triplets of Hilbert spaces

DS ⊕D2 ⊆ H ⊆ D−S ⊕D−2, DS ⊆ H1 ⊆ D−S ,

before restricting the resulting operators to their maximal domains in the original
spaces H and H1.

2.1.1. Assumptions. Our simpli�ed set of Assumptions engaging the �rst
Schur complement is the following.

Assumption 2.1 ([Ger21, Asm. 3.1]). (i) Let DS , D2, D−S and D−2 be
complex Hilbert spaces satisfying the inclusions

DS ⊆ H1 ⊆ D−S , D2 ⊆ H2 ⊆ D−2,

with continuous canonical embeddings which have dense ranges.
(ii) Let A, B and C be bounded between the following spaces

A ∈ B(DS ,D−S), B ∈ B(D2,D−S), C ∈ B(DS ,D−2).

11
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(iii) Let D0 ∈ C(H2) such that domD0 ⊆ D2 is dense in D2 and assume there
exists an extension D ⊇ D0 with

D ∈ B(D2,D−2), (D − λ)−1 ∈ B(D−2,D2), λ ∈ ρ(D0) 6= ∅. //

Note that the assumptions in [Ger21, Asm. 3.1] are more general. In fact, we
allow A and B to map to a larger space D−1 ⊇ D−S and thus widen the range
of applicability of our results; see Sections 2.3.1 and 2.3.3 where D−S is a proper
subspace of D−1. Moreover, instead of (iii) above we merely assume that D0 − λ
has a generalised inverse with a suitable extension property, see [Ger21, Equ. (3.2)].

While several applications in [Ger21, GS21] suggest that DS and D−S , respec-
tively, are given as the form domain of the Schur complement and its anti-dual
space, this is not always the case. Indeed, this can be seen in [Ger21, Sec. 7.2] or
Section 4.3.1 below, where in the latter, DS is the operator domain of the Schur
complement, which is implemented in the weighted space D−S .

2.1.2. De�nition of matrix and Schur complement. The operator matrix
and its Schur complement are initially de�ned as bounded operators (with values
in distributional spaces). However, we point out that the resulting operators A0

and S0(·) which act in H and H1 are in general unbounded.

De�nition 2.2 ([Ger21, Def. 3.2]). We de�ne the operator matrix

A :=

(
A B
C D

)
∈ B(DS ⊕D2,D−S ⊕D−2),

and its (�rst) Schur complement

S(λ) := A−B(D − λ)−1C ∈ B(DS ,D−S), λ ∈ ρ(D0),

acting in the respective triplets

DS ⊕D2 ⊆ H ⊆ D−S ⊕D−2, DS ⊆ H1 ⊆ D−S .
The operators A0 and S0(·) are then de�ned as the maximal restrictions of A and
S(·) to the original spaces H and H1, respectively, i.e. to their respective domains

domA0 := {(f, g) ∈ DS ×D2 : A(f, g) ∈ H},
domS0(λ) := {f ∈ DS : S(λ)f ∈ H1}, λ ∈ ρ(D0). //

2.1.3. Main result. Our main result is the equivalence of (point and essen-
tial) spectra between the operator matrix and its Schur complement, which allows
to construct the desired densely de�ned, closed realisation of A0 with non-empty
resolvent set; here we consider the second out of �ve de�nitions of essential spectra
in the sense of [EE87, Chap. IX].

Theorem 2.3 ([Ger21, Cor. 3.4. (ii), Cor. 3.5�3.6]). Let Assumption 2.1 be
satis�ed and A0 and S0(·) be as in De�nition 2.2. If, for every λ ∈ Σ ⊆ ρ(D0),
there exists zλ ∈ C such that

(S(λ)− zλ)−1 ∈ B(D−S ,DS), (2.1)

then the (point and essential) spectra of A0 and S0(·) coincide on Σ, i.e.

σ(p/e2)(A0) ∩ Σ = σ(p/e2)(S0(·)) ∩ Σ.

Moreover, if ρ(S0(·))∩Σ 6= ∅, then domA0 is dense both in D and H. In particular,
this implies that A0 is densely de�ned, closed and has non-empty resolvent set.
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Notice that the equivalence of point spectra and one implication

λ ∈ σ(S0(·)) =⇒ λ ∈ σ(A0)

also holds for λ ∈ ρ(D0) \ Σ without (2.1), see [Ger21, Prop. 2.6, Thm. 2.7 (i)]
and also Theorems 2.4 and 2.6 below. If DS is the form domain of the Schur
complement and D−S is its anti-dual, then condition (2.1) can be established e.g.
by the representation theorems in Section 1.2.3. The last claim of the theorem in
particular holds if zλ can be chosen zero for some λ ∈ Σ.

Actually, instead of (2.1) it su�ces that S0(λ) − zλ has a generalised inverse
with a suitable extension property, see [Ger21, Cor. 2.9, Rem. 2.10]. Moreover, we
derive another su�cient condition for the density of domA0 in [Ger21, Cor. 3.4 (i)].

2.2. Semigroup generation for damped wave equations with singular
and/or unbounded damping and potential

For details concerning this section, see [Ger21, Sec. 4]. We employ Schur com-
plement dominance to introduce a Dirichlet realisation of the matrix di�erential
expression in (1.15) on Ω ⊆ Rn in a suitable Hilbert space. Under the weak regu-
larity assumption that the damping a and potential q are non-negative and locally
integrable (which allows for strong dampings unrelated to the potential), the latter
generates a strongly continuous contraction semigroup, see Theorem 2.4 below.

We implement A0 in the standard choice Hilbert space H = W(Ω) ⊕ L2(Ω),
where W(Ω) is the completion of C∞0 (Ω) with respect to

〈f, g〉W := 〈∇f,∇g〉L2 + 〈q 1
2 f, q

1
2 g〉L2 , f, g ∈ C∞0 (Ω); (2.2)

the space W(Ω) ⊕ L2(Ω) was chosen also in [FST18] and it coincides with the
considered Hilbert space in [AN15, Chap. 1.2.1] or [JTTV18] if the potential is
uniformly bounded below. We de�ne the matrix and its Schur complement as

A0 :=

(
0 I

∆− q −2a

)
, S0(λ) := − 1

λ
(−∆ + q + 2λa+ λ2), λ ∈ C \ {0}, (2.3)

in W(Ω)⊕ L2(Ω) and L2(Ω), respectively, on their domains

domA0 := {(f, g) ∈ W(Ω)×DS : (∆− q)f − 2ag ∈ L2(Ω)},
domS0(λ) := {f ∈ DS : (∆− q − 2λa)f ∈ L2(Ω)}.

(2.4)

Here DS is the form domain of the Schur complement

DS := H1
0 (Ω) ∩ dom q

1
2 ∩ dom a

1
2 .

Theorem 2.4 ([Ger21, Thm. 4.2]). Let a, q ∈ L1
loc(Ω) with a, q ≥ 0 a.e. in Ω

and let A0 and S0(·) be as in (2.3) and (2.4). Then A0 generates a C0-contraction
semigroup on W(Ω) ⊕ L2(Ω) and domA0 is dense in W(Ω) ⊕ DS. Moreover, the
(point and essential) spectra of A0 and S0(·) coincide on C \ (−∞, 0],

σ(p/e2)(A0) \ (−∞, 0] = σ(p/e2)(S0(·)) \ (−∞, 0],

and on (−∞, 0) we have

σ(A0) ∩ (−∞, 0) ⊇ σ(S0(·)) ∩ (−∞, 0),

σp(A0) ∩ (−∞, 0) = σp(S0(·)) ∩ (−∞, 0).
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If [FST18, Asm. I] is satis�ed, our realisation A0 coincides with the semigroup
generator G introduced in [FST18], see [Ger21, Rem. 4.3]. We also mention that our
approach allows for distributional dampings like e.g. a(x) = δ(x − x0) considered
in [AN15, Chap. 4].

2.3. Further applications

We demonstrate our results based on three other spectral problems addressed
in [Ger21]. While Section 2.3.1 is more substantial, the applications in Sections 2.3.2
and 2.3.3 are more of illustrative nature and are only brie�y mentioned.

2.3.1. Second order matrix di�erential operators with singular and/
or unbounded coe�cients. In [Ger21, Sec. 6], we study second order di�erential
operator matrices of the form

A0 :=

(
−∆ + q ∇ · b
c · ∇ d

)
(2.5)

in the Hilbert space L2(Ω)⊕L2(Ω) with an open set Ω ⊆ Rn and Dirichlet boundary
conditions, see also [BM20, Ibr17, IST16, IT17, Kon98, KLN08] for problems of
similar type. Without imposing further restrictions on the coe�cients, the matrix
entries lack any structure of relative boundedness between them, which in previous
results enforced assumptions on either the particular structure or the regularity
of the coe�cients, see e.g. [IST16] where latter were essentially assumed to be
continuously di�erentiable.

We employ Theorem 2.3 to establish suitable realisations of A0 and its �rst
Schur complement

S0(λ) := −∇ · (π(λ)∇) + q − λ, λ ∈ Θ ⊆ C \ ess ran d, (2.6)

see (2.7), and in Theorem 2.6 we show the equivalence of their spectra under fairly
general assumptions. In case that q and d are sectorial and c = b, we show in
Theorem 2.7 that A0 generates a strongly continuous contraction semigroup.

2.3.1.1. Spectral equivalence. Due to our distributional approach, we are able to
reduce the imposed regularity of the coe�cients to a minimum which is required to
ensure a dominant Schur complement and the applicability of standard sesquilinear
form methods to the latter.

Assumption 2.5 ([Ger21, Asm. 6.1]). Assume that the following hold.

(i) Basic assumptions on coe�cients: Let b, c : Ω→ Cn be measurable and

q ∈ L1
loc(Ω), d ∈ L∞loc(Ω).

(ii) Regularity of π on Θ: Let Θ ⊆ C \ ess ran d be connected and assume

π(λ) := ICn + (d− λ)−1(b⊗ c) ∈ L1
loc(Ω)n×n, λ ∈ Θ. (2.7)

(iii) Sectoriality of Schur complement on Φ: For the set ∅ 6= Φ ⊆ Θ and all λ ∈ Φ,
assume there exist ωλ ∈ (−π, π] and γλ ≥ 0 such that both

q̃(λ) := eiωλ q + γλ, π̃(λ) := eiωλ π(λ),
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are sectorial (with vertex zero) in the sense of [Kat95, Sec. V.3.10] and that
Re π̃(λ) is positive de�nite. For all λ, µ ∈ Φ, let mλ,µ,Mλ,µ > 0 such that

mλ,µ Re q̃(µ) ≤ Re q̃(λ) ≤ Mλ,µ Re q̃(µ),

mλ,µ Re π̃(µ) ≤ Re π̃(λ) ≤ Mλ,µ Re π̃(µ).
(2.8)

(iv) Dominance of Schur complement : For all λ ∈ Φ, assume that

(d− λ)−1 max
(∣∣(Re π̃(λ))−

1
2b
∣∣, ∣∣(Re π̃(λ))−

1
2 c
∣∣) ∈ L∞(Ω). //

The regularity assumptions in (i) and (ii) above essentially ensure that the
sesquilinear form of the Schur complement is densely de�ned, while its sectoriality
(after shift and rotation) for parameters λ ∈ Φ is provided by (iii). Property (2.1)
can then be established for such λ by the standard representation theorem for m-
sectorial operators, see [Kat95, Thm. VI.2.1]. The required dominance of the Schur
complement, however, is guaranteed by the boundedness of the combination in (iv).
Note that the local boundedness of d is assumed for the sake of simplicity and can
be relaxed; see [Ger21, Rem. 6.2] for more details on the above.

Under the assumptions above, our realisation of the operator matrix A0 in (2.5)
and its Schur complement S0(·) in (2.6) are de�ned to act on the domains

domA0 :=
{

(f, g) ∈ DS ×D2 : (∆− q)f −∇ · bg ∈ L2(Ω),

c · ∇f + dg ∈ L2(Ω)
}
,

domS0(λ) := {f ∈ DS : (∇ · (π(λ)∇)− q)f ∈ L2(Ω)};
(2.9)

here the space DS is the closure of C∞0 (Ω) with respect to

‖f‖2S := ‖(Re π̃(λ0))
1
2∇f‖2L2 + ‖(Re q̃(λ0))

1
2 f‖2L2 + ‖f‖2L2 , f ∈ C∞0 (Ω),

where λ0 ∈ Φ is �xed arbitrarily and D2 is the weighted space

D2 := L2(Ω, |d− λ0|2ω−2), ω := max
(

1, |(Reπ0)−
1
2 c|
)
.

We point out that (as topological spaces) neither DS nor D2, and thus neither A0

nor S0(·), depend on the choice of λ0, see (2.8) and [Ger21, Lem. 6.11].

Theorem 2.6 ([Ger21, Thm. 6.3]). Under Assumption 2.5, the (point and
essential) spectra of A0 and S0(·), de�ned as in (2.5), (2.6) and (2.9), are equivalent
on the set Φ, i.e.

σ(p/e2)(A0) ∩ Φ = σ(p/e2)(S0(·)) ∩ Φ. (2.10)

On the remaining part of Θ, they satisfy

σp(A0) ∩ (Θ \ Φ) = (Θ \ Φ) ∩ σp(S0(·)),
σ(A0) ∩ (Θ \ Φ) ⊃ (Θ \ Φ) ∩ σ(S0(·)).

(2.11)

A su�cient condition on the density of domA0 in L2(Ω)⊕L2(Ω) can be found
in [Ger21, Thm. 6.3].
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2.3.1.2. Semigroup generation. We consider the case that c = b and that q
and d, respectively, are sectorial with semi-angle θq and θd (and vertex zero) in
the sense of [Kat95, Sec. V.3.10]. In this setting, the Schur complement is sectorial
(without rotation or shift) and A0 and S0(·) can be de�ned as above with the choice

λ0 := −1, π̃ := π, q̃ := q. (2.12)

The analogous spectral equivalence to Theorem 2.6 (on certain sectors Θ and Φ be-
low) then leads to the m-accretivity of −A0, and thus to the semigroup generation.

Theorem 2.7 ([Ger21, Thm. 6.5]). Let Assumption 2.5 (i) hold with c = b
and sectorial q and d as above. Let A0 and S0(·) be as in (2.5), (2.6) and (2.9)
with (2.12) therein, where π is as in (2.7). If the following holds

(d+ 1)−1(b⊗ b) ∈ L1
loc(Ω)n×n, (d+ 1)−1(Reπ(−1))−

1
2b ∈ L∞(Ω)n, (2.13)

then A0 generates a strongly continuous contraction semigroup on L2(Ω)⊕ L2(Ω),
its domain is dense in L2(Ω)⊕L2(Ω) and the relations (2.10) and (2.11) hold with

Θ := {λ ∈ C : | arg λ| > θd}, Φ := {λ ∈ C : | arg λ| > max(θq, θd)}.

We mention that, similarly to (2.13) above, for Theorem 2.6 it su�ces that As-
sumption 2.5 (iv) holds only in an arbitrary point λ0 ∈ Φ, see [Ger21, Rem. 6.2 (iv)].

2.3.2. Klein-Gordon equations with purely imaginary potential. We
consider the Klein-Gordon equation with purely imaginary potential, where the
latter is only assumed to be locally square integrable, see [Ger21, Sec. 5]. Our
analysis relies on relating the problem to a suitable wave equation and employing the
previously established spectral equivalence in Theorem 2.4. We thereby show that
the resulting operator matrix is closed, densely de�ned and boundedly invertible,
see [Ger21, Thm. 5.1].

In [Ger21, Ex. 5.2], we conclude that for the special potential V (x) = ix in
one dimension, the operator matrix has empty spectrum, which corresponds to the
analogous result for the Airy operator in case of the Schrödinger equation.

2.3.3. Dirac operators with potentials satisfying a Hardy-Dirac in-
equality. Selfadjoint realisations of certain Dirac operators with Coulomb-type
potentials were established in [EL07], which we show to be a particular case of our
abstract construction. The coercivity of the Schur complement therein is provided
by a Hardy-Dirac inequality, which was established in the earlier works [DES00,
DELV04]. In [Ger21, Sec. 7.1], we illustrate the underlying spaces and operators in
our framework, and thereby recover the result in [EL07]. In addition, we obtain the
spectral equivalence to the �rst Schur complement, see [Ger21, Prop. 7.2, Rem. 7.3].



CHAPTER 3

Pseudo numerical ranges and spectral enclosures

This chapter is based on the work in [GT21] and contains a brief (and non-
exhaustive) summary of the latter, where the stated results are mostly simpli�ed.
Section 3.2 consists of the main results, which are applied in Section 3.3 to the
damped wave equation while in Section 3.4 further results from [GT21] are sketched.

3.1. Preliminaries

We recall crucial notions which were already brie�y mentioned in Chapter 1.
For a domain Θ ⊆ C and a family of linear operators T (λ), λ ∈ Θ, in a Hilbert
space H, the spectrum and resolvent set are de�ned as

σ(T (·)) = {λ ∈ Θ : 0 ∈ σ(T (λ))}, ρ(T (·)) = C \ σ(T (·)),

and analogously for various parts of the spectrum, as well as the numerical range,
see e.g. [Mar88, Sec. 11.2, Sec. 26.3]. Analogously, for a family L(λ), λ ∈ Θ, of
linear operators admitting a (λ-dependent) matrix representation with respect to
the decomposition H = H1 ⊕ H2 of the underlying Hilbert space, see (1.9), the
quadratic numerical range is given as

W 2(L(·)) = {λ ∈ Θ : 0 ∈W 2(L(λ))} ⊆W (L(·));

the above notion was introduced in [Tre10] (for holomorphic families of bounded
operator matrices), cf. [RTW14] for the block numerical range. Note that, consid-
ering the trivial families T (λ) = A− λ and L(λ) = A− λ, λ ∈ C, these de�nitions
include the corresponding ones for linear operators and operator matrices.

3.2. Main results

In order to minimise the notations and best convey the idea behind the in-
troduced notions, we restrict ourselves to the case n = 1 and n = 2, i.e. to the
notions of pseudo numerical and pseudo quadratic numerical range. The de�nition
and properties of the pseudo block numerical range for arbitrary size n ∈ N are a
straightforward generalisation of the case n = 2 and can be found in [GT21, Sec. 4].

3.2.1. The pseudo numerical range. The convenient properties of the nu-
merical range of an operator A in a Hilbert space H mentioned in Section 1.2.4
are based on the fact that its ε-approximate point spectra are included in the ε-
neighbourhoods of the numerical range, i.e.

σap,ε(A) = {λ ∈ C : ∃ f ∈ domA, ‖f‖H = 1,

‖(A− λ)f‖H < ε} ⊆ Bε (W (A)) ,
(3.1)

see e.g [Nev93, Def. 2.2.5]. Aiming to recover the above property in a suitable
sense for an operator family T (λ), λ ∈ Θ, we introduce the following notion; the

17



18 3. PSEUDO NUMERICAL RANGES AND SPECTRAL ENCLOSURES

corresponding one for families of sesquilinear forms is omitted here and can be
found in [GT21, Sec. 2].

De�nition 3.1 ([GT21, Def. 2.1]). The pseudo numerical range of T (·) is
de�ned as the intersection

WΨ(T (·)) :=
⋂
ε>0

Wε(T (·)), Wε(T (·)) :=
⋃
‖B‖<ε

W (T (·) +B), ε > 0. //

Like its classical counterpart, the pseudo numerical range is in general neither
connected nor bounded (even for bounded operator values). By de�nition, it always
contains the classical numerical range and the inclusion might be proper, see [GT21,
Ex. 3.2].

The set Wε(T (·)) above in fact coincides with the ε-pseudo numerical range
previously introduced in [ET17, Def. 4.1], leading to the equivalent characterisa-
tion (3.3) below. The advantages of our de�nition of Wε(T (·)) become evident in
higher dimensions, see Section 3.2.4 below.

Proposition 3.2 ([GT21, Prop. 2.3]). For every ε > 0, we have

Wε(T (·)) = {λ ∈ Θ : ∃ f ∈ domT (λ), ‖f‖H = 1, |〈T (λ)f, f〉H| < ε}, (3.2)

which then leads to the equivalent characterisation

WΨ(T (·)) = {λ ∈ Θ : 0 ∈W (T (λ))}. (3.3)

The identity (3.3) above provides the invariance of the pseudo numerical range
with respect to closures and Friedrichs extensions, see [GT21, Prop. 2.4. (i), (iii)].
We point out that the set in (3.3) was recently used in [BM20] to study linear
(non-monic) pencils of operators.

In the simplest case T (λ) = A− λ, λ ∈ C, the pseudo numerical range by (3.3)
coincides with the closure of the numerical range. For general families however,
WΨ(T (·)) is neither open nor closed in Θ, see [GT21, Ex. 3.2 (i), Ex. 2.9], and
neither the closures nor the interiors of pseudo numerical and classical numerical
range in the relative topology of Θ need to coincide, see [GT21, Ex. 3.2].

For the pseudo numerical range, the ε-neighbourhoods in (3.1) are replaced
by the sets Wε(T (·)), implying that the enclosure (1.8) for the approximate point
spectrum continues to hold not only for the trivial family T (λ) = A − λ, but also
for arbitrary families.

Proposition 3.3 ([GT21, Prop. 3.1]). For any ε > 0, we have

σap,ε(T (·)) ⊆Wε(T (·)), ‖T (λ)−1‖ ≤ 1

ε
, λ ∈ ρ(T (·)) \Wε(T (·)),

and hence for the approximate point spectrum that

σapp(T (·)) ⊆WΨ(T (·)).

Like for the classical numerical range, more assumptions are needed such that
WΨ(T (·)) encloses the full spectrum σ(T (·)); su�cient conditions for the latter are
given in [GT21, Prop. 3.1, Rem. 3.7]
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3.2.2. Relation between WΨ(T (·)) and W (T (·)) ∩ Θ. In general, there is
no relation between the pseudo numerical range and the closure of the numerical
range in Θ, see [GT21, Ex. 2.9, Ex. 3.2]. Nevertheless, one inclusion holds for fam-
ilies of m-sectorial operators with constant form domain under a certain continuity
assumption.

Theorem 3.4 ([GT21, Thm. 2.8]). Let T (·) be a family of m-sectorial operators
such that the associated forms t(·), see [Kat95, Thm. VI.2.1], have constant form
domain Dt. Suppose that, for each λ0 ∈ Θ, there exist r, C > 0 and

w : Br(λ0)→ [0,∞), lim
λ→λ0

w(λ) = 0,

such that for all λ ∈ Br(λ0) and f ∈ Dt we have

|t(λ0)(f, f)− t(λ)(f, f)| ≤ w(λ)
(
|Re t(λ0)(f, f)|+ C‖f‖2H

)
.

Then the following inclusion holds

W (T (·)) ∩Θ ⊆W (t(·)) ∩Θ ⊆WΨ(T (·)).

Employing the analogous notion of pseudo numerical range for form families,
the statement above can in fact be formulated more generally, see [GT21, Thm. 2.8]
for details. However, the assumption on the constant form domain cannot be omit-
ted even if the family is analytic, see [GT21, Ex. 2.9].

The reverse inclusion, which by Proposition 3.3 automatically gives a spectral
enclosure, is true for operator polynomials whose leading coe�cient is uniformly
bounded below in a certain sense.

Proposition 3.5 ([GT21, Prop. 2.7]). Let T (·) be an operator polynomial of
order n ∈ N with (possibly unbounded) coe�cients, i.e.

T (λ) =

n∑
k=0

λkAk, domT (λ) =

n⋂
k=0

domAk, λ ∈ C.

Then the following holds

0 /∈W (An) =⇒ σapp(T (·)) ⊆WΨ(T (·)) ⊆W (T (·)) ∩Θ.

This generalises the analogous result for bounded operator polynomials in
[Mar88, Thm. 26.7]; see also [Wag07, Prop. 3.3] for the block numerical range.

3.2.3. Spectral enclosures for holomorphic families. We employ the
pseudo numerical range to prove a spectral enclosure for type (B) holomorphic
operator families in the sense of [Kat95, Sec. VII.4].

Theorem 3.6 ([GT21, Thm. 3.3]). Let T (·) be type (B) holomorphic, associ-
ated with a type (a) holomorphic family t(·). If there exist k ∈ N0 and µ ∈ Θ such
that

0 /∈W
(
t(k)(µ)

)
, (3.4)

then the pseudo numerical range of T (·) and the closure of the standard numerical
range of t(·) in Θ are equal and the following spectral enclosure holds

σ(T (·)) ⊆WΨ(T (·)) = W (t(·)) ∩Θ.

If, in addition, T (·) has constant domain, then

σ(T (·)) ⊆WΨ(T (·)) = W (T (·)) ∩Θ.
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In fact, it su�ces to assume (3.4) only on a core of t(µ), and WΨ(T (·)) 6= Θ
implies (3.4) with k = 0, see [GT21, Equ. (3.2), Rem. 3.4. (i)]. For type (A)
holomorphic families in the sense of [Kat95, Sec. VII.2], the analogous result holds
without making use of the pseudo numerical range.

Theorem 3.7 ([GT21, Thm. 3.5]). Let T (·) be type (A) holomorphic . If there
exist k ∈ N0 and µ ∈ Θ such that

0 /∈W
(
T (k)(µ)

)
,

then the following spectral enclosure holds

σapp(T (·)) ⊆W (T (·)) ∩Θ.

Both Theorems 3.6 and 3.7 generalise the classical result [Mar88, Thm. 26.6]
for bounded holomorphic families, see also [Wag07, Thm. 2.14] for its generalisation
to the block numerical range. Examples where the assumptions above are violated
and the spectral inclusion fails can be found in [GT21, Ex. 2.6, Ex. 3.2].

3.2.4. The pseudo quadratic numerical range. We introduce the pseudo
quadratic numerical range of an operator matrix family.

De�nition 3.8 ([GT21, Def. 4.1]). The pseudo quadratic numerical range is
de�ned as the intersection

W 2
Ψ(L(·)) :=

⋂
ε>0

W 2
ε (L(·)), W 2

ε (L(·)) :=
⋃
‖B‖<ε

W 2(L(·) + B), ε > 0. //

Note that the quadratic numerical range and the pseudo quadratic numerical
range are clearly related in the same way as their classical counterparts, i.e.

W 2
Ψ(L(·)) ⊆WΨ(L(·)),

see [GT21, Prop. 4.6 (i)]. The concept to obtain possibly tighter spectral enclosures
by exploiting the matrix structure of L(·) is thus transmitted from classical to
pseudo numerical ranges.

Regarding the alternative characterisation of WΨ(T (·)) in Proposition 3.2, sev-
eral other ways of de�ning the pseudo quadratic numerical range might seem nat-
ural, see [GT21, Def. 4.3]. For instance, inspired by (3.3), one can consider

W 2
Ψ,0(L(·)) := {λ ∈ Θ : 0 ∈W 2(L(λ))}.

A straightforward generalisation of (3.2) would be

W 2
Ψ,1(L(·)) :=

⋂
ε>0

{λ ∈ Θ : ∃ (f, g) ∈ domL(λ),

‖f‖H1
= ‖g‖H2

= 1, |det(L(λ)f,g)| < ε},

where L(λ)f,g denotes the (λ-dependent) scalar matrix analogous to the one in
(1.12), see [GT21, Def. 4.1 (i)]. Another possibility is to consider only diagonal
perturbations

W 2
Ψ,2(L(·)) :=

⋂
ε>0

⋃
‖Bi‖<ε

W 2(L(·) + diag(B1, B2)).

Recall that for the pseudo numerical range, the analogous notions above coincide. In
the quadratic case, they are in general only nested between the classical numerical
range and the pseudo numerical range.
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Proposition 3.9 ([GT21, Prop. 4.4]). The following inclusions hold.

W 2(L(·)) ⊆W 2
Ψ,1(L(·)) ⊆W 2

Ψ,0(L(·)) ⊆W 2
Ψ,2(L(·)) ⊆W 2

Ψ(L(·)).

In [GS21, Ex. 4.5], we show that these alternative notions all fail to enclose the
approximate point spectrum of L(·) in general. For the set W 2

Ψ,0(L(·)), and thus

for W 2
Ψ,1(L(·)), this is also re�ected in the fact that

W 2
Ψ,0(L(·)) = W 2(L(·)) = W 2(A)

for the trivial family L(λ) = A− λ, λ ∈ C. Indeed, this means that their spectral
enclosure fails whenever it fails for the closure of the quadratic numerical range.
However, by our particular choice from the non-equivalent de�nitions above, the
pseudo quadratic numerical range exhibits precisely the same convenient properties
regarding the spectrum and resolvent norm as the pseudo numerical range.

Theorem 3.10 ([GT21, Thm. 4.10]). For any ε > 0, we have

σap,ε(L(·)) ⊆W 2
ε (L(·)), ‖L(λ)−1‖ ≤ 1

ε
, λ ∈ ρ(L(·)) \W 2

ε (L(·)),

and hence for the approximate point spectrum that

σapp(L(·)) ⊆W 2
Ψ(L(·)).

As usual, additional assumptions are needed for the enclosure of the full spec-
trum, see [GT21, Rem. 3.7, Prop. 4.10] for su�cient conditions.

3.3. Spectral enclosure for damped wave equations with p-subordinate
damping

We revisit the spectral problem for the damped wave equation, see Sections 1.5
and 2.2. Assuming that the damping satis�es a certain form-subordination condi-
tion (3.5) with respect to −∆+ q, we establish an enclosure for the spectrum of the
Schur complement of the semigroup generator A0 in Theorem 2.4. More precisely,
we consider the following abstract spectral problem; details can be found in [GT21,
Sec. 7].

Suppose that t0 and a are densely de�ned sesquilinear forms in H such that t0

is closed, t0 ≥ κ0 ≥ 0 and a ≥ α0 ≥ 0. Assume there exist κ ≤ κ0, p ∈ [0, 1) and
Cp > 0 such that

a(f, f) ≤ Cp
(
(t0 − κ)(f, f)

)p(‖f‖2H)1−p, f ∈ dom t0 ⊆ doma, (3.5)

i.e. such that a is p-subordinate to t0−κ in the sense of forms, cf. [Mar88, Sec. 5.1]
for operator subordinacy. Consider the following quadratic pencil of forms

t(λ) := t0 + 2λa + λ2, dom t(λ) := dom t0, λ ∈ C. (3.6)

The correlation to the Schur complement S0(·) in Theorem 2.4 is then given by
considering H = L2(Rn) and the particular forms

a(f, f) :=

∫
Rn
a|f |2 dx, doma := dom a

1
2 ,

t0(f, f) :=

∫
Rn
|∇f |2 dx+

∫
Rn
q|f |2 dx, dom t0 := H1(Rn) ∩ dom q

1
2 ,

(3.7)

such that for λ 6= 0 one has t(λ) = −λs0(λ) on dom t(λ) = dom s0(λ) = DS , where
s0(·) denotes the family of forms associated with the Schur complement, see [Ger21,
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Prop. 4.11]. Notice that when assuming (3.5), which implies relative form-boun-
dedness of order zero, the assumptions of Theorem 2.3, and thus the equivalence
of (point and essential) spectra of A0 and S0(·), hold on whole C \ {0}. The point
λ = 0, however, has to be considered separately (and exhibits di�erent behaviour
depending on the underlying potential q, see also the last part of Example 3.12).

Employing Theorem 3.6 to the operator family associated with (3.6) and using
condition (3.5) to localise its pseudo numerical range, we obtain the following spec-
tral enclosure. The latter in particular implies that the spectrum lies in the left
half of the complex plane, which agrees with the m-accretivity of −A0 obtained in
Theorem 2.4.

Theorem 3.11 ([GT21, Thm. 7.1]). Let t(·) be as in (3.6) such that (3.5) is
satis�ed. Then t(·) is type (a) holomorphic in the sense of [Kat95, Sec. VII.4] and
the corresponding type (B) holomorphic family T (·) satis�es the following.

(i) The non-real spectrum of T (·) is contained in

σ(T (·)) \ R ⊆
{
z ∈ C : Re z ≤ −α0, |z| ≥

√
κ0,

|Im z| ≥
√

max
{

0, C
− 1
p

p |Re z|
1
p − |Re z|2 + κ

}}
.

(ii) If p < 1
2 , or if p = 1

2 and C 1
2
< 1, or if p = 1

2 and C 1
2

= 1 and κ > 0, then

σ(T ) ∩ R = ∅ ∨ σ(T ) ∩ R ⊆ [s−, s+].

(iii) If p > 1
2 , or if p = 1

2 and C 1
2
> 1, or if p = 1

2 and C 1
2

= 1 and κ ≤ 0, then

σ(T ) ∩ R ⊆ (−∞, r+] ∪ [s−, s+] ∨ σ(T ) ∩ R ⊆ (−∞, s+].

In (ii) and (iii) above, the interval bounds ∞ < r+ < s− ≤ s+ ≤ 0 depend on
the problem parameters p, Cp, κ0 and κ; see [GT21, Thm. 7.1] for more details,
including a separate discussion of the case κ = 0.
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Figure 1. Enclosures in Theorem 3.11 for σ(T ) \ R in (i) (blue) and

for σ(T ) ∩ R in (ii) and (iii) (red in (a) and (c), empty in (b)).

We remark that the enclosure for the non-real spectrum in [JT09, Thm. 3.2, Part
5] is a special case of Theorem 3.11 (i). The enclosure for the real spectrum in [JT09,
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Thm. 3.2, Part 5], however, can substantially be improved by Theorem 3.11 (ii),
since the latter gives σ(T (·)) ∩ R = ∅, see [GT21, Rem. 7.3].

Example 3.12 ([GT21, Ex. 7.5]). We apply Theorem 3.11 to a particular
example. In the space H = L2(Rn) with n ≥ 3, we consider (3.7) with locally
integrable a and q, such that the damping is non-zero and bounded by

a(x) ≤
m∑
j=1

|x− xj |−t + u(x) + v(x),

where m ∈ N ∪ {0}, t ∈ [0, 2) and u ∈ Ls(Rn). The �rst two terms are then
subordinate to the gradient in t0, and we assume the third term to be subordinate
to the potential by

v(x) ≤ c1q(x)r + c2,

see [GT21, Ex. 7.5] for details. We prove that the assumptions of Theorem 3.11 are
satis�ed and provide formulas for the parameters p, κ and Cp therein (depending
on the constants involved), see [GT21, Equ. (7.17)]. In the particular case that

a(x) = |x|k, k ∈ [0, 2), q(x) = |x|2, x ∈ Rn,

the above simplify and we determine the precise enclosures emerging from Theo-
rem 3.11, see the last part of [GT21, Ex. 7.5]. Finally, we mention that in this case
λ = 0 is in the resolvent set of the semigroup generator A0 in Theorem 2.4; this can
be shown analogously as in the proof of [Ger21, Thm. 5.1], using that the harmonic
oscillator −∆ + q in L2(Rn) is boundedly invertible.

3.4. Further applications

The remaining results in [GT21, Sec. 5, Sec. 6] are spectral enclosures for
operator matrix (families) under the assumption of suitable relative boundedness
relations within their entries. Since this thesis is centered around non-standard
dominance patterns, these results will be mentioned only brie�y in this section.

3.4.1. Spectral enclosures in terms of pseudo numerical ranges of
Schur complements. The detailed results in this section can be found in [GT21,
Sec. 5]. Assuming that a family of operator matrices L(·) is pointwise either diag-
onally dominant or o�-diagonally dominant with boundedly invertible o�-diagonal
elements, see [Tre08, Sec. 2.2] for the notion of (o�-)diagonal dominance, we show
that

σapp(L(·)) ∩ ρ(A(·)) ∩ ρ(D(·)) ⊆WΨ(S1(·)) ∪WΨ(S2(·)) ⊆W 2
Ψ,2(L(·)),

see [GT21, Thm. 5.1]. Moreover, we show that if dimH1 ≥ 2 and L(·) has point-
wise symmetric corners, i.e. C(·) ⊆ B∗(·), and if A(·) and −D(·), respectively, are
accretive and sectorial in the sense of [Kat95, Sec. V.3.10], then

σapp(L(·)) ∩ ρ(D(·)) ⊆WΨ(S1(·)) ∪WΨ(D(·)) ⊆W 2
Ψ,2(L(·)),

see [GT21, Thm. 5.3] for analogous results assuming similar structures. The above
spectral enclosures are possibly tighter than the general one by the pseudo quadratic
numerical range in Theorem 3.10. We point out that our results do not restrict the
size of involved relative bounds.
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3.4.2. Structured operator matrices. We apply the results from the pre-
vious section to operator matrices A with a particular structure in [GT21, Sec. 6].
More precisely, we therein assume that C ⊆ B∗ and that A and −D are at least
accretive (possibly sectorial) and their numerical ranges are separated by a strip

ReW (D) ≤ δ < 0 < α ≤ ReW (A).

see [GT21, Equ. (6.2)] for the detailed assumption. Supposing for instance that A
is diagonally dominant and that A and −D are m-accretive, i.e. essentially that the
imaginary axis is in both their resolvent sets, we show in [GT21, Thm. 6.1] that
the approximate point spectrum of A satis�es the enclosure

σapp(A) ⊆ (−Σ ∪ Σ) ∩ {z ∈ C : Re z /∈ (δ, α)};
here the set Σ is the smallest sector containing both W (A) and W (−D). This
generalises [Tre09, Thm. 5.2], where the order of diagonal dominance was assumed
to be zero. Finally, in [GT21, Prop. 6.5], we give su�cient conditions in terms of the
relative bounds for the enclosure of the whole spectrum in the above double sector.
Several other dominance and structural patterns arising from [GT21, Thm. 5.1,
Thm. 5.3] are treated analogously.



CHAPTER 4

Schrödinger operators with accretive potentials in

weighted spaces

This chapter is based on the work [GS21], where more details on the following
can be found. In Section 4.1 we summarise our main results and in Section 4.2 we
illustrate them on the example of a wave equation with accretive di�erential damp-
ing in a weighted space. Moreover, brief outlines of various further applications can
be found in Section 4.3.

4.1. Main results

Let Ω ⊆ Rn be open and non-empty. For a suitable weight w : Ω → R+, we
introduce a realisation of the di�erential expression

Tw = −∇ · (P∇) + V

with Dirichlet boundary conditions in the weighted space L2
w2(Ω). Here the matrix

P : Ω→ Cn×n is sectorial, the potential V : Ω→ C is accretive and the admissibil-
ity of a weight w depends on P and V , see Assumption 4.1 below. In the sequel,
we denote

P1 := ReP =
1

2
(P + P ∗), P2 := ImP =

1

2i
(P − P ∗). (4.1)

The weighted operator Tw is introduced by means of the generalised form rep-
resentation methods in [AH15]. More precisely, we consider the sesquilinear form

tw(f, g) := 〈P∇f,∇(gw2)〉L2 + 〈wV f,wg〉L2 , dom tw := Vw, (4.2)

where the Hilbert space Vw is the closure of C∞0 (Ω) with respect to the norm

‖f‖2Vw := ‖P
1
2

1 ∇f‖2L2
w2

+ ‖|V | 12 f‖2L2
w2

+ ‖f‖2L2
w2
, (4.3)

equipped with the corresponding inner product; cf. [GS21, Lem. 4.1] where we show
that tw is continuous with respect to ‖·‖Vw on C∞0 (Ω) and can thus be extended
uniquely to Vw. The result in Theorem 4.2 below is then obtained by splitting the
real and imaginary parts of the potential into their regular and singular parts, see
Assumption 4.1 below,

ReV = Ur + Us, ImV = Vr + Vs, (4.4)

and applying Theorem 1.4, in particular establishing the lower estimates (1.7)
therein, with the following multiplier

Φ1 = Φ2 = Φ :=
Vr√

1 + V 2
r + U2

r

∈ L∞(Ω;R); (4.5)

see [GS21, Thm. 3.2] for more details.

25
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4.1.1. Assumptions.

Assumption 4.1 ([GS21, Asm. 3.1]). Assume the following regularity of P ,
(the regular part of) the potential V and the weight w, see (4.4),

P ∈ L1
loc(Ω)d×d, V ∈ L1

loc(Ω), Ur, Vr ∈W 1,∞
loc (Ω;R), w ∈W 1,∞

loc (Ω;R+).

Moreover, suppose that the following hold, see (4.1) and (4.5).

(i) Sectoriality of P : There exists CP ≥ 0 such that

〈P1ξ, ξ〉Cn ≥ 0, |〈P2ξ, ξ〉Cn | ≤ CP 〈P1ξ, ξ〉Cn , ξ ∈ Cn.

(ii) Accretivity of V , sectoriality of ReV + iVs : There exists Cs ≥ 0 such that

ReV ≥ 0, |Vs| ≤ Cs ReV.

(iii) Control of ∇Ur and ∇Vr : For every ε > 0, there exists Cε ≥ 0 such that

Ur|Vr|max{|P−
1
2

1 P∇Ur|, |P
− 1

2
1 P ∗∇Ur|}

≤ (1 + V 2
r + U2

r )
3
2 (ε(ReV )

1
2 + ε(ΦVr)

1
2 + Cε),

(1 + U2
r ) max{|P−

1
2

1 P∇Vr|, |P
− 1

2
1 P ∗∇Vr|}

≤ (1 + V 2
r + U2

r )
3
2 (ε(ReV )

1
2 + ε(ΦVr)

1
2 + Cε).

(4.6)

(iv) Admissibility of w : There exist κw, σw > 0 and Cw ≥ 0 such that

|P−
1
2

1 P ∗∇(w2)| ≤ w2(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw). //

We point out that our assumptions include sectorial potentials V = Us + iVs
and mention that, in fact, in (iii) above it su�ces to assume (4.6) with ε smaller
than a certain critical value εcrit > 0, see [GS21, Rem. 3.3 (i)]. Moreover, in the
generic case V = iVr, the condition (4.6) simpli�es substantially; indeed, it reduces
to assuming that for every ε > 0, there exists Cε ≥ 0 such that

max{|P−
1
2

1 P∇Vr|, |P
− 1

2
1 P ∗∇Vr|} ≤ ε|Vr|

7
2 + Cε,

see [GS21, Rem. 3.3 (ii)].

4.1.2. De�nition of Tw. Our �rst and most fundamental result is the de�ni-
tion of the object we study in this chapter.

Theorem 4.2 ([GS21, Thm. 3.2]). Let Assumption 4.1 be satis�ed with κw,
σw, CP and Cs small enough such that there exists 0 < β < min{1/CP , 1/Cs}
satisfying the inequality

βκ2
w + (1− βCs)σ2

w <
4β(1− βCP )(1− βCs)

(1 + β)2
. (4.7)

Let tw and Vw be as in (4.2) and (4.3), respectively. Then the operator

domTw :=
{
f ∈ Vw : ∃ ηf ∈ L2

w2(Ω), ∀ g ∈ Vw, tw(f, g) = 〈ηf , g〉L2
w2

}
,

Twf := ηf ,

acting in the weighted space L2
w2(Ω), has non-empty resolvent set and dense domain

both in Vw and L2
w2(Ω).
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In our setting, condition (4.7) is equivalent to the applicability of Theorem 1.4;
see [GS21, Rem. 4.4] for more details where the origin of (4.7) is explained. For
V = iVr, we show in [GS21, Rem. 3.3 (ii)] that (4.7) simpli�es to

σw <
1

1 + CP
.

Notation 4.3. In what follows, we say that a weight w is admissible if it
satis�es the assumptions of the above theorem (with respect to P and V ). By Tw
we denote the therein de�ned Dirichlet realisation of −∇ · (P∇) + V acting in
L2
w2(Ω) and write T := T1; notice that w = 1 is admissible for any P and V . //

4.1.3. Boundedness of compositions. Employing a suitable weighted op-
erator Tw, we construct bounded extensions for certain types of operator composi-
tions. The latter appear in the Frobenius-Schur resolvent factorisation of various
(Schur complement dominant) operator matrices.

Theorem 4.4 ([GS21, Thm. 3.4]). Let m1,m2, V : Ω→ C and P : Ω→ Cn×n
be measurable and let

w :=
(|V |+ 1)

1
2

|m2|
∈W 1,∞

loc (Ω,R+) (4.8)

be an admissible weight with respect to P and V , i.e. let the assumptions of The-
orem 4.2 be satis�ed with P , V and the weight in (4.8). Assume that there exists
C > 0 such that

|m1m2| ≤ C(|V |+ 1).

Then there exists λ0 ∈ ρ(T ) and a bounded extension

m1(T − λ0)−1m2 ⊆ Sλ0
∈ B(L2(Ω)).

The operator Sλ0
above is constructed via the resolvent of Tw; a precise formula

can be found in [GS21, Lem. 4.7]. Its extension property is far from trivial and
relies on the fact that the Tw are compatible for comparable weights, i.e. that we
have Tw1 ⊇ Tw2 if the weights satisfy w1 . w2, see [GS21, Lem. 4.6].

4.1.4. Schatten class. In Theorem 4.5 below we show that if the form domain
of T is embedded in L2(Ω) with an embedding in a certain Schatten class S2p,
then the resolvent of the weighted operator Tw, for any admissible weight, is of
Schatten class Sp. The proof is conducted by showing that the family of transformed
operators

Sα := wαTwReαw−α, α ∈ C, (4.9)

in L2(Ω), which are unitarily equivalent to TwReα , emerges from a family of forms
via Theorem 1.4 on the constant form domain V1, see [GS21, Lem. 4.9, Lem.4.10].

Theorem 4.5 ([GS21, Thm. 3.5]). Let the assumptions of Theorem 4.2 hold
and let 0 < p ≤ ∞. Then

idV1 ∈ S2p(V1, L
2(Ω)) =⇒

(
(Tw − λ)−1 ∈ Sp(L2

w2(Ω)), λ ∈ ρ(Tw)
)
.

In particular, the above theorem gives a su�cient condition for Tw to have
compact resolvent.
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4.1.5. Invariance of discrete spectra and eigenfunctions. Our next re-
sult contains a su�cient condition for the discrete spectra (including algebraic mul-
tiplicities) of T and Tw to coincide. Moreover, we show that generalised eigenfunc-
tions of T are also generalised eigenfunctions of Tw, which in particular implies a
certain decay of the eigenfunctions of T .

The proof of Theorem 4.6 below relies on the analyticity of the family in (4.9)
on a su�ciently large domain, see [GS21, Lem. 4.10], Theorem 4.5 together with
a compactness argument based on Rellich's criterion, see [GS21, Rem. 3.7 (i)], the
identity theorem for holomorphic functions and a slight modi�cation of the Agmon
type estimates in [KRRS17].

Theorem 4.6 ([GS21, Thm. 3.6, Thm. 3.9]). Let the assumptions of Theo-
rem 4.2 be satis�ed, P1 ≥ δP > 0 a.e. in Ω and suppose that the potential satis�es

lim
R→∞

ess inf
|x|>R, x∈Ω

|V (x)| =∞. (4.10)

Then both T and Tw have compact resolvent, their (discrete) spectra coincide and
for all λ ∈ σ(T ) = σ(Tw) and k ∈ N we have

ψ ∈ ker(T − λ)k =⇒ ψ ∈ ker(Tw − λ)k.

In particular, the (�nite) algebraic multiplicities of λ as an eigenvalue of T and Tw
coincide, and all generalised eigenfunctions of T lie in L2

w2(Ω).

The invariance of the discrete spectrum and algebraic multiplicities holds also
without the additional assumptions on P and V , merely assuming that T and Tw
have compact resolvent, see [GS21, Thm. 3.6]. For the result about the eigenfunc-
tions, it is then su�cient to assume (4.10) in addition, see [GS21, Thm. 3.9].

We point out that without the assumption on compact resolvent, the invariance
result of the discrete spectrum fails in general. Indeed, in [GS21, Ex. 3.8] we show
that an isolated eigenvalue of the family Sα in (4.9) might disappear when touched
by the essential spectrum, see also [GS21, Rem. 3.7 (ii)].

4.1.6. Domain and graph norm separation. Our �nal result is the domain
and graph norm separation of the weighted operators Tw. In [GS21, Sec. 5.1], we
employ Theorem 4.8 below to derive the completeness of the eigenfunctions of
certain Schrödinger operators with regular purely imaginary potentials in weighted
spaces. We also mention that separation results of this type are crucial for the
convergence analysis of domain truncation methods, see [BST17, SS21].

The following additional set of assumptions is required.

Assumption 4.7 ([GS21, Asm. 3.10]). Let Assumption 4.1 hold, let

V ∈W 1,∞
loc (Ω)

and assume the following.

(i) Combined accretivity of V and P :

Re〈e−i arg V Pξ, ξ〉Cn ≥ 0, ξ ∈ Cn.

(ii) Control of ∇V : There exist εV > 0 and CV ≥ 0 such that

max{|P−
1
2

1 P ∗∇V |, |P−
1
2

1 P ∗∇|V ||} ≤ εV |V |
3
2 + CV .
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(iii) Admissibility of w : There exist εw > 0 and Cw ≥ 0 such that

|P−
1
2

1 P ∗∇(w2)| ≤ w2(εw|V |
1
2 + Cw). //

In a certain sense, Assumption 4.7 is stronger than Assumption 4.1, see [GS21,
Rem. 3.11] for a comparison. In particular, in the latter we justify that for the
generic case V = iVr, Assumption 4.1 follows from Assumption 4.7.

Theorem 4.8 ([GS21, Thm. 3.12]). Let the assumptions of Theorem 4.2 hold,

let Assumption 4.7 hold with εV + εw < 2 −
√

2, suppose that P ∈ W 1,∞(Ω)n×n

and that P1 ≥ δP > 0. Then there exists aV,w > 0 such that, for all f ∈ domTw,

‖Twf‖L2
w2

+ ‖f‖L2
w2
≥ aV,w

(
‖∇ · (P∇f)‖L2

w2
+ ‖V f‖L2

w2
+ ‖f‖L2

w2

)
and as a consequence

domTw = {f ∈ Vw : ∇ · (P∇f) ∈ L2
w2(Ω), V f ∈ L2

w2(Ω)}.

4.2. Damped wave equations in weighted spaces with accretive
unbounded damping

For more details on the following, we refer the reader to [GS21, Sec. 5.4], see
also Section 1.5.3. We consider the matrix di�erential operator

A0 :=

(
0 I
∆ −2(a1 + ia2 −∇ · a0∇)

)
(4.11)

arising from the damped wave equation in (1.17) on an open set Ω ⊆ Rn in the
space Hw :=Ww(Ω)⊕ L2

w2(Ω), where we choose a suitable weight

w ∈W 1,∞
loc (Ω;R+) (4.12)

and Ww(Ω) is the closure of C∞0 (Ω) with respect to the norm

‖f‖2Ww
:= ‖∇f‖2L2

w2
+ ‖f‖2L2

w2
, f ∈ C∞0 (Ω). (4.13)

We assume that the coe�cients in the damping satisfy

a1 ∈ L1
loc(Ω), a1 ≥ 0, a2 ∈W 1,∞

loc (Ω;R), a0 ∈ L1
loc(Ω)d×d, a0 ≥ 0, (4.14)

and introduce a Dirichlet realisation of (4.11) which generates a semigroup on Hw.
To this end, we follow the procedure in Section 2.2 and employ the dominance of the
second Schur complement together with the weighted di�erential operators de�ned
in Section 4.1. The domain of the resulting operator matrix A0 is then given by

domA0 := {(f, g) ∈ Ww(Ω)×DS : ∆f − 2(a1 + i a2)g

+ 2∇ · (a0∇g) ∈ L2
w2(Ω)},

(4.15)

where DS is the closure of C∞0 (Ω) with respect to

‖f‖2S := ‖(ICn + a0)
1
2∇f‖2L2

w2
+ ‖|a1 + ia2|

1
2 f‖2L2

w2
+ ‖f‖2L2

w2
, f ∈ C∞0 (Ω).

Proposition 4.9 ([GS21, Prop. 5.3]). Assume that a0, a1, a2 and w satisfy
(4.14) and (4.12), and in addition that

|(ICn + a0)
1
2∇a2| ≤ c(1 + |a2|3)(a

1
2
1 + |a2|

1
2 + 1),

|∇(w2)| ≤ cw2(a
1
2
1 + |a2|

1
2 + 1),

|a
1
2
0∇(w2)| ≤

√
2ε0w

2(a1 + c0)
1
2 ,

(4.16)
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with c > 0, ε0 ∈ (0, 2) and c0 ≥ 0. Then the operator matrix A0 in (4.11), (4.15)
generates a C0-semigroup in Hw and its domain is dense in Ww(Ω)⊕DS and Hw.

4.3. Further applications

In this section, we brie�y sketch three applications from [GS21] which illustrate
the previously stated results therein. In particular, the matrix di�erential operator
in Section 4.3.1 shows the connection between the works [Ger21] and [GS21].

4.3.1. A Schur complement dominant matrix di�erential operator
with highly non-symmetric corners. For more details on the results in this
section, we refer the reader to [GS21, Sec. 5.2]. We therein employ Schur comple-
ment dominance (with respect to the �rst Schur complement) to obtain a densely
de�ned and closed realisation of the di�erential operator matrix

A0 :=

(
−∂2

x + i sinh(5x2) ex
2

ex ∂x + e3x2

0

)
(4.17)

in L2(R) ⊕ L2(R) with non-empty resolvent set. Indeed, this can be achieved for
the matrix A0 de�ned on

domA0 := {(f, g) ∈ DS × L2(R) : f ′′ + i sinh(5x2)f + ex
2

g ∈ L2(R)}, (4.18)

where DS is the closure of C∞0 (R) with respect to the norm

‖f‖2S := ‖ e−x
2

f ′′‖2L2 + ‖ e4x2

f‖2L2 , f ∈ C∞0 (R),

by applying Theorem 2.3 to obtain spectral equivalence on C \ {0} to its Schur
complement. The latter is the following operator family acting in L2(R)

S0(λ) := −∂2
x + i sinh(5x2)− λ+

1

λ
ex

2

(ex ∂x + e3x2

),

domS0(λ) := W 2,2(R) ∩ dom e5x2

,

λ ∈ C \ {0}. (4.19)

Proposition 4.10 ([GS21, Prop. 5.2]). The operator matrix A0 in (4.17),
(4.18) is closed, has non-empty resolvent set and its domain is dense in DS⊕L2(R)
and L2(R)⊕ L2(R). Moreover, with S0(·) as in (4.19), we have

σp(A0) ⊇ σ(A0) \ {0} = σ(S0(·)) = σp(S0(·)).

We point out that the o�-diagonal of A0 is highly non-symmetric and the Schur
complement has to be realised in a suitable weighted space to satisfy the conditions
of Theorem 2.3. The remaining spaces therein are given by

D−S := L2
e−2x2 (R), D2 := D−2 := L2(R).

In fact, for the result above we employ Theorems 4.2 and 4.8 to originally de�ne
the Schur complement in the weighted space D−S with operator domain DS .

4.3.2. Diagonally dominant matrix Schrödinger operator in a weigh-
ted space. The precise results in this section can be found in [GS21, Sec. 5.3].
Similarly as in the previous section, one can employ Schur complement dominance
to �nd a closed, densely de�ned realisation of the operator matrix

A =

(
−∂2

x + ix3 x

x4 −∂2
x + x6

)
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in L2(R) ⊕ L2(R) with non-empty resolvent set. Following a di�erent approach,
however, one can consider the product weighted space

L2
w2

1
(R)⊕ L2

w2
2
(R), w1 := 〈x〉, w2 := 〈x〉−1, x ∈ R,

in which A in fact naturally becomes diagonally dominant of order zero; see [GS21,
Sec. 5.3] where Theorem 4.2 is employed to introduce the Dirichlet realisations of
the diagonal elements in the respective weighted spaces and the resulting diagonal
dominance is shown using Theorem 4.8.

Placing A in a product weighted space can equivalently be understood as a
conjugation with the (unbounded) diagonal matrix diag(w1, w2), see also [RT18]
where suitable constants w1, w2 > 0 were chosen to balance o�-diagonal terms.

4.3.3. Completeness of eigensystems for Schrödinger operators in
weighted spaces. For more details about the following, see [GS21, Sec. 5.1]. Let
the assumptions of Theorem 4.2 be satis�ed with Ω = Rn, P = ICn , a regular
purely imaginary potential V = iVr such that

|Vr(x)|+ 1 & 〈x〉γ , γ > 0,

and an admissible weight w. Using Theorem 4.5, we show in [GS21, Sec. 5.1] that
for the Dirichlet realisation

Tw = −∆ + iVr

in the weighted space L2
w2(Rn) it holds that

(Tw − λ)−1 ∈ Sp(L2
w2(Rn)), λ ∈ ρ(Tw), p >

2 + γ

2γ
n.

Moreover, we use [GS21, Lem. 4.3] and [DS88, Cor. XI.9.31] to conclude that if
n = 1 and γ > 2, then the eigensystem of Tw is complete in L2

w2(R) for any of the
admissible weights

w(x) = exp(±〈x〉α), 0 < α < 1 +
γ

2
. (4.20)

For the particular choice Vr(x) = x3, the above generalises the completeness result
for the eigensystem of the imaginary cubic oscillator in L2(R) which was established
in [SK12] to weighted spaces with weights as in (4.20) such that 0 < α < 1 + 3/2.
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SCHUR COMPLEMENT DOMINANT OPERATOR MATRICES

BORBALA GERHAT

Abstract. In mathematical physics, matrix di�erential operators arise nat-
urally in applications as coupled systems of partial di�erential equations. Up
to now, the spectral analysis of such problems has commonly been tackled
assuming certain patterns of relative boundedness within the matrix entries.
We propose to view operator matrices in a more general setting, which allows
our results to abstain from perturbative arguments of this type. Rather than
requiring the matrix to act in a Hilbert space H, we extend its action to a
suitable distributional triple D ⊂ H ⊂ D− and restrict it to its maximal do-
main in H. The crucial point in our approach is the choice of the spaces D
and D− which are essentially determined by the Schur complement of the ma-
trix. We show spectral equivalence between the resulting operator matrix in
H and its Schur complement, eventually implying closedness and non-empty
resolvent set of the operator matrix. Finally, we apply our abstract results to
the damped wave equation with possibly unbounded and/or singular damping,
as well as to second order matrix di�erential operators with certain minimal
restrictions on their coe�cients. By means of our methods, the previously
used regularity assumptions can be weakened substantially in both cases.

1. Introduction

Motivated by a wide range of applications, operator matrices emerge from cou-
pled systems of linear partial di�erential equations and have been of considerable
interest, see e.g. the pioneering work [26], the monograph [29] and the references
therein. Typically, the spectral analysis of such problems is rather challenging,
starting with the non-trivial task of determining a suitable domain of de�nition on
which the resulting operator matrix is closed and has non-empty resolvent set. An
often fruitful approach is to establish a certain spectral correspondence between the
operator matrix

A =

(
A B
C D

)
: H ⊃ domA → H, H = H1 ⊕H2,

and one of its (two) so-called Schur complements S(·), the (scalar) operator family

S(λ) = A− λ−B(D − λ)−1C : H1 ⊃ domS(λ)→ H1, λ ∈ ρ(D).

2010 Mathematics Subject Classi�cation. 35L05, 35P05, 47A56, 47D06.
Key words and phrases. Schur complement, operator matrices, distributional triplets, essential
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2 BORBALA GERHAT

Although the latter gives rise to a non-linear spectral problem, in general, more
methods are available for its analysis.

Up to now, the spectral correspondence described above has mainly been achieved
by taking advantage of certain patterns of relative boundedness between the entries
of the operator matrix, see e.g. [25]. There are several results in [12, 13, 15, 16, 17],
however, which seem to abstain from this type of perturbative argument. Inspired
by their methods, we propose a more general framework for operator matrices and
allow a systematic approach to the spectral analysis of a wider class of problems.
We point out that even though our approach was inspired by the conceptual obser-
vations and ideas in [13, 15, 16, 17], its scope goes beyond the latter; not only are
our results due to their abstract nature much more versatile, but even applied to
particular problems in the mentioned references, they allow much weaker natural
and in some sense minimal (even distributional) regularity of the coe�cients, see
the applications in Sections 4 and 6.

Our method combines a distributional setting with the assumption that, in a cer-
tain sense, the Schur complement dominates all other terms in the Frobenius-Schur
factorisation of the resolvent. Said distributional approach consists of extending
the operator matrix to a suitable triplet of Hilbert spaces

D ⊂ H ⊂ D−,

where each of the above inclusions represents a continuous embedding with dense
range. More precisely, we de�ne the action of A on a space of test functions D with
values in a space of distributions D− and consider its restriction A0 to the maximal
domain

domA0 = {x ∈ D : Ax ∈ H}.
This method has been employed successfully in the past; however, except in [12],
the spaces of test functions and distributions have consistently been determined by
the underlying patterns of relative boundedness within the operator matrix, e.g. as
form domain of some entry and its dual space in [4, Chap. 1.2.1] or [19].

The key novelty in our approach is to choose the spaces D and D− in a way
that the Schur complement S(·) consists of bounded and boundedly invertible op-
erators between their �rst components DS and D−S . This choice guarantees the
required dominance of the Schur complement and allows us to relate invertibility
and semi-Fredholmness of A0 to invertibility and semi-Fredholmness of S0(·) de-
�ned as family of maximal operators in H1. We thus obtain equivalence of their
(point and essential) spectra, which in applications might eventually lead to desired
properties like closedness and non-empty resolvent set of the operator matrix and
its semigroup generation, see Sections 4 and 6.

Although not closely related to our framework, we mention another non-standard
approach in [27] towards the spectral analysis of operator matrices. The setting
therein, however, covers problems of di�erent type and essentially aims at incor-
porating mixing boundary conditions. Moreover, from a structural point of view,
the latter is more restrictive than our approach and requires diagonal dominance of
the underlying operator matrix; note that the dominance assumption therein was
relaxed in [5] to less restrictive patterns of relative boundedness within the matrix
entries.

We apply our abstract results to the linearly damped wave equation on Ω ⊂ Rn
with Dirichlet boundary conditions and non-negative damping a and potential q,
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which gives rise to the operator matrix

A =

(
0 I

∆− q −2a

)
(1.1)

in a suitable Hilbert space. Unlike in most of the previously existing results, see e.g.
[4, 14, 19], we allow the damping and potential to be singular and/or unbounded
at in�nity and do not require the damping to be relatively bounded with respect to
∆− q. To the best of our knowledge, this case has only been covered in the works
[13, 18]. In [13], assuming that a ∈ W 1,∞

loc (Ω) and essentially that for every ε > 0

there exists Cε ≥ 0 with |∇a| ≤ εa
3
2 + Cε, see [13, Asm. I] for the precise more

general assumptions, the spectral equivalence of A to its Schur complement

S(λ) = − 1

λ
(−∆ + q + 2λa+ λ2), λ ∈ C \ {0},

as an operator family in L2(Ω) was established, leading to the generation of a
contraction semigroup and thus existence and uniqueness of the solutions to the
underlying equation. In [18] on the other hand, an approximation procedure is
performed to construct a unique weak solution, whose norm and total energy are
shown to decay polynomially in time.

Merely assuming a, q ∈ L1
loc(Ω), our methods provide spectral correspondence

between matrix and Schur complement, as well as the generation of a contraction
semigroup. We thereby signi�cantly generalise [13], where technical assumptions on
growth and regularity of the damping are needed in order to describe the operator
domain of the Schur complement. Notice that under the latter more restrictive
assumptions, our realisation of the operator matrix (1.1) coincides with the one
de�ned in [13], see Remark 4.3. Moreover, we point out that our method can
equally be employed to realise distributional dampings as considered e.g. in [4], see
Remark 4.4.

As another application of our results, we present second order matrix di�erential
operators of the form

A =

(
−∆ + q ∇ · b
c · ∇ d

)
(1.2)

on Ω ⊂ Rn with Dirichlet boundary conditions and low regularity coe�cients.
Problems of this type arise in areas like magnetohydrodynamics or astrophysics
and have been previously studied in e.g. [7, 15, 16, 17, 21, 22] and the references
therein. Our methods allow us to avoid typical technical assumptions like q ∈ C(Ω),
b, c ∈ C1(Ω)n and d ∈ C1(Ω), see e.g [16]. Under certain natural weak regularity

conditions on the coe�cients, see Assumption 6.1, we are able to de�ne a closed
realisation of the operator matrix (1.2) in the space L2(Ω) ⊕ L2(Ω) with non-
empty resolvent set. We show spectral equivalence to its Schur complement and,
imposing additional assumptions on the structure of the matrix, that it generates
a contraction semigroup.

We further apply our results to study Klein-Gordon equations with purely imag-
inary, (merely) locally square integrable potentials. The physically relevant case of
real potentials, in which the problem exhibits an inde�nite structure, was studied
in many works using several di�erent methods, see e.g. [23, 24] where Krein spaces
were employed or [30] where for linear potentials a di�erent approach via oscillatory
integrals was taken. The case of (purely) imaginary potentials, however, seems to
have not been considered so far. In fact, the problem is then equivalent to a wave
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equation with suitable damping and potential and can be treated by applying our
previously obtained methods. We thereby show the spectral equivalence between
matrix an Schur complement and conclude that the resulting operator matrix is
densely de�ned and boundedly invertible, see Theorem 5.1. In the particular case
of the potential V (x) = ix in one dimension, we show in Example 5.2 that the
spectrum of the operator matrix is empty; this is not surprising considering similar
results related to the complex Airy operator in e.g. [2, 3].

In order to further illustrate the impact of our construction, we consider Dirac
operators with certain Coulomb type potentials. A self-adjoint realisation of the
latter which was introduced in [12] can indeed be recovered as a special case of
our abstract framework. The key step in the analysis in [12] is a Hardy-Dirac
inequality for a class of Coulomb-like potentials, see (7.2), which was derived in
[9, 10]. We translate the existing results to our setting, where the mentioned Dirac-
Hardy inequality ensures that the Schur complement is bounded and boundedly
invertible between the required spaces DS and D−S .

Finally, we show that our method is not limited to applications where the spaces
DS and D−S are given by the form domain of the Schur complement and its dual
space. We demonstrate this fact based on a constant coe�cient di�erential operator
matrix where DS = H1(Rn) and D−S = H−2(Rn), while the natural form domain
of the Schur complement

S(λ) = ∆− λ+ ∆2(∆− λ)−1
√
−∆, λ ∈ C \ (−∞, 0],

is H
3
2 (Rn), see Section 7.2. We stress that this example serves an illustrative

purpose only and is kept as simple as possible; relevant problems with similar
structure can be found in [15, 16, 17].

This paper is organised as follows. In Section 2, we present our main abstract
results and lay the ground for the spectral equivalence between A0 and S0; the
main theorems are Theorem 2.7 and 2.8, where we show that invertibility or semi-
Fredholmness of A0 and S0, respectively, imply invertibility or semi-Fredholmness
of S0 and A0. In Section 3, we translate the results of Section 2 into several corol-
laries providing spectral equivalence between the operator matrix and its Schur
complement as an operator family. In Section 4, we apply the established spec-
tral equivalence to the damped wave equation with unbounded and/or singular
damping and potential; in particular, the main Theorem 4.2 states the generation
of a contraction semigroup for the underlying problem. While Section 5 concerns
the spectrum of the Klein-Gordon equation with purely imaginary potential, Sec-
tion 6 contains the application of our results to second order matrix di�erential
operators with low regularity coe�cients; the main results in the latter are Theo-
rem 6.3, which states spectral equivalence between matrix and Schur complement,
and Theorem 6.5, which shows the generation of a contraction semigroup under
some additional structural assumptions. Finally, Section 7 further illustrates the
nature of our results on Dirac operators with Coulomb type potentials and a con-
stant coe�cient matrix di�erential operator.

1.1. Notation and preliminaries. Let n ∈ N be the spatial dimension, let 〈·, ·〉Cn
be the inner product and |·| the euclidean norm on Cn. We denote the real scalar
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product and tensor product on Cn, respectively, by

ξ · η =

n∑
j=1

ξjηj , ξ ⊗ η = (ξjηk)j,k ∈ Cn×n, ξ, η ∈ Cn.

For Ω ⊂ Rn and a measurable function m : Ω → C, we denote by domm the
maximal domain of the corresponding multiplication operator in L2(Ω). Moreover,
recall the de�nition of the essential range

ess ranm = {z ∈ C : λn(m−1(Bε(z))) > 0 for any ε > 0},
where λn is the n-dimensional Lebesgue measure.

The space of matrix-valued locally integrable functions will be denoted

L1
loc(Ω)n×n = {M = (Mjk)j,k : Ω→ Cn×n : Mjk ∈ L1

loc(Ω), 1 ≤ j, k ≤ n};
note that this is equivalent to ‖M‖ ∈ L1

loc(Ω) for any norm ‖·‖ on Cn×n. The spaces
L∞(Ω)n and L2

loc(Ω)n shall be de�ned analogously. Moreover, L2(Ω;ω) shall denote
the weighted L2-space on Ω with non-negative measurable weight ω.

Let G1, G2 and G be Hilbert spaces. The set of closed linear operators from G1

to G2 will be denoted by C(G1,G2), the space of everywhere de�ned and bounded
operators by B(G1,G2) and the space of compact operators by K(G1,G2). Moreover,
as usual, we write C(G) = C(G,G), B(G) = B(G,G) and K(G) = K(G,G).

We denote the duality pairing and anti-dual space of G by

(φ, f)G∗×G = φ(f), f ∈ G, φ ∈ G∗ = {φ : G → C : φ antilinear, bounded};
note that we hereby adopt the conventions in [11] and work with antilinear func-
tionals, which allows us to identify bounded sesquilinear forms on G with bounded
linear operators G → G∗. This convention includes de�ning the space of distribu-
tions on Ω ⊂ Rn, denoted D′(Ω), as antilinear continuous functionals on the space
of test functions C∞0 (Ω).

The resolvent set, spectrum and point spectrum of a linear operator T in G will
be denoted by ρ(T ), σ(T ) and σp(T ), respectively. We use the following (one of
�ve in general non-equivalent) de�nitions of the essential spectrum

σe2(T ) = {λ ∈ C : T − λ /∈ F+(G)};
here the semi-Fredholm operators in G with �nite nullity and de�ciency, respec-
tively, are de�ned in the following way

F+(G) = {T ∈ C(G) : ranT closed, dim kerT <∞},
F−(G) = {T ∈ C(G) : ranT closed, dim cokerT <∞}.

Here the co-kernel of T is the closed subspace cokerT = (ranT )⊥. If T ∈ C(G) and
ranT is closed, one can de�ne the generalised inverse of T as

T# = (T |domT∩kerT⊥)−1 ∈ B(G); (1.3)

recall that, if P and Q, respectively, denote the orthogonal projections on kerT
and cokerT , then

ranT# ⊂ domT, TT# = I −Q, T#T ⊂ I − P. (1.4)

Note that, since T is closed, both kerT and cokerT are closed and the projections
above are bounded.

Throughout the entire paper, H1 and H2 denote complex Hilbert spaces and
H = H1 ⊕ H2 their orthogonal sum. The canonical projections of H on H1 and
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H2, respectively, are denoted by π1 and π2; their adjoints π
∗
1 and π∗2 are the corre-

sponding canonical embeddings of H1 and H2 in H.
Finally, we write . or & if the respective inequalities hold with a multiplicative

constant depending only on quantities which are �xed and the dependence on which
is thus irrelevant.

2. Main abstract results

We present a new abstract setting for the spectral analysis of operator matrices.
Under fairly general assumptions, our approach allows to establish a correspondence
between semi-Fredholmness and invertibility of an operator matrix and one of its
Schur complements; the latter provides a relation between (point and essential)
spectra of matrix and Schur complement as an operator family, see Section 3.

Our strategy is the following. Rather than directly de�ning an operator matrix
in the product space H = H1⊕H2, we consider its entries acting in suitable triplets
(2.1) and restrict the matrix action to the maximal domain in H, see De�nition 2.3.
A crucial point of our construction is the choice of spaces DS and D−S , such that
the Schur complement S : DS → D−S is bounded and boundedly invertible. Notice
also that we construct a generalised Schur complement, which unlike the classical
de�nition does not require the entry D to be boundedly invertible but merely to
have a generalised inverse, see Assumption 2.1 (iii) and (1.3), (1.4).

Proofs of the results in this section can be found in Section 2.5.

2.1. Assumptions and de�nitions. We work exclusively with the �rst Schur
complement; clearly, all results in this section hold under analogous assumptions
for the second Schur complement, see Remark 2.4.

Assumption 2.1. (i) Let DS , D2, D−S , D−1 and D−2 be complex Hilbert
spaces. Assume that

DS ⊂ H1 ⊂ D−S , D2 ⊂ H2 ⊂ D−2, (2.1)

where the corresponding canonical embeddings are continuous and have dense
ranges. Moreover, let D−S ⊂ D−1 be continuously embedded.

(ii) Assume that the operators A, B and C are bounded between the spaces

A ∈ B(DS ,D−1), B ∈ B(D2,D−1), C ∈ B(DS ,D−2).

(iii) Let D0 ∈ C(H2) have closed range in H2, let domD0 ⊂ D2 be dense in D2

and assume that there exist extensions

D0 ⊂ D ∈ B(D2,D−2), D#
0 ⊂ D‡ ∈ B(D−2,D2). //

Remark 2.2. We point out that D−S = D−1 in the applications in Sections 4, 5
and 7.2. However, allowing A and B to map to a larger space widens the range
of applicability of our assumptions, see e.g. Sections 6 and 7.1 where D−S ( D−1.
While D−S plays an essential role and is determined by the Schur complement,
the auxiliary space D−1 merely provides an environment for the operations needed
in order to de�ne the latter; notice that in Sections 6 and 7.1 it is clear from the
construction that D−1 can even be chosen arbitrarily large in a certain sense.

The operator matrix A0 and its �rst Schur complement S0 are de�ned as the
following maximal operators in the underlying Hilbert spaces. We emphasise that,
although their extensions A and S are assumed to be bounded between suitable
spaces, A0 and S0 are in general unbounded in H and H1, respectively.
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De�nition 2.3. Let Assumption 2.1 be satis�ed. We de�ne

A :=

(
A B
C D

)
∈ B(D,D−), S := A−BD‡C ∈ B(DS ,D−1), (2.2)

where D := DS ⊕ D2 and D− := D−1 ⊕ D−2. Moreover, let the corresponding
maximal operators A0 := A|domA0

in H and S0 := S|domS0
in H1 be de�ned on

their respective domains

domA0 := {(f, g) ∈ D : A(f, g) ∈ H}, domS0 := {f ∈ DS : Sf ∈ H1}. //

Notice that if 0 ∈ ρ(D0), then D‡ = D−1 and the de�nition of S reduces to the
standard formula for the Schur complement, see Lemma 2.12 below.

Remark 2.4. All results in the present section hold analogously for the second Schur
complement. The assumptions have to be translated in a straightforward way as
follows. One assumes the following inclusions between the Hilbert spaces

D1 ⊂ H1 ⊂ D−1, DS ⊂ H2 ⊂ D−S ⊂ D−2,

where the corresponding canonical embeddings are continuous and all except the
embedding D−S ↪→ D−2 are assumed to have dense range. Moreover,

B ∈ B(DS ,D−1), C ∈ B(D1,D−2), D ∈ B(DS ,D−2).

The operator A0 ∈ C(H1) has closed range in H1, domA0 is dense in D1 and

A0 ⊂ A ∈ B(D1,D−1), A#
0 ⊂ A‡ ∈ B(D−1,D1).

Then the matrix A is de�ned as in (2.2) with D = D1 ⊕DS and the second Schur
complement is given by

S = D − CA‡B ∈ B(DS ,D−2).

With domains analogous to the ones in De�nition 2.3, A0 and S0, respectively, are
the corresponding maximal operators in H and H2. //

2.2. Dense domain and point spectrum. We start our analysis of the relation
betweenA0 and S0 by providing su�cient conditions for the matrixA0 to be densely
de�ned in H.

Proposition 2.5. Let Assumption 2.1 be satis�ed.

(i) Let cokerD0 = {0}, let domS0 be dense in H1 and assume with

domB0 := {f ∈ D2 : Bf ∈ H1} (2.3)

that domB0 ∩ domD0 is dense in H2. Then domA0 is dense in H.
(ii) Let D−S = D−1, let 0 ∈ ρ(D0) ∩ ρ(S0) and let domS0 be dense in DS.

Moreover, assume there exists z ∈ C such that ran(S0 − z) is closed in H1

with coker(S0 − z) = {0} and such that there exists an extension

(S0 − z)# ⊂ S‡z ∈ B(D−S ,DS). (2.4)

Then domA0 is dense in both D and H.

If D0 is boundedly invertible, the kernels and thus point spectra of A0 and S0

are related as follows.
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Proposition 2.6. Let Assumption 2.1 be satis�ed and 0 ∈ ρ(D0). Then

0 ∈ σp(A0) ⇐⇒ 0 ∈ σp(S0)

and the following identities hold

kerA0 = {(f,−D−1Cf) : f ∈ kerS0}, dim kerA0 = dim kerS0.

2.3. Semi-Fredholmness and bounded invertibility. We proceed by estab-
lishing a relation between bounded invertibility/semi-Fredholmness of the matrix
and bounded invertibility/semi-Fredholmness of its Schur complement. This in turn
provides a connection between the (essential) spectra of A0 and S0(·) as an operator
family, see Section 3. Proofs of the following results can be found in Section 2.5.

Theorem 2.7. Let Assumption 2.1 be satis�ed.

(i) Let 0 ∈ ρ(D0). Then

0 ∈ ρ(A0) =⇒ 0 ∈ ρ(S0).

(ii) Let S0 ∈ C(H1) and assume either that cokerD0 = {0} or that D0 ∈ F−(H2)
with cokerD0 ⊂ domC∗0 and domC0 is dense in DS, where

C0 := C|domC0
, domC0 := {f ∈ DS : Cf ∈ H2}.

Then

A0 ∈ F+(H) =⇒ S0 ∈ F+(H1).

We establish the reverse implication, i.e. bounded invertibility/semi-Fredholm-
ness of S0 implying bounded invertibility/semi-Fredholmness of A0.

Theorem 2.8. Let Assumption 2.1 be satis�ed and assume that S ∈ B(DS ,D−S)
and B(domD0) ⊂ D−S.
(i) Let 0 ∈ ρ(D0). If S−1 ∈ B(D−S ,DS) (which by the continuity of the embed-

dings DS ↪→ H1 ↪→ D−S implies that 0 ∈ ρ(S0)), then 0 ∈ ρ(A0).
(ii) Let domS0 be dense in DS, let D0 ∈ F+(H2) and S0 ∈ F+(H1) such that

there exists an extension S‡ ⊃ S#
0 with S‡ ∈ B(D−S ,DS). Then A0 ∈ F+(H).

Finally, we provide a su�cient condition for the existence of the extension S‡

above; a corollary of Theorem 2.8 then reads as follows.

Corollary 2.9. Let Assumption 2.1 be satis�ed, let S ∈ B(DS ,D−S), let domS0

be dense in DS and B(domD0) ⊂ D−S. Moreover, assume there exists z ∈ C such

that ran(S0− z) is closed in H1 with coker(S0− z) = {0} and such that there exists

an extension S‡z as in (2.4).

(i) Let 0 ∈ ρ(D0). Then

0 ∈ ρ(S0) =⇒ 0 ∈ ρ(A0).

(ii) Let D0 ∈ F+(H2). Then

S0 ∈ F+(H1) =⇒ A0 ∈ F+(H).

Remark 2.10. The claims of both Proposition 2.5 (ii) and Corollary 2.9 remain
true for �nite dimensional coker(S0 − z) 6= {0} if the orthogonal projection on
coker(S0−z) inH1 has an extension in B(D−S ,H1). Analogously, Proposition 2.5 (i)
still holds if cokerD0 6= {0} is �nite dimensional and the orhtogonal projection on
cokerD0 in H2 has a bounded extension in B(D−2,H2). //
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2.4. Technical lemmas. We start by stating and proving some auxiliary results.

Lemma 2.11. Let G1, G2 and G3 be Hilbert spaces such that G2 ⊂ G3 is continuously

embedded. If T ∈ B(G1,G3) and ranT ⊂ G2, then T ∈ B(G1,G2).

Proof. Since T ∈ C(G1,G3) and G2 is continuously embedded in G3, we also have
T ∈ C(G1,G2). The claim now follows from the closed graph theorem. �

Lemma 2.12. Let G1, G and G−1 be Hilbert spaces such that

G1 ⊂ G ⊂ G−1

and the corresponding canonical embeddings are continuous. Let T0 ∈ C(G) have

closed range in G, let domT0 ⊂ G1 and assume there exist extensions

T0 ⊂ T ∈ B(G1,G−1), T#
0 ⊂ T ‡ ∈ B(G−1,G1).

Let P and Q, respectively, denote the orthogonal projections on kerT0 and cokerT0

in G. Then
TT ‡|G = I −Q

and, if G is dense in G−1, then cokerT0 = {0} implies TT ‡ = I. If domT0 is dense

G1, then

T ‡T = I − P |G1
and kerT0 = {0} implies T ‡T = I. In particular, if 0 ∈ ρ(T0), G is dense in G−1

and domT0 is dense in G1, then T
‡ = T−1.

Proof. Using relation (1.4) and since ranT#
0 ⊂ domT0, we obtain

TT ‡|G = T0T
#
0 = I −Q.

If G is dense in G−1 and cokerT0 = {0}, then TT ‡ = I follows from the above
identity and from TT ‡ ∈ B(G−1).

Let domT0 be dense in G1. From Lemma 2.11, we obtain P ∈ B(G,G1). Conse-
quently, again using (1.4), we see that T ‡T ∈ B(G1) and I − P |G1 ∈ B(G1) satisfy

T ‡T |domT0 = T#
0 T0 = (I − P )|domT0 = (I − P |G1)|domT0 .

Hence, T ‡T = I −P |G1 is a consequence of the density of domT0 in G1 and clearly,
T ‡T = I holds if kerT0 = {0}. The last claim is now immediate. �

Lemma 2.13. If Assumption 2.1 holds, then kerD = kerD0 and ranD‡ ⊥H2

kerD0.

Proof. We �rst show kerD = kerD0. Let f ∈ kerD. Since domD0 is dense in
D2, there exists a sequence {fm}m ⊂ domD0 such that fm → f in D2 as m→∞.

Consequently, fromD#
0 D0 ⊂ D‡D ∈ B(D2) andDf = 0, with gm := (I−D#

0 D0)fm
we conclude

‖gm − f‖H2
. ‖gm − f‖D2

≤ ‖fm − f‖D2
+ ‖D‡Dfm‖D2

→ 0, m→∞.

Note that I−D#
0 D0 is the orthogonal projection on kerD0 in H2, see (1.4). Hence,

the closedness of D0 and gm ∈ kerD0, m ∈ N, imply f ∈ domD0 and D0f = 0.
It remains to show ranD‡ ⊥H2 kerD0. However, since H2 is dense in D−2 and

D‡ : D−2 → D2 is continuous, we have

ranD‡ = D‡
(
H2
D−2

)
⊂ D‡(H2)

D2

. (2.5)
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Moreover, from D2 being continuously embedded in H2 and (1.3), we conclude

ranD#
0

D2

⊂ ranD#
0

H2

⊥H2
kerD0. (2.6)

Considering D‡|H2
= D#

0 , the claim now follows from (2.5) and (2.6). �

2.5. Proofs. We start by proving Proposition 2.5 (i); for technical reasons, the
proof of (ii) is given at the end of this section.

Proof of Proposition 2.5 (i). By Lemma 2.12, we have that DD‡ = I. Moreover, it
is straightforward to check the following inclusion

{(f, h−D‡Cf) : f ∈ domS0, h ∈ domB0 ∩ domD0} ⊂ domA0. (2.7)

Let (u, v) ∈ H with (u, v) ⊥H domA0; we need to show u = v = 0. By (2.7),

〈f, u〉H1
+ 〈h−D‡Cf, v〉H2

= 0, f ∈ domS0, h ∈ domB0 ∩ domD0. (2.8)

Setting f = 0 in (2.8), from the density of domB0 ∩ domD0 in H2 it follows that
v = 0. Hence, (2.8) implies u ⊥ domS0 and we obtain u = 0 from the density of
domS0 in H1. �

Proof of Proposition 2.6. By Lemma 2.12, 0 ∈ ρ(D0) implies D‡ = D−1. Let
(f, g) ∈ kerA0, i.e.

Af +Bg = 0, Cf +Dg = 0,

where f ∈ DS and g ∈ D2. Applying D
−1 to the second equation and inserting it

in the �rst one, we obtain

g = −D−1Cf, 0 = Af −BD−1Cf = Sf = S0f.

Conversely, f ∈ kerS0 and g = −D−1Cf clearly imply 0 = A(f, g) = A0(f, g).
The equality of dimensions now follows immediately. �

Proof of Theorem 2.7. (i) We show that S−1
0 = L := π1A−1

0 π∗1 ∈ B(H1), thus
implying 0 ∈ ρ(S0); recall that π1 and π2, respectively, denote the canonical pro-
jections from H onto H1 and H2. Let therefore f ∈ domS0. Since D‡ = D−1 by
0 ∈ ρ(D0) and Lemma 2.12, we have (f,−D−1Cf) ∈ domA0 and

A0(f,−D−1Cf) = (S0f, 0) = π∗1S0f.

By applying π1A−1
0 to the above identity, one obtains f = LS0f .

Conversely, let f ∈ H1 be arbitrary. Then

(f, 0) = A0A−1
0 π∗1f = (ALf +Bπ2A−1

0 π∗1f, CLf +Dπ2A−1
0 π∗1f). (2.9)

Applying D−1 to the second component of (2.9), we obtain

π2A−1
0 π∗1f = −D−1CLf.

We insert this identity in the �rst component of (2.9) to conclude

H1 3 f = ALf −BD−1CLf = SLf,

which in turn implies that Lf ∈ domS0 and S0Lf = f .
(ii) Let us proceed by contraposition, i.e. let us show that if S0 /∈ F+(H1), then

A0 /∈ F+(H). Assume that A0 is closed, since otherwise A0 /∈ F+(H) by de�nition.
Since S0 is closed, there exists a sequence {fm}m ⊂ domS0 with ‖fm‖H1

= 1,
m ∈ N, such that

S0fm
H1−→ 0, fm

w−→ 0 in H1, m→∞, (2.10)
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see [11, Thm. IX.1.3 (i)] and the preceding paragraph (note that the density of the
domain is only needed for part (ii) of the Theorem).

We construct a singular sequence for A0 and conclude A0 /∈ F+(H) by [11, Thm.
IX.1.3 (i)]. De�ne the sequence {xm := (fm,−D‡Cfm)}m ⊂ D, then

‖xm‖H ≥ ‖fm‖H1
= 1, Axm = (S0fm, (I −DD‡)Cfm), m ∈ N. (2.11)

We show that xm ∈ domA0 and A0xm → 0 in H as m → ∞. If cokerD0 = {0},
then Lemma 2.12 implies DD‡ = I and consequently,

Axm = (S0fm, 0) = A0xm
H−→ 0, m→∞.

Consider the case that

{0} 6= cokerD0 = span{φj}1≤j≤k ⊂ domC∗0 ;

recall that dim cokerD0 < ∞ as D0 ∈ F−(H2). Then, using that Cf ∈ H2 for

f ∈ domC0 ⊂ DS , that DD‡|H2 = D0D
#
0 and relation (1.4), we obtain the identity

(I −DD‡)Cf =

k∑
j=1

〈Cf, φj〉H2
φj =

k∑
j=1

〈f, C∗0φj〉H1
φj , f ∈ domC0. (2.12)

By density of domC0 in DS and since both left and right hand side of (2.12) are
continuous in f with respect to ‖·‖S (with values in D−2), formula (2.12) is valid
for all f ∈ DS . We can thus extend

(I −DD‡)C ⊂ K :=

k∑
j=1

〈·, C∗0φj〉H1φj ∈ K(H1,H2),

hence (2.11) gives xm ∈ domA0 and (2.10) implies that A0xm = (S0fm,Kfm)→ 0
strongly in H as m → ∞. Since ‖xm‖H ≥ 1, in both cases cokerD0 = {0} and
cokerD0 6= {0}, we obtain an H-normalised sequence

x̃m :=
xm
‖xm‖H

∈ domA0, A0x̃m
H→ 0, m→∞. (2.13)

It remains to show that {x̃m}m has no convergent subsequence in H. We assume
the opposite, i.e. that there exists (f, g) ∈ H and a subsequence (again denoted by
{x̃m}m) such that x̃m → (f, g) in H as m → ∞. Consequently, from ‖xm‖H ≥ 1
and (2.10) it follows for arbitrary u ∈ H1 that

|〈f, u〉H1
| = lim

m→∞

|〈fm, u〉H1 |
‖xm‖H

≤ lim
m→∞

|〈fm, u〉H1
| = 0,

thus f = 0. Since A0 is closed, (2.13) and x̃m → (0, g) imply

(0, g) ∈ domA0, A0(0, g) = (Bg,Dg) = 0,

in particular g ∈ kerD = kerD0 by Lemma 2.13. Since by construction π2x̃m ∈
ranD‡, Lemma 2.13 ultimately leads to the contradiction

1 = lim
m→∞

‖x̃m‖2H = ‖g‖2H2
= lim
m→∞

〈π2x̃m, g〉H2 = 0. �

The proof of Theorem 2.8 is based on constructing a (left approximate) inverse
for A0. Its main ingredient is the following proposition.
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Proposition 2.14. Let the assumptions of Theorem 2.8 (ii) be satis�ed. Then

L :=

(
S#

0 −S‡BD#
0

−D‡CS#
0 D#

0 +D‡CS‡BD#
0

)
∈ B(H,D) (2.14)

satis�es LA0 = I +K|domA0 , where

K :=

(
−PS S‡BPD
D‡CPS −PD −D‡CS‡BPD

)
∈ K(H,D) (2.15)

has �nite rank. Here PS and PD denote the orthogonal projections on kerS0 in H1

and on kerD0 in H2, respectively.

Proof. From Lemma 2.11, it follows that PS ∈ B(H1,DS) and PD ∈ B(H2,D2).
Moreover, B(domD0) ⊂ D−S implies ranBPD ⊂ D−S and again by Lemma 2.11
we obtain BPD ∈ B(H2,D−S). Altogether, we have K ∈ B(H,D). Since kerS0 and
kerD0 are �nite dimensional, K has �nite rank and is thus compact.

We next show that L is well de�ned and in B(H,D). Notice therefore that, by
Lemma 2.11 and (1.3),

D#
0 = D‡|H2 ∈ B(H2,D2), S#

0 = S‡|H1 ∈ B(H1,DS).

Hence, from B(domD0) ⊂ D−S , we conclude that ranBD#
0 ⊂ D−S and, applying

Lemma 2.11, that BD#
0 ∈ B(H2,D−S). This shows the claimed boundedness.

It remains to prove that

LA0(f, g) = (f, g) +K(f, g), (f, g) ∈ domA0.

Since S#
0 ⊂ S‡ and D

#
0 ⊂ D‡ : D−2 → D2, and since Cf,Dg ∈ D−2, we can write

π1LA0(f, g) = S‡(Af +Bg −BD‡(Cf +Dg)) = S‡(Sf +Bg −BD‡Dg). (2.16)

Applying Lemma 2.12 to S0 and D0, we obtain the identities

S‡S = I − PS |DS , D‡D = I − PD|D2
.

Using this, identity (2.16), S‡ : D−S → DS and Sf,BPDg ∈ D−S gives

π1LA0(f, g) = S‡(Sf +BPDg) = f − PSf + S‡BPDg = f + π1K(f, g).

The proof of π2LA0(f, g) = g + π2K(f, g) is analogous. �

Employing the above proposition, we are now able to prove Theorem 2.8.

Proof of Theorem 2.8. (i) We apply Proposition 2.14. Note that all the assumptions
are satis�ed with S‡ = S−1; the density of domS0 in DS follows from the density
of H1 in D−S and S−1 ∈ B(D−S ,DS).

From 0 ∈ ρ(D0), we concludeD#
0 = D−1

0 , PD = 0 andD‡ = D−1 by Lemma 2.12.

Moreover, Lemma 2.12 gives S#
0 = S−1

0 and PS = 0 since 0 ∈ ρ(S0). Hence K = 0,
i.e. the operator matrix

L =

(
S−1

0 −S−1BD−1
0

−D−1CS−1
0 D−1

0 +D−1CS−1BD−1
0

)
from Proposition 2.14 is a left inverse for A0. We show that L ∈ B(H,D) is also a
right inverse for A0; as D ⊂ H is continuously embedded, 0 ∈ ρ(A0) then follows
from

A−1
0 = L ∈ B(H).
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Let (f, g) ∈ H, then we have L(f, g) ∈ D and, using D−1
0 ⊂ D−1 and S−1

0 ⊂ S−1,
we can write

π1AL(f, g) = A(S−1f − S−1BD−1g)

+B(−D−1CS−1f +D−1g +D−1CS−1BD−1g).

Since A : DS → D−1 and B : D2 → D−1, we can break the parentheses in the above
identity and obtain

π1AL(f, g) = (A−BD−1C)S−1f + (I −AS−1 +BD−1CS−1)BD−1g

and further conclude

π1AL(f, g) = SS−1f + (I − SS−1)BD−1g = f.

In the same way, one shows that π2AL(f, g) = g. Hence, AL(f, g) = (f, g), which
implies ranL ⊂ domA0 and A0L = I.

(ii) By Proposition 2.14, the identity

LA0 = I +K|domA0
(2.17)

holds true with L ∈ B(H,D) and K ∈ B(H,D) as in (2.14) and (2.15). We �rst show
that A0 is closed in H. Let therefore {(fm, gm)}m ⊂ domA0 and (f, g), (u, v) ∈ H
such that (fm, gm) → (f, g) and A0(fm, gm) → (u, v) in H as m → ∞. The
continuity of L and K imply

(fm, gm) = LA0(fm, gm)−K(fm, gm)
D−→ L(u, v)−K(f, g), m→∞,

and so the sequence {(fm, gm)}m is convergent in both H and D. Since D ⊂ H is
continuously embedded, the limits must coincide, thus (fm, gm) → (f, g) in D as
m→∞. Consequently, A ∈ B(D,D−) implies

A0(fm, gm) = A(fm, gm)
D−−→ A(f, g), m→∞.

Hence, {A0(fm, gm)}m is convergent in both H and D−, which, since H ⊂ D−
is continuously embedded, gives the equality A(f, g) = (u, v) ∈ H. This in turn
implies (f, g) ∈ domA0 and A0(f, g) = (u, v).

By the continuity of the embedding D ⊂ H, we have L,K ∈ B(H). Moreover,
it follows from Proposition 2.14 that K has �nite rank, thus K ∈ K(H) and from
(2.17) we see that L is a bounded left approximate inverse for A0. Finally, from
the closedness of A0, (2.17) and [11, Thm. I.3.13], we conclude A0 ∈ F+(H). �

Proof of Corollary 2.9. Let S0 ∈ F+(H1); note that this in particular holds if 0 ∈
ρ(S0). We start by deriving a resolvent type identity for S#

0 in order to construct
an extension

S#
0 ⊂ S‡ ∈ B(D−S ,DS).

Let P denote the orthogonal projection on kerS0 in H1. From (1.4), we conclude
(notice that cokerS0 = {0} and thus Q = 0)

(S0−z)#−S#
0 = (S#

0 S0+P )(S0−z)#−S#
0 (S0−z)(S0−z)# = (zS#

0 +P )(S0−z)#.

We can thus de�ne an extension

S#
0 ⊂ S‡z − (zS#

0 + P )S‡z =: S‡.

By Lemma 2.11, one has zS#
0 + P ∈ B(H1,DS). Moreover, S‡z ∈ B(D−S ,H1) since

DS is continuously embedded in H1. Altogether, S
‡ ∈ B(D−S ,DS) is shown.
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The statements (i) and (ii), respectively, now immediately follow from Theo-
rem 2.8 (i) and (ii); notice that in (i) the assumption 0 ∈ ρ(S0) together with
Lemma 2.12 implies S−1 = S‡. �

It remains to prove Proposition 2.5 (ii).

Proof of Proposition 2.5 (ii). Notice �rst that the assumptions of Theorem 2.8 (i)
are satis�ed and that S−1 ∈ B(D−S ,DS), see the proof of Corollary 2.9 (i). More-
over, since D−S = D−1, the inverse L in the proof of Theorem 2.8 (i) has the
following bounded extension

L̃ :=

(
S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

)
∈ B(D−,D).

It is straightforward to check that L̃ = A−1, which by the density of H in D−
immediately implies the density of domA0 in D. The density of domA0 in H then
follows from the density ofD inH and the continuity of its canonical embedding. �

3. Spectral equivalence between operator matrix and Schur

complement

We apply the results from Section 2 in order to obtain spectral correspondence
between the matrix A0 and its Schur complement S0(·) as an operator family. More
precisely, we assume that Θ ⊂ C is a set such that, for a �xed λ ∈ Θ, Assumption 2.1
is satis�ed with A − λ, D0 − λ and D − λ instead of A, D0 and D, respectively.
(In this case, we will say that the assumptions of the theorem are satis�ed in a
certain point λ ∈ Θ.) Our main theorems (which correspond to the case λ = 0)
then apply to the matrix A − λ and its (generalised) Schur complement S(λ), see
(3.1). This relates semi-Fredholmness/bounded invertibility of A0 − λ to semi-
Fredholmness/bounded invertibility of S0(λ) and thereby provides an equivalence
of the type

λ ∈ σ(p / e2)(A0) ⇐⇒ 0 ∈ σ(p / e2)(S0(λ)) ⇐⇒ λ ∈ σ(p / e2)(S0(·)).

Recall that the spectrum of the operator family {S0(λ) : λ ∈ Θ} is de�ned as

σ(S0(·)) = {λ ∈ Θ : 0 ∈ σ(S0(λ))};

its resolvent set, essential spectrum and point spectrum are de�ned analogously.

Assumption 3.1. Throughout this section, we assume the following.

(i) Let Assumption 2.1 (i) and (ii) be satis�ed.
(ii) Let D0 ∈ C(H2) such that domD0 ⊂ D2 is dense in D2 and assume that there

exists an extension

D0 ⊂ D ∈ B(D2,D−2). //

The assumptions above allow us to introduce the operator matrix A and its
maximal restriction A0 in H analogously to De�nition 2.3. Moreover, we can de�ne
the Schur complement S(λ) for a subset Θ of spectral parameters λ ∈ C such that
D0 − λ and its extension D − λ satisfy Assumption 2.1 (iii). Notice that, in line
with Assumption 2.1 (iii), we do not require 0 ∈ ρ(D0) but allow λ ∈ C such that
D0 − λ merely has a generalised inverse, see (1.3) and (1.4).
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De�nition 3.2. Let Assumption 3.1 be satis�ed and de�ne A ∈ B(D,D−), domA0

and A0 as in De�nition 2.3. Moreover, de�ne the following family of operators

S(λ) := A− λ−BD‡(λ)C ∈ B(DS ,D−1), λ ∈ Θ, (3.1)

where the set Θ ⊂ C satis�es

Θ ⊂ {λ ∈ C : ran(D0 − λ) closed in H2,

∃ extension (D0 − λ)# ⊂ D‡(λ) ∈ B(D−2,D2)}.
(3.2)

Let the corresponding family of maximal operators in H1 be de�ned as

S0(λ) := S(λ)|domS0(λ), domS0(λ) := {f ∈ DS : S(λ)f ∈ H1}, λ ∈ Θ. //

Remark 3.3. Notice that the spaces in Assumption 3.1 (i) are chosen such that,
independently of λ ∈ Θ, the results of Section 2 apply to A−λ and S(λ). However,
if the spaces and operators in Assumption 3.1 may depend on λ ∈ Θ, our method
de�nes an operator matrix valued family

L(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
∈ B(D(λ),D−(λ)), λ ∈ Θ,

whose domain domL0(λ) ⊂ H in general depends on the spectral parameter.

Let us state the �rst of four corollaries, which are a translation of the results in
Section 2 to the present setting. Namely, if the assumptions of Proposition 2.5 are
satis�ed in one point λ0 ∈ Θ, then A0 is densely de�ned in H and/or D.

Corollary 3.4. Let Assumption 3.1 be satis�ed and let A0, S0 and Θ be as in

De�nition 3.2.

(i) Let domB0 ∩ domD0 (with domB0 de�ned as in (2.3)) be dense in H2. As-

sume there exists λ0 ∈ Θ such that coker(D0 − λ0) = {0} and such that

domS0(λ0) is dense in H1. Then domA0 is dense in H.
(ii) Let D−S = D−1 and assume that there exists λ0 ∈ Θ such that D0 − λ0 and

S0(λ0) satisfy the assumptions of Proposition 2.5 (ii). Then domA0 is dense

in both D and H.

Proof. The assumptions imply that Assumption 2.1 is satis�ed with A−λ0, D0−λ0

and D − λ0 instead of A, D0 and D, respectively. Hence, the claims in (i) and (ii)
follow from Proposition 2.5 (i) and (ii) applied to A0 − λ0 and S0(λ0) and from

domA0 = dom(A0 − λ0), domD0 = dom(D0 − λ0). �

The point spectra of A0 and S0(·) correspond on Θ ∩ ρ(D0).

Corollary 3.5. Let Assumption 3.1 be satis�ed and let A0, S0 and Θ be as in

De�nition 3.2. Then

σp(A0) ∩ ρ(D0) ∩Θ = σp(S0(·)) ∩ ρ(D0).

Proof. Let λ ∈ Θ ∩ ρ(D0). By Proposition 2.6 applied to A0 − λ and S0(λ), we
conclude that 0 ∈ ker(A0 − λ) if and only if 0 ∈ kerS0(λ). Hence,

σp(A0) ∩ ρ(D0) ∩Θ = σp(S0(·)) ∩ ρ(D0) ∩Θ = σp(S0(·)) ∩ ρ(D0). �

On subsets of Θ where the assumptions of Theorem 2.7 are satis�ed, we obtain
an inclusion of the (essential) spectrum of S0(·) in the (essential) spectrum of A0.

Corollary 3.6. Let Assumption 3.1 be satis�ed and let A0, S0 and Θ be de�ned

as in De�nition 3.2.
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(i) The following inclusion holds

σ(S0(·)) ∩ ρ(D0) ⊂ σ(A0) ∩ ρ(D0) ∩Θ.

(ii) If the subset Σ ⊂ Θ is such that A0 − λ and S0(λ) satisfy the assumptions of

Theorem 2.7 (ii) for all λ ∈ Σ, then

σe2(S0(·)) ∩ Σ ⊂ σe2(A0) ∩ Σ.

Proof. The statements in (i) and (ii), respectively, follow similarly to the proof of
Corollary 3.5 by applying Theorem 2.7 (i) and (ii) to A0− λ and S0(λ) (with �xed
λ ∈ ρ(D0) ∩Θ in (i) and λ ∈ Σ in (ii)). �

The reverse inclusions are obtained from Corollary 2.9.

Corollary 3.7. Let Assumption 3.1 be satis�ed and let A0, S, S0 and Θ be de�ned

as in De�nition 3.2.

(i) If the subset Σ ⊂ Θ is such that A0−λ, S(λ) and S0(λ) satisfy the assumptions

of Corollary 2.9 (i) for all λ ∈ Σ, then

σ(A0) ∩ Σ ⊂ σ(S0(·)) ∩ Σ.

(ii) If the subset Σ ⊂ Θ is such that A0−λ, S(λ) and S0(λ) satisfy the assumptions

of Corollary 2.9 (ii) for all λ ∈ Σ, then

σe2(A0) ∩ Σ ⊂ σe2(S0(·)) ∩ Σ.

Proof. The statements follow similarly to the proof of Corollary 3.5 by applying
Corollary 2.9 to A0 − λ and S0(λ) (with �xed λ ∈ Σ). �

4. Damped wave equation with irregular damping and potential

As an application of our results, we consider the linearly damped wave equation

∂2
t u(t, x) + 2a(x)∂tu(t, x) = (∆x − q(x))u(t, x), t > 0, x ∈ Ω, (4.1)

on Ω ⊂ Rn, subject to Dirichlet boundary conditions, and with non-negative and
possibly singular and/or unbounded damping a and potential q. Equation (4.1)
can be written as the following �rst order Cauchy problem

∂t

(
u1(t, x)
u2(t, x)

)
=

(
0 1

∆x − q(x) −2a(x)

)(
u1(t, x)
u2(t, x)

)
. (4.2)

Spectral properties of the operator matrix above determine existence, uniqueness
and behaviour of the solutions to (4.1) and have been studied extensively. While
the majority of results relies on relative boundedness of a with respect to ∆ − q,
see e.g. [4, 14, 19], the recent results [13, 18] do not follow standard patterns and
allow stronger damping. Combining a distributional approach similar to [4, 14, 19]
with structural observations from [13], our method enables us to not only omit
the assumption on relative boundedness of the damping but also to substantially
lower the regularity of the coe�cients. We thereby close a gap which was left open
between the technical assumptions in [13] and the minimal ones suggested by the
applied sesquilinear form techniques therein, see Remark 4.3.

The main result of this section is Theorem 4.2; assuming only that a, q ∈ L1
loc(Ω),

we therein de�ne an m-accretive realisation of the operator matrix on the right
hand side of (4.2) in a suitable (standard choice) Hilbert space and show spectral
equivalence to its �rst Schur complement. By semigroup theory, this guarantees
existence and uniqueness of the solutions to the underlying Cauchy problem. We
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thereby cover the essential part of [13], where the generation of a semigroup was
shown under more restrictive assumptions, see Remark 4.3. Moreover, we point
out that our method can also be employed to realise distributional dampings as
considered e.g. in [4], see Remark 4.4.

4.1. Assumptions and main result. We make the following natural low regu-

larity assumptions.

Assumption 4.1. Let Ω ⊂ Rn be open and let a, q ∈ L1
loc(Ω) such that a, q ≥ 0

almost everywhere in Ω. //

In the following, we denote ‖·‖ := ‖·‖L2(Ω) and 〈·, ·〉 := 〈·, ·〉L2(Ω) and use the

same notation for norm and inner product in L2(Ω)n if no confusion can arise.

4.1.1. Spectral correspondence and generation of contraction semigroup. We estab-
lish the operator theoretic framework behind the Cauchy problem (4.2) under As-
sumption 4.1. Let W(Ω) be the Hilbert space completion of C∞0 (Ω) with respect
to the inner product

〈f, g〉W :=

∫
Ω

∇f · ∇g dx+

∫
Ω

qfg dx, f, g ∈ C∞0 (Ω); (4.3)

recall that q ≥ 0 and a ≥ 0 a.e. in Ω. Moreover, de�ne

DS := H1
0 (Ω) ∩ dom q

1
2 ∩ dom a

1
2 . (4.4)

Let A0 and S0(·) be the (family of) maximal operators inW(Ω)⊕L2(Ω) and L2(Ω),
respectively, corresponding to the di�erential expressions

A :=

(
0 I

∆− q −2a

)
, S(λ) := − 1

λ
(−∆ + q + 2λa+ λ2), λ ∈ C \ {0}, (4.5)

on their respective maximal domains

domA0 := {(f, g) ∈ W(Ω)×DS : (∆− q)f − 2ag ∈ L2(Ω)},
domS0(λ) := {f ∈ DS : (∆− q − 2λa)f ∈ L2(Ω)}.

(4.6)

Here the above operations are understood in a standard (antilinear) distributional
sense; see De�nitions 4.5, 4.8, 4.10 and Remark 4.12 below for details. Notice that
the Schur complement S0(·) coincides with the usual de�nition by means of its
quadratic form.

The main result of this section reads as follows and is proven in Section 4.3.

Theorem 4.2. Let Assumption 4.1 be satis�ed and let A0 and S0(·) be as in (4.5)
and (4.6). Then −A0 is m-accretive, thus A0 generates a strongly continuous con-

traction semigroup on W(Ω)⊕ L2(Ω) and its domain is dense both in W(Ω)⊕DS
and in W(Ω)⊕L2(Ω). Moreover, the (point and essential) spectra of A0 and S0(·)
are equivalent on C \ (−∞, 0],

σ(p/e2)(A0) \ (−∞, 0] = σ(p/e2)(S0(·)) \ (−∞, 0], (4.7)

and the following relations hold on (−∞, 0)

σ(A0) ∩ (−∞, 0) ⊃ σ(S0(·)) ∩ (−∞, 0), (4.8)

σp(A0) ∩ (−∞, 0) = σp(S0(·)) ∩ (−∞, 0). (4.9)
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Remark 4.3. If the assumptions on damping and potential in [13] are satis�ed, the
operator G introduced therein coincides with A0. Assuming essentially that for
every ε > 0 there exists Cε ≥ 0 such that

a ∈W 1,∞
loc (Ω), |∇a| ≤ εa 3

2 + Cε,

see [13, Asm. I] for the precise more general assumptions, the authors de�ne G as
the closure of the operator matrix G0 in W(Ω)⊕ L2(Ω) given by

G0 =

(
0 I

∆− q −2a

)
, domG0 = (dom(−∆ + q)L2(Ω) ∩ dom a)2;

here (−∆ + q)L2(Ω) shall denote the Friedrichs extension of −∆ + q on C∞0 (Ω).
They show that, independently of λ ∈ C \ (−∞, 0],

domS0(λ) = dom(−∆ + q)L2(Ω) ∩ dom a ⊂ W(Ω) ∩ DS .
From this it follows easily that domG0 ⊂ domA0 and their actions clearly coincide.
Since both −G and −A0 are m-accretive, see [13, Thm. 2.2], their equality already
follows from the inclusion G ⊂ A0, see e.g. [20, �V.3.10]. //

Remark 4.4. Our setting is more general than the perturbative framework in e.g. [4,
19] and can equally be employed to cover distributional dampings studied therein,
see e.g. [4, Chap. 4] where a(x) = δ(x− x0) is discussed in one dimension. //

4.2. Realisation of matrix and Schur complement. In line with Sections 2
and 3, we present our approach to the underlying spectral problem. Note that since
we use the second Schur complement, the roles of the spaces H1 and H2, as well as
the matrix entries acting in them, are reversed correspondingly, see Remark 2.4.

4.2.1. De�nition of spaces. We introduce the spaces for Assumption 3.1 (i).

De�nition 4.5. Let Assumption 4.1 hold, let H1 :=W(Ω) with W(Ω) as in The-
orem 4.2 and H2 := L2(Ω). Let the space DS de�ned in (4.4) be equipped with the
inner product

〈f, g〉S :=

∫
Ω

∇f · ∇g dx+

∫
Ω

qfg dx+

∫
Ω

afg dx+

∫
Ω

fg dx, f, g ∈ DS ; (4.10)

notice that q, a ≥ 0 a.e. in Ω. Moreover, de�ne

D1 = D−1 :=W(Ω), D−2 = D−S := D∗S . //

Proposition 4.6. Under Assumption 4.1, the spaces in De�nition 4.5 satisfy As-

sumption 3.1 (i) according to Remark 2.4. Moreover, C∞0 (Ω) is dense in DS and

one can embed DS ⊂ W(Ω) continuously.

Proof. Since q ∈ L1
loc(Ω), the Hilbert space completion of C∞0 (Ω) with respect to

the inner product in (4.3) is well-de�ned. Clearly, all other spaces in De�nition 4.5
are also well-de�ned and Hilbert. The inclusion C∞0 (Ω) ⊂ DS is clear from the
assumption a, q ∈ L1

loc(Ω); its density can be shown using standard techniques. It
thus follows from the construction of W(Ω) and the inequality ‖·‖W ≤ ‖·‖S that
one can clearly embed DS ⊂ W(Ω) continuously.

It remains to show that DS ⊂ L2(Ω) ⊂ D∗S , where the corresponding embeddings
are continuous with dense range. The density of DS in L2(Ω) is a consequence of
C∞0 (Ω) ⊂ DS , and since we have ‖·‖ ≤ ‖·‖S by construction, it is continuously
embedded. Upon identi�cation of L2(Ω) with its anti-dual space, we further obtain

DS ⊂ L2(Ω) ≡ L2(Ω)∗ ⊂ D∗S . (4.11)
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The second inclusion in (4.11) is realised by the continuous embedding

L2(Ω) 3 f ≡ 〈f, ·〉 7→ 〈f, ·〉|DS ∈ D∗S . (4.12)

Indeed, since DS is continuously embedded in L2(Ω), the map in (4.12) is well-
de�ned and bounded; its injectivity follows from the density of DS in L2(Ω).

For Assumption 3.1 (i), it remains to show that L2(Ω) is dense in D∗S . It su�ces,
however, to observe that the embedding in (4.12) is nothing but the adjoint operator

I∗DS : L2(Ω)∗ → D∗S
and that ran I∗DS is dense in D∗S since ker IDS = {0}, cf. [11, p. 170]. �

Remark 4.7. The restriction of every functional in D∗S to C∞0 (Ω) ⊂ DS is a distribu-
tion, i.e. one can embed D∗S ⊂ D′(Ω); indeed, since a, q ∈ L1

loc(Ω), the convergence
of test functions in D(Ω) clearly implies their convergence in DS . Moreover, the
density of C∞0 (Ω) guarantees injectivity of the embedding D∗S → D′(Ω).

If n ≥ 3 then we also have the inclusion W(Ω) ⊂ D′(Ω); this follows from

W(Ω) ⊂ Ḣ1(Ω) ⊂ L
2n
n−2 (Ω) ⊂ L1

loc(Ω),

where Ḣ1(Ω) denotes the completion of C∞0 (Ω) with respect to ‖∇·‖, i.e. the �rst
order homogeneous Sobolev space, and the second inclusion is a consequence of the
Gagliardo-Nirenberg-Sobolev inequality. //

4.2.2. De�nition of matrix entries. We introduce the remaining objects needed for
Assumption 3.1.

De�nition 4.8. Let Assumption 4.1 be satis�ed and de�ne the following operators

A0 = A := 0 ∈ B(W(Ω)),

C := ∆− q ∈ B(W(Ω),D∗S),

B := I ∈ B(DS ,W(Ω)),

D := −2a ∈ B(DS ,D∗S);

see De�nition 4.5. Here the operators ∆− q and a are the unique extensions of

((∆− q)f, g)D∗S×DS
:= −

∫
Ω

∇f · ∇g dx−
∫

Ω

qfg dx,

(af, g)D∗S×DS
:=

∫
Ω

afg dx,

f, g ∈ C∞0 (Ω), (4.13)

see Proposition 4.9 below for details. //

Proposition 4.9. Under Assumption 4.1, the operators de�ned in De�nition 4.8
are well-de�ned and satisfy Assumption 3.1 according to Remark 2.4.

Proof. Since DS ⊂ W(Ω) is continuously embedded by Proposition 4.6, clearly

0 ∈ B(W(Ω)), I ∈ B(DS ,W(Ω)).

It remains to show that C and D are well-de�ned by (4.13) and bounded between
the claimed spaces. For f, g ∈ C∞0 (Ω), we have the inequality

|((∆− q)f, g)D∗S×DS
| ≤ ‖f‖W‖g‖W ≤ ‖f‖W‖g‖S . (4.14)

Taking into account (4.14) and the density of C∞0 (Ω) in DS , see Proposition 4.6,
the formula (4.13) determines a unique bounded antilinear functional on DS

(∆− q)f ∈ D∗S , f ∈ C∞0 (Ω).
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Moreover, from (4.14) it follows that f 7→ (∆− q)f is a bounded map from W(Ω)
to D∗S and therefore, by density of C∞0 (Ω) in W(Ω), has a unique extension

∆− q ∈ B(W(Ω),D∗S).

In the same way, by deriving the estimate

|(af, g)D∗S×DS
| ≤ ‖a 1

2 f‖‖a 1
2 g‖ ≤ ‖f‖S‖g‖S , f, g ∈ C∞0 (Ω),

one shows that a ∈ B(DS ,D∗S) is well-de�ned. �

4.2.3. De�nition of matrix and Schur complement. We proceed analogously to Def-
inition 3.2, cf. Remark 2.4.

De�nition 4.10. Let Assumption 4.1 be satis�ed. De�ne the operator matrix

A :=

(
0 I

∆− q −2a

)
∈ B(W(Ω)⊕DS ,W(Ω)⊕D∗S)

and its second Schur complement

S(λ) := −2a− λ+
1

λ
(∆− q)|DS ∈ B(DS ,D∗S), λ ∈ Θ := C \ {0}; (4.15)

see De�nitions 4.5 and 4.8, as well as De�nition 3.2 and notice that Θ satis�es
(3.2) therein. Let A0 and S0(·), respectively, be the corresponding (family of)
maximal operators in W(Ω) ⊕ L2(Ω) and L2(Ω); more precisely, A0 := A|domA0

and S0(λ) := S(λ)|domS0(λ) with their respective domains

domA0 := {(f, g) ∈ W(Ω)×DS : A(f, g) ∈ W(Ω)× L2(Ω)},
domS0(λ) := {f ∈ DS : S(λ)f ∈ L2(Ω)}. //

The following proposition shows that (4.15) agrees with the standard de�nition
of the Schur complement via its quadratic form.

Proposition 4.11. Let Assumption 4.1 hold and let S(·) be as in De�nition 4.10.
Then, for every λ ∈ C \ {0} and f, g ∈ DS,

(S(λ)f, g)D∗S×DS
= − 1

λ

(∫
Ω

∇f∇g dx+

∫
Ω

qfg dx+ 2λ

∫
Ω

afg dx+ λ2

∫
Ω

fg dx

)
.

Proof. Considering De�nitions 4.8 and 4.10, it is clear that the claimed identity
holds for f, g ∈ C∞0 (Ω). Since C∞0 (Ω) is dense in DS and both sides of the formula
are continuous with respect to convergence in DS , it remains valid for f, g ∈ DS . �

Remark 4.12. Under Assumption 4.1, the actions of A and S(·) introduced in Def-
inition 4.10 coincide with their standard distributional de�nitions, cf. Remark 4.7.
Indeed, taking into account that q ∈ L1

loc(Ω), clearly

∆f − qf ∈ L1
loc(Ω), f ∈ C∞0 (Ω), (4.16)

is a regular distribution and coincides with Cf ∈ D∗S as de�ned in (4.13). The action
of C on the completion W(Ω), however, is constructed by continuous extension,
see (4.13), and is thus given as a limit of regular distributions of the form (4.16);
notice that convergence of functionals in D∗S implies their convergence in D′(Ω).
Finally, the following distributions

ag ∈ L1
loc(Ω), − 1

λ

(
−∆f + qf + 2λaf + λ2

)
∈ D′(Ω), λ ∈ C \ {0}, f, g ∈ DS ,
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are well-de�ned and coincide with Dg ∈ D∗S and S(λ)f ∈ D∗S as in (4.13) and (4.15),

respectively; see Proposition 4.11 and notice that DS ⊂ dom a
1
2 ∩ dom q

1
2 . //

4.3. Proof of Theorem 4.2. We �rst formulate a crucial ingredient for the proof
of Theorem 4.2 as a lemma. For every λ ∈ C \ (∞, 0], it provides the existence of
an extension as in (2.4); this is needed in order to apply Corollaries 3.4 (ii) and 2.9.

Lemma 4.13. Let Assumption 4.1 be satis�ed and let S0(·) be as in De�nition

4.10. For all λ ∈ C \ (−∞, 0], the domain domS0(λ) is dense in DS and there

exists zλ ∈ ρ(S0(λ)) such that

(S(λ)− zλ)−1 ∈ B(D∗S ,DS). (4.17)

Moreover, if Reλ > 0, then one can choose zλ = 0.

Proof. Fix λ /∈ (−∞, 0]. Analogously to the proof of [13, Lem. 2.3], one can show
that there exists zλ ∈ C such that S(λ) − zλ corresponds to a bounded and coer-
cive sesquilinear form on DS ; cf. the proof of Theorem 5.1 and also the proof of
Lemma 6.15, where the analogous statement is proven in a di�erent setting. By the
Lax-Milgram Theorem, see e.g. [11, Cor. IV.1.2], we conclude (4.17), zλ ∈ ρ(S0(λ))
and density of the maximal domain dom(S0(λ)− zλ) = domS0(λ) in DS . Finally,
from the proof of [13, Lem. 2.3], it is clear that one can choose zλ = 0 in case that
Reλ > 0. �

Proof of Theorem 4.2. We start by pointing out that, by Propositions 4.6 and 4.9,
Assumption 3.1 is satis�ed, the objects in De�nition 4.10 are well-de�ned and the
results of Section 3 applicable. Moreover, A0 and S0(·) as in De�nition 4.10 coincide
with their de�nition in (4.5), see Remark 4.12. Considering this, the description of
their domains in (4.6) follows immediately from De�nition 4.10.

Let us show the identities (4.7) - (4.9). To this end, we refer to Remark 2.4 and
apply the results from Section 3 correspondingly. First, since ρ(A0) = Θ = C \ {0},
Corollary 3.5 implies

σp(A0) \ {0} = σp(S0(·)). (4.18)

We proceed by showing that the assumptions of Corollary 3.7 are satis�ed. Let
λ ∈ Σ := C \ (−∞, 0] be arbitrary. Since D−S = D−2, one clearly has

S(λ) ∈ B(DS ,D−S), C(domA0) ⊂ D−S .

Moreover, according to Lemma 4.13, domS0(λ) is dense in DS and there exists
zλ ∈ ρ(S0(λ)) such that

(S0(λ)− zλ)−1 ⊂ S‡z(λ) := (S(λ)− zλ)−1 ∈ B(D−S ,DS). (4.19)

Considering that Σ ⊂ ρ(A0), we can thus apply Corollary 3.7 to conclude

σ(e2)(A0) \ (−∞, 0] ⊂ σ(e2)(S0(·)) \ (−∞, 0]. (4.20)

Furthermore, from Corollary 3.6 (i) with ρ(A0) = Θ = C \ {0}, we obtain

σ(A0) \ {0} ⊃ σ(S0(·)). (4.21)

Moreover, since Σ ⊂ ρ(A0) and since, for all λ ∈ Σ, Lemma 4.13 implies that
ρ(S0(λ)) 6= ∅ and thus S0(λ) ∈ C(H2), the assumptions of Corollary 3.6 (ii) are
satis�ed and we conclude

σe2(A0) \ (−∞, 0] ⊃ σe2(S0(·)) \ (−∞, 0]. (4.22)
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In summary, (4.7) follows from (4.18), (4.20), (4.21) and (4.22); the inclusion (4.8)
is a consequence of (4.21) and the identity (4.9) follows from (4.18).

We continue by showing that −A0 is accretive, i.e. that

Re〈A0(f, g), (f, g)〉H ≤ 0, (f, g) ∈ domA0.

To this end, let (f, g) ∈ domA0. By the density of C∞0 (Ω) in DS , see Proposi-
tion 4.6, and by construction of W(Ω), there exist {fm}m, {gm}m ⊂ C∞0 (Ω) such
that fm → f in W(Ω) and gm → g in DS as m → ∞. Moreover, DS ⊂ W(Ω) is
continuously embedded, see Proposition 4.6, and we conclude

〈g, f〉W = lim
m→∞

(
〈∇gm,∇fm〉+ 〈q 1

2 gm, q
1
2 fm〉

)
. (4.23)

One can easily show from the de�nitions in (4.13) that

((∆− q)f − 2ag, g)D∗S×DS
= − lim

m→∞

(
〈∇fm,∇gm〉+ 〈q 1

2 fm, q
1
2 gm〉

+2〈a 1
2 gm, a

1
2 gm〉

)
.

Using this, (4.23) and (h, ·)D∗S×DS = 〈h, ·〉 for h ∈ L2(Ω), we further derive

〈A0(f, g), (f, g)〉H = 〈g, f〉W + 〈(∆− q)f − 2ag, g〉

= −2 i lim
m→∞

Im
(
〈∇fm,∇gm〉+ 〈q 1

2 fm, q
1
2 gm〉

)
− 2 lim

m→∞
〈a 1

2 gm, a
1
2 gm〉.

Finally, the accretivity of −A0 then follows from

Re〈A0(f, g), (f, g)〉H = −2 lim
m→∞

〈a 1
2 gm, a

1
2 gm〉 ≤ 0.

Next we note that, by Lemma 4.13, we have S(λ)−1 ∈ B(D∗S ,DS) and thus
0 ∈ ρ(S0(λ)) whenever Reλ > 0. By taking complements in (4.20), we conclude

{λ ∈ C : Reλ > 0} ⊂ ρ(S0(·)) ⊂ ρ(A0).

This implies that −A0 is m-accretive; the generation of a strongly continuous con-
traction semigroup then follows from a standard result in semigroup theory, see e.g.
[20, �IX.1].

It remains to show that domA0 is dense in W(Ω) ⊕ DS and W(Ω) ⊕ L2(Ω).
This, however, follows from D−S = D∗S = D−2 and Corollary 3.4 (ii), since we have
shown already that the assumptions of Proposition 2.5 (ii) are satis�ed in any point
λ ∈ C \ (∞, 0], see (4.19). �

Remark 4.14. The density of domA0 inW(Ω)⊕L2(Ω) (which already follows from
its m-accretivity, see [20, �V.3.10]) can equally be shown by employing Proposi-
tion 2.5 (i). Let therefore (∆− q)L2(Ω) denote the Friedrichs extension of ∆− q on
C∞0 (Ω). One can show that

dom(∆− q)L2(Ω) ⊂ domC0 = domA0 ∩ domC0,

where we used domA0 =W(Ω) and where domC0 is de�ned analogously to (2.3).
Moreover, one can prove that dom(∆− q)L2(Ω) is dense in W(Ω), which by means
of Proposition 2.5 (i) gives the claimed density. //
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5. Klein-Gordon equation with purely imaginary potential

We consider a Klein-Gordon equation on Rn with potential V and mass m > 0

(∂t − iV (x))2u(x, t)−∆xu(x, t) +m2u(x, t) = 0, x ∈ Rn, t ≥ 0;

here the involved physical constants are normalised for the sake of simplicity, see
e.g. [30] for the full generality. The equation above has been studied in a large
number of works, employing various (operator theoretic) approaches, see e.g. [23,
24, 30]. After suitable transformations, one arrives at the following �rst order
Cauchy problem

∂t

(
u1(t, x)
u2(t, x)

)
= i

(
0 1

−∆x +m2 − V (x)2 2V (x)

)(
u1(t, x)
u2(t, x)

)
. (5.1)

We mention that also another system of equations arising by means of di�erent
transformations has been of interest, for instance in [24, 30]. Motivated by the
underlying physical problem, the potential is assumed to be real-valued in all works
above. This results in a certain inde�niteness of the problem, which makes its
spectral analysis less straightforward, see e.g. [23] where Krein spaces together
with a smallness condition for the potential were employed.

For purely imaginary potentials V = iW with real-valued W , however, the
problem can be reduced to a suitable wave equation, see (5.8) below; note that
the latter has a special structure since the damping W is relatively bounded with
respect to the term −∆ + m2 + W 2. Assuming only that the potential is locally
square integrable, we de�ne the matrix expression

A :=

(
0 I

−∆ +m2 +W 2 2 iW

)
(5.2)

on the right hand side of (5.1) as a densely de�ned, boundedly invertible opera-
tor in a suitable Hilbert space and show spectral equivalence to its second Schur
complement

S(λ) :=
1

λ

(
−∆ +m2 + (W + λ i)2

)
, λ ∈ C \ {0}, (5.3)

see Theorem 5.1. Moreover, in Example 5.2 below, we consider the special case
W (x) = x in one dimension and show that the spectrum of the resulting operator
matrix is empty, which is in line with the analogous results for the Airy operator
in case of the Schrödinger equation.

We denote ‖·‖ := ‖·‖L2(Rn) and 〈·, ·〉 := 〈·, ·〉L2(Rn) and, if its meaning is clear

from the context, adapt the same notation for norm and inner product in L2(Rn)n.
The operator matrix and its Schur complement are de�ned as follows

A0 := A|domA0 , S0(λ) := S(λ)|domS0 , λ ∈ C \ {0}, (5.4)

acting in the underlying Hilbert spaces W(Rn)⊕L2(Rn) and L2(Rn), respectively,
with A and S(λ) as in (5.2) and (5.3) understood in the standard distributional
sense, on their respective domains

domA0 := domS0 ×W(Rn),

domS0 := {f ∈ W(Rn) : (∆f −W 2)f ∈ L2(Rn)};
(5.5)
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notice that the domain of S0(λ) is independent of λ ∈ C \ {0} and that the domain
of A0 is diagonal. In the above, the �rst component of the product space is

W(Rn) := H1(Rn) ∩ domW

considered as Hilbert space equipped with the inner product

〈f, g〉2W :=

∫
Rn
∇f∇g dx+

∫
Rn
W 2fg dx+

∫
Rn
fg dx, f, g ∈ W(Rn). (5.6)

Theorem 5.1. Assume that W ∈ L2
loc(Rn,R) and let A0 and S0(·) be as in (5.4)

and (5.5). Then A0 is closed with 0 ∈ ρ(A0) and its domain is dense both in

W(Rn) ⊕ W(Rn) and in W(Rn) ⊕ L2(Rn). Moreover, the (point and essential)
spectra of A0 and S0(·) are equivalent, more precisely,

σ(p/e2)(A0) = σ(p/e2)(S0(·)). (5.7)

Proof. We relate the problem to a certain damped wave equation and apply the
results in Section 4. In detail, for λ ∈ C we have

A0 − λ = i diag(1, i)−1(Ã0 − iλ) diag(1, i)

with Ã0 being the following linear operator in W(Rn)⊕ L2(Rn)

Ã0 :=

(
0 I

∆− (m2 +W 2) −2W

)
, dom Ã0 := domA0. (5.8)

This clearly gives the equivalence

λ ∈ σ(p/e2)(A0) ⇐⇒ iλ ∈ σ(p/e2)(Ã0). (5.9)

We apply Theorem 4.2 to Ã0 and its second Schur complement S̃0(·) in a suitable
way, i.e. with Ω := Rn, the potential q := m2+W 2 and the damping a := W therein.
Even though the latter might be inde�nite, it is relatively bounded with bound
zero with respect to the potential in the sense of quadratic forms, and the spectral
equivalence can thus be implemented analogously. Indeed, merely the following
adjustments have to be made.

Instead of (4.3), (4.4) and (4.10), de�ne W(Ω) := W(Rn) and ‖·‖W as in (5.6)
and set DS := W(Rn); notice that (4.3) and (5.6) give equivalent norms and
W(Rn) is in fact independent of choosing either one of them. Taking into ac-
count these modi�cations, Propositions 4.6, 4.9 and 4.11 remain valid. Moreover,

since W(Rn) ⊂ domW , the domain of Ã0 de�ned as in (4.6) indeed coincides
with domA0 in (5.5). In view of Lemma 4.13, we consider the Schur complement

S̃(λ) = − 1

λ

(
−∆ +m2 +W 2 + 2λW + λ2

)
∈ B(W(Rn),W(Rn)∗),

and the restriction S̃0(·) to its maximal domain in L2(Rn), see (4.5) and (4.6),
which since W(Rn) ⊂ domW , is given by

dom S̃0(λ) = domS0, λ ∈ C \ {0}.

In order to apply Theorem 4.2, it thus su�ces to justify that domS0 is dense in
L2(Rn) and that, for every λ 6= 0, there exists zλ ∈ C such that (4.17) holds and
zλ = 0 can be chosen if λ > 0 is su�ciently large. This, however, follows in a
straightforward way from the order zero form-relative boundedness of the damping
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with respect to the potential. More precisely, using Cauchy-Schwarz' and Young's
inequalities, one shows that for every δ > 0 it holds that∫

Rn
|W ||f |2 dx ≤ δ

2

∫
Rn
W 2|f |2 dx+

1

2δ

∫
Rn
|f |2 dx, f ∈ dom(W 2).

Hence, for λ ∈ C \ {0} and f ∈ W(Rn), the above gives

Re(−λS̃(λ)f, f)W(Rn)×W(Rn)∗ ≥ ‖∇f‖2 + (1− |λ|δ)‖Wf‖2

+ (m2 + Re(λ2)− |λ|δ−1)‖f‖2,

implying the existence of zλ ∈ C such that S̃(λ) − zλ is coercive on W(Rn) and
that zλ = 0 is a possible choice for any λ > 0. The claimed invertibility in (4.17)
now follows from the Lax-Milgram-Theorem, see [11, Cor. IV.1.2]; cf. the proofs
of Lemmas 4.13 and 6.15. Combining the above, Theorem 4.2 implies the claimed

density of domA0 = dom Ã0 and

0 6= λ ∈ σ(p/e2)(Ã0) ⇐⇒ λ ∈ σ(p/e2)(S̃0(·)). (5.10)

It remains to show that A0 is boundedly invertible. The equivalence (5.7) then
follows from (5.9), (5.10) and since for λ 6= 0 clearly

0 ∈ σ(p/e2)(S̃0(iλ)) ⇐⇒ 0 ∈ σ(p/e2)(S0(λ)).

To show 0 ∈ ρ(A0), in view of (5.9), it su�ces to prove that

Ã−1
0 = R :=

(
−2T−1

0 W −T−1
0

I 0

)
∈ B(W(Rn), L2(Rn))

where T0 is the linear operator in L2(Rn) given by

T0 := −∆ +m2 +W 2, domT0 := domS0.

However, the claimed boundedness of R readily follows from

W ∈ B(W(Rn), L2(Rn)), T−1
0 ∈ B(L2(Rn),W(Rn)),

and the proof of Ã0R = IW(Rn)⊕L2(Rn) and RÃ0 = IdomA0
is straightforward. �

Example 5.2. For the one dimensional purely imaginary potential V = ix, our
realisation of the Klein-Gordon Cauchy problem (5.1) has empty spectrum. More
precisely, we show that if n = 1 and W (x) := x, x ∈ R, then σ(A0) = ∅.

By Theorem 5.1, we have that σ(A0) = σ(S0(·)), where

S0(λ) =
1

λ

(
−∂2

x +m2 + (x+ iλ)2
)
, λ ∈ C \ {0},

is the operator family in L2(R) on the (λ-independent) domain

domS0 = H2(R) ∩ dom(x2);

see [8, Prop. 2.6. (i)] for the domain separation property and note that

dom(m2 + (x+ iλ)2) = dom(x2).

The claim thus follows if we show that σ(S0(·)) = ∅. It is easy to see that

T (λ) := λS0(λ), T (0) := −∂2
x +m2 + x2, domT (λ) := domS0, λ ∈ C,

is a holomorphic family of type (A) in the sense of [20, Sec. VII.2]; notice that in
fact T (·) is also type (B) holomorphic, see [20, Sec. VII.4], with form domainW(R)
as in (5.6). Since for every λ 6= 0, the operator T (λ) is a bound zero perturbation
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of T (0) and the latter has compact resolvent, see [28, Thm. XIII.67], also T (λ) has
compact resolvent; see [20, Thm. IV.1.16] and note that

‖(T (0)− µ)−1‖ → 0, µ→ −∞.

Due to the analyticity of T (·), the isolated eigenvalues (of �nite multiplicity) of T (λ)
depend analytically on λ ∈ C, see [20, Sec. VII.1.3, Thm. VII.1.8]. Considering that,
for λ ∈ iR+, by unitary equivalence we have

σ(T (0)) = σ(−∂2
x +m2 + (x− |λ|)2) = σ(T (λ)),

the spectrum of T (λ) remains unchanged in λ ∈ C and thus, for λ 6= 0,

λσ(S0(λ)) = σ(T (λ)) = σ(T (0)).

Since it is well-known that σ(T (0)) does not contain zero, this gives σ(S0(·)) = ∅.

6. Singular coefficient matrix differential operators

As another application, we study the spectra of generic second order di�erential
operator matrices of the form (

−∆ + q ∇ · b
c · ∇ d

)
(6.1)

with irregular coe�cients acting in the Hilbert space L2(Ω)⊕ L2(Ω) with Ω ⊂ Rn
while imposing Dirichlet boundary conditions. Operator matrices with this partic-
ular structure appear in several problems in mathematical physics, see e.g. [7, 15,
16, 17, 21, 22]. Due to the apparent independence of their entries, however, their
spectral analysis is not straightforward and previous results typically rely on the
regularity or special form of coe�cients. Our approach merges the conceptual idea
of a dominant Schur complement in [15, 16, 17] with a distributional framework,
which enables us to substantially reduce the required regularity of the coe�cients.
In particular, we allow the latter to be singular and/or unbounded, as long as
they satisfy certain (in some sense minimal) conditions arising from our setting in
Section 3, see Assumption 6.1.

The main results in this section are Theorems 6.3 and 6.5; the former provides
spectral equivalence of our realisation of the operator matrix (6.1) and its Schur
complement, whereas in the latter we show that if q and d are sectorial and c = b,
then the resulting operator matrix is m-accretive and generates a strongly contin-
uous contraction semigroup.

6.1. Assumptions and main results. We impose the following low regularity

assumptions on the coe�cients.

Assumption 6.1. Let Ω ⊂ Rn be open.

(i) Basic assumptions on coe�cients: Let b, c : Ω→ Cn be measurable and

q ∈ L1
loc(Ω), d ∈ L∞loc(Ω).

(ii) De�nition and regularity of π on Θ: Denote by I ∈ Cn×n the identity matrix,
let Θ ⊂ C \ ess ran d be connected and let

π(λ) := I + (d− λ)−1(b⊗ c) ∈ L1
loc(Ω)n×n, λ ∈ Θ. (6.2)
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(iii) Sectoriality of q and π on Φ (after rotation and shift): Let ∅ 6= Φ ⊂ Θ. For
all λ ∈ Φ, assume there exist ωλ ∈ (−π, π] and γλ ≥ 0 such that both

q̃(λ) := eiωλ q + γλ, π̃(λ) := eiωλ π(λ), (6.3)

are sectorial; more precisely, a.e. in Ω, let Re q̃(λ) ≥ 0, let the matrix Re π̃(λ)
be positive de�nite and let Cλ > 0 be such that

|Im q̃(λ)| ≤ Cλ Re q̃(λ),

|Im π̃(λ)ξ · ξ| ≤ Cλ Re π̃(λ)ξ · ξ, ξ ∈ Cn.
Moreover, for all λ, µ ∈ Φ, assume there exist constants mλ,µ,Mλ,µ > 0 such
that a.e. in Ω the following holds

mλ,µ Re q̃(µ) ≤ Re q̃(λ) ≤ Mλ,µ Re q̃(µ),

mλ,µ Re π̃(µ) ≤ Re π̃(λ) ≤ Mλ,µ Re π̃(µ).
(6.4)

(iv) Dominance of Schur complement : For all λ ∈ Φ, assume that

(d− λ)−1 max
(∣∣(Re π̃(λ))−

1
2b
∣∣, ∣∣(Re π̃(λ))−

1
2 c
∣∣) ∈ L∞(Ω). //

Remark 6.2. (i) The assumptions q ∈ L1
loc(Ω) and π(λ) ∈ L1

loc(λ)n×n are natu-
rally minimal and guarantee that the generalised quadratic form of the Schur
complement is densely de�ned for λ ∈ Θ. Assumption 6.1 (iii), however,
translates into sectoriality (after shift and rotation) of the Schur complement
on the set of parameters Φ.

(ii) The assumption d ∈ L∞loc(Ω) is made for the sake of simplicity and can be
relaxed. It is a su�cient condition for the following

ω(d− λ)−1b ∈ L2
loc(Ω)n, ω ∈ L2

loc(Ω), (d− λ)ω−1 ∈ L2
loc(Ω),

where λ ∈ Φ and ω is de�ned in (6.6) below. The �rst two of the conditions
above guarantee that our realisation of the operator matrix in (6.1) and its
Schur complement coincide with their standard de�nition in the distributional
sense, see Remark 6.14. The third condition ensures that C∞0 (Ω) ⊂ D2, where
D2 is de�ned in (6.6) below.

(iii) Assumption 6.1 (iv) is essential; it ensures that, on the set of parameters Φ,
the Schur complement dominates the neighbouring factors of the Schur-Fro-
benius factorisation of the resolvent in a suitable way, cf. Corollary 3.7.

(iv) By (6.4) and Lemma 6.11 below, it is equivalent to assume (6.2) or Assump-
tion 6.1 (iv), respectively, only in an arbitrary point λ0 ∈ Θ or λ0 ∈ Φ. //

From now on, we write ‖·‖ := ‖·‖L2(Ω) and 〈·, ·〉 := 〈·, ·〉L2(Ω); the same notation

will be used for norm and inner product on L2(Ω)n if no confusion can arise.

6.1.1. Spectral correspondence. Under Assumption 6.1, we place the spectral prob-
lem for the operator matrix (6.1) in a suitable setting and apply the results from
Section 3. Fix an arbitrary point λ0 ∈ Φ and set q0 := q̃(λ0) and π0 := π̃(λ0),
see (6.3). Let DS be the closure of C∞0 (Ω) with respect to the inner product

〈f, g〉S :=

∫
Ω

Reπ0∇f · ∇g dx+

∫
Ω

Re q0fg dx+

∫
Ω

fg dx, f, g ∈ C∞0 (Ω); (6.5)

recall that q0 ≥ 0 and Reπ0 > 0 is positive de�nite a.e. in Ω. Moreover, de�ne

D2 := L2(Ω, |d− λ0|2ω−2), ω := max
(

1, |(Reπ0)−
1
2 c|
)
. (6.6)



28 BORBALA GERHAT

We emphasise that, as topological spaces, DS and D2 do not depend on the choice
of λ0. Indeed, by (6.4) and Lemma 6.11 below, their respective inner products
generate equivalent norms for distinct choices of λ0 ∈ Φ.

Let A0 and S0(·) be the (family of) maximal operators in L2(Ω) ⊕ L2(Ω) and
L2(Ω), respectively, corresponding to the di�erential expressions

A :=

(
−∆ + q ∇ · b
c · ∇ d

)
, S(λ) := −∇ · π(λ)∇+ q − λ, λ ∈ Θ, (6.7)

see (6.2), on their respective maximal domains

domA0 :=
{

(f, g) ∈ DS ×D2 : (∆− q)f −∇ · bg ∈ L2(Ω),

c · ∇f + dg ∈ L2(Ω)
}
,

domS0(λ) := {f ∈ DS : (∇ · π(λ)∇− q)f ∈ L2(Ω)}.
(6.8)

Here the above operations are understood in a standard (antilinear) distributional
sense, see De�nitions 6.6, 6.9, 6.12 and Remark 6.14 below for details. Note that
S0(·) coincides with the standard de�nition of the Schur complement by means of
its quadratic form on the set of parameters Φ were the latter is sectorial.

The �rst main result in this section, the spectral correspondence between oper-
ator matrix and its Schur complement, reads as follows; its proof can be found in
Section 6.3.

Theorem 6.3. Let Assumption 6.1 be satis�ed and let A0 and S0(·) be as in (6.7)
and (6.8). Then the following identities and inclusions hold

σp(A0) ∩Θ = σp(S0(·)) ∩Θ, (6.9)

σ(A0) ∩Θ ⊃ σ(S0(·)) ∩Θ, (6.10)

σ(A0) ∩ Φ ⊂ σ(S0(·)) ∩ Φ, (6.11)

σe2(A0) ∩ Φ = σe2(S0(·)) ∩ Φ. (6.12)

If domB0 ∩ dom d is dense in L2(Ω), where

domB0 = {f ∈ D2 : ∇ · bf ∈ L2(Ω)},

then domA0 is dense in L2(Ω)⊕ L2(Ω).

Remark 6.4. If e.g. b ∈ W 1,2
loc (Ω), then both dom d and domB0 contain C∞0 (Ω),

thus domB0 ∩ dom d is dense in L2(Ω) and domA0 is dense in L2(Ω)⊕ L2(Ω). //

6.1.2. Generation of contraction semigroup. When imposing additional assump-
tions on the structure of the problem, the resulting operator matrix proves to be
m-accretive and thus generates a strongly continuous contraction semigroup, see
Theorem 6.5 below.

More precisely, besides Assumption 6.1 (i), we require that c = b and that q and
d are sectorial, i.e. that there exist 0 ≤ θq, θd < π/2 such that a.e. in Ω

Re q ≥ 0, |Im q| ≤ tan θq Re q,

Re d ≥ 0, |Im d| ≤ tan θd Re d.
(6.13)

The above structural assumptions imply Assumption 6.1 (iii) with certain sets

Θ := {λ ∈ C : | arg λ| > θd}, Φ := {λ ∈ C : | arg λ| > max(θq, θd)}, (6.14)
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where arg : C \ {0} → (−π, π] and arg 0 = 0. Moreover, the regularity and domi-
nance Assumptions 6.1 (iii) and (iv), respectively, reduce to

π0 := I+(d+1)−1(b⊗b) ∈ L1
loc(Ω)n×n, (d+1)−1(Reπ0)−

1
2b ∈ L∞(Ω)n; (6.15)

see Remark 6.2 (iv) and notice that Reπ0 ≥ I is positive de�nite, see (6.33) below.
Applying Theorem 6.3, we thereby obtain the following theorem; its proof can be
found in Section 6.4.

Theorem 6.5. Let Assumption 6.1 (i) hold, let c = b, let q and d be sectorial

with semi-angle θq, θd ∈ [0, π/2), see (6.13), and let (6.15) be satis�ed. Let Θ and

Φ be de�ned as in (6.14) and let A0 and S0(·) be as in (6.7) and (6.8), where π
is as in (6.2), and we set λ0 := −1, q0 := q in the de�nitions (6.5), (6.6). Then

(6.9) - (6.12) hold and −A0 is m-accretive, thus A0 generates a strongly continuous

contraction semigroup on L2(Ω) ⊕ L2(Ω). Its domain is dense in L2(Ω) ⊕ L2(Ω)
and satis�es

π2 domA0 ⊂ dom |d| 12 . (6.16)

6.2. Realisation of matrix and Schur complement. In the more general set-
ting of Assumption 6.1, we provide the appropriate framework to the spectral prob-
lem for the operator matrix (6.1) such that the results of Section 3 apply. We
therefore need to de�ne the objects in Assumption 3.1 in a suitable way.

6.2.1. De�nition of spaces. We introduce the spaces needed for Assumption 3.1 (i).

De�nition 6.6. Let Assumption 6.1 be satis�ed and let H1 := H2 := L2(Ω).
Moreover, let D2 and ω be as in (6.6) and let DS and D1, respectively, be the
closure of C∞0 (Ω) with respect to the inner products in (6.5) and

〈f, g〉1 :=

∫
Ω

|d− λ0|−2ω2(b⊗ b)∇f · ∇g dx

+

∫
Ω

∆f∆g dx+ 〈f, g〉S , f, g ∈ C∞0 (Ω);

notice that (b⊗ b) ≥ 0 is positive semi-de�nite a.e. in Ω. Finally, de�ne

D−S := D∗S , D−1 := D∗1 , D−2 := L2(Ω, ω−2). //

Proposition 6.7. Under Assumption 6.1, the spaces in De�nition 6.6 are well-

de�ned and satisfy Assumption 3.1 (i).

Proof. By assumption, Reπ0 ∈ L1
loc(Ω)n×n is positive de�nite and Re q0 ∈ L1

loc(Ω)
is non-negative a.e. in Ω. Considering this, it is easy to see that DS is a well-de�ned
Hilbert space. Moreover, from d ∈ L∞loc(Ω) and Assumption 6.1 (iv) it follows that

(Reπ0)−
1
2 c = (d− λ0)(d− λ0)−1(Reπ0)−

1
2 c ∈ L∞loc(Ω)n, (6.17)

which in turn implies ω ∈ L∞loc(Ω). From π0 ∈ L1
loc(Ω)n×n and Assumption 6.1 (iv),

we further derive that

ω(d− λ0)−1b = ω(Reπ0)
1
2 (d− λ0)−1(Reπ0)−

1
2b ∈ L2

loc(Ω)n, (6.18)

and thus also D1 is a well-de�ned Hilbert space.
Analogously to the proof of Proposition 4.6, from the density of C∞0 (Ω) in L2(Ω)

and since ‖·‖ ≤ ‖·‖S by construction, we obtain the inclusions

DS ⊂ L2(Ω) ⊂ D∗S
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where the corresponding embeddings are continuous and have dense range. Sim-
ilarly, it follows that D1 ⊂ DS , and thus D∗S ⊂ D∗1 , are dense and continuously
embedded.

Clearly, the weighted spaces D2 and D−2 are Hilbert spaces. From λ0 /∈ ess ran d
and Assumption 6.1 (iv), it follows that

|d− λ0|2ω−2 = min
(
|d− λ0|2, |(d− λ0)−1(Reπ0)−

1
2 c|−2

)
& 1,

thus D2 ⊂ L2(Ω) is continuously embedded. Moreover, this implies that, as a topo-
logical vector space, D2 coincides with the weighted space L2(Ω, 1 + |d− λ0|2ω−2),
i.e. with dom((d−λ0)ω−1). Since the maximal domain of a multiplication operator
by a measurable function is dense, see e.g. [6, Ex. 4.3.3 (a)], the density of D2 in
L2(Ω) follows. Analogously, from ω ≥ 1 a.e. in Ω we conclude that L2(Ω) ⊂ D−2 is
dense and continuously embedded. �

Remark 6.8. Due to Assumption 6.1, the spaces D∗1 and D−2 in De�nition 6.6 can
both be understood as subspaces of D′(Ω), cf. Remark 4.7. Indeed, since ω is locally
bounded by (6.17), we have

D−2 = L2(Ω, ω−2) ⊂ L1
loc(Ω) ⊂ D′(Ω).

The embedding of D∗1 in D′(Ω) can be shown analogously to Remark 4.7. //

6.2.2. De�nition of matrix entries. We introduce the operators needed for Assump-
tion 3.1 (ii) and (iii).

De�nition 6.9. Let Assumption 6.1 be satis�ed. De�ne the following operators

A := −∆ + q ∈ B(DS ,D∗1),

C := c · ∇f ∈ B(DS ,D−2),

B := ∇ · b ∈ B(D2,D∗1),

D := d ∈ B(D2,D−2),

see De�nition 6.6 for the spaces involved. Here A and B are determined uniquely
by the de�ning identities

(Af, g)D∗1×D1
:=

∫
Ω

∇f · ∇g dx+

∫
Ω

qfg dx, f ∈ C∞0 (Ω), g ∈ C∞0 (Ω),

(Bf, g)D∗1×D1
:= −

∫
Ω

bf · ∇g dx, f ∈ D2, g ∈ C∞0 (Ω),

(6.19)

and the operator C is the unique extension in B(DS ,D−2) of

Cf := c · ∇f, f ∈ C∞0 (Ω), (6.20)

see Proposition 6.10 for details. Finally, de�ne D0 := D|dom d as the maximal
multiplication operator by d in L2(Ω). //

Proposition 6.10. Let Assumption 6.1 hold. Then the operators introduced in

De�nition 6.9 are well-de�ned and satisfy Assumption 3.1 (ii) and (iii). Moreover,

(D − λ)−1 ∈ B(D−2,D2), λ ∈ Θ, (6.21)

where Θ ⊂ C \ ess ran d is the connected set in Assumption 6.1 (ii).

The following elementary lemma will be needed several times, including for the
proof of (6.21) in Proposition 6.10.

Lemma 6.11. Let Θ ⊂ C \ ess ran d be connected and λ, µ ∈ Θ. Then there exist

constants Cλ,µ, C
′
λ,µ > 0 such that a.e. in Ω

Cλ,µ|d− µ| ≤ |d− λ| ≤ C ′λ,µ|d− µ|.
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Proof. It is easy to see that, for every �xed λ0 ∈ Θ, there exists a set N ⊂ Ω with
measure zero and a radius δ > 0 such that

2

3
|d(x)− ν| ≤ |d(x)− λ0| ≤ 2|d(x)− ν|, ν ∈ Bδ(λ0), x ∈ Ω \N. (6.22)

The claim of the lemma then follows from a standard compactness argument by
connecting λ and µ with a path in Θ and using (6.22) locally. �

Proof of Proposition 6.10. Integration by parts and sectoriality of q0 give

|(Af, g)D∗1×D1
| . ‖f‖‖∆g‖+ ‖(Re q0)

1
2 f‖‖(Re q0)

1
2 g‖+ ‖f‖‖g‖ ≤ ‖f‖S‖g‖1

for f, g ∈ C∞0 (Ω), see Assumption 6.1 (iii). Analogously to the proof of Proposi-
tion 4.9, this implies that A ∈ B(DS ,D∗1) is uniquely well-de�ned by (6.19). Simi-
larly, for f ∈ D2 and g ∈ C∞0 (Ω),

|(Bf, g)D∗1×D1
| ≤ ‖f(d− λ0)ω−1‖‖(d− λ0)−1ωb · ∇g‖ ≤ ‖f‖D2

‖g‖1
implies that B ∈ B(D2,D∗1) is uniquely well-de�ned by (6.19). For any f ∈ C∞0 (Ω),
we moreover obtain the chain of inequalities

‖Cf‖2D−2
≤
∫

Ω

|〈c,∇f〉Cn |2ω−2 dx

≤
∫

Ω

|(Reπ0)−
1
2 c|2|(Reπ0)

1
2∇f |2ω−2 dx

≤ ‖ω−1(Reπ0)−
1
2 c‖2L∞(Ω)n‖f‖

2
S ;

(6.23)

notice that the right hand side of the above inequality is �nite by de�nition of ω.
It now follows from the density of C∞0 (Ω) in DS that the operator de�ned in (6.20)
has a unique extension C ∈ B(DS ,D−2).

We next show that D and D0 satisfy Assumption 3.1 (ii). From the de�nition
of D2 and D−2, it is obvious that D ∈ B(D2,D−2) and, as maximal multiplication
operator in L2(Ω), its restrictionD0 is closed in L

2(Ω). Moreover, since both |d−λ0|
and ω are uniformly positive a.e. in Ω, the topological vector spaces L2(Ω, |d|2 + 1)
and L2(Ω, (ω2 + 1)|d− λ0|2ω−2) coincide. It follows that dom d can be understood
as the maximal domain domD2 ω of the multiplication operator by the measurable
function ω in the weighted space D2 and is thus a dense subspace of the latter, see
e.g. [6, Ex. 4.3.3 (a)] and note that the weighted Lebesgue measure with weight
(d − λ0)2w−2 ∈ L1

loc(Ω) is σ-�nite. cf. Remark 6.2 (ii). Finally, for �xed λ ∈ Θ,
relation (6.21) holds since by Lemma 6.11 with µ = λ0 for all f ∈ D−2 we have

‖(d− λ)−1f‖2D2
=

∫
Ω

|d− λ|−2|f |2|d− λ0|2ω−2 dx .
∫

Ω

|f |2ω−2 dx = ‖f‖2D−2
. �

6.2.3. De�nition of matrix and Schur complement. Analogously to De�nition 3.2,
we now introduce our realisation of the operator matrix (6.1) and its Schur com-
plement. Note that, by Proposition 6.10, the set Θ satis�es inclusion (3.2).

De�nition 6.12. We de�ne the operator matrix

A :=

(
−∆ + q ∇ · b
c · ∇ d

)
∈ B(DS ⊕D2,D∗1 ⊕D−2)

and its �rst Schur complement

S(λ) := −∆ + q − λ− (∇ · b)(d− λ)−1(c · ∇) ∈ B(DS ,D∗1), λ ∈ Θ,
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see De�nitions 6.6 and 6.9 for the spaces and operators involved. Let the (family
of) maximal operators A0 in L2(Ω) ⊕ L2(Ω) and S0(·) in L2(Ω), respectively, be
de�ned as the restrictions of A and S(·) to their respective maximal domains

domA0 := {(f, g) ∈ DS ×D2 : A(f, g) ∈ L2(Ω)× L2(Ω)}, (6.24)

domS0(λ) := {f ∈ DS : S(λ)f ∈ L2(Ω)}. //

The proposition below shows that the Schur complement acts according to the
formula obtained from naively integrating by parts. On the set of parameters Φ
where it is sectorial, our de�nition of the Schur complement coincides with its
standard de�nition by means of its quadratic form with form domain DS and core
C∞0 (Ω) and is bounded between DS and its anti-dual D∗S .

Proposition 6.13. Let Assumption 6.1 be satis�ed and let S(·) be as in De�ni-

tion 6.12. Then, for all λ ∈ Θ and f, g ∈ C∞0 (Ω),

(S(λ)f, g)D∗1×D1
=

∫
Ω

π(λ)∇f · ∇g dx+

∫
Ω

qfg dx− λ
∫

Ω

fg dx. (6.25)

Moreover, if λ ∈ Φ, then S(λ) ∈ B(DS ,D∗S).

Proof. Fix λ ∈ Θ and let f, g ∈ C∞0 (Ω). Since (d− λ)−1c · ∇f ∈ D2, it follows by
de�nition that

(S(λ)f, g)D∗1×D1
=

∫
Ω

∇f · ∇g dx+

∫
Ω

qfg dx− λ
∫

Ω

fg dx

+

∫
Ω

(d− λ)−1(c · ∇f)(b · ∇g) dx.

Formula (6.25) is then easily derived from the de�nition of π(λ) and

(c · ξ)(b · ξ) = (b⊗ c)ξ · ξ, ξ ∈ Cn.
Now let λ ∈ Φ be �xed. Using formula (6.25), multiplying it by the unimodular

factor eiωλ and employing Assumption 6.1 (iii), we conclude

|(S(λ)f, f)D∗1×D1
| .

∫
Ω

Re π̃(λ)∇f ·∇f dx+

∫
Ω

Re q̃(λ)|f |2 dx+

∫
Ω

|f |2 dx . ‖f‖2S

for f ∈ C∞0 (Ω). By a straightforward polarisation argument, it follows that

|(S(λ)f, g)D∗1×D1
| . ‖f‖S‖g‖S , f, g ∈ C∞0 (Ω). (6.26)

Since C∞0 (Ω) is dense both in D1 and in DS , S(λ) ∈ B(DS ,D∗1) and D1 ⊂ DS is
continuously embedded, the inequality (6.26) remains valid for f ∈ DS and g ∈ D1.
However, this implies S(λ) ∈ B(DS ,D∗S) for all λ ∈ Φ. �

Remark 6.14. The actions of A and S(·) can be understood in a standard distribu-
tional sense, cf. Remark 6.8 and also Remark 4.12 for the damped wave equation.
More precisely, by Assumption 6.1 (i), the distributions

−∆f + qf ∈ L1
loc(Ω), ∇ · π(λ)∇f + qf − λf ∈ D′(Ω), f ∈ C∞0 (Ω), (6.27)

are well-de�ned and coincide with the functionals Af ∈ D∗1 and S(λ)f ∈ D∗1 ,
respectively, see de�nitions of the latter in (6.19) and formula (6.25). Moreover,

Cf = c · ∇f ∈ D−2 ⊂ L1
loc(Ω), f ∈ C∞0 (Ω). (6.28)

Since the actions of A, C and S(λ) on DS are obtained by continuous extension,
see (6.19) and (6.20), they are given as limits of distributions of the form (6.27)
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and (6.28); notice that the convergence of functionals in D∗1 or D−2 = L2(Ω, w2)∗

implies their convergence in D′(Ω). From (6.18), we see that

bg = ω(d− λ0)−1bg(d− λ0)ω−1 ∈ L1
loc(Ω)n, g ∈ D2 = L2(Ω, |d− λ0|2ω−2).

Hence, the distributional divergence ∇ · bg ∈ D′(Ω) is well-de�ned and clearly
coincides with Bg ∈ D∗1 as in (6.19). Finally, it is clear that D = d is a standard
multiplication operator between the weighted spaces D2 and D−2. //

6.3. Proof of Theorem 6.3. The statement of Theorem 6.3 can be obtained from
the results in Section 3; the following lemma is needed in order to apply Corollar-
ies 3.6 and 3.7 therein.

Lemma 6.15. Let Assumption 6.1 be satis�ed and S0(·) as in De�nition 6.12.
Then, for every λ ∈ Φ, there exists zλ ∈ ρ(S0(λ)) such that

(S(λ)− zλ)−1 ∈ B(D∗S ,DS)

and domS0(λ) = dom(S0(λ)− zλ) is dense in DS.

Proof. Let λ ∈ Φ be arbitrary but �xed, then S(λ) ∈ B(DS ,D∗S) by Proposi-
tion 6.13. Moreover, multiplying (6.25) with the unimodular factor eiωλ , we obtain

Re
(
eiωλ S(λ)f, f

)
D∗S×DS

≥
∫

Ω

Re π̃(λ)∇f · ∇f dx

+

∫
Ω

Re q̃(λ)|f |2 dx− |γλ + eiωλ λ|‖f‖2

for f ∈ C∞0 (Ω). Using (6.4), we further derive

Re
(
eiωλ S(λ)f, f

)
D∗S×DS

≥ C1‖f‖2S − C2‖f‖2, f ∈ C∞0 (Ω),

where C1, C2 > 0 depend on λ but not on f . From this it is easy to see that there
exists zλ ∈ C such that

|eiωλ ((S(λ)− zλ)f, f)D∗S×DS
| & ‖f‖2S , f ∈ C∞0 (Ω). (6.29)

By the density of C∞0 (Ω) in DS , the continuity of the embedding DS ⊂ L2(Ω) and
S(λ) ∈ B(DS ,D∗S), the above inequality remains valid for f ∈ DS , i.e. S(λ) − zλ
corresponds to a bounded and coercive sesquilinear form on DS . By the Lax-
Milgram Theorem, see e.g. [11, Thm. IV.1.1], we conclude zλ ∈ ρ(S0(λ)),

(S(λ)− zλ)−1 ∈ B(D∗S ,DS)

and density of the maximal domain dom(S0(λ)− zλ) = domS0(λ) in DS . �

Proof of Theorem 6.3. By Propositions 6.7 and 6.10, Assumption 3.1 is satis�ed,
the objects in De�nition 6.12 are well-de�ned and the results of Section 3 are
applicable. We point out that our realisations of A0 and S0(·) in De�nition 6.12
coincide with their standard distributional de�nitions in (6.7), see Remark 6.14.
The description of their domains in (6.8) then follows from their de�nition in (6.24).

We show the claims in (6.9) - (6.12). Since Θ ⊂ C \ ess ran d = ρ(D0), the
identity (6.9) is a direct consequence of Corollary 3.5. Let us proceed with using
Corollary 3.7 in order to show (6.11) and

σe2(A0) ∩ Φ ⊂ σe2(S0(·)) ∩ Φ. (6.30)
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To this end, let f ∈ dom d and g ∈ C∞0 (Ω). We can estimate

|(Bf, g)D∗1×D1
| ≤

∫
Ω

|f ||〈b,∇g〉Cn |dx

≤
∫

Ω

|(d− λ0)f ||d− λ0|−1|(Reπ0)−
1
2b||(Reπ0)

1
2∇g|dx

≤ ‖(d− λ0)f‖‖(d− λ0)−1(Reπ0)−
1
2b‖L∞(Ω)n‖g‖S ;

(6.31)

notice that the right hand side of the last inequality is �nite due to Assump-
tion 6.1 (iv). By the density of C∞0 (Ω) in DS and since D1 ⊂ DS is continuously
embedded, both left and right hand side of (6.31) are continuous in g with respect
to ‖·‖S . Hence, B(dom d) ⊂ D∗S and (6.31) holds for all f ∈ dom d and g ∈ DS .
The remaining assumptions of Corollary 3.7 with Σ = Φ ⊂ Θ are a consequence of
Φ ⊂ ρ(D0), Proposition 6.13, Lemma 6.15 and

(S0(λ)− zλ)−1 ⊂ S‡z(λ) := (S(λ)− zλ)−1 ∈ B(D∗S ,DS).

The inclusions (6.11) and (6.30), respectively, follow from Corollary 3.7 (i) and (ii).
The statement in (6.10) is obtained immediately from Θ ⊂ ρ(D0) and Corol-

lary 3.6 (i). Moreover, the inclusion

σe2(A0) ∩ Φ ⊃ σe2(S0(·)) ∩ Φ

follows from Corollary 3.6 (ii) with Σ = Φ; here it su�ces to note that Φ ⊂ ρ(D0)
and that, for every λ ∈ Φ, S0(λ) has non-empty resolvent set by Lemma 6.15 and
is therefore closed in L2(Ω). The claims (6.9) - (6.12) are thus proven.

Finally, assume that domB0 ∩ dom d is dense in L2(Ω). Then Lemma 6.15 with
λ = λ0 implies that domS0(λ0) is dense in DS . Consequently, since DS is dense
and continuously embedded in L2(Ω), it follows from Corollary 3.4 that domA0 is
dense in L2(Ω)⊕ L2(Ω). �

6.4. Proof of Theorem 6.5. In preparation for the proof of Theorem 6.5, we show
that the hypotheses of the latter imply Assumption 6.1.

Lemma 6.16. Let the assumptions of Theorem 6.5 be satis�ed. Then Assump-

tion 6.1 holds with Θ, Φ as in (6.14).

Proof. We only need to show Assumption 6.1 (ii)-(iv). However, (ii) is clearly
satis�ed since the set Θ ⊂ C\ ess ran d in (6.14) is connected and (6.2) follows from
the �rst assumption in (6.15), see Remark 6.2 (iv). Recall the formula (6.2), which
in this case reads

π(λ) = I + (d− λ)−1B, λ ∈ Θ,

where B := (b⊗ b) ≥ 0 is easily veri�ed to be positive semi-de�nite a.e. in Ω.
For (iii), let λ ∈ Φ ⊂ Θ be arbitrary but �xed. Set ωλ := 0 if | arg λ| > π/2 and

ωλ := − sgn(arg λ)

2
(π −max(θq, θd)− | arg λ|), | arg λ| ≤ π/2,

where the above is well-de�ned since λ 6= 0 /∈ Φ; recall that arg : C \ {0} → (−π, π]
in our convention and notice that |ωλ| < π/2 since max(θq, θd) < π/2. It then
follows from elementary geometrical considerations that

d̃(λ) := eiωλ(d− λ)−1, q̃(λ) := eiωλ q,
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are both sectorial; in particular, we can set γλ := 0 in view of Assumption 6.1 (iii).

Moreover, by the sectoriality of d̃(λ) and |ωλ| < π/2, also

π̃(λ) := eiωλ π(λ) = eiωλ I + d̃(λ)B (6.32)

is sectorial and its real part is positive de�nite a.e. in Ω since we have

Re π̃(λ) ≥ cosωλI > 0. (6.33)

It remains to show (6.4). The �rst chain of inequalities therein, i.e. the equivalence
of Re q̃(λ) for di�erent λ ∈ Φ, is easily derived from the sectoriality of q̃(λ) and

Re q̃(λ) = |q| cos(arg q̃(λ)), λ ∈ Φ.

Using Lemma 6.11, one obtains the analogous inequalities for d̃(λ) in a similar way.
The second chain of inequalities in (6.4) then follows easily from the decomposi-
tion (6.32) and |ωλ| < π/2.

Finally, Assumption 6.1 (iv) follows from the second assumption in (6.15), see
Remark 6.2 (iv). �

By the lemma above, Theorem 6.3 is applicable in the present setting and can
be used in order to prove Theorem 6.5. Before doing so, we �rst describe DS and
certain actions de�ned on it.

Lemma 6.17. Let the assumptions of Theorem 6.5 be satis�ed. Then

DS = {f ∈ H1
0 (Ω) : (Reπ0)

1
2∇f ∈ L2(Ω)n, (Re q)

1
2 f ∈ L2(Ω)}. (6.34)

The formulas (6.20) and (6.25) remain valid with f = g ∈ DS and λ = −1. More-

over, for f ∈ dom d and g ∈ DS, the action of Bg ∈ D∗S is given by

(Bf, g)D∗S×DS
= −

∫
Ω

f b · ∇g dx. (6.35)

Proof. In order to show (6.34), we point out that, by (6.33), we have

‖∇f‖2 + ‖(Re q)
1
2 f‖2 + ‖f‖2 . ‖f‖2S , f ∈ C∞0 (Ω). (6.36)

Since C∞0 (Ω) is dense in H1
0 (Ω), this implies DS ⊂ H1

0 (Ω). The claims

(Reπ0)
1
2∇f ∈ L2(Ω)n, (Re q)

1
2 f ∈ L2(Ω), f ∈ DS ,

then follow by standard arguments from the de�nition of DS ; indeed, if

f ∈ DS , {fm}m ⊂ C∞0 (Ω), ‖fm − f‖S → 0, m→∞, (6.37)

then by (6.36) also fm → f inH1(Ω) asm→∞. Since {(Reπ0)
1
2∇fm}m is Cauchy

in L2(Ω)n by (6.37), it has a limit h in L2(Ω)n. For any test function ϕ ∈ C∞0 (Ω)n,
we derive the following

〈h, ϕ〉 = lim
m→∞

〈(Reπ0)
1
2∇fm, ϕ〉

= lim
m→∞

〈∇fm, (Reπ0)
1
2ϕ〉 = 〈∇f, (Reπ0)

1
2ϕ〉 = 〈(Reπ0)

1
2∇f, ϕ〉.

This in turn implies (Reπ0)
1
2∇f = h ∈ L2(Ω) by density. Analogously, one shows

that (Re q)
1
2 fm → (Re q)

1
2 f ∈ L2(Ω) converges in L2(Ω) asm→∞. Formula (6.25)

with λ = −1 then immediately extends to f = g ∈ DS , given that the sectoriality
of π0 and q implies continuity of both sides in f with respect to convergence in DS .
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In order to show that (6.20) holds with f ∈ DS , consider a sequence as in (6.37).

By construction of C and since (Reπ0)
1
2∇fm → (Reπ0)

1
2∇f in L2(Ω)n as n→∞,

for all test functions ϕ ∈ C∞0 (Ω) we have

〈ω−1Cf, ϕ〉 = lim
m→∞

〈ω−1b · ∇fm, ϕ〉 = lim
m→∞

〈(Reπ)
1
2∇fm, (Reπ)−

1
2bω−1ϕ〉

= 〈(Reπ)
1
2∇f, (Reπ)−

1
2bω−1ϕ〉

= 〈ω−1b · ∇f, ϕ〉.

By density, one concludes ω−1Cf = ω−1b · ∇f , i.e. that (6.20) holds. The claim
(6.35) can be shown similarly, cf. (6.31). �

Proof of Theorem 6.5. By Lemma 6.16, Assumption 6.1 is fully satis�ed and the
claims (6.9) - (6.12) follow from Theorem 6.3. It only remains to show that A0 is
m-accretive in L2(Ω)⊕L2(Ω) with (6.16); the density of domA0 and the generation
of the semigroup then follow from classical results, see e.g. [20, �V.3.10, �IX.1].

In order to show that A0 is accretive, let (f, g) ∈ domA0. Then from the
sectoriality of π0 = I + (d+ 1)−1B, from f ∈ DS and (6.34), it follows that

|(d+ 1)−1B∇f · ∇f | . Reπ0∇f · ∇f + |∇f |2 ∈ L1(Ω). (6.38)

Since (D + 1)−1Cf + g ∈ dom d as (f, g) ∈ domA0, applying formula (6.35) and
(6.20) according to Lemma 6.16, we further conclude(
B((D + 1)−1Cf + g), f

)
D∗S×DS

= −
∫

Ω

((d+ 1)−1b · ∇f + g)b · ∇f dx

= −
∫

Ω

(d+ 1)−1B∇f · ∇f dx+

∫
Ω

gb · ∇f dx;

here in the second equality we used (6.38), which then also gives gb · ∇f ∈ L1(Ω).
Consequently, formula (6.25) according to Lemma 6.16 gives

〈Af +Bg, f〉 = (S(−1)f, f)D∗S×DS
+
(
B((D + 1)−1Cf + g), f

)
D∗S×DS

= ‖∇f‖2 +

∫
Ω

q|f |2 dx+

∫
Ω

gb · ∇f dx.
(6.39)

Using gb · ∇f ∈ L1(Ω), it follows from (6.20) with Lemma 6.16 that

〈Cf +Dg, g〉 =

∫
Ω

b · ∇fg dx+

∫
Ω

d|g|2 dx; (6.40)

this in turn gives d|g|2 ∈ L1(Ω), thus g ∈ dom(Re d)
1
2 by the sectoriality of d and

(6.16) is shown. Combining (6.39) and (6.40), we obtain accretivity of A0 as follows

Re〈A0(f, g), (f, g)〉H = ‖∇f‖2 +

∫
Ω

Re q|f |2 dx+

∫
Ω

Re d|g|2 dx ≥ 0.

In order to conclude m-accretivity of A0, we show that ρ(A0)∩ (−∞, 0) 6= 0, see
e.g. [20, �V.3.10]. This however, follows from taking complements in (6.11) and the
proof of Lemma 6.15, where one can easily show that, if λ < 0 is small enough, then
(6.29) is satis�ed with zλ = 0, i.e. that S(λ) is coercive on DS and thus 0 ∈ ρ(S0(λ))
for su�ciently small λ ∈ (−∞, 0). �

7. Further examples

We schematically illustrate our results based on two more examples.
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7.1. Dirac operators with Coulomb type potentials. In [12], an approach
essentially corresponding to our method has been taken to construct self-adjoint
realisations of Dirac operators with certain Coulomb type potentials. The key tool
in their analysis is a Hardy-Dirac inequality (7.2) which was derived in [9, 10] and,
translated to our framework, ensures coercivity of the �rst Schur complement on
its form domain. Since our method widely agrees with what is proven in [12], we
only sketch the underlying structure of the problem according to our setting in
Section 3.

In this section, 〈·, ·〉 and ‖·‖ shall denote the inner product and norm on L2(R3)2.

Example 7.1. We de�ne a self-adjoint realisation of the Dirac operator

A =

(
V + 1 − iσ · ∇
− iσ · ∇ V − 1

)
(7.1)

in the Hilbert space L2(R3)2 ⊕ L2(R3)2 with a real-valued potential satisfying a
certain Hardy type inequality (7.2). As usual, we denote

σ · ∇ =

3∑
j=1

σj∂j

with the Pauli matrices σj , j = 1, 2, 3, given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We assume that the potential V ∈ L2
loc(R3,R) is bounded above with

Γ := ess sup
x∈R3

V (x) <∞

and that there exists a constant Λ > Γ− 1 such that the following holds true∫
R3

|(σ · ∇)f |2

1 + Λ− V
dx+

∫
R3

(V + 1− Λ)|f |2 dx ≥ 0, f ∈ C∞0 (R3)2. (7.2)

It was shown in [10, 9] that the above Hardy-Dirac inequality is satis�ed for certain
Coulomb type potentials, in particular for V (x) = −ν/|x| with ν ∈ (0, 1]; in the
latter case, Γ = 0 and Λ =

√
1− ν, see [9, Thm. 1, Cor. 3].

By means of the construction in Section 3, the self-adjoint realisation in [12] of
the operator matrix (7.1) can be reproduced. Moreover, the spectral equivalence
to its �rst Schur complement on (Γ− 1,∞) can be established, see Remark 7.3.

Proposition 7.2. Let A0 := A|domA0 with A given in (7.1) where its action shall

be understood in the standard distributional sense and

domA0 := { (f, g) ∈ DS × L2(R3)2 :

V f − i(σ · ∇)g, − i(σ · ∇)f + V g ∈ L2(R3)2 }.
(7.3)

Here the space DS is de�ned as the closure

DS := C∞0 (R3)2
‖·‖S

, ‖f‖2S := sλ0 [f ] + ‖f‖2, f ∈ C∞0 (R3)2,

where λ0 ∈ (Γ− 1,Λ) is arbitrary and

sλ0
[f ] :=

∫
R3

|(σ · ∇)f |2

1 + λ0 − V
dx+

∫
R3

(V + 1− λ0)|f |2 dx ≥ 0. (7.4)
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Then A0 is independent of the choice of λ0 in (7.4). Moreover, it is densely de�ned

and self-adjoint in L2(R3)2 ⊕ L2(R3)2 and has a spectral gap

σ(A0) ∩ (Γ− 1,Λ) = ∅. (7.5)

Sketch of proof. For λ ∈ (Γ − 1,∞), let the quadratic forms sλ be de�ned on
C∞0 (R3)2 analogously to (7.4). We �rst make the essential observation that (7.2)
translates into sλ being non-negative for λ ∈ (Γ−1,Λ] and that the norms sλ+‖·‖2
are locally equivalent for λ ∈ (Γ − 1,Λ). The latter holds true since, similarly to
Lemma 6.11, one can show that for all λ, µ ∈ (Γ− 1,∞) there exist mλ,µ,Mλ,µ > 0
such that a.e. in R3 and for all f ∈ C∞0 (R3)2 the following holds

mλ,µsµ[f ] + (µ− λ)‖f‖2 ≤ sλ[f ] ≤Mλ,µsµ[f ] + (µ− λ)‖f‖2. (7.6)

Most importantly, the above chain of inequalities guarantees that DS and thus A0

are independent of the choice of λ0.
In order to apply the results in Section 3, we proceed by indicating the remaining

spaces and operators needed for Assumption 3.1. Clearly, H1 = H2 = L2(R3)2 and
we set D−S := D∗S and D−1 := D∗1 with D1 de�ned as the closure

D1 := C∞0 (R3)2
‖·‖1

, ‖f‖21 := ‖f‖2S+‖(V +1)f‖2 +‖(σ ·∇)f‖2, f ∈ C∞0 (R3)2,

and further introduce the spaces

D2 := L2(R3)2, D−2 := L2(R3; (1 + λ0 − V )−2)2.

Analogously to Propositions 4.6 and 6.7, one can show that the above de�ned spaces
are well-de�ned and satisfy Assumption 2.1 (i). Notice that sλ0 ≥ s0 > 0 such that
indeed DS ⊂ L2(R3)2. Similarly to Lemma 6.11, one shows that also D−2, and
hence all appearing spaces, do not depend on λ0.

We proceed to de�ning the action of the entries of A. Analogously to the con-
structions (4.13) and (6.19) in Sections 4 and 6, the operators

A := V + 1 ∈ B(DS ,D∗1), B := − iσ · ∇ ∈ B(L2(R3)2,D∗1),

shall be de�ned as unique bounded extensions of

(Af, g)D∗1×D1
:=

∫
R3

(V + 1)f · g dx,

(Bf, g)D∗1×D1
:= i

∫
R3

f · (σ · ∇)g dx,

f, g ∈ C∞0 (R3)2.

The entry C := − iσ ·∇ ∈ B(DS ,D−2) is given, analogously to (6.20), by the unique
bounded extension of

Cf := − i(σ · ∇)f, f ∈ C∞0 (R3)2,

see [12, Prop. 6] for the proof of the inequality corresponding to (6.23). Finally, let

D := (V − 1) ∈ B(L2(R3)2,D−2), D0 := D|domD0 , domD0 := (domV )2.

One can show that the operators de�ned above satisfy Assumptions 2.1 (ii) and
3.1 (ii), cf. Propositions 4.9 and 6.10, thus Assumption 3.1 holds. Moreover, we set

D‡(λ) := (D − λ)−1 ∈ B(D−2, L
2(R3)2), λ ∈ Θ := (Γ− 1,∞) ⊂ ρ(D0),

and point out that Θ satis�es the inclusion (3.2), cf. Lemma 6.11 regarding the
claimed boundedness of D and D‡(λ).
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The matrix A0 and its �rst Schur complement S0(·) are well-de�ned by De�ni-
tion 3.2 with domA0 as in (7.3). It is obvious that the action of A0 coincides with
its standard de�nition by distributional operations and it thus remains to explain
that A0 is densely de�ned, self-adjoint and that (7.5) holds. Since the numerical
range of A0 is a subset of R, see the proof of [12, Thm. 4], it su�ces to employ
Corollaries 3.4 (i) and 3.7 (i) in order to conclude the density of domA0 and (7.5);
the self-adjointness of A0 then follows readily from (7.7) below. To this account,
we sketch the proofs of the required assumptions.

Let λ ∈ (Γ− 1,∞) be arbitrary but �xed. Considering the inequalities in (7.6),
one shows that

S(λ) ∈ B(DS ,D∗S), (S(λ)f, f)D∗S×DS = sλ[f ], f ∈ C∞0 (R3)2,

cf. Proposition 6.13. Moreover, (7.6) can be employed to show that there exists a
shift zλ ∈ R such that

|((S(λ)− zλ)f, f)D∗S×DS
| & ‖f‖2S , f ∈ C∞0 (R3)2,

which implies that S(λ)− zλ is coercive on DS ; here it is important to note that if
λ ∈ (Γ− 1, λ0), then obviously zλ = 0 can be chosen. Hence, by the Lax-Milgram
Theorem, see e.g. [11, Thm. IV.1.1], we conclude

S‡z(λ) := (S(λ)− zλ)−1 ∈ B(D∗S ,DS), zλ ∈ ρ(S0(λ)),

and that domS(λ) is dense in DS and thus in L2(R3)2; in particular, this implies
(Γ− 1, λ0) ⊂ ρ(S0). Moreover, A0 is thus densely de�ned by Corollary 3.4 (i) and

C∞0 (R3)2 ⊂ domB0 ∩ (domV )2.

For the remaining assumptions of Corollary 3.7 (i), it su�ces to point out that

(σ · ∇)(V − 1− λ0)−1 ∈ B(L2(R3)2,D∗S),

cf. [12, Lem. 7], which implies B((domV )2) ⊆ D∗S . Finally, combining the above
and applying Corollary 3.7 (i) with Σ := (Γ− 1, λ0) gives

σ(A0) ∩ (Γ− 1, λ0) ⊂ σ(S0) ∩ (Γ− 1, λ0) = ∅; (7.7)

since λ0 was arbitrary and A0 is independent of λ0, (7.5) follows. �

Remark 7.3. Besides the spectral gap (7.5) found in [12] in order to establish the
self-adjointness of A0, our method provides the equivalence of (point and essential)
spectra of A0 and its �rst Schur complement on [Λ,∞), i.e.

σ(p / e2)(A0) ∩ [Λ,∞) = σ(p / e2)(S0(·)) ∩ [Λ,∞),

see Corollaries 3.5, 3.6, 3.7 and the arguments sketched for the proof of (7.5).
Note that, due to the self-adjointness of A0, we have only considered real spectral
parameters. For λ ∈ (Γ− 1,∞), our realisation of the Schur complement is thereby
de�ned as the restriction S0(λ) := S(λ)|domS0(λ) where

S(λ) := V + 1− λ+ (σ · ∇)(V − 1− λ)−1(σ · ∇)

domS0(λ) := {f ∈ DS : V f + (σ · ∇)(V − 1− λ)−1(σ · ∇)f ∈ L2(R3)2}.
We point out that, by construction, the above operations can be understood in the
standard distributional sense; more precisely, the action of S(λ) on DS is obtained
by continuous extension, i.e. as a limit in D′(R3)2 of distributions of the form

V f + f − λf + (σ · ∇)(V − 1− λ)−1(σ · ∇)f ∈ D′(R3)2, f ∈ C∞0 (R3)2,
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cf. Remarks 4.12 and 6.14. //

7.2. A simple constant coe�cient di�erential operator matrix. In many
applications, e.g. in Sections 4 � 6 or in case of the Dirac operator in the pre-
vious subsection, the spaces DS and D−S are given by the form domain of the
Schur complement and its anti-dual. However, the latter is not always the case, as
we demonstrate in a model problem where DS = H1(Rn) and D−S = H−2(Rn),

while H
3
2 (Rn) is the form domain of the Schur complement. We point out that

this example is of illustrative purpose and chosen as simple as possible; examples
of similar structure can be found e.g. in [17] where the entries are more general
pseudodi�erential operators.

Example 7.4. In the Hilbert space H = H1⊕H2 = L2(Rn)⊕L2(Rn), we consider
the operator matrix

A =

(
∆ −∆2
√
−∆ ∆

)
(7.8)

and the corresponding �rst Schur complement

S(λ) = ∆− λ+ ∆2(∆− λ)−1
√
−∆, λ ∈ C \ (−∞, 0], (7.9)

acting in L2(Rn). Note that in this particular case, it is not di�cult to explicitly
determine the spectra of the operator matrix and its Schur complement above; how-
ever, we emphasise that the purpose of this example is not their spectral analysis,
but the illustration of spaces and operators underlying the spectral correspondence
developed in Section 3.

Proposition 7.5. Let A0 := A|domA0
with A as in (7.8) and

domA0 := {(f, g) ∈ H1(Rn)×H2(Rn) : ∆f −∆2g ∈ L2(Rn)}. (7.10)

Moreover, let S0(λ) := S(λ)|domS0(λ), λ ∈ C \ (−∞, 0], be the family of maximal

operators in L2(Rn) where S(λ) is as in (7.9) and

domS0(λ) := {f ∈ H1(Rn) : ∆f + ∆2(∆− 1)−1
√
−∆f ∈ L2(Rn)}. (7.11)

In the above, the square root of −∆ is de�ned via functional calculus. Then A0 is

densely de�ned and closed in L2(Rn)⊕ L2(Rn) with

{λ ∈ C : Reλ > 0} ⊂ ρ(A0) (7.12)

and the following relations for the (point and essential) spectra hold

σ(p / e2)(A0) \ (−∞, 0] = σ(p / e2)(S0(·)). (7.13)

Sketch of proof. We indicate the objects needed for Assumption 3.1. Let

DS := H1(Rn),

D2 := H2(Rn),

D−S = D−1 := H−2(Rn),

D−2 := L2(Rn).

Using the distributional Fourier transform, one can easily check that the following
operators are bounded between the claimed spaces

A := ∆ ∈ B(H1(Rn), H−1(Rn)),

C :=
√
−∆ ∈ B(H1(Rn), L2(Rn)),

B := −∆2 ∈ B(H2(Rn), H−2(Rn)),

D := ∆ ∈ B(H2(Rn), L2(Rn)),
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see e.g. [1, Thm. 3.41]. Since H−1(Rn) embeds continuously in H−2(Rn), Assump-
tion 3.1 is satis�ed with D0 := D and we can de�ne A0 and S0(·) as in De�nition 3.2
with

D‡(λ) := (D − λ)−1, λ ∈ Θ := ρ(D0) = C \ (−∞, 0].

One easily veri�es that domA0 and domS0(λ) coincide with (7.10) and (7.11).
For the proof of (7.13), we outline the assumptions of Corollaries 3.6 and 3.7.

Let therefore λ ∈ C \ (−∞, 0] be arbitrary but �xed. It is not di�cult to see that
there exists zλ > 0 such that the inverse of S(λ)− zλ is bounded on H−2(Rn); this
follows from the fact that S(λ) is unitarily equivalent to the multiplication operator
by the symbol

sλ(ξ) := −|ξ|2 − λ− |ξ|5

|ξ|2 + λ
, ξ ∈ Rn,

in the Fourier space. Indeed, it is elementary to prove the lower bound

|sλ(ξ)− zλ| & |ξ|3 + 1, ξ ∈ Rn,
if zλ > 0 is large enough, which implies

S‡z(λ) := (S(λ)− zλ)−1 ∈ B(H−2(Rn), H1(Rn)).

Moreover, domS0(λ) contains C∞0 (Rn) and is thus dense in H1(Rn). The relations
in (7.13) then follow from Corollary 3.5 and Corollaries 3.6 and 3.7 with

Σ := Θ = C \ (−∞, 0] = ρ(D0).

The density of domA0 in L2(Rn) ⊕ L2(Rn) is a consequence of Corollary 3.4 (i)
and the fact that both domB0 and domD0 clearly contain C∞0 (Rn). Finally, if
Reλ > 0, then one can easily derive the following lower bound

|sλ(ξ)| ≥ Reλ > 0, ξ ∈ Rn,
which implies 0 ∈ ρ(S0(λ)) and in turn (7.12) by (7.13). �
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PSEUDO NUMERICAL RANGES AND SPECTRAL

ENCLOSURES

BORBALA GERHAT AND CHRISTIANE TRETTER

Abstract. We introduce the new concepts of pseudo numerical range
for operator functions and families of sesquilinear forms as well as the
pseudo block numerical range for n×n operator matrix functions. While
these notions are new even in the bounded case, we cover operator poly-
nomials with unbounded coe�cients, unbounded holomorphic form fam-
ilies of type (a) and associated operator families of type (B). Our main
results include spectral inclusion properties of pseudo numerical ranges
and pseudo block numerical ranges. For diagonally dominant and o�-
diagonally dominant operator matrices they allow us to prove spectral
enclosures in terms of the pseudo numerical ranges of Schur complements
that no longer require dominance order 0 and not even<1. As an appli-
cation, we establish a new type of spectral bounds for linearly damped
wave equations with possibly unbounded and/or singular damping.

1. Introduction

Spectral problems depending non-linearly on the eigenvalue parameter
arise frequently in applications, see e.g. the comprehensive collection in [2]
or the monograph [19]. The dependence ranges from quadratic in problems
originating in second order Cauchy problems such as damped wave equations,
see e.g. [13], [11], to rational as in electromagnetic problems with frequency
dependent materials such as photonic crystals, see e.g. [8], [1]. In addition,
if energy dissipation is present due to damping or lossy materials, then the
values of the corresponding operator functions need not be selfadjoint.

While for operator functions T (λ), λ∈Ω⊆C, with unbounded operator
values in a Hilbert space H the notion of numerical range W (T ) exists,

W (T ) := {λ ∈ Ω : 0 ∈W (T (λ))} , (1.1)

a spectral inclusion result σap(T ) ⊆ W (T ) ∩ Ω for the approximate point
spectrum is lacking. Even in the case of bounded values T (λ), spectral
inclusion only holds under a certain condition that is not easy to verify.
Moreover, spectral inclusion results are even lacking for the most important
case of quadratic operator polynomials with unbounded coe�cients, one of
the most relevant cases for applications.

In the present paper we �ll these gaps. To this end, we introduce the novel
concept of pseudo numerical range of operator functions T (λ), λ ∈ Ω ⊆ C,
with unbounded values,

WΨ(T ) :=
⋂

ε>0
Wε(T ), Wε(T ) :=

⋃
B∈L(H)
‖B‖<ε

W (T +B), ε > 0,

1
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and analogously for families of unbounded quadratic forms t(λ), λ∈Ω⊆C.
The sets Wε(T ), ε > 0, can be shown to have the equivalent form

Wε(T ) = {λ ∈ Ω : ∃ f ∈ domT (λ), ‖f‖ = 1, |(T (λ)f, f)| < ε} ;

hence they coincide with the so-called ε-pseudo numerical range �rst con-
sidered in [9]. As a consequence, the pseudo numerical range WΨ(T ) can
equivalently be described as

WΨ(T )=
{
λ∈Ω : 0∈W (T (λ))

}
=: WΨ,0(T ). (1.2)

One could be tempted to think that the condition 0∈W (T (λ)) in WΨ,0(T )

is equivalent to λ /∈W (T ), but this is neither true for operator functions with
bounded values, as already noted in [29], nor for non-monic linear operator
pencils for which the set WΨ,0(T ) was used recently in [3].

One of the crucial properties of the pseudo numerical range is that, without
any assumptions on the operator family,

σap(T ) ⊆WΨ(T ),

see Theorem 3.1, and that the norm of the resolvent of T can be estimated by∥∥T (λ)−1
∥∥ ≤ ε−1, λ ∈ ρ(T ) \Wε(T ) ⊆ ρ(T ) \WΨ(T ).

Not only from the analytical point of view, but also from a computational
perspective, the pseudo numerical range seems to be more convenient since
it is much easier to determine whether a number is small rather than zero.

Like the numerical range of an operator function, but in contrast to the
classical numerical range of an operator, the pseudo numerical range need not
be convex. An exception is the trivial case of a monic linear operator pencil
T (λ)=A−λI, λ∈C, where the pseudo numerical range is simply the closure

of the numerical range,WΨ(T )=W (T )=W (A). In general, we only have the
obvious enclosure W (T ) ⊆WΨ(T ). Neither the interiors nor the closures in
Ω of WΨ(T ) and W (T ) need to coincide andthere is also no inclusion either

way betweenWΨ(T ) or its closureWΨ(T )∩Ω in Ω and the closureW (T )∩Ω
of W (T ) in Ω; we give various counter-examples to illustrate these e�ects.

In our �rst main result we use the pseudo numerical range of holomorphic
form families t(λ), λ ∈ Ω, of type (a) to prove the spectral inclusion for the
associated holomorphic operator functions T (λ), λ ∈ Ω, of type (B) of m-
sectorial operators T (λ). More precisely, we show that if there exist k ∈ N0,
µ ∈ Ω and a core D of t(µ) with

0 /∈W
(
t(k)(µ)

∣∣
D
)
, (1.3)

then σ(T ) ⊆ WΨ(t) = W (t) ∩ Ω and, if in addition, the operator family T
has constant domain, then

σ(T )⊆ WΨ(T ) = W (T ) ∩ Ω, (1.4)
see Theorem 3.3. Note that, due to (1.2), condition (1.3) for k = 0, i.e.

0 /∈W
(
t(µ)

∣∣
D
)
for some µ ∈ C, is equivalent to WΨ(T ) 6= Ω.

For operator polynomials T (λ) =
∑n

k=0 λ
kAk with domain domT (λ) =⋂n

k=0 domAk, λ ∈ C, we prove that, if 0 /∈W (An), then

σap(T ) ⊆WΨ(T ) ⊆W (T ) ∩ Ω,
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see Proposition 2.7. The inclusion (1.4) follows if, in addition, σ(T (λ)) ⊆
W (T (λ)), λ∈C, which is a weaker condition than m-sectoriality of all T (λ).

The second new concept we introduce in this paper is the pseudo block

numerical range of operator functions L(λ), λ ∈ Ω, that possess an operator
matrix representation with respect to a decomposition H = H1 ⊕ · · · ⊕ Hn,
n ∈ N, of the given Hilbert space H. This means that

L(λ) =
(
Lij(λ)

)n
i,j=1

, domL(λ) =
⊕n

j=1

⋂n

i=1
domLij(λ),

with operator functions Lij(λ), λ∈Ω, of densely de�ned and closable linear
operators from Hj to Hi, i, j = 1, . . . , n.

Extending earlier concepts we �rst de�ne the block numerical range of L as

Wn(L) :=
⋃

(fi)∈domL(λ)
‖fi‖=1

σp
(
L(λ)(fi)

)
, L(λ)(fi) :=(Lij(λ)fj , fi)∈Cn×n;

for bounded values L(λ) see [21] and [26] for n = 2, for unbounded operator
matrices L(λ) = A − λIH see [22]. Then we introduce the pseudo block

numerical range of L as

Wn
Ψ(L) :=

⋂
ε>0

Wn
ε (L), Wn

ε (L) :=
⋃
B∈L(H)
‖B‖<ε

Wn(L+ B), ε > 0.

For n= 1 both block numerical range and pseudo block numerical range
coincide with the numerical range and pseudo numerical range of L, respec-
tively. For n> 1, the trivial inclusion Wn(L) ⊆ Wn

Ψ(L) and the characteri-
sation (1.1), i.e.

Wn(L) =
{
λ ∈ Ω : 0 ∈Wn(L(λ))

}
, n ∈ N,

and a resolvent norm estimate∥∥L(λ)−1
∥∥≤ε−1, λ∈ρ(L) \Wn

ε (L) ⊆ρ(L) \Wn
Ψ(L), n∈N,

see Theorem 4.10 for both, continue to hold, but otherwise not much carries
over from the case n= 1. The �rst di�erence is that, for the simplest case
L(λ) = A − λIH, λ ∈ C, we may have Wn

Ψ(L) 6= Wn(L) for n > 1, see
Example 4.5.

More importantly, for n>1 the relation (1.2) need not hold for the pseudo
block numerical range; here we only have the inclusion

Wn
Ψ(L) ⊇

{
λ∈Ω : 0 ∈Wn(L(λ))

}
=: Wn

Ψ,0(L), n ∈ N,
see Proposition 4.4. Therein we also assess two other candidates Wn

Ψ,i(L)=⋂
ε>0W

n
ε,i(L), i=1, 2, for the pseudo block numerical range for whichWn

ε,1(L)

is de�ned by the scalar condition detL(λ)(fi)<ε and W
n
ε,2(L) by restricting

to diagonal perturbations B ∈ L(H) with ‖B‖ < ε. In fact, we show that

Wn(L) ⊆Wn
Ψ,1(L) ⊆Wn

Ψ,0(L) ⊆Wn
Ψ,2(L) ⊆Wn

Ψ(L), (1.5)

and that, like the pseudo numerical range, the pseudo block numerical range
Wn

Ψ(L) has the spectral inclusion property, i.e.

σap(T ) ⊆Wn
Ψ(L) ⊆WΨ(T ), n ∈ N,

but, in general, none of the subsets of Wn
Ψ(L) in (1.5) is large enough to

contain σap(T ), see Example 4.5.
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Our second main result concerns the most important case n= 2, the so-
called quadratic numerical range and pseudo quadratic numerical range. Here
we prove a novel type of spectral inclusion for diagonally dominant and o�-
diagonally dominant L(λ) = (Lij(λ))2

i,j=1 in terms of the pseudo numerical
ranges of the Schur complements S1, S2 and, further, the pseudo quadratic
numerical range of L,

σap(L) \ (σ(L11) ∪ σ(L22)) ⊆WΨ(S1) ∪WΨ(S2) ⊆W 2
Ψ(L),

see Theorem 5.1, where S1(λ) =L11(λ)−L12(λ)L22(λ)−1L21(λ), λ∈ ρ(L22),
and similarly for S2 with the indices 1 and 2 reversed. For symmetric and
anti-symmetric corners, i.e. L21(λ) ⊆ ±L12(λ)∗, λ∈Ω, we even show that

σap(L)⊆WΨ(S1) ∪WΨ(L22),

if L11(λ) is accretive, ∓L22(λ) is m-sectorial and domL22(λ)⊆domL12(λ),
see Theorem 5.3/Corollary 5.4, and similarly for the Schur complement S2.

As an interesting consequence, we are able to establish spectral separation
and inclusion theorems for unbounded 2×2 operator matrices A = (Aij)

2
i,j=1

with 'separated' diagonal entries; here 'separated' means that the numerical
ranges of A11 and A22 lie in half-planes and/or sectors in the right and left
half-plane C+ and C−, respectively, separated by a vertical strip S :={z∈C :
δ<Re z<α} with δ<0<α around iR. More precisely, without any bounds
on the order of diagonal dominance or o�-diagonal dominance we show that,
if ϕ, ψ∈ [0, π2 ] are the semi-angles of A11 and A22 and τ :=max{ϕ,ψ}, then

σap(A) ⊆ (−Στ ∪ Στ ) \ S =: Σ, Στ := {z∈C : | arg z| ≤ τ},

and σ(A) ⊆ Σ if ρ(A) ∩ (C \ Σ) 6=∅, see Theorem 6.1. This result is a great
step ahead compared to the earlier result [25, Thm. 5.2] where the dominance
order had to be restricted to 0.

Moreover, even to ensure the condition ρ(A)∩(C\Σ) 6=∅ for the enclosure
of the entire spectrum σ(A) in Theorem 6.1, we do not have to restrict the
dominance order as usual for perturbation arguments. Our new weak condi-
tions involve only products of the columnwise relative bounds δ1 in the �rst
and δ2 in the second column, see Proposition 6.5; in particular, either δ1 =0
or δ2 =0 guarantees ρ(A)∩ (C\Σ) 6=∅ in Theorem 6.1 and hence σap(A)⊆Σ.

As an application of our results, we consider abstract quadratic operator
polynomials T (λ), λ∈C, induced by forms t(λ)=t0+2λa+λ2 with dom t(λ) =
dom t0, λ ∈ C, as they arise e.g. from linearly damped wave equations

utt(x, t) + 2a(x)ut(x, t) = (∆x − q(x))u(x, t), x ∈ Rd, t > 0, (1.6)

where the non-negative potential q and damping a may be singular and/or
unbounded, cf. [10, 11, 12, 13] where also accretive damping was considered,
and for which it is well-known that the spectrum is symmetric with respect
to R and con�ned to the closed left half-plane.

Here we use a �nely tuned assumption on the 'unboundedness' of a with
respect to t0, namely p-subordinacy for p ∈ [0, 1), comp. [18, � 5.1] or [27,
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Sect. 3] for the operator case. More precisely, if t0≥κ0≥0, a≥α0≥0 with
dom t0⊆doma and there exist p∈ [0, 1) and Cp>0 with

a[f ] ≤ Cp
(
t0[f ]

)p( ‖f‖2 )1−p, f ∈ dom t0,

we use the enclosure σ(T ) ⊆ WΨ(T ) = WΨ(t) = W (t) to prove that the
non-real spectrum of T satis�es the bounds

σ(T ) \ R⊆
{
z∈C : |z| ≥

√
κ0, Re z ≤ −α0,

|Im z|2≥max
{

0, C
− 1
p

p |Re z|
1
p−|Re z|2

}}
and the real spectrum σ(T )∩R ⊂ [−∞, 0] is either empty or it is con�ned to
one bounded interval, to one unbounded interval or to the union of a bounded
and an unbounded interval, see Theorem 7.1 and Figure 7.2. Moreover, we
describe both the thresholds for the transitions between these cases and the
enclosures for σ(T ) ∩R precisely in terms of p, Cp, κ and κ0. As a concrete
example, we consider the damped wave equation (1.6) with

a(x)≤
n∑
j=1

|x−xj |−t+u(x)+v(x), v(x)≤c1q(x)r+c2 for almost all x∈Rd,

where n∈N0, xj ∈Rd for j = 1, . . . , n, u∈Ls(Rd) with s > d
2 , v ∈L

1
loc(Rd),

t∈ [0, 2), c1, c2≥0 and r∈ [0, 1). For the special case q(x)= |x|2, a(x)= |x|k,
x∈Rd, with k∈ [0, 2), the new spectral enclosure in Theorem 7.1 yields

σ(T )\R ⊆
{
z∈C : Re z≤0, |z|≥

√
d, | Im z|≥

√
max{0, |Re z|

2
k−|Re z|2}

}
and, with t0 = max

{(
k(2− k)

)− 1
k−1 , d

}
,

σ(T ) ∩ R


= ∅ if k∈ [0, 1),

⊆ (−∞,−
√
d] if k = 1,

⊆
(
−∞,−

√
t0
k
+
√
tk0−t0

]
if k∈(1, 2).

The paper is organised as follows. In Section 2 we introduce the pseudo
numerical range of operator functions and form functions and study the re-
lation of WΨ(T ) and W (T )∩Ω. In Section 3 we establish spectral inclusion
results in terms of the pseudo numerical range. In Section 4 we de�ne the
block numerical range Wn(L) and pseudo block numerical range Wn

Ψ(L) of
unbounded n×n operator matrix functions L, investigate the di�erences to
the special case n= 1 of the pseudo numerical range W 1

Ψ(L) =WΨ(L) and
prove corresponding spectral inclusion theorems. In Section 5 we establish
new enclosures of the approximate point spectrum of 2×2 operator matrix
functions by means of the pseudo numerical ranges of their Schur comple-
ments. In Section 6 we apply them to prove spectral bounds for diagonally
dominant and o�-diagonally dominant operator matrices with symmetric or
anti-symmetric corners without restriction on the dominance order. Finally,
in Section 7, we apply our results to linearly damped wave equations with
possibly unbounded and/or singular damping and potential.

Throughout this paper,H andHi, i=1, . . ., n, denote Hilbert spaces, L(H)
denotes the space of bounded linear operators on H and Ω⊆C is a domain.
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2. The pseudo numerical range of operator functions and

form functions

In this section, we introduce the new notion of pseudo numerical range for
operator functions {T (λ) : λ ∈ Ω} and form functions {t(λ) : λ ∈ Ω}, respec-
tively, brie�y denoted by T and t if no confusion about Ω can arise. While
the values T (λ) and t(λ) may be bounded/unbounded linear operators and
sesquilinear forms in a Hilbert spaceH, the notion of pseudo numerical range
is new also in the bounded case.

The numerical range of T and t, respectively, are de�ned as

W (T ) = {λ ∈ Ω : 0 ∈W (T (λ))} , W (t) = {λ ∈ Ω : 0 ∈W (t(λ))} ,
comp. [18, � 26.6]. In the simplest case of a monic linear operator polynomial
T (λ) = T0 − λIH, λ ∈ C, this notion coincides with the numerical range
W (T0) of the linear operator T0, and analogously for forms.

The following new concept of pseudo numerical range employs the notion
of ε-pseudo numerical range Wε(T ), ε > 0, introduced in [9, Def. 4.1]; the
equivalent original de�nition therein, see (2.1) below, was designed to obtain
computable enclosures for spectra of rational operator functions.

De�nition 2.1. We introduce the pseudo numerical range of an operator
function T and a form function t, respectively, as

WΨ(T ) :=
⋂
ε>0

Wε(T ), WΨ(t) :=
⋂
ε>0

Wε(t),
where

Wε(T ) :=
⋃

B∈L(H),‖B‖<ε

W (T +B), Wε(t) :=
⋃
‖b‖<ε

W (t + b), ε > 0;

here ‖b‖ = sup‖f‖=‖g‖=1 |b[f, g]| for a bounded sesquilinear form b in H.

Clearly, for monic linear operator polynomials T (λ) = A−λIH, λ ∈ C, the
pseudo numerical range is nothing but the closure of the classical numerical
range W (A) of the linear operator A, and analogously for forms.

The pseudo numerical range of operator or form functions, is, like their
numerical ranges, in general neither convex nor connected, and, even for
families of bounded operators or forms, it may be unbounded.

Remark 2.2. (i) The following inclusions may be proper, see Example 3.2,

W (T ) ⊆WΨ(T ), W (t) ⊆WΨ(t).

(ii) In general, the pseudo numerical range need neither be open nor closed
in Ω equipped with the relative topology, see Examples 3.2 (i) and 2.9,
respectively.

(iii) Neither the closures nor the interiors with respect to the relative topol-
ogy on Ω of the pseudo numerical range and the numerical range need
to coincide, see Example 3.2 (i) and (ii).

The following alternative characterisation of the pseudo numerical range
will be frequently used in the sequel.
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Proposition 2.3. For every ε > 0,

Wε(T ) = {λ ∈ Ω : ∃ f ∈ domT (λ), ‖f‖ = 1, |(T (λ)f, f)| < ε} , (2.1)
Wε(t) = {λ ∈ Ω : ∃ f ∈ dom t(λ), ‖f‖ = 1, |t(λ)[f ]| < ε} ,

and, consequently,

WΨ(T )=
{
λ∈Ω : 0∈W (T (λ))

}
, WΨ(t)=

{
λ∈Ω : 0∈W (t(λ))

}
. (2.2)

Proof. We show the claim for Wε(T ); then the claim for WΨ(T ) is obvious
by De�nition 2.1. The proof for Wε(t) and WΨ(t) is analogous.

Let ε > 0 be arbitrary and λ ∈ Wε(T ). There exists a bounded operator
B in H with ‖B‖ < ε such that λ ∈W (T +B), i.e.

(T (λ)f, f) = −(Bf, f), f ∈ domT (λ), ‖f‖ = 1.

Hence, clearly, |(T (λ)f, f)| ≤ ‖B‖ < ε, thus λ is an element of the right
hand side of (2.1).

Conversely, let λ ∈ Ω such that there exists f ∈ domT (λ), ‖f‖ = 1, with
|(T (λ)f, f)| < ε. Setting B := − (T (λ)f, f) I, this gives λ ∈ W (T +B) and
‖B‖ = |(T (λ)f, f)| < ε, hence λ ∈Wε(T ). �

The following properties of the pseudo numerical range with respect to
closures, form representations and Friedrichs extensions are immediate con-
sequences of its alternative description (2.2).

Here an operator A or a form a is called sectorial if its numerical range lies
in a sector {z ∈ C : | arg(z− γ)| ≤ ϑ} for some γ ∈ R and ϑ ∈ [0, π2 ), see [15,
Sect. V.3.10, VI.1.2]; if, in addition, ρ(A) ∩ {z ∈ C : | arg(z − γ)| > ϑ} 6= ∅,
then A is called m-sectorial.

Corollary 2.4. (i) If the family T or t, respectively, consists of closable

operators or forms (and T or t denotes the family of closures), then

WΨ(T ) = WΨ(T ), WΨ(t) = WΨ(t).

(ii) If the family t consists of densely de�ned closed sectorial forms and T
denotes the family of associated m-sectorial operators, then

WΨ(t) = WΨ(T ).

(iii) If the family T consists of densely de�ned sectorial operators and TF
denotes the family of corresponding Friedrichs extensions then

WΨ(T ) = WΨ(TF ).

Proof. (i) The equalities follow from Proposition 2.3 and from the fact that

W (T (λ)) = W (T (λ)) and W (t(λ)) = W (t(λ)) for λ ∈ Ω, see [15, Prob.
V.3.7, Thm. VI.1.18].

(ii) The equality follows from Proposition 2.3 and the identity W (t(λ)) =

W (T (λ)) for λ ∈ Ω, see [15, Cor. VI.2.3].
(iii) The claim is a consequence of (i) and (ii). �
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The alternative characterisation (2.2) might suggest that there is a relation

between the pseudo numerical range WΨ(T ) and the closure W (T ) ∩ Ω of
the numerical range W (T ) in Ω. However, in general, there is no inclusion

either way between them, see e.g. Example 3.2 where WΨ(T ) 6⊆ W (T ) ∩ Ω

and Example 2.9 where W (T ) ∩ Ω 6⊆WΨ(T ).
In fact, it was already noted in [29, Prop. 2.9], for continuous functions of

bounded operators and for the more general case of block numerical ranges,
that, for λ ∈ Ω,

λ ∈W (T ) =⇒ 0 ∈W (T (λ));

the converse holds only under additional assumptions. More precisely, for
families of bounded linear operators however, the following is known.

Theorem 2.5. [29, Prop. 2.9, Prop. 2.12, Thm. 2.14]

(i) If T is a (norm-)continuous family of bounded linear operators, then

W (T ) ∩ Ω ⊆WΨ(T ).

(ii) If T is a holomorphic family of bounded linear operators and there exist

k ∈ N0 and µ ∈ Ω with

0 /∈W (T (k)(µ)), (2.3)
then

σ(T ) ⊆W (T ) ∩ Ω = WΨ(T ).

The following simple example from [29, Ex. 2.11], which is easily adapted
to the unbounded case, shows that condition (2.3) is essential both for the

equalityW (T )∩Ω = WΨ(T ) and for the spectral inclusion σ(T ) ⊆W (T )∩Ω.

Example 2.6. Let f : Ω → C be holomorphic, f 6≡ 0, A a bounded or un-
bounded linear operator in H with 0 ∈ σ(A), 0 ∈W (A)\W (A) and consider

T (λ) := f(λ)A, domT (λ) := domA, λ ∈ Ω.

Then (2.3) is violated because, for any k ∈ N0 and µ ∈ Ω, we have T (k)(µ) =

f (k)(µ)A with domT (k)(λ) = domA, λ ∈ Ω, and so 0 ∈W (T (k)(µ)) since

0∈W (A). Further, it is easy to see that

σ(T ) = Ω, W (T ) = W (T ) ∩ Ω = {z ∈ Ω : f(z) = 0} 6= Ω, WΨ(T ) = Ω.

Thus neitherW (T )∩Ω = WΨ(T ) nor the spectral inclusion σ(T ) ⊆W (T )∩Ω
hold, while σ(T ) = WΨ(T ).

In the sequel we generalise Theorem 2.5 (i) and (ii) to families of un-
bounded operators and/or forms, including operator polynomials and sec-
torial families with constant form domain. In the remaining part of this
section, we study the relation between WΨ(T ) and W (T ) ∩ Ω; results con-
taining spectral enclosures may be found in Section 3.

Proposition 2.7. Let T be an operator polynomial in H of degree n ∈ N
with (possibly unbounded) coe�cients Ak : H ⊇ domAk → H, i.e.
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T (λ) :=

n∑
k=0

λkAk, domT (λ) :=

n⋂
k=0

domAk, λ ∈ C.

If 0 /∈W (An), then

WΨ(T ) ⊆W (T ) ∩ Ω,

and analogously for form polynomials.

Proof. Let λ0 ∈ WΨ(T ). By Proposition 2.3, there is a sequence {fm}m ⊆
domT (λ0) with ‖fm‖ = 1, m ∈ N, and (T (λ0)fm, fm) → 0 for m → ∞.
Since 0 /∈W (An) by assumption, the complex polynomial

pm(λ) := (T (λ)fm, fm) =

n∑
k=0

(Akfm, fm)λk, λ ∈ C,

has degree n for each m ∈ N. Let λm1 , . . . , λ
m
n ∈ C denote its zeros. Then

λmj ∈W (T ), j = 1, . . . , n, and pm admits the factorisation

pm(λ) = (Anfm, fm)

n∏
j=1

(λ− λmj ), λ ∈ C, m ∈ N.

Since pm(λ0) → 0 for m → ∞ and 0 /∈ W (An), there exists j0 ∈ {1, . . . , n}
with λmj0 → λ0, m→∞, thus λ0 ∈W (T ) and λ0 ∈WΨ(T ) ⊆ Ω. �

Next we generalise Theorem 2.5 (i) to families of sectorial forms with
constant domain which satisfy a natural continuity assumption, see [15, Thm.
VI.3.6]. This assumption is met, in particular, by holomorphic form families
of type (a) and associated operator families of type (B).

Recall that a family t of densely de�ned closed sectorial sesquilinear forms
in H is called holomorphic of type (a) if its domain is constant and the
mapping λ 7→ t(λ)[f ] is holomorphic for every f ∈ Dt := dom t(λ). The
associated family T of m-sectorial operators is called holomorphic of type (B),
see [15, Sect. VII.4.2] and also [28]. Su�cient conditions on form families to
be holomorphic of type (a) can be found in [15, �VII.4].

Theorem 2.8. Let t be a family of sectorial sesquilinear forms in H with

constant domain Dt := dom t(λ), λ ∈ Ω. Assume that for each λ0 ∈ Ω,

there exist r, C > 0 and w : Br(λ0)→ [0,∞), limλ→λ0 w(λ) = 0, such that

|t(λ0)[f ]− t(λ)[f ]| ≤ w(λ)
(
|Re t(λ0)[f ]|+ C ‖f‖2

)
(2.4)

for all λ ∈ Br(λ0) and f ∈ Dt. Then

W (t) ∩ Ω ⊆WΨ(t).

In particular, if t is a holomorphic form family of type (a) with associated

holomorphic operator family T of type (B) in H, then
W (T ) ∩ Ω ⊆WΨ(T ), W (t) ∩ Ω ⊆WΨ(t). (2.5)

Proof. Let λ0 ∈ W (t). Then there exist {λn}n ⊆ Ω and {fn}n ⊆ Dt with
‖fn‖ = 1, t(λn)[fn] = 0, n ∈ N, and λn → λ0, n → ∞. We show that
t(λ0)[fn]→0 for n→∞ which, in view of (2.2), implies λ0∈WΨ(t). By (2.4),
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|t(λ0)[fn]| = |t(λ0)[fn]− t(λn)[fn]| ≤ w(λn) (|Re t(λ0)[fn]|+ C) , n ∈ N.

Since |Re t(λ0)[fn]| ≤ |t(λ0)[fn]| and w(λn) → 0, n → ∞, we obtain that,
for n ∈ N su�ciently large,

|t(λ0)[fn]| ≤ C w(λn)

1− w(λn)
−→ 0, n→∞.

Now suppose that t and T are holomorphic families of type (a) and (B),
respectively. We only need to show the second inclusion, the �rst one then
follows from W (T ) ⊆ W (t) and Corollary 2.4 (ii). The second inclusion
follows from what we already proved since for holomorphic form families of
type (a), after a possible shift t+c where c>0 is su�ciently large to ensure
Re t(λ0)≥1, [15, Eqn. VII.(4.7)] shows that assumption (2.4) is satis�ed. �

Theorem 2.5 (i) does not extend to analytic families of sectorial linear
operators with non-constant form domains, as the following example inspired
by [15, Ex. VII.1.4] illustrates.

Example 2.9. Let H = L2(0, 1). The family T (λ), λ ∈ C, given by

T (λ)f := −f ′′ − λf,
domT (λ) :=

{
f ∈ H2(0, 1) : f(0) = 0, λf ′(1) = f(1)

}
,

is a holomorphic family of m-sectorial operators, but not holomorphic of
type (B). Below we will show that

0 ∈W (T ) ⊆WΨ(T ), 0 /∈WΨ(T );

note that, since Ω=C, this implies that Theorem 2.5 (i) does not hold and
that WΨ(T ) is not closed in C.

Indeed, it is not di�cult to check that the forms associated to T (λ), λ ∈ C,

t(0)[f ] = ‖f ′‖2, t(λ)[f ] = ‖f ′‖2 − λ ‖f‖2 − 1

λ
|f(1)|2, λ ∈C\{0},

are densely de�ned, closed and sectorial, but have λ-depending domain
dom t(0)=H1

0 (0, 1) and dom t(λ)=
{
f ∈ H1(0, 1) : f(0) = 0

}
for λ ∈C\{0}.

The holomorphy of the family follows from the holomorphy of the integral
kernel, i.e. the Green's function, of (T (λ) − µ)−1, which, for λ ∈ C and
µ ∈ ρ(T (λ)) 6= ∅, is given by

G(x, y;µ, λ) =
sin(
√
µ+λx)(sin(

√
µ+λ(1−y))−λ

√
µ+λ cos(

√
µ+λ(1−y)))√

µ+λ(sin
√
µ+λ− λ

√
µ+λ cos

√
µ+λ)

for 0 ≤ x ≤ y ≤ 1 and G(x, y;µ, λ) = G(y, x;µ, λ) for 0 ≤ y ≤ x ≤ 1, cf. [15,
Ex. V.4.14, VII.1.5, VII.1.11] where the family T (λ)+λ, λ ∈ C, was studied.

For �xed λ ∈ C, the spectrum of T (λ) is given by the singularities of the
integral kernel G(·, ·;µ, λ),

σ(T (λ)) = σp(T (λ)) =
{
µ ∈ C : λ

√
µ+ λ = tan

√
µ+ λ

}
, λ ∈ C.

For λ ∈ (0,∞) the operator T (λ) is self-adjoint and unbounded from above,
and for λ∈(0, 1) it has an eigenvalue µλ ∈ σp(T (λ)) ⊆W (T (λ)) of the form
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µλ = −λ− κ2
λ < 0 where κλ is the unique positive solution of tanhκ = λκ.

Thus 0 ∈ W (T (λ)) for λ ∈ (0, 1) due to the convexity of W (T (λ)), which

proves (0, 1) ⊆ W (T ) ⊆ WΨ(T ) and thus 0 ∈ W (T ). On the other hand,

0 /∈W (T (0)) = [π2,∞) and so Proposition 2.3 implies 0 /∈WΨ(T ).

3. Spectral enclosure via pseudo numerical range

In this section we derive spectral enclosures for families of unbounded
linear operators T (λ), λ ∈ Ω, using the pseudo numerical range WΨ(T ).
The latter is tailored to enclose the approximate point spectrum.

The spectrum and resolvent set of an operator family T (λ), λ ∈ Ω, re-
spectively, are de�ned as

σ(T ) := {λ ∈ Ω : 0 ∈ σ(T (λ))} ⊆ Ω, ρ(T ) := Ω \ σ(T ),

and analogously for the various subsets of the spectrum. In addition to the
approximate point spectrum

σap(T ) := {λ ∈ Ω : ∃ {fn}n ⊆ domT (λ), ‖fn‖ = 1, T (λ)fn → 0, n→∞} ,

we introduce the ε-approximate point spectrum, see [20] for the operator case,

σap,ε(T ) := {λ ∈ Ω : ∃ f ∈ domT (λ), ‖f‖ = 1, ‖T (λ)f‖ < ε} . (3.1)

The latter is a subset of the ε-pseudo spectrum

σε(T ) := σap,ε(T ) ∪ σ(T ),

which was de�ned for operator functions with unbounded closed values in
[7, Sect. 9.2, (9.9)], comp. also [6].

Clearly, for monic linear polynomials T (λ) = A−λIH, λ∈C, these notions
coincide with the spectrum, resolvent set, approximate point spectrum, ε-
approximate point spectrum and ε-pseudo spectrum of the linear operator A.

Proposition 3.1. For any operator family T (λ), λ ∈ Ω, and every ε > 0,

σap,ε(T ) ⊆Wε(T ),
∥∥T (λ)−1

∥∥ ≤ 1

ε
, λ ∈ ρ(T ) \Wε(T ),

and hence

σap(T ) ⊆WΨ(T ).

If σ(T (λ)) ⊆W (T (λ)) for all λ ∈ Ω, then

σ(T ) ⊆WΨ(T ).

Proof. The claims follow easily from (3.1) and De�nition 2.1 together with
Cauchy-Schwarz' inequality and (2.1) in Proposition 2.3. �

The following simple examples illustrate some properties ofWΨ(T ) versus

W (T ) ∩ Ω, in particular, in view of spectral enclosures.
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Example 3.2. (i) Let A>0 be self-adjoint in H with 0∈σ(A). Then, for
the non-holomorphic family T (λ)=A+|sinλ|, λ∈C, it is easy to see that

WΨ(T ) = σ(T ) = {kπ : k ∈ Z} 6⊆W (T ) ∩ Ω = ∅;

notice that this implies WΨ(T ) ∩ Ω 6= W (T ) ∩ Ω, i.e. the closures of
WΨ(T ) and W (T ) in Ω do not coincide.

(ii) Let A be bounded in H with ReW (A) > 0, 0 ∈ σ(A) and 0 /∈ W (A).
Consider the holomorphic family of bounded operators in H⊕H

T (λ) =

(
λA 0
0 λLog(λ+ 1)IH

)
, λ ∈ Ω := C \ (−∞,−1];

here Log : C\(−∞, 0]→ {z ∈ C : Im z ∈ (−π, π]} denotes the principal
value of the complex logarithm.

This family does not satisfy condition (2.3) in Theorem 2.5 since

0 ∈W (A) by assumption. It is not di�cult to show that

WΨ(T ) = σ(T ) = C \ (−∞,−1] 6⊆W (T ) ∩ Ω ⊆ B1(−1) \ [−2,−1].

In fact, the claims for WΨ(T ) are obvious. If λ ∈W (T ), then λ ∈
C\(−∞,−1] and there exists x=(f, g)t∈H⊕H, (f, g)t 6= (0, 0)t, with(

T (λ)x, x
)

= λ
(
(Af, f) + (ln |λ+ 1|+ i arg(λ+ 1))(g, g)

)
= 0

or, equivalently, noting that λ 6= 0 implies g 6= 0 as 0 /∈W (A),

λ = 0 ∨
(
|λ+1|=exp

(
−Re(Af, f)

(g, g)

)
∧ arg(λ+1)=− Im(Af, f)

(g, g)

)
.

Hence, since ReW (A) > 0,

W (T ) \ {0}⊆
{
z∈C \ (−∞,−1] : |z+1| ∈ (0, 1)

}
⊆ B1(−1) \ (−2,−1].

Moreover, choosing g = f , we see that(
T

(
exp

(
− (Af, f)

(f, f)

)
− 1

)(
f

f

)
,

(
f

f

))
= 0.

This shows that {exp(−z)− 1 : z ∈W (A)} ⊆ W (T ) and since exp
is entire and non-constant, W (A)◦ 6= ∅ implies that W (T )◦ 6= ∅ by
the open mapping theorem for holomorphic functions. So in this case
WΨ(T )◦ 6= W (T )◦ and both are non-empty.

WΨ(T )◦=C \ (−∞,−1], ∅ 6= W (T )◦ ⊆ B1(−1) \ (−2,−1].

In the following, we generalise the spectral enclosure for bounded holomor-
phic families in Theorem 2.5 (ii) to holomorphic form families t of type (a)
and associated operator families of type (B), i.e. t(λ) is sectorial with vertex
γ(λ)∈R, semi-angle ϑ(λ)∈ [0, π2 ) and λ-independent domain dom t(λ)=Dt.
Here, for k ∈ N0, we denote the k-th derivative of t by

t(k)(λ)[f ] := (t(·)[f ])(k)(λ), f ∈ dom t(k)(λ) := Dt = dom t(λ), λ ∈ Ω;

note that t(k)(λ) need not be closable or sectorial if k > 0.
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Theorem 3.3. Let t be a holomorphic form family of type (a) with associated

holomorphic operator family T of type (B) in H. If there exist k ∈ N0, µ ∈ Ω
and a core D of t(µ) with

0 /∈W
(
t(k)(µ)

∣∣
D
)
, (3.2)

then

σ(T ) ⊆WΨ(t) = W (t) ∩ Ω.

If, in addition, the operator family T has constant domain, then

σ(T )⊆ WΨ(T ) = W (T ) ∩ Ω.

Remark 3.4. (i) Since t(λ) is densely de�ned, closed and sectorial for all
λ∈Ω, condition (3.2) for k = 0 has the two equivalent forms

0 /∈W
(
t(µ)

∣∣
D
)
⇐⇒ 0 /∈W (T (µ));

hence, by Proposition 2.3 a su�cient condition for (3.2) is

WΨ(T ) 6= Ω.

(ii) For operator polynomials T , which are holomorphic and have constant
domain by de�nition, see Proposition 2.7, no sectoriality assumption is
needed for the enclosure

σap(T ) ⊆WΨ(T ) ⊆W (T ) ∩ Ω.

By Propositions 2.7 and 3.1, the above holds under the mere assump-
tion that 0 /∈W (An) where An is the leading coe�cient of T ; note that
then (3.2) holds with k = n and arbitrary µ ∈ C. This generalises the
classical result [18, Thm. 26.7] for bounded operator polynomials; see
also [29, Prop. 3.3] for the block numerical range.

(iii) In general, neither the assumption on holomorphy nor condition (3.2)
in Theorem 3.3 can be omitted, see Examples 2.6 and 3.2.

Proof of Theorem 3.3. First we show that if condition (3.2) holds for some
core D of t(µ), it also holds for D replaced by Dt = dom t(λ), λ ∈ Ω.
Without loss of generality, we may assume that Re t(µ) ≥ 1. From the proof
of [15, Eqn. VII.(4.7)], it is easy to see that the second inequality therein

holds for t(k), i.e. there exists a constant Cµ > 0 such that∣∣t(k)(µ)[f, g]
∣∣ ≤ Cµ |t(µ)[f ]|

1
2 |t(µ)[g]|

1
2 , f, g ∈ Dt. (3.3)

To prove the claim stated at the beginning assume, to the contrary, that

0 ∈ W (t(k)(µ)), i.e. that there exists a sequence {fn}n ⊆ Dt, ‖fn‖ = 1,
n ∈ N, such that t(µ)[fn]→ 0 as n→∞. By the core property of D for t[µ]
and by [15, Thm. VI.1.12], for �xed n ∈ N, there exists {fn,m}m ⊆ D with

fn,m→fn, t(µ)[fn,m−fn]→0, t(µ)[fn,m]→t(µ)[fn], m→∞. (3.4)

Applying (3.3), we can estimate∣∣t(k)(µ)[fn,m]−t(k)(µ)[fn]
∣∣≤ ∣∣t(k)(µ)[fn,m, fn,m−fn]

∣∣+∣∣t(k)(µ)[fn−fn,m, fn]
∣∣

≤Cµ |t(µ)[fn,m−fn]|
1
2
(
|t(µ)[fn,m]|

1
2+|t(µ)[fn]|

1
2
)
.
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Since ‖fn‖ = 1, n ∈ N, it follows from (3.4) and the above inequality that
there exists mn ≥ n such that

‖fn,mn‖ ≥
1

2
,
∣∣∣t(k)(µ)[fn,mn ]

∣∣∣ < ∣∣∣t(k)(µ)[fn]
∣∣∣+

1

n
.

In view of t(k)(µ)[fn]→ 0, n→∞, this implies the required claim

0 ∈W
(
t(k)(µ)

∣∣
D
)
.

This completes the proof that (3.2) holds with Dt instead of D.
By Corollary 2.4 (ii), we have WΨ(t) = WΨ(T ) ⊆ Ω. Thus, due to (2.5),

for the claimed equalities between pseudo numerical and numerical ranges it
is su�cient to show WΨ(t) ⊆W (t) and WΨ(t) ⊆W (T ), respectively.

Let λ0 ∈ WΨ(t) = WΨ(T ). Then 0 ∈ W (T (λ0)) by Proposition 2.3 and
hence there exists {fn}n⊆domT (λ0)⊆Dt with ‖fn‖=1, n ∈ N, such that

(T (λ0)fn, fn) = t(λ0)[fn]→ 0, n→∞. (3.5)

De�ne a sequence of holomorphic functions

ϕn(λ) := t(λ)[fn], λ ∈ Ω, n ∈ N.
Let K ⊆ Ω be an arbitrary compact subset and let γ > 0 be such that
Re(t + γ)(λ0) ≥ 1. By [15, Eqn. VII.(4.7)], there exists bK > 0 with

|(t + γ)(λ)[f ]| ≤ bK |(t + γ)(λ0)[f ]|, λ ∈ K, f ∈ Dt.

Using this, ‖fn‖ = 1 and (3.5), we �nd that, for all λ ∈ K,

|ϕn(λ)| ≤ bK |(t + γ)(λ0)[fn]|+ γ ≤ bK sup
n∈N
|t(λ0)[fn]|+ (bK + 1)γ <∞.

Consequently, {ϕn}n is uniformly bounded on compact subsets of Ω. By
Montel's Theorem, see e.g. [4, �VII.2], there exists a subsequence {ϕnj}j ⊆
{ϕn}n that converges locally uniformly to a holomorphic function ϕ. Now
assumption (3.2) with Dt, which we proved to hold in the �rst step, implies

ϕ(k)(µ) =
dk

dλk
lim
j→∞

ϕnj (λ)

∣∣∣∣
λ=µ

= lim
j→∞

ϕ(k)
nj (µ) = lim

j→∞
t(k)(µ)[fnj ] 6= 0

and thus ϕ 6≡ 0. By (3.5), we further conclude that ϕ(λ0) = 0. Then, by
Hurwitz' Theorem, see e.g. [4, �VII.2], there exists a sequence {λj}j ⊆ Ω
with λj → λ0 for j →∞ and

0 = ϕnj (λj) = t(λj)[fnj ], j ∈ N.
Hence, λj ∈W (t) for all j ∈ N and so λ0 ∈W (t) ∩ Ω, as required.

Now assume that the operator family T has constant domain. Then, in
the above construction, we have fnj ∈ domT (λ0) = domT (λj) for every

j ∈ N. It follows that λj ∈W (T ), j ∈ N, and thus λ0 ∈W (T ) ∩ Ω.
The enclosures of the spectrum follow from Proposition 3.1 and from the

fact that σ(T (λ)) ⊆W (T (λ)) since T (λ) is m-sectorial for all λ ∈ Ω. �

As forms are the natural objects regarding numerical ranges, it is not
surprising that the inclusionWΨ(T ) ⊆W (T )∩Ω in Theorem 3.3 might cease
to hold for more general analytic operator families where the connection to
a family of forms is lost. Nevertheless, using an analogous idea as in the
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proof of Theorem 3.3, one can prove the corresponding inclusion for the
approximate spectrum.

Recall that an operator family T in H is called holomorphic of type (A) if
it consists of closed operators with constant domain and for each f ∈ DT :=
domT (λ), the mapping λ 7→ T (λ)f is holomorphic on Ω. Here, for k ∈ N0,
the k-th derivative of T is de�ned as

T (k)(λ)f := (T (·)f)(k)(λ), f ∈ domT (k)(λ) := DT , λ ∈ Ω.

Theorem 3.5. Let T be a holomorphic family of type (A) in H. If there

exist k ∈ N0, µ ∈ Ω and a core D of T (µ) with

0 /∈W
(
T (k)(µ)

∣∣
D
)
, (3.6)

then

σap(T ) ⊆W (T ) ∩ Ω.

Proof. In the same way as in the proof of Theorem 3.3, using the analogue of
[15, Eqn.VII.(2.3)] for the k-th derivative of T and Cauchy-Schwarz' inequa-
lity, one shows that (3.6) holds with DT =domT (λ), λ∈Ω, instead of D.

We proceed similarly as in the proof of Theorem 3.3. Let λ0 ∈ σap(T ).
There exists a sequence {fn}n ⊆ DT with ‖fn‖ = 1, n ∈ N, and T (λ0)fn → 0
as n→∞. De�ne a sequence of holomorphic functions

ϕn(λ) := (T (λ)fn, fn) , λ ∈ Ω, n ∈ N.

Analogously to the proof of Theorem 3.3, one uses Cauchy-Schwarz' inequal-
ity, equation [15, Eqn. VII.(2.2)], limn→∞ T (λ0)fn = 0 and (3.6) with DT in
order to show uniform boundedness of {ϕn}n on compacta, extract a locally
uniformly converging subsequence with limit ϕ 6≡ 0 and infer ϕ(λ0) = 0.

One then obtains λ0 ∈W (T ) ∩ Ω in the same way as in Theorem 3.3. �

Remark 3.6. Theorems 3.3 and 3.5 generalise the classical result [18, Thm.III.
26.6] for bounded holomorphic families (which follows from Theorem 2.5 (ii)).

Like for the numerical range of unbounded operators, cf. [15, Sct. V.3.2],
additional conditions are needed for enclosing not only the approximate point
spectrum, but the entire spectrum σ(T ) in WΨ(T ).

Remark 3.7. Let T be a family of closed operators in H and let T be con-
tinuous in the generalised sense. If σap(T ) ⊆ Θ ⊆ Ω and all connected com-
ponents of Ω \ Θ contain a point in the resolvent set of T , then σ(T ) ⊆ Θ.
In particular, if all connected components of Ω \ WΨ(T ) have non-empty
intersection with ρ(T ), then

σ(T ) ⊆WΨ(T ).

This follows from the fact that the index of T (λ) is locally constant on the
set of regular points, see [15, Thm. IV.5.17].
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4. Pseudo block numerical ranges of operator matrix

functions and spectral enclosures

In this section we introduce the pseudo block numerical range of n × n
operator matrix functions for which the entries may have unbounded opera-
tor values. While we study its basic properties for n ≥ 2, we study the most
important case n = 2 in greater detail.

We suppose that with respect to a �xed decomposition H = H1⊕· · ·⊕Hn
with n ∈ N, a family L = {L(λ) : λ ∈ Ω} of densely de�ned linear operators
in H admits a matrix representation

L(λ) = (Lij(λ))ni,j=1 : H ⊇ domL(λ)→ H;

here Lij are families of densely de�ned and closable linear operators from
Hj to Hi, i, j = 1, . . . , n, and domL(λ) = D1(λ)⊕ · · · ⊕ Dn(λ),

Dj(λ) :=

n⋂
i=1

domLij(λ), j = 1, . . . , n.

The following de�nition generalises, and unites, several earlier concepts:
the block numerical range of n × n operator matrix families whose entries
have bounded linear operator values, see [21], the block numerical range of
unbounded n×n operator matrices, see [22], and in the special case n=2, the
quadratic numerical range for bounded analytic operator matrix families and
unbounded operator matrices, see [26] and [17], [25], respectively. Further,
we introduce the new concept of pseudo block numerical range.

De�nition 4.1. (i) We de�ne the block numerical range of L (with re-
spect to the decomposition H = H1 ⊕ · · · ⊕ Hn) as

Wn(L) :=
⋃

f∈domL(λ)∩Sn
σ
(
L(λ)f

)
where Sn := {f = (fi)

n
i=1 ∈ H : ‖fi‖ = 1, i = 1, . . . , n} and, for f =

(fi)
n
i=1∈domL(λ) ∩ Sn with λ∈Ω,

L(λ)f := (Lij(λ)fj , fi) ∈ Cn×n.
(ii) We introduce the pseudo block numerical range of L as

Wn
Ψ(L) :=

⋂
ε>0

Wn
ε (L), Wn

ε (L) :=
⋃

B∈L(H),‖B‖<ε

Wn(L+ B), ε > 0.

Note that, indeed, if L(λ) = A−λIH, λ ∈ C, with an (unbounded) operator
matrix A inH, thenWn(L) coincides with the block numerical rangeWn(A)
�rst introduced in [22] and, for n= 2, in [25]. While the pseudo numerical

range also satis�es WΨ(L) = W (L) = W (A) this is no longer true for the
pseudo block numerical range when n > 1; in fact, Example 4.5 below shows
that W 2

Ψ(L) 6= W 2(L) = W 2(A) is possible.

Remark 4.2. It is not di�cult to see that, for the block numerical range and
the pseudo block numerical range of general operator matrix families,
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λ ∈Wn(L) ⇐⇒ 0 ∈Wn(L(λ)) (4.1)

and Wn(L) ⊆Wn
Ψ(L).

There are several other ways to de�ne the pseudo block numerical range.
In the following we show that, in general, they inevitably fail to contain the
approximate point spectrum of an operator matrix family.

De�nition 4.3. De�ne

Wn
Ψ,0(L) :=

{
λ∈Ω : 0 ∈Wn(L(λ))

}
, Wn

Ψ,i(L) :=
⋂
ε>0

Wn
ε,i(L), i=1, 2,

where, for ε > 0,

Wn
ε,1(L) :={λ ∈ Ω : ∃ f ∈ domL(λ) ∩ Sn, |det(L(λ)f )| < ε},

Wn
ε,2(L) :=

⋃
Bi∈L(Hi),‖Bi‖<ε

Wn(L+ diag(B1, . . . , Bn)).

While for the pseudo numerical range, analogous concepts as in De�ni-
tion 4.3 coincide by Proposition 2.3, this is not true for the pseudo block
numerical range. Here, in general, we only have the following inclusions.

Proposition 4.4. The pseudo block numerical range Wn
Ψ(L) satis�es

Wn(L) ⊆Wn
Ψ,1(L) ⊆Wn

Ψ,0(L) ⊆Wn
Ψ,2(L) ⊆Wn

Ψ(L). (4.2)

Proof. We consider the case n = 2; the proofs for n > 2 are analogous. The
leftmost and rightmost inclusions are trivial by de�nition. For the remaining
inclusions, it is su�cient to show that, for every ε > 0,

W 2
ε,1(L) ⊆

{
λ ∈ Ω : 0 ∈ B√ε(W

2(L(λ)))
}
⊆W 2√

ε,2(L). (4.3)

Then the respective claims follow by taking the intersection over all ε > 0.
Let ε > 0 and λ ∈W 2

ε,1(L). Then there exists f ∈ domL(λ) ∩ S2 with

σ(L(λ)f ) = {λ1, λ2} ⊆W 2(L(λ)), |λ1| |λ2| = |detL(λ)f | < ε.

Now the �rst inclusion in (4.3) follows from

dist(0,W 2(L(λ))) ≤ min{|λ1| , |λ2|} <
√
ε.

For the second inclusion, let λ ∈ Ω with dist(0,W 2(L(λ))) <
√
ε, i.e. there

exists µ∈C, |µ| <
√
ε with µ ∈W 2(L(λ)). By (4.1), the latter is equivalent

to 0 ∈W 2(L(λ)− µIH) and hence

λ ∈W 2(L − µIH) ⊆W 2√
ε,2(L). �

Clearly, in the simplest case L(λ) = A − λIH, λ ∈ C, with an n × n
operator matrix A in H we have

Wn
Ψ,0(L) = Wn(L) = Wn(A); (4.4)

this shows thatWn
Ψ,0(L) fails to enclose the spectrum wheneverWn(A) does.

The following example shows that, already in this simple case, in fact none
of the subsetsWn

Ψ,1(L) ⊆Wn
Ψ,0(L) ⊆Wn

Ψ,2(L) of the pseudo block numerical
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range Wn
Ψ(L), see (4.2), is large enough to contain the approximate point

spectrum σap(L).

Example 4.5. Let H=`2(N)⊕ `2(N) and L(λ)=A− λIH, λ ∈ C, with

A :=

(
0 diag(m2−1 : m∈N)
0 0

)
, domA :=`2(N)⊕ dom diag(m2−1 : m∈N),

where diag(m2 − 1 : m∈N) is the unbounded maximal multiplication oper-
ator in `2(N) with domain

dom diag(m2−1 : m∈N) :=
{
{xm}m ∈ `2(N) : {(m2−1)xm}m ∈ `2(N)

}
.

We will now show that

{0}= W 2
Ψ,1(L)=W 2

Ψ,0(L)=W 2
Ψ,2(L) 6= W 2

Ψ(L)=σap(L)=C.

By (4.4) and since A is triangular, we have W 2
Ψ,0(L) =W 2(L) =W 2(A) =

W 2(A) = {0}. Since W 2
Ψ,1(L) ⊆ W 2

Ψ,0(L) by (4.2), the �rst and second
equality from the left follow. The third equality from the left follows from
the de�nition of W 2

Ψ,0(L) and W 2
Ψ,2(L) since A is triangular. To prove the

two equalities on the right, and hence the claimed inequality, let λ ∈C be
arbitrary. If λ=0, then λ ∈W 2

Ψ(L) by (4.3). If λ 6=0, we de�ne the bounded
operator matrices

Bk :=

(
−diag( λmδmk : m∈N) 0

−diag( λ
2

m2 δmk : m∈N) diag( λmδmk : m∈N)

)
, k ∈ N,

where δmk denotes the Kronecker delta. Then ‖Bk‖ → 0 as k → ∞ and a
straightforward calculation shows that

(A− λIH)fk=Bkfk, fk :=
f̃k

‖f̃k‖
∈ domA, f̃k=

(k(k+1)
λ ek
ek

)
, k ∈ N.

On the one hand, for arbitrary ε > 0, this implies that there exists N ∈ N
such that ‖BN‖ < ε and 0 ∈ σ(A− λ− BN ) = σp(L(λ)− BN ), whence

λ ∈ σp(L − BN ) ⊆W 2(L − BN ) ⊆W 2
ε (L)

and thus λ ∈ W 2
Ψ(L) by intersection over all ε > 0. On the other hand,

λ ∈ σap(L) since the normalised sequence {fk}k ⊆ domL(λ) satis�es

‖(A− λ)fk‖ = ‖Bkfk‖ ≤ ‖Bk‖ → 0, k →∞.

With one exception, we now focus on the most important case n= 2 for
which the notation

L(λ) :=

(
A(λ) B(λ)
C(λ) D(λ)

)
in H = H1 ⊕H2,

domL(λ) :=
(

domA(λ) ∩ domC(λ)
)
⊕
(

domB(λ) ∩ domD(λ)
)
,

(4.5)

is more customary. We establish various inclusions between the (pseudo)
quadratic numerical range W 2

(Ψ)(L) and the (pseudo) numerical ranges of
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the diagonal operator functions A, D, as well as between W 2
(Ψ)(L) and the

(pseudo) numerical ranges of the Schur complements of L.

Proposition 4.6. (i) The quadratic numerical range and the pseudo qua-

dratic numerical range satisfy

W 2(L) ⊆W (L), W 2
Ψ(L) ⊆WΨ(L).

(ii) Let Ω1 := {λ ∈ Ω : D1(λ) = domA(λ)} and suppose dimH2 > 1. Then

W (A) ∩ Ω1 ⊆W 2(L), WΨ(A) ∩ Ω1 ⊆W 2
Ψ,2(L) ⊆W 2

Ψ(L);

if D1(λ)=domA(λ) for all λ∈W (A) or λ∈WΨ(A), respectively, then

W (A) ⊆W 2(L), WΨ(A) ⊆W 2
Ψ,2(L) ⊆W 2

Ψ(L).

(iii) Let Ω2 :={λ∈Ω : D2(λ)=domD(λ)} and suppose dimH1 > 1. Then

W (D) ∩ Ω2 ⊆W 2(L), WΨ(D) ∩ Ω2 ⊆W 2
Ψ,2(L) ⊆W 2

Ψ(L);

if D2(λ)=domD(λ) for all λ∈W (D) or λ∈WΨ(D), respectively, then

W (D) ⊆W 2(L), WΨ(D) ⊆W 2
Ψ,2(L) ⊆W 2

Ψ(L).

Proof. The claims for the quadratic numerical range are consequences of
(4.1) and of the corresponding statements [25, Prop. 3.2, 3.3 (i),(ii)] for
operator matrices. So it remains to prove the claims (i) and (ii) for the pseudo
quadratic numerical range; the proof of claim (iii) is completely analogous.

(i) The inclusion for the quadratic numerical range in (i) applied to L+B
with ‖B‖<ε yields W 2

ε (L)⊆Wε(L) for any ε>0. The claim for the pseudo
quadratic numerical range follows if we take the intersection over all ε>0.

(ii) Let λ∈Wε(A) ∩Ω1 with ε>0 arbitrary. Then there exists a bounded
operator Bε in H1 with ‖Bε‖<ε and λ∈W (A+Bε). Since dom(A(λ) +Bε)
= domA(λ) ⊆ domC(λ), the inclusion for the quadratic numerical range in
(ii) applied to L+ diag(Bε, 0H2) shows that

λ ∈W 2(L+ diag(Bε, 0H2)) ⊆W 2
ε,2(L) ⊆W 2

ε (L).

By intersecting over all ε > 0, we obtain λ ∈W 2
Ψ,2(L) ⊆W 2

Ψ(L). The second

claim is obvious from the �rst one since then Ω1 ⊆WΨ(A). �

Both qualitative and quantitative behaviour of operator matrices are close-
ly linked to the properties of their so-called Schur complements, see e.g. [25];
the same is true for operator matrix functions, see e.g. [26] for the case of
bounded operator values.

De�nition 4.7. The Schur complements of the 2×2 operator matrix family
L = {L(λ) : λ ∈ Ω} in H = H1 ⊕H2 as in (4.5) are the families

S1(λ) := A(λ)−B(λ)D(λ)−1C(λ), λ ∈ ρ(D),

S2(λ) := D(λ)− C(λ)A(λ)−1B(λ), λ ∈ ρ(A),

of linear operators in H1 and H2, respectively, with domains
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domS1(λ) :=
{
f ∈ D1(λ) : D(λ)−1C(λ)f ∈ domB(λ)

}
, λ ∈ ρ(D),

domS2(λ) :=
{
f ∈ D2(λ) : A(λ)−1B(λ)f ∈ domC(λ)

}
, λ ∈ ρ(A).

The following inclusions between the numerical ranges and pseudo numer-
ical ranges of the Schur complements S1, S2 and the quadratic numerical
range and pseudo quadratic numerical range, respectively, of L hold.

Proposition 4.8. The numerical ranges and pseudo numerical ranges of the

Schur complements satisfy

W (S1) ∪W (S2) ⊆W 2(L), WΨ(S1) ∪WΨ(S2) ⊆W 2
Ψ,2(L) ⊆W 2

Ψ(L).

Proof. The �rst claim follows from (4.1) and the corresponding statement
[24, Thm. 2.5.8] for unbounded operator matrices.

Using the �rst claim, the second claim can be proven in a similar way as
the claim for the pseudo numerical range in Proposition 4.6 (ii). �

The following spectral enclosure properties of the block numerical range
and pseudo block numerical range hold for operator matrix functions. They
generalise results for the case of bounded operator values from [29], see also
[26] for n = 2, as well as the results for the operator function case, i.e. n = 1,
in Proposition 3.1.

Proposition 4.9. Let L be a family of operator matrices. Then

σp(L) ⊆Wn(L) ⊆Wn
Ψ(L).

Proof. The proof of the �rst inclusion is analogous to the bounded case, see
[29, Thm. 2.14] or [26, Thm. 3.1] for n= 2; the second inclusion is obvious
by de�nition. �

Theorem 4.10. Let L be a family of operator matrices in H = H1⊕· · ·⊕Hn.
For every ε>0,

σap,ε(L) ⊆Wn
ε (L),

∥∥L(λ)−1
∥∥ ≤ 1

ε
, λ ∈ ρ(L) \Wn

ε (L), (4.6)

and hence
σap(L) ⊆Wn

Ψ(L);

if, for all λ ∈ Ω, σ(L(λ)) ⊆Wn(L(λ)), then

σ(L) ⊆Wn
Ψ,0(L) ⊆Wn

Ψ(L).

Proof. First let λ∈σap,ε(L). Then there exists fε∈domL(λ), ‖fε‖=1, with
‖L(λ)fε‖<ε. The linear operator in H given by

Bf :=

{
L(λ)µfε if f = µfε ∈ span fε,

0 if f ⊥ fε,

is bounded with ‖B‖=‖L(λ)fε‖<ε and (L(λ)−B)fε=0, i.e. λ∈σp(L−B). By
Proposition 4.9 and since ‖B‖<ε, we conclude that λ∈Wn(L−B)⊆Wn

ε (L),
which proves the �rst claim.

The resolvent estimate in (4.6) follows from the �rst claim and from the
de�nition of σap,ε(L), cf. the proof of Proposition 3.1.
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Taking the intersection over all ε > 0 in the �rst claim, we obtain that
σap(L) ⊆Wn

Ψ(L).

Finally, the assumption that σ(L(λ))⊆Wn(L(λ)) for all λ∈Ω implies that
σ(L) ⊆ Wn

Ψ,0(L), see De�nition 4.3. Now the second inequality in the last

claim follows from the inclusion Wn
Ψ,0(L)⊆Wn

Ψ(L) by Proposition 4.4. �

5. Spectral enclosures by pseudo numerical ranges of

Schur complements

In this section we establish a new enclosure of the approximate point
spectrum of an operator matrix family L by means of the pseudo numerical
ranges of the associated Schur complements and hence, by Proposition 4.8,
in W 2

Ψ,2(L) and in the pseudo quadratic numerical range W 2
Ψ(L). Compared

to earlier work, we no longer need restrictive dominance assumptions.

Theorem 5.1. Let L be a family of operator matrices as in (4.5). If λ ∈
σap(L) \ (σ(A) ∪ σ(D)) is such that one of the conditions

(i) C(λ) is A(λ)-bounded and B(λ) is D(λ)-bounded;
(ii) A(λ) is C(λ)-bounded, D(λ) is B(λ)-bounded and both C(λ) and B(λ)

are boundedly invertible;

is satis�ed, then λ ∈ σap(S1)∪σap(S2). If for all λ ∈ ρ(A)∩ ρ(D) one of the

conditions (i) or (ii) is satis�ed, then

σap(L) \ (σ(A) ∪ σ(D)) ⊆ σap(S1) ∪ σap(S2)

⊆WΨ(S1) ∪WΨ(S2) ⊆W 2
Ψ,2(L) ⊆W 2

Ψ(L).
(5.1)

Proof. Let λ ∈ σap(L). Then there exists a sequence {(un, vn)}n ⊆ domL(λ)

with ‖un‖2 + ‖vn‖2 = 1, n ∈ N, and
A(λ)un +B(λ)vn =: hn → 0, n→∞, (5.2)

C(λ)un +D(λ)vn =: kn → 0, n→∞. (5.3)

The normalisation implies that lim infn→∞ ‖un‖>0 or lim infn→∞ ‖vn‖>0.
Let lim infn→∞ ‖un‖>0, without loss of generality infn∈N ‖un‖>0. We show
that, if λ ∈ ρ(D), then λ ∈ σap(S1); if lim infn→∞ ‖vn‖ > 0, an analogous
proof yields that, if λ ∈ ρ(A), then λ∈σap(S2).

First we assume that λ satis�es (i). Since λ ∈ ρ(D), (5.3) implies that

vn = D(λ)−1kn −D(λ)−1C(λ)un, n ∈ N.
Inserting this into (5.2) and using domD(λ) ⊆ domB(λ), we conclude that

S1(λ)un +B(λ)D(λ)−1kn = hn → 0, n→∞. (5.4)

Due to (i) B(λ)D(λ)−1 is bounded and hence B(λ)D(λ)−1kn → 0, n→∞.
Then (5.4) yields that S1(λ)un → 0, n → ∞. Because infn∈N ‖un‖ > 0, we
can set

fn :=
un
‖un‖

∈ D1(λ) = domS1(λ), n ∈ N,

and obtain that S1(λ)fn → 0 for n→∞, which proves λ ∈ σap(S1).
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Now assume that λ satis�es (ii). Since C(λ) is invertible, (5.3) shows that

un = C(λ)−1kn − C(λ)−1D(λ)vn =: C(λ)−1kn − wn, n ∈ N, (5.5)

where wn := C(λ)−1D(λ)vn ∈ domS1(λ) for n ∈ N since

wn ∈ D1(λ) = domC(λ), D(λ)−1C(λ)wn = vn ∈ D2(λ) = domB(λ).

Inserting (5.5) into (5.2) and using domC(λ) ⊆ domA(λ), we obtain that

A(λ)C(λ)−1kn − S1(λ)wn = hn → 0, n→∞. (5.6)

Since C(λ)−1 is bounded, it follows that C(λ)−1kn → 0, n → ∞. Thus
infn∈N ‖un‖ > 0 and (5.5) show that we can assume without loss of generality
that infn∈N ‖wn‖ > 0. Let us set

gn :=
wn
‖wn‖

∈ domS1(λ), n ∈ N.

By (ii) A(λ)C(λ)−1 is bounded and hence A(λ)C(λ)−1kn → 0, n→∞. Now
(5.6) shows that S1(λ)wn → 0 and thus S1(λ)gn → 0, n→∞, which proves
λ ∈ σap(S1).

Finally, the �rst inclusion in (5.1) is obvious from what was already shown;
the second inclusion in (5.1) follows from Proposition 3.1 and the last two
inclusions from Proposition 4.8. �

Remark 5.2. If under the assumptions of Theorem 5.1, the Schur comple-
ments S1 and S2 satisfy the assumptions of Theorem 3.3 or 3.5 on every
connected component of ρ(D) and ρ(A), respectively, then

σap(L) \ (σ(A) ∪ σ(D)) ⊆W (S1) ∪W (S2) ⊆W 2(L),

see Proposition 4.8 for the second inclusion.

For operator matrix families L with symmetric or anti-symmetric corners,
we now establish conditions ensuring that the approximate point spectrum of
L is contained in the union of the approximate point spectrum of one Schur
complement and the pseudo numerical range of the corresponding diagonal
entry, i.e. S1 and D or S2 and A.

Theorem 5.3. Let L be an operator matrix family as in (4.5).

(i) If λ ∈ σap(L)\σ(D) is such that C(λ) ⊆ ±B(λ)∗, A(λ) is accretive,

∓D(λ) sectorial and B(λ) is D(λ)-bounded, then λ∈σap(S1)∪WΨ(D).
If these conditions hold for all λ∈ρ(D), then

σap(L)\σ(D)⊆σap(S1)∪WΨ(D)⊆WΨ(S1) ∪WΨ(D); (5.7)

if dimH1 > 1, then

σap(L)\σ(D) ⊆W 2
Ψ,2(L)⊆W 2

Ψ(L). (5.8)

(ii) If λ ∈ σap(L) \σ(A) is such that C(λ) ⊆ ±B(λ)∗, A(λ) is sectorial,

∓D(λ) accretive and C(λ) is A(λ)-bounded, then λ∈σap(S2)∪WΨ(A).
If these conditions hold for all λ∈ρ(A), then

σap(L)\σ(A)⊆σap(S2)∪WΨ(A)⊆WΨ(S2) ∪WΨ(A);
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if dimH2 > 1, then

σap(L)\σ(A) ⊆W 2
Ψ,2(L)⊆W 2

Ψ(L).

The following corollary is immediate from Theorem 5.3 due to Proposi-
tion 4.6 and Proposition 4.8.

Corollary 5.4. Under the assumptions of Theorem 5.3, if in (i) additionally
σ(D)⊆WΨ(D), then

σap(L)⊆σap(S1)∪WΨ(D)⊆WΨ(S1) ∪WΨ(D)⊆W 2
Ψ,2(L)⊆W 2

Ψ(L),

and if in (ii) additionally σ(A)⊆WΨ(A), then

σap(L)⊆σap(S2)∪WΨ(A)⊆WΨ(S2) ∪WΨ(A)⊆W 2
Ψ,2(L)⊆W 2

Ψ(L).

Proof of Theorem 5.3. We only prove (i); the proof of (ii) is analogous. Let
λ ∈ σap(L)\σ(D). In the same way as at the beginning of the proof of
Theorem 5.1 we conclude that if lim infn→∞ ‖un‖> 0, then λ∈ σap(S1). It
remains to be shown that in the case lim infn→∞ ‖vn‖> 0, without loss of
generality infn∈N ‖vn‖>0, it follows that λ∈WΨ(D).

Taking the scalar product with un in (5.2) and with vn in (5.3), respec-
tively, we conclude that

(A(λ)un, un)+(B(λ)vn, un) = (hn, un), n ∈ N, (5.9)

±(un, B(λ)vn)+(D(λ)vn, vn) = (kn, vn), n ∈ N. (5.10)

By subtracting from (5.9), or adding to (5.9), the complex conjugate of
(5.10), we deduce that

(A(λ)un, un)∓ (D(λ)vn, vn) = (hn, un)∓ (kn, vn)→ 0, n→∞.

Taking real parts and using the accretivity of A(λ) and ∓D(λ), we obtain

0 ≤ Re(∓D(λ)vn, vn) ≤ Re(A(λ)un, un)∓Re(D(λ)vn, vn)→ 0, n→∞.

Since ∓D(λ) is sectorial by assumption, this implies (∓D(λ)vn, vn) → 0
and hence (D(λ)vn, vn) → 0, n → ∞, which proves that λ ∈ WΨ(D) by
Proposition 2.3.

Finally, the �rst inclusion in (5.7) is obvious from what was already proved;
the second inclusion in (5.7) follows from Proposition 3.1. The last claim in
(5.8) is then a consequence of Propositions 4.6 (iii) and 4.8. �

Remark 5.5. (i) Su�cient conditions for the inclusions σ(A)⊆WΨ(A) or
σ(D) ⊆ WΨ(D), respectively, may be found e.g. in Theorem 3.3 or
Proposition 3.1.

(ii) An analogue of Remark 5.2 also holds for Theorem 5.3; the details of
all possible combinations of assumptions and corresponding inclusions
are left to the reader.
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6. Application to structured operator matrices

In this section, we apply the results of the previous section to prove new
spectral enclosures and resolvent estimates for non-selfadjoint operator ma-
trix functions exhibiting a certain dichotomy.

More precisely, we consider a linear monic family L(λ) = A−λIH, λ ∈ C,
with a densely de�ned operator matrix

A=

(
A B
C D

)
, domA=

(
domA ∩ domC

)
⊕
(

domB ∩ domD
)

(6.1)

with C⊆B∗ in H=H1 ⊕H2. We assume that the entries of A are densely
de�ned closable linear operators acting between the respective spaces H1

and/or H2.
In the following, we denote the closed sector with semi-axis R+ and semi-

angle ω ∈ [0, π/2] by

Σω := {z ∈ C : |arg z| ≤ ω} , ω ∈ [0, π/2];

here arg : C→ (−π, π] is the argument of a complex number with arg 0 = 0.
The next theorem no longer requires bounds on the dominance orders

among the entries in the columns of A, in contrast to earlier results in [25,
Thm. 5.2] where the relative bounds had to be 0.

Theorem 6.1. Let A be an operator matrix as in (6.1) with C ⊆ B∗. As-

sume that A and −D are uniformly accretive, i.e. there exist α, δ ∈ R and

semi-angles ϕ,ψ ∈ [0, π/2] with

ReW (D) ≤ δ < 0 < α ≤ ReW (A), W (A) ⊆ Σϕ, W (D) ⊆ −Σψ. (6.2)

Suppose further that one of the following holds:

(i) A, −D are m-accretive, C is A-bounded, B is D-bounded,

(ii) A, −D are m-accretive, A is C-bounded, D is B-bounded and B, C are

boundedly invertible,

(iii)−D is m-sectorial, i.e. ψ<π/2, and B is D-bounded,

(iv) A is m-sectorial, i.e. ϕ<π/2, and C is A-bounded.

Then, with τ := max{ϕ,ψ},

σap(A) ⊆ (−Στ ∪ Στ ) ∩ {z ∈ C : Re z /∈ (δ, α)} =: Σ; (6.3)

if, in addition, ρ(A) ∩ Σc 6= ∅, then σ(A) ⊆ Σ.

The proof of Theorem 6.1 relies on Theorems 5.1 and 5.3, and on the fol-
lowing enclosures for the pseudo numerical ranges of the Schur complements.

Lemma 6.2. Let A be as in (6.1) with C⊆B∗ and let λ ∈ C.
(i) Suppose A,−D are uniformly accretive,

ReW (D) ≤ δ < 0 < α ≤ ReW (A). (6.4)
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Im

Re

ϕψ

δ α

∂ΣD

∂ΣA

W (D)

W (A)

Figure 6.1. The set Σ (green) enclosing σap(A), see (6.3); inside
the sets ΣA := Σϕ\S (bounded by red line) enclosing W (A) (red,
dashed) and ΣD :=−Σψ\S (bounded by blue line) enclosingW (D)
(blue, dashed), separated by S :={z∈C : Re z∈(δ, α)}, see (6.2).

If Reλ ∈ (δ, α), then

λ ∈ ρ(D) =⇒ ReW (S1(λ)) ≥ α− Reλ > 0,

λ ∈ ρ(A) =⇒ ReW (S2(λ)) ≤ δ − Reλ < 0.

(ii) Suppose A,−D are sectorial,

W (A) ⊆ Σϕ, W (D) ⊆ −Σψ

with ϕ,ψ∈ [0, π/2) and let τ :=max{ϕ,ψ}. If arg λ∈(τ, π − τ), then

λ ∈ ρ(D) =⇒ arg(W (S1(λ)) + λ) ∈ [− arg λ, τ ],

λ ∈ ρ(A) =⇒ arg(W (S2(λ)) + λ) ∈ (−π,− arg λ] ∪ [π − τ, π];

if arg λ∈(−π + τ,−τ), then

λ ∈ ρ(D) =⇒ arg(W (S1(λ)) + λ) ∈ [−τ,− arg λ],

λ ∈ ρ(A) =⇒ arg(W (S2(λ)) + λ) ∈ (−π,−π + τ ] ∪ [− arg λ, π].

Proof. We show the claims for S1, the proofs for S2 are analogous. It is
easy to see that it su�ces to prove the claimed non-strict inequalities for
W (S1(λ)). Let λ ∈ ρ(D), f ∈ domS1(λ) ⊆ domA ∩ domB∗ with ‖f‖ = 1,
and set g := (D − λ)−1B∗f . Then

(S1(λ)f, f) = (Af, f)− λ− (Dg, g) + λ ‖g‖2 . (6.5)

(i) If Reλ ∈ (δ, α), then (6.5) and (6.4) show that

Re(S1(λ)f, f) ≥ α− Reλ+ (−δ + Reλ) ‖g‖2 ≥ α− Reλ > 0.

(ii) We consider arg λ∈(τ, π−τ), the case arg λ∈(−π+τ,−τ) can be shown

analogously. By assumption, |arg(Af, f)| ≤ ϕ ≤ τ , |arg (−Dg, g)| ≤ ψ ≤ τ .
Together with arg(λ ‖g‖2) = − arg λ∈(−π+τ,−τ), it follows from (6.5) that

arg
(
(S1(λ)f, f)+λ

)
=arg

(
(Af, f)+(−Dg, g)+λ ‖g‖2

)
∈ [− arg λ, τ ]. �
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Proof of Theorem 6.1. First we use Lemma 6.2 to show that if A or −D are
m-accretive, respectively, then

WΨ(S2) ⊆ Σ or WΨ(S1) ⊆ Σ. (6.6)

We prove the claim for S1 by taking complements; the proof for S2 is anal-
ogous. To this end, let λ ∈ Σc ⊆ ρ(D). Then Reλ ∈ (δ, α) or |arg λ| ∈
(τ, π − τ); note that the latter case only occurs if both A and −D are sec-

torial, i.e. if τ < π/2. If Reλ ∈ (δ, α), Lemma 6.2 (i) implies 0 /∈W (S1(λ)),
i.e. λ /∈ WΨ(S1) by (2.2). In the same way, if |arg λ| ∈ (τ, π − τ), then
λ /∈ WΨ(S1) follows from Lemma 6.2 (ii); indeed, otherwise we would have

0 ∈W (S1(λ)) and hence, e.g. if arg λ ∈ (τ, π − τ),

arg(0 + λ) = arg λ ∈ [− arg λ, τ ] ∩ (τ, π − τ) = ∅,
and analogously for arg λ ∈ (−π+ τ,−τ). This completes the proof of (6.6).

We show that assumptions (i) or (iii) imply (6.3); the proof when assump-
tions (ii) or (iv) hold is analogous.

Assume �rst that (i) holds and let λ ∈ σap(A). If λ ∈ σ(A) ∪ σ(D) ⊆ Σ,
there is nothing to show. If λ /∈ σ(A) ∪ σ(D), then Theorem 5.1 (i) shows
that λ ∈WΨ(S1) ∪WΨ(S2) and we conclude λ ∈ Σ from (6.6).

Now assume that (iii) is satis�ed. Then −D is m-sectorial and σ(D) ⊆
W (D) ⊆ Σ. In order to prove (6.3), we show σap(A) ∩ Σc = ∅. To this end,
it su�ces to prove that

σap(A) ∩ Σc ⊆WΨ(S1) ∪WΨ(D − ·IH2); (6.7)

here, in the sequel, we write D − ·IH2 for the operator family D − λIH2 ,

λ ∈ C. Indeed, if (6.7) holds, then WΨ(D − ·IH2) = W (D) ⊆ Σ and (6.6)
yield that σap(A) ∩ Σc ⊆ Σ and hence the claim.

For the proof of (6.7), we will use Theorem 5.3 (i). To this end, for λ ∈ Σc,
we de�ne a rotation angle

ω(λ) :=

{
0, Reλ ∈ (δ, α),

sgn(arg λ)
∣∣π

2 − | arg λ|
∣∣, Reλ /∈ (δ, α) ∧ | arg λ| ∈ (τ, π − τ);

note that the second case only occurs if A is sectorial, i.e. if τ < π/2, and
that then λ 6= 0 and |ω(λ)| ∈ (0, π/2− τ). It is easy to see that the rotated

operator matrix family L̃ de�ned by

L̃(λ) := diag
(

eiω(λ), e−iω(λ)
)
(A− λIH), dom L̃(λ) := domA, λ ∈ Σc,

satis�es σap(L̃) = σap(A) ∩ Σc. It is not di�cult to show that the angle

ω(λ) is chosen such that eiω(λ)(A − λIH1) is accretive, − e−iω(λ)(D − λIH2)

is sectorial and e−iω(λ)C⊆eiω(λ)B∗ for every λ∈Σc. In fact, if Reλ ∈ (δ, α),
the claim is obvious. If Reλ /∈ (δ, α) and | arg λ| ∈ (τ, π−τ), elementary geo-
metric considerations show that the sectoriality of A, ReW (A)≥α>0 and

the choice of ω(λ) imply that eiω(λ)A is sectorial and, since Re(eiω(λ) λ) ≤ 0,

so is eiω(λ)(A − λIH1). Because −D is sectorial, ReW (−D) ≥ δ > 0 and

Re(e−iω(λ) λ) ≥ 0, the proof for − e−iω(λ)(D − λIH2) is analogous.



PSEUDO NUMERICAL RANGES AND SPECTRAL ENCLOSURES 27

Therefore L̃ satis�es the assumptions of Theorem 5.3 (i) and, because
σ(e−iω(D − ·IH2)) = σ(D) ∩ Σc = ∅, (5.7) therein yields that

σap(A) ∩ Σc = σap(L̃) ⊆WΨ(S̃1) ∪WΨ(e−iω(D − ·IH2)),

where S̃1 is the �rst Schur complement of L̃. Now the claim (6.7) follows

from the above inclusion and from the fact that, since eiω(λ) 6=0,

0∈W (S̃1(λ)) ⇐⇒ 0∈W (eiω(λ) S1(λ))=eiω(λ)W (S1(λ)) ⇐⇒ 0∈W (S1(λ))

for λ ∈ Σc, and analogously for the family e−iω(D − ·IH2). This completes
the proof that (i) and (iii) imply (6.3).

Finally, if ρ(A) ∩ Σc 6= ∅, then A is closed and σ(A) ⊆ Σ follows from
σap(A) ⊆ Σ, see (6.3), and from the stability of Fredholm index, see [15,
Thm. IV.5.17]. �

In Proposition 6.5 below, we derive su�cient conditions for ρ(A)∩Σc 6= ∅
in Theorem 6.1 for diagonally dominant and o�-diagonally dominant opera-
tor matrices. For the latter, we use a result of [5], while for the former we
employ the following lemma, inspired by an estimate in [15, Prob. V.3.31]
for accretive operators.

Lemma 6.3. Let T be an m-sectorial or m-accretive linear operator in H,
i.e. assume there exists ω ∈ [0, π/2] with σ(T ) ⊆W (T ) ⊆ Σω. Then

∥∥T (T−λ)−1
∥∥≤ 1

mT (arg λ)
:=


1

sin(|arg λ|−ω)
, |arg λ|∈(ω, ω+ π

2 ),

1, |arg λ|∈ [ω+ π
2 , π],

λ /∈Σω.

Proof. Let λ /∈ Σω and ε ∈ (0, |λ|) be arbitrary. Then λ ∈ ρ(T ), −ε ∈ ρ(T ),
λ 6= −ε and we can write

T (T − λ)−1 = (T + ε)(T + ε− (λ+ ε))−1 − ε(T − λ)−1,

= −(λ+ ε)−1
(
(T + ε)−1 − (λ+ ε)−1

)−1 − ε(T − λ)−1. (6.8)

Since ε > 0, it is easy to see that T+ε is m-accretive or m-sectorial with semi-
angle ω and hence so is (T + ε)−1, cf. [15, Prob. V.3.31] for the m-accretive
case. Thus, by [15, Thm. V.3.2] and (6.8), we can estimate∥∥T (T − λ)−1

∥∥ ≤ |λ+ ε|−1

dist ((λ+ ε)−1,Σω)
+

ε

dist (λ,Σω)
.

The claim now follows by taking the limit ε→ 0 and using the estimate

dist
(
λ−1,Σω

)
≥


sin(|arg λ| − ω)

|λ|
, |arg λ| ∈

(
ω, ω + π

2

)
,

1

|λ|
, |arg λ| ∈

[
ω + π

2 , π
]
,

(6.9)

cf. [14, Thm. 2.2]. �
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Remark 6.4. The inequality in Lemma 6.3 is optimal, equality is achieved
e.g. for normal operators with spectrum on the boundary of Σω.

Proposition 6.5. Suppose that, under the assumptions of Theorem 6.1, we
strengthen assumptions (i) and (ii) to

(i′) A, −D are m-sectorial, C is A-bounded with relative bound δA and B
is D-bounded with relative bound δD such that

δAδD < sin(θ0 − ϕ) sin(θ0 + ψ) =: Mθ0 ∈ (0, 1]

where

θ0 :=

{
max

{
π
2 + ϕ−ψ

2 , τ
}
, ϕ ≤ ψ,

min
{
π
2 + ϕ−ψ

2 , π−τ
}
, ψ < ϕ;

(ii′) A, −D are m-accretive, C=B∗, A is C-bounded with relative bound δC ,
D is B-bounded with relative bound δB with

δBδC < 1,

B, C are boundedly invertible, and the relative boundedness constants

aC , aB≥0, bC , bB≥0 in

‖Ax‖2 ≤ a2
C‖x‖2 + b2C‖Cx‖2, x ∈ domC,

‖Dy‖2 ≤ a2
B‖y‖2 + b2B‖By‖2, y ∈ domB,

satisfy √
a2
C‖B−1‖2 + b2C

√
a2
B‖B−1‖2 + b2B < 1.

Then ρ(A) ∩ Σc 6= ∅ and hence

σ(A) ⊆ (−Στ ∪ Στ ) ∩ {z ∈ C : Re z /∈ (δ, α)} = Σ.

Proof. By Theorem 6.1, it su�ces to show ρ(A) ∩ Σc 6= ∅.
Suppose that (i′) holds and let λ=r eiθ with r>0 and θ∈ (τ, π−τ) to be

chosen later. Then λ∈ρ(A)∩ ρ(D). Since 1
Mθ0

δAδD<1, there exists ε>0 so
that 1

Mθ0 − ε
(δA + ε)(δD + ε) < 1. (6.10)

Due to the relative boundedness assumption on C, there exist aA, bA > 0,
bA ∈ [δA, δA + ε) such that∥∥C(A− λ)−1

∥∥ ≤ aA ∥∥(A− λ)−1
∥∥+ bA

∥∥A(A− λ)−1
∥∥ . (6.11)

Since A is m-sectorial with semi-angle ϕ, we have the estimate∥∥(A− λ)−1
∥∥ ≤ 1

dist(λ,W (A))
≤ 1

rmA(θ)
, (6.12)

with mA(θ) de�ned as in Lemma 6.3, see [15, Thm. V.3.2] or (6.9). Conse-
quently, by (6.11), (6.12) and Lemma 6.3, we obtain∥∥C(A− λ)−1

∥∥ ≤ aA
rmA(θ)

+
bA

mA(θ)
.
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Similarly, since −D is m-sectorial with semi-angle ψ and using Lemma 6.3
as well as (6.9) and | arg(−λ)| = π − θ, we conclude that there exist aD,
bD > 0, bD ∈ [δD, δD + ε) with∥∥B(D − λ)−1

∥∥ ≤ aD
rm−D(π − θ)

+
bD

m−D(π − θ)

with m−D(π − θ) de�ned as in Lemma 6.3 and hence

‖C(A− λ)−1B(D − λ)−1‖≤ bAbD
Mθ

( aA
rbA

+1
)( aD

rbD
+1
)
. (6.13)

Here the function

[ϕ, π − ψ]→ [0, 1], θ 7→Mθ := mA(θ)m−D(π − θ),

is continuous, monotonically increasing for θ ≤ θ̃0 := π
2 + ϕ−ψ

2 ∈ [ϕ, π − ψ]

and decreasing for θ ≥ θ̃0. Hence, the restriction of θ 7→ Mθ to [τ, π − τ ]
attains its maximum at θ0 and we can choose δ > 0 such that Mθ0 − ε < Mθ

for θ ∈ (θ0 − δ, θ0 + δ) ∩ (τ, π − τ). Now we �x such a θ. Using (6.13) and
(6.10), we conclude that there exists r > 0 so large that

‖C(A− λ)−1B(D − λ)−1‖≤ (δA + ε)(δD + ε)

Mθ0−ε

( aA
rbA

+1
)( aD

rbD
+1
)
<1.

This implies 1 ∈ ρ(C(A− λ)−1B(D− λ)−1) and hence λ ∈ ρ(A) by [24,
Cor. 2.3.5].

Suppose that (ii′) is satis�ed. By the assumptions on B, C, the operator
S :=S1 is selfadjoint and has a spectral gap (−‖B−1‖−1, ‖B−1‖−1) around 0.
Then [5, Thm. 4.7] with βT = 1/

∥∥B−1
∥∥ therein implies that iR ⊆ ρ(A). �

7. Application to damped wave equations in Rd with unbounded

damping

In this section we use the results obtained in Section 3 to derive new
spectral enclosures for linearly damped wave equations with non-negative
possibly singular and/or unbounded damping a and potential q.

Our result covers a new class of unbounded dampings which are p-subord-
inate to −∆+q, a notion going back to [16, �I.7.1], [18, �5.1], cf. [27, Sect. 3].

Theorem 7.1. Let t be a quadratic pencil of sesquilinear forms given by

t(λ) := t0 + 2λa + λ2, dom t(λ) := dom t0, λ ∈ C,

where t0 and a are densely de�ned sesquilinear forms in H such that t0 is

closed, t0 ≥ κ0 ≥ 0, a ≥ α0 ≥ 0 and dom t0 ⊆ doma. Suppose that there

exist κ ≤ κ0 and p ∈ [0, 1) such that a is p-form-subordinate with respect to

t0 − κ ≥ 0, i.e. there is Cp > 0 with

a[f ] ≤ Cp
(
(t0 − κ)[f ]

)p( ‖f‖2 )1−p, f ∈ dom t0. (7.1)
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Then the family t is holomorphic of type (a). If T denotes the associated

holomorphic family of type (B), then

σ(T ) ⊆WΨ(T ) ⊆
{
z∈C : Re z ≤ 0

}
and the following more precise spectral enclosures hold:

(i) The non-real spectrum of T is contained in

σ(T ) \ R ⊆WΨ(T ) \ R ⊆
{
z∈C : Re z ≤ −α0, |z| ≥

√
κ0,

|Im z|≥
√

max
{

0, C
− 1
p

p |Re z|
1
p−|Re z|2+κ

}}
;

(ii) if p< 1
2 or if p= 1

2 and C 1
2
<1 or if p = 1

2 and C 1
2

= 1 and κ > 0, the

real spectrum of T satis�es either

σ(T ) ∩ R = ∅ or σ(T ) ∩ R ⊆ [s−, s+],

if p> 1
2 or if p= 1

2 and C 1
2
>1 or if p = 1

2 and C 1
2

= 1 and κ ≤ 0, the

real spectrum of T satis�es either

σ(T ) ∩ R ⊆ (−∞, r+] ∪ [s−, s+] or σ(T ) ∩ R ⊆ (−∞, s+],

where ∞ < r+ < s−≤s+≤0 depend on p, Cp, κ0 and κ.

(iii) if κ = 0 and p < 1
2 , then

σ(T ) ∩ R = ∅ if (C2
p)

1
1−2p <κ0,

σ(T ) ∩ R ⊆
[
−Cptp0−

√
Cpp t

2p
0 −t0,−Cpκ

p
0+
√
C2
pκ

2p
0 −κ0

)]
if (C2

p)
1

1−2p ≥κ0,

where t0 := max
{(

4C2
pp(1−p)

)− 1
2p−1, κ0

}
;

(iv) if κ = 0 and p = 1
2 , then

σ(T ) ∩ R = ∅ if C 1
2
<1 and κ0>0,

σ(T ) ∩ R ⊆ {0} if C 1
2
<1 and κ0 =0,

σ(T ) ∩ R ⊆
(
−∞,−

(
C 1

2
−
√
C2

1
2

−1
)
κ

1
2
0

]
if C 1

2
≥1;

(v) if κ = 0 and p > 1
2 , then

σ(T ) ∩ R ⊆
(
−∞,−Cptp0 +

√
C2
p t

2p
0 −t0

]
if κ0 > 0,

σ(T ) ∩ R ⊆
(
−∞,−Cptp0 +

√
C2
p t

2p
0 −t0

]
∪ {0} if κ0 = 0,

where t0 := max
{(

4C2
pp(1−p)

)− 1
2p−1, κ0

}
.



PSEUDO NUMERICAL RANGES AND SPECTRAL ENCLOSURES 31

-25 -20 -15 -10 -5 0

-10

-5

0

5

10

Re

Im
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Figure 7.2. Enclosures for σ(T )\R in Theorem 7.1 (i) (blue) and

for σ(T )∩R in Theorem 7.1 (ii)-(v) (red in (a), (c), empty in (b)).

Proof of Theorem 7.1. Clearly, t is holomorphic. For arbitrary ε > 0, apply-
ing Young's inequality to (7.1), we obtain

a[f ] ≤
(
ε

p

)p(
(t0 − κ)[f ]

)p (p
ε

)p
Cp
(
‖f‖2

)1−p
≤ ε
(
(t0 − κ)[f ]

)
+ (1−p)

(p
ε

) p
1−p

C
1

1−p
p ‖f‖2

for all f ∈ dom t0, i.e. a is t0-bounded with relative bound 0. Hence, for
each λ ∈ C, the form t(λ) is densely de�ned, sectorial and closed, see e.g.
[15, Thm. VI.1.33]. This shows that t is a holomorphic family of type (a).
Since all enclosing sets in Theorem 7.1 are closed and

σ(T ) ⊆WΨ(T ) = WΨ(t) = W (t)

by Theorem 3.3 with k = 2 and µ ∈ C arbitrary, it su�ces to show that
W (t) \ R and W (t) ∩ R satisfy the claimed enclosures.

Let λ0 ∈ W (t), i.e. there exists f ∈ dom t0, ‖f‖ = 1, with t(λ0)[f ] = 0.
Taking real and imaginary part in this equation, we conclude that

t0[f ] + 2 Reλ0 a[f ] + (Reλ0)2 − (Imλ0)2 = 0, (7.2)

2 Imλ0 a[f ] + 2 Reλ0 Imλ0 = 0. (7.3)

First assume that λ0∈W (t) \ R. Then a[f ]2− t0[f ]< 0. Dividing (7.3) by
2 Imλ0 (6= 0) and inserting this into (7.2), we �nd

Reλ0 = −a[f ] ≤ −α0 ≤ 0,

|λ0|2 = (Imλ0)2 + (Reλ0)2 = t0[f ] ≥ κ0.

Using these relations and assumption (7.1), we can further estimate

(Imλ0)2 = t0[f ]− |Reλ0|2 ≥ max{0, C
− 1
p

p |Reλ0|
1
p − |Reλ0|2 + κ},

and hence λ0∈W (t)\R satis�es all three claimed inequalities in (i).
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Now assume that λ0∈W (t) ∩ R. Then a[f ]2−t0[f ]≥0 and thus, in par-
ticular, a[f ]≥max{α0,

√
κ0}. Moreover, since Imλ0 =0, equality (7.3) triv-

ially holds and (7.2) implies λ0 =−a[f ]±
√

a[f ]2−t0[f ] ≤ 0 because t0≥0.
This, together with a≥α0 and assumption (7.1), yields that

max
{
α2

0, κ0

}
≤ max{α2

0, t0[f ]} ≤ a[f ]2 ≤ C2
p

(
(t0 − κ)[f ]

)2p
. (7.4)

If we de�ne

d(x) := C
− 1
p

p x
1
2p−x+κ, x∈ [0,∞), D≤0 :=

{
x∈ [κ0,∞) : d(x) ≤ 0

}
,

then it is easy to see that

t0[f ]∈D≤0, λ0 = −a[f ]±
√
a[f ]2 − t0[f ]; (7.5)

in particular, D≤0 = ∅ implies W (t)∩R = ∅. An elementary analysis shows
that d has either no zero, one simple zero or two (possibly coinciding) zeros
on [0,∞), which we denote by x+ and x− ≤ x+, respectively, if they exist.
Then

p <
1

2
or p =

1

2
, C 1

2
< 1 or p =

1

2
, C 1

2
= 1, κ > 0 (7.6)

=⇒ D≤0 =∅ or D≤0 is bounded, D≤0 =[κ0, x+] or D≤0 =[x−, x+],

p >
1

2
or p =

1

2
, C 1

2
> 1 or p =

1

2
, C 1

2
= 1, κ ≤ 0 (7.7)

=⇒ D≤0 6=∅ is unbounded, D≤0 =[κ0,∞) or D≤0 =[x+,∞)

or D≤0 =[κ0, x−]∪[x+,∞).

Which case prevails for �xed p∈ [0, 1) can be characterised by means of in-
equalities involving the constants κ0, κ and Cp. For estimating λ0 in (7.5)
while respecting the restrictions in (7.4), we consider the functions

f±(s, t) := −s±
√
s2−t, s∈ [α0,∞), t∈ [κ0,∞), t≤s2≤C2

p(t− κ)2p.

It is easy to check that f+ is monotonically increasing in s and monotonically
decreasing in t, while f− is monotonically decreasing in s and monotonically
increasing in t and hence, since s ≤ Cp(t− κ)p,

f+(s, t) ≤ f+(Cp(t− κ)p, t) =: g+(t),

f−(s, t) ≥ f−(Cp(t− κ)p, t) =: g−(t).
(7.8)

We distinguish the two qualitatively di�erent cases (7.6) and (7.7) and
use (7.4), (7.5) and (7.8) to obtain enclosures for W (t) ∩ R.
If (7.6) holds, then there are the following two possibilities:

(1) If d has no zeros on [0,∞) or if d has at least one zero and x+<κ0, then
D≤0 = ∅ and thus

W (t) ∩ R = ∅.
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(2) If d has at least one zero x+ and x+ ≥ κ0, then D≤0 is one bounded
interval and

W (t)∩ R ⊆
[
s−, s+

]
, s− := min

t∈D≤0

g−(t), s+ := max
t∈D≤0

g+(t);

here if d has only one zero x+ or if d has two zeros x± and x− < κ0, then
D≤0 = [κ0, x+] and if d has two zeros and x− ≥ κ0, then D≤0 = [x−, x+].

If (7.7) holds, there are the following two possibilities:

(3) If d has two zeros x± on [0,∞) and x−≥κ0, then D≤0 =[κ0, x−]∪[x+,∞)
and we obtain

W (t) ∩ R⊆
(
−∞, r+

]
∪
[
s−, s+

]
, r+ := max

t∈[x+,∞)
g+(t), s+ := max

t∈[κ0,x−]
g+(t),

s− := min
t∈[κ0,x−]

g−(t);

here g+ attains a maximum on [x+,∞) since g+(t) tends to −∞ as t→∞,
and analogously in the next case.
(4) If d has either at most one zero x+ or two zeros x± on [0,∞) and x− < κ0,
then D≤0 = [max{κ0, x+},∞) and we conclude that

W (t) ∩ R ⊆
(
−∞, s+

]
, s+ := max

t∈[max{κ0,x+},∞)
g+(t).

This proves claim (ii).
Claim (iv) for κ= 0 and p= 1

2 follows from cases (1), (2) and (4) above

if we note that then d(x) = (C−2
1
2

−1)x, x∈ [0,∞), is either identically zero

or has the only zero x+ =0 and, for case (4), g+(t)=−t
1
2

(
C 1

2
+
√
C2

1
2

−1
)
is

montonically decreasing so that s+ = g+(κ0).
Finally, if κ= 0 and p 6= 1

2 , the function d has the two zeros x− = 0 and
x+ = (C2

p)
1

1−2p on [0,∞), and the respective bounds r+, s± above can be
determined explicitly to deduce claims (iii) and (v). More precisely, claim
(iii) follows from cases (1) and (2) if we note that, in (2), D≤0 = [κ0, x+], g+

is monotonically decreasing on [0, x+] and g− attains its minimum on [0, x+]

at t =
(
4C2

pp(1−p)
)− 1

2p−1 . Claim (v) follows from cases (4) if κ0 > 0 and
(3) if κ0 = 0; note that, for κ= 0, case (3) where p> 1/2 can only occur if
κ0 = 0. In both cases, we use that g+ attains its maximum on [x+,∞) at

t =
(
4C2

pp(1−p)
)− 1

2p−1 . �

Remark 7.2. If (7.1) holds with κ ≤ κ0 and p ∈ [0, 1), then it holds for every
q ∈ (p, 1) with κ1 ≤ κ such that κ1 < κ0.

Indeed, then t0−κ≤ t0−κ1 and t0−κ1 ≥ κ0−κ1 > 0 which implies that

(‖f‖2)q−p≤ (κ0−κ1)p−q
(
(t0−κ1)[f ]

)q−p
, f ∈dom t0. Hence (7.1) holds with

q, κ1 and Cq = Cp(κ0−κ1)p−q.

Remark 7.3. As a special case of Theorem 7.1 we obtain the enclosure for the
non-real spectrum proved in [13, Thm. 3.2, Part 5] (where the damping was
only assumed to be accretive) and we considerably improve the enclosure for
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the real spectrum therein since we obtain that the latter is, in fact, empty.
The assumption in [13, Thm. 3.2, Part 5] is that

ν := sup
f∈dom t0\{0}

2a[f ]

t0[f ]1/2‖f‖
∈ (0, 2). (7.9)

The parameters a0, β and ν in [13, (5) and p. 83] correspond to the following
special choices in Theorem 7.1 and assumption (7.1):

p =
1

2
, C 1

2
=
ν

2
, κ = 0, κ0 = a2

0 > 0, α0 =
β

2
.

Under the assumption (7.9) made in [13, Thm. 3.2, Part 5], Theorem 7.1 (i)
yields the spectral enclosure

σ(T ) \ R ⊆
{
z∈ C : Re z≤−β

2
, |z|≥a0, |Im z|≥

√
4

ν2
−1 |Re z|

}
.

This enclosure is the same as in [13, Thm. 3.2, Part 5]. However, since ν<2
is equivalent to C 1

2
< 1, the enclosure σ(T ) ∩ R ⊆ (−∞,−a0

ν −
4a0
ν3

] in [13,

Thm. 3.2, Part 5] is considerably improved by Theorem 7.1 (iv) to

σ(T ) ∩ R = ∅.

Remark 7.4. In the second case in Theorem 7.1 (ii), i.e. if p > 1
2 or p= 1

2 ,

C 1
2
> 1 or p= 1

2 , C 1
2

= 1, κ≤ 0, the set W (t) ∩ (−∞, 0] used to enclose the

spectrum can, indeed, be unbounded if so is t0.
In fact, if W (t0) = [κ0,∞), we can choose a = Cp(t0 − κ)p. Then there

exist fn∈dom t0, ‖fn‖=1, with t0[fn]≥n for n∈N. The conditions on p, Cp
and κ ensure, comp. (7.7), that C2

p(t0[fn]− κ)2p − t0[fn] ≥ 0 for su�ciently
large n ∈N and thus

W (t)∩(−∞, 0] 3 λ0 =−t0[fn]p−
√

t0[fn]2p−t0[fn] ≤ −t0[fn]p ≤ −np → −∞,

and hence inf (W (t) ∩ (−∞, 0]) = −∞.

In the next example we apply Theorem 7.1 to linearly damped wave equa-
tions with possibly unbounded and/or singular damping.

Example 7.5. Let H = L2(Rd) with d ≥ 3 and a, q ∈ L1
loc(Rd), a 6= 0

and a, q ≥ 0 almost everywhere. If dom a
1
2 and dom q

1
2 denote the maximal

domains of the multiplication operators a
1
2 and q

1
2 in L2(Rd), respectively,

we de�ne the quadratic forms a and t0 in L2(Rd) by

a[f ] :=

∫
Rd
a |f |2 dx, doma := dom a

1
2 ,

t0[f ] :=

∫
Rd
|∇f |2 dx+

∫
Rd
q |f |2 dx, dom t0 := H1(Rd) ∩ dom q

1
2 .

Suppose that, for almost all x ∈ Rd,

a(x) ≤
n∑
j=1

|x− xj |−t + u(x) + v(x), v(x) ≤ c1q(x)r + c2, (7.10)
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where u ∈ Ls(Rd) with s > d/2, v ∈ L1
loc(Rd), t ∈ [0, 2), n ∈ N0, xj ∈ Rd

for j = 1, . . . , n, c1, c2 ≥ 0 and r ∈ [0, 1). Then a, t0 are closed, a, t0 ≥ 0
and, without further assumptions, we only know that α0 ≥ 0, κ0 ≥ 0 in
Theorem 7.1. In order to verify (7.1), let f ∈ dom t0 with ‖f‖ = 1. By
Hölder's and Hardy's inequality, for 1 ≤ j ≤ n,∫

Rd
|x−xj |−t |f |2 dx ≤

(∫
Rd
|x−xj |−2 |f |2 dx

) t
2

≤ 2t

(d− 2)t
‖∇f‖t . (7.11)

Moreover, by Gagliardo-Nirenberg-Sobolev's inequality, there exists a con-
stant Gd > 0 depending only on the dimension d such that

‖f‖L2∗ (Rd) ≤ Gd ‖∇f‖ , f ∈ H1(Rd), 2∗ :=
2d

d− 2
,

where 2∗> 2 is the critical Sobolev exponent for the embedding H1(Rd) ↪→
L2∗(Rd). Since d/s∈ (0, 2), we can use Hölder's inequality with three terms
to estimate∫

Rd
u|f |2dx ≤ ‖u‖Ls(Rd)

(∫
Rd
|f |

d
s

2s
d−2 dx

) d−2
2s
(∫

Rd
|f |(2− d

s )
2s

2s−ddx

) 2s−d
2s

.

This inequality, together with the relations

d

s

2s

d− 2
= 2∗,

d− 2

2s
=

d

2∗s
,

(
2− d

s

)
2s

2s− d
= 2,

and ‖f‖ = 1, yields that∫
Rd
u|f |2dx ≤ ‖u‖Ls(Rd) ‖f‖

d
s

L2∗ (Rd)
≤ ‖u‖Ls(Rd)G

d
s
d ‖∇f‖

d
s . (7.12)

Next the bound on v in (7.10) with r ∈ [0, 1), Hölder's inequality with
1/r ∈ (1,∞], 1/(1− r) ∈ [1,∞) and ‖f‖ = 1 give∫

Rd
v|f |2dx ≤ c1

∫
Rd
qr |f |2 dx+ c2 ≤ c1

(∫
Rd
q |f |2 dx

)r
+ c2. (7.13)

Combining the inequalities (7.11), (7.12) and (7.13), we arrive at

a[f ]≤ n2t

(d−2)t
‖∇f‖t+‖u‖Ls(Rd)G

d
s
d ‖∇f‖

d
s +c1

(∫
Rd
q |f |2 dx

)r
+c2

=: α1(‖∇f‖2)
t
2+α2(‖∇f‖2)

d
2s +α3

(∫
Rd
q |f |2 dx

)r
+α4.

(7.14)

In order to further bound (7.14), we estimate α1x
p1
1 +α2x

p2
2 +α3x

p3
3 +α4 with

xi ≥ 0, pi ∈ [0, 1), i = 1, 2, 3, and αi ≥ 0, i = 1, 2, 3, 4; note that x1 = x2 =
‖∇f‖2 in (7.14). If we set p :=max{p1, p2, p3} and maximise δ(x) :=xpi−xp,
x ∈ [0, 1], i=1, 2, 3, we �nd that

xpii ≤x
p
i +δi, δi :=

 0 if pi = p,

p−pi
p

(
pi
p

) pi
p−pi if pi < p,

i = 1, 2, 3. (7.15)
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If max{α1, α2, α3} 6= 0, then

γp := α1(1+δ1)+α2(1+δ2)+α3(1+δ3)+α4 6= 0. (7.16)

If we use (7.15), the concavity of x 7→xp on [0,∞) and x1 =x2, we obtain

α1x
p1
1 +α2x

p2
2 +α3x

p3
3 +α4 ≤ α1(xp1+δ1)+α2(xp2+δ2)+α3(xp3+δ3)+α4

= γp

(α1

γp
xp1+

α2

γp
xp2 +

α3

γp
xp3+

α1δ1 + α2δ2+α3δ3 + α4

γp

)
≤ γp

(α1

γp
x1+

α2

γp
x2 +

α3

γp
x3+

α1δ1 + α2δ2+α3δ3 + α4

γp

)p
= γ1−p

p

(
α1 + α2)x1+α3x3 + α1δ1 + α2δ2+α3δ3 + α4

)p
≤ γ1−p

p max{α1 + α2, α3}p
(
x1+x3+

α1δ1 + α2δ2+α3δ3 + α4

max{α1 + α2, α3}

)p
.

If max{n, ‖u‖Ls(Rd) , c1} 6=0, we can apply this estimate to (7.14) with p1 =

t/2, p2 = d/(2s), p3 = r, δi, i= 1, 2, 3, as in (7.15) to obtain that dom t0 ⊆
doma and assumption (7.1) holds with the parameters

p=max
{ t

2
,
d

2s
, r
}
, Cp=γ1−p

p max
{ n2t

(d−2)t
+ ‖u‖Ls(Rd)G

d
s
d , c1

}p
,

κ=−
n2tδ1 + (d− 2)t(‖u‖Ls(Rd)C

d
s
∗ δ2 + c1δ3 + c2)

max{n2t+(d−2)t ‖u‖Ls(Rd)G
d
s
d (d− 2)t, c1}

,

(7.17)

where, according to (7.16),

γp =
n2t

(d− 2)t
(1+δ1)+‖u‖Ls(Rd)G

d
s
d (1+δ2)+c1(1+δ3)+c2.

If max{n, ‖u‖Ls(Rd) , c1}=0, i.e. n = 0, u ≡ 0 and c1 = 0, then the damping

a = v is bounded, our assumption a 6= 0 implies c2 > 0 and (7.1) trivially
holds with p = 0, C0 = c2 = ‖a‖∞ and κ ≤ d = κ0 arbitrary.

The constants in (7.17) in the general case max{n, ‖u‖Ls(Rd) , c1} 6=0 sim-

plify substantially if either n = 0, u ≡ 0 or v ≡ 0. If e.g. two of n, u or v
vanish, the constants p, Cp and κ, which may be read o� from (7.11), (7.12)
or (7.13), are also obtained as special cases of (7.17). For instance,

p =
t

2
, C t

2
=

n2t

(d− 2)t
, κ = 0 if n 6= 0, u ≡ 0 and v ≡ 0,

p =
d

2s
, C d

2s
= ‖u‖Ls(Rd)G

d
s
d , κ = 0 if n = 0, u 6≡ 0 and v ≡ 0,

p = r, Cr = (c1+c2)1−rcr1, κ = −c2

c1
if n = 0, u ≡ 0 and v 6≡ 0, c1>0;

in (7.17) these are the 3 cases δ1 = 0 with c1 = c2 = r = 0 and s su�ciently
large such that d/(2s) < r, δ2 = 0 with t = c1 = c2 = r = 0, and δ3 = 0
with t = 0 and s su�ciently large, respectively. The cases where only one of
n, u or v vanishes are similar and are left to the reader.
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As a special case, we consider

a(x) = |x|k with k ∈ [0, 2), q(x) = |x|2 , x ∈ Rd.
Here α0 =0 and we can choose κ0 > 0 as the ground energy of the harmonic
oscillator, cf. [23, Sec. XIII.12], i.e.

κ0 = inf
f∈dom t0

t0[f ]

‖f‖2
=

t0[f0]

‖f0‖2
= d,

where f0(x) = exp(− |x|2/2), x ∈ Rd, is the (non-normalised) ground state of
the harmonic oscillator. Moreover, in this special case a satis�es (7.10) with

n=0, t=0, u ≡ 0, v ≡ a, r =
k

2
, c1 = 1, c2 = 0,

and by what was shown above, condition (7.1) holds with

p =
k

2
, Cp = 1, κ = 0.

Hence the results in Theorem 7.1 (iii), (iv) and (v) yield that

σ(T )\R ⊆
{
z∈C : Re z≤0, |z|≥

√
d, | Im z|≥

√
max{0, |Re z|

2
k−|Re z|2}

}
and

σ(T ) ∩ R


= ∅ if k ∈ [0, 1),

⊆ (−∞,−
√
d] if k = 1,

⊆
(
−∞,−

√
t0
k
+
√
tk0−t0

]
if k ∈ (1, 2),

where in the latter case t0 = max
{(
k(2− k)

)− 1
k−1 , d

}
.
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SCHRÖDINGER OPERATORS WITH ACCRETIVE POTENTIALS

IN WEIGHTED SPACES

BORBALA GERHAT AND PETR SIEGL

Abstract. We analyse Schrödinger operators with accretive potentials in
weighted spaces. We find conditions on potentials and weights for which the

Dirichlet realisation, introduced by generalised form methods, has non-empty

resolvent set. We establish a domain and graph norm separation property,
as well as sufficient conditions for the compactness and Schatten class of the

resolvent. Moreover, we investigate the relation between discrete spectra and

eigenfunctions of operators in standard and weighted spaces. As applications
we extend results on the completeness of eigensystems of operators with accre-

tive potentials from standard to weighted spaces and analyse operator matrices

exhibiting a Schur dominance property, in particular, related to a wave equa-
tion with strong accretive damping.

1. Introduction

Both in classical and more recent works, the spectral properties of Schrödinger
operators

T = −∆ + V

in the space L2(Ω) with (possibly unbounded) complex potentials V on an open
set Ω ⊂ Rd have been studied extensively, see e.g. [29, 20, 16, 26, 44, 12, 21]. These
operators arise in several applications, ranging from superconductivity [40, 2, 6],
Bloch-Torrey equations [25, 3], hydrodynamics [23, 7, 5], optics with gains and
losses [48, 18] to damped wave equations [22, 8, 28] and many more.

In particular for accretive potentials, i.e. for V : Ω → C with ReV ≥ 0, which
satisfy V ∈W 1,∞

loc (Ω) and

∃ε∇ ∈ [0, 2−
√

2), ∃M∇ ≥ 0, |∇V | ≤ ε∇|V |
3
2 +M∇ a.e. in Ω, (1.1)

it is known that the Dirichlet realisation of −∆ +V in L2(Ω) is m-accretive. More-
over, the operator domain has the separation property, i.e.

Dom(T ) = Dom(−∆D) ∩Dom(V ),

where Dom(−∆D) is the domain of the self-adjoint Dirichlet Laplacian in L2(Ω),
see (2.1), and the corresponding separation of the graph norm holds

‖Tf‖2 + ‖f‖2 ≥ a∇(‖∆f‖2 + ‖V f‖2 + ‖f‖2), f ∈ Dom(T ), (1.2)

with a∇ = a∇(ε∇,M∇) > 0; for details see [4, 11, 30, 27, 41] where also further
extensions, e.g. for an additional magnetic field, can be found.

The separation (1.2) allows for reducing questions on the compactness and Schat-
ten class of the resolvent of T to the properties of the self-adjoint operator −∆+|V |,
which can be further employed to investigate the completeness of the eigensystem
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2 BORBALA GERHAT AND PETR SIEGL

of T , see [42, 4, 45]. Moreover, (1.2) is also a key step in the analysis of the spectral
convergence of domain truncations, see [11, 41].

In this paper we analyse Tw = −∆ + V with an accretive potential V in the
weighted space L2

w2(Ω). The considered weights w : Ω → (0,∞) are assumed to
satisfy an admissibility condition relating the weight and potential, see Assump-
tion 3.1 for details, which allows for (super)-exponential weights if the potential is
unbounded at infinity. It is crucial to observe that, due to the possible unbound-
edness of w and/or w−1, the connection between the operators Tw in L2

w2(Ω) and
T in L2(Ω) can in general be quite loose. Equivalently, this applies to the relation
between T and S = wTww

−1 in L2(Ω), i.e. the unitary transformation of the oper-
ator Tw to L2(Ω). On the level of differential expressions, however, the conjugation
by w can be viewed as “unbounded” similarity transform (which can be also inter-
preted as adding a complex magnetic field, see e.g. [32]) and might suggest a closer
relation between T and Tw.

In order to illustrate the possibly occurring non-trivial effects in the relation
between T and Tw, consider first the one-dimensional operator

T = −∂2
x + |x|β , β ≥ 2,

which is self-adjoint in L2(R), and the corresponding weighted operator Tw in
L2
w2(R) with weight w(x) = exp(x), x ∈ R; see [34] for a detailed study of the

unitary transform S = wTww
−1 in L2(R) of the latter. The spectra of T and Tw

coincide, consist of discrete simple real eigenvalues and the corresponding eigenfunc-
tions are complete both in L2(R) and L2

w2(R). Nevertheless, the eigenfunctions do
not form a basis of L2

w2(R) and the norms of the corresponding spectral projections
Pk diverge at the rate

lim
k→∞

log ‖Pk‖
k

2
2+β

= Cβ > 0;

more details, e.g. the explicit constant Cβ and analogous results for various poten-
tials and weights (even of very slow growth), can be found in [34].

As a second ill-behaved example related to the advection-diffusion operator, see
[38, 15, 31], consider the one-dimensional operator T = −∂2

x + V in L2(R) with
compactly supported real-valued potential V ∈ L∞(R;R) and the weights

wβ(x) = exp(βx), β ∈ R, x ∈ R.

It can be readily seen that the essential spectra of T and the corresponding weighted
operator Twβ differ. Even more importantly, however, the point spectra of T and
Twβ might not coincide either, see Example 3.8 below for details.

The study of transformed operator problems as described above dates back to
Whittaker [47] and Sommerfeld [43]. Among many others, it appears in the spec-
tral analysis of the bi-stable potential in quantum mechanics [37], the hypoelliptic
Laplacian studied by Bismut and Lebeau [10, Chap. 16], see also [35], the Hill op-
erator with a two-term potential [17], the Ornstein-Uhlenbeck operator [33] or the
Black-Scholes operator [9].

Our analysis is focused on fundamental properties of weighted Schrödinger op-
erators Tw with accretive potentials V (and −∆ possibly generalised to −∇ · (P∇)
with a sectorial coefficient matrix P ). We identify conditions on the coefficients V
and P and on the weight w allowing us to find a Dirichlet realisation of

Tw = −∇ · P∇+ V

in the weighted space L2
w2(Ω) with non-empty resolvent set, see Theorem 3.2, as

well as to establish the graph norm separation, see Theorem 3.12. As the key
technical ingredient we employ the notion of generalised coercivity of the associ-
ated sesquilinear form introduced in [4], see also Section 2.2. In Theorem 3.4, the
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boundedness of compositions of the type

w1(−∇ · (P∇) + V + 1)−1w2

is addressed. Furthermore, in Theorem 3.5, we study the compactness and Schatten
class of the resolvent of Tw. The invariance of discrete spectra and eigenfunctions
is discussed in Theorems 3.6 and 3.9.

As examples of applications of our results, we first investigate the completeness
of eigensystems of Schrödinger operators with imaginary potentials, see Section 5.1,
in particular extending the results in [4]. Next, we show how our results enter the
analysis of operator matrices with non-symmetric differential entries which exhibit
Schur complement dominance, see Sections 5.2 – 5.4. In particular, the last ex-
ample in Section 5.4 deals with a wave equation in a weighted space subject to
strong accretive damping, for which we prove the generation of a C0-semigroup
(and thereby generalise results in [22, 28, 24]).

The paper is organised as follows. In Section 2, we collect the used notation
and preliminaries. The main results are presented in Section 3 and their proofs are
given in Section 4. Section 5 contains examples of applications.

2. Notation and Preliminaries

2.1. Notation.

• For an open set Ω ⊂ Rd and a measurable function m : Ω→ C, we define the
corresponding multiplication operator in L2(Ω) on the maximal domain

Dom(m) := {f ∈ L2(Ω) : mf ∈ L2(Ω)}.
• The Dirichlet Laplacian −∆D is defined as usual via its quadratic form, i.e.

Dom(∆D) := {f ∈W 1,2
0 (Ω) : ∆f ∈ L2(Ω)}. (2.1)

• The norm and inner product in L2(Ω) and L2(Ω)d are denoted by ‖ · ‖, 〈·, ·〉.
• For a weight w ∈W 1,∞

loc (Ω;R+), we introduce

L2
w2(Ω) :=

{
f : Ω→ C : f is measurable and ‖f‖L2

w2
<∞

}
,

‖f‖L2
w2

:=

(∫
Ω

|f |2w2 dx

) 1
2

= ‖wf‖,

and the related inner product is denoted by

〈f, g〉L2
w2

:=

∫
Ω

fgw2 dx = 〈wf,wg〉.

• We write

〈x〉 := (1 + |x|2)
1
2 , x ∈ Rd.

• If not specified otherwise, all inequalities between measurable functions Ω→ R
are understood a.e. in Ω.
• The essential spectra of (non-selfadjoint) operators in a Hilbert space H are

defined as in [20, Sec. IX.1]. We shall mainly use the second definition therein

σe2 := {λ ∈ C : T − λ /∈ F+(H)}.
Here A ∈ F+(H) if A is closed, has closed range and dim Ker(A) <∞.
• For Θ ⊂ C, the spectrum of an operator family {T (λ) : λ ∈ Θ} is defined as

σ(T (·)) := {λ ∈ Θ : 0 ∈ σ(T (λ))}
and analogously for the resolvent set and various other parts of the spectrum.
• We write a . b if there exists a constant C > 0, independent of any relevant

variable or parameter, such that a ≤ Cb; the convention for a & b is analogous.
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2.2. Generalised coercivity. We first recall the following generalised representa-
tion theorems from [4].

Theorem 2.1 ([4, Thm. 2.1]). Let V be a Hilbert space and let a be a bounded
sesquilinear form on V. Assume that there exist Φ1,Φ2 ∈ B(V) and m > 0 such
that for all f ∈ V we have

|a(f, f)|+ |a(Φ1f, f)| ≥ m‖f‖2V ,
|a(f, f)|+ |a(f,Φ2f)| ≥ m‖f‖2V .

Then the corresponding bounded operator Â given by

Â ∈ B(V,V∗), 〈Âf, g〉V∗×V := a(f, g), f, g ∈ V, (2.2)

is boundedly invertible, i.e an isomorphism between V and V∗.

If V ⊂ H is continuously embedded and dense in another Hilbert space H, then
upon the standard identification of H and its (anti-)dual H∗, one can consider

H 3 f ≡ 〈f, ·〉H ∈ H∗, V ⊂ H ≡ H∗ ⊂ V∗.

In the above Hilbert space triplet, the operator Â in (2.2) then naturally defines a
maximal restriction in H which is formally given by

A := (id∗V)−1Â idV . (2.3)

Here idV denotes the continuous embedding V ↪→ H and its adjoint id∗V is the
restriction operator V∗ ⊃ H∗ → H∗. Under additional assumptions, T is boundedly
invertible in H.

Theorem 2.2 ([4, Thm. 2.2]). In addition to the Assumptions of Theorem 2.1,
assume that V ⊂ H is continuously embedded and dense in another Hilbert space
H and that Φ1, Φ2 extend to bounded operators on H. Then the operator A in H
defined by

Dom(A) := {f ∈ V : ∃ηf ∈ H, ∀g ∈ V, a(f, g) = 〈η, g〉H},
Af := ηf ,

(2.4)

is boundedly invertible and its domain is dense in V and H.

To obtain the results for Schrödinger operators with complex potentials V in
L2(Ω) mentioned in the introduction, Φ1 and Φ2 can be selected as the following
multiplication operators

Φ := Φ1 = Φ2 =
ImV√
1 + |V |2

.

2.3. Schur complement dominant operator matrices. We recall claims from
[24] which are relevant for the applications in Sections 5.2 – 5.4. They allow us
to introduce operator matrices with non-empty resolvent set in the product space
H := H1 ⊕H2 of two complex Hilbert spaces H1 and H2.

Assumption 2.3. (i) Let DS , D2, D−S , and D−2 be complex Hilbert spaces
such that the inclusions

DS ⊂ H1 ⊂ D−S , D2 ⊂ H2 ⊂ D−2,

hold and the corresponding canonical embeddings are continuous and have
dense ranges.

(ii) Suppose that the operators A, B and C are bounded between the spaces

A ∈ B(DS ,D−S), B ∈ B(D2,D−S), C ∈ B(DS ,D−2).
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(iii) Let D0 ∈ C(H2) such that Dom(D0) ⊂ D2 is dense in D2 and assume that
there exist an extension D0 ⊂ D and λ0 ∈ ρ(D0) such that

D ∈ B(D2,D−2), (D − λ0)−1 ∈ B(D−2,D2).

Under Assumption 2.3, we define the operator matrix A and its first Schur
complement {S(λ) : λ ∈ ρ(D0)} as

A :=

(
A B
C D

)
∈ B(D,D−), S(λ) := A−B(D − λ)−1C ∈ B(DS ,D−S), (2.5)

where D := DS⊕D2 and D− := D−S⊕D−2. We point out that Assumption 2.3 (iii)
implies that D − λ is boundedly invertible for any λ ∈ ρ(D0), such that the above
formula for the Schur complement is indeed well-defined. Finally, we define the cor-
responding maximal operators A0 := A|Dom(A0) in H and S0(λ) := S(λ)|Dom(S0(λ))

in H1 on their respective domains

Dom(A0) := {(f, g) ∈ D : A(f, g) ∈ H}, Dom(S0(λ)) := {f ∈ DS : S(λ)f ∈ H1}.
Then the spectra of A0 and S0(·) are related by the following theorem.

Theorem 2.4 ([24, Cor. 3.4 (ii), Cor. 3.5, Cor. 3.6, Cor. 3.7]). Let Assumption 2.3
be satisfied. Assume that, for every λ ∈ Σ ⊂ ρ(D0), there exists zλ ∈ C such that

(S(λ)− zλ)−1 ∈ B(D−S ,DS).

Then the spectra of A0 and S0(·) are equivalent on Σ, more precisely,

σ(A0) ∩ Σ = Σ ∩ σ(S0(·)),
σp(A0) ∩ Σ = Σ ∩ σp(S0(·)),
σe2(A0) ∩ Σ = Σ ∩ σe2(S0(·)).

Moreover, if ρ(S0(·)) ∩ Σ 6= ∅, then Dom(A0) is dense in both D and H.

3. Main results

We introduce a Dirichlet realisation of the second order partial differential op-
erator

Tw = −∇ · (P∇) + V

with accretive potential V in the space L2
w2(Ω) with suitable weight w : Ω→ (0,∞)

and show that it has non-empty resolvent set. Employing the constructed weighted
operators Tw, we discuss bounded extensions of certain compositions of the type

w1(T − λ)−1w2, λ ∈ ρ(T ).

We derive sufficient conditions for the Schatten class of the resolvent, as well as
for the invariance of the discrete spectra and generalised eigenfunctions of Tw and
the Dirichlet realisation T = T1 in L2(Ω). Finally, we give sufficient conditions for
the domain and graph norm separation property of Tw and thereby generalise the
result (1.2) for Schrödinger operators to more general second order operators and,
most importantly, to weighted spaces.

Our first main set of assumptions is written below. It lays the ground for the
following theorems on the Dirichlet realisation Tw, the Schatten class of its resol-
vent, the invariance of spectra and eigenfunctions, as well as the boundedness of
mentioned compositions.

Assumption 3.1. Let ∅ 6= Ω ⊂ Rd be open. Let the real and imaginary part of V
be decomposed into a regular and singular part, respectively, as follows

ReV = Ur + Us,

ImV = Vr + Vs,
Ur, Vr ∈W 1,∞

loc (Ω;R), Us, Vs ∈ L1
loc(Ω;R).
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Moreover, let P ∈ L1
loc(Ω)d×d and write

P1 := ReP =
1

2
(P + P ∗), P2 := ImP =

1

2i
(P − P ∗).

Let w ∈W 1,∞
loc (Ω;R+) and suppose that the following conditions are satisfied.

(i) Sectoriality of P : Assume there exists CP ≥ 0 and a set NP ⊂ Ω with zero
measure such that for all x ∈ Ω \NP and all ξ ∈ Cd

〈P1(x)ξ, ξ〉 ≥ 0, |〈P2(x)ξ, ξ〉| ≤ CP 〈P1(x)ξ, ξ〉. (3.1)

(ii) Accretivity of V : Let Ur ≥ 0 and Us ≥ 0.
(iii) Sectoriality of V − iVr: Let Cs ≥ 0 be such that |Vs| ≤ Cs ReV .

Define the multiplier

Φ :=
Vr√

1 + V 2
r + U2

r

∈ L∞(Ω;R), (3.2)

and further assume the following growth conditions on the admissible weight and
the regular part of the potential.

(iv) Control of ∇Ur and ∇Vr: Suppose that for every ε > 0 there exists Cε ≥ 0
such that

Ur|Vr|max{|P−
1
2

1 P∇Ur|, |P
− 1

2
1 P ∗∇Ur|}

≤ (1 + V 2
r + U2

r )
3
2 (ε(ReV )

1
2 + ε(ΦVr)

1
2 + Cε),

(1 + U2
r ) max{|P−

1
2

1 P∇Vr|, |P
− 1

2
1 P ∗∇Vr|}

≤ (1 + V 2
r + U2

r )
3
2 (ε(ReV )

1
2 + ε(ΦVr)

1
2 + Cε).

(3.3)

(v) Admissibility of weight w: Assume there exist κw, σw > 0 and Cw ≥ 0 such
that

|P−
1
2

1 P ∗∇(w2)| ≤ w2(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw). (3.4)

In Theorem 3.2 below, we introduce the weighted operator Tw using the repre-
sentation theorems in Section 2.2. The latter is done via the form

tw(f, g) := 〈P∇f,∇(gw2)〉+ 〈wV f,wg〉, Dom(tw) := Vw, (3.5)

where the space Vw is the closure of C∞0 (Ω) with respect to the norm

‖f‖2Vw := ‖P
1
2

1 ∇f‖2L2
w2

+ ‖|V | 12 f‖2L2
w2

+ ‖f‖2L2
w2

; (3.6)

see Lemma 4.1 for the extension of (3.5) from C∞0 (Ω) to Vw. In the sequel, we refer
to Tw as the Dirichlet realisation of −∇ · (P∇) + V in L2

w2(Ω) and write T := T1.

Theorem 3.2 (Dirichlet realisation of Tw). Let Assumption 3.1 be satisfied with
κw, σw, CP and Cs small enough such that there exists 0 < β < min{1/CP , 1/Cs}
satisfying the inequality

βκ2
w + (1− βCs)σ2

w <
4β(1− βCP )(1− βCs)

(1 + β)2
. (3.7)

Let the form tw be as in (3.5), let Vw be as in (3.6) and let Φ be as in (3.2). Then
there exists λ > 0 such that Theorems 2.1 and 2.2 hold for

a := tw + λ‖·‖2L2
w2
, V := Vw, Φ1 = Φ2 := βΦ, H := L2

w2(Ω).
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The operator Tw := A − λ in L2
w2(Ω), where A is obtained from Theorem 2.2, is

closed, has non-empty resolvent set and its domain is dense both in Vw and L2
w2(Ω).

Moreover, Tw is independent of λ with

Dom(Tw) =
{
f ∈ Vw : ∃ ηf ∈ L2

w2(Ω), ∀ g ∈ Vw, tw(f, g) = 〈ηf , g〉L2
w2

}
,

Twf = ηf .
(3.8)

Remark 3.3. (i) For the statement of Theorem 3.2, it is sufficient to assume
that (3.3) holds with ε ∈ (0, εcrit) and Cε ≥ 0. Here the critical value
εcrit > 0 depends on the remaining parameters κw, σw, Cw, CP and Cs,
as well as β in (3.7), and can be obtained from a thorough analysis of the
inequalities in the proof of Lemma 4.3; see also Lemma 4.12, where the
condition εV + εw < 2−

√
2 arises in a similar way.

(ii) For sectorial potentials V ∈ L1
loc(Ω), i.e. in the case Ur = Vr = 0, Assump-

tion 3.1 (iv) is trivially satisfied.
For regular purely imaginary potentials V = iVr, the condition (iv) in

Assumption 3.1 above can be substantially simplified. Indeed, it reduces
to assuming that for every ε > 0 there is Cε ≥ 0 such that

max{|P−
1
2

1 P∇Vr|, |P
− 1

2
1 P ∗∇Vr|} ≤ ε|Vr|

7
2 + Cε,

which improves the previously used assumption (1.1) (for P = ICd and
w = 1). The condition (3.7) on the weight also simplifies to

σw < max
0<β<1/CP

4β(1− βCP )

(1 + β)2
=

1

1 + CP
. (3.9)

In other words, in this particular case, assuming that σw < 1/(1 + CP ) is
sufficient for condition (3.7).

Employing a suitable weighted operator, the following theorem allows us to
construct bounded extensions of certain conjugations of the resolvent of the non-
weighted Dirichlet realisation T .

Theorem 3.4 (Boundedness of compositions). Let m1,m2, V : Ω → C and P :
Ω→ Cd×d be measurable, let m2 and V be such that

w :=
(|V |+ 1)

1
2

|m2|
∈W 1,∞

loc (Ω,R+)

is an admissible weight according to (3.4) and let the assumptions of Theorem 3.2
be satisfied with P , V and w. Let T be the Dirichlet realisation of −∇ · (P∇) + V
in L2(Ω) and assume that there exists C > 0 such that

|m1m2| ≤ C(|V |+ 1). (3.10)

Then there exists λ0 ∈ ρ(T ) and a bounded extension

m1(T − λ0)−1m2 ⊂ Sλ0
∈ B(L2(Ω)),

see Lemma 4.7 for the precise formula for Sλ0 .

Our next result gives a sufficient condition for the Schatten class of the resolvent
of Tw. Indeed, independently of the admissible weight, it is sufficient that the
embedding of the form domain of the (non-weighted) Dirichlet realisation in L2(Ω)
is of the respective Schatten class.

Theorem 3.5 (Schatten class of resolvent). Let the assumptions of Theorem 3.2
be satisfied, let Tw be the Dirichlet realisation of −∇ · (P∇) + V in L2

w2(Ω), let V1

be as in (3.6) with w = 1 and assume that

idV1 ∈ S2p(V1, L
2(Ω))
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for some p ∈ (0,∞]. Then

(Tw − λ)−1 ∈ Sp(L2
w2(Ω)), λ ∈ ρ(Tw).

If both the weighted operator Tw and the standard Dirichlet realisation T have
compact resolvent, their (discrete) spectra coincide and the (finite) algebraic mul-
tiplicities of their eigenvalues agree.

Theorem 3.6 (Invariance of discrete spectra). Let the assumptions of Theorem 3.2
be satisfied, let T and Tw, respectively, be the Dirichlet realisations of −∇ · (P∇) +
V in L2(Ω) and L2

w2(Ω). Suppose in addition that both T and Tw have compact
resolvent. Then their (discrete) spectra coincide and

ma(T, λ) = ma(Tw, λ), λ ∈ σ(T ) = σ(Tw), (3.11)

where ma(T, λ) and ma(Tw, λ), respectively, denote the (finite) algebraic multiplicity
of an eigenvalue λ of T and Tw.

Remark 3.7. (i) The resolvent of T and Tw is compact e.g. if

lim
R→∞

ess inf
|x|>R, x∈Ω

|V (x)| =∞ (3.12)

and P1 ≥ δP > 0 a.e. in Ω. This follows from Theorem 3.5 and a standard
compactness argument based on Rellich’s criterion, see [39, Thm. XIII.65,
XIII.67], which implies that V1 is compactly embedded in L2(Ω).

(ii) The invariance of a discrete eigenvalue λ ∈ σ(T ) remains valid also when the
resolvents of T and Tw are not compact if we assume in addition that λ stays
separated from the rest of the spectrum of Twα for α ∈ (0, 1] (see the proof of
Theorem 3.6). However, a simple example below (see Example 3.8), related
to an advection-diffusion operator, see [38, 15], shows that an eigenvalue
can disappear when touched by the essential spectrum.

Example 3.8. We sketch and slightly adapt an example in [31, Sec. VII.C].
Consider the standard self-adjoint realisation of T := −∂2

x + V in L2(R) with
V ∈ L∞(R;R) supported in [−1, 1] and assume there exists a simple eigenvalue
0 > λ0 ∈ σdisc(T ); the existence of such potential V follows by well-known min-
max arguments, see e.g. [39]. Note that it follows from the condition on the support
of V that the eigenfunction ψ0 corresponding to λ0 satisfies

ψ0(x) = exp(−
√
−λ0|x|), |x| > 1.

Consider the family of admissible weights wβ(x) = exp(βx), β, x ∈ R. We deter-
mine the essential spectrum of Twβ by passing to the following family of unitarily

equivalent operators in L2(R)

Sβ := wβTwβw
−1
β = −∂2

x + 2β∂x − β2 + V, Dom(Sβ) := W 2,2(R).

Then the Fourier transform and a stability argument for essential spectra yield

σei(Twβ ) = σei(Sβ) = {k2 − 2βik − β2 : k ∈ R}, i = 1, . . . , 4,

see e.g. [20, Sec. IX] for details. Note that if β2 ≥ |λ0|, then ψ0 /∈ L2
w2
β
(R). Since no

other solution of −ψ′′+V ψ = λ0ψ lies in L2
w2
β
(R) for β2 ≥ |λ0|, the eigenvalue λ0 is

lost when the essential spectrum of Twβ touches λ0 (which happens for β2 = |λ0|).

Our next result complements Theorem 3.9 on the invariance of discrete spectra.
If, in addition to the assumptions of the latter, the potential satisfies the growth
condition (3.12), then every generalised eigenfunction of T is also a generalised
eigenfunction of Tw. In particular, this provides information on the decay of the
eigenfunctions of the non-weighted operator T . The proof is based on a slight
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adaption of the Agmon type decay estimates in [30]. These can be extended also
for cases without (3.12), see [30] and [41, Appendix].

Theorem 3.9 (Invariance of generalised eigenfunctions). Let the Assumptions of
Theorem 3.6 be satisfied and suppose in addition that V satisfies (3.12). If λ ∈ σ(T )
and k ∈ N, then

ψ ∈ ker(T − λ)k =⇒ ψ ∈ ker(Tw − λ)k. (3.13)

In particular, all generalised eigenfunctions of T lie in L2
w2(Ω).

Our last result on the domain and graph norm separation of the weighted oper-
ators Tw requires the following additional set of assumptions.

Assumption 3.10. Let Assumption 3.1 hold. In addition, assume the following.

(i) Combined accretivity of V and P : Suppose there exists a set NV ⊂ Ω with
zero measure such that for all x ∈ Ω \NV and all ξ ∈ Cd

Re〈e−i arg V (x)P (x)ξ, ξ〉 ≥ 0. (3.14)

(ii) Control of ∇V : Let V ∈W 1,∞
loc (Ω) and assume that there exist εV > 0 and

CV ≥ 0 such that

max{|P−
1
2

1 P ∗∇V |, |P−
1
2

1 P ∗∇|V ||} ≤ εV |V |
3
2 + CV . (3.15)

(iii) Admissibility of the weight w: Assume there exist εw > 0 and Cw ≥ 0 with

|P−
1
2

1 P ∗∇(w2)| ≤ w2(εw|V |
1
2 + Cw). (3.16)

Remark 3.11. If (3.16) is satisfied, then (3.4) holds with σw = κw = εw. Moreover,
if P = P ∗, then assumption (3.15) implies that (with Ur = ReV and Vr = ImV )

Ur|Vr||P
1
2∇Ur| ≤ (1 + U2

r + V 2
r )

3
2

(
δ1εV

2
U

1
2
r +

εV
2δ1

(ΦVr)
1
2 +

CV
2

)
,

(1 + U2
r )|P 1

2∇Vr| ≤ (1 + U2
r + V 2

r )
3
2 (εV U

1
2
r + δ2(ΦVr)

1
2 + εV + CV ),

where δ1, δ2 > 0 can be arbitrary. The Assumptions of Theorem 3.2 are thus
satisfied if εV and εw are small enough, see Remark 3.3 (i). If moreover Ur =
o(|Vr| + 1) or |Vr| = o(|Ur| + 1) as |x| → ∞ in Ω, then even condition (3.3) is
satisfied (with arbitrarily small ε > 0).

In particular, in the special case V = iVr considered in Remark 3.3 (ii), the
above shows that assuming εw < 1/(1 + CP ) is sufficient for the assumptions of
Theorem 3.2; notice that then κw can be selected arbitrarily small.

Theorem 3.12 (Domain and graph norm separation). Let the assumptions of

Theorem 3.2 hold, let Assumption 3.10 be satisfied with εV + εw < 2 −
√

2 and
suppose in addition that P ∈W 1,∞(Ω)d×d and that P1 ≥ δP > 0 a.e. in Ω. Let Tw
be the Dirichlet realisation of −∇·(P∇)+V in L2

w2(Ω). Then there exists aV,w > 0
such that for all f ∈ Dom(Tw)

‖Twf‖L2
w2

+ ‖f‖L2
w2
≥ aV,w

(
‖∇ · (P∇f)‖L2

w2
+ ‖V f‖L2

w2
+ ‖f‖L2

w2

)
and as a consequence

Dom(Tw) = {f ∈ Vw : ∇ · (P∇f) ∈ L2
w2(Ω), V f ∈ L2

w2(Ω)}.
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4. Proofs

4.1. Weighted coercivity.

Lemma 4.1 (Boundedness of tw on Vw). Let Assumption 3.1 be satisfied and let
tw and Vw be as in (3.5) and (3.6), respectively. Then tw is a well-defined and
bounded form on Vw.

Proof. We show the boundedness on C∞0 (Ω), the claim then follow by density and
continuous extension. Let f ∈ C∞0 (Ω) and note that

〈P∇f,∇(fw2)〉 = 〈wP∇f, w∇f〉+ 〈P∇f, f∇(w2)〉

= ‖wP
1
2

1 ∇f‖2 + i〈wP2∇f, w∇f〉+ 〈P∇f, f∇(w2)〉.
(4.1)

Using (3.1), we have

|〈wP2∇f, w∇f〉| ≤ CP ‖wP
1
2

1 ∇f‖2 (4.2)

and from (3.4), Cauchy-Schwarz’ and Young’s inequalities, we obtain

|〈P∇f, f∇(w2)〉| ≤ 〈|P
1
2

1 ∇f |, |P
− 1

2
1 P ∗∇(w2)||f |〉

≤ 〈w|P
1
2

1 ∇f |, w(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw)|f |〉

. ‖wP
1
2

1 ∇f‖2 + ‖w(ReV )
1
2 f‖2 + ‖w|Vr|

1
2 f‖2 + ‖wf‖2.

(4.3)

From (4.2) and (4.3), we see that the right hand side of (4.1) is bounded by ‖f‖2Vw .
Hence, the boundedness of tw on Vw finally follows from

|〈wV f,wf〉| ≤ ‖w|V | 12 f‖2 ≤ ‖f‖2Vw . �

Lemma 4.2 (Boundedness of Φ on Vw). Let Assumption 3.1 be satisfied and let
the space Vw be defined in (3.6). Then the multiplication by Φ, defined as in (3.2),
is a bounded operator on Vw.

Proof. We show the claimed boundedness on C∞0 (Ω), the full claim then follows by
a density and continuity argument. Clearly |Φ| ≤ 1, thus for all f ∈ C∞0 (Ω),

‖w|V | 12 Φf‖+ ‖wΦf‖ ≤ ‖f‖Vw ,

and moreover

‖wP
1
2

1 ∇(Φf)‖ ≤ ‖wP
1
2

1 ∇f‖+ ‖wP
1
2

1 (∇Φ)f‖.
To estimate the second term above, one easily derives the identity

∇Φ =
(1 + U2

r )∇Vr − UrVr∇Ur
(1 + U2

r + V 2
r )

3
2

which using (3.3) implies that

max{|P−
1
2

1 P∇Φ|, |P−
1
2

1 P ∗∇Φ|} ≤ 2(ε(ReV )
1
2 + ε(ΦVr)

1
2 + Cε). (4.4)

Hence, applying Cauchy-Schwarz’ and Young’s inequalities with δ1, δ2, δ3 > 0, we
arrive at

‖wP
1
2

1 (∇Φ)f‖2 ≤ |〈wP (∇Φ)f, w(∇Φ)f〉| ≤ 〈w|P
1
2

1 (∇Φ)f |, w|P−
1
2

1 P ∗∇Φ||f |〉

≤ 2〈w|P
1
2

1 (∇Φ)f |, w(ε(ReV )
1
2 + ε(ΦVr)

1
2 + Cε)|f |〉

≤ (εδ1 + εδ2 + Cεδ3)‖wP
1
2

1 (∇Φ)f‖2 +
ε

δ1
‖w(ReV )

1
2 f‖2

+
ε

δ2
‖w(ΦVr)

1
2 f‖2 +

Cε
δ3
‖wf‖2.
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Note that the full generality of the above inequality will be useful only later in the
proof of Lemma 4.3. Choosing δ1, δ2 and δ3 small enough such that

0 < η1 := εδ1 + εδ2 + Cεδ3 < 1 (4.5)

leads to the estimate

(1− η1)‖wP
1
2

1 (∇Φ)f‖2 ≤ ε

δ1
‖w(ReV )

1
2 f‖2 +

ε

δ2
‖w(ΦVr)

1
2 f‖2 +

Cε
δ3
‖wf‖2 (4.6)

and thus to the boundedness of the multiplication by Φ on Vw by combining the
estimates above. �

Lemma 4.3 (Generalised weighted coercivity of tw). Let the assumptions of The-
orem 3.2 be satisfied. Then there exist m1,m2, γ1, γ2 > 0 (depending continuously
on β and the parameters ε, κw, σw, Cε, Cw, CP and Cs) such that, for all f ∈ Vw,

Re tw(f, f) + Im tw(βΦf, f) + γ1‖wf‖2 ≥ m1‖f‖2Vw ,
Re tw(f, f) + Im tw(f, βΦf) + γ2‖wf‖2 ≥ m2‖f‖2Vw .

(4.7)

Remark 4.4. The proof of Lemma 4.3 provides more information on the constants
in (4.7). More precisely, we therein prove the following sufficient claim. For every
ε > 0 there exist γ1(ε), γ2(ε) > 0 such that

Re tw(f, f) + Im tw(βΦf, f) + γ1(ε)‖wf‖2

≥ (1− µ1 − ε)‖wP
1
2

1 ∇f‖2 + (1− µ2 − ε)‖w(ReV )
1
2 f‖2

+ (β − µ3 − ε)‖w(ΦVr)
1
2 f‖2,

Re tw(f, f) + Im tw(f, βΦf) + γ2(ε)‖wf‖2

≥ (1− µ1 − ε)‖wP
1
2

1 ∇f‖2 + (1− µ2 − ε)‖w(ReV )
1
2 f‖2

+ (β − µ3 − ε)‖w(ΦVr)
1
2 f‖2.

Here the constants µ1, µ2 ∈ (0, 1) and µ3 ∈ (0, β) are given by

µ1 := (1 + β)(δκw + δ′σw) + βCP , µ2 :=
(1 + β)κw

4δ
+ βCs, µ3 :=

(1 + β)σw
4δ′

,

where δ, δ′ > 0 are such that the following inequalities are satisfied

δ >
κw(1 + β)

4(1− βCs)
, δ′ >

σw(1 + β)

4β
, δκw + δ′σw <

1− βCP
1 + β

.

We point out that the existence of δ, δ′ > 0 satisfying the above inequalities is
equivalent to the assumption (3.7).

Proof. We show the estimates in (4.7) for f ∈ C∞0 (Ω), the full claim then follows
by density and continuity. We start by estimating Re tw(f, f). Taking the real part
of (3.5) and using (4.1), we obtain

Re tw(f, f) ≥ ‖wP
1
2

1 ∇f‖2 + ‖w(ReV )
1
2 f‖2 − |〈P∇f, f∇(w2)〉|. (4.8)

By the second row of (4.3), we further have

|〈P∇f, f∇(w2)〉| ≤ 〈w|P
1
2

1 ∇f |, w(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw)|f |〉. (4.9)

In order to estimate Im tw(Φf, f), we use Assumption 3.1 (iii) to derive

Im tw(Φf, f) = Im〈P∇(Φf),∇(fw2)〉+ Im〈wV Φf, wf〉

≥ ‖w(ΦVr)
1
2 f‖2 − Cs‖w(ReV )

1
2 f‖2

− | Im〈P∇(Φf),∇(fw2)〉|

(4.10)
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and further using the product rule

| Im〈P∇(Φf),∇(fw2)〉| ≤ |〈wP2(∇f)Φ, w∇f〉|+ |〈P (∇f)Φ, f∇(w2)〉|
+ |〈wP (∇Φ)f, w∇f〉|+ |〈P (∇Φ)f, f∇(w2)〉|.

(4.11)

We split Φ = Φ+ −Φ− where both Φ± ≥ 0 and Φ+ ·Φ− = 0 and estimate the first
term on the right of (4.11) using (3.1) and Φ+ + Φ− = |Φ| ≤ 1

|〈wP2(∇f)Φ, w∇f〉| ≤ |〈wP2(∇f)Φ+, w∇f〉|+ |〈wP2(∇f)Φ−, w∇f〉|
≤ CP 〈wP1(∇f)(Φ+ + Φ−), w∇f〉

≤ CP ‖wP
1
2

1 ∇f‖2.
(4.12)

Using that |Φ| ≤ 1, the second term on the right of (4.11) can be estimated analo-
gously to (4.3) and it gives

|〈P (∇f)Φ, f∇(w2)〉| ≤ 〈w|P
1
2

1 ∇f |, w(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw)|f |〉. (4.13)

We estimate the third term on the right of (4.11) as follows using (4.4)

|〈wP (∇Φ)f, w∇f〉| ≤ 〈w|P−
1
2

1 P∇Φ||f |, w|P
1
2

1 ∇f |〉

≤ 2〈w(ε(ReV )
1
2 + ε(ΦVr)

1
2 + Cε)|f |, w|P

1
2

1 ∇f |〉.
(4.14)

For the fourth term in (4.11), we use (3.4), Cauchy-Schwarz’ and Young’s inequal-
ities with δ4, δ5, δ6 > 0 to obtain

|〈P (∇Φ)f, f∇(w2)〉| ≤ 〈|P
1
2

1 (∇Φ)f |, |P−
1
2

1 P ∗∇(w2)||f |〉

≤ 〈w|P
1
2

1 (∇Φ)f |, w(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw)|f |〉

≤
(
κw
4δ4

+
σw
4δ5

+
Cw
4δ6

)
‖wP

1
2

1 (∇Φ)f‖2 + κwδ4‖w(ReV )
1
2 f‖2

+ σwδ5‖w(ΦVr)
1
2 f‖2 + Cwδ6‖wf‖2.

Using (4.6) with δ1, δ2, δ3 > 0, this leads to

|〈P (∇Φ)f, f∇(w2)〉| ≤ η3‖w(ReV )
1
2 f‖2 + η4‖w(ΦVr)

1
2 f‖2 + η5‖wf‖2 (4.15)

where we require η1 < 1, see (4.5), and we have set η2, η3, η4, η5 > 0 to be

η2 :=
1

1− η1

(
κw
4δ4

+
σw
4δ5

+
Cw
4δ6

)
, η3 := κwδ4 + η2

ε

δ1
,

η4 := σwδ5 + η2
ε

δ2
, η5 := Cwδ6 + η2

Cε
δ3
.

Combining (4.8) – (4.14) and (4.15), we arrive at

Re tw(f, f) + Im tw(βΦf, f)

≥ (1− βCP )‖wP
1
2

1 ∇f‖2 + (1− β(Cs + η3))‖w(ReV )
1
2 f‖2

+ β(1− η4)‖w(ΦVr)
1
2 f‖2

− (κw + β(κw + 2ε))〈w|P
1
2

1 ∇f |, w(ReV )
1
2 |f |〉

− (σw + β(σw + 2ε))〈w|P
1
2

1 ∇f |, w(ΦVr)
1
2 |f |〉

− (Cw + β(Cw + 2Cε))〈w|P
1
2

1 ∇f |, w|f |〉.
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Using Cauchy-Schwarz’ and Young’s inequalities with δ7, δ8, δ9 > 0, we therefrom
finally obtain the estimate

Re tw(f, f) + Im tw(βΦf, f) + η9‖wf‖2

≥ (1− η6) ‖wP
1
2

1 ∇f‖2 + (1− η7)‖w(ReV )
1
2 f‖2 + (β − η8)‖w(ΦVr)

1
2 f‖2

with the constants η6, η7, η8, η9 > 0 given by

η6 := βCP + δ7(κw + β(κw + 2ε)) + δ8(σw + β(σw + 2ε)) + δ9(Cw + β(Cw + 2Cε)),

η7 :=
1

4δ7
(κw + β(κw + 2ε)) + β(Cs + η3),

η8 :=
1

4δ8
(σw + β(σw + 2ε)) + βη4,

η9 :=
1

4δ9
(Cw + β(Cw + 2Cε)).

From (3.7) it follows elementarily that one can select δ7 and δ8 such that

δ7 >
κw(1 + β)

4(1− βCs)
, δ8 >

σw(1 + β)

4β
, δ7κw + δ8σw <

1− βCP
1 + β

(4.16)

are satisfied. We fix δ7 and δ8 as above. In view of Assumption 3.1 (iv), by an
arbitrarily small choice of ε, it is not difficult to check that (for fixed δ1, . . . , δ6)
the constants η3 and η4 can be selected arbitrarily small. Considering (4.16), one
can thus achieve that η6, η7 < 1 and η8 < β by a sufficiently small choice of ε. The
constants in (4.7) can then be chosen as

m1 := min{1− η6, 1− η7, β − η8} > 0, γ1 := η9 +m1 > 0.

Their continuous dependence on the parameters therein is obvious.
To verify the second inequality in (4.7), we analogously to (4.10) estimate

Im tw(f,Φf) ≥ ‖w(VrΦ)
1
2 f‖2 − Cs‖w(ReV )

1
2 f‖2 − | Im〈P∇f,∇(Φfw2)〉|. (4.17)

Next we estimate the third term using the product rule

| Im〈P∇f,∇(Φfw2)〉| ≤ |〈wP∇f, w(∇Φ)f〉|+ |〈wP2∇f, wΦ∇f〉|
+ |〈P∇f,Φf∇(w2)〉|.

(4.18)

The second and third term on the right of (4.18) have appeared before in (4.12)
and (4.13). For the first term, we use (4.4) to arrive at

|〈wP∇f, w(∇Φ)f〉| ≤ 〈w|P
1
2

1 ∇f |, w|P
− 1

2
1 P ∗∇Φ||f |〉

≤ 2〈w|P
1
2

1 ∇f |, w(ε(ReV )
1
2 + ε(ΦVr)

1
2 + Cε)|f |〉.

(4.19)

Combing the estimates (4.8), (4.9), (4.17) – (4.19), (4.12) and (4.13), we deduce

Re tw(f, f) + Im tw(f, βΦf)

≥ (1− βCP )‖wP
1
2

1 ∇f‖2 + (1− βCs)‖w(ReV )
1
2 f‖2 + β‖w(ΦVr)

1
2 f‖2

− (κw + β(κw + 2ε))〈w|P
1
2

1 ∇f |, w(ReV )
1
2 |f |〉

− (σw + β(σw + 2ε))〈w|P
1
2

1 ∇f |, w(ΦVr)
1
2 |f |〉

− (Cw + β(Cw + 2Cε))〈w|P
1
2

1 ∇f |, w|f |〉.
We can thus employ Cauchy-Schwarz’ and Young’s inequalities with δ10, δ11, δ12 < 0
to finally arrive at

Re tw(f, f) + Im tw(f, βΦf) + η13‖wf‖2

≥ (1− η10) ‖wP
1
2

1 (∇f)‖2 + (1− η11)‖w(ReV )
1
2 f‖2 + (β − η12)‖w(ΦVr)

1
2 f‖2
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with the following constants

η10 := βCP + δ10(κw + β(κw + 2ε)) + δ11(σw + β(σw + 2ε))

+ δ12(Cw + β(Cw + 2Cε)),

η11 :=
1

4δ10
(κw + β(κw + 2ε)) + βCs,

η12 :=
1

4δ11
(σw + β(σw + 2ε)),

η13 :=
1

4δ12
(Cw + β(Cw + 2Cε)).

The justification of the second inequality in (4.7) is now analogous to the first
one. �

Proof of Theorem 3.2. Setting λ := max{γ1, γ2} and m := min{m1,m2}, the as-
sumptions of Theorem 2.1 are justified by the Lemmas 4.1, 4.2, 4.3, the observation

|a(f, f)|+ |a(βΦf, f)| ≥ Re tw(f, f) + Im tw(βΦf, f) + λ‖wf‖2

and the analogous estimate for the second inequality in (4.7). Moreover, since
the multiplication by the bounded function Φ extends boundedly to L2

w2(Ω), the
assumptions of Theorem 2.2 are also satisfied. The description of Tw in (3.8) and
the claimed independence on λ are then obvious from (2.4). �

4.2. Boundedness of compositions.

Lemma 4.5 (Inclusion of W 1,∞
comp(Ω) in Vw). Let Assumption 3.1 be satisfied. Then

W 1,∞
comp(Ω) := {f ∈W 1,∞(Ω) : supp f compact in Ω} (4.20)

is a (dense) subspace of Vw and the formulas (3.5), (3.6) remain valid on W 1,∞
comp(Ω).

Proof. Fix f ∈ W 1,∞
comp(Ω). Let ε > 0, let φε be a standard mollifier on Rd and set

fε := f ∗ φε, cf. [1, Def. 2.28, Thm. 2.29]. Then fε ∈ C∞0 (Ω) and supp fε ⊂ K
for sufficiently small ε, where K is compact in Ω and independent of ε. Moreover,
fε → f in L2(Ω) as ε→ 0 and

‖fε‖∞ ≤ ‖f‖∞, ‖∇fε‖∞ = ‖∇f ∗ φε‖∞ ≤ ‖∇f‖∞ (4.21)

due to the boundedness of f and ∇f . While the local boundedness of ω clearly
implies wfε → wf in L2(Ω) as ε→ 0, the limits∫

Ω

|V ||f − fε|2w2dx→ 0,

∫
〈P1∇(f − fε),∇(f − fε)〉Cnw2dx→ 0, ε→ 0

follow from the dominated convergence theorem, see e.g. [1, Thm. 1.50], the bounds
in (4.21), V ∈ L1

loc(Ω), P ∈ L1
loc(Ω)d×d, supp fε ⊂ K (and extracting an a.e.

pointwise convergent subsequence of fε). Altogether, this proves that fε → f in
Vw as ε→ 0, and in consequence f ∈ Vw with its norm given in (3.6). The validity
of the formula (3.5) for f, g ∈ W 1,∞

comp(Ω) then follows from the continuity of both
sides with respect to convergence in Vw, cf. the proof of Lemma 4.1. �

Lemma 4.6 (Extension property for comparable weights). Let the assumptions
of Theorem 3.2 be satisfied with two admissible weights w1 and w2. Assume that
w1 ≤ Cw2 with some C > 0. Then

tw1
(f, w2

2g) = tw2
(f, w2

1g), f ∈ Vw2
, g ∈W 1,∞

comp(Ω),

see (4.20), where tw1 and tw2 are as in (3.5). Moreover, let Tw1 and Tw2 be the
Dirichlet realisations of −∇ · (P∇) + V in L2

w2
1
(Ω) and L2

w2
2
(Ω), respectively. Then

Tw2 ⊂ Tw1 .
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Proof. Clearly, the assumptions on w1 and w2 imply

g ∈W 1,∞
comp(Ω) =⇒ w2

1g, w
2
2g ∈W 1,∞

comp(Ω).

Due to Lemma 4.5, we thus have

tw1(f, w2
2g) = 〈P∇f,∇(w2

1w
2
2g)〉+ 〈V f,w2

1w
2
2g〉 = tw2(f, w2

1g)

for f, g ∈W 1,∞(Ω) with compact support. Since w1 ≤ Cw2 a.e. in Ω, by construc-
tion Vw2

is boundedly embedded in Vw1
. Hence, the above identity is continuous in f

with respect to ‖·‖Vw2
and can thus be extended to all f ∈ Vw2 . For f ∈ Dom(Tw2),

this gives

tw1(f, g) = 〈Tw2f, w
2
1w
−2
2 g〉L2

w2
2

= 〈Tf, g〉L2

w2
1

, g ∈ C∞0 (Ω),

which, since Tw2f ∈ L2
w2

2
(Ω) ⊂ L2

w2
1
(Ω) and since C∞0 (Ω) is dense in Vw1 , implies

that f ∈ Dom(Tw1
) with Tw1

f = Tw2
f . �

Lemma 4.7 (Construction of extension Sλ). Let the assumptions of Theorem 3.4
be satisfied and let Tw be the Dirichlet realisation of −∇ · (P∇) + V in L2

w2(Ω).
Then

Sλ := m1(T̂w − λ id∗Vw idVw)−1m̃2 ∈ B(L2(Ω)), λ ∈ ρ(Tw), (4.22)

see also (2.2), where m̃2 is defined as

〈m̃2f, ·〉V∗w×Vw := 〈wm2f, w·〉 ∈ V∗w, f ∈ L2(Ω). (4.23)

Proof. We show that (4.23) indeed defines a bounded functional on Vw. This follows
from the fact that, for f ∈ L2(Ω) and g ∈ C∞0 (Ω), the choice of w and Cauchy
Schwarz’ inequality give

|〈m̃2f, g〉V∗w×Vw | ≤ ‖f‖‖w(|V |+ 1)
1
2 g‖ ≤ ‖f‖‖g‖Vw .

The above, however, implies m̃2 ∈ B(L2(Ω),V∗w) by the density of C∞0 (Ω) in Vw.
We now fix λ ∈ ρ(Tw). By Theorem 3.2, there exists λ0 ∈ ρ(Tw) with

(T̂w − λ0 id∗Vw idVw)−1 ∈ B(V∗w,Vw).

Using the resolvent identity,

(Tw − λ)−1 = (Tw − λ0)−1 + (λ− λ0)(Tw − λ)−1(Tw − λ0)−1 ⊂ R

where the extension R ∈ B(V∗w,Vw) is given by

R := (T̂w − λ0 id∗Vw idVw)−1 + (λ− λ0)(Tw − λ)−1(T̂w − λ0 id∗Vw idVw)−1.

From the boundedness of the compositions

R(T̂w − λ id∗Vw idVw) ∈ B(Vw), (T̂w − λ id∗Vw idVw)R ∈ B(V∗w),

and the fact that they equal idVw on the dense subspace Dom(Tw) of Vw, and idV∗w
on the dense subspace L2

w2(Ω) of V∗w, respectively, we infer

R = (T̂w − λ id∗Vw idVw)−1 ∈ B(V∗w,Vw).

Finally, from (3.10) and the choice of w it follows that

‖m1f‖ . ‖w(|V |+ 1)
1
2 f‖ ≤ ‖f‖Vw , f ∈ Vw,

i.e. that m1 ∈ B(Vw, L2(Ω)). Altogether, this shows that Sλ ∈ B(L2(Ω)). �
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Proof of Theorem 3.4. With Sλ defined as in (4.22), we show that

m1(T − λ)−1m2 ⊂ Sλ, λ ∈ ρ(T ) ∩ ρ(Tw).

To this end, it is clearly sufficient to show that

(T − λ)−1m2 ⊂ (T̂w − λ id∗Vw idVw)−1m̃2. (4.24)

We define an auxiliary weighted operator with bounded weight

w̃ := χ1(w) ∈W 1,∞(Ω;R+),

where χ1 is the cut-off defined in (4.43) below. One can then easily show that
w̃ satisfies condition (3.4) (with the same constants κw, σw and Cw), is thus an
admissible weight and the operator Tw̃ in L2

w̃2(Ω) is well-defined by Theorem 3.2.
Moreover, T ⊂ Tw̃ by Lemma 4.6.

In order to show (4.24), let f ∈ Dom((T − λ)−1m2), i.e. let f ∈ L2(Ω) with
m2f ∈ L2(Ω). Since w̃ ≤ w, also Vw ⊂ Vw̃ by construction and

u := (T̂w − λ id∗Vw idVw)−1m̃2f ∈ Vw ⊂ Vw̃.

For g ∈ C∞0 (Ω), we have g̃ := w̃2w−2g ∈ W 1,∞
comp(Ω) ⊂ Vw and we can thus use

Lemma 4.6 to derive the identity

〈(T̂w̃ − λ id∗Vw̃ idVw̃)u, g〉V∗
w̃
×Vw̃ = tw̃(u, g)− λ〈u, g〉L2

w̃2

= tw(u, g̃)− λ〈u, g̃〉L2
w2

= 〈(T̂w − λ id∗Vw idVw)u, g̃〉V∗w×Vw
= 〈m̃2f, g̃〉V∗w×Vw
= 〈w̃m2f, w̃g〉.

(4.25)

Since m2f ∈ L2(Ω) ⊂ L2
w̃2(Ω) due to the boundedness of w̃, (4.25) implies

u ∈ Dom(Tw̃), (Tw̃ − λ)u = m2f.

However, since T ⊂ Tw̃ and m2f ∈ L2(Ω) = Ran(T − λ), we conclude

u ∈ Dom(T ), (T − λ)u = m2f.

By the bijectivity of T −λ, this gives u = (T −λ)−1m2f , and thus (4.24) is proven.
It remains to explain that the extension Sλ defined in Lemma 4.7 can always be

found, i.e. that ρ(T ) ∩ ρ(Tw) 6= ∅. This however, can easily be seen from the proof
of Theorem 3.2 and the application of Lemma 4.3 therein, since there it is clear
that λ ∈ ρ(T ) ∩ ρ(Tw) if λ > 0 is sufficiently large. �

4.3. Schatten classes.

Lemma 4.8 (Holomorphic families of generalised coercive forms). Let V be a
Hilbert space and let {tα : α ∈ Θ} be a holomorphic family of bounded sesquilinear
forms on V. Suppose there exists λ ∈ C such that aα := tα + λ‖ · ‖2H satisfies the
assumptions of Theorem 2.1 for all α ∈ Θ (where Φα1 ,Φ

α
2 ∈ B(V) and mα > 0

therein possibly depend on α). Let V be continuously embedded and dense in an-
other Hilbert space H and assume that Φα1 , Φα2 extend boundedly to H. Then the
operators Tα := Aα − λ in H, where Aα is defined as in Theorem 2.2, form a
holomorphic family on Θ (in the sense of [29, Chap. 7]).

Proof. We first point out that the operators Âα ∈ B(V,V∗) corresponding to aα,
see also (2.2), clearly form a holomorphic family of bounded operators on Θ. The
bounded inverse of the operator Aα given in Theorem 2.2 is then obtained by the
composition

Uα := (Tα + λ)−1 = A−1
α = idV Â

−1
α id∗V ∈ B(H).
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The above not only shows that Tα is closed in H, but most importantly that the
resolvent Uα is a holomorphic family of bounded operators on Θ, see [29, Sec.
VII.1.1]. Setting X = Y = Z := H and observing that

TαUα = idH−λUα =: Vα,

where Vα is clearly bounded holomorphic as well, we conclude that Tα is a holo-
morphic family according to the definition in [29, Sec. VII.1.2]. �

Lemma 4.9 (Boundedness of wα and w−α). Let Assumption 3.1 be satisfied and

let α ∈ C. Then wReα ∈W 1,∞
loc (Ω;R+) satisfies Assumption 3.1 (v), more precisely,

|P−
1
2

1 P ∗∇(w2 Reα)| ≤ w2 Reα|Reα|(κw(ReV )
1
2 + σw(ΦVr)

1
2 + Cw). (4.26)

Moreover, V1 and VwReα defined as in (3.6) are isomorphic via

wα ∈ B(VwReα ,V1), w−α ∈ B(V1,VwReα). (4.27)

Proof. The claimed regularity of wReα follows from w ∈W 1,∞
loc (Ω;R+) and

∇(w2 Reα) = 2 Reαw2 Reα−1∇w = Reαw2(Reα−1)∇(w2),

which, using the assumption (3.4), gives the bound in (4.26).
In order to prove the first boundedness claim in (4.27), we start by showing the

required inequality for f ∈ C∞0 (Ω). We estimate

‖wαf‖2V1 = ‖P
1
2

1 ∇(wαf)‖2 + ‖|V | 12wαf‖2 + ‖wαf‖2

. ‖P
1
2

1 ∇(wα)f‖2 + ‖f‖2VwReα

(4.28)

and notice that wαf ∈ W 1,∞
comp(Ω), such that the norm on the left hand side is

well-defined by Lemma 4.5. Using

∇(wα) = αwα−1∇w =
α

2
wα−2∇(w2), (4.29)

relation (3.4), Cauchy Schwarz’ and Young’s inequalities with δ > 0, it follows that

‖P
1
2

1 ∇(wα)f‖2

≤ |〈P ∗∇(wα)f,∇(wα)f〉|

≤ 〈|P−
1
2

1 P ∗∇(wα)||f |, |P
1
2

1 ∇(wα)f |〉

≤ |α|
2
〈wReα(κw(ReV )

1
2 + σw(ΦVr)

1
2 + Cw)|f |, |P

1
2

1 ∇(wα)f |〉

≤ 3|α|
8δ

(
κw‖wReα(ReV )

1
2 f‖2 + σw‖wReα(ΦVr)

1
2 f‖2

)
+

3|α|
8δ

Cw‖wReαf‖2 +
3|α|δ

2
‖P

1
2

1 ∇(wα)f‖2.

(4.30)

Hence, choosing δ small enough such that 3|α|δ < 2 and combining (4.28) with
(4.30), we find that there exists Cα > 0 with

‖wαf‖2V1 ≤ Cα‖f‖
2
VwReα

, f ∈ C∞0 (Ω). (4.31)

The full claim in (4.27) now follows from a standard density argument. To see this,
let f ∈ VwReα such that {fn}n ⊂ C∞0 (Ω) converges to f in VwReα . Then wReαfn
converges to wReαf in L2(Ω), which implies the L2(Ω) convergence of

wαfn = wi ImαwReαfn → wαf, n→∞. (4.32)

On the other hand, from (4.31) it follows that wαfn is a Cauchy sequence in V1 and
thus has a limit g ∈ V1. In particular, wαfn converges to g in L2(Ω), thus wαf = g
in view of (4.32). The inequality (4.31) hence extends to V1 due to continuity of
both sides.
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In order to show the second claim in (4.27), we proceed in a similar way. For
f ∈ C∞0 (Ω), we estimate

‖w−αf‖2VwReα
= ‖wReαP

1
2

1 ∇(w−αf)‖2 + ‖w−i Imα|V | 12 f‖2 + ‖w−i Imαf‖2

. ‖wReαP
1
2

1 ∇(w−α)f‖2 + ‖f‖2V1 .
(4.33)

Analogously to (4.30), using (4.29) with −α instead of α, (3.4), Cauchy-Schwarz’
and Young’s inequalities with δ > 0, we then obtain

‖wReαP
1
2

1 ∇(w−α)f‖2

≤ 3|α|δ
2
‖wReαP

1
2

1 ∇(w−α)f‖2 +
3|α|
8δ

(
κw‖w−i Imα(ReV )

1
2 f‖2

+σw‖w−i Imα(ΦVr)
1
2 f‖2 + Cw‖w−i Imαf‖2

)
.

(4.34)

As before, the second claim in (4.27) then follows from (4.33) and (4.34) by density
and continuity. �

Lemma 4.10 (Unitary equivalence of TwReα and Sα). Let the assumptions of
Theorem 3.2 be satisfied, let V1 be as in (3.6) and define a family {sα : α ∈ C} of
bounded sesquilinear forms on V1 by

sα(f, g) := twReα(w−αf, w−αg), f, g ∈ V1,

where twReα is as in (3.5), cf. Lemma 4.9. Then there exist δ > 0 and λ ≥ 0 such
that the forms

aα := sα + λ‖ · ‖2, α ∈Mδ := {z ∈ C : |Reα| < 1 + δ, | Imλ| < δ},

satisfy the assumptions of Theorem 2.1. Moreover, the operators {Sα : α ∈ Mδ},
where Aα in L2(Ω) is defined according to Theorem 2.2 and Sα := Aα − λ, form
an analytic family in the sense of [29, Chap. 7]. For fixed α ∈ Mδ, the operators
Sα and TwReα , where TwReα in L2

w2Reα is defined as in Theorem 3.2, are unitarily
equivalent via the identity

Sα = wαTwReαw−α. (4.35)

Proof. Clearly, wReα is an admissible weight by Lemma 4.9, in particular it satisfies
condition (3.4) with κw, σw and Cw replaced by

κα := |Reα|κw, σα := |Reα|σw, Cα := |Reα|Cw, (4.36)

see (4.26). Hence, from Lemmas 4.1 and 4.9, it follows that the forms sα are
well-defined and bounded on V1 for all α ∈ C.

We proceed by showing that the latter family of bounded (everywhere defined)
forms depends analytically on the parameter α ∈Mδ (for arbitrary δ > 0). To this
end, it suffices to prove that the mapping

Mδ 3 α 7→ ‖sα‖ = sup
f,g∈V1

|sα(f, g)|
‖f‖V1‖g‖V1

(4.37)

is locally bounded and that the scalar functions sα(f, f) are holomorphic in α
for every f ∈ C∞0 (Ω), see [29, Sec. VII.1.1, Sec. III.3.1]. The local boundedness
of (4.37) follows since by (4.36) the constants provided by the inequalities in the
proofs of Lemmas 4.1, 4.9, and thus the norm ‖sα‖, depend continuously on α. To
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show the claimed holomorphy, let f ∈ C∞0 (Ω). We start by deriving

〈P∇(w−αf),∇(fwα)〉
= 〈P (−αw−α−1(∇w)f + w−α∇f), (∇f)wα + fαwα−1∇w〉
= α

(
〈P∇f, w−1(∇w)f〉 − 〈w−1P (∇w)f,∇f〉

)
− α2〈w−1P (∇w)f, w−1(∇w)f〉+ 〈P∇f,∇f〉.

(4.38)

Since w−αf ∈W 1,∞(Ω) has compact support in Ω, we can use Lemma 4.5 to derive

sα(f, f) =

∫
Ω

〈P∇(w−αf),∇(w−αfw2 Reα)〉Cddx+

∫
Ω

V |w−αf |2w2 Reαdx

= 〈P∇(w−αf),∇(fwα)〉Cddx+

∫
Ω

V |f |2dx.

(4.39)

Combining (4.38) and (4.39) then yields the claim.
Next we choose δ > 0 small enough such that there exists β0 > 0 such that, for

all α ∈ Mδ, condition (3.7) holds with κα and σα instead of κw and σw. In view
of (4.36), this is possible by the continuity of (3.7) in κw, σw and β. Hence, by
Theorem 3.2 applied to twReα for α ∈Mδ, there exist λ ≥ 0, m > 0 such that

|twReα(f, f) + λ‖wReαf‖2|
+|twReα(β0Φf, f) + λ〈wReαβ0Φf, wReαf〉| ≥ m‖f‖2VwReα

,

|twReα(f, f) + λ‖wReαf‖2|
+|twReα(f, β0Φf) + λ〈wReαf, wReαβ0Φf〉| ≥ m‖f‖2VwReα

,

(4.40)

for all f ∈ VwReα . Notice that since Mδ is compact and λα, mα in Theorem 3.2
depend continuously on α, the constants λ and m in the above inequalities can be
chosen independently of α, see also Lemma 4.3. By Lemma 4.9, wα ∈ B(VwReα ,V1)
is boundedly invertible, thus from (4.40) with g = wαf ∈ V1, we arrive at the lower
estimates

|sα(g, g) + λ‖g‖2|+ |sα(β0Φg, g) + λ〈β0Φg, g〉| ≥ m‖wα‖−2‖g‖2V1 ,
|sα(g, g) + λ‖g‖2|+ |sα(g, β0Φg) + λ〈g, β0Φg〉| ≥ m‖wα‖−2‖g‖2V1 ,

g ∈ V1,

where ‖wα‖ denotes the norm of the isomorphism wα : VwReα → V1 and

Φ = wαΦw−α ∈ B(V1).

In other words, for every α ∈Mδ, the form aα := sα + λ‖ · ‖2 satisfies the assump-
tions of Theorem 2.1. Since the multiplication by the bounded function Φ extends
boundedly to L2(Ω), the family {Aα : α ∈ Mδ} of associated operators in L2(Ω)
is well-defined and holomorphic by Lemma 4.8. The holomorphy of Sα = Aα − λ
is now immediate.

It remains to show the identity (4.35), which then, since

wα ∈ B(L2
w2Reα(Ω), L2(Ω))

is unitary, yields the unitary equivalence of Sα and TwReα . To this end, we consider
f ∈ Dom(Sα) with Sαf =: η ∈ L2(Ω). By definition, this is equivalent to

∀g ∈ V1, sα(f, g) = 〈η, g〉.

Using the definition of sα, the bijectivity of wα : VwReα → V1 by Lemma 4.9, setting
u := w−αf ∈ VwReα and ξ := w−αη ∈ L2

w2Reα(Ω), this in turn is equivalent to

∀v ∈ V1, twReα(u, v) = 〈wi Imαξ, wi Imαv〉L2
w2Reα

= 〈ξ, v〉L2
w2Reα

.



20 BORBALA GERHAT AND PETR SIEGL

The above, however, by definition means u ∈ Dom(TwReα) with TwReαu = ξ. We
have thus shown that f ∈ Dom(Sα) if and only if

f = wαu ∈ wαDom(TwReα) = Dom(wαTwReαw−α)

and that then

Sαf = η = wαξ = wαTwReαu = wαTwReαw−αf. �

Proof of Theorem 3.5. Let Tw and S1 = wTww
−1, respectively, be as in Theo-

rem 3.2 and Lemma 4.10 and consider λ ∈ ρ(S1) = ρ(Tw). By construction, the
resolvent of S1 is given by

(S1 − λ)−1 = idV1(Ŝ1 − λ idV1 id∗V1)−1 id∗V1 , (4.41)

see also (2.2). Since idV ∈ S2p(V1, L
2(Ω)) and thus id∗V ∈ S2p(L

2(Ω),V∗1 ), it fol-
lows from the identity (4.41), the ideal property of Schatten classes and Hölder’s
inequality for Schatten classes, see e.g. [46, Thm. 3.23], that

‖(S1 − λ)−1‖Sp ≤ 2
1
p ‖ idV1 ‖S2p‖(Ŝ1 − λ idV1 id∗V1)−1 id∗V1 ‖S2p <∞.

The claim is now immediate from the unitary equivalence of S1 and Tw. �

4.4. Invariance of discrete spectra and eigenfunctions.

Proof of Theorem 3.6. Let Sα, α ∈Mε be the analytic family in Lemma 4.10. From
the unitary equivalence Tw = w−1S1w and the assumption on the compactness of
the resolvents of T and Tw, we have

σ(T ) = σdisc(T ), σ(Tw) = σdisc(Tw) = σdisc(S1) = σ(S1), (4.42)

with coinciding algebraic multiplicities in the second identity. Moreover, for µ ∈ R,
again by unitary equivalence it follows that

ma(λ, Siµ) = ma(λ, T ), λ ∈ σdisc(Siµ) = σdisc(wiµTw−iµ) = σdisc(T ),

i.e. the discrete eigenvalues of Sα are constant for α ∈ iR. Since the latter are
analytic functions in α due to the holomorphy of Sα, see [29, Sec. VII.1.3, Thm.
VII.1.8], the discrete eigenvalues of Sα and their multiplicities remain constant on
Mδ by the identity theorem for holomorphic functions. In view of (4.42), this in
particular implies (3.11). �

Proof of Theorem 3.9. We point out that, since P1 is uniformly bounded below,
one can show with a standard approximation argument that, for any admissible
weight w,

Vw = {f ∈ L2
w2(Ω) : ∇f, P

1
2

1 ∇f ∈ L2
w2(Ω)d, |V | 12 f ∈ L2

w2(Ω)}

holds and the formulas (3.6) and (3.5) remain valid for f, g ∈ Vw.
In order to prove the claim (3.13), it suffices to show that if ψ ∈ Dom(T ) and

ψ0 ∈ L2(Ω)∩L2
w2(Ω) such that (Tw−λ)ψ = ψ0, then ψ ∈ Dom(Tw) and (Tw−λ)ψ =

ψ0; the full claim then follows by an inductive argument. We approximate w with
a sequence of bounded weights in a suitable sense. For n ∈ N, define

wn := χn(w), χn : R+ → R+, χn(x) :=

{
x, x ∈ (0, n],

n, x ∈ (n,∞),
(4.43)

then it is easy to see that wn ∈W 1,∞(Ω;R+)∩L∞(Ω;R+) satisfies condition (3.4)
with the same constants κw, σw and Cw as the original weight w. By Lemma 4.6,
the operator Twn is an extension of T and thus

ψ ∈ Dom(Twn), (Twn − λ)ψ = ψ0 ∈ L2
wn(Ω). (4.44)
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Hence, from Lemma 4.3 it follows that there exist µ ≥ 0 and m > 0 (depending on
w and V but not on n) such that, with Φ as in (3.2), we have

m‖ψ‖2Vwn ≤ Re twn(ψ,ψ) + µ‖wnψ‖2 + Im twn(ψ,Φψ)

≤ (|Reλ|+ | Imλ|+ µ+ 1)‖wnψ‖2 + ‖wnψ0‖2
(4.45)

where for the second inequality we used (4.44). Let us set

C := |Reλ|+ | Imλ|+ µ+ 1 > 0,

then by assumption (3.12), there exist R > 0 and m > δ > 0 such that

m(|V (x)|+ 1)− C ≥ δ(|V (x)|+ 1), x ∈ Ω \BR(0). (4.46)

It thus follows from (4.45), (4.46) and wn ≤ w that

δ
(
‖wnP

1
2

1 ∇ψ‖2 + ‖wn|V |
1
2ψ‖2 + ‖wnψ‖2

)
≤ m

∫
Ω

|P
1
2

1 ∇ψ|2w2
ndx+

∫
Ω\BR(0)

(m(|V |+ 1)− C)|ψ|2w2
ndx

+m

∫
Ω∩BR(0)

(|V |+ 1)|ψ|2w2
ndx

≤ C
∫

Ω∩BR(0)

|ψ|2w2
ndx+ ‖wnψ0‖2

≤ C‖w‖2L∞(Ω∩BR(0))‖ψ‖
2 + ‖wψ0‖2.

We can thus apply Fatou’s Lemma to conclude ψ ∈ Vw from

‖wP
1
2

1 ∇ψ‖2 + ‖w|V | 12ψ‖2 + ‖wψ‖2 ≤ C

δ
‖w‖2L∞(Ω∩BR(0))‖ψ‖

2 +
1

δ
‖wψ0‖2.

Note that the right hand side of the above inequality is finite due to w ∈ L∞loc(Ω;R+)
and ψ0 ∈ L2

w2(Ω). Finally, for φ ∈ C∞0 (Ω), the function w2φ ∈ W 1,∞(Ω) has
compact support, is thus an element of V1 by Lemma 4.5 and

tw(ψ, φ) = 〈P∇ψ,∇(w2φ)〉+ 〈V ψ,w2φ〉 = t(ψ,w2φ). (4.47)

Since ψ ∈ Dom(T ) and Tψ = λψ + ψ0, we further conclude

t(ψ,w2φ) = 〈Tψ,w2φ〉 = 〈λψ + ψ0, φ〉L2
w2
. (4.48)

Combining (4.47) and (4.48), as well as the density of C∞0 (Ω) in Vw, we obtain
ψ ∈ Dom(Tw) with Twψ = λψ + ψ0. �

4.5. Graph norm separation. We point out that the assumptions of Theo-
rem 3.12 guarantee that, for every f ∈ Vw, the weak gradient of f is a regular
distribution such that

P1
1
2∇f ∈ L2

w2(Ω)d, |V | 12 f ∈ L2
w2(Ω).

The action of Tw then coincides with the corresponding differential expression in
the standard distributional sense, i.e.

Twf = −∇ · (P∇f) + V f ∈ D′(Ω), f ∈ Dom(Tw).

Lemma 4.11 (Core of Tw). Let the assumptions of Theorem 3.12 be satisfied. Then

Dw := {f ∈ Dom(Tw) : supp f is bounded in Rd} (4.49)

is a core of Tw.

Proof. The claim can be justified by a standard cut-off strategy, see e.g. [30, proof
of Lem. 3.6] or [14, proof of Thm. 8.2.1, Part 1]. �
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Lemma 4.12 (Graph norm separation). Let the assumptions of Theorem 3.12 be
satisfied and let Dw be as in (4.49). Then for every ε > 0 there exists C(ε) > 0
such that

‖Twf‖2L2
w2
≥ (1− µ1 − ε)‖∇ · (P∇f)‖2L2

w2
+ (1− µ2 − ε)‖V f‖2L2

w2
− C(ε)‖f‖2L2

w2

for f ∈ Dw, where the constants µ1, µ2 ∈ (0, 1) are

µ1 :=
2(εV + εw)δδ′

1− (εV + εw)δ
, µ2 :=

2(εV + εw)

1− (εV + εw)δ

(
1

4δ
+

δ

4δ′

)
,

and δ, δ′ > 0 are the numbers

δ :=

√
1 +
√

2

4
√

2
, δ′ :=

1 +
√

2

2
. (4.50)

Remark 4.13. In the above inequality, we have µ1, µ2 ∈ (0, 1) if and only if

εV + εw < min

{
1

2δδ′ + δ
,

2δδ′

δ2(1 + 2δ′) + δ′

}
≤ 2−

√
2

where the maximum 2−
√

2 is indeed attained with δ and δ′ as in (4.50).

Proof of Lemma 4.12. We start by deriving an estimate for a relevant quantity in
the graph norm of Tw, see (4.57). To this end, let f ∈ Dw. Integration by parts
gives the estimate

‖wP
1
2

1 ∇f‖2 = 〈wP1∇f, w∇f〉 ≤ |〈w2P∇f,∇f〉|
≤ |〈w∇ · (P∇f), wf〉|+ |〈P∇f,∇(w2)f〉|.

(4.51)

Moreover, using (3.16), Cauchy Schwarz’ inequality and Young’s inequality with
δ1, δ2 > 0, we derive

|〈P∇f,∇(w2)f〉| ≤ 〈|P
1
2

1 ∇f |, |P
− 1

2
1 P ∗∇(w2)||f |〉

≤ 〈w|P
1
2

1 ∇f |, w(εw|V |
1
2 + Cw)|f |〉

≤ εwδ1‖wP
1
2

1 (∇f)|V | 12 ‖2 + Cwδ2‖wP
1
2

1 ∇f‖2

+

(
εw
4δ1

+
Cw
4δ2

)
‖wf‖2.

(4.52)

Putting together (4.51), (4.52) and choosing δ2 sufficiently small such that Cwδ2 < 1
eventually leads to

‖wP
1
2

1 ∇f‖2 ≤
1

1− Cwδ2

(
εwδ1‖wP

1
2

1 (∇f)|V | 12 ‖2

+ |〈w∇ · (P∇f), wf〉|+
(
εw
4δ1

+
Cw
4δ2

)
‖wf‖2

)
.

(4.53)



SCHRÖDINGER OPERATORS IN WEIGHTED SPACES 23

Using Cauchy-Schwarz’ inequality, Young’s inequality with δ3, δ4 > 0 and (4.53)
gives the following estimate

〈w|P
1
2

1 ∇f |, w((εV + εw)|V | 32 + Cw|V |+ CV )|f |〉

≤ (εV + εw)δ3‖wP
1
2

1 (∇f)|V | 12 ‖2 +

(
Cw
4δ4

+
CV
2

)
‖wP

1
2

1 ∇f‖2

+

(
εV + εw

4δ3
+ Cwδ4

)
‖wV f‖2 +

CV
2
‖wf‖2

≤ η1‖wP
1
2

1 (∇f)|V | 12 ‖2 +

(
Cw
4δ4

+
CV
2

)
1

1− Cwδ2
|〈w∇ · (P∇f), wf〉|

+

(
εV + εw

4δ3
+ Cwδ4

)
‖wV f‖2 + η2‖wf‖2

(4.54)

where we have set η1, η2 > 0 to be

η1 := (εV + εw)δ3 +

(
Cw
4δ4

+
CV
2

)
εwδ1

1− Cwδ2
,

η2 :=
CV
2

+

(
Cw
4δ4

+
CV
2

)
1

1− Cwδ2

(
εw
4δ1

+
Cw
4δ2

)
.

Integrating by parts, we obtain

‖wP
1
2

1 (∇f)|V | 12 ‖2 = 〈wP1(∇f)|V | 12 , w(∇f)|V | 12 〉
≤ |〈w2P (∇f)|V |,∇f〉|
≤ |〈w∇ · (P∇f), w|V |f〉|

+ |〈P∇f,∇(w2)|V |f + w2(∇|V |)f〉|.

(4.55)

Assumptions (3.15) and (3.16) further imply

|〈P∇f,∇(w2)|V |f + w2(∇|V |)f〉|

≤ 〈|P
1
2

1 ∇f |, |P
− 1

2
1 P ∗∇(w2)||V f |+ |P−

1
2

1 P ∗∇|V ||w2|f |〉

≤ 〈w|P
1
2

1 ∇f |, w((εV + εw)|V | 32 + Cw|V |+ CV )|f |〉.

(4.56)

Combining (4.54), (4.55), (4.56), and subsequently using Cauchy-Schwarz’ inequal-
ity and Young’s inequality with δ5, δ6 > 0, we arrive at

〈w|P
1
2

1 ∇f |, w((εV + εw)|V | 32 + Cw|V |+ CV )|f |〉

≤ 1

1− η1

{
η1|〈w∇ · (P∇f), w|V |f〉|

+

(
Cw
4δ4

+
CV
2

)
1

1− Cwδ2
|〈w∇ · (P∇f), wf〉|

+

(
εV + εw

4δ3
+ Cwδ4

)
‖wV f‖2 + η2‖wf‖2

}

≤ 1

1− η1

{(
η1δ5 +

(
Cw
4δ4

+
CV
2

)
δ6

1− Cwδ2

)
‖w∇ · (P∇f)‖2

+

(
εV + εw

4δ3
+ Cwδ4 +

η1

4δ5

)
‖wV f‖2 + η3‖wf‖2

}
,

(4.57)
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where we have set

η3 := η2 +

(
Cw
4δ4

+
CV
2

)
1

1− Cwδ2
1

4δ6
> 0.

We continue by estimating the graph norm

‖w(−∇ · (P∇) + V )f‖2 = ‖w∇ · (P∇f)‖2 + ‖wV f‖2

− 2 Re〈w∇ · (P∇f), wV f〉.
(4.58)

Integrating by parts leads to

−〈∇ · (P∇f), V fw2〉 = 〈P∇f, (∇V )fw2 + V (∇f)w2 + V f∇(w2)〉 (4.59)

and using the combined accretivity (3.14),

Re〈wP∇f, wV∇f〉 = Re〈we−i arg V P (∇f)|V | 12 , w(∇f)|V | 12 〉 ≥ 0. (4.60)

Employing (3.15) and (3.16), we moreover derive

|〈P∇f, (∇V )fw2 + V f∇(w2)〉|

≤ 〈|P
1
2

1 ∇f |, |P
− 1

2
1 P ∗∇V ||f |w2 + |P−

1
2

1 P ∗∇(w2)||V f |〉

≤ 〈w|P
1
2

1 ∇f |, w((εv + εw)|V | 32 + Cw|V |+ CV )|f |〉.

(4.61)

Putting together (4.58), (4.59), (4.60), (4.61) and (4.57), we arrive at

‖wTwf‖2 ≥ η4‖w∇ · (P∇f)‖2 + η5‖wV f‖2 −
2η3

1− η1
‖wf‖2

where η4, η5 > 0 are the constants

η4 := 1− 2

1− η1

(
η1δ5 +

(
Cw
4δ4

+
CV
2

)
δ6

1− Cwδ2

)
,

η5 := 1− 2

1− η1

(
εV + εw

4δ3
+ Cwδ4 +

η1

4δ5

)
.

It is important to note that since εV +εw < 2−
√

2, with the special choice δ3 := δ
and δ5 := δ′ as in (4.50), we can achieve µ1, µ2 ∈ (0, 1), see Remark 4.13, and one
can thus select δ1, δ4 and δ6 small enough such that µ1 and µ2 are positive. �

Proof of Theorem 3.12. The claim follows from the lower estimate in Lemma 4.12
and the density of Dw in Dom(Tw) with respect to the graph norm of Tw, see
Lemma 4.11. �

5. Applications and examples

5.1. Completeness of eigensystems of Schrödinger operators in L2
w2(Ω).

Suppose that Assumption 3.1 is satisfied with a weight w, a purely imaginary regular
potential V = iVr (and P = ICd) and consider the corresponding Schrödinger
operator

Tw = −∆ + iVr

in the weighted space L2
w2(Ω). We employ [19, Cor. XI.9.31] to establish the com-

pleteness of the eigensystem of Tw in L2
w2(Ω). To this end, we need information on

the Schatten class of (Tw−λ)−1 and an estimate of the resolvent norm ‖(Tw−λ)−1‖
for λ diverging to infinity along a sufficient amount of rays in C. In the scope of
this example, we only aim to study imaginary potentials which in general lead to
accretive operators in L2(Ω); other special cases, like sectorial potentials, can be
analysed in an analogous way.

We obtain the Schatten class of (Tw − λ)−1 from Theorem 3.5 and
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Theorem 5.1 ([4, Thm. 1.3], [13]). Let Ω ⊂ Rd be open and ∂Ω ∈ C2,α for some
α > 0. Let Q ∈ L2

loc(Ω), Q ≥ 0, and for p > 0∫
Ω×Rd

(|ξ|2 +Q(x) + 1)−p dxdξ <∞. (5.1)

Then for the self-adjoint Dirichlet realisation S := −∆ +Q, we have

(S + 1)−1 ∈ Sp(L2(Ω)).

Note that (S + 1)−1 ∈ Sp(L2(Ω)) implies (S + 1)−1/2 ∈ S2p(L
2(Ω)). Moreover,

by the second representation theorem [29, Thm. VI.2.23], we have

‖(S + 1)
1
2 · ‖2 = ‖∇ · ‖2 + ‖Q 1

2 · ‖2 + ‖ · ‖2.
In other words, if Q := |Vr| is such that (5.1) is satisfied for some p > 0, then
idV1 ∈ S2p(V1, L

2(Ω)) and hence Theorem 3.5 implies

(Tw − λ)−1 ∈ Sp(L2
w2(Ω)).

In particular, for Ω = Rd, |Vr(x)| + 1 & 〈x〉γ with γ > 0 and any admissible
weight w, we conclude for the corresponding weighted Schrödinger operator Tw that

(Tw − λ)−1 ∈ Sp(L2
w2(Ω)), λ ∈ ρ(Tw), p > pγ,d :=

2 + γ

2γ
d;

the value of pγ,d is obtained from (5.1) and Young’s inequality. In the sequel, we
consider weights

w(x) = exp(±〈x〉α), 0 < α < 1 +
γ

2
,

for which (3.4) is satisfied with arbitrarily small σw > 0. Note that in such case,
β > 0 in the conditions (3.9) or (3.7) can be selected arbitrarily small.

The resolvent estimates required for the completeness result [19, Cor. XI.9.31]
then follow from Lemma 4.3. Replacing tw by tw − λ with Reλ < 0 leads to an
additional term (|Reλ|−β| Imλ|)‖f‖2Vw on the right hand sides of (4.7). Since one
can assume β to be arbitrarily small, we conclude that (for the considered potentials
and weights)

‖(Tw − reiω)−1‖ . 1, r → +∞,
for any ω ∈ (π/2, 3π/2). This in particular covers the well-known example of the
imaginary cubic oscillator (Vr(x) = x3, d = 1), for which the completeness of the
eigensystem in L2(R) was established in [42]. We thereby extend the completeness
result therein to weighted operators in L2

w2(R) with weights w(x) = exp(±〈x〉α)
where 0 < α < 1 + 3/2.

5.2. Schur complement dominant matrix differential operator. We employ
Theorems 3.2, 3.12 and the results about Schur complement dominance, see Sec-
tion 2.3, to show that the operator matrix

A =

(
−∂2

x + i sinh(5x2) ex
2

ex∂x + e3x2

0

)
(5.2)

in L2(R) ⊕ L2(R) can be realised as a closed, densely defined operator with non-
empty resolvent set. Note that A is an example of an operator matrix with highly
non-symmetric off-diagonal and without any usual (diagonal, off-diagonal) domi-
nance pattern. Nonetheless, the off-diagonal entries can be controlled by the first
Schur complement

S(λ) = −∂2
x + i sinh(5x2)− λ+

1

λ
ex

2

(ex∂x + e3x2

), λ ∈ C \ {0}, (5.3)

in a suitable representation of the resolvent of A. In order to satisfy the conditions
for Schur complement dominance, S(λ) will be realised in a weighted space.
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Proposition 5.2. Let A be the matrix differential expression in (5.2). Let DS be
the closure of C∞0 (R) with respect to the norm

‖f‖2DS := ‖e−x
2

f ′′‖2 + ‖e4x2

f‖2, f ∈ C∞0 (R). (5.4)

Define the operator in L2(R)⊕ L2(R)

A0(f, g) := A(f, g),

Dom(A0) := {(f, g) ∈ DS ⊕ L2(R) : A(f, g) ∈ L2(R)⊕ L2(R)}.

Then A0 is closed, has non-empty resolvent set and its domain is dense in both
DS ⊕ L2(R) and L2(R)⊕ L2(R). Moreover, for λ ∈ C \ {0} and the operator

S0(λ)f := S(λ)f, Dom(S0(λ)) := W 2,2(R) ∩Dom(e5x2

), (5.5)

acting in L2(R), where S(λ) is as in (5.3), we have the spectral equivalence

λ ∈ σ(A0) ⇐⇒ 0 ∈ σ(S0(λ)) = σp(S0(λ)). (5.6)

Moreover, every point λ 6= 0 in σ(A0) is an eigenvalue of A0.

Proof. The claims follow by applying Theorem 2.4. In order to define A and S(·)
as considered therein, we first specify the spaces and operators needed for Assump-
tion 2.3. In our case, DS is defined as in (5.4) and we have

H1 := H2 := L2(R), D2 := D−2 := L2(R), D−S := L2
e−2x2 (R).

The fact that A := −∂2
x + i sinh(5x2) ∈ B(DS ,D−S) follows from the inequality

‖Af‖D−S . ‖e−x
2

f ′′‖+ ‖e4x2

f‖ . ‖f‖DS , f ∈ C∞0 (R).

Moreover, D := D0 := 0 is bounded and boundedly invertible on L2(R), and the

multiplication operator B := ex
2

is clearly bounded between L2(R) and D−S . For
all f ∈ C∞0 (R), integration by parts and Cauchy-Schwarz’ and Young’s inequalities
(with δ1, δ2 > 0) yield that

‖exf ′‖2 = 〈f ′, e2xf ′〉 = −〈f, 2e2xf ′ + e2xf ′′〉

≤ δ1‖exf ′‖2 + δ2‖e−x
2

f ′′‖2 + Cδ1,δ2(‖exf‖2 + ‖ex
2+2xf‖2).

The above implies that C := ex∂x + e3x2 ∈ B(DS , L2(R)), more precisely we have
(with δ3, δ4 > 0)

‖Cf‖ ≤ δ3‖e−x
2

f ′′‖+ Cδ3‖e3x2

f‖ ≤ δ4‖f‖DS + Cδ4‖e−x
2

f‖, f ∈ C∞0 (R), (5.7)

where the second inequality can be shown using Hölder’s inequality and δ4 therein
can be taken arbitrarily small (which we use later).

Having introduced the matrix entries according to Assumption 2.3, we can define

A ∈ B(DS ⊕ L2(R),D−S ⊕ L2(R)), S(λ) ∈ B(DS ,D−S), λ ∈ C \ {0},

by the formulas in (2.5). We show that for each λ ∈ C \ {0}, there is zλ ∈ C with

(S(λ)− zλ)−1 ∈ B(D−S ,DS); (5.8)

moreover, one can choose zλ = 0 for λ < 0 with |λ| sufficiently large. The claims
about the spectral equivalence between A0 and the maximal restriction S0(·) of
S(·) to L2(R), a well as the claim about the density of Dom(A0), then follow from
Theorem 2.4 with Σ = C \ {0}. Moreover, we show below that S0(λ) has compact
resolvent, so the last equality in (5.6) follows.

To show (5.8), consider the Dirichlet realisation of the differential expression

Tw(µ) := −∂2
x + i sinh(5x2) + µ, µ > 0,
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in the spaceD−S = L2
w2(R) with weight w(x) := e−x

2

, x ∈ R. Here Assumptions 3.1
and also 3.10 are satisfied with

P := 1, Ur := Vs := 0, Us := µ, Vr(x) := sinh(5x2), x ∈ R,

where the constants in (3.3), (3.4), (3.15) and (3.16) can be selected independently
of µ. In particular, it follows from the asymptotic relations, as |x| → ∞,

|V ′r (x)|
(1 + V 2

r (x))
3
2

= o(| sinh(5x2)| 12 ),
|(w2)′(x)|
w2(x)

= o(| sinh(5x2)| 12 ),

|V ′r (x)| = o(| sinh(5x2)| 32 ),

that the constants ε, κw and σw in (3.3) and (3.4), as well as εV and εw in (3.15)
and (3.16), can be chosen arbitrarily small and uniform in µ. Hence, Tw(µ) is
indeed well-defined by Theorem 3.2. Moreover, Theorem 3.12 gives

‖Tw(µ)f‖L2
w2
≥ c1

(
‖f ′′‖L2

w2
+ ‖(i sinh(5x2) + µ)f‖L2

w2

)
− c2‖f‖L2

w2

for all f ∈ C∞0 (R) ⊂ Dom(Tw(µ)), where the constants c1 > 0 and c2 ≥ 0 are
independent of µ. From the above it easily follows that

‖Tw(µ)f‖D−S ≥ m1‖f‖DS +m2(µ− c)‖f‖D−S , f ∈ C∞0 (R), µ > 0, (5.9)

with m1,m2 > 0 and c ≥ 0 all independent of µ. Notice that from Lemma 4.11 and
an additional mollification argument, see [14, proof of Thm. 8.2.1, Part 3], it follows
that C∞0 (R) is a core of Tw(µ) and thus (5.9) remains valid on Dom(Tw(µ)) = DS .

Consider now λ ∈ C \ {0}. Then S(λ), viewed as a linear operator in D−S with
Dom(S(λ)) = DS , is a relatively bounded perturbation of Tw(µ), for any µ > 0,
with relative bound zero. In detail, for all f ∈ C∞0 (R), the estimate (5.7) gives

‖ex
2

(ex∂x + e3x2

)f‖L2

e−2x2
= ‖Cf‖ ≤ δ4‖f‖DS + Cδ4‖f‖L2

e−2x2
, (5.10)

with arbitrarily small δ4 > 0 and some Cδ4 ≥ 0. By density and continuity, the
above extends to all f ∈ DS = Dom(Tw(µ)) and the claimed zero order relative
boundedness follows from (5.9) and (5.10). Since the resolvent of Tw(µ) is compact
by Theorems 3.5 and 5.1, and since by (5.9) the norm of Tw(µ)−1 decays as µ→∞,
also S(λ) has compact resolvent, see [29, Thm. IV.1.16]. Consequently, the resolvent

(S0(λ)− z)−1 = idDS (S(λ)− z idL2(Ω) idDS )−1 idL2(Ω), z ∈ ρ(S0(λ)),

of the maximal restriction S0(λ) in L2(R) is compact as well, see also (2.3).
In order to show (5.8), we compare S(λ) − zλ to Tw(µ) with a suitable µ > 0.

For λ ∈ C\{0} and f ∈ DS , using (5.10), (5.9) and setting zλ := −(µ+λ), we have

‖(S(λ)− zλ)f‖D−S ≥ ‖Tw(µ)f‖D−S −
δ4
|λ|
‖f‖DS −

Cδ4
|λ|
‖f‖D−S

≥
(
m1 −

δ4
|λ|

)
‖f‖DS −

(
m2(µ− c)− Cδ4

|λ|

)
‖f‖D−S .

(5.11)

Clearly, for fixed λ ∈ C \ {0}, one can select δ4 sufficiently small and µ sufficiently
large such that both parentheses above are positive. It follows that zλ is a regular
point for S(λ) and, since the latter has compact resolvent, that (5.8) holds. For λ <
0 however, choosing µ = −λ in the above estimate shows that, if |λ| is sufficiently
large, (5.8) is satisfied with zλ = 0.

It remains to explain that Dom(S0(λ)) is as in (5.5), i.e. that S0(λ) = S̃0(λ)
where the latter acts as (5.3) in L2(R) on the domain

Dom(S̃0(λ)) := D0 := W 2,2(R) ∩Dom(e5x2

), λ ∈ C \ {0}.
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Analogously to before, one shows that S̃0(λ) is a bound zero perturbation of T1(µ)
with Dom(T1(µ)) = D0 for any µ > 0. Moreover, analogously to (5.11), one can
find µ > 0 sufficiently large such that both

S̃0(−µ)−1 ∈ B(L2(R)), S0(−µ)−1 ∈ B(L2(R)).

For the claimed equality it thus suffices to show that D0 ⊂ Dom(S0(λ)). This,
however, is obvious since

S(λ)f = S̃0(λ)f ∈ L2(R), f ∈ D0 ⊂ DS . �

5.3. Diagonally dominant matrix Schrödinger operator in a weighted
space. Similarly as in Section 5.2, a realisation of the matrix Schrödinger operator

A =

(
−∂2

x + ix3 x

x4 −∂2
x + x6

)
(5.12)

in L2(R)⊕ L2(R) with non-empty resolvent set can be found using Schur comple-
ment dominance (in fact, even with respect to both Schur complements). However,
one can also select suitable weights w1 and w2 such that (5.12) becomes diagonally
dominant in the product space L2

w2
1
(R)⊕ L2

w2
2
(R).

To be more precise, let w1 := 〈x〉 and w2 := 〈x〉−1, x ∈ R, and consider the
Dirichlet realisations of

Aw1
:= −∂2

x + ix3, Dw2
:= −∂2

x + x6

in the spaces L2
w2

1
(R) and L2

w2
2
(R), respectively. By Theorem 3.12, with µ > 0

sufficiently large, we then have

‖(Aw1
+ µ)f‖L2

w2
1

& ‖f ′′‖L2

w2
1

+ ‖〈x〉3f‖L2

w2
1

, f ∈ Dom(A),

‖(Dw2
+ µ)g‖L2

w2
2

& ‖g′′‖L2

w2
2

+ ‖〈x〉6g‖L2

w2
2

, g ∈ Dom(D).
(5.13)

Moreover, for the multiplication operators

B := x : L2
w2

2
(R)→ L2

w2
1
(R), C := x4 : L2

w2
1
(R)→ L2

w2
2
(R),

defined on their maximal domains (which by (5.13) contain the domains of D and A,
respectively), using Hölder’s and Young’s inequalities, we arrive at

‖Cf‖L2

w2
2

. ‖〈x〉2f‖L2

w2
1

. ε‖〈x〉3f‖L2

w2
1

+ Cε‖f‖L2

w2
1

, f ∈ Dom(A),

‖Bg‖L2

w2
1

. ‖〈x〉3g‖L2

w2
2

. ε‖〈x〉6g‖L2

w2
2

+ Cε‖g‖L2

w2
2

, g ∈ Dom(D),
(5.14)

with arbitrarily small ε > 0 and some Cε ≥ 0. Combining the inequalities (5.13)
and (5.14), we indeed obtain diagonal dominance of order 0.

We remark that the effect of considering weighted spaces can be equivalently
explained as a transformation of A from L2

w2
1
(R)⊕L2

w2
2
(R) to L2(R)⊕L2(R), i.e. by

employing the conjugation

diag(w1, w2)Adiag(w1, w2)−1 =

(
w1(−∂2

x + ix3)w−1
1 w1xw

−1
2

w2x
4w−1

1 w2(−∂2
x + x6)w−1

2

)
.

Similarly to choosing suitable constants w1, w2 > 0 e.g. in [36], we select weights
w1 and w2 in order to balance the off-diagonal terms.
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5.4. Damped wave equation in weighted space with accretive and un-
bounded damping. We consider the following damped wave equation on an open
set Ω ⊂ Rd

utt(t, x)+2(a1(x)+ ia2(x)−∇x · (a0(x)∇x))ut = ∆xu(t, x), x ∈ Ω, t > 0, (5.15)

where we assume a1 ∈ L1
loc(Ω), a1 ≥ 0, a2 ∈W 1,∞

loc (Ω;R) and that a0 ∈ L1
loc(Ω)d×d

is positive semi-definite almost everywhere in Ω. By a standard procedure, (5.15)
can be rewritten as a system

∂t

(
u1

u2

)
= A

(
u1

u2

)
where A is the operator matrix

A =

(
0 I

∆ −2(a1 + ia2 −∇ · (a0∇))

)
. (5.16)

Our goal is to show that a suitable realisation of −A generates a semigroup in the
product space Hw :=Ww⊕L2

w2(Ω), whereWw is the closure of C∞0 (Ω) with respect
to the norm

‖f‖2Ww
:= ‖∇f‖2L2

w2
+ ‖f‖2L2

w2
, f ∈ C∞0 (Ω), (5.17)

with a suitably chosen weight w ∈ W 1,∞
loc (Ω;R+). To this end, we employ Schur

complement dominance, see Section 2.3.
At first we introduce the space DS as the closure of C∞0 (Ω) with respect to

‖f‖2DS := ‖(ICd + a0)
1
2∇f‖2L2

w2
+ ‖|a1 + ia2|

1
2 f‖2L2

w2
+ ‖f‖2L2

w2
(5.18)

and the following operator entries

A := 0 ∈ B(Ww), B := I ∈ B(DS ,Ww),

C := ∆ ∈ B(Ww,D∗S), D := −2(a1 + ia2 −∇ · (a0∇)) ∈ B(DS ,D∗S).
(5.19)

Here D∗S is the (anti-)dual space of DS and C, D are understood as the unique
bounded extensions of

(∆f, g)D∗S×DS := 〈∆f, g〉L2
w2
,

(−2(a1 + ia2 −∇ · (a0∇))f, g)D∗S×DS := −2〈(a1 + ia2)f, g〉L2
w2

− 2〈a0∇f,∇(w2g)〉,

(5.20)

initially defined for f, g ∈ C∞0 (Ω); see the justification within the proof of Proposi-
tion 5.3 below. With these definitions, one can interpret the matrix in (5.16) as

A ∈ B(D,D−), D :=Ww ⊕DS , D− :=Ww ⊕D∗S = D∗, (5.21)

and introduce its second Schur complement (with λ ∈ C \ {0})

S(λ) := −2(a1 + ia2 −∇ · (a0∇))− λ+
1

λ
∆�DS ∈ B(DS ,D∗S).

Proposition 5.3. Let A be as in (5.16), (5.21), let Ww, DS be as in (5.17), (5.18),
respectively, and let A0 be the maximal restriction of A to Hw = Ww ⊕ L2

w2(Ω),
i.e. A0 := A�Dom(A0) with

Dom(A0) := {(f, g) ∈ Ww ⊕DS : A(f, g) ∈ Hw}.
Suppose that a1, a2, a0 and w satisfy in addition that

|(ICd + a0)
1
2∇a2| ≤ c(1 + |a2|3)(a

1
2
1 + |a2|

1
2 + 1),

|∇(w2)| ≤ cw2(a
1
2
1 + |a2|

1
2 + 1),

|a
1
2
0∇(w2)| ≤

√
2ε0w

2(a1 + c0)
1
2

(5.22)
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with some c > 0, ε0 ∈ (0, 2) and c0 ≥ 0. Then A0 generates a C0-semigroup in Hw
and its domain is dense in Ww ⊕DS and in Hw.

Proof. We first justify that C and D in (5.19) are well-defined, i.e. that there are
indeed unique bounded extensions of the operators in (5.20). To this end, employing
the second assumption in (5.22), we obtain for all f, g ∈ C∞0 (Ω)

|〈∆f, g〉L2
w2
| ≤ |〈∇f,∇g〉L2

w2
|+ |〈∇f, w−2∇(w2)g〉L2

w2
| . ‖f‖Ww‖g‖DS ,

justifying the claimed boundedness of C. Moreover,

|〈(a1 + ia2 −∇ · (a0∇))f, g〉L2
w2
| ≤ ‖|a1 + ia2|

1
2 f‖L2

w2
‖|a1 + ia2|

1
2 g‖L2

w2

+ ‖a
1
2
0∇f‖L2

w2
‖a

1
2
0∇g‖L2

w2

+ ‖a
1
2
0∇f‖L2

w2
‖w−2a

1
2
0∇(w2)g‖L2

w2

. ‖f‖DS‖g‖DS ,

where we have used the last relation in (5.22) for the last inequality. Thus the
claims on both bounded extensions follow.

Next we show that the matrix −A0 +µ is accretive in Hw if µ > 0 is sufficiently
large. For all f1, f2 ∈ C∞0 (Ω), we have

(−A(f1, f2), (f1, f2))D∗×D

= −〈f2, f1〉Ww
− (∆f1 − 2(a1 + ia2 −∇ · (a0∇))f2, f2)D∗S×DS

= −〈∇f2,∇f1〉L2
w2
− 〈f2, f1〉L2

w2
+ 〈∇f1,∇f2〉L2

w2

+ 〈∇f1, w
−2∇(w2)f2〉L2

w2
+ 2〈(a1 + ia2)f2, f2〉L2

w2

+ ‖a
1
2
0∇f2‖2L2

w2
+ 〈a

1
2
0∇f2, w

−2a
1
2
0∇(w2)f2〉L2

w2
.

Cauchy-Schwarz’s and Young’s inequalities (with δ1 > 0) then yield

Re((−A+ µ id∗D idD)(f1, f2), (f1, f2))D∗×D

≥ −1

2
(‖f2‖2L2

w2
+ ‖f1‖2L2

w2
)− 1

4δ1
‖∇f1‖2L2

w2
− δ1‖w−2∇(w2)f2‖2L2

w2

+ 2‖a
1
2
1 f2‖2L2

w2
− 1

4
‖w−2a

1
2
0∇(w2)f2‖2L2

w2

+ µ
(
‖∇f1‖2L2

w2
+ ‖f1‖2L2

w2
+ ‖f2‖2L2

w2

)
,

hence using the third assumption in (5.22), choosing δ1 sufficiently small and µ suf-
ficiently large, we indeed obtain that the above quantity is non-negative. By (5.21)
and the density of C∞0 (Ω) in both DS and L2

w2(Ω), the latter can be extended to
all (f1, f2) ∈ D. For vectors (f1, f2) ∈ Dom(A0), this then gives

Re〈(−A+ µ)(f1, f2), (f1, f2)〉Hw
= Re((−A+ µ id∗D idD)(f1, f2), (f1, f2))D∗×D ≥ 0.

We proceed by showing that S(λ) is boundedly invertible, if λ > 0 is sufficiently

large, i.e. that S(λ)−1 ∈ B(D∗S ,DS). To this end, we use that −λS(λ) = T̂w(λ),
where the latter denotes the operator associated with the form tw(λ) of the Dirichlet
realisation of

−∇ · ((ICd + λa0)∇) + 2λ(a1 + ia2) + λ2, λ > λ0 > 0,

in the space L2
w2(Ω), see (2.2), with form domain Vw = DS . Notice that while the

coefficients, and thus the corresponding norms defined in (3.6), depend on λ, the
norms are in fact all equivalent to ‖ · ‖S such that the form domain itself, as a
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topological space, remains constant. To verify the assumptions of Theorem 3.2, we
take

P = ICd + λa0, Ur = λ2, Us = 2λa1, Vr = 2λa2, Vs = 0.

Employing (5.22), it is elementary to see that the conditions (iv) and (v) in As-
sumption 3.1 are satisfied, where the constants therein depend on λ and exhibit the
following asymptotic behaviour as λ→∞

ε = O(λ−2), Cε = O(λ−2), κw = ε0 +O(λ−
1
2 ), σw = O(λ−

1
2 ), Cw = O(λ−

1
2 ).

It follows that there exists λ0 > 0 such that the above constants can be selected
sufficiently small and uniformly in λ, i.e. such that Assumption 3.1, as well as
condition (3.7), are satisfied with the same constants therein for all λ > λ0, see
also Remark 3.3 (i). Theorem 3.2 thus indeed holds and in particular, we obtain
the estimates in (4.7) with λ-independent constants m1, m2, γ1 and γ2. Since
|V | ≥ ReV ≥ λ2, the latter estimates yield generalised coercivity of tw(λ) if λ > λ0

is chosen sufficiently large, implying that

S(λ)−1 = −λT̂w(λ)−1 ∈ B(V∗w,Vw) = B(D∗S ,DS).

Employing Theorem 2.4, we conclude that Dom(A0) is dense in both Ww ⊕DS
and Hw. Moreover, it gives ρ(A0) ∩ R+ 6= ∅ and in consequence that −A0 + µ
is m-accretive in Hw. Hence, −A0 indeed generates a C0-semigroup, see e.g. [16,
Thm. 11.4.1]. �

References

[1] Adams, R. A., and Fournier, J. J. F. Sobolev spaces, 2nd ed. Elsevier, Amsterdam, 2003.

[2] Almog, Y. The Stability of the Normal State of Superconductors in the Presence of Electric

Currents. SIAM J. Math. Anal. 40 (2008), 824–850.
[3] Almog, Y., and Helffer, B. On the spectrum of some Bloch-Torrey vector operators.

arXiv:2009.03036 [math-ph].
[4] Almog, Y., and Helffer, B. On the spectrum of non-selfadjoint Schrödinger operators with

compact resolvent. Comm. Partial Differential Equations 40 (2015), 1441–1466.

[5] Almog, Y., and Helffer, B. On the Stability of Laminar Flows Between Plates. Arch.
Rational Mech. Anal. 241 (2021), 1281–1401.

[6] Almog, Y., Helffer, B., and Pan, X.-B. Superconductivity near the normal state in a

half-plane under the action of a perpendicular electric current and an induced magnetic field.
Trans. Amer. Math. Soc. 365 (2013), 1183–1217.

[7] Almog, Y., and Henry, R. Spectral analysis of a complex Schrödinger operator in the

semiclassical limit. SIAM J. Math. Anal. 48 (2016), 2962–2993.
[8] Arifoski, A., and Siegl, P. Pseudospectra of damped wave equation with unbounded damp-

ing. SIAM J. Math. Anal. 52 (2020), 1343–1362.

[9] Baaquie, B. E. Mathematical Methods and Quantum Mathematics for Economics and Fi-
nance. Springer Singapore, 2020.

[10] Bismut, J.-M., and Lebeau, G. The hypoelliptic Laplacian and Ray-Singer metrics. Prince-
ton University Press, Princeton, NJ, 2008.
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