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“But I’ve never seen the Icarus story as a lesson about the limitations of humans. I see it
as a lesson about the limitations of wax as an adhesive.”

Randall Munroe
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ABSTRACT

The cochlea, our auditory organ, has a unique spiral shape and is fluid-filled. The physiolog-
ical role of its shape remains, to a great extent, elusive and is the subject of ongoing research
and debate. The curvature and torsion of the cochlear duct are most pronounced toward the
apex, and therefore the low frequencies processed there are particularly interesting. Flow
in the radial direction in the cochlea, i.e., transverse flow, is of relevance because of the
cochlea’s microanatomy. This thesis aims to investigate the interplay between geometry
and fluid flow, especially transverse flows, using numerical and experimental methods.

In the first part, computational fluid dynamics (
 

 

CFD) simulations are performed in
helical square ducts with curvature and torsion, similar to the ones observed in human
cochleae. Transverse flows are examined under a harmonically oscillating axial flow for
frequencies covering infrasound and low-frequency hearing, with a mean inlet velocity am-
plitude representing sound pressure levels from normal conversation up to the threshold
of pain. Torsion significantly increases transverse flow, especially when the influence of
curvature drops to negligible amounts. Interestingly, the combined effect of curvature and
torsion is larger than expected from a superposition of the two.

The cochlea’s thin membranes, some as little as two cell layers thick, make the study of
shear stresses, which are exerted by the fluid on the walls, interesting. Subsequently, the
effect of geometry on wall shear stresses and pressure fluctuations is examined numerically.
The helical shape experiences the most pronounced wall shear stresses at the inner wall of
the curve, and its maximal transverse wall shear stresses are higher than the sum of the
ones in toroidal and twisted ducts.

The second part addresses the visualization of transverse flows in millimetric ducts
using an in-house developed scanning particle image velocimetry (

 

 

PIV) system to capture
the full flow field in a volume. Our system is adapted to small-scale oscillatory flows and
allows for precise measurements of both time-resolved and net velocities. The experimental
outcomes align well with the CFD simulations. The developed

 

 

PIV system offers means
for studying multi-scale periodic flows in micro- to millimeter-scale models across a variety
of applications, including biological systems like the inner ear.

The observed transverse flow phenomena offer new insights into cochlear fluid dynamics,
with potential implications for metabolite transport. Further research is needed to elucidate
their impact on cochlear mechanics.
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chapter 1

INTRODUCTION

A brief introduction on the anatomy and physiology of the human ear is given.
This is followed by an overview of cochlear modeling, with special emphasis on
the effect of the cochlea’s spiral geometry on flow processes. Next, the effect
of geometry on transverse and axial flows is discussed and the state of the
art on methods to visualize them is reviewed. Particle image velocimetry, a
technique for deriving flow velocities in experimental setups, is then described.
The introduction concludes with the objectives and an overview of the thesis.
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1.1 Motivation
According to the World Health Organization (

 

 

WHO), more than five percent of the world’s
population — 430 million people worldwide — live with a hearing impairment [1]. This
reduces their quality of life as it affects safety, communication, access to information and
leisure activities. If the hearing loss is unaddressed, it can lead to exclusion from education
and to unemployment. The

 

 

WHO estimates that unaddressed hearing loss causes costs
equivalent to 870 billion Swiss Francs every year [1]. Especially in today’s world, hearing
is an important topic as we are increasingly exposed to auditory stimuli like city noise,
noise in public transportation (planes, cars), and technology related sounds. The

 

 

WHO [1]
estimates that by 2050 nearly twice as many –– 700 million people — will have disabling
hearing loss1. The frequency of hearing loss increases with age, with over one in four
people over 60 experiencing disabling hearing loss [1]. As life expectancy increases in many
countries, age-related hearing loss is a major contributor to this upward trend, in addition
to other factors such as noise-induced hearing loss, the use of ototoxic medication, and viral
infections [2, 3].

Treatment for age-related hearing loss often involves the use of hearing aids or, in more
severe cases, middle ear implants or cochlear implants, in which an electrode is inserted
into a fluid-filled cochlea. Such devices directly influence or alter the cochlear mechanics.
Improved understanding of the flow phenomena in the cochlea can thus lead to better
hearing aid technology and design. Fluid simulations in models of the cochlea can further
enhance our understanding of cochlear mechanics.

While there is no net flow in the cochlea, studies, using computational fluid dynamics
simulations, showed that there are steady streaming effects [4, 5]. Steady streaming in the
axial direction, along the cochlear scalae, could be interesting for drug delivery, as the two
major entry points for drugs into the inner ear are at the base of the cochlea [6]. Commonly
applied drugs to the inner ear include cortisone (glucocorticoid) against acute hearing loss
and ototoxic antibiotics (gentamicin) to treat Ménière’s disease [7, 8]. The latter treats
vertigo (caused by Ménière’s disease) by targeting the vestibular hair cells causing it [9].
Radial streaming effects may facilitate metabolite transport within the cochlea.

Since its descriptions by Bartholomeus Eustachius and Gabriele Fallopius in the 16th
century, we know that the cochlea is spiral-shaped in humans [11]. Surprisingly, however,
it is still partly unknown why it takes on this particular shape. In birds and reptiles the
sensory hearing organ is formed by a slightly bent or twisted duct, it does not wind around
a central axis as in marsupials and placental mammals (Fig. 1.1) [10, 12–14]. The complex
evolution of the auditory organs underscores the importance of hearing for survival [10]. It
seems that during evolution, the cochlear duct length as well as its coiling increased [15].
For example, monotremes like the platypus and echidna indigenous to Australia and New
Guinea have a coiled apex of the membranous cochlear duct but an uncoiled bony cochlear
canal [16]. Jurassic mammals already had the beginning of coiling (three-quarters of a
complete turn) [16]. As shown in Fig. 1.2, a fully coiled cochlea is, however, only found in
humans and all other therian mammals (i.e., placental mammals and marsupials) [12].

1‘Disabling’ hearing loss refers to hearing loss greater than 35 decibels in the better hearing ear [1].
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Fig. 1.1. Phylogenetic radiation of the form of the auditory papilla in amniote vertebrates (the
scale bar on the bottom right is 1 mm). Not included in the Creative Commons Attribution 4.0
International License. Reprinted with permission from the publisher Springer Nature [10].

While there are some obvious benefits of coiling such as the efficient packing of the
cochlear duct within the petrous bone [17] and access for nerves and blood vessels via the
modiolus, the effects of coiling, in particular on fluid mechanics and related physiological
phenomena are not yet fully understood [15]. The hearing range of coiled cochleae is ex-
tended to frequencies that are higher and lower compared to uncoiled cochleae [18–20]. The
broad frequency range of coiled cochleas cannot be explained by their longer cochlear duct
alone [21]. This leads to controversial discussions on whether the physiological advantages
could arise from the coiled cochlear morphology. So far, the literature is inconclusive.

Therefore, this work aims to investigate the effect of geometrical features, in particu-
lar curvature and torsion, on fluid mechanics. To this end, computational fluid dynamics
(

 

 

CFD) simulations were performed to understand fundamental properties under oscillatory
stimulation (transverse flow induced by geometry). Then, secondary flow phenomena were
investigated (i.e., transverse wall shear stress, Lagrangian streaming). Finally, for valida-
tion, an experimental method was developed that is suitable for real scale measurements
in in-vitro models of cochlear size.

The following sections provide background on human hearing, with an emphasis on cor-
responding fluid phenomena. The effect of geometry on fluid motion is discussed in the
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context of cochlear modeling but also more generally on flow in helical ducts. With this
information, the reader can put the chapters presented in this thesis into context.

1.2 Anatomy and physiology of the human ear
The ear is a complex and highly organized organ that enables us to detect and experience
sounds waves and to maintain our balance. It has a remarkable precision regarding both the
range in frequency (approximately ten octaves) and in sound pressure level (approximately
120 dB, or a factor of 1’000’000 between the softest and loudest sounds2 [22]). Frequencies
between 20-20’000 Hz are commonly considered in the human hearing range, but the limit
is not strict and hearing at 10 Hz and less has been reported for high enough sound pressure
levels [23]. The ear consists of three main parts which can be categorized based on their
function in the hearing process: the outer, middle and inner ear.

Air conduction and bone conduction are the two main pathways for hearing. Air con-
duction denotes hearing based on sound waves that enter through the ear canal and are

Fig. 1.2. Amniote phylogenetic tree over 500 million years to illustrate the approximate time
of origin of particular features of auditory systems. Not included in the Creative Commons
Attribution 4.0 International License. Reprinted with permission from the publisher Springer
Nature [10].

2that it can capture without permanent damage
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transmitted via the ossicles to the inner ear. Bone conduction is the pathway through
vibrations of the skull bone to the inner ear via separate mechanisms [26]: through inertial
forces on the ossicles and the inner ear fluids; through movements of the tissue surrounding
the ear canal; through the compression and expansion of the cochlear space; and through
sound pressure transmission from the skull interior. These mechanisms result in a similar
basilar membrane motion as air conduction [26, 27]. We will focus on air conduction in the
following (Fig. 1.3), as it is expected to be dominant in normal hearing subjects [28, 29].

Outer and middle ear
The outer ear consists of the pinna and the ear canal. It is the only part of our ear
that is visible from outside. The pinna collects and directs sound pressure waves from
the environment into the ear canal and to the tympanic membrane, i.e., the eardrum. The
eardrum separates the outer from the middle ear. Behind the eardrum is an air-filled cavity

Fig. 1.3. Coronal section through a right ear. Sounds arriving at the pinna (1) are reflected into
the ear canal (2), move the tympanic membrane (3), are passed by the ossicles (4) to the cochlea
(5), from where nerve impulses travel along the cochlear nerve (6) to the brain. The vestibular
system (7) is sensitive to motion and inertia-induced fluid movement. The scale bar measures
5mm. Image rendered from CT data [24]. Adapted and reprinted with permission from the author
[25].
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that contains the three ossicles (Fig. 1.4): the malleus (hammer), incus (anvil), and stapes
(stirrup), which is the smallest bone in the human body. They are arranged in a chain and
the malleus connects to the eardrum, while the stapes borders the inner ear at the oval
window. Sound pressure waves move the eardrum, and the ossicles efficiently transmit and
amplify the vibrations from the eardrum to the inner ear.

The major function of the middle ear is to overcome the higher acoustic impedance of
the fluid-filled inner ear compared to the air-filled outer ear [30]. The impedance mismatch
at an air-water interface would usually lead to reflection of almost all pressure waves [31].
In the middle ear, the reflection is reduced in part by the lever action of the ossicles and by
the reduction of the area on which the force is concentrated, from the tympanic membrane
(around 60 mm2 [32]) to the oval window (around 3 mm2 [33]). The sound transfer through
the middle ear is characterized by a frequency-dependent function, the middle ear transfer
function.

Middle ear transfer function

Fig. 1.4. Left inner ear with the three ossicles: malleus (1), incus (2), and stapes (3). The
oval window (4) and the round window (5) are sealed by two elastic membranes that allow for
fluid motion inside the cochlea. Image rendered from micro computed tomography data [24, 34].
Adapted and reprinted with permission from the author [25].

The middle ear transfer function can be defined as the ratio of the sound pressure
at the tympanic membrane (the ear canal sound pressure) and the sound pressure in the
cochlea [35]. The sound pressure level in the ear canal is typically given in relation to
the sound pressure in air of 20µPa. For example, 1 Pa ear canal sound pressure can be
considered equivalent to 94 dB sound pressure level (

 

 

SPL). The middle ear transfer function
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is usually either modeled with finite elements [36–39] or measured with, e.g., a laser Doppler
vibrometer using temporal bone specimens [35, 40–43]. As sound pressure measurements
in the cochlea are challenging, the velocity or displacement of the stapes are often used
instead [35]. The transfer function with respect to the stapes velocity reaches its resonance
at about 1 kHz, with a mean slope of approximately 6 dB per octave up to 1 kHz (and
decreases with approximately -6 dB above 1 kHz) [35, 42].

Measuring the stapes velocity is complex because of the three-dimensional (
 

 

3D) vi-
bration modes of its footplate: angular motion (rocking, tilting) and translational motion
(piston-like) [43, 44]. At low frequencies, the piston-like motion is dominant, while the rock-
ing stapes motion gains importance for higher frequencies (above 4 kHz) [43]. Moreover,
Edom et al. [45] showed that the piston-like movement evokes higher basilar membrane
amplitudes than the rocking motion, especially at low frequencies. We therefore assumed
a piston-like, translational motion for the boundary condition in our simulations, because
we focus on low frequencies.

The following provides figures for the displacement of the eardrum, the velocity of
the stapes, and the intracochlear pressure. For a sound pressure level (

 

 

SPL) of 80 dB
in the auditory ear canal, the displacement of the eardrum (at the umbo, which is the
most depressed part of the conical-shaped eardrum) is about 20 nm at 600 Hz, and higher
than the one of the stapes (of about 11 nm) [43]. For frequencies above 6 kHz the umbo
displacement falls below 1 nm [43].

Between the thresholds of hearing and pain, the stapes velocity ranges from nanometers
to micrometers per second. At 512 Hz, 94 dB

 

 

SPL corresponds to a velocity of approximately
100µm/s (piston-like stapes motion) [44]. A reduction of 20 dB

 

 

SPL leads to an approx-
imately ten times smaller velocity. Below 1000Hz, decreasing frequencies correspond to
increasing equivalent sound pressure levels for the same stapes velocity. For example, at
32 Hz, a stapes velocity of 200µm/s can be expected for an ear canal pressure of approx-
imately 125 dB

 

 

SPL [40]. At 256 Hz, the same stapes velocity corresponds to an acoustic
stimulus with roughly 107 dB

 

 

SPL.
At 512 Hz, 94 dB

 

 

SPL corresponds approximately to a scala vestibuli pressure amplitude
of 5 Pa, and a scala tympani pressure of 2 Pa, which were measured at a distance of 100µm
from the round and oval windows into the cochlea [40].

Inner ear
Despite its small size, the inner ear plays a central role in the auditory process. It is a
cavity which is enclosed in and protected by the densest bone in the human body, the
petrous — Latin for “stone-like” — part of the temporal bone. It consists of the bony
labyrinth and a membranous labyrinth which is situated within the bony labyrinth.

Functionally, the inner ear can be divided into two structures: the cochlea, which is
responsible for hearing, and the vestibular system, which provides balance and spatial
orientation. Depending on the frequency of incoming pressure waves, the processing occurs
in one of these structures [46]. Frequencies above 20 Hz are considered in the human hearing
range, while slower motions are processed by the vestibular system (hair cells in the semi-
circular canals are not stimulated by frequencies above 15 Hz because of viscous blocking
[46]). In the following, we will focus on the cochlea.
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Fig. 1.5. Axial section through a left cochlea. Scala tympani (1), scala media (2), scala vestibuli
(3), Reissner’s membrane (4), organ of Corti (5), basilar membrane (6), spiral ligament with
the stria vascularis (7), osseous spiral lamina (8), round window membrane (9), helicotrema
(10), modiolus (11), cochlear nerve (12), and stapes (13). Image rendered from micro computed
tomography data [34]. Reprinted with permission from the author [25].

The cochlea — named after its spiral shape — contains three fluid-filled chambers: the
scala vestibuli, the scala tympani and the scala media (Fig. 1.5). These chambers coil
conically around the modiolus, the central axis of the cochlea, spanning approximately 2.4
to 2.8 turns [47, 48]. The overall length of the (uncoiled) cochlear duct, i.e., the scala
media, measures approximately 36mm [49]. The scala media contains endolymph and
houses sensory hair cells for hearing in the organ of Corti (Fig. 1.6). The scala vestibuli
and scala tympani are filled with perilymph and connected at the apex of the cochlea, the
helicotrema. Both fluids exhibit mechanical properties similar to water at body temperature
[50]. Fig. 1.4 shows the oval and the round window, two openings in the bony labyrinth,
which are sealed by elastic membranes. While the oval window opens into the scala vestibuli,
the scala tympani is enclosed by the round window at the base. The scalae are separated
by two elastic partitions: the Reissner’s membrane, composed of only two layers of cells
[51], and the more solid basilar membrane. Towards the modiolus, the basilar membrane
is attached to the osseous spiral lamina, and it separates the scala media from the scala
tympani. The Reissner’s membrane separates the scala vestibuli from the scala media.
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Fig. 1.6. Cross-section of the scala media and the organ of Corti (shaded red). Basilar membrane
(1), Reissner’s membrane (2), stria vascularis (3), tectorial membrane (4), inner hair cell (5), outer
hair cells (6), spiral ligament (7), osseous spiral lamina (8), spiral ganglion fibers (9). Figure based
on histological image. Reprinted with permission from the author [52].

When sound enters, the stapes vibrates at the oval window, which is in contact with
the perilymph within the scala vestibuli, causing the fluid in the cochlea to oscillate. The
round window at the base of the scala tympani can bulge in response to the increased
fluid pressure from the stapes movement (Fig. 1.4). The differences in fluid pressure cause
a wave (traveling wave [53]) on the basilar membrane that travels along its length, from
the cochlear base to the helicotrema [54]. The traveling wave peaks at a resonance point,
the characteristic place whose position depends on the sound frequency. There, the axial
wave motion is transformed into a transverse basilar membrane motion [46, 55]. Thus, the
organ of Corti, which rests on top of the basilar membrane and runs along its entire length,
is moved the most at this location. Fig. 1.6 shows the organ of Corti with one row of
inner hair cells and three rows of outer hair cells. Outer hair cells are connected to the
tectorial membrane, while the stereocilia of inner hair cells stand free. Inner hair cells are
considered the primary sensory tissue [46, 56]. A shearing motion between the tectorial
membrane and the basilar membrane deflects outer hair cell stereocilia. and creates a shear
flow. Outer hair cells actively amplify the response to sound waves by changing their length
[57–60]. The stereocilia of inner hair cells are thought to be deflected by fluid flow [56, 61].
Interestingly, inner hair cells have high resistance to cross flow, while the resistance of the
outer hair cells is much lower and depends on the flow direction [61]. Through mechanical
and voltage-gated ion channels, a receptor potential is formed in the inner hair cells. This
generates an action potential in the spiral ganglion cells which is transmitted to the auditory
cortex of the brain. The brain then processes and interprets these signals, allowing us to
perceive and understand the sounds we hear.

The properties of the basilar membrane change along its length and determine the
characteristic place of resonance for different frequencies. At the base, the membrane has
a dense core with high stiffness but in the apical turn it only consists of a thin layer of
cells (which reduces the stiffness) [62]. Furthermore, its width increases towards the apex.
Therefore, low frequencies are processed at the apical turn of the cochlea, while higher
frequencies are processed closer to the base, which is referred to as tonotopy. Fig. 1.7
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shows the tonotopic organization of the cochlea, which was already suggested by Hermann
van Helmholtz in the 19th century [11]. Warren et al. [62] experimentally investigated the
basilar membrane motion at the apex of Guinea pig cochleae, where low frequencies are
perceived. Notably, they found that its behavior at the apex was different from the one at
the base. The motion amplitude showed a nearly exponential decay with the radial distance
[62].

Fig. 1.7. Segmentations of soft tissues from ten cochleae shown in orthographic 3D view. Fre-
quency maps of the basilar membrane were developed according to Greenwood [63]. Correspond-
ing dendrites were traced to the spiral ganglion and corresponding octave bands are outlined.
The scale bar is 2.5 mm. Reprinted with permission from the publisher [64], under the Creative
Commons CC BY license.

The ion content between the perilymph (scala vestibuli and scala tympani) and the
endolymph (scala media) differs, which is critical for the proper function of hair cells. Two
structures are believed to play a key role in maintaining the endocochlear potential: the stria
vascularis and the Reissner’s membrane. The stria vascularis is a highly vascularized tissue
lining and contains the blood-labyrinth barrier, which regulates the transfer of molecules
from the capillary network to the endolymph [65]. It further produces and maintains the
endocochlear potential by regulating the ion content between the perilymph and endolymph
[66–68]. The Reissner’s membrane is thought to be responsible for the sodium homeostasis
of cochlear endolymph [69].
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1.3 Cochlear modeling
Experimental studies of the cochlea are challenging due to limited access and its small size.
Therefore, studies often rely on numerical simulations, analytical methods, or experiments
in artificial models to gain insights into its function.

We will touch on some important relevant literature with a focus on coiled models
and the effect of their spiral geometry, and place our work in the mentioned literature.
More information about the broad field of cochlear mechanics can be found in Obrist [46],
Reichenbach & Hudspeth [58], Paolis et al. [70], and Obrist [71].

Peterson & Bogert [72]’s model showed that the effect of compressible fast waves can
be neglected compared to incompressible slow waves. In addition, the wavelengths of
compressible waves are longer than the inner ear3, thus the important effects are usually
considered to be the incompressible ones, and the perilymph and endolymph are assumed
to be incompressible [46, 73]. Exceptional contributions to auditory research were made
by Georg von Békésy, who received the Nobel Prize in Medicine in 1961, inter alia, for his
discovery of the traveling wave on the basilar membrane [11, 15].

One-dimensional transmission-line models provide an initial explanation for the travel-
ing wave observed by von Békésy, and are based on incompressible flow that interacts with
a compliant basilar membrane [72]. Lesser & Berkley [73] extended the one-dimensional
model to a two-dimensional inviscid model, which reproduced the traveling wave and re-
vealed particle trajectories near the characteristic place. Steele & Taber [74] used the
Wentzel–Kramers–Brillouin method to describe viscous flow phenomena in the vicinity of
the characteristic place in a three-dimensional (

 

 

3D) uncoiled cochlea model. They pointed
out that the fluid motion is fully three-dimensional. Based on the Wentzel–Kramers–
Brillouin method, several more studies were performed in straight models [75, 76].

These models capture the key characteristics of the traveling wave and can explain the
tonotopic organization of the cochlea, but there are many more processes to explore. Among
the numerous emerging areas in cochlear modeling are steady streaming, active mechanisms,
and anatomically more detailed or comprehensive models (involving the middle ear).

Steady streaming
Steady streaming effects in the cochlea were first pointed out by von Békésy [15], as so-
called Békésy eddies, and later taken up by Lesser & Berkley [73] and Ranke [77]. Lighthill
[55] suggested that the traveling wave generates streaming motions in the cochlea, which
are highest near the characteristic place, and he approximated the mean streaming flow.
He hinted that streaming mechanisms may stimulate inner hair cells.

Steady streaming describes the time-averaged net motion in an oscillating velocity field
with zero mean flow [5, 78]. Different forms of steady streaming are, for example, described
in Riley [78], and in context of the inner ear in Obrist [46] and Lighthill [55].

Several studies characterized steady streaming in the inner ear [4, 5, 79, 80]. Edom
et al. [5] found high steady streaming velocities near the characteristic place and discussed
3For example, wavelengths from λ = cw/f = 0.075m to 75m correspond to frequencies ranging from f = 20

to 20′000Hz, assuming a speed of sound in water of about cw = 1500m/s [73].
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its potential for inner hair cell stimulation, metabolite transport, and drug delivery ap-
plications. Sumner et al. [4] further showed that steady streaming significantly extends
in the longitudinal direction under suitable multi-frequency stimulation and tracked small
massive particles for targeted drug delivery applications. Edom et al. [5] reported steady
streaming velocities up to 300µm/s for an acoustic stimulus of 94 dB at 1000Hz. Sumner
et al. [4] found streaming velocities of about 0.3µm/s for 20′000Hz at 80 dB sound pressure
level (

 

 

SPL). They explained the difference in the reported velocities (for comparable
 

 

SPL)
by the higher frequency.

Active mechanisms
Gold & Gray suggested that the cochlea not only acts as a passive instrument where
basilar membrane displacements are detected, but that it actively increases signals [81, 82].
Kemp [83] later confirmed its active amplification by measuring acoustic emissions from
the cochlea, i.e., otoacoustic emissions. The amplification of the basilar membrane motion
is realized by the outer hair cells in the organ of Corti [84], which not only increase the
sensitivity to a specific frequency, but also our ability to distinguish between two close
frequencies [58, 85]. The fluid motion in the organ of Corti or in the subtectorial gap
has recently gained importance for examining active processes involving hair cells [61, 86–
90]. Still, many open questions remain regarding active mechanisms and inner hair cell
stimulation in the cochlea [91].

Three-dimensional coiled models
Some researchers simulated the interaction between the cochlear fluids and the coiled basilar
membrane (and the organ of Corti) in realistic three-dimensional (

 

 

3D) geometries [92, 93],
while others provide insight based on idealized geometries [27, 94–103]. Some examples will
be named in the following.

Böhnke & Arnold [93] were the first to use a realistic
 

 

3D finite element model, with
fluid-structure interactions, to model inviscid and compressible flow. Another finite element
model based on a realistic geometry was later proposed by Givelberg & Bunn [92], who
modeled viscous, incompressible flow. Both works reproduced the basic (passive) cochlear
mechanisms. Furthermore, they suggested that their models could serve as a basis for
further studies and be extended to include active processes once refined models are available.

An early study by Loh [95] applied the multiple scale analysis to reproduce the behavior
of the traveling wave in an idealized curved model. Initially, the

 

 

3D model was based on a
helical centerline with both curvature and torsion. For simplification reasons, the torsion
was omitted eventually. An idealized, single-chamber model of the cochlea and vestibule
was presented by Ren et al. [99]. In a follow-up study, the finite element model was extended
to two cochlear chambers to compare the traveling wave mechanism under air and bone
conduction [27]. Zhang & Gan [104] proposed a comprehensive idealized cochlear model
including for the first time the ear canal, middle ear and spiral cochlea with three chambers
as well as the basilar and Reissner’s membranes. A similar model was recently applied to
study blast wave transmission [105, 106].

12



To the best of the authors’ knowledge, no follow-up studies to Givelberg & Bunn [92]
and Böhnke & Arnold [93] were conducted, that include active processes in realistic models.
Zhao et al. [102], however, included outer hair cells in an idealized cochlear model, under
the assumption that the cilia are arranged in a straight line and stand free. Nonetheless,
they proposed that the radial flow field deflects hair cell stereocilia most at the apex. An
earlier study in an idealized spiral model with three chambers suggested that the shape of
the cochlea impacts the radial pressure field distribution on the basilar membrane using a
combined analytical and numerical approach [101]. Yao et al. [100] used a cochlear model
including the osseous spiral lamina and the basilar membrane to numerically study the
time-domain. Their model showed that the cochlea’s spiral shape can induce asymmetrical
mechanical behavior of the basilar membrane and cause cochlear fluid to move radially.
Ultimately, all three studies suggested a potential benefit for low-frequency hearing [100–
102].

Influence of coiling
Current research suggests that the spiral shape of the cochlea results from space constraints
within the petrous bone during its development [17]. While the advantages of compactly
packing a long organ are widely accepted, understanding the influence of the cochleas spiral
shape on hearing remains challenging [107–109].

Most cochlear models simplify the cochlea as a straight duct, neglecting its curvature due
to the low Reynolds number and Dean number [46]. Curvature and torsion are described
in the context of the cochlea in the next section and more generally in Chapter 2. Several
studies stated that curvature can be neglected [53, 94–96]. von Békésy [53] studied the
travelling wave in a straight and a curved enlarged cochlear model and did find no effect of
curvature on the travelling wave [53]. This was reconfirmed by Ren et al. [99] and Cai et al.
[110]. von Békésy [15] however, suggested that coiling could be beneficial for the organ
of Corti and, e.g., improve bending capabilities of the tectorial membrane. Huxley [111]
proposed that curvature might cause the sharp resonant vibrations of the basilar membrane,
von Békésy and Loh, however, observed no such effect in their work. More recent studies
are investigating the effect of coiling on hair cells [102, 110]. Loh [95] left out torsion for
simplification, but suggests that it might be relevant to include.

Other studies in
 

 

3D geometries described the effects of coiling on the pressure and the
velocity fields [96, 99–101, 112]: De Paolis et al. [112] showed that the maximum velocities
are shifted toward the inner wall of the cochlear scalae, Ren et al. [99] found that the spiral
shape induced a tilt in the pressure gradient with lower pressures on the inner side of the
curve.

Moreover, several studies describe an effect of curvature and coiling and the spiral
shape on hearing, especially on low-frequency hearing. Curvature enhances the movement
of hair cell stereocilia at the apex, benefitting low frequency hearing [110]. In addition,
Zhao et al. [102] suggested that radial flow displaces hair cells stereocilia the most at the
apex. Manoussaki et al. [107] proposed that the low-frequency hearing threshold in different
species correlates with a radii ratio of the cochlear turns. Pietsch et al. [17] could however
not confirm their findings. In an earlier study, Manoussaki et al. [97] showed that the spiral
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shape redistributes wave energy along the radial direction — similar to a “whispering
gallery effect” — altering the radial vibration profile of the various cochlear structures and
potentially benefiting low-frequency hearing.

While it is generally agreed that the spiral shape results from space constraints, there may
still be an additional benefit of coiling for hearing. The effect of the spiral shape on fluid
mechanics within the cochlea remains elusive and requires further research.

Abstracting cochlear geometry
The kinematic surface fitting algorithm by Wimmer et al. [113] gives an intuitive explana-
tion of the natural growth process of the cochlea. It can be, inter alia, used to determine
shape parameters (rotation, translation, scaling) from surface data of the cochlea. These
shape parameters mathematically describe the cochlear geometry by a spiral velocity field.
We used this field to define a spiral centerline going from the base to the apex. Subse-
quently, the Frenet-Serret frame (see section 2.3) was applied to define the curvature and
torsion at each point along the centerline. The torsion τ of a twisted duct is a measure of
its twist; the distance required for one full turn equals 2π/τ in an only twisted duct, see e.g.,
[114]. In a toroidal duct, the radius of curvature equals the inverse of the curvature κ. Low
curvature thus implies a large radius of curvature, and low torsion a slowly twisting duct.
Kinematic surface fitting showed, that the torsion as well as curvature increase towards
the apex of the cochlea. The latter is a consequence of the decreasing radius of curvature
towards the helicotrema.

To be able to study the effect of curvature and torsion separately, we used four models:
A straight duct, a twisted duct, a toroidal duct and a helical duct. The twisted duct has
a centerline torsion of τ = 1/8mm−1 (i.e., a distance of approximately 50mm for one
turn) and the toroidal duct has a centerline curvature of κ = 1/3mm−1 (i.e., a radius of
curvature of 3mm). The helical duct exhibits, both, a non-zero curvature and a torsion
and is described in section 2.3.

Classification of the square duct models
In this thesis, the effect of geometry, i.e., curvature and torsion, on fundamental phenomena
is studied in abstracted helical square duct models, which were described in the previous
section. We place our work in the corner of abstract

 

 

3D coiled models. Because of the
complex morphology of the cochlea and its sophisticated mechanisms and processes, no
study can yet include every detail. The characteristics of the models in this thesis are:

• helical with curvature and torsion

• single chamber

• rigid walls

• no basilar membrane, thus no travelling wave

14



• passive

• incompressible, viscous Newtonian fluid

• unsteady Navier-Stokes equations including nonlinear effects

These simplifications allow us to study and visualize transverse flow phenomena and their
associated effects (such as wall shear stresses and Lagrangian streaming).

1.4 Effects of geometry on fluid flow at low Reynolds
numbers

Geometry profoundly influences fluid dynamics. The interplay between geometry and flow
at low Reynolds numbers is for example used in microfluidic devices to separate cells and
particles [115, 116], to improve mixing performance [117], or to enhance the efficiency of
heat exchange devices [118]. Low Reynolds number flows are also crucial to blood flow in
small vessels [119, 120] and to organs in our bodies, like the cochlea. The broad literature on
pipe flows at low Reynolds numbers can be categorized according to the following criteria:

• governing equations (steady, unsteady)

• flow development (transient, fully developed)

• duct geometry (e.g., toroidal, twisted, helical)

• cross-section shape (e.g., elliptical, round, rectangular)

Herein, the focus lies on fully developed flows of an incompressible Newtonian fluid at
low Reynolds numbers (entry length effects or transient developing flows are not addressed).
Furthermore, for unsteady flows, only purely oscillatory cases are considered because of their
relevance to cochlear flow.

The relevant dimensionless numbers, the Reynolds number Re (proportional to the fluid
velocity) and Womersley number α (proportional to the square root of the frequency) are
defined in Chapter 2. They describe the transient inertial force as well as the inertial force
with respect to the viscous force, respectively. Finally, the Dean number, used to describe
flow in toroidal ducts, is proportional to the Reynolds number De = Re

√
dh/(2R), where

dh is the hydraulic diameter of the pipe and R is the radius of curvature.
The following sections introduce axial and transverse flows, describe the effect of geom-

etry on the fluid motion, and review techniques to derive or visualize them.

Definition of axial and transverse flow
Secondary flow is a relatively weaker flow pattern superimposed on a stronger primary flow.
Primary flow is often defined as the exact flow solution to simplified governing equations
(e.g., potential flow), while secondary flows are phenomena that deviate from this assumed
theory in practice (e.g., flow with vorticity) [121]. In pipes, secondary flows are usually
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Primary flow (axial) Secondary flow (transverse)

Fig. 1.8. Primary and secondary flows in a curved pipe. The colored arrows indicate the primary
flow magnitude.

defined as a motion perpendicular to the longitudinal axis (see Fig. 1.8). In this thesis, the
term “transverse flows” is used to refer to secondary flows, as they are in the cross-section
of the pipe, transverse to the primary, axial flow.

The importance of secondary flows can be highlighted by the many areas where they
occur, including biological systems (in our bodies e.g., the vascular system [123, 124], the
lymph system in the inner ear [55, 61]), atmospheric winds and the tea-leaf paradox [125,
126], and industrial applications (e.g., brewing industry [127]). In a curved river, secondary
flows can pull water from the top part of the river (in the cross-section) toward the outside
of the bend, while at the bottom of the river they are mostly directed towards the inner
curve [122, 125]. These secondary flows transport sediments and are partly responsible for
the occurrence of sandbars along the inside of the bend, as shown in Fig. 1.9.
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Fig. 1.9. Meandering River. Secondary flows in a curved river can contribute to the formation of
sediment deposition at the inner bank [122]. Not included in the Creative Commons Attribution 4.0
International License. Reprinted from Coral_Brunner, image no. 272183592 - stock.adobe.com

Effect of geometry on axial flow
As a steady flow goes around a bend, curvature alters its axial velocity profile. At low
Reynolds numbers, it shifts the maximum of velocity towards the inner wall [128]. An
explanation for this observation is given in Chapter 2. In contrast, fluid flows faster near
the outer wall at higher Reynolds, see e.g., Liu & Masliyah [129] and Zabielski & Mestel
[130].

Torsion has only a small impact on the axial velocity profile in square ducts at low
Reynolds numbers [131, 132]. For high torsion values, the velocity profile becomes similar
to that of a straight circular tube, as fluid flows mainly through the “straight, untwisted
regions”. Since the twist in the cochlear scalae is low [94, 133], no significant change in the
axial velocities is expected because of torsion [132].

In helical ducts, also the combined effect of torsion and curvature resembles the one
of curvature alone at low Reynolds number [130]. The highest axial velocities are thus
expected close to the modiolus in the cochlea [112].

Oscillating flow is characterized by the Womersley number. For higher frequencies, i.e.,
higher Womersley numbers, it shows a “plug flow” profile with steep gradients at the walls
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Fig. 1.10. Womersley flow profiles for different Womersley numbers in a straight (left) and a
toroidal duct (right) with a curvature of κ = 1/3. In the toroidal duct, for a Reynolds number of
0.58, the velocity profile is skewed towards the inner wall of the curve (towards the right). Lower
oscillation frequencies result in a quasi-stationary profile resembling steady Poiseuille flow, while
higher oscillation frequencies exhibit a plug flow profile.

(Fig. 1.10) [134]. The spatial distribution of the flow amplitude is similarly affected as in
steady flows. In unsteady, oscillating flows, an interesting phenomenon is the time-averaged
net flow, i.e., steady streaming. There are no significant axial Eulerian streaming velocities
because of curvature alone, as there is no preferred direction for flow in a toroidal duct
[135]. Torsion on the other hand leads to axial streaming in helical ducts. An upward net
motion can be found at the top of the cross-section and a downward net motion at the
bottom [135].

Effect of geometry on transverse flow
The geometry of a toroidal duct causes pairs of rotating flow cells in the transverse plane,
known as Dean cells (Fig. 1.8 and Fig. 1.12) [136]. They arise because of centripetal forces,
and their strength depends on the square of the Reynolds number in steady flows [137].

In twisted ducts, the transverse flow pattern strongly depends on the cross-sectional
geometry. In ducts with an elliptical cross-section, torsion leads to a so-called “saddle flow”
structures (Fig. 1.11) [138]. A similar structure arises in ducts of rectangular [137] and
square cross-sections [131, 132]. The maximal strength of the saddle flow structure depends
linearly on the Reynolds number and the torsion in steady flows [137]. For high torsion,
a circulatory motion, a “swirl”, is additionally induced [131, 132]. For the torsion of the
cochlear scalae [94, 133], however, the saddle flow structure is expected to be dominant
[137].

A combination of both effects occurs in the helical duct. For lower Reynolds numbers,
the transverse flow pattern in square cross-sections exhibits a saddle flow, see e.g., Bolinder
[137]. Liu & Masliyah [129] and Zabielski & Mestel [130] found a one vortex structure in
circular cross-sections at low Reynolds numbers, which is thought to originate from torsion
effects [130]. For higher Reynolds numbers, both effects are taken over by two Dean cells
(as their strength increases quadratically with the Reynolds number) [130]. In square ducts,
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Fig. 1.11. Schematic of saddle flow structure in a twisted duct. Looking into the page plane,
the twisted duct turns clockwise and the axial velocity is inflowing.

Fig. 1.12. Schematics of Dean cells (left) and Lyne cells (right, in blue) in a toroidal duct. Lyne
cells are a second pair of rotating vortices that form in the center of the cross-section for high
enough Womersley numbers. Their direction is opposite to that of Dean cells. The outer wall of
the curve is to the left.

for equal values of torsion and curvature, curvature becomes more important for Reynolds
numbers of roughly nine and above [137]. In ducts with a cross-section with an aspect
ratio of two, torsion has an even stronger influence [137]. This observation is particularly
interesting considering the irregular cross-section of the cochlea.

Unsteady flows in toroidal ducts exhibit Dean cells, similar to the steady case. For
sufficiently high Womersley numbers or frequencies, an additional pair of counter rotating
cells forms in the center of the cross-section, which rotate in the opposite direction to the
Dean cells, see Fig. 1.12 [139]. More information on the different types of recirculating
vortices in toroidal ducts for different Dean numbers (proportional to the Reynolds number)
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and Womersley numbers are described by Sudo et al. [140]. When the axial flow changes
direction, Dean cells do not. They are uniform for inflowing and outflowing velocities
because of their inertial nature. Transverse Eulerian streaming in curved and helical ducts
occurs as steady Dean cells [135]. According to Zabielski & Mestel [135], the torsion of the
helix has only a limited effect on Eulerian streaming in the cross-section.

State-of-the-art axial and transverse flow quantification methods
Researchers have studied axial and transverse flow in curved ducts analytically, numeri-
cally, and experimentally. Except for simple geometries, e.g., a straight square duct [141],
these flows can’t be solved analytically. While the previous sections addressed the flow
phenomena, this section is focused on the techniques applied to obtain them. The first part
discusses mainly analytical and numerical studies in toroidal, twisted and helical geometries,
while the second part gives an overview of experimental techniques.

The history of secondary flow studies in toroidal ducts extends from Dean’s pioneering
work, nearly a century ago, to the present and is still actively researched [136, 142, 143].
Dean performed an analytical analysis under the assumption that the pipe diameter of
the toroidal duct is much smaller than the radius of curvature, in the following referred
to as small curvature, and characterized a pair of rotating vortices. This secondary, i.e.,
transverse flow is known as Dean flow [136]. Dean cells were studied in great depth, and
an overview is given in a comprehensive review article by Berger et al. [144]. Dean flow
under oscillating stimulation was studied extensively by Lyne [139], Sudo et al. [140], and
Siggers & Waters [145] in toroidal circular ducts. Lyne [139] described the occurrence of a
second pair of rotating cells for higher Womersley numbers. He performed a perturbative
expansion in the inverse of the Womersley number and derived asymptotic theories, inter
alia, for high oscillation frequencies. Sudo et al. [140] summarized different types of Dean
cells depending on the Dean and Womersley numbers using numerical and experimental
studies. Performing a perturbation in small curvatures, Norouzi & Biglari [146] presented an
analytical solution for incompressible flow in curved ducts with a rectangular cross-section.

Transverse flows in twisted ducts were studied under steady conditions for rectangular
and elliptical cross-sections by Masliyah & Nandakumar [131] and Kheshgi [132] and Ger-
mano [138], Chang et al. [147], and Tuttle [148], respectively. The results were obtained
either by numerical simulations in twisted ducts or as an analytical limit of the more general
case of a helical duct, see e.g., [138].

The helical coordinate system is non-orthogonal (see e.g., [149, 150]) and therefore re-
quires either tensor analysis (using covariant and contravariant vectors, which are related
by the metric tensor) to express the governing equations, or needs to be transformed into
an orthogonal system. Germano [151] proposed a coordinate transformation that yields an
orthogonal system. Tuttle [148] later showed that the results from both approaches, non-
orthogonal and orthogonal coordinate systems, are equivalent, when correctly interpreting
covariant and contravariant vectors. Another orthogonal coordinate system, which is based
on helical symmetry, was proposed by Zabielski & Mestel [130]. Unlike the previous ap-
proaches, their method does not require the assumption aκ ≪ 1, where a is the pipe radius
and κ the curvature.
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Helical duct flow was studied in great detail under laminar steady flow [129, 130, 137,
138, 148, 151–157]. Two works on helical flow will be introduced in more detail because of
their relevance to this thesis.

Bolinder [137] studied steady laminar flow in rectangular ducts analytically and numer-
ically for industrial application. He did a perturbative expansion in small curvature and
torsion and compared first order solutions to the ones obtained with the full Navier-Stokes
equations. His findings assess the maximum magnitude of secondary flows in curved and
twisted ducts as a function of the Reynolds number and for various curvature and torsion
values. His first order results, however, neglect nonlinear terms. They do therefore not
capture the shift in the axial velocity profile because of the helical pitch.

A comprehensive and detailed study for steady and unsteady helical flows was presented
by Zabielski & Mestel who examined transverse flows analytically and numerically [130,
135]. Their method reduces the problem to two dimensions, by applying helical symmetry,
and is carried out for arbitrary constant values of curvature and torsion. While they only
discuss circular and square cross-sections, their method is applicable to other constant
cross-sections as well. They analytically extended the asymptotic theory derived by Lyne
for high oscillation frequencies to helical ducts. The results are mostly discussed for higher
Reynolds numbers and a Womersley number of 20 (for blood flow). Nonetheless, a small
part is devoted to low Reynolds numbers and some results for square cross-sections are
presented. Furthermore, Eulerian streaming effects and wall shear stresses are addressed.

Studies often directly compared their analytical approximations (perturbation method,
asymptotic theories, etc.) either with numerical results obtained from the full Navier-
Stokes equations or with experimental data. A variety of experimental techniques were
applied to measure or visualize axial and transverse flows in toroidal and helical ducts.

Flow visualizations were, for example, done with dye injection [139, 158–161]. Highly
resolved transverse flow patterns were obtained by Krishna et al. [161], who injected fluo-
rescein dye to visualize flow separation and transverse flow vortices, and by Timité et al.
[160], who studied the development of secondary flows in toroidal ducts. Boiron et al.
[159] combined fluorescein injections with velocity measurements from pointwise hot-film
anemometry.

Sudo et al. [140] visualized Dean flows in toroidal ducts by capturing photographs of
suspended nylon particles. They characterized the obtained net motion into five different
patterns. Multiple studies combined such secondary flow visualization techniques with laser
Doppler velocimetry measurements [160, 162, 163]. For example, Bolinder & Sundén [163]
used laser Doppler velocimetry to validate velocity profiles from numerical calculations in a
helical duct. To visualize the flow patterns, they dispersed polystyrene particles in the fluid,
illuminated the transverse plane with a laser sheet and photographed it with a camera.

Perhaps the most frequently used experimental technique for transverse flows at present
is particle image velocimetry (

 

 

PIV). Highly resolved transverse flow patterns were obtained
by stereo PIV [164] or by two-dimensional (

 

 

2D) PIV, applied directly on the transverse plane
with a single camera. The latter has been used in several related studies for applications
addressing flows in the arteries [165–169]. Besides laser PIV, also ultrasonic particle im-
age velocimetry, EchoPIV, was applied to study axial flows in a toroidal duct [170] and
transverse flows in helical stent models (in-vitro) [124, 171].
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Coutinho et al. [172] applied 3D defocusing particle tracking to a toroidal artery model
with a radius of 0.8 mm to visualize transverse and axial flows. Since the setup was built
for smaller dimensions, they shifted the focal plane in steps of 300µm to cover the full pipe
diameter. They used Reynolds numbers of 480 and therefore the transverse flows are much
higher with respect to the axial flows than at low Reynolds number.

Most mentioned studies visualized transverse flows in pipes with larger diameters (12-
35 mm) than the scale of the cochlear scalae [161, 164–167]. This is because they are often
geared towards flow in the arteries. To perform real scale measurements in millimetric
models, e.g., the scales of the inner ear, experimental techniques with high spatial resolution
are needed. More importantly, these techniques need to be able to capture small axial flow
displacements and even smaller transverse flows. EchoPIV is noninvasive and does not need
optically transparent models, and recent advances allow for 3D velocity measurements [173].
But the spatial resolution and signal-to-noise ratio are rather low [173, 174]. 3D defocusing
particle tracking is effective and can be applied to small dimensions. However, it requires
an elaborate calibration and is limited in particle densities because overlapping of particles
in the acquired images introduces uncertainties [175, 176]. Laser PIV is promising for the
study of low Reynolds number transverse flows, as it offers high accuracy and does not
require sparse particle densities.

Particle image velocimetry to measure transverse flows
Particle image velocimetry (

 

 

PIV) is a measurement technique that derives a velocity field
by analyzing images of tracer particles suspended in a moving fluid. It can be observed in a
simplified form in natural phenomena. Adrian [177] described an example similar to what
can be encountered on Lake Thun in the spring. The lake’s surface accumulates pollen.
One can then take two images of the lake’s surface and compare the position of the pollen
pattern in the two images. Dividing the difference in their positions by the time between
the images allows us to determine the velocity of the pollen and therefore the flow at the
surface. The pollen effectively serves as tracers to capture the motion of the lake’s water.

In its technical form,
 

 

PIV usually involves a laser, an optically transparent test section,
at least one high-speed camera, and tracer particles which are suspended in the fluid to be
measured. The tracer particles are typically fluorescent and small enough to move at the
same velocity as the fluid. For neutral buoyancy, they should have the same density as the
fluid. A laser sheet is used to illuminate a thin plane within the fluid where the flow is to
be measured. The laser light excites the tracer particles, which then emit light at a lower
wavelength. A camera captures the illuminated plane in a fast series of images. Based
on the cross correlation of sub-regions in successive images,

 

 

PIV algorithms calculate the
velocity vectors at discrete points within the captured image. A textbook by Raffel et al.
[178] provides a detailed introduction to the concepts and techniques of PIV and more
details can also be found in Adrian [177], Etminan et al. [179], and Rohacs et al. [180].

 

 

PIV in its traditional form is
 

 

2D, but several extensions were developed to measure a
full velocity field in a volume, referred to as three-dimensional three-component (

 

 

3D3C)
techniques. These include, for example, holographic

 

 

PIV [181, 182], tomographic
 

 

PIV [183–
185], and scanning

 

 

PIV. We will focus on scanning
 

 

PIV in the following, because of its
relevance to Chapter 4.
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In scanning
 

 

PIV, fast successive scans of a laser sheet through a volume of interest are
recorded with a single high-speed camera [186, 187]. The camera is synchronized with the
laser to ensure accurate timing of the images. The height of the test section, that can
be scanned, is set by the depth of field of the camera system, i.e., the whole test section
needs to be in reasonable good focus. The time to scan the volume should be much shorter
than the timescale of the flow of interest, as the different heights are captured sequentially
[178, 188]. This requires that the scanning frequency of the laser is much higher than the
flow frequency. In addition, the high camera frame rates are needed to obtain the desired
temporal resolution. This limits its application for fast flows [178], while flows in millimetric
and micrometric applications are often slow enough to allow sequential, step-wise scanning.
David et al. [189] applied a scanning laser sheet with a tomography technique, and based
the PIV analysis on the cross-correlation between successive volumes. The advantages of
scanning

 

 

PIV include very high accuracy, which is mainly limited by the camera features.
As cameras continue to improve in resolution, sensitivity, and frame rate, the importance
of scanning PIV increases.
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1.5 Thesis objectives and overview
This thesis aims to investigate the effect of cochlear morphology on secondary flow phe-
nomena in an effort to improve our understanding of cochlear mechanics. The cochleas
spiral shape is particularly curved and twisted towards the apex, where low frequencies are
processed. Moreover, several studies suggested that the spiral shape of the cochlea may
enhance on low-frequency hearing [97, 100–102]. This motivates our main hypothesis that
torsion facilitates low-frequency hearing, in particular, by causing transverse flow. Conse-
quently, the following work is focused on low frequencies (up to 256 Hz). For this purpose,
the effects of geometric curvature and torsion on fluid motion are quantified in abstracted
geometries. Since the objective is to investigate passive mechanical effects of shape on
transverse flow, active cochlear mechanisms will not be addressed. This thesis summarizes
the emerging flow phenomena in three chapters.

During the hearing process, the stapes vibrates at the oval window and causes subtle
oscillation in the cochlear fluids. In Chapter 2, axial and transverse flow patterns are
studied under oscillatory stimulation in toroidal, twisted, and helical square ducts. The
effect of curvature and torsion on the strength of transverse flows is discussed for a variety
of frequencies, covering both infrasound and low frequency hearing, and flow magnitudes
(corresponding to different sound pressure levels). Shifts in the spatial position of maximum
axial flow were observed in the ducts for different Womersley numbers. The effect of
geometry on phase differences between pressure and axial as well as transverse flow velocities
were examined as well.

Transverse flows are intricately coupled with pressure fluctuations in the cross-section
and can be, both, cause and effect of them. In addition, axial and transverse flows cause
wall shear stresses. Pressure fluctuations as well as shear stresses are presented in Chap-
ter 3. The wall shear stress is decomposed into an axial and a transverse component to
quantify its relative strength in the transverse direction. Based on the dominant force, we
described two regimes of maximum wall shear stresses and pressure variations with respect
to the Womersley number (i.e., oscillation frequency). While the low frequency regime is
dominated by non-linear, viscous effects, the higher one demonstrates an onset of transient
inertial forces, particularly in the presence of torsion.

Chapter 4 builds on the findings of Chapter 2, and introduces a new three-dimensional
particle image velocimetry (PIV) technique to visualize the subtle oscillating flows. The
setup is tested on a custom-built straight, twisted, and toroidal flow channel with a di-
ameter of approximately 2 mm. The technique allows for measuring both time-resolved
axial and transverse flows, as well as net motions (Lagrangian streaming). The PIV results
are compared to simulations in the measurement samples and to simulations in the ideal-
ized models from Chapter 2. Cross-sectional streaming is discussed as a potential mixing
mechanism.

And finally, in Chapter 5, the presented work is summarized, its limitations are dis-
cussed, and potential directions for the future of the project are outlined.
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chapter 2

TRANSVERSE FLOW UNDER OSCILLATING STIMULATION IN
HELICAL SQUARE DUCTS WITH COCHLEA-LIKE GEOMETRICAL

CURVATURE AND TORSION

This chapter is submitted as:
Harte N.C., Obrist D., Caversaccio M.D., Lajoinie G.P.R. and Wimmer W.
Transverse flow under oscillating stimulation in helical square ducts with cochlea-
like geometrical curvature and torsion.

Axial and transverse flows in a straight, a twisted, a toroidal and a helical square
duct are presented for a range of frequencies and velocity amplitudes. A scaling
of the maximum transverse flows with Womersley number and Reynolds number
is established based on the studied parameter ranges. A significant increase in
maximum transverse flow is demonstrated in the helical geometry compared to
exclusively twisted or toroidal ducts.

Author contribution: Conceptualization and methodology, mesh generation, nu-
merical simulations, data analysis, manuscript writing and data visualization.
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2.1 Abstract
The cochlea is our fluid-filled organ of hearing with a unique spiral shape. The physiolog-
ical role of this shape remains unclear. Previous research has paid only little attention to
the occurrence of transverse flow in the cochlea, in particular in relation to the cochlea’s
shape. To better understand its influence on fluid dynamics, this study aims to characterize
transverse flow due to harmonically oscillating axial flow in square ducts with curvature
and torsion, similar to the shape of human cochleae. Four geometries were investigated to
study curvature and torsion effects on axial and transverse fluid flow components. Twelve
frequencies from 0.125Hz to 256Hz were studied, covering infrasound and low-frequency
hearing, with mean inlet velocity amplitudes representing levels expected for normal con-
versations or louder situations. Our simulations show that torsion contributes significantly
to transverse flow in unsteady conditions, and that its contribution increases with increas-
ing oscillation frequencies. Curvature has a small effect on transverse flow, which decreases
rapidly for increasing frequencies. Strikingly, the combined effect of curvature and torsion
on transverse flow is greater than expected from a simple superposition of the two effects,
especially when the relative contribution of curvature alone becomes negligible. These
findings could be relevant to understand physiological processes in the cochlea, including
metabolite transport and wall shear stresses. Further studies are needed to investigate
possible implications on cochlear mechanics.
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2.2 Introduction
The cochlea, our organ of hearing, is a fluid-filled structure with a peculiar spiral shape.
Despite its importance, the physiological role of its shape in sound transmission from the
cochlear fluids to the sensory epithelium remains unclear. Performing experimental in-
vestigations is challenging because of the limited access to the cochlea and its small size.
Therefore, existing literature is based on numerical simulations or theoretical studies. For
example, researchers have simulated the interaction between the cochlear fluids and the
basilar membrane (or the organ of Corti) in realistic geometries [92, 93, 110], while others
provide theoretical insight based on idealized geometries [94–97]. Manoussaki et al. [107]
showed that the spiral shape redistributes wave energy along the radial direction, altering
the radial vibration profile of the various cochlear structures and affecting low-frequency
hearing. However, geometry-related secondary flow phenomena, especially the occurrence
of transverse flow (i.e., flow in the cross-section of the cochlea) have received little attention.

Since the physiology of the ear is fundamentally coupled to fluid dynamic processes, a
more detailed understanding of the influence of geometric properties on the flow field is
desirable. In this context, possible mechanisms could be secondary phenomena introduced
by transverse flow. The combination of oscillating axial flow and transverse flow caused
by geometry leads to steady streaming effects and net transport of particles [78]. There-
fore, cross-sectional mixing and longitudinal streaming caused by transverse flow could be
relevant for the transport of metabolites in the cochlea [190]. In the context of medical
treatment, intracochlear fluid-borne mass transport (drug delivery) is an active area of re-
search [4, 46]. Moreover, transverse flow can generate wall shear stresses and pressures that
could reach magnitudes that may be considered physiologically relevant in the cochlea.

Curvature and torsion are elementary properties that can be used to describe duct
geometries by the centerline. Relatively simple shapes can generate complex transverse
flow patterns. The geometry of a toroidal duct, only exhibiting curvature, causes pairs of
rotating flow cells oriented in the transverse plane, known as Dean flow [136]. Inside twisted
straight ducts, which only contain torsion, saddle flow patterns are generated depending
on the cross-section of the duct [132, 138]. More complex phenomena arise in helical ducts
with curvature and torsion combined, as has been extensively studied by Bolinder [137] and
others [130, 148, 152, 154] under laminar steady flow conditions. Transverse flow occurring
under oscillatory stimulation in toroidal circular ducts was studied by Lyne [139], Sudo
et al. [140], and Siggers & Waters [145]. An elegant solution for oscillating helical flows was
presented by Zabielski & Mestel [135], who examined transverse flows in helical rectangular
and circular ducts analytically and numerically. We did not use their semi-analytic method
for our application, as we wanted to keep the option open for future inclusion of more
complex geometries (including tapering and fluid-membrane interactions). Recently, the
study of helical flows has also gained attention in the context of the arterial vasculature
[157, 166, 191–193].

Motivated by the question of the physiological role of the cochlear shape, the aim of
this study is to fundamentally characterize transverse flow phenomena under harmonic os-
cillation in square ducts with curvature and torsion reflecting the shape of human cochleae.
Computational fluid dynamics (CFD) is used to simulate flow at oscillation frequencies
within the infrasonic and low-frequency hearing range of humans because the apical region
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of the cochlea, characterized by a high degree of curvature and torsion, is particularly sensi-
tive to these frequencies. The results of this study include axial velocity profiles, transverse
flow patterns, relative transverse flow magnitudes and phase differences between pressure
and velocity. Interestingly, we find that torsion remains the dominant contributor to trans-
verse flow under oscillating stimulation, similar to its role under steady flow conditions.
Additionally, we observe that the combined contribution of curvature and torsion to trans-
verse flow is larger than expected based on a simple superposition of the two effects.

2.3 Methods
Duct geometries
To characterize the contributions of curvature and torsion to the flow field, we simulated
fluid flow in four different geometries (Fig. 2.1). We defined the geometries using established
methods [114, 137], which are summarized here. The centerlines of the geometries are
described by the position vector r = r(s) and parametrized with the arc length s. To
facilitate the decomposition into axial and transverse flow components later on, we use the
orthonormal Frenet-Serret frame consisting of the tangent (̂t), normal (n̂), and binormal
(b̂) unit vectors:

t̂ = r′, n̂ =
t̂′

∥̂t′∥
, and b̂ = t̂ × n̂, (2.1)

where the prime indicates the derivative with respect to the arc length s. The curvature κ
and torsion τ of the centerline are defined as

κ =
∥∥∥t̂′

∥∥∥ and τ = n̂′ · b̂. (2.2)

For the helical centerline, we obtain

κ =
R

K2 +R2
and τ =

K

K2 +R2
, (2.3)

where R is the radius and 2πK is the pitch of the helix, i.e., the height of a complete helical
turn. The toroidal duct (Fig. 2.1b) has a centerline with zero torsion and a curvature of 1/R.
In contrast, the centerline of the twisted duct (Fig. 2.1c) has zero curvature and a torsion of
1/K. For our geometries, the centerline curvature and torsion were chosen as κ = 1/3mm−1

and τ = 1/8mm−1, respectively, to match average properties observable in human cochleae
[94, 133]. However, it should be pointed out that certain values for curvature and torsion
would be inadmissible, as the duct would intersect itself. A typical radius for the basal
turn of the cochlea is around 3mm and the radius decreases to approximately 1mm for the
apical turn [47, 48, 133]. The total height of the cochlea measures typically about 4mm
and the height difference per turn is around 1mm. The value for K may be estimated as
0.1mm at the base and as 0.05mm at the apex.
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To save computational cost, we reduced the total arc length of the centerline for all
models to smax = 10mm, which is shorter than a human cochlea (37mm) [194]. The
models have a 2mm× 2mm cross-section to capture typical dimensions of the cochlear
cross-section [195].

Fig. 2.1. The geometries with corresponding curvature κ and torsion τ . (a) Straight duct with
τ = κ = 0mm−1, (b) toroidal duct with τ = 0mm−1 and κ = 1/3mm−1, (c) twisted duct with
τ = 1/8mm−1 and κ = 0mm−1, and (d) helical duct with κ = 1/3mm−1 and τ = 1/8mm−1.

Model implementation
The perilymph flow in the cochlea is modelled as flow of an incompressible Newtonian fluid
[50], by the Navier-Stokes equations

∇ · u = 0 and

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p+ µ∆u,
(2.4)

where u = u(x, y, z, t) and p = p(x, y, z, t) are the velocity and pressure fields at time t
represented in an Eulerian reference frame. The dynamic viscosity and the fluid density
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are denoted by µ and ρ, respectively (Table 2.1). At the inlet and outlet surfaces, the
pressure pout and pin were set to

pin(t) = P0 cos(2πft) and pout(t) = 0, (2.5)

with the oscillation frequency f and the pressure amplitude P0. No-slip boundary conditions
were imposed on the walls. We performed simulations at 12 frequencies ranging from
0.125 Hz to 256 Hz in powers of two. This frequency range corresponds to infrasound
(< 16Hz) and the human low-frequency hearing regime (16 Hz to 256 Hz) and covers quasi-
steady (0.125 Hz) to unsteady inertial flows for which the associated Womersley number is
greater than unity (Table 2.1). The Womersley number α measures the ratio between the
pulsatile or unsteady inertial forces in relation to the viscous forces [134]. We chose this
frequency range for the following reasons. First, the low stimulation frequencies enable us
to verify our results in quasi-steady-state scenarios with the known solutions of Bolinder
[137]. Second, low frequencies are perceived in the apical region of the cochlea, which
exhibits the strongest geometric curvature and torsion. Third, higher frequencies (> 256Hz)
require refined meshes due to steeper velocity gradients that would make the calculations
prohibitively expensive.

Table 2.1. Model parameters. The viscosity and density are taken from water at 37◦C (body
temperature). The inlet pressure amplitude P0 was chosen such that a desired mean velocity
amplitude W0 (averaged over the cross-section) was obtained.

Parameter Value
Dynamic viscosity µ 0.69mPa s [50]
Density ρ 993 kg/m3 [50]
Hydraulic diameter dh 2mm [195]
Mean velocity amplitude W0 2− 200 µm/s [35, 40, 42]
Reynolds number Re = dhW0ρ/µ 0.0058− 0.58
Oscillation frequency f 0.125− 256Hz
Womersley number α = dh

2

√
2πfρ/µ 1− 48

Strouhal number St = 2α2

πRe
= fdh

W0
1.25− 256000

Numerical model
For the simulations, we used the finite element solver COMSOL Multiphysics® (COMSOL
AB, Stockholm, Sweden). Structured meshes were generated by sweeping a square cross-
section (Fig. 2.2) along the ducts’ centerlines. The cross-sectional mesh was aligned along
the centerline with t̂, n̂, and b̂. Grid stretching was applied. The number of nodes was
chosen based on a convergence analysis, resulting in 26×26 nodes in the cross-section and a
total of 77 500 hexahedral elements per geometry. We used Lagrange elements of order two
and one for the velocity and pressure (P2P1), respectively. For the time-dependent solver,
the implicit backward differentiation formula method of variable order (between 1 and 5)
was used. We chose 100 steps per oscillation period of the pressure boundary condition. The
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inlet pressure amplitude P0 was found iteratively such that the axial velocity amplitude
averaged over the cross-section W0 remained the same across the stimulation frequency
range for the different geometries. P0 is approximately proportional to the oscillation
frequency and to the Reynolds number. The Reynolds number measures the ratio between
the inertial forces and the viscous forces [196].

Fig. 2.2. Cross-sectional mesh with 26× 26 nodes along the normal n̂ and binormal b̂ direction
(Frenet-Serret frame).

Based on reported data [35, 40, 42], we chose three mean inlet velocity amplitudes
averaged over the cross-section: 2 µm/s, 20 µm/s, and 200 µm/s. For a constant velocity
amplitude W0, decreasing frequencies correspond to increasing equivalent sound pressure
levels at the ear drum. The characteristic middle ear transfer function (i.e., the stapes
velocity versus the sound pressure at the ear drum) reaches its resonance at about 1 kHz,
with a mean slope of approximately 6 dB per octave up to 1 kHz [35, 42]. For example,
at 32 Hz, a stapes velocity of 200 µm/s can be expected for an external auditory canal
pressure of ∼ 125 dB sound pressure level (SPL). At 128 Hz, the same stapes velocity would
correspond to an acoustic stimulus with ∼ 113 dB SPL. Velocity amplitudes of 20 µm/s and
2 µm/s match pressure levels that are 20 dB and 40 dB lower, respectively. The selected
stapes velocities approximately cover the range of sound pressure levels occurring during
normal conversations (2 µm/s), shouted conversations (20 µm/s), and near to the threshold
of pain at 256 Hz (200 µm/s). The selected parameters result in Reynolds numbers Re
well below unity, implying that the fluid phenomena are in the Stokes regime. From the
Womersley number and Reynolds number, one can also compute the Strouhal number,
which is above unity in our case, see Table 2.1. The Strouhal number represents the ratio
of the transient inertial forces due to unsteady acceleration to the inertial forces due to the
advective acceleration [197].

To shorten the duration of the initial transient state, the amplitude of the inlet pressure
P0 was ramped up smoothly over the first few cycles. To ensure that the initial transient
is washed out, we retrieved results after a sufficient number of cycles, e.g., after 21 cycles
at 256 Hz. The results were evaluated at the central cross-section (s = 5) to exclude
development length effects from the inlet and outlet boundary. We defined the maximum
transverse flow velocities found in the straight duct simulations as the numerical noise
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floor, which provides a lower bound on accuracy (see Fig. 2.6). The computations were
performed on a computing cluster with AMD Epyc2 processors. The typical turnaround
times for the computations that were running with 16 tasks and 32 GB RAM per CPU on
one node varied from one day for 0.125 Hz, to seven days for 256 Hz.

Axial and transverse flow
We apply the Frenet-Serret frame to decompose the velocity field u:

u = un̂ + vb̂ + wt̂, (2.6)

and define the velocity component along the tangent as axial flow w = u · t̂, while the
components in the normal and binormal directions, u = u · n̂ and v = u · b̂, constitute the
transverse flow.

2.4 Results
Axial flow
Figure 2.3 shows the axial velocity contours in the geometries for different oscillation fre-
quencies taken at the peak amplitude. For the straight duct, the results are in good
agreement with the exact solution by Tsangaris & Vlachakis [141]. The relative velocity
error, averaged in the cross-section, is 0.09% at 0.125 Hz and increases to 0.25% at 64 Hz
and 1.25% at 256 Hz. It is known that Womersley flow develops steep velocity gradients
with increasing Womersley numbers and that the thickness of the Stokes boundary layer
scales with 1/α. We verified that the velocity gradient at the wall increases linearly with
α in the straight duct for Womersley numbers greater than approximately 4. The axial
velocity in the twisted duct hardly differs from the one in the straight duct (relative mean
difference of 0.39%). Also, the flow profile in the helical ducts differ only little from the
toroidal duct profiles (0.51%). Figure 2.4a shows the locations of the maximum axial flow
in the cross-section for different frequencies and geometries. With increasing Womersley
numbers α, these locations converge toward the corners in the straight and the twisted
ducts. The maximum axial velocities in the toroidal and helical geometry are shifted to the
inner wall corners for low Reynolds numbers and the present curvature, as also observed
by Pantokratoras [198] and Murata et al. [128].

In the straight and twisted ducts, the axial velocity profile has a central symmetry with
respect to the normal and binormal directions. The axial velocity profiles in toroidal ducts
are symmetrical about the horizontal axis at xb = 0, while in the helical duct a small
deviation is introduced by the non-zero pitch.
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Fig. 2.3. Axial flow magnitude for different frequencies and geometries shown at the peak
amplitude (W0 = 200 µm/s).

33



Fig. 2.4. Location of maximum axial (a) and transverse flow (b) in the toroidal (green), twisted
(red), helical (yellow) and straight (black) ducts for Womersley numbers ranging from 1 to 48
and a mean velocity amplitude of W0 = 200 µm/s. Only the first quadrant of the cross-section is
shown.

Transverse flow
Figure 2.5 shows transverse flow patterns for selected oscillation frequencies (additional
figures are provided in the Supplemental Material at [URL will be inserted by publisher]).
In the quasi-steady situation (i.e., 0.125 Hz), we found similar patterns as described by
Bolinder [137], who studied transverse flow in steady conditions. In a pipe with circular
cross-section, in contrast, Zabielski & Mestel [130] found a one-vortex structure in the cross
flow of steady helical flows at low Reynolds numbers.

In the toroidal duct, two counter-rotating Dean cells form, caused by inertial forces that
push the fluid along the middle line (xb = 0) from the inner towards the outer wall [136].
This effect leads to unidirectional transverse flow, regardless of the direction of the axial
flow. As the oscillation frequency increases, the Dean cells separate and concentrate on the
walls. At 32 Hz (α ≈ 17) and higher frequencies, an additional pair of vortices, called Lyne
instabilities, can be observed in the center of the channel, rotating opposite to the Dean
cells [139].

The torsion of the twisted duct causes saddle flow in the corners of the cross-section,
alternating with the direction of the axial flow. The observed pattern stays relatively stable
over the simulated frequency range. The transverse flow pattern in the helical duct shows a
similar structure as in the twisted duct, except that the transverse flow is focussed toward
the inner wall, where the axial flow is stronger as well.

In general, for all geometries, the location of the maximum transverse flow approaches
the corners (of the inner wall, in helical and toroidal ducts) for increasing Womersley
numbers (Fig. 2.4b). In toroidal ducts, the maximum transverse flow has a sharp spatial
transition from near the center of the cross-section to the upper and lower walls at α ≈ 5.5.
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Fig. 2.5. Axial (colored contours) and transverse flow (streamlines) for different frequencies and
geometries shown at the time of maximum transverse flow (W0 = 200 µm/s). Looking into the
page plane, the twisted duct turns clockwise and the axial velocity is inflowing.
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This discontinuous change is a characteristic of the maximum function, which may jump
between different local maxima in the cross-section. For Womersley numbers greater than
approximately 5.5 the local maxima closer to the side walls become higher than the central
one. Figure 2.6 summarizes the maximum transverse velocity magnitude versus Womersley
number in our geometries. As expected for the toroidal duct, the transverse flow magnitudes
because of curvature are small compared to the axial velocity (below 1% of the axial velocity
magnitude). This is because the magnitude of the transverse flow in a toroidal duct is
proportional to Re2 [137]. Increasing the oscillation frequency further reduces the relative
magnitude of the transverse flow which scales roughly with f−1 (or α−2). As the Womersley
number increases, the contribution of curvature to the transverse flow continues to decrease
and approaches negligible amplitudes in the toroidal duct.

As pointed out by Bolinder [137] for steady flow at low Reynolds numbers, torsion
has a dominating effect on transverse flow, which can be seen by a 5-fold higher maximum
transverse flow magnitude in the quasi-steady state (i.e., 0.125 Hz). Strikingly, in contrast to
curvature, the contribution of torsion is substantial and gets more significant with increasing
frequencies following approximately ln(α), with the relative maximum exceeding 10% of the
axial flow magnitude for Womersley numbers greater than 10. At 256 Hz (α ≈ 48), the
maximum transverse flow velocity accounts for approximately 15% of the axial flow velocity.

For the twisted duct, the curves for the different Reynolds numbers are coinciding in
Fig. 2.6. This agrees with Bolinder [137] who found that the magnitude of transverse flow
scales to first order with Re in such geometries. Also for the helical duct the curves for
different Re coincide, indicating that the maximum transverse flow remains proportional
to Re, at least in the frequency range observed in our experiments.

Surprisingly, although the contribution of curvature alone is negligible in the toroidal
duct, the combination of curvature with torsion results in a 2-fold gain of transverse flow
magnitude in the helical duct. This gain can be observed throughout the simulated fre-
quency range, even for cases with α > 10, where the isolated contribution of curvature to
the transverse flow is less than 0.1% of the axial flow magnitude.

Phase lag
Figure 2.7 shows the phase difference between the flow and pressure oscillations. As the
phase depends on the location within the cross-section, the reported values are shown at
the maximum amplitudes for the axial (Fig. 2.4a) and transverse flow (Fig. 2.4b). The
axial velocity phase lag in the straight duct is in good agreement with the exact solution
by Tsangaris & Vlachakis [141]. The axial phase lag in the twisted duct resembles the one
in straight ducts (relative difference of 0.15%), reaching a plateau at a quarter of a cycle
for α > 4. In the toroidal and helical ducts, the phase lag is similar but on average higher
than in the straight and twisted ducts.

The phase lag of the transverse flow velocity decreases monotonically in all geometries
and approaches the phase lag of the axial flow velocity with increasing Womersley numbers,
except for the toroidal duct. In the toroidal duct the phase lag fluctuates around a third
of a cycle for α > 4.
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Fig. 2.6. Maximum transverse flow magnitude with respect to the mean axial flow velocity (W0)
as a function of the Womersley number α. The markers on the left side of the figure show the
steady flow solutions for the toroidal and twisted ducts [137]. Black symbols indicate numerical
noise defined as the maximum transverse flow velocities found in the straight duct simulations.
Note that the maximum transverse flow at α ≈ 48 (f = 256Hz) and Re = 0.0058 in the toroidal
duct is distorted due to its proximity to the numerical noise floor.
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Fig. 2.7. Phase difference between maximum axial (trilateral markers) and transverse flow
velocity (marker style according to the Reynolds number) and pressure for different Womersley
numbers α. The black dashed line indicates the exact solution (phase lag between the axial flow
and pressure) for a straight square duct [141]. Markers for different Reynolds numbers Re coincide.
For the toroidal duct, the phase difference is distorted at α ≈ 48 (f = 256Hz) and Re = 0.0058
due to the numerical noise floor.
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2.5 Discussion
Transverse flow
In this study, we used simplified geometries to investigate the effects of curvature and torsion
on transverse flow under oscillatory stimulation based on conditions in the human cochlea.
Our models, which have square cross-sections and do not include fluid interactions with
flexible membranes, serve as abstract representations of the cochlear scalae. Through our
simulations, we discovered two key findings about the influence of geometry on transverse
flow.

First, we found that torsion remains a significant contributor to transverse flow in
unsteady conditions at low Reynolds numbers (< 1), as pointed out by Bolinder [137]
for steady flow, and its contribution increases with higher oscillation frequencies. The
formation of saddle flow due to torsion could be interpreted as a kinematic effect, as the
twisted geometry forces a change of direction close to the boundaries.

Second, we observed that the combined effect of curvature and torsion on transverse
flow is greater than what would be expected based on a simple combination of the two
effects, especially when the relative contribution of curvature alone becomes negligible. The
transverse velocities resulting from curvature are about one order of magnitude smaller than
found from torsion, and decrease rapidly for increasing frequencies. The transverse flow
patterns are similar between the twisted and the helical ducts (Fig. 2.5), however, caused
by curvature, the maximum axial velocity gets shifted toward the corners of the inner
duct wall in helical ducts (Fig. 2.4b), leading to stronger saddle flow there. Therefore, it
appears as if the helical shape acts as an amplifier to transverse flow when stimulated with
oscillations within the observed frequency range.

Axial flow
The straight and twisted ducts have nearly identical axial flow profiles in our simulations.
This is in agreement with Kheshgi [132] who found that the axial flow profile in twisted
channels approximates the velocity profile of a straight channel under steady conditions
and low torsion. As soon curvature is present (i.e., in toroidal and helical ducts), the axial
flow profiles are dominated by curvature over the observed frequencies. At low Reynolds
numbers and high curvature, the maximum velocity is shifted towards the inner wall of the
bend, contrary to what one would expect for higher Reynolds numbers [128, 198]. The axial
pressure gradient is steeper along the inner wall because the arc length is shorter than at the
outer wall. Since the centrifugal forces which push the fluid outwards are weak at low Dean
numbers, we suspect that the effect of the higher pressure gradient dominates such that
the highest velocities are found closer to the inner wall [199]. With increasing Womersley
numbers, the maximum flow velocity moves closer to the inner wall. In the toroidal and
helical geometry, the position of the maximum axial flow abruptly shifts from the middle
line (along xb = 0) towards the corners of the inner walls as α exceeds approximately
4.5. This sudden change reflects the transition from a low Womersley number regime,
which is characterized by viscous inertial forces, to a regime where transient pulsatile forces
dominate. Consequently, the velocity profile changes from a quasi-stationary, parabolic
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shape to a Womersley flow exhibiting four local maxima close to the corners. In our
geometries, torsion of the helical duct (or the resulting pitch) has little effect on the axial
flow compared to the toroidal duct.

Phase lag
We found that the phase difference depends on the duct geometry for transverse flow and
behaves differently than the phase difference between th pressure and axial flow velocity.
In toroidal ducts, the axial and transverse flow velocities can be considered in-phase when
approaching higher frequencies, with a quarter of a cycle offset to the pressure amplitude.
The difference in the axial phase lag between the geometries with a straight centerline and
the ones with a curved can be explained by the different probing locations, which were
closer to the walls for helical and toroidal ducts (Fig. 2.4a). Also the fluctuations in the
transverse phase lag in the toroidal duct for α > 4 likely result from the change in the
probing locations with increasing Womersley numbers (Fig. 2.4b).

Study limitations
The main limitation of our study is the use of abstract geometries to model the highly com-
plex anatomy of the human cochlea [112]. Our largely simplified models do not capture
important phenomena such as the travelling wave inside the cochlea or its tonotopic organi-
zation. Further studies on models featuring more realistic cross-sections and tapering, and
in particular fluid-membrane interactions, are required to investigate possible implications
on cochlear mechanics. Our simulations are limited to the observed frequency range, which
only covers the low-frequency hearing regime of humans. Additional simulations, with re-
fined mesh geometries, are required to obtain data covering the whole human hearing range
up to 16 kHz and more.
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2.7 Supplement
The Supplemental Material includes transverse flow patterns at other Womersley numbers,
simulation results where the viscosity and length scale were varied, and additional informa-
tion about the methods described in the main article.

Transverse flow patterns
Fig. 2.8 and 2.9 show the transverse flow patterns for the remaining Womersley numbers
α, which were not presented in the main article.

Viscosity and length scale variations
The maximal transverse velocities depend only on the Reynolds number Re in the steady
case (for a fixed torsion and curvature) [137]. In our unsteady scenario, they changed
additionally with the oscillation frequency. To verify that the Womersley number is the
correct dependent variable (e.g., in Fig. 6 in the main article), we performed additional
simulations with a dynamic viscosity of 2µ (Re = 0.29) and simulations with a length scale
of 2l0 (Re = 1.16), where l0 refers to the initial length dimension. We kept the mean velocity
amplitude at 200 µm/s, and, consequently, the Reynolds number changed according to the
length scale and viscosity. Figure 2.10 shows the maximal relative transverse velocities
resulting from these variations as a function of the Womersley number. In the toroidal
duct, the transverse velocity magnitude decreased linearly with Re while in the twisted
duct, the magnitude remained constant for different Reynolds numbers. The different lines
visible in Fig. 2.10a (and in Fig. 6 in the main article) for the toroidal geometry collapse
to one line when the y-axis is divided additionally by the Reynolds numbers (Fig. 2.10b).
Other changes in the maximal transverse velocity have not been observed by changing the
viscosity or the length scale.

Method supplement
Grid stretching

The cross-section mesh consists of N nodes aligned along n̂ and b̂, respectively. For the
direction in n̂, the node coordinates xn (in mm) at index j are

x(j)
n =

tanh [−π/3 + 2πj/(3N)]

|tanh(π/3)|
dh
2
, with j = 0, 1, ..., N. (2.7)

dh = 2mm is the side length of the cross-section. The node coordinates x
(j)
b along b̂ are

distributed analogously.
For the applied mesh with N = 26, 125 nodes were uniformly distributed along the

centerline (i.e., in the t̂-direction), leading to a spacing of smax/124.
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Fig. 2.8. Axial (colored contours) and transverse flow (streamlines) for different oscillation
frequencies and geometries shown at the time of maximum transverse flow for a mean inlet velocity
W0 = 200 µm/s. Looking into the page plane, the twisted duct turns clockwise and the axial
velocity is inflowing.
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Fig. 2.9. Axial (colored contours) and transverse flow (streamlines) for different oscillation
frequencies and geometries shown at the time of maximum transverse flow for a mean inlet velocity
W0 = 200 µm/s. Looking into the page plane, the twisted duct turns clockwise and the axial
velocity is inflowing.

Verification of transverse velocities in steady conditions

To further verify the mesh and CFD settings, we conducted stationary simulations and
compared the results with literature. According to Bolinder [137], the ratio of the maxi-
mal transverse velocities with respect to the mean axial velocity for a toroidal duct with
curvature κ is given by

(u2 + v2)
1/2
max

W0

= 0.017κdhRe, (2.8)

and for a twisted duct with torsion τ by

(u2 + v2)
1/2
max

W0

= 0.144τdh, (2.9)

where Re is the Reynolds number. Figure 2.11 shows the maximum transverse velocities
in curved and twisted ducts for steady flows as a function of the Re. They are in good
agreement with the results obtained by Bolinder [137]. The average relative difference
of 2.4% can be explained by the fact that he included only terms up to first-order of a
perturbation series in curvature and torsion (for said equations).

Simulation times

Table 2.2 lists the total simulation time and the duration over which the amplitude of the
oscillating inlet pressure was ramped up. For frequencies above 8 Hz, the simulation time
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Fig. 2.10. Maximal transverse flow magnitude as a function of the Womersley number α; a with
respect to the mean axial flow amplitude, and b with respect to the mean axial flow amplitude
and divided by the Reynolds number. Line styles mark different mean axial flow velocities W0 and
Reynolds numbers. Note that the lines coincide per geometry, if scaled accordingly. The markers
on the left side of the figure indicate the steady state solutions of Bolinder [137] for toroidal and
twisted ducts.
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amounted to 25 cycles, and the oscillating inlet pressure was ramped up over the first ten
cycles with a smoothed step function. For each frequency, we used the last four cycles for
post-processing.

Table 2.2. Simulation time T in cycles of the stimulation frequency f , and number of cycles Tp

over which the pressure amplitude was ramped up.

f (Hz) T (cycles) Tp (cycles)
≤ 1 8 1

2 12 2
4 14 4
8 20 10

≥ 16 25 10
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chapter 3

WALL SHEAR STRESS AND PRESSURE FLUCTUATIONS UNDER
OSCILLATING STIMULATION IN HELICAL SQUARE DUCTS WITH

COCHLEA-LIKE GEOMETRICAL CURVATURE AND TORSION

This chapter is published as:
Harte N.C., Obrist D., Caversaccio M.D., Lajoinie G.P.R. and Wimmer W.
Wall shear stress and pressure fluctuations under oscillating stimulation in he-
lical square ducts with cochlea-like geometrical curvature and torsion. 45th
Annual International Conference of the IEEE Engineering in Medicine & Biol-
ogy Society (EMBC), 2023, Sydney, Australia.
doi: 10.1109/EMBC40787.2023.10340844.

Wall shear stresses and pressure fluctuations in a toroidal, a twisted, and a
helical square ducts are presented. A decomposition of the wall shear stress into
an axial and a transverse component is performed, based on the duct centerline
and local wall normal. The combination of curvature and torsion is shown to
cause higher wall shear stresses than either curvature or torsion alone.

Author contribution: Conceptualization and methodology, numerical simula-
tions, data analysis, manuscript writing and data visualization.
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3.1 Abstract
Our study aims to provide basic insights on the impact of the spiral shape of the cochlea,
i.e., of geometric torsion and curvature, on wall pressure and wall shear stress. We employed
computational fluid dynamics in square duct models with curvature and torsion similar to
those found in human cochleae. The results include wall pressures and wall shear stresses
within the ducts under oscillating axial flow. Our findings indicate that the helical shape
generates higher transverse wall shear stresses compared to exclusively curved or twisted
ducts. The wall pressures and transverse wall shear stresses we found rise to amounts that
may be physiologically relevant in the cochlea.

Clinical relevance — The role of the spiral shape of the cochlea in hearing physiology
remains, for a large part, elusive. For a better apprehension of hearing and its disorders,
it is important to investigate the influence of geometric properties on biofluids motion and
emerging phenomena in the cochlea.
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3.2 Introduction
The cochlea, our organ of hearing, is a fluid-filled spiral structure that is small and difficult
to access. Because direct experimental observations are limited, our understanding of hear-
ing physiology remains partial. One unresolved question is that of the role and relevance
of the cochlear morphology for hearing. In particular, the consequence of transverse flows
on the shear flow along membranes has so far not been considered. In this study, we aim
to quantify the effects of geometric curvature and torsion on wall shear stress and pres-
sure fluctuations in abstracted models with cochlea-like geometric properties. In toroidal,
twisted, and helical ducts, curvature and torsion cause transverse flow phenomena [137],
[200], which further generate local pressure fluctuations and wall shear stresses [152, 168].
Using computational fluid dynamics, we simulated flow at oscillation frequencies covering
the infrasonic regime and the low-frequency hearing range of humans, for which the apical
region of the cochlea (the region with the highest curvature and torsion) is particularly
sensitive.

The cochlea contains thin membranes, such as the basilar membrane (housing the sen-
sory epithelium) and the Reissner’s membrane (only consisting of two cell layers) [201].
Wall shear stress and pressure fluctuations caused by transverse flow could locally deflect
these membranes. Our results could help to provide insights on the relevance of morphology
for hearing.

3.3 Methods
Duct geometries
We have simulated fluid flow in straight, toroidal, twisted and helical geometries to inde-
pendently characterize the impact of curvature and torsion on pressure fluctuations and
wall shear stress (see top row in Fig. 3.1). The geometries were constructed using estab-
lished methods [137] with centerline curvature κ = 1/3mm−1 and torsion τ = 1/8mm−1.
These values approximate those measured in human cochleae [133]. To save computa-
tional resources, we chose a total arc length of the centerline of 10mm for all models,
which is shorter than a human cochlea (37mm) [194]. The models’ cross-section measures
2mm× 2mm to capture typical dimensions of the cochlea [195].

Wall pressure and wall shear stress
The Cauchy stress tensor T is given by

T = −pI + S, (3.1)

where S is the viscous stress tensor, p is the pressure and I is the identity tensor [202].
We subtract the mean pressure p̄ over the cross-section from the total pressure to obtain
pressure fluctuations pfluc:

pfluc(x, y, z, t) = p(x, y, z, t)− p̄(t). (3.2)
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S is computed using the symmetric part of the velocity gradient

S = µ[∇u + (∇u)T ], (3.3)

where u = u(x, y, z, t) is the velocity field at a time t. The viscous stress τw exerted by the
fluid on a wall element with unit surface normal vector ŝn (pointing into the fluid domain)
is

τw = Sŝn. (3.4)
We can further decompose the viscous stress into an axial and a transverse component. We
define the transverse component ŝtr as orthogonal to ŝn and to the duct centerline’s tangent
t̂:

str = ŝn × t̂ and ŝtr = str/∥str∥. (3.5)
The local wall element coordinate system is then defined by (̂sax, ŝtr, ŝn), with the direction
of the axial component given by

ŝax = ŝtr × ŝn. (3.6)
Since τw is perpendicular to ŝn, we use the two-dimensional decomposition of the stress:

τw = τw,axŝax + τw,tr ŝtr, (3.7)

with axial wall shear stress τw,ax = τw · ŝax and the transverse wall shear stress τw,tr = τw · ŝtr.

Model implementation and numerical model
The perilymph fluid in the cochlea is modelled as a Newtonian fluid and the flow is con-
sidered incompressible (low Mach number) [50]. We used a sinusoidal pressure boundary
condition at the inlet and zero pressure at the outlet surface. The oscillation frequency
f ranged from 0.125 Hz to 256 Hz (the human hearing range starts at 16 Hz). The associ-
ated Womersley numbers are α = dh

2

√
2πfρ/µ = 1 to 48, and thus cover quasi-steady to

unsteady inertial flows (hydraulic diameter dh = 2mm, dynamic viscosity and density of
water at body temperature µ = 0.69mPa s and ρ = 993 kg/m3 [50]).

For the simulations, we used the finite element solver COMSOL Multiphysics® (COM-
SOL AB, Stockholm, Sweden). The meshes consist of 77 500 hexahedral elements per
geometry, with ensured convergence. We determined the inlet pressure amplitude itera-
tively such that the axial velocity amplitude averaged over the cross-section W0 remained
200 µm/s across the stimulation frequency range [35, 40]. The resulting Reynolds number
is Re = dhW0ρ/µ = 0.58, implying that the fluid phenomena are in the Stokes regime.

3.4 Results
Wall pressure
Fig. 3.1 shows the pressure fluctuations over time along the perimeter of a cross-section in
the middle of the geometries.
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Fig. 3.1. Top row: Geometries with corresponding curvature κ and torsion τ . Greek capital
letters indicate the corners of the central cross-section (shaded violet). Other rows: Pressure
fluctuations along the perimeter of the central cross-section over time for different oscillation
frequencies with period T = 1/f . Zero time in the plots corresponds to the time of maximum
inlet pressure. Note that the pressure fluctuations at α ≈ 48 (f = 256Hz) in the toroidal duct are
distorted due to the proximity to the numerical noise floor (Fig. 3.2). The colorbars are scaled
differently.

In the toroidal duct, a pressure gradient between the outer (H − Φ) and the inner
wall (Υ − Σ) of the duct can be observed as the result of fluid being pushed outwards.
Notably, the pattern observed in toroidal ducts is unidirectional, i.e., it does not change
with the direction of the axial flow. By contrast, in twisted ducts, the wall pressure changes
according to the oscillation cycle of the axial flow. High wall pressure fluctuations arise in
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the proximity of corners. This observation agrees with Kheshgi’s findings for steady flows
[132]. The pattern remains consistent over the entire range of observed frequencies.

Fig. 3.2. Maximum wall pressure fluctuations pfluc (a) and pfluc with respect to the inlet pressure
P0 in percent (b), as a function of the Womersley number. The black symbols indicate numerical
noise defined as the maximum wall pressure fluctuations found in the straight duct simulations.

In the helical duct, we recover a combination of the patterns observed in the toroidal
and the twisted duct. At α ≈ 1, both contribute with comparable magnitudes, although
the torsional effects dominate slightly. At higher α, however, the pressure fluctuations
because of curvature decrease to negligible amounts. Notably, the pressure fluctuations
reach greater magnitudes than the cumulative pressures observed in the other two ducts.
The peak of the axial velocity is shifted toward the inner wall, because of the low Reynolds
number and high curvature [198], and subsequently amplifies the pressure fluctuations near
the inner wall.

Fig. 3.2a shows the maximum pressure fluctuation at the wall as a function of the Wom-
ersley number α. Since the inlet pressure amplitude P0 was increased with the Womersley
number to keep velocity amplitude W0 the same, we examined the maximum pressure fluc-
tuation with respect to P0 in Fig. 3.2b. The maximum relative pressure fluctuations remain
nearly constant for α => 24 in the helical and twisted geometry, at a level of 0.4% and
0.2%, respectively. Surprisingly, the combination of curvature and torsion in the helical
duct causes pressure fluctuations to increase more than twice as much as in the twisted
duct, which has no curvature. In contrast, in the toroidal duct, the pressure maximum is
most pronounced at low frequencies and located at the center of the outer wall, whereas at
high frequencies, the peak becomes wider and is distributed along the entire side wall (Fig.
3.1). We observed that the fluctuations decrease with α−2 for Womersley numbers α => 9.

Wall shear stress
Fig. 3.3 and 3.4 illustrate the evolution of the axial and transverse wall shear stresses along
the perimeter of the central cross-section (see Fig. 3.1) over time. The lower y-axis limit
corresponds to the time of maximum inlet pressure.
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The axial wall shear stress (
 

 

AWSS) increases by about one order of magnitude from
0.125 to 256Hz in all geometries. Its direction changes with the axial flow direction. In
the toroidal and helical ducts, the highest axial wall shear stresses are found at the inner
wall of the geometry (Υ - Σ) and are about 40% higher than in the twisted duct. For the

 

 

AWSS it is the toroidal aspect of the geometry that dominates.
We define counterclockwise (Φ-Υ-Σ-H-Φ) transverse wall shear stress (

 

 

TWSS) as pos-
itive. By opposition to the

 

 

AWSS, the patterns of the twisted duct dominate the
 

 

TWSS
in the helical duct. In the presence of torsion, strong

 

 

TWSS emerges close to the corners,
which increase and move closer to the corners for higher Womersley numbers. The highest

 

 

TWSS can be observed in the helical duct close to the corners Υ and Σ.

Fig. 3.3. Axial wall shear stress τw,ax visualized for different oscillation frequencies f along
the perimeter of the central cross-section. One oscillation period (T = 1/f) is shown on the
y-axis. Greek capital letters indicate the position along the perimeter. The colorbars are scaled
differently.

Fig. 3.5 displays the ratio of the maximum transverse wall shear stress to the average
axial wall shear stress as a function of the Womersley number α. We chose this ratio to
quantify the deviation of shear stress from the axial direction, which could be relevant
for transverse membrane deflections in the cochlea [61]. The maximum relative wall shear
stress in the twisted and helical geometries increases up to 10% and 20%, respectively. Over
the entire frequency range, the helical geometry exhibits approximately a two-fold increase
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Fig. 3.4. Transverse wall shear stress τw,tr visualized for different oscillation frequencies f along
the perimeter of the central cross-section. One oscillation period (T = 1/f) is shown on the
y-axis. Greek capital letters indicate the position along the perimeter. The colorbars are scaled
differently.

in the maximum relative
 

 

TWSS compared to the twisted duct. Conversely, we observed
that the maximum

 

 

TWSS in the toroidal geometry decreases with α−2 and falls below
0.01%.

3.5 Discussion
Wall pressure
Wall pressure fluctuations drive transverse flows near walls, as observed, e.g., in the forma-
tion of Dean cells in toroidal ducts [136]. The pressure fluctuations we found reflect the
behavior of the transverse flows found by [137, 200]. In helical ducts, torsional effects are
dominant for transverse flows at low Reynolds numbers [137] and, as our results suggest,
also for the corresponding wall pressure fluctuations. Both are similar to those observed in
twisted ducts.

We identified two regimes in Fig. 3.2 (and Fig. 3.5): For Womerlsey numbers below 4,
the maximum magnitudes behave similarly in the curved, twisted and helical geometries.
For α > 4 transient inertial forces are predominant and the magnitudes diverge strongly.
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Fig. 3.5. Maximum transverse wall shear stress τw,tr with respect to the mean axial wall shear
stress amplitude T0,ax (in percent) as a function of the Womersley number. The black symbols
indicate numerical noise defined as the maximum relative transverse wall shear stress found in
the straight duct simulations.

This coincides with the phase lag between the pressure and the axial velocity which reaches
about 90° at α ≈ 4 [200]. The increase with α2 in Fig. 3.2a in helical and twisted ducts can
probably be attributed to the unsteady term in the Navier-Stokes equations, which scales
with α2 when written in dimensionless form. Conversely, the magnitudes in the toroidal
duct remain nearly constant in Fig. 3.2a. This could indicate that the non-linear inertial
term continues to dominate in the toroidal duct.

Wall shear stress
The shear stress is highest along the axial direction, but when torsion is present, there is
also an evident transverse component. This is an effect of transverse velocities, which in
helical ducts at 256 Hz reach a magnitude of above 31% of the main flow [200]. Gammack
and Hydon suggested that, for steady flows, torsion leads to an increase in

 

 

TWSS through
altering the transverse flows [152].

Interestingly, the axial shear stress in helical ducts is dominated by curvature, while
torsion dominates the transverse component. It seems that

 

 

AWSS follows axial flow, while
 

 

TWSS is affected by transverse flow, which show similar dependencies on geometry [200].
The maximum

 

 

TWSS in helical duct reaches higher magnitudes than we would expect
from a superposition of the effects in twisted and toroidal ducts. This is most evident
at 256 Hz, where the transverse shear stress in the helical duct reaches a maximum of
20% of the mean

 

 

AWSS, while the sum of the
 

 

TWSS in twisted and toroidal ducts would
only amount to 10%. Curvature shifts the axial velocity peak towards the inner wall (low
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Re, high κ) [198], which enhances transverse velocities there and thus also
 

 

TWSS caused
by torsion. Summarized, the combination of curvature and torsion, as observable in the
cochlea, enhance

 

 

TWSS, while curvature alone leads to negligible
 

 

TWSS.

Potential physiological implication
The geometry induced transverse flow introduces wall shear stress and local pressure fluc-
tuations which have magnitudes that could be physiologically relevant, especially in the
presence of torsion and close to corners. This is particularly interesting because in the
cochlea the axial flow and its corresponding transverse flows occur mainly in the scala
tympani and vestibuli, introducing possibilities of fluid-structure interactions. Membrane
deformations could lead to radial or transverse flow phenomena within the interfacing scala
media, which contains the sensory epithelium for hearing.

Study limitations
The main limitation of our study is the use of abstract geometries to represent the highly
complex anatomy of the human cochlea [112]. Further studies that include fluid-membrane
interactions are needed to investigate the possible effects on the mechanics of the cochlea.
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chapter 4

SECOND ORDER AND TRANSVERSE FLOW VISUALIZATION
THROUGH 3D PIV IN COMPLEX MILLIMETRIC DUCTS

This chapter is to be submitted as:
Harte N.C., Obrist D., Versluis M., Groot Jebbink E., Caversaccio M.D., Wim-
mer W. and Lajoinie G.P.R. Second order and transverse flow visualization
through 3D PIV in complex millimetric ducts.

A setup for three-dimensional particle image velocimetry and two novel com-
plementary analysis methods are developed and applied to visualize transverse
flows in millimetric flow channels. The PIV results are compared to simulations
in both the measurement samples and idealized models. Possible physiological
implications of Lagrangian streaming in the cross-section are discussed.

Author contribution: Conceptualization and methodology, development of flow
set-up supported by David Sprecher, laboratory work and PIV measurements,
development of PIV analysis supported by Guillaume Lajoinie, data analysis,
CT image segmentation, mesh generation, numerical simulations, manuscript
writing and data visualization.
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4.1 Abstract
Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in mea-
suring small-scale 3D flows, in particular flows with several orders of magnitude dynamic
range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capa-
ble of resolving transverse flows at a small fraction of the axial flow amplitude. The sys-
tem was applied to visualize transverse flows in millimetric straight, toroidal, and twisted
ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the
quantification of net motions as well as time-resolved axial and transverse velocities. The
experimental results closely align with computational fluid dynamics (CFD) simulations in
a digitized representation of the measurement model. Differences between simulations in
PIV-specimen and ideal square duct geometries are discussed because of their relevance to
(biological) structures with intricate, complex morphologies. While the given PIV system
offers a cost-effective and compact setup, challenges at higher frequencies due to decreasing
flow amplitudes and increased noise are discussed. Nevertheless, the presented method
allows examining periodic flows in micro- to millimeter-scale systems and is particularly
suited for applications that cannot be scaled due to their complex multi-physical nature.
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4.2 Introduction
Flow related problems are ubiquitous in technical, industrial, and biological applications.
In industry, the efficiency of chemical reactors [203], the success of pharmaceutical (e.g.,
vaccines) production [204, 205], as well as food and beverage processing [127, 206] heavily
rely on well-controlled flows. Maritime transport is eminently linked to fluid dynamics [207,
208]. In medicine, flow is central to the development of cardiovascular disease [120, 209–
211]. Finally, flow is crucial to understanding the function of organs such as the cochlea
[46, 61], which is not yet fully understood [91].

Simulations are not always possible for complex geometries; it can be difficult to model
an accurate representation of their shape and generate a high-quality mesh. In addition,
setting the correct boundary conditions can be extremely challenging, in particular in a bio-
logical context. The flows therein involve fluid-structure interactions, where the viscoelastic
properties of the structure are largely unknown. They also involve entry length effects and
transient flows. Furthermore, these flow problems are often multi-scale, which results in
complex numerical models with heavy computational costs which, ultimately, must also be
validated experimentally.

The most widely used flow visualization techniques are probably particle image velocime-
try (PIV) and particle tracking velocimetry (

 

 

PTV). Both involve tracer particles. PIV is
based on the cross-correlation of sub matrices in successive images, while PTV consists in
tracking the trajectory of individual particles. Other flow visualization techniques include
Schlieren photography and shadowgraphy, both exploiting the variations in the refractive
index of the fluid of interest, e.g., due to temperature or density variations [212, 213]. Fi-
nally, other techniques were developed that use laser-induced fluorescence with fluorescein
dye to visualize, for example, secondary flow vortices [160, 161]. In their vast majority,
these techniques are designed to image 2D slices of the flow. Although this may be suf-
ficient in some cases, most flow phenomena are intrinsically three-dimensional and thus
require 3D visualization.

This fact has led to the development of several PTV and PIV techniques to measure the
full velocity field in 3D. They are referred to as three-dimensional three-component (3D3C)
measurements. 3D-PTV requires at least two imaging directions (in practice up to 5) to
determine the out-of-plane velocity. The technique is effective, but experimentally complex
and expensive, and the required processing is computationally heavy. 3D-PTV has been
adapted to be feasible with a single camera [176], which, however, requires a calibration, and
increases the sparsity requirement. 3D-PIV is not limited by sparsity, which improves the
spatial coverage – required for complex flows – and/or reduces the necessary acquisition
time. Several variations of this technique have been proposed such as holographic PIV,
tomographic PIV, and scanning PIV. The spatial resolution of digital holographic PIV is
limited mostly by the image sensor (i.e., CCD) [178, 182]. In tomographic PIV, the whole
test volume is illuminated at the same time [183]. Tomographic PIV provides high spatial
and temporal resolution, but requires a substantial pulse energy [178]. In scanning PIV
fast successive scans of a laser sheet through a volume of interest are recorded with a single
synchronized high speed camera [186, 187]. Hori & Sakakibara [214] applied a scanning
laser sheet with stereoscopic PIV and a dual camera setup to measure the 3D3C velocity
field. Scanning comes at the cost of higher camera frame rates to achieve the desired
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temporal resolution. The advantage is a high accuracy, which is mainly limited by the
camera features. As cameras continue to improve in resolution, sensitivity, and frame rate,
the importance of scanning PIV is also growing.

Two aspects remain challenging with 3D-PIV, which are small dimensions, i.e., 3D-
microPIV, and multi-scale flows. The former is a consequence of the optics used for small-
scale imaging, as they typically provide a very limited depth of field. Multi-scale flows
arise when looking at slow features within a fast flow, especially when these features are
orthogonal to the main flow, as is the case for Dean cells, for example. Secondary or
transverse flows are of particular interest in the inner ear, where they lead to streaming
effects [5, 55] and are suspected to play a role in hearing physiology [61, 102]. Transverse
flow is also gaining attention for helical stents in the superficial femoral artery as a possible
mechanism to improve stent patency [124, 171]. Several studies have measured transverse
flows in toroidal geometries using PIV for their importance to the arterial vessel system
[164–168]. The difficulty of measuring transverse flows lies in the fact that they are several
orders of magnitudes smaller than the axial flow, especially at low Reynolds numbers.
Besides scanning PIV, potential techniques to measure minute transverse flows are digital
holographic PIV and tomographic PIV, which are, in particular, used to study turbulent
flows [215, 216] and droplets [217, 218]. Scanning PIV offers similar capabilities for the
frequencies of interest and is more convenient as it requires a less complicated experimental
setup.

We present the development and experimental validation of a scanning 3D-PIV system
for small-scale oscillatory flows, which is capable of resolving transverse flows down to about
two orders of magnitude smaller than the main axial flow amplitude. This is for axial flows
in the orders of millimeters per seconds. With this setup, we experimentally investigate the
effect of torsion and curvature on transverse inertial flows in three geometries: a straight
square duct, a toroidal duct, and a twisted square duct. The setup is accompanied by
two original and complementary forms of PIV analyses: stroboscopic and semi-Lagrangian,
which allow for quantifying net flows and time-resolved axial and transverse velocities. The
toroidal duct, only exhibiting curvature, causes pairs of rotating flow cells oriented in the
transverse plane, known as Dean flow [136, 143]. Inside twisted straight ducts, which
only contain torsion, saddle flow patterns arise depending on the cross-section of the duct
[132, 137, 138]. The duct shape was measured using micro-CT (µ-CT), and used to perform
geometry-specific CFD simulations. The experimental measurements are in good agreement
with these simulations. We detected time-resolved transverse flows down to 5% of the axial
flow amplitude in the twisted duct and down to 2% of the axial flow amplitude in the
toroidal duct at 5 Hz. The detected net flows are approximately 1% of the axial flow for
the toroidal duct and 0.1% for the twisted duct at 5 Hz.

This technique allows for investigating periodic flows in models of micrometric to mil-
limetric systems that cannot be scaled up because of their multi-physics properties. This
includes flows induced by membranes motion as, e.g., in the inner ear [15, 45, 219], flows
with solid particles or cells, and cilia-driven flows, e.g., in the models of trachea [220, 221] or
amphibian skin [222, 223]. Other possible applications include in vitro models of millimeter-
sized blood vessels, which are in many cases highly curved and twisted. Some examples
are the umbilical vein and the helical umbilical arteries [224, 225], the superficial femoral
artery [171], and the circle of Willis [226].
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4.3 Material and methods
Measurement set-up
Models

We measured transverse flows within straight, toroidal, and twisted flow channels (see
Fig. 4.1). We chose these models as our previous work is based on fluid simulations in
ideal square ducts, and can serve as a validation framework [200, 227]. The toroidal flow
channel has a radius of curvature of approximately 2.8mm, which equals a curvature of
κ = 0.36mm−1. The torsion of the twisted flow channel is approximately τ = 1/6mm−1

in the measurement sample. These values are within the range proposed by Viergever [94]
and match values observed in human anatomy [48, 133]. The flow channels were created
by heating acrylonitrile-butadiene-styrene (

 

 

ABS) square rods with a size of approximately
2mm with a heat gun and thermally bending them into the desired shape. The bent

 

 

ABS
rods were then cast in polydimethylsiloxane (

 

 

PDMS). After curing, the
 

 

ABS rods were
dissolved with acetone and only the

 

 

PDMS casting remained. A heat bath at 55 degrees
Celsius was used to accelerate the dissolution process. The flow channels were extended
at each end with a straight segment of at least 20 mm length to minimize possible entry
length effects from the inlet and outlet.

Fluid solution

The density and viscosity of the perilymphe in the cochlea are similar to those of water
at body temperature [50]. We used an aqueous solution with 49 wt% urea to obtain a
refractive index of about 1.41 (measured by [229] at 589 nm), which matches the

 

 

PDMS
specimen. Refractive index matching is needed to avoid optical distortion. The solution’s
density ρ = 1133 kg/m3 and dynamic viscosity µ = 1.7mPa s are higher than those of
water [229, 230]. We added homogenous fluorescent tracer particles (Fluoro-Max dry red
fluorescent polymer microspheres from Thermo Scientific™) with a diameter of 6µm and a
density of 1050 kg/m3 to the solution.
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Fig. 4.1. Flow channels of the straight, toroidal and twisted samples. From left to right: ideal
CFD models with a 2 × 2mm2 cross-section, µ-CT scan of the measurement samples, and CFD
models obtained with continuous implicit neural representations (INR) of the scanned samples
[228]. The scale bar measures 2 mm.

Flow system

Figure 4.2A shows the setup schematics. A custom-built actuator pump induced an os-
cillatory motion in the fluid during measurements. Its key component is a piezoelectric
transducer (PHUA6630; PiezoListen™ series), driven by a Raspberry Pi 4B mini-computer
and a Hifiberry AMP2 amplifier. The piezoelectric transducer was attached to a thin 3D-
printed polyethylen terephthalat (

 

 

PET) shell, which was mounted on a small, sealed fluid
container. A continuous flow through the phantom was maintained between measurements
to prevent sedimentation of the particles on the walls of the specimen and keep the particle
suspension homogeneous. During measurement, the steady flow was fully stopped by a
manual valve positioned between the oscillatory pump and the gear pump. The flow rate
and fluid temperature were monitored with a commercial thermal flow sensor (Sensirion®

SLF3S-0600F) placed between the oscillatory pump and the specimen. The inner tube
diameter in the flow circuit was 2mm. To minimize the system’s inertia and achieve higher
flow rates, the fluid volume in the flow system was minimized to approximately 100 ml.
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Fig. 4.2. (A) Schematics of the 3D-PIV measurement setup. Gray labels denote parts not running
during measurement. (B) Stacked images of raw data (colors inverted). The image height along
the scan direction corresponds to different layers of the same scan.

Nonetheless, owing to the limited bandwidth of the flow system, velocities were lower for
20 Hz than for 5 and 10 Hz (Table 4.1).

Optical system

The optical setup, shown in Fig 4.2, uses a continuous wave frequency-doubled Nd:YAG(-
532 nm) laser to stimulate the fluorescent particles, which have an absorption maximum
at 542 nm. The laser beam was expanded into a sheet by three lenses. First, a cylindrical
plano-concave lens diverges the laser beam in the x-direction, while a cylindrical plano-
convex lens focuses it onto the rotating mirror. The mirror is in the focal distance of a
plano-convex aspheric lens, which collimates the beam in the desired sheet and focuses it in
the elevation direction to minimize the sheet thickness within the camera’s depth of field.
The long focal distance of the lens (f = 121mm) minimizes the variations in the thickness
of the sheet within the area of interest. This configuration also ensures that the laser sheet
translates through the sample without rotation (Fig. 4.2B). To characterize the laser sheet,
a glass plate coated with a thin layer of

 

 

PDMS containing fluorescent Nile Red was fixed
at a 45◦ angle to the laser and camera. The beam width was defined as the 1/e width
of the profile after correction for the

 

 

PDMS layer thickness. The laser sheet thickness
was estimated as δl = 13.5 ± 0.9µm. The details of the laser sheet calibration and the
variation in sheet thickness through the sample are provided in appendix 4.8. The rotating
mirror was driven by a sawtooth waveform which provides a linear position of the sheet
as a function of time. The scanning frequency and amplitude can be tuned independently
through the driving frequency and voltage (see appendix 4.8 for more details).

A high-speed CMOS camera (NOVA S16, Photron, Tokyo, Japan), captured the light
emitted by the fluorescent particles in synchronization with the laser scanning. The mea-
sured test section had a volume about 1× 2× 2 mm3. We combined two commercial camera
lenses front-to-front to obtain a suitable combination of magnification and depth of field. A
tele-macro lens with a focal length f = 105mm, was attached to the camera in the normal
direction and focused to infinity. The aperture was closed as much as possible. A macro
lens with f = 12.5-75mm, was attached to the first lens in reversed direction and was
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also focused to infinity. The aperture and focal length of the second lens were adjusted
to obtain the desired field of view. The diaphragms of the lenses enabled a depth field of
more than 100% with respect to the field of view, at a frame rate of 40 kpfs. A dichroic
filter was placed between the lenses to remove the small fraction of laser light scattered by
the sample. We calibrated the PIV system using a resolution target (1951 USAF). The
spatial imaging resolution was approximately 5 × 5 × 15µm3 for a typical focal length of
f = 22mm (see appendix 4.8).

Experimental procedure

Table 4.1. Measurement parameters. The actuation frequency f refers to the fluid oscillation
frequency, while W0 denotes the velocity amplitude. The number of layers is given by the ratio
of the camera frame rate and the laser scan rate.

f (Hz) Scan rate (Hz) Frame rate (fps) # layers W0 (mm/s)
5 100 20000 200 4− 8
10 200 40000 200 4− 7
20 400 40000 100 3− 6

The specimen was aligned with the laser such that the sheet was focused on its center,
which was achieved by first aligning the sample manually and then adjusting the offset
voltage of the sawtooth signal driving the mechanical mirror. The measurement was only
started when the flow sensor reported steady oscillations. A pulse generator triggered the
driver of the rotating mirror and the camera for data acquisition. The high-speed camera
memory allowed for recording 45 periods, with 20 scans per period and a resolution of
256×496 pixels. For each scan, we recorded a volume consisting of 200 layers for frequencies
below 20 Hz. To compensate for the increased frame rate necessary at higher frequencies,
we reduced the layers to 100 at 20 Hz, see Table 4.1. This increased the number of recorded
periods to 90. Using a resolution of 128×496 pixels doubles the number of recorded frames.

We performed measurements in three samples (Fig. 4.1) for three actuation frequencies
(5, 10, and 20 Hz). The flow amplitude was adjusted by changing the gain of the signal
driving the piezoelectric actuator. For each frequency, we measured different flow ampli-
tudes in the operating ranges of the actuator pump. The fluid phenomena are laminar and
the associated Reynolds numbers (between 1 to 10) are close to the Stokes regime. The
resulting Womersley numbers (4.5 to 9) are above the quasi-stationary regime (α > 1).

Particle image velocimetry analysis
We have developed two complementary analysis methods to analyze transverse velocities,
which exploit the same measurement data: the stroboscopic and the semi-Lagrangian PIV
(Fig. 4.3). The stroboscopic approach shows the transverse net motion with high accuracy,
while the semi-Lagrangian approach is used to visualize the instantaneous, time-resolved
transverse flows. In principle, an (Eulerian) net motion can be obtained from the time-
resolved approach by averaging instantaneous velocities over time (Eulerian streaming).
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Fig. 4.3. The measurement data was analyzed using the stroboscopic and the semi-Lagrangian
PIV method. In both procedures, the data was rotated to align the axial flow direction with the x-
axis. In the toroidal duct, the reference frame was changed to polar coordinates to define transverse
planes of constant angles and average velocities along the curved channel. The stroboscopic
approach was used to visualize net motions, i.e., Lagrangian streaming, while the semi-Lagrangian
PIV gave time-resolved axial and transverse velocities.

This approach, however, provides a much lower signal-to-noise ratio (SNR) than the stro-
boscopic approach for net motion and is thus not retained. The net motion from the stro-
boscopic approach provides a Lagrangian mean velocity, representing the average velocity
of a particle during one oscillation cycle.

The analysis is based on two assumptions. First, we consider the scanning rates to be
high enough to neglect the motion occurring between the frames forming a single volume.
Second, to increase the SNR, the velocities can be averaged along the channel axis since
we measure a short test section (0.5 - 1 mm along the axial direction).

Alignment, data rotation, and PIV settings

Moving consecutively from top to bottom, the scanning laser sheet illuminates a narrow
section of the flow channel. The scanning direction defines the z-axis. Consequently, the
planes captured by the camera are parallel to the xy-plane, i.e., the measurement plane. The
x-axis is aligned with the channel axis. Since we aim at measuring minute flow orthogonal
to the channel axis, it is necessary to ensure that this channel axis is perfectly aligned with
the x-axis as defined for the analysis. Such precision cannot be achieved experimentally
and has to be adjusted in a processing step. To that end, the direction of the main axial
flow is determined from a first PIV analysis. The deviation angles are then determined
from the median of the directions of the velocity vectors. Finally, the volumes (4D stack of
images) are rotated by these angles. For simplicity, we write the velocities in the x, y, and
z directions as U , V and W .

The image intensity of each layer is normalized with respect to 99% of its maximal
intensity (averaged over 15 images) to compensate for the brightness reduction in layers
that are physically further from the camera. The PIV analysis is based on PIVlab [231,
232], a particle image velocimetry tool for MATLAB®. More specifically, we use the built-in
multi-pass technique with decreasing interrogation window sizes: 64×64, 32×32, 22×22 px2

and a 50% overlap of the interrogation areas. While we apply these three passes in the
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measurement plane (xy-plane), only two passes (with final pass size of 32×32 px2) are used
in planes, which are constructed or interpolated from the measurement planes (e.g., in the
xz- and yz-plane). The spatial resolution of the resulting 3D velocity field is approximately
80µm. The velocities are collected in 20 bins per cycle and the median velocity over all
cycles that could be recorded by the camera is used to increase the SNR.

Reference frame for the toroidal duct

In the toroidal duct, the streamwise and radial velocity components are not exactly aligned
with the x-axis and y-axis, because of the curvature of the channel’s main axis. To account
for the deviation, we computed the geometrical center of curvature and used it to define
a local polar coordinate system. The U and V velocities are decomposed in the local
coordinate system to obtain an angular velocity Uξ and a radial velocity Ur, while the third
velocity component is left unchanged and Uz = W .

More specifically, we first compute the center of curvature by performing a PIV analysis
to determine the in-plane velocity field for each layer. The velocities are averaged in the
z-direction over these layers for a better estimation of the flow field. We then extract the
locations of the strongest flow for each x-coordinate, by taking a velocity-weighted average
of the y-coordinates, in the y-direction (see Fig. 4.4A). We estimate mean velocities at
these locations by averaging over 11 pixels in the y-direction. The normalized, in-plane
reference velocity vector is defined as the median velocity over these locations (see red
arrows in 4.4A). Finally, the (in-plane) center of curvature Rc is determined as the point
with the smallest mean distance to all normals on the mean velocity vectors. To improve
Rc, the angle between the reference velocity and the y-axis is varied. The optimal angle
is chosen as the angle at which the transverse velocities summed over the yz-plane are
minimal. To decompose the in-plane velocities, we defined at every grid point a radial
unit vector êr pointing towards the center of curvature Rc and an angular unit vector êξ.
Subsequently, the velocity vectors are projected onto these angular and radial unit vectors.
The radial velocity here corresponds to the transverse velocity in the xy-plane, while the
angular velocity represents the axial velocity. Finally, the velocities are interpolated to
a uniform grid of r and ξ = R0θ, see Fig. 4.4B. This transformation is then applied to
each layer such that (U, V,W ) → (Uξ, Ur, Uz) and (x, y, z) → (ξ, r, z). The out-of-plane
velocity W is obtained as explained in the semi-Lagrangian PIV: Uz = W .

Stroboscopic PIV

The stroboscopic PIV method provides a fast way to analyze the data and get an impression
of the net flow field, despite having axial velocities orders of magnitude larger than the
investigated net motion. In this procedure, we perform the PIV analysis between volumes
from the same phase in the oscillation period, i.e., volume N is compared to volume N+20,
for each oscillation frequency. The initial volume for the series is chosen at the peak axial
velocity, corresponding to a 0-displacement of the particles. Note that this choice is, in fact,
arbitrary. The peak velocity is determined from a PIV analysis on the central measurement
plane. The space between the layers in z-direction, in the recorded volume, is cubically
interpolated to get the same spatial resolution as in the x and y-directions. The transverse
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Fig. 4.4. Velocity transformation from 2D Cartesian (x, y) to polar coordinates (ξ, r). (A) The
center of curvature (blue dot) and velocity magnitude in Cartesian coordinates. Radial vectors
are shown in black at the velocity-weighted y-positions (black dots). The red arrows indicate the
radial and axial reference velocities. (B) Velocity magnitude in polar coordinates, interpolated to
a rectangular grid.

planes are constructed from the volumes by averaging over 21 pixels in the x-direction with
50% overlap between the planes. The PIV analysis is then performed in these planes to
determine the transverse net velocities Vnet and Wnet. To increase the SNR, we average Vnet
and Wnet over all periods and over all transverse planes. The resulting velocity field is the
average net velocity in the transverse plane during one oscillation cycle.

Semi-Lagrangian PIV

The basic concept of the semi-Lagrangian PIV approach consists in using the particle
displacement in the axial direction to construct the “semi-Lagrangian” transverse planes.
These planes deform in the axial direction to follow the axial motion of the particles. The
images constructed from pixels on these deformable planes thus do not suffer from disap-
pearing particles due to the main flow and can be subjected to PIV analysis.

The first steps are identical to the section “Reference frame for the toroidal duct”, where
the U and V velocities (Uξ and Ur in case of the toroidal duct) are obtained from analyzing
each slice of the 3D volume individually. For all geometries, U is averaged along the x-
direction and integrated to obtain the axial displacement. Figure 4.5 shows an example
of the displacement in the central layer of the volume. We apply a spline interpolation to
the displacement profile in the y-direction to obtain a profile with the same resolution as
the original image. The semi-Lagrangian transverse planes are constructed by stacking the
pixels on this moving line (blue line in Fig. 4.5) through the layers of the volume. Since
individual pixels would provide a too sparse image, the pixels of the semi-Lagrangian planes
are the average over 11 pixels in the x-direction with 50% overlap between the planes. The
transverse velocities V and W are subsequently obtained by running a PIV analysis on the
constructed planes. We average the velocities from the same time points per cycle over
all cycles. The V , W velocities are further averaged over all semi-Lagrangian planes. In
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case of the toroidal duct, we use the radial velocity Ur instead of V and transformed the
velocities to polar coordinates, see section “Reference frame for the toroidal duct”.

Fig. 4.5. Particle motion and reconstructed average displacement (blue line) in the central
measurement plane for an oscillation frequency of 5 Hz (colors inverted). The dotted line indicates
the approximate duct boundaries.

Computational fluid dynamics simulations
Idealized models

We simulated fluid flow in ideal geometries (Fig. 4.1) as ground truth for the measurements
that can be compared to literature. The geometries were constructed using established
methods [114, 137] with centerline curvature κ = 1/3mm−1 and torsion τ = 1/8mm−1. To
save computational resources, we chose a total arc length of the centerline of 10mm for all
models. The model cross-section is 2mm× 2mm.

Measurement models

To perform computational fluid dynamics (CFD) simulations in the same geometric shapes
as were used in the measurements, the samples were measured using a high-resolution
µ-CT scanner (µCT, SCANCO Medical AG, Switzerland, isotropic voxel size of 20µm).
The flow channels were segmented from the µ-CT scans and converted into a continuous
representation using an implicit neural representation [228] from which the CFD surface at
any arbitrary precision can be derived. The scan and its representations are shown in Fig.
4.1 for the three models.

Numerical simulations

The flow was modeled as the incompressible flow of a Newtonian fluid [50]. We used a sine
pressure boundary condition at the inlet and zero pressure at the outlet surface. No-slip
boundary conditions were imposed on the walls. The fluid properties from section “Fluid
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solution” were used. The simulation parameters were set to match the measurements:
we used oscillation frequencies of 5, 10, and 20Hz and extracted the mean axial velocity
amplitudes from the PIV results to set the pressure boundary criteria for CFD, i.e., we
chose the inlet pressure amplitude such that the axial velocity amplitude averaged over the
inlet surface was the same as in the measurements.

Simulations and meshing for the geometry-specific models were performed using the
finite element solver COMSOL Multiphysics® (COMSOL AB, Stockholm, Sweden). For
the ideal models, structured meshes were generated as described in Harte et al. [200] and
Harte et al. [227] and consisted of 77 500 hexahedral elements per geometry. The number
of elements was chosen based on a convergence analysis. Lagrange elements of order two
and one were used for velocity and pressure (P2P1), respectively. For the time-dependent
solver, the implicit backward differentiation method of variable order (between 1 and 5)
was used. We chose 100 steps per oscillation period of the pressure boundary condition.
To ensure that the initial transient was washed out, the inlet pressure amplitude P0 was
ramped up smoothly over the first few cycles, e.g., 16 cycles at 5 Hz.

The motion of tracer particles was determined using the COMSOL Multiphysics® ”Par-
ticle Tracing for Fluid Flow” interface. We used the massless formulation because we
assumed that the tracer particles were small enough to move with the local fluid velocity
(Stokes number of approximately 10−4). To compute the Lagrangian mean velocity, the
particles were released and traced for one cycle. The difference in the end positions divided
by the time interval T = 1/f is the Lagrangian mean velocity.

Transverse and axial flow

In the idealized models, we applied the orthonormal Frenet-Serret frame consisting of the
tangent (̂t), normal (n̂), and binormal (b̂) unit vectors to decompose the velocity field u:

u = un̂ + vb̂ + wt̂, (4.1)

and defined the velocity component along the tangent as axial flow w = u · t̂, while the
components in the normal and binormal directions, u = u · n̂ and v = u · b̂ constitute the
transverse flow.

In the geometry-specific models, the centerlines were extracted using kinematic surface
fitting [113] and cross-checked with the vascular modeling toolkit [233]. The transverse
plane was defined as orthogonal to the centerline.

4.4 Results
2D flow field
Figure 4.6) shows an example of the in-plane velocity in the center of the geometry, which
was obtained by analyzing images of the same layer from consecutive volume scans. The
profiles in the bottom row show the axial velocity component W along the red line at
different times, which are typical Womersley profiles for low Womersley numbers (α ≈ 4.5)
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Fig. 4.6. In-plane velocities in a central measurement plane for an oscillation frequency of 5Hz.
(A) 2D flow at peak velocity. (B) Axial velocity profile at different times of one oscillation cycle.
The red line (top row) indicates the position where the velocity profiles were evaluated.

in all three geometries: In the core the profile is flatter than we would expect for quasi-
stationary Poiseuille flow and the velocity gradients in the vicinity of the walls are steeper.
The axial velocity is well resolved in time and space and shows the expected behavior. In
the toroidal geometry, the velocity profile is skewed towards the inner side of the curve, as
will be discussed in the next section. In contrast, the profile of the twisted duct exhibits a
similar velocity profile as the straight duct. This is in agreement with Kheshgi [132] and
Zabielski & Mestel [135] who observed that torsion has only a small impact on axial flow.

Axial flow
Figure 4.7 shows the axial velocity amplitude in the transverse plane for an actuation fre-
quency of 5Hz (α = 4.5) according to both the PIV measurements and geometry-specific
CFD simulations. There is a small deviation in the flow amplitude between the measure-
ments and the simulations, most likely, due to differences in the geometry owing to either
a slightly different location along the axis or the finite precision of the µ-CT scan. The
peak velocity is approximately 5% higher in the CFD model of the twisted duct than in the
PIV measurement for this sample. Nonetheless, the axial velocity profiles obtained from
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Fig. 4.7. Axial velocity amplitude for an oscillation frequency of 5 Hz. The inner wall of the
curve is to the left in the toroidal duct.

the geometry-specific simulations are in good agreement with the PIV measurements. In
the toroidal geometry, the maximum velocity shifts towards the inner wall of the bend,
contrary to expectations from higher Reynolds numbers. The shift towards the inner wall
occurs because of the low Reynolds number and the high curvature [128, 198]. Along the
inner wall, the axial pressure gradient is steeper compared to the outer wall because the
arc length is smaller. Since the centrifugal forces pushing the fluid outwards are weak
at low Dean numbers, we suspect that the effect of the higher-pressure gradient probably
dominates, so that the highest velocities are found closer to the inner wall. The Dean
number, used to describe flow in toroidal ducts, is proportional to the Reynolds number
De = Re

√
dh/(2R), where dh is the hydraulic diameter of the pipe and R is the radius of

curvature.

Net transverse flow
The tracer particles exhibited a net motion (Lagrangian mean velocity) in the transverse
plane, which was visualized using the stroboscopic PIV approach. Figures 4.8 and 4.9 show
the transverse net motion in the toroidal and twisted duct for frequencies of 5, 10 and
20 Hz. In curved ducts, the tracer particles follow the streamlines of Dean cells (Fig. 4.8).
The Dean flow points towards the outer wall in the ducts center and towards the center of
curvature close to the top and bottom boundary of the cross-section. At higher oscillation
frequencies, the vortex centers move closer to the cross-section’s top and bottom boundary
and the inner wall. The shape of the Dean cells is consistent between the CFD and the PIV
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results. In particular, they both show the same asymmetry in the Dean cells caused by the
specific, nearly trapezoidal, cross-section of the duct. Unlike in the idealized models, the
axis between the two Dean cells is tilted in the models with the trapezoidal cross-section.
The tilt is more pronounced at 10 Hz than at 5 Hz for the measurements, as well as the
geometry-specific CFD. Furthermore, the Dean cells are not of equal size.

At 5 Hz, the transverse structures show flow magnitudes on the order of 100µm/s, i.e.,
1.6% of the axial flow. The net flow is captured accurately and quantitatively. The same
holds for 10 Hz, where the transverse flow falls to 0.6% of the axial flow, i.e., approximately
40µm/s. However, at 20 Hz, the Dean cells have a velocity on the order of 0.3% of the axial
flow, i.e, about 10µm/s, based on the CFD analysis. There, the transverse flow patterns
from PIV fall within the noise floor of the proposed method. All referenced flow ratios,
including subsequent ones, are given relative to the axial flow amplitude averaged over the
cross-section.

In the twisted duct, the net motion was more than an order of magnitude smaller than
in the toroidal duct (the color scales are by a factor of 15 lower). The transverse flows
caused by torsion change direction with the axial flow, and are thus largely averaged out
when performing such time-averaged measurements (see Fig. 4.9). In addition, in the
twisted duct, the net transverse flow consists of complex, small-scale structures. Therefore,
since the exact transverse planes visualized in the measurements is not known, it is difficult
to perform a detailed quantitative comparison. Nonetheless, the defining structures are
very similar for the measurement and for the CFD at 5 Hz, with a pair of counter-rotating
vortices in each corner and a flow through the center. The magnitude of the transverse flow
is also in quantitative agreement between the CFD and the measurements, and amounts to
roughly 0.1% of the axial flow (6µm/s). Because of these low net flows, the PIV analysis
only reveals the strongest transverse features at 10 Hz, and at 20 Hz the transverse flow
is altogether lost. The net motion in the real cross-section deviates strongly from that in
idealized ducts. For example, at 5 Hz, the strongest velocities are on the diagonal in the
idealized ducts, while in the measurement they are close to the center of the side walls
(Fig. 4.9). This highlights the need for geometry-specific strategies in complex, real-world
systems.
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Fig. 4.8. Transverse net motion (i.e., Lagrangian streaming) for an oscillation frequency of 5, 10
and 20 Hz in the toroidal duct. The inner wall of the curve is to the left. The white lines indicate
the approximate wall locations.
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Fig. 4.9. Transverse net motion (i.e., Lagrangian streaming) for an oscillation frequency of 5,
10 and 20 Hz in the twisted duct. The white lines indicate the approximate wall locations. The
absence of closed streamlines in the idealized twisted duct can be attributed to the absence of
particle trajectories data at its boundaries. Looking into the page plane, the twisted duct turns
clockwise.
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Dynamic transverse flow

Fig. 4.10. (A) Mean axial and transverse velocities for an oscillation frequency of 5 Hz in the
toroidal duct. The vertical lines indicate the times at which the transverse flow patterns are shown
in (B). (B) Transverse flows at different time points in one cycle. The inner wall of the curve is
to the left.

Figures 4.10 and 4.11 show the instantaneous, transverse flow pattern in the toroidal
and twisted duct, respectively, at different time points within one oscillation period. The
reference time for this period corresponds to the maximum axial velocity.

For the toroidal ducts, counter-rotating Dean cells occur twice per cycle around the
inflection point of the axial flow (t1 and t3), i.e., when the velocity reverses. The measured
phase difference with the main flow is of approximately 80 degrees. The Dean cells rotate
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Fig. 4.11. (A) Mean axial and transverse velocities for an oscillation frequency of 5 Hz in the
twisted duct. The vertical lines indicate the times at which the transverse flow patterns are shown
in (B). (B) Transverse flows at different time points in one cycle. Looking into the page plane,
the twisted duct turns clockwise and the axial velocity is inflowing for t1 and outflowing for t3.

in the same direction for inflowing and outflowing axial velocities (t1 and t3, respectively).
However, irregularities in the real duct geometry produce slightly different patterns during
inflow and outflow. When the axial flow is maximal (i.e., close to t2 and t4), the rotating cells
appear to be concealed by stronger flows. These flows increase with the axial flow and are
probably geometry-induced as they appear in both, the CFD model and the measurement,
but not in the ideal-duct simulations. In these idealized models, the Dean cells have a phase
lag of approximately 55 degrees relative to the maximum axial flow. Consequently, they
reach their maximum strength before t1 and t3 which is a significant difference with the
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measurements. We suspect that the shift in the phase lag compared to the real geometry,
originates from the fact that at 55 degrees the Dean cells are concealed in the real geometry.
In contrast to the ones in the measured models, the Dean cells in the ideal model are present
throughout the entire cycle, changing only in magnitude.

In twisted ducts, the transverse flow patterns are strongest at t1 and t3, see Fig. 4.11.
The typical saddle flow structure emerges near the walls and corners at these times. Most
importantly, unlike the Dean cells, the saddle flow structure changes direction for inflowing
and outflowing axial velocities. The transverse flow pattern is similar in the idealized and
geometry-specific CFD unlike the weaker net motion, since this net flow is the residual of
the near cancelation of this alternating flow. At 5 Hz, the saddle flow structure has a phase
difference of approximately 20 degrees to the axial flow in all three models. Features of
the saddle flow structure are distinguishable throughout most of the cycle, even in the PIV
results. Although the transverse velocities in the twisted duct are higher than the Dean
flow in the toroidal duct, the agreement with the simulation is comparatively more limited.
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Maximal dynamic transverse flow

Fig. 4.12. Maximal transverse flow with respect to the mean axial flow amplitude W0 as a
function of the Womersley number α for the toroidal (A) and the twisted duct (B). The crosses
indicate the PIV measurements, the circles denote the simulations in the geometry-specific mea-
surement models, and the lines show the idealized CFD results from [200]. The lines for different
Reynolds numbers (0.0058-0.58) are plotted on top of each other in the right image. The dashed
line for Re = 5.8 is interpolated from the results at lower Reynolds numbers.

Fig. 4.12 compares the strength of the maximal transverse flows with idealized model
data [200]. We varied the flow amplitudes in the PIV measurements to test the expected
transverse flow strength at different Reynolds numbers. The maximum Dean flow in the
idealized toroidal duct scales with the square of the Reynolds number, while the saddle flow
structure in the twisted duct is proportional to it since it is a kinematic effect [137]. Thus,
the curves for different Reynolds numbers overlap for the twisted duct in Fig. 4.12B, but
not for the toroidal duct. In the PIV measurements, we detected transverse flows down
to 5% of the axial flow amplitude in the twisted duct and down to 2% of the axial flow
amplitude in the toroidal duct at 5 Hz.

The maximum strength of the transverse flows in the twisted duct is lower than the data
from the idealized simulation would suggest. The measured specimen has a higher torsion
(τ = 1/6mm−1) than the idealized models did (τ = 1/8mm−1). Bolinder [137] found that
the maximum strength of the transverse flows is proportional to τdhRe in twisted ducts
under steady scenarios, where dh is the hydraulic diameter. Therefore, we would expect
the measured sample to have even higher, by a factor of 8/6 = 1.333, transverse flows.
However, the idealized square cross-section has a greater distance from the center to the
corners than the real cross-section. We suspect this to counteract the change in torsion.

Within the toroidal duct, we identified the maximum transverse flows during time in-
stances when the Dean cells were fully developed, i.e., t1 and t3 in Fig. 4.10 for the PIV
measurements and the geometry-specific CFD. At 5 and 10 Hz the magnitude of the Dean
flows is similar to the expected one. Some measurements are on the higher side, which could
be due to geometry induced flows that enhances the maximum transverse flows. At 20 Hz,
the PIV measurements yielded much higher maximal transverse flows than expected from
the CFD results because the Dean flow was below the limit of detection in the PIV data.
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In the idealized simulations, the strength of the Dean cells decreases with the frequency
and with the square of the axial flow for sufficiently high Womersley numbers according to
Harte et al. [200]. This is consistent with the PIV measurements.

4.5 Discussion
3D-PIV system validation
Our 3D-PIV system offers several advantages. It is cost-effective, requiring only one camera
and one optical access for the laser. The proposed single camera system is especially
beneficial when working with small-scale models as it simplifies the setup and calibration
processes. In addition, it allows the measurement of transverse flows from a side or top
view, without the need to directly capture the transverse plane, which would be challenging,
especially in the case of a twisted duct. Finally, the associated optical system allows for
a depth of field comparable to or larger than the field of view, which allows for imaging
specimens with large aspect ratios.

Nonetheless, the system also presents its limitations. While the transverse flow patterns
were clearly recognized in PIV analysis at low oscillation frequencies (5 and 10 Hz), they
were either close or below the noise floor for 20 Hz. This is attributed to the combined effect
of their decreasing magnitude and the increasing experimental noise for higher frequencies.
At higher frequencies, the transducer produced a lower flow amplitude and smaller particle
displacement, which is suboptimal for PIV analysis. At the same time, higher frame and
scan rates are required to obtain a sufficient number of frames per period. To compensate
for the shorter exposure time, we opened the aperture more, resulting in less depth of field
in the scan direction. This is the main technical limitation of the study.

Here, the stroboscopic PIV analysis was implemented for transverse net motions, there-
fore no axial net motion is evaluated since it was outside our scope of interest. While this
axial net flow is probably not substantial in the toroidal duct, see e.g., Zabielski & Mes-
tel [135], the twisted duct may have an axial net flow component. The method, however,
can be readily extended by performing the PIV analysis in the orthogonal planes aligned
with the channel axis. Furthermore, the SNR of the method could be further increased
by performing the analysis at each recorded phase in the driving period and averaging the
result.

Sample imperfections and net transverse flow
We have observed large differences between the transverse flow patterns in ideal geometries
and in the measured samples. We attribute these differences to uneven sample walls and,
more importantly, rounded corners. However, these differences are not artifacts since they
are recovered by the geometry specific CFD simulations. For example, in the twisted duct,
the observed flow through the center probably results from variations in the twist and the
curvature of the centerline itself. Addressing this would be quite an experimental challenge.
In addition, the tilt of the axis between the Dean cells in the toroidal duct is not present
in the idealized model. Such effects are particularly relevant for physiological structures
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such as the cochlea, which are intricate geometries with torsion, curvature, and varying
cross-sections.

We suspect that the transverse net motion in the twisted duct originates from the Stokes
drift, as the Lagrangian mean velocity significantly exceed the corresponding Eulerian mean
velocities (in the simulations). The Stokes drift arises from the oscillatory characteristics
of the saddle flow structure and local gradients in the axial velocity. During the first half
of the oscillation cycle, the particles move in one direction, only to inverse their direction
during the second half. Since the initial position of the particle is not exactly the same
during these two halves, the particle experiences different forces from the local flow field.
This mismatch causes a net drift. The Stokes drift is inversely related to the oscillation
frequency, according to Edom et al. [5]. We also observed that these net motions decrease
with the oscillation frequency in the ideal geometries.

Alignment and dynamic transverse flow
Notably, the Dean cells in the measured models were only pronounced at two instances
per cycle, and they were even less distinguishable at higher frequencies in CFD. This may
be due to three reasons. First, the geometric differences between the idealized models and
the measurement models could cause additional flows, that are overlaid with the transverse
flows. Second, it could be due to their sensitivity to the orientation of the transverse plane;
even a small deviation in the plane orientation during post-processing causes a part of
the axial flow to be inaccurately defined as transverse, resulting in an overlap with the
actual transverse flow. Third, they may still be developing in the measurement models and
therefore may still be subjected to entry length effects.

The transverse flow presented for the twisted duct are averaged over a short axial
distance. However, the twisted duct displays a continuous twist, and this average may thus
impact the reconstructed flow field. The quantitative comparison with the geometry specific
CFD model suggests that the influence is limited. Nonetheless, implementing corrections
such as a rotating reference frame to account for the rotating cross-section could improve
the results for the twisted duct, potentially down to the order of parts per thousand with
respect to the axial flow.

Potential physiological implications
The observed cross-sectional Lagrangian streaming may be of interest for mixing and mass
transport in small enclosed systems such as the cochlea. Streaming velocities decreased
with oscillation frequency in both curved and twisted channels. This suggests that mass
transport induced by the geometry may be more prominent at low stimulation frequencies.
This is in line with Edom et al. [5], who characterized steady streaming in the cochlea which,
inter alia, originated from fluid structure interaction with the vibrating basilar membrane.
They also indicated that streaming is predominantly relevant to the low-frequency hearing
process. Frequencies in the infrasonic regime (i.e., below 16 Hz) are not considered audible,
they can, however, still lead to fluid motion in the cochlea. In addition to passive diffusion,
steady streaming could help transport ions and metabolites throughout the cross-section.
This is important as the structure that secretes ions into the endolymph is located at the
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outer wall of the spiral duct, from where they need to move to the surrounding tissues and
sensory hair cells.

4.6 Conclusion
We developed a scanning 3D-PIV system for small-scale oscillatory flows, resolving subtle
transverse flows at a fraction of the main axial flow amplitude. The axial flow amplitudes
were varied between 3 and 8 mm/s. We applied the system to three millimetric geometries:
a straight square duct, a twisted square duct, and a toroidal duct with a trapezoidal cross-
section. Curvature and torsion lead to time-resolved transverse flows (Dean cells, saddle
flow structure) and time-averaged net motions. The net motion in the toroidal duct, i.e.,
Dean flow, was stronger and thus easier to visualize than the one in the twisted duct. The
detected net motions were approximately 1% of the axial flow in the toroidal duct and about
an order of magnitude lower in the twisted duct. We measured time-resolved transverse
flows down to 5% of the axial flow amplitude in the twisted duct and down to 2% of the
axial flow amplitude in the toroidal duct at 5 Hz.
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4.8 Appendix
System calibration
Laser sheet thickness

Fig. 4.13. Setup for calibration.

To characterize the laser sheet, we used a glass plate with a thin layer of
 

 

PDMS mixed
with fluorescent Nile Red. The plate was fixed at a 45◦ angle to the laser and camera, see
Fig. 4.13. The plate was scanned with the laser sheet, as in the measurements, and the
camera consequently captured images at different heights z and positions y along the plate.
We used a laser scan rate of 200Hz and a camera frame rate of 40000 fps. Figure 4.14B
shows the height of the laser sheet as a function of time, which reveals the sawtooth function
used to control the laser height. Note that the height corresponds to the y coordinate as
the plate is at a 45◦ angle to the laser and camera. Figure 4.14A shows the line of the laser
sheet at one height and Fig. 4.14C shows the intensity profile over it at different x-position.
The beam was assumed to be Gaussian and its width was defined as the width at 1/e times
the maximum intensity:

δ1/e = 1/
√

− ln(0.5)FWHM ≈ 1.2FWHM, (4.2)
where FWHM is the full width at half of the maximum intensity. The FWHM was
obtained from a Gaussian fit of the intensity profile in Fig. 4.14C.

The beam width is larger than the laser sheet thickness, because of the non-zero layer
thickness of the

 

 

PDMS. We measured the
 

 

PDMS layer thickness δPDMS with confocal laser
scanning microscopy to be 13± 0.7µm. To correct for this, the laser sheet thickness δl was
calculated as

δl = δ1/e −
√
2δPDMS. (4.3)

We used the median beam width over the x-direction. Figure 4.14D shows the resulting
laser sheet thickness and the original beam width as a function of the height. The minima
correspond to the layer where the focus of the camera system is best and the measured
thickness increases below and above due to optical distortions. The laser sheet thickness
was thus approximately δ1/e = 31.9µm before correction and δl = 13.5 ± 0.9µm after
correction with the thickness of the

 

 

PDMS layer.
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Fig. 4.14. Laser sheet characteristics. (A) Image of the laser sheet as captured by the high-speed
camera. (B) Position of the laser sheet as a function of time. (C) Intensity over the image of the
laser sheet at different widths across the measured plate. (D) Laser sheet thickness before (red)
and after (blue) correction with the

 

 

PDMS layer thickness. The solid vertical line indicates the z
position where focus is best, while the dashed lines indicate the borders of the test section.
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Scanning rate and inter-slice distance

We used a 1951 USAF resolution target, which contains line pairs of different sizes, to
calibrate the PIV system. We recorded the target for different focal lengths of the re-
versed macro lens. The resolution was interpolated quadratically between the measured
focal lengths to determine their dependence (Fig. 4.15). In the PIV analysis, we then
used the interpolated function to related the focal lengths set in the measurements to the
corresponding pixel resolution.

Fig. 4.15. Conversion factor from pixels to micrometers for different focal lengths of the frontal
lens.

The different sawtooth function amplitudes, i.e., laser amplitudes, scale linearly with
the distances between the captured layers in the z-direction. The total scan height per
amplitude was approximately 3.75µm/mV (Fig. 4.16). For example, for 200 layers and
800mV, the median distance between the layers was approximately 15.09± 1.66µm. This
leads to a spatial imaging resolution of approximately 5 × 5 × 15µm3 for a typical focal
length of 22 mm.

Fig. 4.16. Scan distance per amplitude of the sawtooth function (laser amplitude) for different
calibration measurements. The solid blue line shows the median distance per amplitude.
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Dynamic axial and transverse flows for higher frequencies
Figures 4.18 and 4.17 show the time-resolved, dynamic axial and transverse velocities in the
twisted and toroidal duct, respectively, at one time point. The axial velocity is shown at its
maximum. The transverse velocities are shown at the time when they are most developed.

f = 10Hz (α ≈ 6.5) f = 20Hz (α ≈ 9)
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Fig. 4.17. Dynamic axial (first row) and transverse flow (second row) in the toroidal duct.

f = 10Hz (α ≈ 6.5) f = 20Hz (α ≈ 9)

Fig. 4.18. Dynamic axial (first row) and transverse flow (second row) in the twisted duct.
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chapter 5

CONCLUSIONS AND OUTLOOK

This chapter provides an overall summary of the work presented in this thesis.
The contributions and limitations of the three research projects are discussed
and future work is outlined.
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This thesis addresses the effect of geometry on transverse flow phenomena under oscil-
lating flows with small amplitudes. Our hypothesis is that torsion facilitates low frequency
hearing. In a first part, computational fluid dynamics (

 

 

CFD) was employed to quantify
transverse flows in helical square ducts. Dependencies of the emerging phenomena on the
two relevant dimensionless numbers, the Womersley number α and the Reynolds number
Re, were then characterized. They describe the transient inertial force as well as the inertial
force with respect to the viscous force, respectively. In the second part, a measurement
setup was developed to visualize these subtle transverse flows in physical models. The use
of two unique, complementary particle image velocimetry (

 

 

PIV) analysis methods allowed
to capture both time-resolved velocities and net flows. Finally, combining insights from
these two perspectives allowed us to quantify the extent to which the

 

 

PIV captured the
transverse flows, and to outline differences between ideal models and measured samples.

5.1 CFD visualizations and wall shear stresses
An existing kinematic surface fitting algorithm by Wimmer et al. [113] was adapted and
used to build structured meshes along a centerline, which can either be user defined or
determined by shape parameters extracted from micro-CT data. In Chapter 2 this method
was applied to generate meshes of a straight, a toroidal, a twisted, and a helical duct for
use in

 

 

CFD. This method further offers a convenient and effective way to decompose the
flow field into axial and transverse components, since it uses the Frenet-Serret frame, where
the tangent to the centerline defines the axial direction. The transverse flow patterns that
emerge from curvature, i.e., Dean cells, and from torsion, i.e., saddle flow structures, are
presented in Chapter 2. While the Dean cells occurred with a substantial phase lag to the
axial flow, the maximum saddle flow structure preceded it. In the helical duct, torsion
dominated the transverse flow pattern at low Reynolds numbers.

Two new findings are highlighted in this chapter: First, we extended the dependence of
maximal transverse flows on the Reynolds number, shown by Bolinder [137], to their depen-
dence on the Womersley number, i.e., oscillation frequency. We were able to demonstrate
that the combined effect of curvature and torsion in the helical duct results in a transverse
flow that exceeds in magnitude what would be expected from the superposition of the two
effects. Second, we present results of oscillating low Reynolds number flow tailored to the
cochlea. Other studies investigating pipe flow in the biological context, are, in contrast,
often geared towards application in the aorta. These flows have different characteristics
(e.g., higher viscosity, shear thinning), are usually studied under pulsating flow with a single
frequency (i.e., the heartbeat with α ≈ 20 in the aorta, e.g., [135]), and have larger vessel
diameters and higher Reynolds numbers.

In Chapter 3, the numerical setup was applied to examine pressure fluctuations and
wall shear stresses along the cross-section. Both are closely related with the previous
results. Pressure differences across the cross-section are prominent drivers of transverse
flow, and their behavior in magnitude and pattern is reflected in them. Moreover, torsion
predominately affected the transverse flow velocities and in turn lead to high transverse
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wall shear stresses. Curvature, in contrast, dominated the axial velocity profile, and thus
also strongly influenced the axial wall shear stress.

In addition, two regimes were identified based on the Womersley number, which allowed
to get a clearer understanding of the dominating effects in each geometry. While they were
discussed for the wall shear stress and pressure fluctuations in Chapter 3, these regimes also
characterized the transverse flow velocities and phase lags with respect to pressure. Below
a Womersley number of 4, the transverse velocities behaved similarly in twisted, toroidal,
and helical ducts. Above, they diverged and hinted at a different force dominating their
drive. For example, the centripetal force in the toroidal duct decreased with the oscillation
frequency. The kinematic effects of torsion, in contrast, increased. At higher frequencies,
the driving force (pressure) needs to be higher to cause the same velocity amplitudes (which
were imposed in the simulations). The flow is therefore strongly accelerated and thus the
effect of directional changes in the boundaries, e.g., rotation, increases as well. This could
be the reason for the elevated importance of torsion at higher driving frequencies.

5.2 3D-PIV visualizations and complex cross-sections
Next, the numerical results were used to validate an experimental setup and to quantify its
performance for measuring transverse flows. Namely, a scanning

 

 

PIV setup geared towards
measuring oscillating flows with small amplitudes was developed and combined with a
stroboscopic and a semi-Lagrangian

 

 

PIV analysis technique, which enabled the detection
of transverse net flows down to 0.1% of the axial flow amplitude and time-resolved flows
down to 2%. It addresses two shortcomings among current measurement systems: it can
resolve multi-scale flows in small models.

The measurement models were formed by thermally bending
 

 

ABS square rods into
the desired shape and casting them in PDMS. Using acetone, the

 

 

ABS was subsequently
dissolved and the PDMS casting retained. The thermal shaping introduced considerable
deviations (slightly varying twist and curvature, rounded corners, etc.) to the ideal mod-
els from Chapters 2 and 3. These differences lead to unique flow patterns, in particular,
to asymmetrical Dean cells. In the context of the complex cross-sectional shapes of the
cochlear scalae, these findings are interesting because they demonstrate the need for accu-
rate representations in measurement models.

The
 

 

PIV system brings its own limitations. The transverse flow patterns were challeng-
ing to detect at higher oscillation frequencies due to increased systematic noise and reduced
flow rates. Higher oscillation frequencies require higher camera frame rates to obtain a suf-
ficient temporal resolution. To compensate for the shorter exposure time, we enlarged the
aperture, resulting in less depth of field in the scan direction. Compared to other sys-
tems for similar scales, however, the introduced system still offers significant advantages.
Holographic and tomographic

 

 

PIV, for example, need optical access from multiple viewing
angles, increasing cost and complexity of the setup. Single camera applications like general
defocusing and astigmatic particle tracking velocimetry are limited in particle densities and
thus in their resolution, in particular, as overlapping particles in the images lead to uncer-
tainties about the particle positions. Scanning

 

 

PIV does not require low particle densities,
as the layers are scanned sequentially. In addition, our single camera setup is cost-effective
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and convenient to apply. In summary, scanning
 

 

PIV is an adequate system for studying
transverse flows in millimetric in vitro models, such as those of the cochlea.

5.3 Potential physiological implications
We used abstracted geometries to examine the fundamental properties of low-amplitude
oscillatory flow. As we wanted to investigate the effects of torsion and curvature separately
and to validate our results with literature [137], our models had a square cross-section.
Despite this abstraction, we can still derive insights about the fluid dynamics in the highly
complex anatomy of the human cochlea. In its context, we relate the square ducts to either
the scala vestibuli or scala tympani. In our simulations we modelled the walls as rigid
and neglected interactions between the cochlear chambers. In particular, we neglected the
dynamics of the basilar membrane. Therefore, we consider the fluid motion in our models
as an addition to the one expected from the displacement of the basilar membrane (which
is especially important at the characteristic place). The cochlear scalae have a complex,
non-square cross-section, which however still contains regions with sharp bends (e.g., the
lateral wall of the scala vestibuli, adjacent to Reissner’s membrane). The transverse flow
pattern near the corners of our square duct models’ cross-section can be translated to these
locations. This allows to predict locations with maximal effects.

Our findings show that torsion in the helical geometry leads to high transverse flows
(up to 31% of the main flow at 256 Hz), which in turn cause high transverse wall shear
stresses. Interestingly, the highest shear stresses were found at the inner wall of the curve
close to the corners. This relates to locations closer to the modiolus. The rigid walls in our
simulations allow pressure and wall shear stresses to build up considerably. In a flexible
geometry, wall shear stresses might be partly converted to motion of surrounding structures
and membranes. For example, high wall shear stress along the Reissner’s membrane might
deform it in the direction of the shear. This could have two main effects: First, it could
stretch or compress the membrane, affecting ion channels. Second, a deformation of the
Reissner’s membrane would displace fluid in the scala media. Flow in the scala media is
interesting, as the oscillating fluid motion which is generated by the stapes displacement is
primarily in the perilymph while the hair cells are located in the scala media. To quantify
these two effects, fluid structure interactions would have to be taken into consideration. Our
results do, therefore, not allow us to conclude if the observed transverse flows also enhance
low-frequency hearing. Nevertheless, based on their proportion relative to the axial flow,
the transverse flow magnitudes may be relevant in hearing physiology.

Besides the oscillating fluid motion that we considered, the stapes movement leads to a
travelling wave on the basilar membrane. The basilar membrane displacement peaks at a
frequency dependent position along the cochlea, i.e., the characteristic place, and stimulates
hair cells located there. While transverse flows are very interesting for hair cell stimulation,
due to their arrangement in the scala media, our primary focus is not yet on hair cells. The
geometry induced transverse flows arise throughout the spiral cochlea, from the base until
the characteristic place (and maybe even beyond) — with local variations based on the
curvature and torsion. Their effect is thus not primarily at the characteristic place. The
main impact of the observed transverse flows is therefore in mixing and metabolite transfer.
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Our results indicate that net flow with diverse Dean cell shapes and sizes could occur in
the cross-sections of the cochlea. Such Dean cells would be most pronounced at infrasound
frequencies, which can, despite being below the audible frequency range, still induce fluid
motion in the cochlea. Studies suggested that infrasound may play a role in fluid home-
ostasis of the endolymph [234, 235]. Interestingly, if Dean cells were to form in the scala
media, they could lead to net flow from the outer wall along the organ of Corti and the
Reissner’s membrane, which could help in ion transportation from the stria vascularis to
the hair cells. In the cochlea, the time-reversible nature of creeping flow (Re < 1) impedes
mixing, emphasizing the importance of such steady streaming effects for mass transport.

5.4 Outlook and future work
Mean velocities and streaming
The

 

 

PIV results addressed geometry-induced, cross-sectional net flow, but of no less interest
is axial net flow for mass transport along the longitudinal axis. The current

 

 

PIV analysis
could be readily adapted to obtain streaming in the axial direction, e.g., by a stroboscopic
analysis of planes at right angles to the transverse plane. Furthermore, we are currently
examining steady streaming effects with

 

 

CFD, including the Stokes drift, as well as Eule-
rian and Lagrangian streaming. While streaming in a toroidal duct occurs mainly within
the cross-section, our preliminary results suggest that torsion can cause axial streaming.
Especially intriguing to examine is the potential combination of Stokes drift (from torsion)
and Dean flow (from curvature) in the helical geometry. In addition to commonly applied
drugs for the inner ear, such as cortisone [7, 8] and ototoxic antibiotics [9], axial streaming
might someday be relevant for gene therapies aimed at hair cell regeneration [236, 237].

Helical centerlines and anatomically more detailed models
Possible future directions to explore include models which consider fluid-membrane inter-
actions, or which have an anatomically more realistic cross-section. The latter can either
be constant or vary along the cochlear duct according to the shape of the cochlea as de-
termined, for example, from micro-CT data. Along this line, a series of patient specific
samples would be intriguing, especially regarding the wide interindividual variability in
cochlear shape.

In Chapter 4, we presented comprehensive results for twisted and toroidal flow channels,
but not for the helical one. We also measured the helical samples with our 3D-

 

 

PIV setup,
but the corresponding results are still preliminary as the determination of the transverse
plane requires an additional, not yet implemented, post-processing step. In addition, the

 

 

PIV analysis would need to be adapted to enable averaging along a curvilinear centerline
to increase

 

 

SNR.

Flow setup
The key challenge of the flow setup is to obtain a driving system that is suited in precision
and yields high flow rates at a wide frequency range. This task is challenging, because
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of the fluid’s inertia. Our group is working on possible alternatives to the current single
layer piezo actuator, including pumps with stacked piezo actuators and an underwater-
transducer (loudspeaker). Another modification includes thermal heating, which has been
implemented in our group but not yet applied in the measurements. Heating water to body
temperature reduces its viscosity by roughly 30% compared to a temperature of 20 degrees
Celsius.

5.5 Summary
In the cochlea, transverse flow phenomena may help to maintain the homeostasis of the
endolymph and are thought to be involved in inner hair cell stimulation. Ducts with torsion
alone, as well as in combination with curvature, exhibit significantly increased transverse
flow and transverse wall shear stress, in comparison to toroidal ducts. Curvature, on the
other hand, dominated the cross-sectional net motions. This implies that torsion as well as
curvature can be expected to have a significant impact on secondary flow phenomena in the
cochlea. Interestingly, many previous studies of cochlear flow neglected torsion. Despite
their potential relevance, the observed transverse flows are small compared to the axial flow.
The developed measurement setup allowed to measure transverse flows down to 2% and
net motions down to 0.1% of the axial flow. Apart from its capacity to measure multi-scale
flows, the presented single camera system is convenient to use and cost-effective, and thus
overcomes limitations of current systems for small-scale applications.

Despite the active research areas of both cochlear modeling and transverse flows, future
research combining them in realistic geometries is needed to unravel the physiological role
of the spiral cochlea. I hope that the developed setup will contribute to future work on this
project, and that the presented work will help to view the role of the cochlear morphology
in causing fluid dynamical effects from a new perspective.
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