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Introduction

The topics of this thesis are encompassed by the larger domain of research of the

field of low-dimensional topology, more specifically, topology in dimensions two

and three. The title of this thesis should be considered a pun, as the two twist-

ing notions are otherwise unrelated: By “twisting surfaces” we mean studying

Dehn twists as mapping classes of a surface, and by “twisting braids” we mean

applying certain moves, called twist moves, to links. These notions divide this

thesis into two parts, the first of which is concerned with studying subgroups of

mapping class groups generated by Dehn twists, and the second with knots and

links.

The study of mapping class groups is a broad and classical topic in the

literature, and it admits questions that are easy to ask but not yet answered.

For instance, it is unknown what groups arise as subgroups of mapping class

groups generated by three Dehn twists. Dehn twists about three or more curves

that intersect pairwise at most once, in a so-called circuit pattern (i.e. cyclically

consecutive curves intersect, and other pairs do not), may or may not satisfy a

cycle relation. Our main result in the first part of this thesis characterizes the

situations in which said relation is satisfied. It turns out that the criterion is

remarkably simple: a cycle relation is satisfied if and only if the curves bound

an embedded closed disc, see Theorem 3.1.

The second part of the thesis is concerned with knots and links. More pre-

cisely, the theme is to transform links into other links by applying twist moves,

a twisting notion introduced by Fox in the 1950’s. For each k ≥ 2, there is a

version of a twist move, called a tk-move, that replaces two parallel strands in

a link diagram by k many crossings. Our main results come in two flavours,

corresponding to the two chapters in this part. Chapter 4 is concerned with

obstructions by Przytycki for two links to be related by twist moves. We use

these obstructions to give a bound on the number of k such that a knot K with

non-trivial HOMFLY polynomial may be unknotted using tk-moves, in terms

of the crossing number of K, see Theorem 4.3. Chapter 5 is less concerned with

the qualitative question of whether two links are related by a sequence of twist
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moves, and rather with the more quantitative question of how quickly this may

be achieved in a particular situation. Using ideas and intuitions from the pre-

vious chapter, we determine the cobordism distance between links of the form

T (3,m) and T (2, k)n explicitly up to a bounded error for k ≤ 6, see Theorem 5.2.

The organisation of this thesis corresponds closely to the outline above.

Chapter 1 is an introduction to the known theory of relations between Dehn

twists in mapping class groups. We discuss known embeddings of Artin groups

into mapping class groups, and known obstructions to the existence of such em-

beddings, most notably results by Labruère and Wajnryb that show that Artin

groups of type D̃ and E, respectively, cannot be geometrically embedded into

mapping class groups of surfaces. Here, a geometric embedding is an injective

homomorphism mapping generators to Dehn twists.

In Chapter 2, we study subgroups of mapping class groups generated by

bouquets, which are systems of curves intersecting pairwise once in a common

point. We characterize bouquets in terms of the cycle relation between Dehn

twists about triples of curves, see Theorem 2.1. We then determine the possible

isomorphism types of subgroups of the mapping class group of a surface without

punctures generated by Dehn twists about a bouquet.

The final chapter of the first part, Chapter 3, is about circuits of curves.

As mentioned above, the main result characterizes the cycle relation in terms

of the surrounding surface. Our main tool for carrying out this characterization

is the Birman-Hilden theorem, which allows us to show that certain groups

generated by Dehn twists about circuits are Artin groups of type Ã, contrary to

a miscitation of Labruère’s work by Wajnryb [Waj99, Theorem 2]. Mortada had

previously refuted this misunderstanding by constructing geometric embeddings

of Artin groups of type Ã, and we improve upon Mordada’s work by constructing

many more. Such Artin groups are useful to us because their generators do not

satisfy a cycle relation. A case distinction at the end of the chapter finally proves

the main theorem, Theorem 3.1.

The second part starts off with Chapter 4, where we recall and reprove

Przytycki’s specializations, and then apply them to certain classes of knots. The

final two sections of this chapter contain results exclusive to this thesis, perhaps

most significantly a stronger version of a special case of Coxeter’s result that

the braid group Bn modulo a k-th power of a generator is finite if and only if

1/k+1/n > 1/2. Our improvement concerns the case 1/k+1/n = 1/2, for which

we prove that the set of closures of n-braids contains infinitely many links that

are pairwise not related by tk-moves, see Theorem 4.6. The final section of this

chapter provides a method to find twist-invariant specializations like Przytycki’s

for a more general class of twist moves.

In the final chapter, Chapter 5, we remove powers of generators from braids
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whose closures are torus links in order to obtain estimates of the cobordism

distance from three strand torus links to iterated connected sums of trefoils,

hexafoils, and other two strand torus links. We succeed to compute the cobor-

dism distance of the closure of an arbitrary positive braid on three strands to

iterated connected sums of trefoil knots, see Theorem 5.1. We also estimate the

cobordism distance of three strand torus links to iterated connected sums of the

torus link T (2, k) for k = 4, 5, 6, see Theorem 5.2. Finally, we obtain an estimate

for the cobordism distance between T (3,m) and T (2, k)n for k ≥ 7 and m large

(or small) compared to n, see Theorem 5.3.
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Chapter 1

Relations in mapping class

groups

This chapter covers the basics of the classical theory of mapping class groups of

surfaces, with a focus on relations between Dehn twists, or the absence thereof.

This focus is intended to establish some context around the results in the next

few chapters of this thesis, which are all about one particular relation in mapping

class groups: the so-called cycle relation.

Because the material in the first two sections is well-known, we go through

it quite quickly and refer the reader to [FM11] for the details. The author

attempted to keep the notation and terminology consistent with this reference.

1.1 Classical relations

For us, a surface is an oriented connected 2-dimensional manifold with or with-

out boundary, and the mapping class group of a surface S, abbreviated by the

symbol MCG(S), is the set of isotopy classes of orientation-preserving homeo-

morphisms of S that fix the boundary ∂S pointwise, with composition as the

group operation. A simple closed curve in a surface S, or just curve for short, is

a continuous injection α : S1 → S. We usually consider curves up to isotopy, and

also use the word curve to mean an isotopy class of simple closed curves. We

do, however, attempt to distinguish the two meanings by using Greek letters for

actual curves, and the corresponding Latin letters (a for α, b for β, and c for γ)

for isotopy classes of curves. One further convention we adopt is that of minimal

intersection numbers: whenever we say that two isotopy classes intersect a given

number of times, say i, what we mean is that there exist representatives that

intersect i times, and all other pairs of representatives intersect at least i times.
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To any curve a in a surface S we may associate a mapping class Ta in

MCG(S), called the Dehn twist about a, as follows. Let α be a representative of

a and let A be a regular neighbourhood of α. The mapping class Ta is represented

by the map that is the identity outside the interior of A, and has the effect of

“twisting” the annulus A as described pictorially in Figure 1.1. The orientation

of S makes a difference here, without it there is no way to distinguish a Dehn

twist from its inverse. It turns out that if two Dehn twists Ta and Tb are isotopic,

then a = b.

−→

Figure 1.1: The effect of a Dehn twist about the core curve α of an annulus on
a segment of a curve intersecting α.

The rest of this section is devoted to the most well-known relations between

Dehn twists.

1.1.1 Commutation and braid relations

Let a and b be disjoint simple closed curves. Then Ta and Tb have representatives

with disjoint supports, leading to the commutation relation

TaTb = TbTa.

Note that if a curve is isotopic a boundary component, then it is disjoint, up to

isotopy, from any other curve. This observation shows that Dehn twists about

boundary curves of a surface S lie in the centre of MCG(S), because mapping

class groups are generated by Dehn twists (and half-twists in the case the surface

has punctures).

For any mapping class f and any curve c we have fTcf
−1 = Tf(c) [FM11,

Fact 3.7]. We will henceforth refer to this result as the conjugation formula. Now

suppose a and b intersect precisely once. Let α and β be representatives of a

and b, respectively, such that α and β intersect exactly once. Let N be a regular

neighbourhood of α ∪ β. Note that we have Ta(b) = T−1
b (a), see Figure 1.2.

Using the conjugation formula, we obtain

T−1
b TaTb = TT−1

b (a) = TTa(b) = TaTbT
−1
a ,

10



which is equivalent to the braid relation

TaTbTa = TbTaTb.

Figure 1.2: The curves a (horizontal) and b (vertical) on the left, and the curve
Ta(b) = T−1

b (a) on the right. In these sorts of images, we implicitly identify the
ends of the bands with their opposite side, so that the surface depicted in this
particular example is a torus with one boundary component.

1.1.2 The chain relation

A chain in a surface S is a family of curves c1, . . . , cn in S such that each ci

intersects ci+1 exactly once, and ci is disjoint from cj whenever |i− j| ≥ 2. Let

N be a regular neighbourhood of γ1 ∪ · · · ∪ γn, where the γi are representatives

of the ci that realise the minimal intersection numbers. If n is even, then N

has one boundary component which we call δ, and if n is odd, then N has two

boundary components, which we call δ1 and δ2. The chain relation asserts that

if n is even, then

(Tc1 · · ·Tcn)2n+2 = Td,

and if n is odd, then

(Tc1 · · ·Tcn)n+1 = Td1Td2 .

A pictorial way to understand this relation uses the fact that there exists an

isomorphism from the group G = ⟨Tc1 , · · · , Tcn⟩ to the braid group on n+ 1

strands. The remainder of this subsection is devoted to obtaining a visual un-

derstanding of said isomorphism, while leaving the technical details to the lit-

erature.

As an intermediate step, we first try to understand why G is isomorphic to

MCG(∆n+1), where ∆n+1 is an (n + 1)-times punctured disc. The left side of

Figure 1.3 depicts a decomposition of N into cross-shaped pieces. Rotating each

of the pieces by 180 degrees around their centres yields a well-defined involution

ι of N , and the quotient N/ι is a disc. The effect ι has on the boundary is

11



−→

Figure 1.3: A neighbourhood N of a chain of four curves, decomposed into
cross-shaped pieces, and the same surface modulo a half-rotation of each of the
crosses. The small circles on the disc are the images of the fixed points of the
involution, of which there are five: three in the centres of the crosses, and two
on the edge of the outermost crosses.

different depending on the parity of n: If n is even, then ι restricts to a 180

degree rotation of the single boundary curve, and if n is odd, ι exchanges the

two boundary components. Note that on the complement of the fixed points of

ι, the quotient map N → N/ι is a covering map. We call a homeomorphism

φ of N symmetric if it commutes with ι. Note that a symmetric homeomor-

phism φ of N passes down to a homeomorphism φ of ∆n+1. A famous result by

Birman-Hilden which we will not reprove in this thesis, asserts that this yields

a homomorphism from the subgroup of MCG(N) consisting of mapping classes

with symmetric representatives to MCG(∆n+1). Note that this result is non-

trivial. Indeed, whenever two symmetric homeomorphisms of N are isotopic, the

isotopy might pass through non-symmetric homeomorphisms, which do not pass

down to homeomorphisms of ∆n+1. However, it turns out that under mild as-

sumptions, isotopies of symmetric homeomorphisms may be symmetrised: this is

the content of the so-called Birman-Hilden theorem, which asserts the following

in the special cases appearing in this thesis.

Lemma 1.1 ([BH73, Theorem 1]). Let ι be an orientation-preserving involu-

tion of a surface S with finitely many fixed points. Assume that S is neither a

closed sphere nor a closed torus. Let f be an orientation-preserving symmetric

homeomorphism of S that is isotopic to the identity. Then f is isotopic to the

identity via symmetric homeomorphisms.

A close look at Figure 1.3 might reveal to the reader that the image of a Dehn

twist Tci is a half-twist, depicted in Figure 1.4. The next thing to understand is

that MCG(∆n+1) is isomorphic to the braid group on n+ 1 strands. Formally,

the isomorphism comes from the Birman exact sequence

1 −→ π1(CS(∆, n+ 1)) −→ MCG(∆n+1) −→ MCG(∆) −→ 1,

12



−→

Figure 1.4: The effect of a half-twist about the grey arc γ.

where the group π1(CS(∆, n + 1)) is the braid group, and MCG(∆) is trivial.

We explain this formal reasoning in Subsection 1.3.1. Here, we will give visual

description of this isomorphism, usually called the push map, and it goes as

follows. To obtain a mapping class from a braid, one may imagine the disc

being made of dough, and the punctures being some nails in the dough. The

z-axis of the braid can be imagined as time, and the position of the strands at a

given time can be interpreted as the position of the nails in the dough, so that

going up the braid corresponds to moving the nails. The final state of the dough

is the result of applying the mapping class associated to the braid. Conversely,

starting with a mapping class f of ∆n+1, there exists an isotopy transforming it

to the identity when interpreting f as a map on the disc ∆ without punctures.

The paths the punctures follow during this isotopy give rise to a braid. An

example for the case n = 1 is drawn in Figure 1.4, which depicts the effect of

the mapping class associated to the generator a = σ1 of the braid group on two

strands. It might be worth pointing out that there is a slight clash of orientation

conventions: The generators of the braid group are usually taken to have the

left strand pass over the right, whereas the figure depicts the opposite. We will

sweep this conflict firmly under the rug, as it will not affect any arguments in

this thesis.

Putting these two steps together yields an isomorphism from G to the braid

group on n+ 1 strands. It should be reasonably clear that if n is even, the

double full twist lifts to the boundary twist Td, and if n is odd, the full twist

lifts to the product Td1
Td2

. Indeed, the full twist in MCG(∆n+1) is the Dehn

twist Td, where d is the boundary curve of ∆n+1. This shows the chain relation.

1.1.3 The inclusion homomorphism

The inclusion of a subsurface into a bigger surface induces a homomorphism

on the mapping class groups. This works because we assumed the mapping

classes to fix the boundaries pointwise, so that homeomorphisms of a subsurface

may be extended with the identity to a homeomorphism of the full surface. It

will prove useful for us to iteratively glue discs and other surfaces to regular
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neighbourhoods of curve systems, so we formulate the inclusion homomorphism

theorem with this in mind.

Lemma 1.2 ([FM11, Theorem 3.18]). Suppose S and S′ are closed and con-

nected subsurfaces of a surface S∪S′ with disjoint interiors. Let K be the kernel

of the inclusion-induced homomorphism MCG(S) → MCG(S ∪ S′). Then:

(i) If S′ = ∆1 is a once-punctured disc with ∂∆1 ⊂ ∂S, then K is cyclically

generated by the Dehn twist about the boundary curve of ∆1.

(ii) If S′ = Z is an annulus with ∂Z ⊂ ∂S, then K is cyclically generated by

TaT
−1
b , where Ta and Tb are Dehn twists about the boundary curves a and

b of Z, respectively.

(iii) If S′ is neither a disc, a once-marked disc, nor an annulus, then K is

trivial.

In particular, if S′ has no component homeomorphic to a disc, then K is a

subgroup of the centre of MCG(S).

It is worth pointing out that the inclusion homomorphism theorem makes

no assertion about the case that S′ is a disc. Indeed, the following examples

of inclusion-induced homomorphisms show that the effect of gluing in discs is

quite unpredictable.

It is a classical result that if two curves a and b intersect (at least) twice,

then Ta and Tb generate a free group [FM11, Theorem 3.14]. If we now glue in a

disc that decreases the intersection number to zero, the kernel of the inclusion-

induced homomorphism does not lie in the centre, because the commutator

TaTbT
−1
a T−1

b does not commute with Ta (nor with Tb) in the free group. An

example of a disc that decreases the intersection number to zero can be found

in Figure 1.5.

Figure 1.5: Two curves intersecting twice, but intersecting zero times after gluing
in a disc.

The chain relation can also lead to further relations upon gluing in discs.

As we have seen in Subsection 1.1.2, the Dehn twists about the curves a, b on
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the left of Figure 1.2 generate a subgroup of the mapping class group isomor-

phic to the braid group on three strands. By the chain relation, the mapping

class (TaTb)
6 is the boundary twist. If we cap off the boundary with a disc to

turn the regular neighbourhood into a torus without boundary, we obtain the

relation (TaTb)
6 = 1, because the boundary curve becomes null-homotopic. It

is well-known that this relation is not satisfied in the braid group. One possible

justification could be that the relation is “inhomogeneous”, see Chapter 3. The

same thing occurs when capping off all boundaries of a regular neighbourhood

of a chain of arbitrary length.

A less obvious example where discs cause a surprising relation is the lantern

relation [FM11, Proposition 5.1], where four discs cause a relation between three

Dehn twists: The curves on the left hand side of Figure 1.6 generate a free

group [Hum89, Theorem 1.1], whereas the curves on the right hand side satisfy

the (simplified) lantern relation TaTbTc = TbTcTa = TcTaTb. The curves are

labelled a, b, c in the clockwise manner.

Figure 1.6: Three curves whose associated Dehn twists generate a free group on
the left, and satisfy the lantern relation on the right.

Over the course of the next two chapters, we will see many more instances

of the observation that gluing in discs may introduce new relations. More pre-

cisely, in Chapter 2 we shall see how gluing in a disc into a triangle of curves

introduces a cycle relation of three curves, and in Chapter 3 we shall generalise

this observation to many curves. The latter chapter goes on to explore how cir-

cuits of curves can sit in surfaces, and investigates how the surrounding surface

has an effect on whether the curves satisfy further relations in addition to the

pairwise braid and commutation relations that are expected just from their in-

tersection pattern. As we shall see, the complication commonly arises when the

complement of a regular neighbourhood of curves contains discs. The following

two subsections are exceptions to this principle.
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1.1.4 Labruère’s relation

To a system of curves intersecting pairwise at most once, we associate a graph

Γ called its intersection pattern, where each vertex corresponds to a curve and

each edge corresponds to an intersection. In [Lab97], Labruère found a surprising

relation between Dehn twists whose intersection pattern was that of a certain

tree

D̃n+3 =

with n + 4 vertices, and subsequently showed that this relation does not hold

in the Artin group associated to that graph. Suppose the left leaves of D̃n+3

correspond to the curves a1, a2, the middle nodes to the curves b1, . . . , bn, and

the right leaves to the curves c1, c2. In the case n = 1 the graph is a single

central node with four leaves attached, and we simply write b = b1. Labruère’s

relation asserts that

(Tc1f)Tc2(Tc1f)
−1 = fTc2f

−1,

where f = Tbn · · ·Tb1Ta1
T−1
a2
T−1
b1

· · ·T−1
bn

. Using the conjugation formula and

the fact that Ta = Tb if and only if a = b, Labruère’s relation is equivalent to

the requirement that Tc1f(c2) = f(c2). But this just means that c1 and f(c2)

are disjoint. The case n = 5 is sketched in Figure 1.7, and the general case can

be shown similarly.

Figure 1.7: On the left hand side the vertical curves a1, a2 and c2, c1 from
left to right, and the horizontal curve b. On the right hand side the curve
TbTa1

T−1
a2
T−1
b (c2), which is disjoint from c1.

Showing that Labruère’s relation does not hold in the Artin group associated

to D̃n+3 follows from the fact that it does not hold in the corresponding Coxeter

group. Labruère uses the reflection representation to prove this, but it can also be

seen as a consequence of Matsumoto’s theorem [Mat64]. In our case, it asserts

that two words that represent the same element in the Coxeter group under

consideration may be transformed into each other by applying commutation

and braid relations while preserving the length of the word, and cancellation

of squares. Only in the word corresponding to f can we apply commutation

relations, and nowhere can we apply braid relations. Thus, the two sides of
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Labruère’s relation represent different words in the associated Coxeter group.

1.1.5 Wajnryb’s relation

Shortly after Labruère’s discovery on graphs of type D̃, Wajnryb [Waj99] pub-

lished a very similar result on curves with intersection pattern the graph

E6 =

Labelling the curve corresponding to the top leaf a and the curves corresponding

to the bottom row b1, . . . , b5, Wajnryb’s relation asserts that

(fTaf
−1)(TafT

−1
a ) = (TafT

−1
a )(fTaf

−1),

where f = Tb3Tb2Tb4Tb3Tb1Tb5Tb2Tb4Tb3 . Again using the conjugation formula,

this amounts to showing that Tf(a) commutes with TafT
−1
a , which means that

TafT
−1
a (f(a)) = f(a). Like in Labruère’s case, showing that Wajnryb’s formula

does not hold in the Artin group associated to E6 can be done by showing that it

does not hold in the corresponding Coxeter group, and can be done by invoking

Matsumoto’s theorem, albeit in a more subtle way than in Labruère’s case.

1.2 Artin and Coxeter groups

Artin groups are a class of groups introduced by Jacques Tits [Tit66] to gener-

alise Artin’s braid groups [Art25]. Artin groups are closely related to Coxeter

groups [Cox35], and both classes of groups will be discussed frequently in this

part of the thesis. We will start with some definitions.

A Coxeter matrix is a symmetric matrix M with coefficients in N ∪ {∞}
with ones on the diagonal and all other coefficients being at least two. It is

usually more convenient to encode Coxeter matrices as labelled graphs with

some conventions: for a Coxeter matrix M of size n × n with coefficients mij ,

the Coxeter-Dynkin diagram of M is a graph with n vertices whose edges are

labelled by the coefficients mij . We adopt the convention that an edge labelled 2

is not drawn, the label of an edge labelled 3 is suppressed, and an edge labelled

4 may instead be drawn as a double edge. For example, the Coxeter-Dynkin
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diagram of the n× n Coxeter matrix

M =


1 3 2 2

3 1

2 2

1 3

2 2 3 1


is the graph

An =

with n vertices. To an n×n Coxeter matrix M or a Coxeter-Dynkin diagram Γ

with n vertices we associate two groups, the Artin group

Art(Γ) = ⟨s1, . . . , sn | RArt(Γ)⟩

and the Coxeter group

Cox(Γ) = ⟨s1, . . . , sn | RCox(Γ)⟩,

where the sets of relations RArt and RCox are defined as follows. For each label

mij ̸= ∞ with i ̸= j we add the relation (sisj)
mij/2 = (sjsi)

mij/2 to RArt(Γ).

Here, we adopt the convention that (st)(2k+1)/2 = (st)ks. For instance, a label

of 2 corresponds to a commutation relation st = ts, and a label of 3 corresponds

to a braid relation sts = tst. A label ∞ is to be interpreted as no relation. The

set RCox(Γ) consist of the relations in RArt(Γ), together with the additional

relations s2i = 1 for all i. Note that because RArt(Γ) is a subset of RCox(Γ), we

obtain a quotient map Art(Γ) → Cox(Γ).

1.2.1 The braid group

The most significant Artin group is undoubtedly Artin’s braid group. It is de-

fined to be the fundamental group of a certain configuration space CS(∆, n)

(where ∆ is a disc), which we briefly describe now. For a topological space X,

its configuration space CS(∆, n) is the set of unordered subsets of X with n

elements. It is equipped with a topology by viewing it as the set

CS(∆, n) = Y/ Sym(n),

where the symmetric group Sym(n) acts on Xn by permuting the coordinates,

and Y is the subset ofXn with pairwise distinct coordinates. A path in CS(X,n)

may be viewed as a collection of n paths in X that never find themselves in

the same point at the same time. In the case of X = ∆, this leads to the
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Artin’s original interpretation of elements of CS(∆, n) as braids on n strands:

We interpret the z-coordinate as the time, and plot the paths of the individual

points through the disc, so that each of the n paths yields a strand of the braid.

Figure 1.8: The generators σ1, σ2, σ3 of the braid group π1(CS(∆, 4)) on four
strands.

In [Art25] it was shown that the braid group is isomorphic to the Artin group

Art(An−1). The isomorphism Art(An−1) → π1(CS(∆, n)) sends the generators

s1, . . . , sn−1 to the braids σ1, . . . , σn−1, where σi has strand i cross over strand

i + 1, see Figure 1.8. Both the braid and commutation relations admit nice

pictorial justifications, see Figure 1.9.

= =

Figure 1.9: The commutation relation σ1σ3 = σ3σ1 and the braid relation
σ1σ2σ1 = σ2σ1σ2 in π1(CS(∆, 4)).

The Coxeter group Cox(An−1) is well-known to be isomorphic to the sym-

metric group Sym(n), and the isomorphism Cox(An−1) → Sym(n) maps the

generator si to the transposition exchanging i with i + 1. As a consequence,

the quotient map Art(An−1) → Cox(An−1) only remembers which strand goes

where, but forgets all the over- and undercrossing information of a braid.

1.2.2 The annular braid group

In a very similar spirit to Artin’s result, it was noticed by multiple mathemati-

cians, for instance Crisp [Cri99, Section 5], that the Artin group Art(Bn) can

also be understood as a kind of braid group. Here,

Bn =
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is a graph with n vertices and a double edge indicates a label of four. It turns out

that Art(Bn) is isomorphic to the annular braid group π1(CS(Z, n)), where Z is

an annulus. Labelling the generators of Art(Bn) with the symbols t, s1, . . . , sn−1,

the isomorphism from Art(Bn) to π1(CS(Z, n)) maps t to the braid τ and si to

the braid σi, see Figure 1.10.

Figure 1.10: The generators τ , σ1, σ2 of the annular braid group π1(CS(Z, 3))
on three strands, as well as the element σ3 = τσ1σ2σ

−1
1 τ−1.

The Artin group Art(Ãn−1), where

Ãn−1 =

is a cyclic graph with n vertices, can be viewed as a normal subgroup of Art(Bn),

namely as the kernel of the map Art(Bn) → Z sending t to 1 and all other

generators to 0 [KP02]. The images of the generators s1, . . . sn−1 of Art(Ãn−1) in

Art(Bn) are s1, . . . sn−1, respectively, and the generator sn maps to the element

ts1 · · · sn−2sn−1s
−1
n−2 · · · s−1

1 t−1, see Figure 1.10 again.

1.3 Artin groups in mapping class groups

Artin groups, especially those of finite or elliptical type, arise frequently as

subgroups of the mapping class group. The most well-known connection from

Artin groups to mapping class groups is the fact that the braid group can

be viewed as the mapping class group of a multiply punctured disc [FM11,

Theorem 9.1], as we have briefly outlined in Subsection 1.1.2. This leads to the

marvellous result by Birman-Hilden that the braid group can be realised as a

subgroup of a mapping class group generated by Dehn twist. Similarly, the Artin

group Art(Bn) may be viewed as a subgroup of the mapping class group of a

multiply punctured cylinder [Ryf23a, Lemma 2.3], which ultimately leads to the

result that Art(Ãn) is also isomorphic to a subgroup of a mapping class group

generated by Dehn twists, see Chapter 3.

This section covers a selection of the literature on such embeddings, with a

focus on geometric embeddings. Here, a map Art(Γ) → MCG(S) is a geometric
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embedding if it is an injective homomorphism mapping generators of Art(Γ) to

Dehn twists. Recall that pairs of Dehn twists either commute, satisfy a braid

relation, or generate a free group. Thus, if an Artin group Art(Γ) geometrically

embeds into MCG(S) for some surface S, the labels of Γ must lie in the set

{2, 3,∞}, and they determine the intersection pattern of the curves. Labruère’s

relation from Subsection 1.1.4 shows that Artin groups of type D̃ do not ge-

ometrically embed into any mapping class group, because whenever a set of

curves has intersection pattern D̃n+3 for some n ≥ 2, the corresponding Dehn

twists satisfy a relation that does not hold in Art(D̃n+3). Similarly, Wajnryb’s

relation shows that Art(E6) does not geometrically embed into any mapping

class group. Van der Lek [vdL83, Theorem II.4.13] showed that a graph inclu-

sion Γ′ ⊂ Γ yields an inclusion Art(Γ′) ⊂ Art(Γ), so no graph Γ that has E6

or D̃n+3 as an induced subgraph for some n ≥ 2 geometrically embeds into any

Artin group. As far as the author of this thesis is aware, no further examples

of Artin groups that do not geometrically embed into any mapping class group

are known.

A vague justification for preferring geometric embeddings over general em-

beddings is that (many) Artin groups, as well as (many) mapping class groups,

come with a distinguished conjugacy class, namely that of the generating sys-

tem and that of Dehn twists, respectively. Indeed, if two generators s, t of an

Artin group satisfy a braid relation sts = tst, then s = (ts)t(ts)−1 is conjugate

to t. Similarly, any two Dehn twists about curves intersecting exactly once are

conjugate.

1.3.1 The Birman exact sequence

The main tool for establishing braid-like groups π1(CS(S, n)) as subgroups

of mapping class groups is the Birman exact sequence, which first appeared

in [Bir69]. A modern formulation [FM11, Theorem 9.1] asserts that if S is a

surface such that the identity component of the space of orientation-preserving

homeomorphisms of S fixing the boundary ∂S pointwise is simply connected

(written π1(Homeo+0 (S, ∂S)) = 1), then the sequence

1 −→ π1(CS(S, n)) −→ MCG(Sn) −→ MCG(S) −→ 1

is exact, where Sn is S with n points removed. The map π1(CS(S, n)) is the

so-called push map, which can be visually thought of using the dough analogy

from Subsection 1.1.2. The map MCG(Sn) → MCG(S) is obtained by filling

in the punctures. It should be interpreted as the map that forgets that the

punctures are missing. This makes sense because any homeomorphism of Sn

can be uniquely extended to a homeomorphism of S. The main content of the
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result is that the push map is well-defined. We will not go into this here.

The fact that Homeo+(∆, ∂∆) is contractible is essentially a consequence

of the Alexander trick [FM11, Lemma 2.1]. The situation with the annulus Z

is less transparent, but Homeo+0 (Z) is also known to be contractible [Sco70,

Lemma 0.10]. This establishes the annular braid group π1(CS(Z, n)), and hence

Art(Bn) and Art(Ãn−1), as a subgroup of MCG(Zn), see Figure 1.11. Because

half-twists are not Dehn twists, none of the embeddings of Art(An−1), Art(Bn),

or Art(Ãn−1) constructed in this manner are geometric.

Figure 1.11: The images of the generators t, s1, s2 and of s3 in MCG(Z3). The
generator t maps to the product TaT

−1
b , where a is the inner curve and b is the

outer curve.

1.3.2 Free groups and other right-angled Artin groups

A right-angled Artin group is an Artin group in which pairs of generators either

commute or satisfy no relation. To make the statements in this section easier

to formulate we associate a right-angled Artin group ArtRA(Γ) to a graph Γ

by interpreting the edges of Γ as commutation relations. In the extreme cases,

for a graph Γ with no edges we have that ArtRA(Γ) is a free group, and for a

complete graph Γ we have that ArtRA(Γ) is a free abelian group.

Just for this subsection, we say that the intersection pattern of a system of

curves that are pairwise either disjoint or intersect at least twice is the graph Γ

where each vertex corresponds to a curve, and two vertices are joined by an edge

if and only if the corresponding curves are disjoint. Humphries [Hum89, Theo-

rem 2.1] proved that if the intersection pattern Γ of a system of curves c1, . . . , cn

is a disjoint union of complete graphs, and the complement of c1 ∪ · · · ∪ cn con-

tains no discs, then the subgroup of the mapping class group generated by

Tc1 , . . . , Tcn is isomorphic to ArtRA(Γ) via an isomorphism mapping the gen-

erators si of ArtRA(Γ) to the corresponding Dehn twists Tci . In particular,

every such right-angled Artin group, for instance every free group and every

free abelian group, geometrically embeds into a mapping class group.

Many works in the literature manage to embed arbitrary right-angled Artin

groups into mapping class groups [CP01, Lö10, Kob12, CMM21]. However, none

of these embeddings are geometric. The author is unaware of any curve system
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whose complement does not contain discs and whose curves are either disjoint

or intersect at least twice, such that the group generated by the Dehn twists

about the curves in the system do not generate a right-angled Artin group.
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Chapter 2

Bouquets of curves

This chapter seeks to characterise so-called bouquets of curves in terms of the

relations the corresponding Dehn twists satisfy in the mapping class group.

Most of the material in this chapter originates from an article written jointly

with Sebastian Baader and Peter Feller [BFR23].

A circuit of n curves is a curve system with intersection pattern Ãn−1. This

chapter begins with the special case n = 3 of our main result in Chapter 3,

asserting that the Dehn twists about a circuit of n curves satisfy a so-called

cycle relation if and only if the circuit bounds an embedded closed disc, i.e., a

disc in S \ (γ1 ∪ · · · ∪ γn) whose closure in S is also a disc. Here, γ1, . . . , γn are

minimally intersecting representatives of a circuit c1, . . . , cn in a surface S, with

no triple intersections. See Figure 2.1 for an example of a circuit that bounds a

disc which does not satisfy this condition, since its boundary is not embedded.

Indeed, its closure is a disc with three pairs of antipodal points identified.

Figure 2.1: A regular neighbourhood of a circuit, as well as a (light grey) disc
that does not cause a cycle relation. Capping off any one of the two other
boundary components does cause a cycle relation.

If a circuit of three curves bounds an embedded closed disc, it is isotopic to a

bouquet of three curves. Here, a bouquet is a system of n curves c1, . . . , cn that
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intersect pairwise exactly once, such that there are representatives γ1, . . . , γn of

c1, . . . , cn, respectively, that intersect in one common point and have no other

intersections, see Figure 2.2.

Figure 2.2: Gluing in a disc to a circuit of three curves to form a bouquet.

As we shall see in this chapter, the relations in the group generated by

the Dehn twists about a curve system c1, . . . , cn detect whether c1, . . . , cn form

a bouquet. More precisely, we say that a bouquet of n curves has cyclic or-

der c1, . . . , cn if the curves appear in the order c1, . . . , cn when going clockwise

around the common intersection point starting at c1. In this situation, we also

say that c1, . . . , cn is an oriented bouquet. Note that a cyclic order c1, . . . , cn

induces a cyclic order on each triple ci, cj , ck with i, j, k pairwise distinct, by

removing all curves except ci, cj , ck from the cyclic order. A precise formulation

of our main theorem in this chapter asserts the following.

Theorem 2.1 ([BFR23, Theorem 1]). Let S be a compact oriented surface and

n ≥ 2. Consider a system of simple closed curves c1, . . . , cn in S. For all i, Let

Ti be the Dehn twist about ci. Then, the system forms a bouquet with cyclic

order c1, . . . , cn if and only if the Dehn twists T1, . . . , Tn are not all equal and

satisfy

(i) pairwise braid relations TiTjTi = TjTiTj,

(ii) triplewise cycle relations TiTjTkTi = TjTkTiTj, where ci, cj , ck is the in-

duced cyclic order from c1, . . . , cn.

We will prove Theorem 2.1 by induction. The case n = 2 follows from our

discussions about pairs of curves in Subsection 1.1.1. The case n = 3 will be

used in the induction step, so we treat it as the base case and devote the entire

next section to it.

2.1 Bouquets of three curves

This section consists of two parts that together lead to the pleasant fact that

cycle relations detect whether a circuit of three curves forms a bouquet or not.
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We show this by elementary means. First we describe the regular neighbourhood

of a circuit of three curves, which turns out to be unique up to homeomorphism,

but not up to orientation-preserving homeomorphism. We proceed to show that

the cycle relation holds for a circuit of three curves if and only if the circuit

forms a bouquet.

2.1.1 Neighbourhoods of three curves

Let a, b, c be curves intersecting pairwise once, and let N be a regular neigh-

bourhood of α ∪ β ∪ γ, where α, β, γ are minimally intersecting representatives

of a, b, c, respectively, that do not intersect in a common point.

Figure 2.3: The bands Bα and Bβ , both with dedicated squares, as well as the
result from plumbing Bα to Bβ along this square.

The neighbourhood N can be obtained in the following way. For each curve

α, β, γ, consider annuli Bα, Bβ , Bγ with core curves corresponding to α, β, γ, re-

spectively. First, plumb Bα to Bβ along a square, see Figure 2.3. Second, plumb

Bγ to the result along a square disjoint from the previous one. Third, plumb

the result to itself along another square disjoint from the previous two. Note

that there is a unique way to do the first two plumbings, but there are two for

the third, see Figure 2.4. Incidentally, the two neighbourhoods are related by an

orientation-reversing homeomorphism preserving the curves α, β, γ. This home-

omorphism can be vaguely described as sliding one of the bottom intersections

on the right of Figure 2.4 over the end of the corresponding band, and then

rotating the result to obtain the left hand side of the same figure.

As far as we are concerned, the difference between the two neighbourhoods is

as follows. Both of the regular neighbourhoods have three boundary components,

one of which is distinguished in that capping it off does not make α, β, γ bound

an embedded closed disc. In our drawings, this boundary components has the

appearance of a hexagon, as opposed to a triangle. We will refer to such a

boundary component as a boundary component of hexagonal type. The other

two boundary components are of triangular type. Travelling along any of the

two boundary components of triangular type in the counter-clockwise direction,

the curves appear in the order α, β, γ in one neighbourhood, and in the order
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γ, β, α in the other. In the former case, we denote the neighbourhood N by the

symbol N3
⟲, and by N3

⟳ in the latter case. We sometimes abbreviate N3
⟲ by the

symbol N3.

Figure 2.4: Two regular neighbourhoods of a circuit of three curves.

2.1.2 Cycle relations and discs

The goal of this subsection is to establish a connection between cycle relations

between Dehn twists about a circuit of three curves, and embedded closed discs.

As we have seen in the introduction to this chapter, the presence of such a closed

embedded disc turns a circuit of three curves into a bouquet. This allows us to

formulate our result as follows.

Proposition 2.2. Let a, b, c be a circuit, and let α, β, γ be representatives of

a, b, c, respectively, that intersect pairwise exactly once, but not all in the same

point. Let N be a regular neighbourhood of α ∪ β ∪ γ. Then the Dehn twists

Ta, Tb, Tc satisfy the cycle relation

TcTbTaTc = TbTaTcTb

if and only if a, b, c form an oriented bouquet.

Proof. Because TcTbTc = TbTcTb, it follows that T−1
b TcTb = TcTbT

−1
c . Thus,

the cycle relation is equivalent to

(TcTbT
−1
c )Ta = Ta(TcTbT

−1
c ),

which holds if and only if a and Tc(b) are disjoint. Figure 2.5 depicts the curve

a as well as the curve Tc(b). By the bigon criterion [FM11, Proposition 1.7], the

curves in Figure 2.5 must bound a bigon.

Let us first consider N3
⟲. Capping off any of the two boundary components

of triangular type makes such a bigon appear. Both discs lead to a surface in
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Figure 2.5: The curve a on the bottom and Tc(b) in the two regular neighbour-
hoods N3

⟲ and in N3
⟳.

which a, b, c form a bouquet. This should be evident in the case of the bound-

ary component in the centre of Figure 2.5, but slightly less so for the other

boundary component of triangular type. To understand this case, we construct

an orientation-preserving homeomorphism of N that exchanges the two bound-

ary components, called the cross-involution. Partition N into three cross-shaped

pieces as in Figure 2.6. Rotating each of these three pieces exchanges the two

boundary components under consideration. Capping off the boundary compo-

nent of hexagonal type with a disc, however, neither adds a bigon nor turns

a, b, c into a bouquet.

Figure 2.6: The cross-involution of a circuit of three curves.

On the other hand, no bigon can be added by capping off any boundary

component in N3
⟳. This shows that the cycle relation TcTbTaTc = TbTaTcTb

holds if and only if a, b, c form an oriented bouquet.

As a side note, Proposition 2.2 shows that the cycle relation

TcTbTaTc = TbTaTcTb

between Dehn twists is equivalent to the cyclic permutations

TbTaTcTb = TaTcTbTa and TaTcTbTa = TcTbTaTc,
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since a, b, c is an oriented bouquet if and only if c, a, b and b, c, a are.

2.2 Larger bouquets

In this section, we prove Theorem 2.1 by induction on n. As the following result

shows, only a single cycle relation is needed to ensure that a bouquet remains

a bouquet after the introduction of one additional curve.

Proposition 2.3 ([BFR23, Proposition 2]). Let n ≥ 2. Let c1, . . . , cn, cn+1 be

simple closed curves in a surface S such that c1, . . . , cn form an oriented bouquet.

If the Dehn twists Ti about ci satisfy

(i) the braid relations TiTn+1Ti = Tn+1TiTn+1 for all i ≤ n,

(ii) the cycle relation TnT1Tn+1Tn = T1Tn+1TnT1,

then c1, . . . , cn, cn+1 forms an oriented bouquet.

Proof. Let γ1, . . . , γn be representatives of c1, . . . , cn, respectively, that inter-

sect pairwise once in a common point, and let γn+1 be a representative of cn+1

that intersects γ1 and γn in different points. Figure 2.7 depicts a regular neigh-

bourhood N of γ1 ∪ γn ∪ γn+1. The arrow in said Figure points from γ1 to γn

over γ2, . . . , γn−1, and γn is drawn as the horizontal curve. As we have seen

in the proof of Proposition 2.2, N must indeed be of type N3
⟲ with respect

to α = γ1, β = γn, γ = γn+1, because otherwise there would be no way for

c1, cn, cn+1 to satisfy a cycle relation. Now Proposition 2.2 shows that S must

contain a disc bounded by one of the two boundary components of N of trian-

gular type, for instance the one indicated on the right of Figure 2.7. In both of

these cases, c1, . . . , cn, cn+1 form an oriented bouquet.

Figure 2.7: A regular neighbourhood N of γ1, γn, γn+1 with segments of the
curves γ2, . . . , γn−1, as well as one of the two possible discs in S bounded by a
boundary component of N of triangular type.

29



Proof of Theorem 2.1. Proposition 2.2 covers the direction from left to right for

all n, as well as the direction from right to left for n = 3. Since there are more

relations in the assumptions of Theorem 2.1 than in those of Proposition 2.3,

the latter implies the former.

2.3 Bouquet groups

The main activity of this part of the thesis is to study groups generated by

Dehn twists, which we have not yet done in this chapter. This section seeks

to remedy this by studying bouquet groups generated by Dehn twists about

bouquets of curves. We first discuss the relationship of bouquets to chains and

then extract the description of bouquet groups from the description of chain

groups generated by Dehn twists about chains of curves, which were previously

considered in the literature.

2.3.1 Bouquets and chains

The goal of this subsection is to explain that bouquet groups and chain groups

are the same. This is because a bouquet can be transformed into a chain by

applying Dehn twists about curves in a bouquet to other curves in the bouquet.

Figure 2.8: A bouquet of four curves γ1, γ2, γ3, γ4 enumerated in the clockwise
order, and the resulting chain γ′1, γ

′
2, γ

′
3, γ

′
4. The curves γ1 and γ′1 are drawn

horizontally.

Proposition 2.4. Each bouquet group is a chain group and vice versa.

Proof. Let c1, . . . , cn be an oriented bouquet, and let γ1, . . . , γn be minimally in-

tersecting representatives of c1, . . . , cn, respectively, that intersect in a common

point. Let N be a regular neighbourhood of γ1 ∪ · · · ∪ γn. Consider the curves

c′1 = c1 and c′i = T−1
i−1(ci) for i ≥ 2, where Ti−1 is the Dehn twist about ci−1.

Then c′1, . . . , c
′
n forms a chain admitting representatives γ′1, . . . , γ

′
n such that N
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is a regular neighbourhood of γ′1 ∪ · · · ∪ γ′n, see Figure 2.8 for the case n = 4.

Because T ′
1 = T1 and T ′

i = T−1
i−1TiTi−1 for i ≥ 2, we obtain that the subgroup

of MCG(S) generated by the T ′
i coincides with the subgroup generated by the

original Dehn twists Ti.

2.3.2 Chains of three curves

A regular neighbourhood N of a chain c1, . . . , cn of n ≥ 3 curves in a surface S

has one or two boundary components, depending on whether n is odd or even,

respectively. The case n = 3 is further distinguished because gluing in a single

disc makes the two end curves isotopic, see Figure 2.9. This allows us to give an

explicit description of all the groups that can arise as subgroups of the mapping

class group generated by Dehn twists about a chain or bouquet of three curves.

Figure 2.9: Capping off one boundary component of a regular neighbourhood of
a chain of three curves makes the two end curves, drawn vertically, isotopic.

We say that two groups G, H generated by the conjugates of g, h, respec-

tively, are geometrically isomorphic if there exists an isomorphism G → H

mapping the conjugacy class of g to the conjugacy class of h. Many groups we

consider come with such distinguished conjugacy classes: Mapping class groups

are generated by the Dehn twists about non-separating curves, and all of these

Dehn twists are conjugate. Similarly, Artin groups Art(Γ) are generated by the

conjugacy class of one of the standard generators, provided Γ is connected.

Proposition 2.5. Let a, b, c be a chain of curves in a surface S without punc-

tures, and let α, β, γ be minimally intersecting representatives of a, b, c, respec-

tively. Let N be a regular neighbourhood of S, and let G be the group generated

by the Dehn twists about a, b, c. Then

(i) If S \N has no disc components and is not an annulus, then G is geomet-

rically isomorphic to Art(A3).

(ii) If S\N has exactly one disc component, then G is geometrically isomorphic

to Art(A2).

(iii) If S \N is an annulus, then G is geometrically isomorphic to Art(A3)/C,

where C is the centre of Art(A3).

31



(iv) If S \ N has exactly two disc components, then S is a torus and G is

isomorphic to SL(2,Z).

Proof. By Lemma 1.1 and the surrounding discussion in Subsection 1.1.2, we ob-

tain points (i) and (ii) for the two surfaces depicted in Figure 2.9. By Lemma 1.2,

gluing in surfaces that are neither discs nor annuli nor punctured discs to N to

obtain S does not change the resulting subgroup of MCG(S), proving points (i)

and (ii) for the required surfaces.

For point (iii), note that Lemma 1.2 asserts that the kernel of the inclusion-

induced homomorphism MCG(N) → MCG(S) is generated by Td1
T−1
d2

where

d1, d2 are the boundary curves of N . But by the chain relation from Subsec-

tion 1.1.2, we have that Td1
T−1
d2

is equal to (TaTbTc)
4. This is a generator of the

centre C.

For point (iv), it is easy to see from Figure 2.9 that S is a torus. Recall

that MCG(S) is isomorphic to SL(2,Z), and the Dehn twists Ta, Tb map to the

matrices (
1 1

0 1

)
and

(
1 0

1 1

)
,

respectively, which generate SL(2,Z).

Allowing punctures in Proposition 2.5 is possible, but makes the formulation

of the result more clumsy. The only interesting cases are the ones in which one

or two components of S \N are punctured discs. By Lemma 1.2, we may assume

without loss that all components of S \N are either discs, once-punctured discs,

or annuli. Table 2.1 lists all possibilities for S after this restriction, as well as

the subgroup of MCG(S) generated by Ta, Tb, Tc.

S ⟨Ta, Tb, Tc⟩
N Art(A3)
N ∪∆1 Art(A3)
N ∪ 2∆1 Art(A3)/C
N ∪ Z Art(A3)/C
N ∪∆ Art(A2)
N ∪∆ ∪∆1 SL(2,Z)
N ∪ 2∆ SL(2,Z)

Table 2.1: All groups generated by Dehn twists about a chain a, b, c of three
curves in a surface S. The symbols ∆ and ∆1 denote a disc and a once-punctured
disc, respectively, that have a common boundary component with N . The sym-
bols 2∆ and 2∆1 denote a disjoint union of two such discs. The symbol Z
denotes a cylinder, and C is the centre of Art(A3).

The cases S = N ∪ 2∆1, N ∪ ∆ ∪ ∆1 can be dealt with as in the proof of

Proposition 2.5. The case S = N ∪ ∆1 requires some additional explanation.
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Let G = ⟨Ta, Tb, Tc⟩ ⊂ MCG(S). By the inclusion homomorphism theorem,

the kernel K of the inclusion-induced homomorphism MCG(N) → MCG(S) is

generated by Td1
, where d1 is the boundary curve of ∆1. Because K is central

in MCG(N), it is also central in GN = ⟨Ta, Tb, Tc⟩ ⊂ MCG(N). But the centre

of that group is generated by the element (TaTbTc)
4 = Td1

T−1
d2

, where d2 is

the other boundary component of N . So the kernel K ′ of the restriction to

GN is contained in the intersection of ⟨Td1
⟩ and ⟨Td1

T−1
d2

⟩, which is trivial.

Thus, the obviously surjective restriction GN → G of the inclusion-induced

homomorphism is injective.

2.3.3 Longer chains

As usual, let c1, . . . , cn be a chain of n ≥ 4 curves in a surface S, and let

γ1, . . . , γn be minimally intersecting representatives of c1, . . . , cn. Let N be a

regular neighbourhood of γ1∪· · ·∪γn. We will study the subgroup G of MCG(S)

generated by the Dehn twists T1, . . . , Tn about c1, . . . , cn, respectively.

The case of longer chains is more subtle than the case of chains of three

curves, and there are many subcases for which we do not arrive at an explicit

description of the subgroup of the mapping class group generated by Dehn twists

about the chain, namely the case of the complement S \N containing at least

one disc component. The remaining cases are listed in Table 2.2. The only case

not analogous to the case of three curves is S = N ∪∆1 for even n, so we display

it as its own result.

Proposition 2.6. Let c1, . . . , cn be a chain of n ≥ 4 curves in a surface S with

even n. Let N be a regular neighbourhood of minimally intersecting representa-

tives γ1, . . . , γn of c1, . . . , cn. If S \N = ∆1∪S′ for some possibly empty surface

S′ which is not a disc nor a once-punctured disc, then the group G generated by

the Dehn twists T1, . . . , Tn about c1, . . . , cn is isomorphic to Art(An)/C
2, where

C2 consists of squares of central elements in Art(An).

Proof. Write GN = ⟨T1, . . . , Tn⟩ ⊂ MCG(N). By Lemma 1.2, the kernel of

the inclusion-induced homomorphism MCG(N) → MCG(S) is generated by

Td = (T1 . . . Tn)
2n+2, which lies in GN . Because GN is isomorphic to Art(An) via

an isomorphism mapping T1, . . . , Tn to the standard generators, the Dehn twist

Td maps to the double full twist in Art(An), which is the square of a generator

of the centre C of Art(An). Restricting the inclusion-induced homomorphism

above to GN and precomposing with the isomorphism Art(An) → GN yields a

surjective homomorphism Art(An) → G whose kernel is C2.

If S \N contains a disc, then all we are able to say is that G = ⟨T1, . . . , Tn⟩
is not geometrically isomorphic to an Artin group. We do this explicitly in
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S n ⟨T1, . . . , Tn⟩
N any Art(An)
N ∪∆1 odd Art(An)
N ∪ 2∆1 odd Art(An)/C
N ∪ Z odd Art(An)/C
N ∪∆1 even Art(An)/C

2

Table 2.2: Groups generated by Dehn twists T1, . . . , Tn about a chain c1, . . . , cn
of n ≥ 4 curves. The symbols N , ∆, ∆1, 2∆1, Z and C have the same meaning
as in Table 2.1, and C2 is the group consisting of squares of central elements in
Art(An).

Chapter 3, where what is called N here is called Nn ∪ 2∆. The reason we are

able to make such a statement is that capping off any boundary component of N

with a disc introduces an inhomogeneous relation (that is, a relation in MCG(S)

with a different number of Dehn twists on either side), and Artin groups satisfy

no such relations.

2.4 Sequences of discs

This last section is a small application of Proposition 2.2 where we construct

long sequences of surfaces S0 ⊂ S1 ⊂ · · · ⊂ Sk all of the same genus (but

different numbers of boundary components) containing a certain system of

curves γ1, . . . , γ2g+1 that intersect pairwise once, such that none of the inclusion-

induced homomorphisms MCG(Si) → MCG(Si+1) are injective. We construct

the surface S0 as a subsurface of the standard closed surface of genus g. Then

we describe how to pass from Si to Si+1 and subsequently explain why the

corresponding inclusion-induced homomorphism is not injective.

In order to describe S0, we construct a specific realisation of a bouquet

c1, . . . , cn in the standard surface of genus g that is not the standard realisation

which intersects in one point. Consider an arbitrary but fixed genus g ≥ 2. Let S

be the standard surface of genus g, thought of as a (4g+2)-gon P with opposite

sides identified. Start with the curves γ′1, . . . , γ
′
2g+1 connecting the centres of

opposing pairs of edges of P in a straight line. Note that upon identifying

opposite sides, the vertices of P are partitioned into two equivalence classes,

and that both equivalence classes have a representative in each edge. Pick one

such equivalence class and move γ′1, . . . , γ
′
2g+1 half-way towards it while keeping

the curve straight to obtain the polygonal bouquet γ1, . . . , γ2g+1 for genus g,

illustrated in Figure 2.10. We are now ready to state the result of this section.

Theorem 2.7. Let γ1, . . . , γ2g+1 be the polygonal bouquet for genus g ≥ 2. Let

S0 be a regular neighbourhood of γ1 ∪ · · · ∪ γ2g+1. Then there exists a sequence
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Figure 2.10: The polygonal bouquet for genus g = 2, 3, 4, 5.

of discs ∆1, . . . ,∆(g−1)(2g+1) such that for the surfaces Si = Si−1 ∪∆i, none of

the inclusion-induced homomorphisms MCG(Si) → MCG(Si+1) are injective.

Proof. The only restriction to the order in which the discs are filled in is that the

innermost triangles go first, then the adjacent quadrilaterals, then the quadri-

laterals adjacent to the previous ones, and so on, see Figure 2.11. As suggested

by this restriction, we organise the discs into layers containing 2g+1 discs each:

the triangles belong to layer 1, the adjacent quadrilaterals to layer 2, and so on

up to layer g − 1.

Number the curves γ1, . . . , γ2g+1 in the counter-clockwise order around the

innermost (2g+1)-gon, and let T1, . . . , T2g+1 be the corresponding Dehn twists.

The triangles at layer 1 are bounded by the curves γi, γi+1, γi+2, where indices

are taken modulo 2g + 1 until the end of the proof. This introduces a cycle

relation between Ti, Ti+1, Ti+2 into MCG(Sj+1) from filling in the corresponding

triangle compared to MCG(Sj), see Proposition 2.2.

In layer 2, gluing in a quadrilateral has the effect of introducing a cycle

relation between Ti, Ti+1, Ti+3 and between Ti, Ti+2, Ti+3. More generally, gluing

in a quadrilateral introduces new cycle relations between Ti, Ti+j , Ti+k+1 for all

j ∈ {1, . . . , k}. This shows that none of the inclusion-induced homomorphisms

are injective.
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Figure 2.11: The polygonal bouquet for genus g = 4, the innermost triangles, the
adjacent quadrilaterals, and the outermost quadrilaterals glued in successively.
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Chapter 3

Circuits of curves

In this chapter, we study certain relations between Dehn twists about circuits,

and what consequences the presence or absence of these relations have for the

surrounding surface. The relation that is of particular interest to us is the cy-

cle relation, a generalisation of the same named relation that featured in the

previous chapter. We will show that a cycle relation holds if and only if the

circuit bounds an embedded closed disc, generalising Proposition 2.2 to arbi-

trary circuits. A substantial part of the left-to-right direction was proved by

Labruère [Lab97, Proposition 2], so most of the work in this Chapter goes into

proving the converse. The way we approach it is to show that for any regular

neighbourhood N of a circuit, the subgroup of MCG(N) generated by the Dehn

twists about the circuit is geometrically isomorphic to a group in which the

cycle relation does not hold, namely an Artin group of type Ã. We achieve this

result by exploiting a symmetry of N , and using it to invoke Birman-Hilden

theory. By the end of Section 3.2, we will have proven this result. The effect of

gluing in discs to regular neighbourhoods of circuits on the relations satisfied

by the corresponding Dehn twists is the topic of Section 3.3, where we have

the additional focus of answering the question when a circuit group is geomet-

rically isomorphic to an Artin group. We proceed to prove the main result in

Section 3.4. The material in this chapter was published in [Ryf23a].

3.1 The cycle relation

A system of n curves c1, . . . , cn is said to form a circuit if ci intersects ci+1

exactly once for all i, where indices are taken modulo n. Let c1, . . . , cn be a circuit

in a surface S. The (standard) cycle relation between Dehn twists T1, . . . , Tn
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about c1, . . . , cn is the relation

Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2.

Our results in Chapter 2, specifically Proposition 2.2, enable us to understand

fully when a cycle relation holds for a circuit of three curves, namely if and

only if the curves c1, c2, c3 form an oriented bouquet. This is equivalent to the

circuit c1, c2, c3 bounding an oriented embedded closed disc. In general, we say

that a circuit c1, . . . , cn bounds an oriented embedded closed disc if there are

representatives γ1, . . . , γn of c1, . . . , cn, respectively, segments of which bound a

disc ∆, such that when going around ∆ in the counter-clockwise direction, the

curves on the boundary appear in the order γ1, . . . , γn. It turns out that the

characterisation of the cycle relation in terms of oriented embedded closed discs

generalises to larger circuits, as our main theorem asserts.

Theorem 3.1 ([Ryf23a, Theorem 1.1]). Let c1, . . . , cn be a circuit of n ≥ 3

curves in a surface S. Let T1, . . . , Tn be the corresponding Dehn twists. Then

c1, . . . , cn bound an embedded closed disc ∆ in S if and only if one of the two

cycle relations

Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2

or

T1 · · ·TnT1 · · ·Tn−2 = T2 · · ·TnT1 · · ·Tn−1

holds. The first relation corresponds to the curves c1, . . . , cn admitting repre-

sentatives appearing in the cyclic order γ1, . . . , γn when travelling around ∆ in

the counter-clockwise direction, whereas the second relation corresponds to the

opposite cyclic order.

Proving Theorem 3.1 involves multiple key steps, each of which is inter-

esting in its own right. Perhaps the simplest yet the most significant step is

to determine the subgroup of MCG(N) generated by the Dehn twists about a

circuit in a regular neighbourhood N . This step proves a conjecture by Mor-

tada [Mor11, Conjecture 5.5.5], who has previously proved Theorem 3.2 in the

case N = Mn [Mor11, Theorem 5.5.4], where Mn is constructed below in Sec-

tion 3.2.

Theorem 3.2 ([Ryf23a, Theorem 1.2]). Let N be a regular neighbourhood of

minimally intersecting representatives of a circuit c1, . . . , cn of n ≥ 3 curves.

Then the subgroup of MCG(N) generated by the Dehn twists Ti about ci is

geometrically isomorphic to Art(Ãn−1).

The reason the latter theorem is helpful towards proving the former is that

relatively elementary theory of Artin groups can be used to prove that the cy-
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cle relation does not hold in Artin groups of type Ã. Of course, Theorem 3.1

makes a much stronger observation, the proof of which requires an exhaustive

investigation of surfaces in which the circuit under consideration can lie. Con-

sidering all these surfaces leads us to discover various relations between Dehn

twists about curves in circuits, depending on the surrounding surface.

3.2 Neighbourhoods of circuits

This section is concerned with the proof of Theorem 3.2. Let c1, . . . cn be a

circuit in a surface S with minimally intersecting representatives γ1, . . . , γn.

Up to orientation-preserving homeomorphism, there are two possible regular

neighbourhoods of the union γ1 ∪ · · · ∪ γn, see Figure 3.1. One way to see this

is as follows. There is only one possible regular neighbourhood of the chain

γ1 ∪ · · · ∪γn−1. Now the curve γn might sit in the regular neighbourhood in two

different ways.

Figure 3.1: Each of the regular neighbourhoods N3, N4, M4 can be subdivided
into cross-shaped pieces. As usual, opposite ends of the strips are identified.

If n is odd, those two ways lead to regular neighbourhoods Nn
⟲ and Nn

⟳ that

are related by an orientation-reversing homeomorphism. For brevity, we will

abbreviate Nn
⟲ by the symbol Nn and usually not talk about Nn

⟳ explicitly, as

all the results about Nn carry over to Nn
⟳ by enumerating the ci in the opposite

order. The left-hand side of Figure 3.7 below displays a drawing of the surface

Nn embedded into R3.

If n is even, these two ways lead to regular neighbourhoods Nn andMn that

are related to themselves (but not to each other) via an orientation-reversing

homeomorphism, so orientation is less of a concern in this case. The two neigh-

bourhoods Nn andMn differ, for example, in their number of boundary compo-

nents: Nn has four and Mn just two. The genus also differs: Mn has genus n/2,

and Nn has genus n/2 − 1. A drawing of the surfaces Nn and Mn embedded

into R3 can be found in Figure 3.2.

Now let S be any of the above regular neighbourhoods of γ1 ∪ · · · ∪ γn.
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· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

Figure 3.2: Another view of the surfaces Nn and Mn for even n.

Notice that in each case, S can be thought of as a union of n cross-shaped

pieces, see Figure 3.1. Turning all those pieces by an angle of π yields a well-

defined involution ι of S. We will call ι the cross-involution. In the drawings

from Figures 3.2 and 3.7, the cross-involution is a rotation about the x-axis by

an angle of π.

Proof of Theorem 3.2. Let S be any of the regular neighbourhoods Nn or Mn

of γ1∪ · · ·∪γn, and let ι be the cross-involution of S. We write S/ι for the orbit

space of S without the fixed points of ιmodulo ι. Note that S/ι is homeomorphic

to an n times punctured annulus Zn. Let CG(S) be the group generated by

the Dehn twists T1, . . . , Tn about c1, . . . , cn, respectively. Because c1, . . . , cn are

preserved by ι, the Dehn twists Ti all commute with ι. Thus, Lemma 1.1 shows

that There is a well-defined homomorphism CG(S) → MCG(S/ι) such that

the images of the Dehn twists Ti are half-twists about arcs arranged such as

in the second, third, and fourth pictures in Figure 1.11. In Subsection 1.2.2 we

explained that the group generated by these half-twists is isomorphic to the

subgroup Art(Ãn−1) of the annular braid group via an isomorphism mapping

the half-twists to generators. Composing these two maps yields a geometric

isomorphism between CG(S) and Art(Ãn−1).

3.3 Gluing in discs

In this section, we consider all possible discs we could glue in to fill a boundary

component of a regular neighbourhood of a circuit c1, . . . , cn. To this end, we

first name all these discs.

3.3.1 Disc notation

From now on, we adopt the perspective that the curves c1, . . . , cn along with

their minimally intersecting representatives γ1, . . . , γn stay fixed, while the sur-

rounding surface S varies. We will write CG(S) for the subgroup of MCG(S)

generated by the Dehn twists Ti about ci.

The boundary components of neighbourhoods of γ1 ∪ · · · ∪ γn can be quali-

tatively distinguished as follows. Considering intersection points between the γi

as vertices of polygons allows us to make the following observation. If n is odd,
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then two boundary components of Nn are exchanged by the cross-involution.

They both have the property that if they are capped by a disc, then γ1, . . . , γn

bound an n-gon. We will denote such a disc by ∆1, and the union of two such

discs by 2∆1. Both of these will make the circuit bound embedded closed discs.

The third boundary component can be capped off by a disc ∆2. The curves

γ1, . . . , γn bound a 2n-gon in S ∪∆2. Note that the circuit does not bound an

embedded closed disc in Nn ∪∆2. For brevity, we will sometimes say that the

boundary of ∆1 is an n-gon and that the boundary of ∆2 is a 2n-gon. See

Figure 3.3 for a visual description of the various discs.

Figure 3.3: The surfaces N3, N3 ∪∆1, N3 ∪ 2∆1, N3 ∪∆2.

If n is even, the situation is qualitatively different. All four boundary com-

ponents of Nn are n-gons, and both boundary components of Mn are 2n-gons.

But they differ in the following way. Travelling around the boundary component

in the counter-clockwise direction, as seen from the centre of the disc, the curves

might appear in the order γ1, . . . , γn or the other way around. In the first case,

we will write ∆⟲, and ∆⟳ otherwise, with the appropriate superscript numbers.

See Figure 3.4 for the different discs in Nn. We will usually abbreviate ∆⟲ by

∆ with the appropriate superscript number, and we will abbreviate ∆2
⟲ ∪ ∆2

⟳

by 2∆2. A list of all surfaces that are obtained by gluing in discs to a regular

neighbourhood of γ1 ∪ · · · ∪ γn can be found in Table 3.1. Note that gluing in

any disc into Nn makes the circuit bound an embedded closed disc, and no disc

in Mn has this effect.

Figure 3.4: The surfaces N6 ∪∆1
⟲, N

6 ∪ 2∆1
⟲, N

6 ∪∆1
⟲ ∪∆1

⟳, N
6 ∪∆1

⟲ ∪ 2∆1
⟳
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S CG(S) Reference

Nn Art(Ãn−1) Theorem 3.2
Nn ∪∆1 Art(Dn) Proposition 3.7
Nn ∪ 2∆1 Art(An−1) Proposition 3.4

N2k+1 ∪∆2 Art(Ã2k) Proposition 3.3
N2k+3 ∪∆1 ∪∆2 not Artin Proposition 3.17
N2k+1 ∪ 2∆1 ∪∆2 not Artin Proposition 3.10

N2k+4 ∪∆1
⟲ ∪∆1

⟳ not Artin Proposition 3.11
N2k+4 ∪ 2∆1

⟲ ∪∆1
⟳ not Artin Proposition 3.11

N2k+4 ∪ 2∆1
⟲ ∪ 2∆1

⟳ not Artin Proposition 3.11

N3 ∪∆1 ∪∆2 Art(A2) Proposition 2.5
N4 ∪∆1

⟲ ∪∆1
⟳ Art(A3) Proposition 3.12

N4 ∪ 2∆1
⟲ ∪∆1

⟳ Art(A2) Proposition 3.12
N4 ∪ 2∆1

⟲ ∪ 2∆1
⟳ SL(2,Z) Proposition 3.12

M2k+2 Art(Ã2k+1) Theorem 3.2

M2k+2 ∪∆2 Art(Ã2k+1) Proposition 3.3

M2k+2 ∪ 2∆2 Art(Ã2k+1) Proposition 3.3

Table 3.1: Various surfaces S obtained from regular neighbourhoods of a circuit
γ1, . . . , γn by gluing in discs. In this table, n ≥ 3 and k ≥ 1. Moreover, “not
Artin” is short for “not geometrically isomorphic to an Artin group”.

3.3.2 Extending the cross involution

It turns out that for certain surfaces S containing a neighbourhood of γ1, . . . , γn,

the cross-involution of the neighbourhood extends to S. In these cases, by very

similar reasoning as in the proof of Theorem 3.2, we are able to determine the

group CG(S).

Proposition 3.3. Let S be a regular neighbourhood of a circuit of n ≥ 3 curves

γ1, . . . γn, and let S′ be a 2n-gon ∆2 (such a disc does not exist if n is even and

S = Nn), or the union 2∆2 of two 2n-gons (such a union only exists for even n

and S =Mn). Then CG(S ∪ S′) is geometrically isomorphic to Art(Ãn−1).

Proof. In each case, the cross-involution ι extends to S∪S′ in a straightforward

fashion. In the case that S′ = ∆2 is a 2n-gon, ι gets one additional fixed point,

so (S∪S′)/ι is a disc ∆n+1 with n+1 marked points. Again, the homomorphism

φ : CG(S) → MCG(∆n+1) is well-defined by Lemma 1.1. The images of the Ti

under φ fix the last puncture. The subgroup of π1(C(∆, n+1)) fixing one strand

is isomorphic to π1(C(Z, n)) because ∆ minus one point is homotopy equivalent

to the annulus Z. By our discussions in Subsection 1.2.2, the image of φ is

isomorphic to Art(Ãn−1). Since the inverse homomorphism is well-defined, the

result follows for this case.
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Similarly, if S′ = 2∆2, we get a well-defined homomorphism φ between

CG(S) and MCG(Σn+2), where Σn+2 is a sphere with n+2 marked points. The

images of the Dehn twists Ti fix two of the punctures. The group of orientation-

preserving homeomorphisms of Σ is not simply connected, so we cannot apply

the Birman exact sequence directly to get a description of MCG(Σn+2). How-

ever, it is relatively straightforward to show that the kernel of the push map

π1(C(Σ, n + 2)) → MCG(Σn+2) is generated by the map rotating the n + 2

marked points by a full twist [FM11, Section 9.1]. Because such a full twist can-

not be expressed by just n generators, we have that the image of φ is isomorphic

to the subgroup of π1(C(Σ, n + 2)) fixing two strands. Note that Σ minus two

points is homotopy equivalent to Z, so we may conclude that the image of φ is

isomorphic to Art(Ãn−1), as desired.

Recall that for odd n we abbreviate Nn
⟲ by Nn, and for all n, we abbreviate

∆1
⟲ by ∆1. Using these conventions allows us to concisely state the following

result which is essentially equivalent to a version of the Birman-Hilden theorem

stated in the book by Farb and Margalit [FM11, Theorem 9.2].

Proposition 3.4. For n ≥ 3, the group CG(Nn ∪ 2∆1) is geometrically iso-

morphic to the braid group Art(An−1) on n strands.

Proof. Let us write S = Nn∪2∆1. The cross-involution ι extends to the surface

Nn ∪ 2∆1 with no additional fixed points. This yields a well-defined homomor-

phism φ : CG(S) → MCG(∆n) mapping the Ti to half-twists by Lemma 1.1.

Since these half-twists generate MCG(∆n), we obtain the image of φ is isomor-

phic to Art(An−1).

Remark 3.5. It is not difficult to show that the kernel of the inclusion-induced

homomorphism CG(Nn) → CG(Nn∪2∆1) is normally generated by the relation

Tn · · ·T2 = Tn−1 · · ·T1. One possible strategy is to explicitly compute the kernel

of the inclusion-induced homomorphism π1(C(Z, n)) → π1(C(∆, n)).

3.3.3 Labruère’s surface

The surface the current subsection is about is Nn∪∆1. Luckily for us, this case

has almost entirely been solved by Labruère, and the rest can be extracted from

work by Baader and Lönne.

If the circuit γ1, . . . , γn bounds an n-gon ∆1
⟲ or ∆1

⟳, we will say that the

curves c1, . . . , cn form a cycle. The standard cycle relation between the Dehn

twists T1, . . . , Tn is Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2. One can show that

this relation is equivalent to the commutation relation T1f = fT1 where

f = (Tn · · ·T3)T2(Tn · · ·T3)−1
,
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see [BL21, Section 1]. Using this representation of the standard cycle relation

it becomes a routine task to verify that the standard cycle relation holds in the

surface Nn ∪ ∆1. Similarly, the reverse cycle relation T1 · · ·TnT1 · · ·Tn−2 =

T2 · · ·TnT1 · · ·Tn−1 holds in the surface Nn
⟳ ∪ ∆1

⟳. Labruère made an even

stronger observation.

Lemma 3.6 ([Lab97, Proposition 2]). The kernel of the standard homomor-

phism Art(Ãn−1) → CG(Nn ∪∆1) mapping the standard generators si to Ti is

normally generated by the cycle relation.

Proposition 3.7. For n ≥ 3, the group CG(Nn ∪∆1) is geometrically isomor-

phic to Art(Dn).

Proof. Let s1, . . . , sn be the standard generators of Art(Dn) read from left to

right in the Dynkin diagram

Dn = .

Using Lemma 3.6, one can verify that an explicit isomorphism Art(Dn) →
CG(Nn ∪ ∆1) is given by s1 7→ (Tn · · ·T3)−1

T1(Tn · · ·T3) and si 7→ Ti for

i ≥ 2.

Remark 3.8. Baader and Lönne prove the considerably more general but also

more involved result that the so-called secondary braid group is invariant via

a geometric isomorphism under elementary conjugation [BL21, Section 4]. In-

deed, by Lemma 3.6, the group CG(Nn ∪ ∆1) is geometrically isomorphic to

the secondary braid group [BL21, Definition 1] associated to the positive braid

word σ1σ2σ
n−2
1 σ2σ1, whereas Art(Dn) is geometrically isomorphic to the group

associated to σ2
1σ2σ

n−2
1 σ2.

3.3.4 Inhomogeneous relations

So far, we have been successful in determining the circuit group CG(S) obtained

from gluing in discs to a regular neighbourhood of a circuit. Sadly, we do not

manage to compute the remaining groups CG(S) up to isomorphism. We will,

however, get to know the groups well enough to exclude the possibility of them

being geometrically isomorphic to an Artin group.

A relation t = t′ is called homogeneous if the exponent sums of t and t′

agree. Otherwise, the relation t = t′ is called inhomogeneous. The strategy in

the current subsection will be to find inhomogeneous relations in CG(S). The

following elementary result allows us to conclude that CG(S) is not geometri-

cally isomorphic to an Artin group.
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Lemma 3.9. If CG(S) has an inhomogeneous relation, then CG(S) is not ge-

ometrically isomorphic to an Artin group.

Proof. We argue contrapositively: The map sending each generator of an Artin

group Art(Γ) to one extends to a homomorphism Art(Γ) → Z because all rela-

tions in Art(Γ) are homogeneous, and hence also hold in Z.

An effective way to produce inhomogeneous relations is to apply the chain

relation. Recall from Subsection 1.1.2 that a chain is a family c1, . . . , cn of n

curves such that ci intersects cj exactly once if j = i±1 and zero times otherwise.

The chain relation then asserts that:

(i) If n is even, then (Tn · · ·T1)2n+2
= Tβ .

(ii) If n is odd, then (Tn · · ·T1)n+1
= Tβ1

Tβ2
.

Here, T1, . . . , Tn are the Dehn twists about c1, . . . , cn, respectively.

Proposition 3.10. For odd n ≥ 3, the relation (Tn−1 · · ·T1)2n = 1 holds in the

group CG(Nn ∪ 2∆1 ∪∆2). In particular, it is not geometrically isomorphic to

an Artin group.

Proof. Note that the boundary of a regular neighbourhood of the shorter chain

c1, . . . , cn−1 is null-homotopic. The proposition now follows from the chain re-

lation and Lemma 3.9.

Proposition 3.11. The group CG(Nn ∪ ∆1
⟲ ∪ ∆1

⟳) is not geometrically iso-

morphic to an Artin group if n ≥ 6, and neither is CG(S) for any supersurface

S of Nn ∪∆1
⟲ ∪∆1

⟳.

Proof. Suppose the curves are arranged as in Figure 3.5. Let

β = Tn · · ·T3T3 · · ·Tn(γ1).

Then β ∪ γ1 is the boundary of a regular neighbourhood of γ3 ∪ · · · ∪ γn−1, see

Figure 3.5. By the chain relation, the relation (Tn−1 · · ·T3)n−2 = T1Tβ follows.

Because Tβ is conjugate to T1 by the formula Tf(γ1) = fT1f
−1 [FM11, Fact 3.7]

for f = Tn · · ·T3T3 · · ·Tn, the relation in question is inhomogeneous for n ≥ 6.

Lemma 3.9 leads us to the desired conclusion.

If the indices of the curves are shifted by one from the ones in Figure 3.5,

we instead end up with the relation (Tn−2 · · ·T2)n−2
= TnTβ′ where

β′ = Tn−1 · · ·T2T2 · · ·Tn−1(γn),

which is also inhomogeneous for n ≥ 6.

45



The statement about supersurfaces follows from the fact that the inclusion-

induced homomorphisms preserve inhomogeneous relations.

Figure 3.5: The curves γ1, . . . , γ6, the curve T3T4T5T6(γ1), and the curve β =
T6T5T4T

2
3 T4T5T6(γ1), all in the surface N6 ∪∆1

⟲ ∪∆1
⟳

3.3.5 Four curve circuits

The case n = 4 becomes strange when too many discs are glued in, because some

of the curves become isotopic. The relations from the proof of Proposition 3.11

do not reflect this, so we cover this case separately.

Proposition 3.12. The following statements hold.

(i) The group CG(N4 ∪∆1
⟲ ∪∆1

⟳) is geometrically isomorphic to Art(A3).

(ii) The group CG(N4 ∪ 2∆1
⟲ ∪∆1

⟳) is geometrically isomorphic to Art(A2),

(iii) The group CG(N4 ∪ 2∆1
⟲ ∪ 2∆1

⟳) is isomorphic to SL(2,Z), and not geo-

metrically isomorphic to an Artin group.

Proof. Suppose the curves and discs are arranged as in Figure 3.6. We consider

each surface S separately.

(i) Let S = N4 ∪∆1
⟲ ∪∆1

⟳ Because γ2 and γ4 are isotopic in S, we have that

CG(S) is generated by T1, T2, T3. Moreover, S is a regular neighbourhood

of γ1, γ2, γ3, so CG(S) is isomorphic to Art(A3) [FM11, Section 9.4.1].

(ii) Let S = N4 ∪ 2∆1
⟲ ∪ ∆1

⟳. In addition to γ2 being isotopic to γ4 from

the previous case, γ1 is also isotopic to γ3. So CG(S) is generated by

T1, T2. Moreover, S is a regular neighbourhood of γ1 ∪ γ2. Hence, CG(S)

is isomorphic to Art(A2) [FM11, Theorem 9.2].

(iii) Let S = N4∪2∆1
⟲∪2∆1

⟳. Then S is just a torus with meridian γ1 and γ2.

It is well-known that MCG(S) is generated by T1, T2, and that it is iso-

morphic to SL(2,Z) [FM11, Theorem 2.5]. Moreover, the inhomogeneous

relation (T1T2)
6
= 1 (see [FM11, Section 3.5]) shows that CG(S) is not

geometrically isomorphic to an Artin group.
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If the indices of the curves are instead shifted by one, the same arguments

hold.

Figure 3.6: The surfaces N4, N4 ∪∆1
⟲ ∪∆1

⟳, N
4 ∪ 2∆1

⟲ ∪∆1
⟳, N

4 ∪ 2∆1
⟲ ∪ 2∆1

⟳

3.3.6 A final surface

Up to orientation-reversing homeomorphism, we have now glued in every pos-

sible combination of discs, except one. For this final surface S = Nn ∪∆1 ∪∆2,

the strategy of finding inhomogeneous relations failed, so the proof that CG(S)

is not geometrically isomorphic to an Artin group turns out to be the most

involved argument in this text. Toward a contradiction, we will assume that

CG(S) is geometrically isomorphic to an Artin group Art(Γ). We then exclude

all possibilities for the graph Γ. Lemma 3.13 below is a statement about Coxeter

groups that helps achieve this for most graphs.

The Coxeter group Cox(Γ) is obtained from Art(Γ) by adding the relations

s2 = 1 for all generators s. If Cox(Γ) is finite, we will say that Art(Γ) is of

finite type. Otherwise, Art(Γ) is of infinite type. The finite Coxeter groups were

classified by Coxeter himself [Cox35, Theorem‡]. They are groups of the form

Cox(Γ), where Γ = An, Bn, Dn for arbitrary n, Γ = En for n = 6, 7, 8, or a few

more graphs that do not appear in this text.

Lemma 3.13 ([Max98, Theorem 0.4 and Table 3]). Let n ≥ 3 with n ̸= 4. If

there exists a surjective homomorphism Cox(Dn) → C(Γ), then Γ is either the

one-vertex graph A1, the graph An−1, or the graph Dn.

Next, we need two results about the group-theoretic properties of the Artin

groups Art(An−1) and Art(Dn). The first result asserts that Art(An−1) is “ge-

ometrically co-Hopfian”.

Lemma 3.14. Let n ≥ 2. Every injective homomorphism from Art(An−1) into

itself such that the image of a standard generator is conjugate to a standard

generator is an isomorphism.

Proof. Think of Art(An−1) as the group CG(S) generated by γ1, . . . , γn−1,

where S is the surface Nn ∪ 2∆1, see Proposition 3.4. Then a homomorphism
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as in the assumption corresponds to an injective homomorphism φ : CG(S) →
CG(S) mapping each Ti to a Dehn twist T ′

i about a curve γ′i. Because φ is injec-

tive, the γ′i are pairwise non-isotopic. Moreover, the curves γ′1, . . . , γ
′
n−1 form a

chain because consecutive curves satisfy the braid relation [FM11, Section 3.5.2].

Hence, by the change of coordinates principle [FM11, Section 1.3.3], there exists

a homeomorphism f of S such that γ′i = f(γi). Thus, φ is given by conjugation

by f , and hence is an isomorphism.

Remark 3.15. Bell and Margalit in fact describe all the injective homomor-

phisms from the braid group Art(An−1) to itself, even the non-geometric ones,

for n ≥ 4 [BM06, Main Theorem 1]. Their uniform description of these homo-

morphisms does not hold for n = 3 because Art(A2) modulo its centre is not

co-Hopfian (it is isomorphic to the free product Z/2 ∗ Z/3).

Our final lemma in this Section asserts that finite type Artin groups are

“Hopfian”.

Lemma 3.16. Every surjective homomorphism from a finite type Artin group

onto itself is an isomorphism.

Proof. Because finite type Artin groups are residually finite [BGJP18, Corol-

lary 1.2] they are also Hopfian [LS01, Theorem IV.4.10].

Proposition 3.17. For odd n ≥ 5, the group CG(Nn ∪ ∆1 ∪ ∆2) is not geo-

metrically isomorphic to an Artin group.

Proof. Write S = Nn ∪∆1 ∪∆2. Suppose toward a contradiction that CG(S)

is geometrically isomorphic to Art(Γ) for a graph Γ. Recall that by Proposi-

tion 3.7, the group CG(Nn∪∆1) is geometrically isomorphic to Art(Dn). Thus,

the inclusion-induced homomorphism CG(Nn ∪ ∆1) → CG(S) gives rise to a

surjective homomorphism Cox(Dn) → C(Γ) (note that we use here that the iso-
morphism Art(Dn) → CG(Nn ∪∆1) is geometric). From Lemma 3.13 it follows

that Γ is either A1, An−1, or Dn. We will now rule out each of those graphs.

We first argue that CG(S) contains a strict subgroup isomorphic to the braid

group Art(An−1). Consider the plastic view of Nn as on the left of Figure 3.7.

Capping of the top and right boundary components with discs yields the sur-

face S on the right. Now rotating about the x-axis by an angle of π yields an

involution ι of S. Suppose the curves γ1, . . . , γn are numbered such that γn

is the right-most curve. Then ι preserves γ1, . . . , γn−1, but not γn. Thus, the

strict subgroup of CG(S) generated by T1, . . . , Tn−1 is isomorphic to Art(An−1).

This excludes the case Γ = A1 immediately, and an application of Lemma 3.14

excludes the case Γ = An−1.
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Next, we show that the inclusion-induced homomorphism CG(Nn ∪ ∆) →
CG(S) is not injective. To this end, consider the boundary curve β of the chain

γ1, . . . , γn−1 in Nn ∪∆. Then β intersects γn twice. But the image of β under

the inclusion map Nn ∪∆ → S does not intersect the image of γn. Hence, the

commutator TβTnT
−1
β T−1

n is a non-trivial element of the kernel. By Lemma 3.16,

Γ cannot be Dn, excluding all possibilities for Γ.

· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

Figure 3.7: Another view of the surfaces Nn and Nn ∪∆1 ∪∆2 for odd n.

3.4 Revisiting the cycle theorem

This short final section is about gluing in punctured discs and annuli to the

surfaces from Table 3.1 and collecting the relevant results in this text to prove

Theorem 3.1.

Proposition 3.18. Let S be a surface containing a circuit γ1, . . . , γn. Suppose

that CG(S) is geometrically isomorphic to Art(Ãn−1). Let ∆1 be a once-marked

disc whose interior is disjoint from the interior of S, with ∂∆1 ⊂ ∂S. Then the

inclusion-induced homomorphism CG(S) → CG(S ∪ ∆1) is an isomorphism.

Similarly, if Z is an annulus whose interior is disjoint from the interior of S,

with ∂Z ⊂ ∂S, then the inclusion-induced homomorphism CG(S) → CG(S ∪Z)
is an isomorphism.

Proof. Charney and Peifer show that for n ≥ 3, the centre of Art(Ãn−1) is triv-

ial [CP03, Proposition 1.3]. It now follows from Lemma 1.2 that the inclusion-

induced homomorphisms CG(S) → CG(S ∪∆1) and CG(S) → CG(S ∪ Z) are
injective and hence isomorphisms.

Proof of Theorem 3.1. We prove the right-to-left implication, as the left-to-right

implication follows from Labruère’s work, specifically Lemma 3.6, after noticing

that there is no way for a circuit in Mn to bound an embedded closed disc.

Contrapositively, suppose that the circuit γ1, . . . , γn does not bound an embed-

ded closed disc. In other words, the complement of a regular neighbourhood of

γ1, . . . , γn in S is a union of surfaces that are not embedded discs. Let S′ be
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the union of such a neighbourhood with all the non-embedded discs in its com-

plement. Theorem 3.2 and Proposition 3.3 imply that CG(S′) is geometrically

isomorphic to Art(Ãn−1). The complement of S′ in S is a union of surfaces that

are not discs, so by Proposition 3.18 and Lemma 1.2, it follows that also CG(S)

is geometrically isomorphic to Art(Ãn−1). But the cycle relation does not hold

in this group. Indeed, as remarked above, the centre of Art(Ãn−1) is trivial,

whereas the quotient of Art(Ãn−1) by the normal subgroup generated by the

cycle relation is isomorphic to Art(Dn) (see Lemma 3.6 and Proposition 3.7),

which has infinite cyclic centre [BS72, Satz 7.2].
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Part II

Braids
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Chapter 4

Twist moves on links

In this chapter, we give a brief introduction to the twisting notion whose vari-

ations will be the topic of the remainder of the thesis. Said twisting notion is

that of Fox’s tk-moves [Fox58], referred to as “twist moves” whenever we make

the aesthetic choice of using plain letters such as in titles of sections.

For us, a knot is the oriented image of a smooth embedding of S1 into S3, and

a link is a disjoint union of knots. Knots are links with one component. Two links

L,L′ are isotopic if there is an orientation-preserving diffeomorphism S3 → S3

mapping L to L′. We consider links up to isotopy and do not distinguish between

being equal and being isotopic. For a formal introduction into knot theory and

its terminology, see established works like [Rol76] or [Lic97].

We say that a link L′ is obtained from L by an unoriented k-twist move

if L′ can be obtained from L by replacing two parallel strands by the braid

σk
1 . We refer to the twist move as a tk-move or a tk-move according to the

orientations of the two strands, see Figure 4.1: if the two strands are oriented in

the same direction, the twist move is a tk-move, and otherwise it is a tk-move.

In this thesis, we will focus almost exclusively on tk-moves and refer the reader

to [Prz06] and [ABFR22] for parallel results for tk-moves.

A well-studied, but not very well understood twist move is the t2-move, which

is the inverse of a t2-move, also known as crossing changes, see Figure 4.2. It is

easy to understand that every knot can be transformed into the unknot using

crossing changes, and the number of such moves required to turn a knot K into

the unknot is called the unknotting number of K. More generally, the minimum

number of crossing changes required to go from a knot K to a knot K ′ is called

the Gordian distance of K to K ′. Figuring out even just the unknotting number

of a given knot is a notoriously hard problem, indicating that some creativity is

required in order to make statements about t2-moves, and tk-moves in general.

This thesis makes no progress toward understanding t2-moves, and instead
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→ ...
→ ...

Figure 4.1: A tk-move and a tk-move. The right hand sides contain k many
half-twists.

→ →

Figure 4.2: A t2-move and a t2-move, also known as crossing changes.

focuses on the question of which knots and links are related to each other via

tk-moves for fixed k. The tools we use partially apply to tk-moves too, which

is why we would be able to make some assertions about both kinds of moves.

However, we choose to focus on tk-moves here because the strategies in the later

sections of this chapter only apply to equally oriented strands.

In the first section of this chapter, we describe some obstructions, some of

which are known to Przytycki [Prz06], to links being related via tk-moves or

via tk-moves. All of these obstructions come from the HOMFLY polynomial, a

classical polynomial link invariant. These topics are all addressed in [ABFR22].

Subsequently, using a particular way of computing the HOMFLY polynomial,

we are able to generalise a result about factor groups of the braid groups, which

Coxeter attributes to G.A. Miller [Cox57].

4.1 Twist obstructions

For a link L, its HOMFLY polynomial is a Laurent polynomial PL ∈ Z[v±1, z±1]

in two variables v, z, determined by the skein relation

v−1P − vP = zP ,

where the symbols , , stand for link diagrams that agree everywhere except

for a single region that looks like the symbol itself, normalized so that the

HOMFLY polynomial PO of the unknot satisfies PO(v, z) = 1. The fact that
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the HOMFLY polynomial is a well-defined link invariant is a non-trivial but

well-established result [FYH+85]. The goal of this chapter is to relate certain

specializations z = z0 for some z0 ∈ C of the HOMFLY polynomial to twist

moves.

4.1.1 Two strand twist specializations

The result of this subsection is a version, and a slight improvement over a

very similar statement by Przytycki [Prz06, Corollary 1.2] (although a different

skein relation is used), as well as of the version in [ABFR22, Proposition 2].

For a natural number n, we write ζn for a primitive n-th root of unity. The

obstructions we will use throughout the rest of this section are as follows.

Theorem 4.1. Let L′ be obtained from a link L via a positive tk-move for some

k ≥ 3. Then,

(i) if k = 2ℓ+ 1 is odd, then PL′(v, z0) = ivkPL(v, z0) for z0 = ζ4k − ζ−1
4k ,

(ii) if k = 4ℓ is doubly even, then PL′(v, z0) = −vkPL(v, z0) for z0 = ζ2k−ζ−1
2k ,

(iii) if k = 2ℓ is even, then PL′(v, z0) = vkPL(v, z0) for z0 = ζk − ζ−1
k .

Proof. Let L be a link, and consider a region in L as on the very left of Figure 4.1.

Let L0, L1, . . . be the links such that Lk is obtained from L0 = L via a tk-move

associated to that region. Let Pk be the HOMFLY polynomial of Lk. The skein

relation of the HOMFLY polynomial shows that

Pk+1(v, z) = vzPk(v, z) + v2Pk−1(v, z),

which can be written in matrix form as(
Pk+1(v, z)

Pk(v, z)

)
=

(
vz v2

1 0

)(
Pk(v, z)

Pk−1(v, z)

)
.

Let M be the iteration matrix

M =

(
vz v2

1 0

)

and compute detM = −v2 and trM = vz.

(i) Suppose k is odd. Substitute z = ζ4k − ζ−1
4k and notice that under this

substitution, M is diagonalisable (because k ≥ 3) and has the same trace

and determinant as the matrix

D = v

(
ζ4k 0

0 −ζ−1
4k

)
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which satisfies Dk = ivk because k is odd. We conclude that Dk = Mk

because M and D are conjugate and Dk is central. Thus,(
Pk+1

Pk

)
=Mk

(
P1

P0

)
= Dk

(
P1

P0

)
,

and, in particular, Pk(v, z) = ivkP0(v, z). The remaining cases are similar,

so we omit the details that are analogous.

(ii) Suppose k is doubly even. Substitute z = ζ2k − ζ−1
2k and diagonalise M to

obtain

D = iv

(
ζ2k 0

0 ζ−1
2k

)
,

which satisfies Dk = −vk because k is doubly even.

(iii) Suppose k is even. Substitute z = ζk − ζ−1
k and diagonalise M to obtain

D = v

(
ζk 0

0 −ζ−1
k

)
,

which satisfies Dk = vk because k is even.

Upon determination of the relevant specializations of the HOMFLY polyno-

mial, this result allows us to compute the set of k such that two strand torus

knots or non-trivial twist knots can be unknotted using tk-moves.

Example 4.2 ([ABFR22, Proposition 4]). For all n ≥ 1, the set of k such that

T (2, 2n + 1) can be unknotted using positive or negative tk-moves coincides

with the set of divisors of n and n+ 1. In contrast, there is no k ≥ 2 such that

the twist knot Kn can be unknotted using positive or negative tk-moves. See

Figure 4.3 for diagrams of the mentioned knots.

· · · · · ·

Figure 4.3: The two strand torus knot T (2, 2k+ 1) and the twist knot Kn. The
twist regions contain 2k + 1 and 2n half-twists, respectively.

We draw particular attention to the invariant specializations for t3-moves,

t4-moves, and t6-moves, as we will use these particular specializations to prove

Theorem 4.6 below, see Table 4.1.
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k z0 factor

3
√
−1 iv3

4
√
−2 −v4

6
√
−3 v6

Table 4.1: Invariant specializations for tk-moves for some small k.

4.1.2 Performance on low crossing numbers

Theorem 4.1 immediately provides an obstruction for two links to belong to

the same tk-equivalence class, just by looking at the coefficients of the invariant

specializations of their HOMFLY polynomials. It turns out that this obstruc-

tion perform quite well on low-crossing examples, see Table 4.2. In addition

to ignoring powers of vk when comparing the polynomials, it is important to

consider HOMFLY polynomials equivalent if they are obtained from each other

by replacing v by v−1. This is because if −K is the mirror image of K, then

P−K(v, z) = PK(v−1, z).

c t4-classes t6-classes

8 7 23
9 [15, 17] [53, 55]
10 [42, 47] [134, 145]
11 [54, 98] [392, 470]

Table 4.2: Effectiveness of obstructing t4-equivalence and t6-equivalence using
the specializations z0 =

√
−2 and z0 =

√
−3, respectively. Each row gives

bounds on the number of equivalence classes containg a knot of crossing number
at most c. The lower bound comes from the specialization, and the upper bound
comes from brute forcing equivalence among knots of at most 12 crossings. The
upper bound given is quite ad-hoc and gets much worse as c increases.

The explicitly determined t4-equivalence classes of knots up to 8 crossings

are

(1) 01, 31, 51, 62, 71, 73, 75, 84, 85, 87, 89, 810, 816, 820,

(2) 41, 52, 63, 82, 86, 817, 818, 819, 821,

(3) 61, 72, 76, 88, 811, 815,

(4) 74, 77, 813, 814,

and the knots 81, 83, 812 that do not appear in the lists are each in their own

t4-equivalence class. Similarly, the explicitly determined t6-equivalence classes

are
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(1) 01, 51, 71, 82,

(2) 41, 73,

(3) 52, 62, 87,

(4) 63, 75, 89,

(5) 72, 84,

(6) 76, 86,

(7) 85, 819, 820,

(8) 810, 821,

and the knots 31, 61, 74, 77, 81, 83, 88, 811, 812, 813, 814, 815, 816, 817, 818 that do

not appear in the lists are each in their own t6-equivalence class.

4.1.3 Crossing number and braid index

For a knot K we write c(K) for its crossing number, defined to be the minimal

number of crossingsm such thatK admits a diagram withm crossings. Similarly,

the braid index of a knot K is the minimal number of strands m such that K is

the closure of a braid in Bm. The HOMFLY polynomial can be used to bound

the crossing number and braid index of a knot or link, as exhibited by the

crossing number and braid index inequalities

degz PK ≤ c(K)− 1,

spanv PK ≤ 2b(K)− 2

by Franks-Williams [FW87, Corollary 1.10] and Morton [Mor86, Corollary 1],

where degz is the highest exponent m of a monomial zm appearing in PK , and

spanv is the difference between the largest and the smallest exponent of v. These

inequalities remain true after specialization of one variable, which allows us to

deduce certain things from Theorem 4.1.

Note that by the skein relation of the HOMFLY polynomial, we have that

the specialization PK(v, v−1 − v) is the constant function 1. This implies that

PK(v, z) cannot be of the form vmf(z). Indeed, if PK(v, z) = vmf(z), then

vmf(v−1 − v) = 1

for all v, implying f(v−1 − v) = v−m for all v. But f(v−1 − v) is a polynomial

whose v-span is 2 degz f , so f must be constant. But this shows that m = 0, so

PK(v, z) is trivial. We can use this to prove the following pleasant result.
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Theorem 4.3 ([ABFR22, Theorem 2]). Let K be a knot with non-trivial HOM-

FLY polynomial. Then the set of k ≥ 3 such that K can be transformed to the

(one component) unknot using positive or negative tk-moves has at most c(K)−1

elements.

Proof. Let n,m be integers with n < m and f, g ∈ Z[z±1] be polynomials

such that the terms of lowest and highest v-degree in PK(v, z) are vnf(z) and

vmg(z), respectively. Suppose that K can be unknotted using tk-moves for some

k ≥ 3. Because the unknot O has trivial HOMFLY polynomial PO(v, z) = 1,

Theorem 4.1 implies that PK(v, z0) is a monomial in v, for some z0 depending

on k. Thus, either f(z0) or g(z0) must be zero.

Moreover, note that the z0 from Theorem 4.1 determines k. Because of the

degree bound

degz fg = degz f + degz g ≤ 2 degz PK ,

and the degree of the minimal polynomial of each z0 is at least two, we ob-

tain that there are at most degz PK ≤ c(K) − 1 many k such that K can be

transformed to the unknot using tk-moves.

Using the other inequality by Franks-Williams and Morton, we are able to

make a statement about the braid index as well.

Theorem 4.4 ([ABFR22, Proposition 3]). Let K be a knot and k ≥ 3. Then

every knot that is related to K by a finite sequence of positive or negative tk-

moves satisfies

spanv PK(·, z0) ≤ 2b(K ′)− 2,

where z0 = ζ4k − ζ−1
4k if k is odd, z0 = ζ2k − ζ−1

2k if k is doubly even, and

z0 = ζk − ζ−1
k if k is even.

Proof. Note that spanv PK(·, z0) is invariant under multiplication by powers

of v. Thus, we have

spanv PK(·, z0) = spanv PK′(·, z0) ≤ spanv PK′ ≤ 2b(K ′)− 2.

Corollary 4.5 ([ABFR22, Proposition 1]). Let K be a two-bridge or an alter-

nating fibered knot. For all but finitely many k ∈ N, all knots K ′ that are related

to K by a finite sequence of positive or negative tk-moves satisfy b(K ′) ≥ b(K).

Proof. For a two-bridge or fibered alternating knot K, the equality

spanv PK = 2b(K) + 2

holds [Mur91, Theorems A and B]. Moreover, for all but finitely many k, the
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equality

spanv PK(v, z0) = spanv PK

holds, where z0 depends on k as in Theorem 4.1.

4.2 Infinite twist orbits

Let Bn be the braid group on n strands. Coxeter [Cox57] writes that the quotient

of Bn modulo the normal subgroup generated by the k-th power σk
1 of a standard

generator σ1 is finite if and only if

1

k
+

1

n
>

1

2
,

citing results by G.A. Miller. In particular, if 1/k + 1/n > 1/2, then the set

Ln of closures of n-braids only contains representatives of finitely many distinct

tk-equivalence classes. In this section, we aim to provide a converse of this

observation for the particular case 1/k + 1/n = 1/2.

Theorem 4.6. For n ∈ N, let Ln be the set of closures of n-braids.

(i) L3 contains representatives of infinitely many t6-equivalence classes.

(ii) L4 contains representatives of infinitely many t4-equivalence classes.

(iii) L6 contains representatives of infinitely many t3-equivalence classes.

Our approach for proving Theorem 4.6 is to compute the tk-invariant special-

izations in Theorem 4.1 for certain torus knots, and noticing that the coefficients

of the resulting polynomials in C[v±1] are unbounded. This computation will im-

mediately imply the main theorem of this section. The explicit determination of

the specializations will be carried out in the Hecke algebra Hn over Z[v±1, z±1].

As Hn has dimension n!, it is only feasible to do the computation by hand for

n = 3. We will not do this and instead have a computer verify our formula for

all three cases n = 3, 4, 6.

4.2.1 The Hecke algebra

Recall that the Coxeter group Cox(An−1) is isomorphic to the symmetric group

Sn on n elements, where the i-th generator is mapped to the transposition si

exchanging i and i+1. Since the braid group Bn is isomorphic to the Artin group

Art(An−1), we obtain that Bn modulo the normal subgroup generated by the

squares of generators is isomorphic to Sn. This observation allows us to construct

an n!-dimensional algebra over Z[v±1, z±1] called the Hecke algebra Hn, together

with a representation ω : Bn → Hn. As a module, Hn is the quotient of the
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free module generated by Sn over Z[v±1, z±1]. We turn Hn into an algebra by

extending the relations

si · si = v2 + vzsi

linearly. We obtain a well-defined homomorphism of monoids ω : Bn → Hn

mapping σi to si.

For a link L, let PL ∈ Z[v±1, z±1] be its HOMFLY polynomial. For a per-

mutation g ∈ Sn, let p(g) ∈ Z[v±1, z±1] be the HOMFLY polynomial of β̂g,

where βg is a positive braid of minimal length such that ω(βg) = g. Then the

homomorphism of modules p : Hn → Z[v±1, z±1] mapping an element π to the

polynomial p(π) describes the HOMFLY polynomial: for β ∈ Bn, we have

Pβ̂ = (p ◦ ω)(β).

Example 4.7. The Hecke algebra H3 is a 6-dimensional algebra over the poly-

nomial ring Z[v±1, z±1]. As a module, it admits a basis consisting of the elements

e, (1 2), (2 3), (1 3), (1 2 3), (3 2 1). Writing a = σ1, b = σ2 for the generators

of B3, we have βe = ε, β(1 2) = a, β(2 3) = b, β(1 3) = aba, β(1 2 3) = ab,

β(3 2 1) = ba. Here, e is the trivial permutation in S3 and ε is the empty braid

in B3. An example multiplication of basis vectors is

(1 3) · (2 3) = s2s1s2 · s2
= s2s1(v

2 + vzs2)

= v2(3 2 1) + vz(1 3),

and the homomorphism p : H3 → Z[v±1, z±1] is determined by the images of

the basis vectors and satisfies

p(e) = v2z−2 − 2z−2 + v−2z−2,

p((1 2)) = p((2 3)) = v−1z−1 − vz−1,

p((1 2 3)) = p((3 2 1)) = 1.

4.2.2 Coxeter edge cases

This subsection is devoted to showing that the sets L3,L4,L6 contain families of

specializations P (K, z0) for z0 =
√
−3,

√
−2,

√
−1, respectively, with unbounded

coefficients. To this end, we determine some of these specializations explicitly.

Proposition 4.8. The following formulas hold:

(i) PT (3,3ℓ+1)(v,
√
−3) = (ℓv4 + ℓv2 + (ℓ+ 1))v6ℓ,

(ii) PT (4,8ℓ+1)(v,
√
−2) = (2ℓv6 + 2ℓv4 + 2ℓv2 + (2ℓ+ 1))v24ℓ,
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(iii) PT (6,36ℓ+1)(v,
√
−1) = (6ℓv10 + 6ℓv8 + 6ℓv4 + 6ℓv2 + (6ℓ+ 1))v180ℓ.

Proof. For n = 3, 4, 6, let δn = σ1 · · ·σn−1 ∈ Bn. Then, T (n,m) is the closure of

the braid δmn . For z0 ∈ C, let Hn(z0) be the Hecke algebra Hn with the second

variable specialized to z = z0. With a naive implementation of Hecke algebras,

one may verify that

(i) ω(δ63)− ω(δ33)v
6 = ω(δ33)v

6 − v12 in H3(
√
−3),

(ii) ω(δ164 )− ω(δ84)v
24 = ω(δ84)v

24 − v48 in H4(
√
−2),

(iii) ω(δ726 )− ω(δ366 )v180 = ω(δ366 )v180 − v360 in H6(
√
−1).

In principle, the first formula can be verified by hand. As the last case involves

matrix multiplication of matrices with 6! = 720 rows and columns, this is no

longer feasible. A standard laptop, however, takes around half an hour to do

the computation.

These results inductively give rise to the formulas

(i) ω(δ3ℓ+1
3 )− ω(δ3)v

6ℓ = ℓ(ω(δ33)v
6ℓ − v6(ℓ+1)) in H3(

√
−3),

(ii) ω(δ8ℓ+1
4 )− ω(δ4)v

24ℓ = ℓ(ω(δ84)v
24ℓ − v24(ℓ+1)) in H4(

√
−2),

(iii) ω(δ36ℓ+1
6 )− ω(δ6)v

180ℓ = ℓ(ω(δ366 )v180ℓ − v180(ℓ+1)) in H6(
√
−1).

Using that Pβ̂(v, z) = (p ◦ ω)(β), the same standard laptop now verifies the

proposition in just a few seconds. All the computations were done using the

author’s software [Ryf23b].

Proof of Theorem 4.6. Recall from Theorem 4.1 that if K ′ is related to K via a

tk-move for k = 6, 4, 3, then PK′(v, z0) = vmPK(v, z0) for z0 =
√
−3,

√
−2,

√
−1,

respectively, which does not change the size of the coefficients of the specialised

HOMFLY polynomial. By Proposition 4.8, the sets L3,L4,L6 contain knots

with specialised HOMFLY polynomials by z0 =
√
−3,

√
−2,

√
−1, respectively,

of unbounded coefficients.

4.3 Generalized twist moves

In this experimental final section of this chapter, we investigate some computa-

tional aspects of the Hecke algebra in more detail. Our goal here is to describe a

systematic approach for finding specializations of the z-variable of the HOMFLY

polynomial that are invariant, similar to those specializations in Theorem 4.1,

under the application of a generalized twist move. We associate one of these

twist moves to each braid β ∈ Bn: We say that a link L′ is obtained from L

by a β-twist if L can be transformed into L′ by finding n parallel strands that

are oriented in the same direction, and replacing them by β. See Figure 4.4
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for a schematic representation of a β-twist. The twist moves from the previous

sections are a special case: A tk-move is a σk
1 -twist.

· · · −→

· · ·

· · ·

β

Figure 4.4: A β-twist.

4.3.1 Elimination of the first variable

Let ℓ : Sn → N be the length function of the Coxeter group Sn. Then, any

element g ∈ Sn and any generator si satisfy either ℓ(gsi) = ℓ(g) + 1, or g can

be written as a word of length ℓ(g) ending in si. This fact has the following

consequence, showing that the variable v can be neglected when studying the

images of braids in Hn.

Proposition 4.9. Let η = ω(β) ∈ Hn be in the image of ω. Then the coefficients

of η are all of the form πg(η) = ηg(z)v
d(β)−ℓ(g) for some Laurent polynomial

ηg(z) ∈ Z[z±1]. Here, d : Bn → Z is the homomorphism sending σi to 1 for

all i, and g ∈ Sn is a permutation.

Proof. This is based on v-homogeneity of the skein relation. We prove the claim

by induction on the length of β. The claim is certainly true for the empty braid

word β: in this case, πe(η) = 1 (where e ∈ Sn is the identity), and πg(η) = 0 for

all g ̸= e.

Now suppose the claim holds for β. Let σi be a standard generator. Then

ω(βσi) =
∑
g∈Sn

πg(βσi) · g =
∑
g∈Sn

πg(β) · (g · si) =
∑
g∈Sn

ηg(z)v
d(β)−ℓ(g) · (g · si).

We examine each summand individually. If ℓ(gsi) = ℓ(g) + 1, then we have

d(β)− ℓ(g) = d(βσi)− ℓ(gsi), so the summand becomes

ηg(z)v
d(βσi)−ℓ(g) · g · si = ηg(z)v

d(βσi)−ℓ(gsi) · gsi,

which is of the desired form. On the other hand, if ℓ(gsi) = ℓ(g) − 1, then we
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have d(β)− ℓ(g) + 2 = d(βσi)− ℓ(gsi), so

ηg(z)v
d(β)−ℓ(g) · (g · si) = ηg(z)v

d(β)−ℓ(g) · (v2gsi + vzg)

= (ηg(z)v
d(βσi)−ℓ(gsi) · gsi) + (ηg(z)zv

d(βσi)−ℓ(g) · g),

which is also of the desired form.

Finally, suppose that the claim holds for β, and let σ−1
i be the inverse of

a standard generator. From si · si = v2 + vzsi we obtain s−1
i = v−2si − v−1z.

Again, compute

ω(βσ−1
i ) =

∑
g∈Sn

πg(βσ
−1
i ) · g

=
∑
g∈Sn

πg(β) · (g · s−1
i )

=
∑
g∈Sn

ηg(z)v
d(β)−ℓ(g) · (v−2(g · si)− v−1zg).

Again, we examine each summand individually. If ℓ(gsi) = ℓ(g) + 1, then we

have d(β)− ℓ(g)− 2 = d(βσ−1
i )− ℓ(gsi), and d(β)− ℓ(g)− 1 = d(βσ−1

i )− ℓ(g),

so

πg(β) · (g · s−1
i ) = (ηg(z)v

d(βσ−1
i )−ℓ(gsi) · gsi) + (−ηg(z)zvd(βσ

−1
i )−d(g) · g),

which is of the desired form. On the other hand, if ℓ(gsi) = ℓ(g) − 1, then

d(β)− ℓ(g) = d(βσ−1
i )− ℓ(gsi), so

πg(β) · (g · s−1
i ) = ηg(z)v

d(β)−ℓ(g) · (v−2(v2gsi + vzg)− v−1zg)

= ηg(z)v
d(βσ−1

i )−ℓ(gsi) · gsi,

which is of the desired form.

4.3.2 Braid-twist specializations

Due to Proposition 4.9, without losing much information, we may consider the

one-variable Hecke algebra H ′
n over the one-variable polynomial ring Z[z±1]

obtained from Hn by substituting v = 1. Let η ∈ H ′
n be any element. We

frequently consider the standard decomposition

η = ψη + φηη
′,

of η, where e ∈ Sn is the identity, πe(η
′) is zero, ψη(z) = πe(η), and φη is

a greatest common divisor of the coefficients of η − ψη if it exists, and zero
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otherwise. In particular, φη(0) = 0 if and only if η is a multiple of 1 (in which

case φη is the zero polynomial). Our next proposition is about substituting

complex numbers for z, giving rise to a procedure for finding β-twist invariant

specializations as in Theorem 4.1.

We write H ′
n(z0) for the algebra over C obtained from H ′

n by specializing the

second variable to some non-zero z = z0. Note that for each z0, the one-variable

Hecke algebra H ′
n acts multiplicatively on H ′

n(z0) in an obvious way. We are

now ready to describe our procedure for finding β-twist invariant specializations

of the HOMFLY polynomial.

Theorem 4.10. Let β0 ∈ Bn be any braid, and let η = ω(β0). Consider the

decomposition η = ψη+φηη
′ ∈ Hn and let z0 ∈ C\{0} be a zero of φη. Whenever

a link L′ is obtained from another link L by a β0-twist, then

PL′(v, z0) = ψη(z0)v
d(β0)PL(v, z0).

Proof. Let L be any link, and consider a diagram D of L with a region R of

n parallel and equally oriented strands as on the left of Figure 4.4. The pair

(D,R) leads to a non-standard way of obtaining a link LD,R(β) from a braid β

by replacing the parallel strands in R with β. As an example, if D is a diagram

of the unlink of n equally oriented nested components, and R is a region in D

with n parallel strands, then LD,R(β) is the ordinary closure β̂, see Figure 4.5.

−→ β

Figure 4.5: Ordinary braid closure can be expressed as (D,R)-closure for a
certain diagram D and region R: The left hand side is a picture of D, and the
region R is indicated as a dotted rectangle. The right hand side is the ordinary
closure LD,R(β) = β̂.

As another, more relevant example, LD,R(β0) is the link L′ obtained from
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L by a β0-twist in the region R. Let pD,R : Hn → Z[v±1, z±1] be the homomor-

phism of modules mapping the basis vectors eg to the HOMFLY polynomial of

LD,R(βg), where βg is the positive braid of minimal length with ω(βg) = eg.

Note that pD,R describes the HOMFLY polynomial of (D,R)-closures and, in

particular, we have pD,R(β0) = PL′ . Let p′D,R : H ′
n → Z[v±1, z±1] have the same

definition as pD,R. By Proposition 4.9, we have

pD,R(β0) = vd(β0)p′D,R(β0)

for all β ∈ Bn. Specializing to z = z0, we obtain that

PL′(v, z0) = pD,R(η)(v, z0)

= vd(β0)p′D,R(η)(v, z0)

= ψη(z0)v
d(β0)p′D,R(1)(v, z0)

= ψη(z0)v
d(β0)pD,R(1)(v, z0)

= ψη(z0)v
d(β0)PL(v, z0),

where ε is the trivial braid in Bn.

4.3.3 Examples of specializations

In this section, we apply Theorem 4.10 to some explicit braids. A specialization

z = z0 satisfying the conclusion of said result is called a β-twist invariant

specialization. We first show how to recover Theorem 4.1 by studying the Hecke

algebra H2.

Proposition 4.11. Let Fk ∈ Z[z] be the k-th Fibonacci polynomial satisfying

the recurrence relations F0 = 0, F1 = 1, and Fk+2 = zFk+1 + Fk. If Fk(z0) = 0

for a non-zero complex number z0, then z = z0 is a tk-invariant specialization.

Proof. Write a for the generator of B2, and let α = ω(a). In the basis {e, (1 2)}
of H ′

2, The element α can be represented as the vector (0, 1), and we have

(f, g) ·α = (g, zg+f) in H ′
2. We thus get the recurrence relation φ1 = 0, φα = 1

and

φαk+2(z) = zφαk+1(z) + φαk(z)

in the notation of Theorem 4.10. This is precisely the recurrence relation of the

Fibonacci polynomials.

The zeroes of the Fibonacci polynomials have been explicitly determined to

be of the form

z0 = ζj2k − ζ−j
2k
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for j = 0, . . . , k/2− 1 if k is even, and

z0 = ζ2j+1
4k − ζ

−(2j+1)
4k

for j = 0, . . . , (k−1)/2−1 if k is odd [HB73]. The specializations in Theorem 4.1

are among these zeroes.

We end this section with a family of examples of braid twists on three strands.

Proposition 4.12. Consider the sequence b−1, b0, b1, . . . of polynomials in Z[z]
satisfying b−1 = 1, b0 = 0, b1 = 1, b2 = 1 and the recurrence relation

bk+2 = (z2 + 1)bk − bk−2.

If z0 is a zero of bk, then z0 is a (σ1σ
−1
2 )k-twist invariant specialization. More

precisely, if z0 is a zero of bk and L′ is obtained from L by a (σ1σ
−1
2 )-twist, then

PL′(v, z0) = PL(v, z0).

Proof. Let β = σ1σ
−1
2 ∈ B3. In the basis {e, (2 3), (1 2), (1 2 3), (3 2 1), (1 3)}

of H ′
3, we may write ω(β) = (0, 0,−z, 0, 1, 0). We first prove by induction that

for all k we have

bkbk+3 + (−1)k = bk+1bk+2.

The claim is certainly true for k = −1 and k = 0, and if it holds for k, then

bk+2bk+5 + (−1)k+2 = bk+2((1 + z2)bk+3 − bk+1) + (−1)k

= (1 + z2)bk+2bk+3 − (bk+1bk+2 + (−1)k+1)

= (1 + z2)bk+2bk+3 − bkbk+3

= bk+3bk+4,

By another induction, one may show that

ω(βk) = (−1)k



bk(bk+1 − bk−1) + (−1)k

−zbk−1bk

zbkbk+1

bk−1bk

−bkbk+1

0


.

Indeed, the claim is true for k = 0, and if it is true for k then a computer verifies
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quickly that

ω(βk+1) = (−1)k+1



z2bkbk+1 − bk−1bk

−zbkbk+1

z(z2bkbk+1 − bk−1bk + bkbk+1 + (−1)k)

bkbk+1

−(z2bkbk+1 − bk−1bk + bkbk+1 + (−1)k)

0


.

To cover the first component, compute

z2bkbk+1 − bk−1bk = bk((1 + z2)bk+1 − bk−1)− bkbk+1

= bkbk+3 − bkbk+1

= bk+1bk+2 + (−1)k+1 − bkbk+1

= bk+1(bk+2 − bk) + (−1)k+1.

To cover the third and fifth components, compute

z2bkbk+1 − bk−1bk + bkbk+1 + (−1)k = bk((1 + z2)bk − bk−1) + (−1)k

= bkbk+3 + (−1)k

= bk+1bk+2.

This concludes the induction step. Because bk is a factor of every coefficient of

ω(β)− πe(ω(β)), Theorem 4.10 proves the claim.

Because b3(z) = z2, this only leads to (σ1σ
−1
2 )k-twist invariant specializa-

tions for k ≥ 4. A list of the polynomials bk for small k is given in Table 4.3.

As a by-product of expressing ω(βk) explicitly in coordinates, we also obtain a

formula for the HOMFLY polynomial of the closure L of (σ1σ
−1
2 )k, namely

PL(v, z) = 1 + (−1)k(bk−1bk − bkbk+1 + (−1)k+1)(1− v2z−2 + 2z−2 − v−2z−2).
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k bk

4 z2 + 1
5 z4 + z2 − 1
6 (z2 + 2)z2

7 z6 + 2z4 − z2 − 1
8 (z4 + 2z2 − 1)(z2 + 1)
9 (z6 + 3z4 − 3)z2

10 (z4 + 3z2 + 1)(z4 + z2 − 1)
11 z10 + 4z8 + 2z6 − 5z4 − 2z2 + 1
12 (z4 + 2z2 − 2)(z2 + 2)(z2 + 1)z2

13 z12 + 5z10 + 5z8 − 6z6 − 7z4 + 2z2 + 1
14 (z6 + 4z4 + 3z2 − 1)(z6 + 2z4 − z2 − 1)
15 (z8 + 5z6 + 5z4 − 5z2 − 5)(z4 + z2 − 1)z2

16 (z8 + 4z6 + 2z4 − 4z2 − 1)(z4 + 2z2 − 1)(z2 + 1)
17 z16 + 7z14 + 14z12 − z10 − 25z8 − 9z6 + 12z4 + 3z2 − 1
18 (z6 + 3z4 − 1)(z6 + 3z4 − 3)(z2 + 2)z2

Table 4.3: Some factorized polynomials bk whose zeroes are (σ1σ
−1
2 )k-twist in-

variant specializations.
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Chapter 5

Cobordisms of positive

3-braids

The cobordism distance dχ(K,K
′) between two links K,K ′ is defined to be the

minimal Euler characteristic among all smooth cobordisms in S3× [0, 1] without

closed components between K ⊂ S3 × {0} and K ′ ⊂ S3 × {1}, see [Baa12]. In

this final chapter, we present joint work with Sebastian Baader on the cobordism

distance of T (3,m) torus links to n-th powers of T (2, k) torus links [BR23].

In light of Coxeter’s result that the quotient braid group B3 on three strands

modulo the normal subgroup generated by σk
1 is finite if and only if k ≤ 5, it

might not come as a surprise to the reader that any positive braid in B+
3 can

be untwisted to a finite family of braids by using t3-moves. Doing this explicitly

allows us to compute the cobordism distance between the closure of an arbitrary

positive braid on three strands to a connected sum power T (2, 3)n of the trefoil

knot.

For k = 4, 5 we can do the same to obtain a similar estimate of the cobor-

dism distance between three strand torus links T (3,m) and connected powers

T (2, k)n. Surprisingly, the argument extends to the case k = 6, even though

as we have seen in Theorem 4.6, it is not possible to transform links of type

T (3,m) into a finite family of links using t6-moves. For k ≥ 7 our results are

less strong, only giving an estimate of the cobordism for large or very small n

compared to m.

Our first result may be stated as follows.

Theorem 5.1. There exists a constant C3 ≤ 17 such that for all non-split

positive braids β ∈ B+
3 of length ℓ(β) and all n ∈ N we have

dχ(β̂, T (2, 3)
n) =

ℓ(β)

3
+ 2

∣∣∣∣n− ℓ(β)

3

∣∣∣∣+ E3(β, n),
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with an error term E3(β, n) satisfying |E3(β, n)| ≤ C3.

In order to state our other two results, we need to specify the meaning of

iterated connected sums of torus links T (2, k) for even k, since the connected

sum of links with more than one component depends on the chosen components.

We fix one distinguished component of T (2, k) and attach all copies of T (2, k)

to it.

Theorem 5.2. There exist constants C4, C5, C6 < 44 such that for all m ≥ 1,

all n ≥ 0, and all k ∈ {4, 5, 6} we have

dχ(T (3,m), T (2, k)n) =
2m

k
+ (k − 1)

∣∣∣∣n− 2m

k

∣∣∣∣+ Ek(m,n)

with an error term Ek(m,n) satisfying |Ek(m,n)| ≤ Ck.

Our final main result is related to a result of Feller [Fel16], who considered

the cobordism distance between torus links of type T (3,m) and T (2, k), but no

iterated connected sums of the latter. However, apart from the extreme case of

large k, our result is independent from Feller’s.

Theorem 5.3. There exists a constant C < 44 such that for all k ≥ 7 and

all n,m ≥ 0 there exists an error term Ek(m,n) satisfying |Ek(m,n)| ≤ C we

have:

(i) If n ≥ m/3, then

dχ(T (3,m), T (2, k)n) = (k − 1)n− 4m/3 + Ek(m,n).

(ii) If n ≤ 5m/3k − (k + 4), then

dχ(T (3,m), T (2, k)n) = 2m− (k − 1)n+ Ek(m,n).

The proof strategy for all three results is very similar. We start off this chap-

ter by constructing cobordisms between our link L in question (either the closure

of a positive three braid or a three strand torus link) and iterated connected

sums T (2, k)n for small n. This is done by finding k-th powers of generators in

a braid representative of L, and we carry out this work in Section 5.1. These

explicit cobordisms give an upper bound on the cobordism distance. Section 5.2

is about lower bounds on the cobordism distance using the Levine-Tristram sig-

nature, which is then combined with the previously mentioned upper bounds in

Section 5.3.
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5.1 Constructing key cobordisms

The key technique in constructing minimal cobordisms is to find many sub-

surfaces of the right type in the Seifert surface of the braid in question. More

precisely, we transform a braid β to the trivial braid by deleting powers ak or

bk (corresponding to subsurfaces of type T (2, k)) of generators, for fixed k ≥ 3,

while at the cost of an error we are allowed to also delete single generators. We

summarize this strategy in the following result.

Lemma 5.4. Let k ≥ 1, let β ∈ B+
3 be a positive braid, and let β′ be obtained

from β by removing a k-th power ak or bk of a generator n times, and by

removing an arbitrary number of single generators. Then

dχ(β̂, T (2, k)
n) ≤ ℓ(β)− (k − 1)n+ 2.

Proof. We first construct a cobordism of Euler characteristic −1 between β̂ and

β̂′#T (2, k), where β′ is obtained from β by deleting a k-th power of a generator.

Note that the notation β̂′#T (2, k) is ambiguous as soon as β̂′ has more than one

component. This ambiguity will be resolved at the end of the proof. As indicated

in Figure 5.1, a cobordism as described above can be obtained by cutting the

canonical Seifert surface of β along an arc. Because T (2, 1) is the trivial knot,

the special case k = 1 shows in particular that the deletion of a generator yields

a cobordism of Euler characteristic −1.

Because the summand T (2, k) can be moved freely along the strand it is

connected to, this allows iteration of this removal, so that if β′ is obtained

from β by deleting n instances of k-th powers of a or b and j instances of

single generators, then there exists a cobordism of Euler characteristic −(n+ j)

between β̂ and a connected sum of β′ with nmany copies of T (2, k). Deleting the

generators in β′ one by one yields a split union of three powers of T (2, k), which

can be merged to the sum T (2, k)n using two saddle moves yielding a cobordism

of Euler characteristic −2. We thus obtain a cobordism of Euler characteristic

χ = −(n+ j + ℓ(β′) + 2) = −(ℓ(β)− (k − 1)n+ 2)

between β̂ and T (2, k)n.

5.1.1 Third powers

Our goal in this subsection is to start with a positive braid β ∈ B+
3 and, by

removing third powers of generators and a constant number of single generators,

transform it into the trivial braid. We first iterate the procedure of writing β
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...
...

...
...

...
...

Figure 5.1: The braid ak or bk, its canonical Seifert surface, and the surface
obtained from cutting along the dotted arc

in Garside normal form, and then removing all emerging third powers of gen-

erators. This process terminates once the Garside normal form has no third

powers of generators. After conjugation and removing at most 3 single gener-

ators, the Garside normal form [Gar69] of the resulting braid can be assumed

to be of the form ∆i(a2b2)j , where ∆ = aba. Indeed, Proposition 3.2 in [Tru22]

directly implies that, up to conjugation, any 3-braid can be written as a product

∆iap1bq1 · · · aprbqrβ′, where pj , qj ≥ 2 for all j, and where β′ is either a power

of a or equal to apb for some p ∈ {1, 2, 3}.
Consider the braid (a2b2)ℓ. Upon deletion of a single generator, it can be

transformed into

(a2b2)ℓ1ab2(a2b2)ℓ2 = (a2b2)ℓ1−1a∆2(a2b2)ℓ2 = ∆2(a2b2)ℓ1−1a(a2b2)ℓ2 ,

for any ℓ1, ℓ2 with ℓ1+ ℓ2 = ℓ−1. Removing a third power of a and then a third

power of b similarly leads to

∆2(a2b2)ℓ1−2a2b(a2b2)ℓ2−1 = ∆4(a2b2)ℓ1−2b(a2b2)ℓ2−2,

from which we may again remove two third powers of generators to obtain the

braid ∆4(a2b2)ℓ1−3ab2(a2b2)ℓ2−3. By suitable choice of ℓ1 and ℓ2, i.e. ℓ1 = ℓ2

or ℓ1 = ℓ2 + 1, this process can be iterated until we are left with a positive

braid of the form ∆2iβ′ for some i, where β′ has length at most 5. In fact, if β′

has length 3 or more, it contains one further half-twist ∆ after conjugation. We

conclude that after deleting at most 3 single generators, the braid (a2b2)ℓ can

be transformed into a braid of the form ∆i for some i.

Next, consider the braid ∆i. As indicated by the fact that

(ab)6 = (aba)b(aba)b(aba)b = bab3ab3ab2,

it is possible to delete a total of four powers of the form a3 and b3 from ∆4 =

(ab)6 to obtain the trivial braid. The fact that

(ab)4 = (aba)b(aba)b = bab3ab2
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shows that two third powers of a generator can be removed from ∆3 = (ab)4a,

showing that after deletion of at most 3 single generators, the braid ∆i can be

transformed to the trivial braid by deleting third powers of generators.

Note that in order to reduce β to the trivial braid by removing third powers

of generators, we had to delete at most 3+3+3 = 9 generators. By Lemma 5.4,

we have thus shown that for any positive braid β ∈ B3, and any n ≥ 0 with

3n ≤ ℓ(β)− 9 we have

dχ(β̂, T (2, 3)
n) ≤ ℓ(β)− 2n+ 2.

5.1.2 Fourth powers

As shown in [BBL20], we have

∆8 = (ab)12 = ab3ab5ab3ab4ab4.

After removing three fourth powers of b, the braid is transformed into

ab3(aba)b3a2 = ab4ab4a2,

which is transformed into the trivial braid after further removal of three fourth

powers of generators.

It is possible to remove 2 single generators from (ab)3 to obtain b4. Thus,

one can remove 4 single generators from (ab)4 to obtain b4.

Similarly, note that

(ab)5 = a(bab)(aba)(bab) = a2(bab)(aba)ba = a3(bab)ab2a = a4ba2b2a,

which, after removing a fourth power of a, is equal to ba2b2a. This braid is

elementarily conjugate to

aba2b2 = babab2 = b2ab3,

which again is elementarily conjugate to ab5. It is thus possible to remove 2

single generators from (ab)5, 4 single generators from (ab)6, or 6 generators

from (ab)7 to obtain a braid that can be transformed into the trivial braid by

removing two fourth powers of generators.

Next, similar techniques show that three fourth powers of generators can be

removed from (ab)8. It is thus enough to remove 4 single generators from (ab)8

or 6 generators from (ab)9. Finally, removing 4 single generators from (ab)10 or

6 single generators from (ab)11 is enough.

Thus, the braid (ab)m can be transformed into the trivial braid by deleting at
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most 6 single generators, the worst case being (ab)j for j ∈ {7, 9, 11}. Lemma 5.4

implies that for any n ≥ 0 with 4n ≤ 2m− 6 that

dχ(T (3,m), T (2, 4)n) ≤ 2m− 3n+ 2.

5.1.3 Fifth powers

Again as shown in [BBL20],

∆4i = (ab)6i = ab3(ab5)i−1ab3ab4(ab5)i−2ab4

for all i ≥ 2. Removing fifth powers from this braids results in ab3aib3ab4ai−1b4,

which after deleting at most 7 generators and further removal of fifth powers is

equal to abab3 = bab4, which upon deletion of a further single generator is equal

to the fifth power b5.

Similarly,

∆4i+2 = (ab)6i+3 = ab3(ab5)i−1ab4ab3(ab5)i−1ab4

for all i ≥ 1, which after deletion of at most 8 generators can be transformed,

using deletion of fifth powers of generators, into ab2ab2, a braid of length 6.

Finally, an arbitrary braid (ab)m with m ≥ 6 can be transformed either to

∆4i or ∆4i+2 for some i using at most 5 deletions of single generators for a total

error of at most 5 + 6 + 8 = 19. The braid (ab)j for j ≤ 5 is shorter than this

maximal error, so we have shown that for all n ≥ 0 with 5n ≤ 2m− 19 we have

dχ(T (3,m), T (2, 5)n) ≤ 2m− 4n+ 2.

5.1.4 Sixth powers

The formula ∆4i = ab3(ab5)i−1ab3ab4(ab5)i−2ab4 from the previous subsection

shows that by deleting 12 single generators and removing one sixth power of

a generator, the braid (ab)6i can be transformed into (ab5)2i−3. Removing a

further sixth power yields (ab−1)(ab5)2i−3, and removing two further single gen-

erators transforms (ab)6i into (ab−1)2i−4 using 14 deletions of single generators

and 2i− 2 deletions of sixth powers.

Similarly, the formula ∆4i+2 = ab3(ab5)i−1ab4ab3(ab5)i−1ab4 shows that by

deleting 12 single generators and removing 2i − 1 sixth powers of a generator,

the braid (ab)6i+3 can be transformed into (ab−1)2i−2.

The closures of the braids (ab−1)2j have cobordism distance at most two to

the unknot. This is because two cobordisms of Euler characteristic −1 transform

the closure of (ab−1)2j into L#L, where L is the closure of (ab−1)j . Because L
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is isotopic to its mirror image, it follows that L#L is slice. Using this as well as

Lemma 5.4 and the fact that four deletions of single generators are enough to

turn any power of ab into ∆4i or ∆4i+2 for some i, we obtain that for all n ≥ 0

with 6n ≤ 2m− 20 we have

dχ(T (3,m), T (2, 6)n) ≤ 2m− 5n+ 2.

5.1.5 Larger powers

From here on we are not quite as efficient as in the previous cases, in the sense

that we cannot, up to bounded error, turn an arbitrary power of ab into the

trivial braid by removing k-th powers of generators for k ≥ 7. We nonetheless

find a substantial number of k-th powers of generators, although we make no

claim that this number is optimal.

Note that the braid (ab)6i = ab3(ab5)i−1ab3ab4(ab5)i−2ab4 can be trans-

formed into b10i−1 by deleting all 2i+1 occurrences of a. This finds [(10i−1)/k]

many k-th powers of generators in (ab)6i.

Similarly, the braid (ab)6i+3 = ab3(ab5)i−1ab4ab3(ab5)i−1ab4 can be trans-

formed into b10i+4 by deleting all 2i+2 occurrences of a. This finds [(10i+4)/k]

many k-th powers of generators in (ab)6i+3.

Finally, any power (ab)m can be turned into one of the braids under con-

sideration by deleting at most four single generators. Using Lemma 5.4, we are

now able to conclude that for all n ≥ 0 with n ≤ 5m/3k − (k + 4) we have

dχ(T (3,m), T (2, k)n) ≤ 2m− (k − 1)n+ 2.

5.2 Signatures

In this section, we provide lower bounds on the cobordism distance between

T (3,m) (or a positive braid β) and T (2, k)n for small m compared to n. To

this end, we recall a result proven by Gambaudo-Ghys, namely Corollary 4.4

in [GG05].

Lemma 5.5. Let β ∈ B+
3 be a positive braid, and let ω = e2πiθ for a rational

number θ with 0 < θ < 1/3. Then the Levine-Tristram signature at ω satisfies

|σω(β̂)− 2θℓ(β)| ≤ 2.

The formulas of Gambaudo-Ghys, specifically Proposition 5.1 in [GG05],

can be used to explicitly determine the Levine-Tristram signatures of the links

T (2, k) for k ∈ {3, 4, 5}, see Figure 5.2 for the result. For a link L, we introduce

the shorthand notations
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(i) σ3(L) = limθ→1/6+ σexp(2πiθ)(L),

(ii) σ4(L) = limθ→1/4+ σexp(2πiθ)(L),

(iii) σ5(L) = limθ→3/10+ σexp(2πiθ)(L),

(iv) σk(L) = σ−1(L) for k ≥ 6,

in order to facilitate comparison of the signature functions in specific neighbour-

hoods. Note that the limit in σk for k ≤ 5 is taken down to the θ corresponding

to the last jump in the signature function of T (2, k), as this is where we expect

to find the largest difference between σω(T (3,m)) and σω(T (2, k)
n) for small m.

1/6 1/2

2

1/4 1/2

1

3

3/10 1/2

2

4

Figure 5.2: Levine-Tristram signatures of the T (2, k) torus links for k = 3, 4, 5.
The x-axis is θ, and the y-axis is the signature function evaluated at ω = e2πiθ.

Lemma 5.6. Let β ∈ B+
3 be a positive braid of length ℓ(β) and let n be a

non-negative integer. Then

(i) dχ(β̂, T (2, 3)
n) ≥ |2n− ℓ(β)/3| − 2,

(ii) dχ(β̂, T (2, 4)
n) ≥ |3n− ℓ(β)/2| − 2,

(iii) dχ(β̂, T (2, 5)
n) ≥ |4n− 3ℓ(β)/5| − 2,

(iv) dχ(β̂, T (2, k)
n) ≥ |(k − 1)n− 2ℓ(β)/3| − 4 for k ≥ 6 if β̂ is a torus link.

Proof. Let k ≥ 3. For k ≤ 5, Lemma 5.5 as well as the values σk(T (2, k)) = k−1

yield

max
ω∈S1

|σω(T (2, k)n)− σω(β̂)| ≥ |σk(T (2, k)n)− σk(β̂)| ≥ |(k− 1)n− 2θkℓ(β)| − 2,

where θ3 = 1/6, θ4 = 1/4, θ5 = 3/10. For k ≥ 6 on the other hand, we have

max
ω∈S1

|σω(T (2, k)n)− σω(β̂)| ≥ |(k − 1)n− 2ℓ(β)/3| − 4.

Here we use in addition that |σ(T (3,m))−4m| ≤ 4, which follows from [GG05],

specifically Proposition 5.2 and the fact that the homogeneous signature on Bn

differs from the signature by at most 2n, which is mentioned in their Section 5.1.
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Alternatively, explicit computations for the classical signatures of torus knots

can be gathered from [GLM81], specifically Theorem 5.2. The desired results

now follow from the well-known inequality

dχ(L,L
′) ≥ max

{
|σω(L)− σω(L

′)| | ω ∈ S1
}

for all links L,L′.

5.3 Proofs of main results

In this section, we combine the bounds from the previous two sections to con-

struct essentially minimal cobordisms between the closure β̂ of a non-split pos-

itive braid β ∈ B+
3 or T (3,m) and T (2, k)n. In the case k ∈ {3, 4, 5, 6}, all

these cobordisms factor through one specific link, approximately T (2, k)[ℓ(β)/k]

or T (2, k)[2m/k], respectively.

Proofs of Theorems 5.1, 5.2, and 5.3. We have χ(β̂) = −(ℓ(β)− 2) for all non-

split positive braid words β ∈ B+
3 , and χ(T (2, k)n) = −n(k − 1) for all k ≥ 3.

Therefore, by the slice-Bennequin inequality [Rud93], we obtain

dχ(β̂, T (2, k)
n) ≥ |χ(T (2, k)n)− χ(β̂)| = |(k − 1)n− ℓ(β)| − 2. (5.1)

Combining this inequality with Lemma 5.6 yields a piecewise linear lower bound

for dχ(β̂, T (2, k)
n) in n. A quick calculation shows

dχ(β̂, T (2, k)
n) ≥ ℓ(β)/k + (k − 1)|n− ℓ(β)/k| − ck

for all k ≥ 3, where c3 = c4 = c5 = 2 and c6 = 4. This takes care of the claimed

lower bounds.

Next, we turn to the upper bounds. Let k ∈ {3, 4, 5, 6} and β ∈ B+
3 be a

non-split positive braid. If k ≥ 4, we assume in addition that β̂ is a torus link

T (3,m), for which we have ℓ(β) = 2m. Let C̃3 = 9, C̃4 = 6, C̃5 = 19, C̃6 = 20.

Recall that we have shown in Section 5.1 for all N ≥ 0 such that kN ≤ ℓ(β)−C̃k,

that

dχ(β̂, T (2, k)
N ) ≤ ℓ(β)− (k − 1)N + 2. (5.2)

Let N be the maximal integer satisfying this restriction, and let n ≥ N be

arbitrary. We use the triangle inequality to derive the upper bound in question.
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It is easy to see that dχ(T (2, k)
N , T (2, k)n) = (k − 1)(n−N). We thus obtain

dχ(β̂, T (2, k)
n) ≤ dχ(β̂, T (2, k)

N ) + dχ(T (2, k)
N , T (2, k)n)

≤ ℓ(β)− (k − 1)N + 2 + (k − 1)(n−N)

= ℓ(β) + (k − 1)n+ 2− 2(k − 1)N.

We have kN ≥ ℓ(β)− (C̃k + k − 1) by maximality of N . This yields

dχ(β̂, T (2, k)
n) ≤ (k − 1)n− (k − 2)ℓ(β)

k
+ 2(k − 1)

C̃k + k − 1

k
+ 2.

Combining (5.2) with this inequality proves Theorems 5.1 and 5.2 for the con-

stants Ck = 2(k−1)(C̃k+k−1)/k+2. We obtain the following explicit constants:

(i) C3 = 50/3,

(ii) C4 = 31/2,

(iii) C5 = 194/5,

(iv) C6 = 131/3.

Proof of Theorem 5.3. The lower bounds come from Lemma 5.6 and Equa-

tion (5.1) (where we apply m ≥ n/3). The upper bound for point (ii) was

done in Section 5.1, so only the upper bound for point (i) is missing. To this

end, we describe a two-step process to construct a cobordism from T (3,m) to

T (2, k)n. Let n ≥ m/3. First, a cobordism of Euler characteristic −(k − 6)n

transforms T (2, k)n into T (2, 6)n. Next, by Theorem 5.2 we know that

dχ(T (3,m), T (2, 6)n) ≤ 5n− 4m/3 + Ek(m,n).

Putting the two together we obtain the claimed bound

dχ(T (3,m), T (2, k)n) ≤ dχ(T (3,m), T (2, 6)n) + dχ(T (2, 6)
n, T (2, k)n)

≤ (k − 1)n− 4m/3 + Ek(m,n),

where |Ek(m,n)| ≤ |E6(m,n)| ≤ C6.
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[BGJP18] Rubén Blasco-Garćıa, Arye Juhász, and Luis Paris, Note on the

residual finiteness of Artin groups, Journal of Group Theory 21

(2018), no. 3, 531–537.

[BH73] Joan S. Birman and Hugh M. Hilden, On isotopies of homeomor-

phisms of Riemann surfaces, The Annals of Mathematics 97 (1973),

no. 3, 424.

[Bir69] Joan S. Birman, On braid groups, Communications on Pure and Ap-

plied Mathematics 22 (1969), 41–72.

[BL21] Sebastian Baader and Michael Lönne, Secondary braid groups, 2021,

arXiv:2001.09098.

[BM06] Robert W. Bell and Dan Margalit, Braid groups and the co-Hopfian

property, Journal of Algebra 303 (2006), no. 1, 275–294.

[BR23] Sebastian Baader and Levi Ryffel, Trefoils and hexafoils in 3-braids,

2023, arXiv:2310.11836.

79



[BS72] Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-

Gruppen, Inventiones Mathematicae 17 (1972), no. 4, 245–271.

[CMM21] Matt Clay, Johanna Mangahas, and Dan Margalit, Right-angled

Artin groups as normal subgroups of mapping class groups, Com-

positio Mathematica 157 (2021), no. 8, 1807–1852.

[Cox35] H. S. M. Coxeter, The complete enumeration of finite groups of the

form R2
i = (RiRj)

kij = 1, Journal of the London Mathematical

Society s1-10 (1935), no. 1, 21–25.

[Cox57] , Factor groups of the braid groups, Proceedings of the Fourth

Can. Math. Cong. (1957), 95–122.

[CP01] John Crisp and Luis Paris, The solution to a conjecture of Tits on

the subgroup generated by the squares of the generators of an Artin

group, Inventiones Mathematicae 145 (2001), no. 1, 19–36.

[CP03] Ruth Charney and David Peifer, The K(π, 1)-conjecture for the

affine braid groups, Commentarii Mathematici Helvetici 78 (2003),

584–600.

[Cri99] John Crisp, Injective maps between Artin groups, pp. 119–138, De

Gruyter, Berlin, New York, 1999.

[Fel16] Peter Feller, Optimal cobordisms between torus knots, Communica-

tions in Analysis and Geometry 24 (2016), no. 5, 993–1025.

[FM11] Benson Farb and Dan Margalit, A primer on mapping class groups,

Princeton University Press, December 2011.

[Fox58] Ralph H. Fox, Congruence classes of knots, Osaka Mathematical

Journal 10 (1958), no. 1, 37 – 41.

[FW87] John Franks and R. F. Williams, Braids and the jones polynomial,

Transactions of the American Mathematical Society 303 (1987),

no. 1, 97–108.

[FYH+85] P. Freyd, D. Yetter, J. Hoste, W. B.R. Lickorish, K. Millett, and

A. Ocneanu, A new polynomial invariant of knots and links, Bulletin

of the American Mathematical Society 12 (1985), no. 2, 239–246

(English (US)).

[Gar69] F. A. Garside, The braid group and other groups, The Quarterly

Journal of Mathematics 20 (1969), no. 1, 235–254.

80



[GG05] Jean-Marc Gambaudo and Étienne Ghys, Braids and signatures,

Bull. Soc. math. France 133 (2005), no. 4, 541–579.

[GLM81] C. Mca. Gordon, R. A. Litherland, and K. Murasugi, Signatures of

covering links, Canadian Journal of Mathematics 33 (1981), no. 2,

381–394.

[HB73] V. E. Hoggatt. and Marjorie Bicknell, Roots of fibonacci polynomials,

Fibonacci Quart. 11 (1973), no. 3, 271–274.

[Hum89] Stephen P. Humphries, Free products in mapping class groups gener-

ated by Dehn twists, Glasgow Mathematical Journal 31 (1989), no. 2,

213–218.

[Kob12] Thomas Koberda, Right-angled artin groups and a generalized iso-

morphism problem for finitely generated subgroups of mapping class

groups, Geometric and Functional Analysis 22 (2012), no. 6, 1541–

1590.

[KP02] Richard P. Kent IV and David Peifer, A geometric and algebraic de-

scription of annular braid groups, Int. J. Algebra Comput. 12 (2002),

85–97.

[Lab97] Catherine Labruère, Generalized braid groups and mapping class

groups, Journal of Knot Theory and Its Ramifications 06 (1997),

no. 05, 715–726.

[Lic97] W. B. Raymond Lickorish, An introduction to knot theory, Springer

New York, 1997.

[LS01] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory,

Springer Berlin Heidelberg, 2001.

[Lö10] Michael Lönne, Presentations of subgroups of the braid group gen-

erated by powers of band generators, Topology and its Applications

157 (2010), no. 7, 1127–1135.
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