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Chapter 1

Introduction

This thesis is based on [15–17].

1.1 An introductory example

Assume group A arrives at the mountain hut and is planing to climb the summit
the following day. Therefore their goal is to find out if the conditions are good
or bad. Everybody knows the theory including if the conditions are bad then
they won’t reach the summit. Group A sees from the hut that group B is on the
summit. By using the theory they derive that the conditions are not bad. So they
believe that the conditions are not bad. But then group C returns to the hut.
They tried to reach the summit but turned around because they considered the
conditions bad. Group C tells group A that they turned around because of bad
conditions, which creates a contradiction for group A, leaving them in confusion.

Let us analyse this example by using logic. Therefore let X = bad conditions,
Y = group B reaches the summit, ¬ the negation, ∧ the and-connective, → the
implication and the theory T = {X → ¬Y }. Note that the theory is equivalent
to {Y → ¬X}. Here classical propositional logic models the reasoning of group
A: Given X and Y , ¬X is derived from Y → ¬X and Y . They get X ∧ ¬X,
which is a contradiction. We see that classical propositional logic captures only
a fraction of this example.

So we add a modal operator □, which can be interpreted as belief. We also
add a subscript to □ defining the group, that has the belief. First of all everybody
knows the theory: □AT , □BT and □CT . By seeing group B on the summit we
have □AY . From group C we get □CX and □AX. The □ operator passes the
modus ponens, so □A(Y → ¬X) → (□AY → □A¬X) is an axiom. Given □AT
and □AY we derive □A¬X. We therefore get □A(¬X ∧ X). In the context of
a belief modality this is not a contradiction, but it makes group A look pretty
stupid.

Justification logic replaces the modal operator □ by an explicit justification
term. Let b be the term justifying Y by seeing group B on the summit (b : Y )
and c for the information of group C (c : X). Further we assume a justification
term t for the theory (t : (Y → ¬X)). When applying modus ponens with
justifications it is standard to combine the terms by using multiplication, so
t : (Y → ¬X) → (b : Y → t · b : ¬X) is an axiom. We therefore derive t · b : ¬X
and still have c : X. Instead of a belief modality we have now two different
terms justifying these contradictory propositions. If we combine these through
¬X → (X → ¬X∧X) and omit justifications for axioms we get t·b·c : (¬X∧X).
The novel approach of the work in this thesis is to interpret such a term in a
semiring, for example the Viterbi semiring V = ([0, 1],max, ·, 0, 1), which models
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trust. Because ¬X ∧X is a contradiction its confidence score must be 0, yielding
t · b · c = 0 and then t = 0, b = 0 or c = 0. Therefore by interpreting justifications
in a semiring, group A reaches the correct conclusion that group B reached the
summit despite bad conditions, the shapes on the summit were not people or
group C did not estimate the conditions properly.

1.2 Mathematical preliminaries

In this section we set up the mathematical background. This includes the defi-
nitions of a semiring, ω-continuity and Scott-continuity, some properties thereof
and the Kleene fixed point theorem as an important result.

Definition 1. Let S be a set and + : S × S → S. (S,+) is a monoid if:

1. (a + b) + c = a + (b + c) for all a, b, c ∈ S,
2. there is e ∈ S with e + a = a + e = a for all a ∈ S.

We also write (S,+, e) for a monoid with neutral element e. A monoid is com-
mutative if a + b = b + a for all a, b ∈ S.

Definition 2 (Semiring). K = (S,+, ·, 0, 1), where S is the domain, is a
semiring, if for all a, b, c ∈ S:

1. (S,+, 0) is a commutative monoid
2. (a · b) · c = a · (b · c) and a · 1 = 1 · a = a
3. (a + b) · c = a · c + b · c and c · (a + b) = c · a + c · b
4. a · 0 = 0 · a = 0

Now we define some special cases of semirings, see also [21].

Definition 3. Semirings can have the following properties:

– A semiring is naturally ordered if the relation ≤ given by a ≤ b ⇔ ∃s ∈ S :
a + s = b is a partial order. That is the case iff ≤ is antisymmetric (a ≤ b
and b ≤ a imply a = b).

– A semiring is complete if it has an infinitary sum operation satisfying:∑
i∈∅ ai = 0,∑
i∈{j} ai = aj,∑
i∈{j,k} ai = aj + ak for j ̸= k,∑
j∈J

∑
i∈Ij

ai =
∑

i∈I ai if
⋃

j∈J Ij = I and Ij ∩ Ik = ∅ for j ̸= k,∑
i∈I(a · ai) = a · (

∑
i∈I ai),∑

i∈I(ai · a) = (
∑

i∈I ai) · a.
– A semiring is ω-continuous if it is naturally ordered, complete, and for all

sequences (ai)i∈N with ai ∈ S: sup{
∑n

i=0 ai | n ∈ N} exists and is equal
to

∑
i∈N

ai, where sup is the smallest upper bound according to the natural
order ≤.
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We are especially interested in ω-continuous semirings. By ≤ we denote the
partial order given by the semiring being naturally ordered. ≤ is called a well-
order on X ⊆ S if it is a total order on X and defines a least element in X.

Definition 4. Let K = (R,+, ·, 0, 1) and L = (S,+, ·, 0, 1) be ω-continuous
semirings. A function f : R → S is Scott-continuous if for all countable subsets
X ⊆ R such that ≤ is a well-order on X: sup(f(X)) = f(sup(X)).

An important property of Scott-continuous functions is the monotonicity, which
is very easy to prove.

Lemma 1. Scott-continuous functions are monotone
(a ≤ b implies f(a) ≤ f(b)).

Proof. Let f : R → S be Scott-continuous and a ≤ b. By definition of Scott-
continuity we get sup({f(a), f(b)}) = sup(f({a, b})) = f(sup({a, b})) = f(b).
This means f(b) is an upper bound for {f(a), f(b)}, therefore f(a) ≤ f(b). ⊓⊔

Further we investigate in the preservation of Scott-continuity under operators,
including those from the semiring. Scott-continuity is not only preserved under
the addition but even under the infinitary sum operation of the ω-continuous
semiring. It is also preserved under the multiplication. Both these properties
come mainly from the definition of the infinitary sum operation and the ω-
continuity. The multiplication case additionally needs a rearrangement of an
infinite double sum. For function composition it is trivial. We summarize these
preservation properties in the following lemma.

Lemma 2. Let K = (S,+, ·, 0, 1) be an ω-continuous semiring and fi : S → S
with i ∈ N Scott-continuous functions. Then

1.
∑

i∈N
fi is Scott-continuous, where (

∑
i∈N

fi)(x) :=
∑

i∈N
(fi(x)),

2. f1 · f2 is Scott-continuous, where (f1 · f2)(x) := f1(x) · f2(x),
3. f1 ◦ f2 is Scott-continuous.

Proof. A countable set X = {x0, x1, ...} with a well-order can be written as
partial sums: There is a sequence (ai)i∈N such that X = {

∑n

i=0 ai | n ∈ N}
and xi ≤ xj for i ≤ j. We therefore have xn =

∑n

i=0 an. sup(X) =
∑

i∈N
ai

follows by ω-continuity. fi(X) has also a well-order because of the monotonicity
of Scott-continuous functions.

1. (
∑

i∈N
fi)(sup(X)) =

∑
i∈N

fi(sup(X)) =
∑

i∈N
sup(fi(X)).

By ω-continuity sup(fi(X)) can be written as an infinite sum
∑

j∈N
aij . Then

the derivation continues as∑
i∈N

∑
j∈N

aij =
∑

j∈N

∑
i∈N

aij = sup({
∑n

j=0(
∑

i∈N
aij) | n ∈ N})

= sup({(
∑

i∈N
fi)(xn) | n ∈ N}) = sup((

∑
i∈N

fi)(X)).
2. (f1 · f2)(sup(X)) = f1(sup(X)) · f2(sup(X)) = sup(f1(X)) · sup(f2(X)).

We write sup(f1(X)) as
∑

i∈N
bi and sup(f2(X)) as

∑
j∈N

cj . Then the
derivation continues as
(
∑

i∈N
bi) · (

∑
j∈N

cj) =
∑

j∈N
((
∑

i∈N
bi) · cj) =

∑
j∈N

∑
i∈N

bi · cj
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=
∑

(i,j)∈N2 bi · cj =
∑

n∈N

∑
max(i,j)=n bi · cj

= sup({
∑

max(i,j)≤n bi · cj | n ∈ N}) = sup({
∑n

i=0 bi ·
∑n

j=0 cj | n ∈ N})

= sup({f1(xn) · f2(xn) | n ∈ N}) = sup({(f1 · f2)(xn) | n ∈ N})
= sup((f1 · f2)(X))

3. f1(f2(sup(X))) = f1(sup(f2(X))) = sup(f1(f2(X))). ⊓⊔

While the preservation properties of Scott-continuous functions will be important
later, we use the monotonicity now to prove the fixed point theorem [30], which
will be a crucial part in the realization of common knowledge.

Theorem 1 (Fixed point theorem). Let K = (S,+, ·, 0, 1) be a ω-continuous
semiring and f : S → S a Scott-continuous function. Then f has a fixed point.

The proof begins by building the ascending Kleene chain, a sequence starting at
0 then applying f repeatedly. It turns out that the supremum of this chain is a
fixed point of f .

Proof. We show fn(0) ≤ fn+1(0) by induction on n. For n = 0 we have obviously
0 ≤ f(0). If fn−1(0) ≤ fn(0) then by monotonicity of Scott-continuous functions
we get f(fn−1(0)) ≤ f(fn(0)) which is fn(0) ≤ fn+1(0). This allows us to define
a sequence (ai)i∈N such that

∑n

i=0 ai = fn(0). We define X := {fn(0) | n ∈ N}
and get f(X) ∪ {0} = X. By the ω-continuity sup(X) exists and is equal to∑

i∈N
ai. So we can apply it to obtain sup(f(X)) = sup(f(X) ∪ {0}) = sup(X).

By using the definition of Scott-continuity we get f(sup(X)) = sup(X), which
shows that sup(X) is a fixed point. ⊓⊔



Chapter 2

Modal logic

In this section we introduce the modal logics, that we will use later. They are
all based on classical propositional logic (CL), which is the most used base of
reasoning. We therefore start by introducing CL briefly.

2.1 Classical Propositional Logic

For the syntax let Prop = {P1, P2, ...} be an arbitrary set of atomic propositions.
We define the formulas of CL inductively as follows:

– ⊥,
– Pi, where Pi ∈ Prop,
– A → B, where A and B are formulas.

Further we define as usual:

– ¬A := A →⊥,
– ⊤ := ¬ ⊥,
– A ∨B := ¬A → B,
– A ∧B := ¬(¬A ∨ ¬B),
– A ↔ B := (A → B) ∧ (B → A).

We describe classical propositional logic by three axiom schemes and the modus
ponens scheme. In an axiom scheme A,B and C can be arbitrary formulas.
The axioms are all the formulas resulting from substituting A,B,C in an axiom
scheme by formulas. The rules are built analogously from the modus ponens
scheme.

CL1 A → (B → A)
CL2 (A → (B → C)) → ((A → B) → (A → C))
CL3 ¬¬A → A

MP
A → B A

B

We write ⊢CL A if A is derivable in CL.
For the semantics a model assigns a truth value to each formula. In classical
propositional logic a model M consists solely of a truth assignment ∗ : Prop →
{F,T} for atomic propositions. By M ⊩ A we denote that A is true in M , which
is defined as follows:

– M ⊮⊥,
– M ⊩ Pi ⇔ ∗(Pi) = T,
– M ⊩ A → B ⇔ M ⊮ A or M ⊩ B.
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We say A is valid (in symbols: ⊩ A) if M ⊩ A for all models M . The intro-
duced axiomatic system is known to be sound and complete with respect to the
introduced class of models (see [19]):

⊢CL A ⇔ ⊩ A for all formulas A.

2.2 Logics with a single modality

Modal logic extends propositional logic by modalities. We first discuss the case,
where a single modality □ is added.

2.2.1 Syntax

For defining the language L□ inductively let Prop again be a set of atomic
propositions. Then:

– ⊥∈ L□,
– Pi ∈ L□, where Pi ∈ Prop,
– A → B ∈ L□, where A,B ∈ L□,
– □A ∈ L□, where A ∈ L□.

A formula of the form □A can be interpreted in different ways:

– A is believed to be true,
– A is known to be true,
– A is obligatory, and so on.

2.2.2 Axiomatic systems

With so many ways of interpreting modalities it is no surprise that there is not
a single axiomatic system covering these cases. We introduce two of the most
famous logics.
The logic K adds the axiom scheme K and the necessitation rule to CL:

CL1 A → (B → A)
CL2 (A → (B → C)) → ((A → B) → (A → C))
CL3 ¬¬A → A
K □(A → B) → (□A → □B)

MP
A → B A

B

Nec
A

□A

In K we can have that □A is true, but A is false. Therefore □ can be interpreted
as belief instead of knowledge. The axiom K describes how belief passes the
modus ponens rule: If A → B is believed and A is believed then B is also
believed.
The logic S4 adds the axiom schemes t and 4 to K:
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t □A → A
4 □A → □□A

The axiom t is called the truth axiom. It suggests an interpretation of □ as
knowledge rather than belief. If we interpret it as knowledge of an agent then
it means if the agent knows A then A is true. Axiom 4 describes the ability of
the agent to reason about his knowledge: If he knows A then he knows that he
knows A.

2.2.3 Semantics

For modal logics it is standard to use Kripke semantics, also called possible world
semantics. A formula of the form □A is true in a world w, if and only if A is true
in all worlds that are visible/accessible from w. The details differ depending on
the logic. We introduce the Kripke semantics for the logic K and point out the
differences to S4.
Let W be a non-empty set of possible worlds, R ⊆ W × W an accessibility
relation and ∗ : Prop → P(W ) a valuation function. Then M = (W,R, ∗) is a
Kripke model. For S4 the accessibility relation has to be reflexive and transitive
in order to deal with the axioms t and 4. We define the truth value of a formula
in a world w in M as follows:

– M,w ⊮⊥,
– M,w ⊩ P ⇔ w ∈ ∗(P ),
– M,w ⊩ A → B ⇔ M,w ⊮ A or M,w ⊩ B,
– M,w ⊩ □A ⇔ M, v ⊩ A for all v with (w, v) ∈ R.

Further we say that A is true in a model M if it is true in all worlds of M :

M ⊩ A ⇔ M,w ⊩ A for all w ∈ W.

As before A is valid if it is true in all models. The logic K is known to be sound
and complete with respect to Kripke models:

⊢K A ⇔ ⊩ A for all formulas A.

Analogously S4 is sound and complete with respect to reflexive and transitive
Kripke models. The proof in [35] for S4 can easily be adapted to K.

2.3 The sequent calculus GK

In this section we introduce the sequent calculus GK, which is equivalent to the
logic K, but built in a different way. It depends on multisets of formulas in L□.
Such a multiset can be seen as a function f : L□ → N defining how many times
each element is in the multiset. If Γ and ∆ are multisets of formulas, then the
expression Γ ⊃ ∆ is a sequent. The sequent Γ ⊃ ∆ can be interpreted informally
as

∧
Γ →

∨
∆. The axioms of GK are

P ⊃ P and ⊥⊃
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where P ∈ Prop. The rules of GK are the following:

(→⊃)
Γ ⊃ ∆,A B, Γ ⊃ ∆

A → B,Γ ⊃ ∆
(⊃→)

A,Γ ⊃ ∆,B

Γ ⊃ ∆,A → B

(□)
Γ ⊃ A

□Γ ⊃ □A

(w ⊃)
Γ ⊃ ∆

A,Γ ⊃ ∆
(⊃ w)

Γ ⊃ ∆

Γ ⊃ ∆,A

(c ⊃)
A,A, Γ ⊃ ∆

A,Γ ⊃ ∆
(⊃ c)

Γ ⊃ ∆,A,A

Γ ⊃ ∆,A

The system GK is sound and complete for the modal logic K, see, e.g., [41, 43]:

⊢GK⊃ A ⇔ ⊢K A for all A ∈ L□.

2.4 Common Knowledge

In this part we introduce common knowledge, which is a multi-modal logic. It
represents a system with multiple agents and their knowledge or beliefs. For
example agent 1 knows A is written as □1A. This principle can be applied
to different modal logics, defining the role of the □ operator. In our case the
underlying logic is K, so we do not have a truth axiom and the □ operators can
be read as beliefs. Additionally there is the common knowledge operator C. CA
means everybody knows A, everybody knows that everybody knows A and so
on. By defining EA as everybody knows A we see that CA = EA∧EEA∧ ... is
a fixed point of the function f(X) = EA ∧ EX.
Let h ∈ N≥1 be the number of agents and Prop a set of atomic propositions. We
define the language LC of common knowledge inductively:

– ⊥∈ LC ,
– P ∈ LC , where P ∈ Prop,
– A → B ∈ LC , where A,B ∈ LC ,
– □iA ∈ LC , where A ∈ LC and 1 ≤ i ≤ h,
– CA ∈ LC , where A ∈ LC .

We define EA :=
∧h

i=1 □iA.
There are various axiomatic systems for common knowledge. They differ in three
ways:

– The underlying logic shows by the axioms describing the reasoning of each
agent. If it is for example S4 then we have the truth axiom □iA → A for
1 ≤ i ≤ h.

– The common knowledge operator can be reflexive or not. This has an impact
on the closure axioms and induction axioms. We choose the second option
and therefore the closure axiom includes CA → EA instead of CA → A.
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– There are different ways to axiomatize the same logic. For common knowl-
edge the induction rule is often used, which describes CA as a greatest fixed
point by deriving B → CA from B → E(A∧B). We instead use the induction
axiom. A proof for the equivalence can be found in [39].

The Hilbert-style system with induction axiom HAx consists of the following
axiom schemes and rules:

CL Every instance of a propositional tautology
Modal axioms □i(A → B) → (□iA → □iB)
C-Modal axioms C(A → B) → (CA → CB)
Closure axioms CA → EA ∧ ECA
Induction axioms EA ∧ C(A → EA) → CA

MP
A → B A

B

C-Nec
A

CA

For the semantics Kripke models are standard. We omit the introduction thereof,
as it is not relevant to us and refer to [22, 39, 40].

2.5 The System SAx

The language of common knowledge is somehow incomplete: It represents the
infinite formula

∧∞
n=1 E

nA as CA but other infinite formulas like
∧∞

n=1 E
2nA

have no representation. We fill this gap by introducing the system SAx. We
begin by defining the language LS based on a set of atomic propositions Prop

inductively. h denotes the number of agents, E := {□1, ...,□h}, ∗ is the Kleene
star, ϵ the empty word and C := E∗ \ {ϵ}.

– ⊥∈ LS ,

– P ∈ LS , where P ∈ Prop,

– A → B ∈ LS , where A,B ∈ LS ,

– SA ∈ LS , where S ⊆ E∗ and A ∈ LS .

SA is informally read as
∧

s∈S sA. Between common knowledge and SAx lies a
difference in cardinality: Common knowledge represents only countably infinite
different situations of agents knowing about A in a single formula. But all situa-
tions are described exactly by the powerset of E∗, which has the same cardinality
as the set of real numbers. The language LS therefore features arbitrary subsets
of E∗, covering the uncountably infinite number of possible situations.
The trivial translation ′ from LC to LS replaces the modal operators by sets in
the obvious way. For R,S ⊆ E∗ we define the concatenation as
RS := {rs | r ∈ R, s ∈ S}.
The system SAx consists of the following axiom schemes and rules:
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CL Every instance of a propositional tautology
Set axioms 1 RA ∧ SA ↔ (R ∪ S)A
Set axioms 2 R(SA) ↔ (RS)A
Modal axioms S(A → B) → (SA → SB)
Induction axioms EA ∧ C(A → EA) → CA

MP
A → B A

B

C-Nec
A

CA

We have to add two set axiom schemes but the C-Modal axioms fall together
with the modal axioms and we can omit the closure axioms. Later we will also
use the following equivalent axiomatization, which includes three explicit axiom
schemes for CL and avoids the equivalence connective:

CL1 A → (B → A)
CL2 (A → (B → C)) → ((A → B) → (A → C))
CL3 ((A →⊥) →⊥) → A
Set axioms 1.1 RA ∧ SA → (R ∪ S)A
Set axioms 1.2 (R ∪ S)A → RA ∧ SA
Set axioms 2.1 R(SA) → (RS)A
Set axioms 2.2 (RS)A → R(SA)
Modal axioms S(A → B) → (SA → SB)
Induction axioms EA ∧ C(A → EA) → CA

MP
A → B A

B

C-Nec
A

CA

Obviously SAx is an extension of HAx:

T ⊢HAx
A implies T ′ ⊢SAx

A′.

The inverse translation ⋆ is more complicated. Because LC can’t represent certain
formulas of LS , it is partial. But the domain can be chosen way bigger than LC

′.
We define D as ∅ ∈ D, {ϵ} ∈ D, {□i} ∈ D, C ∈ D, R ∈ D and S ∈ D implies
R∪S ∈ D and RS ∈ D. We denote the language of LS restricted to sets in D as
LD. For each S ∈ D we fix a finite tree describing the composition of S in basic
elements (∅, {ϵ}, {□i} and C). Such a tree has S on the root, basic elements on
the leaves and each node (except leaves) has two successors, which are ordered.
If a node is labelled by X, successor 1 by R and successor 2 by S, then we must
have X = R∪S or X = RS. This tree is needed because C = E ∪EC. Then we
can define ⋆ : LD → LC according to the tree as follows:

– ⊥⋆=⊥
– P ⋆ = P
– (A → B)⋆ = A⋆ → B⋆

– (∅A)⋆ = ⊤
– ({ϵ}A)⋆ = A⋆

– ({□i}A)⋆ = □iA
⋆
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– (CA)⋆ = CA⋆

– ((R ∪ S)A)⋆ = (RA)⋆ ∧ (SA)⋆

– ((RS)A)⋆ = (R(SA))⋆

For T ⊆ LD and A ∈ LD we get

T ⊢SAx
A implies T ⋆ ⊢HAx

A⋆.

Therefore SAx is a conservative extension of HAx.



Chapter 3

Semirings of Evidence

In traditional justification logic, evidence terms have the syntactic form of poly-
nomials, but they are not equipped with the corresponding algebraic structure.
In this chapter we present a novel semantic approach to justification logic that
models evidence by a semiring. Hence justification terms can be interpreted as
polynomial functions on that semiring. This provides an adequate semantics for
evidence terms and clarifies the role of variables in justification logic. Moreover,
the algebraic structure makes it possible to compute with evidence. Depending
on the chosen semiring this can be used to model trust, probabilities, cost, etc.

Our approach is heavily inspired by the semiring approach for provenance in
database systems [28]. There the idea is to label database tuples and to propa-
gate expressions in order to annotate intermediate data and final outputs. One
can then evaluate the provenance expressions in various semirings to obtain in-
formation about levels of trust, data prices, required clearance levels, confidence
scores, probability distributions, update propagation, and many more [29].

This semiring framework has been adapted to many different query languages
and data models. The core theoretical work of those approaches includes results
on query containment, the construction of semirings, and fixed points [2, 3, 20,
23, 24, 26, 27].

There are only few systems available where justification terms are equipped
with additional structure. Two prominent examples are based on λ-terms (in
contrast to the combinatory terms of the Logic of Proofs). The reflective lambda
calculus [1] includes reduction rules on proof terms. The intensional lambda
calculus [9] has axioms for evidence equality and also features a reduction relation
on the terms. Another example is Krupski’s recent work on sharp justification
logics [31].

This chapter is based on [16, 17].

3.1 Introduction to Justification Logic

Justification logic replaces the □-operator from modal logic with explicit evi-
dence terms [4, 10, 35]. That is, instead of formulas □A, justification logic fea-
tures formulas t : A, where t encodes evidence for A. Depending on the context,
the term t may represent a formal proof of A [4, 34] or stand for an informal
justification (like direct observation, public announcement, private communica-
tion, and so on) for an agent’s knowledge or belief of A. With the introduction
of possible world models, justification logic has become an important tool to
discuss and analyze epistemic situations [5, 6, 13, 14, 42].

The terms of justification logic represent explicit evidence for an agent’s be-
lief or knowledge. Within justification logic, we can reason about this evidence.
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For instance, we can track different pieces of evidence pertaining to the same
fact, which is essential for distinguishing between factive and non-factive justifi-
cations. This is applied nicely in Artemov’s analysis of Russel’s Prime Minister
example [7]. Evidence terms can also represent the reasoning process of an agent.
Therefore, agents represented by justification logic systems are not logically om-
niscient according to certain complexity based logical omniscience tests [11–13].

In traditional justification logic, terms are built using the binary operations +
(called sum) and · (called application) and maybe other additional operations.
Thus terms have the syntactic form of polynomials and are, in the context of
the Logic of Proofs, indeed called proof polynomials.

This syntactic structure of polynomials is essentially used in the proof of
realization, which provides a procedure that, given a theorem of a modal logic,
constructs a theorem of the corresponding justification logic by replacing each
occurrence of □ with an adequate justification term [4].

In this chapter we look at the syntactic structure of justification terms alge-
braically, that is, we interpret justifications by a semiring structure. The moti-
vation for this is threefold:

1. It provides an appropriate semantics for variables in evidence terms. It was
always the idea in justification logic that terms with variables justify deriva-
tions from assumptions. The variables represent the input values, i.e., (ar-
bitrary) proofs of the assumptions [4]. But this was not properly reflected
in the semantics where usually variables are treated like constants: to each
term (no matter whether it contains variables or not) some set of formulas is
assigned. In our semiring semantics, ground terms (i.e. terms not containing
variables) are interpreted as elements of a semiring and terms with variables
are interpreted as polynomial functions on the given semiring of justifica-
tions. Thus terms with variables are adequately represented and the role of
variables is clarified.

2. The algebraic structure of terms makes it possible to compute with justifi-
cations. Depending on the choice of the semiring, we can use the term struc-
ture to model levels of trust (Viterbi semiring), costs of obtaining knowledge
(tropical semiring), probabilistic evidence (powerset semiring), fuzzy justifi-
cations ( Lukasiewicz semiring), and so on.

3. Considering ω-continuous semirings, i.e. semirings in which certain fixed
points exist, provide a solution to the problem of realizing the logic of com-
mon knowledge (see Chapter 4).
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3.2 The Syntax of SE

We begin by defining the justification language as usual. That is, we use a
countable (infinite) set of constants JConst = {0, 1, c1, c2, ...} that includes two
distinguished elements 0 and 1. Further we have a countable (infinite) set of
variables JVar = {x1, x2, ...}.

Definition 1 (Justification Term). Justification terms are

c ∈ JConst, x ∈ JVar, s · t, and s + t,

where s and t are justification terms. The set of all justification terms is called
Tm. A justification term that does not contain variables is called ground term.
GTm denotes the set of all ground terms.

Often we write only term for justification term. Further, we need a countable
set of atomic propostions Prop = {P1, P2, ...}.

Definition 2 (Formulas). Formulas are ⊥, P , A → B and t : A, where t is a
justification term, P ∈ Prop and A, B are formulas. The set of all formulas is
called Fml.

The remaining logical connectives ¬, ∧, ∨, and ↔ are abbreviations as usual,
e.g., ¬A stands for A → ⊥.

We will make use of substitutions to present the axioms of the logic SE.
Given a formula A we write A[w/t] for the result of simultaneously replacing
all occurrences of the variable w in A with the term t. For instance, if A is the
formula u : r · w : B, then A[w/s + t] denotes the formula u : r · (s + t) : B.
For substituting all variables simultaneously we use a function σ : JVar → Tm

by defining Aσ := A[x1/y1]...[xn/yn][y1/σ(x1)]...[yn/σ(xn)], where x1, ..., xn are
the variables occurring in A and the yi are fresh variables. We will use the same
notations for substitutions in terms.

Now we can define a deductive system for the logic SE about the semirings
of evidence. It consists of the following axioms, where w, x, y, z are variables and
A,B formulas.



15

The axioms of SE are:

CL Every instance of a propositional tautology
j x : (A → B) → (y : A → x · y : B)
j+ x : A ∧ y : A → (x + y) : A
a+ A[w/(x + y) + z] → A[w/x + (y + z)]
c+ A[w/x + y] → A[w/y + x]
0+ A[w/x + 0] ↔ A[w/x]
am A[w/(x · y) · z] ↔ A[w/x · (y · z)]
a0 A[w/x · 0] ↔ A[w/0] and A[w/0 · x] ↔ A[w/0]
a1 A[w/x · 1] ↔ A[w/x] and A[w/1 · x] ↔ A[w/x]
dl A[w/x · (y + z)] ↔ A[w/x · y + x · z]
dr A[w/(y + z) · x] ↔ A[w/y · x + z · x]

The rules of SE are:

MP
A A → B

B

and

jv
A

A[x/t]

The axiom schemes a+, c+, 0+, am, a0, a1, dl and dr are called semiring
axioms. In the axiom scheme j+, we find an important difference to traditional
justification logic where ∨ is used instead of ∧, see also Section 3.4 later. The
idea for j+ is to read s + t : A as both s and t justify A. This is useful, e.g., in
the context of uncertain justifications where having two justifications is better
than just having one. The rule jv shows the role of variables in SE, which differs
from traditional justification logic. In our approach a formula A(x) being valid
means that A(x) is valid for all justifications x.

Now we show by an example how the semiring axioms work. Assume a for-
mula A contains an occurrence of s+t (it may occur anywhere, even as a subterm
of some other term). Starting from A, we want to derive the formula B, which
is the same as A except that the occurrence of s + t is replaced by t + s. So we
let C be the formula A with this occurrence s+ t being replaced by a variable x
that doesn’t occur in A. Now C[x/s+ t] → C[x/t+s] is derived from an instance
of the axiom scheme c+ by jv and it is the same as A → B.

Let us mention two immediate consequences of our axioms. First a version
of axiom 0+ with x + 0 is replaced by 0 + x is provable. Second, the direction
from right to left in axiom a+ is also provable.

Lemma 1. The following formulas are derivable in SE:

A[w/0 + x] ↔ A[w/x] and A[w/x + (y + z)] ↔ A[w/(x + y) + z].

A theory is just any set of formulas.

Definition 3 (Theory). A theory T is a subset of Fml. We use T ⊢SE F to
express that F is derivable from T in SE.
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Often we drop the subscript SE in ⊢SE when it is clear from the context. Moreover,
we use ⊢CL for the derivability relation in classical propositional logic.

A theory can compensate for the absence of constant specifications. Usually,
systems of justification logic are parametrized by a constant specification, i.e., a
set containing pairs of constants and axioms. One then has a rule saying that
a formula c : A is derivable if (c, A) is an element of the constant specification.
Here we do not adopt this approach but simply use a theory that includes c : A.

Definition 4. A theory T is called axiomatically appropriate if

1. for all axioms A there exists c ∈ JConst with c : A ∈ T
2. for all B ∈ T there exists c ∈ JConst with c : B ∈ T .

Intuitively, in an axiomatically appropriate theory, all axioms have a justifica-
tion and also all elements of the theory have a justification. Using axiomatically
appropriate theories, we get an analogue of modal necessitation in SE.

Lemma 2 (Internalization). Let T be an axiomatically appropriate theory.
For any formula A, there exists a ground term t such that

T ⊢ A implies T ⊢ t : A.

Proof. Induction on a derivation of A.

1. A ∈ T or A is an axiom: t exists by the definition of an axiomatically
appropriate theory.

2. If A is obtained by MP from B → A and B, then by I.H. exist t1, t2 ∈ GTm

such that T ⊢SE t1 : (B → A) and T ⊢SE t2 : B. Thus T ⊢SE t : A holds for
t = t1 · t2.

3. If A[x/s] is obtained by jv from A, then by I.H. exists t ∈ GTm such that
T ⊢SE t : A. Finally, jv implies T ⊢SE t : A[x/s]. ⊓⊔

Remark 1 (Substitution). In order to replace variables with terms, we do not
need any properties of the theory T . In particular, we do not require it to be
schematic, see Definition 13. The implication

T ⊢SE A implies T ⊢SE A[x/t]

follows directly from rule jv.

Next we show that SE is a conservative extension of classical propositional
logic, which implies consistency of SE.

Theorem 1 (Conservativity). The logic SE is a conservative extension of
classical propositional logic, CL, i.e., for all formulas A of the language of CL,
we have

⊢SE A iff ⊢CL A.
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Proof. The claim from right to left is trivial as SE extends CL. For the direction
from left to right, we consider a mapping ◦ from Fml to formulas of CL that
simply drops all occurrences of t :. In particular, for any CL-formula A, we have
A◦ = A. Now it is easy to prove by induction on the length of SE derivations
that for all A ∈ Fml,

⊢SE A implies ⊢CL A◦.

Simply observe that for any axiom A of SE, A◦ is a propositional tautology, and
that the rules of SE respect the ◦-translation. ⊓⊔

Now consistency of SE follows immediately.

Corollary 1 (Consistency of SE). The logic SE is consistent.

Proof. Assume towards contradiction that ⊢SE⊥. By conservativity of SE over
CL we get ⊢CL⊥, which is a contradiction. ⊓⊔

Remark 2. The deduction theorem does not hold in SE. This is due to possible
occurrences of variables. For example {x : P} ⊢ 0 : P says that if every term
justifies P then also 0 justifies P , which is trivial. However ⊢ x : P → 0 : P is
not valid because it can be shown that ⊬ 1 : P → 0 : P .

3.3 The Semantics of SE

Our semantics of SE is similar to traditional semantics for justification logic in
the sense that t : A is given meaning by making use of an evidence relation.
Usually, this evidence relation assigns to each term a set of formulas, i.e. the
formulas that are justified by the term. The novelty of our approach is that the
evidence relation maps elements of a semiring to sets of formulas and terms are
interpreted by the elements of this semiring.

Note that we use + and · both as symbols in our language of justification
logic and as operations in the semiring. It will always be clear from the context
which of the two is meant.

For the following, assume we are given a semiring K = (S,+, ·, 0, 1). We use
a function I : JConst → S to map the constants of the language of SE to the
domain S of the semiring. We call this function I an interpretation if I(0) = 0
and I(1) = 1. We now extend I to a homomorphism such that I : Tm → S[JVar],
where S[JVar] is the polynomial semiring in JVar over S by setting:

1. I(x) := x for variables x
2. I(s + t) := I(s) + I(t) for terms s, t
3. I(s · t) := I(s) · I(t) for terms s, t

Let K = (S,+, ·, 0, 1) be a semiring with domain S. We define FmlS as the set
of formulas where we use elements of S instead of justification terms.

1. ⊥∈ FmlS
2. P ∈ FmlS, where P ∈ Prop
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3. A → B ∈ FmlS, where A ∈ FmlS and B ∈ FmlS
4. s : A ∈ FmlS, where A ∈ FmlS and s ∈ S

Definition 5 (Evidence relation). Let S be the domain of a semiring. We
call J ⊆ S × FmlS an evidence relation if for all s, t ∈ S and all A,B ∈ FmlS:

1. J(s,A → B) and J(t, A) imply J(s · t, B)
2. J(s,A) and J(t, A) imply J(s + t, A)

Definition 6 (Valuation). A valuation v is a function from JVar to S.

The polynomial I(t) can be viewed as a function tI : Sn → S, where n
is the number of variables that occur in t. Hence, given an interpretation I :
JConst → S and a valuation v, every t ∈ Tm can be mapped to an element
tI(v(x1), ..., v(xn)) in S, which we denote by tvI . By abuse of notation, we only
mention the variables that occur in the term t. For a variable x we have

v(x) = xI(v(x)) = xv
I .

Given the definition of the polynomial function tI , we find, e.g.,

xv
I · y

v
I = xI(v(x)) · yI(v(y)) = (x · y)I(v(x), v(y)) = (x · y)vI . (1)

For A ∈ Fml we define Av
I ∈ FmlS inductively:

1. ⊥v
I :=⊥

2. P v
I := P , where P ∈ Prop

3. (A → B)vI := Av
I → Bv

I , where A ∈ Fml and B ∈ Fml

4. (s : A)vI := svI : Av
I , where A ∈ Fml and s ∈ Tm

Let A ∈ Fml and let x1, . . . , xn be the variables that occur in A. Then AI denotes
the function AI : Sn → FmlS defined by AI(y1, ..., yn) := Av

I where v is such
that v(xi) = yi.

Definition 7 (Semiring model). A semiring model is a tuple M = (K, ∗, I, J)
where

1. K = (S,+, ·, 0, 1) is a semiring
2. ∗ is a truth assignment for atomic propositions, i.e., ∗ : Prop → {F,T}
3. I is an interpretation, i.e., I : JConst → S
4. J is an evidence relation.

First we define truth in a semiring model for a given valuation. Because
variables represent arbitrary justifications, we require a formula to be true for
all valuations in order to be true in a semiring model. This means a formula
with variables is interpreted as universally quantified.

Definition 8 (Truth in a semiring model). Let M = (K, ∗, I, J) be a semi-
ring model, v a valuation and A a formula. M, v ⊩ A is defined as follows:
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– M, v ⊮⊥
– M, v ⊩ P iff P ∗ = T

– M, v ⊩ A → B iff M, v ⊮ A or M, v ⊩ B
– M, v ⊩ s : A iff J(svI , A

v
I )

Further we set M ⊩ A iff M, v ⊩ A for all valuations v.

For a semiring model M and a theory T , M ⊩ T means M ⊩ A for all A ∈ T .

Definition 9 (Semantic consequence). A theory T entails a formula F , in
symbols T ⊩ F , if for each semiring model M we have that

M ⊩ T implies M ⊩ F.

By unfolding the definitions, we immediately get the following lemma, which
is useful to establish soundness of SE.

Lemma 3. Let M = (K, ∗, I, J) be a semiring model and let v and w be valua-
tions with v(xi) = (ti)

w
I for variables xi and terms ti. Then

M, v ⊩ A iff M,w ⊩ Aσ, where σ(xi) = ti.

Proof. By induction on the structure of A.

– Case A =⊥. We have M, v ⊮⊥ and M,w ⊮⊥.
– Case A = P . We have M, v ⊩ P ⇔ P ∗ = T ⇔ M,w ⊩ P .
– Case A = B → C. We have M, v ⊩ B → C

⇔ M, v ⊮ B or M, v ⊩ C
I.H.
⇔ M,w ⊮ Bσ or M,w ⊩ Cσ
⇔ M,w ⊩ Bσ → Cσ ⇔ M,w ⊩ (B → C)σ.

– Case A = s : B. We have M, v ⊩ s : B
⇔ J(svI , B

v
I )

⇔ J(sI(v(x1), ..., v(xn)), BI(v(x1), ..., v(xn)))
⇔ J(sI((t1)wI , ..., (tn)wI ), BI((t1)wI , ..., (tn)wI ))
⇔ J((sσ)wI , (Bσ)wI ) ⇔ M,w ⊩ sσ : Bσ
⇔ M,w ⊩ (s : B)σ. ⊓⊔

Theorem 2 (Soundness). Let T be an arbitrary theory. Then:

T ⊢ F implies T ⊩ F.

Proof. As usual by induction on the length of the derivation of F . Let M =
(K, ∗, I, J) be a semiring model such that M ⊩ T . To establish our claim when
F is an axiom or an element of T , we let v be an arbitrary valuation and show
M, v ⊩ F for the following cases:

1. F ∈ T . Trivial.
2. CL. Trivial.
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3. j. Assume M, v ⊩ x : (A → B) and M, v ⊩ y : A. That is J(xv
I , (A → B)vI )

and J(yvI , A
v
I ) hold, which by Definition 5 implies J(xv

I ·y
v
I , B

v
I ). Hence by (1)

we get J((x · y)vI , B
v
I ), which yields M, v ⊩ x · y : B.

4. j+. Similar to the previous case.
5. For the semiring axioms we prove

M, v ⊩ A[x/s] ⇔ M, v ⊩ A[x/t] for all formulas A,

where svI = tvI by induction on the structure of A:
– A =⊥ or A = P . Trivial.
– A = B → C. M, v ⊩ (B → C)[x/s]

⇔ M, v ⊩ B[x/s] → C[x/s]
⇔ M, v ⊮ B[x/s] or M, v ⊩ C[x/s]
I.H.
⇔ M, v ⊮ B[x/t] or M, v ⊩ C[x/t]
⇔ M, v ⊩ B[x/t] → C[x/t]
⇔ M, v ⊩ (B → C)[x/t].

– A = u : B. M, v ⊩ (u : B)[x/s]
⇔ M, v ⊩ u[x/s] : B[x/s]
⇔ J(u[x/s]vI , B[x/s]vI )
⇔ J(u[x/t]vI , B[x/t]vI )
⇔ M, v ⊩ u[x/t] : B[x/t]
⇔ M, v ⊩ (u : B)[x/t].

By mentioning that all the semiring axioms have the form A[x/s] → A[x/t]
or A[x/s] ↔ A[x/t] with svI = tvI , we finish this case.

The case when F has been derived by MP follows by I.H. as usual. For the
case when F = A[x/t] has been derived from A by jv, we find by I.H. that
M ⊩ A, which is

M, v ⊩ A for all valuations v. (2)

Given the term t and an arbitrary valuation w, we find that there exists a
valuation v such that v(x) = twI and v(y) = w(y) for all y ̸= x. By Lemma 3 we
get

M, v ⊩ A iff M,w ⊩ A[x/t].

Thus using (2), we obtain M,w ⊩ A[x/t]. Since w was arbitrary, we conclude
M ⊩ A[x/t]. ⊓⊔

Next we establish completeness of SE with respect to semiring models. For
the completeness proof, we consider the free semiring over JConst ∪ JVar. We
have for s, t ∈ Tm:

– [t] is the equivalence class of t with respect to the semiring equalities, see
Definition 2;

– [s] + [t] := [s + t];
– [s] · [t] := [s · t];
– STm := {[t] : t ∈ Tm};
– KTm := (STm,+, ·, [0], [1]) is the free semiring over JConst ∪ JVar.
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The following lemma states that SE respects the semiring equalities.

Lemma 4. Let T be a theory and s, t be terms with [s] = [t]. For each formula A
we have

T ⊢SE A[w/s] iff T ⊢SE A[w/t].

Assume we are given an interpretation I that maps constants to their equivalence
class and a valuation v that maps each variable xi to the equivalence class [ti]
of some term ti. The following lemma states that the interpretation of a term s
under I and v is the equivalence class of s with each xi being replaced by ti.

Lemma 5. Assume that we are given an interpretation I : JConst → STm with
I(c) = [c], a term s, and a valuation v : JVar → STm with v(xi) = [ti]. Then we
have

svI = [sσ], where σ(xi) = ti.

Proof. Induction on the structure of s:

– cvI = [c] by definition of I.
– (xi)

v
I = [ti] by definition of v.

– (s1 + s2)vI = (s1)vI + (s2)vI . By I.H. we have

(s1)vI = [s1σ] and (s2)vI = [s2σ].

Thus (s1)vI + (s2)vI = [s1σ] + [s2σ] = [(s1 + s2)σ].
– (s1 · s2)vI = (s1)vI · (s2)vI . By I.H. we have

(s1)vI = [s1σ] and (s2)vI = [s2σ].

Thus (s1)vI · (s2)vI = [s1σ] · [s2σ] = [(s1 · s2)σ] ⊓⊔

We extend the notion of equivalence to formulas by defining the function

[·] : Fml → FmlSTm

as follows:

– [⊥] :=⊥
– [P ] := P
– [A → B] := [A] → [B]
– [t : A] := [t] : [A]

Intuitively [A] is the formula where each justification term is replaced by its
equivalence class in the free semiring. Observe that if I(c) = [c] and v(x) = [x],
then [A] = Av

I . Now we extend Lemma 5 to formulas.

Lemma 6. Assume that we are given the interpretation I : JConst → STm with
I(c) = [c], a formula A, and a valuation v : JVar → STm with v(xi) = [ti]. Then
we have

Av
I = [Aσ], where σ(xi) = ti.



22

Proof. Induction on the structure of A:

– ⊥v
I=⊥= [⊥]

– P v
I = P = [P ]

– (A → B)vI = Av
I → Bv

I
I.H.
= [Aσ] → [Bσ] = [(A → B)σ]

– (s : A)vI = svI : Av
I

I.H. and L. 5
= [sσ] : [Aσ] = [(s : A)σ] ⊓⊔

Let Prop2 be an infinite set of atomic propositions with Prop ∩ Prop2 = ∅.
Then there exists an bijective function f : STm × FmlSTm

→ Prop2. We assume
f to be fixed for the rest of this section. Based on this function we define a
translation ′ that maps formulas of Fml to pure propositional formulas containing
atomic propositions from Prop ∪ Prop2.

1. ⊥′:=⊥
2. P ′ := P
3. (A → B)′ := A′ → B′

4. (t : A)′ := f([t], [A])

Let T be a theory. We define the corresponding theory:

T ′ := {(Aσ)′ | A ∈ T or A is an axiom of SE, σ : JVar → Tm}.

Suppose A′ ∈ T ′. Then there exist a formula B with B ∈ T or B is an axiom
and σ : JVar → Tm such that (Bσ)′ = A′. This implies Bσ[x/t]′ = A[x/t]′. Now
we have A[x/t]′ ∈ T ′. Therefore the following implication is proved:

A′ ∈ T ′ ⇒ A[x/t]′ ∈ T ′ (3)

In fact this does not only hold for formulas in T ′ but also for all formulas
derived from T ′ by classical propositional logic.

Lemma 7. If T ′ ⊢CL A′ then T ′ ⊢CL A[x/t]′.

Proof. Induction on the derivation of A′. Note that T ′ contains all the axioms
of CL. So we can omit this case.

1. If A′ ∈ T ′ then A[x/t]′ ∈ T ′ by the above observation and thus T ′ ⊢CL

A[x/t]′.
2. If A′ is obtained by MP from B and B → A′ then B can be written as

C ′ because f is surjective. The induction hypothesis (T ′ ⊢CL C[x/t]′ and
T ′ ⊢CL C[x/t]′ → A[x/t]′) yields T ′ ⊢CL A[x/t]′. ⊓⊔

The translation ′ respects the derivability relation of SE. Hence we have the
following lemma.

Lemma 8. T ⊢SE A ⇔ T ′ ⊢CL A′

Proof. Left to right by induction on a derivation of A:
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1. If A ∈ T or A is an axiom then A′ ∈ T ′ and therefore T ′ ⊢CL A′.
2. If A is obtained by MP from B and B → A then the induction hypothesis

(T ′ ⊢CL B′ and T ′ ⊢CL B′ → A′) immediately yields T ′ ⊢CL A′.
3. If A[x/t] is obtained by jv from A then the induction hypothesis is T ′ ⊢CL A′.

By the previous lemma we conclude T ′ ⊢CL A[x/t]′.

Right to left by induction on a derivation of A′:

1. If A′ ∈ T ′ then there exist a formula B with B ∈ T or B is an axiom and
σ : JVar → Tm such that (Bσ)′ = A′. Trivially we have T ⊢SE B and get
by jv that T ⊢SE Bσ. Since f is injective, the only difference between A
and Bσ is that some terms may be replaced by equivalent ones (modulo the
semiring). Therefore, we get T ⊢SE A by using Lemma 4.

2. If A′ is a propositional tautology then so is A because f is injective, but
some terms in A may be replaced by equivalent ones. We get T ⊢SE A again
by Lemma 4 and propositional reasoning.

3. If A′ is obtained by MP from B → A′ and B then B can be written as C ′.
The induction hypothesis (T ⊢SE C → A and T ⊢SE C) implies T ⊢SE A.

⊓⊔

Lemma 8 gives us the ability to switch from SE to CL and vice versa. There-
fore, we can use completeness of CL to obtain completeness for SE.

Theorem 3 (Completeness). Let T be an arbitrary theory. Then:

T ⊩ F implies T ⊢ F.

Proof. We will prove the contraposition, which means for T ⊬ F we will construct
a semiring model M and find a valuation v, such that M ⊩ T and M, v ⊮ F .
Assume T ⊬ F . By Lemma 8 we get T ′

⊬CL F ′. The completeness of CL delivers
∗ : Prop ∪ Prop2 → {F,T}, such that for the CL-model M∗ consisting of ∗ we
have M∗ ⊩ T ′ and M∗ ⊮ F ′. Now we can define the semiring model M :

– M := (KTm, ∗|Prop, I, J)
– ∗|Prop is the restriction of ∗ to Prop

– I : JConst → STm, I(c) := [c]
– J := {([t], [A]) | M∗ ⊩ f([t], [A])}

In order to prove that M is a semiring model, we need to show that J is an
evidence relation.

1. From M∗ ⊩ T ′ we derive M∗ ⊩ (s : (A → B) → (t : A → s · t : B))′

∀s, t ∈ Tm and ∀A,B ∈ Fml by using the definition of T ′ and (3). It follows

M∗ ⊩ f([s], [A → B]) → (f([t], [A]) → f([s · t], [B])).

By the truth definition in CL we find

if f([s], [A → B])∗ = T and f([t], [A])∗ = T then f([s · t], [B])∗ = T.

From the definition of J in M we get

if J([s], [A] → [B]) and J([t], [A]) then J([s] · [t], [B]).
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2. From M∗ ⊩ T ′ we derive M∗ ⊩ (s : A ∧ t : A → s + t : A)′ ∀s, t ∈ Tm and
∀A ∈ Fml by using the definition of T ′ and (3). It follows

M∗ ⊩ f([s], [A]) ∧ f([t], [A]) → f([s + t], [A]) ∀s, t ∈ Tm and ∀A ∈ Fml.

By the truth definition in CL we find

if f([s], [A])∗ = T and f([t], [A])∗ = T then f([s + t], [A])∗ = T.

From the definition of J in M we get

if J([s], [A]) and J([t], [A]) then J([s] + [t], [A]).

Knowing that M is a semiring model we prove

M∗ ⊩ (Aσ)′ ⇔ M,w ⊩ A (4)

by induction on the structure of A, where w(xi) = [ti] and σ(xi) = ti.

– Case A =⊥. We have M∗ ⊮⊥′ and M,w ⊮⊥.
– Case A = P . We have M∗ ⊩ P ′ ⇔ M∗ ⊩ P ⇔ P ∗ = T ⇔ M,w ⊩ P .
– Case A = B → C. We have M∗ ⊩ ((B → C)σ)′

⇔ M∗ ⊩ (Bσ)′ → (Cσ)′

⇔ M∗ ⊮ (Bσ)′ or M∗ ⊩ (Cσ)′

⇔ M,w ⊮ B or M,w ⊩ C (by induction hypothesis)
⇔ M,w ⊩ B → C
⇔ M,w ⊩ B → C.

– Case A = s : B. We have M∗ ⊩ ((s : B)σ)′

⇔ M∗ ⊩ (sσ : Bσ)′

⇔ M∗ ⊩ f([sσ], [Bσ]) (by definition of
′
)

⇔ J([sσ], [Bσ]) (by definition of J)
⇔ J(swI , [Bσ]) (by Lemma 5)
⇔ J(swI , B

w
I ) (by Lemma 6)

⇔ M,w ⊩ s : B

Now we show M ⊩ T , i.e. M,w ⊩ T for all valuations w. Hence let w be an
arbitrary valuation (assume w(xi) = [ti] and σ(xi) = ti) and A ∈ T . It follows
A′ ∈ T ′ and by (3) also (Aσ)′ ∈ T ′. From M∗ ⊩ T ′ we get M∗ ⊩ (Aσ)′. (4)
implies M,w ⊩ A. Since w was arbitrary we conclude M ⊩ T .

Now we consider the special case of (4) where w = v with v(x) = [x]. We
have

M∗ ⊩ A′ ⇔ M, v ⊩ A

Remembering M∗ ⊮ F ′, we derive M, v ⊮ F , which finishes the proof. ⊓⊔

3.4 Realization

Realization is concerned with the relationship between justification logic and
modal logic. Replacing all terms in a formula of justification logic by □-operators
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yields a formulas of modal logic. This is called forgetful projection since by this
translation, one ‘forgets’ the explicit evidence for one’s beliefs. It is fairly obvious
that the forgetful projection of a theorem of justification logic yields a theorem
of modal logic. This is so since the translation of any axiom of justification
logic yields a theorem of modal logic and the translation of the rules also yields
(derivable) rules of modal logic.

The converse direction, called realization, is more interesting and also more
difficult to establish. We show that, under certain natural conditions, there is a
construction that replaces all modalities in a theorem of modal logic by justifi-
cation terms such that the resulting formula is a theorem of justification logic.

In this section, we let ◦ be the mapping from Fml to formulas of the modal
logic K that replaces all occurrences of s : in a formula of SE with □.

Definition 10. We say that a theory T is pure if for each formula A ∈ T we
have that ⊢K A◦.

We immediately get the following lemma.

Lemma 9 (Forgetful projection). Let T be a pure theory. For any formula
A we have

T ⊢SE A implies ⊢K A◦.

To investigate mappings from modal logic to SE, we need the deductive sys-
tem GK for the logic K as defined in Section 2.3. So instead of directly realising
modal formulas, we realise sequents of GK. Therefore we define what it means
for a sequent to be derivable in SE.

Definition 11. Let Γ ⊃ ∆ be a sequent where each □ is replaced by some term.
Γ ⊃ ∆ is called derivable in SE from a theory T if T ⊢SE

∧
Γ →

∨
∆.

In the traditional approach to constructive realization [4, 35], one would say
that Γ ⊃ ∆ is derivable in SE if

∧
Γ ⊢SE

∨
∆. This does not work in the frame-

work of SE since the deduction theorem does not hold for SE (see Remark 2).
Therefore, we use an approach according to Definition 11.

In the realization procedure, most of the effort goes into constructing terms
for the Box-modalities introduced in the rule (□), which is the next thing we
are going to do. Because j+ is formulated with ∧ we can not use Artemov’s
original realization algorithm. But Kuznets [33] found a realization procedure
with the same ideas as Artemov except that justification terms are constructed
without +. It can be applied in the context of SE.

For the following definition we need the notion of positive and negative oc-
currences of □ within a given modal formula A. First we assign a polarity to
each subformula occurrence within A as follows.

1. The only occurrence of A within A is given positive polarity.
2. If a polarity is already assigned to an occurrence B → C within A, then the

same polarity is assigned to C and the opposite polarity is assigned to B.
3. If a polarity is already assigned to an occurrence □B within A, then the

same polarity is assigned to B.
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Now we assign a polarity to each occurence of □ as follows: the leading □ in
an occurrence of □B within A has the same polarity as the occurrence of □B
within A.

Definition 12. A realization r is a mapping from modal formulas to Fml such
that for each modal formula F we have (r(F ))◦ = F . A realization is normal if
all negative occurrences of □ are mapped to distinct justification variables.

As usual, we need a notion of schematicness to obtain a realization result.

Definition 13. A theory T is schematic if it satisfies the following property: for
each constant c ∈ JConst, the set of axioms {A | c : A ∈ T and A is an axiom}
consists of all instances of one or several (possibly zero) axiom schemes of SE.

Lemma 10. Let T be an axiomatically appropriate theory.
If T ⊢SE s : (A → B) and T ⊢SE t : (B → C) then T ⊢SE d · c · t · s : (A → C),
where T ⊢SE c : (B → C → (A → (B → C))) and
T ⊢SE d : (A → (B → C) → (A → B → (A → C))).

Proof. The proof is encoded as (d·(c·t))·s. The constants c and d exist because T
is axiomatically appropriate. ⊓⊔

Definition 14. Let T be an axiomatically appropriate theory and suppose

T ⊢SE s : (A → B) and T ⊢SE t : (B → C).

We define syl(s, t) such that

T ⊢SE syl(s, t) : (A → C) (5)

and syl(s, t) is the least term (according to some given fixed ordering on terms)
that satisfies (5).

Remark 3. Lemma 10 guarantees the existence of syl(s, t). Note that the term
syl(s, t) depends on the formulas A,B and C. This dependency disappears if the
theory T is schematic.

For the rest of this section we denote by dn a term such that for all formulas
A1, ..., An and 1 ≤ i ≤ n

T ⊢SE dn : (Ai → A1 ∨ ... ∨An). (6)

Lemma 11. Let T be an axiomatically appropriate theory and n ∈ N>0.
Assume there exists dn.
If T ⊢SE si : (Ai → B) for all i, then for an arbitrary t ∈ Tm

T ⊢SE t : Ai → syl(dn, en · s1 · ... · sn) · t : B,

where T ⊢SE en : ((A1 → B) → (... → ((An → B) → (A1 ∨ ... ∨An → B))...)).
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Proof. The existence of en follows from the internalization property. By using j
and MP n times we get T ⊢SE en·s1·...·sn : (A1∨...∨An → B). Applying the syl-
function constructed in Lemma 10 gives T ⊢SE syl(dn, en · s1 · ... · sn) : (Ai → B)
for all i. From j as

syl(dn, en · s1 · ... · sn) : (Ai → B) → (t : Ai → syl(dn, en · s1 · ... · sn) · t : B)

we infer T ⊢SE t : Ai → syl(dn, en · s1 · ... · sn) · t : B for all i. ⊓⊔

In the definition of dn the brackets of the disjunction are missing, because
they don’t matter: If dn exists for one specific placement of the brackets then so
does en and we can apply the previous lemma.

The next lemma is an easy consequence of axiom j. Note that the existence
of the constant cn follows from A1 → (... → (An → A1 ∧ ... ∧ An)...)) being an
instance of CL and T being axiomatically appropriate.

Lemma 12. Let T be an axiomatically appropriate theory and n ∈ N>0. Then

T ⊢SE t1 : A1 ∧ ... ∧ tn : An → cn · t1 · ... · tn : (A1 ∧ ... ∧An),

where T ⊢SE cn : (A1 → (... → (An → A1 ∧ ... ∧An)...)).

For a multiset Γ and a variable x define x : Γ := {x : A | A ∈ Γ}. Further
we define terms xk recursively by x0 := 1 and xk+1 := xk · x. Remember that
by axiom am, we have associativity of the application operation. Therefore, and
by axiom a1, we may use, e.g., the term c · ((1 · x) · x) where one would expect
(c · x) · x.

Lemma 13. Let T be an axiomatically appropriate theory, n ∈ N>0, and assume
that dn exists as in (6). Further assume that for all i such that 1 ≤ i ≤ n, we
are given multisets Γi ⊆ Fml with |Γi| = m such that T ⊢SE

∧
Γi → A.

Then there exists q ∈ Tm such that for each Γi we have T ⊢SE

∧
x : Γi → q : A

where x is a variable.

Proof. By internalization we find ground terms si such that

T ⊢SE si : (
∧

Γi → A).

Because T is axiomatically appropriate and we assume that dn exists, we can
use Lemma 11 and get for an arbitrary variable x that

T ⊢SE cm · xm :
∧

Γi → syl(dn, en · s1 · ... · sn) · cm · xm : A.

By Lemma 12 we have T ⊢SE

∧
x : Γi → cm · xm :

∧
Γi for all i. This leads to

T ⊢SE

∧
x : Γi → syl(dn, en · s1 · ... · sn) · cm · xm : A.

Therefore q = syl(dn, en · s1 · ... · sn) · cm · xm. ⊓⊔
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In the next definition, it is essential that both implications are justified by
the same term. An axiomatically appropriate and schematic theory does not
guarantee this.

Definition 15. A theory T supports weakening if there exists a ground term t
such that for all formulas A,B

t : (A → A ∨B) ∈ T and t : (B → A ∨B) ∈ T.

Note that supporting weakening is rather natural. For instance, it corresponds
to accepting the R∨ rule in Gentzen system G3, see, e.g. [43]. By this rule, we
can infer from the (multi-)set {A,B} both A∨B and B∨A. Thus from A we get
by weakening admissibility {A,B} and thus both A ∨ B and B ∨ A by exactly
the same reasoning. Therefore, the justification term representing this should
also be the same.

Definition 16. A ∈ Fml is a balanced disjunction of depth 0. If A and B are
balanced disjuctions of depth m, then A ∨ B is a balanced disjunction of depth
m + 1.

For Lemma 11 and Lemma 13 we assumed that a term dn exists. Next we
show that such terms do exist (for n being a power of 2) if we work with a
schematic theory and balanced disjunctions. This leads to the formulation of
Lemma 14, which is the same as Lemma 13 without the extra assumption about
the term dn, but with a schematic theory that supports weakening. This provides
the crucial step in the proof of the realization theorem.

Lemma 14. Let T be an axiomatically appropriate and schematic theory that
supports weakening and let n ∈ N>0. We assume that for all i with 1 ≤ i ≤ n,
we are given multisets Γi ⊆ Fml with |Γi| = m such that T ⊢SE

∧
Γi → A.

Then there exists q ∈ Tm such that for each Γi we have T ⊢SE

∧
x : Γi → q : A,

where x is a variable.

Proof. We first show by induction that for all l ∈ N terms d2l exists such that
for all formulas A1, . . . , A2l

T ⊢SE d2l : (Ai → A1 ∨ · · · ∨A2l),

i.e. the terms from (6) exist for n = 2l.
For the base case we note that term d1 exists by the internalization property

(this requires T to be axiomatically appropriate).
For the induction step, first observe that the term d2 exists since T supports

weakening. Now suppose

dl : (Ai → A1 ∨ ... ∨Al) where 1 ≤ i ≤ l

and
dl : (Ai → Al+1 ∨ ... ∨A2l) where l + 1 ≤ i ≤ 2l.
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Then syl(dl, d2) serves as d2l because of

d2 : (A1 ∨ ... ∨Al → (A1 ∨ ... ∨Al) ∨ (Al+1 ∨ ... ∨A2l))

and
d2 : (Al+1 ∨ ... ∨A2l → (A1 ∨ ... ∨Al) ∨ (Al+1 ∨ ... ∨A2l)).

The term syl(dl, d2) does not depend on the formulas A1, ..., A2l because T is
schematic. Therefore schematicness and the property of supporting weakening
of T imply the existence of d2l for all l ∈ N, where the disjunction is balanced
of depth l.

To finish the proof, we define k ∈ N such that 2k−1 < n ≤ 2k and then
Γi := Γ1 for n + 1 ≤ i ≤ 2k. Now we can apply Lemma 13 and get q ∈ Tm such
that T ⊢SE

∧
x : Γi → q : A for all i ≤ 2k, including all i ≤ n. ⊓⊔

In order to prove a realization theorem, we need a notion to relate different
occurences of □ in a GK-derivation. The main definition will be that of an essen-
tial family of □-occurences, which goes back to [4] (for some examples see [35]).

An instance of a GK-rule relates to formulas F and G if either

1. the rule instance does not transform F and F = G or
2. G results from F in the application of the rule instance

For example in

(⊃→)
A,Γ ⊃ ∆,B

Γ ⊃ ∆,A → B

the formula A in the premise is related to the formula A → B in the conclusion.
Let D be a derivation in GK. We say that two occurrences of □ in D are related

if they occur at the same position in related formulas of premises and conclusions
of a rule instance in D;1 we close this relationship of related occurrences under
transitivity.

All occurrences of □ in D naturally split into disjoint families of related oc-
currences. Note that the rules of GK preserve the polarity of related occurrences.
Thus, all occurrences in a given family have the same polarity and we speak of
positive and negative families, respectively.

We call a family essential if at least one of its members is introduced on the
right-hand side of a (□) rule.

Theorem 4 (Realization). Let T be a theory that is axiomatically appropriate,
schematic and that supports weakening.
Then there exists a realization r such that for all formulas A of the language of
modal logic, we have ⊢K A ⇒ T ⊢SE r(A).

Proof. Let D be the GK derivation that proves ⊃ A. The realization r is con-
structed in three steps:

1 that is, e.g., an occurrence of □ in the premise A in the above instance of (⊃→) is
related the the occurrence of □ at the same position in the subformula A of A → B

in the conclusion
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1. Modify the derivation. For each essential family f do the following: If n (□)
rules introduce a □-operator to f , their premises are Γi ⊃ A, 1 ≤ i ≤ n, and
none of the Γi is empty then use first (w ⊃) to duplicate formulas of Γi such
that all Γi have the same cardinality. After applying the (□) rule remove the
duplicates by (c ⊃).

2. For each negative family and each non-essential positive family, replace all
□ occurrences by the variable x.

3. For each essential family f do the following: Enumerate the (□) rules from
1 to n. The premises are Γi ⊃ A, where 1 ≤ i ≤ n. Step 1 guarantees either
|Γ1| = ... = |Γn| =: m or Γk = ∅ for some k. In the first case construct a
term q according to Lemma 14. In the second case a term q can be found by
the internalization property. Replace each □ of f by q.

We call the resulting derivation after these three steps D′. Now we prove by
induction on the GK-derivation that all sequents in D′ are derivable in SE from
the theory T .

1. P ⊃ P : r(P → P ) = P → P which is derivable is SE.
2. ⊥⊃: r(⊥→⊥) =⊥→⊥ which is derivable is SE.
3. (□): The case without empty Γi’s is covered in Lemma 14. In the other case

the premise is Γj ⊃ A. The I.H. for Γk = ∅ is T ⊢SE r(A). Because the
term for the introduced □ was constructed according to the internalization
property this implies T ⊢SE r(□A). By propositional reasoning we infer
T ⊢SE r(

∧
□Γi) → r(□A) for all i, therefore T ⊢SE r(

∧
□Γi → □A) for all i.

4. For the remaining rules the desired result is obtained by propositional rea-
soning. ⊓⊔

However, the realization obtained by the previous theorem will not be normal.
In traditional justification logic normal realizations can be achieved using the
sum-operation, which there (unlike in SE) is axiomatized by

s : A ∨ t : A → s + t : A.

Since we work with general theories (instead of simple constant specifications)
and with variables that are interpreted universally, we can mimick the traditional
sum-operation and perform the usual realization procedure given in [4, 35].

Theorem 5 (Normal realization). Let T be an axiomatically appropriate and
schematic theory such that for some constant c

x : A → c · x · y : (A ∨B) ∈ T and y : B → c · x · y : (A ∨B) ∈ T.

Then there exists a normal realization r such that for all modal formulas F ,

⊢K F implies T ⊢SE r(F ).

Proof. From the assumptions we get

T ⊢SE s : A → c · s · t : (A ∨A) and T ⊢SE t : A → c · s · t : (A ∨A).
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The internalization property delivers a term u, such that T ⊢SE u : (A∨A → A).
Applying j yields T ⊢SE c · s · t : (A ∨A) → u · c · s · t : A. Therefore we have

T ⊢SE s : A → u · c · s · t : A and T ⊢SE t : A → u · c · s · t : A

and finally
T ⊢SE s : A ∨ t : A → u · c · s · t : A.

We can define the plus from traditional justification logic as s ∗ t := u · c · s · t.
Because T is schematic, there is one u justifying all instances of A ∨ A → A,
which ensures that s ∗ t doesn’t depend on A. Therefore Artemov’s realization
procedure [4] can be used. We only need a small adjustment in the case of the
(□) rule, which we show next.

Let an occurrence of a (□) rule have number i in the enumeration of all nf

(□) rules in a given family f . The corresponding node in the GK derivation D′

is labelled by
B1, ..., Bn ⊃ A

x1 : B1, ..., xn : Bn ⊃ s1 ∗ ... ∗ snf
: A

where the x’s are variables, the s’s are terms and si is a provisional variable. By
the induction hypothesis we have

T ⊢SE B1 ∧ ... ∧Bn → A.

It can be shown by induction on the derivation of A that there exists a term t
such that

T ⊢SE x1 : B1 ∧ ... ∧ xn : Bn → t : A.

Thus

T ⊢SE x1 : B1 ∧ ... ∧ xn : Bn → s1 ∗ ... ∗ si−1 ∗ t ∗ si+1 ∗ ... ∗ snf
: A.

Substitute t for si everywhere in D′. The built-in substitution property jv ensures
that this doesn’t affect the already established derivability results. ⊓⊔

3.5 Applications

The semiring interpretation of evidence has a wide range of applications. Many of
them require a particular choice of the semiring. The following are of particular
interest to us (see also [29]):

– V = ([0, 1],max, ·, 0, 1) is called the Viterbi semiring. We can think of the
elements of V as confidence scores and use them to model trust.

– T = (R∞
+ ,min,+,∞, 0) is called the tropical semiring. This is connected to

shortest path problems. In the context of epistemic logic, we can employ this
semiring to model the costs of obtaining knowledge. Among other things,
this might provide a fresh perspective on the logical omniscience problem,
related to the approaches in [11–13].
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– P = (P(S),∪,∩, ∅, S) is called the powerset lattice (semiring). This is closely
related to the recently introduced subset models for justification logic [36–
38]. This semiring can be used to model probabilistic evidence and aggrega-
tion thereof, see, e.g., [8].

– F = ([0, 1],max,max(0, a + b − 1), 0, 1) is called the  Lukasiewicz semiring.
We can use it to model fuzzy evidences. Ghari [25] provides a first study of
fuzzy justification logic that is based on this kind of operations for combining
evidence.

Another stream of possible applications emerges from the fact that terms with
variables represent actual functions. If the underlying semiring is ω-continuous,
then the induced polynomial functions are ω-continuous and, therefore, mono-
tone [32]. Hence, they have least and greatest fixed points. Thus it looks very
promising to consider this kind of semirings to realize modal fixed point logics
like common knowledge (see Chapter 4).

Common knowledge of a proposition A is a fixed point of λX.(EA ∧ EX).
There are justification logics with common knowledge available [5, 18] but their
exact relationship to modal common knowledge is still open.



Chapter 4

Realization of Common Knowledge

In this chapter, which is based on [15], we introduce the justification logic SEK,
which uses polynomials over a semiring as justification terms. Then we relate our
justification logic to the modal logic of common knowledge. Instead of just one □

operator it has □1, ...,□n representing knowledge of multiple agents. Further it is
extended by the common knowledge operator C, where CA is informally defined
as everybody knows A, everybody knows that everybody knows A and so on.
Everybody knows A is usually written as EA and this leads to CA = EA∧ECA.
So CA is a fixed point of the function f(x) = EA∧Ex. If a formula is derivable
in common knowledge then our realization procedure generates terms to replace
the modal operators with while maintaining derivability.

On the mathematical side we use ω-continuous semirings and the Kleene
fixed point theorem from lattice theory. In contrast to rings there is no need for
additive inverses in semirings. This can lead to a partial order: a is less than b if
the sum of a and some other element equals b. For a semiring to be ω-continuous
this has to be the case and further there is an infinitary sum operation satisfying
some natural properties, which include matching the supremum of partial sums.
Then it is interesting to consider Scott-continuous functions (they commute with
the supremum) on such semirings. The Kleene fixed point theorem states that a
Scott-continuous function f on a ω-continuous semiring has a fixed point, which
can be written as sup{0, f(0), f(f(0)), ...}.

With terms constructed from schematic letters the algorithm would yield an
infinite term as the fixed point. Therefore we use in this chapter the elements of
a semiring as justification terms. This allows us to apply the Kleene fixed point
theorem. If f(x) = x then f(x) : A → x : A is trivial. This is needed for two
different things:

– In Common Knowledge the common knowledge operator C is a fixed point,
which can be defined as CA = EA ∧ECA. The Kleene fixed point theorem
ensures the existence of a suitable term for realizing C.

– Further it delivers a realization procedure for the modus ponens rule. The
applications of the modus ponens rule in a proof build together a system of
equations, which in the context of normal realizations turns out to be of the
form x = f(x).

By using the elements of the semiring directly as justification terms, we create
a logic that lies between a justification logic in the traditional sense and its
semantics. We are convinced that it is also possible to form the justification
terms from constants, variables and operators, similar to [16]. This would be a
lot more work, because one additionally has to deal with properties of semirings
like infinite sums. In our setting properties of the semiring automatically transfer
to the logic.



34

4.1 The Syntax of SEK

Having the mathematical background we continue by defining the justification
language for the logic SEK. Let K be a semiring and JVar = {x1, x2, ...} a count-
ably infinite set of variables. Justification terms are polynomials over K in vari-
ables JVar and inductively defined as

s ∈ S, x ∈ JVar, t1 + t2, and t1 · t2,

where t1 and t2 are justification terms and +, · are the operations from the
semiring. The set of all justification terms is called Tm. A justification term
that does not contain variables is called ground term. GTm (= S) denotes the
set of all ground terms. Often we write only term for justification term. Since
terms are polynomials over K, for example x and x · 1 are the same term. We
can consider terms as functions over S, t : Sn → S, where n is the number of
different variables occurring in t. The range of t is range(t) := t(Sn) as expected.
Further, we need a countable set of atomic propositions Prop = {P1, P2, ...}. Now
we define the set of formulas Fml as follows:

– ⊥∈ Fml,
– P ∈ Fml, where P ∈ Prop,
– A → B ∈ Fml, where A,B ∈ Fml,
– t : A ∈ Fml, where t ∈ Tm and A ∈ Fml.

The remaining logical connectives ¬, ∧, ∨, and ↔ are abbreviations as usual. The
set of ground formulas GFml consists of all formulas without variables. Now we
can define a deductive system for the logic SEK about the semirings of evidence.
It consists of the following axioms:

CL Every instance of a propositional tautology
j x : (A → B) → (y : A → x · y : B)
j+ x : A ∧ y : A ↔ (x + y) : A

The rules of SEK are:

MP
A A → B

B
,

jv
A

A[x/t]

and

jx
A[x/s] for all s ∈ range(t)

A[x/t]

where x is a variable, s ∈ S, t is a term, and A[x/t] denotes the result of
substituting t for x in A.
A theory T is a subset of Fml. Having a rule with possibly infinitely many
premises forces a definition of a proof different than a sequence of formulas
constructed according to the rules. Therefore a proof for a formula A from a
theory T is a tree with A on the root and axioms or elements of T on the leafs
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constructed according to the rules of SEK, such that every branch has a finite
length. This allows us to prove properties by induction on the proof. If there
exists a proof for A then A is derivable from T , which we denote by T ⊢SEK

A.

Example 1. We define K = (N,+, ·, 0, 1) and T = {1 : A}. By j+ we get
T ⊢SEK

n : A for all n ∈ N. This is exactly the meaning of x : A, which we derive
by using jx.

Example 2. We define K = (P(N),∪,∩, ∅,N), X = {n ∈ N | n is even} and
T = {X : A}. By j+ we get T ⊢SEK

N : A for all N ⊆ X. This is exactly the
meaning of (x ∩X) : A, which we derive by using jx.

4.2 The Semantics of SEK

In this section we denote the semiring always by K = (S,+, ·, 0, 1). We define
a valuation as a function from JVar to S. This extends to terms by commuting
with the semiring operations. It further extends to formulas in the obvious way.
We denote the result of applying the valuation v to the formula A by Av.

Definition 1 (Evidence relation). J ⊆ S × GFml is an evidence relation if
for all s, t ∈ S and all ground formulas A,B:

1. J(s,A → B) and J(t, A) imply J(s · t, B)
2. J(s,A) and J(t, A) is equivalent to J(s + t, A)

Definition 2 (Semiring model). A semiring model is a tuple M = (∗, J)
where

1. ∗ is a truth assignment for atomic propositions, i.e., ∗ : Prop → {F,T}
2. J is an evidence relation.

Definition 3 (Truth in a semiring model). Let M = (∗, J) be a semiring
model and A ∈ GFml. M ⊩ A is defined as follows:

– M ⊮⊥
– M ⊩ P iff P ∗ = T

– M ⊩ A → B iff M ⊮ A or M ⊩ B
– M ⊩ s : A iff J(s,A)

For an arbitrary A ∈ Fml we set M ⊩ A iff M ⊩ Av for all valuations v.

Truth in a theory means it is true in all models satisfying the theory: T ⊩ A if
M ⊩ A for all M with M ⊩ T .
The following lemma states that substituting a variable by a term has the same
effect as using a different valuation. This proves soundness in the case jv.

Lemma 1. Let v and w be valuations with xv = tw for a variable x and a term t
and yv = yw for every other variable. Then for all A ∈ Fml

Av = A[x/t]w.
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The proof is straightforward by induction on the structure of A. Next we prove
a similar lemma for the case jx.

Lemma 2. Let M = (∗, J) be a semiring model, t a term and A a formula.
Then

M ⊩ A[x/s] for all s ∈ range(t) iff M ⊩ A[x/t].

Proof. M ⊩ A[x/s] for all s ∈ range(t)
⇔ M ⊩ A[x/s]v for all s ∈ range(t) and all v (truth in a semiring model)
⇔ M ⊩ A[x/tv]v for all v (tv quantified over all v gives range(t))
⇔ M ⊩ A[x/t]v for all v (t is evaluated anyway)
⇔ M ⊩ A[x/t] (truth in a semiring model)

⊓⊔

With these two lemmas we can easily prove soundness.

Theorem 1 (Soundness). Let T be an arbitrary theory. Then:

T ⊢ F implies T ⊩ F.

Proof. By induction on the depth of the derivation tree of F . Let M = (∗, J)
be a semiring model such that M ⊩ T . If we are able to show M ⊩ Fv for an
arbitrary valuation v, we have shown M ⊩ F .

1. F ∈ T . Trivial.
2. CL. Trivial.
3. j. Assume M ⊩ (x : (A → B))v and M ⊩ (y : A)v. That is J(xv, (A → B)v)

and J(yv, Av) hold, which by Definition 1 implies J(xv · yv, Bv). Because of
xv · yv = (x · y)v we get J((x · y)v, Bv), which yields M ⊩ (x · y : B)v.

4. j+. M ⊩ (x : A)v and M ⊩ (y : A)v is equivalent to J(xv, Av) and J(yv, Av),
which by Definition 1 is equivalent to J(xv + yv, Av) and M ⊩ (x + y : A)v.

5. MP. Trivial.
6. jv. M ⊩ Aw for all valuations w by induction hypothesis. Given the term t

we find that there exists a valuation w such that tv = xw. By Lemma 1 we
get M ⊩ A[x/t]v.

7. jx. M ⊩ A[x/s] for all s ∈ range(t) by induction hypothesis. M ⊩ A[x/t]
follows by Lemma 2. ⊓⊔

For the completeness proof we fix a set of atomic propositions Prop2 with
Prop ∩ Prop2 = ∅ and a bijection f : S × GFml → Prop2. Prop2 needs to have
the same cardinality as S × GFml. Then we define the translation ′ for ground
formulas as follows:

– ⊥′=⊥
– P ′ = P for P ∈ Prop

– (A → B)′ = A′ → B′

– (s : A)′ = f(s,A)

For a theory T we define T ′ := {(Av)′ | A ∈ T or A is an axiom of SEK, v is a
valuation}. We get the following lemma.
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Lemma 3. T ⊢SEK
A ⇔ T ′ ⊢CL (Av)′ for all valuations v

Proof. Left to right by induction on a derivation of A:

– If A ∈ T or A is an axiom then (Av)′ ∈ T ′ for all valuations v.
– If A is derived from B → A and B by MP then the induction hypothesis

is T ′ ⊢CL ((B → A)v)′ and T ′ ⊢CL (Bv)′. From the first part we get T ′ ⊢CL

(Bv)′ → (Av)′, then we use MP to obtain T ′ ⊢CL (Av)′.
– If A[x/t] is derived from A by jv then the I.H. is T ′ ⊢CL (Aw)′. Since for

every v there is a w such that A[x/t]v = Aw, we get T ′ ⊢CL (A[x/t]v)′.
– If A[x/t] is derived from A[x/s] for all s ∈ range(t) by jx then the I.H. is

T ′ ⊢CL (A[x/s]w)′ for all s ∈ range(t). For an arbitrary valuation v there
is s ∈ range(t) with s = tv. It follows A[x/t]v = A[x/s]v and therefore
T ′ ⊢CL (A[x/t]v)′.

For the direction from right to left we prove first T ⊢SEK
A for A ∈ GFml from

the assumption T ′ ⊢CL A′ by induction on a derivation of A′. Note that there is
an unique A ∈ GFml given A′.

– If A′ ∈ T ′ then A is derived using jv on an SEK-axiom or on an element of
T .

– If A′ is an instance of CL then so is A, because f is injective.
– If A′ is obtained by MP from B → A′ and B then we use the formula C

with C ′ = B. We have T ⊢SEK
C → A and T ⊢SEK

C by I.H. which leads to
T ⊢SEK

A.

Let A ∈ Fml such that T ′ ⊢CL (Av)′ for all valuations v. From above we get
T ⊢SEK

Av for all valuations v. We obtain T ⊢SEK
A by applying jx for every

variable that occurs in A. ⊓⊔

Now that we can switch between SEK and CL we can use the completeness of CL
to obtain completeness for SEK.

Theorem 2 (Completeness). Let T be an arbitrary theory. Then:

T ⊩ F implies T ⊢ F.

Proof. Assume T ⊬ F . By Lemma 3 there exists a valuation w such that

T ′
⊬CL (Fw)′.

The completeness of CL delivers ∗ : Prop ∪ Prop2 → {F,T}, such that for the
CL-model M∗ consisting of ∗ we have M∗ ⊩ T ′ and M∗ ⊮ (Fw)′. Now we can
define the semiring model M :

– M := (∗|Prop, J)
– ∗|Prop is the restriction of ∗ to Prop

– J := {(s,A) | M∗ ⊩ f(s,A)}

In order to prove that M is a semiring model, we need to show that J is an
evidence relation.
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1. Assume J(s,A → B) and J(t, A), so A ∈ GFml and A → B ∈ GFml

⇒ M∗ ⊩ f(s,A → B) and M∗ ⊩ f(t, A) (by definition of J)
M∗ ⊩ (x : (A → B) → (y : A → x · y : B))′v for all v (M∗ ⊩ T ′)
⇒ M∗ ⊩ (s : (A → B) → (t : A → s · t : B))′ (for v with xv = s and yv = t)
⇔ M∗ ⊩ f(s,A → B) → (f(t, A) → f(s · t, B)) (by definition of f and ′)
⇒ M∗ ⊩ f(s · t, B) (truth in a CL-model)
⇒ J(s · t, B) (by definition of J)

2. M∗ ⊩ ((x : A ∧ y : A ↔ x + y : A)v)′ for all v (M∗ ⊩ T ′)
⇒ M∗ ⊩ (s : A ∧ t : A ↔ s + t : A)′ (for v with xv = s and yv = t)
⇔ M∗ ⊩ f(s,A) ∧ f(t, A) ↔ f(s + t, A) (by definition of f and ′)
⇒ J(s,A) and J(t, A) is equivalent to J(s + t, A) (by definition of J)

Knowing that M is a semiring model we prove

M∗ ⊩ A′ ⇔ M ⊩ A for all A ∈ GFml

by induction on the structure of A.

– Case A =⊥. M∗ ⊮⊥′ and M ⊮⊥.
– Case A = P , where P ∈ Prop. M∗ ⊩ P ′ ⇔ M∗ ⊩ P ⇔ P ∗ = T ⇔ M ⊩ P .
– Case A = B → C. M∗ ⊩ (B → C)′

⇔ M∗ ⊩ B′ → C ′

⇔ M∗ ⊮ B′ or M∗ ⊩ C ′

⇔ M ⊮ B or M ⊩ C (by induction hypothesis)
⇔ M ⊩ B → C.

– Case A = s : B. M∗ ⊩ (s : B)′

⇔ M∗ ⊩ f(s,B) (by definition of ′)
⇔ J(s,B) (by definition of J)
⇔ M ⊩ s : B.

Now we show M ⊩ T . Let A ∈ T . We get (Av)′ ∈ T ′ for all valuations v by
definition of T ′. We know M∗ ⊩ T ′, which means M∗ ⊩ (Av)′ for all valuations v.
By using the previously proved equivalence we obtain M ⊩ Av for all valuations,
which is M ⊩ A. From M∗ ⊮ (Fw)′ we get M ⊮ Fw and therefore M ⊮ F . ⊓⊔

4.3 Realization of Common Knowledge

This section investigates in the relationship between SAx and SEK. We show that
if a theory has certain properties, we can replace each set in a SAx theorem by
a term and get a formula that is derivable in SEK from the theory. We begin by
defining one such property: axiomatic appropriateness.

Definition 4. A theory T is called axiomatically appropriate if for each A that
is in T or is an axiom there is a variable x not occurring in A such that x : A ∈ T .

Axiomatic appropriateness is used to deal with the rule C-Nec of SAx. Having a
universally quantified variable as a justification matches the idea that all agents
are aware of the theory and the axioms. The existence of a variable x with
x : A ∈ T for A ∈ T and axioms A extends to all derivable formulas.
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Lemma 4 (Internalization). Let T be an axiomatically appropriate theory.
For any formula A, there exists a variable x not occurring in A such that

T ⊢SEK
A implies T ⊢SEK

x : A.

Proof. By induction on the derivation of A.

– If A ∈ T or A is an axiom then such a variable exists by the definition of
axiomatic appropriateness.

– If B is derived from A and A → B by MP then by induction hypothesis we
have x : A and y : (A → B). Because x doesn’t occur in A we get 1 : A by
jv. From y : (A → B) → (1 : A → y : B), which is derived from an instance
of j by jv, we derive y : B.

– If A[x/t] is derived from A by jv then by induction hypothesis we have y : A.
We use jv to replace y with a variable z not occurring in A or A[x/t] and
z ̸= x. We obtain z : A[x/t] by using jv again.

– If A[x/t] is derived by jx then by induction hypothesis for every A[x/s] with
s ∈ range(t) there is such a variable. Because all the A[x/s] contain the
same variables we can find a variable y not occurring in A[x/t] or any of the
A[x/s] and y ̸= x. We use jv to obtain y : A[x/s] for all s ∈ range(t) and
then jx delivers y : A[x/t]. ⊓⊔

Corollary 1. Let T be an axiomatically appropriate theory. For any formula A
and term t

T ⊢SEK
A implies T ⊢SEK

t : A.

4.3.1 Supporting concatenation

In this subsection we deal with Set axioms 2. In SAx R(SA) is equivalent
to (RS)A, meaning that two sets can always be concatenated and a set can
be split up. The built in semiring K lacks such an operation. Therefore we
add a whole semiring L, which implements concatenation as the multiplication
operation while the additive monoid is shared with K.

Definition 5. Let L = (S,+, ∗, 0, 1L) be a semiring. A theory T supports con-
catenation if a : b : A ↔ a ∗ b : A ∈ T for all a, b ∈ S and A ∈ Fml.

4.3.2 The induction principle

In common knowledge we have the induction axiom EA ∧ C(A → EA) → CA.
From C(A → EA) we derive E(A → EA) and EC(A → EA) by the closure
axiom. From the first one we get EA → EEA and from the second one we con-
tinue by EE(A → EA) which gives EEA → EEEA and so on. Now that we
have EA we can put these together and derive EA∧EEA∧EEEA∧ ... which is
CA. The only reason why the induction axiom is not derivable is that it would
need infinitely many derivation steps.
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This derivation process works in SEK analogously. We define the sequence cor-
responding to En, then use the axiom j+ to put the evidence into a single
justification term. Because the derivation also fails when stepping up to the in-
finite sum, we make use of the theory.
Let K = (S,+, ·, 0, 1K) and L = (S,+, ∗, 0, 1L) be ω-continuous semirings and
a, b, c ∈ S. We define ind : S3 → S as ind0(a, b, c) := a, indn+1(a, b, c) :=
(b · indn(a, b, c)) ∗ c and finally ind(a, b, c) :=

∑
n∈N

indn(a, b, c).

Definition 6. A theory T supports induction if

a : A ∧ b : (A → c : A) → ind(a, b, c) : A ∈ T for all A ∈ Fml and a, b, c ∈ S.

Note that T ⊢SEK
a : A ∧ b : (A → c : A) →

∑n

k=0 indk(a, b, c) : A for all n ∈ N

if T supports concatenation.

4.3.3 Forgetful projection

When realizing S4 by using the Logic of Proofs LP there is only one forgetful
projection, which simply replaces each term with a box. But with SAx on the
side of modal logic there are multiple modal operators and therefore multiple
forgetful projections to consider.
A forgetful projection decides for which agents a term is a justification. Having
two terms justifying the same formula is equivalent to saying the sum of these
terms justifies the formula. Therefore the sum is a justification for the agents
who already had a justification in at least one of the terms. The multiplication is
used for the modus ponens. Because A → B and A are needed, the multiplication
of the terms is only a justification for those agents which had justifications for
both formulas. In conclusion the operations of K and L have to correspond to
∪, ∩ and ∗.
We additionally restrict forgetful projections by basing them on f : S → P(E∗),
so s ∈ S will be assigned f(s) ∈ P(E∗) independent to the formula it is justifying.

Definition 7 (Forgetful projection). Let K = (S,+, ·, 0, 1K) and
L = (S,+, ∗, 0, 1L) be semirings. A forgetful projection on K,L is a function
f : S → P(E∗) such that for all a, b ∈ S:

– f(a + b) = f(a) ∪ f(b),

– f(a · b) = f(a) ∩ f(b),

– f(a ∗ b) = f(a)f(b).

A forgetful projection is a function ◦ : GFml → LS defined as follows:

– ⊥◦:=⊥
– P ◦ := P

– (A → B)◦ := A◦ → B◦

– (s : A)◦ := f(s)A◦.
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Note that forgetful projections are only defined for ground formulas. For example
x : P → x : Q cannot be represented by a single formula of common knowledge,
because there is no quantification over whole formulas. For example the LS

formula SP → SQ is read as (sP ∀s ∈ S) implies (sQ ∀s ∈ S). Therefore it is
not possible to define the forgetful projection for formulas containing variables.
However we can define T ◦ for arbitrary theories by including (Av)◦ in T ◦ for all
valuations v and A ∈ T .

Lemma 5. Let T be a theory and ◦ a forgetful projection. Then for all A ∈ GFml

T ⊢SEK
A implies T ◦ ⊢SAx

A◦.

Proof. We prove T ◦ ⊢SAx
(Av)◦ for all valuations v and A ∈ Fml by induction on

a derivation of A. When we write A◦
v, the valuation v is applied before ◦.

– A ∈ T implies (Av)◦ ∈ T ◦ by definition of T ◦.
– If A is an instance of CL then so are all (Av)◦.
– j. (x : (A → B) → (y : A → x · y : B))◦v

= (xv : (Av → Bv) → (yv : Av → xv · yv : Bv))◦

= f(xv)(A◦
v → B◦

v) → (f(yv)A◦
v → (f(xv) ∩ f(yv))B◦

v).
This is derivable from the modal axiom
(f(xv) ∩ f(yv))(A◦

v → B◦
v) → ((f(xv) ∩ f(yv))A◦

v → (f(xv) ∩ f(yv))B◦
v)

by using Set axioms 1 and propositional reasoning.
– j+. (x : A ∧ y : A ↔ x + y : A)◦v = (xv : Av ∧ yv : Av ↔ xv + yv : Av)◦

= (f(xv)A◦
v ∧ f(yv)A◦

v ↔ f(xv + yv)A◦
v)

= (f(xv)A◦
v ∧ f(yv)A◦

v ↔ (f(xv) ∪ f(yv))A◦
v), which is an instance of Set

axioms 1.
– MP. If B is derived from A → B and A then by induction hypothesis

(A → B)◦v = A◦
v → B◦

v and A◦
v are derivable. B◦

v follows by MP.
– jv. If A[x/t] is derived from A then by induction hypothesis A◦

w is derivable
for all valuations w. Let v be an arbitrary valuation. For the valuation w
defined as w(x) = tv and w(y) = v(y) if y ̸= x we get Aw = A[x/t]v by
Lemma 1 and therefore A[x/t]◦v is derivable.

– jx. If A[x/t] is derived from A[x/s] for all s ∈ range(t) then by induction
hypothesis T ◦ ⊢SAx

A[x/s]◦w for all s ∈ range(t) and w. Let v be an arbitrary
valuation. For the valuation w defined as w(x) = tv and w(y) = v(y) if
y ̸= x we get Aw = A[x/t]v by Lemma 1. Further there exists a s ∈ range(t)
with s = tv, so Aw = A[x/s]w. From A[x/s]w = A[x/t]v we finally conclude
T ◦ ⊢SAx

A[x/t]◦v. ⊓⊔

4.3.4 The realization mapping

Given a forgetful projection we can map ground formulas to LS -formulas. Now
we define the realization mapping as an inverse to the given forgetful projection.
Instead of forgetting information we now want to generate it, which will lead to
many different possibilities on how to do this.
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Definition 8 (Realization). Let ◦ be a forgetful projection. A realization r is
a mapping from LS to GFml such that r(A)◦ = A for all A ∈ LS .

We also want to define what a normal realization is in this context. Usually a
normal realization is a realization that replaces distinct negative occurrences of
□ by distinct variables. The problem is the following: Our variables range over
all elements of the semiring, which means that they represent all X ∈ P(E∗)
and there is no term ranging exactly over f−1(X). We solve this problem by
using abstract variables and functions. The idea is that we can always write for
example 0 : P and 1 : P as z : P for z ∈ {0, 1}.

Definition 9. Let K = (S,+, ·, 0, 1) be a semiring. We define abstract formulas
as follows:

1. Z = {z1, z2, ...} is a countably infinite set of abstract variables.

2. Each abstract variable zi ∈ Z has a domain Ai ⊆ S.

3. Every g : Ai1 × ...×Ain → S is an abstract term (n is the number of abstract
variables). The set of all abstract terms is denoted by ATm.

4. The set of all abstract formulas is denoted by AFml and inductively defined
as ⊥, P ∈ Prop, A → B and g : A, where A,B ∈ AFml and g ∈ ATm.

By using a valuation z for abstract variables we can map g ∈ ATm to gz ∈ S
and A ∈ AFml to Az ∈ GFml. For A ∈ AFml we define T ⊢SEK

A as T ⊢SEK
Az

for all z. We avoid abstract formulas in theories in order to not mix variables
with abstract variables. Given a forgetful projection on K,L f and ◦ it makes
sense to extend ◦ for A ∈ AFml if for every g ∈ ATm occurring in A we have
|{f(gz) | z is a valuation}| = 1. Then we pick an arbitrary valuation z and set

– ⊥◦=⊥

– P ◦ = P

– (A → B)◦ = A◦ → B◦

– (g : A)◦ = f(gz)A◦.

Definition 10. Let f be a forgetful projection on K,L and ◦ the corresponding
forgetful projection. A ∈ AFml realizes B ∈ LS normally if each negative set
occurrence R in B is realized by a distinct abstract variable with domain f−1(R),
A◦ is defined and equal to B.

Definition 11. Let f be a forgetful projection on K,L and ◦ the corresponding
forgetful projection. A normal realization r is a mapping from LS to AFml such
that r(A) realizes A normally for all A ∈ LS .

It is obvious that for all valuations z for abstract variables and normal realiza-
tions r the mapping A 7→ r(A)z, where A ∈ LS , is a realization.
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4.3.5 Minimal Realization

In this subsection we define the smallest semiring K, such that there is a realiza-
tion in SEK. The semiring contains for each R ⊆ E∗ exactly one element, which
we choose to be equal to R in order to keep things simple.
For h ∈ N>0 we recall E = {□1, ...,□h}. We obtain the semiring K by setting
K = (P(E∗),∪,∩, ∅, E∗) and L by L = (P(E∗),∪, ∗, ∅, {ϵ}). Later we will re-
fer to these semirings as Kmin and Lmin. Obviously the identity function is a
forgetful projection, which we denote by ◦min .

Theorem 3 (Minimal Realization). There exists a realization r such that

T ◦min ⊢SAx
A ⇔ T ⊢SEK

r(A)

for all A ∈ LS and every axiomatically appropriate theory T that supports con-
catenation and induction.

We omit the proof because it is a special case of the main theorem. The realiza-
tion r can be defined as follows: r(⊥) =⊥, r(P ) = P , r(A → B) = r(A) → r(B)
and r(SA) = S : r(A). It is the only inverse to this forgetful projection. Even
though the minimal realization theorem is trivial, it shows how some of the pieces
connect.

4.3.6 General Realization

We construct a more general realization in two steps. First we find (initial) terms
such that all the axioms are derivable. Second we restrict them in order to make
the application of the modus ponens rule possible. For the second step it is
important that the initial terms are general enough. In ω-continuous semirings
this corresponds exactly to normal realizations.

Definition 12 (Semiring-homomorphism). Let K1 and K2 be two semirings
with domains S1 and S2. A semiring-homomorphism from K1 to K2 is a function
f : S1 → S2 such that for all a, b ∈ S1:

1. f(a + b) = f(a) + f(b)
2. f(a · b) = f(a) · f(b)

Note that the operations in K1 and K2 are not necessarily the same, but it
is always clear from the context, which one is meant. Let K = (S,+, ·, 0, 1)
be a semiring and f a semiring-homomorphism from K to the semiring Kmin

from the previous subsection. Suppose f(a) = f(b) for some a, b ∈ S. We find
f(a + b) = f(a) + f(b) = f(a) ∪ f(b) = f(a) = f(b) and the same for the
multiplication. This shows that the sets f−1(a) defined as {c ∈ S | f(c) = a}
are closed under addition and multiplication.

Given A ∈ LS we assign a 0-1-sequence to each occurrence of a subformula
in A and each occurrence of a set:

– A itself has the empty sequence (length 0),
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– given the sequence of B → C as α1...αn then the sequence α1...αn0 is as-
signed to C and the sequence α1...αn1 is assigned to B,

– given the sequence of SB as α1...αn then the same sequence is assigned to
S and α1...αn0 is assigned to B.

This transfers to A ∈ Fml and A ∈ AFml in the obvious way. Now we define a
set occurrence within A ∈ LS formally as the tuple (α,A) and a set occurrence
within an SAx-proof as (α, p), where p is a node in the proof tree. The set of all
sequences assigned to set occurrences in A is denoted by α(A). We can easily
assign a polarity to a set occurrence (α,A) by defining the sum of a sequence
α = α1...αn as

∑
α :=

∑n

i=1 αi and the polarity as P (α,A) := (−1)
∑

α.
If α is the sequence assigned to the subformula SB of A ∈ LS , we extract the
set from the occurrence by setting ⟨α,A⟩ := S. We use the same notation for
A ∈ Fml and A ∈ AFml to extract the (abstract) term.
For a node p we denote the formula it is labelled with by ⟨p⟩. In an SAx-proof
we call two set occurrences related if one of the following conditions holds:

1. (α, p) is related to itself.
2. If ⟨p⟩ = A, ⟨q⟩ = CA and q is the successor of p then (α, p) and (0α, q) are

related.
3. If ⟨p1⟩ = A → B, ⟨p2⟩ = A and they have a common successor q with

⟨q⟩ = B then (0α, p1) and (α, q) are related.

We close this symmetric relation under transitivity. Then all set occurrences are
split into disjoint families. We see that all set occurrences in a family contain
the same set and have the same polarity, because (−1)

∑
0α = (−1)

∑
α. Let f be

a family. If (α,A) ∈ f we assign the polarity P (f) := P (α,A) to the family and
we set ⟨f⟩ := ⟨α,A⟩.
Two set occurrences in the same formula always belong to different families and
all the members of a family are on the same branch of the derivation tree, which
implies an order.
The ability to address one specific term or set occurrence within a formula allows
us to define a different type of substitution: We define A[α/t] to be the formula
resulting from A by substituting the occurrence (α,A) with the term t ∈ ATm.
This is needed in the formulation of the following lemma, which states that
positive occurrences can be decreased and negative occurrences increased, while
maintaining derivability.

Lemma 6. Let T be an axiomatically appropriate theory, s an element of the
semiring, A ∈ GFml and α a 0-1-sequence assigned to a term in A. If (s ≤ ⟨α,A⟩
and P (α,A) = 1) or (s ≥ ⟨α,A⟩ and P (α,A) = −1) then T ⊢SEK

A → A[α/s].

Proof. Proof by induction on the structure of A:

– A =⊥. A[α/s] = A makes it trivial.
– A = P . A[α/s] = A makes it trivial.
– A = B → C. It follows that α ̸= ϵ.
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• (α = 0β): The induction hypothesis is
(s ≤ ⟨β,C⟩ and P (β,C) = 1) or (s ≥ ⟨β,C⟩ and P (β,C) = −1) implies
T ⊢SEK

C → C[β/s].
This is equivalent to
(s ≤ ⟨α,A⟩ and P (α,A) = 1) or (s ≥ ⟨α,A⟩ and P (α,A) = −1) implies
T ⊢SEK

C → C[β/s].
We derive (B → C) → (B → C[β/s]) by propositional reasoning, which
can be written as (B → C) → (B → C)[α/s].

• (α = 1β): By applying the inverse substitution (from A[α/s] to A) we
see that the lemma is equivalent to
(s ≥ ⟨α,A⟩ and P (α,A) = 1) or (s ≤ ⟨α,A⟩ and P (α,A) = −1) implies
T ⊢SEK

A[α/s] → A.
So we write the induction hypothesis as
(s ≥ ⟨β,B⟩ and P (β,B) = 1) or (s ≤ ⟨β,B⟩ and P (β,B) = −1) implies
T ⊢SEK

B[β/s] → B.
This is equivalent to
(s ≥ ⟨α,A⟩ and P (α,A) = −1) or (s ≤ ⟨α,A⟩ and P (α,A) = 1) implies
T ⊢SEK

B[β/s] → B.
We derive (B → C) → (B[β/s] → C) by propositional reasoning, which
can be written as (B → C) → (B → C)[α/s].

– A = t : B.

• (α = ϵ): We have P (α,A) = 1. If s ≤ t = ⟨α,A⟩ then there is r such that
s + r = t. We derive t : B → s : B from j+ (and jv) as
s : B ∧ r : B ↔ t : B.

• (α = 0β): The induction hypothesis is
(s ≤ ⟨β,B⟩ and P (β,B) = 1) or (s ≥ ⟨β,B⟩ and P (β,B) = −1) implies
T ⊢SEK

B → B[β/s].
This is equivalent to
(s ≤ ⟨α,A⟩ and P (α,A) = 1) or (s ≥ ⟨α,A⟩ and P (α,A) = −1) implies
T ⊢SEK

B → B[β/s].
Because T is axiomatically appropriate we can apply the internalization
corollary and get 1 : (B → B[β/s]). From j we infer t : B → t : B[β/s],
which can be written as t : B → (t : B)[α/s]. ⊓⊔

Before we can define the initial terms we need to be able to address the set
occurrences in schematic part of the axioms precisely. If we want to realize for
example RA∧SA → (R∪S)A by something of the form s : A∧ t : A → s+ t : A
we need to find the right terms for the occurrences hiding in A. The normal
realization forces that the different A’s are realized differently. However we will
use the previous lemma to derive it from the corresponding axiom.
We define the schematic set of an axiom scheme of SAx as a set of sets. Each
element corresponds to a schematic letter in an axiom scheme.

Definition 13 (Schematic set).

– F = A → (B → A). ss(F ) := {{1, 00}, {01}}
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– F = (A → (B → C)) → ((A → B) → (A → C)).
ss(F ) := {{001, 11, 011}, {010, 101}, {100, 000}}

– F = ((A →⊥) →⊥) → A. ss(F ) := {{111, 0}}
– F = RA ∧ SA → (R ∪ S)A = ((RA → (SA →⊥)) →⊥) → (R ∪ S)A.

ss(F ) := {{1110, 11010, 00}}
– F = (R ∪ S)A → RA ∧ SA = (R ∪ S)A → ((RA → (SA →⊥)) →⊥).

ss(F ) := {{10, 0110, 01010}}
– F = R(SA) → (RS)A. ss(F ) := {{100, 00}}
– F = (RS)A → R(SA). ss(F ) := {{10, 000}}
– F = S(A → B) → (SA → SB). ss(F ) := {{010, 101}, {100, 000}}
– F = EA ∧ C(A → EA) → CA = ¬(EA → ¬C(A → EA)) → CA

= ((EA → (C(A → EA) →⊥)) →⊥) → CA.
ss(F ) := {{1110, 1101000, 00, 110101}}

We see that in a schematic set no sequence is an extension of another. Therefore
each set occurrence (α, F ) in the schematic part of an axiom can be uniquely
written as (βγ, F ), where β ∈ A ∈ ss(F ). We call this the unique composition.
The first part defines the occurrence of the schematic letter, the second part the
position therein.
For A ∈ ss(F ) we define Ap := {α ∈ A | (−1)

∑
α = p}, where p ∈ {−1, 1}.

Now we relate two set occurrences in an axiom if they appear in the same posi-
tion of two different occurrences of the same schematic letter and have opposite
polarities.

Definition 14 (Schematic relation). The schematic relation R of an axiom
F of SAx is defined for α1 = β1γ1 and α2 = β2γ2 (unique compositions) as
α1Rα2 ⇔ ∃A ∈ ss(F ), β1 ∈ Ax, β2 ∈ A−x and γ1 = γ2.

Note that the schematic relation is symmetric and αRβ implies ⟨α, F ⟩ = ⟨β, F ⟩.

Example. Let F = (XA → Y A) → (ZA → (XA → Y A)) be an instance of
the axiom scheme CL1. The schematic set is ss(F ) = {{1, 00}, {01}} and the
set occurrences (from left to right) are listed by {11, 10, 01, 001, 000}. They are
all schematic and the unique compositions are given by {1|1, 1|0, 01|, 00|1, 00|0}.
For a = {1, 00} ∈ ss(F ) we have a+1 = {00} and a−1 = {1}. Therefore the
schematic relation R is defined by 11R001 and 10R000. As expected it relates
both X and both Y as they appear at the same position within the schematic
letter.

It is easy to prove that two set occurrences share either all related occurrences
or none.

Lemma 7. Let F be an axiom of SAx, R the schematic relation, (α, F ) an oc-
currence in the schematic part, αRα1 and αRα2.
Then {γ | α1Rγ} = {γ | α2Rγ}.

Proof. Let α = βγ, α1 = β1γ1 and α2 = β2γ2 be the unique compositions. Then
there is A ∈ ss(F ) such that β1, β2 ∈ Ax, β ∈ A−x and γ = γ1 = γ2. α1Rδ ⇔
there exists δ′ ∈ A−x such that δ = δ′γ ⇔ α2Rδ. ⊓⊔
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In the definition of the initial terms we will use three types of functions, which
we assume to be given and fixed.

Definition 15. Let K = (S,+, ·, 0, 1K) and L = (S,+, ∗, 0, 1L) be ω-continuous
semirings, f : S → P(E∗) a forgetful projection on K,L and X,Y ∈ P(E∗).

– A function lb : f−1(X)2 → f−1(X) is a lower bound function if lb(x, y) ≤ x
and lb(x, y) ≤ y.

– A function spX,Y : f−1(X ∪ Y ) → f−1(X) splits the plus if spX,Y (x) ≤ x.
– A function sdX,Y : f−1(XY ) → f−1(X) × f−1(Y ) splits the dot if

π1sdX,Y (x) ∗ π2sdX,Y (x) ≤ x.

A lower bound function lb : S2 → S has an extension to lb : Sn → S for all n ∈ N,
meaning it is defined for finite subsets of S. It can be done inductively by setting
lb({a}) := a and lb({a1, ..., an}) := lb(lb({a1, ..., an−1}), an). By definition lb is
an abstract term.
Given an SAx-proof we assign an abstract term to each family, which we call the
initial term of a family, because it only depends on the formula containing the
first member of the family.

Definition 16 (Initial terms). Given an SAx-proof and a forgetful projection
on K,L f we assign the following initial terms to the families. We denote the
initial term of the family g by I(g) or I(α,A), where (α,A) ∈ g. If P (g) = −1
then we choose i ∈ N≥1 and set I(g) = zi (with domain f−1(⟨g⟩)), such that
P (g1) = P (g2) = −1 and g1 ̸= g2 implies I(g1) ̸= I(g2). For the positive families
we distinguish how they are introduced:

– Set axioms 1.1: F = RA ∧ SA → (R ∪ S)A
= ((RA → (SA →⊥)) →⊥) → (R ∪ S)A.
I(0, F ) := I(111, F ) + I(1101, F ).

– Set axioms 1.2: F = (R ∪ S)A → RA ∧ SA
= (R ∪ S)A → ((RA → (SA →⊥)) →⊥).
I(011, F ) := spR,S(I(1, F )),
I(0101, F ) := spS,R(I(1, F )).

– Set axioms 2.1: F = (R(SA) → (RS)A).
I(0, F ) := I(1, F ) ∗ I(10, F ).

– Set axioms 2.2: F = (RS)A → R(SA).
I(0, F ) := π1sdR,S(I(1, F )),
I(00, F ) := π2sdR,S(I(1, F )).

– Modal axioms: F = S(A → B) → (SA → SB).
I(00, F ) := I(1, F ) · I(01, F ).

– Induction axioms: F = EA ∧ C(A → EA) → CA
= ¬(EA → ¬C(A → EA)) → CA
= ((EA → (C(A → EA) →⊥)) →⊥) → CA.
I(0, F ) := ind(I(111, F ), I(1101, F ), I(110100, F )).

– C-Nec: If CA is derived from A by C-Nec then we set I(ϵ, CA) := zi, where
zi is a fresh abstract variable with domain f−1(C).
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– The remaining families are introduced in the schematic part of the axioms.
Let g be a family with P (g) = 1 and (α, F ) the first member. Then we
set I(α, F ) := lb({I(β, F ) | αRβ}), where R is the schematic relation and
lb(∅) := zi.

First we need to prove that the forgetful projection maps each initial term back
to the set of its family.

Lemma 8. Let K = (S,+, ·, 0, 1K) and L = (S,+, ∗, 0, 1L) be ω-continuous
semirings, ◦ a forgetful projection and D an SAx-proof.
Then f(I(g)) = ⟨g⟩ for all families g.

Proof. Let f be the forgetful projection on K,L. For each set occurrence (α, F )
in D that is the first member of a family we have to prove f(I(α, F )) = ⟨α, F ⟩.
If P (α, F ) = −1 then this holds by definition.

– Set axioms 1.1: f(I(0, F )) = f(I(111, F ) + I(1101, F ))
= f(I(111, F )) ∪ f(I(1101, F )) = ⟨111, F ⟩ ∪ ⟨1101, F ⟩ = ⟨0, F ⟩.

– Set axioms 1.2: f(I(011, F )) = f(spR,S(I(1, F ))) = R = ⟨011, F ⟩, because
the range of spR,S is f−1(R).
f(I(0101, F )) = f(spS,R(I(1, F ))) = S = ⟨0101, F ⟩, because the range of
spS,R is f−1(S).

– Set axioms 2.1: f(I(0, F )) = f(I(1, F ) ∗ I(10, F )) = f(I(1, F ))f(I(10, F ))
= ⟨1, F ⟩⟨10, F ⟩ = ⟨0, F ⟩.

– Set axioms 2.2: f(I(0, F )) = f(π1sdR,S(I(1, F ))) = R = ⟨0, F ⟩, because the
range of π1sdR,S is f−1(R).
f(I(00, F )) = f(π2sdR,S(I(1, F ))) = S = ⟨00, F ⟩, because the range of
π2sdR,S is f−1(S).

– Modal axioms: f(I(00, F )) = f(I(1, F ) · I(01, F ))
= f(I(1, F )) ∩ f(I(01, F )) = ⟨1, F ⟩ ∩ ⟨01, F ⟩ = ⟨00, F ⟩.

– Induction axioms: Let a = I(111, F ), b = I(1101, F ) and c = I(110100, F ).
By using the properties of the forgetful projection f and complete semirings
we calculate f(ind(a, b, c)) as follows: f(ind(a, b, c)) = f(

∑
n∈N

indn)
= f((

∑
n∈N

indn+1) + ind0) = f(
∑

n∈N
indn+1) ∪ f(ind0)

= f(
∑

n∈N
(b · indn) ∗ c) ∪ f(a) = f((

∑
n∈N

b · indn) ∗ c) ∪ E
= f(

∑
n∈N

b · indn)f(c) ∪ E = f(b ·
∑

n∈N
indn)E ∪ E

= (f(b) ∩ f(
∑

n∈N
indn))E ∪ E = (C ∩ f(ind(a, b, c)))E ∪ E.

We see that it is a fixed point of the function g : P(E∗) → P(E∗) with
g(X) := (C ∩X)E ∪E. Let X ∈ P(E∗) with g(X) = X. We prove En ⊆ X
for n ≥ 1 by induction on n. For n = 1: E ⊆ (C ∩X)E ∪E = g(X) = X. If
En ⊆ X then En ⊆ C ∩X, En+1 ⊆ (C ∩X)E and En+1 ⊆ (C ∩X)E ∪E =
g(X) = X. This implies C ⊆ X. Because C = E∗\{ϵ} it remains to show that
ϵ /∈ X. It is easy to see that all elements in g(X) have length at least 1 and
therefore ϵ /∈ g(X) = X. Finally f(I(0, F )) = f(ind(a, b, c)) = C = ⟨0, F ⟩.

– C-Nec: f(I(ϵ, CA)) = f(zi) = C by definition.
– Let a positive family be introduced by the set occurrence (α, F ) in the

schematic part of an axiom. Then f(I(α, F )) = f(lb({I(β, F ) | αRβ})) =
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⟨α, F ⟩, because αRβ implies ⟨α, F ⟩ = ⟨β, F ⟩ and
lb : f−1(⟨α, F ⟩)|{I(β,F )|αRβ}| → f−1(⟨α, F ⟩). ⊓⊔

For proving the derivability of these initial formulas we use the following idea: As-
sume (RP ∨SP → TP )[α1/x][α2/y][α3/I(α3, F )] = x : P ∨ y : P → lb(x, y) : P .
Substituting the negative occurrences with the positive one gives the axiom
lb(x, y) : P ∨ lb(x, y) : P → lb(x, y) : P . Because x, y ≥ lb(x, y) and the polarity
is negative, we can apply Lemma 6 and derive x : P ∨ y : P → lb(x, y) : P .
First we strengthen the notation for substitutions. Let A = {α1, ..., αn} be a
finite set of sequences and f : A → ATm a function. Then we define the substi-
tution A[A/f(x)] := A[α1/f(α1)]...[αn/f(αn)]. Further we shorten the notation
for replacing all occurrences by setting A[f(x)] := A[α(A)/f(x)].
Now let F be an axiom of SAx, R the schematic relation, (α, F ) an occurrence in
the schematic part with P (α, F ) = −1 and αRβ. Then by the previous definition
I(β, F ) = lb({I(γ, F ) | βRγ}). By Lemma 7 this is the same for all β with αRβ.
Therefore we can define I+(α, F ) := I(β, F ). If there is no β with αRβ we set
I+(α, F ) = I(α, F ). αRβ implies I+(α, F ) ≤ I(α, F ).
The following lemma states that substituting the negative occurrences with the
positive one(s) results in all occurrences of a schematic letter being equal.

Lemma 9. Let F be an axiom of SAx, A the non-schematic set occurrences, B
the schematic set occurrences, F ′ = F [A/I(x, F )][B+1/I(x, F )][B−1/I+(x, F )],
a ∈ ss(F ) and α, β ∈ a. Then the subformula equality (α, F ′) = (β, F ′) holds.

Proof. We have to prove ⟨αγ, F ′⟩ = ⟨βγ, F ′⟩ for an arbitrary γ ∈ α((α, F ′)).

– P (αγ, F ′) = −1, P (βγ, F ′) = 1:
⟨αγ, F ′⟩ = I+(αγ, F ) and ⟨βγ, F ′⟩ = I(βγ, F ) by definition of F ′.
α, β ∈ a with opposite polarity delivers αγRβγ from which we infer
I+(αγ, F ) = I(βγ, F ).

– P (αγ, F ′) = 1, P (βγ, F ′) = −1: Symmetrical to the previous case.

– P (αγ, F ′) = 1, P (βγ, F ′) = 1:
⟨αγ, F ′⟩ = I(αγ, F ) and ⟨βγ, F ′⟩ = I(βγ, F ) by definition of F ′. We get
I(αγ, F ) = lb({I(δγ, F ) | δ ∈ a−P (α,F )}) = I(βγ, F ) from the definition of I
and the schematic relation.

– P (αγ, F ′) = −1, P (βγ, F ′) = −1:
⟨αγ, F ′⟩ = I+(αγ, F ) and ⟨βγ, F ′⟩ = I+(βγ, F ) by definition of F ′.
If there exists δ ∈ a−P (α,F ) we get I+(αγ, F ) = I(δγ, F ) = I+(βγ, F ).
If a−P (α,F ) = ∅ then F is an instance of CL1 and |aP (α,F )| = |a| = 1, which
implies α = β and obviously ⟨αγ, F ′⟩ = ⟨βγ, F ′⟩. ⊓⊔

The subformula equality is used to show that F ′ is easily derivable.

Lemma 10. Let K = (S,+, ·, 0, 1K) and L = (S,+, ∗, 0, 1L) be ω-continuous
semirings, T an axiomatically appropriate theory that supports concatenation
and induction, F ∈ LS an axiom of SAx. Then T ⊢SEK

F [I(x, F )].
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Proof. We denote the non-schematic set occurrences by A, the schematic set
occurrences by B and F ′ = F [A/I(x, F )][B+1/I(x, F )][B−1/I+(x, F )] as before.
Now we first prove T ⊢SEK

F ′.

– F = A → (B → A). By Lemma 9 there exist A′, B′ such that
F ′ = A′ → (B′ → A′), which is a propositional tautology.

– F = (A → (B → C)) → ((A → B) → (A → C)). By Lemma 9 there exist
A′, B′, C ′ such that F ′ = (A′ → (B′ → C ′)) → ((A′ → B′) → (A′ → C ′)),
which is a propositional tautology.

– F = ((A →⊥) →⊥) → A. By Lemma 9 there exists A′ such that
F ′ = ((A′ →⊥) →⊥) → A′, which is a propositional tautology.

– F = RA ∧ SA → (R ∪ S)A. By Lemma 9 there exists A′ such that
F ′ = z1 : A′ ∧ z2 : A′ → z1 + z2 : A′, which is an instance of j+.

– F = (R ∪ S)A → RA ∧ SA. By Lemma 9 there exists A′ such that
F ′ = z1 : A′ → spR,S(z1) : A′ ∧ spS,R(z1) : A′. spR,S(z1) ≤ z1 and
spS,R(z1) ≤ z1 because sp splits the plus. T ⊢SEK

F ′ follows from j+ and
propositional reasoning.

– F = R(SA) → (RS)A. By Lemma 9 there exists A′ such that
F ′ = z1 : z2 : A′ → z1∗z2 : A′. T supporting concatenation yields T ⊢SEK

F ′.
– F = (RS)A → R(SA). By Lemma 9 there exists A′ such that

F ′ = z1 : A′ → π1sdR,S(z1) : π2sdR,S(z1) : A′. Because sd splits the dot
π1sdR,S(z1) ∗ π2sdR,S(z1) ≤ z1 and from j+ and propositional reasoning
we infer T ⊢SEK

z1 : A′ → π1sdR,S(z1) ∗ π2sdR,S(z1) : A′. T supporting
concatenation yields T ⊢SEK

F ′.
– F = S(A → B) → (SA → SB). By Lemma 9 there exist A′, B′ such that

F ′ = z1 : (A′ → B′) → (z2 : A′ → z1 · z2 : B′), which is an instance of j.
– F = EA ∧ C(A → EA) → CA. By Lemma 9 there exists A′ such that

F ′ = z1 : A′ ∧ z2 : (A′ → z3 : A′) → ind(z1, z2, z3) : A′. T supporting
induction yields T ⊢SEK

F ′.

Knowing T ⊢SEK
F ′, I+(x, F ) ≤ I(x, F ) and P (α, F ) = −1 for α ∈ C−1 we apply

Lemma 6 and get T ⊢SEK
F [I(x, F )]. ⊓⊔

With this lemma we completed the first step of the realization procedure. For the
second step we restrict certain initial terms by replacing them by a fixed point of
a function given through another initial term. The existence of such a fixed point
will follow from the Scott-continuity of the initial terms, which we have to prove
first. It only works if the given functions lb, sp and sd are Scott-continuous.

Lemma 11. Let K = (S,+, ·, 0, 1K) and L = (S,+, ∗, 0, 1L) be ω-continuous
semirings, lb, sp and sd Scott-continuous functions. Then all initial terms are
Scott-continuous functions.

Proof. The initial term of a negative family, a positive family introduced by
C-Nec or of the form lb(∅) is just an identity function, which is obviously Scott-
continuous. The initial terms of the positive families introduced in the schematic
part of an axiom have the form lb({z1, ..., zn}), which is by assumption Scott-
continuous. By Lemma 2 the initial terms of Set axioms 1.1, Set axioms 2.1,
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Modal axioms and Induction axioms are Scott-continuous. Scott-continuity of
initial terms for Set axioms 1.2 and Set axioms 2.2 is again given by assumption.

⊓⊔

Next we define MP-connections. The intuition behind this concept is that in the
application of modus ponens the formulas (1, A → B) and A need to be realized
the same way, so we connect the families of two set occurrences if they appear
in the same position within the different A’s.

Definition 17. If the node p1 is labelled with A → B, p2 with A and they have
a common successor q labelled with B then we call the families of (1α, p1) and
(α, p2) MP-connected. Notation: f1 MP f2.

The following lemma states some important observations about MP-connections.

Lemma 12. If f1 MP f2 then:

1. P (f1) ̸= P (f2).
2. Not f1 MP f if f ̸= f2 and not f2 MP f if f ̸= f1.
3. f1 and f2 do not occur in the derived formula.

Proof. 1: P (1α, p1) = (−1)
∑

1α = (−1)1+
∑

α = −(−1)
∑

α = −P (α, p2).
2: Since MP eliminates both A’s it is the last member of each family that creates
the MP-connection. Because there is only one last member each family can have
at most one MP-connection.
3: The connection is created by MP, which eliminates f1 and f2. ⊓⊔

For our main theorem we prove a specific version of the fixed point theorem.
Additionally the fixed point needs to be mapped to the correct element in P(E∗)
by the forgetful projection. Therefore we have to assume that there is a zero
element in each f−1(X), so we can start applying the functions repeatedly from
there.

Theorem 4 (Specific fixed point theorem). Let K be a semiring, the func-
tion f : K → X a partition into ω-continuous monoids f−1(x), v ∈ Xn and
h : f−1(v) → f−1(v) a Scott-continuous function.
Then there exists x = (x1, ..., xn) ∈ f−1(v) with h(x) = x.

Proof. For every x ∈ X the set f−1(x) has a neutral element 0x, because f−1(x)
is a monoid. We write v in its components as (v1, ..., vn). Then we define the
sequence a0 = (0v1 , ..., 0vn) and ak+1 = h(ak). Because Scott-continuous func-
tions are monotone, we have ak ≤ ak+1 for all k ∈ N. Now we define (x1, ..., xn)
as sup(

⋃∞
k=0{ak}). It follows h(x1, ..., xn) = h(sup(

⋃∞
k=0{ak})), which by Scott-

continuity is equal to sup(h(
⋃∞

k=0{ak})). By definition of the sequence a we get
sup(

⋃∞
k=1{ak})). sup(

⋃∞
k=0{ak})) results from the monotonicity of a and it is

exactly how (x1, ..., xn) was defined, so h(x) = x is proved. For an arbitrary
i ≤ n let bk be πi(ak). The monotonicity thereof allows us to write it as partial

sums of a sequence c in f−1(vi): bk =
∑k

j=0 cj . It follows xi = sup(
⋃∞

k=0{bk}))
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= sup{
∑k

j=0 cj | k ∈ N} =
∑

j∈N
cj by the ω-continuity of f−1(vi). The com-

pleteness of the monoid f−1(vi) delivers xi ∈ f−1(vi). Since i was arbitrary we
have (f(x1), ..., f(xn)) = (v1, ..., vn). ⊓⊔

While most of the work on the second step is still left to do, we state now our
main theorem.

Theorem 5 (Realization of Common Knowledge). Let K = (S,+, ·, 0, 1K)
and L = (S,+, ∗, 0, 1L) be ω-continuous semirings. If there exists a function f
that is a semiring-homomorphism from K to Kmin and from L to Lmin such
that for all a ∈ P(E∗) (f−1(a),+, 0f−1(a)) is a ω-continuous monoid and there
exist the Scott-continuous functions lb, sp and sd then there exists a normal
realization r such that

⊢SAx
A ⇒ T ⊢SEK

r(A)

for all A ∈ LS and every axiomatically appropriate theory T that supports con-
catenation and induction.

Proof. Assume there exists a function f that is a semiring-homomorphism from
K to Kmin and from L to Lmin such that all (f−1(a),+, 0f−1(a)) are ω-continuous
monoids and there exist the Scott-continuous functions lb, sp and sd. We con-
struct a normal realization r based on the forgetful projection ◦ generated by
using f as the forgetful projection on K,L. That f is a forgetful projection
on K,L follows from the fact that f is a semiring-homomorphism from K to
Kmin and from L to Lmin. Let D be an SAx-proof tree for A. We say that a
node of D is derivable if the formula it is labelled with is derivable. We de-
note the negative families with a MP-connection by f1, ..., fn with fi MP gi for
1 ≤ i ≤ n and zi = I(fi). Further we denote the domain of zi by Ai and
set D := A1 × ... × An. The remaining variables occurring in the initial terms
are zn+1, ..., zm. We define H(zn+1, ..., zm) as the function h : D → D defined
by h(z1, ..., zn) := (I(g1)(z1, ..., zm), ..., I(gn)(z1, ..., zm)). If zn+1, ..., zm are fixed
then I(gi) becomes a function that depends only on z1, ..., zn. A countable set
X ⊆ D with a well-order can be written as {(xi1, ..., xin) | xij ∈ Aj , i ∈ N},
where xij ≤ xi+1,j .
Therefore sup(h(X)) = sup(h({(xi1, ..., xin) | xij ∈ Aj , i ∈ N}))
= sup({(I(g1)(xi1, ..., xin), ..., I(gn)(xi1, ..., xin)) | xij ∈ Aj , i ∈ N})
= (supi∈N(I(g1)(xi1, ..., xin)), ..., supi∈N(I(gn)(xi1, ..., xin)))
= (I(g1)(supi∈N(xi1, ..., xin)), ..., I(gn)(supi∈N(xi1, ..., xin)))
= h(supi∈N(xi1, ..., xin)) = h(sup(X)). So h is Scott-continuous and we can ap-
ply the specific fixed point theorem, which delivers x = (x1, ..., xn) ∈ D with
h(x) = x. We set F (zn+1, ..., zm) := (x1, ..., xn). We define the realization r for
different things in D:

– a family g: r(g) = πiF if g = fi or g = gi, r(g) = I(g)[z1/π1F ]...[zn/πnF ]
otherwise.

– a set occurrence (α, p): r(α, p) = r(g), where (α, p) is a member of g.
– the derived formula A: r(A) = ⟨root⟩[r(x, root)], where root is the node of

the derived formula.
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For A ∈ LS with ⊢SAx
A we show that T ⊢SEK

r(A) by induction on D. Precisely
we show for each node p that T ⊢SEK

⟨p⟩[r(x, p)].

– Let ⟨p⟩ = A be an axiom of SAx and z an arbitrary valuation for abstract
formulas. We define y as y(zi) = (πiF )z for 1 ≤ i ≤ n and y(zj) = z(zj) oth-
erwise. Further let f be a family. We prove I(f)y = r(f)z by distinguishing
three cases:
• If f has no MP-connection then I(f)y = I(f)[z1/(π1F )z]...[zn/(πnF )z]y

= I(f)[z1/(π1F )y]...[zn/(πnF )y]y = I(f)[z1/π1F ]...[zn/πnF ]y = r(f)y
= r(f)z, because z1, ..., zn do not occur in r(f).

• If f has a MP-connection and P (f) = −1 then f = fi for some i and
I(f)y = (zi)y = (πiF )z = r(f)z.

• If f has a MP-connection and P (f) = 1 then f = gi and we use the fixed
point property. For h(x1, ..., xn) = H((zn+1)z, ..., (zm)z)(x1, ..., xn) we
have h((π1F )z, ..., (πnF )z) = ((π1F )z, ..., (πnF )z) and by projecting on
the i-th component we get I(gi)((π1F )z, ..., (πnF )z, (zn+1)z, ..., (zm)z)
= (πiF )z. We use this equation in the following derivation.
I(f)y = I(gi)y
= I(gi)[z1/(π1F )z]...[zn/(πnF )z][zn+1/(zn+1)z]...[zm/(zm)z]
= (πiF )z = r(f)z.

In all cases we got I(f)y = r(f)z. By Lemma 10 we know T ⊢SEK
⟨p⟩[I(x, ⟨p⟩)]

including ⟨p⟩[I(x, ⟨p⟩)]y, which now implies ⟨p⟩[r(x, p)]z. Since z was arbi-
trary, we conclude T ⊢SEK

⟨p⟩[r(x, p)].
– If ⟨q⟩ = B is derived from ⟨p1⟩ = A → B and ⟨p2⟩ = A by MP then

by induction hypothesis T ⊢SEK
⟨p1⟩[r(x, p1)] and T ⊢SEK

⟨p2⟩[r(x, p2)].
By the definition of a MP-connection all families of the form (1α, p1) and
(α, p2) are MP-connected. Let (1α, p1) be a set occurrence. If (1α, p1) is
negative then it is a member of fi for some i and (α, p2) is a member of
gi. We get r(1α, p1) = r(α, p2) because r(fi) = r(gi) = πiF . If (1α, p1)
is positive then it is a member of gi for some i and (α, p2) is a mem-
ber of fi and we also get r(1α, p1) = r(α, p2). Since α was arbitrary we
have (1, ⟨p1⟩)[r(1x, p1)] = ⟨p2⟩[r(x, p2)]. So ⟨p1⟩[r(x, p1)] can be written as
⟨p2⟩[r(x, p2)] → (0, ⟨p1⟩)[r(0x, p1)], which means (0, ⟨p1⟩)[r(0x, p1)] is deriv-
able by MP. We assumed (0, ⟨p1⟩) = ⟨q⟩ and since (0x, p1) is related to (x, q)
we also have r(0x, p1) = r(x, q), therefore (0, ⟨p1⟩)[r(0x, p1)] = ⟨q⟩[r(x, q)].

– If ⟨q⟩ = CA is derived from ⟨p⟩ = A by C-Nec then by induction hypothesis
T ⊢SEK

⟨p⟩[r(x, p)]. Note that (0, ⟨q⟩) = ⟨p⟩ and r(0x, q) = r(x, p). Let z be a
valuation for abstract formulas. From the internalization corollary we derive
T ⊢SEK

r(ϵ, q)z : ⟨p⟩[r(x, p)]z. We finish the case by stating
r(ϵ, q)z : (⟨p⟩[r(x, p)]z) = r(ϵ, q)z : ((0, ⟨q⟩)[r(0x, q)]z) = ⟨q⟩[r(x, q)]z.

It remains to show that r is a normal realization. So let (α, root) and (β, root) be
negative occurrences with α ̸= β. By the definition of I we have I(α, root) = zi
and I(β, root) = zj with i ̸= j. By Lemma 12 the families of (α, root) and
(β, root) do not have a MP-connection and therefore i, j > n. The definition of
r implies r(α, root) = I(α, root) = zj ̸= zi = I(β, root) = r(β, root).
We calculate the domains of the realization terms as follows: f(h(z1, ..., zn)) =
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f(I(g1), ..., I(gn)) = (⟨g1⟩, ..., ⟨gn⟩) by Lemma 8. Because the specific fixed point
theorem delivers a fixed point in the same monoid we also have f(F ) = (⟨g1⟩, ..., ⟨gn⟩).
Since the derived formula contains only families without MP-connection we are
in the case r(g) = I(g)[z1/π1F ]...[zn/πnF ]. We know f(I(g)) = ⟨g⟩ again by
Lemma 8, actually {f(I(g)(z1, .., zm)) | zi ∈ Ai} = {⟨g⟩}. From f(πiF ) =
⟨gi⟩ = ⟨fi⟩ and Ai = f−1(⟨fi⟩) we infer {πiF | zi ∈ Ai} ⊆ Ai and further
{f(I(g)) | i ≤ n ⇒ zi ∈ {πiF | zi ∈ Ai}, i > n ⇒ zi ∈ Ai} = {⟨g⟩}, which
yields {f(I(g)[z1/π1F ]...[zn/πnF ]) | zi ∈ Ai} = {⟨g⟩}. Therefore f(r(g)) = ⟨g⟩.
Finally we conclude that r(A)◦ is defined and equal to A. ⊓⊔

Remark. The theorem also has a trivial proof. One can easily show, that the
realization which maps all positive families g to 0f−1(⟨g⟩), satisfies the conditions
because of Lemma 6, but it is useless. We assume that the realization constructed
in the proof has some interesting maximality properties.

We extend our theorem to arbitrary theories of common knowledge. Here we
make sure not to mix variables with abstract variables.

Definition 18. Let T ′ ⊆ LS be a theory of common knowledge. T ⊆ Fml realizes
T ′ normally if for all A′ ∈ T ′ there is A ∈ AFml realizing A′ normally and Az ∈ T
for all abstract valuations z.

Theorem 6. Let K = (S,+, ·, 0, 1K) and L = (S,+, ∗, 0, 1L) be ω-continuous
semirings. If there exists a function f that is a semiring-homomorphism from K
to Kmin and from L to Lmin such that all (f−1(a),+, 0f−1(a)) are ω-continuous
monoids and there exist the Scott-continuous functions lb, sp and sd then for
every axiomatically appropriate theory T that realizes T ′ normally (with Scott-
continuous terms) and supports concatenation and induction there exists a nor-
mal realization r such that

T ′ ⊢SAx
A ⇒ T ⊢SEK

r(A) for all A ∈ LS .

This adds another case to the proof: If a family is introduced by the theory we
treat the corresponding abstract term as the initial term.
The proof of the main theorem is very different from the proof of the realization
theorem between S4 and the logic of proofs (LP) shown in [35]. There a sequent
calculus equivalent to S4 is used and put into relation with S4. Here we work
directly with the modal logic, which includes the modus ponens rule. We there-
fore get an algorithm, that realizes the modus ponens directly by using a fixed
point. Such an idea can be useful in all cases, where there is a modus ponens
rule and no equivalent sequent calculus (e.g. Common Knowledge).

4.4 Examples

Let M = (R,+, ·, 0M , 1M ) be an ω-continuous semiring. Examples include real
numbers (R∞

≥0,+, ·, 0, 1), the Viterbi semiring ([0, 1],max, ·, 0, 1), the tropical
semiring (R∞

≥0,min,+,∞, 0) and the powerset semiring (P(X),∪,∩, ∅, X).
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We construct a semiring K for h agents by using one element of M per □-
operator. We define the alphabet EM as {□r

i | 1 ≤ i ≤ h, r ∈ R} and f(□r
i ) = □i,

which extends to words by commuting with concatenation. We apply the + of
M only on the first character of two words, which have to be identical in the
rest, while the · is component-wise.

– □
r1
i c2...cn + □

s1
i c2...cn = □

r1+s1
i c2...cn

– □
r1
i1
...□rn

in
·□s1

i1
...□sn

in
= □

r1·s1
i1

...□rn·sn
in

A set X of words is stable if there are no w1, w2 ∈ X with w1 ̸= w2 such that
w1 + w2 is defined. X ′Y := {w1 ∈ X | ¬∃w2 ∈ Y : w1 + w2 is defined}. Now we
can define K = (S,+, ·, 0, 1) as follows:

– S = {X ⊆ E∗
M | X is stable},

– x + y = x′y ∪ y′x ∪ {w1 + w2 | w1 ∈ x,w2 ∈ y, w1 + w2 is defined},

– x · y = {w1 · w2 | w1 ∈ x,w2 ∈ y, w◦
1 = w◦

2},

– 0 = ∅,

– 1 = {□1M
i | 1 ≤ i ≤ h}∗.

One can prove that K is a ω-continuous semiring. The structure L resulting by
replacing the multiplication by concatenation is also a ω-continuous semiring.
Further f is a semiring-homomorphism from K to Kmin and from L to Lmin

and (f−1(X),+, 0f−1(X)) is a ω-continuous monoid for all X ∈ P(E∗).

Example 1

Now we consider a shortest path example using this construction with the tropi-
cal semiring. For better readability we omit the curly brackets on singleton sets.
Let T ′ = {□1(A → B),□1(B → C)} and T = {□x

1 : (A → B),□y
1 : (B → C), ...}

axiomatically appropriate. For T ′ ⊢SAx
□1(A → C) we have the following deriva-

tion:

□1((B → C) → (A → C)) → (□1(B → C) → □1(A → C))

□1((A → B) → ((B → C) → (A → C))) → (□1(A → B) → □1((B → C) → (A → C)))

(A → B) → ((B → C) → (A → C))

□1((A → B) → ((B → C) → (A → C)))

□1(A → B) → □1((B → C) → (A → C)) □1(A → B)

□1((B → C) → (A → C))

□1(B → C) → □1(A → C) □1(B → C)

□1(A → C)

By inserting the initial terms we get

z4 : ((B → C) → (A → C)) → (z5 : (B → C) → z4 · z5 : (A → C))

z2 : ((A → B) → ((B → C) → (A → C))) → (z3 : (A → B) → z2 · z3 : ((B → C) → (A → C)))

(A → B) → ((B → C) → (A → C))

z1 : ((A → B) → ((B → C) → (A → C)))

z3 : (A → B) → z2 · z3 : ((B → C) → (A → C)) z6 : (A → B)

z2 · z3 : ((B → C) → (A → C))

z5 : (B → C) → z4 · z5 : (A → C) z7 : (B → C)

z4 · z5 : (A → C)

With A = {s ∈ S | s◦ = {□1}} = {{□z
1} | z ∈ R} the domains of these abstract

variables are as follows:

Variable z1 z2 z3 z4 z5 z6 z7
Domain A A A A A {{□x

1}} {{□y
1}}
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In order to apply the modus ponens of SEK we need the following equalities,
which come from the MP-connections:
z2 = z1, z3 = z6, z4 = z2 · z3 and z5 = z7. This is equivalent to a fixed point
of h(z2, z3, z4, z5) := (z1, z6, z2 · z3, z7). We find such a point by applying h
repeatedly to the 0 in the monoid A4, which is ({□∞

1 }, {□∞
1 }, {□∞

1 }, {□∞
1 }).

– h({□∞
1 }, {□∞

1 }, {□∞
1 }, {□∞

1 }) = (z1, z6, {□
∞
1 }, z7)

– h(z1, z6, {□
∞
1 }, z7) = (z1, z6, z1 · z6, z7)

– h(z1, z6, z1 · z6, z7) = (z1, z6, z1 · z6, z7)

This yields the following (abstract) proof in SEK:

z1 · z6 : ((B → C) → (A → C)) → (z7 : (B → C) → z1 · z6 · z7 : (A → C))

z1 : ((A → B) → ((B → C) → (A → C))) → (z6 : (A → B) → z1 · z6 : ((B → C) → (A → C)))

(A → B) → ((B → C) → (A → C))

z1 : ((A → B) → ((B → C) → (A → C)))

z6 : (A → B) → z1 · z6 : ((B → C) → (A → C)) z6 : (A → B)

z1 · z6 : ((B → C) → (A → C))

z7 : (B → C) → z1 · z6 · z7 : (A → C) z7 : (B → C)

z1 · z6 · z7 : (A → C)

Applying a valuation on z1 · z6 · z7 gives {□z
1} · {□

x
1} · {□

y
1} = {□z+x+y

1 }. If we
assume that justifications for axioms come for free we get {□x+y

1 } : (A → C),
which is exactly the shortest path. This means that the realization procedure is
maximal in a way ({□∞

1 } : (A → C) is also derivable).

Example 2

For this example we use the positive real numbers and infinity with standard
addition and multiplication. Let T ′ = {(□1P → □1P ) → Q} be a theory of

common knowledge and T = {(z22 + {□
1

4

1 } : P → z2 : P ) → Q, ...}. We consider
the following proof of Q in SAx:

(□1P → □1P ) → Q □1P → □1P

Q
By inserting the initial terms we get

(z22 + {□
1

4

1 } : P → z2 : P ) → Q z1 : P → z1 : P

Q

The MP-connections give the equalities z1 = z22 + {□
1

4

1 } and z2 = z1. For

h(z1, z2) = (z22 + {□
1

4

1 }, z1) we have hn({□0
1}, {□

0
1}) = ({□x

1}, {□
y
1}) with the

following values for x and y:

n 0 1 2 3 4 5 ∞
x 0 1

4
1
4

5
16

5
16

89
256

1
2

y 0 0 1
4

1
4

5
16

5
16

1
2

This yields the following proof in SEK:

({□
1

2

1 } : P → {□
1

2

1 } : P ) → Q {□
1

2

1 } : P → {□
1

2

1 } : P

Q
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Example 3

Let F = EXA ∧ C(XA → EXA) → CXA be an induction axiom. The realiza-
tion r is obtained by inserting the initial terms:

z1 : z4 : A ∧ z2 : (lb(z4, z5) : A → z3 : z5 : A) → ind(z1, z2, z3) : lb(z4, z5) : A.

Let T be an axiomatically appropriate theory that supports induction. Then for
B = lb(z4, z5) : A the theory T proves

z1 : B ∧ z2 : (B → z3 : B) → ind(z1, z2, z3) : B.

By Lemma 6, T also proves r(F ), because z4, z5 ≥ lb(z4, z5).
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Conclusion

The evidence terms in traditional justification logic have the form of polynomials,
but semantically this structure is ignored by assigning a set of formulas to each
term. We introduced the logic SE and the corresponding semantics, where terms
are mapped to actual polynomials over a semiring. This gives a clear distinction
between constants and variables, because constants in a term are mapped to
elements in the semiring, yielding a function in the variables of the term. Further
it is possible to compute with justifications. This can be used to model trust
(Viterbi semiring), probabilities (powerset semiring), cost (tropical semiring),
etc., depending on the chosen semiring.

For the logic SE and its semantics we prove soundness and completeness. The
completeness proof does not follow the standard line with maximal consistent
sets. Instead we used a mapping to classical propositional logic, which basically
replaces formulas of the form t : A by a fresh atomic proposition. Then we
clarified the relationship between SE and the modal logic K by two realization
theorems. The proof of the first one is closely related to a realization procedure
without +, found by Kuznets.

Then we considered ω-continuous semirings with the motivation that every
Scott-continuous function on such a semiring has a fixed point, which can be used
to establish a connection between common knowledge and justification logic. We
therefore introduced the logic SEK with its semantics and proved soundness and
completeness in a similar way as before. The main difference between SE and SEK

is that the latter uses the polynomials over a semiring directly as justification
terms. Apart from simplifying a lot this change was necessary for using the fixed
points, because a fixed point is given by the (infinite) ascending Kleene chain,
which would result in an infinite term.

The infinite sum operation on the justification terms turned out to be too
complex for common knowledge itself. For example terms for E0, E2, E4 and
so on can be added to create a term for

∑
n∈N

E2n, which has no finite repre-
sentation in common knowledge. We therefore introduced the system SAx (as an
extension of common knowledge), which allows arbitrary sets of words of modal
operators. Working towards a realization theorem we found a way of addressing
occurrences of subformulas by a 0-1-sequence. This made the proof significantly
more rigorous. When we dealt with the modus ponens rule we saw that all the
applications of MP in a proof created a system of equations of the form x = f(x).
We therefore used the fixed point theorem and got a realization algorithm that
realizes the modus ponens rule directly and yields a normal realization.

In the future it could be interesting to try to generalize this approach. By
using fixed points one could find a realization procedure for more general modal
fixed point logics including the modal µ-calculus.
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