
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
5
0
4
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
8
.
5
.
2
0
2
4

 

 

 

 

 

 

Revisiting the Temporal Resolution Power (TRP) Hypothesis: An Investigation of the 

Behavioral and Psychophysiological Aspects of the Relationship Between TRP and 

Psychometric Intelligence 

 

 

Inauguraldissertation der Philosophisch-humanwissenschaftlichen Fakultät der Universität 

Bern 

 

 

zur Erlangung der Doktorwürde vorgelegt von 

 

 

Lisa Michaela Makowski 

Erlenbach (ZH) 

 

 

Bern, Dezember 2023 

 

Original document saved on the web server of the University Library of Bern 

 

 
 

This work is licensed under a 

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.  

To see the license go to 

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en or write to Creative Commons, 171 Second Street, 

Suite 300, San Francisco, California 94105, USA. This license does not apply to chapter 4.1 and 4.3.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


 

 

I 

Acknowledgments 

This dissertation would not have been possible without the support of various people I 

would like to acknowledge in the following.  

First and foremost, I would like to thank my first supervisor, Prof. Dr. Stefan J. 

Troche, for all his support, guidance, and patience over the last years. His expertise and 

insightful feedback were invaluable to my research.  

Furthermore, I would also like to thank my second supervisor, Prof. Dr. Martin Meyer, 

who kindly agreed to review my thesis.  

I would also like to thank my mentor, Prof. Dr. Stefanie J. Schmidt, for her support 

and guidance over the last few years.  

I am also grateful to all of my co-authors for their contributions to the published 

articles.  

Carrying out the different projects would not have been possible without the active 

support of various other people: First, I would like to thank all the participants who 

participated in our studies! Moreover, I would like to thank all Bachelor’s and Master’s 

students who contributed to the active recruitment and data collection as part of their theses, 

internships, or student assistant positions. In particular, I would like to thank Ursina Raemy, 

Bernadette Ruile, and Rahel Zubler, who supported the data collection of the last project, 

especially in the final phase, and Svenja Hammer, who supported me in the final stage of this 

dissertation.  

I would also like to thank my fellow doctoral students for their mutual support and 

encouragement along the way. Furthermore, I would like to express my gratitude to Dr. 

Danièle A. Gubler, with whom I shared the office in the past years. I appreciated all the 

wonderful discussions and your support during the ups and downs of the last years, especially 

during the final stretch of this dissertation. I would also like to thank the entire PDD team for 

their support over the past years. 

There are also some other special people independent of this university context I need 

to thank sincerely. In this sense, I want to thank all of my friends, especially Marcia Arbenz, 

Sarah Schmid, Selma Bruggisser, Anna Trippel, and Laura Imhof. Although I was more 

absent than present in recent years, you have always supported and encouraged me to keep on 

going. I would also like to thank my grandparents, Michael and Renate Makowski, and my 

family in the United States for cheering me on and supporting me along the way. 

The greatest thanks go to five exceptional individuals: my parents, Michaela Makowski and 

Dr. Andreas Makowski, my brothers, Philipp and Jan-Vincent Makowski, and my boyfriend, 



 

 

II 

Aleksandros Sobczyk. I would never have made it this far without your unconditional 

support, patience, and encouragement over the last years. Ich bin euch von Herzen dankbar! 

Σας ευχαριστώ από τα βάθη της καρδιάς μου!  



 

 

III 

Abstract 

The Temporal Resolution Power (TRP) hypothesis states that individuals who exhibit 

greater accuracy and sensitivity in temporal information processing tasks also process 

information faster, coordinate their information processing more effectively, and, therefore, 

perform better on psychometric intelligence tasks. As an explanation for these individual 

differences in TRP, it has been suggested that individuals differ in an internal master clock 

that ticks at a specific rate, which should be reflected in the form of neural oscillations. 

However, how these neural oscillations can be represented on a psychophysiological level is 

still unknown. Moreover, as the first part of the TRP hypothesis is merely well established, 

less is known about its association with the coordination of mental operations. From this 

perspective, the overall aim of this dissertation was to strengthen and extend the TRP 

hypothesis at the behavioral and psychophysiological levels. To this end, four studies were 

conducted in which different aspects of the TRP hypothesis were investigated. 

In Study 1 (N = 273, M = 21.6, SD = 2.7), the association between TRP, spatial 

suppression, as another information processing mechanism, and psychometric intelligence 

was analyzed on a behavioral level. Study 2 (N = 129, M = 23.0, SD = 3.1) examined to what 

extent an internal master clock can be reflected on the psychophysiological level by the peak 

alpha frequency (PAF) measured during resting states, and whether the PAF can mediate the 

relationship between TRP and psychometric intelligence. Study 3 (N = 228, M = 22.0, SD = 

2.9) focused on the second part of the TRP hypothesis by investigating to what extent 

working memory updating, as a reflection of the coordination of mental operations, mediates 

the relationship between TRP and psychometric intelligence. In Study 4, a subsample of 

Study 2 was selected with N = 100 (M = 22.8, SD = 2.9) to investigate how, besides an 

internal clock mechanism, the involvement of other processing during TRP tasks may be 

important for understanding the relationship between temporal information processing and 

psychometric intelligence. 

The results showed that the relationship between psychometric intelligence and TRP 

could be successfully replicated in Studies 1-3. Moreover, in line with the first part of the 

TRP hypothesis, individuals with higher TRP were also faster in correctly identifying the 

motion direction of presented visual stimuli (Study 1). Spatial suppression, however, could 

not make a functional contribution. In line with the second part of the TRP hypothesis, higher 

TRP also enabled a more effective coordination of mental operations, as indicated by a higher 

working memory updating, which in turn then also led to higher psychometric intelligence 

performance (Study 3). Regarding the psychophysiological basis of TRP, although the 
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frontal/central PAF when measured during resting states with eyes open was positively 

related to psychometric intelligence, it was not associated with TRP (Study 2). The 

investigation of neural activity during temporal information processing based on theta and 

gamma coherence also showed no significant correlation with temporal information 

processing performance when psychometric differences in intelligence were considered 

(Study 4). Thus, the individual differences in TRP could neither be explained by the PAF 

measured at rest nor its relationship to psychometric intelligence by the coherence measures 

measured during the task. 

Based on these four studies, the TRP hypothesis could be further replicated and 

extended. More specifically, Studies 1 to 3 provided further evidence for TRP as a substantial 

predictor of psychometric intelligence. Furthermore, the aspects of processing speed and 

coordination within the TRP hypothesis were confirmed in two new studies. However, it was 

also shown that spatial suppression was unable to contribute. Besides these behavioral 

aspects, it was also focused, as the first study to date, on how the internal master clock might 

be reflected on the psychophysiological level. Even if no clear measure could be found, the 

analyses offer initial starting points for future studies. This dissertation can, therefore, make 

an important contribution to the explanation and understanding of the TRP hypothesis and 

brings us one step closer to understanding why individuals differ in their general intelligence. 
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1 Introduction 

General intelligence reflects a complex and multifaceted ability. Its existence has been 

highly debated with the development of several different intelligence structure models 

(Gottfredson, 1997; Mackintosh, 2011). While much is known about how this ability can be 

measured, less is known about why individuals differ in it. As an explanation of these 

differences, cognitive correlates such as the speed of information processing, working 

memory capacity, and sensory discrimination ability have been investigated. It could be 

shown that individuals with higher psychometric intelligence process information faster 

(Doebler & Scheffler, 2016; Jensen, 2006; Mashburn et al., 2023; Schubert & Frischkorn, 

2020; Sheppard & Vernon, 2008), actively maintain and process more information in their 

working memory (Conway et al., 2003; Engle et al., 1999; Heitz et al., 2005; Mashburn et al., 

2023), and are better at discriminating perceptual differences (Acton & Schroeder, 2001; 

Deary, 1994; Helmbold et al., 2006; Jastrzębski et al., 2021; Troche et al., 2014; Troche & 

Rammsayer, 2009a; Tsukahara et al., 2020). Furthermore, it was demonstrated that a variable 

derived from various psychophysical timing tasks measuring temporal accuracy and 

sensitivity could also make a significant contribution to the understanding of psychometric 

intelligence (Haldemann et al., 2012; Helmbold et al., 2007; Pahud et al., 2018; Rammsayer 

& Brandler, 2007; Troche & Rammsayer, 2009b). This variable is called temporal resolution 

power (TRP). It is proposed that its individual differences can be explained by an internal 

timing mechanism referred to as an internal master clock, which should be reflected in the 

rate of neural oscillations (Rammsayer & Brandler, 2002, 2007; Surwillo, 1968). In this 

context, it has been argued that a faster rate of neural oscillation should also be reflected in a 

higher temporal resolution. This, in turn, should also lead to individuals being able to process 

their information faster and more effectively. Based on this, the TRP hypothesis was 

postulated, which states that individuals with a higher TRP also process information faster 

and coordinate their mental operations more effectively, leading to higher psychometric 

intelligence scores (Rammsayer & Brandler, 2007). Previous studies have been able to 

confirm repeatedly this relationship between TRP and psychometric intelligence (Haldemann 

et al., 2012; Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007; Troche 

& Rammsayer, 2009b). In line with the first aspect of the TRP hypothesis, it was also shown 

that the association between speed of information processing and psychometric intelligence 

could be explained in terms of TRP (Helmbold et al., 2007; Pahud et al., 2018). In contrast, 

the second aspect, which relates to the coordinative aspects of the information processing, has 

only been investigated once so far (Troche & Rammsayer, 2009b). In this turn, it was shown 
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that higher TRP is associated with a higher working memory capacity, leading to higher 

performance in psychometric intelligence tests. However, the specific coordination processes 

have not been studied in detail. It also remains unclear how the internal master clock can be 

represented on psychophysiological level. 

The first aim of the present thesis was to replicate the relationship between TRP and 

psychometric intelligence in three independent studies. The second aim was to extend 

previous findings in terms of the TRP hypothesis by examining to what extent spatial 

suppression (Study 1), as another information processing mechanism, as well as working 

memory updating, as a reflection of the coordination of mental operations (Study 3), 

contribute to the understanding of the TRP hypothesis. The third aim focused on examining 

the psychophysiological basis of the internal master clock underlying TRP. To this end, it was 

examined to which extent differences in EEG activity during the resting state with the peak 

alpha frequency (Study 2) and differences in EEG activity during temporal information 

processing using coherence analyses within the gamma and theta frequency bands (Study 4) 

can contribute to the understanding of this internal master clock. 

The following thesis is structured into five chapters. After the first chapter with an 

introduction to the topic, the second chapter is focused on the theoretical background and the 

current state of research. Chapter 3 will cover the study's research questions and the derived 

hypotheses. In chapter 4, the four different studies are presented as three articles with an 

additional analysis. Finally, there is a discussion of the research questions and hypotheses in 

chapter 5, including possible implications and an outlook for future studies.  

2 Theoretical Background  

Intelligence has fascinated humankind for a long time. Already in the 5th century, 

before Christ, philosopher Plato and his student Aristotle were trying to define intelligence 

(Sternberg, 2019). Whereas the former saw intelligence primarily as the ability to learn, the 

latter focused on reasoning. Since then, many different definitions of intelligence have been 

developed, of which the one written by Gottfredson (1997) reflects most closely what is 

understood by intelligence today. Gottfredson (1997) defined intelligence as:  

[…] a very general mental capability that, among other things, involves the ability to 

reason, plan, solve problems, think abstractly, comprehend complex ideas, learn 

quickly and learn from experience. It is not merely book learning, a narrow academic 

skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for 

comprehending our surroundings––“catching on”, ”making sense” of things, or 

“figuring out” what to do. (Gottfredson, 1997, p. 13) 
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This definition highlights the multi-facet of general intelligence, which was further 

analyzed by various structure models over the last 125 years (Mackintosh, 2011). The 

development of these different structure models was also accompanied by an intensive debate 

on the existence of general intelligence or a g-factor. This g-factor was first introduced by 

Spearman (1904) in his two-factor theory of intelligence. Spearman observed that the various 

measures he implemented in his study, namely academic performance, pitch discrimination, 

and the tested subjects' musical ability were positively related to each other (Spearman, 1904, 

1927). This occurrence of positive associations between different performance measures is 

also referred to as the positive manifold (Mackintosh, 2011). Spearman then showed that 

these associations could be explained by a common general factor, which he referred to as g. 

Besides this common factor, each task also has its own specific factor (s), which is unrelated 

to g. Thus, he believed that it was this general factor g that all performance measures had in 

common and that, in turn, could explain the positive associations between the different 

performance measures.  

The view, however, of a common general intelligence factor was not shared by all 

researchers. Thurstone (1938) believed that general intelligence could not be described by a g-

factor but by seven primary mental abilities. Also, another researcher named Cattell 

distinguished general intelligence into two related yet distinct factors: fluid intelligence 

(ability to solve new problems, recognize rules and reasoning, e.g., matrices test) and 

crystallized intelligence (knowledge, verbal abilities, e.g., vocabulary knowledge tests; 

Mackintosh, 2011). In this turn, it was shown that fluid intelligence, also often referred to as 

gF, was highly predictive of g and often even indissociable (Blair, 2006). 

As a consensus of these models, Carroll (1993) introduced his three-stratum structure 

model of intelligence which exhibits three levels (stratum). On the lowest level, the different 

tasks can be found. With these tasks, the originally eight specific abilities (e.g., fluid 

intelligence, crystallized intelligence, general memory and learning) on the second level 

(stratum) can be measured. These abilities share common variance, reflected in a general 

intelligence factor (g-factor) at the third stratum and top of the model (Carroll, 1993; 

McGrew, 2009). The model implements the seven primary mental abilities of Thurstone 

(second stratum), as well as fluid and crystallized intelligence as in the model proposed by 

Cattell (second stratum), while also including a general intelligence factor as in Spearman’s 

model on the first stratum (Mackintosh, 2011; McGrew, 2009). The model was then further 

revised and renamed to the CHC-model (McGrew, 2009).  

Nowadays, the existence of a g-factor, general intelligence, is (mostly) accepted 
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(Mackintosh, 2011). More so, since it has been shown that the g-factors assessed by different 

psychometric intelligence tests were highly related to each other, indicating that g is not only 

a correlational result of specific intelligence measures but an overarching factor found 

independent from the psychometric measurement (Johnson et al., 2004, 2008). All in all, the 

existence and measurement of general intelligence have been extensively investigated. 

However, the why or how general intelligence can be explained remains an open question. 

Although some of these structure models are named theories (such as Spearman’s two-factor 

theory), they solely describe how general intelligence is structured but do not explain 

individual differences.  

2.1 Intelligence and its Cognitive Correlates  

Previous research could show that cognitive correlates can contribute to the 

understanding of individual differences in psychometric intelligence. Moreover, individual 

differences in psychometric intelligence were shown to be related to differences in the speed 

of information processing (Doebler & Scheffler, 2016; Jensen, 2006; Mashburn et al., 2023; 

Schubert & Frischkorn, 2020; Sheppard & Vernon, 2008), working memory capacity 

(Conway et al., 2003; Engle et al., 1999; Heitz et al., 2005, 2005; Mashburn et al., 2023), and 

sensory discrimination ability (Acton & Schroeder, 2001; Deary, 1994; Helmbold et al., 2006; 

Jastrzębski et al., 2021; Troche et al., 2014; Troche & Rammsayer, 2009a; Tsukahara et al., 

2020). The following chapter will describe how and why these cognitive correlates can 

explain individual differences in psychometric intelligence.  

2.1.1 Intelligence and Speed of Information Processing  

The speed of information processing (SIP), also referred to as information processing 

speed or processing speed, describes how fast an individual deals with incoming information 

(Mashburn et al., 2023). Its individual differences in terms of intelligence have been of 

interest since Sir Francis Galton aimed to investigate in the 1800s how individual differences 

in reaction time (RT) tasks and sensory discrimination are related to intelligence. However, 

due to methodological limitations, he could not show an association between RT and 

intelligence (Galton, 1883 for review, see Jensen, 2006; Mashburn et al., 2023). It took almost 

another 100 years to provide the first evidence for a significant negative relationship between 

RT and psychometric intelligence (Roth, 1964). Since then, it has been repeatedly shown that 

individuals with higher psychometric intelligence scores process information faster than those 

with lower psychometric intelligence scores, also known as the mental speed approach 

(Doebler & Scheffler, 2016; Jensen, 2006; Mashburn et al., 2023; Schubert & Frischkorn, 

2020; Sheppard & Vernon, 2008).  
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At the behavioral level, SIP can be measured with elementary cognitive tasks (ECTs) 

for which only a few cognitive processes are required. Thus, their performance should not be 

influenced by prior knowledge or strategies, and for analyzing individual differences in these 

tasks, the reaction time (RT) and inspection time (IT) are used, not the accuracy measures 

(Jensen, 1998, 2006). RT refers to the duration an individual needs to respond to a presented 

stimulus (Jensen, 2006) and can be measured, for example, with tasks as the Hick task (Hick, 

1952; for review, see Proctor & Schneider, 2018), the Sternberg task (Sternberg, 1966), the 

Odd-Man-Out paradigm (Frearson & Eysenck, 1986), and the Posner task (Posner, 1969; 

Posner et al., 1969). IT describes the minimum time an individual needs to discriminate 

correctly between two stimuli (Irwin, 1984) which can be visual, tactile, or auditory (Kranzler 

& Jensen, 1989; Sheppard & Vernon, 2008). Across all these ECT tasks, it was consistently 

shown that RT, the standard deviation of RT as well as IT regardless of stimulus modality 

were negatively associated with psychometric intelligence (Doebler & Scheffler, 2016; 

Grudnik & Kranzler, 2001; Schubert, 2019; Sheppard & Vernon, 2008).  

Whereas the existence of the relationship between SIP and psychometric intelligence 

has been well studied, there is still no consensus on the nature of this relationship (Mashburn 

et al., 2023). One explanatory approach was introduced by Jensen (1982, 2006) with his 

oscillation theory. Moreover, he proposed that individuals are faster (mean or median RT) and 

more consistent (standard deviation of RT) in their SIP based on a higher oscillation rate, i.e., 

higher frequency of excitatory and refractory phases. This higher oscillation rate is beneficial 

in information processing since, during the encoding of sensory information, the incoming 

sensory information can only be held very shortly in sensory memory if it is not transferred to 

working or long-term memory. In this turn, a faster SIP allows information to be passed on 

more quickly, enabling an individual with a faster SIP to process more information in the 

same amount of time as an individual with a slower SIP (Jensen, 1982, 2006). Since working 

memory (WM) is considered a capacity-limited memory system in which only a limited 

amount of information can be held temporally during information processing (Baddeley, 

1986), a faster SIP also enables faster information processing in WM and a faster transfer into 

long-term memory or action. This, in turn, also prevents WM from overloading, allowing for 

a higher response accuracy. As then the demands of WM capacities can be used for more 

information, this also makes an individual with a higher SIP more efficient. This efficiency is 

essential for more complex cognitive behavior, e.g., problem-solving (Halford et al., 1998), 

which might explain the functional relationship between SIP and intelligence (Deary, 2001; 

Doebler & Scheffler, 2016; Jensen, 2006; Mashburn et al., 2023; Schubert & Frischkorn, 
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2020; Sheppard & Vernon, 2008), but would also assume an existing relationship between 

WM capacity (WMC) and psychometric intelligence.  

2.1.2 Intelligence and Working Memory Capacity  

WM can be defined as “a system or a set of processes, holding mental representations 

temporally available for use in thought and action” (Oberauer et al., 2018, p. 886). The 

amount of information this system can actively hold and manipulate is limited, with 

individuals also differing in this ability called working memory capacity (WMC; Engle et al., 

1999; Oberauer et al., 2000; Oberauer et al., 2016; Wilhelm et al., 2013). WMC can be 

measured using complex span tasks (Daneman & Carpenter, 1980; Turner & Engle, 1989), n-

back tasks (Kirchner, 1958), running memory span tasks (Pollack et al., 1959), updating tasks 

(Miyake et al., 2000) and binding tasks (Wilhelm et al., 2013). Although these WMC tasks 

differ in their functionality, they are highly related and can be described with a common 

general WMC factor, indicating that WMC reflects a domain-general construct (Wilhelm et 

al., 2013). This domain-general WMC has been shown to be strongly linked with general 

fluid intelligence, with two meta-analyses reporting associations of r = .72 (Kane et al., 2005) 

and r = .85 (Oberauer et al., 2005) between WMC and general fluid intelligence. Other 

studies could also show significant associations of WMC with verbal, fluid, and spatial 

abilities (Colom & Chun Shih, 2004), with capacity- and speed-related aspects of intelligence 

(Troche & Rammsayer, 2009b), and with general intelligence (Colom et al., 2005, 2008; 

Conway et al., 2003). Thus, WMC and general intelligence share a substantial amount of 

variance, implying the existence of common underlying processes. However, what kind of 

processes these are, is still an ongoing debate.  

There are different theoretical frameworks suggesting that individual differences in 

short-term memory storage (Colom et al., 2008), temporary bindings (Chuderski, 2019; 

Oberauer et al., 2008), and executive attention, also referred to as engagement and 

disengagement theory (Engle, 2018; Engle et al., 1999; Mashburn et al., 2020), explain the 

relationship between WMC and general (fluid) intelligence. Of these, the binding hypothesis 

seems particularly important, as it emphasizes that it is not only the pure number of items that 

an individual can hold, as in the original accounts of short-term memory storage (Colom et 

al., 2008), but also the number of present relationships between the items, or the relationship 

between their context, that can explain the link between WMC and general fluid intelligence 

(Oberauer, 2005, 2019; Oberauer et al., 2007, 2008). The quality but also number of these 

temporary bindings differ between individuals (Oberauer et al., 2008). However, since the 

same bindings will not always be needed, it is also important to be able to break certain 
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relations, i.e., unbinding, and build new ones in order to ensure efficient information 

processing. So, in addition to WMC, which reflects how many of these bindings can be 

activated at once, there is another process called WM updating, which comes into play when 

new relevant bindings replace older and no longer relevant ones (Oberauer, 2005, 2019; 

Oberauer et al., 2007, 2008). Since WMC reflects the space that defines how much 

information can be processed and maintained in parallel, WM updating helps the system 

process this information more efficiently (Chuderski, 2019; Oberauer, 2009, 2019). These are 

also relevant processes when solving, for example, a matrices test since new rules need to be 

recognized, retained, and discarded in the presence of other rules (Chuderski, 2019; Oberauer 

et al., 2007). Empirically, this theory showed strong support (Oberauer, 2005; Schubert et al., 

2023; Wilhelm et al., 2013).  

Since WMC is limited in its capacity and time to maintain information actively, it 

seems important that information is processed as quickly as possible. As described in the 

chapter before with Jensen's oscillation theory (1982, 2006), it is, therefore not only the SIP 

that is important when it comes to understanding why people differ in their psychometric 

intelligence. Instead, it is also the amount of information that can be actively maintained in a 

short period of time. Moreover, as information processing is not a static process, these 

bindings need to be constantly refreshed and updated, indicating the importance of WMC and 

WM updating (Chuderski, 2019; Oberauer et al., 2007). However, to actively maintain 

information and establish and update bindings, not only the processing speed but also the 

resolution of sensory perception and processing are important (Mashburn et al., 2023). In this 

sense, differences in sensory processing could provide further insights into why individuals 

differ in their intelligence. 

2.1.3 Intelligence and Sensory Discrimination Ability 

How precisely an individual can process and judge perceptual differences of auditory, 

visual, and tactile stimuli can be measured with sensory discrimination ability measures 

(Burgoyne et al., 2020). Already early on, Galton (1883) proposed that differences in this 

ability might explain why individuals differ in their intelligence. Also, Spearman (1904) was 

intrigued by this idea and investigated how sensory discrimination in pitch, weight, and color 

might be related to general intelligence and revealed moderate to high positive associations on 

the manifest level. Since then many other studies have replicated this positive association with 

general intelligence using discrimination tasks in which the pitch (Jastrzębski et al., 2021; 

Troche & Rammsayer, 2009a), duration (Jastrzębski et al., 2021; Troche et al., 2014; Troche 

& Rammsayer, 2009a; Tsukahara et al., 2020) and loudness (e.g., Deary et al., 2004; Troche 
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& Rammsayer, 2009a) in the auditory modality, brightness (e.g., Troche & Rammsayer, 

2009a), duration (Jastrzębski et al., 2021; Troche et al., 2014), line (e.g., Troche et al., 2014; 

Tsukahara et al., 2020), circle (e.g., Tsukahara et al., 2020) and color (Acton & Schroeder, 

2001) in the visual domain, and pressure (Li et al., 1998), texture (Li et al., 1998; Roberts et 

al., 1997) and shape (Roberts et al., 1997; Stankov et al., 2001) in the tactile modality had to 

be discriminated. Despite these modality differences, already early on, Spearman (1904) 

derived a common general discrimination factor from different sensory discrimination 

measures that was almost perfectly related to g (Spearman, 1904). This indicated that these 

different sensory tasks shared common underlying processes that, in turn, were highly 

associated with general intelligence. These findings were further replicated by other studies 

showing a positive association between general intelligence and a general discrimination 

ability factor derived from discrimination tasks of different modalities (Jastrzębski et al., 

2021; Troche et al., 2014; Troche & Rammsayer, 2009a; Tsukahara et al., 2020). In this turn, 

it was also shown that although sensory discrimination ability and general intelligence are 

highly related, they are still dissociable constructs (Jastrzębski et al., 2021; Troche et al., 

2014; Troche & Rammsayer, 2009a).  

As an explanation for this close relationship between psychometric intelligence and 

general sensory discrimination ability, previous studies suggested a mediating role of WMC, 

as WM processes are required for task processing of both constructs (Jastrzębski et al., 2021; 

Troche et al., 2014; Voelke et al., 2014). In line with this, previous studies showed that WMC 

could completely explain the relationship between general sensory discrimination ability and 

psychometric intelligence (Jastrzębski et al., 2021; Troche et al., 2014). Although WM 

processes are required in sensory discrimination tasks, a recent study argues that it is the 

intensity of attention directed to task-relevant information, an aspect of attention control, 

which should explain the link between general sensory discrimination ability and general 

intelligence and between sensory discrimination ability and WMC (Tsukahara et al., 2020). 

The authors confirmed their notion in two independent studies showing that attention control 

fully mediated both relationships.  

Overall, many studies have shown what Galton already believed that there is a general 

sensory discrimination ability across modalities, which is highly associated with general 

intelligence. In contrast to the assumptions of Galton and Spearman, however, these are still 

dissociable constructs (Jastrzębski et al., 2021; Troche et al., 2014; Troche & Rammsayer, 

2009a). Although these discrimination tasks differ in their modality, they have one perceptual 

feature in common: the presented duration of a stimulus. In terms of an association with 
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psychometric intelligence, it was shown that temporal and non-temporal discrimination could 

be dissociable from each other, regarding the manifest (Helmbold et al., 2006) but also the 

latent level (Jastrzębski et al., 2021; Troche et al., 2014; Troche & Rammsayer, 2009a). 

Although duration discrimination is a part of sensory discrimination ability, a general factor 

derived from temporal discrimination tasks could independently explain variance in 

psychometric intelligence (Rammsayer & Brandler, 2007), suggesting an important role of 

temporal information processing.  

2.2 Intelligence and Temporal Resolution Power (TRP) 

Temporal information processing measures how accurately humans perceive and 

process temporal information (Grondin, 2001, 2010). When it focuses on durations in the 

subsecond (below one second) to second (above one second) range, it marks an important 

process involved in cognitive processing, for example, in memory, perception, or motor 

activity processes (Matthews & Meck, 2016). It can be assessed by tasks focusing on interval 

timing, rhythms, implicit timing, and event timing that mostly implement visual and/or 

auditory stimuli (van Wassenhove et al., 2019). In terms of interval timing tasks, it is also 

possible to differentiate into prospective, i.e., participants are informed that they need to focus 

on temporal information before the task, and retrospective timing tasks, i.e., participants are 

not informed before the task that they need to focus on temporal information, but get asked 

about it after (Grondin, 2010). Out of these, prospective interval timing, rhythms, and event 

timing tasks were implemented to investigate possible associations with general intelligence. 

Examples of prospective interval timing and event timing tasks are presented in Figure 1. In 

this turn, it should be noted that event-timing tasks are solely presented in the subsecond 

range (Fraisse, 1984; van Wassenhove et al., 2019). Rhythm perception and interval timing 

tasks such as the duration discrimination or temporal generalization task can be presented in 

the second or subsecond range (Grondin, 2010; Matthews & Meck, 2016; van Wassenhove et 

al., 2019). 
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Figure 1 

An illustration of the different temporal information processing tasks used in the investigation 

of individual differences in psychometric intelligence 

 

 

Although temporal information processing tasks can be differentiated into these 

different categories and implemented durations (subsecond to second range), already early on, 

it was believed, especially for interval timing tasks, that they share a common underlying 

process. Moreover, with the so-called pacemaker-accumulator models, the existence of an 

internal clock responsible for individual differences in timing accuracy in these tasks was 

proposed (Grondin, 2001, 2010; van Wassenhove et al., 2019). According to these models, 

each individual has an internal pacemaker or clock that emits pulses at a particular frequency. 

These pulses are then counted by an accumulator for the duration of the presented interval, as, 

for example, for a 1000 ms tone (Creelman, 1962; Grondin, 2001, 2010; Treisman, 1963). 

The resulting number should then reflect the perceived length of the presented 1000 ms tone, 

thus, how accurately a temporal interval was encoded. This indicates that individuals with a 

pacemaker emitting more pulses might be able to sample the presented duration more 

accurately than those with fewer pulses. It was further suggested that these pulses are 

reflected by neural oscillations (Grondin, 2010; Treisman, 1963; Treisman et al., 1990, 1994). 

In further developments of these models, the role of memory and decision processes 

(Scalar Timing, Scalar Expectancy Theory; Gibbon et al., 1984), as well as attentional 

processes (Attentional Gate Model; Block & Zakay, 1997), were implemented. However, it 

should be noted that there are also opposing views suggesting distinct timing mechanisms 
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depending on stimulus duration and type. Moreover, with the use of dual-task paradigms (e.g., 

performing a working memory task in parallel to a DD task), it was shown that in the 

processing of longer intervals (> 500 ms as in Michon, 1985; Rammsayer & Lima, 1991; > 

250 ms in Buonomano et al., 2009; Spencer et al., 2009) cognitive processes such as working 

memory or attention are involved (e.g., Brown, 1997; Mioni et al., 2020, 2021; Rammsayer & 

Lima, 1991; Zakay, 1993), whereas short or brief duration were believed to be relatively 

independent of these cognitive processes (Ivry & Spencer, 2004; Lewis & Miall, 2003; 

Rammsayer & Lima, 1991). In terms of stimulus type, it was shown that in very short 

intervals in the subsecond range, participants showed higher performance in DD tasks with 

filled (e.g., tone) than with empty intervals (e.g., onset and offset is marked by noise burst, in 

between these bursts is silence; Grondin, 2001; Rammsayer, 2014).  

2.2.1 TRP Hypothesis and its Background  

Similarly to these models of a common timing mechanism, although from a different 

background, Surwillo (1968) also proposed the existence of an internal clock, which he 

referred to as a master clock. According to him, this master clock can be viewed as a property 

of the central nervous system that should explain individual differences in information 

processing by being responsible for the coordination of different neural activities. Therefore, 

having a faster clock rate, i.e., a faster neural oscillation rate, should enable one to process 

information faster and more accurately (Surwillo, 1968). Thus, in line with Jensen’s 

oscillation theory (1982, 2006), Surwillo (1968) also assumed the importance of neural 

efficiency in information processing. In contrast to Jensen (1982, 2006), however, Surwillo 

(1968) emphasized the role of an internal master clock for information processing speed. 

Also, Surwillo (1968) did not use his notion to explain intelligence differences but to explain 

age-dependent differences in information processing. It was then Rammsayer and Brandler 

(2002) who developed his theory further in explaining individual differences in general 

intelligence (for an illustration, please see Figure 1 in Article 2). To further illustrate their 

idea, one could imagine two individuals, A and B, with individual B showing half the clock 

speed or rate as individual A. This indicates that individual B also only processes half of the 

information than individual A and will also make more mistakes than individual A. Thus, 

individual B will be less efficient in information processing and make more mistakes in ECTs 

and psychometric intelligence tests (Rammsayer & Brandler, 2002).  

Whereas Burle and Bonnet (1997, 1999) could provide the first evidence of an internal 

clock mechanism being associated with RT tasks, they did not investigate direct measures of 

such an internal clock in the form of temporal information processing tasks or intelligence 
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measures. However, in turn, for the notion by Rammsayer and Brandler (2002) to be true, it 

should be first shown that tasks reflecting clock speed as different temporal information 

processing tasks can reflect such an internal master clock. Second, they should be related to 

general intelligence. Proceeding from this idea, it was demonstrated that different interval, 

event timing, and rhythm perception tasks were closely related (Rammsayer & Brandler, 

2002, 2004). Moreover, with the use of exploratory and principal factor analysis, it was 

possible to derive a common factor, termed temporal resolution power (TRP; Rammsayer & 

Brandler, 2004, 2007). This TRP factor was then shown to be highly associated with general 

intelligence, which led to the proposition and further investigation of the TRP hypothesis 

(Rammsayer & Brandler, 2002, 2007).  

According to the TRP hypothesis, individuals with higher TRP also process 

information faster and are more effective at coordinating their mental operations (Rammsayer 

& Brandler, 2002, 2007). This, in turn, leads then to higher psychometric intelligence scores. 

In the past 20 years, this hypothesis has been replicated various times (Haldemann et al., 

2012; Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007; Troche & 

Rammsayer, 2009b). Moreover, it was shown that TRP could explain between 22 % 

(Haldemann et al., 2012) and 44 % (Helmbold et al., 2007) of variance in psychometric 

intelligence measures, indicating it to be a substantial predictor of psychometric intelligence. 

Whereas most studies implemented auditory temporal information processing tasks, it was 

also shown that TRP could be derived from visual timing tasks as well as from visual and 

auditory timing tasks (Haldemann et al., 2011, 2012). In both cases, substantial, albeit a bit 

smaller, associations with psychometric intelligence could be found.  

2.2.2 TRP and Speed of Information Processing 

Besides the investigation of TRP and psychometric intelligence, Rammsayer and 

Brandler (2007) also implemented a modified Hick task and derived a factor from the Hick 

parameters. This Hick factor was also significantly associated with general intelligence 

(Rammsayer & Brandler, 2007). When both the TRP and Hick factor were entered into a 

regression model, the factor derived from the temporal information processing tasks could 

explain significantly more variance in general intelligence than the factor reflecting SIP. 

Thus, TRP seemed to be a more important predictor of psychometric intelligence than SIP. 

These found association between TRP, SIP, psychometric intelligence were then further 

investigated by Helmbold et al. (2007) using structural equation modeling (SEM). As in 

previous studies (Helmbold & Rammsayer, 2006; Rammsayer & Brandler, 2007), a positive 

relationship between TRP and psychometric intelligence could be shown. They could also 
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provide evidence that TRP and SIP are related yet dissociable constructs. With a mediation 

analysis, they then further showed that TRP was more important in explaining differences in 

general intelligence and accounted for the association between SIP and general intelligence 

(Helmbold et al., 2007). However, since in all these studies, SIP was only measured using one 

kind of task, namely the Hick paradigm, it remained unclear to what extent this might have 

had an impact on the results.  

In another study, Pahud et al. (2018) tried to corroborate these findings by 

investigating the common relationships between TRP, SIP, and psychometric intelligence 

using an equivalent number of tasks per TRP and SIP variable. They implemented three TRP 

measures (TOJ, DD, TG) in the subsecond range as well as three SIP measures (Hick 

paradigm, Posner task, continuous performance task). By means of a latent variable approach 

named fixed-links modeling, an increasing latent variable and a constant latent variable from 

each SIP measure were derived, which were further reduced to a higher-order latent 

increasing (dependent on task demands) and a higher-order latent constant variable 

(independent on task demands) (Pahud et al., 2018). Their results then showed a substantial 

link between TRP and general intelligence, with TRP explaining 36% of the variance in 

general intelligence. Moreover, they could show that TRP was also associated with SIP, as 

well as SIP being associated with general intelligence. By means of a mediation analysis, they 

found that TRP completely mediated the relationship between the higher-order constant latent 

variable (SIP independent of task demands) and general intelligence. This finding was 

interpreted as a replication of Helmbold et al. (2007), indicating that TRP is more indicative 

of individual differences in general intelligence than SIP. When SIP was placed as a mediator 

between TRP and psychometric intelligence, their relationship remained unaffected.  

Thus, as stated in the first part of the TRP hypothesis, it was repeatedly shown that 

individuals with higher TRP, also show a faster information processing, which in turn then 

enables a higher performance in psychometric intelligence tests (Helmbold et al., 2007; Pahud 

et al., 2018). This faster processing, however, should also lead to lower error rates which 

would be in line with the oscillation theory by Jensen (1982, 2006), as described in 2.1.1. As 

stated in the second part of the TRP hypothesis, these additional processes might be reflected 

by the coordination of mental operations.  

2.2.3 TRP and Coordination of Mental Operations 

The second notion of the TRP hypothesis can be interpreted in terms of the association 

between WMC and psychometric intelligence (Conway et al., 2003; Engle et al., 1999; Heitz 

et al., 2005; Mashburn et al., 2023). In this context, it was argued that the coordination of 
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information processing becomes particularly important when only a certain amount of 

resources is available, as is the case with WMC. On this basis, it was proposed that higher 

TRP would consequently facilitate the coordination of information processing, which in turn 

should enable a higher WMC. This notion, however, was only once investigated by Troche 

and Rammsayer (2009b) who investigated the possible interplay between TRP, WMC, and 

psychometric intelligence using SEM. Their results revealed high associations between TRP, 

WMC, and psychometric intelligence. Using a mediation analysis, they further revealed that 

WMC fully mediated the relationship between TRP and psychometric intelligence. This 

indicated that individuals with higher TRP, also coordinated their mental operations better, 

which in turn allowed for a higher WMC, leading then to higher psychometric intelligence 

scores. Thus, their study could provide the first evidence of a possible relationship between 

TRP, WMC, and psychometric intelligence (Troche & Rammsayer, 2009b). However, they 

also noted certain limitations as they found a very high association (r = .88, r = .85) between 

WMC and the implemented reasoning and capacity intelligence measures as derived from the 

Berliner Intelligence Structure Test. They explained this with the broad assessment of WMC 

with three different tasks (numerical memory-updating, figural dot span, verbal monitoring). 

Since the study by Troche and Rammsayer (2009b) is the first and only study to investigate 

the role of the coordination aspect of the TRP hypothesis, further studies are needed to expand 

the evidence.  

2.3 How to Substantiate the TRP Hypothesis?  

As described before, TRP represents a substantial predictor of psychometric 

intelligence (Haldemann et al., 2012; Helmbold et al., 2007; Pahud et al., 2018; Rammsayer 

& Brandler, 2007; Troche & Rammsayer, 2009b). Previous studies have focused on providing 

evidence in terms of its association with SIP (Helmbold et al., 2007; Pahud et al., 2018; 

Rammsayer & Brandler, 2007) but also WMC (Troche & Rammsayer, 2009b). In this 

context, however, it could also be interesting to investigate how other information processing 

mechanisms can contribute to the understanding of TRP and its relationship with 

psychometric intelligence. Furthermore, it is still unknown which psychophysiological 

measurable neural oscillations can explain individual differences in the internal master clock 

and thus also in TRP. The following section outlines which information processing 

mechanisms and which psychophysiological could contribute to a further understanding.  

2.3.1 TRP and Spatial Suppression as Competing Bottom-up Approaches to Intelligence  

Another information processing mechanism closely linked with psychometric 

intelligence is spatial suppression (Arranz-Paraíso & Serrano-Pedraza, 2018; Cook et al., 
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2016; Melnick et al., 2013; but also see Linares et al., 2020; Troche et al., 2018). Although 

this mechanism can occur in different sensory modalities, it has so far only been associated 

with psychometric intelligence on the visual level (Ankri et al., 2020; Tadin et al., 2011). 

Therefore, the following descriptions will also be focused on spatial suppression in visual 

processing.  

Spatial suppression manifests itself within visual processing when we perceive the 

motion of a stimulus. If the stimulus is relatively small, it can be easily distinguished from the 

background, making it possible to detect its correct motion direction (e.g., right or left) 

quickly (Tadin, 2015; Tadin et al., 2003). However, the larger the stimulus becomes, the more 

difficult it is to distinguish it from the background and, thus, to perceive the correct motion 

direction. This difficulty in correctly identifying the motion direction with increasing stimulus 

size is referred to as spatial suppression and can be assessed with visual psychophysical tasks 

(Tadin, 2015; Tadin et al., 2003). In these tasks, the presentation time of the next stimulus 

becomes shorter in case of a correct response and longer in case of an incorrect one. The 

resulting presentation times are then gathered as a threshold per stimulus size that reflects the 

presentation time an individual needed to accurately detect the motion direction of the 

presented stimulus, usually in 83% of the trials (Tadin et al., 2003). Since this increase in 

threshold time for the larger stimulus should indicate spatial suppression, a difference value is 

used to measure spatial suppression in which the logarithmized threshold of the smallest 

stimulus is subtracted from that of the largest stimulus (Tadin et al., 2003). A high spatial 

suppression index would indicate then that individuals were quick in identifying the motion 

direction correctly in a small stimulus but had difficulties doing so in a large stimulus. This 

might imply a possible influence of processing speed in recognizing the motion direction of 

small stimuli. However, difficulties arise with larger stimuli, which is reflected in longer 

presentation times and might indicate the need for ongoing perceptual suppression processes 

(Melnick et al., 2013; Tadin, 2015; Tadin et al., 2003).  

On the neural level, spatial suppression is linked to the center-surround mechanisms 

associated with suppression in the cortical medial temporal area (Lin & Tadin, 2019; Liu et 

al., 2016; Tadin, 2015; Tadin et al., 2003, 2011; Tadin & Lappin, 2005). Whereas in normal 

visual processing, brighter or bigger stimuli are considered to be easier perceived, this cannot 

be so easily transferred to the perception of motion (Liu et al., 2016; Tadin, 2015). Moreover, 

in motion perception, large and high-contrasted stimuli expand over the center of a receptive 

field into the surround area. This is also referred to as center-surround antagonism and leads 

to neural suppression since the response of a neuron gets inhibited (Lin & Tadin, 2019; Liu et 
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al., 2016; Tadin, 2015; Tadin & Lappin, 2005). As such a suppression process should 

facilitate information processing, it might be also important for psychometric intelligence 

(Burgess et al., 2011; Dempster, 1991; Gray et al., 2003). Thus, it was suggested that the 

thresholds of the smaller stimulus sizes should be negatively associated with psychometric 

intelligence since they are associated with motion processing speed (Melnick et al., 2013). 

However, the larger the stimulus gets, the harder it is to perceive the correct motion direction, 

which results in a neural surround suppression. Thus, the relationship between psychometric 

intelligence and the thresholds should be reversed for larger stimuli. This would indicate that 

a large spatial suppression index would be positively associated with psychometric 

intelligence. This, in turn, was shown by the study of Melnick et al. (2013), which revealed a 

high and significantly positive association between psychometric intelligence and the spatial 

suppression index (in their study 1: r = .64, in their study 2: r = .71). Thus, individuals with 

higher psychometric intelligence showed lower thresholds during the smallest stimulus size 

but higher ones during the largest one (Melnick et al., 2013). For individuals with lower 

intelligence, the thresholds were comparable over the different stimulus sizes, i.e., showing 

small spatial suppression indices. This finding was further replicated by two other studies 

(Arranz-Paraíso & Serrano-Pedraza, 2018; Cook et al., 2016 but also see Linares et al., 2020; 

Troche et al., 2018).     

Thus, spatial suppression, as TRP, also contributes to the understanding of individual 

differences in psychometric intelligence. When comparing these two mechanisms, it is 

noticeable that both can be interpreted as bottom-up mechanisms that facilitate efficient 

information processing which in turn is important for psychometric intelligence (Arranz-

Paraíso & Serrano-Pedraza, 2018; Cook et al., 2016; Haldemann et al., 2012; Helmbold et al., 

2007; Melnick et al., 2013; Pahud et al., 2018; Rammsayer & Brandler, 2007; Troche & 

Rammsayer, 2009b). Both also involve temporal information processing. Whereas TRP is a 

direct measure of temporal accuracy and sensitivity but is also associated with SIP (Helmbold 

et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007), processing speed seems to be 

also involved in the thresholds of the motion perception of at least the small stimuli in a 

spatial suppression task (Melnick et al., 2013). Besides these similarities, however, they also 

differ in other parts, as spatial suppression in its association with psychometric intelligence is 

limited to the visual modality, and TRP is associated with psychometric intelligence over 

different modalities (Haldemann et al., 2011, 2012). Also, although faster SIP might influence 

the perception of smaller stimuli, it might not be so influential on larger stimuli and therefore, 

also not be reflected within the spatial suppression index. From the perspective that spatial 
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suppression was shown to be important in terms of information processing, it might also be 

important to investigate how TRP and spatial suppression are related to each other as well as 

how spatial suppression can be integrated in the relationship between TRP and psychometric 

intelligence.  

2.3.2 Psychophysiological Basis of the Relation Between TRP and Intelligence 

Based on the theory of Jensen (1982, 2006) as well as the expanded notion of an 

internal master clock by Surwillo (1968) and Rammsayer and Brandler (2002, 2007), it was 

put forward that the speed of neural oscillations can explain why a faster information 

processing, as in Jensen (1982, 2006), and a higher TRP, as in Rammsayer and Brandler 

(2002, 2007), is associated with higher psychometric intelligence. However, neither Jensen 

(1982, 2006) nor Rammsayer and Brandler (2002, 2007) specified how these neural 

oscillations can be represented.  

Neural oscillations can be measured with a psychophysiological and noninvasive 

method named electroencephalography (EEG), for which a certain number of electrodes 

(usually varying between 32 to 256 electrodes) are positioned on the scalp (Cohen, 2014). The 

oscillations measured with these electrodes can be described by their frequency, power, and 

phase. The frequency of an oscillation (in Hz) reflects the number of cycles per second, i.e., 

the speed of the oscillation. In contrast, the phase refers to when the oscillation occurs, i.e., 

the timing (Cohen, 2014). The power can be derived through frequency analysis, e.g., Fast 

Fourier Transformation (FFT), and is calculated as the squared amplitude of the signal in a 

frequency band, describing the strength of a particular frequency band (Cohen, 2014). In this 

regard, most studies distinguish between the following five frequency bands: delta (0.5-4 Hz), 

theta (4-7 Hz), alpha (7-13 Hz), beta (13-30 Hz), and gamma (> 30 Hz) (Buzsáki, 2006; 

Cohen, 2014; Klimesch et al., 1993). Previous studies have shown that the five frequency 

bands are associated with different cognitive processes (Başar et al., 1999; Cohen, 2014; O. 

Jensen & Mazaheri, 2010; Klimesch, 2012). However, it should be also noted that the 

frequency range (in Hz) of these frequency bands can vary between studies (Cohen, 2014). 

One way to measure the involvement of these different frequency bands is during a so-

called resting state during which participants, for example, have to close their eyes for 60 s or 

keep their eyes open for 60 s. Another possibility is to measure them during a task and focus 

on task-related activity (Cohen, 2014). In this turn, it is also important to differentiate between 

studies implementing an individual approach and those implementing a task approach (Basten 

et al., 2015; Basten & Fiebach, 2021). In a task approach, the task-specific brain activations 

are examined without considering individual differences. On the other hand, an individual 
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approach focuses on the activations that can explain why individuals differ in their 

performances.  

2.3.2.1 Peak Alpha Frequency as an Internal Master Clock. As indicated by the 

theoretical frameworks of Jensen (1982, 2006) as well as Rammsayer and Brandler (2002, 

2007), it seems to be the speed of an oscillation that is important for individual differences in 

psychometric intelligence and also to explain differences in TRP that in turn are linked to 

psychometric intelligence. This speed of an oscillation should be reclected by the rate of 

neural oscillations, thus, the number of cycles per second as indicated by Hz. When looking 

closer at the power spectrum of the alpha frequency band measured at rest, there is indeed a 

prominent peak in the alpha frequency band in which subjects have been shown to differ 

substantially (Angelakis, Lubar, Stathopoulou, et al., 2004; Drewes et al., 2022; Hilger et al., 

2022). This peak is referred to as peak alpha frequency (PAF) and reflects the point with the 

highest power within the alpha frequency spectrum (in Hz). It has been interpreted as a 

measure of “cognitive preparedness” (Angelakis, Lubar, Stathopoulou, et al., 2004, p. 896), 

processing speed (Jann et al., 2010; Klimesch et al., 1996; Ociepka et al., 2022), and 

resolution of information processing (Mierau et al., 2017; Samaha & Romei, 2023). These 

definitions have one thing in common, as they all indicate that PAF is involved in information 

processing. Furthermore, the PAF has been shown to reflect a stable measure, showing high 

heritability (Posthuma et al., 2001) and retest-reliability when measured during resting state 

(Popov et al., 2023). Based on this, PAF was proposed to be a good candidate for assessing 

psychometric intelligence differences. In line with this idea, previous studies revealed a 

positive relation between psychometric intelligence and PAF (Angelakis, Lubar, & 

Stathopoulou, 2004; Anokhin & Vogel, 1996; Leno et al., 2021; Doppelmayr et al., 2002; 

Grandy et al., 2013). However, there were also studies unable to show an association with 

psychometric intelligence (Finnigan & Robertson, 2011; Ociepka et al., 2022; Pahor & 

Jaušovec, 2016; Posthuma et al., 2001; Trammell et al., 2017). Based on these findings, it 

could not be systematically shown that individuals with higher psychometric intelligence also 

show a higher PAF in the resting state.  

For PAF to reflect a possible psychophysiological master clock underlying TRP, it 

also needs to be shown how PAF is related to TRP. As no previous study has investigated 

this, only the results of studies focused on using single temporal information processing tasks 

can be reported. In this turn, it was demonstrated that PAF was positively associated with the 

performance in an event-timing task in the subsecond range (Samaha & Postle, 2015). 

However, in two other studies also using durations in the subsecond range, there was no 
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significant association between the PAF and the timing performance (Milton & Pleydell-

Pearce, 2017; Venskus & Hughes, 2021). In another study by Glicksohn et al. (2009), there 

was also, at first, no association between PAF measured during a resting state and the 

performance in a temporal production task. However, when the PAF was differentiated by 

hemisphere (right versus left), and both were included as predictors of task performance, both 

sides contributed to the understanding of individual differences in the task. However, overall, 

as seen before, also in terms of temporal information processing, the previous findings appear 

inconsistent.  

Possible reasons for these inconsistencies in terms of PAF and psychometric 

intelligence, as PAF and temporal information processing, may lie in the methodological 

differences between these studies. Moreover, the presented studies differed in the resting 

state, during which they measured PAF, the number of resting states used, and the electrodes 

at which PAF was measured. In terms of resting states, some studies measured PAF only 

during a resting state with eyes closed (Anokhin & Vogel, 1996; Finnigan & Robertson, 2011; 

Glicksohn et al., 2009; Pahor & Jaušovec, 2016; Posthuma et al., 2001; Samaha & Postle, 

2015) or eyes open (Leno et al., 2021; Ociepka et al., 2022). Even others derived a difference 

score between eyes open and closed (Trammell et al., 2017). Only a few studies investigated 

both resting states separately (Angelakis, Lubar, & Stathopoulou, 2004; Angelakis, Lubar, 

Stathopoulou, et al., 2004; Grandy et al., 2013). This, however, might be important since 

previous studies indicate functional differences in resting states with eyes open compared to 

eyes closed (Anderson & Perone, 2023; Barry et al., 2007). More specifically, an eyes open 

resting state condition is proposed to reflect a measurement of baseline activation, and the 

eyes closed condition to measure the baseline of arousal (Anderson & Perone, 2018, 2023; 

Barry et al., 2007).   

Regarding the used electrode sites, PAF was primarily measured at parietal and 

occipital electrodes (Glicksohn et al., 2009; Grandy et al., 2013; Milton & Pleydell-Pearce, 

2017; Posthuma et al., 2001; Samaha & Postle, 2015; Trammell et al., 2017; Venskus & 

Hughes, 2021). In turn, other studies used all electrodes by averaging them into one PAF 

score (Angelakis, Lubar, & Stathopoulou, 2004) or focused on occipital electrodes for some 

and frontal electrodes for other participants (Ociepka et al., 2022). There are, however, also 

some studies that differentiated their electrode sites, for example, in frontal and parietal 

electrodes (Anokhin & Vogel, 1996; Doppelmayr et al., 2002; Finnigan & Robertson, 2011; 

Pahor & Jaušovec, 2016). As the electrode sites could contribute to the specific understanding 

in terms of cognitive processes, it might be important to focus on all electrodes separately or 
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systematically investigate how these electrodes can be summarized.  

Besides the implemented resting states and electrode sites, in most of these previous 

studies, the PAF was mainly measured once, with only a few studies combining several 

measurement points (Angelakis, Lubar, & Stathopoulou, 2004; Angelakis, Lubar, 

Stathopoulou, et al., 2004; Grandy et al., 2013). However, this seems necessary, as it has been 

shown that the PAF can be affected by state differences (Angelakis, Lubar, & Stathopoulou, 

2004; Angelakis, Lubar, Stathopoulou, et al., 2004; Haegens et al., 2014; Mierau et al., 2017). 

These methodological differences complicate the comparison of previous studies. 

Nevertheless, it might still be that the PAF could contribute to the psychophysiological 

understanding of the internal master clock and, thus, to understanding TRP and its 

relationship with psychometric intelligence.   

2.3.2.2 Gamma and Theta Coherence. It has been shown that most cognitive 

processes are not only associated with activity in a specific area of the brain but can be 

attributed to the involvement of diverse and dynamic activity patterns within the brain 

(Bowyer, 2016; Decker et al., 2017). Thus, besides focusing on the power or frequency at 

certain electrodes within a frequency band, more and more studies also focus on the 

synchronization (communication) between electrodes during resting state or task processing 

as measured with a coherence analysis (Fries, 2005, 2015). This analysis provides information 

about the synchronization between different electrodes with high temporal resolution by being 

able to possibly identify activations patterns that might be linked to cognitive processes 

(Bowyer, 2016; Cao et al., 2022; Cohen, 2014). To this end, coherence can be analyzed 

phase- or power-based within one frequency band or across different frequency bands, and 

these analyses can be based on the sensor space (electrodes) or source space (linking activity 

to brain regions; Cohen, 2014). One measure often used to quantify coherence in the sensor 

space is the magnitude-squared coherence, in which the phase information is weighted by the 

magnitude information within a specific frequency band. Thus, this measure shows how 

similar two signals within a frequency band are, for example, the activity in F5 and P3 

(Malekpour et al., 2018). The resulting coherence value varies between 0 and 1. A value of 0 

indicates that the two signals are not linearly dependent, and a value of 1 shows a high 

relation between the two signals. As magnitude-squared coherence reflects a symmetric 

measure, the coherence value between F3-P5 is equivalent to the one between P5-F3 (Cohen, 

2014; Malekpour et al., 2018). Thus, magnitude-squared coherence can help identify if two 

brain regions exhibit similar activity patterns, which might also be important to understanding 

individual differences.  
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According to the TRP hypothesis, the relationship between TRP and psychometric 

intelligence should be based on a sensory process, namely the rate of an internal master clock. 

This would indicate that TRP and psychometric intelligence should be associated based on 

differences in sensory processing. In order to investigate possible differences in sensory 

processing on the psychophysiological level, previous studies focused on gamma coherence 

(Karakaş et al., 2001; Strüber & Herrmann, 2022; von Stein & Sarntheim, 2000). However, as 

the gamma coherence differed in these studies based on between which electrode sites it was 

measured, it remains unknown to what extent modality-specific areas or modality-

independent sensory areas were activated. Moreover, it should also be noted that other studies 

interpret the gamma coherence as a potential top-down mechanism, which will be again taken 

on in the discussion (Bonnefond & Jensen, 2015; Leicht et al., 2021). 

In terms of psychometric intelligence, it was shown that individuals with higher 

intelligence showed increased gamma coherence (25-60 Hz) during resting state with eyes 

closed over the whole scalp (Lee et al., 2012) and increased gamma coherence (31-49 Hz) 

between occipital and parietal electrodes when measured during a cognitive task that was 

related to psychometric intelligence (Jaušovec & Jaušovec, 2005) compared to individuals 

with lower psychometric intelligence. These findings overall show a positive association 

between gamma coherence and psychometric intelligence. However, as both findings differ in 

their electrode selection and timepoint of testing (eyes closed versus during the task), it 

remains unclear to what extent the increased gamma coherence reflected the same general 

sensory process in both studies.  

Regarding temporal information processing, to date, there has only been one study that 

investigated gamma coherence during temporal information processing (Hoodgar et al., 

2022). The authors could show gamma coherence between left-sided temporal and central and 

between right-sided frontal and temporoparietal electrode sites during the encoding of a 

shorter interval (500 ms) and gamma coherence between frontal and central, right frontal and 

left temporal, left-sided frontal, and between left-sided frontal and parietal electrode sites 

during the encoding of a longer interval (1 s). However, as this study was limited to a task 

approach, no statements can be made about how gamma coherence could explain individual 

differences in temporal information processing.  

In contrast to the notion that the association between TRP and psychometric 

intelligence is attributable to differences in sensory acuity, previous studies showed that the 

relationship between TRP or, in general, sensory discrimination ability and psychometric 

intelligence could be explained by common WMC involvement (Jastrzębski et al., 2021; 
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Troche et al., 2014). This involvement of WMC is reflected in sensory discrimination tasks as 

follows: during the task, the perceptual features of one stimulus (e.g., the brightness) need to 

be encoded and actively retained, while the features of a second stimulus are simultaneously 

encoded and then both are compared to each other. In this sense, it has been shown that 

individuals with a higher WMC perform better in these discrimination tasks (Jastrzębski et al., 

2021; Troche et al., 2014; Tsukahara et al., 2020). Also, for performance in interval timing 

tasks which are used to derive TRP, previous studies have highlighted the role of working 

memory (e.g., Brown, 1997; Mioni et al., 2020, 2021; Rammsayer & Lima, 1991; Zakay, 

1993). However, in order to encode but also retain and compare the duration of the presented 

stimuli, sufficient attention must be also focused on the task (Tsukahara et al., 2020). At the 

same time, irrelevant information or distractions must be ignored. This process, known as 

attention control, is a top-down process needed to organize and modulate information 

processing to behave goal-oriented (Burgoyne et al., 2023; Kane & Engle, 2003; Mashburn et 

al., 2020). It has been shown to be highly associated with psychometric intelligence and able 

to explain the relation between WMC and psychometric intelligence (Burgoyne et al., 2020; 

Heitz et al., 2005; Kovacs & Conway, 2016; Mashburn et al., 2020). In this turn, a recent 

study could provide evidence for a complete mediation of the relation between sensory 

discrimination ability and WMC, as well as sensory discrimination ability and psychometric 

intelligence by attention control (Tsukahara et al., 2020). Regarding TRP, it is unknown how 

this top-down process might be involved in the relationship to psychometric intelligence. 

However, from studies focusing on single temporal information processing tasks as well as 

the pacemaker-accumulator models (Brown, 2008; Grondin, 2010; Matthews & Meck, 2016; 

Zakay & Block, 1996), it has been argued that top-down processes such as attention control 

might explain differences in temporal information processing (Bausenhart et al., 2016; 

Broadway & Engle, 2011; Ciria et al., 2019; Dyjas et al., 2012; Ogden, 2014; van Rijn, 2016).  

In order to show these individual differences in task processing on the 

psychophysiological level, previous studies showed that individual differences in attention 

control can be reflected by differences in theta coherence between frontal (but also 

frontocentral) and posterior electrodes (occipital, parietal) when measured during tasks 

involving attention control (Basharpoor et al., 2021; Eschmann et al., 2020; Karakaş, 2020; 

Myers et al., 2021; Nurislamova et al., 2019; Sauseng et al., 2005, 2006, 2007; von Stein & 

Sarntheim, 2000). In this context, it was shown that a higher amount of attention control was 

associated with an increased theta coherence between these frontal and posterior electrode 

sites. 
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 In line with previously reported behavioral reports, it could be demonstrated that 

psychometric intelligence was positively associated with frontal-parietal theta coherence 

when measured during resting state (Anokhin et al., 1999; Granados-Ramos et al., 2019; 

Jaušovec & Jaušovec, 2000; Lee et al., 2012; Razoumnikova, 2003; Thatcher et al., 2005) as 

well as during task processing (Anokhin et al., 1999; Okuhata et al., 2009; Pahor & Jaušovec, 

2016; Weiss et al., 2000). This indicates that individuals with higher psychometric 

intelligence exhibited a more synchronized network between frontal and parietal electrodes, 

which, in turn, reflects increased attention control and corroborates previous behavioral 

findings (Burgoyne et al., 2020; Heitz et al., 2005; Mashburn et al., 2020).  

Also, in terms of temporal information processing, it was shown that performance 

differences could be explained by the involvement of attentional processes as described above 

in the extended pacemaker-accumulator models (Brown, 2008; Grondin, 2010; Matthews & 

Meck, 2016; Zakay & Block, 1996). However, no study to date investigated how these 

ongoing processes in the form of theta coherence can explain individual differences. There is 

only one study that investigated theta coherence during temporal information processing 

(Hoodgar et al., 2022). Moreover, they observed theta coherence during the encoding of a 

shorter (500 ms) and a longer interval (1 s) in a DD task. They could further show theta 

coherence between frontal and temporal electrodes during the encoding of a shorter interval 

(500 ms) and between frontal and temporal, central and temporal, central and occipital, and 

between temporal and occipital electrodes during the encoding of a longer duration (1000 

ms). These connections were shown between the right and left hemispheres (e.g., Fp1-T8) and 

intrahemispheric (e.g., Fp1-T7), indicating possible hemispheric differences. However, as 

these results reflect a task approach and did not focus on performance-related differences in 

theta coherence, it remains to be seen how theta coherence can be linked to individual 

differences in temporal information processing. 

3 Research Questions and Hypotheses  

TRP has repeatedly been shown to be a significant predictor of psychometric 

intelligence (Haldemann et al., 2012; Helmbold et al., 2007; Pahud et al., 2018; Rammsayer 

& Brandler, 2007; Troche & Rammsayer, 2009b). In this context, it was shown that TRP 

could explain differences in psychometric intelligence even beyond SIP (Helmbold et al., 

2007; Pahud et al., 2018). This was interpreted in terms of the first part of the TRP 

hypothesis, namely, that individuals with higher TRP also process information faster. 

Furthermore, TRP was positively related to WMC (Troche & Rammsayer, 2009b) which was 

interpreted in terms of second aspect of the TRP hypothesis. It shows that individuals with a 
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higher TRP, also coordinate their mental operations, which allows for a higher WMC, and, 

thus, a higher psychometric intelligence (Troche & Rammsayer, 2009b). Further studies 

investigating this relationship have not yet been published. Furthermore, apart from SIP and 

WMC, no other mechanism involved in information processing has been investigated yet in 

regard to the TRP hypothesis. Besides these behavioral aspects, it also still remains unknown 

to what extent individual differences could be reflected in an internal master clock. Its clock 

rate is supposed to be reflected in neural oscillations (Rammsayer & Brandler, 2002, 2007; 

Surwillo, 1968), however, no study to date has investigated a possible psychophysiological 

basis.  

The overall aim of this dissertation was to strengthen and extend the TRP hypothesis 

on the behavioral and psychophysiological levels. To this end, four studies have been 

conducted, whose research questions and hypotheses are described in the following 

subsections. In Studies 1 and 3, the specific aspects of the TRP hypothesis were investigated 

in more detail by examining links to another information processing mechanism at the 

behavioral level with spatial suppression (Study 1) and the extent to which the coordination 

processes postulated by the TRP hypothesis are linked to the updating process in WM at the 

behavioral level (Study 3). Studies 2 and 4 investigated the possible psychophysiological 

basis of the internal master clock underlying TRP using EEG measurements during a resting 

state (Study 2) and a temporal information processing task (Study 4). Studies 1-3 were 

published in the following articles, and Study 4 reflects an additional analysis described in an 

unpublished manuscript. These three articles, as well as the unpublished manuscript, can be 

found in chapter 4. 

Studies:  

1. Makowski, L. M., Rammsayer, T. H., Tadin, D., Thomas, P., & Troche, S. T. 

(2022). On the interplay of temporal resolution power and spatial suppression in 

their prediction of psychometric intelligence. PLoS ONE, 17(9), e0274809. 

https://doi.org/10.1371/journal.pone.0274809 

2. Makowski, L. M., & Troche, S. T. (2024). Can the resting state peak alpha 

frequency explain the relationship between temporal resolution power and 

psychometric intelligence? Behavioral Neuroscience, 138(1), 15–29. 

https://doi.org/10.1037/bne0000571 

3. Troche, S. T., Makowski, L. M., Pahud, O., & Rammsayer, T. H. (2024). 

Working memory updating as a mediator of the relation between temporal 

resolution power and psychometric intelligence. Personality and Individual 

Differences, 220, 112479. https://doi.org/10.1016/j.paid.2023.112479 

https://doi.org/10.1371/journal.pone.0274809
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4. Makowski, L. M. (2023). Examining the links between duration discrimination 

performance, gamma and theta coherence with regard to differences in 

psychometric intelligence. [Unpublished manuscript].  

3.1 Study 1 

Previous studies have repeatedly shown a positive association between TRP and 

psychometric intelligence (Haldemann et al., 2012; Helmbold et al., 2007; Pahud et al., 2018; 

Rammsayer & Brandler, 2007; Troche & Rammsayer, 2009b). Besides TRP, another 

information processing mechanism, spatial suppression, has also been (positively) 

functionally linked to psychometric intelligence (Arranz-Paraíso & Serrano-Pedraza, 2018; 

Cook et al., 2016; Melnick et al., 2013). As TRP, spatial suppression also reflects a bottom-up 

mechanism that facilitates information processing and involves temporal information 

processing aspects (Melnick et al., 2013; Rammsayer & Brandler, 2007; Tadin, 2015). 

However, to the best of our knowledge, no study so far has examined to what extent these two 

mechanisms can contribute together to the understanding of individual differences in 

psychometric intelligence. 

Based on this, Study 1 aimed to replicate the relationship between TRP and 

psychometric intelligence and to investigate how another information processing mechanism, 

spatial suppression, can contribute to the relationship between TRP and psychometric 

intelligence. As the spatial suppression index reflects a difference score, it might be attenuated 

by low reliability (Jensen, 1998) and influenced by task-independent processes (Schweizer, 

2006b). To overcome this, the performance of the spatial suppression task was analyzed by 

fixed-links modeling, a particular form of confirmatory factor analysis (CFA; Schweizer, 

2006b, 2006a). By this, a latent increasing and a latent constant variable were derived from 

the spatial suppression thresholds by fixating their factor loadings. This latent variable 

approach was also used by a previous study investigating the association between spatial 

suppression, SIP, and psychometric intelligence (Troche et al., 2018). Whereas the latent 

increasing variable was supposed to reflect spatial suppression, the latent constant variable 

was interpreted as reflecting motion processing speed. To this end, the following four 

hypotheses were examined: 

• There is a positive relationship between TRP and psychometric intelligence.  

• There is a positive relationship between spatial suppression and psychometric 

intelligence.  

• There is a positive relationship between TRP and spatial suppression.  

• TRP and spatial suppression contribute together to the explanation of 
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individual differences in psychometric intelligence. 

3.2 Study 2 

Based on Study 1, the aim of Study 2 was to replicate the association between TRP 

and psychometric intelligence and extend these findings to the psychophysiological level. 

Moreover, it was previously proposed that individual differences in TRP should be reflected 

by the rate of an internal master clock (Rammsayer & Brandler, 2002, 2007; Surwillo, 1968). 

The rate or ticking of this master clock, in turn, should be reflected by neural oscillations. 

Also, regarding individual differences in psychometric intelligence, it was proposed that 

neural oscillations are important for understanding why individuals with faster SIP also 

perform better in psychometric intelligence tasks (Jensen, 1982, 2006). Both theoretical 

frameworks emphasize the role of neural oscillations, particularly their speed. However, 

neither of them specifies how this could be measured at the psychophysiological level. Based 

on the speed aspect of the oscillation, the PAF could provide a possible candidate, as it shows 

individual differences in the Hz range (Angelakis, Lubar, Stathopoulou, et al., 2004; Drewes 

et al., 2022; Hilger et al., 2022), which in turn represents the speed of an oscillation (Cohen, 

2014). In addition, previous studies have shown that the PAF is involved in information 

processing (Angelakis, Lubar, Stathopoulou, et al., 2004; Jann et al., 2010; Klimesch et al., 

1996; Mierau et al., 2017; Samaha & Romei, 2023), and has been positively linked to 

psychometric intelligence (Angelakis et al., 2004; Anokhin & Vogel, 1996; Leno et al., 2021; 

Doppelmayr et al., 2002; Grandy et al., 2013) as well to the performance in an temporal 

information processing task (Samaha & Postle, 2015). However, there also other studies who 

could find no link between PAF and psychometric intelligence (Finnigan & Robertson, 2011; 

Ociepka et al., 2022; Pahor & Jaušovec, 2016; Posthuma et al., 2001; Trammell et al., 2017) 

as well as no link between PAF and temporal information processing performance (Glicksohn 

et al., 2009; Milton & Pleydell-Pearce, 2017; Venskus & Hughes, 2021). Methodological 

differences in previous studies might explain these inconsistencies. More specifically, 

previous studies differed in what resting state they measured PAF, how many resting states 

they used, and which electrode sites they focused on. 

Based on the previous literature, Study 2 aimed to examine the association between 

PAF and TRP as well as between PAF and psychometric intelligence. Another objective was 

to investigate to what extent the PAF, as a reflection of the internal master clock, mediates the 

relationship between TRP and psychometric intelligence. For this purpose, the PAF was 

measured several times (eyes closed, eyes open before each of the three TRP tasks) at 64 

electrodes. Then, for each measurement point (e.g., before the DD task), each resting state 
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(eyes closed, eyes open) as well as for each electrode of the 64 electrodes, the variables were 

further reduced by exploratory factor analysis (EFA) as well as CFA into four latent PAF 

variables. Its association with TRP and psychometric intelligence was then examined by 

SEM. The analyses focused on examining the following four hypotheses: 

• There is a positive relationship between TRP and psychometric intelligence.  

• There is a positive relationship between TRP and PAF.  

• There is a positive relationship between PAF and psychometric intelligence.  

• PAF mediates the relationship between TRP and psychometric intelligence. 

3.3 Study 3 

As in Studies 1 and 2, also in Study 3, the aim was to provide evidence for a positive 

relationship between TRP and psychometric intelligence. As the second notion of the TRP 

hypothesis, which states that individuals with higher TRP also coordinate their mental 

operations more effectively and are thus better in psychometric intelligence tests (Rammsayer 

& Brandler, 2007), has only been investigated once before, a further aim was to extend this 

evidence. The previous study focused on the relationships of TRP and psychometric 

intelligence with WMC (Troche & Rammsayer, 2009b). They argued that the coordination of 

mental operations becomes more critical when the resources in the information processing 

system are limited, as is also the case with WMC. Based on this, the authors were able to 

demonstrate that a higher TRP facilitates the coordination of mental operations and thus also 

enables a higher WMC, which in turn could explain better performance in psychometric 

intelligence tests. However, as this study used a wide range of tasks to assess WMC, through 

which WMC was very closely linked to the implemented psychometric intelligence measures, 

further evidence on the second aspect of the TRP hypothesis is needed.  

The main aim of the third study was to reexamine the second part of the TRP 

hypothesis. A WM updating task, the Stankov task, was used to measure coordination 

processes more precisely. Within such a task, information has to be maintained, retrieved, 

transformed, substituted, or removed from WM (Ecker et al., 2010). These processes need to 

be coordinated, which suggests that a WM updating might be more suitable to investigate the 

second part of the TRP hypothesis. Furthermore, WM updating has also been positively 

associated with psychometric intelligence (e.g., Oberauer et al., 2008; Wilhelm et al., 2013). 

To this end, the association between TRP, WM updating, and psychometric intelligence was 

examined using SEM. As in Study 1, we implemented a fixed-links modeling approach to 

derive two latent variables from the accuracy measures of the WM updating task: one with 

increasing factor loadings, reflecting WM updating, and one with constant factor loadings, 
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reflecting individual differences unrelated to WM updating. The following four hypotheses 

were then examined by means of SEM:  

• There is a positive relationship between TRP and psychometric intelligence. 

• There is a positive relationship between WM updating and psychometric 

intelligence. 

• There is a positive relationship between TRP and WM updating. 

• WM updating (partially) mediates the relationship between TRP and 

psychometric intelligence. 

3.4 Study 4 

According to the TRP hypothesis, the relationship between TRP and psychometric 

intelligence should be based on differences in sensory acuity (Rammsayer & Brandler, 2002, 

2007). In contrast to this notion, a previous study showed that attention control, a top-down 

process, could fully explain the relationship between general sensory discrimination ability 

and psychometric intelligence (Tsukahara et al., 2020). Based on this finding, it could be that 

the relationship between TRP and psychometric intelligence is not only due to the differences 

in a sensory process, such as the internal master clock but also due to differences in a top-

down process, such as attention control. In line with this, previous studies could show that the 

extent of focused attention on task-relevant aspects in single temporal information processing 

was also crucial for task performance (Bausenhart et al., 2016; Ciria et al., 2019; Dyjas et al., 

2012; Ogden, 2014; van Rijn, 2016). In this turn, it was even argued that the mechanism of 

the internal clock as a bottom-up mechanism interacts with attentional top-down processes 

during temporal information processing (van Rijn, 2016). Attention control has also been 

shown to play an important role regarding differences in psychometric intelligence. Moreover, 

it has been shown to have a positive influence on information processing, which in turn then 

led to better performances in psychometric intelligence tests (Burgoyne et al., 2020; Heitz et 

al., 2005; Kovacs & Conway, 2016; Mashburn et al., 2020). 

To the best of our knowledge, no previous study has investigated to what extent 

attention control might be involved in the relationship between TRP and psychometric 

intelligence. Thus, Study 4 aimed to provide first evidence by investigating to what extent 

sensory processes and attention control are associated with task performance in a temporal 

information processing task and to what extent these associations are moderated by 

psychometric intelligence. To this end, a subsample of Study 2 with 50 individuals with 

higher and 50 with lower psychometric intelligence scores was chosen. Differences in 

ongoing sensory processes and attention control were examined by means of coherence 
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analyses. In this context, previous could show that individual differences in sensory 

processing can be analyzed using coherence analyses within the gamma frequency band 

(Karakaş et al., 2001; Strüber & Herrmann, 2022; von Stein & Sarntheim, 2000). However, as 

none of these studies focused on individual differences in temporal information processing, it 

was not possible to deduce which electrode areas would be important to focus on. This 

information was taken from previous fMRI studies on temporal information processing, 

which were able to show that the temporal and parietal areas, in particular, should be 

important for differences in the sensory process during time processing (Matell & Meck, 

2000; Meck, 2005; Nani et al., 2019). Regarding the differences in attention control, previous 

studies have shown that this can be studied with the theta coherence between the frontal and 

parietal electrodes (Basharpoor et al., 2021; Eschmann et al., 2020; Karakaş, 2020; Myers et 

al., 2021; Nurislamova et al., 2019; Sauseng et al., 2005, 2006, 2007; von Stein & Sarntheim, 

2000). Based on these previous findings, differences in sensory processesing were analyzed 

using temporal-parietal gamma coherence (30-49 Hz), and differences in attention control 

were analyzed using frontal-parietal theta coherence (4-7 Hz) in Study 4. The following four 

hypotheses were expected and examined:  

• Temporal accuracy, as measured with the DD task performance, was expected 

to be positively related to sensory processing, as measured with the temporal-

parietal gamma coherence during the encoding phase of an auditory duration 

discrimination task. 

• Temporal accuracy, as measured with the DD task performance, was expected 

to be positively related to attention control, as measured with the frontal-

parietal theta coherence during the encoding phase of an auditory duration 

discrimination task. 

• An interaction effect was expected for sensory processing (temporal-parietal 

gamma coherence) and psychometric intelligence on temporal accuracy, as 

measured with DD task performance. Moreover, a stronger relationship 

between temporal accuracy (DD task performance) and sensory processing 

(temporal-parietal gamma coherence) was expected for individuals with higher 

psychometric intelligence. 

• An interaction effect was expected for attention control (frontal-parietal theta 

coherence) and psychometric intelligence on temporal accuracy, as measured 

with DD task performance. Moreover, a stronger relationship between 

temporal accuracy (DD task performance) and attention control (frontal-
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parietal theta coherence) was expected for individuals with higher 

psychometric intelligence. 
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4 Articles  

4.1 Article 1: On the interplay of temporal resolution power and spatial suppression in 

their prediction of psychometric intelligence 

 

This article is published as: 

Makowski, L. M., Rammsayer, T. H., Tadin, D., Thomas, P., & Troche, S. T. (2022). On the 

interplay of temporal resolution power and spatial suppression in their prediction of 

psychometric intelligence. PLoS ONE, 17(9), e0274809. 
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Abstract 

As a measure of the brain’s temporal fine-tuning capacity, temporal resolution power 

(TRP) explained repeatedly a substantial amount of variance in psychometric intelligence. 

Recently, spatial suppression, referred to as the increasing difficulty in quickly perceiving 

motion direction as the size of the moving stimulus increases, has attracted particular 

attention, when it was found to be positively related to psychometric intelligence. Due to the 

conceptual similarities of TRP and spatial suppression, the present study investigated their 

mutual interplay in the relation to psychometric intelligence in 273 young adults to better 

understand the reasons for these relationships. As in previous studies, psychometric 

intelligence was positively related to a latent variable representing TRP but, in contrast to 

previous reports, negatively to latent and manifest measures of spatial suppression. In a 

combined structural equation model, TRP still explained a substantial amount of variance in 

psychometric intelligence while the negative relation between spatial suppression and 

intelligence was completely explained by TRP. Thus, our findings confirmed TRP to be a 

robust predictor of psychometric intelligence but challenged the assumption of spatial 

suppression as a representation of general information processing efficiency as reflected in 

psychometric intelligence. Possible reasons for the contradictory findings on the relation 

between spatial suppression and psychometric intelligence are discussed.  

Keywords: psychometric intelligence, temporal resolution power, spatial suppression, speed 

of information processing  
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Introduction 

The temporal resolution power (TRP) hypothesis explains individual differences in 

psychometric intelligence by individual differences in the TRP of brain functioning [1]. 

Within this conceptual framework, TRP is assessed by the timing accuracy and temporal 

sensitivity in timing tasks such as temporal discrimination, temporal-order judgment, or 

temporal generalization [2]. Several studies demonstrated that a single latent variable 

accounted for a substantial portion of common variance in different measures of timing 

accuracy and temporal sensitivity [2–5]. This latent variable was interpreted as a measure of 

the brain's fine-tuning capacity purified from task-specific and error variance [2]. 

Furthermore, TRP was substantially related to psychometric intelligence, with common 

variance ranging from 22% [3] to 44% [4]. As an explanation for this relationship, the TRP 

hypothesis assumes that individuals with higher TRP process information faster and 

coordinate mental operations better than individuals with lower TRP. Both these factors 

should contribute to better performance on psychometric intelligence tests [5]. This idea was 

supported by previous studies. For example, Troche and Rammsayer [6] reported that higher 

TRP was associated with higher working memory capacity, which in turn led to higher 

psychometric intelligence. In two other studies, TRP effectively mediated the functional 

relationship between speed of information processing and intelligence [4,7]. Hence, higher 

TRP enables more accurate and, concurrently, faster information processing and, thus, more 

efficient information processing, which results in better performance on intelligence tests.  

Over the last decade, another conceptual framework, referred to as spatial 

suppression, attracted attention due to its possible association with psychometric intelligence 

[8–10]. On the behavioral level, spatial suppression is evident as a progressively increasing 

difficulty in perceiving visual motion as stimulus size increases [11]. Spatial suppression is 

largely restricted to medium and high contrasts, and is particularly strong for briefly presented 

(e.g., 30 ms) moving grating stimuli [11–13]. This widely replicated result [14] is 

hypothesized to reflect visual suppression of background motion signals, which in turn 

promotes rapid segmentation of moving objects [15]. In a typical spatial suppression 

experiment, participants' task is to correctly identify the direction of the perceived stimulus 

motion. According to an adaptive algorithm, the presentation time increases after an incorrect 

response and decreases after a correct response. This results in a motion-direction 

discrimination threshold (MDD) defined as the shortest stimulus presentation time for which 

the motion direction could be correctly detected with a given probability [11,16,17]. Most 

interestingly, for high and medium contrast stimuli, the MDD thresholds dramatically 
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increase with increasing stimulus size. In other words, a considerably longer presentation time 

is needed for larger than for smaller stimuli to correctly identify their motion direction [11]. 

This increase in MDD thresholds as a function of increasing stimulus size is referred to as 

spatial suppression. As a commonly used quantification, the spatial suppression index (SI) is 

computed by subtracting the MDD threshold value for the smallest from the duration 

threshold for the largest stimulus size used in a spatial suppression task [11,18–20]. 

On the neuronal level, spatial suppression has been linked to the function of 

antagonistic center-surround neurons located in the middle temporal visual area [12,13,15,20–

23]. More specifically, the firing rate of these neurons decreases for large high-contrast 

motion stimuli that, in addition to stimulating the receptive field center, stimulate the 

antagonistic surrounding region. This results in a diminished neural response to large, high 

contrast moving stimuli and an overall poorer neural representation of such stimuli [11–

13,20–23]. 

In a pioneering study, Melnick et al. [10] investigated the correlational relationship 

between spatial suppression and psychometric intelligence. In two experiments, they obtained 

substantial correlations of r = .64 (N = 12) and r = .71 (N = 53) between SI and psychometric 

intelligence. Thus, higher intelligence was associated with a more pronounced increase of the 

MDD threshold from small to large stimuli. Proceeding from these findings, Melnick et al. 

[10] put forward the idea that spatial suppression reflects the overall neural ability to suppress 

irrelevant information [14], which is crucial for efficient information processing and, 

consequently, may explain individual differences in psychometric intelligence [24–27]. More 

specifically, Melnick et al. [10] concluded that the link between stronger spatial suppression 

and better performance on intelligence tests indicates that spatial suppression is an index of 

more efficient information processing via suppression of irrelevant information, not just 

within visual processing per se but also more broadly.  

Although this notion has been supported by two subsequent studies [8,9], it was at 

variance with two other ones. The study by Linares et al. [28] investigated the relationship 

between spatial suppression and intelligence using a between-group design that included a 

group of schizophrenia patients (N = 33) and a healthy control group (N = 31). The results 

revealed a link between spatial suppression and a measure of intelligence only in patients with 

schizophrenia, with no indication for such a relationship for the healthy control group. 

Furthermore, in a large-scale study with 177 young healthy adults, Troche et al. [29] also 

failed to confirm a direct functional relationship between spatial suppression and general 

mental ability. 
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As a possible explanation of individual differences in intelligence, there is a striking 

conceptual resemblance between the concepts of TRP and spatial suppression, at least at first 

glance. First, both are bottom-up approaches as they assume that basic functions of the brain 

lead to individual differences in higher-cognitive processing and, eventually, in psychometric 

intelligence. Second, TRP and spatial suppression, in a way, facilitate (or directly reflect) the 

efficiency of information processing which, in turn, is assumed to be an important aspect of 

mental ability. Third, both concepts comprise aspects of temporal information processing. 

While spatial suppression is derived from the time required to correctly identify the direction 

of perceived stimulus motion, the formation of TRP is based on temporal sensitivity and 

accuracy.  

Despite these similarities, however, several important differences between both 

concepts become evident at second glance. First, the MDD thresholds heavily depend on 

(presentation) time required to correctly identify the motion direction of a stimulus, or in other 

words processing speed is the decisive component of this measure. Spatial suppression, 

however, is represented by the difference between the MDD thresholds for a large and a small 

stimulus. Therefore, processing speed, which might determine both thresholds, does not 

necessarily affect the difference between these thresholds. Given the above-outlined 

relationship between TRP and processing speed, TRP might be related to the thresholds but 

completely independent of spatial suppression. Second, although spatial suppression can also 

occur in different modalities, only spatial suppression as a visual phenomenon with its 

underlying neural mechanisms located in visual brain areas has so far been associated with 

psychometric intelligence [20,21]. The TRP-intelligence relationship, on the contrary, does 

not depend on the modality of a given timing task [3]. More specifically, Haldemann et al. [3] 

argued that temporal information is processed modality-specific at an initial stage but 

controlled by a superordinated amodal processing system at a second stage. Most importantly, 

it was this amodal temporal processing system that was responsible for the relationship 

between TRP and psychometric intelligence. Thus, while spatial suppression refers to a 

specific sensory process in the visual system, the scope of TRP is broader and not linked to 

modality-specific processes. 

In view of the above-mentioned similarities and differences between both conceptual 

frameworks, the functional relationship between TRP and spatial suppression in predicting 

individual differences in psychometric intelligence remains completely undefined. Therefore, 

the main goals of the present study were (1) to provide additional evidence for an association 

between spatial suppression and mental ability and (2) to directly compare the functional 
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relationships between TRP and intelligence as well as between spatial suppression and 

intelligence, respectively. Another aim of the present study was to systematically investigate 

the mutual interplay of TRP and spatial suppression in predicting individual differences in 

intelligence.  

For these purposes, a latent variable approach was applied with both TRP and spatial 

suppression. TRP was represented as a latent variable derived from different timing tasks. For 

the representation of spatial suppression, we used a similar fixed-links modeling approach as 

Troche et al. [29]. With this approach, individual differences in the MDD thresholds can be 

divided into variance systematically increasing with increasing stimulus size and variance 

independent of stimulus size. Thus, the latent variable, describing the first kind of variance, 

can be interpreted as a reflection of genuine spatial suppression. The latent variable, 

representing the variance not varying with stimulus size, reflects individual differences in the 

time of stimulus presentation required to correctly detect the motion direction, irrespective of 

stimulus size [29]. Combining the measurement models of TRP and spatial suppression 

allowed for the investigation of their functional relationship. In a next step, using latent 

regression modeling, the relationships between TRP and the g factor of psychometric 

intelligence as well as between spatial suppression and the g factor were investigated 

separately to determine the amount of variance of intelligence shared with TRP and spatial 

suppression, respectively. Finally, both TRP and spatial suppression were concurrently 

submitted to the regression model to examine their unique and common variance shared with 

g. 

Methods 

Participants  

From an original sample of 296 participants, 23 participants had to be removed due to 

incorrect test behavior or the results of an outlier analysis. The final sample consisted of 152 

women and 121 men ranging in age from 18 to 30 years (Mage = 21.6; SD = 2.7 years). All 

had normal or corrected-to-normal vision and reported no current health issues. Regarding the 

educational background, 38% of the participants had finished vocational school, whereas 62% 

had higher educational training. At the time of the study, 47% of the participants were college 

students, 42% were working in a profession, 10% were still in high school, and 1% were 

unemployed. For their participation, they received 45 Swiss francs or course credit. All 

participants signed written informed consent prior to their participation. The study protocol 

was approved by the local ethics committee of the University of Bern (Faculty of Human 

Sciences; No. 2016-9-00005).  
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Measure of psychometric intelligence  

To measure psychometric intelligence, we used a modified short version of the Berlin 

Intelligence Structure (BIS) test [30] (see also [7,29]). This version consisted of 18 subtests 

with six subtests assessing capacity-, six subtests assessing speed-, and six subtests assessing 

memory-aspects of psychometric intelligence. Each of these six-subtest bundles contained 

two figural, two numerical, and two verbal subtests. First, the raw scores of the subtests were 

z standardized before a mean score for capacity, speed, and memory was computed, 

respectively. Then, by means of a confirmatory factor analysis, the g factor was derived from 

the mean z scores of the three aspects of intelligence.  

Spatial suppression task  

The spatial suppression task was designed and used like the one in Melnick et al. [10]. 

Our goal was to closely match our task to Melnick et al. [10], both in task design and in the 

experimental equipment. The highest contrast was set to 42%, and the task was presented 

using a 360 Hz DLP projector (1280 x 720 resolution, 113.7 cd/m2 background) as in the 

study by Melnick et al. [10]. The task was programmed with Matlab [31] to present brief 

visual grating-like stimuli with a spatial frequency of 1 cycle/°. These stimuli either moved 

leftward or rightward on a natively linearized display (178 cd/m2 background, 2 cd/m2 

ambient illumination) with a constant moving speed of 4.8°/s. Four stimulus sizes were used, 

subtending a visual angle of 1.8°, 3.6°, 5.4°, and 7.2°, respectively. The stimulus size was 

specified by stationary raised cosine spatial envelopes through which moving gratings were 

shown and, thus, defined as the visible stimulus diameter (visibility defined as local contrast 

higher than 1%). The stimulus duration was determined as the full width at half-height of the 

trapezoidal temporal envelope [20]. To keep the viewing distance constant at 146 cm for each 

subject, a chin rest was used. Participants gave their responses by using the left and the right 

arrow keys on a computer keyboard.  

At the beginning of the task, participants performed 180 practice trials. Then they 

completed three blocks with 44 trials per stimulus size, leading to a total of 528 trials and a 

test duration of about 26 minutes. Within each block, stimulus size varied randomly. Each 

trial started with a fixation circle, followed by a moving stimulus that was presented in the 

center of the monitor. Participants then indicated the perceived direction of the drifting 

grating by pressing the left arrow key when they had perceived a leftward movement and the 

right arrow key for a perceived rightward movement. They were asked to answer as 

accurately as possible, with no emphasis on response speed. After their answer, participants 

received auditory feedback (a 50-ms sine wave tone of 2900 Hz) for a correct answer and no 
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feedback for an incorrect answer. The initial presentation time for each stimulus condition 

was 80 ms. The presentation time of the next stimulus with the same size was adapted 

depending on the previous response. In the case of a correct response, presentation time 

decreased, and after an incorrect response, it increased according to the adaptive Bayesian 

QUEST-procedure proposed by Watson and Pelli [32]. Based on this procedure, in each 

block, two estimates of the 82% motion-direction detection threshold were gathered per 

stimulus size for each participant resulting in six estimates of the threshold for each stimulus 

size. Because the QUEST procedure requires logarithmic values, the estimated thresholds for 

motion perception represented the log10 value for presentation time required to produce 82% 

correct responses, with smaller thresholds indicating better performance. Of the six estimates, 

the highest and lowest estimates for each stimulus size per individual were discarded, 

resulting in four remaining thresholds per stimulus size for each individual (see [10]). These 

four remaining thresholds were then averaged separately for each stimulus size, resulting in 

one threshold value per stimulus size.  

The spatial suppression index (SI) was calculated for each participant by subtracting 

the log10 of the mean MDD threshold of the smallest stimulus size from the log10 of the mean 

threshold of the largest stimulus size [19].  

Assessment of temporal resolution power 

Temporal resolution power was assessed with the following four timing tasks, which 

were programmed and presented with E-Prime 2.0 [33]. 

Duration discrimination tasks  

In the duration discrimination task with empty auditory intervals (DDE), the intervals 

were marked by a 3-ms onset and 3-ms offset white noise burst (DDE). These auditory 

intervals were presented via headphones at an intensity of 70 dB.  

The task consisted of 64 trials. Each trial contained a standard interval with a duration 

of 50 ms and a comparison interval of varying duration. The two intervals were separated by a 

900-ms interstimulus interval. In one series of 32 trials, the comparison interval was shorter 

than the standard interval. In another series of 32 trials, the comparison interval was longer. 

The two series were interleaved, and the order of standard and comparison interval was 

randomized and balanced. For each trial, participants’ task was to indicate whether the first or 

the second interval was longer by pressing a designated key on the keyboard. They received 

visual feedback for 1500 ms on the center of the monitor screen. After an intertrial interval of 

600 ms, the next trial started. Following the adaptive weighted-up-down procedure [34], for 

the first until the sixth trial, the difference between standard and comparison interval of the 
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next trial was increased by 9 ms when the response had been incorrect and decreased by 3 ms 

when the previous response had been correct. For the seventh until 32nd trial, the respective 

steps were 6 ms and 2 ms. With this procedure, the series of 32 trials with the comparison 

interval being shorter than the standard interval resulted in the 25%-difference threshold 

(x.25), while the other series resulted in the 75%-difference threshold (x.75). Both thresholds 

were computed across the last twenty trials of the respective series. As a measure of 

performance, the difference limen (DL) was calculated by half of the interquartile range 

[(x.75-x.25)/2], with better performance indicated by smaller values [35].  

An additional duration discrimination task (DDF) was used, which had the same 

procedure as described above for the DDE. However, the stimuli were filled auditory intervals 

(DDF) of white-noise bursts presented at an intensity of 70 dB. Written instructions and 

training trials preceded both tasks, which lasted about 7 minutes each. 

Temporal generalization task 

The temporal generalization task (TG) consisted of 64 trials with a total duration of 5 

minutes. The task began with a learning phase in which participants were presented with a 

standard duration, which was a 75-ms white-noise burst at an intensity of 70 dB presented via 

headphones. The standard duration was presented five times, and participants were instructed 

to memorize the duration. Afterward, the experimental phase began, and participants were 

randomly presented either with the standard duration (75 ms) or with an alternative duration 

(42 ms, 53 ms, 64 ms, 86 ms, 97 ms, or 108 ms). After each stimulus presentation, they had to 

decide whether it was the standard stimulus or not by pressing designated keys with “Yes” or 

“No” on a keyboard. After their response, they received visual feedback in the monitor center 

for 1500 ms, followed by an intertrial interval of 700 ms. The experimental phase consisted of 

eight blocks. Within each block, the standard duration (75 ms) was presented twice and each 

of the six non-standard durations once. The order of the durations was randomized in each 

block.  

As a performance measure, the index of response dispersion was computed by 

dividing the relative frequency of “Yes” responses to the standard duration by the total of the 

relative frequencies of “Yes” responses to all seven stimulus durations [36]. A value close to 

1 indicates that all the “Yes” answers are closely gathered around the standard duration. For 

the further analyses, the values of the index of response dispersion were inverted.  

Rhythm perception task 

The rhythm perception task (RP) consisted of 64 trials. In each trial, a rhythmic pattern 

of six 3-ms white-noise bursts was presented via headphones at an intensity of 70 dB, leading 
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to five beat-to-beat intervals. Four of these five auditory intervals were held constant with 150 

ms, whereas one interval had a variable duration (150 + x) with an initial duration of x = 20 

ms. In one series of 32 trials, the third beat-to-beat interval was variable, while in the other 

series of 32 trials, it was the fourth interval. The two series were presented in interleaved 

order. For each series, the value of x was adapted according to the weighted-up-down 

procedure [34]. Thus, depending on the correctness of the previous response, the interval was 

increased by 4 ms after a correct response and decreased by 12 ms after an incorrect response. 

After the presentation of the rhythmic pattern, participants had to decide if they had perceived 

the pattern as regular or irregular by pressing one of two designated keys. Since all patterns 

had been irregular, participants received no feedback after their response. Instead, the next 

trial started 700 ms after the response to the preceding trial. 

The 75% threshold for the detection of irregularity was calculated for each series and, 

afterwards, the two thresholds were averaged as a measure of performance. The task lasted 

about 5 minutes, and written instructions as well as training trials were presented prior to the 

actual task. 

Time course of the study  

The study consisted of two sessions. In the first session, participants completed the 

psychometric intelligence test (BIS) with a duration of about 90 minutes. In the second 

session, the experimental tasks were administered. The second session always started with the 

spatial suppression task. Afterwards, the timing tasks were administered in a balanced order. 

Finally, two further experimental tasks were conducted, which are irrelevant for the present 

purpose. The second session lasted about 120 minutes. Both sessions were separated by about 

one week.  

Data Analysis 

The following analyses were conducted with R [37], Version 4.1.0 and R-Studio [38], 

Version 1.4.1106 using the Hmisc package [39], the rstatix package [40], the ez package [41], 

the GPArotation package [42] and the lavaan package [43]. Before analyzing the data set, an 

interindividual outlier detection was computed. For the TRP tasks and for the first threshold 

of the spatial suppression task (1.8°), participants were considered outliers and removed from 

the dataset when they exceeded the mean by three standard deviations. This resulted in a final 

sample of 273 participants. Then, descriptive statistics were analyzed, followed by correlation 

analyses and a one-way ANOVA by including the logarithmic thresholds of the spatial 

suppression task as four levels of a repeated-measures factor. Then, the measurement models 

for g, TRP, and spatial suppression were fit separately, and afterwards, the structural equation 
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models were computed. All models were estimated with robust maximum likelihood 

estimation. As for fit indices, 2 values, comparative fit index (CFI), root mean square error of 

approximation (RMSEA), and standardized root mean squared residual (SRMR) were 

determined. If a model fits the data well, then the 2 value should be small and not statistically 

significant [44]. However, the 2 statistic is sensitive to sample size, and its p value might be 

significant, although the predicted model represents the data well [44,45]. Therefore, we 

report 2(df) but do not consider it in the model evaluation. The other indices were interpreted 

as good (or acceptable) with the following values [46]: a CFI ≥ .95 (≥ .90), RMSEA ≤ .05 (≤ 

.08) and SRMR value ≤ .08 (≤ .10).  

Results  

Descriptive statistics 

Table 1 shows the descriptive statistics for the four thresholds of the spatial 

suppression task and for the four timing tasks. In the spatial suppression task, the MDD 

thresholds increased with increasing stimulus size (also see Fig 1). To investigate if this 

increase in presentation time with increasing stimulus size was significant, a one-way 

ANOVA was conducted by including the thresholds of the spatial suppression task as four 

levels of a repeated-measures factor. Because the Mauchly’s test showed a violation of 

sphericity, the Greenhouse-Geisser correction with  = 0.722 was applied. ANOVA revealed 

a significant main effect, F(2.16, 588.87) = 580.137, p < .001, 2 = .273. Bonferroni-corrected 

pairwise t tests further revealed significant differences between all four thresholds (all ps < 

.001). Thus, participants needed a longer presentation time to correctly identify the motion 

direction when the stimulus became larger. Overall, both the pattern of results and actual 

thresholds were highly consistent with the results reported in Melnick et al. [10]. 
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Table 1. Descriptive statistics for the motion-direction detection thresholds in the four 

conditions of the spatial suppression task, for the difference limina in the duration 

discrimination tasks (DDE, DDF), for the dispersion index in the temporal 

generalization task (TG), and the mean 75% difference threshold in the rhythm 

perception (RP) task in the sample of 273 participants. 

 
M SD Min Max Skewness Kurtosis 

Spatial suppression task       

1.8° condition [ms] 44.69 14.22 15.71 83.63 0.25 -0.48 

3.6° condition [ms] 53.86 21.43 16.76 133.64 0.68 0.57 

5.4° condition [ms] 72.86 34.02 13.38 277.78 1.75 6.25 

7.2° condition [ms] 91.45 47.32 20.90 459.23 2.75 14.39 

TRP tasks 
      

DDE [ms] 18.33 8.22 4.95 51 1.22 1.80 

DDF [ms] 8.81 3.26 3.60 23 1.67 3.82 

TG [dispersion index] 0.66 0.12 0 0.97 -1.17 4.59 

RP [ms] 55.90 22.43 7.18 128 1.04 0.63 

TRP tasks = Temporal Resolution Power tasks, DDE= Duration Discrimination  

with empty intervals, DDF = Duration Discrimination with filled intervals, TG =  

Temporal Generalization Task, RP = Rhythm Perception Task. The presented raw values of 

the spatial suppression task were each multiplied by 2.5 [10].  
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Fig 1. Line plot of the mean thresholds (ms) concerning the four conditions (stimulus 

sizes) in the spatial suppression task, showing the mean per stimulus size and its 

standard errors of mean in 273 participants. For better illustration, the raw values of the 

presented mean thresholds were each multiplied by 2.5 [10].  

 

The spatial suppression index as the difference between the MDD threshold in the 7.2° 

and the 1.8° condition of the spatial suppression task ranged from -.036 to 1.000 (M = .29; SD 

= .15). Although the spatial suppression effect showed large interindividual differences, it was 

positive in 99% of the participants.  

Correlational analyses 

BIS-Capacity, BIS-Speed, and BIS-Memory correlated positively and significantly 

with each other (rBIS-Capacity – BIS-Speed = .51, rBIS-Capacity – BIS-Memory = .46, rBIS-Memory – BIS-Speed = 

.39, all ps < .001), suggesting a common source of variance. Therefore, a one-factor model 

was computed by means of a confirmatory factor analysis (CFA). Due to only three manifest 

variables, the model was exactly identified, resulting in a perfect model fit [44]. McDonald’s 

omega coefficient was  = 0.72 for the g factor extracted from BIS-Capacity, BIS-Speed, and 

BIS-Memory. The factor scores on this common factor were extracted and interpreted as 
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individual differences in the g factor of psychometric intelligence, which were submitted to 

the following correlational analyses.  

As can be taken from Table 2, the MDD thresholds in the four conditions of the spatial 

suppression task correlated positively with each other. Similarly, positive correlations were 

also obtained among performance measures in the four timing tasks. Furthermore, 

performance measures of the four timing tasks correlated significantly with all MDD 

thresholds of the spatial suppression task.



Table 2. Pearson correlations between psychometric intelligence (g factor), spatial suppression task, spatial suppression index, and 

temporal resolution power tasks. 

 g factor Spatial suppression task TRP tasks 

Task   1. 2. 3. 4. 5. 6. 7. 8. 9. 

Spatial suppression 

task                    

1. 1.8° -.17**          

2. 3.6° -.24***  .83***         

3. 5.4° -.23***  .69*** .84***        

4. 7.2° -.26***  .63*** .76*** .88***       

5. SI -.17** -.16** .16** .45*** .67***      

TRP tasks           

6. DDE -.24***  .15* 18** .13* .14* .04     

7. DDF -.20***  .18** .18** .18** .20*** .09 .36***    

8. TG -.34***  .20*** .20*** .19** .19** .05 .25*** .34***   

9. RP -.24***  .14* .21*** .22*** .20*** .12 .26*** .17** .16**   

N = 273. TRP tasks = Temporal Resolution Power tasks, DDE = Duration Discrimination with empty intervals, DDF = Duration Discrimination 

with filled intervals, TG = Temporal Generalization Task, RP = Rhythm Perception Task. * p < .05, ** p < .01, *** p < .001. 
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The g factor scores correlated negatively with the four MDD thresholds and the 

performance measures from the four timing tasks (see Table 2). Since lower thresholds in the 

timing tasks and the spatial suppression task were indicative of better performance, the 

negative correlations pointed to positive relationships between psychometric intelligence and 

performance on the timing tasks as well as the spatial suppression task. Surprisingly, SI was 

negatively correlated with psychometric intelligence, indicating that higher psychometric 

intelligence was associated with a smaller SI. This correlational relationship is illustrated as 

scatterplot in Fig 2. Eventually, in contrast to the MDD thresholds, the SI was not 

significantly correlated with performance measures from the four timing tasks. 

 

 

Fig 2. Scatterplot of the relationship between spatial suppression (spatial suppression 

index) and g in the sample of 273 participants. 

 

Measurement models 

The TRP factor was derived as a latent variable from the four timing tasks. A one-

factor confirmatory factor analysis resulted in a good fit, 2(2) = 2.770, p = .250, CFI = .990, 

RMSEA = .038, SRMR = .024. The factor loadings of all four tasks were significant (all ps < 
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.001) ranging from .338 for the rhythm perception task to .632 for the duration discrimination 

task with filled intervals. McDonald’s omega coefficient was  = 0.59 for the TRP factor. 

A congeneric model of spatial suppression was first constructed to represent spatial 

suppression at the latent level with one factor. Confirmatory factor analysis showed a bad 

model/data fit, 2(2) = 79.777, p < .001, CFI = .892, RMSEA = .377, except for SRMR = 

.047. Therefore, a fixed-links modeling approach was used to derive two latent variables 

from the spatial suppression task (see [29]). The factor loadings of the first latent variable 

were fixed to the constant value of one for all four thresholds. Therefore, this latent variable 

is also referred to as “constant latent variable” (SSC in Fig 3). For the second variable, 

referred to as the “increasing latent variable” (SSI in Fig 3), the factor loadings were set to 

increase linearly with 0, 1, 2, and 3, respectively, as in the study by Troche et al. [29]. The 

correlation between SSI and SSC was set to zero. The resulting model was better than the 

congeneric model but still failed to provide a good description of the data, SB2(4) = 41.287, 

p < .001, CFI = .948, RMSEA = .185, SRMR = .074. According to the modification indices 

(M.I.) provided by the lavaan package, a residual correlation between the second threshold 

condition (3.6°) and the third threshold condition (5.4°) could improve the fit of the model 

(M.I. = 51.167), suggesting that these two stimulus sizes might have something in common 

that the latent variables could not explain. When the residual correlation between the second 

and third threshold condition was allowed, the variances of the first and fourth thresholds 

showed negative values. Therefore, in the next step, the variances of the first and fourth 

threshold condition were restricted to values greater than zero. This final model then revealed 

an acceptable fit according to CFI (= .991) and SRMR (= .066), while the RMSEA with .087 

was slightly larger than .080, SB2(3) = 9.162, p = .027. The latent variances of both SSC ( 

= .022, z = 10.345, p < .001) and SSI ( = .003, z = 7.771, p < .001) were statistically 

significant. This indicated that both latent variables described a substantial portion of 

systematic individual differences in the thresholds of the spatial suppression task. When 

comparing the final model to the congeneric one-factor model, the final model showed a 

lower AIC (AICfinal = -1672.068 compared to AICcongeneric = -1571.579), suggesting that the 

two-factor solution with the added residual correlation between the second and third 

threshold condition represented the data better than the one-factor solution. McDonald’s 

omega coefficients were  = 0.94 for SSC and  = 0.81 for SSI. To note, SSI represents 

individual differences in the increase of the MDD thresholds with increasing stimulus size 

(and, thus, the spatial suppression effect). SSC, on the contrary, reflects general differences in 
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the time required to correctly identify the direction of stimulus movement irrespective of 

stimulus size. 

Structural equation models 

To examine and replicate the relationship between the TRP factor and psychometric 

intelligence, the measurement models of TRP and g were combined, and the g factor of 

psychometric intelligence was regressed on the TRP factor. The model showed an acceptable 

to good model fit, SB2(13) = 23.904, p = .032, CFI = .960, RMSEA = .055, SRMR = .040, 

and TRP predicted the g factor of psychometric intelligence with  = -.572, p < .001, thus, 

explaining 33% of its variance.  

The combination of the fixed-links measurement model of spatial suppression and the 

g factor measurement model led to an acceptable to well-fitting model, SB2(13) = 27.146, p 

= .012, CFI = 0.987, RMSEA = 0.063, SRMR = 0.058. Both SSI,  = -.244, p < .001, and 

SSC,  = -.236, p = .001, were negatively associated with psychometric intelligence. Thus, 

participants with higher values in g had a less pronounced spatial suppression effect as 

indicated by the SSI and, concurrently, generally lower MDD thresholds as indicated by the 

SSC. Together the two latent variables explained 11% of the variance in g.  

To investigate the interplay between psychometric intelligence, TRP, and spatial 

suppression, the relationship between TRP and spatial suppression was examined by 

combining the above-described measurement models for TRP and spatial suppression and 

allowing for correlations between TRP and both latent variables extracted from the spatial 

suppression conditions. The resulting model revealed a good fit, SB2(19) = 27.249, p = .099, 

CFI = .992, RMSEA = .040, SRMR = .050. TRP was significantly and positively correlated 

with both SSC, r = .342, p < .001, and SSI from the spatial suppression task, r = .177, p = 

.022. Thus, higher TRP was related to faster motion-direction detection (irrespective of 

stimulus size) and less spatial suppression.  

Finally, the prediction of psychometric intelligence by concurrently considering TRP 

and spatial suppression was examined. The model (Fig 3) showed a good fit, SB2(40) = 

58.187, p = .031, CFI = .985, RMSEA = .041, SRMR = .050. The TRP factor was still 

significantly associated with psychometric intelligence,  = -.535, p < .001. However, SSC,  

= -.058, p = .432, and SSI from the spatial suppression task,   = -.140 p = .057, did no longer 

significantly predict psychometric intelligence when TRP was included in the model. 

Moreover, TRP correlated significantly with SSC, r = .353, p < .001, and SSI, r = .180, p = 

.022. The standardized factor loadings and regression parameters are presented in Fig 3. 
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Thus, the variance SSI and SSC shared with psychometric intelligence could be fully 

explained by TRP. 

 

 

Fig 3. Final model illustrating the interplay between spatial suppression, TRP, and the g 

factor of psychometric intelligence in N = 273 participants. Two latent variables were 

derived from the spatial suppression task, one representing individual differences in spatial 

suppression (SSI) and the other representing individual differences in motion-direction 

discrimination thresholds independent of stimulus size (SSC). Standardized factor loadings 

and regression coefficients are presented and unstandardized factor loadings for the spatial 

suppression measurement model are given in superscript. * p < .05, *** p < .001. 

 

Discussion 

The major aim of the present study was to provide further evidence for the functional 

relationship between psychometric intelligence, on the one hand, and spatial suppression as 

well as TRP, on the other one. Furthermore, we focused on the mutual interplay of TRP and 

spatial suppression in explaining variance in psychometric intelligence. The results showed 

that spatial suppression was negatively related to psychometric intelligence, which contrasts 

with previous findings of a positive relationship (e.g., [10]). The negative correlational 

relationship between TRP and psychometric intelligence indicated that higher TRP, and thus 

higher timing accuracy and temporal sensitivity, was associated with higher psychometric 

intelligence confirming previous studies (e.g., [7]). Moreover, TRP and spatial suppression 

were not related at the manifest level but weakly at the latent level, suggesting that they 
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represent widely but not completely independent processes. Higher TRP, however, was 

moderately related to a shorter time required to correctly identify motion direction 

irrespective of stimulus size. When psychometric intelligence was regressed on TRP and 

spatial suppression concurrently, only TRP still explained a significant amount of variance in 

psychometric intelligence.  

Some previous studies reported a positive association between spatial suppression and 

psychometric intelligence, so that individuals with higher intelligence had a larger spatial 

suppression effect than individuals with lower intelligence [8–10]. These results suggested 

that more time was required to identify the correct direction of movement as stimulus size 

increased and that this was particularly true for individuals with higher (compared to lower) 

intelligence. In the present study, however, we found a negative relationship between 

psychometric intelligence and the four MDD thresholds in the spatial suppression task as well 

as the spatial suppression effect. This result held for the SI as a manifest variable as well as 

for the SSI latent variable in the measurement model of spatial suppression, which considered 

the increase of the MDD thresholds with increasing stimulus size across all four conditions of 

the spatial suppression task.  

Procedural reasons for the contradictory findings of a negative relationship between 

spatial suppression and intelligence in the present study and the positive relationship in 

previous studies can be largely ruled out. We used the same software and hardware as in the 

second study by Melnick et al. [10]. The only difference was that our spatial suppression task 

consisted of four (instead of three) stimulus-size conditions with an additional stimulus size 

of 5.4°. The 1.8°, 3.6°, and 7.2° conditions were also used in the second study by Melnick et 

al. [10] so that the smallest and the largest stimulus size were identical in the two studies. 

However, Melnick et al. [10] included a practice session on a separate day, while our 

participants had a practice session on the day of experimental testing. In unpublished results, 

Tadin found that practice on a separate day led to less noisy data but had no effect on average 

thresholds and associated SIs. The fact that both the MDD thresholds as well as their increase 

with stimulus size were very similar in Melnick et al.’s [10] and the present study 

corroborated the reliability and replicability of the spatial suppression effect. Its correlation 

with intelligence, however, seems to be less replicable.  

Arranz-Paraiso and Serrano-Pedraza [8] put forward the idea that the lower 

intelligence level in their sample compared to Melnick et al.’s [10] sample might have led to 

the weaker (but still positive) relationship between intelligence and spatial suppression in 

their study. Proceeding from this idea, we reanalyzed our data and submitted only half of the 
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sample with higher psychometric intelligence to the analyses. Even in this subsample with 

higher intelligence, the spatial suppression index (as well as the four thresholds) still 

correlated negatively with intelligence, but no longer significantly (r = -.08, p = .382). Thus, 

the level of intelligence could not explain the difference between our results and Melnick et 

al.’s [10] results. Furthermore, when we correlated spatial suppression separately with figural 

and verbal intelligence subtests, both aspects of intelligence were negatively related to spatial 

suppression. Thus, the content-related aspects of the intelligence tests in the present and the 

previous studies were also unlikely to account for the different results.  

As reviewed in Tadin [14], psychiatric conditions might influence the effect of spatial 

suppression. A history of major depression, a current schizophrenia diagnosis, or an autism 

diagnosis have been linked to variations in the strength of spatial suppression. In the present 

study and the study by Troche et al. [29], however, participants self-reported not to suffer 

from these psychiatric conditions so that a potential influence of these conditions on the 

correlation between spatial suppression and psychometric intelligence is unlikely. 

A key difference between our study and the two experiments in Melnick et al. [10] 

was participants’ age distribution. This might be important given that several studies showed 

a negative relationship between age and the spatial-suppression effect [15,47–49]. While the 

sample in Melnick et al.’s [10] first experiment had a mean age of 36.0 (± 7.2) years and in 

the second experiment of 33.1 (± 13.4) years, participants’ mean age in the present study was 

21.6 (± 2.7) years. When we investigated the influence of age on spatial suppression in the 

present sample, there was no evidence of any influence of age on spatial suppression, 

probably because the age range was quite limited with all participants younger than 30 years 

and 80% of the sample aged between 18 and 24 years. A similarly young sample was 

investigated by Troche et al. [29], who also did not observe a positive correlation between 

spatial suppression and psychometric intelligence. Thus, age-related changes in spatial 

suppression for participants older than 30 years could not be examined in the present study 

and the study by Troche et al. [29] so that age might still account for the differences between 

our results and the results by Melnick et al. [10]. However, Arranz-Paraiso and Serrano-

Pedraza [8] as well as Cook et al. [9] also examined participants younger than 30 years and, 

similar to Melnick et al. [10], observed a positive correlation between psychometric 

intelligence and spatial suppression. The 31 healthy controls in the study by Linares et al. 

[28], on the other hand, had a mean age of 38.6 (± 13.8) years and the spatial suppression was 

unrelated to psychometric intelligence in this sample. Thus, age might be a possible 

explanation for the inconsistent findings among the relevant studies, but a clear pattern is 
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difficult to discern. It can be stated, however, that the large sample sizes in the present study 

and the study by Troche et al. [29] strongly argue against a positive link between spatial-

suppression strength and psychometric intelligence in adults younger than 30 years.  

Another difference between our study and other studies on the relation between 

intelligence and spatial suppression is the measure of intelligence. Here, we used an adapted 

form of the BIS test as intelligence measure. In contrast, Melnick et al. [10] used the 

Wechsler Adult Intelligence Scale (WAIS; short form of WAIS-III [50] in Study 1, full 

version of WAIS-IV [51] in Study 2) and Arranz-Paraiso and Serrano-Pedraza [8] the 

Reynolds Intellectual Assessment Scales and Screening (RIAS [52,53]). Thus, at first glance, 

differences in the way of measuring intelligence cannot be ruled out to account for the 

divergent relations to spatial suppression. However, as shown by Johnson et al. [54], general 

intelligence in the sense of the g factor as a latent variable shows a high stability across 

different intelligence tests. From this perspective, it seems unlikely that the way of measuring 

intelligence is a significant reason for the divergent results. 

From a statistical point of view, there are further reasons that could account for the 

inconsistent results on the relationship between spatial suppression and psychometric 

intelligence. Regarding the sample size, two studies used small sample sizes (N = 9 in Cook 

et al. [9]; N = 12 in Melnick et al. [10], Study 1) and two studies medium sample sizes (N = 

50 in Arranz-Paraiso and Serrano-Pedraza [8]; N = 53 in Melnick et al. [10], Study 2). All 

these studies reported a positive correlation between spatial suppression and psychometric 

intelligence. Linares et al. [28] observed no significant correlation between spatial 

suppression and intelligence in 31 healthy adults. This latter result was in line with Troche et 

al. [29], who could not confirm a functional relationship in a sample of 177 participants. The 

present study with its 273 participants is the only one that even observed a negative (albeit 

weak) correlational relationship. Thus, the studies, which reported a positive correlation 

between spatial suppression and psychometric intelligence used rather small samples. This is 

highly critical given that small sample sizes lead to large confidence intervals around 

correlations [55]. This problem may be illustrated with Arranz-Paraiso and Serrano-Pedraza’s 

[8] data. In this study, general intelligence correlated significantly neither with the MDD 

threshold for a small stimulus of 0.7°, r = -.213, p = .150, nor with the MDD threshold for a 

large stimulus of 6°, r = .255, p = .083. Given the sample size of N = 47, the 95% confidence 

intervals ranged from -.47 to +.08 and from -.03 to .51, respectively. Thus, the two 

correlations did not significantly differ from zero but reached by chance a negative and a 

positive value, respectively. At this point it is important to note that SI was calculated as the 
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difference between the MDD thresholds for the large stimulus (minuend) and the small 

stimulus (subtrahend). With this operationalization, the weak (and by chance) positive 

correlation between the minuend and intelligence was enhanced by the weak (and by chance) 

negative correlation between the subtrahend and general intelligence. As a consequence, the 

positive correlation between SI and intelligence reached now statistical significance. This 

significant correlation, however, seems to be spurious when it is caused by random variation 

of the correlations between MDD thresholds and general intelligence.  

In both the present study and the study by Troche et al. [29] the large sample sizes 

might have avoided such random variation in the correlation coefficients. Instead, relatively 

small but significant negative correlations between all four MDD thresholds and intelligence 

were obtained ranging from r = -.17 to -.26 in the present study and from r = -.16 to -.19 in 

the study by Troche et al. [29]. If we assume that due to the large samples in the latter two 

studies, the observed correlations between MDD thresholds and intelligence came close to 

their true values, which did not differ actually, the SI-intelligence correlation was probably 

less inflated by random variation than in studies with smaller samples. In the present study, 

the correlations between intelligence and the MDD thresholds for the smallest and for the 

largest stimulus did not differ significantly but the latter was more negative than the former 

one. This small difference was apparently large enough to cause a negative correlation 

between intelligence and spatial suppression – regardless of whether spatial suppression was 

measured as SI difference score or as SSI latent variable. Thus, the negative correlation 

between intelligence and spatial suppression in the present study might be as spurious as the 

positive correlations reported in other studies and just the result of small and unsubstantial 

differences between the correlations of intelligence and MDD thresholds for large and for 

small stimuli. In any case, against the background of the present pattern of results a general 

positive association between spatial suppression and psychometric intelligence seems to be 

rather unlikely. If and what specific conditions may lead to such a positive association cannot 

be answered from the present study but need further investigations.  

Regarding the functional relationship between TRP and g, we were able to replicate 

previous findings. As in an increasing number of studies (e.g., [3,4,7]), TRP explained a 

substantial portion of variance in psychometric intelligence. More specifically, with 33% 

explained variance, the communality was only slightly lower than in the studies by Pahud et 

al. [7] with 36% or Helmbold et al. [4] with 44%. This result underscored the association 

between psychometric intelligence and higher timing accuracy and temporal sensitivity, as 

proposed by the TRP hypothesis [5]. 
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The TRP hypothesis by Rammsayer and Brandler [5] proceeded from cognitive 

models proposing an internal (master) clock underlying the efficiency of information 

processing and transmission [56–58]. Within the framework of the TRP hypothesis, this 

higher efficiency is the result of faster and better coordinated information processing. 

Evidence for the notion that TRP leads to better coordinated mental operation was provided 

by Troche and Rammsayer [6], who reported that higher TRP led to higher capacity of 

working memory (WM), which in turn was associated with higher psychometric intelligence. 

It should be noted that Jastrzȩbski et al. [59] reported similar results but argued that WM 

capacity is the variable, which causes the relation between TRP and psychometric 

intelligence. Furthermore, the proposed positive association between mental speed and 

intelligence was confirmed by several studies [4,7]. In the present study, TRP was associated 

with SSC in the measurement model of spatial suppression. In this model, SSC reflected 

individual differences in speed of information processing as the time required to correctly 

identify the motion direction (irrespective of the spatial-suppression effect). Individuals with 

higher TRP needed less time to correctly identify the motion direction than individuals with 

lower TRP. Furthermore, the relation between SSC and psychometric intelligence decreased 

substantially when TRP was concurrently considered. Thus, as in previous studies [4,7], the 

relationship between speed of information processing (here speed of correctly detecting the 

motion direction) and intelligence could be explained in terms of TRP. This is particularly 

interesting because speed of information processing is frequently considered a major source 

of individual differences in psychometric intelligence [60–62]. A better understanding of the 

psychophysiological underpinnings of TRP in future studies might help elucidate why TRP 

so consistently explains the relationship between speed of information processing and 

psychometric intelligence.  

Against our expectation, higher TRP was only weakly associated with a less (instead 

of a more) pronounced spatial suppression effect as reflected by the SSI latent variable. 

Several studies supported the idea of a more pronounced spatial-suppression effect being 

indicative of more efficient information processing [10,15]. Thus, these two concepts of 

efficiency seem to be clearly dissociable and only weakly related to each other. This weak 

relationship, however, was sufficient that TRP explained the complete variance shared 

between spatial suppression and psychometric intelligence. 

In summary, consistent with the TRP hypothesis, the positive relationship between 

psychometric intelligence and TRP was replicated. TRP was also significantly associated 

with the portions of variance in MDD thresholds, which were unrelated to stimulus size (i.e., 
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the SSC latent variable) and, thus, reflected speed of information processing. That TRP 

explained the common variance of this constant latent variable and psychometric intelligence 

corroborates the assumption that TRP underlies the relation between intelligence and speed 

of information processing. However, regardless of being operationalized as SI index or SSI 

latent variable, the spatial-suppression effect was negatively related to psychometric 

intelligence as well as to TRP. This contradicted the assumption of higher spatial suppression 

reflecting more efficient information processing [10,15]. That is, while spatial suppression is 

a critical mechanism for achieving efficient information processing of visual information, our 

results called in question prior links between spatial suppression and general brain efficiency 

as reflected in psychometric intelligence and TRP. If such links exist, it would be important 

for future research to identify the conditions under which they become effective. 
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Abstract 

The temporal resolution power (TRP) hypothesis states that individuals with higher TRP, as 

reflected by a higher performance on several psychophysical timing tasks, perform better on 

intelligence tests due to their ability to process information faster and coordinate their mental 

operations more effectively. It is proposed that these differences in TRP are related to the rate 

of a master clock based on neural oscillations. The present study aimed to investigate whether 

the peak alpha frequency (PAF) measured via electroencephalography (EEG) reflects a 

psychophysiological measure of this rate and its potential role in explaining the relationship 

between TRP and psychometric intelligence. A sample of 129 young adults (M = 23.0, SD = 

3.1) completed a short version of Raven's Advanced Progressives Matrices and three timing 

tasks. PAF was measured using EEG before each timing task during two resting states with 

eyes closed (EC) and eyes open (EO), respectively. From these PAF measurements, four 

latent PAF variables were extracted, differing in resting state (EC, EO) and electrode cluster 

(frontal/central, parietal/occipital). The results confirmed a strong association between TRP 

and psychometric intelligence (r = .56, p < .01), as previously reported in other studies. 

Additionally, we found a positive association between intelligence and a latent PAF variable 

extracted from frontal/central electrodes in the EO resting state conditions (r = .27, p < .05). 

However, there was no association between TRP and PAF. This indicates that PAF does not 

reflect the underlying psychophysiological mechanism that links TRP to intelligence. 

Keywords: Temporal resolution power, intelligence, peak alpha frequency  
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Introduction 

The temporal resolution power (TRP) hypothesis holds that individual differences in 

the brain's timing accuracy and temporal sensitivity are basic sources of individual 

differences in psychometric intelligence (Rammsayer & Brandler, 2004, 2007). At a 

behavioral level, individual differences in TRP are measured by event-timing, interval-

timing, rhythm perception, or temporal generalization tasks (Grondin, 2010; Ogden et al., 

2014; van Wassenhove et al., 2019). The considerable amount of variance shared by those 

tasks allows for extracting a latent variable as a representation of TRP (Haldemann et al., 

2012; Helmbold et al., 2007; Rammsayer & Brandler, 2004, 2007), which has repeatedly 

demonstrated to be functionally associated with psychometric intelligence (Haldemann et al., 

2012; Helmbold et al., 2007; Makowski et al., 2022; Pahud et al., 2018; Rammsayer & 

Brandler, 2004, 2007; Troche & Rammsayer, 2009). Within the framework of the TRP 

hypothesis, Rammsayer and Brandler (2007) explain this relationship by the assumption that 

individuals with higher TRP process information faster and coordinate their mental 

operations better than individuals with lower TRP. As a result, this more efficient information 

processing leads to higher scores on intelligence tests (for empirical support for these 

assumptions, see Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007; 

Troche & Rammsayer, 2009b).  

Proceeding from Surwillo's (1966, 1968) master clock hypothesis, Rammsayer and 

Brandler (2004, 2007) suggest that individual differences in neural oscillations might be the 

psychophysiological mechanism underlying TRP. The assumption of a single internal clock 

is consistent with so-called pacemaker-counter models to explain temporal judgment (for a 

concise review, see Grondin, 2010). According to these models, a pacemaker generates 

pulses registered by a counter. The number of registered pulses for a given physical time 

interval represents the perceived time interval (Creelman, 1962; Treisman et al., 1990; 

Treisman et al., 1994; Ulrich et al., 2022). Proceeding from the assumption of a pacemaker, a 

higher oscillatory frequency, with which the pacemaker generates pulses, allows for detecting 

smaller temporal differences between two stimuli or differences in their onset, which are 

undetectable with lower frequencies. This idea is delineated in Figure 1. An individual with a 

low oscillatory frequency (individual B in Figure 1) is not able to detect the temporal 

difference between the two stimuli since both stimuli (although physically of different 

duration) are associated with the same number of pulses (or oscillations) for this individual. 

For an individual with a higher oscillatory frequency (individual A in Figure 1), the first (and 

physically longer) stimulus duration is associated with a higher number of pulses than the 
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second (and physically shorter) stimulus duration. Therefore, individual A is able to identify 

the first stimulus to be longer. Although the outlined mechanism is surely a simplified 

representation, neural oscillations are an inherent part of many cognitive models of temporal 

information processing (Allman et al., 2014; Grondin et al., 2010; Kononowicz & van 

Wassenhove, 2016; Kononowicz et al., 2018; van Wassenhove et al., 2019).  

 

Figure 1 

Illustration of the master clock based on Surwillo (1966, 1968) 

 

 

The assumption that individual differences in neural oscillations underlie individual 

differences in TRP also provides a functional link to individual differences in psychometric 

intelligence, which have also been explained in terms of neural oscillations by Jensen's 

oscillation theory (1982, 2006). According to this theory, individual differences in excitatory 

and refractory states in a neuron or group of neurons lead to differences in response times 

(RTs) and, especially, in the intraindividual standard deviation of RTs. Thus, a higher 

oscillation rate leads to higher and less variable speed of information processing. With a 

higher speed of information processing, more information from early sensory memory can be 

transferred to durable memory storage so that a premature loss of relevant information can be 

avoided (Jensen, 1982, 2006). Furthermore, faster and more consistent processing of 

information in working memory prevents overloading of the capacity-limited system (and 

resulting response errors) when information is faster transferred to long-term memory or 

action so that it no longer demands working memory capacities, which can then be used for 

the processing of new information. With this rationale, Jensen's (1982, 2006) oscillation 

theory posits an explanation of the well-established link between speed of information 
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processing and intelligence (Deary, 2001; Doebler & Scheffler, 2016; Jensen, 2006; Schubert 

& Frischkorn, 2020; Sheppard & Vernon, 2008). This is of particular interest since, in several 

studies, this link between speed of information processing and psychometric intelligence 

could be explained in terms of TRP (Brandler & Rammsayer, 2007; Helmbold et al., 2007; 

Makowski et al., 2022; Pahud et al. 2018). 

Both Rammsayer and Brandler's (2007) TRP hypothesis, as well as Jensen's (1982, 

2006) oscillation theory, proceed from the assumption that individual differences in neural 

oscillation rates are a basic mechanism underlying individual differences in psychometric 

intelligence. No specification of these neural oscillations, however, is made in either 

hypothesis. For an empirical investigation of this assumption, electroencephalography (EEG) 

as a method for assessing neural oscillations might be of particular interest. Traditionally, the 

EEG oscillations are divided into the delta, theta, alpha, beta, and gamma frequency bands 

(Buzsáki, 2006; Cohen, 2014; Klimesch et al., 1993). The alpha frequency band with a 

frequency range of 7 to 13 Hz is most prominent when the brain is in a relaxed resting state 

and has been functionally linked to various cognitive processes (Başar & Güntekin, 2012; 

Jensen & Mazaheri, 2010; Klimesch, 2012). For example, changes in alpha power during a 

cognitive task were found to be related to the inhibition of task-irrelevant and the activation 

of task-relevant brain areas (Başar & Güntekin, 2012; Klimesch, 2012). Moreover, the alpha 

power during a resting state prior to diverse cognitive tasks (e.g., fluid intelligence and 

memory tasks) was positively related to performance in these tasks (Clark et al., 2004; 

Doppelmayr et al., 2002; Grandy et al., 2013; Klimesch et al., 1990; Klimesch et al., 1993; 

Mahjoory et al., 2019).  

The alpha band at rest exhibits a peak in its power spectrum. The frequency at which 

this peak is observed is referred to as peak alpha frequency (PAF) and shows pronounced 

individual differences (Hilger et al., 2022). The specific meaning of the PAF is not yet 

conclusively clarified. Angelakis, Lubar, Stathopoulou, and Kounios (2004) postulated that 

"PAF reflects cognitive preparedness, i.e., a capacity for higher-level cognitive functions, 

rather than lower-level functions such as arousal" (p. 896) while Klimesch (1997) assumed 

that "IAF reflects the speed of spreading activation and retrieval processes" (p. 329). Mierau 

et al. (2017) suggested "that the alpha rhythm may dictate the resolution at which information 

is sampled and/or processed by cortical neurons" (p. 151). Ociepka et al. (2022) found a 

functional positive relationship between speed of information processing on the behavioral 

level and PAF. They put forward the idea that individuals with higher compared to 

individuals with lower PAF process information faster because their optimal alpha cycle 
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window is shorter, allowing for faster reactions. These interpretations have in common that 

PAF is associated with faster information processing or may even be causal for individual 

differences in speed of information processing. 

Consistent with the above-outlined findings of a functional link between intelligence 

and speed of information processing, several studies reported that individuals with higher 

intelligence showed a higher PAF than individuals with lower intelligence (Angelakis, Lubar, 

& Stathopoulou, 2004; Anokhin & Vogel, 1996; Doppelmayr et al., 2002; Grandy et al., 

2013; Leno et al., 2021). Hence, as a psychophysiological marker of the oscillation rate in the 

alpha band, the PAF might be a potential candidate for the oscillation rate underlying 

individual differences in psychometric intelligence as proposed by Jensen (2006) or 

Rammsayer and Brandler (2007). However, other studies failed to replicate this association 

(Finnigan & Robertson, 2011; Ociepka et al., 2022; Pahor & Jaušovec, 2016; Posthuma et al., 

2001). Thus, although there is some empirical evidence for the notion that PAF relates to 

individual differences in psychometric intelligence, the pattern of results is rather inconsistent 

(see also Hilger et al., 2022). 

To the best of our knowledge, no study has investigated the potential link between 

PAF and TRP as a latent variable representing timing accuracy and temporal sensitivity in a 

general, task-unspecific way. A few studies, however, have examined the relationship 

between temporal information processing in specific timing tasks and PAF. In these studies, 

PAF was not systematically related to the performance on a duration discrimination task 

(Milton & Pleydell-Pearce, 2017) nor to the performance on a temporal estimation task 

(Venskus & Hughes, 2021). Also Glicksohn et al. (2009) could not find a significant 

association between PAF measured at rest and performance in a temporal production task. 

However, when they differentiated PAF from the right and the left hemisphere and regressed 

both on the produced duration, a substantial amount of individual differences in the produced 

duration could be explained, indicating a suppression effect of right and left PAF. 

Additionally, Samaha and Postle (2015) reported that two-flash fusion thresholds measuring 

temporal resolution in the visual system were smaller in individuals with higher compared to 

individuals with lower PAF (Samaha & Postle, 2015). Thus, there is some evidence for a 

functional association between temporal information processing and PAF, but the pattern of 

empirical results is as inconsistent as the results on the relationship between psychometric 

intelligence and PAF. 

There are several explanations for the inconsistencies in previous studies on the 

relationship between PAF and psychometric intelligence, as well as between PAF and 
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temporal information processing. The first reason refers to the specificities of the PAF 

measurement, such as the type of resting state in which PAF was measured. For example, in 

some studies PAF was measured during an eyes-closed (EC) resting state (Anokhin & Vogel, 

1996; Finnigan & Robertson, 2011; Glicksohn et al., 2009; Pahor & Jaušovec, 2016; 

Posthuma et al., 2001; Samaha & Postle, 2015) and, in others, during an eyes-open (EO) 

resting state (Leno et al., 2021; Ociepka et al., 2022). In another study, PAF was calculated as 

a difference score between EC and EO resting states (Trammell et al., 2017). Only a few 

studies considered the PAF from EC and EO resting states separately (Angelakis, Lubar, & 

Stathopoulou, 2004; Angelakis, Lubar, Stathopoulou, & Kounios, 2004; Grandy et al., 2013).  

Furthermore, studies also differed in the electrode sites, at which PAF was measured. 

Most studies used parietal and occipital electrodes (Glicksohn et al., 2009; Grandy et al., 

2013; Milton & Pleydell-Pearce, 2017; Posthuma et al., 2001; Samaha & Postle, 2015; 

Trammell et al., 2017; Venskus & Hughes, 2021), where the alpha rhythm is more 

pronounced than under more anterior electrodes in the resting state (Klimesch, 1999). Other 

studies averaged the PAF from electrodes across the entire scalp (Angelakis, Lubar, & 

Stathopoulou, 2004) or used occipital electrodes in one subset of participants and frontal 

electrodes in another subset of participants (Ociepka et al., 2022). Only a few studies 

distinguished between the different recording sites, e.g., between frontal and parietal 

electrodes (Anokhin & Vogel, 1996; Doppelmayr et al., 2002; Finnigan & Robertson, 2011; 

Pahor & Jaušovec, 2016). 

A further reason for inconsistencies in studies on the relationship between PAF and 

psychometric intelligence, as well as between PAF and temporal information processing, 

might be seen in using only a single measure of PAF or the average of two measurements. 

PAF measures are not perfectly reliable (Ghazi et al., 2021), and PAF variance is not only 

affected by trait differences between individuals but also by (unstable) state differences 

(Angelakis, Lubar, & Stathopoulou, 2004; Angelakis, Lubar, Stathopoulou, & Kounios, 

2004; Haegens et al., 2014; Mierau et al., 2017). Therefore, single measurements can be 

expected to be biased estimations of interindividual differences in the trait-related (or cross-

situational) mechanisms underlying PAF. A possible solution to this challenge might be to 

measure PAF repeatedly to extract a latent variable as an error-free and situation-independent 

measure of PAF.  

The main goal of the present study was to investigate the assumption that individual 

differences in neural oscillations underlie TRP and its relation to psychometric intelligence 

(Rammsayer & Brandler, 2007). More specifically, we aimed to investigate whether PAF 
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represents individual differences in the neural oscillation rates underlying both psychometric 

intelligence and TRP. Thus, we expected a mediating effect of PAF on the relationship 

between TRP and psychometric intelligence. In order to represent PAF at a latent level, PAF 

was assessed six times, i.e., during an EC and an EO resting state before each of the three 

timing tasks. Since we used 64 electrode sites for the EEG, we also addressed the question of 

whether PAF during EC or EO resting states and at different clusters of electrode sites 

differentially relates to psychometric intelligence, TRP, and their relationship.  

Methods 

Participants  

Participants were 172 volunteers recruited via the student platform of the University 

of Bern, online advertisements, and the personal environment of the investigators. Of this 

sample, 26 participants had to be excluded due to a high number of artifacts in their EEG 

(less than 20% of segments available for further analyses), six due to univariate (exceeding 

the group mean by three standard deviations in their performance measures), and eleven due 

to multivariate outlier analyses on their behavioral performance. This resulted in a final 

sample of 129 participants (93 female, 36 male) aged 18 to 34 years (Mage = 23.0; SD = 3.1 

years). This surprisingly high number of participants to be excluded may be because the 

study was conducted during the COVID-19 pandemic, so the investigator and participants 

were obliged to wear a medical mask during the whole measurement. The mask in 

combination with the electrode cap was uncomfortable for many participants, which led to 

more movements, muscle tension and itching reflected in more EEG artifacts than usually 

observed in our laboratory. 

Only right-handed (according to the Edinburgh Handedness Scale; Oldfield, 1971) 

and healthy participants took part in the study. Thus, participants who reported in a survey to 

suffer from a psychological disease, a chronic disease, or with a cardiac and neuronal history 

(e.g., cranium brain trauma), or taking medications, did not participate in this study. All 

participants showed normal or corrected-to-normal vision and no auditory impairments, 

which was ensured by the performance of an audiometry task. Regarding their highest 

education, 11% of the participants had finished vocational school, and 89% had higher 

educational training.  

For their participation, they received either 30 Swiss francs, course credits, or could 

participate in a price draw of vouchers. All participants signed written informed consent 

before their participation. The study was approved by the local ethics committee of the 

Faculty of Human Sciences of the University of Bern (No. 2020-08-00001).  
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Measurement of psychometric intelligence  

For the measurement of intelligence, participants completed a short version of the 

Advanced Matrices Test (APM; Raven et al., 1998). The adapted version consisted of the 18 

odd-numbered APM items proposed by Sefcek et al. (2016), who reported an internal 

consistency of  = .79. The APM was presented on a Dell monitor of 22 inches with a 

resolution of 1680 x 1050 (32 bits/pixel) and a refreshing rate of 60 Hz. Participants gave 

their responses on an HP computer keyboard and were given a time limit of 20 minutes for 

the 18 items. 

Assessment of temporal resolution power 

Temporal resolution power was assessed with three timing tasks. The tasks were 

programmed with Eprime 2.0 (Psychology Software Tools, 2012). Auditory stimuli were 

presented via ER3C® tubal insert earphones (Etymotic Research Inc., 2022) at an intensity of 

70 dB. Visual information was presented on the same monitor as the APM. Participants were 

seated 70 cm from the monitor and gave their answers by clicking on a designated key on a 

Chronos® response box (Psychology Software Tools, 2012). 

Temporal order judgment (TOJ) task 

The TOJ task consisted of 64 trials in which a visual and an auditory stimulus were 

presented. The auditory stimulus was a 1000 Hz sinusoidal tone, and the visual stimulus was 

a green LED light centered above the computer screen. In 32 trials, the tone started after the 

light turned on. In the other 32 trials, the onset of the light occurred after the onset of the 

tone. Both stimuli ended simultaneously 200 ms after the onset of the second stimulus. In the 

first trial of both series, light and tone were presented with a stimulus onset asynchrony 

(SOA) of 70 ms. After each trial, participants had to decide whether the light or the tone 

occurred first by pressing one of two correspondingly labeled response keys. The SOA 

duration for the next trial varied depending on the participant's response accuracy using the 

weighted up-down procedure (Kaernbach, 1991), which settled at 75% correct responses. A 

correct response led to a decrease in SOA, and an incorrect response led to an increase in 

SOA in the next trial of the respective series. Both series were interleaved and presented 

randomly, with trials separated by an intertrial interval of 1500 ms.   

As a measure of performance, the mean SOA was computed for the last 20 trials of 

each series and the two scores were averaged into one score. The mean SOA represents the 

75%-TOJ threshold with lower values indicating better performance. For further analyses, the 

values of the mean 75%-TOJ threshold were reversed so that higher values indicate better 
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performance. In a previous study, this TOJ task showed a retest reliability of rtt = .73 

(Rammsayer & Brandler, 2002). 

Temporal generalization (TG) task  

The TG task was embedded in a dissociation paradigm, which allowed for assessing 

temporal and pitch generalization (PG) with the same stimulus material. Since temporal but 

not pitch discrimination was relevant for the present study, we refer only to the TG part of the 

task. The TG task consisted of 108 trials. At the beginning of the task, participants were 

introduced to a standard tone (1000 Hz, 1000 ms) and had to memorize its duration by 

listening at least five times to this tone. Afterward, the experimental phase began, and 

participants were randomly presented either with the standard duration (1000 ms) or with an 

alternative duration (925 ms, 950 ms, 975 ms, 1025 ms, 1050 ms, or 1075 ms). After each 

stimulus presentation, they had to decide whether the stimulus was the standard by pressing 

designated keys with "Yes" or "No" on the Chronos® response box. After their response, 

they received visual feedback ('+' indicated a correct answer, '–' a wrong answer) on the 

monitor center for 1500 ms, followed by an intertrial interval of 900 ms. The standard 

duration was presented 54 times, and each alternative duration was presented 18 times. Since 

it was a dissociation paradigm, the presented tones did not only differ in their duration but 

also in their pitch (970 Hz, 980 Hz, 990 Hz, 1000 Hz, 1010 Hz, 1020 Hz, 1030 Hz; see also 

Gibbons et al., 2003), which should not be attended in the TG part. In the second part of the 

experiment, the PG task was presented with the same stimuli, but participants should ignore 

the duration of the stimuli and attend to their pitch.  

As a performance measure, the index of response dispersion (IRD) was calculated by 

dividing the relative frequency of "Yes" responses to the standard duration by the total 

relative frequencies of "Yes" responses to all seven stimulus durations (McCormack et al., 

1999). IRD values vary between 0 and 1, with a value of 1 indicating that all the "Yes" 

answers were given in response to the standard and not to the alternative durations.  

Duration discrimination (DD) task  

A standard sinusoid 1000 Hz tone with a duration of 1000 ms and a comparison tone 

(1000 Hz, sinusoid tone) varying in duration were presented in each trial with a 900 ms 

interstimulus interval. The task consisted of 64 trials, with the comparison interval being 

shorter than the standard interval in 32 trials and the comparison interval being longer than 

the standard interval in the other 32 trials. The trials of the two series were interleaved, and 

the order of standard and comparison intervals was randomized. Participants had to indicate 
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whether the first or the second interval was longer for each trial by pressing a designated key. 

After an intertrial interval of 1500 ms, the subsequent trial started.  

The duration of the comparison interval varied according to the adaptive weighted-up-

down procedure (Kaernbach, 1991). Accordingly, an incorrect response in the first six trials 

led to a prolongation of the comparison interval by 9 ms compared to the standard interval. In 

contrast, a correct response resulted in a decrease of 3 ms. This procedure changed for the 

seventh to 32nd trial, where the increase after an incorrect response was 6 ms, and the 

decrease after a correct response was 2 ms. This procedure resulted in two thresholds, the 

25%-difference threshold for the series with the comparison being shorter than the standard 

interval and the 75%-difference threshold for the series with the comparison being longer 

than the standard interval. For each threshold, the comparison intervals in the last twenty 

trials of the respective series were averaged. Then, the difference threshold (DL) was 

calculated by dividing half of the interquartile range [(x.75-x.25)/2], with better performance 

indicated by smaller values (Luce & Galanter, 1963). As for the TOJ task, the DL values of 

the DD task were reversed for further analyses so that larger values indicated better 

performance. In a previous study, the DD task showed a retest-reliability of rtt = .75 (Lapid et 

al., 2008). 

EEG recording and preprocessing 

Prior to each timing task, the EEG was recorded during a 60-seconds EC and, 

afterward, a 60-seconds EO resting state during which participants were asked to fix their 

gaze on a white cross presented in the center of a black monitor screen. For the EEG 

recording, a 64-channel Biosemi ActiveTwo EEG system (Biosemi, 2022) was used with 

active gel electrodes and a sampling rate of 2048 Hz. Horizontal and vertical 

electrooculogram (EOG) was recorded with electrodes at the outer canthi of the right and left 

eye (horizontal), the Fp1 electrode, and an electrode under the left eye (vertical). Two 

additional flat-type active electrodes were adjusted on the mastoids and later served as 

reference electrodes. During recordings, the offset of the active electrodes was kept below 35 

μV, and the CMS and DRL sites served as online ground electrodes (see Biosemi, 2022). The 

EEG recordings were offline preprocessed in Brain Vision Analyzer 2.2 (Version 2.2.1.8266; 

Brain Products, 2019). Data were re-referenced to the average of the two mastoids. The 

sampling rate was adjusted from 2048 Hz to 1024 Hz. Impulse response filters were applied 

with a notch filter at 50 Hz and a high-pass filter at 0.1 Hz (Order 2, time constant [s] = 1.59). 

Eye movement artifacts were corrected using the ocular correction by Gratton and Coles 

(1989). Then, the electrodes Fp1, Fpz, Fp2, AF3, AF4, AFz, AF7, and AF8 were excluded to 
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reduce the number of trials with ocular artifacts, which were most pronounced at these 

electrode sites. Muscular artifacts were frequently found at electrodes P1, P2, and Iz, which 

were therefore also discarded. This resulted in 53 remaining electrodes. Bad channels (e.g., 

channels with no or noisy signal during a resting state) were interpolated using spherical 

spline interpolation of the neighboring channels (Perrin et al., 1989). Afterward, additional 

artifacts were excluded with a semiautomatic raw data inspection with the following 

presettings: maximal allowed voltage step of 50 μV/ms, the minimal allowed amplitude of -

100 μV, and the maximally allowed amplitude of 100 μV. The artifacts marked by this 

algorithm were all checked manually afterward. Then the data was segmented by dividing 

each EC and EO resting state into 60 two-second epochs with 50% overlap. A semiautomatic 

artifact rejection was conducted with the following presettings: a maximal allowed voltage of 

50 μV/ms, a maximal allowed difference of values in intervals of 200 μV, and lowest allowed 

activity in intervals of 0.5 μV. As with the raw data inspection, all artifacts marked by the 

algorithm were checked manually afterward. In total, the raw data inspection and artifact 

rejection analysis led on average to 16% (± 7%) and 14% (± 7%) discarded segments in the 

EC and the EO resting state condition, respectively  

For the PAF extraction, an FFT with a 10% Hanning window was performed with a 

resolution of 0.50 Hz. Then, the two second segments were averaged separately for EC and 

EO resting states. Afterward, the PAF was determined as the frequency between 7 and 13 Hz 

with the highest power for each electrode in each EC and EO resting state before each timing 

task. The PAF information was then exported for further analyses in Hz.  

Time course of the study  

For the first part of the study, participants completed an online questionnaire at home 

via Qualtrics (Qualtrics, Provo, UT) in which they were asked about their demographics, 

handedness, and health status. For the second part, the study took place in a soundproof 

examination booth, protected from sound and electromagnetic radiation. The session started 

with the audiometry task, followed by the set-up of the EEG. Then, the APM was 

administered, followed by the TOJ task, the TG task, and finally, the DD task. All tasks were 

always presented in the same order. The entire session lasted between two and a half to three 

hours per participant. Between the tasks, participants were always offered a break.  

Statistical data analysis 

The statistical analyses were conducted with the programs R (Version 4.1.0; R Core 

Team, 2021) and R-Studio (Version 1.4.1106; RStudio Team, 2021) using the following 

packages: the GPArotation package (Bernaards & Jennrich, 2005), the Hmisc package 
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(Harrell Jr, 2021), the lavaan package (Rosseel, 2012), the psych package (Revelle, 2022) 

and the rstatix package (Kassambra, 2022). All performance measures were z-standardized 

for further statistical analyses. Then, descriptive statistics and correlations were computed, 

followed by three exploratory factor analyses (EFA) – one for the PAF measurements prior to 

each of the three timing tasks (at 53 electrode sites during the EC and the EO resting state). 

The aim of the EFA was to identify more or less homogeneous clusters of electrode sites for 

the PAF measures and to test whether PAF measures during the EC and EO resting states 

should be treated separately or not. Scree plots with parallel analyses were created with 

ggplot2 (Wickham, 2016) and ggpubr (Kassambra, 2022) based on the code of Sakaluk and 

Short (2016). From the PAF factors revealed by means of EFA, a measurement model for 

PAF was developed by means of confirmatory factor analyses (CFA) to represent an 

appropriate number of latent variables representing PAF. 

Two further CFA were conducted to investigate the latent relationship between 

psychometric intelligence and TRP. Since intelligence was only measured with one task, we 

built three parcels from the APM items, with parcel 1 containing items 1, 4, 7, 10, 13, and 16, 

parcel 2 containing items 2, 5, 8, 11, 14, and 17, and parcel 3 containing the items 3, 6, 9, 12, 

15, and 18. From the sum scores of the three parcels, a latent variable was extracted to 

represent psychometric intelligence. A second latent variable was derived from the 

performance scores on the three timing tasks. Then, the latent TRP-intelligence relationship 

was analyzed by means of structural equation modeling (SEM), and finally, the PAF 

measurement model was added to this model to test the assumption that the relation between 

TRP and psychometric intelligence would be mediated by PAF.  

All CFA and SEM were estimated with robust maximum likelihood estimation. 

Model fit was evaluated by means of 2 values, comparative fit index (CFI), root mean 

square error of approximation (RMSEA), and standardized root means squared residual 

(SRMR). Good (acceptable) fit was indicated by 2/df < 2 (Schermelleh-Engel et al., 2003), 

CFI ≥ .95 (≥ .90), RMSEA ≤ .05 (≤ .08), and SRMR value ≤ .08 (≤ .10) (Schweizer, 2010). 

The data is available in the BORIS database at https://doi.org/10.48620/270. 

Results 

Behavioral data 

Descriptive statistics and correlations  

The descriptive statistics of and correlations between performance measures from the 

APM, DD, TOJ, and TG tasks can be seen in Table 1. All correlation coefficients were small 
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but statistically significant and in a similar range as in previous studies (see Haldemann et al., 

2012). 

 

Table 1 

Descriptive statistics and Pearson correlations of the behavioral performance measures from 

the three timing tasks and APM.  

Performance 

measures 
M SD Min Max Skewness Kurtosis Pearson correlations 

       1. 2. 3. 

1. APM  

[sum score] 
13.03 2.61 5 18 -0.50 -0.01 – 

  
2. TOJ 

[threshold in 

ms] 

134 29 56 198 -0.22 -0.19 
      

.22* 
 

 

3. TG  

[IRD] 
0.15 0.02 0.09 0.22 0.26 0.25 

       

.21* 
.25**  

4. DD  

[DL in ms] 
134 42 43 252 0.60 -0.12 .25** .25** .21* 

Note. N = 129. APM = sum score from the short version of Raven's Advanced Progressive 

Matrices. TOJ = mean 75%-difference threshold from the temporal order judgment task. TG 

= index of response dispersion (IRD) from the temporal generalization task. DD = difference 

limen (DL) from the duration discrimination task. For the Pearson correlations, the 

performance measures of the TOJ and DD task were reversed. * p < .05, ** p < .01 

 

Measurement and latent regression models for APM and TRP  

The three parcels from the 18 APM items correlated significantly with each other 

ranging from r = .35 to r = .48, all ps < .001. These substantial correlations allowed for 

extracting a latent variable from these parcels by means of CFA, representing a proxy of 

psychometric intelligence with a McDonald's omega coefficient of  = 0.68. Due to only 

three manifest variables, the model was exactly identified (Kline, 2011). Analogously, a 

latent variable, referred to as temporal resolution power ( = 0.49), was derived from the 

three different timing tasks, which also correlated significantly with each other (see Table 1).  
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The above-described measurement models were combined in a latent regression 

model to test the TRP hypothesis. The resulting model is presented in Figure 2 and showed a 

good model fit, SB2(8) = 2.515, p = .961, 2/df = 0.314, CFI = 1.000, RMSEA = .000, 

SRMR = .022. The regression coefficient from TRP to psychometric intelligence was 

significant  = .56, p = .021. The shared variance of about 31% between TRP and 

psychometric intelligence established the link, which we aimed to explain by PAF in the 

present study.  

 

Figure 2 

Structural equation model of the relationship between temporal resolution power (TRP) and 

psychometric intelligence. *p < .05, **p < .01, ***p < .001 

 

 

Electrophysiological data 

Descriptive statistics and correlations 

As displayed in Figure 3, PAF varied between 7.00 and 12.50 across the EC and EO 

resting states before the three timing tasks. PAF was measured with 64 electrodes twice 

immediately before each timing task - once EO, once EC. Of these 64 electrodes, 11 

electrodes had to be removed (for further information, see methods section).   
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Figure 3 

The mean power spectrum measured during the EC (A) and EO resting state (B) before the TOJ task, during the EC (C) and EO resting state 

(D) before the TG task, as well as during the EC (E) and EO resting state (F) before the DD task based on 53 electrodes (N = 129). 

  

Note. The peak between 7 to 13 Hz represents the peak alpha frequency. 
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Exploratory factor analyses 

To test whether the 2 x 53 PAF measures before each of the three tasks could be 

reduced consistently to fewer factors, three exploratory factor analyses (EFAs) were 

conducted. In all three EFAs, we found evidence for four underlying factors: Two of these 

four factors represented measures from the EO, and the other two factors represented 

measures from the EC condition. Furthermore, the two EO and the two EC factors 

represented frontal/central (FC) and parietal/occipital (PO) electrode sites, respectively. 

These factors are referred to below as EO-FC, EO-PO, EC-FC, and EC-PO factors. To note, 

no separate factors for right and left electrodes emerged in the exploratory factor analyses. 

When factors for the two hemispheres were extracted anyway, multicollinearity resulted from 

high correlations between the right and left electrodes from the same time point (EC, EO) and 

corresponding electrode sites (e.g., frontal/central). Therefore, the separate influence of right 

and left electrodes investigated in the study by Glicksohn et al. (2009) could not be examined 

with the present data.  

As presented in more detail in the supplemental material, this pattern of results was 

rather clear for the TG task (see Table S1), while a fifth factor emerged in the PAF data 

measured before the DD (see Table S2), and a fifth and sixth in the PAF data measured 

before the TOJ task (see Table S4). The fifth factor in the measures before the DD task 

seemed to be an artifact, as it could not be assigned to any coherent cluster of electrodes (see 

details in the supplemental material). Before the TOJ task, the fifth factor referred to central 

and centro-parietal electrodes (C and CP) during EC, whereas the sixth factor referred to 

central and temporal (C, T, TP) electrodes during EO. Also, in the other two EFAs, the CP 

electrodes, as well as FT7, FT8, T7, T8, TP7, and TP8, could not be assigned unambiguously 

to a factor.  

Therefore, we excluded thirteen electrodes that could not be clearly assigned to 

frontal/central or parietal/occipital areas (CP1, CP2, CP3, CP4, CP5, CP6, CPz, TP7, TP8, 

T7, T8, FT7, and FT8) before we repeated the three EFAs. In all three EFAs, the parallel 

analysis suggested now four factors for the PAF measures before each task (see Figure 4).  
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Figure 4 

Scree plots with parallel analysis of the PAF values measured before the TG task (A), before the DD task (B), and before the TOJ task (C) 

 

Note. In each EFA, PAF measurements from 40 electrodes during the resting state with eyes closed and during the resting state with eyes open 

were submitted.  
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In all three EFAs, an EO-FC, an EO-PO, an EC-FC, and an EC-PO factor could be 

derived from the same set of electrodes (see Tables S5-S7 in the supplemental material). 

Some electrodes still had substantial secondary loadings (> .30) on another factor. Still, the 

differences between the primary and the secondary factor loadings were so large that the 

corresponding assignment to the respective factor was justified. There were only a few 

exceptions: One was the PAF measure under the Oz electrode during the EO condition before 

the DD task, which loaded similarly strongly on the EO-PO and the EC-PO factor (see Table 

S6). More critically, the PAF measures under the electrodes C3 to C6 and FC6 in the EO 

condition before the TOJ task loaded more strongly on the EO-PO factor than on the EO-FC 

factor, but the factor loadings on the EO-FC factor were also statistically significant, except 

for C4 and C5 (see Table S7). Thus, across all resting states before the three timing tasks, a 

consistent factorial PAF pattern could be obtained by means of EFA with separable factors 

for the EC and EO conditions and separable factors describing frontal/central and 

parietal/occipital PAF.  

For each of the twelve factors (four factors for the measurements before each of the 

three tasks), factor scores were extracted. Their intercorrelations and correlations with 

behavioral performance measures from the APM and the three timing tasks are presented in 

Table 2. PAF factor scores were positively and significantly correlated, with only a few 

exceptions when they were based on different electrode clusters and different resting states. 

Performance in the APM was positively associated with the EO-FC factor when measured 

before the TG task indicating that higher APM scores came along with higher PAF at 

frontal/central electrodes in the EO resting state before the TG task. For the timing tasks, only 

the index of dispersion from the TG task was positively associated with two PAF factor 

scores, namely with the EO-PO factor scores when measured prior to the DD and prior to the 

TOJ task, suggesting that higher PAF values (measured during eyes open before the DD and 

before the TOJ at parietal/occipital electrodes) were associated with better performance in the 

TG task. The significant coefficients should be interpreted cautiously because alpha inflation 

was not corrected for the number of 120 correlations in Table 2. 
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Table 2  

Pearson correlations between intelligence (APM), timing tasks (DD, TG, TOJ), and the PAF factor scores.  

Measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. APM – 
              

2. TOJ .22*               

3. TG .21* .25**              

4. DD .25** .25** .21*             

5. PAF – TOJ (EC-FC) .01 -.01 .00 -.12            

6. PAF – TOJ (EC PO) -.11 -.10 -.11 -.02 .41***           

7. PAF – TG (EC-FC) .05 .02 .02 -.05 .83*** .48***          

8. PAF – TG (EC-PO) -.01 .02 .02 .03 .40*** .84*** .52***         

9. PAF – DD (EC-FC) .05 -.07 .01 -.06 .78*** .35*** .77*** .31***        

10. PAF – DD (EC-PO) -.09 -.01 -.01 .03 .38*** .86*** .48*** .83*** .39***       

11. PAF – TOJ (EO-FC) .12 .01 .11 .02 .32*** .05 .32*** .06 .29** .07      

12. PAF – TOJ (EO-PO) .16 .01 .19* .07 .40*** .33*** .52*** .38*** .39*** .39*** .45***     

13. PAF – TG (EO-FC) .18* .12 .04 .03 .39*** .05 .35*** .10 .26** .14 .67*** .43***    

14. PAF – TG (EO-PO) .12 -.02 .16 .09 .45*** .20* .40*** .29** .35*** .28** .32*** .71*** .38***   

15. PAF – DD (EO-FC) .14 .12 .05 .01 .41*** .00 .29*** -.01 .33*** .01 .60*** .37*** .69*** .40***  

16. PAF – DD (EO-PO) .09 -.05 .25** .11 .34*** .14 .28** .11 .35*** .23** .39*** .67*** .30*** .65*** .34*** 

Note. N = 129. APM = short version of Raven's Advanced Progressive Matrices, DD = Duration discrimination task, TG = Temporal 

generalization task, TOJ = Temporal order judgment task, variable 5 to 10 represents the PAF factor scores extracted from parietal/occipital 

electrodes (PO) and frontal/central electrodes (FC) during eyes closed (EC), variable 11 to 16 represents the PAF factor scores extracted from 

PO and FC during eyes open (EO), before each timing task (DD, TG, TOJ). * p < .05, ** p < .01, *** p < .001 
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PAF model  

Given the similar factorial pattern of the PAF measures before the three timing tasks, 

the three EC-FC factors, the three EC-PO factors, the three EO-FC factors, and the three EO-

PO factors might be further reduced to four second-order factors. To test this assumption, a 

CFA was conducted with a second-order EC-FC factor ( = 0.92), a second-order EC-PO 

factor ( = 0.94), a second-order EO-FC factor ( = 0.85), and a second-order EO-PO factor 

( = 0.86) from the factor scores of the 12 PAF factors. This four-factor model, depicted in 

Figure 5, had an acceptable to good fit, SB2(48) = 82.819, p = .001, 2/df  = 1.725, CFI = 

.957, RMSEA = .075, SRMR = .045. As shown in Figure 5, all correlations between the four 

latent variables in the four-factor model were positive and statistically significant except for 

the correlation between the EC-PO and the EO-FC latent variables, r = .08, p = .473. This was 

probably the reason why a further reduction of the latent variables to a single higher-order 

PAF latent variable led to a bad model fit, SB2(50) = 99.112, p < .001, 2/df  = 1.982, CFI = 

.939, RMSEA = .087, and SRMR = .086, which was also significantly worse compared to the 

model fit of the four-factor model as indicated by a significant 2-difference test, 2(2) = 

43.160, p < .001, and by a higher AIC (AIC4factors = 3330.667; AIChierarchical = 3347.125). 
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Figure 5 

The four-factor CFA model of PAF variables measured during resting state (EC, EO) before 

three timing tasks (TOJ, TG, DD). ** p < .01, *** p < .001 

 

 

Association between intelligence, TRP, and PAF 

To investigate the interplay among intelligence, TRP, and PAF, the measurement 

models of the APM, TRP, and PAF were combined, and correlations between APM, TRP, 

and the four PAF latent variables were freely estimated. The core of the model is presented in 

Figure 6 and had a good fit, SB2(120) = 160.709, p = .008, 2/df = 1.339, CFI = .960, 

RMSEA = .051, SRMR = .050. Intelligence was significantly positively associated with TRP 

(r = .561, p = .004), indicating that higher intelligence was associated with higher TRP. 

Moreover, intelligence was also significantly positively correlated with the EO-FC latent PAF 

variable (r = .27, p = .023). However, no other latent PAF variable correlated significantly 

with intelligence. More critically, TRP was not systematically related to any of the four latent 
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PAF variables. It should be noted that neither the correlations between intelligence and latent 

PAF variables nor between TRP and latent PAF variables changed substantially when TRP or 

intelligence were excluded, respectively.  

 

Figure 6 

The core of the structural equation model with freely estimated correlations to investigate the 

interplay between the six latent variables intelligence, temporal resolution power (TRP), and 

the four latent PAF variables (PAF EC-FC, PAF EC-PO, PAF EO-FC, PAF EO-PO). * p < 

.05, ** p < .01, *** p < .001 

 

 

In a next step, a parallel mediation analysis with four mediators (PAF variables) was 

specified, which led to a good (acceptable) fit with SB2(120) = 160.709, p = .008, 2/df = 

1.339, CFI = .960, RMSEA = .051, SRMR = .050. As can be seen in the supplemental 

material, the model yielded only a significant direct and total effect from TRP on intelligence 

but no significant indirect effect mediated by a latent PAF variable. A bootstrapping 

procedure revealed that all 95% confidence intervals of the indirect effects included 0, while 

the direct and total effects remained significant. Thus, we could not obtain evidence for the 

notion that the TRP-intelligence link was mediated by PAF. 

Discussion 

The present study examined whether individual differences in PAF underlie TRP and 

its relationship to psychometric intelligence (Rammsayer & Brandler, 2004, 2007; Surwillo, 
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1966, 1968). As a confirmation of the TRP hypothesis, TRP explained 31% of the variance in 

intelligence, which was similar to previous findings (e.g., 33% in Makowski et al., 2022 or 

36% in Pahud et al., 2018). Furthermore, the PAF measures could be reduced to four factors 

per measurement time point (EC frontal/central, EC parietal/occipital, EO frontal/central, EO 

parietal/occipital) by means of exploratory factor analyses. Intelligence was positively 

associated with PAF measured at frontal/central electrodes during the EO resting state before 

the TG task. PAF measured at the parietal/occipital electrodes before the DD task and before 

the TOJ task was positively associated with the index of dispersion derived from the TG task. 

At the higher-order latent level, where the twelve PAF measures were reduced to four latent 

variables across the three tasks, intelligence was associated with PAF at frontal/central 

electrodes in the EO condition, while TRP was not related to any PAF variable. Thus, the 

present study could not confirm the assumption of individual differences in PAF underlying 

TRP and its relationship to psychometric intelligence. 

A major challenge in the present study was the selection of the type of resting state 

(EO vs. EC) and the selection of the relevant electrodes for the PAF measurement. This was 

due to a lack of guidelines or rules for these choices. Previous studies on the link between 

PAF and intelligence, as well as the link between PAF and temporal information processing 

severely differ in their electrode selection and choice of EO and/or EC resting states. Here, we 

measured PAF in EC and EO resting states and across the whole scalp before each timing 

task. To identify dissociable electrode clusters for the PAF, we used exploratory factor 

analyses and identified highly similar clusters across the three measurement time points (i.e., 

before each timing task) with a differentiation between frontal/central and parietal/occipital 

electrodes in the EO and the EC conditions, respectively. Electrodes on the border between 

these clusters (mainly from the CP line) could not be assigned unambiguously to the 

frontal/central or the parietal/occipital clusters, so they were excluded. Our results indicate 

that investigations of individual differences in PAF should differentiate between 

frontal/central and parietal/occipital electrodes and should not treat measures from EC and EO 

resting states as interchangeable. The fact that we found four highly similar PAF factors 

during the two resting states before each of the three timing tasks did not only point to the 

consistency of this pattern of results but also allowed for the extraction of higher-order latent 

variables for the further investigation of the links between PAF and psychometric intelligence 

as well as temporal information processing.  

According to Jensen's oscillation theory (1982, 2006), individuals with faster neural 

oscillations process information faster and with less variability, which should lead to better 
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performance on intelligence tests. PAF is a promising measure to probe Jensen's assumption 

since it is defined as a general measure of information processing speed (Drewes et al., 2022; 

Grandy et al., 2013; Hilger et al., 2022; Ociepka et al., 2022). In the present study, only one 

of the twelve PAF measures extracted from exploratory factor analyses was significantly but 

weakly related to psychometric intelligence. This measure referred to PAF at frontal/central 

electrodes in the EO condition before the TG task. In the parallel measures (i.e., PAF at 

frontal/central electrodes in the EO condition before the DD and before the TOJ task), the 

correlations were not statistically significant, but they were positive and not significantly 

smaller than in the EO condition before the TG task (see Table 2). It is probably a 

consequence of this pattern of results that a higher-order latent variable representing PAF at 

frontal/central electrode sites across the three EO measures was substantially and positively 

associated with psychometric intelligence when situation-specific variance was discarded 

from the higher-order latent variable (see Figure 6).  

Strikingly, our finding of a functional link between psychometric intelligence and PAF 

was limited to the frontal/central electrode sites, while the correlations between psychometric 

intelligence and PAF at parietal/occipital electrode sites during the EO resting state did not 

reach statistical significance. However, they were in the same direction and did not differ 

significantly from the correlations between intelligence and PAF at frontal/central electrodes 

during EO. Based on these results, PAF measures from frontal/central electrodes might be 

better suited to investigate the relation between PAF and psychometric intelligence compared 

to parietal/occipital electrodes, but this difference seems to be rather marginal.  

A clearer picture emerged from the differentiation between the EO and the EC resting 

states since psychometric intelligence was related to PAF during the EO but not during the 

EC resting states. The psychophysiological arousal level clearly increases, and alpha power 

decreases from closed to open eyes. This change has been interpreted as increased cortical 

activation in the EO compared to the EC resting state (Anderson & Perone, 2018; Barry et al., 

2007; Barry & De Blasio, 2017; Başar et al., 1999). Therefore, it has been suggested that the 

EC condition represents a "true" resting state, whereas PAF in the EO condition reflects task-

relevant preparatory processes or pre-task activation (Anderson & Perone, 2018, 2023; 

Angelakis, Lubar, & Stathopoulou, 2004; Angelakis, Lubar, Stathopoulou, & Kounios, 2004; 

Barry et al., 2007; Ben-Simon et al., 2008; Jann et al., 2010; Mahjoory et al., 2019). 

Proceeding from this assumption, our results indicate that the relation between PAF and 

psychometric intelligence necessitates at least a minimum of attentional activation during the 

measurement of PAF as in the EO condition. If this minimum of attentional activation is not 
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reached in an EC condition, there is no association between PAF and psychometric 

intelligence. This conclusion is consistent with several previous reports, where PAF was 

unrelated to psychometric intelligence when measured during an EC condition (Finnigan & 

Robertson, 2011; Pahor & Jaušovec, 2016; Posthuma et al., 2001). Nevertheless, it remains 

unclear why previous studies on the relation between intelligence and PAF in EO resting 

states led to mixed results, with some studies reporting a positive association (Angelakis, 

Lubar, & Stathopoulou, 2004; Grandy et al., 2013; Leno et al., 2021) and other studies not 

finding this association (Ociepka et al., 2022). A main challenge for a clear interpretation is 

the fact that it is difficult to determine what participants exactly do during the resting state. If 

the PAF depends on the level of cognitive activity in the EO resting state, results might easily 

vary with the duration of the resting state and its position in the experimental course. When 

the resting state is positioned at the beginning of the session, it might be easier to relax 

compared to resting states embedded between several cognitive tasks, as in the present study, 

where evaluative processes regarding the last task or preparatory processes regarding the next 

task might take place. This idea would be in line with the results by Angelakis, Lubar, and 

Stathopoulou (2004), where the PAF after but not before a cognitive task was related to 

psychometric intelligence. Furthermore, disconnection from cognitive activation might 

become easier with a longer duration. Thus, in long resting states prior to cognitive tasks, the 

relation between PAF and intelligence might be weaker than in short resting states 

immediately following cognitive tasks. This highly tentative explanation, however, should be 

the subject of future studies. Regarding the relationship between temporal information 

processing and PAF, the index of dispersion in the TG task was positively associated with 

PAF measures at the parietal/occipital electrodes in the EO resting states prior to the TOJ and 

the DD task. Such an association was not found for the difference limen from the DD task and 

the 75%-TOJ difference threshold. Hence, a time-specific mechanism is unlikely to account 

for the relation between PAF and the index of dispersion. In contrast to the other two tasks, 

the TG task requires (long-term) memory processes in addition to time-specific processes 

when the standard stimulus is learned at the beginning and has to be remembered throughout 

the whole experimental session (McCormack et al., 1999; Rammsayer & Brandler, 2007). 

Maybe, these time-unspecific memory processes have caused the relation between the index 

of dispersion and PAF, which would be in line with the previously established link between 

PAF and memory performance (Clark et al., 2004; Grandy et al., 2013; Klimesch et al., 1990; 

Klimesch et al., 1993; Pahor & Jaušovec, 2016). This might also explain why neither Milton 

and Pleydell-Pearce (2017) with a duration discrimination task nor Venskus and Hughes 
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(2021) with a temporal estimation task could observe a functional relation between PAF and 

temporal information processing. Another study by Glicksohn et al. (2009) applied a time 

production task in which durations also had to be recalled from memory. PAF across all used 

electrodes was not related to the produced time in this study. However, a significant portion 

of the variance in produced time was explained when right- and left-hemisphere PAF were 

separated and then simultaneously submitted to a regression analysis, which indicated a 

mutual suppression effect of the left and right PAF on the produced time. This, however, 

could not be replicated in the present study due to high multicollinearity between right and 

left PAF variables when they were artificially separated.  

Since only the index of dispersion was related to PAF but not the other timing 

measures, it was not surprising that there was also no association between PAF and TRP as a 

latent variable (see Figure 6). In other words, we found no evidence for the notion that PAF 

reflects a kind of master clock underlying the TRP latent variable (Rammsayer & Brandler, 

2007; Surwillo, 1968). Due to this lack of a systematic association between PAF and TRP, it 

was not surprising that our mediation analysis failed to indicate a mediation of PAF on the 

TRP-intelligence relationship: If PAF is unrelated to TRP, it is unlikely that it can explain the 

relation between TRP and psychometric intelligence (but see Hayes, 2018).  

In the following, some limitations of the present study have to be addressed, the first 

of which concerns the given time limit in the APM task. Previous studies have shown that a 

speeded intelligence test reflected more a measurement of working memory capacity than 

intelligence (Chuderski, 2013; Colom et al., 2015; Schubert et al., 2023). Thus, to rule out an 

effect of speededness on our results, we calculated the number of not-reached and incorrect 

items and related them to TRP. The results showed a significant negative association between 

the number of incorrect items and TRP but no relationship between the number of not-reached 

items and TRP, suggesting that the speededness of the intelligence test did not artificially 

influence its relation to TRP. The same was true for the correlations between APM and PAF 

variables. Thus, the time limit of the APM was probably generous enough to rule out a 

validity change. Another limitation arose from the PAF distribution in the present study, in 

which some subjects showed a PAF of 7 Hz, especially when measured with eyes open at 

frontal/central electrodes. This could indicate a drowsiness effect. However, when analyzing 

the changes in the frequency bands (theta, alpha, beta) between different time points (Jap et 

al., 2009), a possible drowsiness effect could not be found.  

In sum, we were able to confirm the association between TRP and psychometric 

intelligence. In addition, we found psychometric intelligence to be related to PAF in 
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frontal/central measures during the EO resting state. PAF, however, was unrelated to TRP, so 

that it could not explain the relation between psychometric intelligence and TRP as expected. 

The lacking relation between PAF and TRP does not necessarily mean that the rate of neural 

oscillations is not involved in TRP since we focused on alpha frequency and considered 

neither other frequency bands nor oscillations during cognitive activity in the present study. 

Other frequency bands, such as the gamma band, might be promising alternative candidates 

for the neural oscillations assumed to underlie psychometric intelligence and TRP. This might 

be plausible given the (to date relatively sparse) evidence for a functional relation between 

gamma activity and intelligence (Jaušovec & Jaušovec, 2005; Keizer et al., 2010; Stankov et 

al., 2006) and the involvement of gamma activity in temporal information processing 

(Kononowicz & Penney, 2016). An increasing number of studies also emphasize the role of 

cross-frequency couplings for the understanding of intelligence (for review, see Chuderski, 

2016), as well as temporal information processing (for review, see van Wassenhove et al., 

2019). Thus, the robust relationship between psychometric intelligence and TRP might not be 

explained by PAF but, nevertheless, provides a good basis for the investigation of the 

psychophysiological underpinning of psychometric intelligence. 
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Abstract 

The temporal resolution power (TRP) hypothesis states that higher temporal acuity of the 

brain leads to better coordinated mental operations and, in turn, to better performance on tests 

of psychometric intelligence. Here, we examined this idea and concretized the vague 

construct “coordination of mental operations” through working memory (WM) updating. In 

228 participants (age range: 18 to 30 years), TRP as derived from three timing tasks was 

significantly related to psychometric intelligence. Furthermore, WM updating was measured 

by Stankov’s swaps task and depicted as a latent variable with increasing factor loadings to 

represent the increasing number of WM updates in different task conditions. WM updating 

correlated significantly with psychometric intelligence. In a latent mediation analysis, TRP 

and WM updating were still directly related to psychometric intelligence. Although the TRP-

intelligence link did not substantially decrease in this model, the indirect path from TRP via 

WM updating to intelligence was statistically significant. This result suggests that higher TRP 

leads to temporally more precise mental representations in WM. Thereby, the present study 

provides a first answer to the question of how higher TRP translates into better performance 

and, eventually, to higher intelligence. Alternative views on the results are critically 

discussed. 
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1. Introduction 

The temporal resolution power (TRP) hypothesis holds that individual differences in 

psychometric intelligence are caused by individual differences in timing sensitivity and 

temporal acuity of the brain (Rammsayer & Brandler, 2007). Studies on the TRP hypothesis 

used different timing tasks, where small temporal differences between intervals, deviations 

from a regular rhythm, or the temporal order of events had to be perceived correctly 

(Rammsayer & Brandler, 2004). Consistently, a common TRP factor could be extracted from 

these heterogeneous timing tasks, which was associated with psychometric intelligence 

(Haldemann et al., 2012; Helmbold et al., 2007; Jastrzębski et al., 2021; Pahud et al., 2018; 

Rammsayer & Brandler, 2007; Troche & Rammsayer, 2009b).  

As an explanation of this association, Rammsayer and Brandler (2007) put forward the 

idea that higher TRP leads to faster and better coordinated information processing. The 

assumption that better TRP leads to faster information processing was supported by studies 

which found that TRP and speed of information processing (SIP) were closely related and, 

moreover, that TRP mediated the relation between SIP and psychometric intelligence 

(Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007). The second 

assumption that higher TRP leads to better temporal coordination of mental operations was 

investigated by Troche and Rammsayer (2009). It was supposed that better coordination of 

mental operations should be especially obvious when information processing is subject to 

limited resources, as it is the case for working memory (WM) capacity. Using a latent 

variable approach, Troche and Rammsayer (2009) found the relationship between TRP and 

two aspects of psychometric intelligence (Processing Capacity and Processing Speed) to be 

completely mediated by WM capacity. This result supported the assumption that higher TRP 

leads to better temporal coordination of mental operations and, thus, to larger WM capacity, 

which in turn leads to better performance on intelligence tests. Most previously, Jastrzębski et 

al. (2021) replicated this result but interpreted it in another conceptual frame, which we will 

take up in the discussion section. 

The interpretation of these results is complicated by the fact that WM capacity was 

very closely related to reasoning (or fluid intelligence) in both previous studies. Troche and 

Rammsayer (2009) reported regression coefficients of b=.92 for the WM capacity–Processing 

Capacity and b=.71 for the WM capacity–Processing Speed relationship. Similarly, in the two 

studies by Jastrzębski et al. (2021), the correlations between fluid intelligence and WM 

capacity were r=.85 and r=.88, respectively. With such a close relationship between two 

variables A and B, however, it is almost inevitable that the relationship between one of these 
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two variables (e.g., A) and a third variable C (i.e., TRP), is more or less completely mediated 

by B. Such a mediating effect is hardly informative for the relation between A and C but just 

a reflection of almost virtually identical constructs A and B. 

At least in part, this close relationship between WM capacity and intelligence might be 

due to the rather broad conceptualization of WM capacity as a latent variable derived from 

three (Troche & Rammsayer, 2009b) or even five WM tasks (Jastrzębski et al., 2021). Such a 

broad latent variable is highly representative of a multifaceted construct like WM capacity. At 

the same time, however, a specific interpretation of the latent variable "WM capacity" is 

hampered because limits of (short-term) memory might be as much the source of individual 

differences in WM capacity as the coordination of mental operations.  

The goal of the present study was to examine how individual differences in TRP 

translate into individual differences in intelligence. Instead of a broad conceptualization of 

WM capacity, we focused on WM updating as a more specific process, which has been 

repeatedly shown to play a crucial role for understanding the WM-intelligence relationship 

(e.g., Friedman et al., 2006; Wilhelm et al., 2013). For this purpose, we employed Stankov's 

swaps task (Stankov & Crawford, 1993), where the number of required WM updates is 

systematically increased. More specifically, in this task, three letters are presented on a 

screen, and the participants' task is to swap, for example, the first and the third letter and to 

fill in the result. If the number of swaps is systematically increased, WM has to be updated 

not only once but twice or even three times, respectively. Using fixed-links modeling 

(Schweizer, 2008), we aimed to depict the increasing number of WM updates as a latent 

variable. With fixed-links modeling, individual differences, which change with the 

experimental manipulation, can be separated from more general individual differences in task 

performance, which do not vary between task conditions. For the present purpose, this allows 

for representing individual differences in WM updating and, concurrently, controlling for 

other individual differences unrelated to WM updating. The processing of the swaps task can 

be described in terms of Oberauer’s (2002) WM model with each swap requiring rapid 

updating of temporary bindings (Bateman, 2020). From the perspective of the TRP 

hypothesis, higher TRP should lead to temporally more precise bindings (and unbindings) in 

WM and, thus, to less errors in WM updating, which in turn should be related to higher 

intelligence. In other words, we assumed that WM updating would (partially) mediate the 

relationship between TRP and psychometric intelligence and, thereby, contribute to an 

explanation of how higher TRP translates into higher intelligence. 
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2. Method 

Participants. Data of the same 118 women and 110 men as in the study by Pahud et al. 

(2018) were analyzed. The sample ranged from 18 to 30 years (M=22.0; SD=2.9) in age, and 

104 participants were without academic education. Participants were paid 45 CHF; 

undergraduates in psychology could choose between money or course credits. The study 

protocol was approved by the local ethics committee of the Faculty of Human Sciences 

(University of Bern). Informed written consent was given by all participants before their 

participation. 

Measurement of intelligence. As three major facets of intelligence, Processing 

Capacity, Processing Speed, and Memory were each assessed by six subtests from the Berlin 

Intelligence Structure test (Jäger et al., 1997). Each set of six subtests consisted of two 

numerical, two verbal, and two figural subtests. Performance scores on each subtest were z 

standardized and averaged for each facet. A g factor of psychometric intelligence was 

extracted from the three resulting scores by means of a confirmatory factor analysis (CFA). 

For more details see Pahud et al. (2018). 

Duration discrimination (DD) task. This task consisted of two series of 32 trials to 

estimate the 25%- and the 75%-difference threshold, respectively. Each trial contained two 

empty auditory intervals separated by a 900-ms interstimulus interval. Onset and offset of an 

interval were marked by 3-ms clicks at an intensity of 70 dB via headphones. Duration of the 

standard interval was 50 ms. Duration of the comparison intervals varied according to 

Kaernbach's (1991) adaptive weighted-up-down procedure to estimate the duration of the 

comparison interval, which was perceived correctly as shorter (in the 25% series) or longer 

(in the 75% series) with a probability of 75%. Order of standard and comparison interval was 

pseudo-randomized. After each trial, participants indicated whether the first or the second 

interval was longer by pressing one of two designated keys followed by visual correctness 

feedback. The difference limen (DL; Luce & Galanter, 1963) was computed from the 25%- 

and the 75%- difference thresholds (determined from the last 20 trials of the two series). To 

yield positive correlations for a positive relationship between task performance and 

intelligence, the DL (and the 75%-TOJ threshold, see below) was inverted by multiplying it 

with -1.00.  

Temporal-order judgment (TOJ) task. The TOJ task contained two series of 32 trials 

each. On each trial, a visual stimulus (presented via a red LED) and an auditory stimulus 

(white-noise burst presented via headphones with an intensity of 70dB) were presented. In 

one series, the onset of the tone preceded the onset of the light, while the onset of the light 
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preceded the onset of the tone in the other series. The initial stimulus onset asynchrony (SOA) 

was 70ms in both series and varied in the following trials according to the adaptive weighted-

up-down procedure (Kaernbach, 1991) to converge on a level of 75% correct responses.  

Stimuli were terminated 200 ms after the onset of the second stimulus. Trials of the two series 

were interleaved. Participants indicated whether the light or the tone was presented first by 

pressing one of two designated keys. The response was followed by visual correctness 

feedback. Across the last 20 trials of each series, the mean SOA was calculated and then 

averaged across the two series to represent the 75%-TOJ threshold. 

Temporal generalization (TG) task. In the initial learning phase, participants were 

presented five times with a 75-ms standard tone (white-noise burst at an intensity of 70 dB), 

whose duration should be memorized. The experimental phase consisted of 64 trials, with a 

tone, which was the standard or a non-standard tone with a duration of 42, 53, 64, 86, 97, or 

108 ms. After each tone, participants indicated whether the presented tone was the standard 

tone or not by pressing one of two designated keys. The response was followed by visual 

correctness feedback. The 64 trials were divided into eight blocks containing two standard 

tones and one of each non-standard tone, respectively. As dependent variable, the index of 

response dispersion (IRD; McCormack et al., 1999) was calculated.  

Swaps task. The swaps task, adapted from Stankov and Crawford (1993), consisted of 

three conditions. Each condition contained 12 trials. The 36 trials were presented in pseudo-

randomized order. In each trial, the letters J, K, and L were presented in pseudo-random order 

in the center of the computer monitor. At the top of the monitor, one, two, or three instruction 

lines were presented. The logic of each instruction line was "Swap x and y", with x, y Î 

{1,2,3} and x ¹ y (see Figure 1). In the 1-swap condition, only one instruction was given to 

swap two of the three letters. Participants typed in the resulting order of the three letters via a 

computer keyboard. In the 2-swaps condition, the interim result of the first swap had to be 

kept in mind so that the second instruction could be followed on this interim result. In the 3-

swaps condition, a third swap had to be carried out on the second interim result. As dependent 

variables, the error rate per condition was determined and inverted to an accuracy measure (1 

– error rate) so that higher values indicated better performance.  
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Data analysis. All analyses were conducted with R-Studio (RStudio Team, 2021) 

using the following packages: lavaan (Rosseel, 2012), semTools (Jorgensen et al., 2022), 

psych (Revelle, 2022), corrplot (Wei & Simko, 2011), plyr (Wickham, 2011), and nortest 

(Gross & Ligges, 2015). Correlations between the dependent variables of the timing tasks, the 

accuracy in the swaps task, and the three aspects of intelligence were computed. From the 

three aspects of intelligence and the three timing tasks, a g factor of psychometric intelligence 

and a TRP factor were extracted by means of CFA. Accuracy measures from the swaps task 

were analyzed by means of fixed-links modeling (Schweizer, 2008) to extract more than one 

latent variable from the same set of manifest variables. For the swaps task, individual 

differences might not only exist in the coordination of WM updates but also in the encoding 

of sensory input, slips in response entering, fatigue, motivation, etc. These individual 

differences should not vary between the three task conditions so that they can be represented 

by a latent variable with the same factor loadings on all three manifest variables. On the other 

hand, individual differences in handling the increasing number of WM updates were depicted 

by a second latent variable with linearly increasing factor loadings {1;2;3} on the hit rates of 

the 1-, 2-, and 3-swaps conditions. The correlation between the two latent variables was set to 

zero for a clear separation. 

In the final step, the measurement models of g, TRP, and the swaps task were 

combined in a latent mediation model to examine whether and to what extent WM updating 

mediates the relationship between TRP and psychometric intelligence. All relationships were 

tested one-tailed due to explicit expectations about their directions. The significance of 

indirect effects in this model was tested by means of the bootstrap sampling method (Hayes, 

2018) with k=5000 bootstrap samples and a 90% confidence interval (CI). To correct for bias 

and skewness, the bias-corrected and accelerated bootstrap (BCa)-CI was computed 

(Hesterberg, 2011).  
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Model/data fit of SEMs was evaluated as good (or acceptable) as follows: a 

nonsignificant c2-value, comparative fit index (CFI) ≥.95 (≥.90), root mean square error of 

approximation (RMSEA) ≤.05 (≤.08), and standardized root mean squared residual (SRMR) 

value ≤.08 (≤.10) (Schweizer, 2010). Hancock’s H coefficient (Hancock & Mueller, 2001) 

was computed as construct reliability of latent variables. 

3. Results 

Since the BIS subtest scores were z standardized before being averaged, the means of 

the measures of “Processing Speed”, “Processing Capacity”, and “Memory” were close to 0, 

and their standard deviation close to 1. More details on the raw scores of the 18 subtests are 

provided by Pahud et al. (2018). Descriptive statistics of the dependent variables from the 

timing tasks and the swaps task are presented in Table 1.  

Table 1. Descriptive statistics of measures from the timing tasks and the swaps task. 

 Mean SD Min Max Skewness Kurtosis 

Duration Discrimination [DL in ms] 21 9 6 52 0.76 0.27 

TG [IRD] 0.33 0.09 0.14 0.58 0.28 -0.30 

TOJ [mean 75%-TOJ threshold in ms] 97 30 25 179 0.31 -0.41 

1-swap condition [accuracy] 0.93 0.07 .57 1.00 -1.27 2.14 

2-swaps condition [accuracy] 0.81 0.14 .21 1.00 -1.13 1.50 

3-swaps condition [accuracy] 0.75 0.16 .14 1.00 -0.78 0.61 

       

 A full correlation matrix is presented in Table 2 in the supplementary material. 

Correlations between the three aspects of psychometric intelligence as well as correlations 

between performances on the three timing tasks were statistically significant. Thus, a g factor 

of psychometric intelligence and a factor representing TRP could be extracted. Their 

reliabilities were H=.79 and H=.39, respectively. When combined in an SEM, the regression 

from psychometric g on TRP was statistically significant, b=.604, p=.002, and the model 

showed a good fit, χ2(8)=3.034, p=.932, CFI=1.000, RMSEA=.000, SRMR=.015. 

Correlations between accuracy measures from the three swaps task conditions were 

also statistically significant ranging from r=.18 to r=.45. Computing the fixed-links 
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measurement model explained in the method section revealed that the variance parameter of 

the latent variable with constant factor loadings was not significant (and even negative) 

indicating that individuals differed primarily in the processes, which were experimentally 

manipulated among the task conditions. Therefore, we omitted the latent variable with 

constant factor loadings in a next step, which led to an acceptable data description, 

χ2(2)=4.706, p=.095, CFI=.936, RMSEA=.077, SRMR=.021. The variance parameter of the 

latent variable was statistically significant, jincreasing=0.143, z=6.548, p<.001, and Hancock’s 

reliability coefficient was H=.63. 

We also tested whether this fixed-links model described the data better than a model 

with factor loadings restricted to be equal {1;1;1}. The latter model led to a poor data 

description, χ2(2)=23.316, p<.001, CFI=.499, RMSEA=.216, SRMR=.127. Furthermore, a 

congeneric model could not be meaningfully compared to the fixed-links model with 

increasing factor loadings. However, in the congeneric model the factor loadings also 

increased monotonically from the 1- to the 3-swaps condition {1;3.86;5.73}. Thus, it seems 

appropriate to proceed with the fixed-links measurement model, where one latent variable 

was extracted with linearly increasing factor loadings referring to the increasing number of 

WM updates.  

When combined with the measurement model of psychometric intelligence, the 

regression coefficient of the WM updating variable on psychometric g was statistically 

significant, b=.601, p<.001. The model showed a good fit, χ2(10)=14.259, p=.162, CFI=.985, 

RMSEA=.043, SRMR=.057. 

In a final step, we combined all three measurement models to examine whether WM 

updating would mediate the TRP-intelligence relationship. The resulting mediation model 

described the data well, χ2(26)=27.595, p=.379, CFI=.995, RMSEA=.016, SRMR=.052. All 

three regression coefficients were statistically significant as can be taken from Figure 2. The 

same was true for the indirect effect from TRP via WM updating to g, bTRP-WMup-g=.195, p<.01  
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To further evaluate the statistical significance of the direct and indirect effects, 

bootstrapped (Bca) 90%-CIs were computed. The unstandardized regression coefficients and 

their confidence intervals were bTRP-WMupdating=.424 [.203,.829], bWMupdating-g=.515 [.172,.803], 

and bTRP-g =.449 [.125,1.069]. The unstandardized indirect effect was .218 with a confidence 

interval ranging from .108 to .498. Thus, the CI did not include zero corroborating the 

statistical significance of the indirect effect and the conclusion that the TRP-g relationship 

was partially mediated by WM updating.  

4. Discussion 

The present study examined the assumption that the relationship between TRP and 

psychometric intelligence was mediated by WM updating. In contrast to Stankov and 

Schweizer (2000), we could not extract a latent variable representing general individual 

differences in the swaps task (regardless of the number of WM updates). However, the 

extracted latent variable reflected the increasing individual differences with the increasing 

number of WM updates by increasing factor loadings from the 1- to the 3-swaps condition. 

This latent variable was related to both TRP and psychometric intelligence. The decrease of 

the direct path from TRP to intelligence (from .604 to .402), when WM updating was added 

as potential mediator, was not statistically significant. However, the indirect path from TRP 

via WM updating on intelligence was significant indicating that WM updating partially 

mediated the relationship between TRP and psychometric intelligence. With this finding, the 

question of how higher TRP translates into higher intelligence can be tentatively answered as 

follows: Higher TRP leads to less error-prone WM updating, which might be explained by 

temporally more precise bindings (and unbindings) of the three letters to their (changing) 

positions. Making fewer updating errors, in turn, facilitates better performance in intelligence 
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tests, when for example different possible solutions for a given test item are tried, discarded, 

or chosen.   

It should be noted that the present interpretation of the results is guided by the 

framework of the TRP hypothesis. Certainly, alternative views on the present results are 

conceivable. One stems from research on the relationship between more general sensory 

discrimination ability and psychometric intelligence, which was previously found to be 

completely explained by WM capacity (Jastrzębski et al., 2021; Troche et al., 2014; 

Tsukahara et al., 2020). Therefore, it has been argued that sensory acuity per se is unrelated to 

intelligence. Rather, sensory discrimination tasks would require WM-related processes when 

a first stimulus is temporarily stored and compared with a second stimulus regarding, for 

example, their pitch or duration. Hence, the sensory aspects of sensory discrimination (related 

specifically to the auditory or visual system) might be less important for the relation to 

intelligence than more central aspects such as the accuracy of the stimuli’s mental 

representations in an amodal WM. Consequently, Jastrzębski et al. (2021), who found WM 

capacity to explain the complete relationship between intelligence and temporal as well as 

non-temporal sensory discrimination, concluded that WM capacity is the basic mechanism 

shared by TRP and psychometric g so that TRP plays “no explanatory role for intelligence” 

(p. 1289). The main difference between this interpretation and the interpretation based on the 

TRP hypothesis is the assumed causal direction of the effects. The TRP hypothesis assumes 

that higher TRP leads to higher WM capacity and, in turn, to higher psychometric intelligence 

(Troche & Rammsayer, 2009b). Jastrzębski et al.’s (2021) WM capacity approach, on the 

contrary, states that higher WM capacity leads to better performance on TRP tasks and, 

concurrently, to higher psychometric intelligence. With latent regression models, it is 

difficult, if not impossible, to decide on the causal direction of the effects. In the present 

study, changing the direction of the regression from TRP to the latent variable with increasing 

factor loadings from the swaps task would only marginally change the regression coefficients 

and the model/data fit (but see Jastrzębski et al., 2021, for another result on their data).  

Most importantly, in previous studies, WM capacity and psychometric intelligence 

were so closely related to each other that they were almost interchangeable (Jastrzębski et al., 

2021; Troche & Rammsayer, 2009b; Troche et al., 2014; Tsukahara et al., 2020). 

Consequently, it was hardly possible for a third variable, such as TRP, to explain unique 

portions of variance in psychometric intelligence independently from WM capacity. This also 

complicates deductions about specific processes and their interplay to explain individual 

differences in psychometric intelligence. From this point of view, the focus on a more specific 
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process such as WM updating, which has been discussed to be highly critical for WM 

capacity limitations (Oberauer, 2018), is better suited to investigate the mechanisms 

underlying the relationship between TRP and psychometric intelligence. This is, the more 

specific latent variable with increasing factor loadings extracted from the three conditions of 

the swaps task can be interpreted according to its reference to the differences between the task 

conditions, i.e., the number of WM updates. The more WM updates are required, the closer 

the relation to TRP. The processing of short durations, as used in the timing tasks of the 

present study, has been shown to be sensory-perceptual in nature and not cognitively 

mediated (Ivry & Spencer, 2004; Lewis & Miall, 2003; Rammsayer & Lima, 1991). This 

challenges the assumption that the relationship between TRP and g can be explained in terms 

of common WM demands. Rather, the results of our mediation analysis suggest that better 

temporal acuity facilitates WM updating as an aspect of general information processing. This 

conclusion is consistent with the general notion that higher TRP leads to better information 

processing (cf., Burle & Bonnet, 1997, 1999; Rammsayer & Brandler, 2007; Surwillo, 1968). 

But again, considering the correlational nature of the present analyses, this interpretation 

should be viewed with caution. 

Finally, it should be noted that most of the TRP–g link was not mediated by WM 

updating. As mentioned in the introduction, a second path from TRP to g can be seen in SIP. 

Whether the two paths from TRP to g (via SIP and via WM updating) are independent or (as 

we believe) overlap, will be an important next step in future studies. Furthermore, with only 

one task assessing WM updating, the operationalization might have been rather narrow. We 

have described the advantages of this procedure above. However, future research should use 

more than only one task to extract latent variables representing WM updating and to combine 

them to a higher-order latent variable. This would elucidate whether the present results can be 

generalized to other WM updating tasks and whether a broader operationalization of WM 

updating will show a more pronounced mediation effect on the relationship between TRP and 

psychometric intelligence. Further investigations are necessary to exclude possible 

confounding variables, to pinpoint the specific aspects of WM updating (Kessler & Meiran, 

2008) involved in the mediation, and to determine convergent validity of the latent variable 

representing WM updating. However, the present study succeeded in showing a plausible way 

of how individual differences in TRP translate into individual differences in intelligence by 

facilitating WM updating.  
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4.4 Additional Analysis: Examining the links between duration discrimination 

performance, gamma and theta coherence with regard to differences in psychometric 

intelligence 

4.4.1 Introduction  

According to the TRP hypothesis, it has been repeatedly shown that individuals who 

are more accurate in their temporal accuracy and sensitivity also process information faster 

(Helmbold et al., 2007; Pahud et al., 2018), coordinate their mental operations better (Troche 

& Rammsayer, 2009b) and, in turn, also have higher psychometric intelligence scores 

(Rammsayer & Brandler, 2007). These differences in TRP might be explained by an internal 

timing mechanism referred to as an internal master clock, which was proposed to be reflected 

in the rate of neural oscillations (Rammsayer & Brandler, 2002, 2007; Surwillo, 1968). As a 

consequence, it can be assumed that the faster the oscillation rate, the higher the temporal 

resolution of this master clock. This indicates that based on the TRP hypothesis and the 

assumption of this internal master clock, the relationship between psychometric intelligence 

and TRP would be due to sensory processing differences.  

In contrast to this view, other studies argued that the relationship between 

psychometric intelligence and a bottom-up process such as TRP, or sensory discrimination 

ability cannot be attributed to differences in sensory acuity alone. More specifically, they 

could provide evidence that the association of TRP, or sensory discrimination ability with 

psychometric intelligence could be completely explained by WMC differences (Jastrzębski et 

al., 2021; Troche et al., 2014; Tsukahara et al., 2020). This indicates that individuals with 

higher TRP, or more accurate sensory discrimination ability, showed higher psychometric 

intelligence because a higher WMC is also needed during sensory task processing. This can 

be seen in a sensory discrimination task, such as an auditory duration discrimination task 

(DD), in which participants must first encode the duration of a presented stimulus (e.g., a 

standard tone of 1000 ms), then actively retain the information in their head while encoding a 

second stimulus (e.g., a comparison tone of 750 ms) and then compare the durations of the 

two stimuli. As these processes rely heavily on working memory, an individual with higher 

capacity will be able to store, retain, and process the different tone lengths more accurately, 

which in turn will lead to more precise discriminations (Jastrzębski et al., 2021; Mashburn et 

al., 2020; Tsukahara et al., 2020). However, the quality with which these processes can occur 

should also depend largely on how much attention is focused on the task-relevant information 

while task-irrelevant information is tuned out (Tsukahara et al., 2020). It was therefore argued 

that these processes should rely on attention control, a top-down process required to organize 
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and modulate information processing in order to behave in a goal-oriented manner (Burgoyne 

et al., 2023; Kane & Engle, 2003; Mashburn et al., 2020). This process has been shown to be 

closely linked to WMC (Shipstead et al., 2014; Unsworth et al., 2021; Unsworth & Spillers, 

2010) and psychometric intelligence while even explaining the relationship between WMC 

and psychometric intelligence (Burgoyne et al., 2020; Heitz et al., 2005; Kovacs & Conway, 

2016; Mashburn et al., 2020). In this context, it has been argued that attention control in 

working memory is important for retaining relevant information and suppressing irrelevant 

information. As this facilitates information processing, it may, in turn, explain why 

individuals with higher attention control also exhibit a higher level of psychometric 

intelligence. Based on this, a more recent study investigated the extent to which attention 

control can explain the relationship between sensory discrimination ability and psychometric 

intelligence. It could show that it fully explains their relationship (Tsukahara et al., 2020). 

From this perspective, it might also be interesting to see to what extent attention control can 

explain the relationship between TRP and psychometric intelligence. However, no study has 

investigated this to date. It is also not known how TRP is related to attention control. What is 

known, however, is based on single temporal information processing tasks such as duration 

discrimination tasks or temporal generalization tasks that are also used when deriving TRP 

(Rammsayer & Brandler, 2004, 2007). In terms of these tasks, it was shown that how much 

attention was directed to the task had an impact on temporal accuracy (Bausenhart et al., 

2016; Broadway & Engle, 2011; Ciria et al., 2019; Dyjas et al., 2012; Ogden, 2014; van Rijn, 

2016). These findings were interpreted in terms of the further developments of the 

pacemaker-accumulator models, for example, the Attentional Gate Model (Block & Zakay, 

1997; Zakay & Block, 1996). Based on this model, if more attention is directed during the 

encoding phase, more pulses or ticks from the internal clock or pacemaker can be processed 

in a so-called accumulator, which enables more precise and, therefore, more accurate 

processing of the stimulus duration (Block & Zakay, 1997; Grondin, 2010; van Wassenhove 

et al., 2019; Zakay & Block, 1996). However, the extent to which this attention control is also 

important in explaining why individuals based on the rate of an internal master clock differ in 

TRP and thus show higher psychometric intelligence remains to be seen. 

For the investigation of possible individual differences in ongoing cognitive processes 

during a task, e.g., a temporal discrimination task, the analysis of frequency bands as recorded 

in the EEG can be used (Başar et al., 1999; Cohen, 2014). As mentioned before, differences in 

TRP are explained by an internal master clock that should be reflected in the rate of neural 

oscillations. Based on this, we investigated in Study 2 (Makowski & Troche, 2023) to which 
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this master clock can be reflected by a frequency measure called peak alpha frequency (PAF). 

It could be shown that participants showed pronounced differences (Grandy et al., 2013; 

Hilger et al., 2022). Contrary to expectations, however, no significant association was found 

between TRP and PAF. A possible explanation might lie that, as argued previously, most 

cognitive processes are not only associated with a specific area of the brain but involve the 

activation of different areas (Bowyer, 2016; Decker et al., 2017). In this turn, a recent meta-

analysis based on fMRI findings could provide evidence that during temporal information 

processing also several regions were activated (Nani et al., 2019) concerning the detection of 

the internal clock as the sensory process of time processing. Also, regarding psychometric 

intelligence, it has been shown that individuals differ not only in the activation of one area 

within a frequency band but also in the patterns of activation over different electrodes (Hilger 

et al., 2022). Thus, focusing only on the power or frequency at specific electrodes within one 

frequency band might be too limited. Although we implemented all 64 electrodes in Study 2, 

we did not focus on how the activity between these electrodes was related. In order to show 

the relations or synchronizations between electrodes, a coherence analysis can be conducted 

(Fries, 2005, 2015). This analysis can be quantified with the magnitude-squared coherence in 

which the phase information is weighted by the magnitude information within a specific 

frequency band (Malekpour et al., 2018). This results in a coherence value between 0 and 1 

for each electrode pair, with 1 indicating a high similarity in the measured signal in two 

electrodes and 0 indicating no similarity.  

Previous studies could show that individual differences in sensory processing can be 

studied on the psychophysiological level by means of gamma coherence (Karakaş et al., 2001; 

Strüber & Herrmann, 2022; von Stein & Sarntheim, 2000). Due to the different electrodes 

used and the given sensory tasks, it cannot be concluded to what extent there were modality-

specific or modality-independent activations of sensory areas. Furthermore, it should be noted 

that other studies assume that gamma coherence activity can also be interpreted as a top-down 

mechanism, which is again taken up in the discussion (Bonnefond & Jensen, 2015; Leicht et 

al., 2021). Differences in terms of gamma coherence were also investigated in terms of 

psychometric intelligence. It could be shown that gamma coherence (25-60 Hz) during resting 

state with eyes closed over the whole scalp (Lee et al., 2012) and gamma coherence (31-49 

Hz) between occipital and parietal electrodes when measured during a cognitive task were 

positively related to psychometric intelligence (Jaušovec & Jaušovec, 2005). However, as 

these two studies also differ in their measurements and the electrode pairs found, no general 

statements can be made. Nevertheless, these findings corroborate previous behavioral studies 
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(Acton & Schroeder, 2001; Deary, 1994; Helmbold et al., 2006; Jastrzębski et al., 2021; 

Troche et al., 2014; Troche & Rammsayer, 2009a; Tsukahara et al., 2020) by showing that 

individuals with higher psychometric intelligence also exhibit a more pronounced sensory 

process, as indicated by a higher gamma coherence. In terms of temporal information 

processing, only one study investigated ongoing gamma coherence during temporal 

information processing but did investigate not performance-related differences (Hoodgar et 

al., 2022). This study showed during the encoding of a shorter stimulus (500 ms) gamma 

coherence between left-sided temporal and central and right-sided frontal and temporoparietal 

electrode sites. Gamma coherence was also present during the encoding of a longer stimulus 

(1000 ms) but between frontal and central, right frontal and left temporal, left-sided frontal, 

and between left-sided frontal and parietal electrode sites. To the best of our knowledge, no 

study to date has investigated the performance-related differences in gamma coherence that 

can be related to temporal information processing performance.  

In contrast to the notion of an internal master clock that might explain the relationship 

between TRP and psychometric intelligence, it might also be the case that the relationship 

between TRP and psychometric is due to common attention control processes (Tsukahara et 

al., 2020). In order to investigate individual differences in attention control on the 

psychophysiological level, previous studies have focused on the theta coherence measured 

between frontal and parietal electrodes (Basharpoor et al., 2021; Eschmann et al., 2020; 

Karakaş, 2020; Myers et al., 2021; Nurislamova et al., 2019; Sauseng et al., 2005, 2006, 

2007; von Stein & Sarntheim, 2000). Within these studies, it was shown that theta coherence 

increased when more attention control was needed. In line with this and previous behavioral 

findings, it could also be shown that psychometric intelligence was positively associated with 

frontal-parietal theta coherence measured during resting state (Anokhin et al., 1999; 

Granados-Ramos et al., 2019; Jaušovec & Jaušovec, 2000; Lee et al., 2012; Razoumnikova, 

2003; Thatcher et al., 2005) as well as during task processing (Anokhin et al., 1999; Okuhata 

et al., 2009; Pahor & Jaušovec, 2016; Weiss et al., 2000). These findings align with previous 

behavioral findings by showing that individuals with higher psychometric intelligence exhibit 

more attention control, which might facilitate their information processing (Burgoyne et al., 

2023; Engle et al., 1999; Heitz et al., 2005; Mashburn et al., 2020). Regarding temporal 

information processing, only one study to date investigated the theta coherence during 

temporal information processing (Hoodgar et al., 2022). However, as for gamma coherence, 

this study was also limited to a task approach. They observed theta coherence between frontal 

and temporal electrodes during the encoding of the shorter interval (500 ms), and between 
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frontal and temporal, central and temporal, central and occipital, and between temporal and 

occipital electrodes during the encoding of a longer duration (1000 ms). Thus, in terms of 

temporal information processing, little is known about how the theta and gamma coherence 

might be related to performance differences. Only some studies that are based on power 

differences in the theta frequency band indicate that an increased theta power is associated 

with higher performance in temporal information processing, as in line with previous 

behavioral findings (Gu et al., 2015; Hsieh et al., 2011; Martins e Silva et al., 2022; Roberts et 

al., 2013; but also see Kononowicz & Rijn, 2015).  

Considering these previous findings, this study aimed to provide initial indications of 

the extent to which individual differences in temporal accuracy can be attributed to 

differences in sensory processing or/and attention control involved during the encoding of a 

temporal information processing task. It was further aimed to examine how these associations 

differ between individuals with higher and lower intelligence. This extreme group analysis 

was based on previous studies providing compelling evidence on the behavioral and 

psychophysiological levels in terms of differences in sensory processing (Jastrzębski et al., 

2021; Troche et al., 2014; Troche & Rammsayer, 2009a; Tsukahara et al., 2020) and attention 

control (Burgoyne et al., 2023; Engle et al., 1999; Heitz et al., 2005; Mashburn et al., 2020). 

In addition, the present study’s analysis was based on the TRP hypothesis, and the results 

were intended as a first step toward examining the relationship between TRP and 

psychometric intelligence in more detail. Therefore, the analyses of the present studies 

focused on one of the TRP tasks, namely the temporal discrimination task with a standard 

interval of 1000 ms. With this in mind, four different hypotheses were investigated, with two 

of them focusing on differences in sensory processing, as measured with the temporal-parietal 

gamma coherence, and two other focusing on differences in attention control, as measured 

with frontal-parietal theta coherence. To this end, a positive relationship was expected 

between temporal accuracy and sensory processing (temporal-parietal gamma coherence) as 

well as between temporal accuracy and attention control (frontal-parietal theta coherence). 

Based on the second aim in terms of group differences, an interaction effect was expected for 

both relationships with psychometric intelligence. In this turn, it was expected that these 

relationships would be more pronounced in individuals with higher psychometric intelligence.  

4.4.2 Methods 

4.4.2.1 Sample. The sample consisted of 100 healthy and right-handed participants 

(Mage = 22.8, SDage = 2.9). The number of participants was selected from the sample of Study 

2 (Makowski & Troche, 2023), and 27 additionally recruited participants. From this sample of 
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N = 156, 100 subjects were selected based on their sum score in the Raven’s Advanced 

Matrices Test (APM). For this purpose, a median split of the APM score was conducted for 

the sample of N = 156. It resulted in two groups, one with higher and one with lower 

intelligence scores. From these groups, the 50 participants with the highest intelligence scores 

and 50 participants with the lowest intelligence scores were selected, ultimately leading to the 

final sample of N = 100. The groups differed significantly in their APM score (see Table 2). 

In Table 1, the sample size, average age, standard deviation of age, minimum and maximum 

age, and distribution by gender and educational level are displayed. Both groups were 

balanced in terms of gender and age distribution. Only minimal differences were found 

concerning the highest level of education.  

 

Table 1 

Description of the sample in terms of age, gender, and highest level of education attained 

Group N Mage SDage Minage Maxage 
Gender 

Highest education 

level 

m (N) w (N) VS (N) HET (N) 

low APM 50 22.7 2.7 18 29 15 35 7 43 

high APM 50 22.9 3.1 19 31 15 35 1 49 

Note. M = mean, SD = standard deviation, Min = minimal value, Max = maximal value, m = 

men, w = women. VS = vocational school as highest educational training, HET = higher 

educational training. Higher educational training implies all academic training, including and 

higher than higher high school (Matura) in Switzerland. 

 

4.4.2.2 Procedure. The procedure details are equivalent to the ones described in 

Makowski and Troche (2023). However, the present study only focused on the short form of 

the advanced matrices test (APM), the DD task, and the EEG measurement during the DD 

task measurement.  

4.4.2.3 Psychometric intelligence test. To measure psychometric intelligence, a short 

version of the Raven’s advanced matrices test (APM) with 18 items was used (Sefcek et al., 

2016). Detailed information can be found in Makowski and Troche (2023). For the statistical 

analysis, the sum score was calculated.  

4.4.2.4 Duration discrimination task. Temporal information processing was assessed 

with an auditory duration discrimination task using a tone (1000 Hz) with a standard duration 

of 1000 ms. In each trial, participants were presented with a standard (1000 ms) and a 
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comparison stimulus (varying duration). In total, there were 64 trials. In 32 of them, the 

comparison interval was longer than the standard interval, and in the other 32, it was shorter. 

The order of standard and comparison intervals was randomized and separated by an inter-

stimulus interval of 900 ms. After the presentation of both intervals, participants had to decide 

which interval had been longer by pressing a designated key. They received no feedback, and 

the subsequent trial started after a 1500 ms inter-trial interval. 

The comparison stimulus duration was varied according to the adaptive weighted-up-

down procedure (Kaernbach, 1991). Details on this procedure can be found in the Article of 

Study 2 (Makowski & Troche, 2023). This procedure resulted in two thresholds: a 25%-

difference threshold for the series in which the comparison stimulus was shorter and a 75%-

difference threshold for the other series in which the comparison stimulus was longer than the 

standard stimulus. Only the last twenty trials were used to compute these thresholds. As a 

performance measure of the DD task performance, the difference limen (DDL) was then 

calculated by dividing half of the interquartile range [(x.75-x.25)/2]. Smaller values indicated 

better performance (Luce & Galanter, 1963). For further analyses, the DDL values were 

inverted so that higher values indicated a better performance. For the regression analyses, 

they were also z-standardized.  

4.4.2.5 EEG preprocessing and coherence analysis. The EEG was recorded with a 

64-channel Biosemi ActiveTwo EEG system (Biosemi, 2022) with active gel electrodes and a 

sampling rate of 2048 Hz. Detailed information on the electrode montage and preprocessing 

can be found in Makowski and Troche (2023). The preprocessing and subsequent coherence 

analysis were conducted in Brain Vision Analyzer (Version 2.2.1.8266; Brain Products, 

2019). After the preprocessing, the data was first segmented for the prestimulus phase before 

the standard interval (-900 to 0 ms around the start of the standard interval) as well as the 

stimulus phase of the standard interval (0 to 1000ms around the beginning of the standard 

interval) for each individual. Then, another semiautomatic raw data inspection was conducted 

on these prestimulus and stimulus intervals with the following settings: maximal allowed 

voltage step of 50 μV/ms, the minimal allowed amplitude of -100 μV, and the maximally 

allowed amplitude of 100 μV. The artifacts marked by this algorithm were then all checked 

manually. Then, an FFT was conducted with a 1 Hz frequency resolution to extract the 

complex spectral values. This was followed by a coherence analysis to derive magnitude-

squared coherence between frontal and parietal and between temporal and parietal electrodes. 

In order to minimize possible volume conduction effects, the investigation concentrated on 

electrodes at least 5 cm apart (Keil et al., 2022; Nunez et al., 1997). It was thus focused on the 
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following 48 coherence pairs for theta coherence: F1-P3, F1-P4, F1-P5, F1-P6, F1-P7, F1-P8, 

F2-P3, F2-P4, F2-P5, F2-P6, F2-P7, F2-P8, F3-P3, F3-P4, F3-P5, F3-P6, F3-P7, F3-P8,  F4-

P3, F4-P4, F4-P5, F4-P6, F4-P7, F4-P8, F5-P3, F5-P4, F5-P5, F5-P6, F5-P7, F5-P8, F6-P3, 

F6-P4, F6-P5, F6-P6, F6-P7, F6-P8, F7-P3, F7-P4, F7-P5, F7-P6, F7-P7, F7-P8, F8-P3, F8-

P4, F8-P5, F8-P6, F8-P7, F8-P8. The following 32 coherence pairs were focused on for 

gamma coherence, derived from the prestimulus and stimulus phase separately: FT7-P3, FT7-

P4, FT7-P5, FT7-P6, FT7-P7, FT7-P8, T7-P3, T7-P4, T7-P5, T7-P6, T7-P7, T7-P8, TP7-P3, 

TP7-P4, TP7-P6, TP7-P8, FT8-P3, FT8-P4, FT8-P5, FT8-P6, FT8-P7, FT8-P8, T8-P3, T8-P4, 

T8-P5, T8-P6, T8-P7, T8-P8, TP8-P3, TP8-P4, TP8-P5, TP7-P7. The coherence between TP7 

and P5, TP7 and P7, TP8, and P6, as well as TP8 and P8 were omitted because they were too 

close to each other. These resulting coherence values between frontal and parietal electrodes 

were then exported for the theta frequency band (4-7 Hz) and between temporal and parietal 

electrodes for the gamma frequency band (30-49 Hz).  

4.4.2.6 Statistical analyses. Statistical analyses were conducted with R (4.3.1, R Core 

Team, 2023) and R-Studio version (2023.06.1, RStudio Team, 2022). The following packages 

were used to create the data set and descriptive statistics: readxl (1.4.2, Wickham et al., 2023), 

tidyverse (2.0.0, Wickham, 2023), dplyr (1.1.2; Wickham et al., 2023), e1071 (1.7-13; Meyer 

et al., 2023), writexl (1.4.2; Ooms & McNamara, 2023). For the correlational and inferential 

statistics, the psych (2.3.6; Revelle, 2023), the rstatix (0.7.2; Kassambra, 2023), the flextable 

(0.9.2; Gohel & Skintzos, 2023), the Hmisc (5.1-0; Harrell Jr, 2023) as well as the cocor (1.1-

4; Diedenhofen, 2023) packages were used. 

First, the descriptive statistics were calculated for all theta coherence values between 

frontal and posterior electrodes, separately for prestimulus and stimulus phases. These 

coherence values were then Fischer z-transformed and compared between the prestimulus and 

the stimulus phases to determine for which coherence pairs (e.g., F3-P3) there was a 

significant increase or decrease from the prestimulus to the stimulus phase. For this purpose, 

paired t-tests were performed, which were corrected for multiple comparisons with 

Bonferroni-Holm. This procedure was repeated for the gamma coherence values between 

temporal and parietal electrodes. For theta and gamma coherence values, there were no 

significant differences between the prestimulus and stimulus phase for each pair (e.g., F3-P3). 

Therefore, the following analyses focused only on the stimulus phase.  

The coherence values were then averaged per frequency band to minimize the number 

of variables (for similar procedures, see Reiser et al., 2012; Rominger et al., 2022). Since 

previous studies indicated a possible hemisphere effect in terms of temporal information 
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processing (Hoodgar et al., 2022), it was differentiated into the intrahemispheric left, 

intrahemispheric right, and interhemispheric coherence values. This resulted in the following 

four mean coherence values for theta measured during the standard duration interval: right 

frontal-posterior (F2-P4, F2-P6, F2-P8, F4-P4, F4-P6, F4-P8, F6-P4, F6-P6, F6-P8, F8-P4, 

F8-P6, F8-P8), left frontal-posterior (F1-P3, F1-P5, F1-P7, F3-P3, F3-P5, F3-P7, F5-P3, F5-

P5, F5-P7, F7-P3, F7-P5, F7-P7), left frontal to right posterior (F1-P4, F1-P6, F1-P8, F3-P4, 

F3-P6, F3-P8, F5-P4, F5-P6, F5-P8, F7-P4, F7-P6, F7-P8) and right frontal to left posterior 

theta coherence (F2-P3, F2-P5, F2-P7, F4-P3, F4-P5, F4-P7, F6-P3, F6-P5, F6-P7, F8-P3, F8-

P8, F8-P7). For gamma coherence, this also resulted in the following four coherence 

variables: right temporal-parietal (FT8-P4, FT8-P6, FT8-P8, T8-P4, T8-P6, T8-P8, TP8-P4), 

left temporal-parietal (FT7-P3, FT7-P5, FT7-P7, T7-P3, T7-P7, T7-P7, TP7-P3), left temporal 

to right parietal (FT7-P4, FT7-P6, FT7-P8, T7-P4, T7-P6, T7-P8, TP87-P4, TP7-P6, TP7-P8) 

and right temporal to left parietal gamma coherence (FT8-P3, FT8-P5, FT8-P7, T8-P3, T8-P5, 

T8-P7, TP8-P3, TP8-P5, TP8-P7). The descriptive statistics for these eight coherence 

variables, DDL, and APM performance were then calculated per group and tested for group 

differences with independent t-tests. Then, the Pearson correlations between all coherence 

variables and DDL were calculated per group. These results were then corroborated using 

multiple regression analyses in which the DDL was implemented as the dependent variable 

and the group variable based on APM performance as well as the eight coherence variables as 

independent variables. Prior to these analyses, their requirements were checked which showed 

that they were met. 

4.4.3 Results 

Table 2 presents the descriptive statistics of the APM sum score, DDL, and mean 

Fischer z-transformed gamma and theta coherence measured during the stimulus phase. As 

these values were Fischer z-transformed before being averaged, the range of values can no 

longer vary from 0 to 1 (Bortz & Schuster, 2010). Based on the skewness and kurtosis shown, 

all values showed to be normally distributed. All values were additionally tested for group 

differences with independent t-tests. There were no group differences in DDL or coherence 

variables. The groups only differed significantly in their APM sum score.  
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Table 2  

Descriptive statistics and t-tests of psychometric intelligence performance (APM), duration 

discrimination performance (DDL), and mean gamma and theta coherence values 

Variable Higher intelligence scores   Lower intelligence scores     

  M SD Min  Max S K   M SD Min  Max S K t d 

APM 15 1 14 18 0.37 -0.89 
 

10 2 6 12 -0.58 -0.81 -16.9*** -3.39 

DDL 139 47 62 269 0.76 0.08 
 

144 55 58 278 0.61 -0.52 .52 0.10 

Gamma 

temporal-parietal 

(l) 0.26 0.16 0.06 0.86 1.12 1.79 
 

0.25 0.17 0.03 0.77 0.99 0.86 -0.18 -0.04 

Gamma 

temporal-parietal 

(r) 0.29 0.14 0.07 0.75 1.11 1.43 
 

0.32 0.20 0.06 0.95 0.98 0.63 0.99 0.20 

Gamma left 

temporal and 

right parietal 0.15 0.11 0.02 0.60 1.73 3.43 
 

0.16 0.11 0.03 0.49 1.13 0.85 0.20 0.04 

Gamma right 

temporal and left 

parietal 0.17 0.11 0.03 0.55 1.35 1.83 
 

0.18 0.12 0.03 0.47 0.93 0.11 0.55 0.11 

Theta frontal-

parietal (l) 0.21 0.08 0.07 0.46 0.97 0.98 
 

0.18 0.07 0.06 0.39 0.35 -0.08 -1.54 -0.31 

Theta frontal-

parietal (r) 0.22 0.09 0.07 0.46 0.80 0.23 
 

0.22 0.09 0.08 0.42 0.45 -0.80 0.04 0.01 

Theta left frontal 

and right parietal 0.15 0.08 0.03 0.40 1.54 2.00 
 

0.13 0.06 0.04 0.35 1.35 1.79 -1.14 -0.23 

Theta right 

frontal and left 

parietal 0.15 0.08 0.04 0.40 1.28 1.19 
 

0.16 0.09 0.03 0.39 0.95 -0.17 0.25 0.05 

Note. Per group N = 50. M = mean, SD = standard deviation, Min = minimum, Max = 

maximum, S = skewness, K = kurtosis. (r) = right, (l) = left, DDL = difference limen 

(performance measure of the duration discrimination task). Displayed are the mean Fischer z-

transformed gamma coherence values measured between temporal and parietal electrodes as 

well as the mean Fischer z-transformed theta coherence values measured between frontal and 

parietal electrodes.  

 

In Table 3, the results of the Pearson correlations between inverted DDL, mean 

gamma, and theta coherence variables per group are displayed. Concerning the DDL, there 

was a small negative and significant correlation with theta coherence measured between the 

left frontal and right parietal electrodes only in the group with lower intelligence scores. This 

correlation remained insignificant in the group with higher psychometric intelligence. 
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However, the correlation did not differ significantly from the one found in the group with 

lower intelligence (z = -1.11, p = .277). No other significant correlations existed between 

DDL and gamma or theta coherence in any of the groups. When the correlation between DDL 

and theta coherence (left frontal, right parietal) was calculated overall participants, also a 

significant small and negative correlation could be found (r = -.22, p = .028). 

Regarding the coherence values within the same frequency band, highly significant 

and positive associations could be shown in both groups. Additional paired and Bonferroni-

Holm corrected t-tests showed that although these coherence scores were positively related, 

they were still significantly different (p < .05).  

As for the associations between gamma and theta coherence, there were two 

significant associations in the higher psychometric intelligence group, namely between right 

frontal-parietal theta coherence and interhemispheric gamma coherence of the left temporal 

and right parietal electrodes and between interhemispheric theta coherence of the right frontal 

and left parietal electrodes and right temporal-parietal gamma coherence. Five significant and 

positive associations were found in the group with lower psychometric intelligence scores. 

Three were between interhemispheric theta coherence (left frontal, right parietal) and all 

gamma coherence variables except the one measured on the right side. The other two 

significant associations were found between right-sided theta coherence and right-sided 

gamma coherence and interhemispherical measured gamma coherence (right temporal, left 

parietal). Although the correlation patterns showed differences between the groups, the 

significant associations found in the group with lower psychometric intelligence scores did 

not differ significantly from those found in the group with the higher psychometric 

intelligence scores (p > .05). The same was true for the associations found only in the higher 

psychometric intelligence group (p > .05). 
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Table 3  

Pearson correlations per group for duration discrimination performance and mean gamma 

and theta coherence variables 

   Variables 1 2 3 4 5 6 7 8 9 

1 DDL (inv) - -.05 -.18 -.09 -.04 -.24 -.22 -.34* -.15 

2 Gamma temporal-parietal (r) -.22 - .63*** .63*** .93*** .28* .21 .20 .12 

3 Gamma temporal-parietal (l) -.13 .54*** - .92*** .70*** .18 .26 .28* .05 

4 
Gamma left temporal and 

right parietal 
.20 .63*** .87*** - .77*** .20 .25 .29* .08 

5 
Gamma right temporal and 

left parietal 
-.24 .83*** .69*** .86*** - .34* .27 .28* .22 

6 Theta frontal-parietal (r) -.10 .21 .19 .30* .26 - .62*** .75*** .77*** 

7 Theta frontal-parietal (l) -.12 -.04 .24 .17 .09 .63*** - .81*** .58*** 

8 
Theta left frontal and right 

parietal 
-.13 .11 .16 .23 .17 .79*** .84*** - .44** 

9 
Theta right frontal and left 

parietal 
-.06 .11 .28* .20 .13 .75*** .54*** .46*** - 

Note. Pearson correlations for the group with higher psychometric intelligence scores (N = 

50) below the diagonal are in orange, and Pearson correlations for those with lower 

psychometric intelligence scores (N = 50) above the diagonal are in blue. DDL (inv) = 

inverted difference limen (performance measure of the duration discrimination task), so that 

higher values indicated a better performance, (r) = right, (l) = left. Displayed are the mean 

Fischer z-transformed gamma coherence values measured between temporal and parietal 

electrodes as well as the mean Fischer z-transformed theta coherence values measured 

between frontal and parietal electrodes. * p < .05, ** p < .01, *** p < .001.   

 

Inferential statistics. To investigate how gamma coherence is associated with DD 

performance, a multiple regression analysis was conducted with the four gamma coherence 

variables as independent and the DD performance as dependent variables. The results showed 

no significant effect (F(4, 95) = 0.63, p = .639, R2= .02, R2
adjusted = -.01). To investigate an 

effect in relation to psychometric intelligence, the group variable based on psychometric 

intelligence scores was included in the model and, in addition to the main effects, interaction 

effects between the group variable and the individual gamma coherence scores were also 

considered. The results (Table 4) showed no significant main or interaction effect. Thus, the 

gamma coherence variables were not associated with the DD performance, even when 

possible interaction effects with psychometric intelligence were considered (F(9, 90) = 0.77, p 
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= .644, R2= .07, R2
adjusted = -.02).  

 

Table 4  

Results of the multiple regression analysis including intelligence group and gamma 

coherence variables as independent variables 

  DDL   

 b [CI] SE t p 

(Intercept) 
 

0.17 [-0.40, 0.75] 0.29 0.59 .554 

Group (with higher intelligence scores) 0.19 [-0.71, 1.10] 0.46 0.43 .672 

Gamma temporal-parietal (r) 
0.92 [-4.00, 5.84] 2.48 0.37 .712 

Gamma temporal-parietal (l) 
-4.57 [-9.64, 0.50] 2.55 -1.79 .077 

Gamma left temporal and right parietal 
5.59 [-3.79, 14.96] 4.72 1.18 .239 

Gamma right temporal and left parietal -1.24 [-11.19, 8.70] 5.01 -0.25 .805 

Group : Gamma temporal-parietal (r) 
-1.40 [-7.65, 4.85] 3.15 -0.44 .658 

Group : Gamma temporal-parietal (l) 
5.37 [-0.92, 11.65] 3.16 1.70 .093 

Group : Gamma left temporal and right parietal 

-6.86 [-18.92, 5.21] 6.07 -1.13 .262 

Group : Gamma right temporal and left parietal 0.09 [-12.42, 12.61] 6.30 0.02 .988 

  F(9, 90) = 0.77, p = .644, R2= .07, R2
adjusted = -.02 

Note. N = 100. DDL = inverted and z-standardized difference limen of duration 

discrimination task, (r) = right, (l) = left, Group = group based on APM scores, the group 

with lower intelligence scores is the reference group. 

 

A further multiple regression analysis was performed with the four theta coherence 

variables as independent variables and the DD performance variable as dependent variable to 

investigate the association between theta coherence and DD performance. The results showed 

no significant effect (F(4, 95) = 1.32, p = .268, R2= .05, R2
adjusted = .01). In the next step, the 

group variable based on psychometric intelligence was entered into the analysis. A significant 

main effect of theta coherence, measured between the left frontal and right parietal electrodes, 

was found. However, the overall model remained insignificant. When this effect was analyzed 

separately in a single regression analysis, thus without the interaction and the other three theta 

coherence variables, a significant main effect (b[CI] = -3.02 [-5.70, -0.34], p = .028), as well 
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as a significant model could be obtained (F(1, 98) = 4.99, p = .028, R2= .05, R2
adjusted = .04).  

 

Table 5  

Results of multiple regression analysis including intelligence group and theta coherence 

variables as independent variables 

  DDL   

 b [CI] SE t p 

(Intercept) 0.30 [-0.68, 1.28] 0.49 0.62 .539 

Group 0.05 [-1.34, 1.43] 0.70 0.07 .949 

Theta frontal-parietal (r) 3.07 [-4.75, 10.88] 3.93 0.78 .438 

Theta frontal-parietal (l) 4.55 [-3.84, 12.95] 4.22 1.08 .284 

Theta left frontal and right parietal 
-11.41 [-22.73, -0.09] 5.70 -2.00 .048* 

Theta right frontal and left parietal -2.53 [-8,58, 3.52] 3.05 -0.83 .409 

Group : Theta frontal-parietal (r) 
-3.81 [-15.12, 7.50] 5.69 -0.67 .505 

Group: Theta frontal-parietal (l) 
-5.46 [-16.71, 5.80] 5.67 -0.96 .338 

Group : Theta left frontal and right 

parietal 
11.08 [-4.10, 26.26] 7.64 1.45 .151 

Group: Theta right frontal and left 

parietal 
3.20 [-6.09, 12.49] 4.67 0.69 .495 

    F(9, 90) = 1.00, p = .644, R2= .09, R2
adjusted = .00 

Note. N = 100. DDL = inverted and z-standardized difference limen of duration 

discrimination task, (r) = right, (l) = left, Group = group based on APM scores, the group with 

lower intelligence scores is the reference group. * p < .05 

 

As no interaction effect with the psychometric intelligence group variables was 

observed, in the last step, the main effects of the group intelligence, gamma coherence, and 

theta coherence were analyzed together in a multiple regression model. The model showed no 

significant main effect (F(9, 90) = 2.70, p = .612, R2= .07, R2
adjusted = -.02). Neither theta nor 

gamma coherence could therefore contribute to the understanding of individual differences in 

temporal information processing, as depicted by DD performance. 

4.4.4 Discussion 

The present study aimed to investigate to what extent sensory processes, as measured 

by gamma coherence between temporal and parietal electrodes, and attention control, as 

measured by theta coherence between frontal and parietal electrodes, are associated with the 
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performance of an auditory DD task, when measured during the encoding of this task. 

Furthermore, another aim was to investigate to what extent these associations differ between 

individuals with higher and lower psychometric intelligences. To this end, at first, the DD 

performance, theta, and gamma coherence were tested for group differences. The results 

revealed no significant differences in any of the variables between both groups. Thus, 

individuals with higher and lower psychometric intelligence were similar in their DD 

performance as well as their gamma and theta coherence during the task. The extent to which 

the coherence measures were associated with the DD performance measures within each 

group and across all participants was then examined. First, the results only showed one 

significant negative association in contrast to the expectations. More specifically, the theta 

coherence measured between left frontal and right parietal electrodes was negatively 

associated with performance in the DD task in the group with lower psychometric intelligence 

scores. Thus, individuals with lower intelligence performance showed lower theta coherence 

values while performing better in the DD task. Although this association pointed in the same 

direction in the higher intelligence group, it remained insignificant but did also not differ 

significantly from the one found in the group with lower psychometric intelligence scores. 

The correlation was then also tested across all individuals and also proved to be significantly 

negative. For the gamma coherence variables, no significant association with DD 

performance was found in either group. The subsequent multiple regression analyses also 

revealed no main or interaction effects in relation to gamma coherence and the intelligence 

group. As far as theta coherence is concerned, no main effects were found when all theta 

coherence variables were examined. Including the intelligence group variable then revealed a 

significant main effect for theta coherence (left frontal, right parietal), but no significant 

model. Accordingly, this theta coherence variable was examined again individually in relation 

to DD performance and without the intelligence group variable, revealing a small negative 

effect.  

Before examining the links between task performance and coherence measures 

regarding possible group differences, it was also investigated to what extent a task-related 

increase or decrease could be observed during the encoding in a DD task. The results showed 

that neither gamma nor theta coherence increased or decreased from the prestimulus to the 

stimulus phase. An increase, especially in theta coherence, was expected based on previous 

behavioral findings showing the importance of attentional processes during temporal 

information task processing implementing dual-task paradigms (Brown, 2008; Brown et al., 

2013; Hemmes et al., 2004). This, however, could not be shown with the present study. A 
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difference from one of the prior studies is that they focused on a phase-based coherence 

measure, whereas in the present study, magnitude-squared coherence was used. Thus, it might 

indicate that task-related differences in temporal information processing might be more 

pronounced when investigating the phase parameter, which reflects the timing of an 

oscillation and can illustrate the degree of temporal synchronization between different areas 

within a frequency band. Moreover, the phase synchrony provides a measure to gather how 

synchronized certain areas are (Cohen, 2014). Another explanation might be that the theta and 

the gamma coherence was already pronounced during the prestimulus phase, as this phase 

might also already involve active processing and could reflect a preparatory moment. In terms 

of theta coherence, this would be in line with two previous studies showing that the theta 

coherence between frontal and parietal was already increased and could be associated with 

task performance (Myers et al., 2021; Sauseng et al., 2010). In this turn, it might be more 

indicative to relate task processing to a resting state, which would be measured independently 

from task processing. 

Based on the TRP hypothesis, it was previously shown that individuals being more 

accurate and sensitive in their temporal information processing, as measured with tasks like 

the duration discrimination task, temporal order judgment task, or temporal generalization 

task, also showed higher performance in psychometric intelligence tests (Pahud et al., 2018; 

Rammsayer & Brandler, 2002, 2007; Troche & Rammsayer, 2009b). From this perspective, 

our findings of no group differences in DD performance seemed surprising. A possible 

explanation might lie in the characteristics of the sample. Moreover, as described above, most 

participants had achieved a higher educational level, which was also noticeable in the higher 

APM scores. This, in turn, might have attenuated the results. The limitation in the sample 

might also explain why there were no significant differences in theta or gamma coherence.  

Previous studies showed that individual differences in sensory processing can be 

examined using gamma coherence (Karakaş et al., 2001; Strüber & Herrmann, 2022; von 

Stein & Sarntheim, 2000). So, in this context, a positive association between the gamma 

coherence measured between temporal and parietal electrodes and performance in the DD 

task was expected. The gamma coherence between these electrodes should represent the 

sensory process as an internal clock. Additionally, as individuals with higher psychometric 

intelligence also perform more accurately in tasks like the DD task (Rammsayer & Brandler, 

2002, 2004), it was further expected that these associations should be higher in individuals 

with higher psychometric intelligence and less pronounced in those with lower psychometric 

intelligence. However, the results showed no significant association with any of the temporal-
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parietal gamma coherence variables, even if psychometric intelligence was considered. One 

possible reason may be that the choice of electrodes to study this sensory process related to 

temporal information processing was too restricted with temporal and parietal electrodes. As 

no previous study has investigated the performance-related association between gamma 

coherence and temporal information processing performance, the electrode choice was based 

on previous fMRI investigating the activations during temporal information processing 

(Grondin, 2010; Matell & Meck, 2000; Meck, 2005; Mioni, Grondin, et al., 2020). Thus, 

future studies with more subjects could take a more exploratory approach to the analysis in 

this aspect and use network analysis (Ginestet et al., 2014; Varley & Sporns, 2022). 

Moreover, although magnitude-squared coherence, when measured during task processing, is 

considered reliable (Miskovic & Keil, 2015), the reliability of the gamma frequency band has 

been repeatedly questioned (Popov et al., 2023). Thus, it could still be that the power values 

of the gamma frequency band were artificially increased, e.g., by motion artifacts, which in 

turn could have also influenced the magnitude-squared coherence value (Malekpour et al., 

2018). However, the fact that the participants were not involved in motor processes during the 

encoding would argue against this. Moreover, as our study was only the second one to look at 

gamma coherence while processing temporal information and even the first to focus on 

performance-based differences, further studies are needed here.  

Another reason might be that it is not only sensory processing that is reflected within 

the gamma frequency band but also other cognitive processes (Bonnefond & Jensen, 2015; 

Leicht et al., 2021). As cognitive processes are very complex, but only five frequency bands 

can be differentiated, it seems reasonable to expect that specific frequency bands might serve 

a dual-process role (Cohen, 2014). In this turn, there are also studies suggesting that the 

gamma frequency band involves bottom-up and top-down processing (Bonnefond & Jensen, 

2015; Leicht et al., 2021). As these studies focused on prefrontal and frontal gamma effects, 

an additional analysis of the frontal-parietal gamma coherence was conducted. However, also 

this analysis showed no significant differences between the intelligence groups and no 

relation to DD task performance. In this sense, it must also be noted that the present study 

only focused on one temporal information processing task. Still, to make general statements 

in the sense of an internal clock mechanism (Rammsayer & Brandler, 2004, 2007), further 

temporal information processing tasks would have to be examined, and the extent to which 

similar activity patterns can be found. 

Besides the investigation of ongoing sensory processes, it was also focused on how 

attention control is related to DD task performance and to what extent these associations 
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differ between individuals with higher and lower psychometric intelligence. Based on 

previous studies (Bausenhart et al., 2016; Broadway & Engle, 2011; Ciria et al., 2019; Dyjas 

et al., 2012; Ogden, 2014; van Rijn, 2016) as well as the Attentional Gate Model (Block & 

Zakay, 1997; Zakay & Block, 1996), it was proposed that attention control in the sense of 

focused attention on the task should also be relevant during the encoding of temporal 

information processing, which in turn might also explain the relationship to psychometric 

intelligence. In order to measure individual differences in attention control during a task, 

previous studies have focused on the theta coherence between frontal and parietal electrodes 

(Basharpoor et al., 2021; Eschmann et al., 2020; Karakaş, 2020; Myers et al., 2021; 

Nurislamova et al., 2019; Sauseng et al., 2005, 2006, 2007; von Stein & Sarntheim, 2000). 

Based on these findings, a positive relationship between frontal-parietal theta coherence and 

DD task performance was expected, and that this association would be even higher for 

individuals with higher psychometric intelligence scores. In contrast to these expectations, 

only one significant but negative association with DD performance could be found. The theta 

coherence measured between the left frontal and right parietal electrodes was negatively 

correlated with DD performance. This small effect was first shown only for the group with 

lower intelligence scores. However, the correlation coefficients found in both groups also did 

not differ significantly from each other. Moreover, when this association was analyzed across 

all participants, also a significant negative link could be demonstrated. This indicates that, 

independently of psychometric intelligence, higher DD task performance was associated with 

lower frontal-parietal theta coherence. At first sight, it contradicts the role of attention control 

in task processing, as it should facilitate the processing of information (Burgoyne et al., 2023; 

Mashburn et al., 2020; Tsukahara et al., 2020). It further also contradicts previous findings in 

terms of temporal information processing (Bausenhart et al., 2016; Broadway & Engle, 2011; 

Ciria et al., 2019; Dyjas et al., 2012; Ogden, 2014; van Rijn, 2016) that stated in line with the 

Attention Gate Model (Block & Zakay, 1997; Zakay & Block, 1996) that the amount of 

focused attention on the task, especially during encoding should be important for temporal 

accuracy. One possible explanation might be that attention control is less indicative during the 

encoding of the first tone but more critical for the second one. As it is then, when, in parallel, 

the internal representation of the first tone needs to be actively maintained. This, however, is 

challenged by the fact that the order of the presented stimuli was randomized and thus should 

not have had such an effect. As the effect was relatively small and this was one of the first 

investigations of performance-related associations between theta coherence and DD task 

performance, further studies are needed to confirm this result. Moreover, it remains to be also 
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seen to what extent this association can be replicated for other interval timing tasks.  

The gamma and theta coherence variables were also investigated regarding their 

relationship. Based on correlational analysis, it could be seen that the coherence values of 

both frequency bands were positively and even significantly associated with each other in the 

majority of cases. Although more significant associations were found in the group with lower 

psychometric intelligence, these correlations did not differ significantly from those found in 

the group with higher psychometric intelligence. This might indicate that the chosen regions 

of both frequency bands were also similarly activated. In this turn, it was previously 

emphasized that investigating phase-amplitude coupling of two frequency bands might be 

more indicative of understanding individual differences in cognitive processing (Abubaker et 

al., 2021; Canolty & Knight, 2010; Chuderski, 2016; Cohen, 2014; Pahor & Jaušovec, 2014; 

Palva & Palva, 2018). Moreover, the cross-frequency phase-amplitude coupling in which the 

phase of a lower frequency (theta or delta) modulates the amplitude of a higher frequency 

(gamma) has been linked to different cognitive processes for example with working memory 

(for a review see Abubaker et al., 2021) with psychometric intelligence (Pahor & Jaušovec, 

2014, 2016), and for delta-gamma with general fluid intelligence (Chuderski, 2016; Gągol et 

al., 2018). Also, a newer theoretical approach in temporal information processing research 

referred to as the striatal beat frequency model emphasizes the possible interplay between the 

phase of lower frequency bands and the amplitude of higher frequency bands (Gu et al., 2015; 

Wiener & Kanai, 2016). In turn, one previous study could show that the phase amplitude 

strength was associated with the precision in interval timing (Kononwicz et al., 2020). 

Although they did not measure theta and gamma but focused on alpha and beta, this might 

indicate that the focus of the combinations of frequency bands might be more indicative in 

terms of temporal processing. However, as these previous studies are limited and mostly 

restricted to investigating one task, further studies should focus on various tasks to draw 

general conclusions.  

To the best of our knowledge, the present study is the first to date to investigate the 

association between temporal information processing performance with theta and gamma 

coherence in terms of individual differences while also considering differences in 

psychometric intelligence. To this end, it could be shown that individuals with higher 

psychometric intelligence did not differ in their DD task performance, theta, or gamma 

coherence compared to those with lower psychometric intelligence scores. Moreover, there 

was also no significant association between the temporal-parietal gamma coherence and the 

timing task performance, also not when psychometric intelligence was considered. Regarding 
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theta coherence, it could be shown that overall higher performance in the DD task was 

associated with lower theta coherence measured between the left frontal and right parietal 

electrodes. As most previous studies were limited to task-related approaches, this study 

provides the first evidence for individual differences in temporal information processing by 

means of coherence analyses of the theta and gamma frequency bands. However, the extent to 

which these findings could be interpreted in the context of the TRP hypothesis requires 

further analyses.  
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5 Discussion 

This dissertation aimed to strengthen and extend the TRP hypothesis using behavioral 

and psychophysiological measures within four studies. The two behavioral studies examined 

to which extent a different information processing mechanism such as spatial suppression and 

WM updating as a reflection of a coordination process of information processing contributes 

to the understanding of the TRP hypothesis. The other two studies investigated the underlying 

psychophysiological measures of TRP and its relationship to psychometric intelligence. The 

following subchapters summarize each study with the most important findings and their 

significance to the research question and hypotheses. The findings are then discussed and 

integrated into a general discussion. Then, the implications and outlook for future studies are 

described. The chapter ends with a conclusion.  

5.1 Summary  

5.1.1 Study 1 

The first study aimed to replicate the relationship between TRP and psychometric 

intelligence and examined, to what extent spatial suppression can contribute to it. As spatial 

suppression is considered a bottom-up process facilitating information processing, it was 

expected to be positively linked to psychometric intelligence and TRP. The results showed 

that TRP was positively associated with psychometric intelligence in line with the 

expectations and previous studies (Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & 

Brandler, 2007; Troche & Rammsayer, 2009b). In terms of spatial suppression, it was 

possible to differentiate two latent variables by means of fixed-links modeling, as in a 

previous study (Troche et al., 2018). This fixed-links modeling approach resulted in a latent 

variable with constant factor loadings, reflecting, how fast individuals correctly identified the 

motion direction, and a latent variable with increasing factor loadings, reflecting spatial 

suppression. The constant latent variable showed a negative association with psychometric 

intelligence and TRP, indicating that individuals faster in detecting the correct motion also 

showed higher psychometric intelligence scores and TRP. However, contrary to our 

expectations, spatial suppression (varying latent variable) was also negatively associated with 

psychometric intelligence and TRP. When all variables were analyzed within the same model, 

only TRP significantly predicted individual differences in psychometric intelligence. Thus, 

based on these findings, only one of four hypotheses could be confirmed.  

In contrast to previous findings (Arranz-Paraíso & Serrano-Pedraza, 2018; Cook et al., 

2016; Melnick et al., 2013), the positive link between spatial suppression (varying latent 

variable) and psychometric intelligence could not be replicated. Since we implemented the 



 
 

 

 

138 

same software and hardware as in the study of Melnick et al. (2013), procedural and 

methodological reasons for our results can be ruled out. However, since the previous studies 

that found a positive association were characterized by small to medium samples (N varies 

between 9 and 53 participants in Arranz-Paraíso & Serrano-Pedraza, 2018; Cook et al., 2016; 

Melnick et al., 2013), it cannot be ruled out that these effects may have been overestimated. 

This assumption is supported by two other recent studies that reported no significant 

relationship between spatial suppression and psychometric intelligence in a larger sample (N 

= 177; Troche et al., 2018) and a smaller sample (N = 33; Linares et al., 2020). Based on these 

results, a functional positive correlation seems rather unlikely. If it does exist, future studies 

should investigate the conditions under which the relationship occurs. 

Regarding TRP, no other previous study has investigated its association with spatial 

suppression (varying latent variable). Both processes should reflect bottom-up mechanisms 

facilitating information processing (Melnick et al., 2013; Rammsayer & Brandler, 2002, 

2007b; Tadin, 2015). Thus, a positive relationship between them was expected. The findings, 

however, revealed the opposite, indicating that higher TRP would be associated with lower 

spatial suppression. This contradicted previous studies, which assumed that a stronger spatial 

suppression effect should be associated with more efficient information processing (Arranz-

Paraíso & Serrano-Pedraza, 2018; Cook et al., 2016; Melnick et al., 2013). As a possible 

explanation, one could assume that the small effect might be due to modality differences, as 

spatial suppression was investigated in terms of visual processing and TRP with auditory 

timing tasks in our study. However, this is contradicted by previous studies showing that TRP 

is not modality-bound (Haldemann et al., 2011, 2012) and should, therefore, also contribute to 

information processing in the visual domain. From the results it can be taken that TRP and 

spatial suppression are only weakly related and seem to reflect dissociable mechanisms in 

terms of information processing.  

Besides the negative associations with spatial suppression, psychometric intelligence 

and TRP were negatively related to the constant variable obtained from the spatial 

suppression task. This variable was interpreted as the speed, at which the motion direction 

was correctly identified by a person and can be interpreted in terms of SIP. In turn, the 

negative association with psychometric intelligence can be interpreted in terms of the mental 

speed approach (Doebler & Scheffler, 2016; Jensen, 2006; Mashburn et al., 2023; Schubert & 

Frischkorn, 2020; Sheppard & Vernon, 2008) and aligns with the findings of a previous study 

(Troche et al., 2018). The overall model then showed that the two latent variables obtained 

from the spatial suppression task, namely spatial suppression (varying latent variable) and the 
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speed of motion detection (constant latent variable), were negatively related to TRP. When all 

three variables were included in the model to explain psychometric intelligence, only TRP 

showed a significant relation. This finding confirms the first part of the TRP hypothesis 

(Rammsayer & Brandler, 2007) by showing that individuals with higher TRP processed their 

information faster, as indicated by a faster detection of the right direction of motion. 

Moreover, in line with previous studies (Helmbold et al., 2007; Pahud et al., 2018), TRP 

could explain the relationship between SIP and psychometric intelligence.  

5.1.2 Study 2 

Based on the findings of Study 1, the goal of Study 2 was to examine with which 

psychophysiological measure the internal master clock that explains differences in TRP and 

its relationship with psychometric intelligence can be reflected. Thus, the aim was to 

strengthen the understanding of the relationship between TRP and psychometric intelligence 

by implementing psychophysiological measures. To the best of our knowledge, this is the first 

time that the psychophysiological basis of the internal master clock of TRP was investigated. 

To this end, it was examined whether the PAF, as the psychophysiological reflection of the 

internal master clock, mediates the relationship between TRP and psychometric intelligence. 

Due to methodological differences in the recording and evaluation of previous studies 

examining PAF, we further examined the consistency of PAF measures by means of 

exploratory and confirmatory factor analyses. As in Study 1 and in line with previous findings 

(Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007; Troche & 

Rammsayer, 2009b), TRP was positively associated with psychometric intelligence. 

Regarding PAF, it was possible to systematically differentiate the measurements of different 

resting states (eyes open, eyes closed) and at different electrode sites into four latent PAF 

factors: PAF measured during eyes open at frontal/central electrodes, PAF measured during 

eyes closed at frontal/central electrodes, PAF measured during eyes open at parietal/occipital 

electrodes, PAF measured during eyes closed at parietal/occipital electrodes. Of these 

variables, only PAF measured at the frontal/central electrodes during an eyes open condition 

was significantly and positively associated with psychometric intelligence, indicating that 

individuals with a higher PAF (in Hz) at these electrode sites also showed higher 

psychometric intelligence. However, none of these PAF variables were associated with TRP 

or could mediate the relationship between TRP and psychometric intelligence. Based on these 

findings, only two out of four hypotheses were confirmed.  

As previous studies defined PAF as a general measure of SIP (Drewes et al., 2022; 

Grandy et al., 2013; Hilger et al., 2022; Klimesch et al., 1996; Ociepka et al., 2022), the 
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positive association of PAF with psychometric intelligence can be interpreted in terms of 

Jensen’s (1982, 2006) oscillation theory. It could be shown that individuals with higher PAF 

at frontal/central electrodes, reflecting the rate of neural oscillations, processed information 

faster and performed better in psychometric intelligence. As the correlation was limited to the 

frontal/central sites, it might indicate that these sites are better suited for investigating 

possible associations with psychometric intelligence. However, this notion seems limited 

because the associations between psychometric intelligence and PAF at frontal/central 

electrodes did not differ significantly from the ones found at parietal/occipital electrodes. As 

previous studies predominantly only focused on one electrode site, further studies are needed 

to investigate to what extent the electrode site might have an impact. The limitation to the 

resting state with eyes open might implicate that a certain degree of cognitive activation is 

needed to show associations with psychometric intelligence, which might not be given in a 

resting state with eyes closed (Anderson & Perone, 2018, 2023; Barry et al., 2007; Ben-

Simon et al., 2008; Jann et al., 2010; Mahjoory et al., 2019). Therefore, it could be that during 

EO, there are already task-relevant preparatory processes or a pre-task activation present 

(Anderson & Perone, 2018, 2023). In line with this, previous studies have suggested an 

alternative interpretation of PAF as a reflection of “cognitive preparedness” (Angelakis, 

Lubar, Stathopoulou, et al., p. 879). Based on this, it might indicate that higher pre-task 

activation, as reflected in a higher PAF, might facilitate information processing and, in turn, 

explain higher psychometric intelligence performance.  

However, this functionality of PAF is challenged by the findings in terms of temporal 

information processing, as only one of the TRP tasks showed a positive association with some 

of the PAF variables. More specifically, there was a positive correlation between the 

performance of the temporal generalization task and the PAF measures at parietal/occipital 

electrodes from the resting state with eyes open. There was no significant association for the 

other two timing tasks (duration discrimination and temporal order judgment tasks). There 

was also no relationship between TRP and any of the PAF variables on the latent level. Thus, 

unlike our expectations, the PAF does not seem to reflect the psychophysiological basis of the 

master clock. Moreover, as the performance in the TG task is accompanied by memory 

processes, the association between the PAF variables and TG task performance might be also 

caused by memory processes independent of temporal information processing. This would 

align with previous findings showing that PAF at parietal/occipital sites is associated with 

memory performance (Grandy et al., 2013; Klimesch et al., 1993; Pahor & Jaušovec, 2016; 

Richard Clark et al., 2004). Furthermore, it would also explain, why some previous studies 
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that investigated the association between PAF and temporal information processing could not 

provide evidence for a relationship, since they focused only on timing tasks being less 

attenuated by memory processes (Milton & Pleydell-Pearce, 2017; Venskus & Hughes, 

2021). This, however, complicates the understanding of the exact functionality of the PAF 

even more, as it has been previously defined as a measure of SIP (Drewes et al., 2022; Grandy 

et al., 2013; Hilger et al., 2022; Klimesch, 1997; Ociepka et al., 2022), then as a reflection of 

“cognitive preparedness” (Angelakis, Lubar, Stathopoulou, & Kounios, 2004, p. 879), and 

now as being sensitive to memory processes (Grandy et al., 2013; Klimesch et al., 1993; 

Pahor & Jaušovec, 2016; Richard Clark et al., 2004). Overall, these findings show that the 

PAF seems to be involved in the efficiency of information processing. However, as the alpha 

frequency band itself reflects different cognitive roles, it might also explain why the PAF 

cannot be linked to one specific aspect (Ociepka et al., 2022). Further studies are needed to 

clarify the functionality of the PAF. Although we were unable to provide evidence that the 

PAF reflects the psychophysiological basis of the master internal clock, the study was the first 

to investigate the possible psychophysiological basis of TRP.   

5.1.3 Study 3 

The third study aimed to replicate the relationship between psychometric intelligence 

and TRP found in studies 1 and 2. It also aimed to investigate further the second aspect of the 

TRP hypothesis, which states that individuals with higher TRP also coordinate their mental 

operations better, leading to higher scores in psychometric intelligence tests. In order to 

extend previous studies, we investigated the coordination aspect by means of WM updating. 

The results showed, as in studies 1 and 2, a positive relationship between TRP and 

psychometric intelligence. It could be further demonstrated that TRP and psychometric 

intelligence were each positively linked to WM updating. The final mediation model revealed 

that WM updating partially mediated the relationship between TRP and psychometric 

intelligence, which was interpreted as that higher TRP facilitates WM updating, leading to 

higher psychometric intelligence scores. Based on these findings, all of our hypotheses could 

be confirmed. 

The results of the partial mediation analysis are consistent with the second part of the 

TRP hypothesis (Rammsayer & Brandler, 2007). As this second part has only been 

investigated once before (Troche & Rammsayer, 2009b), Study 3 marks the second study to 

date to examine this relation. In contrast to Troche and Rammsayer (2009b), the coordination 

aspect was chosen to be investigated with a more specific WM measure, namely WM 

updating. In line with the TRP hypothesis, it could be shown that WM updating partially 
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mediated the relationship between TRP and psychometric intelligence, suggesting that TRP 

might facilitate the process of WM updating, resulting in fewer errors in information 

processing and, through this, also in better performance in psychometric intelligence tests. 

This can also be interpreted in terms of the binding hypothesis, which indicates that 

individuals with higher TRP might be better at forming and detaching from bindings in a 

more temporally precise way, leading to better WM updating performance (Chuderski, 2019; 

Oberauer, 2005, 2019). As this facilitates information processing, it can, in turn, explain why 

these individuals also perform better in a psychometric intelligence test.  

However, opposing views argue that the relationship between TRP or sensory 

discrimination ability and psychometric intelligence is not due to differences in sensory acuity 

but is related to common WM processes. In this context, Jastrębzski et al. (2021) showed that, 

as in Troche and Rammsayer (2009b), the relationship between temporal sensory 

discrimination and psychometric intelligence was fully explained by WMC. However, in 

contrast to Troche and Rammsayer (2009b), they argued that higher WMC should lead to 

higher temporal acuity and, thus, higher psychometric intelligence. They, therefore, argued 

that it is not the differences in sensory acuity but the ones regarding WMC that explain the 

relationship between TRP and psychometric intelligence. Thus, both studies support a 

different causal direction. However, since both studies, as well as the present study, are based 

on latent regression analyses, it is not possible to decide which causal direction might be the 

right one. A striking fact in the previous studies (Jastrzębski et al., 2021; Troche & 

Rammsayer, 2009b) is that the implemented WMC variable was very closely linked to 

psychometric intelligence, which makes it difficult to distinguish between these constructs 

and, therefore, it may also have had an impact on the mediation analyses. This could be 

circumvented in the present study by focusing on a more specific process of WM. However, it 

should be noted that only one task was used to assess WM updating in the present study. 

Future studies should focus on a more pronounced measurement of WM updating by 

implementing multiple tasks.  

5.1.4 Study 4 

Based on the findings of Studies 2 and 3, Study 4 aimed to investigate to what extent 

sensory processes, as measured with the gamma coherence between temporal and parietal 

electrodes during the encoding of temporal information, and attention control, as measured 

with theta coherence between frontal and parietal electrodes during the encoding of temporal 

information, can contribute to the understanding of individual differences in temporal 

accuracy. Moreover, it was investigated how these associations differ in terms of higher and 
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lower psychometric intelligence. The results showed no significant association between DD 

performance and gamma coherence, also not when different levels of psychometric 

intelligence were considered. Regarding theta, a negative association could be shown for theta 

coherence measured between left frontal and right parietal electrodes and temporal accuracy. 

Thus, individuals with a higher temporal accuracy showed a lower theta coherence between 

left frontal and right parietal electrodes. This association did not differ in terms of 

psychometric intelligence. Thus, none of the hypotheses could be confirmed. 

Surprisingly, temporal accuracy and temporal-parietal gamma, indicating sensory 

processing, as well as the frontal-parietal theta coherence, indicating attention control, did not 

differ in terms of psychometric intelligence. A possible explanation might lie in the 

characteristics of the sample, as it mainly consisted of students having a relatively high 

educational level. This might have attenuated the data.  

Regarding the gamma coherence, surprisingly there could be found no association 

with temporal information processing performance which should be associated with a sensory 

process, although previous studies could show gamma coherence to be associated with 

individual differences in sensory processing (Karakaş et al., 2001; Strüber & Herrmann, 2022; 

von Stein & Sarntheim, 2000). One possible explanation might lie in the electrode selection, 

as the study focused on the gamma coherence between temporal and parietal electrodes. 

However, as previously suggested, the possible mechanism of an internal clock might not be 

linked to only one or two areas but may involve even more. In this turn, a network analysis in 

future studies might be more indicative. Besides the electrode selection, gamma as a 

frequency band itself has been shown to be less reliable (Popov et al., 2023). Also, possible 

artifacts (e.g., muscle artifacts, motoric) might have affected the gamma coherence and 

influenced the coherence measures, as power decreases and increases can affect magnitude-

squared coherence (Malekpour et al., 2018). Although intensive raw data inspection was 

conducted twice before calculating the coherence analysis, some artifacts might have been 

unconsidered. A possibility to minimize that might be to focus in further studies on the phase-

based coherence, as this is less affected by these artifacts (Alam et al., 2020; Morales & 

Bowers, 2022). Moreover, it has also been shown that phase-based coherence is more 

sensitive to the synchronized neural activity related to the stimulus than when it is power 

based (Ding & Simon, 2013).  

Regarding the theta coherence, an unexpected negative association could be shown 

between temporal accuracy and theta coherence (left frontal, right parietal). As differences in 

theta coherence should have reflected attention control, which is considered to facilitate 
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information processing (Burgoyne et al., 2023; Mashburn et al., 2020; Tsukahara et al., 2020), 

this would contradict this notion. More specifically, the finding indicates that individuals with 

lower attention control, indexed by lower theta coherence between left frontal and right 

parietal electrodes, showed a higher temporal accuracy performance. One possible 

explanation might be that attention control is less important during the encoding process and 

becomes evident during the encoding of the comparison tone. However, as in the standard and 

comparison tones, they were randomly interleaved, such an explanation seems challenged. 

From this perspective, it might be important to investigate further, if there are differences in 

terms of presented order. Moreover, it could also be that differences in a sensory process such 

as the rate of an internal clock are still more important to explain higher temporal accuracy 

(Rammsayer & Brandler, 2004). However, as in Study 4, the temporal-parietal gamma 

coherence, which was predicted to reflects these sensory based differences, not associated 

with temporal accuracy, also this notion has to be investigated further. From this perspective, 

it might be important to investigate further, if there are differences in terms of presented 

order. 

5.2 General Discussion 

The TRP hypothesis postulates that individuals who show higher temporal accuracy 

and sensitivity also process their information faster and coordinate their mental operations 

better, leading to a higher performance in psychometric intelligence tests (Rammsayer & 

Brandler, 2002, 2007). The presented four studies could provide new insights into the 

behavioral and psychophysiological aspects of this hypothesis. In line with the first aspect of 

the TRP hypothesis, it could be shown that individuals with a higher temporal accuracy also 

processed information faster, as indicated by their faster detection of the motion direction. 

Regarding the second part of the hypothesis, it could also be shown that they showed a higher 

accuracy within a WM updating task, indicating they have a better coordination of their 

mental operations, which in turn also led to a higher performance on psychometric 

intelligence tests. As the differences in TRP should be reflected by an internal master clock in 

the form of neural oscillations, it was further investigated, if specific EEG analysis as could 

help understand this process. Hereby a frequency analysis was used for the investigation 

during a resting state and coherence analyses for the focus on activity during the task. 

However, no relation could be shown. The findings of these two behavioral and two 

psychophysiological studies are discussed and integrated in the following.  

5.2.1 Support of the TRP Hypothesis on the Behavioral Level  

Studies 1-3 could uniformly confirm a positive relationship between TRP and 
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psychometric intelligence. In all three studies, TRP contributed significantly to the 

understanding of individual differences in psychometric intelligence by explaining 33 % 

(Study 1), 31 % (Study 2), and 36 % (Study 3) of its variance. These findings were 

comparable with previous studies, showing 36 % (Pahud et al., 2018) to 41 % of the variance 

explained by TRP in psychometric intelligence (Helmbold et al., 2007). 

Furthermore, it was also possible to confirm the TRP hypothesis in terms of SIP as 

well as the coordination process of mental operations. In line with these findings, it could be 

shown that individuals with higher TRP detected the motion direction faster, which can also 

be interpreted in terms of faster information processing (Study 1), and showed better WM 

updating (Study 3), reflecting a better coordination of mental operations, and thus higher 

psychometric intelligence. Moreover, TRP could be seen as a more important psychometric 

intelligence predictor than spatial suppression as well as the motion detection speed, in line 

with previous findings showing TRP to be more important than SIP (Helmbold et al., 2007; 

Pahud et al., 2018; Rammsayer & Brandler, 2007). Thus, as in previous studies (Helmbold et 

al., 2007; Pahud et al., 2018), the relationship between SIP and psychometric intelligence 

could be explained in terms of TRP. This underlines the importance of TRP as a fine-tuning 

capacity, reflecting a substantial predictor of psychometric intelligence (Pahud et al., 2018; 

Rammsayer & Brandler, 2007). In terms of the evidence of the second part, it could be further 

shown that TRP also leads to better WM updating, which in turn also facilitates the 

information process as fewer errors occur. Thus, both studies could confirm the notions of the 

TRP hypothesis and underline its importance in predicting individual differences in 

psychometric intelligence.  

Regarding the theoretical framework, the association between SIP and psychometric 

intelligence in Study 1 and between WM updating and psychometric intelligence in Study 3 

can also be interpreted in terms of Jensen’s oscillation model (1982, 2006). When further 

combined with the found associations of TRP, it was seen that, based on the extended notion 

by Rammsayer and Brandler (2007; based on Surwillo, 1968), individuals differing in their 

temporal acuity and temporal sensitivity not only process information faster but also 

coordinate their mental operations better, which in turn could explain intelligence differences. 

However, as Jensen (1982, 2006) outlines in his theory, SIP and WM processes might also 

work together in the sense that higher SIP should enable better WM processing. In line with 

this, previous studies showed that both were important separate predictors of psychometric 

intelligence (for a review, see Frischkorn et al., 2022) but also contribute together to the 

understanding of individual differences in psychometric intelligence (Dang et al., 2015; 
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Frischkorn et al., 2019). As both are also implemented within the TRP hypothesis, the next 

important step might be to investigate how these paths align. Nevertheless, it could be shown 

in all of the three studies that TRP reflects a general process that leads to faster information 

processing and facilitates an effective coordination of information processing which in turn 

then also explain differences in psychometric intelligence. 

5.2.2 Arriving at a Broader Understanding of TRP by the Use of Psychophysiological 

Correlates 

While studies 1-3 have made an important contribution to understanding the 

relationship between TRP and psychometric intelligence, and could confirm previous results, 

it remains unclear, to what extent differences in TRP, as indicated by an internal master clock, 

are reflected in the rate of neural oscillations (Rammsayer & Brandler, 2007; Surwillo, 1968). 

This question was investigated then by studies 2 and 4. Whereas Study 2 focused on 

frequency differences of the PAF measured during a resting state before temporal information 

processing tasks, Study 4 focused on how different brain areas communicate during task 

processing by means of gamma and theta coherence as a reflection of sensory processing and 

attention control. In both studies, no significant contribution could be made to the 

psychophysiological understanding of individual differences in temporal information 

processing. Neither the PAF measured during the resting state, nor the temporal-parietal 

gamma coherence could contribute to the understanding of the internal master clock. Possible 

reasons might lie in how the PAF was measured. So, the PAF was only assessed during the 

resting state and not during a task, but, in turn, measured at 64 electrodes during six 

measurement points, from which four latent variables were derived. Nevertheless, neither of 

these variables could be associated with TRP. As the role of PAF seems complex (Ociepka et 

al., 2022), we further wanted to focus on other frequency bands in order to overcome the 

limitation of the resting state. As previous studies have shown that the complexity of specific 

cognitive processes cannot be reflected by merely focusing on the power within one 

frequency band at specific electrodes (Bowyer, 2016; Decker et al., 2017), the EEG analyses 

were adapted by focusing on coherence analyses and thus the synchronization between 

electrodes. However, in contrast to Study 2, it was only focused on two areas, temporal and 

parietal. Although these areas were chosen based on previous studies (Matell & Meck, 2000; 

Meck, 2005; Nani et al., 2019), it might have also been too limited. Thus, as it seems clear 

that the PAF does not reflect a possible master clock in terms of gamma coherence, more 

research is needed.   

Besides investigating how PAF is related to TRP, also its relationship with 
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psychometric intelligence was examined. In Study 2, a positive association between the PAF 

measured during the resting state with eyes open at frontal/central electrodes and 

psychometric intelligence could be observed. This result was in line with previous studies 

(Angelakis, Lubar, Stathopoulou, et al., 2004; Pahor & Jaušovec, 2016) and could be 

interpreted in terms of Jensen’s (1982, 2006) oscillation theory indicating that individuals 

with higher PAF, which might have indicated a faster SIP, also performed better in 

psychometric intelligence tests. However, in contrast to previous studies (Basten et al., 2015; 

Basten & Fiebach, 2021; Jaušovec & Jaušovec, 2005; Lee et al., 2012) and expectations, the 

coherence measures could not provide insight into the different information processing in 

psychometric intelligence. A possible explanation might lie in the composition of the 

participants. More specifically, primarily students were implemented in Study 4, which might 

have led to less variability within the sample.  

One possible explanation for these findings of no associations in terms of PAF and 

TRP, in regard of the gamma coherence and temporal accuracy and its relationship to 

psychometric intelligence might be that both studies implemented power-based frequency 

parameters. Even though in Study 2 the PAF in Hz was analyzed in terms of individual 

differences, it was still the point with the highest power in the alpha frequency band (Jann et 

al., 2012). In Study 4, the coherence values of theta and gamma were based on the magnitude-

squared coherence, which can be influenced by power increases or decreases (Cohen, 2014; 

Malekpour et al., 2018). Therefore, it might be that power cannot reflect what either Jensen or 

Surwillo meant by the rate of neural oscillations. Another parameter that can be extracted 

from the EEG and is independent of power is the phase parameter, which reflects the timing 

of the neural oscillations (Cohen, 2014). This phase parameter might be interesting when also 

investigating higher frequency bands such as gamma since their power can be attenuated by 

possible muscle or other high frequency artifacts, which might be less reflected within the 

phase (Alam et al., 2020; Morales & Bowers, 2022; for a review, see Muthukumaraswamy, 

2013). Phase-based coherence can be interpreted in this turn, that when different electrodes 

are synchronous in their phase, it indicates that their neurons are firing at the same time in a 

synchronized manner (Cohen, 2014; Ding & Simon, 2013). Thus, the brain’s activity might 

be more organized, facilitating information processing which in turn leads to higher 

efficiency. However, as it still remains unclear to what extent power- or phase-based 

coherence measures similarly (Cohen & Gulbinaite, 2014), it might also be useful to 

investigate both measures within one study in the future. 
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5.2.3 Integrating the Behavioral and Psychophysiological Findings Regarding the First 

Part of the TRP Hypothesis  

As Study 1 could provide substantial evidence for the positive relationship between 

TRP and psychometric intelligence, Study 2 aimed to investigate the underlying process of 

the internal master clock, which could lead to differences in TRP. The theoretical frameworks 

of Jensen (1982, 2006), as well as of Rammsayer and Brandler (2002, 2007) and Surwillo 

(1968), suggested that the rate of neural oscillations might be crucial in understanding 

individual differences in psychometric intelligence. Focusing on a measure that implied speed 

differences in psychophysiological content seemed even more intriguing. In this turn, the PAF 

was chosen. More so, since the PAF has also been defined as a neurocognitive measure of 

SIP, from this perspective, the investigation of Study 2 also contributes to the understanding 

of the first aspect of the TRP hypothesis. However, as seen before, the results showed that 

although one PAF variable was associated with psychometric intelligence, there was no 

significant link to TRP. Thus, even if the association between PAF and psychometric 

intelligence might be interpreted in terms of Jensen (1982, 2006) and thus as an explanation 

between SIP and psychometric intelligence, it is still questionable why no association could 

be found with TRP. From this perspective, it remains to be seen which specific 

psychophysiological measures of the internal master clock can be assessed to then understand, 

why TRP leads to faster SIP and higher psychometric intelligence.  

5.2.4 Integrating the Behavioral and Psychophysiological Findings Regarding the Second 

Part of the TRP Hypothesis  

The second part of the TRP hypothesis focuses on how mental operations are more 

effectively coordinated through higher TRP, which, in turn, also allows for higher 

psychometric intelligence (Rammsayer & Brandler, 2007). In line with this part of the TRP 

hypothesis (Rammsayer & Brandler, 2007), Study 3 could show that WM updating, as a 

reflection of this coordination aspect, partially mediated the relationship between TRP and 

psychometric intelligence. This finding was interpreted as TRP (possibly) facilitating WM 

updating, leading to fewer errors and higher psychometric intelligence. From this perspective, 

Study 3 could show that the relationship between timing accuracy and sensitivity with 

psychometric intelligence is due to a genuine sensory relationship. This contrasts with 

previous findings showing that the link between TRP, or sensory discrimination ability, and 

psychometric intelligence can be explained entirely by WMC (Jastrzębski et al., 2021; Troche 

et al., 2014; Troche & Rammsayer, 2009b). Based on these findings, it was further shown that 

the relationship between sensory discrimination ability and WMC, as well as between sensory 
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discrimination ability and psychometric intelligence, could be explained by attention control 

(Tsukahara et al., 2020). This would indicate that the relationship between general sensory 

discrimination ability and psychometric intelligence is not due to individual differences in a 

bottom-up process, such as sensory processing, but instead due to individual differences in a 

top-down process, such as attention control. Thus, these findings contrast with the notion of 

the TRP hypothesis as they would argue against a significant role of the internal master clock. 

To further inspect to what extent involved bottom-up as well as top-down processes might 

explain why individuals with higher temporal accuracy are also better in psychometric 

intelligence tests, it was focused on the EEG activity during a TRP task in Study 4 by means 

of coherence analyses. However, as mentioned before, there was no functional relationship 

between temporal accuracy and the coherence measure that was supposed to reflect individual 

differences in sensory processing. Moreover, there were no differences in psychometric 

intelligence, which might further limit possible interpretations. Surprisingly, it could be 

shown that theta coherence, as a reflection of attention control, when measured between left 

frontal and right parietal electrode sites was (weakly) negatively related to temporal accuracy. 

From a first viewpoint, this might be an indication that attention control might, after all, not 

be so relevant during temporal information processing tasks and might be interpreted in terms 

of the TRP hypothesis. However, as there were also no significant differences in the temporal 

information processing performance in terms of psychometric intelligence as well as in the 

measure supposed to reflect an internal clock, this notion seems limited, and further studies 

are needed.   

5.3 Implications and Outlook 

With the present dissertation, a step further was taken to understand individual 

differences in psychometric intelligence, both on a behavioral and a psychophysiological 

level. We have also come closer to understanding how the internal (master) clock manifests 

itself in the brain and how psychophysiological measures can contribute to understanding 

individual differences in psychometric intelligence. These findings provide good starting 

points for future studies, which will be discussed in the following.  

Besides behavioral aspects, possible psychophysiological characteristics of the TRP 

hypothesis were also investigated. Although Studies 2 and 4 could not uncover the 

psychophysiological basis of the internal master clock, they did provide essential 

contributions to previous research. For example, the systematic investigation of the PAF, 

when measured during resting state, showed that this measure should be redefined, and the 

findings indicated that the alpha frequency measure is not suitable for investigating individual 
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differences in temporal information processing. This, in turn, led to Study 4, in which the 

ongoing sensory processes were examined by means of gamma coherence. Moreover, it was 

also tested to what extent individuals differ on the impact of involved top-down processes 

such as attention control with the frontoparietal theta coherence during task processing and to 

what extent this is associated with psychometric intelligence differences. Since no indicative 

correlations were found there either, it may be, as already discussed above, that it is not a 

power-based measure but possibly the phase that would further indicate the timing of the 

neural oscillations (Cohen, 2014; van Wassenhove et al., 2019). Besides focusing only on 

separate frequency bands, it might also be the interaction of different frequency bands. In this 

turn, it was previously emphasized that investigating phase-amplitude coupling of two 

frequency bands might be more indicative of understanding cognitive processing (Abubaker 

et al., 2021; Canolty & Knight, 2010; Chuderski, 2016; Cohen, 2014; Pahor & Jaušovec, 

2014; Palva & Palva, 2018). More so, it has been shown that the cross-frequency phase-

amplitude coupling between theta-gamma was associated with psychometric intelligence 

(Pahor & Jaušovec, 2014, 2016) and delta-gamma with general fluid intelligence (Chuderski, 

2016; Gągol et al., 2018), and even recently with the precision in interval timing (Kononwicz 

et al., 2020). This might indicate that the cross-frequency coupling might be more indicative 

of investigating differences in TRP and its relationship to psychometric intelligence.  

The findings of Studies 1-3, in addition to previous results (Haldemann et al., 2012; 

Helmbold et al., 2007; Pahud et al., 2018; Rammsayer & Brandler, 2007; Troche & 

Rammsayer, 2009b), show that TRP is a substantial predictor of psychometric intelligence in 

young and healthy adults. While the relationship between TRP and psychometric intelligence 

is shown to be very substantial, less is known about how it behaves in healthy elderly adults. 

Previous studies focusing on aging effects on temporal information processing suggest that, in 

addition to the processing speed, the performance in temporal information processing 

decreases with age (Block et al., 1998; Mioni, Capizzi, et al., 2020; Paraskevoudi et al., 2018; 

Rammsayer et al., 1993; Turgeon et al., 2016; Von Krause et al., 2022). Also, regarding 

psychometric intelligence, it has been shown that with aging, a decline in nonverbal compared 

to verbal abilities can be observed (for a review, see Lindenberger & Baltes, 1994; Sánchez-

Izquierdo & Fernández-Ballesteros, 2021; Zihl & Reppermund, 2023). However, as these 

studies are mostly limited to cross-sectional and between-subjects design, in which younger 

adults are compared to older adults, it might be more interesting to see to what extent 

individual differences in information processing mechanisms can be found within older adults 

and how they can be related to psychometric intelligence. This would allow age-related 
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cognitive strengths and challenges to be better identified and understood, which could also 

help develop accurate assessments to test cognitive performance in old age. 

5.4 Conclusion 

In summary, the relationship between TRP and psychometric intelligence could be 

examined in more detail in four studies with the present dissertation. To this end, the 

relationship between TRP and psychometric was successfully replicated in three independent 

studies (1-3). In addition, the TRP hypothesis was confirmed concerning its relation to SIP 

(Study 1) and coordination of mental operations (Study 3). These behavioral findings were 

extended by examining the psychophysiological basis of TRP differences for the first time 

using EEG frequency and coherence analyses (Studies 2 and 4). No functional correlations 

were found, but as this is the first study investigating the psychophysiological basis of TRP, 

important starting points for further studies can be derived from these findings. Overall, the 

results contribute to the understanding of individual differences in psychometric intelligence 

by repeatedly showing, what an important predictor TRP is and providing first insights into its 

psychophysiological basis.  
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