
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
5
1
0
5

|

d
o
w
n
l
o
a
d
e
d
:

3
.
7
.
2
0
2
4

Seamless Immersion: The Crucial Role of E2E
Latency in 6DoF VR Content Delivery

Inaugural Dissertation
of the Faculty of Science,

University of Bern

presented by

Alisson Patrick Medeiros de Lima
from João Pessoa, Brazil

Supervisor

Prof. Dr. Torsten Braun
Institute of Computer Science

Faculty of Science of the University of Bern, Switzerland

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 3.0 Switzerland License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ch/ or write to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

https://www.inf.unibe.ch/
https://www.philnat.unibe.ch/
https://www.unibe.ch/
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
http://creativecommons.org/licenses/by-nc-nd/3.0/ch/

Seamless Immersion: The Crucial Role of E2E
Latency in 6DoF VR Content Delivery

Inaugural Dissertation
of the Faculty of Science,

University of Bern

presented by

Alisson Patrick Medeiros de Lima
from João Pessoa, Brazil

Supervisor

Prof. Dr. Torsten Braun
Institute of Computer Science

Faculty of Science of the University of Bern, Switzerland

Accepted by the Faculty of Science.

Bern, February 2024 The Dean:
Dr. Marco Herwegh

https://www.inf.unibe.ch/
https://www.philnat.unibe.ch/
https://www.unibe.ch/

Copyright Notice

This work has different copyright licenses and is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Switzerland (CC BY-NC-ND 3.0 CH) where not
diferently stated. https://creativecommons.org/licenses/by-nc-nd/3.0/ch/

Under the CC BY-NC-ND 3.0 CH license, you are free to:

s copy and redistribute the material in any medium or format.

Respecting the following conditions:

b Attribution. You must give the original author credit.

n Non-Commercial. You may not use this work for commercial purposes.

d No derivative works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must take clear to others the license terms of this work.

Any of these conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author’s moral rights according to Swiss law.

The detailed license agreement can be found at: https://creativecommons.org/licenses/
by-nc-nd/3.0/ch/

In reference to IEEE and Elsevier copyrighted material used with permission in this
thesis, the IEEE and Elsevier do not endorse any of University of Bern’s products
or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE or Elsevier copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution, please
go to https://www.ieee.org/publications/rights/rights-link.html and https:

//www.elsevier.com/about/policies/copyright/permissions to learn how to obtain
a License from RightsLink®.

https://creativecommons.org/licenses/by-nc-nd/3.0/ch/
https://creativecommons.org/licenses/by-nc-nd/3.0/ch/
https://creativecommons.org/licenses/by-nc-nd/3.0/ch/
https://www.ieee.org/publications/rights/rights-link.html
https://www.elsevier.com/about/policies/copyright/permissions
https://www.elsevier.com/about/policies/copyright/permissions

ii

Abstract

The fifth generation (5G) and sixth generation (6G) mobile communication systems are
envisioned to support several low latency applications, such as Virtual Reality (VR), through
Ultra-Reliable Low-Latency Communications (URLLC). This thesis provides significant
contributions to address the challenges of low latency communications and processing for VR
applications. The contributions are categorized into three research areas. First, we investigate
a resource provisioning mechanism that guarantees resource availability and prioritization
for real-time VR services. Second, we develop an edge framework to orchestrate VR services
through offloading and migration strategies considering the requirements of Six Degrees of
Freedom (6DoF) VR applications. Lastly, we propose a novel network routing strategy, which
optimizes the latency performance for 6DoF VR applications by calculating paths based on
their latency requirements.

In the first contribution, we show that our solution provides several improvements compared
to state-of-the-art solutions, in which we enhance the resource provisioning requests for
high-priority VR services, reduce the amount of over-provisioning resources in edge servers,
and reduce the overall service outages whenever edge resources become unavailable. In
the second contribution, we demonstrate that our solution outperforms widely adopted
mechanisms for service migration to reduce End-to-end (E2E) latency in exchange for a
moderate increment in power consumption. We also show significant gains in selecting
higher video resolutions for 6DoF VR applications based on E2E latency while providing
more accepted context migrations. Finally, in the third contribution, we implement and
compare state-of-the-art routing algorithms against our proposal. We consider the Key
Performance Indicators (KPIs) flow network latency, path latency, over-provisioned latency,
E2E latency, flow network throughput, frame rate, video resolutions, and execution time.

The proposed approaches in this thesis hold significant importance for the future of VR
applications, particularly in reducing latency and enhancing user experiences. With the
growing demand for immersive and interactive VR content, achieving ultra-low latency
becomes critical. Therefore, the dynamic resource provisioning mechanism, the VR service
orchestration, and the novel network routing strategy developed in this thesis contribute
to overcoming the technical limitations of VR systems and maximizing the potential of
edge computing. The findings presented in this thesis offer insights for network operators,
service providers, and researchers seeking to advance the state-of-the-art in low latency VR
applications.

iii

List of Publications

Paper [1]

A. Medeiros, T. Braun, A. Di Maio, and A. Neto, “REACT: A Solidarity-based Elastic Service
Resource Reallocation Strategy for Multi-access Edge Computing,” Physical Communication,
p. 101 380, 2021.

Paper [2]

A. Medeiros, A. Di Maio, T. Braun, and A. Neto, “Service Chaining Graph: Latency-and
Energy-aware Mobile VR Deployment over MEC Infrastructures,” in Global Communications
Conference, IEEE, 2022, pp. 6133–6138.

Paper [3]

A. Medeiros, A. Di Maio, T. Braun, and A. Neto, “TENET: Adaptive Service Chain
Orchestrator for MEC-enabled Low-latency 6DoF Virtual Reality,” IEEE Transactions on
Network and Service Management, vol. 20, no. 3, 2023.

Paper [4]

A. Medeiros, A. Di Maio, and T. Braun, “FLATWISE: Flow Latency and Throughput
Aware Sensitive Routing for 6DoF VR over SDN,” IEEE Transactions on Network and Service
Management, 2023. Submitted

iv

List of Figures

1.1 Multimedia Services Evolution. 2
1.2 Throughput and Latency Requirements for new Multimedia Applications. . . . 5

2.1 Cloud, Telco Cloud, and Telco Edge Latencies. 14
2.2 Extreme Requirements to Support VR Applications. 18
2.3 Full-view and FoV E2E Transmission Processing Pipeline for VR Content 21
2.4 Viewing angle for 3DoF and 6DoF VR. 22
2.5 Edge Computing Infrastructure to Support 6DoF Processing. 24
2.6 Internet Infrastructure Architecture. 25
2.7 Approaches to managing and providing network services. 26

3.1 REACT System model. 47
3.2 REACT Architecture . 49
3.3 Conditions to enable the REACT solidarity approach. 50
3.4 Testbed deployment for REACT and Kubernetes experiments. 54
3.5 Impact of REACT and Kubernetes mechanisms to accomplish elasticity events

throughout the testbed. 56
3.6 Acceptance ratio of elasticity events. 56
3.7 Influence of REACT and Kubernetes elasticity mechanisms in the testbed

concerning service outages. 57
3.8 Elasticity attempts accomplished in the testbed due to the REACT and

Kubernetes mechanisms. 58
3.9 Effect in the residual resources led by REACT and Kubernetes elasticity

mechanism on the testbed. 58
3.10 Cumulative residual resources behavior led by REACT and Kubernetes

elasticity mechanism in the testbed. 59
3.11 Processing time that REACT and Kubernetes take in the testbed to accomplish

elasticity events. 59

4.1 Service chain graph deployment on the network. 64
4.2 TENET’s zones scheme. 71
4.3 TENET architecture. 72
4.4 Physical 5G network infrastructure map of the cities of Geneva, Bern and Zurich. 74

v

4.5 Generated 5G network infrastructure connectivity of the cities of Bern, Geneva,
and Zurich over different radii. 75

4.6 Frames benchmarking of Echo VR and Elixir games running on Meta HMD. . . 79
4.7 Computational latency benchmarking of different tasks for Echo VR and Elixir

games running on Meta HMD. 80
4.8 GPU, CPU, and power consumption benchmarking of Echo VR and Elixir

games running on Meta HMD. 82
4.9 Trade-off between average E2E latency L and average power consumption Ψ. . 83
4.10 Performance evaluation of end-to-end latency and its convergence for the

topologies of Bern, Geneva, and Zurich. 84
4.11 Performance evaluation of HMDs power consumption for Bern, Geneva, and

Zurich. 85
4.12 Average of total HMDs using resolutions 8k, 4k, 1440p, and 1080p over different

radii r for the city of Bern. 86
4.13 Average of total HMDs using resolutions 8k, 4k, 1440p, and 1080p over different

radii r for the cities of Geneva and Zurich. 87
4.14 Average application context acceptance and rejection migrations over different

radii r for the cities of Bern, Geneva, and Zurich. 88
4.15 Average of total execution time to provide placement for all services over

different radii r for the cities of Bern, Geneva, and Zurich. 89

5.1 FLATWISE System Model Representation. 93
5.2 FLATWISE zone scheme to support routing with E2E latency awareness to

select the optimal source node, from which the MEC server attached to it
supports the offloading of VR services while minimizing the E2E latency. 98

5.3 Network graph with network latencies and throughputs for each edge (i, j) ∈
E, where s and t represent the source and destination nodes. 100

5.4 Physical 5G network infrastructure map of the cities of Geneva, Bern, and Zurich.103
5.5 Generated 5G network infrastructure connectivity of the cities of Bern, Geneva,

and Zurich over different radii. 103
5.6 Performance evaluation of average flow network latency for Bern, Geneva, and

Zurich topologies over different radii. 108
5.7 Performance evaluation of path latency for Bern, Geneva, and Zurich

topologies over different radii. 109
5.8 Performance evaluation of over-provisioned latency for Bern, Geneva, and

Zurich topologies over different radii. 110
5.9 Performance evaluation of E2E latency for Bern, Geneva, and Zurich topologies

over different radii. 111
5.10 Performance evaluation of average network throughput for the cities of Bern,

Geneva, and Zurich over different radii. 112
5.11 Performance evaluation of average frame rate for the cities of Bern, Geneva,

and Zurich over different radii. 114

vi

5.12 Performance evaluation of video resolutions for strong-interaction VR services
for Bern, Geneva, and Zurich over different radii. 115

5.13 Performance evaluation of video resolutions for weak-interaction VR services
for Bern, Geneva, and Zurich over different radii. 116

5.14 Performance evaluation of average algorithm execution time for the cities of
Bern, Geneva, and Zurich over different radii. 118

vii

List of Tables

2.1 Comparison of REACT with related works towards optimal MEC-tailored
elasticity. 33

2.2 Comparison of TENET algorithm to related works. 38
2.3 Comparison of FLATWISE algorithm to related works. 42

4.1 Simulation parameters. 77

5.1 Widest Shortest Path, Shortest Widest Path, and FLATWISE flow processing of
flow f1, where f1(s, t,∅, 30 Mbit/s). 100

5.2 Widest Shortest Path, Shortest Widest Path, and FLATWISE flow processing
with throughput guarantees for flows f1 and f2, where f1(s, t, 6 ms, 25 Mbit/s)
and f2(s, t, 3 ms, 55 Mbit/s). 101

5.3 Network KPI requirements in different phases of VR implementation. 105

viii

List of Acronyms

3DoF Three Degrees of Freedom.

6DoF Six Degrees of Freedom.

AR Augmented Reality.

ATW Asynchronous TimeWarp.

AVS Automotive Video Streaming.

CDN Content Delivery Network.

CPU Central Processing Unit.

DO DSCP-Optimal.

DSCP Distributed Service Chain Problem.

E2E end-to-end.

FLATWISE Flow Latency and Throughput Aware Sensitive Routing.

FoV Field of View.

FPS Frames per Second.

GPU Graphics Processing Unit.

HMD Head-Mounted Display.

JFA Joint Flow Allocation.

KPI Key Performance Indicator.

MEC Multi-access Edge Computing.

MTP Motion to Photon.

ix

MVR Mobile Virtual Reality.

NFV Network Function Virtualization.

OOM Out of Memory.

PoP Point of Presence.

QoE Quality of Experience.

QoS Quality of Service.

RAN Radio Access Network.

REACT MEC-suppoRted sElf-adaptive elAstiCiTy.

RTT Round-Trip Time.

SCG Service Chaining Graph.

SDN Software-Defined Networking.

SFC Service Function Chaining.

SLA Service-Level Agreement.

SP Shortest Path.

SWP Shortest-Widest Path.

TENET disTributed sErvice chaiN orchEstraTor.

URLLC Ultra-Reliable Low-Latency Communications.

VM Virtual Machine.

VNF Virtual Network Function.

VPA Vertical Pod Autoscaler.

VR Virtual Reality.

WP Widest Path.

WSP Widest-Shortest Path.

x

Contents

List of Publications iii

List of Figures iv

List of Tables vii

List of Acronyms viii

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Problem Statement . 7
1.4 Thesis Contributions . 8
1.5 Thesis Outline . 12

2 Background and Related Works 13
2.1 Background . 13
2.2 Related Works . 30
2.3 Chapter Conclusions . 43

3 Enhancing VR Deployment over Edge Networks 44
3.1 Introduction . 44
3.2 System Model and Problem Formulation . 46
3.3 Edge Resource Provisioning with REACT . 48
3.4 Experiment Setup . 53
3.5 Performance Evaluation . 55
3.6 Chapter Conclusions . 60

4 Orchestration of 6DoF VR Services 61
4.1 Introduction . 61
4.2 System Model and Problem Formulation . 63
4.3 Managing Mobile VR Services with TENET . 68
4.4 Experiment Setup . 73
4.5 Performance Evaluation . 78

xi

4.6 Chapter Conclusions . 90

5 Latency Sensitive Routing Algorithm for VR 91
5.1 Introduction . 91
5.2 System Model and Problem Formulation . 93
5.3 Calculating Paths for VR Flows with FLATWISE 96
5.4 Experiment Setup . 102
5.5 Performance Evaluation . 107
5.6 Chapter Conclusions . 119

6 Conclusions and Future Work 120
6.1 Summary of Contributions . 120
6.2 Future Work . 124

Bibliography 125

1

Chapter 1

Introduction

1.1 Overview

The next generation of Virtual Reality (VR) systems is set to undergo a significant
transformation with the emergence of new video technology, such as Six Degrees of
Freedom (6DoF), which allows users movement in 3-dimensional space, considering head
position, head movement, and overall orientation to enable more immersive and interactive
experiences [5]. 6DoF videos will feature higher resolutions and higher frame rates, requiring
End-to-end (E2E) latency less than 5 ms for VR applications with strong interactions [6]. This
advancement pushes the boundaries of visual quality and realism, requiring bitrates over
1 Gbit/s, where the network infrastructure must deliver ultra-low latency of less than 1 ms [7].
Beyond network optimization, the underlying edge infrastructure and VR Head-Mounted
Displays (HMDs) are crucial in maintaining real-time responsiveness and preserving the
sense of presence within the virtual environment [8]. Consequently, the widespread adoption
of 6DoF VR applications is likely to impose a considerable network infrastructure and edge
computing effort to meet future video technology demands, which can potentially introduce
bottlenecks and congestion to the network infrastructure [9].

Today’s Head-Mounted Displays (HMDs) are typically resource-constrained in terms of
Central Processing Unit (CPU), Graphics Processing Unit (GPU), and energy. Deploying
6DoF VR applications requires multiple parallel decoders to speed up the decoding process.
This underscores the need for efficient and optimized delivery mechanisms for 6DoF VR
applications to ensure smooth and immersive experiences. Consequently, the computing
power demands of 6DoF VR applications are significant, and it is limited to edge streaming
scenarios where high computational resources are available. Therefore, this thesis investigates
how reducing the E2E latency enhances the content delivery to VR systems. We consider
latency optimizations in network infrastructure, edge computing, and VR HMDs to achieve
this goal. We develop new strategies to reduce the E2E latency for 6DoF VR applications,
in which we consider the deployment prioritization of compute-intensive VR tasks in the
network edge, optimizations on the placement of VR tasks during user mobility, and a new
routing approach based on network and throughput requirements of 6DoF VR applications.

2 1.2. Motivation

1.2 Motivation

The realization of the 5G and 6G architectures is guided by novel technologies and new trends
in user demands for modern applications, such as tactile Internet, autonomous vehicles,
immersive media services, eHealth, etc [10]. However, the constant evolution of multimedia
services has imposed several challenges to support new video technologies, more advanced
resolutions, and higher frame rates, where the user experience goes from single sense to five
senses: vision, hearing, touch, taste, and smell. As a result, such applications require superior
network capabilities in terms of scalability, bandwidth, and latency. The main challenges
are related to the network infrastructure, which must support much higher bandwidth
while offering ultra-low network latency [11]. Figure 1.1 shows the evolution of multimedia
services in which applications have rapidly increased their bandwidth requirements from
1 Mbit/s to over 1 Gbit/s, with expectations of reaching over 1 Tbit/s in the future.

1-5

Mbps

1-5

Mbps

HD

(1080p)

1-5

Mbps

HD

(1080p)

100-500

Mbps

100-500

Mbps

360°
(16k)

100-500

Mbps

360°
(16k)

15-25

Mbps

15-25

Mbps

360°
(4K)

15-25

Mbps

360°
(4K)

0.5-2

Gbps

0.5-2

Gbps

AR/ VR / Hologram

(point cloud)

0.5-2

Gbps

AR/ VR / Hologram

(point cloud)

100 Gbps

to

2Tbps

100 Gbps

to

2Tbps

AR / VR / Hologram

(light field)

100 Gbps

to

2Tbps

AR / VR / Hologram

(light field)

> 2 Tbps> 2 Tbps

Future advanced

and immersive

applications

> 2 Tbps

Future advanced

and immersive

applications

FIGURE 1.1: Multimedia Services Evolution.

To support those new applications, especially latency-sensitive, applications must offload
their computing-intensive tasks (services) to edge computing [12]. Edge computing refers to
the enabling technologies allowing computation to be performed at the edge network on
downstream data on behalf of cloud services [13]. Besides, edge computing can potentially
address the concerns of battery life constraints, bandwidth cost saving, and latency reduction
for multimedia services. A service is defined as a virtualized instance of a physical function
that is cloudified and offloaded to cloud hosts or network edges, e.g., video encoding, video
transcoding, load balancing, content caching, network address translation, etc [14]. One of
the main benefits is the reduction of the computational latency that can be reduced by using
specialized edge infrastructures to process high-intensive computing tasks.

1.2. Motivation 3

Resource Provisioning in Edge Computing Infrastructures

Modern immersive communication systems like VR demand extreme network and computing
performance. Their quality depends significantly on the mobile network infrastructure’s
elasticity. Resource elasticity is defined as a system’s ability to adapt to service workload
fluctuations by adjusting resource configurations and provisioning close to the demand [15].
Therefore, elasticity strategies to support stringent and heterogeneous requirements imposed
by current and upcoming 5G applications become essential to accelerate their adoption.
Following this trend, telecom operators have adopted the telco-cloud paradigm to support
on-demand edge computing resource elasticity [16]. Thus, they are broadly redefining their
cloud infrastructures following the Multi-access Edge Computing (MEC) concept to achieve
the requirements of 5G applications [17], [18].

MEC provides computing resources at the network edges, allowing telecom operators to
fulfill latency requirements for future applications and offer service delivery at the edge of
the mobile network [19]. One primary problem with MEC is its limited computing and
communication resources [20], [21]. This may negatively affect the Quality of Service (QoS)
for immersive systems in high-service demand situations, as network or MEC resources may
become insufficient to support them [22]. To maintain satisfactory QoS in these circumstances,
services typically migrate from overloaded to less-loaded MEC servers [23]. However, this
approach requires service check-pointing and restarting for stateful services, which may lead
to long service downtime if the migration process has to transfer a large amount of data [24].

When resources become scarce in MEC servers, the state-of-the-art elasticity mechanism
will not meet the ideal resource allocation of the new service load. Hence, the elasticity
mechanism triggers, in turn, the time-costly migration procedure, leading to the search for
another cloud or edge server to deploy the target service. Although the migration meets
the needed performance at another server, the resulting migration costs are too high, e.g.,
downtime and migration time, as the whole migration time is extremely time-consuming [14].
Optimal resource provisioning for MEC is an ongoing challenge [25]. On the other hand,
many works in cloud computing propose new resource-elasticity strategies [26]. However,
it is essential to develop elasticity strategies adapted to MEC since edge servers may run
out of resources as service providers offer more computing resources for applications as
consumer demand increases [27]. Developing resource management strategies tailored to
MEC is essential to guarantee immersive communication systems’ deployment.

State-of-the-art resource elasticity algorithms are reactive, where auto-scaling is started only
after the service’s resource usage crosses a predefined threshold. Some of the most popular
reactive elasticity solutions, such as Amazon EC2, Microsoft Azure, and Google Cloud
Platform, deploy heuristic auto-scaling schemes as reactive-based solutions meet cloud
demands [28]. For the schemes mentioned above, after an elasticity request, the elasticity
mechanism will fail to provide auto-scaling procedures when the requested resources are
no longer available in a particular MEC server. As a result, the reactive model is likely to
produce multiple attempts until it matches the resource configurations that suit the new

4 1.2. Motivation

service load. We define the time needed for the auto-scaling procedure to converge and find
a suitable resource allocation as elasticity attempt window. During the elasticity attempt window,
the service will suffer from quality degradation due to resource saturation until matching
optimal new resource patterns.

Due to the limited resource characteristics of MEC, its resources must be enhanced to support
immersive communication system deployments through resource elasticity strategies that
consider both MEC resource limitations and application requirements. Thus, we assume that
over-provisioned resources must exist in virtualized MEC servers that support multi-tenancy,
preventing virtual entities, e.g., containers and virtual machines, from being provisioned
whenever their load changes. However, this will result in the over-provisioning of MEC
resources and increase implementation costs. Based on this, new elasticity solutions tailored
to MEC systems capable of overcoming resource scarcity and resource over-provisioning are
needed to support the deployment of immersive systems. Among the various immersive
systems, in this thesis, we consider VR as the primary use case, which serves as the basis for
investigating the problems and solutions proposed in this thesis.

Virtual Reality, Head-Mounted Displays, and Six Degrees of Freedom Videos

VR systems artificially render a virtual environment with cognitive and sensorimotor
characteristics, providing an advanced immersive reality through 6DoF videos to support
both body and head motion, where the viewing direction and position can change [5].
Although VR systems have attracted considerable attention in recent years, it is infeasible
to meet the requirements to support 6DoF videos by processing 6DoF videos on HMDs [9].
Implementing 6DoF VR is challenging because it requires multiple decoders operating under
low latency and high bandwidth, leading to extreme computing power and high energy
consumption on VR HMDs. Beyond those requirements, providing 6DoF VR becomes more
challenging due to the VR interaction latency under the limited computation capability of
HMDs. Thus, the massive adoption of 6DoF VR depends on the processing capability of
HMDs to support unprecedented low latency and ultra-high throughput requirements. To
overcome technical limitations, VR systems rely on URLLC [29].

A primary computing latency bottleneck arises because VR systems comprise multiple
compute-intensive components (services), e.g., motion prediction, Field of View (FoV)
prediction, hand tracking, encoding, and decoding, where some service inputs depend on the
output of other services. In general, the required E2E latency is in the order of milliseconds.
It has been pointed out that an E2E latency of more than 5 ms for advanced VR applications
would lead to cybersickness [6], [30]. To put this challenge in perspective, a display running
at 60 Hz, 90 Hz, and 120 Hz is updated every 16.67 ms, 11.11 ms, and 8.33 ms, respectively [31].
To overcome the technical limitations of VR systems, e.g., computing processing, specialized
hardware platforms have been widely adopted in the field of VR to support the offloading of
VR-intensive computing services from VR HMDs, aiming to achieve low latency and reduce
energy consumption. This strategy significantly restricts VR applications by limiting the
user’s mobility range, particularly for tethered HMDs. Introducing wireless communications

1.2. Motivation 5

in VR systems dramatically extends VR applications for mobile users, as it unleashes VR’s
true potential by enabling Mobile Virtual Reality (MVR), i.e., wireless HMDs, to provide
user experience from anywhere at any time, where HMDs do not have wires to constantly
recharge their batteries or transfer data for tasks processed on specialized hardware [32], [33].

However, wireless VR also raises several technical challenges to support MVR applications [34].
For example, wireless (standalone) HMDs must rely on a constrained onboard computing
capability and limited energy supply for their operation merely by HMD processing [35].
Consequently, 6DoF VR applications are most likely restricted to edge streaming scenarios
due to their high computing power demands [8], [20], [21]. Since it is impractical to use
specialized hardware platforms to support VR use cases with high mobility features, e.g.,
VR-Automotive Video Streaming (AVS), MEC arises to support VR technical limitations
by deploying computing and service delivery at the network edge to process VR-intensive
computing services [20], [21]. However, coordinating such a plethora of VR services,
especially during user mobility, yields several challenges.

4K/8K HD HologramAR / VR4K/8K HD HologramAR / VR

Latency Latency

Throughput Throughput

35 Mbps

to

140 Mbps

25 Mbps

to

5 Gbps

4 Tbps

to

10 Tbps

15 ms

to

35 ms

5 ms

to

7 ms

submilliseconds

FIGURE 1.2: Throughput and Latency Requirements for new Multimedia Applications.

Network Throughput and Latency Challenges to Support Multimedia Applications

Although edge network helps to reduce the computational complexity of running VR
applications, using edge networks is insufficient to meet the stringent requirements of 6DoF
VR applications. Therefore, the network infrastructure must be optimized to handle the
new demands of 6DoF VR applications. Even considering that extreme communication
requirements, e.g., latency and throughput, will be achieved by 6G networks, the constrained
computation, network latency, and energy consumption impose restrictions on processing
6DoF videos on VR HMDs [36]. Moreover, strong interaction for VR services, i.e., Cloud VR
games, should have Round-Trip Time (RTT) at a maximum of 5 ms. These VR applications
demand bandwidth from 1 Gbit/s to 5 Gbit/s [7]. For advanced VR immersion experiences,
i.e., full-view 24 K 3D video, a RTT below 10 ms is required. Figure 1.2 shows the relationship
between throughput and latency for new multimedia applications, such as VR, Augmented
Reality (AR), and holograms, where throughput goes higher, whereas E2E latency falls lower.

6 1.2. Motivation

To address the challenges by evolving VR video content, network optimization becomes a
critical aspect of ensuring seamless transmission and user experience. To improve the current
network infrastructure management, Software-Defined Networking (SDN) emerges as a new
architecture that can provide highly flexible traffic routing and network resource management
for immersive communications [37], [38]. Traditionally, Internet routing protocols prioritize
network throughput over network latency since most video applications do not have stringent
latency requirements [39].

Conventional routing protocols like IGRP and EIGRP consider factors such as throughput,
latency, and network load when selecting paths within a network. Typically, they select paths
with the highest throughput capacity while minimizing latency [40]. However, this strategy
fails to effectively optimize overall application throughput usage while providing low
latency for all VR users on the network. It overlooks how assigning a path to a specific flow
affects the network latency for other flows during periods of network congestion, in which
alternative paths prioritizing network throughput are often chosen, leading to increased
network latency [41].

Hence, allocating paths from VR flows to a cloud server can significantly influence network
congestion. Consequently, alternative paths are required to accommodate the unique
demands of different VR applications. The coordination of edge processing, network latency
reduction, and throughput insurance are crucial to achieve the lowest possible E2E latency
for VR applications while satisfying VR application QoS requirements. However, managing
a multitude of VR application flows, each with different deployment approaches, policies,
and requirements, while guaranteeing E2E latency and throughput in a large-scale network
scenario with congestion raises several challenges.

In this thesis, we primarily address the latency reduction for 6DoF VR and the challenge
of supporting their deployment over edge networks while meeting their stringent latency
requirements in the network infrastructure. Therefore, we design and evaluate solutions to
minimize the E2E latency for 6DoF VR applications, where we consider optimizations in VR
HMDs, the network edge infrastructure, and network infrastructure. To achieve this goal, we
investigate different research areas such as dynamic resource provisioning and deployment
prioritization of VR services over edge networks, the efficient VR service orchestration,
offloading, and migration over edge networks, and the design and investigation of a new
routing strategy to support ultra-low latency requirements for 6DoF VR in constrained SDN
environments. First, we explore a novel edge computing resource provisioning approach to
ensure the availability and prioritization of resources for real-time VR services deployed at
the network edge. Second, we develop an edge framework to orchestrate VR services through
offloading and migration strategies considering the requirements of 6DoF VR applications to
minimize the overall E2E latency. Lastly, we propose a novel network routing strategy that
optimizes the latency performance of 6DoF VR applications by approximating the latency
of the calculated paths to the latency required by each VR application. The research areas
addressed in this thesis, the research questions, and the contributions are described in the
following sections.

1.3. Problem Statement 7

1.3 Problem Statement

This thesis explores innovative strategies to achieve low-latency communications and
processing for VR applications. It addresses the challenges posed by 6DoF VR systems, which
require exceptionally low latency to ensure an immersive and responsive experience. The
research encompasses three primary areas of investigation, each targeting specific aspects
of achieving low latency for 6DoF VR systems. These areas are introduced in the following
sections with concrete research questions that guide the study.

1.3.1 Resource Provisioning and Prioritization for VR over Edge Networks

With the growing demand for immersive and interactive VR experiences, edge computing
has emerged as a promising solution to support VR-intensive computing tasks, which are
offloaded from VR HMDs to the network edge to support the latency requirements of such
applications while reduces the energy consumption on VR HMDs. However, supporting
VR service deployment on edge networks while providing resource provisioning guarantees
in a scenario with limited resources is challenging. Therefore, the problem of resource
scarcity at the network edge can harm VR-intensive computing services that are sensitive to
latency. This is because VR services require different resource provisioning patterns, and the
edge infrastructure may only accommodate some of these services. To address this issue,
the following research questions have been developed to provide a resource provisioning
mechanism to support the deployment of VR tasks.

Research Question 1.1: How to design a resource provisioning mechanism for edge
computing infrastructures to support the deployment of multiple heterogeneous VR
services?

Research Question 1.2: How can the resource scarcity problem be effectively addressed in the
coexistence of several VR services deployed on a shared edge infrastructure?

Research Question 1.3: How to prioritize the resource provisioning of VR intensive-computing
tasks in a distributed edge infrastructure with limited computing resources?

1.3.2 Service Orchestration, Offloading, and Migration to Support 6DoF VR

To overcome the technical limitations of VR systems, e.g., computing processing, specialized
hardware platforms have been widely adopted in the field of VR to support the offloading
of VR-intensive computing services from VR HMDs, aiming to achieve low latency and
reduce energy consumption. However, this strategy significantly restricts VR technology’s
application domain by limiting user’s mobility range. Consequently, 6DoF VR is most likely
restricted to edge streaming scenarios due to its high computing power demands, where VR
services, e.g., encoding, decoding, are deployed on the network edge. However, coordinating
such a plethora of VR services, especially during user mobility, yields several challenges,
which are described through the following research questions.

8 1.4. Thesis Contributions

Research Question 2.1: How can VR services be distributed across the MEC infrastructure to
reduce the E2E latency of VR applications?

Research Question 2.2: What is the trade-off between the VR application’s E2E latency
and the mobile HMD’s energy consumption by adopting different strategies for offloading
VR-intensive computing services from mobile HMDs to MEC infrastructure?

Research Question 2.3: How does the decision on where VR services are deployed impact the
E2E latency, and how does it affect the selection of video resolutions for VR systems?

1.3.3 Network Routing Strategy to Support Ultra-low Latency for 6DoF VR

To address the challenges posed by evolving VR video content, network optimization
becomes a critical aspect of ensuring seamless transmission and user experience. Traditionally,
Internet routing protocols were designed to prioritize network throughput over network
latency because delivering the content was the primary goal. Thus, paths between video
clients and servers are selected, considering throughput as the primary metric. However,
this strategy fails to optimize overall application throughput while providing low latency
for 6DoF VR applications. It overlooks how path assignments affect network latency for
other flows during congestion, leading to increased network latency, and does not provide
paths with throughput and latency guarantees. To address this issue, the following research
questions have been considered to design and investigate a novel network routing strategy
to support ultra-low latency requirements for 6DoF VR applications.

Research Question 3.1: How does the decision on the path of a 6DoF VR flow impact network
latency and throughput for subsequent application flows in a large-scale network?

Research Question 3.2: How can overall network latency and throughput be optimized for
applications deployed on the network?

Research Question 3.3: How does processing latency impact the decision on which path must
be selected to fulfill the requirements of 6DoF VR applications?

1.4 Thesis Contributions

The contributions of this thesis are categorized into three parts associated with the three
research areas mentioned above. The first part includes the work in Paper [1], which
addresses the research questions in research area 1.3.1. This part provides a dynamic resource
provisioning mechanism to prioritize VR services with heterogeneous requirements deployed
in edge infrastructures. The second part includes the works in Paper [2] and Paper [3], which
addresses the research questions in research area 1.3.2. In this part, we develop an edge
framework to orchestrate VR services by proposing offloading and migration strategies
that consider the requirements of 6DoF VR applications to minimize E2E latency. Finally,
the third part includes the work in Paper [4], which addresses the research questions in
research area 1.3.3. This part proposes a new network routing strategy to support E2E latency
requirements for 6DoF VR applications. The main works are summarized as follows.

1.4. Thesis Contributions 9

1.4.1 Resource Provisioning and Prioritization for VR over Edge Networks

To answer the research questions in Section 1.3.1, in Paper [1], a resource provisioning
mechanism is presented to provide resource guarantees and prioritization to real-time VR
services, which are offloaded and deployed in MEC infrastructures. However, to provide
latency guarantees for high-priority VR services, their performance must be ensured when
the edge infrastructure resources become scarce, where edge resources must be allocated
for such services whenever needed, regardless of the resources available in each VR server.
To address this problem, we present MEC-suppoRted sElf-adaptive elAstiCiTy (REACT), a
mechanism that leverages resource provisioning among different VR services running on a
shared MEC server. The main goal of REACT is to minimize the harmful effects of service
migration while keeping more services running over the same MEC server.

REACT adopts an adaptive and solidarity-based strategy to redistribute resources from
over-provisioned services to under-provisioned VR services over MEC infrastructures.
REACT is an alternative strategy to avoid service migration due to resource scarcity. The
key idea of the REACT is to prioritize resource provisioning for real-time VR applications,
especially those sensitive to latency. With such prioritization, REACT enhances the
performance of high-priority VR services, especially when the edge infrastructure resources
become scarce. We design our resource provisioning approach considering that VR
computing-intensive services, such as 6DoF VR services, take priority (high-priority services)
over other services classified as low-priority services.

We consider a resource-constrained edge infrastructure to evaluate our approach against
Kubernetes, a reactive algorithm baseline approach to provide resource provisioning in
MEC servers. The considered edge infrastructure consists of interconnected MEC servers,
each offering different computing and memory resources to a set of running services, each
with distinct and specific resource requirements. Our evaluation assesses both REACT and
Kubernetes’ performance on a real testbed, in which the following KPIs are considered:
elasticity events accomplishment (auto-scaling events), acceptance ratio of elasticity events,
service outages, elasticity attempts (auto-scaling requests), residual resources, and response
time. To assess their impact in handling elasticity events, both Kubernetes and REACT adopt
the same elasticity approach to scale-up/down resources of MEC services.

Real testbed results show that REACT outperforms Kubernetes’ elasticity approach by
accomplishing up to 18% more elasticity events, reducing service outages by up to 95%,
reducing elasticity attempts by up to 95%, reducing over-provisioned resources by up to 33%,
38%, and 73% for CPU cycles, RAM and bandwidth resources, respectively. Finally, REACT
reduces response time by up to 15%. The results suggest that, in edge resource scarcity
situations, REACT improves resource provisioning requests for high-priority VR services
compared to Kubernetes, optimizes resource provisioning in edge computing infrastructures
by reducing the amount of over-provisioning resources, and reduces the overall service
outages whenever MEC resources become unavailable. A detailed description of this solution
is presented in Chapter 3.

10 1.4. Thesis Contributions

1.4.2 Service Orchestration, Offloading, and Migration to Support 6DoF VR

To answer the research questions in Section 1.3.2, in Paper [2] and Paper [3], we propose
disTributed sErvice chaiN orchEstraTor (TENET), a new edge orchestrator to refactor 6DoF
VR applications into atomic services to increase the computing capacity of VR systems aiming
to reduce the E2E latency of 6DoF VR applications. Those services are chained and deployed
across HMDs and MEC servers in high mobility scenarios over real-edge network topologies.
We provide algorithms for latency and energy trade-off, path calculation based on E2E latency,
and management of VR applications to ensure acceptable E2E latency along with TENET
architecture.

We also investigate the Distributed Service Chain Problem (DSCP) to find the optimal service
placement of services from a service chain such that its E2E latency does not exceed 5 ms.
DSCP problem isNP-hard. We provide an integer linear program to model the system, along
with a heuristic, TENET, which is one order of magnitude faster than optimally solving the
DSCP problem. We show that DSCP implementation is unfeasible whenever there are too
many VR users and network nodes. TENET supports offloading, migration, and orchestration
of VR services deployed across HMDs and MECs to ensure acceptable E2E latency for MVR
applications. Besides, TENET is developed according to an optimization problem that jointly
minimizes latency and power consumption. TENET also optimizes the selection of better
video resolutions for VR systems.

We evaluate the performance of Meta applications in terms of frame rate, computing
latency, and energy consumption to model service workloads [42]. We provide an extensive
evaluation in Meta HMD to model VR services with real workloads in a simulated
environment to demonstrate the benefits of orchestrating VR services over MEC servers
during user mobility. We use those application metrics to model 6DoF VR service workloads
in a simulated environment to evaluate system scalability, E2E latency, power consumption,
video resolution selection, context migrations, and execution time. We use a physical 5G
network infrastructure map of Bern, Geneva, and Zurich. Based on those topologies, we
model both network and computing latencies used in TENET simulation environment.

We compare TENET to DSCP implementation and well-known service migration algorithms
in terms of E2E latency, power consumption, video resolution selection based on E2E latency,
context migrations, and execution time. We discuss the importance of analyzing the latency
and power consumption trade-off for VR systems. Besides, we show that TENET reduces
E2E latency in exchange for power consumption over all cities compared to state-of-the-art
migration algorithms. We also show that TENET deploys VR services in edge servers with
more computing capacity, which provides more advanced video resolution, e.g., 8K, 4K,
1440p, and 1080p. We also demonstrate TENET accomplishes more accepted context service
migrations using its deployment strategy on VR services. Finally, we show that TENET can
process service placement as quickly as state-of-the-art migration algorithms. A detailed
description of these solutions is presented in Chapter 4.

1.4. Thesis Contributions 11

1.4.3 Network Routing Strategy to Support Ultra-low Latency for 6DoF VR

To answer the research questions in Section 1.3.3, in Paper [4], we present a novel
intra-domain routing algorithm with throughput guarantees for minimizing the overall
E2E latency performance for all 6DoF VR applications deployed in SDN infrastructures. Flow
Latency and Throughput Aware Sensitive Routing (FLATWISE) provides an adaptive routing
approach that can squeeze or relax the path calculation based on the E2E latency requirement
of 6DoF VR applications. FLATWISE approximates the E2E latency of the calculated path
with the E2E latency required by each 6DoF VR application by analyzing the impact of path
assignment on other 6DoF VR applications. It aims to overcome the limitations of current
routing protocols by providing reliable E2E latency and throughput guarantees.

FLATWISE analyzes the impact of 6DoF VR E2E latency requirements on path selection
decisions and the influence of path assignments on E2E latency for all VR applications
deployed on the network. Besides, FLATWISE provides an adaptive routing approach, where
it squeezes or relaxes the node selection in each iteration based on the achieved latency of the
path and the target latency required by each 6DoF VR flow. Therefore, the primary feature
of FLATWISE is to approximate the E2E latency of each calculated path to the E2E latency
required by each 6DoF VR application. As a result, FLATWISE can establish a dynamic
on-demand path calculation based on the E2E latency for each VR flow, where it can provide
different paths between any source and destination according to the latency requirement,
even with the same network conditions. FLATWISE also incorporates VR user location
awareness, network load balancing, and congestion-aware routing to ensure E2E latency
guarantees for 6DoF VR applications. By considering these features, FLATWISE prioritizes
the search of paths based on E2E latency, ensuring seamless and immersive experiences for
6DoF VR applications in scenarios with network congestion.

We investigate the Joint Flow Allocation (JFA) problem to find paths for all flows in a network
such that it determines the optimal path for each flow in terms of throughput and latency.
The JFA problem is NP-hard. We use Mixed Integer Linear programming to model the
system, along with a heuristic, FLATWISE, which is one order of magnitude faster than
optimally solving the JFA problem. We also provide algorithms for path allocation based
on latency awareness and show the importance of considering E2E latency awareness in the
path calculation process. We also show the practical implementation of FLATWISE compared
to the Widest-Shortest Path (WSP) and Shortest-Widest Path (SWP) approaches.

We assess our proposed method’s performance on a realistic simulated 5G network
infrastructure map of the cities of Bern, Geneva, and Zurich. Based on those topologies,
we model both network and computing latencies used in the FLATWISE simulation
environment. Extensive simulations demonstrate that FLATWISE significantly reduces
flow latency, over-provisioned latency, E2E latency, and algorithm execution time. Besides,
FLATWISE improves flow throughput and frame rate compared to related work approaches.
A detailed description of this solution is presented in Chapter 5.

12 1.5. Thesis Outline

1.5 Thesis Outline

This section provides a brief overview of the thesis structure. The rest of the thesis is
structured as follows.

Chapter 2 provides a comprehensive literature review, discussing existing research on
low-latency communications for VR applications. The theoretical background on 6DoF VR
systems is presented, elaborating on their characteristics and challenges. Moreover, related
research in network routing strategies, VR service orchestration, and resource provisioning
for VR services deployed on edge networks are explored to establish a foundation for the
subsequent chapters.

Chapter 3 introduces the resource provisioning mechanism REACT. This chapter explores
how to provide resource guarantees and prioritization for real-time VR services deployed on
MEC servers. The challenge of resource scarcity at the network edge is addressed. REACT’s
adaptive and solidarity-based strategy is discussed to show how to redistribute resources
among different VR services efficiently. This chapter also presents real testbed results
to demonstrate the superior performance of REACT compared to Kubernetes’ elasticity
approach, showcasing its benefits in reducing service outages, elasticity attempts, and
over-provisioned resources while improving response time.

Chapter 4 focuses on developing an edge framework for VR service orchestration. The
trade-off between the E2E latency of VR applications and the power consumption of mobile
HMDs is analyzed. The DSCP is introduced to optimize service placement for reduced E2E
latency. The formulation of the integer linear program for DSCP and the heuristic algorithm
TENET is detailed, along with their effectiveness in reducing latency and optimizing VR
service orchestration. The evaluation of TENET through simulations and comparison with
other service migration algorithms is also presented.

Chapter 5 introduces the proposed network routing strategy to support ultra-low latency
requirements for 6DoF VR applications. The JFA problem, which forms the basis of
our new routing approach, is explained in detail. The formulation of the integer linear
program for the JFA and the heuristic algorithm FLATWISE are presented, emphasizing
their role in optimizing E2E latency performance for VR applications. The evaluation of
FLATWISE through extensive simulations is discussed, and the results are compared against
state-of-the-art routing algorithms to showcase its efficacy in reducing E2E latency for 6DoF
VR applications.

Finally, Chapter 6 summarizes the thesis contributions, highlighting the key findings and
achievements of each research area. The implications of the results are discussed, and the
limitations of the proposed strategies are acknowledged. Areas for future research will be
identified to enhance further low-latency communications for 6DoF VR applications, aiming
to ensure the continuous development of innovative strategies in this field.

13

Chapter 2

Background and Related Works

2.1 Background

2.1.1 Edge Computing

Edge computing is a new paradigm that supports migrating computing tasks from remote
cloud servers to local edge servers, performing data preprocessing and analysis near the
data sources [43]. In such a scenario, MEC is an evolution of edge computing for mobile
use. MEC is a new concept that provides computation, storage, and processing functions to
the wireless network side [44]. MEC enables more mobile devices to quickly and efficiently
process their tasks. The main goal of the MEC is to export cloud functions to the mobile
network edge, increasing available bandwidth and reducing latency. Unlike the general
architectural model, mobile hardware architecture is used more in communications, using
multiple SDN controllers and virtualization to support data processing. Edge computing has
the potential to be seamlessly integrated into multiple applications, products, and services,
offering enhanced capabilities and improved efficiency. A few noteworthy examples of where
edge computing can be leveraged include:

• Internet of Things devices, such as smart appliances and sensors, can benefit from edge
computing. By executing code on the device itself rather than relying on cloud-based
processing, these devices can offer more responsive and efficient user interactions.

• Self-Driving Cars: Autonomous vehicles demand split-second decision-making
capabilities. Edge computing allows them to process data and react in real-time without
needing instructions from a distant cloud server.

• Video Conferencing: High-bandwidth applications like interactive video conferencing can
suffer from latency. By offloading decoders to the edge, the source of the video can be
brought closer to the processing, reducing latency and enhancing the quality of the video.

• VR and AR Task Offloading: AR and VR applications are data-intensive and demand low
latency. Edge computing can offload processing tasks to the edge, minimizing latency and
ensuring a more immersive and responsive experience for users of these technologies.

14 2.1. Background

The shift toward edge computing advances how VR videos are processed and delivered,
providing video decoding processing closer to VR users [45]. This proximity to the end-user
brings advantages, further expanding the range of possible applications. In the context of
VR and its associated use cases, achieving ultra-low latency and high bandwidth becomes
crucial. These two factors are critical for delivering a seamless and immersive VR experience.
Therefore, the stringent latency requirement of VR underscores the necessity of deploying
private 5G networks and adopting edge computing solutions, as they are indispensable in
guaranteeing the success of VR applications, where near-instantaneous data processing and
transfer are essential for optimal user experiences [46].

Network Edge Core Network Internet

 Remote processing

(Cloud)

HMD

Public Cloud: 50 to 100 ms

Telco Cloud: 20 to 50 ms

Telco Edge: 1 to 2 ms

Local processing

(MEC servers)

FIGURE 2.1: Cloud, Telco Cloud, and Telco Edge Latencies.

The latency plays a critical role in VR systems. In general, the required E2E latency is in the
order of milliseconds [47]. The current latency scenario is based on the cloud computing
environment and can vary between 50 ms and 100 ms. In a potential scenario, network
operators through telco-cloud deployments (supported by MEC) will enable latency between
20 ms and 50 ms. Telco cloud is a highly resilient cloud infrastructure that allows telecom
providers to deploy services more quickly and respond faster to changes in network demand.
Currently, the main telco cloud approaches are Open RAN, O-RAN, and vRAN.

While the telco cloud offers reduced latency, it still needs to meet the latency demands of
advanced VR applications. To achieve such ultra-low latency, telecom operators consider the
telco edge, which will offer latency from 1 ms to 2 ms or even down to 1 ms. The telco edge is an
initiative that promotes a federated solution in which applications and services are executed
and processed at a location close to the end user, allowing service providers to provide high
bandwidth at the edge and low latency services. Some authors argue that network latency
of more than 5 ms would lead to cybersickness, an uncomfortable and nauseating customer
experience for VR systems [6]. Therefore, most VR applications require latencies between
what telco clouds and telco edge can deliver. However, advanced VR applications require
ultra-low latency, which only telco edge can deliver. Figure 2.1 shows the network latency
requirements of cloud, telco cloud, and telco edge architectures.

2.1. Background 15

Virtualization

Virtualization has emerged as a pivotal technology in modern computing, revolutionizing
how IT resources are utilized and managed. Virtualization is the main characteristic of
cloud computing and edge computing approaches. In the dynamic landscape of cloud
computing and edge computing, virtualization is crucial in optimizing infrastructure,
enhancing scalability, and enabling efficient resource allocation. Therefore, virtualization
involves creating virtual instances of computing resources such as servers, storage, and
networks [48]. Its core principles include abstraction, isolation, and encapsulation, allowing
multiple virtualized instances to run on a single physical server.

The main benefits of virtualization in cloud and edge computing are:

• Resource Optimization: Efficient use of hardware resources, reducing costs.

• Scalability: Easily scale resources up or down based on demand.

• Flexibility: Support for diverse operating systems and applications.

• Disaster Recovery: Quick recovery through snapshots and backup capabilities.

Service Function Chaining

Service Function Chaining (SFC) is a concept in networking that involves the definition
and instantiation of an ordered set of network services to be applied to packets as they
traverse a network [49]. It is a method of specifying a sequence of network services that
should be applied to traffic flows in a network. Besides, SFC represents a network capability
that facilitates application-driven networking by orchestrating the orderly connection of
various service functions. The management of the lifecycle of these service function chains
is made possible through the integration of two relatively recent technologies: SDN and
Network Function Virtualization (NFV). These technologies offer the prospect of significant
enhancements in terms of efficiency, effectiveness, and flexibility within network operations.
The key components of a SFC architecture are described in the following.

• Service Function is a specific network capability or feature that can be applied to packets
as they pass through a network. Examples of service functions include firewalls, intrusion
detection systems, load balancers, and content filters.

• SFC is the ordered set or sequence of service functions that are to be applied to packets as
they traverse the network. The service functions are linked together to form a chain, and
traffic flows through these functions in the specified order.

• Classifier determines which service function chain a particular packet should follow based
on defined policies. It examines packet headers or other attributes to make this decision.

• Service Function Forwarder is responsible for encapsulating and forwarding packets to the
appropriate service functions based on the information provided by the classifier.

• Service Function Path represents the path through the network that a packet takes as it
traverses the specified service functions.

16 2.1. Background

SFC, coupled with the capabilities of virtualization, stands as a transformative technology
in modern network architectures. The dynamic orchestration of network services through
virtualized instances not only enhances efficiency and scalability but also paves the way for
innovative applications in emerging immersive services, such as AR, VR, holograms, etc.

Serverless Computing

Serverless computing is a cloud and edge computing execution model where service
providers automatically manage the infrastructure to execute and scale applications [50]. In a
serverless architecture, developers focus on writing code for their application’s functionality,
and the service provider takes care of the underlying infrastructure, including server
provisioning, maintenance, and scaling. The Key characteristics of serverless computing
include:

• No Server Management: Developers do not need to worry about server provisioning,
scaling, or maintenance. The service provider handles these tasks automatically.

• Event-Driven: Serverless applications are typically event-driven, meaning they respond to
events and triggers, such as changes in data or HTTP requests.

• Automatic Scaling: Serverless platforms scale applications automatically in response to the
number of incoming requests or events.

• Pay-per-Use Pricing: users are billed based on actual usage rather than pre-allocated
resources. This can result in cost savings.

Besides, the relationship between serverless computing and SFC has the following
characteristics:

• Decoupling of Services: Both serverless computing and SFC aim to decouple specific
functionalities or services from the underlying infrastructure. In serverless, this decoupling
is achieved by abstracting away servers entirely, while SFC decouples and orders network
services in a prescribed sequence.

• Event-Driven Architecture: Serverless applications often follow an event-driven
architecture, responding to triggers or events. Similarly, SFC is designed to facilitate
the ordered application of network services based on specific events or policies, aligning
with the dynamic nature of modern network requirements.

• Abstraction of Infrastructure: Both serverless and SFC abstract away the complexity of
managing underlying infrastructure. In serverless, developers are abstracted from servers,
and in SFC, the network service chain abstracts the network functions from the underlying
network infrastructure.

While serverless computing primarily addresses application deployment and execution in the
cloud or edge, SFC focuses on orchestrating and managing network services within a network
infrastructure. While they serve different domains, the shared context is the abstraction and
automation of underlying resources to enhance flexibility and efficiency.

2.1. Background 17

2.1.2 Virtual Reality

Virtual reality is a simulated 3D environment that enables users to explore and interact
with virtual surroundings in a way that approximates reality [51]. The environment is
created with computer hardware and software, where users might also need to wear helmets
or goggles to interact with the environment, such as HMDs. As a result, VR systems
have revolutionized how humans interact with machines, transitioning from traditional
two-dimensional interfaces to more immersive and interactive three-dimensional paradigms.

VR systems are expected to completely change how we interact with the world through a
new virtualized immersive environment. They play a critical role in cities’ future, including
education, transportation, health, entertainment, and media [11]. The leading VR goal is to
bring unprecedented experiences, providing an immersive level where users will feel part of
it [52]. Thus, advanced VR applications will offer interactions, visuals, and sounds so real that
users will achieve high-quality immersion experiences.

Challenges for Enabling High-quality Experiences in VR Systems

Several research fields are being investigated to achieve such an immersion level, including
sound quality, visual quality, and intuitive interactions. However, immersive media services,
especially VR, are emerging technologies relying on URLLC [34]. In practice, VR technology
provides a certain level of immersion because three main features are used simultaneously:
visual, sound, and interactions. However, these three main features must be improved
simultaneously to enable advanced immersive experiences for the next generation of VR
systems. In particular, VR demands stringent requirements in terms of low latency.

VR will offer unprecedented experiences and possibilities, such as immersive movies
and shows, live concerts, sports, and social interactions. Therefore, a uniform experience
characterizes most VR applications, in which VR applications can be used anywhere and
anytime, even in high mobility environments like cars, trains, or even head movement must
be considered [53]. One critical aspect of these applications is that problems like lags, stutters,
and stalls are unacceptable for user experience and comfort, especially during user mobility.

VR has posed several challenges to HMDs and the current network infrastructure in
supporting ultra-high throughput and ultra-low latency [54]. These challenges will become
dramatically challenging once VR applications become massively consumed. Thus, the
massive adoption of VR relies on how the next generation of HMDs and mobile networks
will achieve VR requirements. To overcome the requirements demanded by VR, the future
generation of HMDs and mobile networks have to support unprecedented requirements
for ultra-low latency and ultra-high throughput. In this scenario, VR E2E latency can be
classified as computing and network latency. There are several sources of latency in VR
systems. In particular, low latency responses are required for advanced VR videos that use
6DoF technology. Some latencies include sensor, cloud, or edge processing, network, requests
overhead, buffering, rendering, or feedback latency.

18 2.1. Background

ImmersionImmersion

Visual

Quality

Intuitive

Interactions

Sound

Quality

High

resolution audio

3D audio

High

resolution audio

3D audio

Natural user

interfaces

Seamless

interaction

Natural user

interfaces

Seamless

interaction

Spherical view

6DoF videos

E2E latency

reduction

Spherical view

6DoF videos

E2E latency

reduction

FIGURE 2.2: Extreme Requirements to Support VR Applications.

One of the main challenges is computing latency due to the hardware limitations VR
HMDs [6]. The computing latency is critical because the entire VR application is affected
if there is a lag in any VR task [31]. Another challenge is network latency because the
network must ensure ultra-low latency while supporting high bandwidth guarantees for
VR applications [55]. Therefore, supporting advanced VR applications through network
infrastructure presents several challenges, as these applications require low latency, high
bandwidth, and consistent connectivity to provide a seamless and immersive experience.
Figure 2.2 shows the extreme requirements to support advanced VR applications.

360o Video Content

These strict latency requirements relate to new video technologies, e.g., Three Degrees
of Freedom (3DoF) or 6DoF, that VR systems must support to provide more advanced
experiences [56]. Therefore, the user’s perspective within a virtual environment can be
conceptualized as a spatial sphere in a VR system. This conceptual sphere encompasses the
entire visual experience, where the horizontal FoV spans 360 degrees while the vertical FoV
covers 180 degrees. When a user engages with an HMD, each of their eyes captures a portion
of the comprehensive spherical data, the extent of which is contingent on the specific FoV
offered by the HMD being used. Unlike regular videos, spherical videos capture the entire
panoramic view, enabling users to choose their viewing direction freely.

2.1. Background 19

The potential for enhancing 360o content lies in incorporating interactions, a concept called
interactive 360o content. Nevertheless, the range of possible interactions remains restricted,
given that users cannot physically move their heads or hands within the virtual space.
Instead, they are confined to a fixed viewpoint and can only utilize a specific pointer for
interaction. This limitation draws a parallel to the diminished engagement experienced in
interactive videos.

The immersive nature of 360o video content provides a more engaging and interactive
experience for viewers. It’s often used in several applications, including virtual tours,
marketing campaigns, documentaries, and storytelling experiences. Viewers can feel present
in the environment or event captured in the video, enhancing the sense of immersion and
allowing for a more personalized and dynamic viewing experience.

Advanced Video Transmission for VR Systems

The process of transmitting 360o videos from cloud servers to HMDs involves the
implementation of two approaches, namely full-view transmission and FoV transmission.
These methods delineate the strategies for transmitting visual data across the network
infrastructure to facilitate immersive VR experiences [57]. The choice between those methods
depends on the specific use case, available technology, and the desired user experience.
Both methods have advantages and limitations, and the importance of this distinction lies
in tailoring the VR experience to meet the specific requirements and constraints of a given
application or scenario.

The full-view transmission scheme involves the transmission of 360-degree images from
cloud servers to user HMDs. In this approach, switching and rendering these images occurs
locally on the user’s device when users turn their heads within the virtual environment [58].
However, it is essential to note that VR imagery, despite maintaining the resolution of a single
eye, carries significantly higher data rates than conventional 2D videos. This substantial
increase in data requirements, typically five to ten times greater, is primarily attributed
to several factors, including the need for a higher frame rate, greater bit depth, and the
inherently panoramic nature of 360-degree content.

In the full-view transmission scheme, each data frame received by the user’s HMD contains a
comprehensive representation of the entire spatial sphere, encompassing the available visual
content. When users interact with the virtual environment by altering their viewing angles,
the corresponding interaction signals are processed locally on their HMDs [59]. Thus, HMDs
decodes the specific FoV information necessary for the user’s current perspective from the
frames they have already loaded, restoring the relevant visual data to provide users with a
seamless and natural viewing experience.

The core principle underlying the FoV transmission scheme revolves around prioritizing the
high-quality transmission of the portion of the VR environment that lies within the user’s
immediate FoV [60]. This approach entails sending only the visual data relevant to the
user’s perspective, conserving bandwidth and promoting efficiency. It is worth noting that,
at present, the specific technologies and standards for implementing the FoV transmission

20 2.1. Background

scheme have not yet been defined or standardized, representing a realm where ongoing
innovation and development continue to shape the landscape.

On the other hand, in the full-view transmission scheme, users often observe only a fraction
of the complete spatial sphere, with the remainder effectively consuming network bandwidth
without serving any purpose. This practice results in significant inefficiency, leading to the
substantial squandering of valuable network resources. To address this particular concern,
the industry has put forward a solution in the form of the FoV transmission scheme, which
seeks to transmit VR images in a manner that aligns with the user’s current FoV.

In content preparation, a full-view coding stream is generated with a deliberately
non-uniform quality distribution across different sections of the FoV. The FoV is essentially
divided into two distinct segments: (i) the region within the FoV itself, and (ii) the region
lying outside of it. High-quality coding techniques are employed within the FoV area to
ensure exceptional image quality, while lower-quality coding is applied outside the FoV. This
approach optimizes the utilization of network resources and encoding efficiency.

Full-view transmission and FoV transmission come with their challenges, such as high
bandwidth requirements, storage, processing, and ultra-low latency [61]. As a result,
transmitting these media types requires considerable effort from both the network
infrastructure and the HMD hardware [62]. Typically, The transmission of both full-view and
FoV content from cloud servers to VR HMDs involves different phases, which are:

• Point of Presence (PoP) Servers: PoP servers are strategically distributed across various
geographical locations to reduce latency and improve content delivery. These PoP servers
host the complete 360-degree VR content for full-view transmission. However, for FoV
transmission, PoP servers store only the portion of the VR environment corresponding to
the user’s field of view.

• Segmentation: VR content is divided into smaller segments or chunks to facilitate efficient
streaming. These segments are often based on time intervals or spatial regions, e.g.,
in degrees. Given the nature of full-view transmission, each segment covers the entire
360-degree sphere. However, in FoV transmission, the segments focus only on what the
user is looking at. This can be determined through user head-tracking data.

• Transcoding: Segments are transcoded into different quality levels to adapt to network
conditions and HMD capabilities. This step ensures that users with different HMD
hardware and network conditions can access the content optimally.

• Packaging: Transcoded segments are then packaged into a suitable format, such as HTTP
Adaptive Streaming or MPEG-DASH, allowing dynamic quality adjustment and seamless
playback.

• Content Delivery Network (CDN): The segmented, transcoded, and packaged content is
distributed across a CDN network. CDNs store these segments on edge servers close to the
VR users, reducing latency and improving delivery speed. Besides, considering the user’s

2.1. Background 21

location and head orientation, the CDN network ensures quick access to the FoV segments
that can be fetched directly from edge servers.

• Decoding: The HMD decodes the received segments from edge servers and combines
them to recreate the 360-degree view. VR users can freely navigate and explore the VR
environment and interact with other VR users. In FoV transmission, the HMD decodes
and displays only the relevant FoV segments corresponding to the user’s line of sight. As
the user moves and adjusts their gaze, the content within the FoV dynamically updates to
maintain a seamless experience.

VR device

Cloud (video source)

Video size

1920x1080 px

PoP Server
Segmentation /

transcoding
Packaging

Video size

1280x720 px

Video size

584x480 px

Video size

426x240 px

CDN distribution and

Caching

Streaming protocol

(HLS or DASH)

Decoding Video Player

FIGURE 2.3: Full-view and FoV E2E Transmission Processing Pipeline for VR Content

Figure 2.3 shows the entire transmission pipeline for both full-view and FoV schemes. The
key difference between full-view and FoV transmission lies in the segmentation and storage
at PoP servers. Full-view transmission encompasses the entire VR environment, while FoV
transmission selectively transmits and stores content relevant to the user’s field of view,
making it more bandwidth-efficient and responsive to user interactions.

22 2.1. Background

2.1.3 Three and Six Degrees of Freedom

The immersive quality of VR can be characterized by the extent of degree of freedom it
offers to users. The development of new video technology, e.g., 3DoF and 6DoF, provides
a more immersive and interactive experience for VR systems. This transformative technology
harnesses the power of omnidirectional content to transport VR users into fully immersive
virtual environments [63]. Omnidirectional content is captured to cover the entire 360-degree
FoV around the capturing device, effectively encapsulating the user’s visual perspective [62].
This approach to content creation allows for the generation of 3DoF or 6DoF experience within
the VR environment.

The immersive experience provided by VR can be characterized by the degrees of freedom
that VR systems grant to their users. Essentially, the extent and variety of degrees of freedom
available directly contribute to the richness and depth of the immersive encounter within
the VR environment. Consequently, depending on the specific degrees of freedom used
in the virtualized environment, the immersive experience can be segmented into distinct
phases, each representing a unique facet of the user’s interaction and engagement with the
virtual environment. These phases are structured around the multifaceted movements and
interactions users can perform, fundamentally influencing the nature and quality of the
overall immersive experience in VR.

Yaw

Ptich

Roll

Down

Backward

Left
Yaw

Ptich

Row

Three Degress of

Freedom (3DoF)

Six Degress of

Freedom (6DoF)

FIGURE 2.4: Viewing angle for 3DoF and 6DoF VR.

Figure 2.4 describes the standardization roadmap established by the Moving Picture Experts
Group [64]. This roadmap subdivides the standardization process of VR into two phases, e.g.,
3DoF and 6DoF, with each phase offering specific degrees of freedom within the VR domain.
On the one hand, 3DoF refers to the three rotational axis, which allows turning left/right
(yaw), looking up/down (pitch), and tilting the view (row). On the other hand, 6DoF refers to
a fully immersive experience, providing six degrees of freedom. This includes three rotational
degrees of freedom and three translational degrees of freedom, allowing users to not only
rotate their viewpoint but also move within and engage with the virtual environment. The
rotational movements supported by 6DoF are the following:

2.1. Background 23

• Elevation provides vertical movement of a VR user, encompassing actions such as bending
down or standing up. It enables users to change their viewing angle in the up and down
dimension within the virtual environment.

• Strafe entails lateral movement, allowing users to shift to the left or right, effectively
sidestepping within the virtual world. It enables users to modify their horizontal position
within the environment.

• Surge corresponds to the forward and backward movement of a user, like walking within
the virtual space. This feature facilitates dynamic transitions along the front-to-back axis.

• Rolling facilitates the swiveling movement of the head from side to side, enabling users
to peer around a corner or inspect objects from different angles. It introduces a rotational
aspect within the virtual world.

• Pitch provides the tilting motion of the head along a vertical axis, granting users the
capacity to gaze upwards or downwards. This movement allows for changes in the vertical
orientation of the viewpoint.

• Yaw supports the swiveling movement of the head along a horizontal axis, empowering
users to look to the left or right and alter their horizontal perspective. It introduces a
rotational aspect around the vertical axis.

Hence, through 3DoF or 6DoF, users can navigate and interact with this virtual environment,
making head movements and exploring different perspectives within a specific range.
However, achieving true immersion requires integrating high-resolution, high-quality, and
high frame-rate stereoscopic omnidirectional video content within VR technology. As a
result, HMDs have to withstand processing demands that were previously unimaginable
for mobile devices. This results in a high demand for high-speed data processing and high
energy consumption. Therefore, research evidence shows that it will only be possible to
achieve advanced immersion with 6DoF through the use of pre-processing of VR content at
the edge of the network [8], [9], [31].

The quality and resolution of the content are paramount, ensuring that the visual and audio
cues effectively fool the senses and immerse users within the virtual space. Furthermore,
maintaining a high frame rate is essential to deliver a smooth and responsive VR experience,
avoiding motion sickness and providing a convincing and comfortable environment [6].
The demand for such exceptional quality underscores the importance of technological
advancements in capturing, transmitting, and rendering omnidirectional content to realize
immersive VR experiences fully.

However, the major barrier that prevents VR 6DoF from being transmitted over the network
lies in the extremely high computational complexity, of which multi-view depth estimation
and depth image-based rendering are challenging [62]. Furthermore, network bandwidth and
latency are also challenging in a highly scalable scenario with several VR users consuming
6DoF content transmitted from cloud servers to VR HMDs [11].

24 2.1. Background

Cloud (video source)

CDN distribution and

Caching

Edge Network

HMD1 HMD2

Decoding

Decoding

Decoding

HMD1 services

Decoding

Decoding

Decoding

HMD2 Services

MEC1 MEC2

FIGURE 2.5: Edge Computing Infrastructure to Support 6DoF Processing.

As a result, VR 6DoF scenarios are limited to using specialized hardware platforms or edge
servers to process 6DoF videos before delivering them to the VR HMDs. Implementing 6DoF
VR streaming is challenging because it requires multiple decoders operating under low latency
and high bandwidth, leading to extreme computing power and high energy consumption
on VR HMDs. Beyond those requirements, providing 6DoF VR becomes more challenging
due to the VR interaction latency under the limited computation capability of HMDs. Thus,
the decoders are offloaded from VR HMDs to the network edge to process the 6DoF content
received from cloud servers. Afterwards, the content is aggregated, transmitted to the
HMDs, and displayed to VR users. Once VR users change their location, these decoders
can be migrated to servers closer to the user. This reduces the latency for transferring the
6DoF video once processed. Figure 2.5 shows the edge computing infrastructure to support
6DoF video processing. Since network edge processing can address computational latency
requirements, network latency, and bandwidth requirements are challenging due to the tight
coupling of today’s network infrastructure. Therefore, Internet routing plays a crucial role
in supporting ultra-low latency requirements for 6DoF videos in highly scalable scenarios,
in which optimizations to reduce the latency must be performed considering the current
network infrastructure limitations.

2.1. Background 25

2.1.4 Internet Routing

To address the challenges posed by the evolving VR video content, network optimization
becomes a critical aspect of ensuring seamless transmission and user experience over the
Internet. The Internet operates as a packet-switching network, facilitating the exchange
of information among connected computers. This information is formatted into extended
sequences of bits, known as packets. Critical routing decisions determine how a packet follows
a specific route as these packets traverse the Internet to their destination computers. These
determinations are carried out by specialized computer devices referred to as routers. The
complex algorithms these routers employ, collectively called routing protocols, enable them
to collaborate in making accurate routing decisions, ensuring that data reaches its intended
destination efficiently and reliably [40]. Therefore, routing involves the selection of optimal
paths within a network. In a computer network, several nodes (routers) are interconnected
by paths. In this scenario, routing corresponds to choosing the most suitable path based
on predefined criteria and rules. Figure 2.6 shows the Internet infrastructure composed of
several routers, which are interconnected to provide packet routing between computers, and
each connection contains a latency and throughput value associated with it.

GD

AF

B

CE

83.53 Mbps

0.53 ms

50.3 Mbps

0.87 ms

170 Mbps

1.11 ms

54.18 Mbps

0.32 ms

60.97 Mbps

0.68 ms

189 Mbps

2.83 ms

H

95.39 Mbps

0.91 ms

79.2 Mbps

0.71 ms

61.52 Mbps

0.71 ms

4.12

ms

3.71

ms

5.45

ms

2.26

ms

4.02

ms

3.55

ms

3.34

ms
3.5

ms

source

FIGURE 2.6: Internet Infrastructure Architecture.

The Internet has many dynamic routing protocols, such as OSPF, BGP, RIP, IGRP, which
can work as intra-domain or inter-domain routing. In intra-domain, routing algorithms work
only within domains, e.g., OSPF and RIP, while in inter-domain routing algorithms work
within and between domains, e.g., BGP. Internet routing protocols prioritize throughput over
latency since most applications do not have stringent latency requirements. Although this
routing model has supported applications since the early days of the Internet, it will become
outdated as applications require lower latency and higher throughput [39]. Thus, increasing
the Internet’s capacity will not keep up with the future demands of immersive applications,
especially those with video content supported by 6DoF.

26 2.1. Background

Best effortBest effort

DiffServ

Traffic engineering

Guaranteed

High precision

DiffServ

Traffic engineering

Guaranteed

High precision

Teleport

FIGURE 2.7: Approaches to managing and providing network services.

Beyond the design problems of current routing protocols, which do not take latency into
account as a primary factor, the Internet architecture cannot guarantee throughput and
latency because it works on top of the best-effort concept [65]. For instance, there are several
inefficiencies in the protocols used in the Internet architecture, such as tunnel over tunnels,
some head fields repeating each other, and transport network header tax, sometimes as high
as 90%. As a result, current Internet architecture cannot guarantee delivery constraints, e.g.,
latency and throughput, for new applications such as VR, AR, and holograms.

While in the best-effort approach, there is no prioritization or guarantee of QoS, e.g., traffic is
treated equally, Differentiated Services (DiffServ) is a more sophisticated and scalable QoS
mechanism, where traffic is classified into different classes or service levels based on specific
attributes or rules [66]. On the other hand, traffic engineering is a network management
approach focused on optimizing network resource utilization and ensuring efficient traffic
flow. It involves techniques for controlling and optimizing the distribution of traffic across the
network, typically within a single network domain [67]. However, none of these approaches
can meet the high throughput and strict latency requirements to support new services
envisioned for the next generation of applications. Thus, new approaches are emerging to
guarantee the allocation of resources to specific applications, such as VR, VR, and autonomous
driving. Furthermore, a more advanced approach is needed to support high precision services
like remote surgery and industrial Internet. Finally, the last approach is the teleport, to
support high-definition hologram applications. Developing these new approaches aims to
overcome the inefficiencies of previous approaches, e.g., best-effort, DiffServ, and traffic
engineering [68]. Figure 2.7 shows the current (best-effort, DiffServ, and traffic engineering) and
future approaches (guaranteed, high precision, and teleport) network service approaches, which
aim to support the latency and throughput requirement for specific applications.

2.1. Background 27

Traditional routing protocols such as IGRP and EIGRP consider several parameters like
throughput, latency, and network load in their path (route) selection process within a
network. Typically, the primary focus is selecting paths with the highest throughput capacity
while minimizing latency [40]. Nonetheless, this approach fails to efficiently optimize the
overall flow throughput utilization while ensuring low latency for all flows, especially those
engaged in VR flows, due to their high throughput and stringent latency requirements. The
current approach of prioritizing paths with the highest throughput available overlooks the
implications of assigning a particular path to a specific data flow, particularly regarding its
impact on network latency for other flows, especially during periods of network congestion.
In such situations, alternative paths prioritizing network throughput are often chosen,
resulting in higher network latency [41].

The network infrastructure must be optimized to meet the latency and throughput
requirements of future applications. Therefore, some standardization entities related to
Internet routing advocate developing new network optimization techniques, some related to
packet routing [68]. For instance, ITU-T has established the Focus Group on Network 2030,
FG-NET2030, which examines various networking use cases anticipated to arise over the
next ten years [69]. This group is also responsible for defining novel networking services and
capabilities designed to meet the requirements associated with these use cases.

Therefore, ITU-T defined the use cases and their network requirements as follows: (i)
Bandwidth, including bandwidth capacity, quality of service QoS, Quality of Experience
(QoE), flexibility, and adaptable transport; (ii) Time, including latency, synchronization,
jitter, scheduling, coordination, and geolocation accuracy; (iii) Security, including
privacy, reliability, trustworthiness, resilience, traceability, and lawful intercept; (iv)
Artificial Intelligence, including data computation, storage, modeling, collection and
analytics, autonomy, and programmability; and, (v) Manynets (i.e., seamless coexistence of
heterogeneous network infrastructures), including addressing, mobility, network interface,
and heterogeneous network convergence.

Following the guidelines of the FG-NET2030 focus group, telecom operators, and research
groups participating in EU-funded H2020 B5G-OPEN (Beyond 5G-Optical Network
Continuum) have identified several key research directions and innovations [70]. With
the participation of three major operators within the European Union, namely, Telefonica
(TID), Telecom Italia (TIM), and British Telecom (BT), B5G-OPEN has proposed to build an
open and domain-less yet high-capacity and smart optical network [71]. In this scenario,
routing approaches are being remodeled according to the resources required by each
application. Therefore, shortest, widest, and segment routing approaches must be replaced
by a new approach called Preferred Path Routing [72]. Preferred Path Routing provides
path-based dynamic routing for many packet types, including IPv4, IPv6, and MPLS. This
seamlessly works with a controller plane, which holds a complete network view of operator
policies, while the distributed control plane provides self-healing benefits in a near-real-time
fashion [73]. As a result, Preferred Path Routing is tailored to optimize network resources,
reducing overall latency while increasing the efficiency of bandwidth resources.

28 2.1. Background

2.1.5 The Role of E2E Latency in 6DoF VR Content Delivery

The main aim of VR is to provide a virtual environment where users feel part of it, just as
they do in the real world. To achieve this, VR systems must deliver a large capacity of visual
elements that are as realistic as in the real world. As a comparison, humans process nearly
5.2 Gbit/s of sound and light [74]. For VR systems to deliver an advanced experience, they
have to deliver at least this amount of data (5.2 Gbit/s), or even more, which needs to be
transmitted over the Internet and processed by edge servers or HMDs. In addition to the
challenges posed by network and edge infrastructure, the device form factor of HMDs and
their restricted computing and power capabilities further restrict VR systems from achieving
this level of immersion. In this scenario, one of the most critical metrics in VR systems is the
Motion to Photon (MTP) latency, referring to the time gap between an input movement and
the corresponding screen update [75]. MTP latency is also known as E2E latency.

The user’s ability to experience immersion can be significantly affected by the slightest delay
in the user interface, whether it is related to visual or audio elements. Therefore, reducing
latency is so vital for VR systems that even health problems can be caused during continuous
use of VR systems operating at a higher latency than the human brain requires to process
information in the real world. The total MTP latency must be less than 20 ms for a good and
secure user experience in VR, which corresponds to a maximum E2E of 20 ms [6]. This is
the maximum E2E latency allowed to avoid cybersickness, nauseating, and uncomfortable
customer experiences. To put this challenge in perspective, a display running at 60 Hz is
updated every 17 ms, and a display running at 90 Hz is updated every 11 ms. However, at
120 Hz, this is reduced to 8.3 ms.

The head movement feature in HMDs equipped with head tracking is a task that demands
a more detailed exploration due to its unique set of latency requirements. When users shift
their heads, they anticipate an immediate response in visuals and sound. Even the slightest
delay in providing this feedback can pose issues for the overall experience. Currently, a target
of achieving a MTP latency below 20 ms is needed after many VR user interactions. However,
research has indicated that when the MTP latency dips below 15 ms, it essentially becomes
imperceptible to the vast majority of users, underlining the significance of minimizing this
latency in HMD-based interactions [76].

Minimizing latency plays a crucial role in maintaining the stability of the virtual environment
as the user transitions through it in VR systems. Achieving the necessary computing latency
standards for VR services solely through the processing power of HMDs is challenging,
primarily due to the limited capabilities of VR devices. Typically, VR systems are composed
of multiple computational-intensive tasks, e.g., motion prediction, FoV predictions, object
detection, and object recognition. Therefore, several processing stages are involved before
refreshing the display. For example, the E2E VR pipeline includes sampling the sensors,
sensor fusion, view generation, rendering, decoding, image correction, and updating the
display. As a result, more advanced VR applications, especially those using 6DoF content, are
limited to edge scenarios or specialized hardware platforms.

2.1. Background 29

Latency plays an essential role in VR experiences, but it is important to understand when
low latency is crucial and what type of latency is being considered. Typically, there are two
types of immersive experiences in VR systems, which are interactive and non-interactive [77].
Latency is critical for interactive VR User experiences, in which VR users interact with other
users in real-time. Therefore, such interaction must be performed as fast as possible, such
as real-world interactions with other people or objects. For non-interactive interactions, the
content can use a buffer, such as a streamed 360o video, where network latency is generally
not an issue if the buffer remains, making this content more tolerant to higher and inconsistent
latency.

Interactive content is particularly very sensitive to network latency. Achieving low latency
becomes crucial to guarantee prompt responses in various use cases, including virtually
engaging in online multiplayer games, participating in virtual ping-pong matches, overseeing
remote machinery, or collaboratively designing vehicles interactively [78]. In these situations,
it is imperative that the visual elements accurately depict the ongoing interactions. When
network communication transmits these interactions, minimizing latency becomes a pivotal
element in the user experience. For instance, it can be the decisive factor between successfully
targeting an opponent or falling victim to an opponent’s attack.

The lack of precise standards for stringent latency requirements beyond air interface latency
(1 ms) is attributed to the nature of network transport components, which vary according
to specific scenarios and deployment requirements. This integration may involve the
implementation of specialized functionality in the base station, the incorporation of specific
elements of the core network, and the use of proprietary software in the field of network and
business system control. In contrast, the advent of 5G technology promises to provide this
functionality in a consistent and standardized way, simplifying the provision of low-latency
services across a broader spectrum of VR applications.

In conclusion, the role of E2E latency in 6DoF VR content delivery cannot be overstated.
The immersive quality of VR experiences depends on minimizing latency, especially in
interactive scenarios where real-time user interactions are paramount. Achieving low latency,
below 20 ms, is crucial for ensuring user comfort and preventing issues like cybersickness.
The unique demands of head movement tracking in HMDs further emphasize the need
for reduced latency. However, it is essential to recognize that non-interactive content,
such as streamed 360o videos, can tolerate higher latency due to buffering. The absence of
precise standards for latency requirements beyond air interface latency is a challenge, but
the emergence of 5G technology holds the promise of more consistent and standardized
low-latency services across a wide range of VR applications. Minimizing latency is more than
just a technical challenge It is a critical factor in shaping the future of immersive virtual reality
experiences. In the next section, we investigate the main and most recent work related to the
different areas that can be optimized to minimize the overall latency of VR systems, where
we focus on ongoing efforts to push the boundaries of immersive virtual reality experiences
and enable immersive experiences for VR systems.

30 2.2. Related Works

2.2 Related Works

2.2.1 Resource Provisioning for VR in Edge Networks

Several studies [15], [26], [28] have investigated alternative approaches for resource elasticity
in cloud computing, and they conclude that the scarcity of resources cannot negatively impact
services running on large cloud providers, e.g., Amazon EC2, Azure, GCP. Compared to
large-scale cloud systems, a MEC server can provide lower communications latency between
user and server, but it also comes with fewer resources than cloud infrastructures. The scarcity
of MEC resources may affect VR service performance because some under-provisioned
services might need to be migrated to another MEC server, introducing service-restart latency
in some cases.

One of the most popular container orchestration tools network operators use to support edge
computing is Kubernetes [79]. The massive infrastructure investments by network operators
drive the move to Kubernetes, enabling containerization in the cloud and at the edge
network to afford 5G MEC services based on lightweight virtualization deployments [80].
To allocate system resources to the running services, Kubernetes follows the auto-scaling
principle, which proposes to reactively increase or decrease the resources allocated to the
service according to its current demand. This process is called reactive elasticity [81]. One
way in which Kubernetes can adjust the resources allocated to a service is by increasing
or decreasing the resources associated with each service through a module named Vertical
Pod Autoscaler (VPA). VPA is the elasticity mechanism provided by Kubernetes [82]. The
VPA estimates every service’s resource utilization. If their current workload goes beyond a
threshold, it restarts the resource-intensive services, granting them a more suitable amount
of resources. If resources are unavailable on the current server, where the service is already
deployed, the VPA redeploys the service to another server. One drawback of restarting
or migrating the pod is that stateful context information must be copied between two
replicas (in case of a make-before-break approach) or at least stored and reloaded (in case the
server does not allow the creation of another pod before tearing down the old one). Hence,
Kubernetes’ auto-scaling policy reduces the efficiency of resource allocation under resource
scarcity conditions because it triggers several resource-reallocation rounds. Nevertheless, the
auto-scaling approach adopted by Kubernetes is the approach implemented by most cloud
computing providers [83].

Due to resource limitations imposed by MEC servers compared to large-scale cloud providers,
a few works have investigated resource elasticity in edge networks [84]. Yuan et al. [85]
propose a scheme to serve the time-varying demand for resource capacity from mobile
services. The proposed solution deploys online virtual network function scaling, which
realizes an on-demand resource allocation in MEC infrastructures. The proposed algorithm’s
evaluation was verified through numerical simulation and experiments in a real cloud
environment. Tseng et al. [86] have presented a virtual resource orchestrator that implements
a lightweight auto-scaling mechanism for fog computing in industrial applications. The
fuzzy-based real-time auto-scaling (FRAS) mechanism provides a dynamic and low-cost

2.2. Related Works 31

solution to the service auto-scaling problem in fog environments. The authors also compared
the FRAS mechanism with Amazon AWS auto-scaling algorithm and others. Wang et al. [87]
propose a framework to manage edge nodes and an auto-scaling mechanism for resource
provisioning in edge nodes, which is based on three stages, i.e., handshaking, deployment,
and termination. The evaluation considered the application latency and the amount of data
exchanged between edge nodes.

Righi et al. [88] present the Elastic-RAN model, which proposes multi-level and adaptable
resource elasticity for Cloud Radio Access Networks. Adaptivity refers to the elasticity
level at which physical machines and their resources are provisioned close to the current
processing needs. Li et al. [89] have proposed an auto-scaling algorithm to minimize costs
and deal with unbalanced cluster load caused by resource expansion, i.e., scale-up and
the data reliability caused by resource scale-down. The evaluation considers Service-Level
Agreement (SLA) parameters and residual resources, e.g., CPU and memory. Antonescu
et al. [90] proposes a VM-scaling algorithm for distributed enterprise information systems,
which optimally detects the most appropriate scaling conditions using performance models
of distributed applications based on SLA-specified performance constraints. Naha et al. [91]
developed resource allocation and provisioning algorithms by using resource ranking and
provisioning of resources in a hybrid and hierarchical fashion to address the problem of
satisfying deadline-based dynamic user requirements in fog computing. These works focus
on QoS maintenance at MEC infrastructures. However, they always consider available
resources to support the required elasticity demand. Kumar et al. [26] claim that SLA
violations need to be detected in the resource provisioning process when resource elasticity
issues on cloud and edge servers happen. This can occur under resource scarcity conditions,
jeopardizing QoS and QoE.

Li et al. [92] propose a scheduling optimization mechanism for improving consistency
maintenance in edge environments. The mechanism is based on a two-level scheduling
optimization scheme. If the edge data center does not have enough resources to complete,
it will migrate the service to a centralized cloud data center. Castellano et al. [93] proposed
DRAGON, a distributed resource assignment and orchestration algorithm that seeks optimal
partitioning of shared resources between different applications running over a standard edge
infrastructure. The evaluation allowed testing of the algorithm behavior after the hosting
resources had been saturated, even running a low number of applications. Tasiopoulos et
al. [94] proposed an auction-based resource allocation and provisioning mechanism, which
produces a map of application instances in edge computing, namely Edge-MAP. Edge-MAP
considers users’ mobility and the limited computing resources available in edge micro-clouds
to allocate resources to bidding applications. Edge-MAP can reallocate resources to adapt
to the dynamic network conditions. Guo et al. [95] recommend an on-demand resource
provisioning mechanism based on load estimation and service expenditure (over-provisioned
resources) for edge cloud. The mechanism uses a neural network model to estimate the
resource demand. However, before releasing the node resources, the user data on the node
needs to be migrated to other working nodes to ensure service continuity.

32 2.2. Related Works

Sarrigiannis et al. [96] proposed a Virtual Network Function (VNF) lifecycle management
through an online scheduling algorithm, where the VNFs are orchestrated, e.g., instantiated,
scaled, migrated, and destroyed, based on the actual VNF traffic. The authors also proposed
an experimental evaluation based on the implementation of a MEC-enabled 5G platform.
The assessment aimed to maximize the number of served users in MEC by taking advantage
of the online allocation of edge resources without violating the application SLAs. Akhtar et
al. [97] proposed the management of chains of application functions over multi-technology
edge networks. This work provides resource orchestration and management solutions for
applications over a virtualized edge computing infrastructure. Son et al. [98] propose a
dynamic resource provisioning algorithm for VNFs deployed at the network edge. The
algorithm automatically allocates resources in the edge and the cloud for VNFs to adapt to
dynamically changing network volumes. The algorithm considers the latency requirement
of different applications in the SFC, allowing latency-sensitive applications to reduce the E2E
network latency by utilizing edge resources over the cloud.

The aforementioned works trigger service migration in resource scarcity situations, which can
affect VR service QoS [14]. Migrating a VR service has several drawbacks, such as increased
latency, traffic congestion, and network usage costs due to the data transferred between
remote hosts. In the real world, where multiple network operators manage the infrastructure,
migrating a VR service may take longer than expected because mobile network operators
must agree to exchange the service across heterogeneous platforms. We observe that only a
few studies in the literature have investigated resource elasticity in MEC, and those who do
are characterized by a set of common limitations, detailed hereafter. First, resource elasticity
models do not consider the resource scarcity of MEC in their design. Second, most related
works frequently trigger service migration procedures. Finally, most related works do not
optimize MEC resource utilization, resulting in a long elasticity attempt window. In Paper [1],
we tackle these limitations arising from previous works by proposing REACT, a self-adaptive
elasticity mechanism, a heuristic solution tailored to MEC resource scarcity conditions.

Based on the literature review, we identify that new approaches need to evolve to tackle
resource elasticity among MEC systems while meeting the stringent requirements of VR
applications. This imposes a set of challenges when carrying out elasticity strategies in
large-scale MEC scenarios since it cannot accommodate a high density of resource elasticity
requests for VR systems, especially 6DoF VR applications. Thus, it becomes even more
problematic by directly affecting VR application performance. Although MEC servers have
computing power, with the increase of users, their limited computing power is gradually
overloaded, which cannot guarantee the QoS of VR applications. The challenge involves
designing an optimal resource elasticity mechanism to support VR application requirements.

We claim that MEC characteristics, e.g., resource limitation, lead to the adoption of
optimal self-scaling solutions, affording QoS and resource-constrained awareness to keep
VR applications always better served by the underlying MEC facilities [99]. The list of
requirements we claim for an optimal solution of MEC-tailored elasticity mechanism includes
the following requirements to be met:

2.2. Related Works 33

Solutions Requirements
(References) Constrained Successful Elasticity

capacity auto-scaling attempts Self-adaption

Kubernetes VPA ✓

Yuan et al.[85] ✓

Wang et al. [87] ✓

Righi et al. [88] ✓

Chunlin et al. [89] ✓

Antonescu et al. [90] ✓

Naha et al. [91] ✓ ✓

Li et al. [92] ✓ ✓

Castellano et al. [93] ✓ ✓ ✓

Tasiopoulos et al. [94] ✓ ✓

Guo et al. [95] ✓

Sarrigiannis et al. [96] ✓

Akhtar et al. [97] ✓

REACT ✓ ✓ ✓ ✓

TABLE 2.1: Comparison of REACT with related works towards optimal MEC-tailored elasticity.

1. Provisioning capacity in MEC environments, where MEC servers must meet the
auto-scaling requests for any service;

2. Capacity to provide auto-scaling whenever the service needs more resources, employing
an enhanced elasticity attempt window to respond to new loads;

3. Successful auto-scaling under resource scarcity conditions and decreasing the number of
unsuccessful elasticity attempts;

4. Deploying a self-adaptive approach to tackle the issues that widely-used reactive
auto-scaling solutions raise.

Table 2.1 compares the main characteristics of the related works concerning the requirements
mentioned above and shows that none of the considered solutions can support all our claimed
requirements towards optimal auto-scaling. In particular, we compared REACT against the
state-of-the-art solutions considering the constrained capacity of MEC servers, the capacity
to provide successful auto-scaling, the elasticity attempts, and the ability to self-adaption
in scenarios with limited resources. Meeting all the above requirements ensures that VR
applications have priority when deploying their services at the MEC servers. Without this
type of guarantee, the latency of VR applications may be impaired due to the scarcity of
MEC servers to accommodate VR services. Thus, latency may be higher when fewer MEC
servers are available. As a main consequence, the QoS and QoE of such applications are
directly impacted, even if the latency is increased by a few milliseconds. To address such a
problem, applications that demand strict latency requirements must have priority over other
applications to use network edge resources. Motivated by the limitations of the reactive
approaches of related works and the research questions described in Section 1.3.1, we propose
the REACT solidarity-based elasticity strategy, as described in Paper [1] and Chapter 3.

34 2.2. Related Works

2.2.2 Edge-enabled 6DoF VR Deployment

Previous studies [57], [61], [63], [100] have shown that edge computing enables advanced
6DoF VR experiences by supporting the deployment of compute-intensive services.
Chakareski et al. [57] we evaluate two candidates emerging technologies, Free Space Optics
(FSO) and millimeter-wave, which both offer unprecedented available spectrum and data
rates. The authors formulate an optimization problem to maximize the delivered immersion
fidelity of the envisioned dual-connectivity 6DoF VR streaming, which depends on the WiFi
and millimeter-wave and FSO link rates, and the computing capabilities of the server and
the user’s VR HMD. The problem is mixed integer programming, and they formulate an
optimization framework that captures the optimal solution at lower complexity. To evaluate
the performance of the proposed systems, the authors collect actual 6DoF measurements.
Results demonstrate that both FSO and millimeter-wave technologies can enable the
streaming of 8K-120 Frames per Second (FPS) 6DoF content at high fidelity.

Hou et al. [63] consider motion prediction and pre-rendering services at the edge network to
enable low latency 6DoF VR. The edge-based predictive pre-rendering approach can address
the challenging 6DoF VR content. The proposed VR edge intelligence comprises predicting
both the head and body motions of a user accurately using past head and body motion traces.
Furthermore, the authors have developed a multi-task long short-term memory model for
body motion prediction and a multi-layer perceptron model for head motion prediction.

Pan et al. [100] propose a novel 5G Mobile Edge Assisted Metaverse Light-field-video
System, integrating light of field collection, metaverse content construction, and an extended
reality viewing scheme. The work addresses major technical challenges in light-field-video
delivery through mobile networks with the edge and cloud infrastructure. Aiming to
reduce computation latency, a fast sparse reconstruction algorithm for metaverse content
construction is established with edge-cloud collaboration. Intelligent service for users is
deployed on edge to achieve viewport-driven extended reality viewing. The proposed
edge-assisted metaverse algorithm aims to reduce the computational latency of 6DoF videos.

Jeong et al. [61] propose a viewport-dependent high-efficiency video coding (HEVC)-compliant
tiled streaming system on a test model for immersive video, MPEG-Immersive multiview
compression reference software. Besides, the authors propose a 6DoF viewport tile selector
for multiple 360o video-tiled streaming. The authors also introduce a viewport-dependent
multiple-tile extractor. The proposed system detects the user’s head movement, selects the
tile sets corresponding to the user’s viewport, extracts tile bitstreams, and generates a single
bitstream. The extracted bitstream is transmitted and decoded to render the user’s viewport.
The proposed viewport-dependent streaming method can reduce the decoding time and
bandwidth.

Although those research efforts have been devoted to designing solutions for enhancing 6DoF
VR experiences at network edges, the impact of 6DoF videos on mobile HMD has so far drawn
little attention. In contrast, our work considers the characteristics of 6DoF VR videos and the
restrictions of mobile HMD.

2.2. Related Works 35

Recent works [101]–[103] study the behavior of the E2E latency and other QoS metrics of
VR applications when their services are deployed on the MEC infrastructure. Mangiante
et al. [104] propose FoV rendering at the network edge to optimize the bandwidth and
latency required by VR 360o video streaming. The authors also analyze the trade-off between
bandwidth, compute, and latency to transmit 360o videos. However, the authors argue
that ultra-low network latency must be guaranteed to achieve real-time rendering as the
experience becomes interactive and upstream control is sent from end devices to the network.

Wang et al. [101] investigate the offloading decisions of Mobile Augmented Reality (MAR)
applications from multiple users, each of which is comprised of a chain of dependent
tasks over a generic cloud-edge system. The authors formulate the Multi-user Multi-task
MAR Application Scheduling (M3AS) problem, which is NP-hard. The authors present
Mutas, an efficient scheduling algorithm that jointly optimizes server assignment and
resource management. They also consider the online version of M3AS and present OnMutas.
Extensive evaluations demonstrate that Mutas and OnMutas can significantly reduce the
service latency of MAR applications compared to three other heuristics.

Alencar et al. [102] propose a QoE VR-based mechanism for allocating microservice
dynamically in 5G architectures, called Fog4VR. Fog4VR determines the optimal fog node
to allocate the VR microservice based on latency, migration time, and resource utilization
rate. The authors also present the INFORMER, an integer linear programming model
aiming to find the optimal global solution for microservice allocation. Results obtained
with INFORMER serve as a baseline to evaluate Fog4VR in different scenarios using a
simulation environment. Results demonstrate the efficiency of Fog4VR compared to existing
mechanisms in terms of cost, migration time, fairness index, and QoE.

Santos et al. [103] propose a multi-criteria SFC orchestration scheme for Multi-User VR
services called MuSFiCO. MuSFiCO maps edge computing resources and instantiates
SFCs on distributed servers based on latency threshold, CPU and memory resources, and
bandwidth. The authors developed a constrained-based heuristic to minimize latency and
compare it with the baseline monolithic deployment and cloud-based SFC algorithms.
Results demonstrate the efficiency of MuSFiCO compared to other approaches in terms of
latency, CPU, memory, bandwidth utilization, and orchestration decision-time.

These studies show the potential of offloading VR services to MEC servers to reduce latency.
However, they do not consider scenarios where deploying a subset of services directly on
HMDs would lead to a better system-wide average latency. As a result, they fail to minimize
the overall E2E latency for VR systems that use the edge infrastructure to deploy their services.

Likewise, some other recent works [97], [105]–[107] study how different policies for
distributing services between mobile devices and MEC servers impact the VR applications’
QoS metrics, such as latency. The authors in [105] have shown that VR-intensive computing
services, such as scene depth estimation, image semantic understanding, 3D scene
reconstruction, and high realism rendering, must be processed in real-time to ensure
natural and smooth experiences.

36 2.2. Related Works

Lai et al. [106] show that the QoE achievable for high-quality VR applications on today’s
mobile hardware and wireless networks via local rendering or offloading is about 10X
away from the acceptable QoE, yet waiting for future mobile hardware or next-generation
wireless networks (e.g. 5G) is unlikely to help, because of power limitation and the higher
CPU utilization needed for processing packets under higher data rate. Furthermore, the
authors present Furion, a VR framework that enables high-quality, immersive mobile VR on
today’s mobile devices and wireless networks. Supplemented with video compression, use of
panoramic frames, and parallel decoding on multiple cores on the phone, Furion can support
high-quality VR applications on today’s smartphones over WiFi, with under 14 ms latency
and 60 FPS.

Younis et al. [107] propose a novel Mobile Edge Computing framework for AR applications
(MEC-AR). MEC-AR is designed to take advantage of 5G cellular networks and make
optimized computation-offloading decisions in a multi-tiered hierarchy. In the context of
MEC resource management, the authors cast a mixed integer linear program to find an
efficient application placement on the MEC-AR layers to minimize the network latency.
Simulation results coupled with real-time experiments on a small-scale MEC testbed show
that our hierarchical computation mechanism improves the performance of mobile AR
applications in terms of both energy consumption and network latency.

Akhtar et al. [97] provide resource orchestration and management solutions for applications
over a virtualized client-edge-server infrastructure. The authors investigate the problem
of optimal placement of pipelines of SFCs and the steering of traffic through them over a
multi-technology edge network model consisting of both wired and wireless millimeter-wave
links. This problem isNP-hard. Therefore, the authors provide a comprehensive microscopic
binary integer program to model the system, along with a heuristic that is one order of
magnitude faster than optimally solving the problem.

These studies show that in some cases, distributing services among MEC infrastructure
reduces latency and improves other QoS metrics. However, none of these works considers
power consumption on HMDs in their service offloading strategies, which may lead to
unpredictable HMD battery lifetime.

Other related works [108], [109], [110], [111], [112], [113] study either latency reduction
or energy consumption optimization in edge networks. Liu et al. [108] a panoramic
VR video (PVRV) streaming system that is designed for modern multiconnectivity-based
millimeter-wave cellular networks in conjunction with MEC. With the help of the MEC
server, the trade-off among link adaptation, transcoding-based chunk quality adaptation,
and viewport rendering offloading is sought to improve the wireless bandwidth utilization
and mobile device’s energy efficiency. Simulation results show that the proposed scheme
can improve the streaming performance in energy efficiency and the quality of the received
viewport over the state-of-the-art schemes.

Zheng et al. [109] investigate the scenario of multi-tiles-based wireless VR video service
with the aid of MEC network, where the primary objective is to minimize the system energy

2.2. Related Works 37

consumption and the latency as well as to arrive at a trade-off between these two metrics.
The authors first cast the time-varying view popularity as a model-free Markov chain and
use a long short-term memory auto-encoder network to predict its dynamics. Then, a mixed
strategy, which jointly considers the dynamic caching replacement and the deterministic
offloading, is designed to fully utilize the caching and computing resources in the system.

Santos et al. [110] discuss that the main obstacle between current technology and future
remote, multi-user AR/VR applications is the stringent E2E latency requirement, which
cannot exceed 20 ms to avoid motion sickness. The authors show that several challenges
still arise concerning deploying and managing VR services. Therefore, the authors present
a mixed-integer linear programming formulation for orchestrating VR services in fog-cloud
infrastructures. The evaluation of realistic VR container-based SFC shows that deploying VR
components hosted in a fog-cloud infrastructure can satisfy the 20 ms latency boundary.

Doan et al. [111] formulate the novel Subchain-Aware NFV service Placement (SAP)
optimization model that accounts for the configuration cost for stitching together reused
network functions to an SFC and strives to reuse existing subchains of consecutive network
functions. The authors also developed Tabu-SAP, a Tabu search approach to solve the SAP
optimization problem. Furthermore, they introduced the novel Automated Provisioning
framework for MEC (APMEC). APMEC supports multiple management and orchestration
frameworks through a loose coupling MEC design. Tabu-SAP evaluations indicate an
eightfold increase in the number of supported SFCs compared to the state-of-the-art reuse of
individual network functions.

Mandal et al. [112] analyze the network service availability considering the deployment
of network service using multiple host nodes, single host nodes, and mixed-mode. In the
availability analysis, the authors consider the failure perspective of VNFs and the failure
perspective of host node(s). Further, they analyze the network service reliability considering
the placement of VNFs of network services based on different host nodes, single host nodes,
and mixed-mode. The authors also compare the availability of network services considering
these three placement strategies. Comparison results show that the availability and reliability
are better considering single host node-based placement of VNFs of network services.

Zheng et al. [113] show how to apply network function parallelism into SFC and embedding
process such that the latency, including processing and propagation latency, can be jointly
minimized. Considering parallel relationship constraints, the authors propose a novel
problem called parallelism-aware service function chaining and embedding (PSFCE). The
authors propose a near-optimal maximum parallel block gain (MPBG) first optimization
algorithm when computing resources at each physical node are enough to host the required
SFCs. When computing resources are limited, the authors propose a logarithm-approximate
algorithm called parallelism-aware SFC deployment (PSFD). They found out that (i) MPBG
is near-optimal, (ii) the optimization of E2E service latency largely depends on the processing
latency in small networks, and (iii) PSFD outperforms the schemes directly extended from
existing works regarding E2E latency.

38 2.2. Related Works

Solutions Characteristic
(References) E2E Power MEC HMD

Offload. Migration latency consum. support. support. SFC

Chakareski et al. [57] ✓ ✓

Jeong et al. [61] ✓ ✓

Akhtar et al. [97] ✓ ✓

Pan et al. [100] ✓

Wang et al. [101] ✓ ✓ ✓

Medeiros et al. [1] ✓

Alencar et al. [102] ✓ ✓

Santos et al. [103] ✓ ✓ ✓

Ruan et al. [105] ✓ ✓

Lai et al. [106] ✓ ✓

Younis et al. [107] ✓ ✓ ✓

Liu et al. [108] ✓ ✓ ✓

Zheng et al. [109] ✓ ✓ ✓

Santos et al. [110] ✓ ✓ ✓ ✓

Doan et al. [111] ✓

Mandal et al. [112] ✓ ✓

Zheng et al. [113] ✓

TENET ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 2.2: Comparison of TENET algorithm to related works.

We found out that the main limitation of the state-of-the-art works is that they do not
consider strict latency guarantees in their service deployment solutions, which are required
to ensure that no VR application experiences latency that may impair QoS. Unlike all works
presented in this section, our work considers both latency and power consumption on the
HMDs to compute an optimal service offloading policy between MEC infrastructure and
HMDs while considering QoS constraints. Furthermore, these works do not consider strict
latency guarantees in their service deployment solutions, which are required to ensure that
no VR application experiences latency that may impair QoS. Based on the limitations of the
state-of-the-art works, we provide optimizations on service placement to reduce the overall
E2E latency for all VR applications deployed on the system, with a trade-off procedure that
analyzes the impact on the power consumption against the reduction of the overall E2E
latency.

Unlike all works presented in this section, our works in Paper [2] and Paper [3] consider
both latency and power consumption on the HMDs to compute an optimal service offloading
policy between MEC infrastructure and HMDs, while considering QoS constraints. Table 2.2
compares the main characteristics of the related works concerning service offloading,
service migration, E2E latency, power consumption, MEC-supported, HMD-supported, and
SFC. Table 2.2 shows that none of the considered solutions can support all our claimed
requirements for E2E latency reduction. Motivated by the limitations of the approaches
presented in this section and the research questions described in Section 1.3.2, we propose
TENET, as described in Chapter 4.

2.2. Related Works 39

2.2.3 Latency Sensitive Routing Algorithms

Several studies address network routing, most of which can be applied to SDN [114].
However, most existing works only provide routing with throughput guarantees and ignore
the E2E latency in routing [115]. With the emergence and envisioned widespread adoption of
immersive communications such as VR, AR, and holograms, routing algorithms must ensure
latency and throughput simultaneously [116]. Thus, shortest path-based approaches are
suitable candidates for addressing routing problems with latency and throughput guarantees.
Although shortest path-based approaches can provide paths with latency and throughput
guarantees, they cannot balance network load and handle real-time demands [117]. In
addition, such approaches are prone to always selecting the shortest available path in
terms of latency for the flow being processed, where this flow does not always require as
low a latency as the path calculated by shortest path-based approaches [118]. As a result,
consecutive flows might be affected if they need ultra-low latency paths and such paths are
not available on the network. Therefore, current approaches based on the shortest path do
not consider how network congestion can negatively impact flows that require ultra-low
latency paths, such as 6DoF VR.

Typically, routing algorithms consist of finding a path from a source node to a destination
node while satisfying a specific constraint or threshold on the cost. Handler et al. [119]
developed a Lagrangian relaxation algorithm for the problem of finding the shortest path
between two nodes in a network, subject to a knapsack-type constraint. The authors show
that finding the shortest path for all flows in a network while considering more than
one metric is impractical because this problem is NP-hard. The authors proposed a k-th
shortest path algorithm to address such complexity. Wang and Crowcroft [120] investigated
throughput-latency-based routing algorithms. They propose two routing algorithms based
on throughput and latency metrics, in which they addressed the implications of those routing
metrics during the calculation of new paths. However, latency and throughput are not
considered simultaneously when designing the algorithms.

Wang and Crowcroft [121] have also investigated QoS routing for supporting multimedia
applications. They propose the Minimum Delay Algorithm (MDA), a routing mechanism
with latency and throughput guarantees, where MDA prunes all links with insufficient
throughput to identify the path with the lowest latency. Yang et al. [122] also proposed QoS
routing algorithms for throughput-latency-constrained applications. Those are based on
computing the latency-weighted capacity for each ingress-egress pair, where they identify
critical links as those whose inclusion in a path will cause the latency-weighted capacity of
several ingress-egress pairs to decrease. The works mentioned above are the most relevant
regarding routing with latency and throughput guarantees. However, they fail to provide
a realistic assessment of the behavior of the proposed routing algorithms in a scenario with
overloaded network links. Furthermore, they do not address the latency difference between
the allocated path and the latency required by the flow (over-provisioning latency) and the E2E
latency, which can negatively affect other latency-sensitive flows.

40 2.2. Related Works

Only a handful of traffic engineering studies consider latency and throughput simultaneously
when establishing routing for SDN. Soorki et al. [123] proposed a label-switched protocol
routing with throughput guarantees and E2E path latency. The proposed routing algorithm
uses data of the ingress–egress node pairs in the network, where the authors used LR-servers
theory to compute path latency. However, the main drawback is the lack of latency
guarantees in large-scale network scenarios. Tomovic et al. [124] proposed a fast and efficient
throughput-latency-constrained routing algorithm for SDN. The proposed algorithm aims
to maximize the utilization of network resources, where it classifies traffic flows in a finite
number of categories based on the latency sensitivity level. The evaluation shows that the
proposed approach to QoS provisioning leads to fewer rejected QoS requests under a wide
range of system parameters than other complex solutions.

Li et al. [125] propose a fuzzy-based fast routing algorithm with latency-throughput (FRLR)
guarantee over SDNs. FRLR develops the dynamic routing problem in SDN using a traffic
flow classification mechanism based on a fuzzy system. In addition, FRLR classifies traffic
flows based on latency to reduce computational complexity. Besides, FRLR redirects traffic
flows and reduces network energy consumption by identifying critical links and selecting
appropriate paths. Wu et al. [126] proposed an intelligent fuzzy-based routing algorithm
for video conferencing service provisioning under latency and throughput constraints
guarantees in SDN, where the details of future requests are unknown. First, the network is
weighted based on critical links to reduce routing interference on future requests. Second,
the proposed algorithm uses a deferral module to temporarily postpone requests with
high resource demands to manage connection priorities. Although the works mentioned
above address latency-based short paths while meeting throughput requirements, they fail
to optimize the shortest paths for all flows arriving in the network in network congestion
situations. A disadvantage in this scenario is that such approaches are not tailor-made for
ultra-latency-sensitive applications such as 6DoF VR.

Other works [127]–[129] study how to ensure both throughput and latency. Gong et al. [127]
designed a fuzzy routing algorithm with latency and throughput guarantees for video
conferencing services over SDN. The proposed fuzzy system is based on rules that can
postpone requests with high resource demands, where it distributes the network workload
evenly for all requests. This is performed by maintaining the capacity to accept future
requests. The authors used the following KPIs in the evaluation: number of accepted requests,
average path length, energy consumption, load balancing, and average latency over different
network topologies. Cheng et al. [128] investigated a guaranteed latency-throughput-loss
routing algorithm based on a fuzzy approach. The proposed algorithm aims to increase the
number of routed requests and improve the performance of conference services in SDN. The
algorithm uses a postponement mechanism to improve the conference service, prioritizing
the requests with low resource demand for connection. In addition, the algorithm has a hold
time mechanism to release the reserved resources after satisfying the request requirements.
This mechanism can increase the processing capacity of future requests by conserving
network resources.

2.2. Related Works 41

Zhao et al. [129] proposed a fuzzy logic-based intelligent multi-attribute routing scheme for
SDN. The proposed scheme is divided into two phases: the routing path calculation and
the multi-attribute routing decision-making. The authors construct the topology diagram in
SDN to find efficient routing paths. To solve the uncertainty problem of multiple attributes,
they apply fuzzy logic to identify the weight of each attribute in the proposed algorithm.
The assessment showed that the proposed algorithm improved the packet delivery ratio and
reduced average E2E latency in small network scenarios over SDN. Although the above
works address routing with latency and throughput guarantees, they fail to design solutions
to optimize the overall latency for all flows in the network because they do not consider
how to approximate the latency of the calculated path and the latency required by each
flow. Consequently, many paths with ultra-low latency are allocated to flows that do not
demand such strict latency requirements. Thus, other flows that demand ultra-low latency are
negatively affected as the network becomes overloaded. Therefore, the more restrictions there
are on the availability of resources in a network, the more likely flows requiring ultra-low
latency will be affected due to the inefficiency of allocating flows according to their demands.
This raises the need for a routing algorithm tailored to flows that demand ultra-low latency.

Other works study how to ensure throughput, low latency, low packet loss rate, or link
load balancing, but not latency and throughput. Alidadi et al. [130] presented a throughput
guarantee with a low-complexity algorithm for traffic engineering. The proposed algorithm
ensures throughput routing using a compromise between path cost, path length, and load
balancing. Yang et al. [131] investigated the joint virtual function deployment and flow
routing strategy to maximize the completed tasks with the guaranteed E2E latency. Alidadi
et al. [132] also proposed other optimized routing algorithm for QoS traffic engineering
in SDN-based mobile networks. The proposed algorithm advances throughput-restricted
routing as it trade-offs between network load balancing and route length with low complexity
in mobile networks.

Kamboj et al. [133] proposed a QoS-aware dynamic multipath routing scheme for enhancing
QoS of high-throughput applications in an SDN-enabled network. The proposed scheme
consists of three phases: flow splitting, multipath routing, and flow reordering. However,
flow reordering is not implemented for complex and large network scenarios. Wang et
al. [134] proposed an optimal flow and capacity allocation in multiple joint quickest paths
of directed networks to address the quickest path problem (QPP). QPP presents a good link
for path lengths and capacities with the transmission time of the flow. To address such a
problem, the authors proposed an edge-path form traffic model for flow through multiple
joint paths with different lengths in one-source, one-sink directed networks. Ali et al. [135]
investigate an adaptive bitrate video transmission using cross-layer routing. The proposed
algorithm considers the path selection based on the QoS-aware E2E path latency. Despite
the efforts of the above works to achieve routing with QoS constraints, they do not evaluate
the proposed algorithms in complex network scenarios, where congestion can occur and
alternative paths are selected for network flows. Besides, some implement flow reordering,
which is impractical in real networks.

42 2.2. Related Works

Solutions Characteristic
(References) Flow Over- Path

network Path E2E prov. Network Frame latency
latency latency latency latency throug. rate approx.

Handler et al. [119] ✓

Wang et al. [120] ✓ ✓

Wang et al. [121] ✓ ✓

Yang et al. [122] ✓ ✓

Soorki et al. [123] ✓ ✓

Tomovic et al. [124] ✓ ✓ ✓

Li et al. [125] ✓ ✓ ✓

Wu et al. [126] ✓ ✓

Gong et al. [127] ✓ ✓ ✓

Cheng et al. [128] ✓ ✓

Zhao et al. [129] ✓ ✓ ✓

Alidadi et al. [130] ✓ ✓

Yang et al. [131] ✓ ✓

Alidadi et al. [132] ✓

Kamboj et al. [133] ✓

Wang et al. [134] ✓

Ali et al. [135] ✓ ✓ ✓

FLATWISE ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 2.3: Comparison of FLATWISE algorithm to related works.

Unlike all works presented in this section, our work in Paper [4] addresses routing with E2E
latency and throughput guarantee to reduce the overall E2E latency for all VR applications
deployed on the network. Besides, our work in Paper [4] considers the over-provisioned
latency, E2E latency, and path latency approximation during path calculations between VR
HMDs and cloud servers hosting the VR application logic. Table 2.3 compares the main
characteristics of the related works concerning flow network latency, path latency, E2E latency,
over-provisioned latency, network throughput, frame rate, and path latency approximation.

Table 2.3 shows that none of the considered solutions can support all our claimed
requirements towards overall E2E latency reduction for 6DoF VR applications. Furthermore,
we observe that most related works on routing with latency and throughput guarantees do
not consider the impact of latency on the video quality. Another crucial factor neglected by
related works is the relationship between the latency required by the flow and the latency
offered by the calculated path (over-provisioned latency). Another limitation is that most
state-of-the-art approaches are unaware of E2E latency during route calculation, preventing
them from minimizing latency as much as possible for all flows. Finally, only using shortest
path-based approaches as the flow allocation criteria might lead to bottlenecks, as all flows
tend to select links with lower latency, overloading them. Motivated by the limitations of the
approaches presented in this section and the research questions described in Section 1.3.3, we
propose FLATWISE in Paper [4], as described in Chapter 5.

2.3. Chapter Conclusions 43

2.3 Chapter Conclusions

In Section 2.1, we have presented a comprehensive overview of the theoretical background
for grasping the core concepts employed in the proposed approaches of this thesis, which are
covered in chapters 3, 4, and 5. In Section 2.2, we have presented the state-of-the-art works
needed to address the research questions of this thesis, described in Section 1.3. The study
of the related work revealed a few drawbacks to be further investigated to achieve ultra-low
latency for VR systems. In the following, we summarize the main drawbacks of the related
work we address in this thesis.

In Section 2.2.1, we analyzed the most recent works on resource provisioning for VR in edge
networks, where we found out that new resource provisioning approaches tailored to MEC
servers must be developed to ensure VR service deployment and, therefore, guarantee that VR
services are deployed as close as possible from VR users. We have identified that current edge
resource approaches trigger service migration in resource scarcity situations, which can affect
VR service QoS. This imposes challenges when carrying out elasticity strategies in large-scale
MEC scenarios since it cannot accommodate a high density of resource elasticity requests for
VR systems, especially 6DoF VR applications.

In Section 2.2.2, we identified the most recent works on edge-enabled 6DoF VR deployment,
where we found out that research efforts have been devoted to designing solutions for
enhancing 6DoF VR experiences at network edges. However, the impact of 6DoF videos
on mobile HMD has so far drawn little attention. As a result, they fail to minimize the
overall E2E latency for VR systems that use the edge infrastructure to deploy their services.
Furthermore, the works analyzed in Section 2.2.2 do not consider strict latency guarantees
in their service deployment solutions, which are required to ensure that no VR application
experiences latency that may impair QoS.

In Section 2.2.3, we analyzed the essential works on latency-sensitive routing, where we have
shown that current approaches based on the shortest path do not consider how network
congestion can negatively impact flows that require ultra-low latency paths, such as 6DoF
VR. The works reviewed in Section 2.2.3 do not support E2E latency awareness during the
routing process nor consider how the over-provisioned latency can affect other flows on the
network, which prevents the routing approaches from minimizing latency as much as possible
for all flows in the network.

To overcome the issues described in the related work and answer the research questions,
we design and evaluate three approaches in this thesis, which aim to reduce the latency for
VR applications, as described hereafter in Chapters 3, 4, and 5. In particular, Chapter 3
addresses the challenges of resource provisioning for VR in edge networks, as described
in Section 2.2.1. Chapter 4 addresses the issues of edge-enabled 6DoF VR deployment, as
shown in Section 2.2.2. Finally, Chapter 5 addresses the problems of latency-sensitive routing
described in Section 2.2.3.

44

Chapter 3

Enhancing VR Deployment over Edge Networks

3.1 Introduction

With the increasing demand for immersive and interactive VR experiences, edge computing
has emerged as a promising solution to support VR-intensive computing tasks [9]. Edge
networks, powered by MEC infrastructure, offer proximity to VR end-users, reducing the
latency by processing VR services [21]. However, MEC faces limitations in terms of computing
and communication resources, which can negatively impact the quality of VR services during
high-demand situations [20]. Service migration from overloaded to less loaded MEC servers
is a common approach to maintaining satisfactory VR service QoS [14]. Consequently, this
migration process can lead to service downtime and high migration costs if large amounts of
data need to be transferred.

To address these challenges, enhancing MEC resources by developing resource provisioning
strategies tailored to VR deployments and considering MEC resource limitations is essential.
Therefore, VR services require resource guarantees to prevent resource shortages and
maintain optimal performance. However, supporting VR service deployment on MEC
servers while providing resource provisioning guarantees in scenarios with limited resources
is challenging. The coexistence of several VR services with varying resource requirements
further complicates the problem. As a result, deploying VR services into MEC servers to
ensure low-latency and responsive VR experiences becomes more complex in a scenario with
limited computing resources.

In this chapter, we investigate the problem of resource scarcity on resource-constrained
MEC infrastructures and how to overcome it in the context of VR services deployment. The
following sections discuss the content described in Paper [1]. Therefore, Section 3.1 describes
the research questions addressed in this chapter and discusses the contributions of the new
heuristic to address the resource scarcity problem. Section 3.2 describes the system model
and formulates the resource scarcity problem. Section 3.3 presents the REACT approach in
detail. Section 3.4 describes the experiment setup. Section 3.5 discusses the evaluation results.
Finally, section 3.6 concludes the study in this chapter.

3.1. Introduction 45

3.1.1 Research Questions Addressed

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.1.

Research Question 1.1: How to design a resource provisioning mechanism for edge
computing infrastructures to support the deployment of multiple heterogeneous VR
services?

Research Question 1.2: How can the resource scarcity problem be effectively addressed in the
coexistence of several VR services deployed on a shared edge infrastructure?

Research Question 1.3: How to prioritize the resource provisioning of VR intensive-computing
tasks in a distributed edge infrastructure with limited computing resources?

3.1.2 Chapter Contributions

To address the abovementioned challenges, we propose in Paper [1] REACT, a mechanism
that leverages resource provisioning among different services running on a shared MEC
server. We address the Research Question 1.1 by exploiting how REACT adopts an
adaptive and solidarity-based strategy to redistribute resources from over-provisioned to
under-provisioned services in edge environments. We address the Research Question 1.2 by
showing that REACT is an alternative strategy to avoid service migration due to resource
scarcity. The key idea of the REACT is to prioritize resource provisioning for real-time VR
applications. With such prioritization, REACT enhances the performance of high-priority
VR services, especially when the edge infrastructure resources become scarce. Therefore,
we address the Research Question 1.3 by enhancing the resource provisioning requests for
high-priority VR services. Our contributions are as follows.

• We develop an adaptive and solidarity-based strategy to redistribute resources from
over-provisioned services (low-priority services) to under-provisioned VR services
(high-priority services) in MEC environments.

• We design our resource provisioning approach considering that VR computing-intensive
services take priority (high-priority services) over other services classified as low-priority
services.

• We consider a resource-constrained MEC scenario to evaluate our approach against
Kubernetes, a reactive algorithm to provide resource provisioning in MEC servers.

• Compared to the baseline algorithm solution, we enhance the resource provisioning
requests for high-priority VR services.

• We optimize the resource provisioning in edge computing infrastructures by reducing the
amount of over-provisioning resources.

• We reduce the overall service outages for all VR services deployed in MEC servers
whenever these server resources become unavailable.

46 3.2. System Model and Problem Formulation

3.2 System Model and Problem Formulation

The considered MEC infrastructure consists of a set of interconnected MEC servers, each
of them offering different computing and memory resources to a set of running services,
each having distinct and specific resource requirements. We assume that each MEC server’s
workload is modeled as a quadruple representing only four types of available resources:
computation, communication, main memory, and permanent memory, whose amounts do
not change over time. Since REACT redistributes resources among the services running on
a single MEC server, we restrict our scope to a set S of running service instances on a single
MEC server. We assume that the time in the system is divided into equal intervals called time
slots, and the system produces a service resource reallocation during each time slot. REACT
operates within a single time slot, so we assume that all the symbols introduced hereafter are
related to a certain time slot k ∈N.

We define the server background load ω ∈ [0, 1]4 as a quadruple that represents the resource
load on the MEC server unrelated to running user services, e.g., OS overhead, scheduling,
background, and monitoring processes, which cannot be auto-scaled. We define the MEC
server load ξ as the sum of the background load ω and the total amount of resources allocated
to all services running on MEC server. Equivalently, ξ = ω + ∑|S|i=1 ai. It is worth noting that
∀k ∈ N, 0 ≤ ξ ≤ 1, as the sum of the allocated resources for the services and the background
processing on the MEC server can never exceed its maximum resource capacity.

MEC servers’ resource utilization can be classified into three categories: light, medium, and
heavy utilization. A MEC server is under light utilization if its ξ ≤ τl , where τl ∈ [0, 1].
Similarly, a MEC server is under heavy utilization if its ξ ≥ τh, where τh ∈ [0, 1]. If τl < ξ <

τh, then the MEC server is under medium utilization. τl and τh represents 30% and 95% of
the MEC server’s capacity, respectively. The low and high thresholds will determine when
REACT will trigger its solidarity approach. We consider that a MEC server is in a resource
scarcity condition when its ξ > 0.95.

Every service si ∈ S running on the system is characterized by a set of parameters, detailed
hereafter. The workload of service si is indicated with wi ∈ [0, 1]4, a quadruple in which each
element represents the ratio between the service’s current load and the MEC server’s capacity
for a specific resource type. The resource allocation of service si is indicated with ai ∈ [0, 1]4,
a quadruple in which each element represents the ratio between the amount of resources
allocated for service si and the MEC server’s capacity for a specific resource type. The resource
over-provisioning of service si is defined as oi = ai − wi, a quadruple in which each element
represents the ratio between the amount of over-provisioned resources for service si and the
MEC server’s capacity for a specific resource type.

REACT classifies every service as either donor service or recipient service. A donor service
d is defined as an over-provisioned service willing to transfer part of its currently unused
resources to other services that need them. A recipient service r is defined as a VR service that

3.2. System Model and Problem Formulation 47

is currently under-provisioned and close to running out of resources, but is willing to accept
resources from other donors.

REACT’s solidarity approach considers that a set of recipients r, under resource scarcity
conditions, are eligible for receiving resources from other over-provisioned donors d that
run on the same MEC server. Donors scale-down parts of their over-provisioned resources
to scale-up recipients. As long as services have residual resources, REACT can auto-scale
recipients and avoid SLA violations. The computation performed by REACT to decide the
amount of over-provisioned resources to transfer from a set of donors d to each recipient r is
called donation.

List of recipient services List of donor services

d1 d2 dN

wi (2)wi (1)

Tc (2)
Tc (1)

Td (2)Td (1)

wi (N)

Tc (N)

Td (N)

...

d1 d2

r1 r2

Tc (2)
Tc (1)

ai (2)
ai (1)

wi (2)
wi (1)

rN

Tc (N)

ai (N)

wi (N)

...

FIGURE 3.1: REACT System model.

The committed service threshold Tc(si) is the minimum amount of resources needed by the service
si to honor its SLAs. We define the service donating threshold as Td(si) = ai − Tc(si) as the
maximum amount of resources that service si can donate. Td(d) quantifies the part of the
donor’s over-provisioned resources od, aiming to scale-down donors and scale-up recipients.
The expression for Td is designed so that a donor d cannot donate more resources than what
its SLA allows it when wd ≤ Tc(d). Figure 3.1 shows the thresholds ai, wi, Tc, and Td for each
service in the system, where each variable is used to represent recipients r or donors d in the
solidarity-based model.

Let us define q as a decision binary variable, where q ∈ {0, 1}, assumes value 1 to perform
scale-up and 0 to perform scale-down. The resource types that will be scaled up/down are
denoted by γ ∈ {γ1, γ2, γ3, γ4}. The share of resources that will be scaled up/down is denoted
as z ∈ [0, 1). The auto-scaling function for a service si represents the amount of resources that
the service will either receive or donate and is denoted as β(si, γi, q, z) = γ · (1 + (2q− 1)z).
The total amount of resources exchanged in a donation from a set of donors D′ ⊂ D to
a specific recipient r ∈ R for a specific resource type γ can be defined as µ(r, D′, γ) =

∑s∈D′ β (s, γ, 0, Td(s)). If the donation process involves a set of recipients R′ ⊂ T and a set
of donors D′ ⊂ D, then the amount of exchanged resources can be computed as:

48 3.3. Edge Resource Provisioning with REACT

∑
s∈R′

(
µ(s, D′, γ) + ∑

s∈D′
β(s, γ, 0, Td(s))

)
(3.1)

The donation for a specific recipient r occurs until the sum of scale-down resources from
a set of donors d ≥ Tm(r) · 1.3. The value of z for the i-th r in each donation procedure is
set to 30%. Each donation adds 30% more resources than the current wr in time slot k. We
scale-up each Tm(r) by 30% to avoid new donation requests in a short period. According to
our analysis and the threshold practices adopted in [83], we chose 30% as the threshold. It
mitigates over-provisioning and improves the time window in which the service will need
another auto-scaling procedure. On the other hand, the value of z for the i-th d is set to its
Td. Hence, for any donation procedure, the property ∑s∈D′ Td(s) ≥ Tm(r) · 1.3 holds. It is noted
that each Tm(r) is updated via µ. Thus, Equation 1 minimizes the over-provisioned resources
in MEC servers and maximizes resource utilization. We want to maximize resource utilization
as long as we can satisfy the elasticity demands and not violate SLAs.

Let us define hi = (wi, ai, oi) as the monitoring metrics of the i-th service, i.e., the current values
for its workload wi, allocated resources ai, and over-provisioned resources oi. Each service
monitoring metric hi uses γ to denote the resources for service si, e.g., CPU, RAM, storage,
and bandwidth. We can then define δ as the set of service workloads deployed in a generic
MEC server, where hi ∈ δ. A MEC server uses δ to obtain the full-service status information,
then δ = ∑n

i=1 hi, assuming that the server must check each service serially. In the considered
scenario, we assume that the value of δ is updated periodically. The frequency with which δ is
updated significantly influences REACT’s behavior, as service monitoring is a crucial measure
to determine whether the solidarity-based approach should be triggered.

3.3 Edge Resource Provisioning with REACT

This section describes the principles of REACT, its architecture, and how it operates, including
the solidarity-based elasticity algorithm and its complexity analysis.

3.3.1 REACT Architecture

The efficiency behind an elasticity mechanism depends on the auto-scaling function. As edge
services’ requirements change over time, MEC servers will experience workload fluctuations.
These workload fluctuations may result in either service over- or under-provisioning. When
the load decreases, the most widely adopted reactive mechanisms will take some time to
provide scale-down actions. On the other hand, auto-scaling mechanisms will scale-up
and cause over-provisioning when the load increases. If resources are scarce, it will cause
under-provisioning. The over-provisioning strategy reserves more resources than those
needed by the service at a specific moment in time, aiming to avoid disruptions if the service
requires an unexpectedly high amount of resources to support its operations in the future.

3.3. Edge Resource Provisioning with REACT 49

Over-provisioning demands careful deployment to prevent inefficient resource allocation.
However, in situations where over-provisioned resources are low, reactive auto-scaling
solutions tend to trigger several elasticity rounds until matching resource patterns to meet
the new service workload, which increases the elasticity attempt window. We define the time
needed for the auto-scaling procedure to converge and find a suitable resource allocation as
elasticity attempt window. Even though this strategy will ensure that SLAs are not violated,
it might reserve resources for services, which in turn may never use them. This would lead
to inefficient MEC resource usage and unnecessary costs for the user to benefit from those
MEC resources that do not positively impact the application’s QoS. In under-provisioning,
the allocated resources for a given service are less than the current load demand, which can
cause SLA violations and service resizing penalties.

REACT provides an auto-scaling algorithm to efficiently reallocate resources among different
services running on MEC servers under scarce resources. REACT solves the typical problems
of reactive schemes, e.g., several auto-scaling rounds during resource scarcity situations, by
re-orchestrating both networking and computational MEC resources. The main novelty of
REACT, compared to other reactive resource elasticity mechanisms, is its solidarity-based
resource reallocation, which defines how some resources are seized from a set of donors and
transferred to a set of recipients when the system enters a resource-depletion state.

M
o
n
i
t
o
r
i
n
g Docker daemon

Open vSwitch

Service 1 Service 2 Service n

REACT

MEC Server

FIGURE 3.2: REACT Architecture

REACT is implemented as part of the auto-scaling component’s logic without MEC
architectural changes. Its solidarity-based model can be deployed in any platform that
supports auto-scaling mechanisms, making REACT an agnostic solution to MEC servers.
Figure 3.2 presents the REACT architecture, REACT uses the API of the monitoring system
deployed on the MEC servers to obtain information about the VR services running there.
Thus, REACT manages CPU and RAM resources for each service via the Docker API (Docker
daemon). In addition, REACT also increases or decreases the bandwidth resources for each
service via the Open VSwitch, where the flows of VR each service are managed independently.

50 3.3. Edge Resource Provisioning with REACT

REACT’s solidarity-based elasticity takes advantage of services’ resource over-provisioning
to offer enhanced auto-scaling capability towards MEC efficient resource usage. In contrast,
reactive solutions suffer from over-provisioning by needing successive attempts until
matching the required resource amounts to the new service load when resources become
scarce. It is worth noting that REACT can apply its solidarity scheme only if the MEC server
is running over-provisioned services while the available resources in the system become
scarce. REACT aims to mitigate service degradation due to the unavailability of resources in
MEC servers and improve system efficiency by reducing over-provisioned resources. This
resource reduction can also decrease the economic costs sustained by the VR users since
cloud systems provide resources based on a pay-as-you-go pricing.

Start

IDLE
Check

resource
status

Admission
Control

No Yes

Create_recipient_list()
Create_donor_list()

Alert

Enable solidarity scheme

Critical

Safe

FIGURE 3.3: Conditions to enable the REACT solidarity approach.

REACT classifies a server’s load into three conditions: safe, alert, and critical. Figure 3.3
illustrates the conditions for enabling the solidarity approach in a state diagram. In figure 3.3,
Safe and critical conditions are mapped to τl and τh, respectively. The alert condition is enabled
when the MEC server load ξ is between 80% and 95% of the MEC server’s capacity. If the
system is in a safe condition, REACT does not operate because services can be deployed
immediately. When the system is in alert or critical condition, REACT takes preventive
measures to reallocate resources and avoid the system entering or remaining in a critical
condition.

REACT groups general services into a donor list D and VR services into a recipient list R,
respectively. REACT adds a service si to the donor list if its workload wi ≤ Tc(si). The donor
list and the recipient list are sorted from the smallest to the largest available residual resources
and resource demands. REACT constantly maintains the recipient list and the donor list if the
server reaches an alert or critical condition. Each donation involves a single recipient and one
or more donors: after REACT calculates how many resources a single recipient needs, it will
scale-down one or more donors and subsequently scale-up the recipient to fulfill its resource
needs. REACT will start a donation process until either the R or the D is empty.

3.3. Edge Resource Provisioning with REACT 51

3.3.2 REACT Operation

On a generic MEC server, the REACT algorithm runs on a set of services S. First, REACT
gathers the infrastructure and service monitoring data, e.g., CPU, RAM, storage, incoming
and outgoing bandwidth, to create and maintain the recipient list R and the donor list S. We
implement R and D as self-balancing binary search trees, i.e., AVL tree, aiming to optimize
the solidarity auto-scaling algorithm. To access n service monitoring metrics h REACT uses
δ. Then, both lists are inspected to meet the highest-priority services that experience resource
bottlenecks. After this, REACT calculates the details of the service donations and updates
the new ar and ad, respectively, in R and D. The next step is to update the service thresholds
in both R and D lists deployed at the local MEC server. It can be implemented through a
virtualization platform used to host the service components.

Algorithm 1 Recipient and donor service selection
Input: service_list: list
Output: R, D

1: function INSERTAVL(root, node)
2: for s in service_list do
3: if ws ≥ tc(s) then
4: INSERTAVL(R, s)
5: else
6: INSERTAVL(D, s)

Algorithm 1 identifies services that are facing resource bottlenecks, i.e., R. Algorithm 1 also
defines the function InsertAVL(root, node) to insert nodes in an AVL tree (line2). Based on this
algorithm, R and D lists are created and maintained by Algorithm 1. A service is classified as
R if its workload ws ≥ Tc(s) (line 4). Algorithm 1 identifies services that can be part of the
donation process provided by REACT. A potential D can be identified by inspecting service
workload ws < Tc(s) (line 5). In the end, R and D are sorted according to the resource needs
and the number of residual resources available, respectively. Algorithm 1 is triggered before
a critical resource condition has been reached and after the solidarity scheme is enabled.

Algorithm 2 is triggered as an infinite loop. Each iteration of Algorithm 2 requires getting
the service and MEC monitoring metrics (line 2). Critical conditions can be identified by
checking the MEC load (line 3). Every time a critical resource condition has been reached,
the REACT approach is enabled. REACT builds and maintains both R and D through
Algorithm 1 (line 4). In lines 5 and 8, the REACT algorithm defines functions InOrder(root)
and ReverseOrder(root) to recursively iterate over R and D, respectively. On one hand,
InOrder(root) traverses the left subtree, visits the root, and traverses the right subtree. On
the other hand, ReverseOrder(root) traverses the right subtree, visits the root, and traverses
the left subtree. Line 11 gets the required donation from a set of R. In lines 12 and 15, the
algorithm gets the value of Td(d). In lines 13 and 16, Equation (3.1) is used to re-orchestrate R

and D. After the donation of Td(d), the donor d is removed from D using function Remove(D)
in line 17. The recursive function in line 8 is either triggered until the required donation is
reached or when D is empty (line 18).

52 3.3. Edge Resource Provisioning with REACT

Algorithm 2 Solidarity-based auto-scaling
Input: service_list: list
Output: R, D

1: function SOLIDARITYAUTOSCALING

2: MECMONITORING(δ, ξ) ▷ starts δ and ξ
3: while ξ ≥ τh do
4: R, D ← SERVICESELECTION(service_list)
5: function INORDER(R)
6: if R is ∅ then return
7: INORDER(R→ left)
8: function REVERSEORDER(D)
9: if D is ∅ then return

10: REVERSEORDER(D → right)
11: required_donation← 1·aR
12: if wD ≤ Tc(D) then
13: Td ← aD − Tc(D)
14: DONATION(R, D, Td)
15: else
16: Td ← aD − wD
17: DONATION(R, D, Td)
18: REMOVE(D)
19: if donations ≥ required_donation then return
20: REVERSEORDER(D → left)
21: REVERSEORDER(D → right)

To prove the feasibility of implementing the REACT solidarity approach in real-time MEC
servers, we provide a detailed algorithm complexity analysis. To give an accurate analysis,
let us assume that: (i) n services are running on MEC server; (ii) n services are classified
as donor (D) and recipient (R) services; and (iii) on average, the REACT solidarity scheme
consists of 30% of R and 70% of D. Although n services are iterated/searched in line 3 with
complexity O(n), lines 4 and 5 use AVL tree insertion function InsertAVL(root, node), which
has time complexityO(log n). Since lines 4 and 5 of Algorithm 1 are not nested, we can derive
that Algorithm 1 has time complexity O(n log n).

Algorithm 2 gets MEC and service monitoring metrics in line 2 through function
MECMonitoring(δ, ξ), which has time complexity O(n). Algorithm 2 uses a while loop
in line 3 to enable the REACT solidarity model, where in each iteration, the MEC workload
ξ is updated. Line 4 has time complexity O(n log n) as it uses Algorithm 1. Within function
InOrder(R), in line 8, the function ReverseOrder(D) has time complexityO(d) as it recursively
iterates over D. Within function ReverseOrder(D), in line 17 the function Remove(D) performs
O(1) as it already uses ReverseOrder(D) to find the node. Then, Remove(D) removes the donor
d from D and performs the AVL rotations when needed. As R and D have a linear relationship
with n and based on ReverseOrder(D) and Remove(D) algorithm analysis, in line 5 the function
InOrder(R) has time complexityO(n2) as it takes O(r) to recursively iterates over R, resulting
int the product O(r) · O(d) · O(1) for searching in R, D, and removing from D.

3.4. Experiment Setup 53

For both InOrder(R) and ReverseOrder(D), the comparisons during the search in each
iteration, including unsuccessful search, are limited by the height of the AVL tree, which is
O(log n). As InOrder(R) and ReverseOrder(D) have to search all nodes, then both perform
O(n). InsertAVL(root, node) requires O(log n) to lookup a service, plus a maximum of
O(log n) retracing levels on the way back to the root, which takes O(log n). Remove(D)
follows the same pattern of function InsertAVL(root, node), which also has time complexity
O(log n) [136]. However, as it is used within ReverseOrder(D), it already knows where
the node is, just requiring O(1) to remove the node and perform the AVL rotations.
As MECMonitoring(), ServiceSelection(), and InOrder() are not nested, the function
SolidarityAutoScaling() has time complexity O(n2). The REACT algorithm performs
O(n2) resource reallocation operations.

3.4 Experiment Setup

To assess their impact in handling elasticity events, both Kubernetes and REACT adopt the
same elasticity approach to scale-up/down resources of MEC services. When a service reaches
the resource utilization threshold of 70%, both mechanisms scale-up by 30% of the current
service resource allocation. Otherwise, when the current service resource usage is ≤ 30%,
they perform a scale-down of 20% of the allocated resources. These thresholds are commonly
used in other approaches and considered as good practices for cloud computing [83]. If
vertical elasticity cannot be achieved successfully, Kubernetes will ignore the elasticity event.
In contrast, REACT triggers the solidarity elasticity mode.

To denote a MEC-like testbed, we design the testbed configuration as described in Figure 3.4.

The auto-scaling schemes have been implemented in an Openstack-based cloud platform,
consisting of three Dell Power Edge servers, two external Dell PowerVault MD3800i that
provide disk space of 20.6 TB in RAID 5, and a network backbone with 48x10 GbE-T ports
and 80 Gbps backbone connection. We represent edge servers as virtual machines deployed
on our MEC infrastructure. Each MEC server supports the deployment of several VR services,
where these services belong to different VR users. The auto-scaling mechanisms are deployed
independently in each MEC server and are unaware of other MEC server resources.

We compare the REACT algorithm against Kubernetes’ auto-scaling algorithm. We provide an
elasticity policy to trigger network elasticity events when resource utilization reaches 80% of
reserved resources. We apply the Poisson distribution results in the OVS, allocating different
bandwidth demands for each service. This feature is incorporated into Docker containers
through OVS, where we set virtual tunnels for each container’s virtual interface. Furthermore,
we set QoS egress and ingress traffic shaping policies to ensure bandwidth limitations for each
service deployed within Docker containers.

A set of 100 services is deployed in the edge server, including edge analytic services, VR
services, and video services to provide dynamic behavior in a real environment. The edge
server has 16 GB RAM, 8 vCPUs, and a 5 Gbit/s link. The client arrival times are modeled by

54 3.4. Experiment Setup

Internet

Cloud Servers

MEC Layer

MEC

Server1

Service Layer

MEC

Server2

MEC

Server3

MEC1 Services MEC3 ServicesMEC2 Services

FIGURE 3.4: Testbed deployment for REACT and Kubernetes experiments.

a Poisson process for both REACT and Kubernetes. A Poisson distribution also models the
elasticity time windows and service parameters such as workload, resource allocation, and
over-provisioning.

We define the elasticity time window as the time required to trigger service elasticity events,
i.e., an elasticity event is triggered at time slot k. In time slot k + 1, another elasticity event is
triggered. Then, the workload variations are triggered according to the elasticity time window.
1000 elasticity events are generated based on each service’s Poisson distribution. Lastly, our
evaluation considers that 1 vCPU represents 1024 CPU cycles per second. We use the docker
flag --cpu-shares to control the CPU allocation priority.

To validate the approach presented in this chapter, we implemented a REACT prototype,
available at [137] as open-source. The workload generated based on Poisson distribution
allowed us to test REACT’s and Kubernetes’ algorithm performance after the MEC resources
became scarce. All tests have been repeated along with 1000 elasticity events. Both REACT
and Kubernetes are evaluated using the following KPIs:

3.5. Performance Evaluation 55

1. Elasticity events accomplishment (KPI 1) measures both mechanisms’ performance to
accept elasticity events under resource scarcity conditions. Thus, auto-scaling requests can
be denied if no resources are available.

2. Cumulative Distribution Function (CDF) (KPI 2) shows the cumulative acceptance ratio’s
behavior along with KPI 1 in the experiment. It shows how REACT can handle more
auto-scaling requests than Kubernetes by using its service donation approach.

3. Service outages (KPI 3) measure the negative impact on services when resources become
scarce. Moreover, this KPI shows how services could be either terminated or migration
could be enabled due to scarcity of resources.

4. Elasticity attempts (KPI 4) are related to the algorithmic capacity to calculate new
elasticity enforcement during resource scarcity conditions. A single auto-scaling request
will count as one elasticity attempt if no resources are available. The mechanisms will
then attempt to respond to the auto-scaling request until resources become available while
elasticity attempts are counted.

5. Residual resource behavior (KPI 5) (over-provisioned) shows how over-provisioned
resources are allocated during the experiments. Based on this, it is possible to understand
how resource allocation could be enhanced whenever MEC resources become scarce.
Besides, it identifies how service billings can be minimized while providing better MEC
resource usage.

6. The time response (KPI 6) measures both mechanisms’ performance to calculate and
perform auto-scaling events.

3.5 Performance Evaluation

REACT and Kubernetes acceptance elasticity events rates (KPI 1) have been evaluated by
measuring the number of events accepted after the hosting resources are saturated. Accepted
events are related to both mechanisms’ capacity to accomplish elasticity events, e.g., given
an elasticity request, the mechanism can provide the auto-scaling provisioning action. In
particular, Figure 3.5 shows the total accepted elasticity events by each resource type, i.e.,
CPU, RAM, and bandwidth. Kubernetes achieved an acceptance rate of 80’177 events. Based
on this, 33.34%, i.e., 26’733, of the events were dedicated for CPU resources, 31.89%, i.e.,
25’568 events, for RAM resources, and 34.77%, i.e., 27’876, for network resources. On the
other hand, REACT achieved an acceptance rate of 98’848 elasticity events, where 33.56%,
i.e., 33’168 events, for CPU resources, 33.02%, i.e., 32’644 events, for RAM resources, and
33.42%, i.e., 33’036 events, for network resources. REACT has accepted 18’671 more events
than Kubernetes, which means a performance gain of 18.88% compared to Kubernetes. It is
worth mentioning that the present evidence relies on REACT’s capacity to accommodate more
elasticity events through its solidarity approach.

We show the acceptance ratio of elasticity events in Figure 3.6 through a CDF (KPI 2). Also,
Figure 3.6 combines all acceptance probability values, i.e., CPU, RAM, and bandwidth, and

56 3.5. Performance Evaluation

10

20

30

40

50

60
 REACT
 Kubernetes

A
cc

ep
te

d
 E

la
s

ti
ci

ty
 E

ve
n

ts

BandwidthRAMCPU

FIGURE 3.5: Impact of REACT and Kubernetes mechanisms to accomplish elasticity events throughout the
testbed.

shows the cumulative probability of the elasticity events accepted by REACT and Kubernetes.
REACT has a higher acceptance ratio due to its knowledge of over-provisioned resources. This
feature avoids rejection events and increases the acceptance events ratio.

60 75 90 105 120 135 150

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

 r
a

ti
o

 REACT
 Kubernetes

Resource units (CPU, RAM, bandwidth)

FIGURE 3.6: Acceptance ratio of elasticity events.

In containerization-based Docker, CPU is a compressible resource, i.e., the Linux kernel
CPU scheduler can throttle containers if the requested amount is exceeded or the node
is overloaded. Once a container reaches the limit, it will continue running. However, the
operating system will throttle it and keep restricting it from using the CPU. On the other hand,
it is important not to allow a running container to consume too much of the host machine’s
memory. By definition, RAM is a non-compressible resource. Once a container reaches the
memory limit, it will be terminated because of the Out of Memory (OOM) problem, which
means that the container’s service will be killed. The same behavior occurs in REACT since
Docker provides container virtualization for services. Kubernetes was designed to maintain
the availability of the entire system. When the system goes into an over-committed state, the
Kubernetes may decide to kill a set of pods to restore system stability. Generally, if a pod uses
more resources than requested, that pod becomes a candidate for termination. On the other
hand, REACT will try to use the residual service resources through its solidarity approach to
minimize service outages and reduce service migration.

3.5. Performance Evaluation 57

0

1k

2k

3k

4k

5k

6k

7k
 REACT
 Kubernetes

S
er

v
ic

e
 O

u
ta

g
e

s
CPU RAM Bandwidth

FIGURE 3.7: Influence of REACT and Kubernetes elasticity mechanisms in the testbed concerning service
outages.

Figure 3.7 compares solutions in terms of service outages (KPI 3) during the experiments. A
total of 19’626 service outage events were accomplished by Kubernetes’ VPA mechanism,
where 34.28%, i.e., 6’728 events, for CPU, 38.81%, i.e., 7’616 events, RAM, and 26.91%, i.e.,
5’282 events, for bandwidth. Based on 1’000 elasticity events, on average, 7.616 elasticity
events were affected by the OOM problem, which means that at least 8 services would have
needed to be migrated to another server, totaling 8% of all services deployed. Furthermore,
on average, 6.73% of CPU and 5.28% of RAM service resources were affected by the lack of
resources. On the other hand, REACT accomplished 955 service outage events, equivalent to
4.85% of the total service outage events accomplished by Kubernetes. This means a reduction
of approximately 95.15%, i.e., 18’671, of service outage events. For CPU, RAM, and bandwidth
resources, REACT detected 293, 540, and 122 service outage events. With REACT, on average,
0.54% of services were affected by the OOM problem. At least 1 service would need to be
migrated to another server, totaling 1% of all services. This fact indicates a reduction of 87.5%
fewer services affected by the OOM problem than the Kubernetes. These findings support the
notion that REACT is less influenced by the OOM problem and, consequently, by the enforced
service migration. This implies that REACT is associated with smooth service interruption
and prevents more services from becoming terminated or migrated.

Figure 3.8 shows the performance of both REACT and Kubernetes when the edge server
achieves resource saturation, employing the averaging elasticity attempts analysis (KPI 4).
When this state is reached, the schemes cannot serve all service elasticity requests. Then,
they try to provide elasticity actions based on available resources in the edge server. REACT
makes use of over-provisioned resources. During the resource scarcity situation, Kubernetes
achieved 243’456 elasticity attempts, and 34.01% , i.e., 82’811 attempts, of these events were
dedicated to CPU resources, 39%, i.e., 94’949 attempts, for RAM resources, and 26.9%, i.e.,
65’696 attempts, for bandwidth resources. However, REACT achieved 11’280 elasticity
attempts, reducing 95.36%, i.e., 232’176 attempts, compared to Kubernetes elasticity attempts.
REACT distinguishes itself from Kubernetes by needing fewer resource re-orchestration
rounds to assign resources for services during the scarcity of resources. It chooses a better
resource configuration for all services to support more elasticity events.

58 3.5. Performance Evaluation

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160
Kubernetes REACT

 CPU
 RAM
Bandwidth

E
la

st
ic

it
y

 A
tt

e
m

p
ts

Elasticity Events

FIGURE 3.8: Elasticity attempts accomplished in the testbed due to the REACT and Kubernetes
mechanisms.

We also examined the residual resources (KPI 5) for both REACT’s and Kubernetes’s
mechanisms. Figure 3.9 shows the behavior of the residual resources of the mechanisms
during the experiment events, considering a resource scarcity situation. Figure 3.9 shows the
cumulative residual resources units. Kubernetes achieved an average of 2.41 vCPUs cores,
residual CPU cycles, 4’985 MB of residual RAM, and 1’404 Mbps of residual bandwidth
units. On the other hand, REACT achieved an average of 1.60 residual CPU cycles, 3’070 MB
of residual RAM units, and 1’025 Mbps of residual bandwidth units. In this way, REACT
performed an average gain of 33.88% of CPU residual resources, 38.41% of RAM residual
resources, and 73% of residual bandwidth resources compared to Kubernetes.

0

1k

2k

3k

4k

5k

6k

7k

8k

R
es

id
u

a
l

R
es

o
u

rc
e

s

BandwidthRAMCPU

 REACT
 Kubernetes

FIGURE 3.9: Effect in the residual resources led by REACT and Kubernetes elasticity mechanism on the
testbed.

REACT’s solidarity algorithm provides scale-down actions on residual resources of the donor
list. Figure 3.10 outlines the residual resource behavior on the elasticity events in the two
experiments. Therefore, REACT calculates the ratio between the currently used resources
and the total resources reserved for each donor chosen. Then, REACT calculates the final
amount of resources to shrink from the residual resources of the selected donor. REACT
allows more efficient use of over-provisioning resources by using them more efficiently via
the solidarity-based mechanism, where it takes advantage of over-provisioning.

3.5. Performance Evaluation 59

0 200 400 600 800 1000
4k

6k

8k

10k

12k
 REACT
 Kubernetes

R
e

si
d

u
a

l R
e

s
o

u
rc

e
s

Experiment events

FIGURE 3.10: Cumulative residual resources behavior led by REACT and Kubernetes elasticity mechanism
in the testbed.

Finally, to evaluate our REACT processing time, we compared the time needed to provide
the elasticity actions and the time to provide the elasticity attempts when a resource scarcity
situation is reached since both REACT and Kubernetes need to perform restricted actions to
meet the current elasticity demand.

0

50

100

150

200

250

300

350

400
 REACT
 Kubernetes

T
im

e
(m

ill
is

e
co

n
d

s
)

Total time Elasticity events Elasticity attempts

FIGURE 3.11: Processing time that REACT and Kubernetes take in the testbed to accomplish elasticity
events.

Figure 3.11 shows the average time to process an elasticity request. Figure 3.11 also outlines
the average processing time to accomplish elasticity events and elasticity attempts. Since
Kubernetes performs fewer elasticity actions than REACT, its average processing is 49 ms,
while REACT achieved 268 ms due to the solidarity actions. Regarding the elasticity attempt
window, Kubernetes has an average of 320 ms compared to 19 ms of the REACT algorithm,
considering that both mechanisms will try to perform elasticity events when resources become
scarce. Lastly, the total average processing time, including elasticity events and elasticity
attempt window, for Kubernetes is 369 ms, while REACT achieved 311 ms. REACT obtained
gains in terms of processing time of 15.5% compared to Kubernetes. Indeed, the processing
time is short, considering the order of magnitude of milliseconds. Hence, we demonstrate
that REACT provides a response time as low as the Kubernetes algorithm.

60 3.6. Chapter Conclusions

3.6 Chapter Conclusions

This chapter proposes REACT, a self-adaptive elasticity solution for resource scarcity
in MEC environments. We addressed the Research Question 1.1 by exploiting how
REACT uses a solidarity approach to provide resource reallocation of residual resources
to prevent undesirable VR service degradation due to the scarcity of MEC resources. The
new auto-scaling strategy of the REACT proposal distinguishes itself from widely-used
reactive elasticity solutions in a three-manner: (i) optimal auto-scaling of both network-level
(bandwidth) and compute-level (CPU, RAM, and storage) resources at network edges under
resource-depletion conditions; (ii) efficient collaborative allocation of part of residuals within
over-provisioned resources from a set of donor services to scale up a demanding recipient; and
(iii), self-adaptive auto-scaling, which allows a high assertive resource computing scheme of
donor services’ resource residuals based on usage statistics.

REACT can minimize the harmful effects of service migration while keeping more services
running over the same MEC server. We provided a detailed description of REACT, including
the solidarity approach, the system model, and the REACT algorithm. We addressed the
Research Question 1.2 by considering a resource-constrained MEC scenario to evaluate
REACT against Kubernetes. Our evaluation assesses both REACT’s and Kubernetes’s
performance on a real testbed. Testbed results demonstrate the superior performance
of REACT over Kubernetes in terms of accomplishing up to 18% more elasticity events,
reducing service outages by up to 95%, reducing elasticity attempts by up to 95%, and
reducing over-provisioned resources by up to 33%, 38%, and 73% for CPU cycles, RAM and
bandwidth resources, respectively. Finally, REACT reduced response time by up to 15%.

In a nutshell, REACT, compared to Kubernetes, has the following improvements: (i) REACT
is more agile than Kubernetes, having the ability to accommodate more elasticity events;
(ii) REACT provides more resource reallocation procedures whenever the resources become
scarce; (iii) REACT degrades fewer services, allowing services to remain active longer or
prevent service migration; and (iv) REACT takes advantage of service over-provisioning,
enhancing the residual resources. As a result, we enhanced the resource provisioning requests
for high-priority VR services, thus addressing the Research Question 1.3.

The findings and contributions in this chapter hold immense potential for advancing the
capabilities of edge networks in supporting latency-sensitive VR applications. By effectively
managing resources and prioritizing the deployment of VR services, the research presented
in this chapter supports VR services deployed on edge networks while providing seamless,
low-latency, and responsive VR experiences for VR applications. However, a distributed
edge-enabled VR deployment must be considered, in which migration and offloading can
change the resource availability of MEC servers during user mobility. Besides, the E2E latency
must be ensured in such a scenario, where it is essential to minimize the overall E2E latency for
VR systems that use the edge infrastructure to deploy their services. Therefore, in Chapter 4,
we address the issues of edge-enabled 6DoF VR deployment, where we focus on reducing the
overall E2E latency in a highly dynamic edge-enabled 6DoF VR environment.

61

Chapter 4

Orchestration of 6DoF VR Services

4.1 Introduction

VR has emerged as a transformative technology that immerses users in interactive digital
environments, revolutionizing various fields such as gaming, education, training, and
healthcare. The advent of 6DoF VR systems enhances the immersive experience to new
levels, allowing users to move and interact within virtual spaces freely [5]. However, the
seamless and surrounding 6DoF VR experience comes with demanding computational
requirements, which often exceed the capabilities of VR HMDs [9].

To address the computational limitations of VR HMDs and ensure low latency and
responsive experiences, the concept SFC to manage offloaded VR-intensive computing tasks
to edge networks has gained significant attention [20]. Edge networks, powered by MEC
infrastructure, offer proximity to end-users, reducing the latency for delivering VR services.
By leveraging edge resources, VR applications can enhance their computing capacity and
deliver high-quality experiences to VR users [21].

However, coordinating such a plethora of VR services, especially during user mobility, yields
several challenges. In chapter 3, we have shown that merely prioritizing the deployment of
VR services at the network edge does not guarantee ultra-low latency. The orchestration of VR
services must consider several factors, such as user mobility, energy consumption trade-offs,
and optimal distribution of VR services across edge nodes while supporting VR services with
low-latency experiences.

In this chapter, we investigate the DSCP to find the optimal service placement of services
from a service chain such that its E2E latency does not exceed 5 ms. The following sections
discuss the content described in Paper [2] and Paper [3]. Therefore, Section 4.1 describes
the research questions addressed in this chapter and discusses the contributions of the new
heuristic to solve DSCP. Section 4.2 formulates the system model. Section 4.3 presents TENET,
a new heuristic that solves DSCP and orchestrates VR services while providing low E2E
latency. Section 4.4 describes the experiment setup. Section 4.5 discusses the evaluation
results. Finally, section 4.6 concludes the study in this chapter.

62 4.1. Introduction

4.1.1 Research Questions Addressed

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.2.

Research Question 2.1: How can VR services be distributed across the MEC infrastructure to
reduce the E2E latency of VR applications?

Research Question 2.2: What is the trade-off between the VR application’s E2E latency
and the mobile HMD’s energy consumption by adopting different strategies for offloading
VR-intensive computing services from mobile HMDs to MEC infrastructure?

Research Question 2.3: How does the decision on where VR services are deployed impact the
E2E latency, and how does it affect video resolution selection for VR systems?

4.1.2 Chapter Contributions

To address the challenges mentioned above, in Paper [2] and Paper [3], we propose solutions
to reduce the E2E latency for VR systems. We address the Research Question 2.1 by
showing how to distribute VR services across MEC servers to reduce the E2E latency for VR
applications. We address the Research Question 2.2 by proposing in Paper [2] an algorithm
to analyze the trade-off between E2E latency and energy consumption for VR systems. We
address the Research Question 2.3 by proposing in Paper [3] the service chain orchestrator
TENET, which supports offloading, migration, and orchestration of VR services deployed
across HMDs and MECs to ensure acceptable E2E latency for MVR applications and optimize
the selection of better video resolutions for VR systems. Our contributions are as follows.

• We provide the trade-off between E2E latency and energy consumption over three
high-mobility scenarios compared to widely used service migration strategies.

• We define the DSCP to find the optimal placement of services from a service chain such that
its E2E latency does not exceed 5 ms. We use integer linear programming to model DSCP
objective and constraints.

• DSCP is NP-hard, i.e., computationally expensive. Therefore, we propose a heuristic
(TENET) that is one order of magnitude faster than DSCP. We also provide algorithms
for path calculation based on E2E latency and management of VR applications to ensure
acceptable E2E latency along with TENET architecture.

• We evaluate the performance of Meta HMD applications in terms of frame rate, computing
latency, and power usage to model service workloads. We use those application
metrics to model 6DoF VR service workloads in a simulated environment to evaluate
system scalability, E2E latency, energy consumption, video resolution selection, context
migrations, and execution time.

• We compare the TENET with traditional service migration approaches over high-mobility
environments by analyzing the VR-AVS as a reference use case and show that TENET can
guarantee acceptable E2E latency to a set of VR services over MEC infrastructures.

4.2. System Model and Problem Formulation 63

4.2 System Model and Problem Formulation

4.2.1 System Model

Our considered scenario contains a set of users, each provided with an HMD that executes a
6DoF VR application, e.g., VR games, educational tools, and navigation aids. We assume that
each HMD can move around in the scenario at speeds ranging from pedestrians to vehicles
and is always connected to the Internet via a 5G base station. The most challenging use case
for this scenario is the VR-AVS, in which HMDs move at high speed and require low-latency
video streaming.

The network infrastructure is defined as a graph G = (V, E), where V = {v1, . . . , v|V|} is
a set of computing devices (i.e., MEC servers and HMDs), and E = {e1, . . . , e|E|} is the set
of paths between any two elements of set V. The set of HMDs is denoted by H ⊆ V. The
maximum achievable data throughput between two elements belonging to set V along path ej

is indicated by Bj. The total computing resources offered by device vi ∈ V are the maximum
CPU cycles per second Ci ∈ R and the maximum GPU cycles per second Gi ∈ R.

In our considered scenario, each computing device vi ∈ V (i.e., MEC server or HMD) can
execute several elementary functions, each implemented by an indivisible software module
called service. All services operate according to the same general workflow: they take some
data for input, process it, and finally output it. Examples of services that can be executed
on a computing device are video encoding and decoding, FoV extraction, face tracking, body
tracking, and mobility prediction. Let F = { f1, f2, . . . , f|F|} be the set of all services. The set
Fi ⊆ F denotes the set of services deployed on the computing device vi ∈ V. The resources of
the computing device vi are shared among all services fm ∈ Fi that are deployed on it, where
the computing device grants and releases resources over time. We assume that each service
fm ∈ Fi requires exclusive use of a share of CPU and GPU resources provided by computing
device vi to operate correctly, meaning that the sum of all resources assigned by device vi to
its services cannot be higher than the total installed resources. The CPU and GPU cycles per
second required to run a generic service fm are denoted by

Rm = (Rc
m, Rg

m) ∈ R2 (4.1)

The amount of CPU and GPU cycles per second allocated to a generic service fm is denoted
by

Am = (Ac
m, Ag

m) ∈ R2 (4.2)

To deal with service workload fluctuations, for each service fm, it is required that

Am ≥ Rm (4.3)

The output of a service can be redirected as the input of another service to perform a more
complex task. Therefore, we define a service chain sn as an ordered sequence of services, where
the data produced by a service is the input of the following service, where some services

64 4.2. System Model and Problem Formulation

f2 f3

v2

v3 v4

v5

s2

Internet

f1

s3

f4

v1 v6

f7 f6 f5

f ff8 9 10

a1

s1

a2

HMD HMD

FIGURE 4.1: Service chain graph deployment on the network.

from a specific service chain may be shared among different applications, e.g., transcoding.
However, we replicate the shared services if they need to be migrated. The first and last
service of a chain have the task of producing and consuming the content, respectively. We
define Service Chaining Graph (SCG) as the set of service chains in the whole system as S =

{s1, . . . , s|S|}. Each service fm is associated with a single service chain sn and cannot be shared
by multiple service chains because a potential migration could reduce the network latency for
one service chain and consequently increase the latency for another service chain. Each service
fm is associated with a service chain sn and can be shared by multiple service chains. However,
if the migration of that shared service fm increases the E2E latency for other SFCs, we replicate
that service fm. As a result, any two service chains si and sj are disjoint ∀i, j ∈ {1, . . . , |S|}. We
define allocation resource vector bn ∈ V|sn| of service chain sn as a vector that indicates which
computing device vi ∈ V the corresponding service in the service chain sn runs. We call
B = {b1, b2, . . . , b|S|} the set of all allocation resource vectors (one for each service chain in the
system) and B∗ the set of all possible allocation resource vector sets. We define ωn ∈ R as
the maximum data throughput needed between any two consecutive services of the chain sn to
communicate. We call W = {ω1, ω2, . . . , ω|S|} the set of all maximum data throughput and W∗

the set of all possible data throughput sets. Applications running in our considered scenario
need to perform highly complex tasks. Therefore, we define each application an in the scenario
as a set of one or more service chains whose services run in parallel on several computing
devices. We denote A = {a1, a2, . . . , a|A|} as the set of VR applications running in the system,
one for each HMD. We define the set of service chains that belong to a certain application
an as Sn ⊂ S, and we assume that service chains belong exclusively to one application and
cannot be shared with others.

Figure 4.1 shows an example of service chain graph deployment on the network. The solid
lines indicate wired connectivity, the dotted lines indicate wireless connectivity, and the
dashed lines represent the set of allocation resource vectors. The example contains two VR

4.2. System Model and Problem Formulation 65

applications a1 and a2, each decomposed into service chains and highlights the allocation
of each service on different computing devices in the system. A 6DoF VR application a1 is
implemented through two service chains s1 = (f1, f2, f3, f2, f4) and s2 = (f5, f6, f7), while
application a2 is implemented by a single service s3 = (f8, f9, f10). In the first service chain s1

of application a1, service f1 represents a content aggregator that receives decoded video parts
from services f2, f3 and f4 and sends the VR video to HMD v1. In the second service chain
s2 of application a1, services f5, f6 and f7 represent mobility tracking, mobility prediction, and
points of interest discovery, respectively. In the service chain s3 of application a2, services f10,
f9, and f8 represent the VR services decoding, and FoV extraction, FoV prediction, respectively.

The frame rate of the video shown to the user is one of the most crucial QoS parameters of a VR
application. Let us define σn as the number of frames per second generated by the application
an and ϱn as the number of frames per second dropped by application an. We define the VR
application QoS as the absolute number of frames per second correctly delivered to the HMD,
which is represented by

Θn = σn − ϱn ∈ R, ∀a ∈ {1, . . . , |A|} (4.4)

We assume that each HMD has limited energy resources and that their power consumption
is proportional to the resources used by the services running on them. Let us define ϵm as
the power required to run service fm. We can then define the average system-wide power
consumption Ψ per HMD as the sum of all power consumptions of services running on
HMDs, divided by the total number of HMDs in the system, i.e.,

Ψ =
1
|A| ∑

{i:vi∈H}
∑

{m: fm∈Fi}
ϵm (4.5)

It is worth noting that Ψ is a function of the allocation resource vector set B, as deploying
services on either the HMD or the MEC server will change the energy expenditure of the
system’s mobile computing devices.

We denote the computational latency of service fm as pm, which is the computational execution
time taken to run service fm regardless of where it is deployed. We define the computational
latency Pi of service chain si as the sum of the computational latencies of all services along the
chain, i.e.,

Pi = ∑
{m: fm∈si}

pm (4.6)

Assuming that all service chains of application an run in parallel, we can now define the
computational latency Pn of the application an as the maximum computational latency of all
its service chains, i.e.,

P∗n = max
{i:si∈Sn}

Pi (4.7)

66 4.2. System Model and Problem Formulation

Every service in a chain receives the information from the previous service, processes it, and
forwards it to the following service in the chain. We denote the latency to transmit the data
from a service fm in the chain to the following service in the chain as km. In practice, the
latency between consecutive services in a chain is equal to the network latency between the
two computing devices that host the services or close to zero if the services are deployed on
the same computing device. Therefore, we define the network latency Ki for service chain si

as the sum of the network latencies between every two services along the chain, i.e.,

Ki = ∑
{m: fm∈si}

km (4.8)

For the last service of service chain si, we assume k|si | = 0.

Application an is implemented by a set of service chains Sn ⊆ S that run in parallel. Therefore,
we can now define the network latency K∗n of application an as the maximum network latency
of all its service chains, i.e.,

K∗n = max
{i:si∈Sn}

Ki (4.9)

It is worth noting that K∗n is a function of the allocation resource vector set B.

We define the total E2E latency Ln of application an conservatively as the sum of its network
and computing latencies, i.e.,

Ln = K∗n + P∗n , ∀a ∈ {1, . . . , |A|} (4.10)

Finally, we define the average system-wide E2E latency L as the average of the total E2E
latency of all applications in the system.

L =
1
|A|

|A|

∑
n=1

Ln (4.11)

4.2.2 Problem Formulation

Every service chain sn ∈ S might be composed of several services fm, where these services
are distributed over different computing devices vi. We introduce the Distributed Service
Chain Problem (DSCP), a combinational optimization problem consisting of finding the optimal
service placement of a service chain sn composed of n services fm such that the E2E latency of
sn does not exceed φn = 5 ms.

To achieve such latency, we propose a service allocation algorithm to solve DSCP efficiently.
Our proposed algorithm relies on the backtracking method, as the search space of service
placement to meet the acceptable E2E latency is large and high-dimensional. With
backtracking, the optimization procedure discards solutions whenever the latency exceeds
the acceptable E2E latency. The defined DSCP can be solved by computing the values of

4.2. System Model and Problem Formulation 67

the specified utility function for all possible service allocations in the network and select the
allocation that yields the highest utility as the solution. However, this approach is impractical
due to the large search domain. In particular, each service fm ∈ sn is independently
deployable over a system that contains |V| devices. This means that, to find the globally
optimal service allocation resource vector B for a single service chain sn, the utility of all |V|
possible service resource allocation combinations must be evaluated, which corresponds to a
time complexity ofO(n)2 function evaluations to optimize a single service chain deployment.
This computation scales linearly with the set of all service chains S in the system, to make up
an even larger computational load, which results in a time complexity of O(n)3. However,
there are more combinations to be evaluated in the service placement process, for instance,
the set of paths available E, their throughput W and the network latency K∗n, the computing
latency P∗n and resource availability of each computing device vi ∈ V. Therefore, an algorithm
to solve DSCP has a time complexity of O(2n).

Our objective is to compute an optimal allocation resource vector set B for all service
chains in the system, which minimizes the total E2E latency and power consumption for all
applications in the system while guaranteeing the acceptable QoS. Therefore, we introduce
a power sensitivity coefficient α ∈ [0, 1] that the policy maker can set to a number closer to 1
to prefer lower latency over low power consumption and closer to 0 to prefer the opposite
outcome. The coefficient α can be based on the user’s and application’s preference. To define
the DSCP we use a cost function:

U = αL + (1− α)Ψ (4.12)

The cost function is minimized by exploring the set of all possible allocation resource vectors,
subject to a set of network operation constraints listed in Optimization Problem 4.13.

minimize
B∈B∗

U = αL + (1− α)Ψ (4.13)

subject to

Ln ≤ φn ∀n ∈ {1, . . . , |A|} (4.13a)

Θn ≥ ∆n · σn ∀n ∈ {1, . . . , |A|} (4.13b)
|S|

∑
n=1

ωn · cn(ej) ≤ Bj ∀j ∈ {1, . . . , |E|} (4.13c)

∑
{m: fm∈Fi}

Ac
m ≤ Ci ∀i ∈ {1, . . . , |V|} (4.13d)

∑
{m: fm∈Fi}

Ag
m ≤ Gi ∀i ∈ {1, . . . , |V|} (4.13e)

The cost function should be minimized while guaranteeing that the total E2E latency for
each application an in the system is not higher than an upper bound φn defined for each

68 4.3. Managing Mobile VR Services with TENET

application (constraint 4.13a). To impose a sufficient QoS for immersive VR applications,
every application an in the system must have a rate of video frames correctly delivered to
the HMD of not less than a fraction ∆n of the video frame rate σn generated by the application
an (constraint 4.13b). Each path ej between two computing devices has a maximum achievable
data throughput of Bj, meaning that the total data throughput of all services communicating
between the two computing devices connected by path ej should be less than Bj. Let cn(ej)

be a function that counts how often the service chain sn traverses path ej. We now introduce
a constraint for each path ej in the system, formulated as follows: the sum of the throughput
ωn of all service chains sn in the system, each multiplied by cn(ej), should be less than the
maximum achievable throughput Bj on path ej (constraint 4.13c). For each MEC server vi, the
sum of the CPU resources Ac

m and GPU resources Ag
m allocated to all services running on it

should not be larger than the total CPU resources Ci and GPU resources Gi installed on MEC
server Vi (constraints 4.13d and 4.13e).

4.3 Managing Mobile VR Services with TENET

This section introduces TENET, a novel orchestrator to solve the DSCP. Furthermore, this
section describes in detail the process of offloading VR services into service chains, the
management of chain dependencies, the latency and energy trade-off, the path calculation to
formulate the E2E latency, the orchestration of VR services, and the architecture of TENET.

4.3.1 Offloading VR Services

Typically, VR applications have inputs, processing services, and outputs. The processing
services manage the inputs, e.g., cameras, gyroscopes, microphones, GPS, and compute
specific services to produce the outputs. Among those services, auxiliary services, e.g., FoV
prediction, motion prediction, scene depth estimation, image semantic understanding, and
3D scene reconstruction, enhance VR user experience. TENET identifies and offloads auxiliary
services to alleviate the computation burden on VR HMDs. Nevertheless, services that may
demand enormous processing power or high energy consumption can also be offloaded
to the network edge, e.g., decoder or transcoding. By offloading VR-intensive computing
services, VR HMDs only execute mandatory services and display the virtualized environment
received from MEC servers. Hence, TENET provides high-quality immersive experiences
by ensuring the acceptable QoS for VR applications. This deployment strategy enhances the
QoS of VR users by increasing the battery life of HMDs and reducing the HMDs’ heat while
ensuring acceptable E2E latency for mobile VR users and preventing HMDs from running out
of computing resources. On the one hand, VR-intensive computing services are offloaded to
MEC servers, which prevents these tasks from being deployed at the cloud infrastructure. On
the other hand, SCG reduces the amount of data transferred over the network and reduces
the network latency for VR applications.

4.3. Managing Mobile VR Services with TENET 69

4.3.2 Managing Chains Dependencies

A VR application may have different service chains. Each service chain follows specific criteria
to maintain the acceptable E2E latency. However, these VR services are not fully chained.
Each service chain is isolated from other chains that belong to the same VR application to
prevent latency bottlenecks in most priority services. This strategy allows TENET to deploy
the most priority services with fewer dependencies, preventing failure in one service and
decreasing the latency. One possible issue when offloading VR services is the dependency on
the offloadable services of the VR application. Each VR application might be decomposed into
independent VR services, i.e., without input from other offloaded services, such as decoding and
encoding services. However, VR services with mutual dependency or even service chains with
mutual dependency may coexist in the same VR application. A service with mutual dependency
indicates that it needs input from other services. To mitigate the service dependency problem, we
only consider VR services classified as a low priority to have a mutual dependency. Otherwise,
the offloaded VR services should be independent.

4.3.3 Latency and Energy Trade-off Procedure

Algorithm 3 Latency and Energy Tradeoff
Input: sn, hi
Output: E2E latency minimized

1: for fm in sn do
2: vi ← DISCOVERMECS(hi)
3: Ln ← GETE2ELATENCY(vi)
4: Initialize α ▷ 0 ≤ α ≤ 1
5: if not α then return MIGRATION(vi, fm)
6: if fm ∈ hi then
7: if vi ̸= ∅ and Ln < hp then
8: return OFFLOADSERVICE(hi, vi, fm)
9: Ln ← GETE2ELATENCY(fm) ▷ fm ∈ vi

10: if vi < Ln then return MIGRATION(vi, fm)
11: return REVERSEOFFLOADING(hi, vi, fm)

Algorithm 3 shows TENET’s latency and energy trade-off procedure. First, TENET discovers
the MEC server vi ∈ V to host a service fm based on HMD location hi ∈ H (line 2). vi is
discovered considering the E2E latency Ln (line 3). Algorithm 3 uses α to define the priority of
latency over energy (line 4). The value of α can be derived according to each application’s QoS
requirement. The lower the latency is, the higher is the value of α. When α is configured, the
service is deployed on HMD hi to ensure acceptable latency at the cost of the battery. If α = 0,
the service is migrated to vi. For each service fm deployed on hi, if vi provides lower latency
than hi, then fm is offloaded from hi to vi (lines 5-8). Otherwise, fm is already deployed in the
MEC infrastructure. If vi has lower latency than the current MEC server hosting fm, then fm

is migrated to vi (line 10). Lastly, if there is no MEC server vi to host fm with the desired E2E
latency, reverse offloading is performed to bring the fm back to hi (line 11).

70 4.3. Managing Mobile VR Services with TENET

4.3.4 Path Calculation based on E2E Latency

Algorithm 4 returns a path from the source node s to a destination node d based on the
network and computing latency of each node available in graph G. Algorithm 4 extends
the original Dijkstra’s algorithm by considering not only the weight of each path ej ∈ E but
also the cost to run service fm on MEC server vi. In each search, Algorithm 4 only considers
network cost of path ej to reach d and the computing latency pm of d. We also optimize
Dijkstra’s searching by splitting the graph G into zones to search for a set of edge servers
vi to host a particular service fm (line 4). Therefore, the two differences between this modified
version of the Dijkstra Algorithm and its original version are the inclusion of computational
latency pm at each transversal node d and the partitioning of the graph into zones. We consider
that the zones are uniformly created with the same size based on the geographical location of
each city, which can consider neighborhoods or points of interest. The search starts in zone Z
(line 5), which contains the base station where the HMD hi is connected. If Algorithm 4 finds
a server, the search stops. Otherwise, the next searching zone Z is provided considering hi

proximity, the direction of hi’s mobility, and the resource availability of MEC servers.

Algorithm 4 Extended Dijkstra’s Algorithm
Input: G: graph, s: vertex, Ln
Output: dist, prev

1: for vertex v ∈ G do
2: dist[v]← ∞, prev[v]← ∅
3: dist [s]← sp ▷ init dist[s] with s’ computing latency
4: Z ← G ▷ split G into zones Z
5: while Z ̸= ∅ do ▷ search in Z where an is connected
6: u← EXTRACT-MIN(Z)
7: for each edge e = (u, v) do
8: if dist[v] > (dist[u]− w[up]) + w[ek]+ w[ep] then
9: dist[v]← (dist[u]− w[up]) + w[ek]+ w[ep]

10: prev[v]← u, break if dist[v] ≤ Ln

11: return dist, prev

Figure 4.2 shows the zone scheme. u contains the vertex with a minimum distance value from
Z (line 6). For each distance dist[v] (line 7), the weight w[e] of its adjacency nodes considers
the network latency [ek] to reach node e and the computing latency [ep] to process service fm

in node e (line 8). Moreover, dist contains the current distances from s to other vertices (line 9),
and prev contains pointers to previous-hop nodes on the shortest path from s to the given
vertex (line 10).

4.3.5 Ensuring Acceptable E2E Latency for Mobile VR Services

Algorithm 5 describes the practical implementation of TENET. We shuffle the order in which
services are processed in each iteration of Algorithm 5 to ensure fairness for all services during
their processing. First, TENET discovers the information of each service chain sn (lines 1-3).
The next step is to iterate over all services and get the E2E latency of each service to evaluate
if a particular service needs to be migrated or be redeployed on the HMD (lines 7-9). Then,

4.3. Managing Mobile VR Services with TENET 71

Zones

Z3

Initial position

HMD

Final position

HMD

Z2

Zn

migration

Z1

Z4

FIGURE 4.2: TENET’s zones scheme.

TENET constructs the path ρn, allocates the bandwidth Bj, and deploys the services (lines 4-6).
Whenever the hi location changes, the algorithm checks whether the E2E latency Ln has
increased (line 10). If so, the shortest path is calculated using Algorithm 4 and a new MEC
server vi is discovered to host service fm ∈ sn (lines 11-15). If the current E2E latency Ln > α

(line 16), reverse offloading brings the service fm back to hi (line 17). Otherwise, the service
fm is migrated to a nearby MEC server vi (line 18). Compared to DSCP problem that has
an exponential worst-case complexity of O(2n), the cyclomatic complexity of Algorithm 5 is
equivalent to that of the Dijkstra’s Algorithm, namely O((V + E)log(V)) = O(Elog(V)).

Algorithm 5 SCG management for VR applications
Input: hi, α, F

1: for fm in F do
2: if fm ∈ hi then
3: sn ← F∪ { fm}
4: ρn ← construct_path(sn)
5: Bj ← allocate_bandwidth(ρn)
6: SERVICEDEPLOYMENT(hi, sn)
7: while True do
8: for fm ∈ sn do
9: Ln ← GETE2ELATENCY(fm)

10: if hi location changed and Ln > α then
11: dist, prev← GETSHORTESTPATH(sn, fm)
12: while dist ̸= ∅ and dist > α do
13: vi ← DISCOVERMEC(hi)
14: EXTRACTSERVICE(fm)
15: EXTRACTNODE(dist, prev)
16: if Ln > α then
17: return REVERSEOFFLOADING(hi, fm)
18: return SERVICEMIGRATION(vi, hi, sn, fm)

72 4.3. Managing Mobile VR Services with TENET

4.3.6 TENET architecture

To achieve the visions of the TENET, we developed an architecture to be deployed in the MEC
servers and VR HMDs. Figure 4.3 describes the TENET framework architecture. The main
features of the TENET architecture are QoS analysis, migration of E2E latency, offloading,
migration, and orchestration of edge resources. The architecture is composed of the TENET
controller, the TENET VR agent, and the TENET MEC agent. Additionally, we consider a
SDN controller to manage the network resources to ensure the acceptable latency for MVR
applications. In the following, we describe the TENET architecture in detail.

Management Plane

Service

migration

Service

offloading

ETE latecy

mitigation

Edge

orchestration

TENET Controller

MEC Server MEC Server MEC Server

Vr user mobility

Encoding Decoding
Mobility

prediction

Body

tracking

Encoding
Frame

selection

Face

tracking
s1

s2

HMD HMD HMD HMDgNB gNB gNB

FIGURE 4.3: TENET architecture.

1. TENET Controller prepares the deployment by discovering the nearby MEC servers to
offload VR services. Before the VR service offloading, the TENET controller requests
the computing resources and bandwidth allocation to the TENET MEC agent and SDN
controller, respectively. Furthermore, the TENET controller identifies whether a service
migration must be performed whenever the user is in mobility.

2. TENET VR Agent is implemented onto VR HMDs, which interacts with the TENET
controller by sending a set of services offloaded to the MEC infrastructure. The TENET
VR agent chooses which services will be offloaded and prioritizes each service during this
offloading process. To provide the refactoring process for VR services deployed on VR
HMDs, the TENET VR agent prioritizes the services that should be offloaded according to
its latency requirements.

3. TENET MEC Agent checks the resource availability at the MEC servers and allocates
computing and network resources for VR services. The TENET MEC agent provides the
resource allocation for VR services in MEC infrastructures via REACT [1]. REACT is a
solidarity-based elastic service resource allocation strategy for service deployment over
MEC servers with service prioritization support.

4.4. Experiment Setup 73

4.4 Experiment Setup

4.4.1 Testbed Configuration

First, to set the simulation parameters to realistic quantities, we perform an energy and latency
benchmark on commercial devices in a real VR testbed composed of a Meta Quest 2 VR HMD
(Qualcomm Snapdragon XR2 Platform CPU, Qualcomm Adreno 650 GPU, and 6 GB RAM)
connected to a MEC server (Intel Core i9-10885H, 32 GB RAM, NVIDIA RTX 3000). The VR
HMD and the MEC server are bridged by an access point, which simulates the role of the 5G
Radio Access Network (RAN) access point. The access point is a TP-Link Archer AX6000,
which supports Wi-Fi 6 (802.11ax) with a transmission rate of 4.8 Gbps at 5 GHz.

To get Meta HMD monitoring metrics, we use the OVR Metrics Tool, which provides
performance information about a running application. OVR provides access to the
information from an on-device application rather than the command line. After each session,
the data will be stored in a CSV file on Meta HMD. To install the OVR metric tool on Meta
HMD we use Android debug bridge, which is included in the Android software development
kit. Based on the data extracted from Meta HMD’s applications, we model the workloads for
each VR application.

4.4.2 VR Application and Service Workloads

Since we cannot refactor Meta HMD applications into services, we estimate the realistic
wireless link latency and the realistic average power needed for running a service on our
HMD through the following benchmarking process. We deploy a video decoding service on
our HMD and stream 360o videos from a MEC server to the HMD for 600 s. During the video
streaming, the HMD measures its total power consumption through on-board sensors and
measures the latency to receive and decode videos. We repeat the benchmark five times and
average their results for each of four video resolutions, namely 1080p, 1440p, 4 K, and 8 K
running at 60 FPS. When no service is running on the HMD (standby mode), the consumed
energy is 720 J over 600 s, which means an average power of 1.2 W.

We can now define the power needed to run a decoding service on the HMD as the difference
between the measured power and the standby power. The outcome of the energy benchmark
process is that the average energy consumption required by a video decoding service for
1080p, 1440p, 4K, and 8K resolutions are 978 J, 1014 J, 1272 J, and 2568 J over 600 s, respectively,
which correspond to an average power consumption of 1.63 W, 1.69 W, 2.12 W, and 4.28 W.
The realistic latency and power consumption measured in the benchmarking process are used
as parameters of the simulation described hereafter.

4.4.3 VR Users Mobility

We use Mininet-WiFi to simulate a realistic network scenario and user mobility. We
use ONOS1 SDN controller to provide flow control, bandwidth allocation, and mobility

1https://opennetworking.org/onos/

74 4.4. Experiment Setup

management for the simulated VR services. The simulated scenario covers the area of the
cities of Bern, Geneva, and Zurich. Besides, each network topology contains a variable
number of mobile VR users that can connect to the RAN via their 5G interface. We assume
that each VR user runs exactly one VR application. The base stations transmit signals with a
50 dBm power, decaying according to the Free Space Path Loss model.

The VR users’ mobility follows the Random Direction Model, in which users move along a
straight line with a constant speed selected from a uniform distribution with a 0.1 meters
per second average. We assume that mobile VR users connect to the base station whose
signal is received with the highest Signal-to-Noise Ratio (SNR). We assume that each VR user
executes a single 6DoF VR application made of decoding services with a power requirement
as assessed in the real-testbed benchmark. For each 6DoF VR application we uniformly
distribute between 3 and 10 decoders to observe how different sizes of service chains affect
system performance. Furthermore, each 6DoF VR application contains a service to aggregate
the chunks of VR video decoded by each decoder service. For each service fm in the system, its
equivalent requirements in terms of CPU (i.e., Rc

m) and GPU (i.e., Rg
m) are randomly extracted

from two uniform distributions with averages of 1770 MHz for the CPU and 440 MHz for the
GPU, based on the typical requirements of Meta HMD applications.

(A) Bern 5G base stations. (B) Geneva 5G base station. (C) Zurich 5G base stations.

FIGURE 4.4: Physical 5G network infrastructure map of the cities of Geneva, Bern and Zurich.

4.4.4 Edge Network Graphs

We use different types of edge network topologies for the simulation. We use real 5G edge
network topologies for three cities, Bern (BE), Geneva (GE), and Zurich (ZH) [138]. The
original 5G network infrastructures are shown in Figure 4.4. Geneva has an area of 15.93 km2

with 269 nodes and a node density of 16.88 nodes/km2. Bern has an area of 51.6 km2 with 147
nodes and a node density of 2.84 nodes/km2. Zurich has an area of 87.88 km2 with 586 and a
node density of 6.66 nodes/km2.

Each generated topology is based on a cartesian plane, where the nodes are distributed
between the coordinates (0, 0) and (1, 1). We define the area of coverage of each base station
as radius r. Therefore, if the coverage area between two base stations overlaps, then we
generate a link between them. The links between base stations are established whenever
the Euclidean distance between any two base stations in the scenario is not greater than
a radius r. The latency of each established link between two base stations is uniformly
distributed between 0.5 ms and 1 ms. In each city, the base stations are located at positions

4.4. Experiment Setup 75

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(A) Node connections established
through radius 0.18 for Bern.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(B) Node connections established
through radius 0.23 for Bern.

2

4

6

8

10

12

N
od

e
C

on
ne

ct
io

ns

(C) Node connections established
through radius 0.29 for Bern.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(D) Node connections established
through radius 0.15 for Geneva.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(E) Node connections established
through radius 0.17 for Geneva.

2

4

6

8

10

12

N
od

e
C

on
ne

ct
io

ns

(F) Node connections established
through radius 0.19 for Geneva.

2
4
6
8
10
12
14

N
od

e
C

on
ne

ct
io

ns

(G) Node connections established
through radius 0.16 for Zurich.

2
4
6
8
10
12
14
16
18

N
od

e
C

on
ne

ct
io

ns
(H) Node connections established

through radius 0.19 for Zurich.

5

10

15

20

N
od

e
C

on
ne

ct
io

ns

(I) Node connections established
through radius 0.22 for Zurich.

FIGURE 4.5: Generated 5G network infrastructure connectivity of the cities of Bern, Geneva, and Zurich
over different radii.

illustrated in Figure 4.4. We define the aforementioned latency distribution according to
latency measurements carried out in the University of Bern’s local network infrastructure. In
our scenario, 70% of the base stations of each topology are directly attached to MEC servers,
which offer different GPU, CPU, memory, storage, and bandwidth resources. Around 80% of
the MEC servers have a GPU. Figure 4.5 shows the generated topologies and their links.

4.4.5 Performance Metrics

The performance of Meta HMD is evaluated by executing it in the simulated scenario for
10 hours and measuring the average E2E latency and power consumption for the user
applications. We assume that time is partitioned in a series of consecutive time windows
of duration T = 5 s, and we will measure a value of latency and energy per window. This
choice for T gives sufficient time for our optimization algorithm to converge and is so that the
experiment yields 3000 measurements for latency and energy over the 10 simulated hours.

The average E2E latency L is computed as follows. During a time window, each user executes an
ICMP ping command along the core-network part of the service chain and uses the collected
data to compute the average core network latency. During the same time window, for each
user, we measure the average computing latency as the sum of the computing latency of each
of its services deployed on MEC servers or HMD. Each user has an average E2E latency
for that time window, which is the sum of the average core network latency, the average

76 4.4. Experiment Setup

computing latency, and the benchmarked wireless latency. The average E2E latency is the
average E2E latency for the time window across all users. The average E2E latency L value is
the average across all time windows of the window-based average E2E latency.

The average power consumption per user Ψ of VR HMDs is computed as follows. The
window-based average power consumption is the product between the average number of
services running on an HMD in the system during the time window and the benchmarked
power consumption of a service corresponding to each user’s selected video resolution. The
value of the average power consumption Ψ is the average across all time windows of the
window-based average power consumption.

The video resolution selection is performed as follows. We assume that each application in the
system selects a video resolution based on the E2E latency among those we benchmarked,
according to the average latency at each time window. The application maintains the
resolution constant for the whole window duration. In the next time window, the resolution
is selected according to the available E2E latency provided by the system. Therefore, the
higher the resolution is, the more power and lower latency are required to process the video
stream set to this resolution.

The average acceptance and rejection ratio of service context migrations measure the performance
of each algorithm to find suitable MEC servers to either offload from HMD to a particular
MEC server or to support the application context migration between MEC servers. We do not
consider the migration of the entire software stack that supports a VR service, e.g., Virtual
Machine (VM) or container. Instead, we consider that the VR application context migration,
e.g., VR video streaming, is migrated between MEC servers. Then services depending
on that context, e.g., decoder, depth estimation, image semantic understanding, 3D scene
reconstruction, are enabled in advance in the target MEC server.

The execution time measures the time each algorithm takes to compute the decision on
where the service has to be placed, which does not include any additional step, e.g., context
migration time, time to enable services on the target MEC server, time to get E2E latency.
This metric is highly impacted by the average rejection ratio of service context migrations since
the more migration requests are rejected, the more time is needed to exploit an alternative
solution.

4.4.6 Service Migration Algorithms

We compare the average latency, latency over time, energy, video resolution selection,
accepted and rejected migrations, and execution time performance of TENET with DSCP
implementation and those of three widely used solutions, which provide service migration
among MEC servers under rapidly changing user mobility conditions, detailed hereafter [24].
It is worth noting that the video resolution selection is derived from the E2E latency provided
by each algorithm during the VR user mobility.

4.4. Experiment Setup 77

Computing latency for HMDs
Minimum (pm) Average (pm) Maximum (pm)
0.005 [s] 0.0075 [s] 0.01 [s]

Computing latency for MECs
Minimum (pm) Average (pm) Maximum (pm)
0.003 [s] 0.004 [s] 0.005 [s]

Link latency for all topologies
Minimum (km) Average (km) Maximum (km)
0.005 [s] 0.0075 [s] 0.01 [s]

Bern topology
Radius (r) Users (u) Average links per vertex (µ)
0.18 1000 2.19
0.23 2000 3.36
0.29 3000 4.79

Geneva topology
Radius (r) Users (u) Average links per vertex (µ)
0.15 2500 2.49
0.17 3500 3.02
0.19 4500 3.64

Zurich topology
Radius (r) Users (u) Average links per vertex (µ)
0.16 5000 3.25
0.19 5500 4.28
0.22 6000 5.5

TABLE 4.1: Simulation parameters.

1. DSCP-Optimal (DO) provides a service migration strategy based on DSCP implementation,
always aiming to find the optimal service placement of VR services, analyzing all
deployment possibilities to achieve the lowest E2E.

2. Network Latency Awareness (LA) provides a service migration strategy based on network
latency awareness. LA considers the base station to which the user is connected and the
nearby MEC server with lowest latency. LA implements a method to discover candidate
MEC servers to host the migrated service.

3. Network Latency and Resource Awareness (LRA) supports all features provided by LA.
However, LRA can identify the optimal MEC server with lower network latency to host a
VR service considering the resource availability of the selected MEC server.

4. Always Migrate (AM) considers the VR user’s location to enable migration. The user’s
handover triggers this strategy. The service is always migrated to the MEC server attached
to the base station where the user is connected. Unlike LA, AM is consistently restricted to
the MEC server attached to the base station where the VR user is connected.

78 4.5. Performance Evaluation

4.4.7 Simulation Parameters

For each topology described in Section 4.4.4, we choose a different radius r to increase the
network topology connectivity, impacting the number of congested links and, consequently,
the network latency. The radius selected for the experiments is chosen as follows. The
minimum radius r for each topology is defined according to the smallest radius r possible to
generate a connected graph. The maximum radius r for each topology is determined based
on the analysis that a higher value than the maximum radius r does not provide a lower
E2E latency performance in the experiments. Therefore, a topology running with maximum
radius r has lower latency than the same topology running with minimum radius r. The
higher the radius r is, the more VR users are considered for that scenario because more paths
are available with less congested links, which improves the network latency. However, the
increased number of users impacts the available resources in both network and MEC servers.
All simulation parameters are described in Table 4.1.

4.5 Performance Evaluation

To validate the approach presented in this chapter, we implemented a prototype of TENET,
available at [139]. Our evaluation focuses on two major sets of results. We first assess the QoS
for both Echo VR and Elixir2 games and take their workloads as a baseline to model service
workloads used in TENET evaluation. Second, we provide a simulated environment to assess
the capability of TENET to manage several VR services in a distributed edge environment,
where each service has different requirements and workloads.

4.5.1 Meta HMD Evaluation

We measured the QoS of VR applications based on frame analysis with different refresh rates
and the computational latency over Meta HMD. To understand the impact of different refresh
rates on VR systems, we analyze two VR games, Echo VR and Elixir. Echo VR is a multiplayer
game, which supports refresh rates of 90 Hz and 120 Hz. Besides, Elixir game supports hand
tracking. Elixir supports a refresh rate of 72 Hz.

Frame Analysis

Figure 4.6 compares both games in terms of overall frame rate, stale frames, and early frames over
different refresh rates. While frame rate is the number of images an HMD sends to its display
every second, refresh rate refers to how fast the display shows those frames.

Figure 4.6a shows frame rate results, where the frames produced are measured in FPS. We
discovered that the higher the refresh rate is, the fewer frames are produced. While this
behavior is expected, Echo VR has far fewer frames because its refresh rate has been set
to provide a higher realism. We observe that 26.87% of FPS were produced for Echo VR
operating at 120 Hz, while the same game operating at 90 Hz achieved 65.91% of FPS. For

2https://www.oculus.com/experiences/quest/

4.5. Performance Evaluation 79

0 2 4 6 8 10 12
0

3

6

9

12

15
·101

Application execution time (minutes)

Fr
am

es
pe

r
se

co
nd

120 Hz 90 Hz 72 Hz

(A) Frame rate

0 2 4 6 8 10 12
0

2

4

6

8

10
·101

Application execution time (minutes)

Fr
am

es
pe

r
se

co
nd

120 Hz 90 Hz 72 Hz

(B) Stale frames

0 2 4 6 8 10 12
0

3

6

9

12

15
·101

Application execution time (minutes)

Fr
am

es
pe

r
se

co
nd

120 Hz 90 Hz 72 Hz

(C) Early frames

FIGURE 4.6: Frames benchmarking of Echo VR and Elixir games running on Meta HMD.

Elixir, 96.81% of FPS were produced. Echo VR provides a considerably lower frame rate than
Elixir despite the configuration of its refresh rate. This result suggests that increasing the
refresh rate and rendering resolution improves the visual quality.

Figure 4.6b compares stale frames, the most important metric for evaluating the QoS of a VR
application. A frame is considered stale if it is not ready to be displayed in time on the HMD,
which forces the VR application to reuse an old frame that is now outdated. In most cases,
if the application misses a frame, the stale frame rate increases, and the frame rate decreases.
In most cases, if the application misses a frame, the stale frame increases, and the frame rate
decreases. This result indicates that peaks with higher stale FPS can negatively impact the
immersion provided by a VR system, which creates a less smooth in-VR experience.

Figure 4.6c shows the early frames, which represents the capability of delivering frames before
they are needed. If the application does render quickly, the frame will be considered early, but
the visual quality will look smooth. Elixir produced 98% of early frames. Despite the higher
number of early frames, this result indicates that Elixir can be optimized to save computing
resources and battery life.

80 4.5. Performance Evaluation

Other findings from Figures 4.6a, 4.6b, and 4.6c are summarized as follows. Traditional
games designed for conventional displays, e.g., using 30 FPS or 60 FPS, allow a small number
of missed frames to go undetected by the user, mainly because the camera is decoupled from
the display. However, missing frames in a VR environment trigger significant consequences
for user experiences whenever the virtualized world does not match the real world in terms
of image quality or even latency. As a consequence, the immersion provided by VR is
compromised. A solution to increase the frame rate and decrease the stale frames would be
to use a more powerful GPU on the HMD.

Computing Latency Analysis

VR systems have different sources of latency, e.g., the time between pressing a button and
when the VR system detects it or when a frame is rendered until it appears on the VR HMD’s
screen. We focus on the time from when the VR system requests the user head orientation
until the frames are rendered on the HMD. Figure 4.7 compares the computing latencies for
each phase of a loop on Meta HMD.

0

1

2

3

4

5

6
·10−2

120 Hz 90 Hz 72 Hz
VR application refresh rates

C
om

pu
ti

ng
la

te
nc

y
[s

]

ATW Rendering Others

FIGURE 4.7: Computational latency benchmarking of different tasks for Echo VR and Elixir games running
on Meta HMD.

Figure 4.7 shows the latency required by both applications to render the frames, e.g., refresh
time. Refresh time is the duration of time for which one frame or image occupies the display.
While Echo VR reached a mean of 3.6 ms (120 Hz) and 4.02 ms (90 Hz), Elixir reached a mean
of 4.04 ms to render the frames. This result suggests that the higher the frame rate is, the
faster these frames should be processed. However, higher frame rates introduce the need for
more computing resources. Therefore, this result provides insight into how much headroom
remains on the GPU, enabling analysis of compute-intensive objects running on the GPU.

Figure 4.7 shows how much time the Asynchronous TimeWarp (ATW) spends to apply
distortions and displays the scenes on Meta HMD for both games. ATW is a software
component that transforms stereoscopic images based on the latest head-tracking information
to reduce the motion-to-photon latency, shifting the rendered image to adjust for changes in
head movement. Echo VR demanded 2.3 ms (120 Hz) and 2.6 ms (90 Hz) during the ATW

4.5. Performance Evaluation 81

phase. On the contrary, Elixir demanded 2.1 ms during the ATW phase. Furthermore, we
analyze the maximum rotational speed in degrees per second because it impacts the latency
on the ATW. The maximum rotation speed specifies the fastest speed the Meta HMD has
rotated. Echo VR reached a maximum rotational speed mean of 38.8 (120 Hz) and 41.2 (90 Hz)
degrees per second, respectively, while Elixir reached a maximum rotational speed mean of
57.4 degrees per second. We found out that lower rotations do not trigger higher latency as it
slightly impacts the ATW performance.

Figure 4.7 also shows the E2E latency of each application running on Meta HMD. In this
context, E2E latency of each application is the sum of the latencies of all the tasks. This metric
represents the time when an application does query the pose before rendering and the time the
frames are displayed on the VR HMD. Besides, the others represent the task latencies that are
not specified in Meta HMD API. The mean E2E latency for Echo VR is about 30.5 ms (120 Hz)
and 34.1 ms (90 Hz), respectively. Nevertheless, Elixir reached a mean E2E latency of 46.9 ms,
representing 53.77% more than Echo VR E2E latency. Noticeably, Echo VR offers lower E2E
latency than Elixir.

Other findings from Figure 4.7 are summarized as follows. Different refresh rates impact the
computing latency, e.g., a display operating at 72 Hz, 90 Hz, or 120 Hz takes up to 13.88 ms,
11.11 ms, and 8.33 ms to update the images, respectively. The higher the refresh rate is, the
faster the display renders frames. However, more resources are needed to handle higher
refresh rates, e.g., battery and GPU. As a result, increased power consumption in mobile
HMDs leads to a poor user experience, and increasing the consumption of computational
resources facilitates VR applications to run out of resources. Hence, higher refresh rates
provide more realism for VR applications at the cost of higher refresh time, affecting battery
usage and increasing the number of stale frames, which can break VR immersion.

CPU Usage, GPU Usage, and Energy Consumption

Figure 4.8 compares both Echo VR and Elixir games’ GPU usage, CPU usage, and energy
consumption. GPU and CPU utilization are important to understand if a VR application is
GPU or CPU bound. In particular, GPU utilization is more valuable than CPU utilization as
VR applications require more graphical features. From the GPU and CPU usage analysis, it is
possible to evaluate the power consumption of an application.

Figure 4.8a indicates that both games are GPU bound as they used more GPU resources than
CPU. We observe that Echo VR (120 Hz) has a peak of 88% of GPU utilization. Performance
issues may occur if the GPU utilization is over 90%. This benchmark indicates that GPU
can run out of resources for a more advanced game, potentially triggering a bottleneck for
the application, especially the QoS. Moreover, the computing latency is highly influenced by
the computing power of the GPU.Figure 4.8a also provides the CPU usage, which considers
8 CPU cores available in Meta HMD. In practice, it is infeasible for an HMD only to have
a powerful GPU, because a powerful CPU is required to reach frame rate stability. Thus,
both GPU and GPU need to have a balance in terms of computing power. In most cases, VR

82 4.5. Performance Evaluation

0

2

4

6

8

10
·101

120 Hz 90 Hz 72 Hz
VR applications

U
sa

ge
pe

rc
en

ta
ge

GPU CPU

(A) CPU and GPU usage of Meta.

9

9.2

9.4

9.6

9.8

10

·101

0 3 6 9 12
Application execution time (minutes)

Ba
tt

er
y

Le
ve

l

120 Hz 90 Hz 72 Hz

(B) Energy consumption of Meta.

FIGURE 4.8: GPU, CPU, and power consumption benchmarking of Echo VR and Elixir games running on
Meta HMD.

applications will have a balance with favoring GPU over CPU due to graphical requirements.
Results from Figure 4.8a indicate that additional services running on the HMD to improve
user experience, e.g., 3D scene reconstruction or scene depth estimation, would lead to more
CPU utilization, which could easily reach 100% of CPU utilization on Meta HMD.

In a nutshell, Meta HMD QoS analysis can be described according to the following
observations. (i) Higher refresh rates allow for more immersive experiences at the cost of
reduced QoS; (ii) The QoS performance of VR applications can be significantly reduced
if the HMD does not have enough computing power to handle high refresh rates; (iii)
Energy consumption increases drastically whenever higher refresh rates are enabled, and
(iv) Latency benchmarks indicate that we may be a long way from meeting the computing
latency requirements for VR systems.

4.5.2 TENET Simulation

Trade-off Figure 4.9 shows the trade-off between the average E2E latency and the average
power consumption for 1000 users when TENET runs with different values of the power
sensitivity coefficient α. In line with our expectations, we observe that increasing values of
α correspond to decreasing values of the average latency and increasing values of average
power consumption. This relation exists because as α grows, TENET deploys more and more
services on HMDs, reducing network latency but increasing the HMDs’ power consumption.
For applications that do not require stringent latency requirements, TENET can decrease α

to reduce the system-wide power consumption. Regardless of the values of α, we observe
that the E2E latency is always ≤ 5 ms because of the constraint in the TENET optimization
problem, showing that TENET can always provide VR-compatible latency in high-mobility
scenarios.

4.5. Performance Evaluation 83

0 0.2 0.4 0.6 0.8 1

3.5

4

4.5

5

·10−3

α

L
[s

]
0

2

4

Ψ
[W

]

L
Ψ

FIGURE 4.9: Trade-off between average E2E latency L and average power consumption Ψ.

E2E latency Figures 4.10a, 4.10c, and 4.10e show the average E2E latency as the sum of
computation and network latency for the five evaluated schemes over three topologies, each
with different radius and user densities when latency minimization has the highest priority
(α = 1). DO always performs the optimal E2E latency for all topologies at the cost of execution
time. However, TENET provides the lowest E2E latency for all topologies compared to LRA,
LA, and AM because it can deploy services in a way that minimizes network and computing
latency. We observe that TENET deploys more services (on average 35%) on HMDs for all
topologies because, when α = 1, the TENET’s cost function tends to minimize latency without
considering power consumption on HMDs. This explains why TENET’s network latency is
lower and indicates that deploying services can improve the system-wide E2E latency onto
HMDs. As the number of users in the scenario increases, more and more services need to be
deployed on the MEC servers, leading to their saturation. For high user densities, services
might be deployed on MEC servers that are topologically far from the HMD, resulting in
increased network latency, as we observed.

Figures 4.10b, 4.10d, and 4.10f show all algorithms’ E2E latency over time. The DO algorithm
indicates the global optimum latency in each iteration. We observe that the E2E latency
increased for algorithms DO and LRA in all scenarios whenever the number of users has
increased. Although LRA provides average E2E latency under φn, Figure 4.10f shows that
LRA reached more than φn in all topologies. In contrast, TENET maintained its stable E2E
latency for the topologies of GA and ZH. In contrast, for the topologies of GA and ZH,
TENET maintained its E2E stable. This indicates that the higher radius r is, the lower is the
network latency. DO and LRA highly depend on the number of users on the system to provide
better latency performance. Therefore, using the zones scheme, TENET better distributes the
services along MEC infrastructure, improving the average E2E latency even when more users
are deployed in the same scenario. The same behavior does not occur in BE topology since it
has fewer nodes than GA and ZH, which limits the possibility of exploiting a better service
placement strategy. Algorithms LA and AM decrease E2E latency whenever a higher radius r
is used.

84 4.5. Performance Evaluation

·10−3

DS TE LRA LA AM

0

2

4

6

8

10

r = 0.18 r = 0.23 r = 0.29
Bern

L
[s

]

Network latency

(A) Service average E2E latency L over different radii r for
the city of Bern.

·10−3

3

4

5

6

7

8

9

r = 0.18 r = 0.23 r = 0.29
Bern

L
[s

]

DS TE LRA LA AM

(B) Service E2E latency L over different radii r for the city of
Bern.

·10−3

DS TE LRA LA AM

0

2

4

6

8

10

r = 0.15 r = 0.17 r = 0.19
Geneva

L
[s

]

Network latency

(C) Service average E2E latency L over different radii r for
the city of Geneva.

·10−3

3

4

5

6

7

8

9

r = 0.15 r = 0.17 r = 0.19
Geneva

L
[s

]

DS TE LRA LA AM

(D) Service E2E latency L over different radii r for the city of
Geneva.

·10−3

DS TE LRA LA AM

0

2

4

6

8

10

r = 0.16 r = 0.19 r = 0.22
Zurich

L
[s

]

Network latency

(E) Service average E2E latency L over different radii r for
the city of Zurich.

·10−3

3

4

5

6

7

8

9

r = 0.16 r = 0.19 r = 0.22
Zurich

L
[s

]

DS TE LRA LA AM

(F) Service E2E latency L over different radii r for the city of
Zurich.

FIGURE 4.10: Performance evaluation of end-to-end latency and its convergence for the topologies of Bern,
Geneva, and Zurich.

4.5. Performance Evaluation 85

·10−3

DS TE LRA LA AM

0

1

2

3

4

5

r = 0.18 r = 0.23 r = 0.29
Bern

Ψ
[W

]

HMD energy

(A) Service average power consumption Ψ over different
radii r for the city of Bern.

·10−3

DS TE LRA LA AM

0

1

2

3

4

5

r = 0.15 r = 0.17 r = 0.19
Geneva

Ψ
[W

]

HMD energy

(B) Service average power consumption Ψ over different
radii r for the city of Geneva.

·10−3

DS TE LRA LA AM

0

1

2

3

4

5

r = 0.16 r = 0.19 r = 0.22
Zurich

Ψ
[W

]

HMD energy

(C) Service average power consumption Ψ over different
radii r for the city of Zurich.

FIGURE 4.11: Performance evaluation of HMDs power consumption for Bern, Geneva, and Zurich.

Power consumption Figure 4.11 shows the average power consumed by each service as
the sum of the average power consumed by the HMDs and the MEC infrastructure for the
five evaluated schemes when energy minimization has the lowest priority (α = 1). Although
DO achieves a lower E2E latency than TENET, on average, DO consumes more power than
TENET in all scenarios. The DO and TENET algorithms consume more HMD power than
all other algorithms because, in some situations, when services move from a MEC server to
an HMD, their E2E latency decreases (as shown in Figure 4.10), consequently demanding
higher video resolutions that generate higher power consumption. Since TENET and DO
are the only algorithms that can deploy services on HMDs, both are the only ones showing
power consumption on HMDs, except in Figures 4.10a (r = 0.29), 4.10c (r = 0.19), and 4.10e
(r = 0.19 and 0.22), where the entire MEC infrastructure was overloaded due to the number
of users and available MEC servers. In contrast, the other compared algorithms only show
infrastructure power consumption. This result motivates the need to deploy services based
on a trade-off between latency and power consumption, which the TENET’s design addresses.

86 4.5. Performance Evaluation

0

2

4

6

8

10
·102

r = 0.18 r = 0.23 r = 0.29
Bern

H
M

D
s

us
in

g
8k

re
s.

DO TE LRA LA AM

0

2

4

6

8

10
·102

r = 0.18 r = 0.23 r = 0.29
Bern

H
M

D
s

us
in

g
4k

re
s.

DO TE LRA LA AM

0

3

6

9

12

15
·102

r = 0.18 r = 0.23 r = 0.29
Bern

H
M

D
s

us
in

g
14

40
p

re
s.

DO TE LRA LA AM

0

5

10

15

20

25

30
·102

r = 0.18 r = 0.23 r = 0.29
Bern

H
M

D
s

us
in

g
10

80
p

re
s.

DO TE LRA LA AM

FIGURE 4.12: Average of total HMDs using resolutions 8k, 4k, 1440p, and 1080p over different radii r for
the city of Bern.

Video resolution selection Figures 4.12 and 4.13 show the average of total HMDs using
resolutions 8k, 4k, 1440p, and 1080p over different radii for all topologies. Each video
resolution is selected based on the E2E latency provided by each algorithm. Although DO
achieves 3% lower E2E latency performance on average than TENET, this greatly impacts
the number of HMDs (on average 20% more) running at 8k and 4k resolutions in scenarios
with fewer users. These results indicate that TENET can support videos at high resolutions
at about the same rate as DO. Furthermore, TENET supports more HMDs running at 8k and
4k resolutions than LRA, LA, and AM. Thus, we show that no matter how slight the average
E2E latency variation is, there is always a significant impact on the number of HMDs running
high-resolution videos.

Context service migrations Figure 4.14 shows the average acceptance and rejection service
context migrations over different radii for Bern, Geneva, and Zurich. The migration ratio
is a crucial metric because frequent service migrations may introduce service interruption,
leading to the migration process depending on network status, even if only the transfer of the
service context is performed. Thus, fewer service migrations are expected to achieve better
E2E latency performance. In all scenarios, we found that TENET provides a higher acceptance
context migration than all other algorithms, except for DO. We observe that TENET keeps its

4.5. Performance Evaluation 87

0

3

6

9

12

15
H

M
D

s
us

in
g

8k
re

s.
(s

ca
le

d
by
·1

2)
DO TE LRA LA AM

0

3

6

9

12

15

H
M

D
s

us
in

g
4k

re
s.

(s
ca

le
d

by
·1

2)

DO TE LRA LA AM

0

3

6

9

12

15

r = 0.15 r = 0.17 r = 0.19
Geneva

H
M

D
s

us
in

g
14

40
p

re
s.

(s
ca

le
d

by
·1

2)

DO TE LRA LA AM

0

1

2

3

4

5

r = 0.15 r = 0.17 r = 0.19
Geneva

H
M

D
s

us
in

g
10

80
p

re
s.

(s
ca

le
d

by
·1

3)

DO TE LRA LA AM

0

4

8

12

16

20

H
M

D
s

us
in

g
8k

re
s.

(s
ca

le
d

by
·1

2)

DO TE LRA LA AM

0

4

8

12

16

20

H
M

D
s

us
in

g
4k

re
s.

(s
ca

le
d

by
·1

2)

DO TE LRA LA AM

0

5

10

15

20

25

r = 0.16 r = 0.19 r = 0.22
Zurich

H
M

D
s

us
in

g
14

40
p

re
s.

(s
ca

le
d

by
·1

2)

DO TE LRA LA AM

1

2

3

4

5

6

7

r = 0.16 r = 0.19 r = 0.22
Zurich

H
M

D
s

us
in

g
10

80
p

re
s.

(s
ca

le
d

by
·1

3)

DO TE LRA LA AM

FIGURE 4.13: Average of total HMDs using resolutions 8k, 4k, 1440p, and 1080p over different radii r for
the cities of Geneva and Zurich.

88 4.5. Performance Evaluation

0

2

4

6

8
·102

r = 0.18 r = 0.23 r = 0.29
Bern

A
cc

ep
te

d
co

nt
ex

tm
ig

ra
ti

on
s DO TE LRA LA AM

0

5

10

15

20
·102

r = 0.18 r = 0.23 r = 0.29
Bern

R
ej

ec
te

d
co

nt
ex

tm
ig

ra
ti

on
s

DO TE LRA LA AM

0

0.5

1

1.5

2

2.5
·103

r = 0.15 r = 0.17 r = 0.19
Geneva

A
cc

ep
te

d
co

nt
ex

tm
ig

ra
ti

on
s DO TE LRA LA AM

0

1

2

3

4

5
·103

r = 0.15 r = 0.17 r = 0.19
Geneva

R
ej

ec
te

d
co

nt
ex

tm
ig

ra
ti

on
s

DO TE LRA LA AM

0

0.8

1.6

2.4

3.2

4
·103

r = 0.16 r = 0.19 r = 0.22
Zurich

A
cc

ep
te

d
co

nt
ex

tm
ig

ra
ti

on
s DO TE LRA LA AM

0

2

4

6

8
·103

r = 0.16 r = 0.19 r = 0.22
Zurich

R
ej

ec
te

d
co

nt
ex

tm
ig

ra
ti

on
s

DO TE LRA LA AM

FIGURE 4.14: Average application context acceptance and rejection migrations over different radii r for the
cities of Bern, Geneva, and Zurich.

4.5. Performance Evaluation 89

performance constant, which does not occur for LRA in scenarios with more users. LA and
AM provide a lower context acceptance ratio whenever more users are considered in each
scenario. This occurs because the context migration ratio can be affected by the available
MEC servers, i.e., whenever an algorithm chooses a server to host the service, and this server
does not have available resources.

0

0.5

1

1.5

2

r = 0.15 r = 0.17 r = 0.19
Bern

Ex
ec

ut
io

n
ti

m
e

[s
]

DS TE LRA LA AM

0

2

4

6

8

10

r = 0.15 r = 0.17 r = 0.19
Geneva

Ex
ec

ut
io

n
ti

m
e

[s
]

DS TE LRA LA AM

0

7

14

21

28

35

r = 0.15 r = 0.17 r = 0.19
Zurich

Ex
ec

ut
io

n
ti

m
e

[s
]

DS TE LRA LA AM

FIGURE 4.15: Average of total execution time to provide placement for all services over different radii r for
the cities of Bern, Geneva, and Zurich.

Figure 4.15 shows the average total execution time to provide placement for all services
over different radii for the cities of Bern, Geneva, and Zurich. Although DO performs the
lowest E2E latency, it also performs a higher execution time than TENET. We observe that
DO execution time grows fast whenever more users are included in the system, while TENET
remains stable. In the Zurich topology, DO execution time is almost double the TENET
execution time. Besides, even LRA provides a higher execution time than DO due to the
number of rejected context migration requests. Although AM performed a high rejected
context migration ratio, it achieved the lowest execution time due to not discovering a
target MEC server whenever a context migration is needed. This result suggests that in a
real scenario with many more users, 5G base stations, and MEC servers, DO performs an
exponential execution time O(2n) to find out the optimal placement of all services running in
the system. At the same time, the heuristic provided by TENET can achieve acceptable E2E
latency performance with a logarithmic execution time O(Elog(V)).

90 4.6. Chapter Conclusions

4.6 Chapter Conclusions

In this chapter, we have proposed a novel strategy to minimize the E2E latency for the
next generation of 6DoF VR applications. We addressed the Research Question 2.1 by
showing how to distribute VR services across MEC servers to reduce the E2E latency for VR
applications. The optimal solution is formulated through an integer linear programming
problem (DSCP) whose objective is to find the optimal service placement of services from a
service chain with varying capacity requirements of decoder services while satisfying 6DoF
VR application ultra-low latency requirements of 5 ms. We show that DSCP implementation
is unfeasible whenever there are too many VR users and network nodes. Thus, we have
shown that new heuristics must be developed to get around the DSCP problem.

We propose TENET, a fast heuristic to solve DSCP problem. TENET manages 6DoF VR
services by distributing them over edge networks and HMDs to avoid increased latencies.
We addressed the Research Question 2.2 by providing the trade-off between E2E latency
and energy consumption through network simulations over three high-mobility scenarios
compared to widely used service-migration strategies. We have developed algorithms
for path calculation based on E2E latency and management of VR applications to ensure
acceptable E2E latency and TENET architecture. We also developed a workload model to VR
6DoF virtualized applications based on Meta HMD application workloads.

Our evaluation demonstrates the benefits of TENET in managing VR 6DoF services by
distributing them over MEC servers. We have shown that for varying user densities in an
urban scenario, TENET outperforms other widely adopted mechanisms in terms of E2E
latency in exchange for a moderate increment in power consumption. Moreover, we observe
significant gains of TENET in selecting higher video resolutions for 6DoF VR applications
based on E2E latency. TENET also provides more accepted context migrations than traditional
service migration algorithms. Finally, we have shown that TENET reduces the decision time
to perform service placement. Therefore, we addressed the Research Question 2.3 by showing
that TENET deployment strategy impacts the E2E latency of VR applications and the selection
of better video resolutions for latency-sensitive VR applications.

The findings and contributions in this chapter provide insightful directions on advancing
VR service deployment over edge networks, considering the restrictions of the edge
infrastructure, the resource limitations of HMDs, and the stringent latency requirements of
6DoF VR applications. However, only considering the E2E latency optimization in a highly
dynamic edge infrastructure scenario cannot ensure the reduction of the overall E2E latency
in a real network scenario where several users are deployed on the network. This occurs
because the network resource availability can negatively impact the overall E2E latency for
all applications. Thus, optimizations on the network infrastructure to minimize the latency
and, therefore, the E2E latency are required. Therefore, in Chapter 5, we address the issues of
latency-sensitive routing for 6DoF VR applications, which focus on reducing the overall E2E
latency by optimizing the routing process with an E2E latency awareness approach that also
considers the impact of path allocations on other flows deployed on the network.

91

Chapter 5

Latency Sensitive Routing Algorithm for VR

5.1 Introduction

One of the significant advancements in VR technology is the adoption of 6DoF technology
to support both body and head motion [5]. 6DoF VR applications require low-latency
communications and processing to guarantee an immersive and reactive experience. Thus,
the network infrastructure must provide ultra-low latency of less than 1 ms 1 ms [7].
However, traditional Internet routing protocols, designed primarily for throughput, may not
meet the stringent low latency requirements of 6DoF VR applications [39].

Conventional routing protocols like IGRP and EIGRP consider factors such as throughput,
latency, and network load when selecting paths within a network. Typically, they select paths
with the highest throughput capacity while minimizing latency [40]. However, this strategy
fails to optimize overall application throughput while providing low latency for all VR users
on the network. It overlooks how assigning a path to a specific flow affects the network
latency for other flows during periods of network congestion, in which alternative paths
prioritizing network throughput are often chosen, leading to increased network latency [41].

Hence, allocating paths from VR flows to a cloud server can influence network congestion.
Thus, alternative paths are required to accommodate the unique demands of different VR
applications. As shown in chapter 4, only considering the latency optimization cannot ensure
the reduction of the overall E2E latency because the network latency must also be optimized.
Therefore, managing VR flows, each with different deployment policies and requirements
while guaranteeing E2E latency and throughput in large-scale networks is challenging.

In this chapter, we design and investigate a network routing strategy to support the latency
requirements for 6DoF VR applications. The following sections discuss the content described
in Paper [4]. Therefore, Section 5.1 describes the research questions addressed in this chapter
and discusses the contributions of the new latency-sensitive routing. Section 5.2 formulates
the system model. Section 5.3 discusses the new latency-sensitive routing strategy. Section 5.4
describes the experiment setup. Section 5.5 discusses the evaluation results. Finally, section 5.6
concludes the study in this chapter.

92 5.1. Introduction

5.1.1 Research Questions Addressed

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.3.

Research Question 3.1: How does the decision on the path of a 6DoF VR flow impact network
latency and throughput for subsequent application flows in a large-scale network?

Research Question 3.2: How can overall network latency and throughput be optimized for
applications deployed on the network?

Research Question 3.3: How does processing latency impact the decision on which path must
be selected to fulfill the requirements of 6DoF VR applications?

5.1.2 Chapter Contributions

To address the challenges mentioned above, we propose in Paper [4] FLATWISE, a novel
intra-domain routing algorithm with latency guarantees, which considers the E2E latency
requirements of 6DoF VR applications. We address the Research Question 3.1 by exploiting
how FLATWISE approximates the E2E latency of the calculated path with the E2E latency
required by each 6DoF VR application while it considers the impact of path assignment
on other 6DoF VR applications. We address the Research Question 3.2 by showing that
FLATWISE minimizes the overall E2E latency performance for all 6DoF VR applications
deployed on the network. We address the Research Question 3.3 by showing that FLATWISE
provides an adaptive routing approach that can squeeze or relax the path calculation based
on the E2E latency requirement of 6DoF VR applications. Our contributions are as follows.

• We define the Joint Flow Allocation (JFA) problem to find suitable paths for all flows in a
network such that it determines the optimal paths in terms of throughput and latency to
reduce the overall latency for all flows. We use Mixed Integer Linear Programming (MILP)
to model the JFA objective and constraints (Section 5.2).

• The JFA problem is NP-hard, i.e., computationally expensive. Therefore, we propose a
heuristic (FLATWISE) that is one order of magnitude faster than the JFA (Section 5.3).
We provide algorithms for path allocation based on E2E latency awareness and for the
source node selection based on the E2E latency awareness. We show the FLATWISE
implementation and compare its performance with WSP and SWP approaches.

• We assess FLATWISE performance in a realistic simulated 5G network map of Bern,
Geneva, and Zurich. Based on those topologies, we model both network and computing
latencies used in the FLATWISE simulation environment (Section 5.4). We implement
and compare the algorithms WSP and SWP against FLATWISE in a highly dynamic and
realistic network environment where there is no flow prioritization, and the network link
availability changes over time. We also evaluate the performance of FLATWISE, WSP, and
SWP by analyzing the VR in-game communication as a reference use case. We consider
the KPIs flow network latency, path latency, over-provisioned latency, E2E latency, flow
network throughput, frame rate, video resolutions, and execution time (Section 5.5).

5.2. System Model and Problem Formulation 93

5.2 System Model and Problem Formulation

5.2.1 System Model

Our scenario contains a set of users, each provided with an HMD that executes a VR
application, e.g., VR games. We assume that each user can move around in the scenario at
speeds ranging from pedestrians to vehicles and is always connected to the Internet via a 5G
base station. In our scenario, the most challenging use case is VR in-game communication,
in which HMDs are connected to a cloud server and require low-latency video streaming to
communicate with other players. Figure 5.1 shows the system model representation, where
it represents the base stations, network links, MEC servers attached to each base station, the
deployment of VR video decoders, VR HMDs, SDN controller, and the cloud server to host
the VR application logic.

Cloud (VR video source)

v1 v3

h1

m1 m2

D(h1)

Internet

(v2,v3)

D(h3)

h2
h4

(v1,v2)

v2

D(h4)

m3

h3

D(u2)

SDN Controller

FIGURE 5.1: FLATWISE System Model Representation.

The network infrastructure is defined as a graph G = (V, E). Let us denote the set of base
stations as V = {v1, . . . , v|V|} and the set of edges as E = {(i, j)|i, j ∈ V}, where each ordered
pair (i, j) ∈ E represents the connection between the base stations i and j. Let us denote the
throughput capacity of edge (i, j) ∈ E as cij ∈ ([0,+∞) and the link latency of edge (ij) ∈ E as

94 5.2. System Model and Problem Formulation

lij ∈ (0,+∞). Each base station vi is equipped with one MEC server. Let us denote the set
of all MEC servers as M = {m1, . . . , m|M|}, each with potentially different physical resources.
Let us denote c(mi) as the number of CPUs and g(mi) as the number of GPUs available at
MEC server mi. The processing latency of MEC server mi is denoted by p(mi), representing
the time MEC server mi takes to process a given task CPU and GPU workloads φc and φg,
respectively, defined as the task’s required CPU and GPU computation rates expressed in
[cycles/s]. Besides, p(mi) on MEC server mi also depends on CPU and GPU cycle speeds
Φ(mi) and σ(mi), expressed in [cycles/s], as well as the time it takes for the VR task to run on
the CPUs and GPUs, defined as tc(mi) and tg(mi), respectively. We assume that each task can be
run parallel over all CPUs and GPUs available at the MEC server mi. Therefore, we use the
following equation to denote the processing latency p(mi) of a VR task, expressed in seconds.

p(mi) = max
{

φc · tc(mi)

Φ(mi) · c(mi)
,

φg · tg(mi)

σ(mi) · g(mi)

}
(5.1)

We consider the set of VR HMDs H = {h1, . . . , h|H|} deployed on the graph, where each
HMD runs a real-time 6DoF VR application. Each HMD hi is connected to a base station ∈ V,
and its VR application has several decoder services. The set of decoder services of HMD hi

is denoted by D(hi) = {d1, . . . , d|D(hi)|}, where |D(hm)| represents the number of decoder
services available for each user hi. The decoder services D(hi) can be deployed on the HMD
hi or any MEC server available at the edge infrastructure. We denote m(hi) to represent the
MEC server hosting the decoders of HMD hi. If the decoder services D(hi) are deployed on
HMD hi, then they generate a processing latency on the HMD hi, denoted by p(hi). Thus,
p(hi) also depends on both CPU cycle speed Φ(hi) and GPU σ(hi) cycle speed on HMD hi,
as well as the time it takes for the VR task to run on the CPU and GPU, defined as tc(hi) and
tg(hi), respectively. We also assume that each task can be run parallel over all CPUs and GPUs
available at the HMD hi. Therefore, we use the following equation to denote the processing
latency HMD p(hi), expressed in seconds.

p(hi) = max
{

φc · tc(hi)

Φ(hi) · c(hi)
,

φ ·g tg(hi)

σ(hi) · g(hi)

}
(5.2)

Each HMD hi transmits the user’s movements to a cloud server and receives a VR video
with updates of other users’ positions from that cloud server, where the VR video runs
at a particular resolution and operates at a specific frame rate. Therefore, each HMD
hi communicates with the cloud server through a network flow. We define the set of
all possible flows on the network as F = { f1, . . . , f|F|}. The i-th flow is defined as
fi = (s, t, δ, ω)i ∈ V×V×R+×R+, where si ∈ V is the base station (source node) where the
HMD hi is connected, ti ∈ V is the flow destination node where the cloud server is connected,
δi is the maximum latency requirement of flow fi, and ωi is the minimum throughput
requirement of flow fi. We model ωi to represent the average bitrate for flow fi and define it
as ωi =

ξiϱiΘi
ςi

, where ξi denotes the number of pixels in the images to be transmitted within
the VR video in flow fi, ϱi represents the number of bits per pixel in flow fi, Θi represents for

5.2. System Model and Problem Formulation 95

the frame rate of the VR video in flow fi. Finally, ςi indicates the variable compression ratio
in flow fi, which depends on the network conditions.

5.2.2 Problem Formulation

Each flow has a path associated with it. We define the set of all possible paths on the
network graph as R = {r1, . . . , r|R|}. The path associated with flow fi is defined as
ri = {(s, v1), (u2, v2), . . . , (u|r|, ti)}, with intermediate nodes uk and vk, such that vk = uk+1

for all k ∈ {1, . . . , |ri| − 1}. The vector containing one path for each flow in the system is
represented by the path vector r = (r1, . . . , r|F|) ∈ R|F|. Let us define flow i’s throughput as
ω(i). We can now define the throughput vector ω = (ω(1), . . . , ω(|F|)) ∈ R|F|, where each
component holds the throughput of flow i. The delay associated with a given path r ∈ R is
defined as δ(r) = ∑(i,j)∈r lij + p(hs) + p(mt), where hs represents the HMD hi connected to
source base station s and mt is the cloud server connected to destination node t.

Our objective is to compute an optimal path vector r∗ and a corresponding optimal
throughput vector ω∗ associated with the flow set F such that a utility function U(ω, r)
is minimized. This is equivalent to jointly allocating all system flows on optimal
paths that achieve the best global system performance. We design a utility function
U(ω, r) = ∑|F|k=1 αδ(rk)− (1− α)ω(k) that assigns a high value to those paths and throughput
vectors that balance global throughput and delay depending on a sensitivity coefficient
α ∈ [0, 1]. This sensitivity coefficient weighs the relative importance between throughput and
latency for the final application according to the policymaker’s preference, tuning the value
of α closer to 0 if throughput is more important and closer to 1 if delay is more important
to provide QoS to the final application. We formulate the joint flow allocation problem in
Optimization Problem 5.3.

minimize
ω∈R|F|,r∈R|F|

|F|

∑
k=1

αδ(rk)− (1− α)ω(k) (5.3)

subject to

δ(rk) ≤ δk ∀k ∈ {1, . . . , |F|} (5.3a)

ω(k) ≥ ωk ∀k ∈ {1, . . . , |F|} (5.3b)

∑
k∈{1,...,|F|}

ω(k)1(i,j)∈rk
≤ cij ∀(i, j) ∈ E (5.3c)

Constraints 5.3a and 5.3b ensure that the selected paths and throughputs provide the
minimum latency and throughput performance levels required by the flows. Constraint 5.3c
ensures that the sum of all flows on any edge does not surpass its capacity cij. The symbol
1q represents an indicator function that returns 1 if the statement q is true and returns 0
otherwise.

96 5.3. Calculating Paths for VR Flows with FLATWISE

The formulated Optimization Problem 5.3 (JFA) is an NP-hard Mixed Integer Linear
Programming problem, with exponential worst-case time complexity. Therefore, it is
essential to devise polynomial-complex heuristics to solve this problem in a feasible time
scale, even though sub-optimally.

5.3 Calculating Paths for VR Flows with FLATWISE

This section introduces FLATWISE, a novel heuristic method to provide an approximate
solution to the JFA problem while reducing the required computational requirement.
Furthermore, this section describes the process of calculating paths based on flow latency
and throughput requirements, the E2E latency awareness for source node selection, and
FLATWISE dynamic path calculation compared to WSP and SWP approaches. We also
describe in detail how the selection of the source node impacts the path searching and the
E2E latency for a VR flow.

5.3.1 Latency-aware Adaptive Path Allocation with FLATWISE

Algorithm 6 aims to calculate different paths ri based on the latency requirements δ(fi) of
each flow fi. Furthermore, each path ri ∈ r is always calculated respecting the throughput
requirements of each flow ω(fi). Therefore, the main objective is to approximate the
calculated path latency δ(ri) to the latency required by each flow δ(fi).

First, Algorithm 6 initializes the variables dist, and prev. Then, Algorithm 6 uses candidates
to store the nodes during the search (lines 1-5). Algorithm 6 uses a priority queue (Fibonacci
heap) to efficiently find a suitable path that satisfies the latency δ(f) and throughput ω(f)
requirements of the flow f (line 7). Algorithm 6 starts removing the source node s from
candidates and starts the search in its neighbors while updating each neighbor’s distance and
the previous node to reach it (lines 9-14). Whenever a shorter distance weight to reach each
neighbor is found based on the function LatencyEst, then the neighbor’s distance is updated
accordingly, and the function LatencyEst is used to calculate the weight of each neighbor
before including it in the priority queue (lines 15-19). Finally, Algorithm 6 returns prev and
dist, where prev stores the previous node used to reach each node in the path ri ∈ r, and dist
stores the distance (latency) from the source node s to each node n (line 20). At the end of
the process, a path ri is traced for flow fi, in which its cost is less than or equal to the flow
latency requirement δ(f) and also satisfies the flow throughput requirement ω(f). However,
Algorithm 6 approximates the cost of the traced path ri to the flow latency requirement δ(f).

The function LatencyEst calculates the latency weight between a current traversed node n and
its predecessor p in a graph to define the priority of p in the routing procedure, where it
considers the application flow latency requirement δ(f), the achieved latency to reach the
currently traversed node n, the Euclidean distance, edge latency lnp between n and p, and
edge congestion between n and its predecessor p (lines 22-27). The FLATWISE heuristic
guides the search based on the closest latency achieved at each iteration compared to the
flow latency. Thus, the function LatencyEst adapts its search criteria according to the latency

5.3. Calculating Paths for VR Flows with FLATWISE 97

Algorithm 6 FLATWISE Operation
Input: G = (V, E), s, t, f ▷ graph, source, target, flow
Output: prev, dist ▷ distance, previous nodes

1: dist, prev← {}
2: for n ∈ V do
3: dist[n]← +∞
4: dist[s]← 0
5: candidates← [(dist[s] + LATENCYEST(s, t, ∅, f , ∅), s)]
6: while not candidates = ∅ do
7: cnode ← HEAPPOP(candidates) ▷ current node(cnode)
8: if not cnode = t and cnode ∈ V then
9: ▷ Remove cnode from unvisited nodes set

10: V← V \ {cnode}
11: neighbors← GETNEIGHBORS(cnode)
12: for n in neighbors where bcnode,n ≥ ω(f) do
13: newdist ← dist[cnode] + lcnode,n
14: if newdist < dist[n] then
15: dist[n]← newdist
16: prev[n]← cnode
17: nweight ←LATENCYEST(n, t, cnode, f ,dist[n])
18: candidatedist ← newdist + nweight
19: HEAPPUSH(candidates, candidatedist, n)
20: return prev, dist

21: function LATENCYEST(n, t, p, f , ndist)
22: latencyweight ← 1
23: if not p = ∅ then
24: lnp ← GETEDGELATENCY(n, p)
25: ▷ Compute residual capacity and latency
26: rc ← cnp −ω(f)

27: rl ←
∣∣∣δ(f)−

(
lnp

δ(f)

)∣∣∣
28: latencyweight ← rl + rc +

δ(f)
1.05ndist

29: (xn, yn)← GETNODEPOSITION(n)
30: (xt, yt)← GETNODEPOSITION(t)
31: ▷ Return weighted Euclidean distance
32: return latencyweight ·

√
(xn − xt)2 + (yn − yt)2

of each neighbor of the current traversed node n. We use the Euclidean distance to guide
FLATWISE’s search, which is always calculated from n to the destination node t. In the first
iteration of Algorithm 6, there is no predecessor p, because n is the source node s. Therefore,
the weight for this particular node is the Euclidean distance between s and t. To calculate the
weight of n, the function LatencyEst considers the flow latency δ(f) and the edge congestion
level rc between n and p. We calculate the edge congestion level rc according to its current
throughput capacity cnp and the flow fi throughput requirement ω(f). The desired latency is
calculated through the absolute value considering the flow latency requirement δ(f) and the
edge latency lnp between n and p (line 28). After that, the latency weight is calculated using
the desired latency, edge congestion, flow latency δ(f), and the current distance of n (29-31).

98 5.3. Calculating Paths for VR Flows with FLATWISE

Here, the higher the edge latency lnp is, the greater is the impact on the latency weight. Finally,
the Euclidean distance is multiplied by the latency weight and then returned by the function
LatencyEst (line 32). Algorithm 6 shows that the proposed optimization problem can be solved
in linear time. The Algorithm 6 has a time complexity of O((V + E)log(V)) = O(Elog(V)),
where |E| represents the number of edges and |V| represents the number of vertices in the
graph. The algorithm’s time complexity scales linearly with the number of edges and has a
logarithmic dependence on the number of vertices in the graph.

5.3.2 E2E Latency Awareness for Source Node Selection

The E2E latency awareness plays a crucial role in routing for latency-sensitive applications.
Section 2.2.3 shows that only a few works address routing with E2E latency awareness.
Therefore, it is essential to consider the latency of the edge infrastructure supporting the
deployment of VR services because 6DoF VR applications are very latency-sensitive. Any
reduction in the E2E latency can improve the content delivery while maintaining the desired
QoS. Unlike related works and regular routing approaches, FLATWISE provides an adaptive
routing scheme, where it can squeeze or relax the selection of the traversed node’s n neighbor
in each iteration based on the achieved latency of the path ri to reach node n and the target
latency δ(fi) required by flow fi.

Z4

Z3

Z2

Z5Z1

HMD4HMD2

HMD1 HMD5HMD3

SDN Controller

FIGURE 5.2: FLATWISE zone scheme to support routing with E2E latency awareness to select the optimal
source node, from which the MEC server attached to it supports the offloading of VR services while

minimizing the E2E latency.

5.3. Calculating Paths for VR Flows with FLATWISE 99

To optimize such an adaptive routing scheme, FLATWISE sets an anchor to a nearby MEC
server mi, where the anchor hosts the VR services for HMD hi. To select the anchor, FLATWISE
considers the MEC server with the lowest computing latency p(mi) with sufficient computing
resources, e.g., CPU, GPU, RAM, and storage, to support the deployment of VR services from
HMD hi. Instead of establishing the path between the base station where HMD hi is connected
and the cloud server mj hosting the VR application logic, FLATWISE establishes the path
between base station vi, where the anchor is attached, and the cloud server.

For each HMD hi, we consider all MEC servers attached to base stations vi within twice
the HMD’s coverage area to ensure a higher heterogeneity of available MEC servers.
Therefore, we define the coverage area mentioned above as a zone zn. Figure 5.2 shows
the proposed zone scheme for each HMD, where the selection of the optimal source node
is provided according to the zone zn specified for each HMD hi. After defining the zone
scheme shown in Figure 5.2, FLATWISE selects the MEC servers considering their resource
availability, computing latency p(mi), HMD’s hi location, HMD’s hi mobility patterns, and
network congestion. Therefore, FLATWISE calculates a path from the base station vi and the
cloud server mj hosting the 6DoF VR back-end, where the chosen MEC server mi (anchor)
is attached to base station vi. After that, FLATWISE establishes the path from vi to the
base station where the HMD hi is connected. Thus, FLATWISE ensures lower E2E latency
compared to state-of-the-art routing approaches while providing network load balancing
through a heterogeneity path selection for VR flows.

5.3.3 FLATWISE Dynamic Path Calculation compared to Widest Shortest and
Shortest Widest Paths

One of the unique features of FLATWISE is its ability to provide different paths between
the same source s and destination t, regardless of network conditions. FLATWISE provides
different paths based on the latency requirements δ(fi) of each 6DoF VR application. Thus,
FLATWISE can relax or squeeze the search for new paths between s and t based on latency
δ(fi). For instance, the lower the latency δ(fi) is, the tighter is the search for low-latency paths,
following the same logic as shortest path-based approaches. On the other hand, the higher the
latency δ(fi) is, the more relaxed the search is, which means that paths with a higher number
of hops can be used for a 6DoF VR flow. As a result, considering the features described in
Section 5.3.2, FLATWISE establishes a dynamic on-demand path calculation based on the
E2E latency for each VR flow, where it can provide different paths between any source s and
destination t according to the flow latency requirement δ(fi).

Let the network graph in Figure 5.3 be an explanatory example, where G = (V, E) is the
network graph and each edge (i, j) has a maximum network throughput bij and network
latency lij. Let us consider node s ∈ V as the source node and t ∈ V as the destination
node, where t ̸= s. Tables 5.1 and 5.2 show two distinct scenarios where the baseline routing
allocation algorithms WSP and SWP are compared to the FLATWISE approach. Besides, both
tables show the flow fi being processed, flow latency requirement δ(fi), flow throughput

100 5.3. Calculating Paths for VR Flows with FLATWISE

s

v2 v4

v1 v3

v6

v7

v9

v5

v8

v10

v11

v12

v13

v14

v15

v16

t

98M
bit/s

0.45m
s

49
M

bi
t/

s
0.

65
m

s

55 Mbit/s
0.53 ms

51 Mbit/s

0.37 ms
66

M
bi

t/
s

0.
3m

s

83 Mbit/s

0.25 ms

129M
bit/s

0.83m
s

97
M

bi
t/

s
0.

35
m

s

153M
bit/s

0.19m
s

145 Mbit/s
0.51 ms

194 Mbit/s
0.32 ms

125 Mbit/s
0.49 ms

174 Mbit/s
0.27 ms

18
6M

bi
t/

s

0.
57

m
s

119M
bit/s

0.48m
s

85 Mbit/s
0.31 ms

73
M

bi
t/

s

0.
88

m
s

48 Mbit/s
1.92 ms

86 Mbit/s
0.47 ms

90 Mbit/s
0.24 ms

73M
bit/s

0.69m
s

56 Mbit/s

0.54 ms

67M
bit/s

1.03m
s

78
M

bi
t/

s

0.
35

m
s

59 Mbit/s
1.93 ms

FIGURE 5.3: Network graph with network latencies and throughputs for each edge (i, j) ∈ E, where s and
t represent the source and destination nodes.

Routing
algorithm

fi δ(fi) ω(fi) δ(ri) ω(ri) Path (ri)

WSP f1 ∅ 30 Mbit/s 2.58 ms 54 Mbit/s s→ v2 → v4 → v9 → v14 → v16 → t

SWP f1 ∅ 30 Mbit/s 3.88 ms 59 Mbit/s s→ v6 → v4 → v9 → v14 → v16 → t

FLATWISE f1 3 ms 30 Mbit/s 2.58 ms 54 Mbit/s s→ v2 → v4 → v9 → v14 → v16 → t

FLATWISE f1 4 ms 30 Mbit/s 2.88 ms 54 Mbit/s s → v2 → v4 → v7 → v12 → v14 →
v16 → t

FLATWISE f1 5 ms 30 Mbit/s 3.12 ms 54 Mbit/s s → v2 → v4 → v6 → v11 → v14 →
v16 → t

FLATWISE f1 6 ms 30 Mbit/s 3.14 ms 49 Mbit/s s→ v1 → v3 → v8 → v13 → v15 → t

FLATWISE f1 7 ms 30 Mbit/s 3.64 ms 49 Mbit/s s → v1 → v3 → v6 → v11 → v14 →
v16 → t

FLATWISE f1 8 ms 30 Mbit/s 3.72 ms 59 Mbit/s s→ v6 → v11 → v14 → v16 → t

FLATWISE f1 9 ms 30 Mbit/s 4.34 ms 48 Mbit/s s→ v6 → v11 → t

TABLE 5.1: Widest Shortest Path, Shortest Widest Path, and FLATWISE flow processing of flow f1, where
f1(s, t,∅, 30 Mbit/s).

5.3. Calculating Paths for VR Flows with FLATWISE 101

requirement ω(fi), path latency δ(ri), minimum throughput along the path ω(ri), and the
calculated path ri provided by each algorithm.

In particular, Table 5.1 describes the first scenario, which considers the current status of the
network, as shown in Figure 5.3. Let us consider flow f1, where δ(f1) and ω(f1) represent
the flow latency and throughput requirement, respectively, where δ(f1) ← ∅ and ω(f1) ←
30 Mbit/s. Therefore, there is no flow latency requirement in this example. WSP, SWP, and
FLATWISE calculate and allocate the path for flow f1 merely based on throughput ω(f1), the
current approach adopted in Internet routing protocols. While WSP and SWP only calculate
one single path or multiple paths with the same latency or throughput weight, FLATWISE
provides different paths for flow f1 according to the flow latency δ(f1) specification. We show
that for flow f1 with latency requirement δ(f1) ranging from 3 ms to 9 ms, FLATWISE ensures
the flow throughput ω(f1) of 25 Mbit/s while providing different suitable paths that can be
allocated according to the requirement of each flow in the network.

Routing
algorithm

fi δ(fi) ω(fi) δ(ri) ω(ri) Path (ri)

WSP f1 ∅ 25 Mbit/s 2.58 ms 55 Mbit/s s→ v2 → v4 → v9 → v14 → v16 → t

WSP f2 ∅ 56 Mbit/s 4.87 ms 56 Mbit/s s→ v6 → v11 → v13 → v15 → t

SWP f1 ∅ 25 Mbit/s 3.88 ms 59 Mbit/s s→ v6 → v4 → v9 → v14 → v16 → t

SWP f2 ∅ 55 Mbit/s 4.28 ms 55 Mbit/s s → v2 → v4 → v6 → v3 → v8 →
v13 → v15 → t

FLATWISE f1 6 ms 25 Mbit/s 3.14 ms 49 Mbit/s s→ v1 → v3 → v8 → v13 → v15 → t

FLATWISE f2 3 ms 55 Mbit/s 2.88 ms 55 Mbit/s s → v2 → v4 → v7 → v12 → v14 →
v16 → t

TABLE 5.2: Widest Shortest Path, Shortest Widest Path, and FLATWISE flow processing with throughput
guarantees for flows f1 and f2, where f1(s, t, 6 ms, 25 Mbit/s) and f2(s, t, 3 ms, 55 Mbit/s).

Table 5.2 describes the second scenario, representing a 6DoF VR scenario where flows require
latency and throughput requirements. This second scenario considers the current status of the
network, as shown in Figure 5.3. Let us consider flows f1 and f2, where flow f1 arrives first in
the network and flow f2 arrives after flow f1. WSP, SWP, and FLATWISE must calculate the
path ri for flows f1 and f2 and allocate the throughput for each path ri, where the latency and
throughput requirements for flow f1 are δ(f1) ← 6 ms, ω(f1) ← 25 Mbit/s and for flow f2

are δ(f2) ← 3 ms and ω(f2) ← 55 Mbit/s. It is worth noting that WSP and SWP calculate the
paths only considering the flow throughput, whereas FLATWISE considers both flow latency
and throughput requirement to calculate a path for each flow.

First, WSP, SWP, and FLATWISE process f1 and allocate 25 Mbit/s for flow f1, making some
edges unavailable to support the allocation of 55 Mbit/s for flow f2. WSP and SWP allocate a
path for flow f1 with latency of 2.58 ms and 3.88 ms, respectively. However, flow f1 requires
a network latency of 6 ms. Besides, after processing flow f2, algorithms WSP and SWP found
a path with 4.87 ms and 4.28 ms, respectively. This indicates that WSP and SWP did not

102 5.4. Experiment Setup

allocate a suitable path for flows f1 and f2 in terms of network latency. Therefore, flow
f2 was impaired, as there were no available paths to meet its latency requirements because
algorithms WSP and SWP allocated a path with a lower latency than the latency required by
flow f1. In contrast, FLATWISE allocates suitable paths to each flow based on their latency
requirements. In practice, FLATWISE allocates paths for flows f1 and f2 with 3.14 ms and
2.88 ms, respectively. This indicates that the latency awareness during the path-searching
decision process makes FLATWISE suitable for 6DoF VR scenarios that require both latency
and throughput guarantees. Therefore, this practical example shows that using WSP and
SWP always to calculate the shortest or widest path does not necessarily optimize the overall
network latency for all flows deployed in the network. This happens because allocating a
path for a specific flow fi with latencies much lower than that requested by the flow can
harm flows arriving at the network later and not finding available paths that meet the latency
requirements for a given flow.

5.4 Experiment Setup

This section describes the experiment setup used in FLATWISE evaluation. We discuss the
network requirements for support VR applications, including video resolutions, frame rates,
latency, throughput, and VR services. Furthermore, we describe the edge network graphs, the
evaluation scenarios, the VR flow management, the baseline routing algorithms used in the
evaluation, the VR users’ mobility, and the VR use case. Finally, we describe the performance
metrics used in our evaluation.

5.4.1 Network Requirements to support VR applications

The development of VR is centered around experience, especially improvement in profile,
interactive, and immersive experiences. The compatibility between transmission and network
technologies determines the level of immersive experience that 6DoF VR can deliver. In
this scenario, network requirements vary along with interaction modes, where the network
infrastructure must meet the requirements of VR services to ensure a high interaction
experience. Weak-interaction VR places high requirements on throughput, e.g., Image
Maximum Theatre, 360° panoramic video, and VR live broadcast, while strong-interaction VR
places high requirements on both throughput and latency, e.g., VR games, VR home fitness,
and VR social networking. We follow the four VR stages proposed in [7]. Table 5.3 reports
the recommended experience duration, VR video resolutions, color depths, frame rates,
bitrates, network throughput, and latency that we consider for video services deployed in
our scenario.

5.4.2 Edge Network Graphs

We use different edge network topologies for the simulation. We use real 5G edge network
topologies for three cities, Bern (BE), Geneva (GE), and Zurich (ZH) [138]. The original 5G
network infrastructures are shown in Figure 4.4. Bern has an area of 51.6 km2 with 147 nodes

5.4. Experiment Setup 103

and a node density of 2.84 nodes/km2. Geneva has an area of 15.93 km2 with 269 nodes and a
node density of 16.88 nodes/km2. Zurich has an area of 87.88 km2 with 586 and a node density
of 6.66 nodes/km2.

(A) Bern 5G base stations. (B) Geneva 5G base station. (C) Zurich 5G base stations.

FIGURE 5.4: Physical 5G network infrastructure map of the cities of Geneva, Bern, and Zurich.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(A) Node connections established
through radius 0.18 for Bern.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns
(B) Node connections established

through radius 0.23 for Bern.

2

4

6

8

10

12

N
od

e
C

on
ne

ct
io

ns

(C) Node connections established
through radius 0.29 for Bern.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(D) Node connections established
through radius 0.15 for Geneva.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(E) Node connections established
through radius 0.17 for Geneva.

2

4

6

8

10

12

N
od

e
C

on
ne

ct
io

ns

(F) Node connections established
through radius 0.19 for Geneva.

2
4
6
8
10
12
14

N
od

e
C

on
ne

ct
io

ns

(G) Node connections established
through radius 0.16 for Zurich.

2
4
6
8
10
12
14
16
18

N
od

e
C

on
ne

ct
io

ns

(H) Node connections established
through radius 0.19 for Zurich.

5

10

15

20

N
od

e
C

on
ne

ct
io

ns

(I) Node connections established
through radius 0.22 for Zurich.

FIGURE 5.5: Generated 5G network infrastructure connectivity of the cities of Bern, Geneva, and Zurich
over different radii.

Each generated topology is based on a Cartesian plane, where the nodes are distributed
between the coordinates (0, 0) and (1, 1). We define each base station’s coverage area as a
radius. Therefore, if the coverage area between two base stations overlaps, we generate a
link between them. The links between base stations are established whenever the Euclidean
distance between any two base stations in the scenario is not greater than a specific radius.
The latency of each established link between two base stations is uniformly distributed
between 0.5 ms and 1 ms, where the link latency can vary between 1% and 5% over time. In
each city, the base stations are located at positions illustrated in Figure 5.4. We define the

104 5.4. Experiment Setup

aforementioned latency distribution according to latency measurements in the University
of Bern’s internal network infrastructure. In our scenario, 70% of the base stations of each
topology are directly attached to MEC servers, which offer different GPU, CPU, memory,
storage, and throughput resources. Around 80% of the MEC servers have GPUs. Figure 5.5
shows the generated topologies and their links. Unlike the topologies in Figure 4.5, we
consider more radii and use the network throughput and latency, as shown in Figure 5.3.

5.4.3 Evaluation Scenarios

We consider the network topology of the cities of Bern, Geneva, and Zurich. We use different
radii to provide the node connectivity to set different user densities under varying network
conditions and traffic load patterns for each network topology. Thus, for each topology, there
are different levels of connectivity, throughput availability, and latency according to the radius
used. Therefore, we defined a different number of users for each topology according to their
number of nodes. The topology of Bern has 1000 6DoF VR applications with a radius ranging
from 0.12 to 0.20. The topology of Geneva has 3000 6DoF VR applications. We use the radius
ranging from 0.09 to 0.17. The topology of Zurich has 5000 6DoF VR applications, with a
radius ranging from 0.06 to 0.14 for this topology. The topologies used in our evaluation
scenario are important to understand the limitations of each routing algorithm and scalability
issues.

5.4.4 VR Flow Management

We have implemented a flow management mechanism that aims to provide fairness to process
all flows in the network during the simulations. Before starting each simulation, we assigned a
random resolution to all the flows deployed in the network according to the requirements and
resolutions described in Table 5.3. When the simulations are started, the routing algorithms
try to improve the resolution of the flows over time. When the network cannot support a
more advanced resolution than the one the HMD hi runs, a resolution is configured according
to the available network resources, such as throughput and latency. The flow management is
handled via the SDN controller in all evaluation scenarios described in Section 5.4.3. The flows
are shuffled at each iteration to provide fairness during the flow-processing procedure. Flow
shuffling is essential because we congest the network in all evaluation scenarios to allocate
alternative paths. Thus, we can examine the behavior of the algorithms during a network
overload scenario. Therefore, the order in which flows are processed depends on the shuffling
procedure in each iteration.

5.4.5 Baseline Routing Algorithms

For the above scenarios, we consider two approaches to allocating paths for VR applications
in which HMDs use a throughput-based algorithm to increase the bitrate of 6DoF videos.

• SWP: The widest path is determined first. Assume there are multiple paths between a
source and a destination. In that case, the second attribute of the additive cost is applied to

5.4. Experiment Setup 105

TABLE 5.3: Network KPI requirements in different phases of VR implementation.

Standard Pre-VR Entry-Level
VR

Advanced VR Ultimate VR

Experience
duration

≤ 20 min. ≤ 20 min. 20 to 60 min. over 60 min.

Video resolution Full-view 4K
2D video

Full-view 8K
2D/3D video

Full-view 12K
3D video

Full-view 24K
3D video

(resolution
3840 x 1920)

(resolution
7680 x 3840)

(resolution
11520 x 5760)

(resolution
23040 x 11520)

Color depth 8 bits 8 bits 10 bits 12 bits

Frame rate 30 to 90 FPS 30 to 90 FPS 60 to 120 FPS 120 to 200 FPS

Week
interaction
VR
Services

(Bitrate) 16 Mbit/s FOV
42 Mbit/s

FOV
220 Mbit/s

FOV
1.56 Gbit/s

(Throughput) 25 Mbit/s FOV
63 Mbit/s

FOV
340 Mbit/s

FOV
2.34 Gbit/s

(RTT) 30 ms 20 ms 20 ms 10 ms

Strong
interaction
VR
Services

(Bitrate) 18 Mbit/s FOV
60 Mbit/s

FOV
390 Mbit/s

FOV
1.68 Gbit/s

(Throughput) 50 Mbit/s FOV
200 Mbit/s

FOV
1.40 Gbit/s

FOV
3.36 Gbit/s

(RTT) 10 ms 10 ms 5 ms 5 ms

determine the list cost path among the multiple widest paths [140]. We consider the latency
as the additive cost.

• WSP: The shortest path is determined first. Assuming multiple shortest paths exist, we
choose the one with the largest width. Combining the shortest and widest paths into SWP
or WSP is possible if a communication network needs to consider multiple metrics, such as
QoS routing, where it is essential to consider two cost attributes, one additive and the other
non-additive [140], [141].

5.4.6 VR Users Mobility

We use Mininet-WiFi to simulate a realistic network scenario and user mobility [142]. We
use ONOS1 SDN controller to provide flow control, bandwidth allocation, and mobility
management for the simulated VR services. The simulated scenario covers the area of the
cities of Bern, Geneva, and Zurich. Besides, each network topology contains a variable
number of mobile VR users that can connect to the RAN via their 5G interface. We assume
that each VR user runs exactly one VR application. The base stations transmit signals with
a 50 dBm power, decaying according to the Free Space Path Loss model. The VR users’
mobility follows the Random Direction Model, in which users move along a straight line. We

1https://opennetworking.org/onos/

106 5.4. Experiment Setup

assume that mobile VR users connect to the base station whose signal is received with the
highest Signal-to-Noise Ratio (SNR). We assume that each VR user executes a single 6DoF
VR application made of decoding services. For each 6DoF VR application, we uniformly
distribute between 5 and 10 decoders to observe how computing requirements affect system
performance. Furthermore, each 6DoF VR application contains a service to aggregate the
chunks of VR video decoded by each decoder service. For each decoder in the system, its
equivalent requirements in terms of CPU and GPU are randomly extracted from two uniform
distributions with averages of 1770 MHz for the CPU and 440 MHz for the GPU, based on the
typical requirements of regular HMDs available at the market.

5.4.7 VR In-Game Communication Use Case

We evaluate SWP and WSP against FLATWISE in the VR in-game communication use case, where
a central cloud node is processing the inputs from all players. In in-game communications,
players in an online virtual game hear and talk to the players within their immediate vicinity
inside the virtual game. Using an HMD, the rendering can be controlled by head tracking
so that the positions of other players are updated as the user turns the player head [76].
Essentially, the evaluated algorithms allocate paths from the base station vi in which HMD
hi is connected and the cloud server mj hosting the VR application back-end. HMD users
may change their location in each iteration, and a new path must be allocated. Otherwise, the
current path of HMD hi can be used to transmit and receive the data from cloud server mj.

5.4.8 Performance Metrics

The performance of each routing algorithm is evaluated by executing it in the simulated
scenario for 15 hours and measuring the average E2E latency for the user applications. We
assume that time is partitioned in a series of consecutive time windows of duration T = 5 s,
and we will measure a value of latency per window. This choice for T gives sufficient time for
all algorithms to converge so that the experiment yields 10 000 measurements for latency over
the 15 simulated hours. We consider the following KPIs in our evaluation scenario:

• E2E latency. Each user executes an ICMP ping command along the core network part and
uses the collected data to compute the average core network latency during a time window.
During the same time window, for each user, we measure the average computing latency as
the sum of the computing latency of each of its services deployed on MEC servers or HMD.
Each user has an average E2E latency for that time window, the sum of the average core
network latency, the average computing latency, and the benchmarked wireless latency.
The average E2E latency is the average E2E latency for the time window across all users.

• Flow network latency measures the network latency requirement of a specific flow based on
the video resolution and frame rate configured for the flow.

• Flow path latency measures the time data packets travel from the source node s to the
destination node t across a network. A path is allocated for each flow based on the flow
network latency KPI, where flow path latency ≤ flow network latency.

5.5. Performance Evaluation 107

• Over-provisioned latency measures the difference between flow network latency and flow path
latency. In most cases, the flow network latency KPI is way higher than the flow path latency,
indicating how much latency optimization can be provided to all flows by allocating the
most suitable route according to the flow network latency.

• Network throughput refers to the distribution of network resources for data transfer. It
measures how much throughput is allocated to different flows on the network.

• Frame rate measured in Frames per Second (FPS) is used to quantify the smoothness of HMD
video playback or animation. It represents the number of frames displayed per second in a
video or animation sequence.

• Video resolution. We assume that each application in the system selects a video resolution
based on the E2E latency, according to the average latency at each time window. The
application maintains the resolution constant for the whole window duration. In the next
time window, the resolution is selected according to the available E2E latency provided
by the system. Therefore, the higher the resolution is, the lower is the latency required to
process the video set to this resolution.

• Execution time measures the time taken to calculate and allocate paths for each flow,
considering the number of edges in each network scenario and the number of flows.

5.5 Performance Evaluation

We start by investigating the impact on the Internet network infrastructure when existing
routing protocols prioritize throughput as the primary metric for resource allocation. For
this purpose, we employ a CDN scenario where a central node is responsible for distributing
6DoF VR videos to all users, reflecting the current content delivery approach employed by
the Internet. Thus, we can analyze how different routing protocol approaches, operating
under various network conditions and traffic load patterns, influence key factors such as
overall network throughput allocation, network congestion, network latency, average video
resolution FPS, and the achieved video resolutions for each VR application. These factors
are evaluated considering that network conditions change dynamically and are driven by the
decisions made by different path selection approaches.

5.5.1 Flow Network Latency

Flow Network Latency is a critical performance metric that measures the network’s ability to
satisfy the latency requirements of specific flows, considering the video resolution and frame
rate configured for each flow. Figure 5.6 shows the average flow network latency performance
evaluation for Bern, Geneva, and Zurich topologies over different radii. In Bern topology
(Figure 5.6a), on average, FLATWISE provides lower flow network latencies than SWP and
WSP. The results for Geneva and Zurich (Figures 5.6b and 5.6c) show a similar trend to Bern,
where FLATWISE consistently provides lower flow network latencies than SWP and WSP.

108 5.5. Performance Evaluation

12 13 14 15 16 17 18 19 20
Radius

0

5

10

15

20

Fl
ow

 N
et

wo
rk

 L
at

en
cy

 (m
s)

.10 ²

SWP WSP FLATWISE

(A) Average Flow Network Latency for Bern.

9 10 11 12 13 14 15 16 17
Radius

0

5

10

15

20

Fl
ow

 N
et

wo
rk

 L
at

en
cy

 (m
s)

.10 ²

SWP WSP FLATWISE

(B) Average Flow Network Latency for Geneva.

6 7 8 9 10 11 12 13 14
Radius

0

5

10

15

20

Fl
ow

 N
et

wo
rk

 L
at

en
cy

 (m
s)

.10 ²

SWP WSP FLATWISE

(C) Average Flow Network Latency for Zurich.

FIGURE 5.6: Performance evaluation of average flow network latency for Bern, Geneva, and Zurich
topologies over different radii.

This suggests that FLATWISE efficiently allocates paths with latencies that closely match the
requirements of each VR application.

In summary, the flow network latency analysis across the three topologies highlights the
effectiveness of the FLATWISE routing algorithm in minimizing latency for 6DoF VR
applications. As the radius increases, the latencies generally decrease for all algorithms,
showcasing improved network conditions. These findings provide valuable information
on optimizing path allocation for 6DoF VR applications, as always selecting the shortest
path tends to congest these paths, which leads to more flows competing for the throughput
resources available on this low-latency path. In this way, more flows tend to compete for the
resources of the path with the shortest distance, which prevents some flows from operating
at higher transmission rates. To address this problem, FLATWISE provides a more dynamic
path search, which always provides different routes according to each latency requirement.

5.5. Performance Evaluation 109

12 13 14 15 16 17 18 19 20
Radius

0

5

10

15

Pa
th

 L
at

en
cy

 (m
s)

.10 ²

SWP WSP FLATWISE

(A) Average Flow Path Latency for Bern.

9 10 11 12 13 14 15 16 17
Radius

0

5

10

15

Pa
th

 L
at

en
cy

 (m
s)

.10 ²

SWP WSP FLATWISE

(B) Average Flow Path Latency for Geneva.

6 7 8 9 10 11 12 13 14
Radius

0

5

10

15

Pa
th

 L
at

en
cy

 (m
s)

.10 ²

SWP WSP FLATWISE

(C) Average Flow Path Latency for Zurich.

FIGURE 5.7: Performance evaluation of path latency for Bern, Geneva, and Zurich topologies over different
radii.

5.5.2 Path Latency

Path latency is a crucial performance metric that quantifies the time data packets traverse
from the source node to the destination node across the network, encompassing factors such
as routing algorithm, network conditions, and traffic load. Figure 5.7 shows the performance
evaluation of path latency for Bern, Geneva, and Zurich topologies over different radii.
In Figure 5.7a, WSP provides the lowest average path latency across all radii for the Bern
topology. These results suggest that WSP allocates the shortest path available for each flow
arriving at the network while prioritizing the widest available path. This strategy highly
depends on the requirements of the flows arriving in the network, where the first flows
must have lower latency requirements than consecutive flows to guarantee the success of
this approach. FLATWISE, on the other hand, balances latency and throughput allocation
trade-offs. It offers competitive performance with lower latencies than SWP, emphasizing
the importance of considering latency constraints in path allocation decisions. Figures 5.7b
and 5.7c show that WSP consistently outperforms SWP and FLATWISE regarding average

110 5.5. Performance Evaluation

12 13 14 15 16 17 18 19 20
Radius

0

5

10

15

Ov
er

-p
ro

vi
sio

ne
d

La
te

nc
y

(m
s)

.10 ²

SWP WSP FLATWISE

(A) Average Over-provisioned Latency for Bern.

9 10 11 12 13 14 15 16 17
Radius

0

5

10

15

Ov
er

-p
ro

vi
sio

ne
d

La
te

nc
y

(m
s)

.10 ²

SWP WSP FLATWISE

(B) Average Over-provisioned Latency for Geneva.

6 7 8 9 10 11 12 13 14
Radius

0

5

10

15

Ov
er

-p
ro

vi
sio

ne
d

La
te

nc
y

(m
s)

.10 ²

SWP WSP FLATWISE

(C) Average Over-provisioned Latency for Zurich.

FIGURE 5.8: Performance evaluation of over-provisioned latency for Bern, Geneva, and Zurich topologies
over different radii.

path latency for Geneva and Zurich topologies. The path latency analysis across the three
topologies consistently highlights the superior performance of the WSP routing algorithm in
allocating routes with lower latency. However, this does not indicate that WSP supports flows
with higher flow network latency than FLATWISE because WSP efficiency highly depends
on flows with lower latency requirements arriving in the network first. Otherwise, WSP will
allocate ultra-low latency paths for flows that demand way higher latencies than those path
latencies allocated.

5.5.3 Over-provisioned Latency

Over-provisioned latency represents the difference between the flow latency and the latency
of the selected path. It shows the efficiency of all routing algorithms to allocate paths
with latency as close as the latency required by the flow. The higher the over-provisioned
latency is, the higher is the difference between the latency of the path allocated for the
flow and the latency required by the flow. Figure 5.8 shows the performance evaluation

5.5. Performance Evaluation 111

12 13 14 15 16 17 18 19 20
Radius

10

15

20

25

E2
E

La
te

nc
y

(m
s)

.10 ²

SWP WSP FLATWISE

(A) Average E2E Latency for Bern.

9 10 11 12 13 14 15 16 17
Radius

10

15

20

25

E2
E

La
te

nc
y

(m
s)

.10 ²

SWP WSP FLATWISE

(B) Average E2E Latency for Geneva.

6 7 8 9 10 11 12 13 14
Radius

10

15

20

25

E2
E

La
te

nc
y

(m
s)

.10 ²

SWP WSP FLATWISE

(C) Average E2E Latency for Zurich.

FIGURE 5.9: Performance evaluation of E2E latency for Bern, Geneva, and Zurich topologies over different
radii.

of over-provisioned latency for Bern, Geneva, and Zurich topologies over different radii.
Figure 5.8a shows WSP provides the highest over-provisioning latency. With fewer edges on
the Bern network topology, which is the case of a radius ranging from 0.12 to 14, FLATWISE
provides higher over-provisioning latency than SWP because fewer paths with lower latency
are available. Therefore, SWP selects more paths with higher latency than FLATWISE
and WSP. Figure 5.8b shows that FLATWISE and SWP behave similarly when the Geneva
network has fewer edges. However, FLATWISE provides a lower over-provisioned latency
in scenarios with more edges. Results in Figure 5.8c suggest that FLATWISE consistently
provides the lowest over-provisioned latencies across different radii for Zurich topology.
Therefore, FLATWISE’s ability to find paths with latency close to the flow network latency
requirement contributes to reducing the over-provisioned latency. The trends observed across
all cities reinforce the value of considering latency when selecting routing paths.

112 5.5. Performance Evaluation

12 13 14 15 16 17 18 19 20
Radius

1

2

3
Fl

ow
 T

hr
ou

gh
pu

t (
Gb

ps
)

.10 ²

SWP WSP FLATWISE

(A) Average Flow Network Throughput for the city of Bern.

9 10 11 12 13 14 15 16 17
Radius

0

1

2

3

Fl
ow

 T
hr

ou
gh

pu
t (

Gb
ps

)

.10 ²

(B) Average Flow Network Throughput for the city of Geneva.

6 7 8 9 10 11 12 13 14
Radius

0

1

2

3

4

Fl
ow

 T
hr

ou
gh

pu
t (

Gb
ps

)

.10 ²

(C) Average Flow Network Throughput for the city of Zurich.

FIGURE 5.10: Performance evaluation of average network throughput for the cities of Bern, Geneva, and
Zurich over different radii.

5.5. Performance Evaluation 113

5.5.4 E2E Latency

E2E latency is the sum of the flow latency, the node where the decoders are deployed, and
the wireless latency of the base station where the HMD is connected. Figure 5.9 shows the
performance evaluation of E2E latency for Bern, Geneva, and Zurich over different radii.
The E2E latency is an important KPI for 6DoF VR applications since they require latency
guarantees at different layers of the entire VR pipeline, for instance, in the network core
and the computing node processing the VR video. FLATWISE achieves lower E2E latency
in all topologies over different radii. Besides, the flow latency is crucial in achieving the
desired E2E latency. There is a strong correlation between the flow network latency analyzed
in Figure 5.6 and Figure 5.9 because the lower the flow network latency, the lower the E2E
latency. Therefore, the capability of FLATWISE to optimize the flow selection by finding
suitable paths with latency closest to the latency required by the flow provides lower flow
network latency and E2E latency in all scenarios evaluated.

5.5.5 Flow Throughput

Flow throughput is a crucial performance metric determining the network’s capacity to handle
data traffic efficiently. Figure 5.10 shows the performance evaluation of average network
throughput for the cities of Bern, Geneva, and Zurich over different radii. Wider sections
in Figure 5.10 represent a higher probability that a flow is configured with the throughput
specified on the y-axis of the plot, whereas the skinnier sections represent a lower probability
of the flow being configured with the throughput shown in the y-axis. Figure 5.10 shows that
FLATWISE achieves the highest average throughput across different radii and topologies. In
particular, Figure 5.10a shows more stable average throughput results for all the algorithms.
This is because fewer users are deployed in the Bern, and fewer edges are available, indicating
that the scenario in Figure 5.10a is less overloaded than those in Figures 5.10b and 5.10c.

5.5.6 Frame Rate

Frame rate assesses the smoothness of HMD video playback by indicating the number of
frames displayed per second (FPS) within a video sequence. This is the most important KPI
to measure the QoE perceived by VR users. The lower the average latency and the higher the
throughput of the flow is, the higher is the frame rate of each flow, as it depends heavily on
these two parameters. Figure 5.11 shows the performance evaluation of the average frame
rate for the cities of Bern, Geneva, and Zurich over different radii. As expected from the flow
latency and throughput analysis in Figures 5.6 and 5.10, FLATWISE outperforms both WSP
and SWP by providing higher FPS in all topologies over different radii. In Figure 5.11a, the
difference in FPS performance across all algorithms is more balanced. This can be seen in
the flow latency and throughput analysis in Figures 5.6a and 5.10a. However, when Bern
topology gets more edges, e.g., a higher radius, the results are more expressive in terms of
FPS. Figures 5.11b and 5.11c show that FPS is higher for Geneva and Zurich topologies over
different radii. These results indicate that even a slight improvement in flow latency can
significantly affect the FPS configured for each VR application.

114 5.5. Performance Evaluation

12 13 14 15 16 17 18 19 20
Radius

0

50

100

150
Fr

am
e

Ra
te

 (F
PS

)

.10 ²

SWP WSP FLATWISE

(A) Average Frame Rate for the city of Bern.

9 10 11 12 13 14 15 16 17
Radius

0

50

100

150

Fr
am

e
Ra

te
 (F

PS
)

.10 ²

(B) Average Frame Rate for the city of Geneva.

6 7 8 9 10 11 12 13 14
Radius

0

50

100

150

200

Fr
am

e
Ra

te
 (F

PS
)

.10 ²

(C) Average Frame Rate for the city of Zurich.

FIGURE 5.11: Performance evaluation of average frame rate for the cities of Bern, Geneva, and Zurich over
different radii.

5.5. Performance Evaluation 115

0

200

400
HM

Ds
 ru

nn
in

g
at

 2
4K

.101

SWP WSP FLATWISE

0

25

50

75

100

HM
Ds

 ru
nn

in
g

at
 1

2K

.101

0

25

50

75

HM
Ds

 ru
nn

in
g

at
 8

K

.101

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Radius

0

100

200

HM
Ds

 ru
nn

in
g

at
 4

K

.101

.10 ²

(A) Video resolutions for strong-interaction VR services.

FIGURE 5.12: Performance evaluation of video resolutions for strong-interaction VR services for Bern,
Geneva, and Zurich over different radii.

116 5.5. Performance Evaluation

0

100

200
HM

Ds
 ru

nn
in

g
at

 2
4K

.101

SWP WSP FLATWISE

0

25

50

75

100

HM
Ds

 ru
nn

in
g

at
 1

2K

.101

0

50

100

150

HM
Ds

 ru
nn

in
g

at
 8

K

.101

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Radius

0

100

200

300

HM
Ds

 ru
nn

in
g

at
 4

K

.101

.10 ²

(A) Video resolutions for weak-interaction VR services.

FIGURE 5.13: Performance evaluation of video resolutions for weak-interaction VR services for Bern,
Geneva, and Zurich over different radii.

5.5. Performance Evaluation 117

5.5.7 Video Resolutions

Video resolutions for 6DoF VR applications require ultra-high throughput and ultra-low
latency requirements to set higher frame rates to offer VR users better experiences. Therefore,
we consider the E2E latency and network throughput to switch the video resolution for each
HMD during our simulations. Thus, E2E latency and throughput requirements must be
met before we switch from the current resolution to a more advanced one. We categorize
the video resolutions used in our evaluation into strong- and weak-interaction VR services,
as described in Table 5.3. Strong-interaction VR services require higher frame rates than
weak-interaction VR services, even for the same resolution. Consequently, strong-interaction
VR services require lower latency and higher throughput than weak-interaction services.
Figures 5.12 and 5.13 show the performance evaluation of video resolutions configured
in each HMD considering strong- and weak-interaction VR services for Bern, Geneva,
and Zurich topologies over the radius configured for each topology. The video resolution
configured in each HMD highly depends on the flow network throughput and E2E latency.
Figure 5.12 shows that FLATWISE supports strong-interaction VR services to configure more
HMDs with resolution 24K than WSP and SWP, whereas WSP supports weak-interaction VR
services for more HMDs running at resolution 24k. On the other hand, SWP supports more
HMDs running at resolutions 12K, 8K, and 4K for both strong- and weak-interaction VR
services. These results can be derived by analyzing the flow network latency, the E2E latency,
and flow throughput. Therefore, the results indicate that FLATWISE’s ability to provide path
balancing between WSP and SWP is beneficial for providing video resolutions with higher
frame rates.

5.5.8 Execution Time

Execution time is the duration required to compute and assign paths for individual flows,
accounting for the count of edges in each network scenario and the number of flows.
Figure 5.14 shows the performance evaluation of the average algorithm execution time
for the cities of Bern, Geneva, and Zurich over different radii. SWP and WSP are greedy
solutions that always process all network nodes before calculating a route based on latency
or throughput parameters, while FLATWISE is a heuristic that approximates the latency of
the calculated path according to the latency specified for each flow. Thus, FLATWISE does
not need to visit every node in the network to guarantee better latency, throughput, and
FPS results in scenarios with latency and throughput guarantees simultaneously. The results
show that FLATWISE needs less search time than WSP and SWP in all topologies. The larger
the topology is, the greater is the processing time required by WSP and SWP algorithms.
This situation can change depending on the number of users deployed on the network and
the network’s capacity to support these users. Therefore, FLATWISE achieves lower latency
and higher throughput results than WSP and SWP and offers low processing costs in all the
network scenarios analyzed.

118 5.5. Performance Evaluation

12 13 14 15 16 17 18 19 20
Radius

0

10

20

30
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

.10 ²

SWP WSP FLATWISE

(A) Average Algorithm Execution Time for the city of Bern.

9 10 11 12 13 14 15 16 17
Radius

0

25

50

75

100

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

.10 ²

(B) Average Algorithm Execution Time for the city of Geneva.

6 7 8 9 10 11 12 13 14
Radius

0

200

400

600

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

.10 ²

(C) Average Algorithm Execution Time for the city of Zurich.

FIGURE 5.14: Performance evaluation of average algorithm execution time for the cities of Bern, Geneva,
and Zurich over different radii.

5.6. Chapter Conclusions 119

5.6 Chapter Conclusions

In this chapter, we investigated how to optimize the overall E2E latency for 6DoF VR
applications. These applications demand stringent latency and throughput guarantees to
deliver immersive experiences. We have investigated the JFA problem, which aims to find
suitable paths for all flows in a network such that it determines the optimal paths in terms
of throughput and latency to reduce the overall latency for all flows. We used Mixed Integer
Linear Programming to model the JFA objective and constraints. We have shown that the JFA
problem is NP-hard, i.e., computationally expensive. Thus, it is impractical to implement an
optimal solution to solve the JFA in real network environments. Therefore, we have proposed
FLATWISE, a new heuristic that is one order of magnitude faster than the JFA problem.

FLATWISE is a novel intra-domain routing algorithm with throughput guarantees for
minimizing the overall E2E latency performance for all 6DoF VR applications SDN
infrastructures. FLATWISE provides an adaptive routing approach that can squeeze or relax
the path calculation based on the E2E latency requirement of 6DoF VR applications. We
addressed the Research Question 3.1 by showing that FLATWISE primary characteristic
is to approximate the E2E latency of the calculated path with the E2E latency required
by each 6DoF VR application while it considers the impact of path assignment on other
6DoF VR applications. We provided algorithms for path allocation based on E2E latency
awareness, and we also have shown the practical implementation of FLATWISE and compare
its performance with SWP and WSP implementations.

We have assessed FLATWISE performance in a realistic simulated 5G network map of
Bern, Geneva, and Zurich. Based on those topologies, we have modeled both network and
computing latencies used in the FLATWISE simulation environment. We have implemented
and compared the algorithms WSP and SWP against FLATWISE in a highly dynamic and
realistic network environment where there is no flow prioritization while the network link
availability changes over time. We have evaluated the performance of FLATWISE, WSP,
and SWP by analyzing the VR in-game communication as a reference use case. We have
considered the KPIs flow network latency, path latency, over-provisioned latency, E2E
latency, flow network throughput, frame rate, video resolutions, and execution time. We have
addressed the Research Question 3.2 by showing the optimization of the overall network
latency and throughput for all VR applications deployed on the network.

The importance of FLATWISE is highlighted through extensive simulations, showcasing its
potential to reduce flow latency, over-provisioned latency, and E2E latency. It also enhances
flow throughput, frame rate, and algorithm execution time compared to existing approaches.
We addressed the Research Question 3.3 by showing FLATWISE’s ability to provide
different routes for the same source-destination pairs based on E2E latency requirements,
which demonstrates its adaptability to diverse network conditions. FLATWISE seamlessly
integrates 6DoF VR applications into network infrastructures, ensuring low latency, high
throughput, and a truly immersive user experience. As VR technologies continue to advance,
solutions like FLATWISE will play a pivotal role in shaping the future of VR.

120

Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the contributions of this thesis in Section 6.1, in which
we provide an overview of the contributions described in Chapters 3, 4, and 5. Then, in
Section 6.2, we briefly discuss future research directions towards latency minimization for
future generation of VR systems running 6DoF content.

6.1 Summary of Contributions

In this thesis, we have investigated solutions to minimize the E2E latency for 6DoF VR
applications. However, no viable solution covers all aspects of E2E latency for VR systems
that demand ultra-low latencies and bandwidths over 1 Gbit/s. Thus, we considered
various aspects of the E2E pipeline of VR systems, which can minimize latency for VR
applications. Therefore, we mainly focused on optimization at the edge network and the
network infrastructure, but always considering the limitations of current VR HMDs and
the requirements of advanced VR applications running 6DoF content. We also focused on
the impact on the E2E latency performance for VR systems in a highly dynamic network
environment where over-provisioned resources, service migration, service offloading, and
path allocation are performed.

First, our research investigated a resource provisioning mechanism. This mechanism was
specifically designed to ensure the availability of resources while prioritizing them for the
optimal delivery of real-time VR services deployed at the network edge. Second, as a crucial
component of this research, we have developed an edge framework with the primary goal
of efficiently orchestrating VR services. This framework incorporates advanced strategies,
such as offloading and migration, carefully tailored to address the demands of DoF VR
applications. The main objective is to reduce the E2E latency while maintaining the seamless
functionality of these applications. Finally, we present a novel network routing strategy.
This strategy represents a novel approach that aims to decrease the latency performance of
6DoF VR applications. To achieve such a goal, the new approach computes routing paths
considering the unique E2E latency requirements of each 6DoF application. The contributions
of this thesis are summarized below in the order in which they occurred.

6.1. Summary of Contributions 121

6.1.1 Resource Provisioning Mechanism for VR Services

In Chapter 3, we investigated a new edge resource provisioning mechanism to address the
research questions described in Section 1.3.1. We studied the problem of resource scarcity
on resource-constrained MEC infrastructures and how to overcome it in the context of
VR services deployment. To address this problem, we have proposed REACT, a resource
provisioning mechanism that leverages resource provisioning among different services
running on a shared edge environment. We have shown that REACT guarantees resource
availability and prioritization for real-time VR services deployed on the network edge.

We addressed the Research Question 1.1 by exploiting how REACT adopts an adaptive
and solidarity-based auto-scaling strategy to redistribute resources from over-provisioned
services (VR services) to under-provisioned services (not sensitive to latency) in edge
environments. We highlighted that REACT is an alternative strategy to avoid service
migration due to resource scarcity in MEC servers. We have shown that the core idea of
the REACT is prioritizing resource provisioning for real-time VR applications. With such
prioritization, REACT enhances the performance of high-priority VR services, especially
when the edge infrastructure resources become scarce.

We addressed the Research Question 1.2 by considering a resource-constrained MEC scenario
to evaluate our approach against Kubernetes, a reactive algorithm baseline approach to
provide resource provisioning in MEC servers. We optimized the resource provisioning in
edge computing infrastructures by reducing the amount of over-provisioning resources. We
also reduced the overall service outages whenever MEC resources become unavailable. We
have demonstrated that REACT minimized the harmful effects of service migration while
keeping more services running over the same MEC server.

Our evaluation assesses REACT’s and Kubernetes’s performance on a real testbed. Testbed
results demonstrated the superior performance of REACT over Kubernetes in terms of
accomplishing up to 18% more elasticity events, reducing service outages by up to 95%,
reducing elasticity attempts by up to 95%, and reducing over-provisioned resources by up
to 33%, 38%, and 73% for CPU cycles, RAM and bandwidth resources, respectively. Finally,
REACT reduced response time by up to 15%. We have shown that REACT, compared
to Kubernetes, provided several improvements. As a result, we enhanced the resource
provisioning requests for high-priority VR services in edge infrastructures with resource
scarcity situations, thus addressing the Research Question 1.3.

We have provided evidence that our findings and contributions underscore REACT’s
substantial benefits in providing resource provisioning for VR services in MEC environments,
making it a valuable contribution to edge-enabled VR deployment. Therefore, we
demonstrated the potential for advancing the capabilities of edge networks in supporting
latency-sensitive VR applications. By effectively managing resources and prioritizing the
deployment of VR services, the research presented in Chapter 3 supports VR services
deployed on edge networks while providing seamless, low latency, and responsive VR
experiences for VR applications.

122 6.1. Summary of Contributions

6.1.2 Edge Framework for VR Services Orchestration

In Chapter 4, we have investigated a new edge framework to orchestrate VR services, which
aims to address the research questions described in Section 1.3.2. We studied the DSCP
problem to find the optimal service placement of services from a service chain such that its E2E
latency does not exceed 5 ms. We have shown that DSCP is NP-hard, i.e., computationally
expensive. Therefore, we propose a heuristic (TENET) that is one order of magnitude faster
than DSCP. TENET is a novel edge framework to orchestrate VR services through offloading
and migration strategies considering the requirements of 6DoF VR applications to minimize
the overall E2E latency.

We implemented TENET as a SFC orchestrator, which supports offloading, migration, and
orchestration of VR services deployed across HMDs and MECs to ensure acceptable E2E
latency for VR applications. We addressed the Research Question 2.1 by providing algorithms
to split VR applications into indivisible services and deploy them across HMDs and MEC
servers according to an optimization problem that jointly minimizes latency and energy
consumption. We also provided algorithms for path calculation based on E2E latency and
management of VR applications to ensure acceptable E2E latency.

We evaluated the performance of Meta HMD applications in terms of frame rate, computing
latency, and power usage to model VR service workloads. We use those application metrics
to model 6DoF VR service workloads in a simulated environment to evaluate system
scalability, E2E latency, energy consumption, video resolution selection, context migrations,
and execution time. We used a physical 5G network infrastructure map of the cities of Bern,
Geneva, and Zurich. Based on those topologies, we modeled both network and computing
latencies used in the TENET simulation environment. To address the Research Question 2.2,
in our evaluation, we provided the trade-off between E2E latency and energy consumption
over three high-mobility scenarios compared to widely used service-migration strategies.

We have shown that for varying user densities in an urban scenario, TENET outperforms other
widely adopted mechanisms regarding E2E latency in exchange for a moderate increment in
power consumption. Moreover, we observed significant gains of TENET in selecting higher
video resolutions for 6DoF VR applications based on E2E latency. TENET also provides more
accepted context migrations than traditional service migration algorithms. Finally, we have
shown that TENET can reduce the decision time on where to place the services while ensuring
the performance of 5 ms. Therefore, we addressed the Research Question 2.3 by showing that
TENET deployment strategy impacts the E2E latency of VR applications and the selection of
better video resolutions for latency-sensitive VR applications.

Through our findings and contributions, we have provided insightful directions on
advancing VR service deployment over edge networks, considering the restrictions of the
edge infrastructure, the resource limitations of HMDs, and the stringent latency requirements
of 6DoF VR applications. Therefore, in the research presented in Chapter 4, we have shown
that managing VR services deployed on edge networks brings benefits to reduce E2E latency,
which has the potential to increase the QoS of 6DoF VR applications.

6.1. Summary of Contributions 123

6.1.3 Adaptive Latency-aware Routing Mechanism for VR

In Chapter 5, we investigated a new latency-aware routing mechanism to improve the
routing allocation for VR flows, which aims to address the research questions described
in Section 1.3.3. We studied the Joint Flow Allocation (JFA) problem to find suitable paths
for all flows in a network such that it determines the optimal paths in terms of throughput
and latency to reduce the overall latency for all flows. We used Mixed Integer Linear
Programming to model the JFA objective and constraints. We have shown that JFA problem
isNP-hard, i.e., computationally expensive. Therefore, we proposed a heuristic (FLATWISE)
that is one order of magnitude faster than JFA.

FLATWISE is a new intra-domain routing strategy to support ultra-low latency requirements
for 6DoF VR applications. FLATWISE provides throughput guarantees for minimizing the
overall E2E latency performance for all 6DoF VR applications deployed on the network.
Besides, we have shown that FLATWISE optimizes the latency performance for 6DoF VR
applications by calculating paths based on their latency requirements. FLATWISE provides
an adaptive routing approach that can squeeze or relax the path calculation based on the
E2E latency requirement of 6DoF VR applications. We addressed the Research Question 3.1
by showing that FLATWISE primary characteristic is to approximate the E2E latency of the
calculated path with the E2E latency required by each 6DoF VR application by analyzing the
impact of path assignment on other 6DoF VR applications.

We assessed FLATWISE performance in a realistic simulated 5G network map of Bern,
Geneva, and Zurich. Based on those topologies, we modeled both network and computing
latencies used in the FLATWISE simulation. We implemented and compared the algorithms
WSP and SWP against FLATWISE in a highly dynamic and realistic network environment
where there is no flow prioritization and the network link availability changes over time.
We evaluated the performance of FLATWISE, WSP, and SWP by analyzing the VR in-game
communication as a reference use case. We considered the KPIs network latency, path latency,
over-provisioned latency, E2E latency, network throughput, frame rate, video resolutions,
and execution time. We addressed the Research Question 3.2 by showing the optimization of
the overall network latency and throughput for VR applications deployed on the network.

Our findings and contributions offered important insights into improving current routing
approaches to reduce the overall network latency for applications that demand stringent
latency requirements and high throughput, such as 6DoF VR applications. We addressed
the Research Question 3.3 by showing FLATWISE’s ability to provide different routes for the
same source-destination pairs based on E2E latency requirements, which demonstrates its
adaptability to diverse network conditions. Therefore, in the research resented in Chapter 5,
we provided evidence that the design of a tailored routing approach for applications is more
beneficial than always providing the shortest path (latency) or the widest path (throughput),
which reduced the latency and improved the throughput for all flows on the network. As a
result, FLATWISE seamlessly integrated 6DoF VR applications into network infrastructures,
ensuring low latency, high throughput, and a truly immersive user experience.

124 6.2. Future Work

6.2 Future Work

In this section, we outline potential avenues for future research and development based on
the contributions made in this thesis. The primary focus of these contributions is to further
enhance E2E latency reduction for 6DoF VR applications and address the challenges presented
in the current research. Building upon these foundations, we propose several avenues for
future work in this field that were elaborated based on the open issues of our contributions
in this thesis. Below, we discuss the potential open questions for each chapter this thesis
presents.

For chapter 3, an open issue is the development of dynamic resource allocation schemes based on
machine learning or artificial intelligence techniques to predict resource demands and allocate
resources in real time, considering the resource usage patterns of VR applications. Another
open issue is the restriction of the edge network environment. We could consider extending
the research in chapter 3 to consider hybrid cloud-edge environments, e.g., fog computing,
edge computing, and cloud computing. Therefore, we could develop resource provisioning
strategies that seamlessly span both cloud and edge resources, optimizing the E2E latency
for VR applications that may utilize resources from both domains. Another open issue is the
exploration of resource allocation mechanisms based on energy efficiency. Such mechanisms should
not only reduce energy consumption but also consider latency reduction.

For chapter 4, an open issue is the user mobility and handover. We could investigate how our
proposed edge orchestrator can adapt to user mobility and seamless handover between edge
nodes in a more realistic environment, where the number of users can change according to
certain criteria, such as more users connecting to the network at night. This is particularly
relevant for VR applications used in scenarios with high user mobility. Another issue is using
machine learning and artificial intelligence to predict user mobility. Through this prediction,
VR services could be placed on MEC servers more efficiently, avoiding overloading and the
forced migration of some services due to a scarcity of resources on some MEC servers.

For chapter 5, a potential issue is the lack of inter-domain routing features. We could extend
the proposed routing mechanism to encompass inter-domain routing scenarios. We could
also investigate how to optimize the routing of VR traffic between multiple domains while
ensuring low-latency delivery. Another issue is the consideration of QoE metrics during routing
decisions. We could consider incorporating QoE metrics into the routing strategy, as they are
critical for VR applications. Besides, we could develop methods to adjust routes dynamically
based on real-time user experience feedback. Another issue would be addressing different traffic
categories in the experiments, not just VR traffic. This would make the scenario even more
realistic and complex.

In conclusion, the contributions made in this thesis provide a solid foundation for further
advancements in reducing E2E latency for 6DoF VR applications. Future research can build
upon these contributions to create more robust, efficient, and user-friendly VR experiences in
a variety of network environments.

125

Bibliography

[1] A. Medeiros, T. Braun, A. Di Maio, and A. Neto, “REACT: A Solidarity-based Elastic
Service Resource Reallocation Strategy for Multi-access Edge Computing,” Physical
Communication, p. 101 380, 2021.

[2] A. Medeiros, A. Di Maio, T. Braun, and A. Neto, “Service Chaining Graph:
Latency-and Energy-aware Mobile VR Deployment over MEC Infrastructures,”
in Global Communications Conference, IEEE, 2022, pp. 6133–6138.

[3] ——, “TENET: Adaptive Service Chain Orchestrator for MEC-enabled Low-latency
6DoF Virtual Reality,” IEEE Transactions on Network and Service Management, vol. 20,
no. 3, 2023.

[4] A. Medeiros, A. Di Maio, and T. Braun, “FLATWISE: Flow Latency and Throughput
Aware Sensitive Routing for 6DoF VR over SDN,” IEEE Transactions on Network and
Service Management, 2023.

[5] G. S. for Mobile Communications (GSMA). “Cloud AR/VR whitepaper.” (2019),
[Online]. Available: https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-
whitepaper.. (accessed: 26.07.2023).

[6] Nokia. “5G for Mission Critical Communication.” (2016), [Online]. Available: http:
//www.hit.bme.hu/~jakab/edu/litr/5G/Nokia_5G_for_Mission_Critical_

Communication_White_Paper.pdf..
[7] H. iLab. “Cloud VR Bearer Networks.” (2017), [Online]. Available: https://www-file.

huawei.com/-/media/corporate/pdf/ilab/cloud_vr_oriented_bearer_network_

white_paper_en_v2.pdf. (accessed: 26.07.2023).
[8] Qualcomm. “Augmented and Virtual Reality: the First Wave of 5G Killer Apps.”

(2017), [Online]. Available: https://www.qualcomm.com/media/documents/files/
augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf.).

[9] AT&T. “Enabling mobile augmented and virtual reality with 5g networks.” (2017),
[Online]. Available: https://about.att.com/content/dam/innovationblogdocs/
Enabling % 20Mobile % 20Augmented % 20and % 20Virtual % 20Reality % 20with % 205G %

20Networks.pdf.. (accessed: 26.02.2021).
[10] 5. P. A. W. Group, “View on 5G Architecture - Version 3.0,” 5G PPP, Tech. Rep., Feb.

2020. DOI: 10.5281/zenodo.3265031.
[11] S. M. LaValle, Virtual reality. Cambridge university press, 2023.

https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper.
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper.
http://www.hit.bme.hu/~jakab/edu/litr/5G/Nokia_5G_for_Mission_Critical_Communication_White_Paper.pdf.
http://www.hit.bme.hu/~jakab/edu/litr/5G/Nokia_5G_for_Mission_Critical_Communication_White_Paper.pdf.
http://www.hit.bme.hu/~jakab/edu/litr/5G/Nokia_5G_for_Mission_Critical_Communication_White_Paper.pdf.
https://www-file.huawei.com/-/media/corporate/pdf/ilab/cloud_vr_oriented_bearer_network_white_paper_en_v2.pdf
https://www-file.huawei.com/-/media/corporate/pdf/ilab/cloud_vr_oriented_bearer_network_white_paper_en_v2.pdf
https://www-file.huawei.com/-/media/corporate/pdf/ilab/cloud_vr_oriented_bearer_network_white_paper_en_v2.pdf
https://www.qualcomm.com/media/documents/files/augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf.)
https://www.qualcomm.com/media/documents/files/augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf.)
https://about.att.com/content/dam/innovationblogdocs/Enabling%20Mobile%20Augmented%20and%20Virtual%20Reality%20with%205G%20Networks.pdf.
https://about.att.com/content/dam/innovationblogdocs/Enabling%20Mobile%20Augmented%20and%20Virtual%20Reality%20with%205G%20Networks.pdf.
https://about.att.com/content/dam/innovationblogdocs/Enabling%20Mobile%20Augmented%20and%20Virtual%20Reality%20with%205G%20Networks.pdf.
https://doi.org/10.5281/zenodo.3265031

126 Bibliography

[12] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency
towards 5g: Ran, core network and caching solutions,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 4, pp. 3098–3130, 2018.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[14] H. Abdah, J. P. Barraca, and R. L. Aguiar, “Qos-aware service continuity in the
virtualized edge,” IEEE Access, vol. 7, pp. 51 570–51 588, 2019.

[15] T. Chen, R. Bahsoon, and X. Yao, “A survey and taxonomy of self-aware and
self-adaptive cloud autoscaling systems,” ACM Computing Surveys (CSUR), vol. 51,
no. 3, pp. 1–40, 2018.

[16] 5.-P. S. N. W. Group, “From webscale to telco, the cloud native journey,” 5G PPP, Tech.
Rep., Jul. 2018.

[17] S. Kekki, W. Featherstone, Y. Fang, et al., “Mec in 5g networks,” ETSI white paper, vol. 28,
no. 2018, pp. 1–28, 2018.

[18] 5.-P. S. N. W. Group, “Cloud native and 5g verticals services,” 5G PPP, Tech. Rep., Feb.
2020.

[19] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access
edge computing: A survey of the emerging 5g network edge cloud architecture and
orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681,
2017.

[20] A. Yousefpour, C. Fung, T. Nguyen, et al., “All one needs to know about fog
computing and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, 2019.

[21] Q.-V. Pham, F. Fang, V. N. Ha, et al., “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-art,” IEEE Access,
vol. 8, pp. 116 974–117 017, 2020.

[22] C.-H. Hong and B. Varghese, “Resource management in fog/edge computing: A
survey on architectures, infrastructure, and algorithms,” ACM Computing Surveys
(CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[23] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine migration:
Challenges, techniques, and open issues,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 2, pp. 1206–1243, 2018.

[24] Z. Rejiba, X. Masip-Bruin, and E. Marin-Tordera, “A survey on mobility-induced
service migration in the fog, edge, and related computing paradigms,” ACM
Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–33, 2019.

[25] F. Spinelli and V. Mancuso, “Towards enabled industrial verticals in 5g: A survey on
mec-based approaches to provisioning and flexibility,” IEEE Communications Surveys
& Tutorials, 2020.

[26] M. Kumar, S. Sharma, A. Goel, and S. Singh, “A comprehensive survey for scheduling
techniques in cloud computing,” Journal of Network and Computer Applications, 2019.

Bibliography 127

[27] F. S. D. Silva, M. O. Lemos, A. Medeiros, et al., “Necos project: Towards lightweight
slicing of cloud federated infrastructures,” in 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), IEEE, 2018, pp. 406–414.

[28] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud computing:
State of the art and research challenges,” IEEE Transactions on Services Computing,
vol. 11, no. 2, pp. 430–447, 2018.

[29] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-latency and
ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2, pp. 78–84, 2018.

[30] I. SG05, “Draft new report itu-r m.[imt-2020. tech perf req]-minimum requirements
related to technical performance for imt-2020 radio interface (s),” ITU-R SG05
Contribution, vol. 40, 2017.

[31] Qualcomm. “Making Immersive Virtual Reality Possible in Mobile.” (2016), [Online].
Available: https : / / www . qualcomm . com / media / documents / files / whitepaper -
making-immersive-virtual-reality-possible-in-mobile.pdf.).

[32] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Applications,
trends, technologies, and open research problems,” IEEE network, vol. 34, no. 3,
pp. 134–142, 2019.

[33] C. Perfecto, M. S. Elbamby, J. Del Ser, and M. Bennis, “Taming the latency in multi-user
vr 360°: A qoe-aware deep learning-aided multicast framework,” IEEE Transactions on
Communications, vol. 68, no. 4, pp. 2491–2508, 2020.

[34] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. H. Aghvami, “Cellular-connected wireless
virtual reality: Requirements, challenges, and solutions,” IEEE Communications
Magazine, vol. 58, no. 5, pp. 105–111, 2020.

[35] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylinattila, “A survey on mobile
augmented reality with 5g mobile edge computing: Architectures, applications and
technical aspects,” IEEE Communications Surveys & Tutorials, 2021.

[36] G. Berardinelli, P. Baracca, R. O. Adeogun, et al., “Extreme communication in 6g: Vision
and challenges for ‘in-x’subnetworks,” IEEE Open Journal of the Communications Society,
vol. 2, pp. 2516–2535, 2021.

[37] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey
of software-defined networking: Past, present, and future of programmable networks,”
IEEE Communications surveys & tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[38] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the
IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[39] B. Halabi, S. Halabi, and D. McPherson, Internet routing architectures. Cisco press, 2000.
[40] J. T. Moy, OSPF: anatomy of an Internet routing protocol. Addison-Wesley Professional,

1998.
[41] C. Huitema, Routing in the Internet. Prentice-Hall, Inc., 1995.
[42] Meta. “Meta oculus 2.” (2021), [Online]. Available: https://www.meta.com/ch/en/

quest/products/quest-2/. (accessed: 11.27.2023).

https://www.qualcomm.com/media/documents/files/whitepaper-making-immersive-virtual-reality-possible-in-mobile.pdf.)
https://www.qualcomm.com/media/documents/files/whitepaper-making-immersive-virtual-reality-possible-in-mobile.pdf.)
https://www.meta.com/ch/en/quest/products/quest-2/
https://www.meta.com/ch/en/quest/products/quest-2/

128 Bibliography

[43] L. Kong, J. Tan, J. Huang, et al., “Edge-computing-driven internet of things: A survey,”
ACM Computing Surveys, vol. 55, no. 8, pp. 1–41, 2022.

[44] L. Bréhon–Grataloup, R. Kacimi, and A.-L. Beylot, “Mobile edge computing for v2x
architectures and applications: A survey,” Computer Networks, vol. 206, p. 108 797, 2022.

[45] F. S. Abkenar, P. Ramezani, S. Iranmanesh, et al., “A survey on mobility of edge
computing networks in iot: State-of-the-art, architectures, and challenges,” IEEE
Communications Surveys & Tutorials, 2022.

[46] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation offloading
in mobile edge computing networks: A survey,” Journal of Network and Computer
Applications, vol. 202, p. 103 366, 2022.

[47] S. Vlahovic, M. Suznjevic, and L. Skorin-Kapov, “A survey of challenges and methods
for quality of experience assessment of interactive vr applications,” Journal on
Multimodal User Interfaces, vol. 16, no. 3, pp. 257–291, 2022.

[48] R. Uhlig, G. Neiger, D. Rodgers, et al., “Intel virtualization technology,” Computer,
vol. 38, no. 5, pp. 48–56, 2005.

[49] J. Halpern and C. Pignataro, “Service function chaining (sfc) architecture,” Tech. Rep.,
2015.

[50] G. McGrath and P. R. Brenner, “Serverless computing: Design, implementation, and
performance,” in 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW), IEEE, 2017, pp. 405–410.

[51] G. C. Burdea and P. Coiffet, Virtual reality technology. John Wiley & Sons, 2003.
[52] E. Cuervo, K. Chintalapudi, and M. Kotaru, “Creating the perfect illusion: What will

it take to create life-like virtual reality headsets?” In Proceedings of the 19th international
workshop on mobile computing systems & applications, 2018, pp. 7–12.

[53] E. Bastug, M. Bennis, M. Médard, and M. Debbah, “Toward interconnected virtual
reality: Opportunities, challenges, and enablers,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 110–117, 2017.

[54] Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu, “Supporting mobile vr in lte networks:
How close are we?” Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 1, pp. 1–31, 2018.

[55] M. Chen, W. Saad, and C. Yin, “Virtual reality over wireless networks: Quality-of-service
model and learning-based resource management,” IEEE Transactions on Communications,
vol. 66, no. 11, pp. 5621–5635, 2018.

[56] M. Hu, X. Luo, J. Chen, Y. C. Lee, Y. Zhou, and D. Wu, “Virtual reality: A survey
of enabling technologies and its applications in iot,” Journal of Network and Computer
Applications, vol. 178, p. 102 970, 2021.

[57] J. Chakareski, M. Khan, T. Ropitault, and S. Blandino, “6dof virtual reality dataset
and performance evaluation of millimeter wave vs. free-space-optical indoor
communications systems for lifelike mobile vr streaming,” in 2020 54th Asilomar
Conference on Signals, Systems, and Computers, IEEE, 2020, pp. 1051–1058.

Bibliography 129

[58] S. Lee, J.-B. Jeong, and E.-S. Ryu, “Efficient group-based packing strategy for 6dof
immersive video streaming,” in 2022 International Conference on Information Networking
(ICOIN), IEEE, 2022, pp. 310–314.

[59] M. Broxton, J. Flynn, R. Overbeck, et al., “Immersive light field video with a layered
mesh representation,” ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 86–1,
2020.

[60] J.-B. Jeong, S. Lee, and E.-S. Ryu, “Rethinking fatigue-aware 6dof video streaming:
Focusing on mpeg immersive video,” in 2022 International Conference on Information
Networking (ICOIN), IEEE, 2022, pp. 304–309.

[61] J.-B. Jeong, S. Lee, I.-W. Ryu, T. T. Le, and E.-S. Ryu, “Towards viewport-dependent
6dof 360 video tiled streaming for virtual reality systems,” in Proceedings of the 28th
ACM International Conference on Multimedia, 2020, pp. 3687–3695.

[62] Y. Cai, X. Gao, W. Chen, and R. Wang, “Towards 6dof live video streaming system for
immersive media,” Multimedia Tools and Applications, vol. 81, no. 25, pp. 35 875–35 898,
2022.

[63] X. Hou and S. Dey, “Motion prediction and pre-rendering at the edge to enable
ultra-low latency mobile 6dof experiences,” IEEE Open Journal of the Communications
Society, vol. 1, pp. 1674–1690, 2020.

[64] W. (MPEG), “MPEG Strategic Standardisation Roadmap,” International Organisation
for Standardisation, Tech. Rep., Jun. 2016.

[65] B. Van Schewick, Internet architecture and innovation. Mit Press, 2012.
[66] T. Koponen, M. Chawla, B.-G. Chun, et al., “A data-oriented (and beyond) network

architecture,” in Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications, 2007, pp. 181–192.

[67] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture:
An overview,” 1994.

[68] A. Clemm, M. F. Zhani, and R. Boutaba, “Network management 2030: Operations and
control of network 2030 services,” Journal of Network and Systems Management, vol. 28,
no. 4, pp. 721–750, 2020.

[69] C. Han, Y. Wu, Z. Chen, et al., “Network 2030 a blueprint of technology, applications
and market drivers towards the year 2030 and beyond,” International Telecommunication
Union, 2018.

[70] O. G. de Dios, R. Casellas, F. Cugini, and J. A. Hernandez, “Beyond 5g domainless
network operation enabled by multiband: Toward optical continuum architectures,”
arXiv preprint arXiv:2302.08244, 2023.

[71] M. Ruiz, J. A. Hernández, M. Quagliotti, et al., “Network traffic analysis under
emerging beyond-5g scenarios for multi-band optical technology adoption,” Journal of
Optical Communications and Networking, vol. 15, no. 11, F36–F47, 2023.

[72] R. Li et al., “Towards a new internet for the year 2030 and beyond,” in Proc. 3rd Annu.
ITU IMT-2020/5G Workshop Demo Day, 2018, pp. 1–21.

[73] S. Bryant, U. Chunduri, and A. Clemm, “Preferred Path Routing Framework,” Internet
Engineering Task Force, Internet-Draft draft-chunduri-rtgwg-preferred-path-routing-03,

130 Bibliography

Nov. 2022, Work in Progress, 25 pp. [Online]. Available: https://datatracker.ietf.
org/doc/draft-chunduri-rtgwg-preferred-path-routing/03/.

[74] H. X. Wireless. “The future of mobile broadband.” (2017), [Online]. Available: https:
//www- file.huawei.com/~/media/CORPORATE/PDF/mbb/huawei- mbb- report-

final.pdf.. (accessed: 10.23.2023).
[75] M. Warburton, M. Mon-Williams, F. Mushtaq, and J. R. Morehead, “Measuring

motion-to-photon latency for sensorimotor experiments with virtual reality systems,”
Behavior Research Methods, pp. 1–21, 2022.

[76] Virtual reality profiles for streaming applications (3gpp ts 26.118 version 16.2.1 release 16),
https://www.etsi.org/deliver/etsi_ts/126100_126199/126118/16.02.01_60/ts_

126118v160201p.pdf.
[77] A. Hazarika and M. Rahmati, “Towards an evolved immersive experience: Exploring

5g-and beyond-enabled ultra-low-latency communications for augmented and virtual
reality,” Sensors, vol. 23, no. 7, p. 3682, 2023.

[78] I. Wohlgenannt, A. Simons, and S. Stieglitz, “Virtual reality,” Business & Information
Systems Engineering, vol. 62, pp. 455–461, 2020.

[79] G. Sayfan, Mastering kubernetes. Packt Publishing Ltd, 2017.
[80] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and running. " O’Reilly

Media, Inc.", 2022.
[81] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity controller for

cloud infrastructures,” in 2012 IEEE Network Operations and Management Symposium,
IEEE, 2012, pp. 204–212.

[82] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of kubernetes pods,” in NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium, IEEE, 2020,
pp. 1–5.

[83] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling
techniques for elastic applications in cloud environments,” Journal of grid computing,
vol. 12, no. 4, pp. 559–592, 2014.

[84] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource management
approaches in fog computing: A comprehensive review,” Journal of Grid Computing,
pp. 1–42, 2019.

[85] Q. Yuan, X. Ji, H. Tang, and W. You, “Toward latency-optimal placement and
autoscaling of monitoring functions in mec,” IEEE Access, vol. 8, pp. 41 649–41 658,
2020.

[86] F.-H. Tseng, M.-S. Tsai, C.-W. Tseng, Y.-T. Yang, C.-C. Liu, and L.-D. Chou, “A
lightweight autoscaling mechanism for fog computing in industrial applications,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4529–4537, 2018.

[87] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “Enorm: A framework
for edge node resource management,” IEEE transactions on services computing, 2017.

[88] R. da Rosa Righi, L. Andrioli, V. F. Rodrigues, C. A. da Costa, A. M. Alberti, and D.
Singh, “Elastic-ran: An adaptable multi-level elasticity model for cloud radio access
networks,” Computer Communications, vol. 142, pp. 34–47, 2019.

https://datatracker.ietf.org/doc/draft-chunduri-rtgwg-preferred-path-routing/03/
https://datatracker.ietf.org/doc/draft-chunduri-rtgwg-preferred-path-routing/03/
https://www-file.huawei.com/~/media/CORPORATE/PDF/mbb/huawei-mbb-report-final.pdf.
https://www-file.huawei.com/~/media/CORPORATE/PDF/mbb/huawei-mbb-report-final.pdf.
https://www-file.huawei.com/~/media/CORPORATE/PDF/mbb/huawei-mbb-report-final.pdf.
https://www.etsi.org/deliver/etsi_ts/126100_126199/126118/16.02.01_60/ts_126118v160201p.pdf
https://www.etsi.org/deliver/etsi_ts/126100_126199/126118/16.02.01_60/ts_126118v160201p.pdf

Bibliography 131

[89] C. Li, H. Sun, Y. Chen, and Y. Luo, “Edge cloud resource expansion and shrinkage
based on workload for minimizing the cost,” Future Generation Computer Systems,
vol. 101, pp. 327–340, 2019.

[90] A.-F. Antonescu and T. Braun, “Simulation of sla-based vm-scaling algorithms
for cloud-distributed applications,” Future Generation Computer Systems, vol. 54,
pp. 260–273, 2016.

[91] R. K. Naha, S. Garg, A. Chan, and S. K. Battula, “Deadline-based dynamic resource
allocation and provisioning algorithms in fog-cloud environment,” Future Generation
Computer Systems, vol. 104, pp. 131–141, 2020.

[92] C. Li, C. Wang, and Y. Luo, “An efficient scheduling optimization strategy for
improving consistency maintenance in edge cloud environment,” The Journal of
Supercomputing, pp. 1–28, 2020.

[93] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration algorithm for edge
computing resources with guarantees,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, IEEE, 2019, pp. 2548–2556.

[94] A. G. Tasiopoulos, O. Ascigil, I. Psaras, and G. Pavlou, “Edge-map: Auction markets
for edge resource provisioning,” in 2018 IEEE 19th International Symposium on" A World
of Wireless, Mobile and Multimedia Networks"(WoWMoM), IEEE, 2018, pp. 14–22.

[95] J. Guo, C. Li, Y. Chen, and Y. Luo, “On-demand resource provision based on load
estimation and service expenditure in edge cloud environment,” Journal of Network and
Computer Applications, vol. 151, p. 102 506, 2020.

[96] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antonopoulos, and
C. Verikoukis, “Online vnf lifecycle management in an mec-enabled 5g iot
architecture,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4183–4194, 2019.

[97] N. Akhtar, I. Matta, A. Raza, L. Goratti, T. Braun, and F. Esposito, “Managing chains
of application functions over multi-technology edge networks,” IEEE Transactions on
Network and Service Management, vol. 18, no. 1, pp. 511–525, 2021.

[98] J. Son and R. Buyya, “Latency-aware virtualized network function provisioning for
distributed edge clouds,” Journal of Systems and Software, vol. 152, pp. 24–31, 2019.

[99] H. Alipour, Y. Liu, and A. Hamou-Lhadj, “Analyzing auto-scaling issues in cloud
environments,” in Proceedings of 24th Annual International Conference on Computer
Science and Software Engineering, ser. CASCON ’14, Markham, Ontario, Canada: IBM
Corp., 2014, pp. 75–89.

[100] Y. Pan, C. Wang, Y. Liu, C. Xu, Y. Liu, and L. Zhang, “5g mobile edge assisted metaverse
light field video system: Prototype design and empirical evaluation,” Available at SSRN
4106315, 2022.

[101] C. Wang, S. Zhang, Z. Qian, et al., “Joint server assignment and resource management
for edge-based mar system,” IEEE/ACM Transactions on Networking, vol. 28, no. 5,
pp. 2378–2391, 2020.

[102] D. Alencar, C. Both, R. Antunes, H. Oliveira, E. Cerqueira, and D. Rosário, “Dynamic
microservice allocation for virtual reality distribution with qoe support,” IEEE
Transactions on Network and Service Management, 2021.

132 Bibliography

[103] H. Santos, D. Rosario, E. Cerqueira, and T. Braun, “Multi-criteria service function
chaining orchestration for multi-user virtual reality services,” in GLOBECOM
2022-2022 IEEE Global Communications Conference, IEEE, 2022, pp. 6360–6365.

[104] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and M. D. Silva, “VR is on the
edge: How to deliver 360 videos in mobile networks,” in Proceedings of the Workshop on
Virtual Reality and Augmented Reality Network, 2017, pp. 30–35.

[105] J. Ruan and D. Xie, “Networked vr: State of the art, solutions, and challenges,”
Electronics, vol. 10, no. 2, p. 166, 2021.

[106] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices,” IEEE Transactions
on Mobile Computing, vol. 19, no. 7, pp. 1586–1602, 2019.

[107] A. Younis, B. Qiu, and D. Pompili, “Latency-aware hybrid edge cloud framework
for mobile augmented reality applications,” in 2020 17th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON), IEEE, 2020, pp. 1–9.

[108] Y. Liu, J. Liu, A. Argyriou, and S. Ci, “Mec-assisted panoramic vr video streaming
over millimeter wave mobile networks,” IEEE Transactions on Multimedia, vol. 21, no. 5,
pp. 1302–1316, 2018.

[109] C. Zheng, S. Liu, Y. Huang, and L. Yang, “Mec-enabled wireless vr video service:
A learning-based mixed strategy for energy-latency tradeoff,” in 2020 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, 2020, pp. 1–6.

[110] J. Santos, J. van der Hooft, M. T. Vega, T. Wauters, B. Volckaert, and F. De Turck,
“Efficient orchestration of service chains in fog computing for immersive media,” in
2021 17th International Conference on network and service management (CNSM), IEEE,
2021, pp. 139–145.

[111] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. Fitzek, “Sap: Subchain-aware nfv
service placement in mobile edge cloud,” IEEE Transactions on Network and Service
Management, vol. 20, no. 1, pp. 319–341, 2022.

[112] P. Mandal, “Comparison of placement variants of virtual network functions from
availability and reliability perspective,” IEEE Transactions on Network and Service
Management, vol. 19, no. 2, pp. 860–874, 2022.

[113] D. Zheng, G. Shen, X. Cao, and B. Mukherjee, “Towards optimal parallelism-aware
service chaining and embedding,” IEEE Transactions on Network and Service
Management, vol. 19, no. 3, pp. 2063–2077, 2022.

[114] R. Mohammadi, S. Akleylek, A. Ghaffari, and A. Shirmarz, “Taxonomy of traffic
engineering mechanisms in software-defined networks: A survey,” Telecommunication
Systems, vol. 81, no. 3, pp. 475–502, 2022.

[115] R. Venkatasai, U. Prabu, and S. Ch, “A survey and analysis of qos-based routing
techniques in software-defined networks,” in 2023 International Conference on
Sustainable Computing and Data Communication Systems (ICSCDS), IEEE, 2023,
pp. 1459–1464.

[116] D. Wu, Z. Yang, P. Zhang, R. Wang, B. Yang, and X. Ma, “Virtual-reality inter-promotion
technology for metaverse: A survey,” IEEE Internet of Things Journal, 2023.

Bibliography 133

[117] G. S. Let, C. Pratap, D. Jagannath, D. Dolly, and L. D. Evangeline, “Software-defined
networking routing algorithms: Issues, qos and models,” Wireless Personal Communications,
pp. 1–31, 2023.

[118] S. H. A. Kazmi, F. Qamar, R. Hassan, K. Nisar, and B. S. Chowdhry, “Survey on
joint paradigm of 5g and sdn emerging mobile technologies: Architecture, security,
challenges and research directions,” Wireless Personal Communications, pp. 1–48, 2023.

[119] G. Y. Handler and I. Zang, “A dual algorithm for the constrained shortest path
problem,” Networks, vol. 10, no. 4, pp. 293–309, 1980.

[120] Z. Wang and J. Crowcroft, “Bandwidth-delay based routing algorithms,” in Proceedings
of GLOBECOM’95, IEEE, vol. 3, 1995, pp. 2129–2133.

[121] ——, “Quality-of-service routing for supporting multimedia applications,” IEEE
Journal on selected areas in communications, vol. 14, no. 7, pp. 1228–1234, 1996.

[122] Y. Yang, J. K. Muppala, and S. T. Chanson, “Quality of service routing algorithms
for bandwidth-delay constrained applications,” in Proceedings Ninth International
Conference on Network Protocols. ICNP 2001, IEEE, 2001, pp. 62–70.

[123] M. N. Soorki and H. Rostami, “Label switched protocol routing with guaranteed
bandwidth and end to end path delay in mpls networks,” Journal of Network and
Computer Applications, vol. 42, pp. 21–38, 2014.

[124] S. Tomovic and I. Radusinovic, “Fast and efficient bandwidth-delay constrained
routing algorithm for sdn networks,” in 2016 IEEE NetSoft Conference and Workshops
(NetSoft), IEEE, 2016, pp. 303–311.

[125] H. Li, A. Osmani, and A. S. A. Aziz, “A fuzzy-based fast routing algorithm with
guaranteed latency-throughput over software defined networks,” Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 10, pp. 8221–8233, 2022.

[126] C. Wu, Y. Zhang, N. Li, and A. Rezaeipanah, “An intelligent fuzzy-based
routing algorithm for video conferencing service provisioning in software defined
networking,” Telecommunication Systems, pp. 1–12, 2023.

[127] J. Gong and A. Rezaeipanah, “A fuzzy delay-bandwidth guaranteed routing algorithm
for video conferencing services over sdn networks,” Multimedia Tools and Applications,
pp. 1–30, 2023.

[128] J. Cheng, X. Zhu, and S. Abedi, “A fuzzy based routing approach for improving
online conferencing services in software defined networking,” Cybernetics and Systems,
pp. 1–23, 2023.

[129] L. Zhao, Z. Yin, K. Yu, et al., “A fuzzy logic-based intelligent multiattribute routing
scheme for two-layered sdvns,” IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 4189–4200, 2022.

[130] A. Alidadi, M. Mahdavi, and M. Hashmi, “A new low-complexity qos routing
algorithm for mpls traffic engineering,” in 2009 IEEE 9th Malaysia International
Conference on Communications (MICC), IEEE, 2009, pp. 205–210.

[131] H. Yang, W. Liu, J. Li, and T. Q. Quek, “Space information network with joint virtual
network function deployment and flow routing strategy with qos constraints,” IEEE
Journal on Selected Areas in Communications, 2023.

134 Bibliography

[132] A. Alidadi, S. Arab, and T. Askari, “A novel optimized routing algorithm for qos traffic
engineering in sdn-based mobile networks,” ICT Express, vol. 8, no. 1, pp. 130–134,
2022.

[133] P. Kamboj, S. Pal, S. Bera, and S. Misra, “Qos-aware multipath routing in
software-defined networks,” IEEE Transactions on Network Science and Engineering,
vol. 10, no. 2, pp. 723–732, 2022.

[134] Y. Wang, R. Kang, L. Guo, S. Yang, J. Zhou, and C. Zhang, “Optimal flow and
capacity allocation in multiple joint quickest paths of directed networks,” Computers
& Operations Research, vol. 150, p. 106 053, 2023.

[135] A. Ali, S. Tariq, M. Iqbal, et al., “Adaptive bitrate video transmission over cognitive
radio networks using cross layer routing approach,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 3, pp. 935–945, 2020.

[136] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
press, 2009.

[137] A. Medeiros, REACT Prototype, 2020. [Online]. Available: https://bitbucket.org/
alissonpmedeiros/elasticity/src/master/.

[138] S. Confederation. “Maps of switzerland.” (2022), [Online]. Available: https://map.
geo.admin.ch/.. (accessed: 10.08.2023).

[139] A. Medeiros, Service Chaining Graph Release V1, version v1, Aug. 2022. DOI: 10.5281/
zenodo.7004077. [Online]. Available: https://doi.org/10.5281/zenodo.7004077.

[140] D. Medhi and K. Ramasamy, Network routing: algorithms, protocols, and architectures.
Morgan kaufmann, 2017.

[141] E. DIJKSTRA, “A note on two problems in connexion with graphs.,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959. [Online]. Available: http://eudml.org/doc/
131436.

[142] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg, “Mininet-wifi:
Emulating software-defined wireless networks,” in 2015 11th International Conference
on Network and Service Management (CNSM), IEEE, 2015, pp. 384–389.

https://bitbucket.org/alissonpmedeiros/elasticity/src/master/
https://bitbucket.org/alissonpmedeiros/elasticity/src/master/
https://map.geo.admin.ch/.
https://map.geo.admin.ch/.
https://doi.org/10.5281/zenodo.7004077
https://doi.org/10.5281/zenodo.7004077
https://doi.org/10.5281/zenodo.7004077
http://eudml.org/doc/131436
http://eudml.org/doc/131436

	1
	List of Publications
	List of Figures
	List of Acronyms
	Introduction
	Overview
	Motivation
	Problem Statement
	Thesis Contributions
	Thesis Outline

	Background and Related Works
	Background
	Related Works
	Chapter Conclusions

	Enhancing VR Deployment over Edge Networks
	Introduction
	System Model and Problem Formulation
	Edge Resource Provisioning with REACT
	Experiment Setup
	Performance Evaluation
	Chapter Conclusions

	Orchestration of 6DoF VR Services
	Introduction
	System Model and Problem Formulation
	Managing Mobile VR Services with TENET
	Experiment Setup
	Performance Evaluation
	Chapter Conclusions

	Latency Sensitive Routing Algorithm for VR
	Introduction
	System Model and Problem Formulation
	Calculating Paths for VR Flows with FLATWISE
	Experiment Setup
	Performance Evaluation
	Chapter Conclusions

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	Bibliography

