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Abstract
PhD in Biomedical Engineering

Spatial Awareness and Logic for Robust Visual Question Answering

by Tascón Morales Sergio

In recent years, deep learning models have become an integral part of the daily lives of millions,

extending their influence into specific domains such as medicine. The integration of vision and

language capabilities has notably facilitated smoother interactions between users and models.

Questions and answers have long served not only as a means of interaction with machines

but also as a test for evaluating their level of intelligence. In particular, inquiries related to

visual content, encapsulated by Visual Question Answering (VQA), provide a mechanism to

probe a model’s visual understanding. In the medical domain, this aspect holds considerable

significance, given the crucial role that trust plays in the adoption of these systems by medical

professionals. However, the often opaque nature of most models hinders the assessment

of true visual understanding, concealing potential shortcuts and biases. Crucial aspects of

reasoning, such as compositionality and consistency, are at times overlooked in favor of high

overall performance. In line with this perspective, this work introduces several contributions

in the domains of localized questions and consistency for VQA.

The first part of the thesis explores questions about specific image regions. Two distinct

methodologies are proposed. The first method employs a localized attention mechanism,

integrating information about the target region through a binary mask. Localized attention

allows the network to consider contextual cues necessary for answering the question, focusing

subsequently on the region specified by the user. The second method extends the concept of

localized questions to Multimodal Large Language Models (MLLMs) by introducing targeted

visual prompting. Here, a customized visual prompt is formulated, encompassing the isolated

region and its contextual representation within the image.

The second part of the thesis focuses on avoiding contradictions by enhancing consistency.

The first method involves categorizing queries as perception vs. reasoning questions and

utilizing a loss function term to penalize inconsistencies during training. The second method

proposes a broader interpretation of consistency in VQA based on logical relations and in-

troduces an auxiliary method for predicting these relations. Similar to the first method, this

approach employs a loss term to enforce more consistent behavior during the training phase.

vii





Acknowledgements
Every book needs an author. My life contains pages of many types; some are blurry, some are

crumpled, some are torn, some are black and white, some are colorful, some are stunning,

some are full, and some are empty. I can only be thankful to my Author when I reread them.

Though the pages looked like a randomly assembled collage at some point, they make sense

together today. Through His mercy and love, I trust that the empty pages will be filled with

everlasting words and art.

Every pupil needs a master, a role model, someone who started the journey first and is willing

to guide, share knowledge, encourage, and correct. I was fortunate enough to have two of them

during this adventure. I thank Prof. Dr. Raphael Sznitman for granting me the opportunity to

work in his lab under his supervision. For looking at me in full size and not as a dot from the

humongous mountain he has climbed. For being humble and kind, for always being willing

to help and to discuss, and for patience. I thank Dr. Pablo Márquez-Neila for not letting me

swallow ideas without chewing on them first and for always being alert at details that often

pointed out my errors. I also thank him for his humility and care for others’ processes and

deadlines. I thank both for teaching me valuable lessons about research, communication, and

life.

Every explorer needs a compass to navigate unknown paths. This was especially true during

this research journey. I thank my co-advisor, Dr. Damien Teney, for his interest in my process

and his willingness to share his perspectives in his field of expertise. His ideas and work

inspired me to pursue more profound knowledge and realize the limits of conventional ideas.

I thank my mentor, PD Dr. Sigve Haug, for assuming his role with the best disposition. I also

owe my thanks to the University of Bern and the Swiss National Science Foundation (SNSF)

for their relevant support in funding my research.

Every combatant needs a squad. At the AIMI lab, I found a team of brilliant and competent

people who selflessly offered me their friendship and support. First, I thank those who, at

the beginning, made things easier for me and offered to help, including Vasily Tolkachev, Dr.

Mathias Gallardo, Dr. Tatiana Fountoukidou, and Dr. Thomas Kurmann. I thank the other

Ph.D. students, Javier Gamazo-Tejero, Lars Doorenbos, Lukas Zbinden, Fei Wu, Paulo Sampaio,

and the later-arrived Moritz Schmid. The moments we shared made the process fun and

interesting, and I certainly learned something from each of them. My gratitude also goes

to all the other members of the team, including Prisca Dotti, Dr. Negin Ghamsarian, Marta

Colmenar Herrera, Dr. Alain Jungo, Dr. Theodoros Pissas, Dr. Christopher Hahne, Dr. Corin

Otesteanu, Michel Hayoz, Davide Scandella, Tamara Danilovska, and everyone else I had the

pleasure of sharing with, even if for a short time. Finally, I thank the administrative staff, Pia

Eichholzer, Diana Bethge, and Daniela Schmidt, for always being willing to help.

I was lucky to have an extended squad of people who supported me and shared with me in

person or from thousands of kilometers away. I thank Jose Arturo García, William Giraldo,

Sergio Castro, Ivan Said Góngora, Eduardo Osorio, Miguel García, Nicolás Camargo, Cassandra

Chetty and her lovely family, Andreina Ravani, Denis Borel, Emre Hacan and his wife Gülcan,

ix



Yasemin Aversa, Didem Ekrem, Gresa Asani, and my MAIA friends, specially Roa’a Khaled,

Valeria Abramova, Tewodros Weldebirhan Arega and Ahmed Gouda. I also extend my thanks

to Umut and Gökcen Parlar and their parents, Canan and Turgay, for their kindness, support,

and positive attitude.

Every tree needs roots. I call my roots family, the people who nurture me and are the founda-

tion of the person I am today. I want to thank my family, including my parents, Cruz Stella and

Gustavo, my siblings Natalia and Juan Felipe, and my little niece, Violeta. Their love, prayers,

sacrifices, and constant support have been a blessing that distance cannot extinguish. I also

thank my aunt Sandra and her husband Pepe, my aunts Libia, Liliana, Neyla, and Cecilia,

my uncle Humberto, my cousins Sandra Teresa, Monica, Edward, Iván, and Daniela, and my

grandma Teresa.

Every heart needs love, someone who is always there, no matter what, who confronts your

deepest shadows and is not terrified, who sees in you what other people cannot see. I met Ebru

Parlar more than a thousand days ago, and since the beginning, her love, company, support,

understanding, care, and cuteness have been priceless treasures in my life. I thank her for

believing in me, helping me grow, and being a shiny little star that illuminates my days.

x



Contents
Abstract vii

Acknowledgements ix

List of Figures xv

List of Tables xix

List of Abbreviations xxi

1 Introduction 1

1.1 Reading Words, Seeing Worlds and Asking Questions . . . . . . . . . . . . . . . . 2

1.1.1 Thinking Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Computer Vision and Language Processing . . . . . . . . . . . . . . . . . 4

1.1.3 Visual Questioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Making Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization and Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 Natural Language Processing, Understanding and Generation . . . . . . . . . . 12

2.1.1 NLP vs. NLU vs. NLG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 The Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.6 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Vision Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Vision-Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Multimodal Large Language Models . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Visual Question Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 General VQA vs. Medical VQA . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 A Brief History of VQA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



Contents

2.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Basics of Diabetic Macular Edema (DME) Staging . . . . . . . . . . . . . . . . . . 30

2.5.1 Fundus Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 DME Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

I Enabling Localized Queries in VQA 33

3 Localized Questions in Medical Visual Question Answering 35

3.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Input Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Localized Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Baselines and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Targeted Visual Prompting for Medical Visual Question Answering 45

4.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II Enhancing Consistency in VQA 55

5 Consistency-preserving Visual Question Answering in Medical Imaging 57

5.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 VQA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Consistency Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 DME Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



Contents

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Logical Implications for Visual Question Answering Consistency 67

6.1 Background and previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Consistency Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.2 Logical Implication Consistency Loss . . . . . . . . . . . . . . . . . . . . . 73

6.2.3 Inferring Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.2 Baseline Methods and Base Models . . . . . . . . . . . . . . . . . . . . . . 76

6.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.4 Quantifying Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

III Discussion and Future Work 83

7 Discussion and Conclusion 85

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.1 Localized Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.2 Consistency Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.3 Bridging Locality and Consistency . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Future Work 93

8.1 Localized Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Consistency Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 Bridging Locality and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99

A Localized Questions in Medical Visual Question Answering 117

B Targeted Visual Prompting for Medical Visual Question Answering 120

C Consistency-preserving Visual Question Answering in Medical Imaging 122

D Logical Implications for Visual Question Answering Consistency 124

Declaration of Originality 131

xiii





List of Figures
1.1 Illustration of the imitation game. A computer (A) and a person (B) answer

questions posed by a human interrogator (C). Participant A aims at providing

human-like answers, attempting to trick C into thinking that the answers were

provided by a person. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A three-layer method for photo-QA. The first layer performs image matching of

the input image to web images and extracts structured data. The second layer

searches for applicable answers. The third layer allows humans to answer more

complicated questions. From [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Relationship between NLP, NLU and NLG. . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Unfolded graph for Eq. (2.2). Based on [49]. . . . . . . . . . . . . . . . . . . . . . 14

2.3 Unfolded RNN for Eq. (2.4). Based on [49]. . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Unfolded BRNN. Based on [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 LSTM cell diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Transformer architecture. From [27]. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Self-attention modules of the transformer architecture. From [27]. . . . . . . . . 18

2.8 LLM size versus time. Adapted from [62]. . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Applications of LLMs. Based on [59]. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Vision Transformer (ViT) architecture overview. Left: General ViT pipeline.

Right: Transformer encoder design. From [19]. . . . . . . . . . . . . . . . . . . . 23

2.11 Evolution of VQA models for natural and medical images over time. Relevant

publications are shown for each field. Above the year scale, schematic diagrams

show the part(s) of the architecture that received the most focus at a given time.

In the block diagrams, V stands for visual encoder, T for text encoder, F for

multimodal fusion, and C for classifier. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 First VQA architecture. Image and question embeddings are extracted and then

projected to the same dimension. The result is then combined using the element-

wise product, and a classifier provides the most likely answer at the output. . . 27

2.13 Evolution of VQA datasets for natural and medical images over time. Dots with

triangles and squares indicate datasets produced for a specific VQA challenge. . 29

2.14 Left: Anatomy of the eye (from [155]). Right: Fundus image from the IDRiD

dataset [156] with hard exudates encircled in light blue. . . . . . . . . . . . . . . 32

xv



List of Figures

3.1 Examples of localized questions. In some cases (RIS-VQA and INSEGCAT-VQA),

the object mentioned in the question is only partially present in the region. We

hypothesize that context can play an important role in answering such questions. 37

3.2 Left: Proposed VQA architecture for localized questions. The Localized Atten-

tion module allows the region information to be integrated into the VQA while

considering the context necessary to answer the question. Right: Localized

Attention module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Distribution by question type (DME-VQA) and by question object (RIS-VQA and

INSEGCAT-VQA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Illustration of the evaluated baselines for an example image. . . . . . . . . . . . 41

3.5 Qualitative examples on the RIS-VQA dataset (columns 1-3), INSEGCAT-VQA

(columns 4-5), and DME-VQA (last column). Only the strongest baselines were

considered in this comparison. The first row shows the image, the region, and

the ground truth answer. Other rows show the overlaid attention maps and the

answers produced by each model. Wrong answers are shown in red. . . . . . . . 43

4.1 Examples of visual understanding failures using GPT-4V for the VQA task. From [100]. 46

4.2 Our customized targeted visual prompt is created by providing the model with

the region in context, as well as an isolated version of the region. Visual to-

kens are projected to the input space of the LLM and concatenated with the

instruction tokens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Example input images and questions for evaluated baselines. In the baseline

“Region in text," the digits are separated to provide a fair scenario to the LLM. . 49

4.4 Qualitative examples on the DME-VQA (first row), RIS-VQA (second row), and

INSEGCAT-VQA (third row) datasets. See Appendix B for additional examples. . 52

4.5 Error analysis by region location for the four strongest baselines. The maps are

obtained by adding binary masks representing the regions for all QA pairs in each

category and then normalizing. Top: DME-VQA dataset. Bottom: INSEGCAT-

VQA dataset. The maps for RIS-VQA can be found in Appendix B. . . . . . . . . 52

5.1 VQA inconsistency in Diabetic Macular Edema staging from fundus photograph.

While the VQA model correctly answers “Is the image healthy?" (left), it incor-

rectly answers yes to “Are there hard exudates here?" for a specified retinal region

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Top: VQA model architecture. Bottom: Visualization of the training process with

the proposed loss. The total loss, ℓtot, is based on two terms: the conventional

VQA loss, ℓVQA and our proposed consistency loss term, ℓcons. The latter is

computed only for pairs of main (reasoning) and sub (perception) questions.

Training mini-batches consist of main and sub-questions at the same time,

whereby sub-questions can consider specific regions of the image. Unrelated

questions (denoted with “ind") can also be included in training batches but do

not contribute to ℓcons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xvi



List of Figures

5.3 DME risk grading. Grade 0 is assigned if there are no hard exudates present in

the whole image. Grade 1 is assigned if there are hard exudates, but only located

outside a circle centered at the fovea with radius of one optic disc diameter.

Grade 2 is assigned if there are hard exudates located within the circle. Examples

of main and sub-questions are provided for each grade. . . . . . . . . . . . . . . 62

5.4 Qualitative examples from the test set. Inconsistent sub-answers are highlighted

in red. Additional examples are shown in Appendix C. . . . . . . . . . . . . . . . 64

6.1 Top: Conventional VQA models tend to produce inconsistent answers as a

consequence of not considering the relations between question and answer

pairs. Bottom: Our method learns the logical relation between question and

answer pairs to improve consistency. . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Consistency loss ℓcons as a function of the estimated probabilities for the suffi-

cient, π1, and necessary, π2, conditions. Note that the loss diverges to ∞ when

π1 = 1,π2 < 1 and when π1 > 0,π2 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 LI-MOD: Approach to predict logical relations between pairs of propositions. A

BERT-based NLP model is first pre-trained on the SNLI dataset [205] to solve a

Natural Language Inference task and subsequently fine-tuned with annotated

pairs from a subset of Introspect dataset [40]. The resulting model is used to

predict the relations of the remaining part of the dataset. . . . . . . . . . . . . . 74

6.4 Qualitative examples from the Introspect dataset using BAN as backbone. Red

siren symbols indicate inconsistent cases. . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Examples from the DME dataset and comparison of methods. Red siren symbols

indicate inconsistent cases. DME is a disease that is staged into grades (0, 1 or

2), which depend on the number of visual pathological features of the retina.

Top and middle: Although all methods correctly predict the answer to the first

question, some inconsistencies appear when a necessary condition is false.

Bottom: Only the None baseline produces an inconsistency. Note that SQuINT

and CP-VQA’s answers do not produce inconsistent pairs because both questions

were answered incorrectly, and those answers (“2" and “yes") respect all known

relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.6 Behavior of the accuracy and consistency as a function of λwith 95% confidence

intervals. Left: LXMERT trained on the Introspect dataset (5 models with random

seeds for each value of λ). Right: MVQA trained on the DME dataset (10 models

with random seeds for each λ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.7 Left: Receiver Operating Characteristic (ROC) for the entailment class of our

LI-MOD in validation. Right: Qualitative examples of LI-MOD’s predictions. . . 81

A.1 Additional qualitative examples from the RIS-VQA (rows 1-3), INSEGCAT-VQA

(rows 4-5) and DME-VQA (last two rows) datasets. The first column shows the

image, the region, and the ground truth answer. Other columns show the overlaid

attention maps and the answers produced by each model. Wrong answers are

shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xvii



List of Figures

B.1 Error analysis by region location for the four strongest baselines for the RIS-VQA

dataset. The maps are obtained by adding binary masks representing the regions

for all QA pairs in each category and then normalizing. . . . . . . . . . . . . . . . 120

B.2 Additional examples for DME-VQA (rows 1 and 2), RIS-VQA (rows 3 and 4) and

Insegcat-VQA (rows 5 and 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.1 Effect of the variation of the hyperparameters λ and γ, for each metric. The first

5 rows refer to accuracy for all questions (overall), for main questions (main) and

for sub-questions (whole, macula and regions). The last two rows correspond

to the consistency. In general, a higher value of λ leads to a higher consistency,

which is the expected behavior. High values of both parameters can produce a

decrease in the accuracy of main questions. . . . . . . . . . . . . . . . . . . . . . 122

C.2 Additional qualitative examples from the DME dataset. Inconsistent answers

are highlighted in red. A more consistent behavior is observed in our method

in comparison to the baselines (rows 1-2). Even though our method can make

mistakes (rows 3-4), it also shows an improvement in the performance on main

questions (rows 5-6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.1 Additional qualitative examples from the Introspect dataset using BAN as the

backbone. Red siren symbols indicate inconsistent cases. . . . . . . . . . . . . . 124

D.2 Additional qualitative examples from the Introspect dataset using BAN as the

backbone. Red siren symbols indicate inconsistent cases. . . . . . . . . . . . . . 125

D.3 Additional qualitative examples from the Introspect dataset using BAN as the

backbone. Red siren symbols indicate inconsistent cases. . . . . . . . . . . . . . 126

D.4 Additional qualitative examples from the Introspect dataset using BAN as the

backbone. Red siren symbols indicate inconsistent cases. . . . . . . . . . . . . . 127

D.5 Additional qualitative examples from the DME dataset using MVQA as the back-

bone. Red siren symbols indicate inconsistent cases. DME is a disease that is

staged into grades (0, 1 or 2), which depend on the number of visual pathological

features of the retina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.6 Additional qualitative examples from the DME dataset using MVQA as the back-

bone. Red siren symbols indicate inconsistent cases. . . . . . . . . . . . . . . . . 129

xviii



List of Tables

2.1 Overview of VQA dataset size sorted by the number of questions. Top: For natural

images. Bottom: For medical images. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Average accuracy for different methods on the DME-VQA dataset. The results

shown are the average of 5 models trained with different seeds. . . . . . . . . . . 41

3.2 Average test AUC and AP for different methods on the RIS-VQA and INSEGCAT-

VQA datasets. The results shown are the average over 5 seeds. . . . . . . . . . . . 42

3.3 Average test AUC for different methods on the RIS-VQA dataset as a function of

instrument type. Results are averaged over 5 models trained with different seeds.

The corresponding table for INSEGCAT-VQA is available in Appendix A. . . . . 42

4.1 Main parameters of the used datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Accuracy and F1 score comparison to SOTA approaches on the DME-VQA, RIS-

VQA and INSEGCAT-VQA datasets. For the DME-VQA dataset, only localized

questions are considered (performance on other question types can be found in

the supplementary materials). ∗This result corresponds to a different architec-

ture, but we include it for completeness. . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Average test accuracy and consistency values for the different models. Results

shown are averaged over 10 models trained with different seeds. Accuracy values

are presented for all questions (overall), for main questions (grade) and for sub-

questions (whole, macula and region). Both measures of consistency are shown

as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Average test accuracy and consistency values for different values of the parame-

ters λ and γ. The first row (λ = 0) corresponds to no consistency enhancement

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Results of different consistency methods on the Introspect dataset using two

different VQA models: Top: BAN, bottom: LXMERT. In the case of LXMERT, we

show the impact of randomly flipping the answer of either the first or the second

question for related pairs. Similarly, flip first and flip second refer to flipping the

answer to the first and second question in inconsistent pairs, respectively. . . . 78

xix



List of Tables

6.2 Comparison of methods on the DME dataset with common MVQA backbone.

Accuracy and consistency are reported for all questions, as well as for different

medically relevant sub-question categories: grade, whole, macula and region. 79

A.1 Average test AUC for different methods on INSEGCAT-VQA. . . . . . . . . . . . . 119

B.1 Accuracy for the DME-VQA dataset by question type. . . . . . . . . . . . . . . . . 120

xx



List of Abbreviations
2D two-dimensional 4

3D three-dimensional 4

AI Artificial Intelligence 6, 12

ANN Artificial Neural Network 3

BAN Bilinear Attention Networks 28, 76, 77

BERT Bidirectional Encoder Representations from Transformers 20, 23, 71, 74, 76, 81

BoW Bag of Words 13

BRNN Bidirectional Recurrent Neural Network 14, 15

BUTD Bottom-Up Top-Down 27

CNN Convolutional Neural Network 4, 7, 9, 11, 22, 27, 28, 93, 95

DAE Denoising Auto-Encoder 29

DME Diabetic Macular Edema 9, 30, 31, 39, 49, 57, 58, 61, 62, 66, 75–78

GELU Gaussian Error Linear Unit 22

GRU Gated Recurrent Unit 16

ICL In-Context Learning 25

LLM Large Language Model 5, 7, 9, 12, 19–22, 24, 25, 28, 45–48, 50, 53, 93–95

LSTM Long Short-Term Memory 12, 15, 16, 27, 37, 38, 40, 63

MCB Multimodal Compact Bilinear 27, 28

Med-VQA Medical Visual Question Answering 7, 8, 25, 26, 28–30, 36, 45, 46, 57, 58, 70, 85, 90,

91, 93, 94

xxi



List of Abbreviations

MFB Multimodal Factorized Bilinear 27, 28

MFH Multimodal Factorized High-order 27

ML Machine Learning 3

MLB Multimodal Low-rank Bilinear 27, 28

MLLM Multimodal Large Language Model 9, 24, 28, 29, 45–47, 50, 86, 90, 93, 96

MUTAN Multimodal Tucker Fusion for Visual Question Answering 27

NLG Natural Language Generation 12

NLI Natural Language Inference 10, 70, 75, 81

NLP Natural Language Processing 9, 11, 12

NLU Natural Language Understanding 12

PEFT Parameter-Efficient Finetuning 22

R-CNN Region-based Convolutional Neural Network 28

ReLU Rectified Linear Unit 22, 41

RNN Recurrent Neural Network 5, 7, 11–16, 93, 94

ROC Receiver Operating Characteristic 40, 81

RTE Recognizing Textual Entailment 70

SAN Stacked Attention Networks 27, 28

ViT Vision Transformer 4, 9, 11, 22, 23, 50, 95

VLM Vision-Language Model 9, 11, 24, 69, 96

VQA Visual Question Answering 6–11, 25–30, 35–37, 39, 40, 43, 46, 47, 50, 53, 57–61, 63, 65–79,

81, 86–88, 90, 93–97

VTT Visual Turing Test 7

xxii



For my mom Cruz Stella and my sister Natalia,

whose infinite love constantly rekindles my heart.

For Ebru, whose smile turns days into miracles,

whose eyes can quell the fiercest storms.





1 Introduction

Computers, in various forms, have become an integral aspect of human daily life. Their ability

to tackle a diverse range of tasks, coupled with their efficiency, has significantly expanded their

applicability across various fields in recent years. Notably, in the field of medicine, computers

have played and continue to play a crucial role, leveraging their potential to assist medical

experts in the analysis and annotation of medical data. The capacity to comprehend both

textual and visual information is a pivotal feature central to models that can assist medical

experts in their daily tasks.

The interaction with medical images by means of written questions holds particular impor-

tance, as it facilitates an evaluation of the machine’s actual understanding of the information

and its ability to reason effectively to provide accurate answers. Within this introductory

chapter, we delve into the breakthroughs and concepts that have paved the way for the exten-

sive capabilities computers offer broadly in diverse scenarios and specifically in the medical

domain. This exploration is done drawing from the essence of Alan Turing’s groundbreaking

work about intelligent machines.
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Chapter 1. Introduction

1.1 Reading Words, Seeing Worlds and Asking Questions

1.1.1 Thinking Machines

The history of devices capable of aiding in computational tasks extends back at least four

millennia, beginning with the creation of the abacus [1]. Evolving from this rudimentary

counting tool, subsequent centuries revealed more intricate ancient mechanical devices,

such as the Antikythera mechanism [2] and the astrolabe [3], originating from ancient Greece

and utilized for astronomical purposes. In more recent history, the seventeenth-century

introduction of the slide rule represented a significant step toward more efficient mathematical

operations [4]. While these devices proved useful, their design centered around task-specific

manipulation, where the instructions they executed were pre-defined either within the device

or by the operator at the time of execution.

Charles Babbage, acknowledged as the father of the computer, introduced a more flexible com-

puting system in the early nineteenth century. His mechanical computer was programmable,

allowing for the sequential execution of an ordered collection of instructions (i.e., a program)

defined by the user for a specific task. The program, along with any input data, was provided

to the device using punched cards [5]. This concept of programmable computers persisted,

but the implementation transitioned from mechanical operation to vacuum tubes and subse-

quently to transistors. At the time, the first electronic computers were large and heavy devices

that only some institutions had the privilege to utilize.

In 1950, Alan Turing published a work titled Computing Machinery and Intelligence [6], where

he addressed the question “Can machines think?" by framing it as the outcome of a game.

The game, known as the imitation game or the Turing test, involves three participants in

isolation, as illustrated in Fig. 1.1: a machine (A), a person (B) and another person assuming

the role of interrogator (C). In this scenario, the interrogator uses text-based communication to

interact with A and B through questions and answers. The goal for A is to behave in a manner

indistinguishable from a human during the conversation. Following the game, interrogator

C indicates which participant corresponds to the computer and which is human. From this

perspective, if C incorrectly classifies the participants with high probability, the machine is

considered intelligent or capable of thinking.

While specific practical and philosophical limitations in the imitation game have been iden-

tified [6, 7], it underscores the importance of language understanding and generation in

machines. Moreover, it highlights the key role of questions and answers in evaluating the true

intelligence of a machine. Additionally, beyond merely determining a machine’s intelligence,

the use of questions and answers represents a means of communication for the execution

of specific tasks. An intelligent machine, as defined by the Turing test, not only communi-

cates like a human but also possesses the capability to perform tasks akin to human abilities,

rendering it versatile across a broad spectrum of applications, some of them in the field of

medicine.
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C BA

FIGURE 1.1: Illustration of the imitation game. A computer (A) and a person (B) answer ques-
tions posed by a human interrogator (C). Participant A aims at providing human-like answers,

attempting to trick C into thinking that the answers were provided by a person.

In order to emulate human behavior, the machine is expected to learn. While Turing explored

some intriguing ideas such as the use of rewards and punishment in the learning process, it

was not until the advent of Machine Learning (ML) that machines began to perform tasks

with a degree of acquired knowledge (i.e., learning). This initiation occurred with the work of

Arthur Samuel in the 1950s, where he proposed a learning method for the game of Checkers

based on the optimization of a game tree [8]. A major breakthrough occurred with the per-

ceptron [9], a single-layer neural network with a linear threshold function, considered to be

an essential building block of modern Artificial Neural Networks (ANNs). The perceptron up-

dated its parameters using the difference between the output of the target. Stacking multiple

perceptrons required the propagation of errors through the network, which was enabled with

backpropagation [10]. This advancement facilitated the training of multilayer perceptrons [11,

12] and became the standard algorithm for error propagation. Together with gradient descent,

it allows models to learn from experience. This stands in contrast to the traditional approach

of programming models with pre-defined instructions for every conceivable input and state.

Returning to Turing’s work, the aforementioned developments paved the way for machines

to resemble the way in which humans learn from experience more closely. The process of

learning to perform specific tasks, such as playing Checkers or Chess [13], marked only the

beginning of Turing’s notions into the realm of machine intelligence. As he articulated in his

paper,

It can also be maintained that it is best to provide the machine with the best sense

organs that money can buy, and then teach it to understand and speak English.

We now delve into the role of vision and language understanding in enabling the interrogation

of a machine.
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1.1.2 Computer Vision and Language Processing

Perceiving the World

Providing machines with vision capabilities marked a significant stride toward realizing the

machine intelligence envisioned by Turing. However, it is crucial to distinguish between

image processing and computer vision. Image processing aims to enhance visual appearance,

extract information, or transform images. On the other hand, computer vision is focused on

recovering the 3D structure of the world from input images and utilizing this information for

full scene understanding [14]. In essence, computer vision is concerned with understanding

the reality expressed by an image or video.

Early computer vision approaches were introduced in the 1970s with the goal of achieving

comprehensive scene understanding. These approaches encompassed a diverse range of

techniques, including 3D structure inference from 2D lines, line labeling, generalized cylinders,

pictorial structures, and optical flow algorithms [14]. In 1980, a network architecture named

Neocognitron emerged and was applied to handwritten character recognition, building upon

earlier ideas derived from the visual nervous system. The concept involved cascading a

series of alternating simple and complex cells, where the former was responsible for local

feature detection, and the latter captured global patterns [15]. This pioneering work laid

the groundwork for Convolutional Neural Networks (CNNs) [16], which share structural

similarities with Neocognitron but are more flexible due to the use of generic convolution and

pooling operations, facilitating the automatic extraction of hierarchical feature representations.

Despite being formalized at the end of the twentieth century, the widespread application of

these networks was hindered by hardware limitations [17].

Starting around 2012, as a result of the developments in graphics processing units and paral-

lelization, the utilization of CNNs experienced exponential growth, witnessing the proposal of

various architectures tailored for tasks like image classification, image segmentation, facial

recognition, and image generation [18]. More recently, an alternative architecture has emerged

as a formidable contender to CNNs. The Vision Transformer (ViT) [19] adapts an architecture

originally designed for text processing to operate effectively with images. Both CNNs and

ViTs can be regarded as the closest approximation to the “sense organs" envisioned by Turing.

Attaining meaningful representations or descriptors of images represents a crucial step toward

machines capable of performing tasks akin to human abilities. These architectures have also

made substantial inroads into the medical domain, where they can, for example, contribute to

alleviating the workload of clinical experts who may struggle to analyze all available images or

benefit from a second opinion provided by a precise automated system.

However, models focused solely on vision are generally trained for specific tasks and often

offer limited interaction, if any, with users. As Turing highlighted, imparting machines with

the capability to understand and communicate in natural language is a crucial step forward.
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Reading and Saying Words

The desire for machines capable of understanding language is not a recent aspiration for

humanity. In the mid-1930s, patents were conceived, with specific instances of translation

machines [20]. While rudimentary and basic, these can be considered the earliest practical

ideas attempting language processing for a specific task. During the 1940s and 1950s, the

challenge of machine language translation spurred initial research efforts, primarily following

a rule-based design. Given the limited access to computers during this era, primarily research

and military institutions could engage in such endeavors. Consequently and due to political

interests, the main objective was to create machines capable of translating Russian text into

English [21]. Linguistic experts like Noam Chomsky identified limitations in translation

systems during the 1950s, highlighting a lack of genuine comprehension of text content [22].

Gradually, the applications of language transitioned from translation to dialogue, bringing

the process a step closer to the imitation game, albeit with limited results. An illustration of

this shift is ELIZA [23], which engaged in simulated conversations with humans by utilizing

reassembly and decomposition rules. This program, however, lacked a genuine understanding

of the meaning of words.

Years later, in 1970, as a response to the disappointment stemming from earlier works and with

an aim to incorporate the meaning of words along with syntactical analysis and identification

of lexical items, a program named SHRDLU was introduced [24]. This program demonstrated

the capability to answer basic questions, execute commands, and augment its knowledge

about a simulated robot arm with access to toy objects. Subsequent systems further expanded

the ability to answer questions to specific fields, such as lunar geology [25].

An important advancement in the representation of sequential information came about

with Recurrent Neural Networks (RNNs) [12]. When coupled with the error propagation and

parameter adjustment techniques mentioned earlier, RNNs played a crucial role in enhancing

the extraction of meaningful information from sequences and the sequential generation of

data. The concept of mapping words to distributed vectorial representations that consider

similarity [26] (i.e., word embeddings) marked a significant step, enabling the application of

RNNs, in all of its variations, to text sequences for various tasks.

More recently, the transformer architecture [27] has revolutionized language processing by

addressing limitations of RNNs such as long-term dependencies, scalability and efficiency.

This architecture, combined with substantial computing power and large text datasets, has

paved the way for the conception and implementation of Large Language Models (LLMs).

LLMs are language models with a large number of parameters and trained on internet-scale

datasets. In recent years, these models have evolved to the point of becoming prominent as

information sources, chatbots, or assistants [28].

Having models that perceive the world and “speak" a language seems to align with Turing’s

aspirations for the imitation game. However, devising a model that seamlessly integrates vision
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and language is not a trivial task, as it demands a certain level of correspondence between text

and vision representations.

1.1.3 Visual Questioning

Endowed with vision and language capabilities, machines can perform a diverse array of

tasks, such as image captioning, image retrieval, text-to-image generation, visual grounding,

visual storytelling and Visual Question Answering (VQA). Notably, VQA holds considerable

appeal as it enables interaction between humans and machines through questions related

to images or videos. Involving skills like spatial reasoning, logical inference, comparisons,

counting, memorization, object and attribute recognition and transitive relation tracking, VQA

requires visual understanding at various levels [29]. This enhanced visual understanding adds

a dimension to the Turing test, allowing the assessment of a model’s ability to comprehend

and interpret visual information. In this scenario, the setup for the Turing test is expanded:

Interrogator C poses questions about visual content, which participants A and B can perceive,

and they provide answers. Similar to the standard Turing test, if the interrogator cannot

reliably distinguish between human and computer responses, the machine is deemed to pass

the test.

Early applications towards visual question systems can be traced back to 2003, where applica-

tions included real-time motion tracking for browsing surveillance videos [30] and questions

about news videos based on analysis of transcripts but informed by computer vision tech-

niques [31]. These systems, however, had inherent limitations, such as a restricted set of

possible questions and the reliance on an external module for vision processing, neglecting

the necessity for a joint understanding of both modalities.

A few years later, the concept of Photo-based Question Answering emerged as a more compre-

hensive task involving questions about objects within in an image [32]. As depicted in Fig. 1.2,

the system comprises three layers: the first layer matches the input image to web images and

extracts structured data from multimedia databases, the second layer searches for appropriate

answers in an internal repository, and the third layer delegates more complex questions to

humans.

A real-world application of visual questions emerged in 2010 with VizWiz [33], designed to

provide visually impaired individuals with answers to questions about their daily interactions

with the environment. Initially relying on crowd-sourced workers, the platform evolved to

incorporate Artificial Intelligence (AI) solutions in subsequent years [34, 35]. Notably, this

application underscores the importance of free-form questions, allowing users to employ any

grammatical structure to inquire about the contents of an image.

Further developments broadened the landscape in terms of datasets and methodologies. One

approach enhanced the surveillance video browsing application mentioned earlier by utilizing

a probabilistic model to capture relations between video and text using parse graphs [36].
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FIGURE 1.2: A three-layer method for photo-QA. The first layer performs image matching of the
input image to web images and extracts structured data. The second layer searches for applicable

answers. The third layer allows humans to answer more complicated questions. From [32].

Another approach employed segmentation to gather facts about objects for answering template-

generated questions from a limited vocabulary [37]. Yet another formalized the concept of

Visual Turing Test (VTT) to evaluate the visual understanding of machines through a sequence

of binary questions, ensuring that the history of questions and correct answers was unhelpful

in answering the current question [38].

The formal pursuit of answering visual questions gained momentum in 2015 with the intro-

duction of the VQA task. This challenge featured a dataset with thousands of open-ended

human-generated questions about images [39] and presented an architecture as a baseline for

benchmarking. The architecture comprised a frozen CNN for image encoding, an RNN for

question encoding, a multiplication operation to combine both embeddings and an output

classifier to select the most likely answer from a predefined list. Over time, the type of answer

generated by models has evolved, with LLMs enabling the generation of more detailed answers

and descriptions, aligning with Turing’s vision of machines generating human-like responses.

Following the introduction of VQA for natural images, the task found its way into the medical

domain, garnering attention and inspiring researchers. Advancements in Medical Visual

Question Answering (Med-VQA) have closely mirrored those in classical VQA, with some

exceptions for addressing data-related challenges and specialized architectures. A more

detailed history of VQA architectures and datasets is offered in Sec. 2.4.2.

Expanding on this trajectory, we can envision a variation of the Turing test for medical images.

In this scenario, participants B and C are replaced by experts in a specific medical imaging

modality, with A being the machine. Interrogator C poses medical questions about images to A

and B. If C tends to believe that A is a medical expert with high probability, the machine could

be deemed intelligent in a medical sense, showcasing specialized knowledge beyond general

human knowledge. In this context, the accuracy of answers and the terminology used play a
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crucial role, demanding more from the machine to simulate a medical expert compared to

simulating a human. One case in which this simulation can fail is when the machine provides

contradictory answers too often. Following this line of thought, we briefly examine the case in

which two questions are asked about the same image.

1.2 Making Sense

Given that humans are prone to errors, it is reasonable to expect a machine emulating human

behavior to also make mistakes, especially when faced with challenging tasks that allow only

limited generalization to unseen examples post-training, introducing errors in responses.

However, in the imitation game, the nature of errors made by A and B can significantly impact

C’s final identification of the participants as machine or human.

Illustrating this with the text-only Turing test, consider the following example. If we query the

machine about the years Abraham Lincoln was alive and receive the correct response "1809 to

1865," but then ask about the century and get the incorrect answer "18th century," we identify

an issue beyond mere errors. Abraham Lincoln being alive both in 1809 - 1865 and in the 18th

century is a contradiction. Asking about the same information, we expect a machine (as we do

a human) to avoid contradictions in responses, displaying consistency.

Detecting such contradictions, a skill innate to humans, proves challenging for machines but

directly influences the quality of reasoning they employ [40]. Reasoning, involving “scaling to

ever-larger search spaces and understand the world broadly," implies consistency, causality,

and compositionality [41]. The absence of any of these elements can cast doubt on the quality

of reasoning.

Incorporating images into the imitation game facilitates testing the model’s consistency, as

queries can reference external visual evidence. In the text-only scenario, a comprehensive

image description (objects, relations, color, structure, etc. ) would be needed in the question,

creating a challenge. For instance, consider presenting a VQA model with an image of a bear

statue and asking: "What is this?" and "Is it alive?" If the model responds "a statue of a bear"

and "yes," respectively, inconsistent behavior becomes apparent. Humans leverage logic

and prior knowledge, understanding that a statue cannot be alive. Thus, ensuring machine

consistency requires integrating logical faculties, explicitly or implicitly.

In the medical domain, the significance of consistent answers amplifies due to the potential

impact on medical decisions. The adoption of Med-VQA systems by medical experts hinges

on trust, with models demonstrating less contradictory behavior being perceived as more

trustworthy and effective tools.
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1.3 Thesis Statement

This thesis addresses visual understanding and reasoning in VQA by means of two perspectives:

1. Localized queries, where questions can be posed about any region of an image,

2. Consistency enhancement, where a model is encouraged to avoid contradictions,

respectively. Considering this, we formulate the following thesis statement:

Achieving high-quality clinical decisions through Visual Question Answering systems re-

quires a prioritization of consistency and fine-grained queries, offering a pathway to im-

proved spatial understanding and overall model reliability.

1.4 Organization and Contributions of the Thesis

Chapter 2 lays the foundation with key concepts related to language and vision, along with

their combination. The chapter delves into Natural Language Processing (NLP), highlighting

its prominent architectures, and focuses on pivotal aspects of computer vision, emphasizing

CNNs and ViTs. Vision-Language Models (VLMs) are then explored, followed by an in-depth

examination of VQA from both architectural and data perspectives. Additionally, basic con-

cepts regarding Diabetic Macular Edema (DME) staging are presented, due to their relevance

in this thesis.

Part I is dedicated to the exploration of localized questions (i.e., questions about specific image

regions) in VQA. Chapter 3 introduces a method enabling such questions for VQA models

with guided attention mechanisms. The proposed approach involves localized attention,

integrating a target region represented by a binary mask into the VQA’s attention mechanism.

This enables the model to compute attention maps on the entire image, subsequently filtering

them spatially to focus on the specified region. Experiments on multiple datasets demonstrate

the method’s potential applicability.

Chapter 4 extends the concept of localized questions to Multimodal Large Language Models

(MLLMs). The proposed targeted visual prompting involves creating a customized visual

prompt containing the isolated region and the region in context. Visual components of the

prompt are processed by a Swin Transformer and then projected into the input space of the

LLM. Comprehensive experiments highlight the method’s benefits across various medical VQA

datasets.

Part II introduces two works in the field of consistency for VQA. The approach in Chapter 5

exploits the categorization of questions into perception and reasoning based on the visual

abilities demanded from the model to answer them. This categorization informs a loss func-

tion term, enforcing consistency by penalizing inconsistent cases during training. The result

9



Chapter 1. Introduction

is an improvement in both consistency and accuracy, showcasing the advantages of such

model-agnostic approaches.

Chapter 6 builds upon the previous work by revising the definition of consistency and formal-

izing it from a more general perspective using logical implications. Similar to the prior method,

a loss term is used to optimize consistency during training, encouraging the model to correct

inconsistencies without compromising overall performance. Since implication annotations

are usually not included in VQA datasets, we propose to predict them by leveraging a language

model trained for the task of Natural Language Inference (NLI). Evaluation on medical and

non-medical datasets supports the effectiveness of the approach compared to state-of-the-art

consistency enhancement methods.

Finally, Part III contains a discussion and summary of the findings and limitations of the works

presented in the thesis (Chapter 7), and offers possible directions for future work (Chapter 8).

10



2 Background

This chapter introduces key concepts related to Visual Question Answering (VQA). Given the

multimodal nature of this task, we present concepts from NLP and computer vision separately,

followed by a detailed exploration of their integration in VLMs. In the natural language section,

we focus on RNNs and the transformer architecture, while for the computer vision section, we

focus on CNNs and ViTs. Then, a historical approach is adopted to delve into VQA architectures

and datasets.

11



Chapter 2. Background

2.1 Natural Language Processing, Understanding and Generation

This section delves into key concepts of AI applied to written language. It begins by clarifying

the distinctions between NLP, Natural Language Understanding (NLU), and Natural Language

Generation (NLG). Next, it examines essential processing steps like tokenization and word

embeddings. Finally, the section explores crucial architectural developments like RNNs, Long

Short-Term Memory (LSTM) networks, and transformers, concluding with a brief introduction

to LLMs.

2.1.1 NLP vs. NLU vs. NLG

The topics of NLP, NLU and NLG, though related, are understood to mean different things.

Broadly speaking, NLU and NLG are sub-topics of NLP (See Fig. 2.1), as described in the

following definitions [42, 43]:

Natural
Language
Processing

Natural
Language

Understanding

NLP

NLU
Natural
Language
Generation

NLG

FIGURE 2.1: Relationship between NLP, NLU and NLG.

• Natural Language Processing (NLP): Rooted in computational linguistics, NLP com-

prises a wide range of operations applied to text. Its central aim is to add structure to

text to endow computers with the ability to process it and generate responses.

• Natural Language Understanding (NLU): Delving deeper into textual meaning, NLU

is concerned with the meaning of the text in terms of comprehension of grammar

and context. Key features include part-of-speech tagging (adjectives, verbs, etc. ),

grammatical case recognition, and keyword identification.

• Natural Language Generation (NLG): Shifting the focus to generating text, NLG focuses

on the generation of text in English or other languages. It encompasses tasks such as

natural language generation, summarization, and translation.

12



2.1 Natural Language Processing, Understanding and Generation

2.1.2 Tokenization

Humans primarily use variable-length words arranged in sequences for language represen-

tation. Each word, encoded using standards like ASCII or UTF-8 [44], comprises a sequence

of alphanumeric characters. Sentences and paragraphs remain unstructured data. To obtain

structured data that is manipulable by computers, a process called tokenization breaks the text

into discrete pieces. These pieces, known as tokens, can be words, subwords, or characters,

depending on the desired granularity.

2.1.3 Word Embeddings

Word embeddings represent tokens as numerical vectors in a high-dimensional space. Given a

sequence T = [w1, w2, ..., wn] of n tokens, the embedding of the i-th word or token is denoted

E (wi ). The function E transforms the token wi into a fixed-size, real-valued vector representa-

tion, allowing syntactically or semantically similar tokens to have comparable representations.

Thus, the word embeddings can be represented as

WE = [E(w1),E(w2), ...,E(wn)] ∈Rn×J , (2.1)

where J is the dimension of each word embedding vector.

Some popular techniques to obtain word embeddings include Bag of Words (BoW) [45],

Word2Vec [46], GloVe [47] and BERT [48].

2.1.4 Recurrent Neural Networks

RNNs [12] are networks that process sequential data. To understand the concept better, it

is useful to start from the formulation of a dynamical system, as presented in [49], where a

function f parameterized by θ is applied to the previous state,

h(t ) = f (h(t−1);θ), (2.2)

where h is the state of the system. This equation is said to be recurrent because the value of

the state h at time t depends on its value at time t −1. For a given finite value of t , unfolding

the graph that Eq. (2.2) represents is possible. This is, the equation is applied multiple times

in a recurrent way to obtain a non-recurrent expression. For example, for t = 3,

h(3) = f ( f (h(1);θ);θ), (2.3)

which reveals the function being applied multiple times in a sequential manner. This can be

13



Chapter 2. Background

represented with a graph, as shown in Fig. 2.2, where each node represents a hidden state, and

the edges represent the function.

FIGURE 2.2: Unfolded graph for Eq. (2.2). Based on [49].

Including an external signal or input s results in a recurrent network, which can be represented

by

h(t ) = f (h(t−1), s(t );θ), (2.4)

whose unfolded version is depicted in Fig. 2.3 with the outputs o for each state.

Unfold

FIGURE 2.3: Unfolded RNN for Eq. (2.4). Based on [49].

One limitation of RNNs is the challenge in considering long-term dependencies in the input

data. This issue arises from the exponentially smaller weights assigned to these long-term

interactions (i.e., vanishing gradient). For instance, consider the case in which the network

is tasked with predicting the subsequent words in the sentence, "John is allergic to nuts. He

refused to try the..." In this scenario, the context provided by the first sentence (nut allergy)

aids in predicting more accurate words. However, if this context is situated at a greater distance

from the word to be predicted, the network might struggle to utilize it effectively. A second

issue is the occurrence of exploding gradients, leading to model instability and affecting the

training process. Another constraint of the presented RNN is its unidirectional nature, limiting

its capacity to incorporate future events for predicting more meaningful states [50]. We now

present some variations that attempt to tackle these limitations.

RNN Variations

We examine the most common variations of RNNs

• Bidirectional Recurrent Neural Network (BRNN)[51]: In certain applications, like

14
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speech and handwriting recognition, generating an output that depends on all the input

sequence elements can be beneficial. Bidirectional Recurrent Neural Networks (BRNNs)

tackle this by merging two RNNs: one that begins at the initial sequence element and

progresses forward, and another that commences at the final sequence element and

progresses backward (refer to Fig. 2.4). This network configuration allows for outputs

that take into account both past and future elements but are particularly sensitive to

inputs near time step t .

FIGURE 2.4: Unfolded BRNN. Based on [49].

• Long Short-Term Memory (LSTM) [52]: Arguably the most popular RNN architec-

ture, it was introduced as a solution to the vanishing gradient issues of vanilla RNNs.

Consequently, this architecture handles long-term dependencies more effectively. As

illustrated in Fig. 2.5, the LSTM mitigates the long-term dependency problem by using a

cell state and incorporating three types of gates: input, output, and forget. These gates

facilitate control over the flow of information within the network. The cell, depicted in

Fig. 2.5, comprises a cell state and a hidden state. The forget gate filters out irrelevant

information from the previous cell state C(t−1), such as a gender mentioned multiple

times in the preceding sentences. Subsequently, the input gate determines which new

information should be added to the current cell state C(t ). Finally, the output gate deter-

mines which information from the current cell state should be incorporated into the

current hidden state h(t ).

Equations (2.5)-(2.10) define the behaviour of each LSTM cell. Here, U f , Ui , Uo , Ug , W f ,

Wi , Wo and W f correspond to learnable parameters of linear mappings, and ⊙ is the

element-wise product.

f (t ) =σ(
s(t )U f +h(t−1)W f

)
(2.5)
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x

x

+

x

FIGURE 2.5: LSTM cell diagram.

i (t ) =σ(
s(t )Ui +h(t−1)Wi

)
(2.6)

o(t ) =σ(
s(t )Uo +h(t−1)Wo

)
(2.7)

C̃ (t ) = t anh
(
s(t )Ug +h(t−1)Wg

)
(2.8)

C (t ) =σ(
f (t ) ⊙C (t−1) + i (t ) ⊙C̃ (t )) (2.9)

h(t ) = t anh
(
C (t ))⊙o(t ) (2.10)

• Gated Recurrent Unit (GRU) [53]: This architecture also focuses on mitigating the

long-term dependency issues of RNNs. Unlike the LSTM, Gated Recurrent Units (GRUs)

do not make use of a cell state to control the information flow. It uses hidden states and

has two gates (reset and update).

2.1.5 The Transformer Architecture

The transformer architecture [27] was introduced in 2017. Since its inception, this architecture

has been applied in various domains, including language processing and computer vision.

The utilization of transformers in image processing is further discussed in Sec. 2.2.2. As

previously mentioned, recurrent neural networks have limitations, including the absence of

parallelization, which hinders efficiency, and issues related to long-term dependencies due to

vanishing and exploding gradients. The transformer addresses these limitations through its

attention mechanism and architectural design.

The transformer, as depicted in Fig. 2.6, follows an encoder-decoder structure. In this setup,

the input text undergoes mapping to a representation space by the encoder. Subsequently,

the decoder utilizes this representation to sequentially generate an output sequence. This

process is termed auto-regressive behavior because, at each time step, the previously generated

elements serve as input for producing a new one.
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2.1 Natural Language Processing, Understanding and Generation

FIGURE 2.6: Transformer architecture. From [27].

Encoder

The encoder block, illustrated in Fig. 2.6, is responsible for generating a continuous represen-

tation from the embedded and positionally encoded inputs. The encoder consists of two sub-

layers: a multi-head self-attention mechanism and a feed-forward network. Following [54],

residual connections are incorporated into each sub-layer, along with layer normalization [55].

Instead of having one single encoder layer, the encoder is structured as a stack of six identical

layers.

Decoder

The decoder block shares certain similarities with the encoder: It is constructed as a stack of

six layers, employs residual connections and layer normalization, and incorporates both multi-

head attention and a fully connected network. Nevertheless, it diverges by featuring two multi-

head attention sub-layers instead of one. The second sub-layer serves the specific function

of processing the output of the encoder. As depicted in Fig. 2.6, the sub-layer responsible for
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(A) Scaled dot-product attention block. (B) Multi-head attention.

FIGURE 2.7: Self-attention modules of the transformer architecture. From [27].

receiving the previously generated outputs incorporates a masking mechanism, preventing

the model from attending to future positions.

Attention

The key part of the transformer architecture is its self-attention mechanism. The concept of

attention was initially introduced in [56] for machine translation. The basic idea was to enable

the model to determine which parts of the source sentence were relevant to predict the next

word of the translation. In the transformer, the attention function is expressed in terms of

three elements: queries, keys, and values, all represented as vectors. The output is computed

by taking the weighted sum of the values, with each value assigned a weight determined by

a compatibility function between the query and its corresponding key. Put differently, the

transformer uses the self-attention mechanism to consider other words relevant to the word

currently being processed. For instance, in translating the sentence "The cat climbed the bed

because it was tired," self-attention allows the model to recognize that the word "it" is more

closely associated with the word "cat" than with any other word in the sentence [57].

The transformer’s implementation of the self-attention mechanism is called scaled dot-

product attention and is illustrated in Fig. 2.7 (A). In this process, the dot products are com-

puted between the query and all keys, then scaled by the dimension of the keys, dk , and finally,

a softmax function assigns weights of the values. This operation can be performed for a set of

queries efficiently using matrices. Denoting the matrices Q , K , and V for queries, keys, and

values, respectively, the attention operation is defined by Eq.(2.11).

Attention(Q ,K ,V ) = so f tmax

(
QK T√

dk

)
V (2.11)
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As shown in Fig. 2.7 (B), self-attention is performed for h “heads" {z1, z2, ..., zh}, projecting

the queries, keys, and values with learned linear functions. This enables the simultaneous

application of scaled dot-product attention on each head, producing output values with

dimension dv . Subsequently, these output values are concatenated and projected once again,

MultiHead(Q ,K ,V ) =Concat (z1, ..., zh)W O (2.12)

where

zi = Attention(QW Q
i ,K W K

i ,V W V
i ) (2.13)

with W representing the learnable parameters of the projection layers.

Positional Encoding

Positional encodings are necessary due to the lack of recurrence and convolutions so the

model can consider the order of the input sequence. In the transformer architecture, positional

encodings are added to the input embeddings for both the encoder and decoder blocks. Sine

and cosine functions are used to this end, as follows

PE(pos,2i ) = si n

(
pos

10000
2i

dmodel

)
(2.14)

PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
(2.15)

where pos represents the position and i the dimension. In other words, each dimension of the

positional encoding represents a sinusoidal function, and the wavelengths exhibit a geometric

progression ranging from 2π to 10000 ·2π.

2.1.6 Large Language Models

LLMs can be defined as very deep transformer-based models optimized for one or multiple

language tasks using internet-scale datasets. These models can easily reach hundreds of

billions of parameters. In fact, as illustrated in Fig. 2.8, there is a noticeable upward trend

in model size. For instance, in June 2020, OpenAI unveiled GPT-3, which featured 175B

parameters and was able to generate text and code with short prompts written by the user [58,

59]. One year later, Megatron-Turing NLG, with 530B parameters, was introduced [60]. The

number of parameters for more recent models such as GPT-4 [61] has not been disclosed, but

it is believed to exceed one trillion parameters.
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FIGURE 2.8: LLM size versus time. Adapted from [62].

Types

As mentioned in Sec. 2.1.5, the transformer architecture comprises an encoder and a decoder.

Nevertheless, not all implementations based on this architecture adhere strictly to this de-

sign. In general, depending on the task at hand, LLM can be categorized into the following

groups [59]:

• Encoder only: Models typically employed for tasks involving language understanding

but without text generation as output. In such instances, the encoder is responsible for

producing meaningful representations of the input, utilized by another network block,

such as a classification head. Tasks like classification and sentiment analysis fall within

this category. An example of this model type is BERT [48].

• Decoder only: These models are designed to generate high-quality language and con-

tent suitable for tasks such as blog generation and storytelling. GPT-3 [58] is an exemplar

of this model type.

• Encoder-decoder: This model can both understand and generate text. Use cases include

tasks like text translation and summarization. T5 [63] is an example of an architecture

that utilizes an encoder-decoder structure.

Applications

LLMs can be used for diverse tasks. Fig. 2.9 shows the five main use case categories. For each

category, some specific examples are provided.
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LLM
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FIGURE 2.9: Applications of LLMs. Based on [59].

In the medical domain, LLMs have demonstrated diverse applications, including radiology

report summarization [64], medical record evaluation [65], drug discovery [28], and others.

Noteworthy breakthroughs have also been made in the field of robotics [66]. When equipped

with vision capabilities (see Sec. 2.3.1), LLMs extend their applications to include radiology

report generation [67], surgical training [68, 69], patient education [70], assistive technologies

for visually impaired people [71], and autonomous driving [72], among others.

Challenges

Due to the large scale of both models and datasets, LLMs brings about special challenges that

require consideration [59]:

• Training cost: The large scale of LLMs entails higher training requirements in terms

of computing, capital and time, not only during development but also for deployment

and maintenance. For example, the training of BLOOM, an open-source LLM with 176B

parameter, took about 2.5 months, consumed 1,082,990 compute hours, and utilized

48 nodes with 8 Nvidia A100 80GB GPUs [73]. For GPT-3, it is estimated that the cost of

training was over USD 12 million [74].

• Scale of data: LLMs require a substantial volume of data for training. In some cases,

obtaining the data can be difficult due to privacy concerns (e.g., medical data). In

general, the curation of such extensive datasets poses a challenge in itself.

• Technical expertise: Given the large scale of the models, both training and deployment

demand a certain level of expertise in areas such as deep learning pipelines, architec-

tures, distributed computing, etc.
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Due to these challenges, a set of methods has been proposed for fine-tuning LLMs, by minimiz-

ing the number of parameters that are modified. This provides advantages for researchers, in-

stitutions, and companies lacking the necessary infrastructure to properly fine-tune the model

for a downstream task or a specific dataset. This set of methods is referred to as Parameter-

Efficient Finetuning (PEFT). Some of the most popular techniques include Adapters [75],

LoRA [76], and prefix tuning [77].

2.2 Computer Vision

This section briefly presents some essential computer vision concepts, with a focus on CNNs

and ViTs, as they are the most relevant architectural types for this work.

2.2.1 Convolutional Neural Networks

CNNs are networks designed to process data represented in a 2D structure, such as images

and time series. As its name indicates, CNNs employ a mathematical operation known as

convolution, which is a specialized type of linear operation. Thus, CNNs can be characterized

as neural networks that apply convolution in certain layers [49]. This operation takes place

between the input and a convolution kernel. Rather than providing the continuous and 1D

discrete definitions, we present the 2D convolution definition between an image x and a kernel

k:

S(i , j ) = (x∗k)(i , j ) =∑
m

∑
n

x(m,n)k(i −m, j −n) (2.16)

where the indices m and n represent the valid positions for the operation. Eq. (2.16) indicates

that the convolution operation is performed at every pixel location i , j of the image. With

a kernel smaller than the input image, CNNs implement sparse interactions, implying that

not every element of the output needs to be determined by every element of the input. This

approach offers advantages in terms of efficiency and memory requirements.

CNNs are typically arranged in sequential convolutional layers, where the output of each layer

undergoes processing by a subsequent layer. The output of each layer is commonly referred

to as a feature map, as different layers extract image features at various levels of abstraction

(such as edges, objects, etc.). Convolutional layers usually consist of three components:

• Convolution block: The input is convolved with h kernels to produce h feature maps.

• Non-linearity block: Applying a non-linearity or activation function enables the model

to learn more complex functions. Some common non-linearities used in CNNs include

Rectified Linear Unit (ReLU), leaky ReLU, and Gaussian Error Linear Unit (GELU) [78].

• Pooling block: Enables the reduction of the output size by summarizing each location
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through a statistic involving several neighboring values. For instance, the max pooling

operation [79] defines each value as the maximum value in a rectangular sub-region.

2.2.2 Vision Transformers

The Vision Transformer (ViT) extends the transformer architecture to handle images. As

discussed in Sec. 2.1.5, the transformer operates on token vectorial representations, which

are readily obtained for text through tokenization and token embeddings. The most effective

equivalent of tokens for images and processing pipeline remained unclear until 2020 when

the ViT was introduced [19].

The core idea of the ViT involves dividing the image into fixed-size tiles or patches, treating

these as tokens, as depicted in Fig. 2.10. The patches need to be flattened first and then linearly

projected to a constant latent vector dimension D . Then, positional embeddings are added to

retain the information about the relative position of each patch. The result of this is processed

by a transformer encoder block, which differs from the original transformer block in that

the layer normalization is applied before every block instead of after (refer to Fig. 2.6). Since

the ViT was introduced for image classification, the authors use a classification head at the

model’s output and leverage a learnable embedding prepended to the sequence of projected

patches. This learnable embedding acts as image representation, following ideas proposed

previously for BERT. Two popular versions of ViTs are Swin Transformers [80] and DeiT [81],

which focus on scalability and data efficiency, respectively.

FIGURE 2.10: Vision Transformer (ViT) architecture overview. Left: General ViT pipeline. Right:
Transformer encoder design. From [19].
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2.3 Vision-Language Models

Models that integrate both vision and language capabilities are referred to as VLMs. The

typical VLM structure consists of a vision encoder, a text encoder, and a strategy or mechanism

to combine the two. During the training process using text and image data, the features of

both modalities are expected to “align," signifying that the model learns representations that

reveal the correspondence between text and vision, contributing to improved outputs. Tasks

addressed by VLMs encompass:

• Image retrieval: Determining the most suitable image in a dataset that best corresponds

to an input sentence [82].

• Visual grounding: Matching the words in an input sentence to the corresponding

objects in an image [83].

• Visual Question Answering: Generating an appropriate answer to a question about an

image [39]. Due to its significance in this work, a more detailed overview of this task is

provided in Sec. 2.4.

• Image captioning: Given an image, providing an accurate caption that describes it [84].

• Image-text labeling: Assigning a label to an image-text tuple (e.g., hate speech detec-

tion [85]).

• Video summarization: Generate a summary for an input video [86].

An important breakthrough in VLMs is CLIP [87], where vision and language models are

trained end-to-end to maximize compatibility between matching image-caption tuples. This

method is widely employed to pre-train vision encoders that can subsequently be utilized for

other tasks.

2.3.1 Multimodal Large Language Models

A special sub-category of VLMs that has gained recent popularity is that of MLLMs [88–91],

also referred to as MMLLM [92]. A simple definition of MLLMs is an LLM-based model capable

of receiving and reasoning about one or more modalities different from text, with the ability

to output text or any other modality. Under this definition, these models are not limited to

images and language but can include other modalities such as audio, video, etc. Due to the

relation with this work, we focus only on MLLMs in which the additional modality is an image

and the output is text.

Two crucial questions arise at this point: (1) How to integrate the image into the LLM, and (2)

How to train the model using multimodal inputs? Regarding the first question, two pathways

have been explored: direct injection by aligning the image embeddings produced by a vision
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encoder to the LLM; and indirect injection, involving an expert proxy model translating the

image into natural language [93]. Examples of the first case include models like BLIP-2 [94],

LlaVA [89], InstructBLIP [88], VisionLLM [95], Otter [96], Llama-Adapters [97, 98]. An example

of the second case is VideoChat [99]. In both situations, limitations in the vision model

can propagate and affect the LLM output [100]. Regarding the second question, different

techniques have been proposed to extend the understanding of LLMs to image data, of which

the most relevant are the following [93]:

• Visual instruction tuning (VIT) [89]: An extension of instruction tuning [101], where a

pre-trained LLM is fine-tuned on a set of instruction-formatted samples. This allows the

model to learn to interpret instructions, execute them, and generalize to new instruc-

tions. The same principle is applied in visual instruction tuning, except that the image

is also included in the instructions.

• Visual In-Context Learning (ICL): An extension of in-context learning [102], where the

LLM is provided with a set of examples of the task at hand in different contexts, allowing

generalization to new contexts. Visual ICL extends this concept by incorporating images

into the examples.

• Visual Chain-of-Thought: An extension of Chain-of-thought, where the LLM is encour-

aged to reason through problems in a step-by-step manner. Visual Chain-of-Thought

maintains the same behavior but incorporates images into the training prompts.

• LLM-Aided Visual Reasoning (LAVR): Inspired by works in which LLMs manipulate

other models to execute tasks. In this scenario, the LLM can serve as a controller, a

decision maker, or a semantics refiner [93].

2.4 Visual Question Answering

VQA is a multimodal task where a model provides an answer to a question about a given

image [39]. Various skills are required from a VQA model to answer a question: finding

relations, comparing objects, counting, perceiving visual features, etc. When the data has a

medical nature, the task is referred to as Med-VQA. To differentiate, we refer to VQA for natural

images as general VQA. This section presents some key aspects of VQA for both natural and

medical images.

2.4.1 General VQA vs. Medical VQA

Although, in many cases, the principles, methods, and assumptions from VQA for natural

images can be applied to Med-VQA, there are two specific challenges that make Med-VQA

more complex:
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• Limited data: As discussed later in Section 2.4.3, the size of Med-VQA datasets is con-

siderably lower compared to general VQA. This is due to several reasons, such as the

expense of data acquisition [103] and the need for specialized knowledge [104]. Med-

VQA datasets require annotations from clinical experts who often lack sufficient time to

generate the annotations that the task requires. Another reason is the privacy constraints

that typically accompany medical data.

• Uniqueness of medical images and vocabularies: Medical data typically captures intri-

cate information about the human body. Due to the wide variety of organs and tissues

and the inter-patient variability and abnormalities, training models that accurately

perform tasks on these images is challenging. It is often the case that images acquired by

different machines have notable visual differences. All of this limits the development of,

for instance, object detectors, which have been shown to benefit general VQA [105]. On

the language side, the specialized vocabulary with relevant words that do not frequently

appear in the text constitutes another obstacle for Med-VQA.

2.4.2 A Brief History of VQA

Fig. 2.11 provides a summary of the evolution of general and medical VQA architectures over

time. The figure considers selected relevant publications, illustrating the overall progression

of model structures and highlighting components that received more attention at different

times.
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FIGURE 2.11: Evolution of VQA models for natural and medical images over time. Relevant
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General VQA

The VQA task was officially introduced as a challenge in 2015 by Antol et. al [39], building

on previous works about visual queries [33, 36–38], as discussed in Sec. 1.1. The authors

proposed the architecture shown in Fig. 2.12. This model follows the principle of generating

embeddings separately for the image x and the question q, projecting these to the same

dimension, and then combining the projected embeddings using point-wise multiplication;

the result of the product is then fed to a classifier, which selects the most likely answer â, from

a set of pre-defined answer A. Mathematically, this can be formulated as

â = argmax
a∈A

p(a|x,q;θ), (2.17)

where θ represents the parameters of the model, which is trained end-to-end using a cross-

entropy loss.

With CNNs and LSTM networks being the standard for vision and text at the time, early re-

search efforts in VQA focused on the multimodal fusion block. Pooling and decomposition

techniques such as Multimodal Compact Bilinear (MCB) [106], Multimodal Low-rank Bilinear

(MLB) [107], Multimodal Factorized Bilinear (MFB) [108], Multimodal Factorized High-order

(MFH) [109], and Multimodal Tucker Fusion for Visual Question Answering (MUTAN) [110]

were proposed. The idea behind these approaches is to facilitate richer interactions between

the visual and text embeddings by using bilinear pooling [106–108] or Tucker decomposi-

tion [110], while simultaneously seeking low dimensionality to make the operations feasible at

a large scale. Another breakthrough that happened at the time of the pooling methods was the

concept of attention applied to VQA [111]. Here, through Stacked Attention Networks (SAN),

the goal was to let the model learn which regions of the image were important to answer the

question. This enabled spatially assigning different weights to the visual features to generate

better answers and added some degree of explainability to the model.

Visual Encoder

Multimodal
Fusion

LSTM

Text Encoder

VGG

Product

Projection

MLP

Is the bear 
alive?

NoClassifier

MLP

Projection

MLP

FIGURE 2.12: First VQA architecture. Image and question embeddings are extracted and then
projected to the same dimension. The result is then combined using the element-wise product,

and a classifier provides the most likely answer at the output.

Another breakthrough related to attention emerged with Bottom-Up Top-Down (BUTD) atten-
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tion [112], where grid features produced by a CNN are replaced with object features produced

by an Region-based Convolutional Neural Network (R-CNN) [113]. Attention is then computed

along the region features to assign larger weights to the object regions that are more relevant to

the question. Later on, Bilinear Attention Networks (BAN) builds on the object-based feature

extraction but proposes adding co-attention [114] to MLB with the aim of considering the

interaction between every object region and every question word.

One of the early signs hinting at the upcoming transition to transformer-based architectures

for VQA was LXMERT [115]. This model comprises three encoder blocks: one for text, one

for object relationships, and one to combine both modalities. The cross-modality block has

a special design containing a bidirectional cross-attention sub-layer constructed from two

uni-directional cross-attention sub-layers, one from text to vision and one from vision to

text. LXMERT is notable for being trained on various tasks, including language modeling,

masked object prediction, image-text matching, and VQA. Between 2020 and 2022, several

approaches addressing different aspects of VQA were proposed. These include investigating

the relevance of grid features against region features [116], learning with counterfactuals [117],

data unshuffling [118], and visual grounding [119].

Subsequently, the OFA model [120] emerged as an encoder-decoder transformer with up to

930M parameters, serving, together with Flamingo [121], as precursors to MLLMs, such as

GPT-4V [61], BLIP-2 [94], and Llama-adapters [97, 98]. A significant change introduced by

these larger models is their ability to generate free-text answers instead of pre-defined ones,

allowing for more varied responses and detailed descriptions.

As depicted in Fig. 2.11, MLLMs mark a paradigm shift in the fundamental structure of the

VQA architecture. As discussed in Sec. 2.3.1, in numerous state-of-the-art approaches, visual

features are extracted with a visual encoder, mapped to the dimension of the language tokens,

and then integrated with the language tokens. This facilitates the seamless utilization of the

LLM, which can also be left frozen during the training process [122]. More recent advance-

ments in VQA focus on adding specialized world knowledge into the model [123] and using

synthetic questions to answer human questions [124].

Medical VQA

In the medical domain, the evolution of Med-VQA has closely paralleled the progress made

for natural images, with some approaches being directly adapted to the medical domain.

Med-VQA is considered to have started later than general VQA (see Fig. 2.11), likely attributed,

as mentioned earlier, to limited data availability and the associated annotation costs. The

initiation of Med-VQA was significantly influenced by the ImageCLEF VQA-Med challenge, in-

augurated in 2018, marking the initial applications of VQA to medical images. With a relatively

small dataset with only 5,500 question-answer pairs for training, most of the approaches in

the challenges were adapted from general VQA, such as SAN, MCB and MFB [125]. Addressing

the challenge of limited data, a method was proposed in [126], utilizing meta-learning and a
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FIGURE 2.13: Evolution of VQA datasets for natural and medical images over time. Dots with
triangles and squares indicate datasets produced for a specific VQA challenge.

Denoising Auto-Encoder (DAE) to generalize in limited-data scenarios and exploit unlabeled

images, respectively.

Two methods were then introduced for generating answers using different modules based

on the type of question asked, either open-ended or close-ended [105, 127]. These practices

posed a significant challenge in the early years of Med-VQA, where certain methods were

specifically tailored to the challenge data. Some approaches even treated the VQA problem as

an image classification problem, disregarding the input questions [128]. Fortunately, as new

datasets emerged, approaches shifted focus towards other aspects, including enhancing the

importance assigned to questions [129] and incorporating data augmentation techniques [130].

From this point on, the adoption of transformer-based architectures, adapted from general

VQA, became prominent in Med-VQA. This transition began with a pathology VQA model that

employed a transformer to fuse text and visual features [131]. Later, the integration of MLLMs

into Med-VQA has been observed [132–134].

2.4.3 Datasets

In terms of datasets, significant differences exist between general and medical VQA. Fig. 2.13

shows the most relevant datasets for natural and medical images over time. A notable char-

acteristic of datasets in general VQA is the refinement of earlier versions, exemplified by the

progression from VQA v1 [39] to VQA v2 [135]. Additionally, new versions like VQA-CP [136]

were introduced to mitigate biases. This kind of dataset evolution is hardly observed in the

medical domain, where, with some exceptions, there is only one version of the dataset. Due to

the lack of data, challenges such as ImageCLEF VQA-Med have also re-used the same dataset

used in previous versions [137].

Perhaps the most important dataset consideration is the number of images and question-
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answer pairs. As mentioned earlier, data collection in the medical domain is more challenging,

resulting in substantially smaller datasets compared to their counterparts in general VQA.

To illustrate this, Table 2.1 provides an overview of publicly available VQA datasets for medical

and natural images. Two conclusions can be drawn: (1) General VQA datasets tend to contain

more images and more questions than Med-VQA datasets, and (2) Med-VQA datasets often

incorporate automatically generated questions. Both of these considerations can be seen

as consequences of the difficulties associated with medical data, as presented in Sec. 2.4.1.

The first consideration impacts the quality of the models trained with such data, as achieving

generalization becomes more challenging, making them more prone to biases. The second

consideration limits the applicability or deployment of Med-VQA models in clinical environ-

ments, primarily due to the disparity between the nature of automatically generated questions

and human-generated questions. Generally, automatically generated questions tend to adhere

to a fixed structure that does not fully capture the semantic and syntactic variability and

complexity of questions posed by humans.

2.5 Basics of Diabetic Macular Edema (DME) Staging

We briefly present basic concepts about fundus imaging and DME staging due to its relevance

in this thesis. Fig. 2.14 (left) shows the basic anatomy of the eye. This organ exhibits a layered

organization crucial for vision. Light initially passes through the transparent cornea, refract-

ing and entering the anterior chamber filled with aqueous humor. The iris, the pigmented

structure visible as eye color, regulates the incoming light via the central pupil. The crystalline

lens, located behind the iris, further focuses the light onto the retina, the light-sensitive layer

lining the posterior chamber. Within the retina, photoreceptor cells, known as rods and cones,

convert light energy into electrical signals. These signals are then transmitted through the

optic nerve to the visual cortex in the brain, allowing for visual perception. The entire globe

of the eye is encased by the tough, white sclera, providing structural support and protection.

This intricate interplay of structures enables the eye to capture and process visual information,

transforming light into the world we see [138].

2.5.1 Fundus Imaging

In DME risk grade diagnosis from fundus images we are interested in capturing the rear of

the eye, which is also known as fundus. This requires a specialized camera focused on the

eye while emitting a bright light source, typically a flash or an infrared beam. The light travels

through the eye, as described before, and reflects off the structures at the back of the eye

and travels back through the pupil. A series of mirrors and lenses within the camera capture

and concentrate this reflected light. Modern fundus cameras are digital, capturing an image

directly onto a sensor instead of using film [157].

30



2.5 Basics of Diabetic Macular Edema (DME) Staging

Dataset # Images # Questions QA creation

E-VQA [139] 2,690 9,088 Automatic
OK-VQA [140] 14,031 14,055 Manual
VizWiz 2018 [34] 21,173 31,173 Manual
TextVQA [141] 28,408 45,336 Manual
DocVQA [142] 12,000 50,000 Manual
LoRA [143] 100,00 200,000 Automatic
Visual7W [144] 47,300 327,929 Manual
VQA-CPv1 [136] 205,000 370,000 Manual
VQAv1 [39] 204,721 614,163 Manual
VQA-CPv2 [136] 219,000 658,000 Manual
CLEVR [145] 100,000 864,968 Automatic
VQAv2 [135] 204,721 1’105,904 Manual
GQA [29] 113,000 22’000,000 Automatic

RadVisDial (gold) [146] 100 500 Manual
VQA-RAD [147] 316 3,515 Manual
VQA-Med 2020 [148] 5,000 5,000 Automatic
VQA-Med 2021 [137] 5,000 5,000 Automatic
VQA-Med 2018 [125] 2,866 6,413 Automatic
DME-VQA [149] 679 12,159 Automatic
Slake [150] 642 14,000 Manual
VQA-Med 2019 [151] 4,200 15,292 Automatic
VQA-Med 2023 [152] 5,000 25,000 Automatic
PathVQA [153] 4,998 32,799 Automatic
PMC-VQA [154] 149,000 227,000 Automatic
RadVisDial (silver) [146] 91,060 455,300 Automatic

TABLE 2.1: Overview of VQA dataset size sorted by the number of questions. Top: For natural
images. Bottom: For medical images.

2.5.2 DME Staging

In assessing the severity of DME through color fundus images, a simplified classification

system utilizes a three-point scale (0-2) to categorize disease progression. Grade 0 signifies a

healthy retina, devoid of any visible "hard exudates," which appear as yellowish-white deposits.

Grade 1 indicates the presence of these deposits confined to the peripheral regions of the

retina, outside the central "macular area." Conversely, Grade 2 denotes the presence of hard

exudates within the critical macular region, raising potential concerns for vision impairment.

For practical purposes, the critical macular region is defined by a circle with a radius of one

optic disc diameter [158]. Fig. 2.14 (right) shows an example where hard exudates are within

this critical region, leading to Grade 2.
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FIGURE 2.14: Left: Anatomy of the eye (from [155]). Right: Fundus image from the IDRiD
dataset [156] with hard exudates encircled in light blue.
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Part IEnabling Localized Queries in VQA





3 Localized Questions in Medical Visual
Question Answering

The task of VQA has seen a relatively rapid development since it was first introduced back

in 2015. With a few exceptions, VQA models have been applied to datasets with questions

that refer to the entire image. This, however, can limit the interpretability of the model’s

predictions, as the model can benefit from biases in the data to produce the correct answer

while disregarding the parts of the image that contain key information to answer the question.

Furthermore, localized questions allow the comparison and quantification of agreement

between questions about images and questions about regions. In this work, we present an

attention-based method for medical VQA that enables the posing of questions about specific

user-defined regions of an image while considering the context required to answer them. We

benchmark our approach across multiple datasets and against different baselines, showing its

effectiveness.
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Chapter 3. Localized Questions in Medical Visual Question Answering

3.1 Background and Previous Work

VQA models are neural networks that answer natural language questions about an image [29,

39, 115, 135]. The capability of VQA models to interpret natural language questions is of great

appeal, as the range of possible questions that can be asked is vast and can differ from those

used to train the models. This has led to many proposed VQA models for medical applications

in recent years [103, 104, 125, 127, 129, 130, 160]. These models can enable clinicians to probe

the model with nuanced questions, thus helping to build confidence in its predictions.

Recent work on Med-VQA has primarily focused on building more effective model architec-

tures [129, 130, 161] or developing strategies to overcome limitations in Med-VQA datasets [129,

150, 162–164]. Another emerging trend is to enhance VQA performance by addressing the

consistency of answers produced [149], particularly when considering entailment questions

(i.e., the answer to “Is the image that of a healthy subject?" should be consistent with the

answer to “Is there a fracture in the tibia?"). Despite these recent advances, however, most

VQA models are restricted to questions that consider the entire image at a time. Specifically,

VQA typically uses questions that address content within an image without specifying where

this content may or may not be in the image. Yet the ability to ask specific questions about

regions or locations of the image would be highly beneficial to any user as it would allow

fine-grained questions and model probing. For instance, Fig. 3.1 illustrates examples of such

localized questions that combine content and spatial specifications. In the medical field, pos-

ing localized questions can significantly enhance the diagnostic process by providing second

opinions to medical experts about suspicious regions. Additionally, this approach can improve

trustworthiness by assessing the consistency between answers to both global and localized

questions.

To this day, few works have addressed the ability to include location information in VQA

models. In [165], localization information is posed in questions by constraining the spatial

extent to a point within bounding boxes yielded by an object detector. The model then focuses

its attention on objects close to this point. However, the method was developed for natural

images and relies heavily on the object detector to limit the attention extent, making it difficult

to scale in medical imaging applications. Alternatively, the approach from [129] answers

questions about a pre-defined coarse grid of regions by directly including region information

into the question (e.g., “Is grasper in (0,0) to (32,32)?"). This method relies on the ability of

the model to learn a spatial mapping of the image and limits the regions to be on a fixed grid.

Localized questions were also considered in [149], but the region of interest was cropped

before being presented to the model, assuming that the surrounding context is irrelevant for

answering this type of question.

To overcome these limitations, we propose a novel VQA architecture that alleviates the men-

tioned issues. At its core, we hypothesize that by allowing the VQA model to access the entire

images and properly encoding the region of interest, this model can be more effective at an-

swering questions about regions. To achieve this, we propose using a multi-glimpse attention
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Are there hard exudates 
in this region?

No

Is there large needle driver 
in this region?

Yes

Is there lens injector 
in this region?

Yes

INSEGCAT-VQADME-VQA RIS-VQA

FIGURE 3.1: Examples of localized questions. In some cases (RIS-VQA and INSEGCAT-VQA), the
object mentioned in the question is only partially present in the region. We hypothesize that

context can play an important role in answering such questions.

mechanism [110, 129, 149] restricting its focus range to the region in question, but only after

the model has considered the entire image. By doing so, we preserve contextual information

about the question and its region. We evaluate the effectiveness of our approach by conduct-

ing extensive experiments on three datasets and comparing our method to state-of-the-art

baselines. Our results demonstrate performance improvements across all datasets.

3.2 Method

Our method extends a VQA model to answer localized questions. We define a localized question

for an image x as a tuple (q,m), where q is a question, and m is a binary mask of the same size

as x that identifies the region to which the question pertains. Our VQA model, parameterized

by θ and depicted in Fig. 3.2, accepts an image and a localized question as input and produces

a probability distribution over a finite set A of possible answers. The final answer â of the

model is the element with the highest probability,

â = argmax
a∈A

p(a | q,x,m;θ). (3.1)

The model proceeds in three stages to produce its prediction: input embedding, localized

attention, and final classification.

3.2.1 Input Embedding

The question q is first processed by an LSTM [52] to produce an embedding q̂ ∈RQ . Similarly,

the image x is processed by a ResNet-152 [54] to produce the feature map x̂ ∈RC×H×W .
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3.2.2 Localized Attention

An attention mechanism uses the embedding to determine relevant parts of the image to

answer the corresponding question. Unlike previous attention methods, we include the

region information that the mask defines. Our localized attention module (Fig. 3.2 right) uses

both descriptors and the mask to produce multiple weighted versions of the image feature

map, x̂′ = att(q̂, x̂,m). To do so, the module first computes an attention map g ∈RG×H×W with

G glimpses by applying unmasked attention [129, 166] to the image feature map and the text

descriptor. The value of the attention map at location (h, w) is computed as,

g:hw = softmax
(
W(g ) ·ReLU

(
W(x)x̂:hw ⊙W(q)q̂

))
, (3.2)

where the index :hw indicates the feature vector at location (h, w), W(x) ∈ RC ′×C , W(q) ∈
RC ′×Q , and W(g ) ∈ RG×C ′

are learnable parameters of linear transformations, and ⊙ is the

element-wise product. In practice, the transformations W(x) and W(g ) are implemented with

1×1 convolutions and all linear transformations include a dropout layer applied to its input.

The image feature maps x̂ are then weighted with the attention map and masked with m as,

x̂′cg hw = gg hw · x̂chw · (m ↓H×W )hw , (3.3)

where c and g are the indexes over feature channels and glimpses, respectively, (h, w) is the

index over the spatial dimensions, and m ↓H×W denotes a binary downsampled version of m

with the spatial size of x̂. This design allows the localized attention module to compute the

attention maps using the full information available in the image, thereby incorporating context

into them before being masked to constrain the answer to the specified region.

3.2.3 Classification

The question descriptor q̂ and the weighted feature maps x̂′ from the localized attention are

vectorized and concatenated into a single vector of size C ·G +Q and then processed by a

multi-layer perceptron classifier to produce the final probabilities.

3.2.4 Training

The training procedure minimizes the standard cross-entropy loss over the training set updat-

ing the parameters of the LSTM encoder, localized attention module, and the final classifier.

The training set consists of triplets of images, localized questions, and the corresponding

ground-truth answers. As in [39], the ResNet weights are fixed with pre-trained values, and the

LSTM weights are updated during training.

38



3.3 Experiments and Results

FIGURE 3.2: Left: Proposed VQA architecture for localized questions. The Localized Attention
module allows the region information to be integrated into the VQA while considering the context

necessary to answer the question. Right: Localized Attention module.

3.3 Experiments and Results

We compare our model to several baselines across three datasets and report quantitative and

qualitative results. Additional results are available in Appendix A.

3.3.1 Datasets

We evaluate our method on three datasets containing questions about regions which we detail

here. The first dataset consists of an existing retinal fundus VQA dataset with questions about

the image’s regions and the entire image. The second and third datasets are generated from

public segmentation datasets but use the method described in [129] to generate a VQA version

with region questions.

DME-VQA [149]: 679 fundus images containing questions about entire images (e.g., “what is

the DME risk grade?") and about randomly generated circular regions (e.g., “are there

hard exudates in this region?"). The dataset comprises 9’779 question-answer (QA) pairs

for training, 2’380 for validation, and 1’311 for testing.

RIS-VQA: Images from the 2017 Robotic Instrument Segmentation dataset [167]. We auto-

matically generated binary questions with the structure “is there [instrument] in this

region?" and corresponding masks as rectangular regions with random locations and

sizes. Based on the ground-truth label maps, the binary answers were labeled “yes” if the

region contained at least one pixel of the corresponding instrument and “no” otherwise.

The questions were balanced to maintain the same amount of “yes” and “no” answers.

15’580 QA pairs from 1’423 images were used for training, 3’930 from 355 images for

validation, and 13’052 from 1’200 images for testing.

INSEGCAT-VQA: Frames of cataract surgery videos from the InSegCat 2 dataset [168]. We
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FIGURE 3.3: Distribution by question type (DME-VQA) and by question object (RIS-VQA and
INSEGCAT-VQA).

followed the same procedure as in RIS-VQA to generate balanced binary questions

with masks and answers. The dataset consists of 29’380 QA pairs from 3’519 images for

training, 5’306 from 536 images for validation, and 4’322 from 592 images for testing.

Fig. 3.3 shows the distribution of questions in the three datasets.

3.3.2 Baselines and Metrics

We compare our method to four different baselines, as shown in Fig. 3.4:

No mask: no information is provided about the region in the question.

Region in text [129]: region information is included as text in the question.

Crop region [149]: image is masked to show only the queried region, with the area outside

the region set to zero.

Draw region: region is indicated by drawing its boundary on the input image with a distinctive

color.

We evaluated the performance of our method using accuracy for the DME-VQA dataset and

the area under the Receiver Operating Characteristic (ROC) curve and Average Precision (AP)

for the RIS-VQA and INSEGCAT-VQA datasets.

Implementation Details

Our VQA architecture uses an LSTM [52] with an output dimension 1024 to encode the question

and a word embedding size of 300. We use the ResNet-152 [54] with ImageNet weights to

encode images of size 448×448, generating feature maps with 2048 channels. In the localized

attention block, the visual and textual features are projected into a 512-dimensional space

before being combined by element-wise multiplication. Following [106, 166], the number of

glimpses is set to G = 2 for all experiments. The classification block is a multi-layer perceptron
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Is there monopolar curved
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top left corner at (53, 274) 

and height 205 and width 154?

Region in Text

Is there monopolar curved
scissors in this region?

Crop Region

FIGURE 3.4: Illustration of the evaluated baselines for an example image.

Method
Accuracy (%)

Overall Grade Whole Macula Region

No Mask 61.1 ± 0.4 80.0 ± 3.7 85.7 ± 1.2 84.3 ± 0.5 57.6 ± 0.4
Region in Text [129] 60.0 ± 1.5 57.9 ± 12.5 85.1 ± 1.9 83.2 ± 2.4 57.7 ± 1.0
Crop Region [149] 81.4 ± 0.3 78.7 ± 1.3 81.3 ± 1.7 82.3 ± 1.4 81.5 ± 0.3
Draw Region 83.0 ± 1.0 79.6 ± 2.5 77.0 ± 4.8 84.0 ± 1.9 83.5 ± 1.0
Ours 84.2 ± 0.6 82.8 ± 0.4 87.0 ± 1.2 83.0 ± 1.5 84.2 ± 0.7

TABLE 3.1: Average accuracy for different methods on the DME-VQA dataset. The results shown
are the average of 5 models trained with different seeds.

with a hidden layer of 1024 dimensions. A dropout rate of 0.25 and ReLU activation are used

in the localized attention and classifier blocks.

We train our models for 100 epochs using an early stopping condition with patience of

20 epochs. Data augmentation consists of horizontal flips. We use a batch size of 64 samples

and the Adam optimizer with a learning rate of 10−4, which is reduced by a factor of 0.1 when

learning stagnates. Models implemented in PyTorch 1.13.1 and trained on an Nvidia RTX 3090

graphics card1.

3.3.3 Results

Our method outperformed all considered baselines on the DME-VQA (Table 3.1), the RIS-

VQA, and the INSEGCAT-VQA datasets (Table 3.2), highlighting the importance of contextual

information in answering localized questions. Context proved to be particularly critical

in distinguishing between objects of similar appearance, such as the bipolar and prograsp

forceps in RIS-VQA, where our method led to an 8 percent point performance improvement

(Table 3.3). In contrast, the importance of context was reduced when dealing with visually

1Our code and data are available at https://github.com/sergiotasconmorales/locvqa
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Dataset Method AUC AP

RIS-VQA

No Mask 0.500 ± 0.000 0.500 ± 0.000
Region in Text [129] 0.677 ± 0.002 0.655 ± 0.003
Crop Region [149] 0.842 ± 0.002 0.831 ± 0.002
Draw Region 0.835 ± 0.003 0.829 ± 0.003
Ours 0.885 ± 0.003 0.885 ± 0.003

INSEGCAT-VQA

No Mask 0.500 ± 0.000 0.500 ± 0.000
Region in Text [129] 0.801 ± 0.012 0.793 ± 0.014
Crop Region [149] 0.901 ± 0.002 0.891 ± 0.003
Draw Region 0.910 ± 0.003 0.907 ± 0.005
Ours 0.914 ± 0.002 0.915 ± 0.002

TABLE 3.2: Average test AUC and AP for different methods on the RIS-VQA and INSEGCAT-VQA
datasets. The results shown are the average over 5 seeds.

Method
Instrument Type

Large
Needle
Driver

Monopolar
Curved
Scissors

Vessel
Sealer

Grasping
Retractor

Prograsp
For-
ceps

Bipolar
Forceps

No
Mask

0.500
±0

0.500
±0

0.500
±0

0.500
±0

0.500
±0

0.500
±0

Region in
Text [129]

0.717
±0.003

0.674
±0.001

0.620
±0.011

0.616
±0.020

0.647
±0.008

0.645
±0.003

Crop
Region [149]

0.913
±0.002

0.812
±0.003

0.752
±0.009

0.715
±0.015

0.773
±0.003

0.798
±0.004

Draw
Region

0.915
±0.003

0.777
±0.003

0.783
±0.004

0.709
±0.012

0.755
±0.004

0.805
±0.005

Ours 0.944
±0.001

0.837
±0.005

0.872
±0.008

0.720
±0.031

0.834
±0.006

0.880
±0.003

TABLE 3.3: Average test AUC for different methods on the RIS-VQA dataset as a function of instru-
ment type. Results are averaged over 5 models trained with different seeds. The corresponding

table for INSEGCAT-VQA is available in Appendix A.

distinct objects, resulting in smaller performance gains as observed in the INSEGCAT-VQA

dataset. For example, despite not incorporating contextual information, the baseline crop

region still benefited from correlations between the location of the region and the instrument

mentioned in the question (e.g., the eye retractor typically appears at the top or the bottom of

the image), enabling it to achieve competitive performance levels that are less than 2 percent

points lower than our method (Table 3.2, bottom).

Similar to our method, the baseline draw region incorporates contextual information when
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No

Is there large needle 
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Yes

Yes

No

No

Is there large needle 
driver in this region?

No

Yes

No

Yes

Are there hard
exudates in this region? 

Yes

Yes

No

No

Is there eye retractors
in this region?

No

Yes

No

Yes

Is there bonn forceps 
in this region?

Yes

No

No

Yes

FIGURE 3.5: Qualitative examples on the RIS-VQA dataset (columns 1-3), INSEGCAT-VQA
(columns 4-5), and DME-VQA (last column). Only the strongest baselines were considered
in this comparison. The first row shows the image, the region, and the ground truth answer. Other
rows show the overlaid attention maps and the answers produced by each model. Wrong answers

are shown in red.

answering localized questions. However, we observed that drawing regions on the image can

interfere with the computation of guided attention maps, leading to incorrect predictions

(Fig. 3.5, column 4). In addition, the lack of masking of the attention maps often led the model

to wrongly consider areas beyond the region of interest while answering questions (Fig. 3.5,

column 1).

When analyzing mistakes made by our model, we observe that they tend to occur when

objects or background structures in the image look similar to the object mentioned in the

question (Fig. 3.5, column 3). Similarly, false predictions were observed when only a few pixels

of the object mentioned in the question were present in the region.

3.4 Conclusion

In this work, we proposed a novel VQA architecture to answer questions about regions. We

compare the performance of our approach against several baselines and across three different

datasets. By focusing the model’s attention on the region after considering the evidence in the

full image, we show how our method brings improvements, especially when the complete im-

age context is required to answer the questions. Future works include studying the agreement
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between answers to questions about concentric regions, as well as the agreement between

questions about images and regions.
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4 Targeted Visual Prompting for Medi-
cal Visual Question Answering

With growing interest in recent years, Med-VQA has rapidly evolved with MLLMs emerging

as an alternative to classical model architectures. Specifically, their ability to add visual

information to the input of pre-trained LLMs brings new capabilities for image interpretation.

However, simple visual errors cast doubt on the actual visual understanding abilities of these

models. To address this, region-based questions have been proposed as a means to assess

and enhance actual visual understanding through compositional evaluation. To combine

these two perspectives, this work introduces targeted visual prompting to equip MLLMs with

region-based questioning capabilities. By presenting the model with both the isolated region

and the region in its context in a customized visual prompt, we show the effectiveness of our

method across multiple datasets while comparing it to several baseline models.

Author Contribution Co-authored alongside Raphael Sznitman and Plablo Márquez-Neila, my

contributions to this project involved creating datasets, formulating methodologies, designing

experiments, analyzing and visualizing results, and composing the manuscript.
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License Accepted and soon to be published; Applications of Medical Artificial Intelligence,
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Chapter 4. Targeted Visual Prompting for Medical Visual Question Answering

4.1 Background and Previous Work

VQA is centered on developing models capable of answering questions about specific im-

ages [39]. This task is particularly challenging within the medical domain due to factors such as

a scarcity of annotated data [103, 162], the wide variety of imaging modalities and anatomical

regions [105], as well as the unique characteristics of medical images and terminology, all of

which necessitate specialized expertise [103, 127]. Furthermore, approaches that leverage the

detection of natural objects, which have significantly improved performance in the analysis of

natural images [112], are less straightforward when applied to medical imagery [105].

Historically, models for Med-VQA treated visual and textual information independently, later

merging these features through various fusion techniques. This composite data would then be

input into a classifier to determine the most probable answer. However, recent developments

in transformer-based models [27], including advancements in LLMs, have led to a notable

shift in VQA strategies. These advancements have paved the way for the adoption of MLLMs

that integrate both visual and textual data more seamlessly, a trend that is emerging in both

general [93, 100, 169] and medical VQA [133, 154] applications.

Despite the remarkable adoption of MLLMs, recent research has raised concerns about the

quality of their visual capabilities (Fig. 4.1). This issue primarily arises from the pre-training

process of the visual component, which typically relies on models like CLIP [87]. Surprisingly,

MLLMs can perceive certain visually distinct images as similar, a phenomenon that human

observers readily recognize as different [100]. These visual understanding failures were also

observed in VQA models before the widespread adoption of MLLMs [29, 40, 135, 170].

FIGURE 4.1: Examples of visual understanding failures using GPT-4V for the VQA task. From [100].

To enhance explainability in the visual component of Med-VQA, the work in [159] proposes a

novel approach using the formulation of localized questions [159]. These questions allow fine-

grained probing of images by focusing on user-defined regions rather than the entire image

and facilitate a compositional evaluation of the model’s reasoning abilities. To enable such
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4.2 Method

localized questions, the region to query is encoded and directly integrated into the attention

mechanism of the model. By doing so, the model gains access to context relevant to answering

the question. Alternatively, other proposed strategies include providing the model with a

restricted region of the image [149] or relying on the language component of the VQA model

to interpret region coordinates directly included in the question [129]. Notably, [165] limits

spatial focus by considering only certain bounding boxes produced by an object detector. Yet

all of these methods suffer from the same common limitation: MLLMs cannot directly be

integrated into these schemes to leverage their benefits for Med-VQA.

To this end, we propose to overcome this challenge by introducing a novel approach, namely

Targeted Visual Prompting. By carefully designing a prompt that provides both global and

local visual tokens relative to the region of interest defined by the user, our method allows the

full advantage of the MLLM to enhance the performance of the VQA model. To validate the

effectiveness of our method, we conduct exhaustive experiments across multiple datasets. Our

results demonstrate clear performance benefits compared to previously proposed methods,

all achieved without introducing additional parameters to the model.

4.2 Method

In general, a VQA model with parameters θ generates an answer â when given an input image

x ∈RH×W ×C and a related question represented as a sequence of words, q. In its most general

form, this process can be described as a functionΨVQA, parameterized by θ, that is applied on

the image-question pair,

â =ΨVQA(x,q;θ). (4.1)

Traditionally, this model’s output is a distribution over a set of N candidate answers {a1, a2, ..., aN }

set beforehand.

In this work, however, we choose the answer of the VQA to be generated by an LLM in an

auto-regressive manner until the end-of-sentence (EOS) token is produced. To make the LLM

multimodal, we adopt the widely used approach of projecting visual embeddings onto the

input space of the LLM [67, 89, 171] and express this as

â =ΨLLM(ΨVis(x,θVis)Wproj,q;θLLM), (4.2)

whereΨVis refers to the visual encoder with parameters θVis, and Wproj denotes the learnable

parameters of the projection layer. Although not explicitly formalized, it is implied that the

answer is generated in an auto-regressive fashion, meaning that the next word in the answer

depends on the previously predicted words.

To expand the model’s capability to handle localized questions, we propose here a dedicated

targeted visual prompt that allows two perspectives of the image to be encoded: one containing

only the region of the image and the other containing the region in context.
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Embedded tokens

Answer the question
below using the 
context and region 
below
Context:<img>

Targeted Visual Prompt

</img> Zoom 
in to the 
region: <img> 

Visual
Encoder

Project

</img> Question: Are there 
hard exudates in this region?
Answer:

Tokenize
&

Embed

Answer

LLM

Tokenize
&

Embed

Visual
Encoder

Project

Tokenize
&

Embed

FIGURE 4.2: Our customized targeted visual prompt is created by providing the model with the
region in context, as well as an isolated version of the region. Visual tokens are projected to the

input space of the LLM and concatenated with the instruction tokens.

The targeted visual prompt consists of five components: (1) comprises model instruction,

denoted as winstr; (2) the visual context represented by the image with the region drawn on it,

xr ; (3) wdet contains a textual prefix for the region; (4) the cropped region r; and (5) wq includes

the question q. Text-containing parts of the prompt undergo tokenization and embedding,

while the visual components are processed by a visual encoder and then projected into the

input space of the LLM. Subsequently, the results are concatenated and processed by the

LLM, resulting in the generation of an answer. To handle global questions, the entire image

is assigned to r. We illustrate our model in Fig. 4.2 and summarize the computation of the

answer as,

â =ΨLLM(winstr,ΨVis(xr ,θVis)Wproj,wdet,ΨVis(r,θVis)Wproj,wq ;θLLM), (4.3)

Training. As in [67], our model is trained using the original auto-regressive training loss of

the LLM. The loss function is the standard negative log-likelihood accumulated over all time

steps for predicting the correct next token. For a ground truth answer of length T , this loss is

expressed as,

L(θ) =−
T∑

t=1
log pθ(at |x,w, a1:t−1;θ), (4.4)

where x and w denote the visual and textual elements, respectively, and a = {a1, a2, ..., aT } is

the ground truth answer.
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4.3 Experiments and Results

4.3.1 Datasets

To evaluate our method, we make use of several publically available datasets: (1) DME-

VQA: contains questions on DME risk grade and about the presence of biomarkers in the

entire image or specific regions. (2) RIS-VQA: contains images from the DaVinci robot during

gastrointestinal surgery and questions related to surgical instruments. (3) INSEGCAT-VQA:

contains frames from cataract surgery videos and questions about instruments used in this

type of surgery. A summary of these is shown in Table 4.1, based on [159].

Dataset Modality # images # QA-pairs

DME-VQA Fundus 679 13470
RIS-VQA Gastrointestinal 2978 32562
INSEGCAT-VQA Cataract surgery 4647 39008

TABLE 4.1: Main parameters of the used datasets.

4.3.2 Baselines

We benchmark our method against multiple baselines, which are exemplified in Fig. 4.3. In

No mask, the model receives no information about the location of the region; in Region in

text, the region is specified in the question; in Draw region, the region is marked on top of the

image. In Context only, the model only sees the context, but not the contents of the region; in

Crop region, the model receives no context; finally, in LocAtt [159], the model has access to

the image, as well as a binary image representing the region. For these baselines, the visual

prompt given to the model is: “Answer the question below using the context below Context:

<Img><Image></Img>Question:<Question>Answer:"

Baseline

Input Image(s)

Input Question

No mask

Are there hard 
exudates

in this region?

Region in text

Are there hard 
exudates

in this region?

Are there hard 
exudates

in this region?

Draw region

Are there hard 
exudates

in this region?

Context only Crop region

Are there hard 
exudates

in this region?

LocAtt

Are there hard 
exudates in the 

ellipse contained in 
the bounding box (2 
0 0, 8 1, 4 1 6, 2 2 4) 

FIGURE 4.3: Example input images and questions for evaluated baselines. In the baseline “Region
in text," the digits are separated to provide a fair scenario to the LLM.
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4.3.3 Implementation Details

We use R2GenGPT [67] as base MLLM, adapting it from the task of radiology report generation

to VQA. Following the original implementation of R2GenGPT, we use a pre-trained Swin

Transformer [80] as a visual encoder and Llama 2 [172] as LLM initialized with its official

weights. Different from to R2GenGPT, we finetune all modules, including the LLM, end-to-end.

We use the default parameters for the selected backbone model: We train all our models for

15 epochs, with a batch size of 8 and a learning rate of 1e-4, with the AdamW optimizer and

a cosine annealing scheduler with a minimum learning rate of 1e-6. For the text generation,

we use a repetition penalty of 2.0 as in [67] but establish a length penalty of -1.0 to encourage

short answers. Our implementation uses PyTorch 2.0.1 and two Nvidia A100 cards with 80 GB

of memory each.

4.3.4 Results

Table 4.2 summarizes our results on the DME-VQA, RIS-VQA, and INSEGCAT-VQA datasets.

The accuracy and F1 score are reported for all datasets. Notably, our method consistently

outperforms all evaluated baselines across all datasets, underscoring the efficacy of targeted

visual prompting in enhancing MLLMs with region-based capabilities.

In the case of the DME-VQA and RIS-VQA datasets, we observe that the performance of context

only surpasses that of crop region. At first glance, this suggests that the context holds more

relevance than the specific contents of the region. However, this behavior is likely influenced

by spurious correlations between region sizes, locations, and the corresponding answers. For

instance, in DME-VQA, images with a high amount of biomarkers often feature smaller regions

associated with negative answers. Similarly, in RIS-VQA, the tool can often be determined

from its body without considering the tip.

Notably, the region in text baseline exhibits poor performance. Given the use of a powerful LLM

in the pipeline, higher performance might be expected. Different variations were explored

for this baseline, including not separating the coordinate digits or replacing coordinate digits

with words, but performance did not improve. We hypothesize that the model fails to correctly

map location information from the text to the image, which can be at least partly attributed to

using a ViT to embed the image.

We provide qualitative example results in Fig. 4.4. The first column exemplifies cases where

our method demonstrates robustness to subtle evidence (small biomarkers), correlations

(surgical suture is usually close to the needle driver), and borderline cases (evidence close to

the region). The second column highlights the weaknesses of context only when the context

fails to provide enough evidence for the answer. Finally, the third column shows errors made by

our model. Fig. 4.5 shows error maps by region location for the DME-VQA and INSEGCAT-VQA

datasets and for the four strongest baselines. On the left side of the plot, the locations of actual

positives and negatives are illustrated. For the INSEGCAT-VQA dataset, this visualization
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Dataset Method Accuracy (%) F1 score (%)

DME-VQA

No Mask 57.32 57.32
Region in Text [129] 62.12 63.59
Crop Region [149] 86.52 87.26
Draw Region 86.86 86.85
Context Only 88.07 88.45
Ours 90.30 90.22
LocAtt [159]∗ 84.2 85.79

RIS-VQA

No Mask 50.00 50.00
Region in Text [129] 64.81 65.39
Crop Region [149] 85.50 85.64
Draw Region 91.30 91.43
Context Only 91.77 91.81
Ours 92.60 92.54
LocAtt [159]∗ 82.73 86.15

INSEGCAT-VQA

No Mask 50.00 50.00
Region in Text [129] 73.51 74.55
Crop Region [149] 90.91 90.93
Draw Region 95.44 95.43
Context Only 95.19 95.17
Ours 95.51 95.47
LocAtt [159]∗ 88.13 90.14

TABLE 4.2: Accuracy and F1 score comparison to SOTA approaches on the DME-VQA, RIS-VQA
and INSEGCAT-VQA datasets. For the DME-VQA dataset, only localized questions are considered
(performance on other question types can be found in the supplementary materials). ∗This result

corresponds to a different architecture, but we include it for completeness.

reveals a location bias that other baselines without access to the region or the context may

be exploiting. Due to the nature of the images (cataract surgery) and questions, regions with

positive answers tend to cluster in a specific area. This, coupled with the dissimilarity of

objects mentioned in the questions, explains why a baseline like crop region achieves relatively

high performance on this dataset compared to the other two datasets (see Table 4.2). Similarly,

in the case of DME-VQA, it becomes evident that the lack of context in crop region results

in lower sensitivity, highlighting the significance of context even when the isolated region

should theoretically provide sufficient evidence. Fig. 4.5 also demonstrates that draw region

and context only exhibit marked clusters of false positives and false negatives, potentially

indicating the utilization of location biases. In contrast, our method produces a more evenly

distributed location for both types of errors.
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FIGURE 4.4: Qualitative examples on the DME-VQA (first row), RIS-VQA (second row), and
INSEGCAT-VQA (third row) datasets. See Appendix B for additional examples.
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FIGURE 4.5: Error analysis by region location for the four strongest baselines. The maps are
obtained by adding binary masks representing the regions for all QA pairs in each category and
then normalizing. Top: DME-VQA dataset. Bottom: INSEGCAT-VQA dataset. The maps for

RIS-VQA can be found in Appendix B.
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4.4 Conclusion

4.4 Conclusion

In this work, we introduced a novel approach to enable localized questions in multimodal

LLMs for the tasks of VQA. Our proposed approach involves the utilization of targeted visual

prompting, granting the model access not only to the region and its context within the image

but also to an isolated version of the region. By doing so, we allow two perspectives to

be encoded in the prompt and allow more fine-grained information to be leveraged. Our

approach demonstrates enhanced performance across all evaluated datasets compared to

a variety of baselines. Analysis of the results highlights how biases in the datasets can be

interpreted and qualitative examples shown depict failure modes of our method. Future works

include extending the methodology to accommodate multiple images and enabling the use of

comparison questions.
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5 Consistency-preserving Visual Ques-
tion Answering in Medical Imaging

Since VQA models can be asked multiple questions about the same image, one important

aspect of their behavior is what constraints there should be in the answers, given that the

questions are related. This is, what level of agreement there should be in the answers so

that these do not produce a contradiction. Most of the research in Med-VQA has been fo-

cused on improving architectures and working with limited data, while consistency has been

overlooked.

In this work, we tackle the issue of inconsistency in Med-VQA by using a novel loss function

term and corresponding training strategy that allows us to consider relations between question-

answer pairs in the training process. Following previous approaches from natural images, we

examine the case in which the relation between reasoning and perception questions is known.

We evaluate our proposed approach on the task of DME staging from fundus images. Our

experimental results show that our approach enhances not only the consistency of the model

but also the overall performance.
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Sznitman. My contributions include the dataset creation, the formulation and implementation

of the method, the experimental setup, result analysis and visualization, and the composition

of the manuscript.
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Chapter 5. Consistency-preserving Visual Question Answering in Medical Imaging

5.1 Background and Previous Work

VQA models are neural networks that answer natural language questions about an image by

interpreting the question and the image provided [29, 39, 115, 135]. Specifying questions

using natural language gives VQA models great appeal, as the set of possible questions one

can ask is enormous and does not need to be identical to the set of questions used to train

the models. Due to these advantages, VQA models for medical applications have also been

proposed [103, 104, 125, 127, 129, 130], whereby allowing clinicians to probe the model with

subtle differentiating questions and contributing to build trust in predictions.

To date, much of the work in Med-VQA has focused on building more effective model archi-

tectures [104, 129, 130] or overcoming limitations in Med-VQA datasets [104, 127, 162, 173].

Yet a critical component of VQA is the notion of consistency in the answers produced by a

model. Here, consistency refers to a model’s capacity to produce answers that are not self-

contradictory. For instance, the task of staging DME from color fundus photograph illustrated

in Fig. 5.1 involves identifying perception elements in the image (e.g., “are there hard exudates

visible near the macula?”) to infer a disease stage, which can be expressed as a reasoning

question (e.g., “what is the stage of disease?”). Ultimately, for any VQA model to be trustworthy,

it should be able to answer these without contradicting itself (i.e., answer that the image is

healthy, but also identify hard exudates in the periphery of the eye).

Consistency in VQA has been been studied in the broader computer vision context [170,

175–178], where the relation between perception and reasoning questions is unconstrained.

That is, the answers to perception questions do not necessarily imply any information with

respect to the reasoning question and vice-versa. In these broad cases, some methods have

modeled question implications [170, 177] or rephrased questions [178] by generating tailored

question-answer pairs (e.g., consistent data-augmentation). Alternatively, [176, 179, 180]

used relations between questions to impose constraints in the VQA’s embedding space. To

avoid needing to know the relation between questions, [40] proposed to enforce consistency

by making attention maps of reasoning and perception questions similar to one another.

However, even though these approaches tackle unconstrained question relations, the ensuring

of VQA models’ consistency remains limited and often reduces the overall performance [40].

Instead, we propose a novel approach to enforce VQA consistency that is focused on cases

where answers to the perception questions have explicit implications on reasoning question

answers and vice-versa (e.g., cancerous cells and severity of cancer found in H&E staining,

or presence of hard exudates and DME staging). By focusing on this subset of question

relations, our aim is to improve both the accuracy of our model and its consistency, without

needing external data as in [162, 170, 175]. To do this, we allow questions to probe arbitrary

image regions by masking irrelevant parts of the image and passing the masked image to the

VQA model (see Fig. 5.1). To then enforce consistency, we propose a new loss function that

penalizes incorrect perceptual predictions when reasoning ones are correct for a given image.

To validate the impact of our approach, we test it in the context of DME staging and show
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VQA

Is the image healthy? Are there hard exudates here?

YES YES
Inconsistent
answers

Question 1

Whole image Masked image

Question 2

VQA

Macula

Fovea

FIGURE 5.1: VQA inconsistency in Diabetic Macular Edema staging from fundus photograph.
While the VQA model correctly answers “Is the image healthy?" (left), it incorrectly answers yes to

“Are there hard exudates here?" for a specified retinal region (right).

that it outperforms state-of-the-art methods for consistency, without compromising overall

performance accuracy.

5.2 Method

We present here our approach, which consists of using a simple VQA model with a training

protocol that encourages consistency among pairs of perception and reasoning questions.

Fig. 5.2 illustrates this VQA model and our training approach.

5.2.1 VQA Model

Following [181], our VQA model, f : I×Q→P(A), takes a tuple containing an image, x, and a

question, q, to produce a distribution, p = f (x,q), over a finite set of possible answers A (see

Fig. 5.2(Top)). After encoding the inputs, the VQA model combines visual (v) and textual (q)

features through an attention module (k) [182] that selects the visual features relevant to the

question (v ′). The final classifier receives a combination of the relevant features and the text

features through a fusion module to predict the final distribution.

In some cases, questions may be asking about content related to specific regions of the image

(e.g., “are there hard exudates in this region?”). To process these cases, the input image is

masked so that the visible area corresponds to the region mentioned in the question while the

rest of the image is set to zero.

Training this model requires a dataset T = {t (i ) = (x(i ),q(i ), a(i ))}N
i=1 ⊆ I×Q×A of images and

questions annotated with their answers. The VQA loss is simply the cross-entropy between

the predicted distribution and the real answer,

ℓVQA(p, a) = H(p, a) =− logpa . (5.1)
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While this loss alone is sufficient to reach a reasonable performance, it ignores the potentially

useful interactions that may exist among training questions.

Scores for all 
questions

Scores for main-sub 
questions only

Visual
Features

Text
Features

Scores

Visual
encoder

Text
encoder

Attention

Classifier
Multimodal

fusion

Attention
Vector(s)

Attended
visual

features

VQA model

Image

Question

Answer

FIGURE 5.2: Top: VQA model architecture. Bottom: Visualization of the training process with the
proposed loss. The total loss, ℓtot, is based on two terms: the conventional VQA loss, ℓVQA and our
proposed consistency loss term, ℓcons. The latter is computed only for pairs of main (reasoning)
and sub (perception) questions. Training mini-batches consist of main and sub-questions at
the same time, whereby sub-questions can consider specific regions of the image. Unrelated
questions (denoted with “ind") can also be included in training batches but do not contribute to

ℓcons.

5.2.2 Consistency Loss

We aim to improve the quality of our VQA model by exploiting the relationships between

reasoning and perception questions at training time. To this end, we augment the training

dataset with an additional binary relation ≺ over the set of questions Q. Two questions are

related, q(i ) ≺ q( j ), if q(i ) is a perception question associated to the reasoning question q( j ).

From hence on, we refer to perception questions as sub-questions and reasoning questions as
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main questions.

Following the terminology in [40], an inconsistency occurs when the VQA model infers the

main question correctly but the sub-question incorrectly. Using the entropy as a measurement

of incorrectness, we propose to impose the consistency at training time by penalizing the

cases with high H (i ) = H(p(i ), a(i )) and low H ( j ) = H(p( j ), a( j )) when q(i ) ≺ q( j ). To do this, we

use an adapted hinge loss that disables the penalty when H ( j ) is larger than a threshold γ> 0,

but otherwise penalizes large values of H (i ),

ℓcons(H (i ), H ( j )) = H (i ) max{0,γ−H ( j )}. (5.2)

The final cost function then minimizes the expected value of the VQA loss (5.1) for the elements

of the training dataset and the consistency loss (5.2) for the pairs of training samples with

≺-related questions,

Et∼T [ℓVQA(p, a)]+λE(t (i ),t ( j ))∼T 2 [ℓcons(H (i ), H ( j )) | x(i ) = x( j ),q(i ) ≺ q( j )], (5.3)

where λ> 0 controls the relative strength of both losses and T 2 is the Cartesian product of T
with itself, that is, all pairs of training samples.

To train, this cost is iteratively minimized approximating the expectations with mini-batches.

The two expectations of Eq. (5.3) suggest that two mini-batches are necessary at each iteration:

one mini-batch sampled from T and a second mini-batch of ≺-related pairs sampled from T 2.

However, in practice a single mini-batch is sufficient as long as we ensure that it contains pairs

of ≺-related questions. While this biased sampling could in turn bias the estimation of the

first expectation, we did not observe a noticeable impact in our experiments. Fig. 5.2(Bottom)

illustrates this training procedure.

5.3 Experiments and Results

5.3.1 DME Staging

DME staging from color fundus images involves grading images on a scale from 0 to 2, with 0

being healthy and 2 being severe (see Fig. 5.3). Differentiation between the grades relies on

the presence of hard exudates present in different locations of the retina. Specifically, a grade

of 0 implies that no hard exudates are present at all, a grade of 1 implies that hard exudates are

located in the retina periphery (i.e., outside a circular region centered at the fovea center with

radius of one optic disc diameter), and a grade of 2 when hard exudates are in the macular

region [158].
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5.3.2 Dataset

To validate our method, we make use of two publicly available datasets: the Indian Diabetic

Retinopathy Image Dataset (IDRiD) [156] and the e-Ophta dataset [183]. From the IDRiD

dataset, we use images from the segmentation and grading tasks, which consist of 81 and

516 images, respectively. Images from the segmentation task include segmentation masks for

hard exudates and images from the grading task only have the DME grade. On the other hand,

the e-Ophta dataset comprises 47 images with segmentation of hard exudates and 35 images

without lesions. Combining both datasets yields a dataset of 128 images with segmentation

masks for hard exudates and 128 images without any lesions, plus 423 images for which only

the DME risk grade is available.

In this context, we consider main questions to be those asking “What is the DME risk grade?"

when considering the entire image. Sub-questions were then defined as questions asking

about the presence of the hard exudates. For instance, as shown in Fig. 5.3(Right), “Are there

hard exudates in this region?" where the region designated contains the macula. In practice,

we set three types of sub-questions: “are there hard exudates in this image?", “are there hard

exudates in the macula?" and “are there hard exudates in this region?". We refer to these

three questions as whole, macula and region questions, respectively. For the region sub-

questions, we consider circular regions that can be centered anywhere, or centered on the

fovea, depending on availability of fovea center location annotations. As mentioned in Sec. 5.2,

to answer questions about regions, images are masked so that only the region is visible.

The total number of question-answer pairs in our dataset consists of 9779 for training (4.4%

Optic disc Circle with radius of one optic disc diameter Hard exudates x Fovea center
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Grade 0

x

Main: What is the DME 
grade? 
Answer: 0

Sub: Are there hard 
exudates in the image?
Answer: No

Grade 1

x

Main: What is the DME 
grade? 
Answer: 1

Sub: Are there hard 
exudates in the macula?
Answer: No

Grade 2

x

Main: What is the DME 
grade? 
Answer: 2

Sub: Are there hard 
exudates in this region?
Answer: Yes

FIGURE 5.3: DME risk grading. Grade 0 is assigned if there are no hard exudates present in the
whole image. Grade 1 is assigned if there are hard exudates, but only located outside a circle
centered at the fovea with radius of one optic disc diameter. Grade 2 is assigned if there are hard
exudates located within the circle. Examples of main and sub-questions are provided for each

grade.
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main, 21.4% sub, 74.2% ind), 2380 for validation (4.5% main, 19.2% sub, 76.3% ind) and 1311

for testing (10% main, 46.1% sub, 43.9% ind), with images in the train, validation and test sets

being mutually exclusive.

5.3.3 Experimental Setup

We compare our approach to a baseline model that does not use the proposed ℓcons loss,

equivalent to setting λ = 0. In addition, we compare our method against the attention-

matching method, SQuINT [40], as it is a state-of-the-art alternative to our approach that can

be used with the same VQA model architecture.

Our VQA model uses an ImageNet-pretrained ResNet101 [54] with input image of 448 ×
448 pixels and an embedding of 2048 dimensions for the image encoding. For text encoding, a

single-layer LSTM [52] network processes the input question with word encoding of length 300

and produces a single question embedding of 1024 dimensions. The multi-glimpse attention

mechanism [182] uses 2 glimpses and dropout rate 0.25, and the multimodal fusion stage

uses standard concatenation. The final classifier is a multi-layer perceptron with hidden layer

of 1024 dimensions and dropout rate of 0.25. Hyperparameters λ and γ were empirically

adjusted to 0.5 and 1.0, respectively.

All experiments were implemented using PyTorch 1.10.1 and run on a Linux machine with an

NVIDIA RTX 3090 graphic card using 16 GB of memory and 4 CPU cores. All methods use the

weighted cross-entropy as the base VQA loss function. Batch size was set to 64, and we used

Adam for optimization with a learning rate of 10−4. Maximum epoch number was 100 and we

use early stopping policy to prevent overfitting, with patience of 20 epochs 1.

We report accuracy and consistency [40] performances, using two different definitions of

consistency for comparison. Consistency, C1, is the percentage of sub-questions that are

answered correctly when the main question was answered correctly. Consistency, C2, is

the percentage of main questions that are answered correctly when all corresponding sub-

questions were answered correctly.

5.3.4 Results

Table 5.1 shows the results. We compare these results to the case in which the value of λ is 0,

which corresponds to the baseline in which no additional loss term is used. For each case,

we present the overall accuracy and the accuracy for each type of question, as well as the

consistency values. Fig. 5.4 illustrates the performance of each method with representative

qualitative examples.

In general, we observe that our proposed approach yields increases in accuracy and con-

sistency when compared to both the baseline and SQuINT. Importantly, this increase in

1Our code and data are available at https://github.com/sergiotasconmorales/consistency_vqa
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Case
Accuracy Consistency

overall grade whole macula region C1 C2
Baseline (no att.) 77.54 73.59 81.37 83.37 76.66 81.70 91.86
Baseline (att.) 81.46 80.23 83.13 87.18 80.58 89.21 96.92
Baseline (att.) + SQuINT [40] 80.58 77.48 82.82 85.34 80.02 88.17 94.62
Baseline (att.) + Ours (λ= 0.5,γ= 1) 83.49 80.69 84.96 87.18 83.16 94.20 98.12

TABLE 5.1: Average test accuracy and consistency values for the different models. Results shown
are averaged over 10 models trained with different seeds. Accuracy values are presented for all
questions (overall), for main questions (grade) and for sub-questions (whole, macula and region).

Both measures of consistency are shown as well.

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region?

Are there hard exudates in this region?

0 0 0 0

NO YES NO NO

Are there hard exudates in the macula? NO NO NO NO

NO

NO

YESNO NO

NO NOYES

Type

main

sub

sub

sub

sub

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

1 2 2 2

YES NO NO NO

Are there hard exudates in the macula? NO YES YES NO

Type

main

sub

sub

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region*?

Are there hard exudates in this region*?

2 2 2 2

YES YES YES YES

Are there hard exudates in the macula? YES YES YES YES

YES

YES

YESNO YES

YES YESYES

Type

main

sub

sub

sub

sub

*Regions located at fovea center, with radius smaller than 1 optic disc diameter (See Fig. 3)

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

0

NO

NO

Are there hard exudates in the macula? NO

YES

NO

Type

main

sub

sub

2 0 0

NO

NO YES

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

1 2 2 2

YES NO NO NO

Are there hard exudates in the macula? NO YES YES NO

Type

main

sub

sub

FIGURE 5.4: Qualitative examples from the test set. Inconsistent sub-answers are highlighted in
red. Additional examples are shown in Appendix C.

consistency is not at the expense of overall accuracy. Specifically, this indicates that our loss

term causes the model to be correct about sub-questions when it is correct about main ques-
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λ γ
Accuracy Consistency

overall grade whole macula region C1 C2

0 - 81.46 80.23 83.13 87.18 80.58 89.21 96.92

0.2 0.5 82.01 80.38 83.59 86.56 81.36 90.93 97.38

0.2 1 82.65 79.77 83.97 86.64 82.30 93.22 97.51

0.2 1.5 83.05 81.22 84.27 87.33 82.53 93.23 97.56

0.3 0.5 82.34 79.92 83.59 87.71 81.74 92.32 97.31

0.3 1 83.27 80.53 84.58 87.25 82.91 94.01 98.10

0.3 1.5 83.28 80.84 84.43 87.48 82.86 93.28 98.29

0.4 0.5 82.87 80.69 84.89 87.02 82.30 92.66 96.66

0.4 1 82.97 80.15 83.97 86.72 82.69 93.91 98.23

0.4 1.5 83.33 80.08 84.20 86.87 83.17 93.96 97.77

0.5 0.5 82.54 81.07 83.66 88.02 81.81 91.87 97.73

0.5 1 83.49 80.69 84.96 87.18 83.16 94.20 98.12

0.5 1.5 83.25 79.92 84.58 86.95 83.01 94.20 98.12

TABLE 5.2: Average test accuracy and consistency values for different values of the parameters λ
and γ. The first row (λ = 0) corresponds to no consistency enhancement method.

tions. The observed increase in accuracy also indicates that our approach is not synthetically

increasing consistency by reducing the number of correct answers on main questions [40]. We

note that SQuINT results in a reduction in accuracy and consistency, which can be partially

explained by the presence of region questions that are not associated to any main question.

These questions, which exceed the number of main questions, may affect the constraint in the

learned attention maps.

Table 5.2 shows the effect of λ and γ on the performance metrics. As expected, we notice that

when λ increases, the consistency of our approach increases as well and will occasionally

deteriorate overall accuracy. The impact of γ however is less evident, as no clear trend is visible.

This would imply that the exact parameter value used is moderately critical to performances.

5.4 Conclusion

In this work, we presented a novel method for improving consistency in VQA models in cases

where answers to sub-questions imply those of main questions and vice-versa. By using a
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tailored training procedure and loss function that measures the level of inconsistency, we show

on the application of DME staging, that our approach provides important improvements in

both VQA accuracy and consistency. In addition, we show that our method’s hyperparameters

are relatively insensitive to model performance. In the future, we plan to investigate how this

approach can be extended to the broader case of unconstrained question relations.
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6 Logical Implications for Visual Ques-
tion Answering Consistency

The previous chapter presented a method to encourage a VQA method to be more consistent

by considering pairs of reasoning and perception questions and their relationship. While this

consideration is useful for imposing a more consistent behavior, the relation of main and sub

(or reasoning and perception) between QA pairs requires assumptions about the nature of the

questions. We observe that a more general definition of consistency is required, and explore,

from the perspective of logic, the possible relations that can exist between the propositions

that the QA pairs represent.

The present work presents a more general framework for consistency enforcement and as-

sessment. We make use of concepts from logic in order to establish a more robust definition

of inconsistency. Then, we encourage the model to provide more consistent answers by in-

tegrating annotations about logical relations between pairs of propositions into the training

process. Since these annotations are not commonly included in VQA datasets, we propose

an auxiliary method to predict them. We evaluate our method on multiple architectures and

across different datasets with both natural and medical images, showing that our consistency

framework improves the overall performance of the model while reducing inconsistencies.
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6.1 Background and previous work

6.1.1 Background

VQA models have drawn recent interest in the computer vision community as they allow text

queries to question image content. This has given way to a number of novel applications in the

space of model reasoning [185–188], medical diagnosis [105, 126, 127, 129] and counterfactual

learning [189–191]. With the ability to combine language and image information in a common

model, it is unsurprising to see a growing use of VQA methods.

Despite this recent progress, however, a number of important challenges remain when making

VQAs more proficient. For one, it remains extremely challenging to build VQA datasets that

are void of bias. Yet this is critical to ensure subsequent models are not learning spurious

correlations or shortcuts [118]. This is particularly daunting in applications where domain

knowledge plays an important role (e.g., medicine [147, 153, 164]). Alternatively, ensuring that

responses of a VQA are coherent, or consistent, is paramount as well. That is, VQA models

that answer differently about similar content in a given image imply inconsistencies in how

the model interprets the inputs. A number of recent methods have attempted to address this

using logic-based approaches [176], rephrashing [178], question generation [170, 175, 177] and

regularizing using consistency constraints [149]. In this work, we follow this line of research

and look to yield more reliable VQA models.

We wish to ensure that VQA models are consistent in answering questions about images.

This implies that if multiple questions are asked about the same image, the model’s answers

VQA
Is it the middle of summer? Yes

YesIs there snow on the ground?

VQA
Is it the middle of summer?

It is the middle of summer There is no snow on the ground

No

YesIs there snow on the ground?

Relation

Conventional VQA

Inconsistent

Consistent

Our Method

FIGURE 6.1: Top: Conventional VQA models tend to produce inconsistent answers as a con-
sequence of not considering the relations between question and answer pairs. Bottom: Our
method learns the logical relation between question and answer pairs to improve consistency.
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should not contradict themselves. For instance, if one question about the image in Fig. 6.1

asks “Is there snow on the ground?", then the answer inferred should be consistent with that

of the question “Is it the middle of summer?" As noted in [40], such question pairs involve

reasoning and perception, and consequentially lead the authors to define inconsistency when

the reasoning and perception questions are answered correctly and incorrectly, respectively.

Along this line, [149] uses a similar definition of inconsistency to regularize a VQA model meant

to answer medical diagnosis questions that are hierarchical in nature. What is critical in both

cases, however, is that the consistency of the VQA model depends explicitly on its answers, as

well as the question and true answer. This hinges on the assumption that perception questions

are sufficient to answer reasoning questions. Yet, for any question pair, this may not be the

case. As such, the current definition of consistency (or inconsistency) has been highly limited

and does not truly reflect how VQAs should behave.

To address the need to have self-consistent VQA models, we propose a novel training strategy

that relies on logical relations. To do so, we re-frame question-answer (QA) pairs as propo-

sitions and consider the relational construct between pairs of propositions. This construct

allows us to properly categorize pairs of propositions in terms of their logical relations. From

this, we introduce a novel loss function that explicitly leverages the logical relations between

pairs of questions and answers in order to enforce that VQA models be self-consistent. How-

ever, datasets typically do not contain relational information about QA pairs, and collecting

this would be extremely laborious and difficult. To overcome this, we propose to train a

dedicated language model that infers logical relations between propositions. Our experiments

show that we can effectively infer logical relations from propositions and use them in our

loss function to train VQA models that improve state-of-the-art methods via consistency. We

demonstrate this over two different VQA datasets, against different consistency methods, and

with different VQA model architectures.

6.1.2 Previous Work

Since its initial presentation in Antol et al. [39], VQA has thoroughly advanced. Initial de-

velopments focused on multimodal fusion modules, which combine visual and text embed-

dings [186, 192]. From basic concatenation and summation [39] to more complex fusion

mechanisms that benefit from projecting the embeddings to different spaces, numerous ap-

proaches have been proposed [106, 110, 166]. The addition of attention mechanisms [107,

186, 192] and subsequently transformer architectures [27] has also contributed to the cre-

ation of transformer-based VLM, such as LXMERT, which have shown state-of-the-art perfor-

mances [115].

More recently, methods have proposed to improve other aspects of VQA, including avoid-

ing shortcut learning and biases [193, 194], improving 3D spatial reasoning [195], Out-Of-

Distribution (OOD) generalization [118, 196], improving transformer-based vision-language

models [197, 198], external knowledge integration [199, 200] and model evaluation with visual
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and/or textual perturbations [201, 202]. With the awareness of bias in VQA training data,

some works have also addressed building better datasets (e.g., VQAv2.0 [135], VQA-CP [136],

CLEVR [145] and GCP [29]).

Furthermore, these developments have now given rise to VQA methods in specific domains.

For instance, the VizWiz challenge [34, 35, 203] aims at creating VQA models that can help

visually impaired persons with routine daily tasks, while there is a growing number of Med-VQA

works with direct medicine applications [105, 126, 127, 129].

Consistency in VQA

Consistency in VQA can be defined as the ability of a model to produce answers that are not

contradictory. This is, given a pair of questions about an image, the answers predicted by a

VQA model should not be contrary (e.g.answering “Yes" to “Is it the middle of summer?" and

“Winter" to “What season is it?"). Due to its significance in reasoning, consistency in VQA has

become a focus of study in recent years [40, 170, 176, 178, 188]. Some of the first approaches

for consistency enhancement focused on creating re-phrasings of questions, either by dataset

design or at training time [178]. Along this line, entailed questions were proposed [170, 176],

such that a question generation module was integrated into a VQA model [175, 177], used as a

benchmarking method to evaluate consistency [180] or as a rule-based data-augmentation

technique [170]. Other approaches tried to shape the embedding space by imposing con-

straints in the learned representations [179] and by imposing similarities between the attention

maps of pairs of questions [40]. Another work [149] assumed entailment relations between

pairs of questions to regularize training. A more recent approach attempts to improve consis-

tency by using graph neural networks to simulate a dialog in the learning process [188].

While these approaches show benefits in some cases, they typically only consider that a subset

of logical relationships exists between pairs of question-answers or assume that a single rela-

tion holds for all QA pairs. Though true in the case of re-phrasings, other question generation

approaches cannot guarantee that the produced questions preserve unique relations or that

grammatical structure remains valid. Consequently, these methods often rely on metrics that

either over or under-estimate consistency by relying on these assumptions. In the present

work, we propose a strategy to alleviate these limitations by considering all logical relations

between pairs of questions and answers.

Entailment Prediction

Natural Language Inference (NLI), or Recognizing Textual Entailment (RTE), is the task of

predicting how two input sentences (namely premise and hypothesis) are related, according to

three pre-established categories: entailment, contradiction and neutrality [204]. For example,

if the premise is “A soccer game with multiple males playing" and the hypothesis is “Some

men are playing a sport," then the predicted relation should be an entailment, because the
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hypothesis logically follows from the premise. Several benchmarking datasets (e.g., SNLI [205],

MultiNLI [206], SuperGLUE [207], WIKI-FACTCHECK [208] and ANLI [209]) have contributed

to the adaption of general-purpose transformer-based models like Bidirectional Encoder

Representations from Transformers (BERT) [48], RoBERTa [210] and DeBERTa [211] for this

task. In this work, we will leverage these recent developments to build a model capable of

inferring relations between propositions.

6.2 Method

Given an image x ∈ I, a question q ∈Q about the image and a set A= {a1, . . . , aK } of possible

answers to choose from, a VQA model is expected to infer the answer â ∈A that matches the

true answer a∗. This can be formulated as,

â = argmax
a∈A

p(a|x,q;θ), (6.1)

where θ represents the parameters of the VQA model.

In this context, we observe that two QA pairs (qi , ai ) and (q j , a j ) for the same image x can have

different kinds of logical relations. In the simplest case, the two pairs may be unrelated, as

with the pairs (“Is it nighttime?”, “Yes”) and (“Is there a bench in the image?”, “No”). Knowing

that one of the pairs is true gives no information about the truth value of the other.

On the other hand, two pairs may be related by a logical implication, as in the pairs (“Is the

horse brown?", “No") and (“What is the color of the horse?", “White"). Knowing that the

second pair is true implies that the first pair must be true as well. Conversely, if the first pair

is false (the horse is brown), it implies that the second pair must also be false. In this case,

the first pair is a necessary condition for the second one or, equivalently, the second pair is a

sufficient condition for the first one.

Finally, it can be that two QA pairs are related by a double logical implication, as with the pairs

(“Is this a vegetarian pizza?”, “Yes”) and (“Does the pizza have meat on it?”, “No”). The veracity

of the former implies the veracity of the latter, but the veracity of the latter also implies the

veracity of the former. In this case, each pair is simultaneously a necessary and sufficient

condition for the other pair, and both pairs are then equivalent.

Note that the logical implication existing between two QA pairs is an intrinsic property of

the QA pairs, and does not depend on the correctness of the predictions coming from a VQA

model. If a VQA model considers a sufficient condition true and a necessary condition false, it

is incurring an inconsistency regardless of the correctness of its predictions.

Since logical implications are the basis of reasoning, we propose to explicitly use them when

training a VQA model to reduce its inconsistent predictions. Unfortunately, doing so requires

overcoming two important challenges: (1) a strategy is needed to train VQA models with logical
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relations that leverage consistency in a purposeful manner. Until now, no such approach has

been proposed; (2) VQA datasets do not typically contain logical relations between pairs of QA.

Acquiring these manually would, however, be both time-consuming and difficult.

We address these challenges in this work by formalizing the idea of consistency and treating

QA pairs as logical propositions from which relations can comprehensively be defined. Using

this formalism, we first propose a strategy to solve (1) and train a VQA model more effectively

using logical relations and the consistency they provide (Sec. 6.2.2). We then show in Sec. 6.2.3

how we infer relations between pairs of propositions, thereby allowing standard VQA datasets

to be augmented with logical relations.

6.2.1 Consistency Formulation

We begin by observing that QA pairs (q, a) can be considered and treated as logical propositions.

For instance, the QA (“Is it winter?", “Yes") can be converted to “It is winter," which is a logical

proposition that can be evaluated as true or false (i.e., its truth value). Doing so allows us

to use a broad definition of consistency, namely one that establishes that two propositions

are inconsistent if both cannot be true at the same time [212]. In the context of this work,

we assume the truth value of a proposition (q, a) is determined by an agent (either a human

annotator or the VQA model) after observing the information contained in an image x.

Let D = I×Q×A be a VQA dataset that contains triplets (x(n),q(n)
i , a(n)

i ), where x(n) is the n-th

image and (q(n)
i , a(n)

i ) is the i -th question-answer pair about x(n). In the following, we omit

the index n for succinctness. For a given image x, we can consider a pair of related question-

answers as (qi , ai ) and (q j , a j ) as a pair of propositions. Following propositional logic notation,

if both propositions are related in such a way that (qi , ai ) is a sufficient condition for the

necessary condition (q j , a j ), we write that (qi , ai ) → (q j , a j ). For convenience, this arrow

notation can be adapted to indicate different orderings between the necessary and sufficient

conditions:

• (qi , ai ) ← (q j , a j ) if the proposition (qi , ai ) is a necessary condition for (q j , a j ).

• (qi , ai ) ↔ (q j , a j ) if the propositions (qi , ai ) and (q j , a j ) are equivalent, i.e., both are

simultaneously necessary and sufficient. Note that this is just notational convenience

for the double implication (qi , ai ) → (q j , a j )∧ (q j , a j ) → (qi , ai ), and in the following

derivations the double arrow will be always considered as two independent arrows.

• Finally, we will write (qi , ai )− (q j , a j ) if the propositions (qi , ai ) and (q j , a j ) are not

related.

If a VQA model is asked questions qi and q j about an image x and there exists a relation

(qi , ai ) → (q j , a j ), the answers of the model will be inconsistent whenever it provides answers

âi = ai and â j ̸= a j (i.e., the model evaluates the first proposition as true and the second
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proposition as false). More generally, for a pair of necessary and sufficient conditions, the agent

will be inconsistent if it evaluates the necessary condition as false and the sufficient condition

as true [212]. In what follows, we exploit these ideas to quantify model inconsistencies in

our experiments and to develop a new loss function that encourages logically consistent VQA

models.

6.2.2 Logical Implication Consistency Loss

The core aim of our method is to encourage the VQA model to avoid inconsistent answers.

When training, assume that the model receives an image x from D and two associated propo-

sitions (q1, a1) and (q2, a2) that are related by a logical implication (q1, a1) → (q2, a2). We

define,

πi =π
(
(qi , ai ),x

)= p(ai | x,qi ;θ), (6.2)

as the probability assigned by the VQA model that the proposition (q, a) is true for the image x.

The model has a high probability of incurring an inconsistency if it simultaneously gives a high

probability π1 to the sufficient condition and a low probability π2 to the necessary condition.

We thus define our consistency loss as a function,

ℓcons(x, (q1, a1), (q2, a2)) =−(1−π2) log(1−π1)−π1 log(π2), (6.3)

that takes an image and a pair of sufficient and necessary propositions, and penalizes pre-

dictions with a high probability of inconsistency. As illustrated in Fig. 6.2, ℓcons is designed

to produce maximum penalties when π1 = 1 and π2 < 1 (i.e., when the sufficient condition is

absolutely certain but the necessary condition is not), and when π2 = 0 and π1 > 0 (i.e., when

the necessary condition can never be true but the sufficient condition can be true). At the

same time, ℓcons produces minimum penalties when either π1 = 0 or π2 = 1, as no inconsis-

tency is possible when the sufficient condition is false or when the necessary condition is true.

Interestingly, despite its resemblance, ℓcons is not a cross-entropy, as it is not an expectation

over a probability distribution.

Our final loss is then a linear combination of the consistency loss and the cross-entropy loss

ℓVQA typically used to train VQA models. Training with this loss then optimizes,

min
θ
ED[ℓVQA]+λE((xi ,qi ,ai ),(x j ,q j ,a j ))∼D2

xi=x j ,(qi ,ai )→(q j ,a j )

[ℓcons], (6.4)

where the first expectation is taken over the elements of the training set D and the second

expectation is taken over all pairs of necessary and sufficient propositions from D defined for

the same image. In practice, we follow the sampling procedure described in [40, 149], where

mini-batches contain pairs of related questions. The hyperparameter λ controls the relative

strength between the VQA loss and the consistency term.
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FIGURE 6.3: LI-MOD: Approach to predict logical relations between pairs of propositions. A
BERT-based NLP model is first pre-trained on the SNLI dataset [205] to solve a Natural Language
Inference task and subsequently fine-tuned with annotated pairs from a subset of Introspect
dataset [40]. The resulting model is used to predict the relations of the remaining part of the

dataset.

6.2.3 Inferring Implications

By and large, VQA datasets do not include annotations with logical relations between question-

answers pairs, which makes training a VQA with ℓcons infeasible. To overcome this, we propose

to train a language model to predict logical implications directly and use these predictions

instead. We achieve this in two phases illustrated in Fig. 6.3 and refer to our approach as the

Logical-Implication model (LI-MOD).

First, we pre-train BERT [48] on the task of Natural Language Inference using the SNLI

dataset [205], which consists of pairs of sentences with annotations of entailment, contradic-

tion or neutrality. In this task, given two sentences, a language model must predict one of the
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mentioned categories. While these categories do not exactly match the logical implication

relevant to our objective, they can be derived from the entailment category. To this end, given

two propositions (qi , ai ) and (q j , a j ), we evaluate them using the finetuned NLI model in

the order (qi , ai ), (q j , a j ), and then repeat the evaluation by inverting the order, to evaluate

possible equivalences or inverted relations. If the relation is predicted as neutral in both

passes, the pair is considered to be unrelated.

Then, we finetune the NLI model on a sub-set of annotated pairs from the VQA dataset

Introspect [40]. In practice, we use a subset of binary QA pairs that were manually annotated

with logical implications. Even though the relation need not be limited to binary questions

(i.e., yes/no questions), we chose to do so because the relation annotation is simpler than

for open-ended questions. Since BERT expects sentences and not QA pairs, these were first

converted into propositions using Parts Of Speech (POS) tagging [213] and simple rules that

apply to binary questions (e.g., to convert “Is it winter?," “Yes" we invert the first two words of

the question and remove the question mark). After finetuning the model, the relations were

predicted for the remaining part of the dataset. Further implementation details on this are

given in 6.3.3.

6.3 Experiments and Results

We evaluate our proposed consistency loss function on different datasets and using a variety

of VQA models.

6.3.1 Datasets

Introspect [40]

Contains perception questions (or sub-questions) created by annotators for a subset of reason-

ing questions (or main questions) of the VQA v1.0 and v2.0 datasets [39, 135]. It contains 27,441

reasoning questions with 79,905 sub-questions in its training set and 15,448 reasoning ques-

tions with 52,573 sub-questions for validation. For images that have the same sub-question

repeated multiple times, we remove duplicates in the sub-questions for every image in both

the train and validation sets.

DME Dataset [149]

Consists of retinal fundus images for the task of DME staging. It contains 9,779 QA pairs

for training, 2,380 QA pairs for validation and 1,311 QA pairs for testing. There are three

types of questions in the dataset: main, sub, and independent questions. Main questions

ask about diagnosis information (i.e.the stage of the disease) and sub-questions ask about

the presence and location of biomarkers. Sub-questions are further subdivided into grade

questions, questions about the whole image, questions about a region of the eye called macula,
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and questions about random regions in the image. To enable questions about image regions,

we follow the procedure described in [149], whereby only the relevant region is shown to the

model.

6.3.2 Baseline Methods and Base Models

We consider 3 different consistency enhancement baseline methods. To ensure fair compar-

isons, all methods use the same VQA base models and only differ in the consistency method

used. These consist in:

- None: Indicating that no consistency preserving method is used with the VQA model. This

corresponds to the case where λ= 0.

- SQuINT [40]: Optimizes consistency by maximizing the similarity between the attention

maps of pairs of questions. As such, it requires a VQA model that uses guided attention.

- CP-VQA [149]: Assumes entailment relations and uses a regularizer to improve consistency.

VQA Architectures

We show experiments using three VQA models depending on the dataset used. For exper-

iments on Introspect, we make use of the BAN model [107], as its structure with guided

attention allows the use of SQuINT. In addition, we evaluate the vision-language architecture

LXMERT [115] on this dataset to evaluate improvement in state-of-the-art, transformer-based

VQA models. For experiments on the DME dataset, we use the base model described in [149],

which we denote by MVQA.

6.3.3 Implementation Details

LI-Model

We first pre-train BERT on SNLI for 5 epochs until it reaches a maximum accuracy of 84.32% on

that dataset. For this pre-training stage, we initialize BERT with the bert-base-uncased weights

and use a batch size of 16. We use a weight decay rate of 0.01 and the AdamW optimizer

with a learning rate of 2 ·10−5. The same setup was kept to finetune the model on a subset of

2’000 pairs of propositions from Introspect which were manually annotated (distribution of

labels being: ← 60%,↔ 17%,−12%,→ 11%), and an additional 500 pairs were annotated for

validation. Notice that LI-MOD is only necessary for the Introspect dataset since, for the DME

dataset, the implications annotations are available.
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VQA Models

For our base models, we use the official and publicly available implementations (BAN [214],

LXMERT [115] and MVQA [149]) with default configurations. We re-implemented SQuINT [40]

and used the provided implementation of CP-VQA [149], reporting the best results, which

were obtained with λ= 0.1,γ= 0.5 for BAN and λ= 0.5,γ= 1 for MVQA (parameters refer to

original implementations). For SQuINT, we set the gain of the attention map similarity term to

0.5 for BAN and 1.0 for MVQA. For Introspect, we train 5 models with different seeds for each

parameter set and for DME, we train 10 models with different seeds. To train LXMERT, BAN

and MVQA, we use batch sizes of 32, 64 and 128, respectively. Regarding the VQA cross-entropy

loss, we follow the original implementations and use soft scores for the answers in LXMERT

and categorical answers for BAN and MVQA.

6.3.4 Quantifying Consistency

Given a test set T = {tn}|T |
n=1, where tn = (x,q, a) is a test sample triplet, we wish to measure the

level of consistency of a VQA model p. To this end, we define the set of implications G(T ) ⊂ T 2

as the collection of all pairs of test samples ((xi ,qi , ai ), (x j ,q j , a j )) for which (qi , ai ) → (q j , a j )

and xi = x j , and the set of inconsistencies Ip (T ) produced by the VQA model as the subset

of G(T ) that contains the pairs for which the model evaluated the sufficient condition as true

and the necessary condition as false,

Ip (T ) = {(ti , t j ) ∈G(T ) | ep ((qi , ai ),x)∧¬ep ((q j , a j ),x)}.

The function ep returns the truth value of the proposition (q, a) for image x evaluated by the

VQA model p,

ep ((q, a),x) = [â = a], (6.5)

where â is the answer of maximum probability following Eq. (6.1). In other words, ep returns

whether the estimated answer for question q matches the answer of the proposition a. Finally,

the consistency ratio c for model p on the test set T is the proportion of implications in G(T )

that did not lead to an inconsistency,

cp (T ) = 1− |Ip (T )|
|G(T )| . (6.6)

6.3.5 Results

Performance Comparison

For both datasets, we first compare the performance of our method against the baseline

consistency methods in Tables 6.1 and 6.2. In either case, we see that our method outperforms

previous approaches by not only increasing overall prediction accuracy but also by increasing

consistency. In Figures 6.4 and 6.5, we show illustrative examples of our approach on the
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Is the person about to do a trick?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is the woman sitting down? Yes

Relation

Is the elephant alive?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is the elephant a statue? Yes

Relation

Are the zebras crossing a wide river?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: Yes

Yes Are the zebras in the water? Yes

Relation

FIGURE 6.4: Qualitative examples from the Introspect dataset using BAN as backbone. Red siren
symbols indicate inconsistent cases.

Introspect and DME datasets, respectively (see additional examples in Appendix D).

In Table 6.1, we also show the performance of the state-of-the-art LXMERT VQA model when

combined with our method. In this case, too, we see that our method provides increased

performance via consistency improvements. Here we investigate the performance induced

when flipping the answers of one of the members of each related pair at test time. Suppose

implication labels are present, either by manual annotation or by LI-MOD. In that case, a

trivial manner of correcting an inconsistent QA pair of binary answers is to flip or negate

Model Cons. Method Acc. Cons.

BAN

None 67.14±0.10 69.45±0.17
SQuINT [40] 67.27±0.19 69.87±0.45
CP-VQA [149] 67.18±0.24 69.52±0.45
Ours (λ= 0.01) 67.36±0.19 70.38±0.39

LXMERT

None 75.10±0.10 76.24±0.63
Random flip 69.67±1.24 75.99±3.91
Flip first 73.81±0.47 71.94±2.82
Flip second 65.82±1.03 87.56±2.51
Ours 75.17±0.08 78.75±0.21

TABLE 6.1: Results of different consistency methods on the Introspect dataset using two different
VQA models: Top: BAN, bottom: LXMERT. In the case of LXMERT, we show the impact of
randomly flipping the answer of either the first or the second question for related pairs. Similarly,
flip first and flip second refer to flipping the answer to the first and second question in inconsistent

pairs, respectively.
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Model Consis. Method
Accuracy

Consistency
all grade whole macula region

MVQA

None 81.15±0.49 78.17±2.07 83.44±1.87 87.25±1.20 80.38±2.02 89.95±3.20
SQuINT [40] 80.58±0.78 77.48±0.40 82.82±0.74 85.34±0.87 80.02±1.03 89.39±2.12
CP-VQA [149] 83.49±0.99 80.69±1.30 84.96±1.14 87.18±2.18 83.16±1.09 94.20±2.15
Ours (λ= 0.25) 83.59±0.69 80.15±0.95 86.22±1.67 88.18±1.07 82.62±1.02 95.78±1.19

TABLE 6.2: Comparison of methods on the DME dataset with common MVQA backbone. Accuracy
and consistency are reported for all questions, as well as for different medically relevant sub-

question categories: grade, whole, macula and region.

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 2 
Ans. SQuINT: 2
Ans. CP-VQA: 2
Ans. Ours: 2

Ans. None: No 
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

2 Are there hard exudates in this region? Yes

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

0 Are there hard exudates in this region? No

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 2
Ans. CP-VQA: 2
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

0 Are there hard exudates in the image? No

Relation

FIGURE 6.5: Examples from the DME dataset and comparison of methods. Red siren symbols
indicate inconsistent cases. DME is a disease that is staged into grades (0, 1 or 2), which depend
on the number of visual pathological features of the retina. Top and middle: Although all methods
correctly predict the answer to the first question, some inconsistencies appear when a necessary
condition is false. Bottom: Only the None baseline produces an inconsistency. Note that SQuINT
and CP-VQA’s answers do not produce inconsistent pairs because both questions were answered

incorrectly, and those answers (“2" and “yes") respect all known relations.

one of the answers. This is far simpler than our proposed method as it permits training the

VQA model with the standard VQA loss. Having obtained the answers from the model when

λ= 0, we identify the related pairs and then flip the answers (1) either randomly, (2) of the

first QA or (3) of the second QA. By including the flipping baselines, we confirm that the

added complexity in training our method results in improved accuracy compared to merely

correcting inconsistencies post-hoc. Increases in consistency at the expense of accuracy are

explained by the fact that an inconsistent QA pair guarantees that one of the two answers is

incorrect, but correcting the inconsistency does not necessarily fix the incorrect answer. This

phenomenon is particularly noticeable in the flipping baselines, as they fix inconsistencies

without considering their correctness.
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FIGURE 6.6: Behavior of the accuracy and consistency as a function of λ with 95% confidence
intervals. Left: LXMERT trained on the Introspect dataset (5 models with random seeds for each
value of λ). Right: MVQA trained on the DME dataset (10 models with random seeds for each λ).

In general, we observe that training LXMERT with our consistency loss provides performance

gains. Indeed, while random flipping based on LI-MOD clearly deteriorates the performance

of LXMERT, so does flipping the first or second answers. This implies that our proposed

method indeed leverages the predictions of LI-MOD to make LXMERT more consistent as it

improves both model accuracy and consistency.

Sensitivity of λ

We now show the sensitivity of our method and its relation to λ. We evaluate the performance

of our method for different values of λ to understand the behavior of the performance, both in

terms of accuracy and consistency.

Fig. 6.6 shows the accuracy and consistency of LXMERT and MVQA for different values of λ.

The difference in the ranges of the values is due to the relative magnitude of the loss function

terms and depends on the used loss functions (e.g., binary and non-binary cross-entropy) and

the ground-truth answer format (i.e., soft scores for LXMERT, as mentioned in Sec. 6.3.3).

In general, we observe very similar behavior for the accuracy, which increases and then slowly

decreases as λ increases. We sustain that the maximum value the accuracy can reach is

established by the number of related pairs that are still inconsistent after training with λ= 0.

In other words, the limitations in size impose a limit on how much our method can improve

the accuracy. For LXMERT on Introspect, for instance, our model corrected 4,553 (78.9%) of

the 5’771 existing inconsistencies and introduced new inconsistencies by mistakenly altering

1,562 (3.5%) of the 44,111 consistent samples.

Regarding consistency, we observe a constant increase as λ increases. The simultaneous

decrease in accuracy as λ increases suggests that the relative weight of the consistency loss

dominates so that the model no longer focuses on optimizing the cross-entropy. Since it is

possible to be consistent without answering correctly, the optimization process results in an
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Sentence 1 Sentence 2True Pred.

The dog is 
asleep

The dog's eyes
are not open 

The birds are 
in flight

The birds are 
in the air

The girl is 
funny

The girl has 
a funny face

This is not a 
vegan meal

FPR

T
P

R

There is meat 
in the meal

The elephant 
is not alive

The elephant 
is a statue

The weather 
is not bad

There isn't 
snow

The cat is not 
typing a text 
message

The cat's 
paws are not 
on the phone0.0 0.2 0.4 0.6 0.8 1.0

0.0
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ROC curve (area = 0.86)

Used operating point (t=0.5)

FIGURE 6.7: Left: Receiver Operating Characteristic (ROC) for the entailment class of our LI-MOD
in validation. Right: Qualitative examples of LI-MOD’s predictions.

increase in consistency at the expense of accuracy for higher values of λ. However, it is clear

from these results that there is a set of λ values for which both metrics improve.

LI-MOD Performance

We report that the finetuning of BERT on the subset of annotated relations from Introspect

produced 78.67% accuracy in the NLI task. We analyze the performance of this model for

entailment and report an AUC value of 0.86, which indicates good generalization capability

considering that only ≈ 2% of the dataset was annotated with relations. In addition, the overlap

in the QA pairs between the train and validation sets of the Introspect dataset is only 1.12% for

binary questions. This shows that our LI-MOD is generalizing to variations in questions and to

new combinations of QA pairs. Fig. 6.7 shows the ROC curve for entailment and examples of

LI-MOD’s predictions. Some of the observed sources of errors in LI-MOD include negations,

unusual situation descriptions (e.g., a cat typing a text message), and image-specific references

(e.g., “is this animal real?").

6.4 Conclusion

In this paper, we propose a model-agnostic method to measure and improve consistency in

VQA by integrating logical implications between pairs of questions in the training process.

We also present a method to infer implications between QA pairs using a transformer-based

language model. We conduct experiments to validate the generalizability and robustness of

our consistency loss against several baselines and across different datasets. Our results show

that our method reduces incoherence in responses and improves performance. Future work

includes creating a larger dataset with human-annotated relations to use as a general-purpose

relations database for VQA training.
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7 Discussion and Conclusion

The previous four chapters presented solutions addressing two specific challenges in Med-

VQA: localized questions and consistency. On the one hand, localized questions (i.e., inquiries

about specific regions of an image) enhance the ability to perform localized assessments of

image contents, proving particularly valuable in diagnosing and offering second opinions

on suspicious regions. Furthermore, having the possibility of asking localized questions has

implications for model evaluation, allowing for the examination of agreement both within

localized questions and between local and global questions. This approach provides more

nuanced insights into the model’s actual visual understanding. On the other hand, consis-

tency directly involves the quality of the model’s reasoning. Avoiding contradictions and

correctly quantifying them becomes a crucial aspect of Med-VQA models, influencing their

trustworthiness and potential applicability in the medical practice.

In this chapter, we provide a summary of the findings of the presented works, and discuss

their relevance, limitations and significance.
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Chapter 7. Discussion and Conclusion

7.1 Discussion

7.1.1 Localized Questions

In Chapters 3 and 4, we introduced two methods that enable asking localized questions in

VQA, with a focus on medical images. The first approach (Chapter 3) utilizes the traditional

guided-attention mechanism, allowing the model to learn, for a given question, which parts

of the image are most relevant. We employ a binary mask to integrate the region’s location

information in such a way that the model initially considers the evidence from the whole

image, and then restricts the attention to the region. In the second approach (Chapter 4),

we extend localized questions to MLLMs by creating targeted visual prompts, involving a

customized visual prompt with information about the region and its context in the image.

In both of the presented works, the significance of context became apparent in the results,

to the extent that a model can rely solely on context to achieve high performance, specially

when the regions encompass only a small portion of a much larger object (Sec. 4.3.4). While

this observation is evident, it raises the question of how much emphasis should be placed

on context when answering a localized question. That is, to what extent should the global

understanding of the image influence the final answer to the localized question. We argue

that this depends on the size of the region relative to the object(s) about which the question is

posed. In cases where the region fully contains the object, more importance could be assigned

to the region rather than the context. In other scenarios, our localized attention method

(Chapter 3) suggests that the context should be leveraged in a sequential manner, mirroring

the way a human would answer the question: first considering the entire image in relation

to the question to identify relevant structures, and then focusing attention on the region to

make a more detailed decision about its contents. Our method in Chapter 3 replicates this by

injecting the binary mask of the target region into the attention mechanism. One limitation of

this way of incorporating the region is that the sub-sampling process of the mask can remove

details from the contour of the region, potentially causing errors specially when the region is

not rectangular. Our second methods mitigates this issue by allowing the model to separately

analyze both the entire image and the region.

In Chapter 4, the method presented demonstrates its effectiveness in integrating region-based

queries into MLLMs. In essence, the findings align closely with those of our localized attention

method. Specifically, the targeted visual prompting method proves to be more effective in

datasets like DME-VQA or RIS-VQA, where both the region’s contents and the context are

mutually crucial for answering the questions. These datasets also exhibit fewer spurious

correlations between the region’s location/size and its answer, a characteristic that, in the case

of INSEGCAT-VQA, leads to certain baselines relying on shortcuts.

Another crucial aspect to consider regarding localized questions is their applicability to real

world scenarios in general VQA vs. medical VQA. In this regard, we sustain that applications in

the medical domain are easier to envision, due to their potential usefulness in diagnosis, where

86



7.1 Discussion

a localized understanding of the image tends to be more relevant. In the presented works,

we make use of three medical datasets. The surgical datasets (RIS-VQA and INSEGCAT-VQA)

were created due to the availability of the segmentation annotations, but they do not entirely

illustrate a real-world application of localized questions, since the usefulness of the questions

is restricted to the detection of surgical instruments.

For natural images, region-defined questions tend to be asked less, in part because of the

human tendency to point instead of selecting a region [165]. This, however, does not imply

that this type of questions is irrelevant for natural images. As discussed earlier, the evaluation

of a model’s compositional understanding of and reasoning about the reality expressed by

an image is an important emerging field. One possible application of localized questions for

natural images is the evaluation of a model’s reasoning, as discussed later in Sec. 7.1.3.

7.1.2 Consistency Enhancement

Chapters 5 and 6 introduced two methodologies for enhancing consistency in VQA mod-

els. Both approaches leverage a specialized loss function term during training to penalize

instances of inconsistency. The primary distinction between the two lies in the definition

of consistency and the mathematical function employed to formulate the specialized loss

term. In the first method (Chapter 5), questions are categorized as either main (reasoning) or

sub (perception), based on the abstract reasoning level required from the model to answer

them. This categorization is used to penalize inconsistent cases with a loss term employing

cross-entropy as a measure of correctness. In the second method (Chapter 6), a more general

framework is proposed. Here, QA pairs are treated as propositions, enabling the application

of a more general definition of consistency to pairs linked by an implication relation. Incon-

sistent cases are then penalized using a loss function that provides high values whenever

inconsistent cases occur, contributing to the overall robustness of the model.

Given the pivotal role of consistency in reasoning [40, 180, 188], models exhibiting fewer

contradictory or inconsistent answers are perceived as better reasoners. A model that answers

“yes" to both “is the pizza vegetarian?" and “is there chicken on the pizza?" is indicative of

reasoning issues. As observed, the origin of such contradictions may reside in one or more VQA

elements. The language model might struggle with accurate associations, the vision encoder

could generate erroneous features, or the block that combines language and vision might

encounter difficulties in aligning features. Additionally, the issue might stem from the data

itself, where the dataset’s distribution affects the model’s ability to develop a comprehensive

understanding of terms like "vegetarian" due to insufficient examples or biases present in the

dataset. In our presented approaches, we adopt a more comprehensive approach, considering

the entire VQA model, and strive to enhance consistency for the given dataset.

To enhance consistency, it is crucial to establish an appropriate definition that is both general

enough to encompass any pair of QA pairs and robust enough to avoid under and overcounting

inconsistent cases. In Chapter 5, following [40], we use a definition of consistency based on
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the distinction between reasoning and perception questions. Under this definition, two QA

pairs are inconsistent for a given image if the answer to the main question is correct while

the answer to the sub-question is incorrect. One limitation of this definition is its subjectivity

in distinguishing between reasoning and perception; for instance, the question “is the car

damaged?" could be perceived as either reasoning or perception, depending on the image

depicting the car. A picture of a car with scratches and dents would require simply the

detection of such deformations (perception), whereas a picture of a car in an accident scene

with oil leaks would require the composition of various perception tasks and prior knowledge.

Another flaw in this definition is its exclusive focus on questions, neglecting the consideration

of answers. Furthermore, it assumes an implication relation from the main question qm to

the sub-question qs (i.e., qm → qs). This assumption is not always valid and stems from the

disregard of the answers in the categorization process. For instance, consider the pairs (qm : “is

the person about to do a trick?", am : “no") and (qs :“is the person sitting?", as : “yes"). In

this scenario, the actual implication relation, considering both questions and answers, is

(qm , am) ← (qs , as). If the model predicts “no" to both questions (i.e., the sub-question is incor-

rect but the main question is correct), the pair, according to this definition, would be counted

as inconsistent. This, however, overlooks the fact that there is no inherent contradiction

between a person not being about to do a trick and a person not sitting.

To address these issues, Chapter 6 introduces a general definition of consistency for VQA

that relies on the specific modal relation that exists between QA pairs, which are treated

as propositions. According to this definition, a pair of QA is considered inconsistent if the

propositions implied by them cannot simultaneously be true. This definition is useful for

imposing consistency at training time as well as for measuring consistency, as demonstrated

in our study. However, a drawback of this approach lies in the assignment of implications to

pairs of propositions, as the validity of such implications is not universally applicable in many

cases. For example, in the pair, p =(“is it summer?", “no") and q =(“is there snow?", "yes"),

the implication p ← q may generally hold, but exceptions exist (e.g., a glacier in Switzerland or

a city in Norway) where the presence of snow does not necessarily negate the occurrence of

summer. In this case, we argue that adopting the most general implication (p ← q) is more

advantageous for the model. The model would naturally learn exceptions to these general

rules based on the samples within the dataset. Consequently, the accuracy and quality of data

annotations become critical for developing models with enhanced consistency.

When examining consistency, a critical aspect that deserves analysis is its relationship with

accuracy. Since a higher consistency does not necessarily imply increased accuracy, it is worth

breaking down the potential interactions that can occur for a pair of QA (or propositions).

Considering the related binary QA pairs (q1, a1) → (q2, a2), as described in Chapter 6, the pair

will be deemed inconsistent when the model produces answers â1 and â2 satisfying â1 = a1

and â2 =¬a2. In the ideal scenario, the model would correct the answer to q2 from ¬a2 to

a2 while maintaining â1 = a1, thereby resolving the inconsistency and improving accuracy

simultaneously. However, two other outcomes could also render the pair consistent: (¬a1, a2)
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and (¬a1,¬a2). The former enhances consistency while maintaining the same accuracy, and

the latter improves consistency at the expense of accuracy. In contrast to previously proposed

methods that compromise accuracy [40, 170, 175], our proposed methods demonstrate that

the model is encouraged to rectify inconsistencies by altering the incorrect answer in the pair,

as opposed to changing both answers or modifying the one corresponding to the sufficient

condition. This is a relevant outcome under the consideration that regularizers can reach

convergence after the main loss term [179].

Regarding the mathematical definitions of the proposed terms, certain limitations can be

identified. In the method presented in Chapter 5, the mathematical function requires a

hyperparameter γ to determine at which value of the cross-entropy of the main question the

penalty should be disabled. While effective in enhancing consistency, this loss term requires a

certain level of heuristic exploration to find the most effective value for γ, making the process

somewhat tedious. The generality of our second method removes the need to find the optimal

value of a hyperparameter other than the loss term gain. This, coupled with the absence of

abrupt changes in the function, constitutes a significant improvement.

7.1.3 Bridging Locality and Consistency

Localized questions and consistency, as discussed, are individually significant for localized

examination of images and reasoning, respectively. We will now explore how incorporating

localized questions into consistency enhancement can broaden the possibilities for evaluating

reasoning and visual understanding.

The primary advantage of this combination of localized questions and consistency is the

expansion of consistency evaluation from exclusively global-to-global to global-to-local and

local-to-local. Here global refers to questions about the entire image, and local refers to

localized questions. With this expansion, the consistency evaluation becomes more detailed

and localized, contributing to the reliability of the models. Consider, for instance, the questions

from the DME-VQA [149] that refer to the presence of hard exudates in the entire image and

in a specific region. Here, once again, we emphasize the dependence of consistency on the

answers since answering “yes" to the global question admits both “yes" and “no" responses

to the local question, depending on the location of the region. However, answering “no" to

the global question imposes, from the standpoint of consistency, a constraint in the answer

to the local questions. In this scenario, and assuming the prediction for the global question

is correct, the model should answer “no" to all region-based questions that inquire about

the same biomarker. We contend that this type of compositional evaluation can make the

consistency assessment of a model more robust, as its understanding of the image is tested at

both global and local levels, revealing possible shortcuts or perception errors.

In the local-to-local context, certain relevant reasoning failures could be detected (or ensured

to be absent). Revisiting the questions about hard exudates in the DME-VQA dataset, we

underscore the importance of answers to identical questions concerning cases where a region
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r1 contains another one, r2, with ar ea(r1) > ar ea(r2). Given the question q =“are there hard

exudates in this region?" we observe that an affirmative answer to qr2 implies an affirmative

answer to qr1 and that a negative answer to qr1 implies a negative answer to qr2 . These implica-

tions enable the identification of inconsistencies in which the model alters its prediction when

exposed to more or less context, respectively. This, however, should be analyzed carefully

since the mentioned implications do not apply to all types of images/questions.

In both extensions of consistency mentioned, namely global-to-local and local-to-local, the ap-

proaches presented in this work emphasize the need for models capable of answering localized

questions by considering context while also respecting the precise boundaries and contents

of regions. Simultaneously, these models should assimilate knowledge about implication

violations to enhance performance and overall reasoning capabilities.

7.2 Conclusion

In conclusion, this thesis has delved into the principles of VQA in the medical domain, focusing

on two key aspects: enabling localized queries and enhancing consistency. The exploration

of these dimensions of Med-VQA contributes to a nuanced understanding of medical image

interpretation and reasoning. The devised methodologies, from introducing localized atten-

tion mechanisms and a visual prompting technique for MLLMs to proposing a logic-centric

method for consistency, mark noteworthy advances in addressing the challenges posed by

VQA in medical scenarios. Furthermore, several Med-VQA datasets were created and made

publicly available, fostering research efforts within the research community in the domains of

localized questions and consistency.

The work on localized questions introduces novel ways for users to query specific regions

of medical images, supporting a more targeted and informative interaction with the model.

This has implications for clinical applications, offering potential benefits in diagnosis, second

opinions, and overall medical image analysis.

Conversely, the in-depth considerations regarding consistency in VQA models reveal its critical

role in improving reasoning capabilities. The presented methods penalize inconsistent cases

at training time, resulting in higher consistency and overall performance during inference,

thereby showing the adequacy of the enhancement techniques.

By intertwining the realms of localized queries and consistency, this work paves the way for

a comprehensive approach to robustness in Med-VQA. This combination not only refines

the assessment but also exposes the models to diverse challenges that go beyond global

information, ensuring a more robust and trustworthy performance.

In essence, this thesis contributes to the evolving landscape of medical VQA by introducing

approaches that enhance interpretability, reasoning, and reliability. As the field continues to

advance with the adoption of larger models, the insights and methodologies presented herein
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offer valuable perspectives, emphasizing the ongoing quest for more accurate, consistent, and

context-aware Med-VQA systems.
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8 Future Work

The evolution of VQA and Med-VQA has been remarkably rapid in the last years, both at the

architectural and data levels. Initially, the structure comprised a simple combination of an

RNN, a CNN, a multiplication operation, and a classifier. Over time, this has transformed

into sophisticated MLLMs with billions of parameters, forming complex stacks of layers with

attention mechanisms at their core.

On the data front, datasets have expanded to encompass millions of questions, addressing

existing biases and incorporating additional information such as scene graphs [29]. The LLMs

responsible for reasoning in MLLMs are trained on internet-scale datasets with hundreds

of billions of words. Despite these advancements, visual understanding and multimodal

reasoning remain pertinent topics [100, 215–217] that deserve the attention of the research

community.

Taking into account these advancements and the works presented in this thesis, this chapter

delineates directions and considerations for future work in the domains of consistency and

localized questions.
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8.1 Localized Questions

Regarding the data used to train models that answer localized questions, a natural progression

from our current focus on binary questions is the integration of non-binary inquiries. Our

study was limited to binary questions due to the absence of publicly available VQA datasets

featuring questions about regions or other datasets with spatial annotations beyond segmenta-

tion masks. In future developments, the formulation of questions could include a spectrum of

topics, including anatomical descriptions (e.g., “which organ is in this region?"), comparisons

(e.g., “how does this region compare to a healthy counterpart in the image?"), spatial rela-

tionships (e.g., “what structures or organs are adjacent to this region?"), functional questions

(e.g., “what is the organ in the region responsible for?"), pathological descriptions (e.g., “what

pathological findings or abnormalities are in this region?"), diagnostic questions (e.g., “what

diagnostic information can be derived from the organ in this region?"), etc.

Creating datasets for such diverse questions would require active involvement from clinical

experts in the generation of each QA pair, as well as carefully considering inter-expert vari-

ability to minimize biases in the datasets. Alternatively, leveraging heavily annotated medical

datasets could automate the generation of questions. Ideally, a wide range of modalities such

as CT, MRI, X-Ray, and OCT, among others, should be included to enhance the applicability

of Med-VQA models in clinical practice. Moreover, questions and answers should accurately

reflect the style and specialized terminology employed by medical professionals, a goal that

could be feasibly attained through the utilization of LLMs.

Prioritizing the minimization of biases in the data is imperative, particularly considering the

potential impact of object size on answer distribution. For instance, in an image with few

and small lesions, generating localized questions about healthy tissue might be easier than

those about abnormal tissue. These data balance considerations are crucial to reduce model

reliance on spurious correlations based on object location or size.

Regarding our method from Chapter 3 for localized questions, further developments could in-

volve exploring alternative architectures in the text and image embedding blocks. For instance,

for the text encoder, investigating the efficacy of the RWKV architecture [218] combining RNNs

with transformers could be a possibility. Additionally, investigating alternative multimodal

fusion approaches, like bilinear pooling, could potentially improve performance.

A more drastic modification could involve adopting an attention pyramid, where attention

maps are created at different depths of the visual encoder’s features. This might address the

potential loss of region detail when applying the resized binary mask to visually attended

features when the region shape is complex.

Furthermore, delving deeper into the role of glimpses for localized questions could refine the

model’s handling of redundancy. Observations during experimental development showed

instances where one glimpse focuses on the object mentioned in the question while another

highlights a different part of the image. Investigating this aspect can contribute to a more
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nuanced and effective localized questioning approach.

Concerning our efforts in Chapter 4, alternative approaches might explore the use of CNNs

for encoding the image, either independently or in conjunction with ViTs. Such an approach

could facilitate a direct mapping of visual tokens to the input image and potentially allow for

a combination of both proposed methods. In this scenario, visual features could undergo

filtering based on the target regions (localized attention), enabling the LLM to receive locally

attended visual tokens.

8.2 Consistency Enhancement

Similar to the scenario of localized questions, the incorporation of non-binary questions

for consistency enhancement represents a crucial advancement. This extension allows for

a more comprehensive examination of the model’s reasoning capabilities and language un-

derstanding. In our exploration using the Introspect-VQA dataset (Chapter 6), we exclusively

employed binary questions due to the intricacies associated with assigning modal relations

to non-binary QA pairs. However, the annotations regarding implications could be acquired

during dataset creation or generated by a sophisticated LLM. Leveraging the recent progress

in LLMs, these models could serve as auxiliary tools for logical reasoning/knowledge. By

learning from extensive text data and building associations, LLMs more closely resemble

human learning of implications, which takes place in different forms (experience, deductive

and inductive reasoning, error correction, etc. ). This, linked to the work of this thesis, corre-

sponds to upgrading LI-MOD in the method from Chapter 6. An added advantage of using a

pre-trained LLM is its potential for zero-shot operation, drawing on the knowledge abstracted

from extensive training data.

For the work presented in Chapter 5, envisioning a dynamic tuning of the hyperparameter γ

could be explored. However, this should be performed under the revised definition of consis-

tency (Chapter 6), considering the limitations associated with the main-sub categorization, as

discussed earlier. Finding new functions for the loss term could also represent an interesting

avenue for further development.

Refining the consistency definitions offers another potential direction, with a focus on con-

sidering the context provided in the image to weigh the applied implications. That is, a more

robust definition could relax the implication relation based on the contents of the image. For

instance, in the previously examined example (“is it summer?", “no") ← (“is there snow?",

"yes"), the implication relation holds for most cases, but exceptions exist. A more nuanced

definition of consistency for VQA could adapt the implication relation based on the specifics

of the image contents: if the image shows snow at the top of a mountain, the chances that the

relation does not hold increase as compared to an image showing snow on a street in New

York.

With respect to the method in Chapter 6, testing more advanced architectures, such as
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OFA [120], BEIT-3 [219], or other VLMs, could be pursued to evaluate the method’s effective-

ness. In this context, the increased capacity and pre-training of these models are anticipated

to lead to enlarged consistency. Our method is expected to provide additional benefits in

addressing contradictions beyond what increased overall performance can bring.

Finally, exploring human-in-the-loop approaches represents another avenue where models

could learn to avoid contradictions by leveraging error feedback provided by humans.

8.3 Bridging Locality and Consistency

We now explore potential avenues for future research at the intersection of localized questions

and consistency enhancement.

In the realm of real-world clinical applications, a promising area for investigation involves

evaluating the trustworthiness of VQA models. This could entail engaging medical experts

with VQA models featuring varying levels of consistency to assess their trust in the system.

Questions about regions would be included, allowing the experts to probe the model in a

more dynamic and interactive way. Such interaction would provide insights into the types

of contradictions that may impact specialists’ reluctance to adopt these models in clinical

practice.

Another avenue pertinent to clinical environments is the development of MLLM-based med-

ical assistants with consistency enhancement mechanisms. Due to the availability of large

datasets, this could be conceived first for pathology and radiology images, building on recent

efforts [220–222], but should then be expanded to other modalities and should integrate the

option to ask questions about user-defined regions. These assistants would enable users to

pose questions of any kind (text-only, image, or region) while ensuring coherence in responses.

With reference to dataset creation, there is a need for the development of more robust datasets

incorporating both localized questions and relation annotations. This development would

address the challenges outlined previously for each scenario, ensuring the availability of

diverse QA pairs that put the model to the test in terms of relations between propositions that

also involve prior knowledge (e.g., presence of biomarkers that imply a certain disease).

One significant advancement over implication relations involves the inclusion of more than

two propositions. Scenarios could be envisioned where multiple propositions collectively lead

to a conclusion (i.e., A1∧A2∧...∧AN → B). Here, the propositions Ai , i = 1, ..., N can be treated

as one single proposition, allowing the application of the same definition of consistency from

Chapter 6. If a model assigns true to Ai , i = 1, ..., N but false to B , the set of propositions

will be considered inconsistent. Importantly, the individual pairs {(A1,B), ..., (AN ,B)} are

not considered inconsistent, since the implication relation requires the evaluation of all

propositions simultaneously. This can be useful for diagnosis decisions requiring the presence

of N biomarkers in the image, or in certain regions. An extension could also be made for
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cases where the question contains prior information about the patient not present in the

image, such as findings from previous images (i.e., longitudinal information) or blood work

results. In such scenarios, the question would assert a proposition, and could be included in

the consistency evaluation as a complement to the propositions implied by QA pairs.

Enhancing the evaluation of consistency in the context of localized questions may require

optimizing metrics. Assigning different weights to inconsistencies based on the extent of

the visual information associated with the violated implication relation could be a strategic

approach. Deeming local-to-local inconsistencies as more critical than global-to-global

inconsistencies seems intuitive, given that the former involve less visual information and

should be more manageable for the model to address. Global questions often require higher-

level reasoning and the composition of various perception tasks, hence, imposing more

significant penalties on seemingly straightforward cases appears justifiable. This, of course,

rests on the assumption that the model can answer both types of questions at a comparable

level.

Another possible direction for future work in localized questions and consistency is the devel-

opment of explainability and interpretability methods. These methods aim to summarize the

model’s performance and attempt to explain its predictions. For instance, global predictions

could be deconstructed into local predictions about non-overlapping regions, showcasing the

extent to which the model’s interpretation of the entire image can be decomposed into an

understanding of its constituent parts (compositional VQA). Other approaches could be de-

vised to test a model’s comprehension of an image by identifying regions for which the model’s

answers contradict the response to a global question. Such an approach may uncover objects

or structures that the model confuses with those mentioned in the question, contributing to a

deeper understanding of model behavior.
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Appendix A. Localized Questions in Medical Visual Question Answering

Original image Crop region Draw region Ours

Yes Yes Yes

No No

No No

is
 t

h
e
re

 b
ip

o
la

r 
fo

rc
e
p

s
in

 t
h
is

 r
e
g

io
n
?

No Yes Yes Yes

No YesNo

is
 t

h
e
re

 b
ip

o
la

r 
fo

rc
e
p

s
in

 t
h
is

 r
e
g

io
n
?

Yes

Yes YesNoNo

No

is
 t

h
e
re

 l
a
rg

e
 n

e
e
d

le
d

ri
v
e
r 

in
 t

h
is

 r
e
g

io
n
?

is
 t

h
e
re

 b
o
n
n
 f

o
rc

e
p

s
in

 t
h
is

 r
e
g

io
n
?

is
 t

h
e
re

 e
y
e
 r

e
tr

a
ct

o
rs

in
 t

h
is

 r
e
g

io
n
?

a
re

 t
h
e
re

 h
a
rd

 e
x
u
d

a
te

s
in

 t
h
is

 r
e
g

io
n
?

a
re

 t
h
e
re

 h
a
rd

 e
x
u
d

a
te

s
in

 t
h
is

 r
e
g

io
n
?

Yes

Yes

Yes

Yes

YesYes No

No

FIGURE A.1: Additional qualitative examples from the RIS-VQA (rows 1-3), INSEGCAT-VQA (rows
4-5) and DME-VQA (last two rows) datasets. The first column shows the image, the region, and
the ground truth answer. Other columns show the overlaid attention maps and the answers

produced by each model. Wrong answers are shown in red.
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Instrument
Method

Ignore
mask

Region in Text
Crop

Region
Draw Region Ours

Eye retractors 0.500
±0
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0.882
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Cap. forceps 0.500
±0

0.804
±0.039

0.905
±0.010

0.932
±0.018

0.908
±0.010

Phaco. handpiece 0.500
±0

0.717
±0.037

0.900
±0.008

0.920
±0.003

0.952
±0.003

Charleux cannula 0.500
±0

0.841
±0.044

0.826
±0.029

0.915
±0.016

0.925
±0.016

Lens injector 0.500
±0

0.773
±0.006

0.941
±0.003

0.927
±0.007

0.917
±0.007

Cap. cystotome 0.500
±0

0.789
±0.009

0.938
±0.006

0.934
±0.002

0.953
±0.001

Primary knife 0.500
±0

0.846
±0.011

0.954
±0.003

0.926
±0.008

0.941
±0.004

Hydro. cannula 0.500
±0

0.865
±0.006

0.939
±0.004

0.945
±0.006

0.940
±0.004

A/I handpiece 0.500
±0

0.877
±0.021

0.935
±0.006

0.906
±0.004

0.938
±0.001

TABLE A.1: Average test AUC for different methods on INSEGCAT-VQA.
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B Targeted Visual Prompting for Medi-
cal Visual Question Answering

Method
Accuracy (%)

Overall Grade Whole Macula

No Mask 60.50 81.13 76.42 85.85
Region in Text 64.75 79.25 83.96 82.08
Crop Region 86.05 80.19 83.96 84.91
Draw Region 86.18 79.25 83.02 83.02
Context Only 82.61 76.42 87.74 90.57
Ours 89.29 79.25 83.96 84.91

TABLE B.1: Accuracy for the DME-VQA dataset by question type.
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FIGURE B.1: Error analysis by region location for the four strongest baselines for the RIS-VQA
dataset. The maps are obtained by adding binary masks representing the regions for all QA pairs

in each category and then normalizing.
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Q: Is there monopolar curved 
scissors in this region?

Ground Truth

Context only

Draw region

Ours

Yes

Yes

Yes

No

Q: Is there prograsp forceps in 
this region?

Ground Truth

Context only

Draw region

Ours

Yes

No

Yes

Yes

Q: Is there large needle driver in 
this region?

Ground Truth

Context only

Draw region

Ours

Yes

No

No

Yes

Q: Is there prograsp forceps in 
this region?

Ground Truth

Context only

Draw region

Ours

No

Yes

Yes

No

Q: Is there vessel sealer in this 
region?

Ground Truth

Context only

Draw region

Ours

Yes

Yes

No

No

Q: Is there large needle driver in 
this region?

Ground Truth

Context only

Draw region

Ours

Yes

No

Yes

Yes

Q: Is there rycroft cannula in this 
region?

Ground Truth

Context only

Draw region

Ours

No

No

No

Yes

Q: Is there suture needle in this 
region?

Ground Truth

Context only

Draw region

Ours

No

Yes

Yes

No

Ground Truth

Context only

Draw region

Ours

Yes

Yes

No

No

Q: Is there phaco. handpiece in 
this region?

Q: Is there eye retractors in this 
region?

Ground Truth

Context only

Draw region

Ours

No

Yes

Yes

No

Q: Is there visco. cannula in this 
region?

Ground Truth

Context only

Draw region

Ours

Yes

Yes

Yes

No

Ground Truth

Context only

Draw region

Ours

Yes

No

Yes

Yes

Q: Is there rycroft cannula in this 
region?

Q: Are there hard exudates in 
this region?

Ground Truth

Context only

Draw region

Ours

No

No

Yes

Q: Are there hard exudates in 
this region?

Ground Truth

Context only

Draw region

Ours

No

No

No

Q: Are there hard exudates in 
this region?

Ground Truth

Context only

Draw region

Ours

No

No

No

Yes

Q: Are there a hard exudates in 
this region?

Ground Truth

Context only

Draw region

Ours

Yes

No

Yes

Yes

Q: Are there hard exudates in 
this region?

Ground Truth

Context only

Draw region

Ours

Yes

No

No

Yes

Q: Are there hard exudates in 
this region?

Ground Truth

Context only

Draw region

Ours

No

Yes

Yes

NoYesYes
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FIGURE B.2: Additional examples for DME-VQA (rows 1 and 2), RIS-VQA (rows 3 and 4) and
Insegcat-VQA (rows 5 and 6).
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C Consistency-preserving Visual Ques-
tion Answering in Medical Imaging

= 0.1

Overall

Main

= 0.2 = 0.3 = 0.4 = 0.5

Whole

Macula

Regions

Consistency
(C1)

Consistency
(C2)

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

85

84

83

82

81

80

79

84

82

80

78

76

84

86

88

82

80

84

86

88

82

90

84

82

80

78

76

98

96

94

92

90

88

86

84

82

98

99

100

97

96

95

94

93

FIGURE C.1: Effect of the variation of the hyperparameters λ and γ, for each metric. The first 5
rows refer to accuracy for all questions (overall), for main questions (main) and for sub-questions
(whole, macula and regions). The last two rows correspond to the consistency. In general, a
higher value of λ leads to a higher consistency, which is the expected behavior. High values of

both parameters can produce a decrease in the accuracy of main questions.

122



What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region?

0 0 0 0

NO YES NO NO

Are there hard exudates in the macula? NO NO NO NO

NO YES NO

Type

main

sub

sub

sub YES

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

0

NO

NO

NO

Are there hard exudates in the macula? NO

YES

NO

Type

main

sub

sub

0 0 0

NO

NO

*Regions located at fovea center, with radius smaller than 1 optic disc diameter (See Fig. 3)

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region?

Are there hard exudates in this region?

Are there hard exudates in the macula?

YES

NO NONO

YES

Type

main

sub

sub

sub

sub

2 2 2 2

YES

YES

YES

YES

YES YES YES

YES YES YES

YES

*Regions located at fovea center, with radius smaller than 1 optic disc diameter (See Fig. 3)

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region?

Are there hard exudates in this region?

Are there hard exudates in the macula?

YES

NO NO

YES

Type

main

sub

sub

sub

sub

2 2 2 2

YES

YES

YES

YES

YES YES YES

YES YES YES

NO

YES

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

NOAre there hard exudates in the macula?

Type

main

sub

sub

NO

2 2 0 2

YES

YES

YES

YES

YES

YES

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

0

YES

NO

Are there hard exudates in the macula? NO

YES

NO

Type

main

sub

sub

2 2 0

NO YES

YES

FIGURE C.2: Additional qualitative examples from the DME dataset. Inconsistent answers are
highlighted in red. A more consistent behavior is observed in our method in comparison to the
baselines (rows 1-2). Even though our method can make mistakes (rows 3-4), it also shows an

improvement in the performance on main questions (rows 5-6).
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D Logical Implications for Visual Ques-
tion Answering Consistency

Is this animal in captivity?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: No
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Is there a fence behind the zebra? Yes

Relation

Is one of the giraffes a baby?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: Yes
Ans. Ours: No

Yes Are all of the giraffes adults? No

Relation

Is it a party?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Do the people appear to be at work? Yes

Relation

Are these elephants wild?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Are the elephants fenced in? Yes

Relation

Is the sky clear?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Yes Are there clouds in the sky? No

Relation

FIGURE D.1: Additional qualitative examples from the Introspect dataset using BAN as the
backbone. Red siren symbols indicate inconsistent cases.
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Is the pizza vegetarian?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Ans. None: No 
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: No

Yes Is there any meat on the pizza? No

Relation

Is this a busy street?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Is there a lot of traffic on the street? Yes

Relation

Is it evening?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is it sunny? Yes

Relation

Is the dog being friendly
to the bird?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes 
Ans. SQuINT: No
Ans. CP-VQA: Yes
Ans. Ours: No

Yes Is the dog biting the bird? No

Relation

Is this meal vegan?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is there meat on the plate? Yes

Relation

Is this a vegan dish?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: No

Yes Is there meat? No

Relation

Is the ground damp?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Is the ground wet? Yes

Relation

FIGURE D.2: Additional qualitative examples from the Introspect dataset using BAN as the
backbone. Red siren symbols indicate inconsistent cases.
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Appendix D. Logical Implications for Visual Question Answering Consistency

Is this a sweet desert?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No 
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Does the desert have frosting? Yes

Relation

Is it wintertime?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: No

No Is there snow? No

Relation

Is this meal nutritious?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

Yes Is this food high in calories? No

Relation

Are the bananas ripe?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Yes Are the bananas ready to be eaten? Yes

Relation

Are these birds alive?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Are the birds eating? Yes

Relation

Are these animals real?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Are the animals made out of plastic? Yes

Relation

Do the girls appear to
 be in a home?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Yes Is the child at school? No

Relation

FIGURE D.3: Additional qualitative examples from the Introspect dataset using BAN as the
backbone. Red siren symbols indicate inconsistent cases.
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Is this room decorated
Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Yes

Relation

Is the pizza hot?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Is the cheese melted? Yes

Relation

Can people walk across the
Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

Yes Is there a street? Yes

Relation

Does the weather appear
to be pleasant?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Are the skies dark? Yes

Relation

Is the woman taking a selfie?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: Yes

Yes Is the woman holding a camera? Yes

Relation

Is the picture sepia?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

Yes Is the photo colorful? No

Relation

Can you ride this airplane?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: No

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

No Is the airplane smaller Yes

Relation

streets depicted in the image?

for the 1970s?
Are the decorations consistent

with the 1970's?

than the man?

FIGURE D.4: Additional qualitative examples from the Introspect dataset using BAN as the
backbone. Red siren symbols indicate inconsistent cases.
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Appendix D. Logical Implications for Visual Question Answering Consistency

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 2 
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 2

Ans. None: Yes 
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

2 Yes

Relation

Are there hard exudates in the image?

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

0 Are there hard exudates in this region? No

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: No

0 Are there hard exudates in the image? No

Relation

Are there hard exudates in this region?What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

0 No

Relation

Are there hard exudates in this region?What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 2
Ans. SQuINT: 2
Ans. CP-VQA: 2
Ans. Ours: 2

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

2 Yes

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0 
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

0 No

Relation

Are there hard exudates in this region?

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 2

Ans. None: No
Ans. SQuINT: No
Ans. CP-VQA: No
Ans. Ours: Yes

2 Are there hard exudates in the image? Yes

Relation

FIGURE D.5: Additional qualitative examples from the DME dataset using MVQA as the backbone.
Red siren symbols indicate inconsistent cases. DME is a disease that is staged into grades (0, 1 or

2), which depend on the number of visual pathological features of the retina.
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Are there hard exudates in this region?What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 2
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 2

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

2 Yes

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

0 Are there hard exudates in this region? No

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: No
Ans. SQuINT: Yes
Ans. CP-VQA: No
Ans. Ours: No

0 Are there hard exudates in this image? No

Relation

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 0 
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 0

Ans. None: Yes 
Ans. SQuINT: No
Ans. CP-VQA: Yes
Ans. Ours: Yes

0 No

Relation

Are there hard exudates in this region?

What is the DME grade for this image?

Question 1 Question 2 Ans. 2Ans. 1

Ground Truth

Ans. None: 2 
Ans. SQuINT: 0
Ans. CP-VQA: 0
Ans. Ours: 2

Ans. None: Yes 
Ans. SQuINT: Yes
Ans. CP-VQA: Yes
Ans. Ours: Yes

2 Yes

Relation
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FIGURE D.6: Additional qualitative examples from the DME dataset using MVQA as the backbone.
Red siren symbols indicate inconsistent cases.
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