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Abstract

Conformal field theories are associated with critical phenomena and phase transitions and also
play an essential role in string theory. Solving a conformal field theory (cft) is an extremely
constrained problem due to conformal invariance—the task essentially reduces to the computation
of a set of numbers called the cft data—yet it remains highly nontrivial. In fact, cfts usually
are strongly coupled and thus require new tools that do not rely on perturbation theory. For
these reasons, in the past few decades, they became one of the most active fields of research.
A natural extension of these ideas with far-reaching implications for condensed matter systems—in
which relativistic effects are not manifest—is to replace the Poincaré group by the Galilean group,
thereby opening the way to a precise formulation of a whole new class of critical phenomena in
terms of nonrelativistic conformal field theories (nrcfts). Many of the aforementioned tools
developed to gain a better formal understanding of cfts can then be adapted to gain a strong
predictive power in systems with direct experimental relevance.
In recent years, a new powerful tool has emerged: the large-charge expansion. It allows to
systemically uncover part of the cft data of theories with global symmetries, thereby revealing
profound and universal features of these systems. It complements the set of analytical tools
designed for the study of cfts, such as the various incarnations of the conformal bootstrap
program. Using an exact, non-perturbative property known as the state-operator correspondence,
most of the computations are further reduced to the evaluation of energy levels in a finite-density
system described by a large-charge effective field theory, usually associated with a conformal
superfluid phase. The large-charge dynamics in the nonrelativistic case is however richer—and
therefore, more challenging—than its relativistic counterpart. In this thesis, we discuss recent
progress which opened the door to many new exciting large-charge applications.
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Foreword

This thesis is based on the publications [1–4] by the author and his collaborators. The overarching
topic is the large-charge expansion in nrcfts. The structure of the thesis is the following.

1. Chapter I gives an overview of the topic, starting from its motivation and a discussion
of the context in which it fits. We propose a condensed matter invitation to understand
the relevance of certain real-life critical phenomena to the formal study of cfts. We then
discuss the main ingredients underlying the large-charge program in relativistic cfts, and
present a comprehensive overview of the current status of research in this field. This is used
as a reference point to present the state of the art in the nonrelativistic case, which allows
us to clearly formulate how the content of this thesis fits into this landscape. In passing,
we discuss the quantization of nrcfts in a way that sheds light on some of its surprising
properties.

2. Chapter II gives a coherent presentation of the results obtained in [1–3]. These contributions
marked a significant development in the nonrelativistic large-charge program. Indeed, large-
charge techniques are based on the effective field theory (eft) framework, expressing in
this context the emergence of simple collective behaviours—such as superfluidity—when
the number of particles in the system, that is, the charge, becomes large. The eft used
previously was a correct, albeit incomplete description of the large-charge dynamics. The
prescription to obtain the complete large-charge eft and the corresponding renormalization
procedure is the central object of the second chapter. In turn, this allows to prove the
universality of the leading quantum correction, which we compute in (2 + 1) and (3 + 1)
dimensions. Along the way, we discuss various equivalent prescriptions and schemes, account
for a soft breaking of conformal invariance and propose a clear physical picture underlying
the general large-charge expansion that we obtain.

3. Chapter III is based on [4]. It provides the first explicit verification of the nonrelativistic
large-charge eft predictions starting from a controlled microscopic description. The model
that we study is relevant to the description of certain real-life critical phenomena, thereby
echoing the discussion of the first chapter. We also include a small list of further microscopic
models which are expect to be captured by the large-charge eft.

4. Finally, in the outlook, we critically discuss our results and summarize the various suggestions
for future research that we make along the way.

In the large-charge context, we hope to convey the idea that the content of this thesis lays the
foundation for many important research projects in the future, as certain aspects of nrcfts have
been underexplored so far, partly due to the technical challenges that we have overcome.
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I Introduction

Quantum Field Theory (qft) was originally developed as the theoretical framework for the
description of interactions between fundamental particles and other problems in high-energy
physics. It has now evolved into a powerful way to phrase problems across most areas of modern
physics, from condensed matter and statistical physics to cosmology.

The main computational tool of qft is the path integral, which expresses correlation functions as
an average over all allowed field configurations, weighted by a phase factor given by the action:

⟨On(xn) . . .O1(x1)⟩ =
∫
DΦ On(xn) . . .O1(x1) eiS[Φ]∫

DΦ eiS[Φ] . (I.1)

In the absence of additional assumptions, analytic access to this quantity is too much to ask for
in general. However, from a formal perspective, this expression—or rather, its Euclidean version
where the phase factor becomes e−SE [Φ]—makes it clear that when there exists a leading trajectory
around which fluctuations are suppressed by some large factor, then one can consistently perform
a saddle-point approximation. Most useful applications of qft realize this scenario1, which
roughly fall in one of four categories.

• The action is that of a known theory deformed by interaction terms whose coupling constants
are small. The saddle-point approximation is then controlled by ℏ−1, thereby giving rise to
perturbation theory. The most common example is when the leading trajectory is Gaussian—
in which case the theory is said to be weakly coupled—as best illustrated by the successful
match between the theory of quantum electrodynamics and the corresponding experimental
data. But this also includes conformal perturbation theory as a way to explore the dynamics
of a system near criticality [9].

• The theory is strongly coupled, i.e. the coupling constants are not small, but there exists an
energy range in which observables are essentially not sensitive to field configurations with
large quantum fluctuations. The latter can therefore be integrated out, at least formally.
In practice, this is achieved by building an effective theory in terms of the reduced number
of effective degrees of freedom in this energy range. The corresponding path integral is
dominated by a leading trajectory with fluctuations suppressed by some large energy ratio

1Under additional constraints, some powerful tools can go much beyond the saddle-point approximations. Some
typically require supersymmetry. Examples are localization [5], integrability [6] and dualities broadly defined
(including holography [7]), see for instance [8].

1



Chapter I Introduction

controlling the saddle-point approximation. This is typically a low-energy phenomenon, e.g.
the pion Lagrangian, where the pions are the effective degrees of freedom resulting from
the strong quark interactions below a certain energy scale (∼ 1 GeV).

• A physical parameter is given—somewhat artificially—a large value that can be factored
out of the action, thereby controlling the corresponding saddle-point approximation. This is
for instance the famous ’t Hooft limit [10] or, more generally, the large-N limit [11], where
N is often the rank of a given global or gauge symmetry. Unlike the other scenarios, this is
a modification of theory itself, not just a statement about a subset of observables.

• The path integral is given some boundary conditions that correspond to preparing a
specific state carrying a large number of quanta, that is, a state that belongs to a large
irreducible representation. The corresponding large quantum number can for instance
be the spin [12–14] or a global charge [15–17], and this framework is now referred to as
the large quantum number expansion. A toy model for this is the hydrogen atom, whose
Hamiltonian H = p⃗2

2me
− ℏcα

r has energy levels given by En = E0
n2 . Here, me is the mass of

the electron, α is the fine-structure constant and E0 = − α2mec2

2 is the ground-state energy.
The corresponding wave-functions carry three quantum numbers: n ∈ N∗, l ∈ {0, . . . , n− 1}
and m ∈ {−l, . . . , l}. The latter labels the projection of the angular momentum on the
third axis. Of all the states with a fixed value of m, the one with the lowest energy has
m = n− 1, which yields Em+1 = E0

(m+1)2 . On the other hand, the classical minimization of
the energy E = 1

2mev
2 − ℏcα

r under the constraint of fixed angular momentum r⃗ × p⃗ = ℏm
gives Eclassic(m) = E0

m2 . One might argue that there is no reason to trust such a result, but
it turns out to coincide with the quantum result in the large-m limit. This is no coincidence.
It is due to the fact that, in this regime, the de Broglie wavelength λ ∼ r

m varies slowly
in the radial direction, indicating that the system ’classicalizes’ and a treatment based on
the WKB approximation is justified. Equivalently, this can be phrased in the path-integral
language, where the constrained path integral is dominated by the classical trajectory at
large m, see also [16] for an expanded discussion of the so-called rigid rotor. While this
is a simple quantum mechanical example, there exists a quantum field theory avatar of
it which is a cornerstone of the modern large quantum number expansion program: the
effective string theory description of the meson at large angular momentum J , where the
meson is modelled by a long quickly rotating string. This is to be thought of as the flux
tube connecting a quark/antiquark pair. At large J , the mass of the meson is found to be
of the form [18, 19]:

M2 = #J + #J 1
4 − 1

12 + O
(
J−1). (I.2)

Not only does it reproduce the famous Regge trajectory relation M2 ∼ J at leading-order,
but it also predicts a universal Regge intercept, namely, the J0 term.

Note that the second category, the one describing strongly-coupled theories admitting a particular
coarse-grained description, typically refers to processes taking place in the vacuum. This is
different from the last category, in which operators carrying large quantum numbers shift the
saddle away from the vacuum, and the theory is therefore semiclassically described in terms of a
certain phase of matter. The latter features some emergent collective behaviour characterized by
a reduced number of degrees of freedom. So the two situations are in fact very similar, and are
both captured by the effective field theory framework2. In the large quantum number expansion,

2The formal tools needed for eft constructions were first developed in the context of particle physics and we
shall therefore borrow some of the jargon associated with this field although, in the situations we will face, there
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Introduction Chapter I

this description is made in terms of the hydrodynamic Goldstone bosons associated with the
breaking of some spacetime and sometimes also internal symmetries, caused by the finite density
state. For instance, in the effective string theory example mentioned above, the relation Eq. (I.2)
is indeed obtained by carefully constructing the eft for the Goldstone bosons associated with
the breaking of translations transverse to the string.

Outline of the chapter

This thesis concerns general features of critical systems that are described in terms of a simple
phases of matter when a global internal charge—to be thought of as the number of particles
in the system (more on this later)—becomes large. This is the large-charge expansion [15–17]
mentioned above. In particular, we will focus on conformal superfluid states in nrcfts.

A good place to start the investigation of the possible emergence of collective behaviours describing
a large-charge phase is condensed matter. Indeed, unlike standard high-energy computations done
in the vacuum, it describes finite density phases of matter which emerge as effective descriptions of
the (often complicated) underlying quantum many-body system. This is what we propose to do in
Section I.1, where we give a standard—though slightly biased—description of the phenomenology
and the phase diagram of the cold Fermi gas, making no reference to the large-charge expansion.
Instead, we want to use these results to ask ’what does a high-energy theoretical physicist learn
from this condensed matter example?’.

As we advocate later in Section I.2, the distinction between vacuum state and finite density state
disappears in critical systems thanks to a powerful exact relation known as the state-operator
correspondence. The phenomenology of the cold Fermi gas thus serves as a precious guide
towards the understanding of certain properties of vacuum correlators in critical systems when
some operator insertions carry a large global charge. Although cold Fermi gases are intrinsically
nonrelativistic, this approach triggered an important series of formal developments in the context
of relativistic conformal field theories, which we review.

In Section I.3, we finally discuss the fate of the large-charge expansion in nrcfts. The purpose
of this thesis is convey the idea that nrcfts are in fact very well-suited for this program, for at
least three reasons:

• every nrcft possesses a global U(1) symmetry, associated with the number of particles in
the system;

• the state-operator correspondence establishes an astonishing connection with ultracold
atom experiments [20–22], in which the number of particles is always large, meaning that
theoretical predictions and experimental data can be compared directly;

• the kinematic constraints imposed by nonrelativistic conformal invariance [22] are somewhat
weaker than their relativistic counterpart, but the large-charge expansion is equally powerful
and even reveals a richer structure.

With this, we will be ready to enter the technical part of the thesis in Chapters 2 and 3.

will be no ’low-energy’ regime in the RG sense, but merely a coarse-grained description of a system developing
some collective behaviour. We hope this will be clear from the context.

3



Chapter I Introduction

I.1 A condensed matter invitation: cold atoms in a trap
We discuss some aspects of cold Fermi gases, see e.g. [23–25].

One of the major theoretical successes in quantum many-body physics was the description of
pairing in a cold Fermi gas by Bardeen, Cooper and Schrieffer almost 70 years ago [26, 27], which
has been known since then as bcs theory. The mechanism is simple and highly generic: at low
temperatures and in the presence of an attractive potential between the fermions, even very weak,
it is energetically favourable for the fermions close to the Fermi surface to pair up, thereby forming
Cooper pairs. The Fermi surface is therefore seen to be unstable at low temperatures against
any form of attractive interaction due to Cooper pairing and the ground state of the system
exhibits either superconductivity or superfluidity. Of course, Cooper pairing is not robust against
large thermal fluctuations, so this is an emergent phenomenon below a critical temperature Tc.
This said, at low enough temperatures, Cooper pairs can proliferate, causing a strong overlap
between them. They form a stable collective condensate: breaking this phase requires to break
all Cooper pairs, not just individual ones. This is the bcs energy gap. Perhaps the most striking
aspect of bcs theory is the fact that it does not depend on the underlying mechanism causing
the attractive potential between the fermions, therefore entailing a sense of universality.

In a metallic superconductor, the weakly attractive interaction can be seen as the consequence of
the local distortion of the ionic crystal (the ’lattice of atoms’) by a freely moving electron. This
causes a local excess of positive charge which takes a characteristic time inversely proportional
to the Debye frequency ωD to relax back to equilibrium. During relaxation, another electron
with opposite spin may get attracted, and the two of them pair up in momentum space. The
characteristic time needed for the first electron to travel across a lattice spacing, on the other
hand, is inversely proportional to the Fermi energy, typically much larger than ωD. Hence, the
resulting pairing between the two electrons takes place over long distances with respect to the
lattice spacing (typically, a factor of 103). In quantum mechanical terms, the interaction is
mediated by phonons, the quasi-particle accounting for the vibrations of the crystal. Once a
large number of Cooper pairs have formed, they condense and the electrons can flow collectively
without resistance, therefore achieving superconductivity.

Similarly, fermionic superfluidity is achieved through Bose-Einstein condensation (bec) of the
Cooper pairs in a cold gas of fermionic atoms, resulting in neutral frictionless motion. The first
experimental realization of this phenomenon was with atoms of 3He [28]. More recently (about
20 years ago), quantized vortices—a hallmark of superfluidity, see Figure I.2—were observed in a
gas of atoms of 6Li in an optical trap [29], thereby confirming the underlying bcs mechanism.
The bcs regime is however typically associated with a weakly-interacting phase, which raises
the question of whether there exists a strong-coupling (not necessarily attractive) mechanism
allowing for the formation of fermionic superfluid states. In this case, one would imagine fermions
with opposite spin to pair up into short-distance di-fermionic molecules, also called dimers, which
could then condense. As we shall see, not only is the answer positive, but this can be achieved
experimentally using e.g. the lithium setup mentioned just above by departing from a bcs state
and increasing the interaction strength in a way that preserves superfluidity: this is the famous
bcs-bec crossover that we discuss next. Of course, although the whole crossover is technically
in a bec phase, the ’bec side’ of the crossover is really understood as the condensation of the
tightly bound pairs of fermions.

4



Introduction Chapter I

I.1.1 BCS-BEC crossover and the unitary Fermi gas

We refer to [30] for a thorough review of the experimental preparation of ultracold Fermi gases,
and to [31] for a general review and a report of the relevance of this setup to nuclear systems.3

Experimental setup and phase diagram

The different regimes of atomic systems are characterized by the inter-atomic interaction range
r0, the inter-atomic spacing ρ− 1

3 ∼ k−1
F , where ρ is the density at the center of the system and

kF is the Fermi momentum4, the system size V 1
3 and the thermal wavelength λT =

√
2πℏ2

mT .5 An
atomic gas is characterized by the following hierarchy:

r0 ≪ k−1
F ≪ V

1
3 . (I.3)

The first inequality characterizes diluteness, while the second requires the number of particles in
the system to be large. One further distinguishes{

r0 ≫ λT quasi-classical collisions,
r0 ≪ λT ultracold collisions.

(I.4)

A quantum gas satisfies the hierarchy (I.3) and the second regime above (ultracold collisions).6
A degenerate quantum gas satisfies instead (I.3) and the stronger condition k−1

F ≪ λT , which
implies ultracold collisions.

The diluteness condition for a quantum gas has an important and almost generic consequence.
Let us consider a generic spherically symmetric inter-atomic potential U(r) with range r0. A
wave-function with quantum numbers (n, l,m) is then subject to an effective potential of the
form Ueff (r) = U(r) + ℏ2

2m
l(l+1)

r2 . Roughly speaking, a wave-packet with momentum ∼ kF

moving towards the origin of this potential will encounter a classical turning point when r equals
r∗ :=

√
l(l + 1)k−1

F (l ̸= 0). By the diluteness condition, we have r0 ≪ r∗, meaning that the
wave-packet bounces back even before feeling the atomic potential if l ̸= 0, and there are no
collisions. Therefore, only s-wave scattering matters in a quantum gas.7. In this case, the
S-matrix is simply given by S(k) = 1 + 2ikfs(k), where the s-wave scattering amplitude as
function of the momentum transfer k is given by

fs(k) = − 1
a−1 + k[i+ O(r0k)] . (I.5)

3Inded, dilute nuclear matter features a bcs–bec crossover similar to that of cold Fermi gases, which can be
described by the same microscopic models, though the interactions must have a finite range, and the crossover
is realized by varying the density, as opposed to the scattering length. The experimental realization of the
unitary Fermi gas in ultracold atomic gases raised the interest of the nuclear physics community as the neutron-
neutron scattering length is known to be ’accidentally large’ and should therefore approximately share the
universal properties of the unitary Fermi gas. An exciting application of this is the possibility to develop a better
understanding of neutron stars, whose inner crust is expected to host a dilute gas of neutrons in an almost critical
superfluid state.

4We always strip off a factor of ℏ−1 to make momentum have the units of an inverse distance. So kF is in fact
the Fermi wave-vector.

5Throughout this thesis, we set the Boltzmann constant kB = 1.
6Echoing the previous discussion, we note that we really are interested in the emergence of a semiclassical

description of the quantum regime. Of course, at high enough temperature, the system classicalizes in a somewhat
trivial fashion which will not be relevant for us.

7A caveat is when there are so-called shape resonances for l > 0.
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Since k ≤ kF , the O(r0k) correction is indeed small by the diluteness condition. The parameter
a = −fs(0) is the s-wave scattering length. It can be thought of as the strength of an effective
two-body contact interaction between the particles. However, if there is a regime where a diverges
with respect to k, then we simply get fs(k) = i

k and S(k) = −1, which saturates the unitarity
bound. We therefore call this regime the unitary limit, where the nature of the gas and the details
of the inter-atomic potential no longer enter the description of the system: this is a nonrelativistic
quantum critical phase. From a theoretical viewpoint, there is an emergent invariance under
nonrelativistic conformal symmetries, known as the Schrödinger group.

Fermionic quantum gases are typically prepared with atoms of 40K or 6Li confined by an optical
(approximately harmonic) trap. The most remarkable experimental achievement in this setup is
the ability to tune the strength of the interaction via a controllable magnetic field B as

a(B) = a0

(
1 − δB

B −Bc

)
. (I.6)

The unitary limit is attained at the so-called (Fano-)Feshbach resonance, occurring when B

approaches the critical value Bc from above or from below, and δB is called the width of the
resonance.8 In 6Li, the resonance occurs around Bc ≈ 834 G. The resulting nonrelativistic
quantum critical phase is called the unitary Fermi gas. This is a strongly interacting system,
making it challenging to describe theoretically. This said, upon tuning the magnetic field B one
can reach either the bcs or the bec regime while preserving superfluidity. This is the famous
bcs-bec crossover, see Figure I.1. A complete theoretical description of the crossover is still
lacking, although some qualitative features are appropriately captured by mean-field theory.

Quantized vortices

An important feature mentioned earlier is the existence of a gap in the spectrum of single-particle
fermionic excitations, thereby protecting the superfluid phase at low temperatures against thermal
fluctuations. In the bcs regime, mean-field theory predicts that gap is of the form

∆gap(T ) ∼ TF e− π
2kF |a|

√
1 − cst · T

TF e− π
2kF |a|

, (I.7)

The gap is therefore seen to close as T increases towards a critical value Tc ∼ TF e− π
2kF |a| ∼

∆gap(0), which is exponentially small in the dimensionless parameter 1
kF |a| . This is believed to

be the correct qualitative picture. As the scattering length is tuned away from the bcs regime,
the critical temperature increases significantly to the order of the Fermi temperature TF .

This means that there can be a variety of low-energy bosonic excitations in the superfluid which
do not spoil superfluidity. These are typically associated with the hydrodynamic Goldstone
mode. Again, these vibration modes are associated with phonon excitations. We shall discuss
the eft for this mode in the critical superfluid state shortly. However, we want to point out
that parametrically larger excitations can lead to the formation of quantized vortices and other
superfluid phases.

8There is a distinction between broad and narrow resonances, but the diluteness condition essentially corresponds
to the resonance being broad [30].
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Figure I.1: Putative phase diagram of a cold Fermi gas (picture taken from [32]). The value and
even the sign of the dimensionless scattering parameter 1

kF a —where kF is the Fermi wave-vector
and a the s-wave scattering length—can be experimentally tuned. At very low-temperatures in
the bcs regime 1

kF a ≪ −1, the interaction is weakly attractive and fermions form Cooper pairs,
while for 1

kF a ≫ 1, the interaction is strong and tightly binds pairs of fermions together. The
latter system is effectively described by a weakly interacting bosonic gas of such molecules (also
called dimers), i.e. a bec. Both regimes are known to exhibit superfluidity and no phase transition
occurs in between, indicating a smooth crossover that preserves superfluidity for all values of kFa.
This is particularly relevant for the strongly interacting crossover region 1

kF a ∈ [−1, 1], centered
around the resonant case 1

kF a = 0 known as the unitary limit. Above the critical temperature
Tc (the blue line), the gap closes and superfluidity is lost. At unitarity and in the bec regime,
this happens at an O(TF ) temperature, above which fermion pairing survives up to very high
temperatures but is not able to condense, while Tc is exponentially small in 1/kF |a| in the bcs
regime, where the loss of superfluidity essentially coincides with the breaking of fermion pairs.

Figure I.2: Picture taken from [30], which is an updated realization of the original result presented
in [29]. Quantized vortices are clearly visible across the bec-bcs crossover, with the unitary
regime shown in the middle, around 833 G. This is realized in a ultracold dilute gas of 6Li, and
each picture is roughly 1mm wide.
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Indeed, when a superfluid is given a large amount of angular momentum, the most energetically
favourable way to accommodate this excitation is to develop one or many quantized vortices.
Vortices are characterized by the fact that the order parameter drops to zero at their core,
thereby locally breaking the superfluid state and restoring symmetry. In an optical trap, the
vortices—whose size is of the order of the so-called healing length ξh in the bec regime, or k−1

F in
the bcs one—are too small to be observed directly. This can however be circumvented by relaxing
the condensate, which thus undergoes a rapid expansion. The vortices survive this process by
virtue of angular momentum conservation, which allows the observation of vortex structures as in
Figure I.2.

From a microscopic perspective, the phase χ(t, r) of the superfluid order parameter,

χ =
{

− arg(ψ) (bosonic)
− 1

2 arg (⟨ψ↓ψ↑⟩) (fermionic)
(I.8)

(where ⟨ψ↓ψ↑⟩ is the Cooper pair) is related to the so-called superfluid velocity

v := ℏ
mb

∇χ, (I.9)

where mb is the effective mass of the bosonic degree of freedom forming the superfluid. The
famous Onsager-Feynman quantization condition then reads∮

dl · v = 2πℏn
mb

, (n ∈ Z). (I.10)

The integral is a closed loop inside the superfluid. If it does not enclose a vortex, then n = 0. A
vortex carrying |n| > 1 tends to decay into multiple vortices with unit charge.

In viscous fluids, classical vortices may form momentarily due to some external stress but are
generally metastable and eventually decay into rigid-body motion. However, they may sometimes
be long lived. Instead, there are two properties that really distinguish them from superfluid
vortices: the fact that the latter carry a quantized charge, and the fact that, in a superfluid, the
ground state with some large angular momentum is always a state with vortices. Interestingly,
vortex nucleation in a trap or container necessarily arises from external edge excitations, where
the order parameter vanishes. If that was not the case, their spontaneous formation in the bulk
of the droplet of particles would imply a discontinuity. This is indeed verified experimentally
where, after inputting some large angular momentum into the superfluid, the edge of the droplet
of particles undergoes some turbulence that eventually leads to the formation of vortices that
quickly navigate towards the bulk of the droplet to adopt the configuration of minimal energy. It
was predicted and then verified that they form the so-called Abrikosov hexagonal lattice [33] to
minimize the total energy. Further experimental [34] and theoretical [35] works showed that the
lattice planes of this hexagonal arrangement can undergo shear distortion due to the so-called
Tkachenko modes [36–40], which were recently addressed in the context of fracton physics [41].

However, in the presence of a large amount of vortices, the vortex cores may start to overlap,
thereby presumably undergoing a phase transition to a new state: a giant vortex [42–44]. This is
a configuration where the order parameter vanishes everywhere except on an external annulus of
quickly rotating superfluid.
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Effective field theory

As mentioned, a quantitatively accurate microscopic description of the crossover is lacking. We
shall however study one such qualitative model in Section III.1. On the other hand, regardless of
what the correct microscopic theory is, this system is subject to the emergence of a collective
behaviour below the critical temperature, namely, superfluidity. There is a unique low-energy
degree of freedom describing such a phase. This is the hydrodynamic Goldstone mode: the
phonon π. It is the fluctuation around the superfluid ground-state profile for the phase of the
condensate:

χ(t, r) = µt+ π(t, r), (I.11)

where µ is the chemical potential associated with the U(1) particle number symmetry.9 It is
therefore natural to imagine a low-energy effective description in terms of χ only, constrained by
the symmetries of the system. This approach is particularly interesting as the symmetries get
enhanced at the unitarity point: the eft is that of a conformal superfluid. The nonrelativistic
conformal group—the Schrödinger group as already mentioned—is of the form

U(1) ×
[
(SL(2,R) × SO(d)) ⋉ (Rd × Rd)

]
, (I.12)

where the components, from left to right, correspond to the particle number symmetry; the
generators (H,D,C) associated with time translations, dilatations and special conformal transfor-
mations; spatial rotations; Galilean boosts; spatial translations. We will investigate the properties
of nrcfts more in detail later, but at this stage, we want to point out that the spontaneous
symmetry breaking pattern that a nonrelativistic conformal superfluid realizes is

U(1) ×
[
(SL(2,R) × SO(d)) ⋉ (Rd × Rd)

] SSB−→ (H̄ × SO(d)) ⋉ (Rd × Rd), (I.13)

where H̄ denotes time translations as generated by the operator H − ℏµQ, and Q is the particle
number generator. Correctly implementing this symmetry breaking pattern in the presence of a
background potential (representing the harmonic trapping potential applied in experiments) turns
out to be a rather non-trivial task. This was done in [47] by carefully analysing the constraints
imposed by general coordinate invariance.

At this point, it is not clear what the scales controlling the derivative expansion in this eft are.
We postpone the answer to later. At leading order, however, the eft should match the standard
low-energy descriptions of the unitary Fermi gas, which are the Thomas-Fermi approximation
and superfluid hydrodynamics. They are characterized by a single Wilsonian coefficient ξ—the
so-called Bertsch parameter—whose approximate value is known from experiments [48] and
Monte-Carlo simulations [49, 50] to be around ξ = 0.37. It is defined as the ratio between the
ground-state energy of the Fermi gas at unitarity and that of the noninteracting Fermi gas.

The leading-order effective Lagrangian for a nonrelativistic superfluid, conformal or not, in the
presence of an external potential A0(r) is a function

LLO(χ) = P (U) (I.14)

9See [45, 46] for enlightening discussions about Goldstone theorems at finite chemical potential.
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of the invariant building-block10

U(t, r) = χ̇−A0(r) − ℏ
2m (∇⃗χ)2. (I.15)

Note that the superfluid density is given by ρ = P ′(U). Upon turning off the background potential
A0(r) and evaluating this relation in the superfluid ground state, one finds ρ0 = P ′(µ), which
must reproduce the equation of state, so P is interpreted at zero temperature as the pressure.
Finally, the equation of motion is the continuity equation:

ρ̇− ∇ · (ρv) = 0, (I.16)

where v is the superfluid density introduced earlier.

If we now specialize to the unitary regime, there is a unique choice for the function P (µ) as
dictated by dimensional analysis:

P (µ) = c0

√
m3

ℏ
µ

5
2 . (I.17)

In turn, this fixes completely the leading-order Lagrangian, and it is easy enough to verify that
the Bertsch parameter is related to the Wilsonian coefficient c0 as

c0 = 25/2

15π2ξ3/2 . (I.18)

The phonon dispersion relation is fixed at leading order by solving the continuity equation at
linear order in the fluctuations π, namely11

π̈ − 2ℏ
md

(µ−A0(r)) + ℏ
m

∇⃗A0 · ∇⃗π = 0. (I.19)

The case of interest for us is that of a harmonic potential A0(r) = mω2

2ℏ r2, in which case this
linearized equation of motion reduces to a hypergeomtric equation, which yields the following
spectrum of phonon excitations [51]:12

Ed
n,l = ℏω

√
4
d
n2 + 4n+ 4

d
ln− 4

d
n+ l. (I.20)

We shall come back to this dispersion relation much later.

We are now reaching the end of this condensed matter detour. There is one final observation
we would like to make which is of central importance for the philosophy underlying this thesis,
namely, the fate of the controlling parameter in this eft description. Going back to d = 3, the
next-to-leading order Lagrangian contains two additional Wilsonian coefficients [47]:

Leff (χ) = c0

√
m3

ℏ
U5/2 + c1

√
ℏm

(∇⃗U)2

U
1
2

+ c2

√
ℏ3

m

[(
∇⃗2χ

)2
− 9m

ℏ
∇⃗2A0(r)

]
U

1
2 , (I.21)

10Here, m corresponds to the effective mass of the bosonic degree of freedom forming the superfluid, denoted
mb earlier. We drop the subscript for convenience.

11For later convenience, we wrote the result in general spatial dimension d, in which case the leading-order
Lagrangian at unitarity is proportional to U

d
2 +1.

12These excitations are actually associated with either internal motion (’breathing mode’) or center-of-mass
excitations.
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Corrections to the phonon dispersion relation, among others, could be computed from there. This
was done in [47] when the external potential is set to zero. Instead, we quote here the result for
the ground-state energy of the system trapped in a harmonic potential as a function of the total
number of particles Q:

E(Q)
ℏω

=
√
ξ

4 (3Q) 4
3 −

√
2π2ξ

(
c1 − 9

2c2

)
(3Q) 2

3 + O
(
Q

5
9

)
. (I.22)

This is the central result. While this eft for a nonrelativistic conformal superfluid was simply
organized as a derivative expansion, it now appears clearly that the controlling parameter is
the number of particles in the system, assumed to be large from the beginning. Of course, this
might have been anticipated from the discussion around Eq. (I.3) defining quantum gases. It will
soon become clear that this could be regarded as the first modern application of the large-charge
program. However, there is still a missing ingredient: theories constrained by conformal invariance
are usually expressed in terms of their so-called cft data. The result established above may or
may not be related in a simple manner to a piece of nrcft data. The answer to this question is
surprising and will be given later.

At this point, we simply want to advocate the following philosophy: on their quest to collect pieces
of cft data, high-energy physicists may reasonably expect a semiclassical picture such as the one
we have just discussed to emerge in extreme regimes where some quantum numbers take very
large values. In the case of global internal charges—akin to the particle number Q above—this
semiclassical description would correspond to a phase of matter, of which the conformal superfluid
is the most natural example. In fact, large classes of cfts may feature the same emergent
collective behaviour, and the corresponding statements about their cft data would be highly
generic. What is more, the whole spectrum of excitations—which for a conformal superfluid
corresponds to phonons and the various vortex phases described earlier—may be conjectured to
describe operators carrying even larger quantum numbers. The phenomenology of the unitary
Fermi gas and nonrelativistic condensed matter systems in general may be regarded as the main
source of inspiration for such a program. This is what we discuss next.
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I.2 High-energy perspective: large-charge CFT data
Perhaps the most central paradigm in modern theoretical physics is the abstract formulation of
quantum field theories as points in an infinite space, related to one another by the action of the
Renormalization Group, thereby forming flows of theories. Under reasonable assumptions, these
trajectories start and end on fixed points where the spacetime symmetries—i.e. the Poincaré
group—of the theory get enhanced to the conformal group, thus becoming (relativistic) cfts.
Conformal field theories are immensely constrained—they are fully characterized by their so-
called cft data—yet difficult to solve; they have direct experimental relevance, most notably in
condensed matter; and they have ramifications in almost all areas of modern theoretical physics,
from statistical physics to quantum gravity. The task of understanding this class of theories is
of such importance that the development of new specific techniques has been one of the main
endeavors of the community in the past few decades. Examples include:

• Monte-Carlo simulations: this is a set of non-perturbative numerical techniques that relies
on repeated random sampling. In the context of cfts, some of the most celebrated results
concern the 3D Ising model, see [52, 53].

• Fuzzy-sphere regularization [54–65]13: this non-perturbative method is a new exciting way
to efficiently extract cft data numerically. Interestingly, it is implemented on the cylinder
frame, R ×Sd−1

R , which is, as we discuss next, the natural starting point for the large-charge
program too. In d > 2, the compact component of the cylinder geometry is curved, and it
can therefore only embed a finite number of regular lattices, containing very few lattice
points, making lattice simulations on the cylinder geometry not very efficient. Fuzzy spheres
regularization is an alternative way to ’discretize’ the sphere, which has proven very powerful
in recent years.

• Analytic techniques: for instance, the usual perturbative small-ϵ and large-N expansions,
or exact methods such as integrability or supersymmetric localization.

Most other modern approaches exploit cft axioms to encode theory-independent constraints on
the cft data. They broadly fall under the name bootstrap. The modern version of the conformal
bootstrap program was initiated in [66], which aims to exploit the power of crossing symmetry,
unitary and the operator product expansion (ope) to systematically carve out the space of allowed
cft data, both numerically [67] and analytically [68]. One of the most successful instances of
the analytic conformal bootstrap is the lightcone bootstrap [13, 14, 69], which investigates the
consequences of a specific kinematic limit of the crossing equation, namely, the lightcone limit.
One such consequence, valid for any cft in d > 2, is that, given two primaries with twists14

τ1 and τ2 and any n ∈ N, there exists an infinite family of operators, dubbed doubled-twist
operators, whose twist behaves as a function of the spin J as

lim
J→∞

τ(J) = τ1 + τ2 + 2n. (I.23)

Consequently, for a fixed large value of J , the lightest operator with such spin always has a
conformal dimension with a Regge-like behaviour:

∆J = J + τ1 + τ2 + . . . (I.24)

13To date, this list of references is essentially exhaustive! This is to say how recent this topic is (in the context
of conformal theories at least).

14The twist is simply the difference between the conformal dimension ∆ and the spin J : τ = ∆ − J .
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In the holographic context, this is associated with a simple semiclassical effective description in
the bulk of AdS in terms of weakly interacting probe particles rotating far away from each other.
Unsurprisingly, other approaches based on effective field theory were subsequently developed to
study emergent universal features of cft data, such as the large-charge expansion [15–17] or the
thermal effective action [70, 71]. These methods differ from other bootstrap techniques as their
primary goal is not to place sharp bounds on the cft data, but rather identity common patterns
across large classes of cfts.

Indeed, as an eft-based approach, much of the excitement about the large-charge expansion
stems from its ability to deduce structural properties of cfts with global symmetries without
referring to a specific model, thereby classifying them into large-charge universality classes, the
most prominent one being associated with a conformal superfluid eft in the cylinder frame, which
realizes the simplest example of a macroscopic limit [72], as we shall review. Of course, this eft
closely resembles the one discussed in the case of the unitary Fermi gas, so the phenomenology
of the latter is expected to be an invaluable guiding principle for the exploration of the various
phases with both macroscopic charge and macroscopic spin.

This is what we want to establish in this section. We proceed pedantically by reviewing some
basic but important notions of conformal field theory and then moving on to a discussion of
(relativistic) large-charge universality classes. In the next section, we mimic this structure to
present the state of the art in the case of nonrelativistic nrcfts, which is the focus of this thesis.

I.2.1 Harnessing CFT data from the cylinder frame

We therefore start with a discussion of correlation functions in conformal field theories, assuming
prior basic knowledge. For conventions, we refer to [73]. Any local unitary conformal field theory
in flat space—by which we mean Euclidean spacetime Rd—has a traceless stress tensor, Tµ

µ = 0,
which implies that it is invariant under Weyl rescaling of its metric: ds2 = Ω(x)2 ds2

Rd . This maps
the flat-space theory to an equivalent theory on a possibly curved manifold Md, which is said to
be conformally flat. This is a powerful statement. Indeed, while cfts are commonly regarded as
theories without any dimensionful parameter, Md can actually have compact directions, so it
is in fact more illuminating to state that conformal field theories can be expressed in terms of
an arbitrary length scale R in various ways (associated with various conformally flat manifolds),
although any physical observable is, crucially, independent of R. In situations where another
dimensionful quantity comes into play, like a charge density, one can employ dimensional analysis
to full power. We will establish this result more precisely in what follows.

But first, we recall that a general result valid for any conformally flat manifold Md, with metric
ds2 = ΩMd

(x)2 ds2
Rd , is the following. Insertion of a local scalar primary operator O with

conformal dimension ∆ in flat space gets mapped to an insertion of the operator

OMd
(θ) := ΩMd

(x(θ))−∆O(x(θ)) (I.25)

on Md, where θ denotes the coordinate on Md related to x(θ) by the Weyl mapping. Therefore,
correlation functions of these new operators are related to those in flat space as

⟨OMd
(θn) . . .OMd

(θ1)⟩Md

⟨1⟩Md

=
(

n∏
i=1

ΩMd
(x(θi))−∆i

)
⟨O(x(θn)) . . .O(x(θ1))⟩Rd

⟨1⟩Rd

. (I.26)
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The denominators account for a possible Weyl anomaly on Md, which is known to occur in even
dimensions. We will however ignore this issue for now and drop these terms.

As alluded to earlier, there is a specific choice of conformally flat manifold Md that will be of
central interest for us: the cylinder R × Sd−1

R . But let us first start in flat space and derive later
the consequences on that particular manifold. In particular, the two-point function reads

⟨O(x2)O(x1)⟩Rd = 1
|x2 − x1|2∆

= 1
|x2|2∆

[
1 − 2x1 · x2

x2
2

+
∣∣∣∣x1

x2

∣∣∣∣2
]−∆

= 1
|x2|2∆

∞∑
n=0

C(∆)
n

(
x1 · x2

|x1||x2|

) ∣∣∣∣x1

x2

∣∣∣∣n,
(I.27)

where the Gegenbauer polynomial C(∆)
n (z) is a specific hypergeometric function:

C(∆)
n (z) = 2F 1

[
−n, 2∆ + n

∆ + 1
2

; 1 − z

2

]
. (I.28)

This motivates the usual prescription for sending an insertion to infinity, namely,

O(∞) := lim
x2→∞

|x2|2∆O(x2), (I.29)

such that ⟨O(∞)O(0)⟩Rd = 1. This is however a bit abrupt, as this specific configuration does
not seem to capture any piece of cft data. We are going to show that, on the cylinder, the
corresponding configuration with the limit taken appropriately actually computes the conformal
dimension ∆. Moreover, the series in Eq. (I.27) can be seen to resum the contributions of the
descendants, in a sense that we shall make precise.

In order to do so, we need to pick a specific choice of quantization. This is a partly arbitrary
prescription which amounts to foliating spacetime in a way compatible with the spacetime
symmetries of the system. The canonical choice is equal-time quantization, where parallel
codimension one surfaces foliate spacetime, and the Hamiltonian implements evolution from one
such slice to another. cfts are instead most conveniently quantized with respect to the dilatation
operator or any other operator in its conjugacy class. Once a given quantization prescription has
been chosen, it becomes straightforward to establish a fundamental property of cfts that we
shall invoke extensively, namely, the state-operator correspondence. In what follows, we shall
discuss two such prescriptions.

Radial quantization and the state-operator correspondence

We choose to quantize the flat-space theory with respect to the dilatation operator D and choose
an arbitrary length scale R, usually set to one. This is the so-called radial quantization, in which
an insertion of a local primary operator at the origin prepares a state living on the radial slice
with zero radius, cf. Figure I.3a. The state is thus defined as

|O⟩ := R∆ O(0) |0⟩ = R∆ e−iP ·xO(x) |0⟩ . (I.30)
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We used15 O(x) = eiP ·xO(0) e−iP ·x and the fact that the vacuum |0⟩ is invariant under any
conformal transformation. Moreover, every choice of quantization comes with a corresponding
rule for hermitian conjugation. In radial quantization, we have16 O(x)† =

(
R
r

)2∆ O (Rx) and
P †

µ = Kµ, in particular. Therefore,

⟨O| = ⟨0| O(∞)R−∆ = ⟨0| O(x)† eiK·xR∆. (I.31)

This construction also implies that the insertion of an operator (primary or not) anywhere in Rd

at a distance r from the origin prepares a state on the radial slice of radius r. This state, which
is generically a linear combination of primary states and their descendants, evolves ’backward’ or
’forward’ with respect to D. Conversely, a state prepared on an arbitrary slice may be evolved
back to the slice of zero radius, which is equivalent to a (generically non-primary) operator
insertion at origin. Of course, this reasoning can also be used to insert an operator at infinity.
This establishes the state-operator correspondence in radial quantization.

Using spherical coordinates x = |x|n̂ and parametrizing |x| = R e τ
R , the insertion of O

(
R e

τ1
R n̂1

)
on the ’far right’ of a (radially ordered) correlation function acts as (we multiply by R∆ for
convenience)

R∆O
(
R e

τ1
R n̂1

)
|0⟩ = ei(P ·n̂1)R e

τ1
R |O⟩

= e− τ1
R ∆

∞∑
n=0

in

n! e
τ1
R D |n, n̂1⟩ ,

(I.32)

where we introduced the linear combination of level-n descendants |n, n̂1⟩ := Rn(P · n̂1)n |O⟩
with conformal dimension ∆ + n, and we purposely extracted an exponential term in front of the
sum in the last line. Similarly, insertion of O on the far left acts as

⟨0| O
(
R e

−τ2
R n̂2

)†
R∆ e− τ2

R 2∆ = e− τ2
R ∆

∞∑
n=0

(−i)n

n! ⟨n, n̂2| e− τ2
R D, (I.33)

where ⟨n, n̂| = ⟨O| (K · n̂2)nRn. For instance, the flat-space two-point function becomes

〈
O
(
R e

τ2
R n̂2

)
O
(
R e

τ1
R n̂1

)〉
Rd

=
(
R2 e

τ1+τ2
R

)−∆ ∞∑
n=0

1
(n!)2 ⟨n, n̂2|e− τ2−τ1

R D|n, n̂1⟩ . (I.34)

It is an interesting exercise—and a non-trivial check of this construction—to verify that

1
(n!)2 ⟨n, n̂2|n, n̂1⟩ = C(∆)

n (n̂1 · n̂2), (I.35)

so as to match the series expansion in Eq. (I.27). We went through this simple exercise to illustrate
the fact that the dilatation operator really is the evolution operator in radial quantization, and
the insertions of O(x2) and O(x1) correspond to states ⟨O, x2| and |O, x1⟩ living on different
slices. They thus need to be evolved backward or forward to evaluate their overlap, which is what
the operator e− τ2−τ1

R D does.

15We always think in terms of Euclidean time τ := ix0, and we work with the mostly minus signature.
16We define the reflection (or inversion) Rx := R2 xµ

x2 , and we use r = |x|.
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Conformal dimensions from the cylinder frame

As mentioned, we are interested in mapping the theory on the cylinder R × Sd−1
R . The Weyl

map that achieves this is a local rescaling of the radial slices to spheres of fixed radius R, which
get stacked up on top of each other in the R direction, see Figure I.3c. The slices with zero
and infinite radius get mapped to the ’extremities’ of this cylinder. The evolution operator in
radial quantization generates translations along the non-compact direction, which is therefore
identified with the action of the Hamiltonian of the theory on the cylinder. Coordinates on
the cylinder will be denoted by (τ, n̂), which corresponds to the point R e τ

R n̂ ∈ Rd. Conversely,
(τ, n̂) =

(
R log |x|

R , xµ

|x|

)
, and the Weyl factor is therefore

Ωcyl.(x) = R

|x|
= e− τ

R . (I.36)

Correspondingly, Ocyl.(τ, n̂) = e∆ τ
R O

(
R e τ

R n̂
)
.

We now look at the fate of Eq. (I.32) in terms of cylinder operators. The exponential that we
purposely extracted out is simply the Weyl factor, such that

R∆Ocyl(τ1, n̂1) |0⟩ =
∞∑

n=0

in

n! e
τ1
R D |n, n̂1⟩ τ1→−∞−→ e

τ1
R ∆ |O⟩ =: |O, in⟩ , (I.37)

and similarly for the hermitian conjugate, defining ⟨O, out|. We then have

⟨Ocyl.(τ2, n̂2)Ocyl.(τ1, n̂1)⟩cyl. = 1
R2∆

∞∑
n=0

1
(n!)2 ⟨n, n̂2|e−(τ2−τ1)Hcyl. |n, n̂1⟩ , (I.38)

where we identified the dilatation operator D
R acting in flat space with the cylinder Hamiltonian.

In particular, the spectrum of D is seen to be completely equivalent to the energy spectrum of
the cylinder theory via the relation ∆ = RE. Upon sending the insertions to τ1 → −∞ and
τ2 → ∞, we obtain

⟨O, out|O, in⟩ = lim
T →∞

⟨O|e−T Hcyl. |O⟩ = e− T
R ∆, (I.39)

Of course, strictly speaking, this gives 0 which, up to rescaling, is equivalent to the flat-space
two-point function with an insertion at the origin and another one at infinity. The more precise
way to express the result is instead

∆ = − lim
T →∞

R

T
log ⟨O|e−T Hcyl. |O⟩ (I.40)

This amounts to computing the partition function—or rather, the free energy—of the system on
the cylinder prepared in a given state O. In fact, in practice, it is often convenient to consider
the thermal cylinder theory, that is, the the theory on S1

β × Sd−1
R with inverse temperature β, in

which case the zero-temperature limit, β → ∞, projects the constrained partition function onto
the ground state, just as the large-separation limit did:

∆ = − lim
β→∞

R

β
log ⟨O|e−βHcyl. |O⟩ . (I.41)

In situations where the explicit computation of ∆ is hard, this suggests an alternative avenue
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where one needs to analytically harness the corresponding path integral. Echoing the discussion
at the beginning of the chapter, one may hope to find configurations where this can be done
semiclassically. When this can indeed be achieved, the computation of correlators of the form

⟨O′, out|Oδn(τn, n̂n) . . .Oδ1(τ1, n̂1)|O, in⟩ (I.42)

and their corresponding cft data will be controlled by the same semiclassical trajectory. Here,
the cylinder operators17 Oδi

are light operators and n is not too big. The in and out states may
be different so as to make the quantum numbers match in the correlator, but both should give rise
to the same semiclassical description. A natural scenario is when they carry some large quantum
numbers. In this case, Eq. (I.40) suggests that one does not even need to specify explicitly what
the underlying operator O is. Indeed, given a non-exhaustive set of quantum numbers, the
conformal dimension that this formula computes will be the one associated with the operator
carrying these quantum numbers that minimizes the energy on the cylinder. This far-reaching
observation indicates the possibility to make theory-independent statements, potentially valid
across large classes of theories. Before discussing this in details, we shall quickly comment on a
different, albeit equivalent, choice of quantization.

NS-quantization and the state-operator correspondence

It is illuminating to show the equivalence between radial quantization and another choice of
quantization. In fact, there are good reasons to consider the one that we shall discuss here,
commonly dubbed NS-quantization [73]. Our motivation to introduce it here is that it is the
natural starting point to quantize nrcfts, as we shall discuss in the next section.

Let g be an element of the conformal group, and let us denote the generators of the conformal
group (rotations, translations, dilatations and special conformal transformations (scts)) by Ja.
Acting with Adg on each of them, viz.

J̄a := gJag
−1, (I.43)

preserves the commutation relations, that is, it defines an automorphism of the conformal algebra.
Now, let us choose g = e−i π

4 (RP0+ K0
R ), in which case

D̄ = 1
2

(
RP0 − K0

R

)
. (I.44)

This is commonly known as the Lüscher-Mack Hamiltonian [74]. Quantization with respect to D̄
is called NS-quantization.

Going from radial quantization to the new one simply amounts to going from x ∈ (Rd)rad. to
y ∈ (Rd)NS as dictated by the action of g:

yµ(x) =
(
R

|x|2 −R2

R2 + 2Rx0 + |x|2
, R

2Rxi

R2 + 2Rx0 + |x|2

)
. (I.45)

17We omit the cyl. subscript for convenience.
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Conversely,

xµ(y) =
(
R

R2 − |y|2

R2 − 2Ry0 + |y|2
, R

2Ryi

R2 − 2Ry0 + |y|2

)
. (I.46)

The points x = 0, respectively x = ∞, get mapped to yµ = (−R, 0⃗), respectively yµ = (R, 0⃗).
Seen as a conformal Killing vector, D̄ looks like a magnetic field joining the two poles of a
magnet, hence the name (NS stands for North-South). Spherical slices perpendicular to this
field correspond to the new foliation of spacetime, see Figure I.3b. This particular choice of
quantization puts the time coordinate y0 on a slightly different footing, which is appropriate e.g.
for analytic continuation to Lorentzian signature [75]. As mentioned, this will also be the ideal
starting point for the quantization of nrcfts.

Primary operators are defined as Ō(y) = gO(x(y))g−1 (with g in field representation), such that
they satisfy for instance [D̄, Ō(−R, 0⃗)] = −i∆Ō(−R, 0⃗). The relationship between O and Ō is
therefore18

O(x) =
(

R2

R2 + 2Rx0 + |x|2

)∆

Ō(y(x)). (I.47)

In particular, O(0) = Ō(−R, 0⃗) , such that

|O⟩ = R∆Ō(−R, 0⃗) |0⟩ = R∆ e−RP0Ō(0) |0⟩ . (I.48)

Hermitian conjugation in this quantization simply amounts to sending y0 → −y0, such that

⟨O| = ⟨0| Ō(R, 0⃗)R∆ = ⟨0| Ō(0) e−RP0R∆. (I.49)

The state-operator correspondence in NS-quantization is therefore established by inserting local
operators at the points (±R, 0⃗) and evolving them using e− τ

R D̄. The fact that this is indeed the
correct evolution operator could be seen by writing the equivalent of Eq. (I.34) for NS-quantization.
Conversely, states prepared on arbitrary slices may be evolved to either of the zero-radius slices,
corresponding to local operator insertions at (±R, 0⃗).

The foliation with respect to D̄ can also be mapped to the cylinder just as was done in radial
quantization. This is most conveniently expressed from the cylinder coordinate (τ, n̂) to the
flat-space one yµ ∈ (Rd)NS , which gives

yµ(τ, n̂) =
(
R

sinh τ
R

cosh τ
R + n0 , R

ni

cosh τ
R + n0

)
, (I.50)

so the Weyl factor is given by Ω̄cyl.(τ, n̂) = cosh τ
R + n0, and primary operators on the cylinder

are related to those in flat-space as

Ocyl.(τ, n̂) = 2∆
(

cosh τ

R
+ n0

)−∆
Ō
(
R

sinh τ
R

cosh τ
R + n0 , R

ni

cosh τ
R + n0

)
. (I.51)

In the context of nrcfts, we shall be particularly interested in the case d = 1, in which case the
cylinder is just a line, with coordinate that we choose to denote by τ̃ := τ

2 instead of τ . Moreover,
let us denote the coordinate y0 on (R)NS by τ̄ instead, and define ω := 1

R . Then, Eq. (I.50)

18In fact, we absorb a factor of 2∆ in the definition of Ō.
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(a) Radial quantization on Rd. (b) NS-quantization on Rd. (c) Quantization on R × Sd−1
R .

Figure I.3: Quantization on Rd can be done with respect to any element of the conformal algebra,
seen as a conformal Killing vector. The most natural choice is to take D, in which case Rd

gets foliated into radial slices centered at the origin, see (a). States living on a slice of radius
R e

τ1
R can be evolved into states living on a slice of radius R e

τ2
R by means of the evolution

operator e− τ2−τ1
R D. However, any other operator in the conjugacy class of D is an equally good

choice, e.g. the Lüscher-Mack Hamiltonian 1
2 (P0 −K0), thereby slicing Rd as shown in (b). In

this case, the slices contract around the points (±R, 0⃗). Inserting a local primary operator Ō
at one of these points prepares the corresponding state |O⟩ (or ⟨O|). Conversely, shrinking a
state corresponds to a local operator insertion. This is the state-operator correspondence in
NS-quantization. Any other choice of quantization would also have two contraction points (one
being possibly at infinity), and insertions of operators at these points establish the state-operator
correspondence. On the cylinder, see (c), there is a canonical choice of quantization where one
chooses the generator of translations along the non-compact direction as the evolution operator,
which naturally gets interpreted as the Hamiltonian on the cylinder. We insist on the fact that
this foliation of the cylinder is equivalent to any conformal foliation of Rd, not just the radial one.
The colours of the slices indicate how they get mapped across these three frames.

becomes
ωτ̄ = tanhωτ̃ , (I.52)

and {
Ō(τ̄) = (coshωτ̃)2∆ Ocyl.(τ̃),
Ocyl.(τ̃) =

(
1 − (ωτ̄)2)∆ Ō(τ̄).

(I.53)

Accordingly, the cylinder two-point function simplifies to

⟨Ocyl.(τ̃2)Ocyl.(τ̃1)⟩cyl. = ω2∆

sinh(ω(τ̃2 − τ̃1))2∆ , (I.54)

which behaves like ∼ e− τ2−τ1
R ∆ when (τ2 − τ1) → ∞, to be compared to Eq. (I.39).

Although we restricted here to the d = 1 case for convenience and for its relevance to the
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nonrelativistic discussion, this illustrates the complete equivalence between radial quantization,
NS-quantization and quantization on the cylinder, which of course holds in general dimension.

I.2.2 Towards large-charge universality classes: the macroscopic limit

We mentioned earlier that the limit of large separation of external insertions in the cylinder frame
is suggestive of a simple computational algorithm to extract cft data. Indeed, the computation
of ∆ and other pieces of cft data boils down to a path-integral computation on the cylinder
which, supposedly, acquires a semiclassical description in some ’extreme’ regime. Let us be more
precise.

Consider the state |O⟩ =:
∣∣∣Q⃗, a〉 carrying some quantum numbers Q⃗ (the Cartan charges) with

respect to a global symmetry G, as well as other quantum numbers (like conformal dimension
and spin) denoted by a. It is generically possible to have several primary states carrying the
same Cartan charges Q⃗ but different a. Nonetheless, for large values of the Cartan charges,
the corresponding partition function is dominated by semiclassical configurations associated
with some specific spontaneous symmetry breaking pattern [16]19. In the large-separation
limit on the cylinder, of all operators having the same Q⃗, only the one associated with the
lowest-action trajectory survives.20 For a given set of Cartan charges Q⃗, such an operator
has the lowest conformal dimension. We shall call this operator the large-charge operator OQ⃗,
with conformal dimension ∆Q⃗. Insertions of the large-charge operator at 0 and ∞ in radial
quantization respectively break translations Pµ and scts Kµ. Rotations may or may not be
preserved, depending on whether OQ⃗ carries some spin and/or is not in a symmetric traceless
representation of G. Similarly, dilatations and the global internal symmetry G may or may not
be spontaneously broken.

In this thesis, we shall be mostly concerned with the simple case of a global U(1) symmetry,
although part of the general discussion that we present next may easily be extended to non-abelian
global symmetries.

Macroscopic limit

In essence, the large-charge cft data, including ∆Q, can be probed at leading order in Q upon
taking Q → ∞ in an appropriate fashion on the cylinder, which is called the macroscopic limit [72,
76, 77]. The large-charge program is therefore concerned with the operators of a given cft that
yield a non-trivial macroscopic limit, as defined below. This can be phrased in a ’kinematic’
way—similar in spirit to the lightcone bootstrap—with no reference to the underlying breaking
pattern. It thus allows to identify generic features of all possible large-charge behaviours. Of
course, various breaking patterns may give rise to the same macroscopic limit, so one then needs
to refine this analysis by making explicit assumptions about the large-charge state.

For simplicity, consider a cft (in d > 2) with a global U(1) symmetry, and let {|Q⟩}Q denote
the set of large-charge states—that is, the states with the lowest energy on the cylinder for a

19Bear in mind that no spontaneous symmetry breaking can occur on the cylinder because the spatial slice has
finite volume. This is therefore a statement about the phase that the system would enter into upon sending the
radius of the cylinder to infinity, thereby recovering flat space. We shall discuss this in detail shortly.

20In fact, if the operator is not a singlet under the global symmetry, these states may be degenerate.
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given Q ≫ 1—labelled by the allowed (quantized21) values of Q. We then choose a fixed set of
light operators Oδi,qi

(their conformal dimensions δi and charges qi are of order one), and define
a large-charge family of correlators as the set of correlators〈

Q+
∑

i

δi, out

∣∣∣∣∣Oδn,qn
(τn, n̂n) . . .Oδ1,q1(τ1, n̂1)

∣∣∣∣∣Q, in
〉

(I.55)

for all allowed values of Q. The central assumption is that there must exist a set of light operators
and a constant γ ∈ R+ such that, as we take the limit

• Q → ∞, R → ∞ with ν := Q
1
γ

R kept fixed, as well as

• the relative distances in flat-space |x(τi, n̂i) − x(τj , n̂j)| kept fixed,

the resulting normalized flat-space correlator

ν−(δ1+...+δn) × ⟨flat|Oδn,qn
(x(τn, n̂n)) . . .Oδ1,q1(x(τ1, n̂1))|flat⟩ (I.56)

evaluated in the resulting non-trivial flat-space state |flat⟩ associated with the scale ν, is finite
and non zero. This is what we call a non-trivial macroscopic limit. Taking the reverse logic,
namely, assuming the existence of a non-trivial macroscopic limit without making assumptions
about the nature of |Q⟩ (or |flat⟩) allows to extract the behaviour of large-charge data at leading
order in Q as a function of γ. For instance, large-charge ope coefficients must scale like

λQ,Oδ,q,Q+q ∼ Q
δ
γ (I.57)

at leading order in Q. The fate of higher-point functions may be analysed in a similar fashion,
where the corresponding cross-ratios become functions of Q via the second condition above (fixed
relative distances). The existence of a macroscopic limit corresponds to the requirement that
on a patch of the cylinder whose typical size is much smaller than R, the dynamics is well
approximated by the flat-space state. This can also be phrased in terms of the original flat-space
theory—with no reference to the cylinder frame—by saying that, in the presence of large-charge
insertions at the origin and infinity, the correlators of light operator insertions far away from the
large-charge insertions may be effectively computed as if they were in the state |flat⟩.

A simple case

However, determining the value of γ is generically very hard. A particularly natural assumption
that implies the existence of a macroscopic limit for a precise value of γ is the following. Suppose
that the large-charge operator OQ does not carry a spin that grows with Q, implying that the
corresponding state on the cylinder is approximately homogeneous, and suppose that ∆Q ∼ Qα

for large enough Q. We further assume that the energy density and the charge density on the

21In fact, the argument requires to treat Q as a continuous parameter, thereby assuming some notion of
analyticity of the dependence of these large-charge families on the charge Q. The equivalent statement for the
spin is a well-established fact in the cft literature [78]. Here, we have to make the assumption that analyticity is
valid at least at leading order in Q.
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cylinder, which are of the form

energy density ∼ Qα

Rd
,

charge density ∼ Q

Rd−1 ,

(I.58)

remain finite in the limit Q,R → ∞. This corresponds to the relation

energy density ∼ Qα− d
d−1 × (charge density)

d
d−1 . (I.59)

For α > d
d−1 , the charge density vanishes, suggesting that the corresponding flat-space state

is a generic heavy state, not a large-charge one. The limit where the energy density is kept
fixed while R → ∞ is known as the thermodynamic limit [79]. A general expectation, known as
the eigenstate thermalization hypothesis (ETH) [80, 81], is that correlators with heavy external
insertions thermalize at late times. It relies upon some ’genericity’ and ’typicality’ assumptions,
valid for most heavy states. However, large-charge states are very atypical in this sense, so these
really are different limits, and the case α > d

d−1 does not yield a macroscopic limit.

For α < d
d−1 , either the charge density is infinite, which is incompatible with the existence

of a macroscopic limit, or the energy density must be zero, indicating the presence of a flat
direction. We therefore reach the following powerful general result [77]: a theory that has both
limQ→∞ ∆QQ

− d
d−1 = 0 and a non-trivial a macroscopic limit necessarily admits a moduli space of

vacua.22 The mechanism causing the emergence of a moduli space is the absence of a potential for
the dilaton. This requires a high level of fine tuning or symmetry protection. In fact, all known
local interacting cfts with this property are supersymmetric and the global symmetry is the
R-symmetry. In this case, zero-energy states in flat space cause some scalars charged under the
R-symmetry to acquire nontrivial vacuum expectation values which parametrize the moduli space.
The operators OQ are BPS operators, whose scaling dimensions are enforced by supersymmetry
to be ∆Q ∼ Q without corrections (so α = 1). The sufficient condition established above for the
existence of a moduli space is part of a bigger program to understand under which circumstances
a cft can undergo spontaneous symmetry breaking of conformal symmetry [77, 82, 83].

The case α = d
d−1 is therefore the most natural behaviour in the absence of supersymmetry or

other strong constraints. The corresponding non-trivial macroscopic limit has

γ = d− 1. (I.60)

This behaviour has been established in the large-charge sector of a variety of systems, corresponding
to conformal superfluid states, Fermi spheres, extremal Reissner-Nordström black-holes, etc.
Below, we review the state of the art of research in this field.

Importantly, the macroscopic limits described here do not capture subleading corrections in Q in
any trivial way. For instance, a more detailed analysis based on the conformal superfluid eft on
the cylinder shows that a characteristic feature of the conformal superfluid state is the presence
of a universal Q0 or Q0 logQ term in the large-charge expansion of ∆Q. Whether such a term is
also present in other phases with α = d

d−1 remains to be shown.

22That is, conformal symmetry is spontaneously broken.
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I.2.3 Large-charge universality classes: state of the art

We have identified various, albeit not many, admissible large-charge behaviours. This is a powerful
statement: while there is no truly universal large-charge behaviour in generic cfts with global
symmetries, their large-charge cft data can exhibit only few characteristic features. This provides
a classification tool for cfts, where each theory belongs to a given large-charge universality class.

Monopole operators

The large-charge program in its most modern version was initiated in [15], see also [17] for a
review. Historically, some of the ingredients of the large-charge expansion—most notably the state-
operator correspondence and the cylinder frame—had already been employed as computational
tools in the study of monopole operators in cfts [84–86]. The large-charge machinery was
subsequently applied explicitly to this class of operators in [87–95], where evidence was found
that they belong to the superfluid universality class, which we describe in details below.

Moduli universality class

Another important early line of development that we alluded to before is the universality class
of theories with a moduli space, mostly (or perhaps exclusively) populated by supersymmetric
theories for which the large-charge operators are bps operators. The seminal work of Berenstein,
Maldacena and Nastase [96], quickly followed by Gross, Mikhailov and Roiban [97], among others,
used a mix of analytic techniques including the large R-charge limit, the ’t Hooft limit and
the constraints of N = 4 supersymmetry. Subsequently, many supersymmetric models were
extensively studied in light of the newly developed large-charge methods [82, 83, 98–111]. Of
course, the object of interest is usually not the conformal dimension of the lightest operator
charged under a fixed R-charge R, as the latter is protected by supersymmetry to be exactly
linear in R. However, by virtue of supersymmetry, other important pieces of cft data can be
extracted and the large-charge expansion may even sometimes be resummed. Supersymmetric
models therefore provide a wealth of examples were analytic results can be obtained and even
compared to those obtained using different techniques.

For instance, consider an N = 2 scft in four dimensions. It has an SU(2) × U(1) R-symmetry
and a moduli space of degenerate vacua. The subspace of the moduli space which is described
at low energies by a free photon and its superpartners is called the Coulomb branch. This
low-energy description is the result of the spontaneous breaking of conformal symmetries and
the U(1) R-symmetry. The order parameters for this breaking are the superconformal primaries
annihilated by all Q̄ supercharges and their vacuum expectation values parametrize the Coulomb
branch vacua. They carry a U(1) R-charge and their conformal dimensions are given by R

2 . They
are called chiral (or Coulomb branch) primaries. A central feature of these operators is that their
ope is regular, leading to a ring structure. In particular, in rank-1 theories, the Coulomb branch
is generated by a single operator with dimension ∆O, so the rest of the operators are simply
labelled by an integer n ∈ N and their ring structure reads

lim
y→x

On(x)Om(y) = On+m(x) (I.61)

as an operator identity. A particularly simple class of correlators are the so-called extremal
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correlators, which have a single anti-chiral operator and are fixed to be of the form

〈
On1(x1) . . .Onk (xk)Ōm(y)

〉
= Gn1,...,nk;m(τ, τ̄)

k∏
i=1

1
|xi − y|2ni∆O

, (I.62)

with m =
∑k

i=1 ni and τ is the exactly marginal coupling. The function Gn1,...,nk;m(τ, τ̄) is not
fixed by symmetries and it therefore encodes the dynamics of extremal correlators at a given point
of the moduli space. Upon fusing the first k insertions, i.e. x1, . . . , xk → x, the computation of
this function boils down to extracting the normalization of the resulting two-point function, and
it therefore only depends on the total charge m, not the single ni’s. We shall therefore denote
it G2m(τ, τ̄) instead. When m is large, a large-charge eft can be implemented to compute this
function. In fact, its large-charge expansion can be completely resummed, up to exponential
corrections [102, 104, 105, 109], resulting in

G2n(τ, τ̄) =
[
enA(τ,τ̄)+B(τ,τ̄) + O

(
e−

√
n
)]

Γ(n∆O + α+ 1). (I.63)

Here, A(τ, τ̄) and B(τ, τ̄) are not determined within the large-charge eft, and α = 2(aCF T −afree)
is the variation of the a-anomaly between the free and the interacting theories. This result is in
very good agreement with bootstrap results [112] for n = 1 and, in N = 2 SQCD, it matches the
numerical estimates from localization [113]. Very recently, this result has been generalized to
higher-rank theories [103]. The above result could have been derived qualitatively by observing that
extremal correlators can be regarded as large-charge families admitting a non-trivial macroscopic
limit [77].

Fermi-sphere universality class

We also mentioned another striking example of a large-charge phase of matter sharing the same
type of macroscopic limit as the superfluid universality class (namely, γ = d− 1), although their
semiclassical description is fundamentally different: the Fermi sphere state [114]. Interacting
systems with a Fermi surface are expected to be described at low energies by a Fermi liquid eft23

akin to the one described in [115]. This effective description is notoriously harder to use compared
to the superfluid one. Moreover, in the nonrelativistic case, there is a symmetry obstruction to
improving this eft to the conformal case [116]. In [114], the Fermi sphere was obtained in the
Gross-Neveu model at large-N . Whether this configuration is a truly stable large-charge state
beyond the strict N → ∞ limit remains to be shown. In an effort to address the problem of the
emergence of a Fermi sphere state at large charge from eft considerations, it would most likely
be more appropriate to start from the newly proposed approach to the Fermi surface eft of [117].

Swampland and holography

Recently, another research direction has been developed in connection with the swampland
program [118, 119] in holographic theories (see also [120] for an extensive discussion of the fate
of global symmetries in quantum gravity). The so-called (abelian) charge-convexity conjecture
states that, in any cft in d > 2 with a U(1) symmetry, the following convexity condition is

23There is also the possibility to have a non-Fermi liquid, that is, a gapless phase with no fermionic quasiparticles
around the Fermi surface. However, in the context of large charge, no such example is known to date.
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satisfied [121–125]:
∆(n+m)Q0 ≥ ∆nQ0 + ∆mQ0 , ∀n,m ∈ N∗. (I.64)

Here, Q0 is the charge associated with the onset of convexity in ∆Q, which denotes as before
the conformal dimension of the lightest operator of fixed charge Q. Originally, Q0 was proposed
to always be of order one, although it was quickly shown to be wrong [123]. However, relaxing
this condition and allowing Q0 to be arbitrarily large is compatible with all known results in
the literature so far. For cfts with a holographic dual description, this conjecture is roughly
equivalent to the famous weak-gravity conjecture [126]. Whether generic field theoretic arguments
such as the existence of a macroscopic limit can partly prove such conjectures is a very exciting
open question, cf. [77, 127, 128].

Still in the context of holography, the so-called holographic superconductors [129–133] may be
regarded as a large-charge universality class on their own. Similarly, cases where the large-charge
state would be an extremal Reissner-Nordström black holes, which have a parametrically large
degeneracy of operators close to the lightest state, could be regarded as a new universality class.
However, these states are believed to be unstable. If this is true, there probably is a large-charge
argument on the cft side—a generalization of [72]—that would rule them out. See also [134].

Superfluid universality class

And finally, there is the superfluid universality class, which is the main focus of this thesis
(albeit in the nonrelativistic case, see next section). We mentioned that large-charge families of
correlators are described semiclassically by a path-integral trajectory associated with a given
symmetry-breaking pattern on the cylinder, although, strictly speaking, there is no spontaneous
symmetry breaking in finite volume. The fate of the dilation operator and the global internal
symmetry group G is theory-dependent. However, a breaking pattern commonly realized in
nature is the one that breaks both of them while preserving a linear combination. We have
already discussed this in the description of the nonrelativistic conformal superfluid. To be more
precise, the relativistic breaking pattern describing a conformal superfluid state is given by

SO(d+ 1, 1) ×G
SSB−→ SO(d) × D̄ ×G′, (I.65)

where D̄ = D+ µ⃗ · Q⃗ is the unbroken combination of the dilation operator and the Cartan charges
QI . The coefficients µI are interpreted as chemical potentials, and G′ is the unbroken subgroup
of G. As far as microscopic realizations of this breaking pattern are concerned, it seems that the
large-charge dynamics of cfts is vastly dominated by this configuration in the absence of extra
constraints like supersymmetry or higher-spin symmetry. The corresponding effective action
Seff [χI , πA] is the most general action realizing the above symmetry breaking pattern in terms
of the Goldstone fields χI and possible extra degrees of freedom πA. It gets complemented by
a term imposing boundary conditions so as to reproduce the correct charges of the in and out
states. For instance, in the absence of extra light operator insertions, one can compute Eq. (I.39)
semiclassically from

〈
Q⃗, out

∣∣∣e−Hcyl.T
∣∣∣Q⃗, in〉 =

∫ ∏
DχI

∏
DπA exp

[
−Seff [χI , πA] − iQI

ΩdRd−1

∫ T

−T

dτ
∫

dS χ̇I

]
(I.66)
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with T → ∞ and Ωd = 2π
d
2

Γ( d
2 ) . The action contains higher and higher derivative terms (accompanied

by new Wilsonian coefficients) which are more and more suppressed by the large charges. The
saddle-point approximation is performed around the lowest energy configuration (the superfluid
ground state) and quantum corrections, i.e. loop effects, typically kick in at order Q0 in the
expansion. In the case G = U(1)24, the superfluid eft takes the following simple form [16]:

Seff [χ] =
∫

R×Sd−1
R

ddx
√
g|∂χ|d

[
c0 + c1

(
R

(∂χ)2 + (d− 1)(d− 2)(∇µ|∂χ|)2

(∂χ)4

)
+ . . .

]
(I.67)

to be thought of as the relativistic version of Eq. (I.21) in general spacetime dimension d (R is
the Ricci curvature), and it is now well established that this results in ∆Q having the following
structure (cf. for instance [141])

∆Q = Q
d

d−1

[
a1 + a2

Q
2

d−1
+ a3

Q
4

d−1
+ . . .

]
+

∞∑
l=1

Q
d

d−1 (1−l)

[
βl,1 + βl,2

Q
2

d−1
+ βl,3

Q
4

d−1
+ . . .

]
(I.68)

The first series is the ground state (or ’classical’) contribution, in which the coefficients ai are
associated with new Wilsonian coefficients in the effective action, e.g. [142]

a1 = c0(d− 1)Ωd−1

(c0dΩd−1) d
d−1

, a2 = c1(d− 1)(d− 2)Ωd−1

(c0dΩd−1)
d−2
d−1

, etc. (I.69)

The second set of contributions, on the other hand, denotes the l-loop effects. The coefficients βl,i

generically depend on previous Wilsonian coefficients, and the contributions may get logarithmic
enhancements in even dimensions. However, for a given dimension, the β1,1 term is universal
across the superfluid universality class. The canonical examples are

∆Q =

a1Q
3
2 + a2Q

1
2 − 0.0937 . . .+ O

(
Q− 1

2

)
, (d = 3),

a1Q
4
3 + a2Q

2
3 − 1

48
√

3 logQ+ O
(
Q0), (d = 4).

(I.70)

The phonon excitations above the superfluid ground state have a dispersion relation of the form

ωJ = 1
R

√
J(J + d− 2)

d− 1 + O
(
Q− 2

d−1

)
, (I.71)

which gives rise to the Q0 terms above. These fluctuations describe large-charge states with small
spin. For large values of the spin, the simple conformal superfluid eft description breaks down
as the ground-state configuration transitions to a superfluid state with vortices, which requires a
new effective description. The description of various phases that the system enters into as we
vary the charge and the spin is entirely guided by our phenomenological discussion of the last
section and is somewhat conjectural.

24In the non-Abelian case such as the O(N) model, only large-charge operators in the completely symmetric
traceless representation are associated with a homogeneous superfluid ground state. For a discussion of inhomoge-
neous ground states, cf. [135–138] and the numerical results [139, 140]. Even in the simple homogeneous case, the
fluctuations above the ground state contain type-II (or type-B) Goldstone modes and their gapped partners [17],
which have nonrelativistic dispersion relations. They describe operators in slightly asymmetric representations.
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Here is a brief summary for d = 3, based on [128, 143, 144].

• 0 ≤ J ≪ Q
1
2 : the spectrum of large-charge spinning operators with small spin J is simply

given by Eq. (I.70) above, with the addition of a phonon excitation of spin J , that is,

∆Q,J = a1Q
3
2 + a2Q

1
2 + 1√

2
√
J(J + 1) − 0.09372 + . . . (I.72)

• Q
1
2 ≪ J ≪ Q: in this range, the superfluid develops a single vortex/anti-vortex pair

rotating around the S2
R, and we find

∆Q,J = a1Q
3
2 + 1

6a1
Q

1
2 log J(J + 1)

Q
+ . . . (I.73)

As the spin increases, the vortices move towards the poles.

• Q ≪ J ≪ Q
3
2 : after reaching the poles, new vortices need to form in order to accommodate

more angular momentum. The resulting lattice of vortices rotating around the sphere
exhibits an effective rigid body motion, with

∆Q,J = a1Q
3
2 + 1

2a1

J2

Q
3
2

+ . . . (I.74)

As J ∼ Q
3
2 , the rotation speed exceeds the speed of sound and the system transitions to a

new phase.

• Q
3
2 ≪ J ≪ Q2: in this regime, the vortex cores overlap and collapse into the giant vortex

state mentioned earlier. The order parameter is non-zero only in some small region around
the equator, and we have

∆Q,J = J + 9a2
1

4π
Q3

J
+ . . . (I.75)

The fact that the leading term is linear in J is indicative of the fact that the system is
reaching the universal Regge regime mentioned earlier.

• Q2 ≪ J : when the spin is the dominating quantum number, the leading-order dynamics
is truly universal (not just within the superfluid universality class), and must match the
large-spin predictions. The picture is that of Q weakly interacting ’partons’—that is, unit
charge spinless quanta—spinning around the equator, whose conformal dimensions we
denote by ∆Φ. They carry unit global charge, such that

∆Q,J = J + ∆ΦQ+ . . . , (I.76)

to be compared to Eq. (I.24).

See Figure I.4 for a schematic representation of the large-charge versus large-spin phase diagram,
and [145] for a recent discussion of some of these phases from a holographic perspective. It
remains to be understood how, starting from the Regge regime, one would fall into this specific
superfluid phase diagram or the one associated with another large-charge universality class. It is
also not clear what the nature of the phase transitions from one regime to the next is. It would
be interesting to start from a microscopic (e.g. large-N) description and explicitly identify the
leading path-integral trajectory in one of the intermediate phases.
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Figure I.4: Picture taken from [128]. Proposed phase diagram at large charge Q versus large spin
J within the superfluid universality class.

This is the state of the art for the computation of conformal dimensions in the simple conformal
superfluid case. What concerns the computation of other pieces of cft data, there is by now a
very good understanding of the fate of correlators with one or two light operator insertions [15,
16, 72, 141, 142, 146]. They match the generic predictions of the macroscopic limit analysis in the
’simple case’ analysed previously, with α = d

d−1 . Correlators involving three large-charge operators
were investigated in [146], which is presumably the first example of a universal heavy-heavy-heavy
correlator without supersymmetry in d > 2.

Variations and extensions of the simple conformal superfluid setup have been investigated too, e.g.
in parity-violating theories [147] and theories with boundaries/defects [148].25 We also mention
that some ’bootstrap’ techniques can be applied on top of the large-charge construction. Indeed,
it is for instance possible to place bounds on the Wilsonian coefficients appearing in the superfluid
efts by invoking positivity arguments [151].

When it comes to microscopic checks of the eft predictions, one usually has to employ double-
scaling limits, be it in the ϵ or large-N expansions [152–166]. In these controlled setups, it becomes
possible to analyse the analytic structure of the asymptotic large-charge expansion and apply the
tools of resurgence theory, as was done in [167, 168]. Finally, one can also non-perturbatively
test the eft predictions using numerics, cf. in particular [139, 140, 169–171], where excellent
agreement is found.

This concludes this overview of the relativistic large-charge landscape. We shall now move on to
the description of the nonrelativistic large-charge program, thereby facing the striking fact that a
lot remains to be done.

25It is worth mentioning here that semiclassical techniques inspired by large-charge methods have recently been
developed in the context of conformal defects carrying large quantum numbers (large spin in particular) [149, 150].
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I.3 Large-charge sector of nonrelativistic CFTs: an overview
To the high-energy physicists developing the large-charge methods, it came as a surprise that
nrcfts were the perfect ground on which to run the large-charge program. As mentioned, this is
due to the fact that every nrcft has a global U(1) symmetry counting the number Q of particles
in the system, and the state-operator correspondence, which we are going to discuss shortly
establishes an astonishing connection with the ultracold atom experiments mentioned earlier,
in which the charge Q is always large. Much of the large-charge methodology can therefore be
adapted to this class of theories, and the corresponding superfluid universality class is expected,
on physical grounds, to be the most relevant large-charge behaviour. Although the condensed
matter community does necessarily focus on the computation of large-charge cft data, it is only
fair to acknowledge the fact that many results, especially when it comes to eft-building for
various phases of matter, predate the modern large-charge program. One such example is the
eft for a trapped nonrelativistic conformal superfluid introduced earlier, and we shall close the
loop at the end of this section by coming back to it and discuss how it provides a direct way to
extract large-charge cft data. From now on, d denotes the number of spatial dimensions, and
we set ℏ = m = 1 in this section.

I.3.1 Nonrelativistic conformal field theories in a nutshell

Very much like the conformal group is the maximal kinematical group that leaves the free Maxwell
or free Klein-Gordon equations invariant, the Schrödinger group is the maximal kinematical group
that leaves the free Schrödinger equation invariant [172, 173]26. And very much like the former is
an extension of the Poincaré group, the latter is an extension of the (centrally extended) Galilean
group. In fact, as already noted in [172] more than 50 years ago, the main structural difference
between the Galilean and Schrödinger groups is that time translations are enhanced to a SL(2,R)
group generated by time translations, dilatations and special conformal transformations. This
has profound consequences which we shall discuss.

Schrödinger group and algebra

The Schrödinger algebra has been studied e.g. in [20, 22, 172, 173, 177–183].27 It consists
of the Galilean algebra, that is, time translations H : (t, r) → (t + a, r), space translations
Pi : (t, r) → (t, r + a), Galilean boosts Ki : (t, r) → (t, r + vt) and spatial rotations Mij =
−Mji : (t, r) → (t,Mr) (i, j = 1, . . . , d), together with its central extension Q associated with a
U(1) particle number symmetry, as well as dilatations D : (t, r) → (λ2t, λr) and a single special
conformal transformation (sometimes called expansion) C = IHI : (t, r) →

(
t

1+at ,
r

1+at

)
, where

I : (t, r) →
( 1

t ,
r
t

)
is an inversion.

Its action on time and d-dimensional space can be compactly written as

t −→ at+ b

ct+ d
, and r −→ Mr + vt+ a

ct+ d
, (I.77)

26However, the maximal symmetry algebra is in fact enhanced to the infinite Weyl algebra [174, 175] in a way
similar to the higher-spin symmetry algebra of the free Klein-Gordon equation [176].

27We follow the conventions of [22] in particular.
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X\Y Mkl Pk Kk H C D Q

Mij
i(δikMjl + δjlMik

−δjkMil − δilMjk) i(δikPj − δjkPi) i(δikKj − δjkKi) 0 0 0 0

Pi i(δilPk − δikPl) 0 −iδikQ 0 −iKi −iPi 0
Ki i(δilKk − δikKl) iδikQ 0 iPi 0 iKi 0
H 0 0 −iPk 0 −iD −2iH 0
C 0 iKk 0 iD 0 2iC 0
D 0 iPk −iKk 2iH −2iC 0 0
Q 0 0 0 0 0 0 0

Table I.1: The full Schrödinger algebra [X,Y ]. Note in particular the subalgebra [D,H] = 2iH,
[H,C] = −iD and [C,D] = 2iC generating an SL(2,R) subgroup.

where ad− bc = 1. The subgroup generated upon setting M = 1, v = 0 and a = 0 is isomorphic
to SL(2,R). The group can therefore be written as

U(1) ×
[
(SL(2,R) × SO(d)) ⋉ (Rd × Rd)

]
. (I.78)

The easiest way to establish the group law is to use the following faithful matrix representation:

Lg =

M v a
0 a b

0 c d

 , (I.79)

which satisfies LgLg′ = Lgg′ , from which gg′ can easily be read off.

In a nonrelativistic quantum field theory, that is, a theory invariant under the Galilean group, if
the ’tracelessness’ condition

2H = Tii (I.80)

is satisfied, the spacetime symmetry group gets enhanced to the Schrödinger group. Here, Tij is
the stress tensor. When the theory is local, the currents associated with each of the generators
can then be built out of the charge density ρ(r) and the charge current j(r) as follows:28

Mij =
∫

dr (rijj(r) − rjji(r)),
Pi =

∫
dr ji(r),

Ki =
∫

dr riρ(r),


C = 1

2
∫

dr r2ρ(r),
D =

∫
dr r · j(r),

Q =
∫

dr ρ(r).
(I.81)

Unitary irreducible representations

We quickly summarize the notion of primary operators and the corresponding irreducible repre-
sentations of the Schrödinger group because there is an important difference with respect to the
relativistic case that we want to point out. As usual, we define a local operator as an operator
that depends on a position in time and space (t, r) such that

O(t, r) = ei(tH−r·P)O(0,0) e−i(tH−r·P), (I.82)

28Charge and momentum conservation yield, respectively, ∂tρ+ ∂iji = 0 and ∂tji + ∂jΠij = 0, where Πij is the
stress tensor density.
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which is equivalent to the statement that time and space translations act on it as

[H,O(t, r)] = −i∂tO(t, r),
[Pi,O(t, r)] = i∂iO(t, r).

(I.83)

A local operator is said to have a well-defined scaling dimension ∆, spin29 J and particle number
Q if it is an eigenvector of D, Mij and Q at the origin, respectively, in the sense that

[D,O] = i∆O,
[Mij ,Oa] = i(Σij)a

bOb,

[Q,O] = QO,
(I.84)

where here and in what follows, O = O(0,0) refers to an operator at the origin. The set of all
local operators Oα(t, r) form a representation of the Schrödinger algebra at the origin, i.e. for
any element A of the algebra,

[A,Oα] = AαβOβ . (I.85)

We are interested in constructing the unitary irreducible representations of the Schrödinger
algebra. We note that, given Eq. (I.84), we have

[D, [Ki,O]] = i(∆ − 1)[Ki,O],
[D, [C,O]] = i(∆ − 2)[C,O],
[D, [Pi,O]] = i(∆ + 1)[Pi,O],
[D, [H,O]] = i(∆ + 2)[H,O].

(I.86)

In a unitary theory, the spectrum of scaling dimensions is positive and bounded from below.
Therefore, one can build lowest-weight representations starting from local primary operators, that
is, operators satisfying Eqs (I.83), (I.84) and

[Ki,O] = [C,O] = 0 (primary operator). (I.87)

For such an operator, one then has

[Ki, [Pj ,O]] = iδijQO,
[C, [Pj ,O]] = 0.

(I.88)

In the so-called massive sector Q ̸= 0, the operator [Pj ,O] is therefore not a primary operator,
and we call it a descendant operator of the primary operator O. It has scaling dimension ∆ + 1
as can be seen from Eq. (I.86). Similarly, since

[Ki, [H,O]] = i[Pi,O],
[C, [H,O]] = −∆O,

(I.89)

the operator [H,O] is not a primary operator, and we also call it a descendant of O with scaling
dimension ∆ + 2. The tower of operators obtained by acting repeatedly with Pi and H on a
given primary operator with Q ̸= 0 forms a (massive) unitary irreducible representation of the

29Saying that O has spin J means it belongs to a finite-dimensional irreducible representation of the rotation
algebra o(d), Σij , in which case J refers to a collection of Young tableaux labels characterizing uniquely the
representation, as these are not just labeled by half-integers when d > 3 [175].
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Schrödinger group.

The situation is however more subtle in the ’massless’ sector. Indeed, if a primary operator O has
Q = 0, then Eq. (I.88) tells us that [Pj ,O] is also a primary operator. Similarly, if an operator
O is such that [Kj ,O] is a primary, then O cannot be a descendant of [Kj ,O] in the sense that
it cannot be obtained upon acting with either Pi or H on it. Dealing with the Q = 0 sector of
theory requires some care [175, 177, 183], and we shall assume Q > 0 from now on. The situation
is therefore qualitatively different from relativistic cfts, where there is no such distinction.

This said, we can now give the action of the Schrödinger algebra away from the origin:

[Q,O(t, r)] = QO(t, r),
[D,O(t, r)] = i(2t∂t + ri∂i + ∆)O(t, r),

[C,O(t, r)] =
(

−it2∂t − itri∂i − it∆ + r2

2 Q
)

O(t, r),

[Ki,O(t, r)] = (−it∂i + riQ)O(t, r),

(I.90)

and rotations act as usual. This also sets the canonical units of the generators.

Correlation functions

Equipped with the Ward identities of Eq. (I.90), kinematic constraints can be imposed to fix the
form of correlators, which we denote by

Gn(τ1, r1; . . . ; τn, rn) := ⟨O1(τ1, r1) . . .On(τn, rn)⟩ . (I.91)

Note that we only discuss scalar operators for simplicity. The simplest Ward identity is the one
imposed by Q, namely, charge conservation

∑n
i=1 Qi = 0. If this is not satisfied, the correlator

must vanish. In what follows, we assume charge conservation. Two-point functions are then
completely fixed, up to normalization, to be

G2(t1, r1; t2, r2) = e−i
Q1

2
r2

12
t12 × c δ∆1,∆2

t∆1
12

. (I.92)

On the other hand, n-point functions with n > 2 depend on n2 − 3n+ 1 invariant cross-ratios
through theory-dependent functions [182]. For instance, three-point functions are of the form

G3(t1, r1; t2, r2; t3, r3) = e−i
Q1

2
r2

13
t13

−i
Q2

2
r2

23
t23
∏
i<j

t
∆/2−∆i−∆j

ij × F (v123), (I.93)

where the cross-ratio is given by

vijn = (rintjn − rjntin)2

2tijtintjn
(I.94)

and ∆ :=
∑3

i=1 ∆i. The unfixed function satisfies F (0) = cst. Observe that upon placing the
insertions along the time axis (i.e. ri = 0), these correlators take the form dictated by SL(2,R)
invariance of cfts in one spacetime dimension, with the only modification that time scales twice
as much as ’standard’ coordinates under dilatations.
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Quantization and the state-operator correspondence

When one encounters the nonrelativistic state-operator correspondence [20, 22] for the first time, it
might seem a bit mysterious or surprising.30 In light of our previous discussion of the quantization
of relativistic cfts, we present here a natural explanation. Because of the SL(2,R) subgroup,
nrcfts are naturally quantized with respect to any element in the conjugacy class of D within
this subgroup. Since the conformal group in one dimension is precisely SL(2,R), quantization of
nrcfts closely resembles the relativistic one in one dimension. The main difficulty is to keep
track of sign conventions and factors of two coming from the fact that the time coordinate scales
twice as much under dilatations as it would in the relativistic case.

In particular, we choose to quantize the theory with respect to

e−i π
4 ( H

ω −ωC) (ωD) ei π
4 ( H

ω −ωC) = H + ω2C, (I.95)

to be compared with Eq. (I.44). Here, we include an overall factor of ω for convenience, and
we call this generator the harmonic Hamiltonian Hharm. := H + ω2C. We shall come back to it
shortly, but let us first discuss the state-operator correspondence in this quantization.

Seen as a conformal Killing vector field, Hharm. gives rise to a foliation similar to that of NS-
quantization, albeit slightly deformed due to the unusual scaling property of the time component.
The slices contract around the points

(
± 1

ω , r
)
. The state-operator correspondence is thus

established upon inserting operators at one of these points and, conversely, evolving a state
prepared on an arbitrary slice until it reaches the slice of vanishing size. To be concrete, consider a
scalar primary operator31 O†(τ, r) in Euclidean time, with charge Q > 0 and conformal dimension
∆. Then, similarly to Eq. (I.48), we define the state

|O⟩ := ω
∆
2 e− H

ω O†(0) |0⟩ , (I.96)

where |0⟩ is the Schrödinger invariant vacuum state, and

⟨O| = ⟨0| O(0) e− H
ω ω

∆
2 . (I.97)

Of course, it satisfies
Q |O⟩ = Q |O⟩

Hharm. |O⟩ = ω∆ |O⟩ ,
(I.98)

showing explicitly that the spectrum of Hharm. is the same as that of D, as befits two operators
in the same conjugacy class.

30To the best of our knowledge, the first person to fully appreciate the connection between the quantization of
nrcfts and NS-quantization of cfts in one dimension is Sridip Pal [184] (see also some of his preliminary results
in [177]). This connection is also established in [178] in a slightly less transparent way.

31Note that in nonrelativistic theories, there are no antiparticles and operators thus either create or annihilate
excitations. Operators with a dagger denote the former. Note also that we refrain from adopting the barred
notation used in NS-quantization of relativistic cfts for simplicity.
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The rest of the generators are obtained upon applying the same rotation as in Eq. (I.95) to the
original generators. For instance, Pi,Ki, H,C become, respectively,

P±
i := 1√

2ω
Pi ± i

√
ω

2Ki

L± := 1
2

(
1
ω
H − ωC ± iD

)
.

(I.99)

They act as raising/lowering operators for the eigenvalues of Hharm.:

[Hharm., P
±
i ] = ±ωP±

i ,

[Hharm., L
±] = ±2ωL±,

(I.100)

thereby reproducing Eq. (I.86) in terms of the new generators. Of course, since we choose O to
be a primary operator, |O⟩ is a lowest-weight state:

P−
i |O⟩ = L− |O⟩ = 0. (I.101)

The corresponding representation is generated upon acting with P+
i and/or L+ one or many

times on |O⟩, which gives a tower of descendant states to be identified with the descendant
operators previously introduced. From these considerations, one can also establish the ope for
nrcfts, although we refer to [22, 183] for further details.

Conformal dimensions from the harmonic frame

From the viewpoint of the SL(2,R) subgroup, we can then map the theory on the ’cylinder’. In
fact, this just maps the time axis to itself. However, it also rearranges the slices (which extend
through time and space) into codimension one planes perpendicular to the time axis. In Euclidean
signature, this covers all of spacetime and Hharm. is thus seen to generate translation along the
time axis: this is the ’cylinder’ Hamiltonian. The term ’cylinder frame’ is however not very
enlightening here, and we shall call it ’harmonic frame’ instead for reasons that will become clear
shortly. The map from (τ, r) ∈ (Rτ × Rd)NS to (τ̃ , r̃) ∈ (Rτ × Rd)harm. is given by{

ωτ = tanh(ωτ̃),
r = 1

cosh ωτ̃ r̃,

ωτ̃ = arctanh(ωτ),
r̃ = 1√

1−(ωτ)2
r, (I.102)

to be compared with Eq. (I.52), which we obtained upon introducing by hand some factors of
two in anticipation of this result.

Correlation functions can be obtained in the harmonic frame from the original ones using the
following relations: O(τ, r) = (coshωτ̃) ∆

2 e− Qω
2 tanh(ωτ̃)r̃2 Õ(τ̃ , r̃),

Õ(τ̃ , r̃) =
(
1 − (ωτ)2)∆

2 e
Qω2

2
τr2

1−(ωτ)2 O(τ, r),
(I.103)

which again resembles the one-dimensional relativistic case, see Eq. (I.53). The exponentials here
and in the correlation functions before stem from the fact that the global U(1) charge enters
the Schrödinger algebra as a central extension, and the operators therefore belong to projective
representations.
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The two-point function in the harmonic frame with insertions along the time axis takes the
following simple form:〈

Oharm.(τ̃1,0)O†
harm.(τ̃2,0)

〉
= ω∆

sinh(ω(τ̃2 − τ̃1))∆ , (I.104)

which behaves like ∼ e−ω(τ̃2−τ̃1)∆ when (τ2 − τ1) → ∞. The fact that we set r̃1 = r̃2 = 0 does
not matter in this limit, and one can compute ∆ just as in the relativistic case:

∆ = − lim
T →∞

1
ωT

⟨O|e−T Hharm. |O⟩ . (I.105)

The rest of the discussion therefore applies verbatim, and one expects a semiclassical treatment
to be equally valid when the operator O carries large quantum numbers.

The last crucial observation concerns the term ’harmonic’ which we have not yet commented on.
Looking back at Eq. (I.81), we see that

Hharm. = H +
∫

dr ω2

2 r2 ρ(r). (I.106)

This is the Hamiltonian of the original theory coupled to an external harmonic potential, akin to
those used in ultracold atom experiments. The experimentally measured ground-state energy
at criticality is therefore in exact correspondence with the large-charge conformal dimension
∆Q, which can be directly computed semiclassically from the eft of the trapped nonrelativistic
conformal superfluid! We quoted the result in (3 + 1) dimensions in Eq. (I.22), which is now seen
to be equivalent to

∆Q =
√
ξ

4 (3Q) 4
3 −

√
2π2ξ

(
c1 − 9

2c2

)
(3Q) 2

3 + O
(
Q

5
9

)
. (I.107)

I.3.2 Nonrelativistic large-charge landscape

The fate of the macroscopic limit in nrcfts has not yet been investigated systematically. There
is however a natural scenario akin to the ’simple case’ (I.58) discussed earlier32, namely, when the

energy density ∼ ω
d
2 +1Qα− 1

2

charge density ∼ ω
d
2 Q

1
2

(I.108)

are fixed as we take the limit ω → 0, Q → ∞, for some α ∈ R+. Here, the densities are taken
at the center of the trapping potential.33 The second relation tells us to think of the volume of
the system as ∼ ω− d

2Q
1
2 , and the first relation then implies ∆Q ∼ Qα at leading order. The two

relations combined give

energy density ∼ Qα− d+1
d × (charge density)

d+2
d . (I.109)

32When comparing the two situations, keep in mind the fact that d now denotes the number of spatial dimensions.
33We shall discuss this technicality at length in due time.
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This suggests that α = d+1
d is again the most natural scaling behaviour in the absence of strong

additional symmetry constraints. Note that it indeed matches Eq. (I.107). The above relation
however also suggests that a sufficient condition for the spontaneous breaking of conformal
symmetry is the same as the one established in the relativistic case. This is expected to be
relevant in the context of nonrelativistic supersymmetric theories, see [185] for a related discussion.

This said, to the best of our knowledge, there has not been any work at large charge in supersym-
metric nrcfts.34 It would be interesting to investigate the relevance of the large-charge program
in this class of theories both from a condensed matter perspective and from a ’high-energy’ one.
Similarly, nrcft in the context of holography is not as well understood as its relativistic counter-
part, see however [175, 186–188]. Additionally, there is a symmetry obstruction to enhancing the
nonrelativistic Fermi liquid eft to the conformal case [116].

Altogether, this puts the conformal superfluid state at the center of the stage as the only
nonrelativistic large-charge universality class explored to date. A correct understanding of this
class is however more challenging than its relativistic counterpart, which is the subject of this
thesis. The state-of-the-art understanding of nrcfts in sectors of large charge is based on the
work of the author and his collaborators [1–4, 189], building upon important earlier results [47,
51, 190, 191]. Let us review previous achievements first.

Previous achievements

Since the nonrelativistic large-charge program is deeply rooted in the study of the unitary Fermi
gas, it is fair to say that several adjacent results exist in the condensed literature. Perhaps the
two most relevant works are the Monte-Carlo simulations performed in [192, 193] to evaluate ∆Q

non-perturbatively. They predate the modern large-charge program, so it would be interesting to
refine these simulations and make contact with those established in the relativistic case. This is
also a good place to mention the seminal works of Shina Tan [194–196], which marked a major
development in the description of many-body systems with short-range interaction, including
cold Fermi gases. In these works, a set of universal relations connecting short-range two-body
correlations to thermodynamics were established in terms of the so-called contact C. These
results were phrased in the language of many-body physics, but subsequent works used qft
methods such as the ope to reproduce and sometimes generalize them [197, 198] (see also [199,
200] for important earlier developments). We shall not discuss these results here, and refer the
reader to this beautiful series of papers.

When it comes to the study of the large-charge eft per se, a major obstacle that one faces stems
from the coupling to an external harmonic potential required by the nonrelativistic state-operator
correspondence. While this is what establishes a direct relation with the experimental setup used
in ultracold atoms experiments, it also implies that one has to study an inhomogeneous superfluid
configuration supported on a ball at the edge of which the particle density vanishes due to the
energy barrier. The fundamental problem that this causes is the breakdown of the naive EFT,
which is intrinsically controlled by the charge density. The effective description of such systems
was therefore cursed by edge divergences—as first observed in the seminal work [47]—and further
progress was obstructed.

34There is an important and fascinating exception to this statement, which we briefly describe in Subsection III.2.2.
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This said, the first formal applications of large-charge ideas appeared in [51, 190, 191], where
some progress was made to uncover the structural properties of the conformal dimension of the
lightest primary operator at large charge, ∆Q. The d = 3 case reproduced the results of [47],
while new results were found in general d and d = 2. Subleading computations were however still
out of reach due to edge divergences.

Instead, other leading-order results were established. The authors of [51, 191] derived the
spectrum of phonon excitations, Eq. (I.20), and identified the same first two regimes featuring
vortices describing operators with large spin. Explicitly, they found in (2 + 1) dimensions the
following hierarchy

∆Q,J =


J

1
2 + ∆Q + . . . 0 ≤ J ≪ Q

1
3√

πc0
2 J

1
2 log J + ∆Q + . . . Q

1
3 ≪ J ≪ Q√

9πc0
2

J2

Q
2
3

+ ∆Q + . . . Q ≪ J ≪ Q
3
2 ,

(I.110)

where ∆Q = 2
3

√
2πc0

Q
3
2 . As in the relativistic case, the first case corresponds to a single phonon

excitation carrying an angular momentum J , then a single vortex is created, followed by the
formation of many vortices exhibiting rigid body motion. We refer to the original publication for
the (3 + 1) case.35 Regimes with even larger spin have not been discussed so far. It is reasonable
to expect a giant vortex to emerge here as well. However, the Regge regime was established
from a bootstrap argument, namely, the lightcone limit of the crossing equation, which seems to
be relativistic in nature. Whether a simple kinematic argument can be found to establish the
parametric dependence of the conformal dimension on the spin when the latter is the dominant
quantum number is an open question.36 They also computed the universal behaviour of the
simplest large-charge three-point function with a single light primary operator Oδ,q at position y
in the harmonic frame, which goes at leading order like37

F (v = iωy2) ∝ Q
δ

2d

(
1 − ωy2

2ζQ 1
d

) δ
2

e− 1
2 qωy2

. (I.111)

It would be interesting to obtain this structure from a macroscopic-limit argument. Recently, this
result was vastly generalized to many light operator insertions in [201], where the computation is
performed in the theory without harmonic trap. This is consistent by virtue of the macroscopic
limit, as long as one is merely interested in leading-order results, which is common practice in the
large-charge literature when it comes to computing pieces of cft data other than the large-charge
conformal dimension.

35In d = 3, an intermediate regime—between the first and the second—is present and associated with the
formation of a vortex string at the edge of the cloud of particles. The authors of [191] could not reliably apply eft
techniques in this regime, but merely make estimates. It would be interesting to revisit this problem in light of
the results of this thesis.

36As general fact, the study of formal properties of nrcfts is critically underdeveloped.
37The constant ζ is related to the leading Wilsonian coefficient c0. The explicit relation will be given in the

next chapter.
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State of the art

At this point, the main challenge was therefore to overcome the difficulty caused by edge diver-
gences to access subleading corrections, which possibly contained universal quantum corrections,
just as in the relativistic case. As mentioned, their evaluation was technically and conceptually
obstructed by the breakdown of the large-charge eft close to the edge of the cloud of particles. It
was nevertheless possible to compute the leading quantum correction to the large-charge expansion
in 2+1 dimensions based on the known spectrum of phonon excitations. It was reasonable to
assume that it was a universal term, although it was yet to be proven. This contribution was
computed in [1], where a soft breaking of scale invariance caused by a slightly massive dilaton was
accounted for, thereby shedding light on the near-conformal phase of the theory along the lines
of [202, 203].38 Simultaneously, it was realized that the problem of edge divergences is in fact cured
by the presence of edge operators complementing the original, naive eft [189]. This is similar to
theories with sharp boundaries, although the situation here is more subtle to implement. This
improved recipe helped uncovering the complete structure of the lowest conformal dimension at
large charge in [2], thereby proving the universality of the quantum correction in 2+1 dimensions
and opening the avenue for many more investigations. These results were later reformulated
and refined in [3], with the important added value of the computation of the universal quantum
correction in 3+1 dimensions using a nontrivial ζ-function regularization. All of these results are
presented in Chapter II. Subsequently, the first-ever microscopic verification of the nonrelativistic
large-charge predictions, including edge effects, was performed in [4] using a large-N description
of the unitary Fermi gas—akin to mean-field theory—and perfect agreement was found. We
present these computations in Chapter III.

This concludes the overview of the nonrelativistic large-charge landscape. We mentioned several
open questions, and we shall mention several more at the end of the thesis, in the hope to trigger
ideas for future research.

38In [201], a microscopic description of the unitary Fermi gas without trap is considered, on top of which
a relevant deformation related to the presence of a finite s-wave scattering length is added (together with an
irrelevant deformation associated with effective range corrections). It would be interesting to contrast these two
options to explore the near-critical regime. See also [204].
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II Nonrelativistic large-charge effec-
tive field theory

This chapter is based on references [1–3] by the author and collaborators. The introduction sets
the stage and presents in a coherent way the interplay between these works. Section II.2 is based
on [1], Section II.3 on [2], and Section II.4 on [3]. Appears in Section II.5 the computation of
quantum corrections done in [1] and [3].

II.1 Introduction
As argued in the previous chapter, quantum critical points in nonrelativistic systems are phe-
nomenologically rich and theoretically challenging. Like relativistic critical points, they are
generically strongly coupled and therefore do not fit in the framework of standard perturbation
theory. One of the few analytical tools available to study them is to analyse the collective
behaviour of a large number of particles in the system, treating the inverse particle number as a
small parameter on which to build a suitable and systematic perturbation theory.

To correctly understand the context, we recall that the phenomenological observation of the emer-
gence of collective behaviours—namely, superfluidity, phonon excitations and vortex formation—in
trapped cold atom systems was used as a guide to explore the various phases of the large-charge
versus large-spin phase diagram of the superfluid universality class of relativistic cfts, culminating
in the work [128]. However, these experimental setups are intrinsically nonrelativistic, and one
would therefore expect that the latter observations may be even more relevant to the abstract
study of nrcft data. The surprise here comes from the fact that, more than a mere guiding prin-
ciple, the connection is exact, as established by the nonrelativistic correspondence: experimental
data such as energy levels or density profiles of the trapped system must be reproduced by the
nonrelativistic large-charge eft. Therefore, better experimental data—e.g. close but not exactly
at the critical point—may help building a sharper theoretical description, and vice versa, where
eft predictions can help improving the numerical fits and extract universal coefficients beyond
the Bertsch parameter.

Our theoretical journey in this field of research therefore revolves around nrcfts, for which the
state-operator correspondence establishes a bijective mapping between the spectrum of conformal
dimensions of (positively charged) local operators and the energy spectrum of states in an external
spherical harmonic trap [20, 22],

A0(r) = mω2

2ℏ r2, (II.1)
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as already explained. In particular, we study the structure of the conformal dimension ∆Q of the
lowest operator of fixed charge Q ≫ 1 in an expansion in 1/Q, which can be accessed via the
ground-state energy of the trapped system with Q particles confined to a spherical cloud. We
work in general spatial dimension d.

Outline of the chapter

We study the structural dependence on the charge via eft techniques, assuming that the
corresponding state in the harmonic trap realizes superfluid spontaneous symmetry breaking.1
We also assume that there are no additional light degrees of freedom beside the hydrodynamic
Goldstone boson χ. Under this assumptions, we use two different eft descriptions.

The first employs a dilaton-dressing prescription à la Coleman [205] that implements conformal
invariance. We shall refer to this prescription as dilaton efts and illustrate it by including just a
few terms in Section II.2. This construction contains all the necessary ingredients to compute the
leading-order large-charge contributions to ∆Q and to discuss the intrinsic breaking of the eft
due to the vanishing of the particle density close to the edge of the cloud of particles.

In Section II.3, we perform a much more systematic analysis of this eft-building prescription and
classify all types of ’classical’ large-charge contributions to the conformal dimension ∆Q, building
upon [189]. This is achieved thanks to a careful discussion of the renormalization of divergences
associated with the aforementioned breakdown of the eft, in a physical-cutoff procedure that
will be referred to as δ-layer regularization. Large-charge dilaton efts, however, introduce a
gapped radial mode which is not strictly necessary from a ’low-energy’ perspective (see e.g. [206]
for a discussion on gapped Goldstone bosons). We do so because the description of the system
in terms of the dilaton mode allows us to explore the near-conformal regime of the theory by
introducing a small dilaton mass, still following Coleman [205], based on the general expectation
detailed in [207, 208] that a dilaton-like mode appears near a smooth quantum phase transition.
Note that, while the concept of conformal dimension becomes ill-defined—or rather, scheme
dependent—away from criticality, the corrections induced by the dilaton mass to the ground-state
energy of the trapped system are interesting per se. In this work, one can therefore think of ∆Q

as the ground-state energy, which exactly corresponds to the conformal dimension of the lowest
operator of charge Q only when the dilaton mass vanishes.

After identifying the signature of this soft breaking of conformal invariance, we switch it off in
Section II.4 and move on to the second eft description, which is an action for the Goldstone boson
only. We show that the two descriptions are equivalent. More importantly, we reevaluate the
problem of the renormalization of edge divergences using a simpler, though less physical, scheme:
dimensional regularization. This is of course in perfect agreement with the previous results, but
it also clarifies and makes more precise the classification achieved using δ-layer regularization.

Finally, in Section II.5, we discuss the theory-independent one-loop correction to the conformal
dimension ∆Q and compute it explicitly in d = 2 and d = 3.

1Recall that spontaneous symmetry breaking only occurs in infinite volume, so symmetry breaking here has to
be understood in terms of the microscopic limit: in the harmonic frame, the large-charge state is well-approximated
by a state |flat⟩ which would cause spontaneous breaking in the infinite-volume limit. This justifies using a
semiclassical description, which we sometimes refer to as a ’low-energy’ description by abuse of language.
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II.2 Warm-up: a simple class of large-charge dilaton EFTs
In this section, we consider a simple class of (d+ 1)-dimensional effective theories invariant under
the Schrödinger group. A more general construction will be discussed in the next section, but
the purpose here is to illustrate certain important properties and highlight some issues related to
edge divergences that we will have to deal with subsequently. Moreover, we purposely choose to
keep track of the constants ℏ, m and the strength of the potential ω. In the next two sections,
we shall set them to one, so this serves as a reference point for restoring these constants, e.g. if
one wants to compare with some results in the condensed matter literature.

As mentioned, in order to build this class of theories, we apply a simple procedure pointed out
by Coleman in [205], which promotes a Lorentz-invariant theory to a conformally invariant one
using a dilaton-dressing prescription. This can be straightforwardly adapted to nonrelativistic
theories, where one starts with a theory invariant under the Galilean group and promotes it to
the Schrödinger group2. For a second, let us discuss both of these cases at the same time by
introducing the so-called dynamical exponent z, in terms of which a scale transformation reads
(α ∈ R)

(t, r) → (ezαt, eαr). (II.2)

Obviously, z = 1 (resp. z = 2) corresponds to relativistic (resp. nonrelativistic) scale trans-
formations. The dilaton is then a real scalar field transforming non-linearly under the latter,
namely,

σ(t, r) −→ σ(ezαt, eαr) + d+ z − 2
2f α, (II.3)

where the dimensionful parameter f may be regarded as the dilaton (inverse) decay constant, see
e.g. [211]. Any operator O∆ of dimension ∆ can then be dressed with an appropriate power of σ
to become marginal:

O∆(t, r) dressing−→ e
2(∆−d−z)

d+z−2 fσ(t,r)O∆(t, r). (II.4)

In particular, the identity operator should be dressed as 1 → e− 2(d+z)
d+z−2 fσ.

We are interested in the unified description of the class of critical theories featuring a global
U(1) symmetry, as is the case by default in the Schrödinger group3, under the assumption that
they realize the superfluid spontaneous breaking pattern at large charge. The task is simple
enough: first construct the most general eft for the Goldstone mode χ invariant under Galilean
or Lorentz symmetry that nonlinearly realizes the U(1) symmetry, and then appropriately dress
the operators with the dilaton σ so as to make them marginal. Note that in general, these two

2Cf. [209, 210] for a similar discussion.
3As a reminder, the generators of the Galilean algebra are given by: time and spatial translations, rotations

and Galilean boosts, that is, uniform motion with velocity v. It admits a U(1) central extension associated with
the particle number generator. Together with the nonrelativistic scale transformation,

(t, r) → (t′, r′) = (e2αt, eαr), (II.5)

where α is a real parameter, and nonrelativistic sct,

(t, r) → (t′, r′) =
(

t

1 + λt
,

r
1 + λt

)
, (II.6)

with λ a real parameter, they form the Schrödinger algebra.
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fields can then be conveniently recast as4,5

ψ = 1
f
e−fσ−iχ, (II.7)

and we shall therefore refer to a ≡ |ψ| = 1
f e

−fσ, with dimension [a] = d+z−2
2 , as the radial

mode. The most general large-charge dilaton eft thus contains every possible operator obtained
from dilaton-dressed Lorentz/Galilean-invariant expressions—infinitely many of which exist—as
well as derivative terms for the dilaton itself. In the eft jargon, every such term comes with a
model-dependent Wilsonian coefficient. efts are naturally equipped with ultraviolet (uv) and
infrared (ir) cutoffs, ΛUV and ΛIR, beyond which the effective description breaks down. The
utility of efts therefore relies on the notion of large separation of scales ΛUV ≫ ΛIR which, as
we shall soon see, is implemented in our case by the large-charge limit.

At large charge, the previously introduced radial mode gets gapped with mass of order ΛUV

under spontaneous breaking of the U(1) symmetry and thus decouples. Upon integrating it
out, one would recover an equivalent large-charge effective action for the Goldstone χ alone in
the form of what is sometimes referred to as a non-linear sigma model (nlsm), as opposed to
dilaton efts which may be referred to as linear sigma models (lsms). Various methods, e.g. the
coset construction [16, 51], allow for a systematic construction of this kind of efts. Section II.4
discusses this description further. Here, we stick to the dilaton eft in view of including a small
dilaton mass deformation in Section II.3.

II.2.1 The action

We now go back specifically to nonrelativistic theories, hence z = 2. The main building block for
the construction of a Galilean-invariant action for the Goldstone mode χ in the presence of an
external harmonic trap is

U = ∂tχ−A0(r) − ℏ
2m ∂iχ∂iχ, (II.8)

where m is the mass of the particles, and the presence of A0(r) requires some notion of general
coordinate invariance, as discussed in [47]. As we shall see in Section II.3, derivatives of this
operator, as well as other operators featuring more derivatives of the Goldstone mode χ contribute
to the effective action but, for now, let us ignore them and focus on the power series in U ,

L(χ) = −k0 +
∞∑

n=1
knU

n + . . . , (II.9)

where the ki’s are dimensionful Wilsonian coefficients in units of ML2−dT i−2. We now apply
the dressing rule, Eq. (II.4), to each of these terms, which we conveniently write in terms of the
radial mode. Since6 [a] = d

2 and [U ] = 2, we simply obtain the following new Lagrangian:

L(χ, a) = − ℏκ
2me−2fσ(∂iσ)2 − k0a

2+ 4
d + a2+ 4

d

∞∑
n=1

kn ·
(
U

a
4
d

)n

+ . . . , (II.10)

4We use the letter ψ in analogy with the usual literature on Schrödinger-invariant theories, although it is a
bosonic field here. In Chapter III, however, we will study a model of interacting fermions that belong to this
superfluid large-charge universality class.

5Note that this definition excludes ψ = 0, but keep in mind that this field is meant to be expanded around a
non-zero expectation value in the charged ground state.

6The units of f−1 and σ are M
1
2L

2−d
2 T− 1

2 .
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in which we included a kinetic term for the dilaton, together with a new coefficient κ with
[κ] = [k1]. Note that time derivatives for σ would break boost invariance [209], so the first term
is really the canonical nonrelativistic kinetic term for the dilaton.

From here on, we shall somewhat arbitrarily truncate the tower of operators to n = 1, although
we shall discuss in more details how to justify this in Section II.3. The simple class of dilaton
efts alluded to earlier corresponds to Eq. (II.10) with three Wilsonian coefficients: κ, k0 and
k1. In fact, for reasons that will become clear shortly, we expect the dilaton kinetic term to
contribute to next-to-leading order (nlo) in the large-charge expansion of any observable, so
there are enough ingredients here to illustrate the leading order (lo) computations and discuss
the breakdown of the naive eft. Repackaging the theory in terms the scalar complex field of
Eq. (II.7), we obtain a (partly) familiar model for the Schrödinger particle:

L(ψ) = c0

[
i

2(ψ∗Dtψ − ψDtψ
∗) − ℏ

2m ∂iψ
∗ ∂iψ

]
− ℏc1

2me−2fσ(∂iσ)2 − ℏd
2(d+ 2)mℏ 2

d

g(ψ∗ψ) 2
d +1,

(II.11)
where Dt := ∂t − iA0(r) and the dimensionless Wilsonian coefficients ci depend on the previous
coefficients through

c0 = f2k1, c1 = κ− f2k1, g = 2(d+ 2)m
dℏ2 (ℏf2) 2

d +1k0. (II.12)

Note that we have not discussed whether the dilaton-dressing prescription implements invariance
not only under scale transformations, but also sct. It is however straightforward to verify that
this is indeed the case under the transformation laws [190, 209]{

σ(t, r) SCT−→ σ(t, r) − d
2f ln(1 + λt)

χ(t, r) SCT−→ χ(t, r) + m
2ℏ

λr2

1+λt .
(II.13)

The second line corresponds to the usual transformation law for ψ in the Schrödinger model
[173, 190]. Note that invariance of the c0-term is ensured by the fact that the time derivative
transforms under Eq. (II.6) as: ∂t→ (1 + λt)2 ∂t+λ(1 + λt)ri∂i. Then,

i

2(ψ∗ψ̇ − ψψ̇∗) → (1 + λt)d+2
[
i

2(ψ∗ψ̇ − ψψ̇∗) + m

2ℏ
λ2r2

(1 + λt)2ψ
∗ψ

+ iλri

2(1 + λt) (ψ∗ ∂iψ − ψ ∂iψ
∗)
] (II.14)

and
ℏ

2m | ∂iψ|2 → (1 + λt)d+2
[

ℏ
2m | ∂iψ|2 + m

2ℏ
λ2r2

(1 + λt)2ψ
∗ψ

+ iλri

2(1 + λt) (ψ∗ ∂iψ − ψ ∂iψ
∗)
]
.

(II.15)

Subtracting the second expression from the first shows invariance under sct. The last two terms
of Eq. (II.11) are readily seen to be invariant as they do not contain time derivatives. For instance,
invariance of the c1-term is shown as follows:

e−2fσ(∂iσ)2 → e−2fσ+d ln(1+λt)[(1 + λt) ∂iσ]2 = (1 + λt)d+2e−2fσ(∂iσ)2. (II.16)
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This being said, we are ready to move on to the computation of the scaling dimension ∆Q.

II.2.2 Large-charge conformal dimension

We start from the Lagrangian constructed above, expressed in terms of χ, the radial mode a and
the dimensionless Wilsonian coefficients ci:

L(χ, a) = c0a
2U − ℏd

2(d+ 2)mℏ 2
d

ga2+ 4
d − c1ℏ

2m (∂ia)2, (II.17)

so that the equations of motion (eom) reada(t, r) 4
d +1 = c0ℏ

2
d

g

[
2m
ℏ a(t, r)U(t, r) + c1

c0
∇2a(t, r)

]
,

0 = ∂tρ(t, r) + ∂iji(t, r),
(II.18)

where the charge density and the current are given by

ρ(t, r) = c0

ℏ
ψ∗ψ = c0

ℏ
a2, ji(t, r) = − ℏ

m
ρ∂iχ. (II.19)

The second eom is usually referred to as the continuity equation. Note also that the charge
density ρ has units of L−d. This makes the total charge dimensionless as it should be. Finally,
the Hamiltonian density is given by

E = ℏ
2m

[
c0a

2(∂iχ)2 + 2mc0

ℏ
A0(r)a2 + c1(∂ia)2 + dg

(d+ 2)ℏ 2
d

a
4
d +2
]
. (II.20)

Ground-state solution and scales

As mentioned, we work with the underlying assumption that the ground state of the trapped
system at fixed large charge realizes spontaneous breaking of the U(1) symmetry. This requires
us to look for a time-dependent solution to the eoms for χ and a spherically symmetric one for
the radial mode: {

⟨a⟩ = v(r),
⟨χ⟩ = µ · t.

(II.21)

In this sense, µ is interpreted as a chemical potential sourcing the fixed U(1) global charge Q,
and it is fixed, together with v(r), by solvingv(r) 4

d +1 = c0ℏ
2
d

g

[
2m
ℏ v(r)U0(r) + c1

c0

(
∂2

rv(r) + d−1
r ∂rv(r)

)]
,

Q =
∫

dr ρ0(r) = c0
ℏ
∫

dr v(r)2.
(II.22)

Here, U0(r) is the expectation value of U in this background, namely,

U0(r) := ⟨U⟩ = µ− mω2

2ℏ r2, (II.23)

and the charge density of the ground state is denoted by ρ0(r) := c0
ℏ v(r)2. Importantly, the

latter is not a constant in space due to the presence of the harmonic potential. Although we
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are going to be more explicit shortly, in the regime where large separation of scales is realized
in the eft, the derivative terms in the first equation of (II.22) contribute at a parametrically
lower order compared to the other terms. This is guaranteed by construction of the eft, where
derivatives necessarily introduce factors of ΛIR and, in turn, their contributions to any observables
is suppressed by powers of ϵ := ΛIR

ΛUV
with respect to terms with less derivatives. Therefore, to

leading order, ρ0(r) has the same profile as U0(r) d
2 , and they both vanish at a distance that will

be referred to as the cloud radius Rcl, given by

Rcl :=
√

2ℏµ
mω2 . (II.24)

This is the ir cutoff of our effective description, that is, the longest fluctuation that can be
captured by the eft. Note that this is equivalent to a turning point analysis, and the cloud
of particles has radius Rcl only in a classical sense: the boundary undergoes small fluctuations
that do not affect our effective description, see [189] for more details. In order to simplify the
computations, we introduce the dimensionless coordinate

z := 1 − r2

R2
cl

, (II.25)

which measures the distance from the classical boundary of the cloud. Since spherical symmetry
is preserved by the superfluid ground state, it will be convenient to express every expectation
value as a function of z.

Additionally, the chemical potential itself sets a length scale, which we normalize as

Rµ :=

√
2ℏ
mµ

. (II.26)

It may be regarded as the uv cutoff. This is also clear from the fact that the radial mode
fluctuations around the superfluid background (II.21) acquire a quadratic term upon expanding
a2+ 4

d , corresponding to a ’mass’ inversely proportional to Rµ. Our expansion parameter is
therefore given by

ϵ = Rµ

Rcl
= ω

µ
. (II.27)

By consequence, large separation of scales is achieved by taking µ large in units of ω. Expectedly,
this will in turn correspond to the large-charge limit, Q ≫ 1.

It is now straightforward to solve the eom for v (the first equation in (II.22)) order by order in ϵ,
which takes the suggestive form(

v(z)
vhom

) 4
d

= z + ϵ2
c1

c0

(1 − z)v′′ − d
2v

′

v
. (II.28)

Primes correspond to derivatives with respect to z, and

vhom =
√
ℏ
[

4c0

gR2
µ

] d
4

(II.29)

is the expectation value of the radial mode in the homogeneous system, that is, without the
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harmonic trap (i.e. ω → 0, which implies Rcl → ∞ and z → 1). From this, it is fairly easy to
conclude that the ground-state configuration that solves this equation to nlo is given by

v(z) = vhomz
d
4

[
1 − ϵ2

c1

c0

d2

64

{
4 − d

z3 + 3d− 4
z2

}
+ O(ϵ4)

]
. (II.30)

As anticipated, the term proportional to c1 gives a subleading correction. However, this only true
away from the edge of the cloud. As we approach it, z3 in the denominator (the most divergent
term) starts competing with ϵ2 and triggers the breakdown of the eft when

ϵ2

z3 ∼ O(1). (II.31)

The renormalization of these edge divergences requires a careful treatment and is the subject of
Sections II.3 and II.4. For now, we shall content ourselves with an estimate of the subleading
contributions one would obtain after a proper renormalization. This is achieved by simply cutting
off any divergent integral over z by restricting them to the interval [δ, 1], with

δ = ϵ
2
3 . (II.32)

This—or rather, the more precise version thereof presented in Section II.3—is referred to as
δ-layer regularization.

The charge and the ground-state energy density

With this somewhat incomplete prescription in mind, we move on to relating the charge and
the chemical potential, thereby showing that separation of scales is indeed achieved by the
large-charge condition.

The ground-state charge density is related to the chemical potential µ through ρ0 = c0
ℏ v

2, i.e.

ρ0(z) = ρhomz
d
2

[
1 − ϵ2

c1

c0

d2

32

{
4 − d

z3 + 3d− 4
z2

}
+ O(ϵ4)

]
, (II.33)

where the homogeneous profile

ρhom = c0

[
2c0m

ℏg
µ

] d
2

(II.34)

is the ground-state charge density configuration in the absence of the harmonic trap. Conceptually,
it merely remains to integrate ρ0(z) over the volume of the cloud, that is, over z ∈ [0, 1]. But it
should be clear by now that this introduces divergences, which we regulate as

Q = c0Ωd

ℏ

∫ Rcl

0
dr rd−1v(r)2 = QLO

[
1 − Idiv + O(ϵ4)

]
, (II.35)

where the leading term QLO is defined through

QLO = 1
(ξϵ)d

= 1
ξd

(µ
ω

)d

, (II.36)
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and ξ =
√

g
4πc0

[
2Γ(d)

c0Γ( d
2 )

] 1
d

is a dimensionless constant, generically of order one. The divergent
part Idiv that needs to be regularized is given by

Idiv = ϵ2
c1

c0

d2Γ(d)
16Γ2

(
d
2
) ∫ 1

δ

dz (1 − z) d
2 −1

{
4 − d

z3− d
2

+ 3d− 4
z2− d

2

}
∼ O

(
ϵ

d+2
3

)
, (II.37)

where we indicated its leading contribution after removing the δ-layer. This is of course much
smaller than one and corresponds to a subleading correction in Eq. (II.35), as it should. One can
therefore invert the relationship between Q and µ to obtain

µ = (ωξ)Q
1
d

LO = (ωξ)Q 1
d

[
1 + O

(
Q− d+2

3d

)]
. (II.38)

It is evident that large separation of scales is indeed achieved in the large-charge regime, Q ≫ 1.

Similarly, in the superfluid ground-state given in Eq. (II.21), the energy density (Eq. (II.20))
becomes

E0(z) = d

d+ 2
2c0ℏ
mR2

µ

v2

[(
1 + ϵ2

c1

c0

(
v′

v

)2
)(

1 + 2
d

)
(1 − z) +

(
v

vhom

) 4
d

]
, (II.39)

into which we can now plug Eq. (II.30) for v(z) to get

E0(z) = Ehomz
d
2

[
1 + 2(1 − z)

d
− ϵ2

c1

c0

d(d+ 2)
32

{
4 − d

z3 + 3d− 6
z2 + 2

z

}
+ O(ϵ4)

]
, (II.40)

where the leading-order term is given by

Ehom = d

d+ 2
gℏ2

2m

[
4c0

gR2
µ

] d
2 +1

. (II.41)

The term proportional to c1 again signals the breakdown of the perturbative expansion close to
the edge of the cloud, and δ-layer regularization is required to perform the integration over the
volume of the cloud.

Conformal dimension

We are finally ready for the last computation of this section: the conformal dimension of the
lowest operator of charge Q ≫ 1, corresponding to the superfluid ground-state energy of the
trapped system via the relation

∆Q = E0

ℏω
, (II.42)

where E0 is the integral over the cloud of the ground-state energy density Eq. (II.40). Expressing
the result in terms of Q, we find

∆Q = d

d+ 1ξQ
d+1

d +Q
d−1

d
c1

ξc0

d2Γ(d)
8Γ2

(
d
2
) ∫ 1

0
dz

(1 − z) d
2

z2− d
2

+ . . . . (II.43)

The leading-order dependence of the conformal dimension on Q is thus exactly as in the relativistic
case. The second term is a priori suppressed by a factor of Q− 2

d with respect to the first one, but
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gives in fact

Q
d−1

d
c1

ξc0

d2Γ(d)
8Γ2

(
d
2
) ∫ 1

0
dz

(1 − z) d
2

z2− d
2

=
{

c1
6ξc0

√
Q logQ+ O

(√
Q
)

(d = 2),
d3

8(d−2)
c1
ξc0
Q

d−1
d (d > 2).

(II.44)

To obtain the above result, we had to remove the δ-layer from the integral in d = 2, unlike in
d = 3 where it was convergent. It is important to note at this stage that multiplying δ by an
arbitrary O(1) number and implementing a proper renormalization of the divergences cannot
affect the coefficient of the logarithm7 in d = 2. Moreover, we mentioned in the first chapter
that it was established in the seminal work [47] that in d = 3, the nnlo corrections are of order
Q

5
9 , cf. Eq. (I.22). This will be re-derived and generalized in Section II.3, but for now, we have

reached the following conclusion:

∆Q =
{

2
3ξQ

3
2 + c1

6ξc0

√
Q logQ+ O

(√
Q
)

(d = 2),
3
4ξQ

4
3 + 27

8
c1
ξc0
Q

2
3 + O(Q 5

9 ) (d = 3).
(II.45)

These results were discussed in [51] using the nlsm obtained via the coset construction.

II.2.3 Lessons from this simple class of theories

This section was devoted to the study of a simple, though non-trivial, class of large-charge dilaton
efts. The goal was to illustrate how to exploit the nonrelativistic state-operator correspondence
to compute the smallest conformal dimension ∆Q in a fixed large-charge sector by computing the
corresponding superfluid ground-state energy in the trap. Somewhat surprisingly, the leading
dependence of ∆Q on the charge Q ≫ 1 is exactly the same as in the relativistic case, namely,

∆Q = a1Q
d+1

d + . . . . (II.46)

We also included just enough ingredients in this construction to explore the first correction to this
expression, and it hints at the fact that there might be a tower of contributions suppressed by
integer powers of Q 2

d with respect to the leading term, as in the relativistic case again. However,
the presence of the

√
Q logQ term in d = 2 and the further O

(
Q− 5

9

)
correction in d = 3 (that we

were not able to see in this simple example) have no counterparts in the relativistic setup. The
fact that the state-operator correspondence requires to couple the system to an inhomogeneous
external potential introduces these extra structures in the large-charge expansion. Note also
that, while kinematical constraints are somewhat weaker in nrcfts, the large-charge expansion
is equally powerful. For these reasons, the nonrelativistic large-charge expansion may be regarded
as richer than its relativistic counterpart.

It however remains to promote the analysis performed in this section to a fully systematic and
sharp construction. The breakdown of an eft in the presence of an ’extended object’ like the
edge of the cloud is not exotic, though: in the presence of a boundary or a defect, an effective
theory is doomed to break down in the region close to it even without the inhomogeneity caused
by the external potential, and an effective theory of operators living on this extend object must
complement the bulk one in order for the whole description to be consistent. Implementing this
in the context of the large-charge dilaton eft is the subject of the next section.

7This was first argued in this context in [51].
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II.3 Systematic analysis I: large-charge dilaton EFT
Let us set the stage again by going through the same steps as before and filling the gaps. In this
section, however, we set ℏ = m = ω = 1. The external harmonic potential now simply reads

A0(r) = 1
2r2, (II.47)

and restricts the support of the (classical) theory to a ball of finite radius, i.e., a cloud—or
droplet—of particles at the edge of which the particle density drops. Unlike in the relativistic
case where the state-operator correspondence maps the theory to a fixed background, the cloud
is a dynamical object whose boundary undergoes quantum fluctuations. Even without doing the
computations of the last section explicitly, it is very intuitive to understand that the eft is not
designed to describe the short-distance physics close to the edge. This was addressed already in
[47], and discussed for the first time in the large-charge literature in [51]. The consequence is the
breakdown of the effective description in this region, as manifested by edge divergences occurring
at tree-level, that is, even before doing any sort of loop calculation. A physical sharp cutoff
procedure was discussed in these two references, where the so-called δ-layer is removed at the
edge in order to regularize the theory, as illustrated in the previous section. However, a complete
renormalization prescription in terms of counterterms that yield scheme-independent results was
still lacking. Recently, the authors of [189] initiated a thorough discussion on how to cure this
situation within the effective theory framework: an additional edge eft complements the naive
’bulk’ eft discussed so far. This section, based on [2] by the author, reviews this prescription
in the language of the large-charge dilaton eft and broadly extends the results of [189]. It also
includes a discussion of the near-conformal window via the introduction of a small dilaton mass.

II.3.1 Leading-order Lagrangian

Recall that we started from the observation that the leading-order term in the nonrelativistic
large-charge dilaton eft can be obtained by dressing powers of U ≡ χ̇−A0(r) − 1

2 (∂iχ)2 with
the dilaton or, equivalently, the radial mode:

L(χ, a) = −k0a
2+ 4

d + a2+ 4
d

∞∑
n=1

kn ·
(
U

a
4
d

)n

. (II.48)

In the superfluid ground state, the U(1) and conformal symmetries are spontaneously broken,
where the expectation value of the Goldstone mode is ⟨χ⟩ = µ · t, with µ the chemical potential.
The equation of motion for a imposes that the ratio U

a
4
d

is necessarily a constant at leading order.
Correspondingly, their expectation value are of the form

⟨a⟩ 4
d ∼ ⟨U⟩ = µ

(
1 − r2

2µ

)
. (II.49)

From the form of the action, Eq. (II.48), one readily sees that fluctuations around ⟨a⟩ acquire
a ’mass’ m2

a ∼ ⟨a⟩ 4
d ∼ µ, which sets a uv scale Rµ ≡

√
2
µ . Moreover, the ground-state charge

density ρ0 ∝ ⟨a⟩2 is supported on the interval r ∈ [0, Rcl] where Rcl ≡
√

2µ defines the classical
radius of the cloud, and sets an ir length-scale. Upon integrating the charge density over this
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region, one thus finds that the total charge scales, at leading-order, like

Q ∼ µd. (II.50)

The effective theory description is under perturbative control when there is a large separation of
scales,

Rcl ≫ Rµ, (II.51)

which amounts to requiring that the controlling parameter Rµ

Rcl
= 1

µ ∼ Q− 1
d be small. This, in

turn, is achieved in the large-charge regime Q ≫ 1.

It should be clear by now that keeping track of the massive mode a in the low-energy description
is redundant in that we have to account for towers of operators, as in Eq. (II.48), that give the
same leading-order contribution to observables. Roughly speaking, integrating the radial mode
out in Eq. (II.48) gives a single leading-order term U1+ d

2 in the nlsm, and trading a
4
d for U

is therefore equivalent at the level of the nlsm. The working prescription is thus to minimally
include the dilaton by selecting the simplest term in each of these towers, such that Wilsonian
coefficients can be matched across the two different types of efts. Typically, the leading-order
Lagrangian becomes

LLO(χ, a) = c0a
2U − d

2(d+ 2)ga
2+ 4

d , (II.52)

where we renamed and rescaled the Wilsonian coefficients for convenience. Correspondingly, the
ground-state energy—and therefore, the conformal dimension of the lowest operator of charge
Q ≫ 1 in the system without trap—is given by (cf. Section II.2)

∆Q = d

d+ 1ζQ
d+1

d , (II.53)

where ζ =
√

g
4πc0

[
2Γ(d)

c0Γ( d
2 )

] 1
d

is a dimensionless constant, in accordance with the nlsm result [51].

Recall also that we introduced the dimensionless coordinate z ≡ 1− r2

R2
cl

= 1− r2

2µ , which measures
the distance from the classical boundary of the cloud. Since spherical symmetry is preserved by
the superfluid ground state, it will be convenient to express every expectation value as a function
of z. Useful properties are

(∂if(r))(∂ig(r)) = 2(1 − z)
µ

f ′(z)g′(z),

∇2f(r) = 2
µ

[
(1 − z)f ′′(z) − d

2f
′(z)
]
,∫

cloud

dr f(r) = (2πµ) d
2

Γ
(

d
2
) ∫ 1

0
dz (1 − z)

d−2
2 f(z),

(II.54)

where primes refer to derivatives with respect to z and f, g are spherically invariant functions.
Note that spatial derivatives of operators a priori make their contributions to the conformal
dimension ∆Q parametrically smaller due to the division by µ ∼ Q

1
d .

At this stage, let us point out that Eq. (II.52) in d = 3 corresponds to the Thomas-Fermi
approximation of the unitary Fermi gas, and yields, among other things, the known expression
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for the doubly-integrated density experimentally measured in [212], namely

n(r3) =
∫∫

dr1 dr2 ρ(r)

= 2πg
5

[
2c0µ

g

(
1 − r2

3
2µ

)] 5
2

,

(II.55)

where the ri take values in the cloud. We shall discuss corrections to this expression soon.

II.3.2 Dressing operators

The presence of the dilaton field, via the radial mode a(t, r) = 1
f e

−fσ(t,r), allows for the dressing
of operators to marginality, as discussed previously. At the same time, the breakdown of the
effective theory near the edge of the cloud is associated with the fact that the particle density
ρ—and hence a too—vanishes [1, 47, 51]. From a large-charge perspective, this means that the
dressing rule based on a is only appropriate when edge effects are negligible, i.e. in the bulk
of the cloud (to be defined more precisely later). Close to the boundary, the effective theory
stemming from this ’bulk dressing rule’ alone fails to appropriately describe the system, and
another dressing rule based on a nonvanishing, nonsingular operator needs to take over [189].
In this way, the naive bulk eft comes together with a complementary edge eft such that edge
divergences get renormalized away.

In order to identify the correct dressing operators, we must think in terms of eft building for
systems that non-linearly realize the U(1) and conformal symmetries, cf. [189]. Consider the
set of all scalar primaries {Oi}i with nonzero finite expectation value in the charged ground
state, and let (∆i, µi) denote their conformal dimension and their leading power-law dependence
on µ when evaluated in the superfluid background. Then, the dressing operators (usually, just
one) are the ones that maximize the ratio µi

∆i
. From a microscopic point of view, this comes

from integrating out the heavy modes, whose masses, in turn, coincide with the scale set by the
chemical potential after spontaneous breaking of the U(1) and conformal symmetries. In our
dilaton-eft approach, the heavy mode is introduced by construction as the radial mode, and
the dressing operators must be built out of it. A crucial aspect to consider when applying this
argument is the fact that expectation values may vanish or diverge depending on the location
within the cloud of particles.

Therefore, let us consider an operator involving powers of a and its derivatives (∂ia)2, i.e.

Db,c ≡
[
a2b(∂ia)2c

] 2
d·(b+c)+2c , (II.56)

where b, c can be any positive numbers for now, and the overall power is chosen such that its
dimension is fixed:

[Db,c] = 2. (II.57)

Indeed, note that [a2] = d and [(∂ia)2] = d+ 2. If Db,c was to be regarded as a dressing operator,
it is straightforward to see that, for a scalar primary O∆ with dimension ∆ to be dressed to
marginality, the rule would be

Odressed := O∆ · D
d+2−∆

2
b,c . (II.58)

However, b and c can only take specific values as dictated by our previous discussion. For this, we

51



Chapter II Nonrelativistic large-charge effective field theory

need to assess the power-law dependence on µ of the expectation value of Db,c in the superfluid
ground state. We find, to leading-order,

⟨Db,c⟩ ∼ µ1− 4c
d·(b+c)+2c · z1− 6c

d·(b+c)+2c , (II.59)

since ⟨a⟩ ∼ (µ · z) d
4 and (∂i⟨a⟩)2 ∼ µ

d−2
2 · z d−4

2 .

In the bulk of the cloud, we can consider z to be of order 1, and the bulk dressing operator—which
we recall must maximize its µ-scaling—corresponds to c = 0. This yields the natural dressing
rule used in the previous section, namely,

Dbulk ≡ a
4
d , (II.60)

consistent with the fact that the radial mode is gapped at the cutoff scale set by µ.

At the edge, however, the main constraint comes from the fact that the appropriate dressing
operator can neither vanish nor diverge. In short, its leading-order dependence on µ in the ground
state should feature neither positive nor negative powers of z: it is a constant. We must therefore
set d · (b+ c) = 4c and conclude that

Dedge ≡
[
a

8
d −2(∂ia)2

] 1
3
. (II.61)

This operator is proportional to
∣∣∣∂i

(
a

4
d

)∣∣∣ 2
3 which is equivalent to the edge dressing rule originally

discussed in [189] upon trading a 4
d for U at the level of the nlsm.

II.3.3 The complete large-charge dilaton EFT

Now that we are equipped with these dressing operators, let us discuss what the corresponding
dressing rules are. The main requirement is that, given any bulk scalar primary operator O∆
allowed by symmetries and with a non-vanishing expectation value in the charged ground state,
the dressed operator must be marginal. Indeed, although conformal symmetry is non-linearly
realized in the superfluid eft, no dimensionful parameter can enter its construction, so only
marginal operators are allowed.

The bulk dressing rule is simple enough (and already known): the dressed operator entering the
bulk eft is given by

Obulk := O∆ · a
2(d+2−∆)

d . (II.62)

The edge dressing rule, on the other hand, comes with an extra ingredient: every edge eft
operator is the projection of a bulk operator O∆ on the codimension-one (fluctuating, as opposed
to sharp) boundary of the cloud and is thus incorporated into the action by including an operator-
valued Dirac δ-function δ(Dbulk) of dimension −2, which is then dressed to marginality using
Eq. (II.61). The dressed operators entering the edge eft are therefore of the form

Oedge := O∆ · δ(Dbulk) · D
d+4−∆

2
edge

= O∆ · δ(a 4
d ) ·

[
a

8
d −2(∂ia)2

] d+4−∆
6

.

(II.63)
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Given that the expectation value of the radial mode is of the form (cf. Eq. (II.49))

v(z) = vhom · z d
4 · [1 + subleading], (II.64)

where we recall tha vhom is the superfluid ground-state solution of Eq. (II.52) in the homogeneous
case (i.e. without trap), the Dirac δ-functional becomes

δ(v 4
d ) = δ

(
v

4
d

v
4
d

hom

)
1

v
4
d

hom

= δ(z)
v

4
d

hom

. (II.65)

This illustrates how to make sense of the Dirac δ-functional within the large-charge eft, showing
that edge eft operators are correctly located at z = 0.

With these two dressing rules in mind, let us discuss the candidate operators O∆ to be dressed. The
general construction of operators as constrained by general coordinate invariance was investigated
in [47] where it was shown that, besides U , (∂iU)2, a and (∂ia)2, another allowed building block
is

Z ≡ ∇2A0 − 1
d2

(
∇2χ

)2
, (II.66)

with dimension [Z] = 4 and expectation value in the superfluid ground state given by8 ⟨Z⟩ = d.
From there, it is easy to convince oneself that any other operator with more derivatives of χ
would have a vanishing contribution in the superfluid ground state. Hence, any operator O∆
used to build eft operators is necessarily a composite operator made out of integer powers of U ,
(∂iU)2, a, (∂ia)2 and Z. For the same reason as explained in the construction of the leading-order
Lagrangian, however, it is enough for the purpose of dilaton-eft building to discard operators
made out of U and ∂iU as long as the corresponding operators involving the radial mode are
minimally included in the action. The nlsm is blind to this, and the Wilsonian coefficients can
be matched across the two descriptions9. Finally, we can strip off powers of a as they will be
appropriately restored by the dressing. This dramatically reduces the possible building blocks for
the eft as we merely need to dress operators of the form

O(m,n) ≡ (∂ia)2mZn, (II.67)

with m,n two positive integers. Its dimension is [O(m,n)] = (d+ 2)m+ 4n, and the bulk dressing
rule, Eq. (II.62), instructs us how to turn it into a marginal operator entering the bulk eft,
namely,

O(m,n)
bulk ≡ (∂ia)2mZn · a 2

d ((d+2)(1−m)−4n)

=
(

(∂ia)2

a
4
d +2

)m(
Z

a
8
d

)n

a
4
d +2.

(II.68)

The construction of edge eft operators is even simpler as we can strip off powers of (∂ia)2 as
well, because they then get restored by the edge dressing rule. Hence, we only have to care about
dressing the operators Zp (p ∈ N), which results in

Zp
edge ≡ Zp · δ(a 4

d ) ·
[
a

8
d −2(∂ia)2

] d+4(1−p)
6

. (II.69)
8The fact that its expectation value does not scale with µ allows us to conclude a posteriori that Z could not

enter the dressing rules that we have just established.
9In turn, discarding U is very convenient because it then only appears in the Lagrangian density as given in

Eq. (II.52), and the Legendre transform required to pass to the Hamiltonian H = ∂L
∂U

χ̇− L is trivial: an operator
made out solely of a and ∂ia simply gets its sign flipped.
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The complete superfluid dilaton eft therefore includes the leading-order piece, Eq. (II.52), and
every operator given in Eqs (II.68) and (II.69):

L(χ, a) = c0a
2U + a

4
d +2

∑
m,n

cm,n

(
(∂ia)2

a
4
d +2

)m(
Z

a
8
d

)n

+ δ(a 4
d )
∑

p

κp Z
p
[
a

8
d −2(∂ia)2

] d+4(1−p)
6

,

(II.70)
where the cm,n’s and the κp’s are real dimensionless coefficients (Wilsonian coefficients). We also
set c0,0 = − d

2(d+2)g to match the previous notation.10

We can now start to understand how the presence of the edge eft cures the problem of edge
divergences faced in the previous section: operators at the edge act as counterterms by absorbing
divergences in their Wilsonian coefficients. It simply remains to choose a regularization scheme.

II.3.4 δ-layer and renormalization of edge divergences

A physically motivated scheme is to effectively cut off a small spatial layer close the classical
boundary of the cloud, as discussed in [1, 47, 51] and in the previous section. Following [189],
this regularization procedure can be made slightly more precise in terms of the dressing operators
we have just constructed. Indeed, this layer is located where the bulk dressing rule starts to
break down and requires the edge one to take over. This is characterized by the region where
Dbulk ∼ Dedge, i.e.

(∂ia)2 ∼ a
4
d +2, (II.71)

which, in the charged ground state, is satisfied when z ∼ µ− 2
3 , and we thus define the δ-layer11

δα ≡ α

µ
2
3

∼ O
(
Q− 2

3d

)
, (II.72)

for an arbitrary constant α ∼ O(1). We thereby define the bulk of the cloud as the region covered
by the interval δα ≲ z ≤ 1.

The renormalization procedure12 thus consists in

1. complementing the bulk eft with the edge eft as discussed above,

2. regularizing the divergent integrals of operators dressed in the bulk by removing the δα-layer
from the domain of integration, wherein the regulator α then appears in logarithms and
denominators, and thus serves to diagnose divergences, and

3. using the edge eft operators as counterterms whose coefficients get renormalized so as to
absorb the resulting α-dependence.

10Starting from a standard microscopic model, say, weakly-coupled, one would expect derivatives of the dilaton
to enter the bulk action with m = 1 only, stemming from the presence of a canonical kinetic term in the uv. As
we shall soon see, the contributions of the operators O(m,n)

bulk
to the large-charge expansion do not depend on m,

hence, we shall discuss examples featuring m = 1 only, as was already the case in Section II.2.
11To contrast with the discussion in Section II.2, we put a subscript α to indicate that α encodes the scheme

dependence.
12At this stage, it is worth mentioning another situation where an adapted version of this construction appears:

effective string theory [19]. We mentioned it in the first chapter as one of the early applications of modern
large-charge ideas. Effective string theory uses the framework of open relativistic strings with freely moving
endpoints to characterize the dynamics of a confined quark/anti-quark pair. While the "bulk" of the string is
an effective description of the flux tube connecting the two probes, the endpoints—effectively characterizing the
probes—must be equipped with an edge eft which corrects and enriches the effective predictions, cf. Eq. (I.2).
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II.3.5 Large-charge conformal dimension

We now put all of these ingredients together to push the large-charge expansion of ∆Q beyond all
previously known results. By construction, an eft generically contains infinitely many terms, see
in particular Eq. (II.70). However, in the regime where large separation of scales is achieved—by
taking Q ≫ 1 in our case—any observable computed from the eft takes the form of an expansion
in the ratio between the ir and the uv scales. It is therefore self-consistent to truncate the
infinite series of operators entering the eft to any desired order. In our case, observables take
the form of an expansion in inverse power of the charge which receives contributions from both
the bulk and the edge efts, so the truncation must be performed in both of these sectors in a
consistent way. For this, we need to evaluate to which order in the large-charge expansion every
eft operator contributes to observables. For this purpose, it is enough to perform this analysis
on the conformal dimension ∆Q, which is what we turn to now.

Let us therefore consider an operator O∆ as before. We already know that it is enough to consider
operators of the form O(m,n) as defined in Eq. (II.67), but let us make some general remarks first.
The contribution of O∆ to the ground-state energy ∆Q is obtained by integrating its expectation
value, conveniently expressed as function of z, over the volume of the cloud using Eq. (II.54).
Depending on the nature of the resulting integrand, the integral may need to be regularized upon
removing the δα-layer. More specifically, let µ[O∆] and z[O∆] be such that the expectation value
of the operator O∆ to leading-order in µ takes the form

⟨O∆⟩ ∼ µµ[O∆] · zz[O∆] + (subleading). (II.73)

The dressed operator in the bulk, Eq. (II.62), then has an expectation value that scales to leading
order in µ as

⟨Obulk⟩ ∼ µµ[O∆]+ d+2−∆
2 · zz[O∆]+ d+2−∆

2 + subleading. (II.74)

It is now straightforward to analyze the leading contribution of this operator to ∆Q. Indeed, if

z[O∆] + d+ 2 − ∆
2 ≤ −1, (II.75)

a divergence occurs when integrating over z ∈ [0, 1]. In particular, a logarithmic divergence
appears when the above inequality is saturated. We thus regularize these divergences by removing
the δα-layer and, accounting for the factor of µ d

2 ∼
√
Q from the measure (cf. Eq. (II.54)), we

find that ∆Q receives contributions of the form

∆Q ∋


Q

d+1
d − ∆−2µ[O∆]

2d if ∆ < d+ 4 + 2z[O∆]
Q

d+1
d − ∆−2µ[O∆]

2d · log Q
α3d/2 if ∆ = d+ 4 + 2z[O]

Q
2
3 −(∆+4z[O∆]−6µ[O∆]−2)/(6d)

α(∆−2z[O∆]−d−4)/2 if ∆ > d+ 4 + 2z[O∆].

(II.76)

The last two cases—the divergent ones—are α-dependent and thus need to be renormalized using
edge operators as counterterms.

Let us now be more explicit and analyze the fate of the operators O(m,n), whose conformal
dimension, leading power-law dependence on µ and corresponding z-scaling are given, respectively,
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by
[O(m,n)] = (d+ 2)m+ 4n,

µ[O(m,n)] = d− 2
2 m,

z[O(m,n)] = d− 4
2 m.

(II.77)

This immediately leads to the following contributions to ∆Q:

∆Q ∋


Q

d+1−2(m+n)
d if 6m+ 4n < d+ 4

Q
2d−1

3d − 2n
3d · log Q

α3d/2 if 6m+ 4n = d+ 4
Q

2d−1
3d

− 2n
3d

α
1
2 (6m+4n−d−4) if 6m+ 4n > d+ 4.

(II.78)

Note that the divergent cases (the last two) give a contribution whose Q-scaling is independent
of m. For instance, the set of operators (∂ia)2m with m ≥ 2 in d = 2 all give Q 1

2 -contributions
after δα-regularization, but they have not yet appeared in the literature so far. The same holds
for (∂ia)2mZ with m ≥ 1 in d = 2, yielding Q 1

6 -contributions, and similarly in d = 3 where sets
of equally contributing operators give terms of order Q 5

9 , Q 1
3 , Q 1

9 , etc. Again, in the context of
dilaton-eft building, minimal inclusion of such tower of operators is always sufficient, as we shall
illustrate in Sec. II.3.8 by including one operator of each set.

It is fairly straightforward to perform the same analysis for the edge eft operators of Eq. (II.69)
to find that their contribution to ∆Q is of the form:

∆Q ∋ Q
2d−1

3d − 2p
3d . (II.79)

This is thus seen to match the scheme-dependent contributions identified in Eq. (II.78), and one
can thus conclude—somewhat expectedly—that the renormalization procedure is self-consistent.
This analysis of divergences and counterterms provides us with a simple prescription to consistently
truncate the effective action given in Eq. (II.70). In Sec. II.3.8, we carry out the computation of
∆Q in d = 2 and d = 3 up to corrections that scale with negative powers of the charge, but we
first make some general observations.

II.3.6 Properties

Equation of motion

Consider the leading-order Lagrangian Eq. (II.52). The eom with respect to the radial mode
a then fixes (v(z)/vhom) 4

d = z in the superfluid ground state, where vhom ≡ (2µc0/g)
d
4 is the

ground-state solution in the homogeneous case, i.e. when the trap is turned off. As we include
subleading bulk and edge operators in the action, given in Eq. (II.68) and Eq. (II.69), the eom
gets more and more complicated, although it can always be put in the form(

v(z)
vhom

) 4
d

= z[1 +B(z, v, v′, v′′)] (II.80)
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in the ground state. In the bulk, B(z, v, v′, v′′) ≪ 1 and one can solve this equation order by
order in an expansion in 1

µ . For example, adding the first subleading operator − c1,0
2 O(1,0)

bulk yields

(
v(z)
vhom

) 4
d

= z

[
1 − d

16
c1,0

c0

(4 − d) + (3d− 4)z
µ2z3 + O

(
1
µ4

)]
, (II.81)

which reproduces the simple result of Section II.2.

Chemical potential

For a given perturbative solution v(z) to the equation of motion, the chemical potential can then
be expressed as a function of the charge Q by inverting

Q =
∫

cloud

dr ρ(r), (II.82)

with ρ = c0v(z)2. Using Eq. (II.81) and removing the δα-layer to regularize the divergent part,
we find

Q =
(
µ

ζ

)d [
1 + O

(
µ− d+2

3

)]
, (II.83)

where ζ has already been found to be ζ =
√

g
4πc0

[
2Γ(d)

c0Γ( d
2 )

] 1
d

. Therefore,

µ = ζQ
1
d

[
1 + O

(
Q− d+2

3d

)]
. (II.84)

It is tempting to give an explicit expression for the correction in the square bracket based on the
solution found above for v(z), but some remarks are in order. Pushing the expansion further in
Eq. (II.81), one would actually face terms of the form ck

1,0
(µ2z3)k (k ∈ N), which all become of order

one close to the edge (i.e. where z ≈ δα ∼ µ− 2
3 ), and contribute to the Q− d+2

3d -correction in the
chemical potential, which makes it hard to express it in closed form. A reasonable choice, though,
is to focus on first-order perturbations in the Wilsonian coefficients, as was originally done in
[189]. Similarly, the operator − c2,0

4 O(2,0)
bulk also ends up contributing to the next-to-leading order

in the chemical potential for exactly the same reason, and so does any operator O(m,0)
bulk , although

we will not need to consider m > 2. So, to first-order in the perturbations, we get

µ = ζQ
1
d

[
1 + d2Γ(d)

8c0Γ
(

d
2
)2

1
Q

d+2
3d

{
c1,0

α
4−d

2
+ 3d2

32
c2,0g

c0

1
α

10−d
2

}
+ O

(
Q− d+4

3d

)]
. (II.85)

Counterterm contributions would allow us to renormalize this expression and get rid of the
α-dependence, but for practical purposes, we shall do this and fix the renormalized coefficients
such that they cancel all divergences only at the very end of the computation of ∆Q.

Structure of the expansion

We now elaborate on the structure of the expansion of ∆Q by first noting that the contribution of
O(m,n)

bulk is itself an expansion. Indeed, using the leading-order solution v(z) ∼ (µ · z) d
4 (corrections
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do not change the argument) and Eq. (II.54), we have∫
cloud

dr ⟨O(m,n)
bulk ⟩ ∼ µd+1−2(m+n)

∫ 1

0
dz (1 − z) d

2 −1+m

z3m+2n−1− d
2
. (II.86)

The integral on the right-hand side either converges and corresponds to the first case of Eq. (II.78),
or needs to be regularized by setting the lower bound to δα, yielding the last two cases of this
classification. In the latter situation, however, the upper bound of the integral always gives a
finite result, thus continuing the expansion in Q− 2

d starting at Q d+1
d . For concreteness, consider

O(1,1)
bulk = (∂ia)2Z

a
8
3

(II.87)

in d = 3. We obtain∫
cloud

drx ⟨O(1,1)
bulk ⟩ ∼

∫ 1

δα

dz (1 − z) 3
2

z
5
2

= π + 2
3δ

3
2
α

− 3√
δα

+ O
(√

δα

)
= 2ζ

3α 3
2
Q

1
3 − 3ζ 1

3
√
α
Q

1
9 + π + O

(
Q− 1

9

)
,

(II.88)

where π comes from the upper bound and is suppressed by a factor of (Q− 2
3 )2 with respect to the

leading-order term. The rest is an expansion in δα whose dependence on α should subsequently
be absorbed by counterterms. All in all, the expansion of ∆Q reads

∆Q = Q
d+1

d

[
a1 + a2Q

− 2
d + a3Q

− 4
d + . . .

]
+Q

2d−1
3d

[
b1 + b2Q

− 2
3d + b3Q

− 4
3d + . . .

]
+Q

d−5
3d

[
c1,0 + c2Q

− 2
3d + c3Q

− 4
3d + . . .

]
+ . . .

(II.89)

The first line is completely analogous to the relativistic case, while the rest is specific to nrcft.
The last line arises when µ is replaced by Q, according to Eq. (II.84). When d is even, it can be
absorbed in the second line, where some of the bi’s contain logQ-terms—cf. again Eq. (II.78) for
the classification.

II.3.7 Small dilaton mass

We now implement a small explicit breaking of conformal symmetry, as originally proposed by
Coleman [205]. It is relatively straightforward to adapt to capture both the relativistic (z = 1)
and the nonrelativistic (z = 2) cases at once. Referring to the beginning of Section II.2, we recall
that the dilaton is a field transforming under scale transformations as

σ(t, r) −→ σ(ezαt, eαr) + d+ z − 2
2f α, (II.90)
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where f is a dimensionful constant, as required by the relation a = 1
f e

−fσ. Dressing the identity
operator in the bulk is an easy operation, which we express in terms of σ rather than a:

1bulk := 1
fη

e−ηfσ(t,r), (II.91)

with η := 2(d+z)
d+z−2 . This corresponds to the marginal interaction term for the radial mode that we

have used so far—the term whose Wilsonian coefficient was denoted by g. Coleman’s potential is
a small modification of this term which consists in adding

UC = m2
σ

η2f2

[
e−ηfσ + ηfσ − 1

]
= m2

σ

η2f2 [(fa)η − η log(fa) − 1] .
(II.92)

to the action, where mσ is a small parameter that we will refer to as the dilaton mass. Indeed, to
quadratic order,

UC ≈ 1
2m

2
σσ

2. (II.93)

It must be "small" in the following sense:

m2
σf

η−2 ≪ g, (II.94)

where g is generically of O(1). In Eq. (II.92), the linear piece in σ is needed to eliminate the
tadpole hidden in the exponential, and will appear to be responsible for the signature of the soft
breaking of conformal symmetry in the computation of ∆Q (see [208] for the relativistic case).
The dilaton mass mσ is therefore a finely-tuned small parameter encoding deviations from the
critical point.

Finally, let us comment on the trace of the stress tensor. Although the breaking of scale invariance
is very explicit due to the last two terms in Coleman’s potential, we can somewhat quantify how
much we break it. Indeed, the trace of the stress tensor does no longer vanish but equals13

T = d+ z − 2
2

m2
σ

f
σ. (II.95)

II.3.8 Examples

We are now going to see the whole machinery in action through two examples, so let us repeat
the recipe. We are interested in the conformal dimension of the lowest operator of charge Q ≫ 1
in the theory without trap, ∆Q, which is given by the ground-state energy of the trapped system.
After choosing at which order in Q we want to truncate the expansion of ∆Q (in what follows,
we go up to Q0), we select the corresponding terms in the complete large-charge dilaton eft
given in Eq. (II.70) based on their contributions to ∆Q given in Eqs (II.78) and (II.79). We also
account for the small dilaton mass deformation that we have just discussed.

13For more details on the tracelessness of the stress tensor in nonrelativistic theories, we refer the reader to [173].
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The d = 2 case

Typically, nrcfts in two spatial dimensions are relevant for the description of anyons [20, 213],
which themselves are at the origin of the Aharonov-Bohm effect [214] and whose existence
has recently been confirmed in the context of the fractional quantum Hall effect [215, 216].
Based on the previous discussion, we include the subleading operators O(m,n)

bulk of Eq. (II.68) for
(m,n) ∈ {(1, 0), (0, 1), (2, 0), (1, 1)}, as well as the edge eft operators Z0

edge and Z1
edge constructed

in Eq. (II.69). The Lagrangian thus reads14

L = c0a
2U − g

4a
4 − m2

σ

16f2

[
(fa)4 − 4 log(fa) − 1

]
− c1,0

2 (∂ia)2 − c0,1

2 Z − c2,0

4
(∂ia)4

a4 − c1,1

4
(∂ia)2

a4 Z

+ δ(a2)1
2

[
κ0 a

2(∂ia)2 + κ1

(
a2(∂ia)2

2

) 1
3

Z

]
.

(II.96)

It is convenient to introduce g̃ := g + m2
σf2

4 . Using ⟨χ⟩ = µ · t, ⟨a⟩ = v(z) and Eq. (II.54), we get

H0 = c0v
2µ(1 − z) + g̃

4v
4 − m2

σ

16f2 [4 log(fv) + 1]

+ (1 − z)v′2

µ

[
c1,0 + c1,1

v4

]
+ c0,1 + c2,0(1 − z)2

µ2

(
v′

v

)4

− δ(v2)
[
κ0(1 − z)

µ
(vv′)2 + κ1(1 − z) 1

3

µ
1
3

(vv′) 2
3

]
.

(II.97)

The expectation value v(z) is the solution of the eom (cf. Eq. (II.80))(
v(z)
vhom

)2
= z [1 +B(z, v, v′, v′′)] , (II.98)

with vhom ≡
√

2µc0/g̃, and B(z, v, v′, v′′) is given by

B(z, v, v′, v′′) = m2
σ

8c0f2µz

1
v2 + c1,0

c0µ2z

(1 − z)v′′ − v′

v

+ 6c2,0(1 − z)
c0µ3z

v′2

v4
(1 − z)(vv′′ − v′2) − vv′

v2

+ c1,1

c0µ2z

(1 − z)(vv′′ − 2v′2) − vv′

v6

(II.99)

in the bulk. Referring to the previous section, we find that the chemical potential is related to
the charge as

µ = ζ
√
Q

[
1 + 1

2c0

1
Q

2
3

{
c1,0

α
+ 3

8
c2,0g̃

c0

1
α4

}
+ O

(
Q−1)] , (II.100)

where ζ =
√
g̃/(2πc2

0). Note that the dilaton mass mσ modifies the expression of the chemical
potential only beyond next-to-leading order. We are now in position to integrate Eq. (II.97),
removing the δα-layer when necessary. To first-order perturbations in the Wilsonian coefficients,

14We introduce for convenience some extra normalization for the Wilsonian coefficients compared to Eq. (II.70).
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we find
∆(d=2)

Q = 2
3ζQ

3
2 +

[
c1,0

6ζc0
− πζm2

σ

8f2

]√
Q logQ

− κren.
0

2ζc0

√
Q−

(
2π4c0

) 1
3 ζκren.

1 ·Q 1
6 + O

(
Q0), (II.101)

The renormalized couplings are

κren.
0 = κ0 + c1,0 logα− g̃

24c0

c2,0

α3 + (finite),

κren.
1 = κ1 +

[(
c0

g̃

) 1
3

c2,0 −
(
g̃

c0

) 2
3

c1,1

]
1

8α2 + (finite).
(II.102)

Note that we have absorbed the contribution of c0,1, which is finite, as well as a finite correction
due to mσ into the finite part of κren.

0 . We thus see that the effect of the small dilaton mass
deformation is a mere shift in the coefficients of the

√
Q logQ term, so there is essentially no

signature of the small breaking of conformal symmetry in this scenario.

Let us mention that anyons are not invariant under parity and it would thus be interesting to
extend this study to the case of parity-violating theories (cf. [51] for suggestions), in the spirit of
[147] in the relativistic case.

The d = 3 case

As mentioned in the introduction, the case of nrcfts in three spatial dimensions is relevant
for the description of the unitary Fermi gas. In order to build the large-charge eft, we again
use the leading-order Lagrangian Eq. (II.52), to which we add Coleman’s potential Eq. (II.92),
the operators given in Eq. (II.68) with (m,n) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} and the edge
operators, Eq. (II.69), constructed from Z0, Z1, and Z2. We thus consider the following
Lagrangian density:

L = c0a
2U − 3g̃

10a
10
3 + 9m2

σ

100f2

[
10
3 log(fa) + 1

]
− c1,0

2 (∂ia)2 − c0,1

3 a
2
3Z − c2,0

4
(∂ia)4

a
10
3

− c1,1

6
(∂ia)2

a
8
3

Z − c0,2

9
Z2

a2

+ δ(a 4
3 )

κ0

(
a

2
3 (∂ia)2

2

) 7
6

+ κ1

3

(
a

2
3 (∂ia)2

2

) 1
2

Z + κ2

9

(
2

a
2
3 (∂ia)2

) 1
6

Z2


(II.103)

where g̃ ≡ g
(

1 + 3m2
σf

4
3 /(10g)

)
. The ground-state energy density then reads

H0 = c0µv
2(1 − z) + 3g̃

10v
10
3 − 9m2

σ

100f2

[
10
3 log(fv) + 1

]
+ (1 − z)v′2

µ

[
c1,0 + c1,1

v
8
3

]
+ c0,1v

2
3 + c2,0(1 − z)2

µ2
v′4

v
10
3

+ c0,2

v2

− δ(v 4
3 )
[
κ0

(
1 − z

µ
v

2
3 v′2

) 7
6

+ κ1

(
1 − z

µ
v

2
3 v′2

) 1
2

+ κ2

(
1 − z

µ
v

2
3 v′2

)− 1
6
]
.

(II.104)
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Moreover, the expectation value of the radial mode v(z) satisfies the equation of motion Eq. (II.80)
with vhom ≡ (2µc0/g̃) 3

4 and

B(z, v, v′, v′′) = 3m2
σ

20c0f2µz

1
v2 + c1,0

2c0µ2z

2(1 − z)v′′ − 3v′

v
− c0,1

3c0µz

1
v

4
3

+ c0,2

c0µz

1
v4

+ c2,0(1 − z)
c0µ3z

v′2

v
10
3

(1 − z)(6vv′′ − 5v′2) − 9vv′

v2

+ c1,1

6c0µ2z

(1 − z)(6vv′′ − 8v′2) − 9vv′

v
14
3

(II.105)

in the bulk. Consequently, the chemical potential reads

µ = ζQ
1
3

[
1 + 9

πc0

1
Q

5
9

{
c1,0√
α

+ 27c2,0g̃

32c0

1
α

7
2

}
+ O

(
Q− 7

9

)]
. (II.106)

Proceeding as before, we can conveniently express the result in terms of γ2 := 18g̃
c0

as

∆(d=3)
Q = 3

4ζQ
4
3 +

[
27

8ζc0
c1,0 + g̃

ζc2
0
c0,1

]
·Q 2

3 − 35√
2π(ζ5γ−8) 1

3κren.
0 ·Q 5

9

−
√

2πm2
σζ

3
2

5f2 ·
√
Q

[
logQ+

(
log 126ζ3f4

γ6 − 8
)]

− 3
√

2πζκren.
1 ·Q 1

3 −
√

2π
27 (ζγ8) 1

3κren.
2 ·Q 1

9 + O
(
Q0)

(II.107)

where the renormalized couplings are given by

κren.
0 = κ0 − γ

5
3

80
c2,0

α
5
2

+ (finite)

κren.
1 = κ1 +

[
135
8γ c2,0 − γ

3 c1,1

]
1

4α 3
2

+ (finite)

κren.
2 = κ2 −

[
35

23
c1,1

γ
5
3

+ 38 · 5
27

c2,0

γ
11
3

+ γ
1
3 c0,2

]
1√
α

+ (finite).

(II.108)

The dilaton mass deformation mσ is responsible for the second line of Eq. (II.107) above, that is,
the presence of the

√
Q logQ and

√
Q-terms: this is a testable signature of the soft breaking of

conformal invariance. Moreover, there is a mixed Q0-contribution that we have not displayed as
it merely serves as a counterterm for the divergent one-loop Casimir energy to be computed in
Section II.5, where a universal Q0 logQ-term arises as a consequence of this.

Among the many quantities that can be given corrections based on this construction (cf. also
[47]), let us come back to the doubly integrated density mentioned earlier, whose leading-order
expression is given in Eq. (II.55). We solve the equation of motion as in Eq. (II.81), but we
only account for the corrections caused c1,0 for simplicity. We then integrate the charge density
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ρ(z) = c0v(z)2 over r1 and r2 to obtain

n(r3) = 2πg
5

[
2c0µ

g

(
1 − r2

3
2µ

)] 5
2

×

1 + 45c1,0

32c0µ2

 5(
1 − r2

3
2µ

)2 − 1(
1 − r2

3
2µ

)3

+ . . .

 . (II.109)

This expression is valid for r3 ∈ [0, Rcl

√
1 − δα] and can in principle improve the fitting to

experimental data.

II.3.9 Lessons from the complete large-charge dilaton EFT

The rich dynamics introduced by the inhomogeneity of the trapped system forced us to be very
cautious and pedantic in the construction of the effective action, culminating in Eq. (II.70). The
fundamental principles of eft building had to be fully exploited and carefully discussed in order
to achieve this. This construction turned out to be completely self-consistent when computing
the large-charge conformal dimension ∆Q, where the newly introduced edge eft operators served
as counterterms for the edge divergences observed already in the previous section. This is a
beautiful illustration of the interplay between a ’bulk’ eft and a complementary eft supported
on an extended object—here, the fluctuating edge of the cloud of particles. Many lessons learnt
in this section can be applied in other contexts with similar dynamics, e.g. the effective string
theory approach to the confinement problem [19].

The use of the dilaton formalism for the purpose of eft building with spontaneously broken U(1)
and conformal symmetries had two main advantages. First, it allowed for a rather clear and
straightforward construction of dressing operators. Indeed, any microscopic model realizing this
superfluid spontaneous symmetry breaking pattern has a massive mode gapped at the cutoff scale
set by the chemical potential. This massive mode, upon integrating it out, effectively dresses
every operator built out of low-energy degrees of freedom in the resulting theory in a way that
makes every term marginal. This is, by design, precisely what our complete large-charge eft
captures, where the edge dressing rule invoked a slightly more subtle version of this argument.
Moreover, the dilaton mode allowed us to explore the fate of the ground-state energy ∆Q near
criticality by softly breaking conformal symmetry explicitly. While there was no phenomenological
consequence of this in d = 2, the situation in d = 3 was different: the structural dependence of
∆Q changed and acquired an extra

√
Q logQ term that can in principle be detected when fitting

against experimental data.

However, it is also probably clear by now that a dilaton-based construction of the effective
theory introduces a lot of redundancy. We carefully discussed how to deal with this aspect,
although the formalism calls for a description in terms of the low-energy degrees of freedom
only. Additionally, the δ-layer regularization, while very intuitive and physical, can easily be
replaced by a more familiar regularization, namely, dimensional regularization. Equipped with
a thorough understanding of the rich dynamics taking place in these systems, we move on to
describe how to efficiently reproduce these results in the simplest possible setup: the Goldstone
eft with dimensional regularization.
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II.4 Systematic analysis II: large-charge Goldstone EFT

II.4.1 Heuristics

It is enlightening to summarize the results obtained in the previous two sections by invoking only
heuristic arguments based on the existence of a macroscopic limit and eft principles, so let us
do so in a way that gives a clear physical picture.

The theories of interest are invariant under the nonrelativistic incarnation of the conformal
group—the Schrödinger group—which always includes a U(1) central extension that corresponds
to particle-number conservation. The nonrelativistic state-operator correspondence states that
the (positively charged) operator spectrum is mapped bijectively to the energy spectrum of the
system subjected to an external harmonic potential A0(r) = mω2

2ℏ r2 [20, 22, 199], with trapping
frequency ω. For the purpose of the argument, it is convenient to set ℏ = m = 1 but keep track
of ω, so we have

E0 = ω · ∆Q , (II.110)

where ∆Q is the lowest operator dimension of charge Q, and E0 is the energy of the charged ground
state, for which the charge Q—the number of particles in the trap—is sourced by a chemical
potential µ. Borrowing intuition from quantum mechanical systems in confining potentials and
turning points, it is clear that the particle density decreases as we recede from the center of the
trap. The system possesses a characteristic energy µ to overcome the energy barrier set by A0(r),
so the resulting droplet of trapped particles occupies a finite region of space whose radius is given
by Rcl =

√
2µ
ω . However, the particle density at the center of the cloud, or far enough from its

edge, cannot depend on ω as the system locally looks like the untrapped one. This is dictated
by the existence of macroscopic limit, and the particle density is therefore set by dimensional
analysis to scale with µ like ρ ∼ µ

d
2 , so Q ∼

(
µ
ω

)d. The volume of the cloud, ΩdR
d
cl, is then seen

to be proportional to the square-root of the charge: Vol ∼ ω− d
2
√
Q.

Now, consider the charge and energy densities in the bulk, i.e. sufficiently far from the edge:

charge density ∼ Q

Vol ∼ ωd/2
√
Q ,

energy density ∼ E0

Vol ∼ ωd/2+1∆Q/
√
Q.

(II.111)

The existence of macroscopic limit implies that the limit Q → ∞, ω → 0 can be taken while keeping
the charge and energy densities fixed. In turn, this corresponds to the following leading-order
scaling in Q ≫ 1:

∆Q ∼ Q(d+1)/d + (subleading). (II.112)

Moreover, the bulk eft is characterized by the ir length scale Rcl and the uv length scale
µ− 1

2 ∼ ρ− 1
d . The derivative expansion is thus controlled by

ρ− 1
d

Rcl
∼ Q−1/d, (II.113)

so large separation of scales requires Q ≫ 1. In fact, in a parity-invariant theory, corrections to
Eq. (II.112) are controlled by the square of this ratio, so the structure of ∆Q established up to
this point seems to follow precisely the relativistic one.

64



Nonrelativistic large-charge effective field theory Chapter II

However, an inhomogeneous system might generically have regions where separation of scales
is no longer satisfied: a familiar example is a superfluid developing vortices. The superfluid
density at the vortex core drops and a naive superfluid eft description would break down. This
mandates the characterization of the vortex by a lower-dimensional eft with a new uv cutoff
scale associated with the typical size of the vortex core. In our case, the situation is similar: the
ratio Eq. (II.113) is no longer satisfactory in some specific region of the cloud, namely, close to
the edge. In fact, in terms of z = 1 − r2

R2
cl

, the largest fluctuations that the eft can appropriately
describe locally is not quite Rcl, but Rcl · z, otherwise these fluctuations would leak out of the
cloud. Similarly, the local uv scale is given by ρ(z)− 1

d ∼ (µ · z)− 1
2 , so the bulk eft breaks down

in the region where Rcl · z ∼ ρ(z)− 1
d , that is, when

z ∼ δ :=
(
ω

µ

) 2
3

∼ Q− 2
3d . (II.114)

To accommodate for this breakdown, one needs to account for the edge dynamics by building
an additional eft living on the corresponding codimension-one fluctuating manifold, which is
essentially a sphere of radius Rcl. From the point of view of this lower-dimensional theory, the
typical size—hence the ir length scale—is again Rcl, and the uv one is the previous local uv
scale frozen at z = δ, so the derivative expansion is expected to be controlled by

ρ(δ)− 1
d

Rcl
∼ δ, (II.115)

which is indeed what was computed in Section II.3. The edge eft operators must be marginal
operators built out of bulk primaries projected on the ’Dirichlet’ region ρ(z) = 0, so their
expectation values in the charged ground state cannot depend on z except for a Dirac-delta factor
δ(z). The leading one is built out of merely ρ and its derivatives, and it is rather straightforward
to see that it can only be

δ
(
ρ

2
d

) [
ρ

4
d −2(∂iρ)2

] d+4
3
, (II.116)

thereby contributing the leading edge contribution to ∆Q: a term proportional to Q 2d−1
3d . An

entirely new structure therefore arises from the boundary dynamics of the system, as investigated
in [2, 189] and reviewed in the previous section. The renormalization of edge divergences also
hints at the possible presence of logarithms in the large-charge expansion of ∆Q. Finally, while
we merely considered the leading-order relation between µ and Q, a careful treatment reveals
that, upon replacing µ by Q in the expansion, yet another series of terms emerges, starting at
Q

d−5
3d , although its coefficients are not independent Wilsonian coefficients.

These series of heuristic arguments therefore allows to gain an intuitive understanding of the
following structure, first revealed in [2] by the author and explained in the previous section:

∆Q = Q
d+1

d

[
a1 + a2

Q
2
d

+ a3

Q
4
d

+ . . .

]
+Q

2d−1
3d

[
b1 + b2

Q
2

3d

+ b3

Q
4

3d

+ . . .

]
+Q

d−5
3d

[
d1 + d2

Q
2

3d

+ d3

Q
4

3d

+ . . .

]
+ log(Q) enhancements.

(II.117)
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In this section, we discuss this in detail and recover these results from the nlsm—or ’large-charge
Goldstone eft’—perspective using dimensional regularization (dimreg) and we clarify when the
log(Q) terms occur.

Note that keeping track of ω helped us sketch the previous heuristic arguments, but we now
switch it off again and work with ℏ = m = ω = 1. Our first task is to reconstruct the full
large-charge EFT solely in terms of the Goldstone mode χ.

II.4.2 The complete large-charge Goldstone EFT

To make what follows self-contained, we sketch again the preliminary steps needed to establish
the leading-order results, and then quickly turn to the discussion of subleading operators in both
the bulk and the edge efts. Without much surprise, the leading-order term in the Lagrangian is
of the form [47, 51, 190]:

LLO = c0U
d
2 +1, (II.118)

where we recall that
U = χ̇− 1

2r
2 − 1

2(∂iχ)2 . (II.119)

Indeed, U has dimension 2, so U d
2 +1 is marginal. The harmonic trap A0(r) = 1

2r
2 (with r = |r|)

may be regarded as being coupled to χ̇, as imposed by general coordinate invariance [47]. In the
superfluid ground state, the Goldstone mode χ acquires the expectation value ⟨χ⟩ = µ · t. For
comparison, the equivalent Lagrangian in the relativistic case would read L = c0(∂χ)d+1 [15, 16].

In the charged ground state, U thus has the following simple expectation value:

⟨U⟩ = µ · z, (II.120)

where the dimensionless coordinate z = 1− r2

R2
cl

has already been introduced earlier, and Rcl =
√

2µ
is the radius of the cloud. The ground-state charge density is

⟨ρ⟩ LO=
〈
∂LLO

∂χ̇

〉
=
〈
∂LLO

∂U

〉
∼
〈
Ud/2

〉
∼ (µ · z)d/2, (II.121)

which is seen to decrease away from the origin (z = 1), and vanishes when z = 0, i.e., r = Rcl.
The total charge Q is obtained by integrating the charge density over the volume of the cloud,
thereby relating it to the chemical potential:

µ
LO= 1√

2π

[
Γ(d+ 1)

Γ
(

d
2 + 2

)
c0

]1/d

Q1/d =: ξQ1/d. (II.122)

Similarly, the (leading-order) ground-state energy—and, therefore, the dimension of the lowest
operator of charge Q—can be obtained upon integrating the energy density over the volume of
the cloud, which may be expressed in terms of Q as

∆Q
LO= d

d+ 1ξQ
(d+1)/d . (II.123)

We also summarize the discussion of the previous section regarding the general construction
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of dressing operators for systems that realize spontaneous breaking of the U(1) and conformal
symmetries, cf. also [189] for the original discussion. First, we know that, besides U and its
derivatives, the only operator allowed by general coordinate invariance with a non-vanishing
expectation value in the superfluid ground state is

Z = ∇2A0 − 1
d

(∇2χ)2 , (II.124)

with ⟨Z⟩ = d. Therefore, in the bulk, all nontrivial operators are composite operators made out
of integer powers of U , (∂iU)2 and Z, which are then dressed to marginality with appropriate
dressing rules, established as follows. In a given region of the system, let {Oi}i denote the set of
all scalar non-composite primaries (of dimension ∆i) that have nonzero finite expectation value in
the charged ground state—so U , (∂iU)2 and Z in the bulk, and (∂iU)2 and Z at the edge—and
let [∏

i

Opi

i

] 2∑
i

pi∆i

(II.125)

be a generic composite operator whose dimension we chose to normalize to 2. The correct dressing
operator in this given region of the system is the one with the highest power-law dependence on
µ. It is simple enough to find that the dressing operators in the bulk and at the edge are given by

Dbulk := U,

Dedge :=
[
(∂iU)2] 1

3 .
(II.126)

As mentioned above, the primary operators O∆ that need to be dressed are scalars of the form
U l(∂iU)2mZn with l,m, n ∈ N. When it comes to building bulk eft operators out of them,
there is no need to include powers of U as the dressing rule takes care of them, while for edge
eft operators, the same applies to (∂iU)2 and, moreover, powers of U cannot appear as their
expectation values depend on z. The edge dressing rule is a dressed projection of O∆ onto the
edge achieved by including an operator-valued Dirac-delta functional δ(U)—which turns into
1
µδ(z) in the charged ground state. The exhaustive list of allowed operators is therefore given by

O(m,n)
bulk := (∂iU)2mZnU

d
2 +1−(3m+2n)

=
(

(∂iU)2

U3

)m(
Z

U2

)n

U
d
2 +1,

Zp
edge := Zp · δ(U) ·

[
(∂iU)2] d+4(1−p)

6 .

(II.127)

The complete large-charge eft thus reads

L(χ) = U
d
2 +1

∑
m,n

cm,n

(
(∂iU)2

U3

)m(
Z

U2

)n

+ δ(U)
∑

p

κp Z
p
[
(∂iU)2] d+4(1−p)

6 , (II.128)

where the cm,n’s and the κp’s are real dimensionless Wilsonian coefficients, and c0,0 denotes c0 of
the leading-order action described above.
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II.4.3 Large-charge conformal dimension

We now perform a quick analysis of the leading contributions of the operators listed in Eq. (II.127)
to the charge

Q =
∫

cloud
dr
〈
∂L
∂U

〉
(II.129)

and the ground-state energy,

∆Q =
∫

cloud
dr
〈
∂L
∂U

χ̇− L
〉
. (II.130)

Recall that, at leading order in µ in the charged ground state, we have ⟨U⟩ = µ · z,
〈
(∂iU)2〉 =

2µ(1 − z) and ⟨Z⟩ = d. Moreover, the measure of integration over the cloud is given in terms of z
as (2πµ)

d
2

Γ( d
2 )
∫ 1

0 dz (1 − z) d
2 −1. Every resulting integral is of the form of a Beta function,

B(x, y) =
∫ 1

0
dz zx−1(1 − z)y−1 = Γ(x)Γ(y)

Γ(x+ y) , Re(x),Re(y) > 0. (II.131)

We shall invoke analytic continuation of the latter to perform the integrals explicitly.

We use the same superscript as the corresponding operator to denote its contribution. In the
case of bulk operators, O(m,n)

bulk , we obtain

Q(m,n) := cm,n

∫
cloud

dr
〈
∂O(m,n)

bulk
∂U

〉

= cm,n
2mdn(2π) d

2

Γ
(

d
2
) µd−2(m+n) · d+ 2 − (6m+ 4n)

2

∫ 1

0
dz (1 − z) d

2 −1+mz
d
2 −(3m+2n)

= cm,n
2mdn(2π) d

2

Γ
(

d
2
) Γ

(
d
2 +m

)
Γ
(

d
2 + 2 − (3m+ 2n)

)
Γ(d+ 1 − 2(m+ n)) µd−2(m+n),

(II.132)
and

∆(m,n) = cm,n

∫
cloud

dr
〈
∂O(m,n)

bulk
∂U

χ̇− O(m,n)
bulk

〉

= cm,n
2mdn(2π) d

2

Γ
(

d
2
) µd+1−2(m+n) ·

∫ 1

0
dz (1 − z) d

2 −1+mz
d
2 −(3m+2n)

[
d+ 2 − (6m+ 4n)

2 − z

]
= cm,n

2mdn(2π) d
2

Γ
(

d
2
) Γ

(
d
2 +m

)
Γ
(

d
2 + 2 − (3m+ 2n)

)
(d− 2(m+ n))

Γ(d+ 2 − 2(m+ n)) · µd+1−2(m+n).

(II.133)
Note that the (0, 0)-contribution gives back Eqs. (II.122) and (II.123). Similarly, the contributions
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of edge operators are as follows:

Q(p) := κp

∫
cloud

dr
〈
∂Zp

edge

∂U

〉

= κp
2

d+4(1−p)
6 dp(2π) d

2

Γ
(

d
2
) µ

2d−4−2p
3

∫ 1

0
dz δ′(z)(1 − z)

2d−1−2p
3

= κp
2

d+4(1−p)
6 dp(2π) d

2

Γ
(

d
2
) 2d− 1 − 2p

3 · µ
2d−4−2p

3 ,

(II.134)

and

∆(p) := κp

∫
cloud

dr
〈
∂Zp

edge

∂U
χ̇− Zp

edge

〉

= κp
2

d+4(1−p)
6 dp(2π) d

2

Γ
(

d
2
) µ

2d−1−2p
3 ·

∫ 1

0
dz (1 − z)

2d−1−2p
3 [δ′(z) − δ(z)]

= κp
2

d+4(1−p)
6 dp(2π) d

2

Γ
(

d
2
) 2d− 4 − 2p

3 · µ
2d−1−2p

3 ,

(II.135)

where a prime refers to a derivative with respect to z, and δ′(z) is defined via integration by
parts.

Based on the above results, it will be convenient to identify the leading µ-scaling of the integrated
operators in the conformal dimension with the following notation:[

O(m,n)
bulk

]
µ

:= d+ 1 − 2(m+ n),[
Zp

edge

]
µ

:= 2(d− p) − 1
3 .

(II.136)

The goal is to analyze in detail the physical content hidden in Eqs (II.132) and (II.133) using
dimreg, whereby these expressions are analytically continued in d, with the dimension d shifted
2ε ≪ 1 away from its physical value. This regularization scheme is dimensionless in that it
does not introduce any additional scale, hence every power-law divergence found in δ-layer
regularization will be absent here, and the corresponding edge eft operators used to renormalize
them will simply give finite contributions without undergoing renormalization. In fact, dimreg
is a neat way to isolate and analyse logarithmic divergences, which necessarily coincide with the
ones observed in δ-layer regularization. Here, they stem from simple poles of gamma functions
in the numerator of Eqs (II.132) and (II.133), and the renormalization procedure is thus rather
straightforward to implement. After reviewing the structure of the large-charge expansion, we
shall discuss this procedure in detail.

II.4.4 Structure of the large-charge expansion

So far, Eqs (II.132) and (II.134) yield the following structure (we omit coefficients for simplicity):

Q(µ) = µd ×

[
1 + µ−2 + µ−4 + (log)

+ µ− d+4
3 + µ− d+6

3 + . . .

]
. (II.137)
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In the first line, we indicated that contributions to Q(µ) might not just be power-laws in µ, but
might also contain logarithms, as alluded to before. This only happens in even d. Inverting this
expression to find µ as an expansion in Q gives rise to the following multi-layer expansion:

µ(Q) = Q
1
d ×

1 + Q− 2
d + Q− 4

d + (log)
+ Q− d+4

3d + Q− d+6
3d + (log)

+ Q− 2d+8
3d + Q− 2d+10

3d + . . .

 . (II.138)

When d is odd, the third line really generates terms that are not already present in the first two,
and its presence is due to the mixing of the second line in Q(µ) with itself upon inverting the
expression. Similarly, Eqs. (II.133) and (II.135) imply, schematically, that

∆Q(µ) = µd+1 ×

[
1 + µ−2 + µ−4 + (log)

+ µ− d+4
3 + µ− d+6

3 + . . .

]
+ µ0 ×

[
1 + µ− 2

3 + µ− 4
3 + (log)

]
.

(II.139)

As we shall see later, logarithms in the first line only appear in even d and for terms with total
µ-scaling > 0. In the second line, we also anticipated the contributions of quantum corrections,
the leading of which will be analysed in the next section and scales like µ0 or logµ. However,
upon inserting the solution for µ(Q), we might generate terms with (multiple) logarithms even
with total Q-scaling ≤ 0. The final result has the form

∆Q = Q
d+1

d ×

1 + Q− 2
d + Q− 4

d + (log)
+ Q− d+4

3d + Q− d+6
3d + (log)

+ Q− 2d+8
3d + Q− 2d+10

3d + . . .


+Q0 ×

[
1 +Q− 2

3d +Q− 4
3d + (log)

]
.

(II.140)

Of course, the scaling of terms in these asymptotic series sometimes coincide, and not all terms
are associated with a new Wilsonian coefficients.

Example: d = 2

For the sake of clarity, let us see what happens in d = 2 up to O(Q0). We consider

L = O(0,0)
bulk + c1,0O(1,0)

bulk + c0,1O(0,1)
bulk + κ0Z

0
edge + κ1Z

1
edge, (II.141)

where we normalize c0 away for convenience. As can be seen from Eq. (II.132), the operator
O(1,0)

bulk gives a singular contribution to the total charge, so we use dimreg in d = 2 + 2ε to first
find

Q(µ) = 2πµ2

[
1 + 4c1,0 logµ+ 2κren.

0
µ2 + 2 4

3κ1

3µ 8
3

+ O
(
µ− 10

3

)]
. (II.142)

The result has been written in terms of the renormalized edge coefficient κren.
0 introduced via

κ0 = κren.
0 −

(
1
ε

+ 1 + γ + log 2π
)
c0,1 − c0,1, (II.143)
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where, on top of the pole, we also absorbed some finite pieces for later convenience. Correspond-
ingly, we get

Q(µ) = 2πµ2

[
1 + 4c1,0 logµ+ 2κren.

0
µ2 + 2 4

3κ1

3µ 8
3

+ O
(
µ− 10

3

)]
(II.144)

and therefore,

µ(Q) =
(
Q

2π

) 1
2
[

1 − 2π
c1,0 log Q

2π + κren.
0

Q
− (32π4) 1

3κ1

3Q 4
3

+ O
(
Q− 5

3

)]
. (II.145)

It is also rather straightforward to see that

∆Q(µ) = 4π
3 µ3

[
1 + 6c1,0

µ2 − 2 4
3κ1

µ
8
3

+ O
(
µ−3)] . (II.146)

Finally, upon inserting the solution for µ(Q), we find

∆Q = 2Q 3
2

3
√

2π

[
1 − 6π(c1,0 logQ+ κ̃ren.

0 )
Q

− 3(32π4) 1
3κ1

Q
4
3

+ O
(
Q− 3

2

)]

= 2Q 3
2

3
√

2π
−

√
8πQ 1

2 (c1,0 logQ+ κ̃ren.
0 ) − (213π5) 1

6κ1Q
1
6 + O

(
Q0) , (II.147)

where κ̃ren.
0 is the same as κren.

0 up to finite terms. The presence of the
√
Q logQ term was

first observed in [51] for d = 2. The full renormalization procedure was subsequently presented
in [189].

A couple of comments are in order. In Eqs (II.132) and (II.133), the simple poles come from
Γ
(

d
2 + 2 − (3m+ 2n)

)
in the numerator but, additionally, there is a factor of (d − 2(m + n))

multiplying this gamma function in ∆(m,n). So in the presence of the operator O(1,0)
bulk in d = 2,

a pole—which is turned into logµ after renormalization—appears in Q(µ), but not in ∆Q(µ).
One may therefore wonder whether ∆Q will have logarithmic enhancements in the large-charge
expansion. The answer is positive, as one has to first express µ as a function of Q, thereby
transferring all logarithmic enhancement to the final expression. The upshot is that we do not
need to worry about the factor of (d−2(m+n)), and we can concentrate on the poles of the gamma
functions in Eq. (II.133). Another observation that can be made from the above computation is
that, again due to the fact that we need to invert the expression Q(µ), the conformal dimension
∆Q would eventually include a term of the form

Q
3
2

(
c1,0 logQ

Q

)2
=
c2

1,0 log2 Q

Q
1
2

, (II.148)

had we pushed the expansion further. This is the first term in the series starting with
Q

d+1
d Q− 2d+8

3d = Q
d−5
3d in Eq. (II.140), and we see that in d = 2, it gets a double logarithmic

enhancement.
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d (m,n)
[
O(m,n)

bulk

]
µ

2 (1, 0) 1

4 (2, 0), (1, 1), (0, 2) 1

6 (2, 0), (1, 1) 3
(0, 3), (1, 2), (2, 1), (3, 0) 1

8 (2, 0) 5
(0, 3), (1, 2), (2, 1), (3, 0) 3
(0, 4), (1, 3), (2, 2), (3, 1), (4, 0) 1

Table II.1: Divergent bulk operators in different dimensions.

II.4.5 Logarithmic terms from dimensional regularization

In Eq. (II.133), we evaluated the leading-order classical (i.e. tree-level) contribution of an insertion
of the operator O(m,n)

bulk to the large-charge conformal dimension to be

∆(m,n) = Cd
m,n

Γ
(

d
2 + 2 − (3m+ 2n)

)
Γ (d+ 2 − 2(m+ n)) · µd+1−2(m+n), (II.149)

where Cd
m,n is a µ-independent constant that incorporates the Wilsonian coefficient and numerical

factors.

The gamma function has no zeros, but has single poles when the argument is a non-positive
integer:

Γ(−k + ε) = (−1)k

k!

(
1
ε

+Hk − γ

)
+ O(ε), k = 0, 1, . . . , (II.150)

where Hk =
∑k

l=1
1
l is the k-th harmonic number. We emphasize again that, compared to the δ-

layer regularization discussed in the previous section, the analytic continuation in terms of gamma
functions captures the same physical content while dramatically simplifying the identification of
logarithmic terms, leaving us with the simpler task of identifying the location of the poles and
demonstrating that there always exists an appropriate counterterm for each of them.

Location of the poles

Let us enumerate which values of m and n give rise to poles, and at what order in µ they enter
the large charge conformal dimension. From the expression of ∆(m,n) in Eq. (II.149), we see that
there is a pole every time the argument of the gamma function in the numerator is a non-positive
integer, and the argument of the gamma function in the denominator is a positive integer (i.e.,
every time the numerator exhibits a pole that is not canceled by a pole in the denominator):{

d
2 + 2 − (3m+ 2n) = 0,−1,−2, . . .
d+ 2 − 2(m+ n) = 1, 2, 3, . . .

(II.151)
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m

n

2m+ 2n = d+ 2

3m+ 2n = d
2
+ 2

JO(m,n)
bulk Kµ = 1

(m̄, 0)

Figure II.1: Divergent bulk operators O(m,n)
bulk . The operators corresponding to lattice points

between the lines 2m + 2n = d + 2 and 3m + 2n = d
2 + 2 have a simple pole and need to be

regularized (shaded region). All the operators on a line m+ n = const. have the same Q-scaling
(dashed lines). The operator O(m̄,0)

bulk has the highest Q-scaling.

The solutions to these equations for the first few values of d are given in Table II.1 (see also
Figure II.1). The first condition can only be satisfied in even d.15 The second condition can be
rewritten using the µ-scaling of the operator O(m,n)

bulk as
[
O(m,n)

bulk

]
µ

+ 1 = 1, 2, 3 . . . However, since
d must be even, the µ-scaling must be odd and positive:[

O(m,n)
bulk

]
µ

= d+ 1 − 2(m+ n) = 1, 3, 5, . . . (II.152)

We have thus uncovered the following general property of the large-charge expansion of ∆Q:
terms may acquire logarithmic enhancement from tree-level insertions only when d is even and
when their Q-scaling is positive. The largest possible such scaling corresponds to the operator
O(m̄,0)

bulk , where (m̄, 0) is the lattice point closest to the line d
2 + 2 − 3m− 2n = 0 (see Figure II.1):

m̄ =
⌈
d

6 + 2
3

⌉
, (II.153)

so that the µ-scaling of any other divergent bulk operator must satisfy

1 ≤
[
O(m,n)

bulk

]
µ

≤
[
O(m̄,0)

bulk

]
µ

= d+ 1 − 2
⌈
d

6 + 2
3

⌉
. (II.154)

Dimensional regularization

Dimensional regularization is then easily implemented: we simply replace d by d+2ε in Eq. (II.149).
When the conditions given in Eq. (II.151) are satisfied (in which d remains an integer of course),

15It is not clear to us if there is a simple or intuitive interpretation of this general rule.
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we have

∆(m,n) = Cd+2ε
m,n

Γ(−k + ϵ)
Γ(d+ 2 − 2(m+ n) + ε) · µd+1−2(m+n)+2ε

=
(−1)kCd

m,n

k!Γ(d+ 2 − 2(m+ n))

(
1
ε

+ 2 logµ+ (finite)
)

· µd+1−2(m+n)
(II.155)

where
k := −

[
d

2 + 2 − (3m+ 2n)
]

∈ N under conditions (II.151). (II.156)

As per our previous discussion in d = 2, the coefficient Cd
m,n may have been equal to zero from the

beginning. But regardless of this, a logQ enhancement occurs whenever the conditions (II.151)
are satisfied, stemming from the relationship between µ and Q, meaning that the large-charge
conformal dimension contains a term of the form

Q
d+1−2(m+n)

d logQ (II.157)

(as well as a term Q
d+1−2(m+n)

d without enhancement). Moreover, looking at Figure II.1, it should
be clear that there may be several divergent operators with fixed value of m+n (the dashed lines)
giving rise to the above contribution. We shall denote the corresponding cumulative singular
contribution to ∆Q as

∆(m,n)
sing. := b

ε
·Q

d+1−2(m+n)
d , (II.158)

where b is the resulting coefficient. Removing such a divergence is our final task.

Counterterms and renormalization

Consider a bulk eft operator O(m,n)
bulk whose contribution to the large-charge conformal dimension

is singular and gives rise to Eq. (II.158). For any such operator, we want to show that there
exists an edge eft operator with the same µ-scaling, that is, there exists p ∈ N such that[

Zp
edge

]
µ

=
[
O(m,n)

bulk

]
µ
. (II.159)

But using Eq. (II.136), if d, m and n satisfy the conditions of Eq. (II.151), the above equation
becomes

p = n−
[
d

2 + 2 − (3m+ 2n)
]

= n+ k ∈ N, (II.160)

where k was introduced in Eq. (II.156) above. We have therefore showed that (possibly cumulative)
contributions from singular bulk eft operators are always cured by the presence of a corresponding
edge eft operator. The coefficient of the latter gets renormalized through the relation

κ0 = κren.
0 − cst

ε
+ (finite), (II.161)

where the constant is fixed in a way that cancels the singular term, Eq. (II.158), as was done in
the d = 2 example before.
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II.4.6 Lessons from the large-charge Goldstone EFT

This concludes the renormalization of singularities, leading to non-trivial tree-level logarithmic
enhancements that have no counterpart in relativistic cfts at large charge. Similar terms,
however, do appear when one considers parity-violating CFT [147] or spinning operators [143,
144].

It is striking how simple the analysis turned out to be using the large-charge Goldstone eft and
dimreg. Of course, this is the culmination of the results discussed in previous sections, from
which a lot of intuitive and quantitative understanding was gained. In particular, we proposed in
the introduction a compact, heuristic argument that captures the main features of the trapped
critical system. Moreover, we leveraged the power of dimreg to isolate the tree-level logarithmic
enhancements.

The agreement between the predictions of Sections II.3 and II.4 is a very non-trivial cross-
check of the various formalisms and schemes used in this chapter. The next natural step is
therefore to use the large-chare Goldstone eft with dimensional regularization to compute the
large-charge expansion of further observables, akin to what has been initiated in [51, 191] for
higher-point functions and phases featuring vortices due to the presence of a large amount of
angular momentum.

The results and methods that we found are a thorough and, in some sense, exhaustive extension
of the seminal work [47].
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II.5 Quantum corrections
In Sections II.3 and II.4, we thoroughly discussed the structure of the large-charge expansion
of ∆Q as given by tree-level contributions, and we alluded to the quantum corrections at the
beginning of Section II.4. It is however time to be more explicit about the latter.

The leading quantum contribution to the conformal dimension ∆Q enters at order Q0. This
comes from the Casimir energy of the fluctuations over the ground state, whose spectrum is given
by [51]

Ed
n,l =

√
4n
d

(n+ l + d− 1) + l , n, l = 0, 1, . . . , (II.162)

with multiplicities Md−1
l enumerated by the modes on the Sd−1 sphere:

Md−1
l = (2l + d− 2) Γ(l + d− 2)

Γ(l + 1)Γ(d− 1) . (II.163)

The Casimir energy is then given by16

Ed
Casimir = 1

2

∞∑′

n,l=0
Md−1

l Ed
n,l . (II.164)

This expression is clearly divergent and needs to be regulated. This can typically be addressed in
dimensional regularization using ζ-function machinery. We are therefore facing a very similar,
albeit physically different, problem as before. Indeed, there must exist a prescription to get rid of
such a divergence in a way that leaves our physical observable ∆Q scheme-independent. Just as
before, since dimreg is a dimensionless scheme, the only possible output is either a finite Q0

contribution, or a singular one in the form of a simple pole in ε. The possibility of having Q0

tree-level contributions then has radically different consequences in these two scenarios. In the
former case, tree-level and quantum contributions would mix, so quantum corrections (at least
the leading one) would not have a distinct signature in the large-charge expansion, while in the
latter case, the presence of tree-level Q0 contributions is required and serves as a counterterm
to renormalize the divergence, akin to edge eft operators serving as counterterms for edge
singularities. The output is thus expected to be a Q0 logQ contribution, which may possibly mix
with Q0 logQ tree-level contributions, if any.

In fact, as can be seen from our previous analysis of the structure of ∆Q, Eq. (II.140), tree-level
contributions cannot contribute at O

(
Q0) in even dimensions. So the Casimir energy in even

dimensions had better not be singular, otherwise this would signal a dramatic inconsistency. We
shall however show that, in d = 2, the situation is safe: the Casimir energy is simply given by a
finite number. Since this is the only Q0 contribution, it is a model-independent prediction valid
across the whole superfluid large-charge universality class. In odd dimensions, there is always
at least one operator contributing to O

(
Q0), and we find that, at least in d = 3, the Casimir

energy is singular. The outcome in this case is indeed a Q0 logQ quantum contribution and, since
there is no tree-level logarithmic enhancement in odd dimensions, this term is again a universal
prediction for the superfluid large-charge universality class.

16The prime indicates that the zero mode n = l = 0 is excluded.
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Note that the Casimir energy contains higher-order corrections in 1/Q, of course, which generically
will have to be regulated and can give logarithms multiplied by negative powers of Q in the
conformal dimension. In any case, they will have to be regulated by bulk or edge operators that
are not divergent (only bulk operators with positive µ-scaling can be divergent), so we do not
face situations in which a divergence in the Casimir energy is to be regulated by a bulk operator
that must, itself, be regulated by an edge term. This excludes the presence of double logarithms
coming from one-loop effects in the expansion.

II.5.1 The universal Q0 quantum contribution in d = 2

In d = 2 the Casimir energy may be written as E(d=2)
Cas = E2(−1/2), where

E2(s) = 1
2

∞∑
n=0,l=−∞
(n,l)̸=(0,0)

(
2
(
n+ 1

2

)(
n+ |l| + 1

2

)
− 1

2

)−s

. (II.165)

We are going to massage this expression until we recover multivariate zeta functions,

ζ(s1, s2) :=
∑

n1>n2≥1

1
ns1

1 n
s2
2
, (II.166)

that can be analytically continued to a meromorphic function on C2 [217].

First we use the binomial expansion

E2(s) = 1
2s+1

∑
n,l

∞∑
k=0

(
−s
k

)(
−1

4

)k(
n+ 1

2

)−s−k(
n+ l + 1

2

)−s−k

=
∑
n,l,k

en,l,k(s) (II.167)

and separate the summing region into three parts (see figure II.2):

I = { (n, l) | n = 0, l ∈ N∗ } (II.168)
II = { (n, l) | n ∈ N∗, l ∈ N∗ } (II.169)
III = { (n, l) | n ∈ N∗, l = 0 } . (II.170)

The sum becomes
E2(s) = 2EI

2 (s) + 2EII
2 (s) + EIII

2 (s), (II.171)

where

EI
2 (s) =

∞∑
l=1

∞∑
k=0

en,l,k(s) = 1
2s+1

∞∑
k=0

(
−s
k

)
(−1)k2s−kζH(s+ k| 3

2 ), (II.172)

EIII
2 (s) =

∞∑
n=1

∞∑
k=0

en,l,k(s) = 1
2s+1

∞∑
k=0

(
−s
k

)(
−1

4

)k

ζH(2s+ 2k| 3
2 ). (II.173)

We made use of the Hurwitz zeta function:

ζH(s|x) =
∞∑

n=0

1
(s+ x)s

=
∞∑

k=0

(
−s
k

)
(x− 1)k

ζ(s+ k). (II.174)
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n

l
I II

III

Figure II.2: Decomposition of the summing region. The summand is symmetric under the
exchange l → −l.

In the region II = {n > 1, l > 1 } we can write the sum in terms of the multivariate Hurwitz
zeta function [218]

ζH(s1, s2|x1, x2) =
∑

n1>n2≥1

1
(n1 + x1)s1(n2 + x2)s2

(II.175)

as

EII
2 (s) = 1

2s+1

∞∑
k=0

(
−s
k

)(
−1

4

)k

ζH(s+ k, s+ k| 1
2 ,

1
2 ) (II.176)

or then apply the binomial expansion twice and write

EII
2 (s) = 1

2s+1

∞∑
k,j1,j2=0

(
−s
k

)(
−1

4

)k(−s− k

j1

)(
−s− k

j2

)(
1
2

)j1+j2

ζ(s+ k + j2, s+ k + j1).

(II.177)
The factor in front of the zeta function in the sum is symmetric under the exchange j1 ↔ j2, so
we can use the reflection identity [219]

ζ(s1, s2) + ζ(s2, s1) = ζ(s1)ζ(s2) − ζ(s1 + s2) (II.178)

and rewrite EII
2 (s) as

EII
2 (s) = 1

2s+2

∞∑
k=0

(
−s
k

)(
−1

4

)k
ζH(s+ k| 3

2 )2

−
∞∑

j1,j2=0

(
−s− k

j1

)(
−s− k

j2

)
1

2j1+j2
ζ(2s+ 2k + j1 + j2)

. (II.179)

The sums in EII
2 (s) and EIII

2 (s) have poles in s = −1/2, respectively with residue
√

2/16 and
−

√
2/8, because they both include ζ(1). The fact that the two poles cancel in E2(s) is a nice

confirmation of our chosen regularization. The final series converges numerically very rapidly,
and we find

E
(d=2)
Cas = −0.294159 . . . , (II.180)
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which is the promised universal Q0 contribution in d = 2.

II.5.2 The universal Q0 log Q quantum contribution in d = 3

Let us first set the stage in general odd dimension. As argued at the beginning of this section,
the Casimir energy in d+ 2ε may be expected to develop a simple pole in ε when d is odd. Let
us therefore suppose that

Ed+2ε
Casimir = E−1

ε
+ E0 + O(ε). (II.181)

Then, we can use bulk operators O(m,n)
bulk satisfying m+ n = (d+ 1)/2 as counterterms in dimreg.

We can write their cumulative leading-order contribution to ∆Q as17

∆(m,n) = Cd
m,n + O(ε). (II.182)

The individual Wilsonian coefficients of these operators can be renormalized arbitrarily as

cm,n = cren
m,n + c

(−1)
m,n

ε
, (II.183)

where cren
m,n and c

(−1)
m,n are regular, provided the following overall condition is satisfied:

Cd+2ε
m,n = Cd+2ε

m,n

∣∣∣∣
cm,n→cren

m,n

− E−1

ε
. (II.184)

Reminiscent of the tree-level edge divergences, the result is that the divergence in the Casimir
energy is traded for a logarithm:

lim
ε→0

(Ed+2ε
Casimir + ∆(m,n)) = const. − 2E−1 log(µ)

= const. − 2
d
E−1 log(Q) .

(II.185)

Since there are no tree-level logarithmic enhancements in odd dimensions, the term proportional
to E−1 above is universal, similar to what was discussed in the relativistic context [142].

Let us focus on d = 3 from now on, and compute E−1 explicitly. The Casimir energy is

E3+2ε
Casimir = 1

2

∞∑′

n,l=0
M2+2ε

l E3+2ε
n,l . (II.186)

In the limit ε → 0, the multiplicity is

M2+2ε
l = (2l + 1) + 2 [(2l + 1)Hl − 2l] ε+ O

(
ε2) , (II.187)

where Hl is again the l-th harmonic number. We are interested in the behavior around the pole,

17For convenience, we abuse slightly the notation of Section II.4 and reuse Cd
m,n to denote here the cumulative

contribution.
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which is completely determined by the large-l behavior of the sum. We can thus further expand

M2+2ε
l = (2l + 1) + 2

(
(2l + 1)(log(l) + γ − 1) + O

(
1
l

))
ε

= (2l + 1 + 4ε)
(
l2ε + (γ − 1)2ε

)
+ O

(ε
l

)
.

(II.188)

Up to terms that vanish in the ε → 0 limit, the Casimir energy is given by

E3+2ε
Casimir = 1

2

∞∑′

n,l=0
(2l + 1)l2ε

((
n+ 3

4

)(
l + n+ 5

4

)
− 15

16

)1/2
+ regular for ε → 0 . (II.189)

Applying the binomial expansion four times in a row, we can rewrite the sum in terms of the
Mordell–Tornheim zeta function ζMT (s1, s2, s3), defined as [220–222]

ζMT (s1, s2, s3) ≡
∞∑

n,l=1
l−s1n−s2(n+ l)−s3 . (II.190)

We obtain:

E3+2ε
Casimir =

(
3
4

)−1/2 ∞∑
k,k1,k2,k3=0

(
1/2

k

)(
1
k1

)(
1/2 − k

k2

)(
1/2 − k

k3

)(
−15

16

)k (
−1

2

)k1 (
−1

4

)k2 (
−3

4

)k3

× ζMT (k1 − 2ε− 1, k + k2 − 1/2, k + k3 − 1/2) + regular. (II.191)

The analytic structure of this special function is known [223–225], and from the expansion

ζMT (s1, s2, s3) = Γ(s2 + s3 − 1)Γ(1 − s2)
Γ(s3) ζ(s1 + s2 + s3 − 1)

+
M−1∑
k=0

(
−s3

k

)
ζ(s1 + s3 + k)ζ(s2 − k) + regular,

(II.192)

we see that there are poles with unit residue if18
s1 + s3 = 1, 0,−1,−2, . . .
s2 + s3 = 1, 0,−1,−2, . . .
s1 + s2 + s3 = 2 .

(II.193)

In our case, only the third channel in this set can produce singularities, which arise for

k1 + k2 + k3 + 2k − 2ε = 4 . (II.194)

Summing all the contributions, we find the final result

E3+2ε
Casimir = − 1

2
√

3ε
+ regular. (II.195)

Using the general formula in Eq. (II.185), we thus find that the conformal dimensions have a
18Note that when s2 is a positive (non-zero) integer, the expression admits two singular pieces that cancel each

other.
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universal Q0 log(Q) term given by

∆Q

∣∣∣∣
Q0

= 1
3
√

3
log(Q) + const. (II.196)

It would be interesting to extend these kind of computations to higher dimensions or subleading
order in the quantum corrections. This is left for future work.
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Closing word
Let us contemplate what we have achieved so far. In Section II.2, we discussed how Coleman’s
dilaton-dressing prescription could help us understand the essential features of the nonrelativistic
large-charge expansion by cooking up a simple class of large-charge dilaton efts. It became
immediately apparent that the nonrelativistic case offers a much richer analytical structure than its
relativistic counterpart. This emerges from the inhomogeneity of the system, as mandated by the
presence of an external potential. The latter is itself introduced to implement the state-operator
correspondence and, in turn, offers a direct contact point with experimental data. The correct
implementation of a complete large-charge eft is therefore relevant both from the ’high-energy
perspective’ of collecting cft data—falling broadly under the name conformal bootstrap—and the
’low-energy perspective’ of studying emergent collective behaviours of condensed matter systems
such as the trapped unitary Fermi gas.

Even though the analysis of Section II.2 was somewhat rough, it clearly indicated the power
of the large-charge eft and its ability to capture features beyond any known results so far. In
section II.3, we therefore undertook a thorough and exhaustive construction of the latter, still using
Coleman’s dilaton-dressing prescription and implementing the so-called δ-layer regularization.
We established the precise interplay between the bulk eft and the complementary edge eft.
The latter is mandated by the breakdown of the former close to the edge of the cloud of particles,
and a clear physical renormalization procedure was established. For a particle physicist, this
kind of effective theory construction might seem exotic, but spontaneous symmetry breaking of
spacetime symmetries due to a finite density (that is, condensed matter) state is rather common.
These techniques are now even being applied in the context of confinement to effective string
theories. Many lessons learnt here can therefore be lifted to various other situations. Importantly,
we also implemented a small breaking of conformal symmetry via a small dilaton mass, which was
the original motivation for the use of the dilaton formalism. The phenomenologically observable
consequence of this is the presence of an otherwise absent

√
Q logQ term in d = 3.19 As the

precision of experiments performed on the unitary Fermi gas improve, it might eventually be
possible to fit our proposed profile for the ground-state energy—including several subleading
corrections—against these data, thereby extracting universal parameters beyond the leading one,
that is, the famous Bertsch parameter.

In Section II.4, we first took some time to carefully analyse the intricate ’multi-series’ expansion
of ∆Q, as the bulk and the edge efts contribute different kinds of expansions. We then went on
to build the complete large-charge eft, to be regarded as the extension of the Son & Wingate eft
[47]. Based on this, we elucidated the conditions for the appearance of logarithmic enhancements
in the large-charge expansion of the large-charge conformal dimension ∆Q stemming from tree-
level insertions. Dimensional regularization provided a conformally invariant renormalization
scheme that dramatically simplified this analysis, as compared to the preceding section: power-law
divergences in δ-layer regularization are simply absent after analytic continuation in d, and dimreg
therefore only captures the remaining simple poles that eventually turn into logQ enhancements.
In odd dimension, we founds that such enhancements, caused by tree-level insertions, are absent.
In even spatial dimension d, however, we found that such contributions can appear and are
always multiplied by positive powers of Q. The corresponding simple poles are appropriately
renormalized away thanks to the presence of edge eft operators whose tree-level contributions
have the same Q-scaling. We have provided a table of the particular Q-scalings where such

19In this spirit, near-unitarity of the Fermi gas was for example discussed in [204].
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logarithmic enhancements can occur in various even spatial dimensions (Table II.1); this pattern
of classical log(Q) enhancements is illustrated in Figure II.1.

Finally, in Section II.5, we have also analyzed the appearance of Q0 or Q0 log(Q) terms coming
from the one-loop Casimir energy contribution to the ground-state energy. Using dimensional
regularization to make the analysis tractable, we have found that the situation is in some sense
the opposite as the one of tree-level insertions:

• In even spatial dimension, tree-level insertions generically give rise to logarithmic enhance-
ments, but never contribute to order Q0, whereas the leading quantum correction does not
enjoy such an enhancement and therefore simply scales like Q0. The latter does not depend
on any Wilsonian coefficient: it appears as a number and is therefore a universal prediction
valid across the whole superfluid large-charge universality class.

• In odd spatial dimension, tree-level insertions never acquire logarithmic enhancements, and
there is always at least one operator contributing at O

(
Q0). The latter serves as a coun-

terterm for the Casimir energy, which is always divergent, resulting in a universal Q0 logQ
contribution. This is therefore the unique logarithmic enhancement in odd dimension.

The fate of these leading quantum corrections is therefore completely analogous to the large-
charge expansion in (d+ 1)-dimensional relativistic cft, which were fully appreciated in [142].
We performed the explicit computation of the one-loop Casimir energy in d = 2 and d = 3.
With sufficient precision, experimental data could potentially provide real-life checks of these
predictions, akin to Regge intercepts.

Let us wrap up. Via the nonrelativistic state-operator map, charged operators correspond to finite
density states in a harmonic trap. We investigated the class of nrcfts whose large-charge sector
is effectively described by a superfluid state in the trap, which is particularly relevant for the case
of the unitary Fermi gas and critical anyons. Specifically, we exploited this effective description to
extend all known results about the expansion of the conformal dimension of the lightest charged
operator, up to and including the leading quantum corrections entering at order Q0, thereby
uncovering a rich structure of logarithmic enhancements. This was based on the recent treatment
of divergences at the edge of the physical cloud of trapped particles discussed in [189], which
we reviewed and extended. We also accounted for a small dilaton mass deformation in order to
explore the near-conformal regime, and illustrated the full procedure in d = 2 and d = 3 cases.
Whenever we found it appropriate, we commented on the connections with the ultracold atom
literature and computed some new corrections, as in Eq. (II.109) for the doubly integrated density.
This fruitful direction of research remains to be explored systematically. See also [47, 204].

Let us finally mention the seminal works [186, 187] paving the way toward a gravity/nrcft
correspondence (see also [175] for a different proposal). It would be fascinating to understand
whether the large-charge sector of certain nrcfts can be described in a dual picture and how
this would relate to a semiclassical description akin to the one used here. The results presented
here draw upon the rich structure inherent to conformal field theories, while relying on the
dramatic simplifications afforded by large-quantum-number perturbation theory. Of course, much
of this technology traces its parentage to a number of endeavors emerging from string theory,
see e.g. [12–14, 96, 100]. As already emphasized, if cold atom systems in the unitary regime
can be studied with sufficient precision, they may provide a crucial terrestrial test-bed for this
increasingly far-reaching arena of techniques in theoretical physics.

83





III Microscopic realizations

As promised, we are now going to discuss microscopic models whose large-charge sectors fit into
the superfluid large-charge eft framework discussed in the previous chapter. In fact, we are
going to focus on a specific large-N model describing the unitary Fermi gas, based on previous
studies [175, 226–228]. The novelty lies in the fact that we consider the system in a trapping
potential. In particular, we extract the value of the Wilsonian coefficients in the large-charge eft
at large-N and discuss the fate of edge contributions in this particular microscopic description.
This is presented in Section III.1, which based on [4] by the author and his collaborators.

In Section III.2, we very briefly mention further microscopic models whose large-charge sectors
could be investigated using similar techniques. In particular, we include a short description of
some properties of anyons relevant to the large charge program.
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III.1 The unitary Fermi gas at large charge and large N
We shall study the unitary Fermi gas in an external trapping potential starting from a microscopic
theory in the limit of large charge and large number of fermion flavors N . We shall present an
algorithmic procedure for extracting the large-charge expansion of the conformal dimension ∆Q

of the lightest operator of charge Q ≫ 1. The approach we propose here does not rely on any
uncontrolled assumption. It takes the form of a gradient expansion valid in the interior of the
cloud of particles, that is, far enough from its edge where the particle density drops to zero. In the
latter region, we shall present a separate discussion resulting in the first microscopic evaluation
of the contribution coming from the edge dynamics. The results stemming from the microscopic
theory are matched against the predictions of the superfluid eft of the last chapter, including the
form of the gap and the energy of the system in a harmonic trap. As usual, the latter maps, via
the non-relativistic state-operator correspondence, to ∆Q. This allows us to extract the values of
the first three Wilsonian coefficients at leading order in N .

III.1.1 Introduction

We devoted part of the first chapter to the description of the connection between the unitary
Fermi gas and the nonrelativistic large-charge program. Here, we want to verify this connection
explicitly from a specific microscopic theory. In order to motivate the model we are going to use,
let us repeat the essential features characterizing this system.

Most importantly, the unitary Fermi gas is an experimentally accessible example of a system
with Schrödinger symmetry. It can be realized in the laboratory [30] by preparing an atomic gas,
typically made out of 6Li or 40K, in an optical trap whose shape is approximately quadratic. The
gas is then cooled down to very low temperatures and superfluidity emerges. Recall that, crucially,
the gas is dilute, meaning that the inter-atomic spacing is much larger than the inter-atomic
interaction range, which implies that s-wave scattering largely dominates, and the details of the
inter-atomic potential do not matter. From a theoretical perspective, this justifies modeling atom
scattering by a two-body contact interaction, whose strength is the only relevant parameter in
the system and is related to the s-wave scattering length a. Ultracold Fermi gases can therefore
be described in terms of a local nonrelativistic quantum field theory. Additionally, the parameter
a can be experimentally tuned using an external magnetic field. Upon going from the repulsive
(a > 0) to the attractive (a < 0) regimes—or vice versa—the s-wave scattering length hits the
unitary point where it diverges and the system is desribed by a local nrcft. From a theoretical
perspective, turning on a chemical potential1 sources a charge Q, corresponding to the number of
particles in the system.2 As we shall see, the corresponding ground state indeed corresponds to a
superfluid state. Experimentally, the charge Q is always large—typically 105 or more—such that
qualitative features of the theoretical large-charge description could be compared to measurable
observables, such as for instance the doubly-integrated axial density, determined in [212].

In this section, we shall be interested in comparing our results, stemming from a microscopic
description controlled by an artificially large number N of fermion flavors, to the structure
imposed by the large-charge eft and extracting the corresponding Wilsonian coefficients. We

1One could also consider imbalanced gases, requiring distinct chemical potentials for both fermion species.
2Turning on a chemical potential should not be viewed as a deformation of the theory in an RG sense. The

chemical potential does not run as it couples to the charge density in a way that prepares a finite density state,
not a different theory in the vacuum.
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can take Eq. (I.21) as reference point since we shall keep track of the dimensionful constants ℏ
and m, in which case the Lagrangian evaluated in the superfluid ground state reads

ℏ3

m3/2 LGS = c0(ℏµ− V (r))5/2 + c1
ℏ2

m

(∇V (r))2√
ℏµ− V (r)

− 9c2
ℏ2

m
∆V (r)

√
ℏµ− V (r) + . . . (III.1)

In the absence of the trapping potential, the behavior of the unitary Fermi gas is captured by
a single Wilsonian coefficient, namely, c0. Recall that we related this coefficient to the Bertsch
parameter ξ [229]—defined as the ratio of the energy density of the gas at unitarity to that of
the free Fermi gas at the same density—as c0 = 25/2

15π2ξ3/2 .

Of course, the physics of the trapped system is described in terms of the additional Wilsonian
coefficients c1, c2, etc. whose contributions to the observables are suppressed by fractional power
of the charge, as reviewed in the last chapter. For most purposes, we will not need to commit to
a specific choice of trapping potential3 V (r), although the specific choice

V (r) = mω2

2 |r|2 (III.2)

makes contact, via the state-operator correspondence, with the large-charge conformal dimension
∆Q we have investigated so far. In this case, accounting for the fact that we include N fermion
flavors, we expect the following structure:

∆Q

N
= E(Q)

ωN
=

√
ξ

4

(
3Q
N

) 4
3

−
√

2π2ξ

(
c1 − 9

2c2

)(
3Q
N

) 2
3

+ O

((
3Q
N

) 5
9
)
. (III.3)

The computation of ∆Q resembles in spirit that of the relativistic O(N) model at large N and
large charge [152]4, which relies on the usual Stratonovich transform which makes the dependence
on the original fermionic degrees of freedom Gaussian. The latter can thus be integrated out,
resulting in a non-local effective action for the Stratonovich field σ. The inhomogeneity caused
by the potential, however, adds a layer of technical complexity which requires more sophisticated
techniques. As will soon become apparent, evaluating the functional determinant characterizing
the Stratonovich effective action becomes a nontrivial problem in the presence of the potential.
Even at leading order in N , this problem is tractable only when the charge is large, in which case
a controlled gradient expansion can be implemented. This is a reliable prescription to extract the
bulk contributions as characterized in the last chapter. Edge contributions evade this description
and require a separate discussion, which we include too.

Summary of the results and comparison with the literature

Throughout, we work exclusively at leading order in the large-N expansion. This description is
in some sense a field-theoretic version of mean-field theory which provides an explicit realization
of the bcs mechanism, whereby the collective field σ acquires a non-trivial expectation value in

3With respect to the previous notation, V (r) = ℏA0(r).
4In [155], the same results are obtained without invoking the state-operator correspondence, but by working in

flat space directly. This requires to construct the large-charge operators explicitly in terms of microscopic degrees
of freedom. This is significantly harder to achieve in the case of fermions, although it would anyway be interesting
to investigate this possibility in the case of the unitary Fermi gas.
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the superfluid ground state:
σ0(r) := ⟨σ(τ, r)⟩ ≠ 0. (III.4)

This is associated with spontaneous breaking of the internal symmetries. In the homogeneous
case, σ would characterize the gap in the spectrum of fermionic excitations, so we shall often
refer to it as the gap, even in the presence of an inhomogeneous potential. We find by explicit
calculation that

σ0(r) = y0 (µℏ − V (r)) + y1
ℏ2

m

(∇V (r))2

(µℏ − V (r))2 + y2
ℏ2

m

∆V (r)
µℏ − V (r) + . . . , (III.5)

with y0 ≈ 1.1622 . . . , y1 ≈ −0.00434691 . . . , and y2 ≈ −0.160794 . . . . As we shall see, this
expansion is controlled by the large value of the charge. Moreover, when V (r) is set to be the
harmonic potential, we find

∆Q

N
= 0.8313

(
Q

N

)4/3
+ 0.26315

(
Q

N

)2/3
+ O

((
Q

N

) 5
9
)
, (III.6)

which yields the following values for the first three Wilsonian coefficients:

c0 = 0.0841 . . . , c1 = 0.006577 . . . , c2 ≈ 0.004872 . . . . (III.7)

This reproduces the mean-field value of the Bertsch parameter, namely,

ξ ≈ 0.5906 . . . . (III.8)

As mentioned, edge effects require some care even in this controlled microscopic setup. While the
analytic computation of the leading edge correction remains out of reach, we are able to estimate
its scaling and show that it indeed matches the Q 5

9 scaling expected from the discussion of the
last chapter and [47]. This is a very non-trivial first-principle verification—actually, the first of
its kind—of the fascinating edge dynamics.

The condensed matter literature provides a wealth of different approaches to the description of
the unitary Fermi gas, and the bcs–bec crossover more generally. They often employ physically
motivated approximation schemes which are however often not applicable systematically to
subleading orders. The simpler problem of the Fermi gas without the trapping potential was
addressed at large N in [226, 227]. They however include subleading corrections in N and describe
the finite-temperature case. Our leading-order result, i.e. the value of the Bertsch parameter,
agrees with theirs. This also coincides with the well-established mean-field result. A derivative
expansion in the presence of the harmonic trap was discussed in the superfluid eft and then
used to extend mean-field results in [230]. It would be interesting to compare more thoroughly
their approach and ours, which are in qualitative agreement. A more direct comparison of our
results can be made with the work of [231] which uses similar techniques, although the role of the
charge as the controlling parameter was perhaps not fully appreciated. We anyway find complete
agreement e.g. for the shape of the gap. There are also numerical studies [232], though these deal
with the opposite regime of small charge, where the quantized nature of the problem is apparent,
and it is not clear how to make a direct comparison between our respective results. See also [192,
193].

88



Microscopic realizations Chapter III

Outline of the section

The plan of this section is as follows. In Subsection III.1.2, we discuss the microscopic model
and use standard large-N techniques to derive the expression of the functional determinant
characterizing the Stratonovich effective action. We then phrase the problem in terms of the
corresponding heat kernel. In Subsection III.1.3, we set up a gradient expansion by introducing the
so-called Wigner coordinates and the Moyal product, which allows us to compute the large-charge
expansion of the heat kernel in the bulk up to nnlo. In Subsection III.1.5, we discuss the edge
expansion. In Subsection III.1.6, we give conclusions and an outlook.

III.1.2 The model

Building upon [175, 226–228], we consider an interacting (3 + 1)-dimensional model of N fermion
flavors with two hyperfine (’spin’) species ψσa, where a ∈ {1, . . . , N} and σ ∈ {↑, ↓}, with a
unique chemical potential µ, coupled to an external potential V (r). We work in Euclidean time τ
at zero temperature, i.e., on Rτ × R3. The system is described by

S[ψ] =
∫

dτ dr
[
ψ̄σa

(
ℏ∂τ − ℏ2

2m ∆ − ℏµ(r)
)
ψσa + 2u0

N
ψ̄↑aψ̄↓aψ↓bψ↑b

]
, (III.9)

where ψ̄σa, ψσa are Grassmann fields5 and

µ(r) := µ− 1
ℏ
V (r). (III.10)

Throughout, summation over repeating flavor and spin indices is assumed. We keep the potential
generic for now.6 The bare coupling u0 < 0 describes an attractive 4-fermion contact interaction
which, after renormalization, is proportional to the s-wave scattering length a. The latter diverges
at unitarity and the system is described by a strongly interacting nrcft.

The action is manifestly invariant under a global (U(1) ⊗ SU(2))N symmetry, where the U(1)
copies correspond to particle number conservation of every flavor. The full symmetry group is
however larger. Indeed, while the kinetic term has an explicit U(2N) symmetry, the interaction
term written in the form

u0

2N
(
ΨT ΩΨ

)† (ΨT ΩΨ
)
, (III.11)

where Ψ = (ψ1↑...ψN↑, ψ1↓...ψN↓)T and Ω = iσ2 ⊗ 1N , has a U(1) ⊗ SP (2N,C) symmetry.
Hence, the correct symmetry group is U(1) ⊗ Sp(2N), with the usual definition Sp(2N) =
Sp(2N,C) ∩ U(2N) [175]. The interaction term in the form (III.11) above is a Cooper type of
interaction, so ssb of the global U(1) symmetry is expected to take place at fixed charge. This
is different from the Gross–Neveu model [114], where the symmetry breaking is exponentially
suppressed—and thus nonperturbative—at large N .

5ψ̄σa denotes the complex conjugate of ψσa. At finite temperature T = β−1, these fields would have antiperiodic
boundary conditions along the thermal circle S1

ℏβ , with Matsubara frequencies ωn = (2n+ 1)π/(βℏ) (n ∈ Z) [233].
6Note that special forms of the potential could lead to accidental symmetries and identifications of operators in

the effective action.
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We now introduce the (Hubbard–)Stratonovich field σ(τ, r) in the Cooper channel7, namely,

σ(τ, r) = −2u0

N

N∑
a=1

ψ↓a(τ, r)ψ↑a(τ, r), (III.12)

resulting in

S[ψ, σ] =
∫

dτ dr
[
ψ̄σa

(
ℏ∂τ − ℏ2

2m ∆ − ℏµ(r)
)
ψσa − N

2u0
σ∗σ − σψ̄↑aψ̄↓a − σ∗ψ↓aψ↑a

]
=
∫

dτ dr
[
−Ψ̄aG

−1[σ]Ψa − N

2u0
σ∗σ

]
.

(III.13)
In the second line, the Nambu representation was used, namely,

Ψa :=
(
ψ↑a

ψ̄↓a

)
, (III.14)

and Ψ̄a := Ψ†
a, along with the inverse fermion propagator G−1[σ],

G−1[σ] :=
(

−ℏ∂τ + ℏ2

2m ∆ + ℏµ(τ, r) σ(τ, r)
σ(τ, r)∗ −ℏ∂τ − ℏ2

2m ∆ − ℏµ(r)

)
. (III.15)

The Stratonovich field σ is bilinear in the fundamental fermionic degrees of freedom, and it is
charged under the U(1) global symmetry. Therefore, σ is the order parameter. This is how the
bcs mechanism manifests itself in this microscopic description.

Since the fermions now appear only quadratically, they can be integrated out to obtain

S[σ] = −ℏN Tr log
(∣∣G−1[σ]

∣∣)− N

2u0

∫
dτ dr σ(τ, r)∗σ(τ, r). (III.16)

The crucial observation is that N , when large, controls the saddle-point approximation of the
corresponding path integral. The Stratonovich field can thus be decomposed into a saddle-point
value σ0 plus quantum fluctuations suppressed by 1/

√
N :

σ(τ, r) = σ0(τ, r) + 1√
N
σ̂(τ, r), (III.17)

with
δS[σ]
δσ(τ, r)

∣∣∣∣∣∣
σ0

= 0. (III.18)

This saddle equation is commonly referred to as the gap equation. In practice, we shall solve it to
find the σ0-profile only at the very end, therefore treating σ0 as a generic function.

Eq. (III.16) can be expanded in 1
N , and we write

S[σ] = N · S0 + O
(
N0), (III.19)

where S0 := 1
N S[σ0]. Similarly, we shall use G0 := G[σ0]. Since we shall always consider

7See [23] for a discussion of the different channels.
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time-independent external potentials V (r), we can write the inverse fermion propagator as the
sum of a time-derivative and a position-dependent operator8 B(r):

G−1
0 = −ℏ1 · ∂τ +B(r), where B(r) :=

(
−h(r) σ0(r)
σ0(r)∗ h(r)

)
, (III.20)

and h(r) is the one-particle Hamiltonian

h(r) = − ℏ2

2m ∆ − ℏµ(r). (III.21)

The eigenvalues of B(r) are real and come in pairs since it is Hermitian. Moreover, the eigenvalues
of the time-derivative piece in the inverse propagator G−1

0 are given by iℏωn, where ωn (n ∈ Z) are
the Matsubara frequencies (see previous footnote). The sum over n can be performed explicitly
which, in the zero-temperature limit, yields

lim
β→∞

Tr log
(∣∣G−1

0
∣∣) = β

2 Tr(|B|). (III.22)

The factor of 1
2 here has a direct physical interpretation, as it makes the distinction between the

’large’ first-quantized Hilbert space, generated by all the modes and the ’physical’ Hilbert space
of positive-energy modes. This is characteristic of fermions.

One can obtain Eq. (III.22) by employing spectral zeta functions as follows. Consider a differential
operator O whose eigenvalues we label by a generic index α as oα. We then define

ζO(s) := Tr
(

|O|−s
)

=
∑

α

|oα|−s
. (III.23)

With this, it is straightforward to show that

lim
β→∞

ζG−1
0

(s) =
βΓ( s−1

2 )
2
√
πΓ( s

2 )ζB(s− 1) =
βΓ( s−1

2 )
2
√
πΓ( s

2 )ζB2

(
s− 1

2

)
, (III.24)

so that

lim
β→∞

Tr log
(∣∣G−1

0
∣∣) = − lim

β→∞

d

ds
ζG−1

0
(s)
∣∣∣∣
0+

= β

2 ζB(−1) = β

2 ζB2

(
−1

2

)
. (III.25)

We give the result in terms of the positive-definite operator B2 for computational convenience. In
order to compute its spectral zeta function, we compute the heat kernel KB2(r1, r2; τ) associated
with B2, which is a 2-by-2 matrix satisfying9

(
∂τ +B2(r1)

)
KB2(r1, r2; τ),= 0

lim
τ→0+

KB2(r1, r2; τ) = δ̂(r1 − r2) · 12 .
(III.26)

Formally, this means that KB2(r1, r2; τ) =
〈

r1|e−B2τ |r2

〉
. To avoid later confusion, we denote

the Dirac δ-function with a hat, and 12 is the 2-by-2 identity matrix. In turn, the coincident-point

8It is sometimes called the Bogoliubov–de Gennes (bdg) operator.
9It is common practice to use τ to denote the proper time of the heat kernel problem. We adopt this notation

too, hoping it will not create confusion with the Euclidean time.
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limit of the heat kernel allows to compute ζB2 through its Mellin transform as

ζB2(s) = 1
Γ(s)

∫ ∞

0

dτ
τ
τs

∫
dr Tr (KB2(r, r; τ)) , (III.27)

where Tr now just denotes for the matrix trace.

This expression turns the computation of the one-loop determinant—that is, the Tr log
(∣∣G−1

0
∣∣)

term—into the (Euclidean) quantum mechanical problem of a particle with Hamiltonian B2. In
the following subsection, we shall demonstrate that this is a natural starting point for setting up
the large-charge expansion of the functional determinant when the system is inhomogeneous due
to the presence of an external potential.

Before proceeding, it is convenient to write Eqs. (III.26) in terms of dimensionless quantities,
which we shall generically denote with a bar. The goal at this point is to express the problem
in an exact form suggestive of a perturbative resolution, so no approximation is being made
yet. Our description is valid for the class of potentials V (r) that vanishes at the origin and
that (classically) confines the particles to a finite region of space. Correspondingly, there is a
characteristic length scale Rcl associated with the smallest distance from the origin such that
µ(r) = 0, i.e., where the particle density classically vanishes. Since we eventually are interested
in computing conformal dimensions, one can consider the harmonic potential V (r) = mω2

2 r2 for
concreteness. In this specific case, Rcl is the radius of the spherical cloud of particles:

Rcl :=
√

2ℏµ
mω2 . (III.28)

The generic length scale Rcl allows us to define dimensionless coordinates as

r̄ := r
Rcl

. (III.29)

Moreover, upon defining B̄(r̄) := 1
ℏµB(r) and KB̄2(r̄1, r̄2; τ̄) := R3

clKB2(r1, r2; τ) with τ̄ :=
(ℏµ)2τ , we obtain 

(
∂ τ̄ + B̄2(r̄1)

)
KB̄2(r̄1, r̄2; τ̄) = 0,

lim
τ̄→0+

KB̄2(r̄1, r̄2; τ̄) = δ̂(r̄1 − r̄2) · 12,
(III.30)

where every quantity is now dimensionless. Explicitly, they are given by

B̄(r̄) =
(

−h̄(r̄) σ̄(r̄)
σ̄(r̄)∗ h̄(r̄)

)
, (III.31)

with σ̄(r̄) := σ0(r)
ℏµ , h̄(r̄) := h(r)

ℏµ = − ℏ
2mµR2

cl

∆r̄ + V̄ (r̄) − 1 and V̄ (r̄) := 1
ℏµV (r).10

III.1.3 Setting up the bulk expansion

We have seen that the computation of the effective action at leading order in N reduces to
evaluating the trace of the absolute value (or the square) of the bdg operator (cf. Eq. (III.22)).
In the absence of a confining potential, this is a standard calculation [226, 227]. In the presence

10If we consider a harmonic potential, we simply have V̄ (r̄) = r̄2.

92



Microscopic realizations Chapter III

of a confining potential, the problem is no longer translationally invariant and the particles are
confined to a spherical region at the edge of which the particle density drops to zero.

In this subsection, we show how to perturbatively compute the free energy in the presence of
a potential when the particle number is large, thereby providing the first explicit verification
of the predictions of nonrelativistic large-charge eft. The underlying controlling parameter of
this perturbative computation is the particle density, which naturally breaks down close to the
edge of the particle cloud. However, eft considerations not only tell us that this had to be
anticipated, but also that ’exotic’ contributions enter the large-charge expansion of the free energy.
While the setup in this subsection is not suited to capture these contributions, we discuss in
subsection III.1.5 how to perform the matching between the expansion in the bulk of the cloud
with the solution close to the edge, and find further agreement with the eft predictions.

Wigner coordinates and Moyal product

The lack of translational invariance can be addressed through the introduction of so-called mixed,
or Wigner, coordinates [234, 235]. The idea is to first write B̄(r̄) as a bilocal operator via

B̄(r̄1, r̄2) := δ̂(r̄1 − r̄2)B̄(r̄1) =
(

−h̄(r̄1, r̄2) σ̄(r̄1) δ̂(r̄1 − r̄2)
σ̄(r̄1)∗ δ̂(r̄1 − r̄2) h̄(r̄1, r̄2)

)
, (III.32)

where
h̄(r̄1, r̄2) := − ℏ

2mµR2
cl

(
∆r̄1 δ̂(r̄1 − r̄2)

)
+
(
V̄ (r̄1) − 1

)
δ̂(r̄1 − r̄2), (III.33)

and then perform a Fourier transform. Introducing relative and center-of-mass positions{
r̄ij := r̄i − r̄j ,

R̄ij := r̄i+r̄j

2 ,
(III.34)

a bilocal Fourier transform of a function A(r̄1, r̄2) can be defined as

a(R̄, p̄) :=
∫

dr̄ e− ip̄·r̄
ε A

(
R̄ + r̄

2 , R̄ − r̄
2

)
, (III.35)

and the inverse transformation is

A(r̄i, r̄j) =
∫ dp̄

(2πε)3 e
ip̄·r̄ij

ε a(R̄ij , p̄). (III.36)

We choose to put a bar on the momentum as well to indicate that it is dimensionless. In
some sense, this transform allows one to disentangle the ’microscopic’ dynamics of the system
(associated with r̄ij) from the ’macroscopic’ properties (associated with R̄ij) resulting from the
external potential [235]. For the moment, ε is an arbitrary real parameter which will be assigned
physical meaning soon.

From this definition of the Fourier transform, it is easy to show the following general statement [236,
237]. If C(r̄1, r̄2) is related to two other bilocal functions A and B by

C(r̄1, r̄3) =
∫

dr̄2 A(r̄1, r̄2)B(r̄2, r̄3), (III.37)
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then
c(R̄, p̄) = a(R̄, p̄) ⋆ b(R̄, p̄), (III.38)

where ⋆ is the Moyal product, defined by

a(R̄, p̄) ⋆ b(R̄, p̄) := a(R̄, p̄) exp
[
iε

2

(
⃗∂R̄∂⃗p̄ − ⃗∂p̄∂⃗R̄

)]
b(R̄, p̄)

=
∞∑

k=0

(
iε

2

)k 1
k!
{
a(R̄, p̄), b(R̄, p̄)

}
k
,

(III.39)

with what we shall call the k-Poisson bracket:{
a(R̄, p̄), b(R̄, p̄)

}
k

:= a(R̄, p̄)
(
⃗∂R̄∂⃗p̄ − ⃗∂p̄∂⃗R̄

)k

b(R̄, p̄). (III.40)

Of course, the k = 1 case is just the normal Poisson bracket.11

This formalism was originally introduced to describe quantum mechanics in phase space, and is
adapted to solve our heat kernel problem, which takes the form{

∂ τ̄k(R̄, p̄; τ̄) + b(R̄, p̄; τ) ⋆ b(R̄, p̄; τ̄) ⋆ k(R̄, p̄; τ) = 0,
lim

τ̄→0+
k(R̄, p̄; τ̄) = 12,

(III.43)

where k(R̄, p̄; τ̄) denotes the Fourier transform of KB̄2(r̄1, r̄2; τ̄), as defined above, and

b(R̄, p̄) =
(

−h̄(R̄, p̄) σ̄(R̄)
σ̄(R̄)∗ h̄(R̄, p̄)

)
, (III.44)

with the dimensionless phase-space Hamiltonian given by

h̄(R̄, p̄) = ℏ
2mµR2

clε
2 p̄2 + V̄ (R̄) − 1. (III.45)

Note that the gap σ̄ is only a function of R̄ because it encodes pointwise interactions.

Since, at leading order in N , we can identify 1
ℏβS0 with the grand-canonical potential Ω, its

zero-temperature limit can be expressed in terms of the solution k(R̄, p̄; τ̄) to the above heat
kernel problem as

Ω(µ) = −ℏµ
2

[∫ ∞

0

dτ̄
Γ(s)τ̄ τ̄

s

∫ dR̄ dp̄
(2πε)3 Tr

(
k(R̄, p̄; τ̄)

)]
s=− 1

2

− (ℏµ)2R3
cl

2u0

∫
dR̄

∣∣σ̄(R̄)
∣∣2, (III.46)

11Explicit computations involved in this section contain at most the k = 2 case, which can also be put in the
following form. Given the Poisson bivector Π = iσ2 ⊗ 1d (d = 3 in our case) and the derivative ∂I (I = 1, . . . , 2d)
acting on phase-space coordinates (R̄, p̄), and ∂IJ := ∂I∂J , we have

{a, b}1 = ΠIJ ∂Ia ∂Jb, (III.41)

{a, b}2 = ΠIJ ΠLM ∂ILa ∂JM b. (III.42)
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on top of which one needs to impose the gap equation. The charge is then given by

Q = − 1
ℏ
∂Ω(µ)
∂µ

, (III.47)

which can be inverted to find µ as a function of Q, and the (zero-temperature) free energy is

F (Q) = Ω(µ(Q)) + ℏµ(Q) ·Q. (III.48)

In the specific case of a critical system in a harmonic trap V (r) = mω2

2 r2 (i.e., V̄ (R̄) = R̄2 and
ε = ω/(2µ), cf. Eq. (III.28)), the free energy is related to the conformal dimension of the lightest
operator of charge Q as [20, 22]

∆(Q) = 1
ℏω

F crit.(Q). (III.49)

Large-charge expansion of the heat kernel

Within the large-N expansion, this general construction is thus far exact, although the fact
that the Moyal product can be expanded as an asymptotic series in ε suggests a perturbative
calculation of the heat kernel problem. It is convenient to canonically normalize the momentum
in the phase-space Hamiltonian in Eq. (III.45) by fixing

ε =

√
ℏ

2mµ
1
Rcl

, (III.50)

which is small if the (dominating) scale associated with the potential is smaller than the scale set
by the charge density. This is the large-charge limit because, as we will show, Q ∼ ε−3. Our goal
is to compute Ω(µ) as an expansion in ε,

Ω(µ) := ΩLO(µ) + ε · ΩNLO(µ) + ε2 · ΩNNLO(µ) + · · · , (III.51)

up to quadratic order, and thus to compute the corresponding free energy to this order.12

This amounts to a semiclassical analysis of the Hamiltonian, Eq. (III.45), which is consistent as
long as the potential term is bigger than the kinetic term. In the bulk region, the gap profile σ(r)
does not vary rapidly on the scale defined by its own vev:

σ(r) ≫ ℏ2

2m
(∂rσ(r))2

σ(r)2 . (III.52)

In terms of dimensionless variables, this turns into

σ̄(R̄) ≫ ϵ2
(
∂R̄σ̄(R̄)

)2

σ̄(R̄)2
, (III.53)

which is satisfied as long as σ̄(R̄) and its derivative with respect to R̄ are both of order one.
More precisely, this means that 1 − V̄ (R̄) must be bigger than some new parameter δ, which

12As a reminder, the expansion to this order covers the dynamics of the effective action (I.21) to ’NLO’, in the
language of [47]. On general grounds we expect the linear piece in ε to vanish because Ω(µ) is the the saddle value
of the function Ω(σ), and ΩNLO(µ) is the value of its first variation.
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we will evaluate below. The construction is analogous to the standard wkb approximation, in
which the expansion in ℏ is valid in the bulk away from the turning points. For the moment, we
concentrate on the bulk region, where 1 − V̄ (R̄) > δ (in boundary layer theory this is called the
’outer region’ [238]). We will turn to the edge of the cloud (the ’inner region’), which necessitates
a separate treatment, in the next subsection.

Having clarified the interval of validity of our approximation, we can use standard phase-space
quantum mechanics. With our choice of ε (III.50), the one-particle Hamiltonian in phase space
takes the form

h̄(R̄, p̄) = p̄2 + V̄ (R̄) − 1. (III.54)

The dependence on ε has been reabsorbed by the Fourier transform in the same manner that ℏ
does not appear in the phase-space Hamiltonian in quantum mechanics. This expression shows
explicitly how in Wigner coordinates the contribution of the external potential, which depends
only on the center-of-mass coordinate R̄, is separated from the kinetic part depending only on
the (dual) relative coordinate p̄.

In the large-charge regime ε ≪ 1, it is then natural to make the following Ansätze for the gap
and the heat kernel:

σ̄(R̄) =
∞∑

k=0
εkΣk(R̄), (III.55)

k(R̄, p̄; τ̄) =
∞∑

j=0
εj

(
Kj(R̄, p̄; τ̄) K̃j(R̄, p̄; τ̄)
K̃j(R̄, p̄; τ̄)∗ Kj(R̄, p̄; τ̄)

)
. (III.56)

Note that the matrix trace Tr
(
k(R̄, p̄; τ̄)

)
= 2 ·

∑∞
j=0 ε

jKj(R̄, p̄; τ̄) will bring a factor of 2 into
Eq. (III.46).

In the following, we will need to solve the saddle-point condition δΩ/δσ = 0. It is convenient to
reformulate it in terms of Σ0 by the chain rule

δ

δΣ0
= δσ

δΣ0

δ

δσ
= δσ̄

δΣ0

δσ

δσ̄

δ

δσ
= ℏµ

δ

δσ
, (III.57)

so that the saddle-point condition reads δΩ/δΣ0 = 0. All the information about the saddle (i.e.,
the values of the functions Σj) is contained in the variations with respect to Σ0. The same
information is also contained in the variations with respect to any of the Σj , but this is suppressed
in the ε expansion because

δ

δΣj
= δσ

δΣj

δ

δσ
= δσ̄

δΣj

δσ

δσ̄

δ

δσ
= ℏµεj δ

δσ
. (III.58)

In the expansion of Ω, the function Σj appears linearly at order εj :

Ω(σ̄) = ΩLO(Σ0) +
(

ΩNLO(Σ0) + Σ1Ω̂NLO(Σ0)
)
ε

+
(

ΩNNLO(Σ0,Σ1) + Σ2Ω̂NNLO(Σ0)
)
ε2 + . . . ,

(III.59)

and, by the equation above, Ω̂NLO(Σ0) = Ω′
LO(Σ0), which vanishes at the saddle. It follows that,

apart from the leading order, the saddle-point value ⟨Ω⟩ at order j does not depend on the saddle
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value ⟨Σj⟩.

The phase-space Hamiltonian is quadratic in the variables R̄ and p̄, and it is easy to express the
product b(R̄, p̄) ⋆ b(R̄, p̄) in closed form,

b(R̄, p̄) ⋆ b(R̄, p̄) =
(
h(R̄, p̄)2 +

∣∣σ̄(R̄)
∣∣2 − ε2

2 ∆R̄(V̄ (R̄)) 2iεp̄ · ∇R̄σ̄(R̄)
−2iεp̄ · ∇R̄σ̄(R̄) h(R̄, p̄)2 +

∣∣σ̄(R̄)
∣∣2 − ε2

2 ∆R̄(V̄ (R̄))

)

=
∞∑

i=0
εi

(
Bi(R̄, p̄) B̃i(R̄, p̄)
B̃∗

i (R̄, p̄) Bi(R̄, p̄)

)
,

(III.60)
where we have identified, order by order,

B0(R̄, p̄) := h(R̄, p̄)2 +
∣∣Σ0(R̄)

∣∣2,
Bi(R̄, p̄) :=

i∑
k=0

Σ∗
k(R̄)Σi−k(R̄) − δi2

2 ∆R̄(V̄ (R̄)) for i = 1, 2, . . . ,
(III.61)

and {
B̃0(R̄, p̄) := 0,
B̃i(R̄, p̄) := 2ip̄ · ∇R̄Σi−1(R̄) for i = 1, 2, . . . .

(III.62)

With this, the heat kernel equation can be understood hierarchically. Expanding the Moyal
product in powers of ε with the k-Poisson bracket notation introduced in Eq. (III.40), and
dropping the arguments to avoid cluttering the notation, the order-εn heat kernel problem
becomes 

∂ τ̄Kn +
n∑

j=0

n−j∑
k=0

ik

2kk!

[
{Bn−j−k,Kj}k +

{
B̃n−j−k, K̃

∗
j

}
k

]
= 0,

∂ τ̄ K̃n +
n∑

j=0

n−j∑
k=0

ik

2kk!
[{

Bn−j−k, K̃j

}
k

+
{

B̃n−j−k,Kj

}
k

]
= 0,

(III.63)

with ic lim
τ̄→0

Kn = δ0n and lim
τ̄→0

K̃n = 0. Note that each line contains a finite number of
contributions and, for a given n, the two equations are decoupled, since B̃0 = 0. We investigate
the order ε0 contributions in the next subsection, and we will elaborate further on this system of
equations when we reach subleading contributions.

III.1.4 Explicit computations in the bulk

Leading order

The Moyal product at leading order is just a pointwise product and σ̄ therefore commutes with
the momentum at this order. It can therefore be treated as effectively constant. Said differently,
at large charge, the position-dependent µ(r) can be regarded as a slowly varying function, and the
computation is formally the same as the one without potential. It follows that, by dimensional
analysis, the leading-order gap Σ0(R̄) must be proportional to the effective chemical potential
µ(r), i.e.

Σ0(R̄) = y0
(
1 − V̄ (R̄)

)
, with y0 ∈ R. (III.64)
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Additionally, this also implies that y0 should reproduce the standard mean-field result for the
Bertsch parameter in the absence of an external potential [239] (see also, e.g., [227]).

The contributions at leading order stem from the n = 0 (and therefore j = k = 0) terms in
Eq. (III.63), for which the heat kernel equations read{

∂ τ̄K0 + B0K0 = 0,
∂ τ̄ K̃0 + B0K̃0 = 0,

(III.65)

with initial condition K0(R̄, p̄; 0) = 1 and K̃0(R̄, p̄; 0) = 0. We thus find that K0 = e−B0τ̄ and
K̃0 = 0, and Eq. (III.46) at leading order becomes

ΩLO(µ) = − ℏµ
[∫ ∞

0

dτ̄
Γ(s)τ̄ τ̄

s

∫ dR̄ dp̄
(2πε)3 e

−
(
(1−V̄ (R̄)−p̄2)2+|Σ0(R̄)|2)

τ̄

]
s=−1/2

− (ℏµ)2R3
cl

2u0

∫
dR̄

∣∣Σ0(R̄)
∣∣2. (III.66)

The s-wave scattering length is related to the renormalized coupling u as a = mu
2πℏ2 [31]. As

mentioned, it diverges at the Feshbach resonance, indicating that the system has reached criticality.
In the scheme we employ, u = u0 and the unitary regime is thus reached as u0 → ∞. 13

Our goal is to express the result in the form of an integral over space. By construction, it is
a priori only well-defined for 1 − V̄ (R̄) < δ, but by consistency, the leading-order contribution
cannot have edge divergences, as we shall see. Performing the integral over τ̄ first, we get integrals
of the form

Im,n(y) = − Γ(n− 1/2)
4
√

2π7/2

∫ ∞

0
dq q2+m

((
q2 − 1

)2 + y2
)1/2−n

∣∣∣∣
reg
, (III.70)

which are well-defined for n > 1/2 and −3 < m < 4n − 5. They can however be analytically

13The regularization typically used in the bcs literature goes as follows. Integrating Eq. (III.66) over dτ̄ yields

ΩLO(µ) = −ℏµR3
cl

∫
dR̄

[
ℏµ
2u0

∣∣Σ0(R̄)
∣∣2 +

(2mµ
ℏ

) 3
2
∫

dp̄
(2π)3

√(
1 − V̄ (R̄) − p̄2

)2
+
∣∣Σ0(R̄)

∣∣2] , (III.67)

where ε was replaced by its explicit expression given in Eq. (III.50). The integrand diverges for large values of p̄ as

p̄2
√(

1 − V̄ (R̄) − p̄2
)2

+
∣∣Σ0(R̄)

∣∣2 = −p̄2
(

1 − V̄ (R̄) − p̄2
)

+
1
2

∣∣Σ0(R̄)
∣∣2 + O(1/p̄2). (III.68)

The first term is the result of the free theory, in which Σ0 = 0, which can be absorbed in the normalization of
the partition function. The second term, on the other hand, combines with the bare coupling u0 to define the
renormalized coupling as

1
u

:=
1
u0

+
(2mµ

ℏ

) 3
2 1
ℏµ

∫
dp̄

(2π)3
1

p̄2 =
1
u0

+
∫

dp
(2πℏ)3

2m
p2 . (III.69)

We restored the dimensionful momentum p := (2mℏµ)
1
2 p̄ in the second expression for a more direct comparison

with the standard result (see e.g. [31, 227]).
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continued in terms of hypergeometric functions 2F 1 as

Im,n(y) = −y5/2+m/2−2n

2(2π)7/2

Γ(− 3+m
4 )Γ(n− 5+m

4 ) 2F 1(− m+1
4 , n− m+5

4 , 1
2 ,−

1
y2 )

+ 2
y

Γ(− 5+m
4 )Γ(n− 3+m

4 ) 2F 1( m−1
4 , n− m+3

4 , 3
2 ,−

1
y2 )

. (III.71)

They satisfy the recursion relation

d

dy
Im,n(y) = −2yIm,n+1(y). (III.72)

The leading-order contribution thus becomes

ΩLO(µ) = −4πℏµR3
cl

(mµ
ℏ

) 3
2
∫

dR̄ I0,0

(
Σ0(R̄)

1−V (R̄)

) (
1 − V̄ (R̄)

) 5
2 − (ℏµ)2R3

cl

2u0

∫
dR̄

∣∣Σ0(R̄)
∣∣2

= −4πm
3
2

ℏ3

∫
dR I0,0

(
Σ0(R̄)

1−V (R̄)

)
(ℏµ− V (R))

5
2 − (ℏµ)2R3

cl

2u0

∫
dR̄

∣∣Σ0(R̄)
∣∣2,

(III.73)
where

I0,0(y) = − y5/2

2(2π)7/2

[
Γ(− 5

4 )Γ( 3
4 ) 2F 1(− 5

4 ,−
1
4 ,

1
2 ; − 1

y2 ) + 2
y

Γ(− 3
4 )Γ( 5

4 ) 2F 1(− 3
4 ,

1
4 ,

3
2 ; − 1

y2 )
]
.

(III.74)
We then need to further impose the minimization condition set by the saddle equation which, at
this order, reads

Σ0(R̄)I0,1

(
Σ0(R̄)

1−V (R̄)

)
= 0. (III.75)

It admits the solution anticipated in Eq. (III.64) with (see Figure III.1)

y0 ≈ 1.1622 . . . (III.76)

At large N and for a large chemical potential µ, there is therefore an explicit realization of the
Cooper mechanism: the Stratonovich field σ(τ, r) acquires a non-trivial vev which spontaneously
breaks the U(1) symmetry. The resulting state is a superfluid, allowing for an explicit computation
of the Wilsonian coefficients characterizing the first few terms in the large-charge eft. Here, we
can extract

c0 = 4π I0,0(y0) ≈ 0.0841 . . . , (III.77)

which, using Eq. (I.18), allows us to extract the value of the Bertsch parameter:

ξ ≈ 0.5906 . . . . (III.78)

In the absence of an external potential, this value was obtained via mean-field theory in the
celebrated work [239], and agrees with the large-N computations in [227], in which the next-to-
leading order correction in 1

N was also computed.
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Figure III.1: The function −I0,0(y) appearing in the effective action at leading order. It has a
minimum for a non-zero value of the parameter y that controls the expectation value of the gap,
which yields spontaneous symmetry breaking.

Next, recall that in Eq. (III.73), R3
cl(2mµ/h) 3

2 = ε−3 ≫ 1 was identified with the large-charge
regime. This is justified a posteriori by the fact that the leading dependence of the charge on the
chemical potential at criticality is given by

QLO = − 1
ℏ
∂Ωcrit.

LO (µ)
∂µ

= ε−3 · 5c0

2

∫
dR̄

(
1 − V̄ (R̄)

) 3
2 ≫ 1. (III.79)

Specializing to the case of the external harmonic potential V (r) = mω2

2 r2—i.e., V̄ (R̄) = R̄2)—
with ω ≪ µ, we find

QLO =
(µ
ω

)3 5π2c0

2 5
2

=
(µ
ω

)3 1
3ξ 3

2
=
(µ
ω

)3
· 0.734 . . . (III.80)

Using Eq. (III.49), the leading dependence of the conformal dimension of the large-charge operator
on the charge Q is therefore given by

∆Q
LO= 3

4

[
5π2c0

2 5
2

]−3

Q
4
3 = 3 4

3

4
√
ξQ

4
3 = Q

4
3 · 1.893 . . . (III.81)

Subleading corrections

By inspection of Eq. (III.63), the components of the heat kernel are seen to be of the form
Kn(R̄, p̄; τ̄) := e−B0(R̄,p̄)τ̄

n+1∑
l=0

τ̄ lKn,l(R̄, p̄),

K̃n(R̄, p̄; τ̄) := e−B0(R̄,p̄)τ̄
n+1∑
l=0

τ̄ lK̃n,l(R̄, p̄),
(III.82)

where Kn,0(R̄, p̄) = δ0n and K̃n,0(R̄, p̄) = 0. That is, these components are polynomials in τ̄ of
degree (at most) n+ 1, multiplied by an overall factor of e−B0τ̄ .

With this, the trace in Eq. (III.46) can be decomposed explicitly order by order in ε, and the
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integrals over momentum and proper time can be performed and expressed in terms of the
functions Im,n. At criticality,

Ωcrit.
NnLO(µ)

ℏµR3
cl(2mµ/ℏ) 3

2
= −

n+1∑
l=0

∫
dR̄

[∫ dτ̄
Γ(s)τ̄ τ̄

s+l

∫ dp̄
(2π)3Kn,l(R̄, p̄) · e−B0(R̄,p̄)τ̄

]
s=− 1

2

, (III.83)

which is subject to the gap equation,

δΩcrit.
NnLO

δΣ0
= 0. (III.84)

Once the above saddle equation is accounted for, this recipe gives the order-εn bulk contribution
to the zero-temperature limit of the grand-canonical potential at criticality (and one still needs
to account for the edge contributions).

Next-to-leading order

At the next order in ε, i.e., n = 1 in Eq. (III.63), we use the fact that {B0,K0} = 0, so that the
heat kernel equations at this order can be put into the form{

∂ τ̄ K̂1 + B1 = 0,
∂ τ̄

ˆ̃K1 + B̃1 = 0,
(III.85)

with {
K̂1(R̄, p̄; 0) = 0,
ˆ̃K1(R̄, p̄; 0) = 0,

(III.86)

where the hat notation means

Ki := K0 · K̂i, K̃i := K0 · ˆ̃Ki. (III.87)

Thus, the first correction to the leading-order heat kernel is

K1(R̄, p̄; τ̄) = −τ̄ e−B0(R̄,p̄)τ̄

(
Σ0(R̄)∗Σ1(R̄) + Σ1(R̄)∗Σ0(R̄) 2ip̄∇R̄Σ0(R̄)

−2ip̄∇R̄Σ0(R̄)∗ Σ0(R̄)∗Σ1(R̄) + Σ1(R̄)∗Σ0(R̄)

)
,

(III.88)
and we have B1 = Σ∗

0Σ1 + Σ∗
1Σ0, so we obtain

Ωcrit.
NLO(µ)

ℏµR3
cl (2mµ/ℏ)

3
2

= −4π
∫

dR̄
(
Σ0(R̄)∗Σ1(R̄) + Σ1(R̄)∗Σ0(R̄)

)
I0,1

(
|Σ0(R̄)|
1−V (R̄)

)
. (III.89)

The gap equation is

Σ1(R̄)
(
I0,1

(
|Σ0(R̄)|
1−V (R̄)

)
− 2 Σ0(R̄)2

1 − V (R̄)
I0,2

(
|Σ0(R̄)|
1−V (R̄)

))
= −2Σ1(R̄)

(
1 − V (R̄)

)
y2

0I0,2(y0) = 0,

(III.90)
which admits the single solution Σ1 = 0. We find that the first corrections in ε to the gap and to
the grand potential both vanish, in agreement with the eft prediction:

ΩNLO(µ) = 0. (III.91)
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Next-to-next-to-leading order

At second order in ε, or nnlo, the heat kernel conditions become{
∂ τ̄ K̂2 + B2 −

(
B2

1 + B̃2
1 + {{B0,B0}}

)
τ̄ + 1

8 ΠIJΠLM ∂ILB0 ∂JB0 ∂M B0τ̄
2 = 0,

∂ τ̄
ˆ̃K2 + B̃2τ̄ + B1B̃1τ̄

2 = 0,
(III.92)

and the nnlo action takes the form

Ωcrit.
NNLO(µ)

ℏµR3
cl (2mµ/ℏ)

3
2

=
∫

dR̄ 4π
9
(
1 − V̄

)5/2

(
4(5I2,3 − 3I0,3)(Σ0)2(∇Σ0)2

+
(
1 − V̄

)3 ((9I0,1 − 18I0,2 + 48I2,2 − 8I2,3 − 30I4,2 + 8(3I4,3 − 3I6,3 + I8,3)) ∆V̄

− 18I0,1((Σ1)2 + 2Σ0Σ2)) + 2
(
1 − V̄

)2 ((9I0,2 − 9I2,2 + 4(I2,3 − 2I4,3 + I6,3))(∇Σ0)2

+ (9I0,2 − 15I2,2 + 4(I2,3 − 2I4,3 + I6,3))Σ0 ∆Σ0

+ 3(3I0,2 − 2I0,3 − 3I2,2 + 6I2,3 − 6I4,3 + 2I6,3)(∇V̄ )2)

+ 12
(
1 − V̄

)
Σ0(3I0,2Σ0(Σ1)2 + 2(I0,3 − 2I2,3 + I4,3)∇V̄∇Σ0)

)
.

(III.93)
As expected, the coefficient of Σ2 is proportional to Σ0I0,1, the leading-order variation in
Eq. (III.75), and vanishes on shell.

The gap equation is obtained by varying with respect to Σ0:

δ

δΣ0
Ω =

[
∂

∂Σ0
− ∇ ∂

∂∇Σ0
+ ∆ ∂

∂∆Σ0

]
Ω = 0, (III.94)

and, using the relations between the Im,n ,

Im,n(y) = (n− 1/2)
(
Im+4,n+1 − 2Im+2,n+1 + (1 + y2)Im,n+1

)
, (III.95)

we find the profile

σ0(τ, r) = y0 (ℏµ− V (r)) + y1
ℏ2

m

(∇V (r))2

(ℏµ− V (r))2 + y2
ℏ2

m

∆V (r)
ℏµ− V (r) + . . . , (III.96)

with
y1 ≈ −0.004347 . . . , y2 ≈ −0.1608 . . . . (III.97)

This provides the first non-trivial correction to the profile of the Stratonovich field. We stress
once more that this expression is only valid up to a distance δ from the edge at R̄ = 1. We will
discuss in the next subsection what happens closer to the edge of the cloud, where we will need
to merge our small-gradient expansion with the perturbation theory of the boundary dynamics,
subject to appropriate matching conditions.
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As for the effective action, we obtain14

S = 4π
ℏ3 βm

3/2I0,0(y0)
∫

dr
(

(ℏµ− V (r))5/2 + 5
64

ℏ2

m

(∇V )2√
ℏµ− V (r)

− 25
48

ℏ2

m
∆V (r)

√
ℏµ− V (r)

)
.

(III.98)
Comparing with Eq. (III.1), we find the following Wilsonian coefficients:

c1 = 5π
16 I0,0(y0) ≈ 0.006577 . . . , c2 = 25π

108 I0,0(y0) ≈ 0.004872 . . . . (III.99)

This gives the final result for the scaling dimension of the lowest operator of charge Q

∆Q

N
= 0.8313

(
Q

N

)4/3
+ 0.2631

(
Q

N

)2/3
+ . . . (III.100)

The value for c2 satisfies the bound of [47] on the transverse response function: The transverse
response itself must be negative for a stable condensate, requiring that c2 > 0. The fact that
2c1 + 3c2 > 0 also places us in the regime were, in the zero-temperature, low-momentum limit, in
the absence of an external potential or boundary dynamics, 1 → 2 phonon splitting is forbidden.

It is important to stress that the form that we find for the gap and the Lagrangian density is
precisely the one expected based on locality and dimensional arguments: as long as we only look
at the bulk, the problem has two scales, µ and ∇V , so any physical quantity of dimension ∆(G),
in the limit of large µ, must take the form

G(µ, r) = (ℏµ− V (r))∆(G)/2 F
(

ℏ
m1/2

∇V (r)
(ℏµ−V (r))3/2

)
. (III.101)

III.1.5 The edge expansion

In the previous subsection, an asymptotic expansion of the bulk contributions to the free energy in
terms of the small parameter ε ∼ ω/µ was obtained. Upon matching these contributions against
the bulk large-charge eft, we were able to extract the corresponding Wilsonian coefficients at
leading order in 1

N . This expansion is however only valid in the bulk, up to some distance δ
away from the point where the particle density vanishes at leading order in ε. This is therefore a
boundary-layer problem, see for instance [238].

The procedure to tackle this kind of problem is the following. The domain of a differential equation
is split into two (or more) regions. In each region, an asymptotic expansion of the solution is found
and then matched over an intermediate region where both approximations are valid. When exact
solutions are known across multiple regions, one must patch these solutions smoothly at transition
points. Crucially, this is to be distinguished from cases where only asymptotic expansions are
known in different regions, wherein one must instead perform a matching. Said differently, given
two such solutions supported in different regions, one needs to find an overlapping region (the
intermediate limit) in which the two asymptotic expansions have the same functional form. The
possibility to find such a matching imposes a constraint on the thickness δ of the boundary layer.
Roughly speaking, the boundary layer has to be sufficiently thick so that the corresponding
asymptotic solution (controlled by δ) is rich enough to permit a matching with the functional

14Notably, we can express the action in terms of rational coefficients of I0,0(y0).

103



Chapter III Microscopic realizations

form coming from the outer (bulk) solution.

In practice, δ is fixed by a dominant-balance argument in which two or more of the terms of the
one-particle Hamiltonian must be of the same order, allowing us to retain enough information.
This characterizes the so-called distinguished limit. For simplicity, we shall consider spherically-
symmetric potentials only. Correspondingly, the boundary layer is a spherical shell around
r̄ := |r̄| = 1, so we introduce the inner variable ū as

r̄ = 1 − ūδ. (III.102)

In the limit of δ → 0, the metric is approximately flat in terms of a radial and two orthogonal
directions. To see that, start from R3 in polar coordinates,

ds2 = dr̄2 + r̄2
(

dz2

1 − z2 +
(
1 − z2) dϕ2

)
, (III.103)

with z ∈ (−1, 1) and ϕ ∈ (0, 2π). Rescaling z = x̄δ and ϕ = ȳδ, so that x̄ ∈ (−1/δ, 1/δ) and
ȳ ∈ (0, 2π/δ), the metric becomes

ds2 = δ2 (dū+ dx̄2 + dȳ2) = δ2 (dū+ dx̄⊥
2)+ O(δ) (III.104)

and the Laplacian with respect to the dimensionless coordinate r̄ is approximately given by

∆r̄ = 1
δ2

(
∆⊥ + d2

du2

)
+ O(1/δ). (III.105)

Since 1 − V̄ (1) = 0 by definition of Rcl, the dimensionless Hamiltonian h̄(r̄) becomes

h̄(r̄)
∣∣∣∣
r̄=1−ūδ

= −ε2

δ2

(
∆⊥ + d2

du2

)
− ūδ ∂r̄V̄ (1) + O

(
(ūδ)2). (III.106)

The only possible dominant balance is obtained when the first two terms are of the same order:

ε2

δ3 = O(1). (III.107)

The distinguished limit therefore corresponds to the double-scaling limit ε → 0, δ → 0, such that
ε2/δ3 = 1, and we obtain

h̄(r̄)
∣∣∣∣
r̄=1−ūδ

= −δ ·
(

∆⊥ + d2

du2 + αū

)
+ O

(
(ūδ)2), (III.108)

with α := V̄ ′(1). In particular, for the harmonic oscillator α = 2. This is the Airy operator,
corresponding to the linearization of the confining potential close to the turning point.

What concerns the gap profile, in contrast to the bulk condition in Eq. (III.52), the edge condition
is that σ varies on the same scale as the one fixed by its own vev

σ(r) ⪅ ℏ2

2m
(∂rσ(r))2

σ(r)2 . (III.109)
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In the edge region15, the Stratonovich field is expected to be an expansion in δ,

σ̄(ū)
∣∣∣∣
edge

= σ̄
(1)
edge(ū)δ + σ̄

(2)
edge(ū)δ2 + . . . , (III.110)

and the above condition thus becomes

σ̄1
edge(ū) ⪅ ϵ2

δ3

(
∂ūσ̄

1
edge(ū)

)2

σ̄1
edge(ū)2 , (III.111)

which is satisfied when σ̄1
edge(ū) and its ū derivatives are of order O(1). The boundary condition

for σ̄edge imposes that the known result from the bulk is matched in the region where both the
bulk and edge approximations are consistent.

In the spherically-symmetric case, the bulk expansion of the Stratonovich field, Eq. (III.96),
becomes

σ̄(r̄)
∣∣∣∣
bulk

= y0
(
1 − V̄ (r̄)

)
+ 2
ε2

[
y1

V̄ ′(r̄)2(
1 − V̄ (r̄)

)2 + y2
V̄ ′(r̄)

1 − V̄ (r̄)

]
+ . . . (III.112)

For the harmonic potential, this becomes, in the intermediate limit δ → 0, ū → ∞ with ūδ → 0,

σ̄(1 − ūδ)
∣∣∣∣
bulk

= δ ·
(

2y0ū+ y1

ū2 + . . .
)

+ O
(
δ2), (III.113)

which also scales like δ at leading order. To be able to perform the matching, the edge solution
σ̄edge must have the same functional form for δ → 0:

σ
(1)
edge(ū) ∼

ū→∞
2y0ū+ y1

ū2 + . . . . (III.114)

This allows us to write the expression of the bdg operator close to the boundary:

B = ℏµδB̄(1)(ū) + O
(
µδ2) = ℏµδ

(
∆⊥ + d2

du2 + 2ū σ
(1)
edge(ū)

σ
(1)
edge(ū)∗ − ∆⊥ − d2

du2 − 2ū

)
+ . . . . (III.115)

To compute the edge contribution to the free energy, we thus need to solve the gap equation in
the following form: 

δTr{|B|}
δσ

(1)
edge(ū)

= 0

σ
(1)
edge(ū) ∼

ū→∞
2y0ū+ y1

ū2 + . . .

σ
(1)
edge(ū) −−−−−→

ū→−∞
0,

(III.116)

to obtain the saddle profile σ(1)
edge(ū), and then evaluate the corresponding value of the trace of

the operator
∣∣B̄(1)

∣∣,
Fedge = ℏµδ

2 Tr
{∣∣∣B̄(1)(ū)

∣∣∣}〈
σ

(1)
edge(u)

〉 + . . . , (III.117)

where the trace is understood over the edge region. This is a more challenging problem than the

15In the usual boundary theory language, the edge is the inner region and the bulk is the outer region.
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bulk calculation discussed previously, since there is no longer a small parameter controlling a
perturbative expansion. Hence, a quantitative analysis is beyond the scope of the present work.

Rather, we shall estimate the order in µ and ω at which this contribution enters the expression
of the free energy. The first observation is that the trace is divergent and requires regulation. In
fact, at first sight, the Airy linear potential might seem to imply a continuous spectrum. However,
we are ultimately computing the trace of the absolute value

∣∣B̄(1)
∣∣ =

(
(B(1))2)1/2, and (B(1))2

is bounded from below and increases without bound in the u direction, so that its spectrum
is manifestly discrete. A standard zeta-function regulator can therefore be employed, and the
edge contribution to the free energy can be written as the Mellin transform of the heat kernel at
coincident points

Tr
{∣∣∣B̄(1)(ū)

∣∣∣} = 1
Γ(s)

∫ dτ̄
τ̄
τ̄s Tr

[
e−|B̄(1)|τ̄

]∣∣∣∣
s=−1

, (III.118)

which is well-defined. Inverting the order of integration, we can write the free energy as the
integral of a local density,

b̄(1)(x̄, ȳ, ū) = 1
Γ(s)

∫ dτ̄
τ̄
τ̄s
〈
x̄, ȳ, ū|e−|B̄(1)|τ̄ |x̄, ȳ, ū

〉∣∣∣∣
s=−1

, (III.119)

which is parametrically of order O(1). We are therefore in the position to extract the parametric
dependence of F :

Fedge = ℏµδ
2 Tr

{∣∣∣B̄(1)
∣∣∣} = ℏµδ

2

∫ 1/δ

−1/δ

dx̄
∫ 2π/δ

0
dȳ
∫ 1

0
dū b̄(1)(x̄, ȳ, ū)

= ℏO(µ
δ

) = ℏO(µ4/3R
2/3
cl ).

(III.120)

Note that we used the fact that the integral over b̄(1) is of order 1/δ2. In the case of the harmonic
trap, we find

Fedge

∣∣∣∣
ht

= ℏ4/3

m1/3 O(µ
5/3

ω2/3 ) + . . . , (III.121)

which precisely matches the leading-order edge contribution in the large-charge eft.

III.1.6 Conclusion

In this section, we studied a large-N description of the unitary Fermi gas in a trapping potential
at zero temperature, where N denotes the number of Fermion flavors. Computations were
analytically tractable in the large charge regime. This constitutes a first-principle approximation
at the microscopic level, providing a foundation for the Thomas–Fermi approximation at leading
order. We presented a clean algorithmic procedure for computing the Wilsonian coefficients of the
bulk large-charge eft, requiring no other inputs beyond dimensional and symmetry arguments
and basic techniques of quantum mechanics.

Previous attempts involved a variety of approximation techniques, which we put here on a
solid theoretical basis, whereby the large-N limit turns the one-loop calculation into a justified
approximation, and the large-charge regime allows to implement a gradient expansion of the
functional determinant resulting from integrating out the original microscopic dof. In this way,
we found a consistent microscopic derivation that confirms the eft prediction for the form of
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the bulk operators, their contribution to the energy, and the form of the gap equation. Though
the bulk expansion breaks down near the droplet edge, we were able to estimate the parametric
dependence of the leading-order edge contributions to the energy starting from first principles,
confirming the large-charge eft prediction. We reserve the precise determination of the numerical
coefficient for future work.

The natural next step would be to carefully connect the qualitative features of the large-charge
expansion with experimental observations. As a first step, one might consider the doubly-
integrated axial density [212]. Conversely, it would be valuable to obtain experimental data (of
the density profile, perhaps) with sufficient resolution to probe the concrete predictions set forth
here, particularly in the regime beyond the reach of the Thomas–Fermi approximation.
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III.2 Further microscopic models
An important task in the nonrelativistic large-charge program is to collect further evidence that
a large set of theories indeed belong to the superfluid universality class, and to investigate the
possibility of realizing other phases of matter. In the former case, despite our large-N analysis
of the last subsection, a quantitative evaluation of edge effects is still lacking and should be
a priority for future research projects based on microscopic realizations. We discuss the most
natural starting point below. What concerns other phases of matter, we also provide a short,
though surprising discussion of the relevance of anyons in this context.

III.2.1 More realizations of the unitary Fermi gas

We set ℏ = m = 1 for simplicity, and discuss weakly-coupled models of the unitary Fermi gas
close to 2 and 4 dimensions presented in [20] (see also [226]). Similar to the large-N model, we
first consider the so-called ’two-channel model’ of Feshbach resonance:16

S[ψ,Φ] =
∫

dτ dr
[
ψ̄σ

(
∂τ − ∇2

2m − µ(r)
)
ψσ + Φ∗

(
∂τ − ∇2

4m − 2µ(r)
)

Φ − gΦψ̄↑ψ̄↓ − gΦ∗ψ↓ψ↑

]
,

(III.122)
with d = 4 − ϵ (ϵ > 0). The composite bosonic field Φ, with mass 2m, is dynamical (as opposed to
the Stratonovich field) and represents rigid pairs of fermions. This is the critical action obtained
in dimreg, where the coupling is tuned to its critical value,

g2 = 8π2ϵ. (III.123)

This is critical value is computed when µ(r) is absent and is the exact result to all orders in
ϵ. This model therefore provides a simple weakly-coupled microscopic description of fermions
at unitarity close to four dimensions. We expect that a gradient expansion—controlled by the
charge Q ≫ 1—may be formulated around the homogeneous solution, as was done in the previous
large-N analysis. Generally speaking, the ϵ-expansion is under slightly better analytic control
than the large-N expansion due to its proximity to the free theory. It is therefore reasonable to
hope that the analysis of edge effects could be improved with respect to our previous results.

A weakly-coupled approach to the unitary Fermi gas comes with a bonus: there is, in fact, another
description as we approach two dimensions from above. Concretely, in d = 2 + ϵ̃ (ϵ̃ > 0), the
critical model is simply given by [20, 226]

S̃[ψ] =
∫

dτ dr
[
ψ̄σ

(
∂τ − 1

2m∇2 − µ(r)
)
ψσ − g̃2ψ̄↑ψ̄↓ψ↓ψ↑

]
, (III.124)

in terms of the fixed-point coupling,
g̃2 = 2πϵ̃. (III.125)

Both of these weakly-coupled descriptions have been investigated in the absence of the harmonic
trap, and it is desirable to include it. The analysis should be phrased in terms of a double-scaling
limit ϵ → 0, Q → ∞, keeping ϵQ fixed (and similarly for ϵ̃), as guided by the equivalent result
in the relativistic case [160, 161]. A difficulty to overcome is the explicit construction of the
large-charge operators in terms of the underlying fermionic degrees of freedom in these theories.

16One could introduce separate chemical potentials and distinct masses for the two fermion species.
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III.2.2 Anyons

Certain (2 + 1)-dimensional systems host quasiparticles with fractional statistics interpolating
between those of fermions and those of bosons in terms of the (rational) phase θ ∈ [−π, π]
acquired upon exchanging two identical particles: these are so-called anyons [240–248]. The topic
was initiated about 40 years ago by Wilczek [240, 241], and it was quickly realized that they were
central to the description of the fractional quantum Hall effect [249–251]. Abelian anyons have
been experimentally detected for the first time very recently [215, 216]. Their applications now
range from non-invertible symmetries17 to quantum computing [254, 255].18

Of central importance to us is the fact that they have a hidden SL(2,R) symmetry which makes
an nrcft description appropriate. Conveniently, they are in fact often studied in a harmonic
potential. Originally, the study of many-anyon states was phrased in terms of the quantum
many-body wavefunction, see [256] for a review. A more recent field-theoretic discussion appeared
in [20, 257, 258], see also [259]. Before presenting a microscopic description of anyons, we discuss
some striking properties of the Q-anyon ground-state conformal dimension, which we denote by
∆Q,θ.

Figure III.2: Picture taken from [247]. Energy spectrum (vertical axis, in units of ω) of a
four-anyon system (Q = 4) as a function of θ

π (horizontal axis), the parameter that interpolates
between the bosonic behaviour (θ ≈ 0) and the fermionic one (θ ≈ π). The strict limits θ = 0, π
correspond to free bosons and fermions, respectively. For Q = 4, level crossing occurs around
θ
π = 0.56. This spectrum was obtained numerically.

17E.g. in the context of Adler-Bell-Jackiw (ABJ) anomalies [252], which are present in the Standard model [253].
18Non-Abelian anyons are indeed ideal candidates for the preparation of qubits as their topological properties

(’braiding’) make them, in principle, resistant to quantum noise.
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Starting from the bosonic end—that is, θ ≈ 0, see Figure III.2—the ground state energy of a
system of Q anyons in a harmonic potential grows linearly with θ (the so-called linear solution):

∆Q,bos = Q+ Q(Q− 1)
2π θ. (III.126)

This conformal dimension is in fact exact, as it is secretly protected by a hidden supersymme-
try [257]! In this supersymmetric description, the Q-anyon ground state is a nonrelativistic
chiral primary operator: it is a bps operator in disguise. Its conformal dimension is given
exactly by ∆N,bos = 3

2R− J in terms of the R-charge R = 2(θ−1)
3θ Q and the angular momentum

J = −Q2θ. At large charge Q ≫ 1, this is—to the best of our knowledge—the only nonrelativistic
known example of a large-charge state that evades the usual scaling behaviour. This provides a
prototypical example for the moduli universality class of nrcfts, which moreover bears great
phenomenological and theoretical importance.

Perhaps even more interesting, however, is the fact that there is level crossing: there exists a
critical value θc above which the above state is in fact no longer the ground state, but an excited
one. Remarkably, the large-Q ground state slightly above θc is believed to have a conformal
dimension given by [260]

∆Q,ferm =
√
θ

π
Q

3
2 + . . . (III.127)

at leading order, thereby matching the ’natural’ scaling Q 3
2 .19 This tells us that θc = O

(
Q− 1

2

)
at large charge, making level crossing occur close to the bosonic end.20 This said, at large but
finite charge, this provides a rather unique crossover between two large-charge universality classes,
parametrized by θ. Of course, this large-charge scaling alone does not allow to conclude that the
system is described by a conformal superfluid state at large charge. By now, however, there is
compelling evidence that this is indeed the case [243, 248].

In field-theoretic terms, anyons are described in terms of a Chern-Simons gauge field a = (a0,a)
at level k = π

θ coupled to a nonrelativistic scalar field ϕ in (2 + 1) dimensions [20]:21

S[a, ϕ] =
∫

dtdr
[

1
4θ∂ta × a − 1

2θa0∇ × a − 1
2ξ (∇ · a)2

+iϕ∗(∂t + ia0)ϕ− 1
2 |(∇ − ia)ϕ|2 − v

4(ϕ∗ϕ)2
]
.

(III.128)

The Coulomb gauge corresponds to ξ = 0, and v is fixed at one of its fixed-point values (repulsive
and attractive, respectively):

v = ± 2
|k|
. (III.129)

It would be very interesting to perform a microscopic computation of the large-charge conformal
dimension starting from this model. We expect such a computation to be tractable at least
close to the fermionic end [243], where a double-scaling limit (π − θ) → 0, Q → ∞, (π − θ)Q
fixed should be appropriate. Computing ∆Q,θ for arbitrary θ is perhaps too formidable a task,
although one may hope to make some progress in a large-N generalization of the above model.

19Note that, as θ approaches π, the system is described by a free Fermi gas, and the fact that ∆Q,π scales like
Q

3
2 can be seen from a simple counting argument (see [76] for the relativistic case).
20Note that a similar situation appeared in the (relativistic) supersymmetric model studied in [15].
21The model is expressed here in real time.
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In the supersymmetric theory, it would also be interesting to consider other pieces of cft data,
akin to those associated with extremal correlators in the relativistic case. The simplicity of the
latter however crucially relied on the ope of chiral primaries being non-singular, which might be
too much to ask for in this case. Finally, it would be interesting to discuss what the large-charge
superfluid eft describing the many-anyon ground state above θc really is. We expect it to be a
nonrelativistic version of the parity-violating cfts at large charge in (2 + 1)-dimensions studied
in [147]. Here, the relevant eft would presumably be based on [261–263], describing chiral
superfluids.22

22In [51], a parity-violating term was identified in (2 + 1) dimensions, but not included in the large-charge eft.
Whether this is enough to capture the many-anyon ground-state dynamics needs to be clarified.
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Closing word
In this chapter, we performed an explicit computation of the first few terms in the large-charge
expansion of ∆Q, including the leading edge contribution. This result was successfully matched
against the structure corresponding to the large-charge eft discussed in the previous chapter,
which allowed us to extract the first three Wilsonian coefficients. This stems from a microscopic
description of the unitariy Fermi gas in (3 + 1) dimensions, in which the number of fermion flavors
was taken to be artificially large. To the best of our knowledge, this is the first first-principle
evaluation of the contribution coming from the edge dynamics. A quantitative computation
of the corresponding Wilsonian coefficients remains however challenging and requires further
investigation.

In the last section, we also proposed alternative avenues to address similar issues, starting from
different microscopic models. In particular, we mentioned the weakly-coupled descriptions of the
unitary Fermi gas around 2 and 4 dimensions. We then gave a very rough description of the
fascinating dynamics of anyons in a trap. While this is arguably a mature topic, we believe that
its relevance to the nonrelativistic large-charge program deserves some attention. We mentioned
several possible entry points in this rich topic from a large-charge perspective.
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Outlook
In this thesis, we reviewed the effort of the author and his collaborators to significantly improve
the state of the art of the nonrelativistic large-charge program. For the benefit of the reader,
we provided in the first chapter a comprehensive overview of the large-charge landscape in both
relativistic and nonrelativistic cfts. We believe that this helps understand both the scope of
the achievements established in [1–4] and the remaining challenges. We now discuss the most
important open questions.

First, despite the fact that this thesis focuses on nonrelativistic cfts, we mentioned in Section I.2
a couple of challenges faced in the relativistic large-charge program.

• A better understanding of the large-charge versus large-spin phase diagram would be
desirable, regarding in particular the nature of the phase transitions between them, as well
as possible intermediate (excited) phases, accounting e.g. for the Tkachenko modes.23

• For instance, performing an explicit large-N computation in one of the vortex phases by
identifying the corresponding large-charge operator and solving the related saddle equation
would already be a very non-trivial result.

• Since the large-spin behaviour is universal, it would be interesting to identify the character-
istic feature in the cft data that makes the theory enter the phase diagram of a specific
universality class as the spin decreases.

• A systematic discussion of the Fermi sphere state at large-charge from an eft perspective
is lacking. The natural starting point for this is the eft built in [117].

Regarding the core of the topic, that is, nonrelativistic conformal field theories at large charge,
there is a number of open questions and challenges that one can reasonably hope to solve in
the light of our results. Let us also reiterate that, regardless of the large-charge program, many
formal (’bootstrap-like’) developments in nrcfts are within reach, and it has become pressing to
undertake such an investigation.

This said, let us discuss large-charge oriented challenges.

• A nonrelativistic version of the general macroscopic limit and its consequences for higher-
point functions should be investigated systematically and compared with existing results [51,
201]. In particular, the fate of theories with a moduli space, and supersymmetric nrcfts in
general, should be given more attention. Perhaps this could also guide further investigations
in the context of nonrelativistic holography.

23Cf. [147] where these modes are mentioned in the large-charge context.
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• We mentioned some nonrelativistic Monte-Carlo simulations of ∆Q [192, 193]. Making
contact with these simulations and trying to improve or generalize them is important, given
the rapid progress that has been made in the relativistic case[139, 140, 169–171].

• The study of vortex phases and of the whole large-charge versus large-spin nonrelativistic
phase diagram should be revisited in the light of the edge eft and the recent work [128].
Finding a bootstrap argument for a Regge-like regime when the spin is the dominating
quantum number would be a fantastic achievement in itself.

• It would be interesting to generalize the computation of the Casimir energy performed in
Section II.5 to higher-dimensional cases, and to compute subleading quantum corrections.

• It is important to extend the set of microscopic realizations of the nonrelativistic superfluid
universality class. We mentioned in Section III.2 some simple models where this could
reasonably be achieved using double-scaling limits. In particular, obtaining quantitative
predictions for the edge contributions, at least the leading one, would be a major achievement.
In the case of anyons, a large-N model would perhaps allow to keep the phase factor θ
arbitrary, thereby probing level crossing and the transition between two large-charge
universality classes.

• Relatedly, figuring out the correct large-charge eft describing the many-anyon ground
state above θc is an important task, which would rely on the construction of chiral two-
dimensional nonrelativistic superfluid efts presented in [261–263]. This discussion would
closely resemble the relativistic one [147].

• The case of superconformal anyons also deserves more attention, as there might be a class
of simple correlators, akin to the extremal ones in the relativistic case, where large-charge
techniques could prove very powerful.

• Finally, a more concrete comparison of the large-charge predictions with experimental
data is important. In this regard, experiments involving fewer atoms are more sensitive to
subleading corrections. It would be exciting to check whether the leading edge contribution—
or even the universal leading quantum correction—could be extracted from the numerical
fit obtained from (future) high-precision experiments.

• A related recent topic, going under the name of unnuclear physics [264, 265], is another
suggestion of applied nrcft. This scenario is typically approximately realized in certain
nuclear reactions emitting neutrons. In this context, it would be interesting to relate
large-charge higher-point functions to phenomenological observations.

With this, we hope that we were able to convey the idea that the nonrelativistic large-charge
program, being still in its infancy, offers a wide range of fascinating directions for future research,
some of which have recently been unlocked thanks to the progress reviewed in this thesis.
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