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Introduction

The guiding themes of this thesis are universality and topological Noetherianity. The core
of both of these topics lies within asymptotic algebra. But what exactly is asymptotic
algebra? In a very simplified way, in asymptotic algebra one tries to understand problems
in a ”large” setting (e.g. large dimension) or even in " all large” settings by showing that
they can be completely determined by problems in a ”small” setting. More precisely, we
would like to have

e Objects: A collection of geometric or algebraic objects X; for i € I,
e Structure: with a reasonable structure on them, and

e Relations: some way to relate the X, e.g., morphisms between them.
Then one possible question in asymptotic algebra could be:

Can we characterize all objects (X;)icr only using finitely many X;?

Or more precisely, are there finitely many i1, ..., i,, € I such that every X; (wherei € I)
can be rebuild from the finite collection Xj,, ..., X;, 7 If this is indeed the case, i.e., if
every X; is completely determined by the finite collection, then the objects X, , ..., X;,

are in some sense universal and therefore we will refer to this phenomenon as universality.

An illustrative example comes from the work of Kasman et al. in [KRPS08]. But be-
fore we can discuss their result, we first need to recall some facts about Grassmannians.
Grassmannians, denoted by Gr(k,n), are geometric spaces representing all k-dimensional
subspaces of an n-dimensional vector space V. The Plicker embedding is a way to embed
the Grassmannian into the projective space P( /\k V). In this way, the Pliicker embedding
provides a representation of the Grassmannian as a projective variety. The defining ho-
mogeneous equations of this variety are called Plicker relations. The smallest nontrivial
Grassmannian is Gr(2,4), which can be defined using only one Pliicker relation, called
the Klein quadric. In 2005, Kasman et al. proved an interesting insight: they showed
that every Grassmannian Gr(k,n) can be set-theoretically defined purely by the Pliicker
relations obtained from pulling back the Klein quadric. Relating this back to our discus-
sion of asymptotic algebra and the concept of universality, we recognize that the Klein
quadric is universal, as it completely determines all other Grassmannians.

An essential part of this thesis is to understand how this result extends if we consider
vector spaces equipped with an additional structure and special subspaces related to
those structures. Specifically, we will consider quadratic spaces and symplectic spaces as



well as their maximal isotropic subspaces. In each setting we will consider the analogues
of Grassmannians and prove similar universality results.

A vast generalization of the result of Kasman et al. was obtained in 2014 by Draisma-
Eggermont in [DE18] by considering what they call Plicker varieties. A Pliicker variety
is a family of varieties in exterior powers of vector spaces that, like the Grassmannian,
is functorial in the vector space and behaves well under duals. While the approach of
Kasman et al. is very concrete in nature, Draisma-Eggermont embark on a more abstract
path by studying the topological Noetherianity of a certain limit space up to a certain
group. Since topological Noetherianity represents the second central theme in this thesis
we will now give its precise definition.

Definition (Topological G-Noetherianty). Let X be a topological space equipped
with the action G ~ X of a group G by homeomorphisms. Then X is topologically
G-Noetherian if every descending chain

X2OX120Xo2DX32---

of G-stable closed subsets stabilizes, i.e., if there exists mg € N such that X,,, = X, 11
for all m > mg. Here a subset Y C X is called G-stable if gY C Y for all g € G.

In this thesis we will encounter certain infinite dimensional spaces and establish
topological Noetherianty results for them up to an infinite dimensional group that is
the limit of certain finite dimensional classical group. These results will be crucial for
developing a theory similar to the theory of Pliicker varieties due to Draisma-Eggermont.

After this initial overview of the thematic framework, we will now give a detailed
chapter-by-chapter outline of the content of this thesis.

Universal Equations for Maximal Isotropic Grassmannians

The main goal of Chapter 1 is to establish an analogue of the universality result by
Kasman et al. for isotropic Grassmannians in quadratic spaces. A quadratic space V is
a vector space equipped with a non-degenerate symmetric bilinear form. In this context,
we will consider the so-called isotropic Grassmannians Gris(k, V'), which consist of the
k-dimensional subspaces in V' where the bilinear form is identically zero. Similar to the
ordinary Grassmannian, the Pliicker embedding maps the isotropic Grassmannian into
the projective space P( /\k V). For our universality result, we will consider the isotropic
Grassmann cone é\riso(k, V) C /\k V' and maps between exterior powers preserving the
isotropic Grassmann cones, which we call IGCP-maps. Our focus will be on the isotropic
subspaces of V' that have the maximal possible dimension. Then, a consequence of our
main result will be the following:

Theorem A. Let V be a qaudratic space over an algebraically closed field K with

Char(K) # 2. Then the mazimal isotropic Grassmannian GriSO(LdiISVJ , V') in its Plicker

embedding can be defined set-theoretically by pulling back the defining equations of

o Griso(3,7) if V is odd-dimensional
o Grig(4,8) if V is even-dimensional

along all IGCP maps to N* K7 resp. \* K8,



Since the ideals of Griso(3,7) and Griso(4,8), and indeed of any isotropic Grassman-
nian, are generated by finitely many quadrics, Theorem A implies a universal bound
on the ranks of the quadrics needed to set-theoretically define any maximal isotropic
Grassmannian. Notably, this bound is precisely four.

Theorem A is a direct consequence of the main result in Chapter 1, namely, Theo-
rem 1.3.1, where we consider only a specific family of IGCP maps. For this particular
family, the isotropic Grassmannians Grig(3,7) and Griso(4,8) in Theorem A can not
be replaced by isotropic Grasmannians of smaller dimension. Indeed, we have explicit
counterexamples showing that Theorem 1.3.1 cannot be improved. However, it may be
possible to reduce the dimension in Theorem A by considering additional IGCP maps.

Chapter 1 is organized as follows: In Section 1.1, we recall facts about the ordinary
Grassmannian and state the universality result of Kasman et al. in [KRPS08]. Section 1.2
provides the necessary background on quadratic spaces and introduces isotropic Grass-
mann cones and IGCP maps. In Section 1.3, we state and prove Theorem 1.3.1, which
implies Theorem /{X A key ingredient in our proof is Proposition 1.3.7, which charac-
terizes forms in Griso(Ldir;lVJ,V). The counterexamples showing that Theorem 1.3.1 is
optimal are presented in Section 1.4. Finally, in Section 1.5, we show that any maximal
isotropic Grassmannian is defined set-theoretically by quadrics of rank at most four.

As we mentioned above, we are also interested in a universality result for Lagrangian
Grassmannians in symplectic spaces. We will see, however, that the proofs in Chapter 1
do not apply directly for symplectic spaces. Most importantly, Theorem 1.3.1 is wrong
in the symplectic setting, which we show using an explicit counterexample. Therefore, a
central goal is to establish an appropriate setting in which universality for the Lagrangian
Grassmannian holds. This will be discussed in Chapter 3.

Topological Noetherianity of the Infinite Half-Spin Representations

As mentioned earlier, Draisma-Eggermont obtained a generalization of the universality
result due to Kasman et al. by studying the topological Noetherianty of a particular
limit space. Now that we have established an analogous universality result for maximal
isotropic Grassmannians in quadratic spaces, the following question arises: Can we prove
topological Noetherianity of a certain limit space that implies Theorem A? This would
indeed follow if we could prove that the projective limit mn A" K?" is topologically
SO-Noetherian. Unfortunately, despite much effort, we were not able to show this.

However, we succeeded in proving a topological Noetherianity result by consider-
ing a different embedding of the istropic Grassmannian, namely the spinor embedding.
Unlike the Pliicker embedding, the spinor embedding maps each of the two irreducible
components of the isotropic Grassmannian into the projective space of the half-spin
representations, which are irreducible representations of the spin group. Thus, the rele-
vant limit space we will consider is the projective limit of the half-spin representations.
More precisely, we consider a countable-dimensional vector space Vo = |J,, V5, with basis
e1, f1, €2, fa,e3, f3, ... and a bilinear form given by (e;|e;) = (fi|f;) = 0 and (e;|f;) = di;.
Moreover, we will construct a direct limit Spin(V,) of all spin groups Spin(2n) and de-
fine the direct limit /\;rc> E of all even half-spin representations. This space has as its
basis all formal infinite products

€y N €ig NEig N---



where {i; < i2 < ...} is a cofinite subset of the positive integers. The group Spin(V)
acts naturally on this space, and hence on its dual ( /\;rO E)*, which we regard as the
spectrum of the symmetric algebra on /\::o FEs. The main theorem of Chapter 2 is as
follows.

Theorem B. The scheme (N1, Exo)* is topologically Spin(Va)-Noetherian, i.e., every
descending chain

(/\+ Eoo) DX1 202X X3
of Spin(Vy)-stable reduced closed subschemes stabilises.

The main result in [Nek20] is an exact analogue of Theorem B for the dual infinite
wedge, acted upon by the infinite general linear group. Even though we now have much
better tools available to study these kinds of questions than we had at the time of
[DE18], notably the topological Noetherianity of polynomial functors [Dral9] and their
generalisation to algebraic representations [ES22], spin representations are much more
intricate than polynomial functors. Therefore, part of Chapter 2 will be devoted to
establishing the precise relationship between the infinite half-spin representation and
algebraic representations of the infinite general linear group, so as to use those tools.

Theorem B fits in a general program that asks for which sequences of representations
of increasing groups one can expect Noetherianity results. This seems to be an extremely
delicate question. Indeed, while Theorem B establishes Noetherianity of the dual infinite
half-spin representation, we do not know whether the dual infinite spin representation is
Spin(Vs )-Noetherian; see Remark 2.3.9. Similarly, we do not know whether a suitable
inverse limit of exterior powers A" V,, is SO(V4)-Noetherian, and there are many more
natural sequences of representations for which we do not yet have satisfactory results.

A main application of Theorem B is that we obtain a theory similar to the one
for Pliicker varieties due to Draisma-Eggermont in [DE18]. Namely, we will introduce
the notion of half-spin varieties. Roughly speaking, a half-spin variety is a rule X that
assigns to each n € N a Spin(2n)-stable closed reduced subscheme X, of the even half-
spin representation /\Jr FE,, satisfying some additional axioms. The maximal isotropic
Grassmann cone over the spinor embedding represents the simplest example of such a
variety. However, the half-spin varieties that we introduce go far beyond this. Indeed,
this class of varieties is preserved under linear operations such as joins and tangential
varieties, and under finite unions and arbitrary intersections. In particular, the secant
variety of a half-spin variety will again be a half-spin variety.

One example how we can use Theorem B in the context of half-spin varieties is that
every half-spin variety is completely determined by data coming from a single finite level.

Theorem C. Let X be a half-spin variety. There exists ng € N such that for alln > ng
it holds that

X, = V(rad(Spin(2n) -Ino)),
where rad(Spin(2n) - I,,) is the radical ideal generated by the Spin(2n)-orbits of the ideal
I, defining X,y € N\ Enp,.

Consequently, any variety obtained from several copies of the maximal isotropic
Grassmannian by the operations mentioned above is defined by equations of some de-
gree bounded independently of n. We stress, though, that these results are of a purely



topological /set-theoretic nature. In the case where X is the isotropic Grassmann cone
over the spinor embedding, we can use the Cartan map and Theorem A to show that ng
can be taken to be equal to 4.

In the context of secant varieties, we point out the work by Sam on Veronese vari-
eties: the k-th secant variety of the d-th Veronese embedding of P(K™) is defined ideal-
theoretically by finitely many types of equations, independently of n, and in particular in
bounded degree [Sam17a]. Furthermore, a similar statement holds for the p-th syzygies
for any fixed p [Sam17b]. Similar results for ordinary Grassmannians were established
by Laudone in [Laul8]. It would be very interesting to know whether their techniques
apply to secant varieties of the maximal isotropic Grassmannian in its spinor embed-
ding. Theorem C gives a weaker set-theoretic statement, but for a more general class of
varieties.

After establishing Noetherianity, it would be natural to try to study additional ge-
ometric properties of Spin(Vy)-stable subvarieties of the dual infinite half-spin rep-
resentation. Perhaps there is a theory there analogous to the theory of GL-varietes
[BDES23a, BDES23b|. However, we are currently quite far from any such deeper under-
standing!

Chapter 2 is organized as follows: In Section 2.1, we first recall the construction of
the (finite-dimensional) half-spin representations. We mostly do this in a coordinate-free
manner, only choosing, as one must, a maximal isotropic subspace of an orthogonal space
for the construction. But for the construction of the infinite half-spin representation, we
will need explicit formulas, and these are derived in Section 2.1, as well. We describe the
spinor embedding of the maximal isotropic Grassmannian in the projectivised half-spin
representation in Section 2.2. Then, we define suitable contraction and multiplication
maps, which we show preserve the cones over these isotropic Grassmannians. Finally, we
use these maps to construct the infinite-dimensional half-spin representations. Section 2.3
is devoted to the proof of Theorem B. Then, in Section 2.4, we state and prove the main
results about half-spin varieties. Finally, in Section 2.5 we prove the universality of the
isotropic Grassmannian of 4-spaces in an 8-dimensional space.

Noetherianity and Universality for Lagrangian Pliicker Varieties

As mentioned at the beginning, the main goals of this thesis are to establish universality
and topological Noetherianity results for quadratic and symplectic spaces. Whereas the
results in Chapter 1 and Chapter 2 were about quadratic spaces, we now turn to sym-
plectic spaces. A symplectic space V is a vector space equipped with a non-degenerate
skew-symmetric bilinear form. In contrast to quadratic spaces, symplectic spaces always
have even dimension 2n. Maximal isotropic subspaces of a symplectic space are called
Lagrangian subspaces. Similar to quadratic spaces, in this setting we will also consider
Lagrangian Grassmann cones and Lagrangian Grassmann cone preserving (LGCP) maps.
We mentioned in the description of Chapter 1 that the proof of the universality result
in quadratic spaces does not directly apply to symplectic spaces, as there are explicit
counterexamples to Theorem 1.3.1. Therefore, to establish a universality result for the
Lagrangian Grassmannian, we need to find an appropriate setting. More precisely, we
want to find a subspace of the exterior power that still contains the Lagrangian Grass-
mann cone but does not contain the counterexamples. A good candidate for this is the
n-th fundamental representation of the symplectic group Sp(2n), which we denote by



ker,,. The choice of this notation will become clear later.
The following statement is the first main result of Chapter 3.

Theorem D. Let V' be a symplectic space of dimension 2n over a field K of Char(K) = 0.
Then, the Lagrangian Grassman cone Gry,(V') C ker,, can set-theoretically be defined by
pulling back the defining equations of Grp(K*) along all LGCP maps to kery C /\2 K*.

Actually, Theorem D can be generalized by introducing Lagrangian Plicker varieties.
Similar to half-spin varieties, a Lagrangian Pliicker variety X is a collection of Sp(2n)-
stable closed subsets X,, C ker,. For these, we will show the following universality
property:

Theorem E. Let X be a Lagrangian Pliicker variety. Then there exists ng € N such
that for all n > ng we have

X, = {17 € ker,,

J(g-m)=0 Vg eSp(2n), Vf € Ing }
where I, is the ideal of polynomials defining X, C kery,.

We will obtain Theorem E as a consequence of the Noetherianity result that we estab-
lish in the second part of Chapter 3. For this, we will consider the countable dimensional
vector space ker,, which is the direct limit h_H)ln ker,, along suitable multiplication maps.
The infinite symplectic group Sp(Vs,), which is the direct limit of all symplectic groups
Sp(2n), naturally acts on kers. In fact, kers is an irreducible Sp(Vi)-representation.
There is an induced action of Sp(V4) on the dual space (kers)*, which we see as the
spectrum of the symmetric algebra Sym(kers,) endowed with the Zariski topology. We
can now state the second main theorem of Chapter 3.

Theorem F. The dual (keroo)* of the irreducible Sp(Vso)-representation kers is topo-
logically Sp(Voo)-Noetherian.

After reading the summary of Chapter 3, the reader might be inclined to think
that the proofs in this chapter are direct adaptations of the results in Chapter 1 and
Chapter 2. Even though the overall proof strategies remain the same, the technical
details of both results required considerable modifications. In Chapter 1 and Chapter 2,
we often used explicit calculations by working in a canonical basis. However, for the
relevant spaces considered in Chapter 3, there was no obvious choice for a basis. So one
of the main challenges was to find a useful coordinate-independent description of these
spaces. Working in a basis in Chapter 1 and Chapter 2 was beneficial, as it often made
our approach to the proofs straightforward. However, the calculations quickly became
cumbersome, hiding the main ideas. In the coordinate-free approach of Chapter 3, it was
more difficult to find the correct strategies, but once we had them, the essential ideas
became more transparent.

Chapter 3 is organized as follows: In Section 3.1, we collect the necessary background
information about general and symplectic vector spaces. Section 3.2 introduces the new
setting for Theorem D. In Section 3.3, we present the main auxiliary results. The com-
plete proof of Theorem D is presented in Section 3.4. We then state Theorem F and
outline its proof strategy in Section 3.5. Section 3.6 and Section 3.7 contain the neces-
sary preparation for the proof of Theorem F, which will then be given in Section 3.8.
Finally, Section 3.9 presents the applications to Lagrangian Pliicker varieties.



Final Thoughts

The results of this thesis naturally raise the question of whether there might be a more
general universality and Noetherianity result, with our work serving as an example of
such general principles. This seems plausible given the results on ordinary Grassmannians
and Pliicker Varieties in [DE18], maximal isotropic Grassmannians and Spin Varieties
in [ST24, CDE*24], and Lagrangian Grassmannians and Lagrangian Pliicker varieties
in Chapter 3.

However, such a broad generalization seems currently to be out of reach. For example,
in [CDE"24], we do not yet know how to prove the statement for the full spin represen-
tations, focusing only on the half spin representations. The details matter significantly,
and despite using similar ideas across the different settings, we had to address the spe-
cific properties unique to each case. Therefore, a more abstract and general statement
requires a deeper understanding.

Sources of the Material

A majority of the results in this thesis have been achieved through collaboration with
fellow researchers:

e Chapter 1 is based on the article [ST24], joint with Tim Seynnaeve;

e Chapter 2 is based on the paper [CDE™24], joint with Jan Draisma,
Rob Eggermont, Christopher Chiu and Tim Seynnaeve;

e Chapter 3 is independent work that has not yet appeared yet in print.

This thesis is not meant to be completely self-contained. Even though most prelim-
inaries are explained in each chapter, we assume some familiarity with basic concepts
from algebraic geometry, representation theory and the algebra of alternating tensors; all
the needed standard definitions and results can be found in, e.g., [Pro07, FHI1, Leel2].

How to Read this Thesis

Each chapter is self-contained and the chapters can be read in a any order. The chapters
are arranged chronologically based on the appearance of the articles. While reading the
thesis linearly is straightforward, as, for example, Chapter 2 refers to the results in
Chapter 1 and Chapter 3 refers to the results in both Chapter 1 and Chapter 2, we
recommend starting with Chapter 3. This chapter explores similar ideas and methods as
used in the preceding ones but presents them in a more general context, without choosing
a specific basis or working in coordinates, as often done in Chapter 1 or Chapter 2. We
think that this makes it easier for the reader to grasp the key ideas and maintain an
overview, which can then help understand the technical and coordinate-heavy parts
in the previous chapters. Therefore, the recommended order is Chapter 3, followed by
Chapter 1, and Chapter 2.



Chapter 1

Universal Equations for Maximal
Isotropic Grassmannians

1.1 The Ordinary Grassmannian

Let V' be a finite-dimensional vector space over any field K, and k£ < dim V. The Grass-
mann cone is defined as

o~ k
Gr(k,V) := {vl/\"-/\vke/\ V‘vl,...,vkEV},

where AV is the k-th exterior power of V. For w = v1 A---Avg € (/}\r(k, V)\ {0}, we will
denote the corresponding subspace span{vi,...,vx} C V as L. If dimV = n, we will
sometimes write (/}\r(k:,n) instead of (/}\r(k:, V). Choosing a basis eq, ..., e, of V induces
coordinates {z; | I C {1,...,n},|I| = k} on A*V, which are known as the Plicker
coordinates. The Grassmann cone is a subvariety of /\k V', and its defining equations are
quadrics referred to as the Plicker relations [Sha94, (1.24)]. In the case where k = 2 and
V = K4, there exists only one Pliicker relation, called the Klein quadric

P4 = 12734 — 213724 + 1,472 3.

The Grassmannian is the projectivization of the Grassmann cone:

Gr(h, V) =P (Gr(h, V) = (Ga(k, V) \ {0}) /K" C P(/\k v>.

It is a projective variety whose defining equations are the Pliicker relations.

Notation 1.1.1. From now on, for vectors vy,...,vp € V, we will write (v, -+ ,vg) to
denote span{vy, ..., v}

Definition 1.1.2 (GCP map). A linear map ¢ : A*V — AW is Grassmann cone
preserving (GCP) if

o (é\r(k, V)) c Gr(q, W).

Example 1.1.3. We give two examples of GCP maps.

10



1. If f : V — W is a linear map, the induced map /\k I /\k V — /\k W is Grassmann
cone preserving.

2. For 8 € V* the contraction map

18 : /\kV—> /\k_lkerﬁ C /\k_IV

defined as
k
(A ARERWAN /A '—>Z:(—l)Jflﬁ(vi)vl/\--'/\1/);‘/\-"/\1)]C
j=1
is GCP. Below we give a coordinate-independent description of ig.

Proof. Let vi A -+ Aw € a(k,V) \ {0}. Note that the vectors v1,...,v; are
linearly independent. We will distinguish two cases. In the first case, assume that
(vi,...,v5) C ker 8. Then, ig(vi A---Avg) =0 € (/}\r(k — 1,ker 3). Now consider
the case that ker 8 N (v1,...,v;) has dimension k — 1. After possibly replacing
v1,. .., with some v, ..., v} such that v{ A---Av}, = vi A- - Avg, we can assume
that vy ¢ ker 8, but v, ..., v € ker 8. Then, ig(vi A--- Avg) = B(v1)va A+ A vy
is contained in (/}\r(k — 1,ker 8). This proof also shows that ig takes values in
A" ker 8. O

The contraction map ig can also be described coordinate-independently. Recall that
there is a natural isomorphism A* V 2 AltF(V*), where Alt"(V*) is the space of alter-
nating multilinear maps V* x --- x V* — K. Under this identification, ig agrees with

the map
AltF(V*) = AlLFL (V) wew(B, -, ).

Next, we recall the universality result by Kasman et al.

Theorem 1.1.4 ([KRPS08, Theorem 3.4]). Let w € A*V. Then w € Gr(k,V) if and
only if every GCP map to /\2 K* maps w to Gr(2,4).

In fact, Kasman et al. show that the GCP maps can be chosen from an explicit finite
collection. We can rephrase Theorem 1.1.4 in terms of the Klein quadric, as follows.

Corollary 1.1.5. Any Grassmannian is set-theoretically defined by pullbacks of the Klein
quadric P 4 along all GCP maps to /\2 K4, i.e.,

Gr(k,V) = {w eN'v ’ Poi(p(w) =0 Ve GCP </\kv,/\2 K4> } .

1.2 Quadratic Spaces and the Isotropic Grassmannian

Throughout the remainder of this chapter, we will work in a field K of characteristic not
2. In this section, we will introduce quadratic spaces and isotropic Grassmannians, and
establish several essential lemmas that we will later use to prove our main theorem.
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1.2.1 Quadratic Spaces

In this subsection we introduce quadratic spaces. The material is fairly standard, for
a reference see [Art57, Chapter 3]. For Lemma 1.2.6 we did not find a proof in the
literature, so we opted to give a proof here.

A quadratic space refers to a vector space V equipped with a quadratic form, or
equivalently, a symmetric bilinear form (-|-). We always assume that the bilinear form
is non-degenerate. A vector v € V is considered isotropic if (v|v) = 0. The set of all
isotropic vectors in V is denoted by Vis,. The orthogonal complement of a subspace
L C V is defined as the space L+ := {v € V | (v|u) = 0 Vu € L}. We call a subspace
L C V isotropic if L C L*, i.e., if (ujv) = 0 for all u,v € L. By polarization, using
Char(K) # 2, this is equivalent to L C Vig. If L is isotropic but any proper superset
L’ O L is not isotropic, we refer to L as mazximal isotropic.

Definition 1.2.1 (Hyperbolic basis). We call a collection of vectors ej,e_1,...,ex, e_g
in V' hyperbolic if (ejle—;) =1 fori=1,...,k, and (e;|le;) = 0 if ¢ # —j. Note that the
e; are necessarily linearly independent. If 2k = dim V', then we call e;,e_1,...,ex,e_ a

hyperbolic basis of V.

Theorem 1.2.2. Let L be an isotropic subspace of V, and ey, ..., exr a basis of L. Then
we can find vectors e_1,...,e_r € V'\ L such that ey,e_1,..., e, e_ forms a hyperbolic
collection of vectors.

Proof. This is [Art57, Theorem 3.8] in the case where U = L is isotropic. O

Theorem 1.2.3 (See [Art57, Theorem 3.10]). All mazimal isotropic subspaces of V' have
the same dimension, which is referred to as the Witt index of V.

Note that by Theorem 1.2.2, the Witt index can be at most Ldl%vj Moreover,
this upper bound is attained when K is algebraically closed, regardless of the chosen
non-degenerate quadratic form.

Convention 1.2.4. From this point onward, we make the assumption that V has max-
imal Witt index LWJ We will denote this Witt index by p.

Remark 1.2.5. If dim V' = 2p is even, then by Theorem 1.2.2, V' has a hyperbolic basis.
Note that then a subspace L is maximal isotropic if and only if L = L.
If dimV =2p+ 1 is odd, then V has a basis

€1,€—1,.--,€p,€_p, €0 (1.2.1)

such that ej,e_1,...,ep, e, is hyperbolic and (egle;) = 0 for all i # 0. We will call
e1,€e—1,...,€p, e_p, e hyperbolic as well. Note that (eg|eg) # 0 by non-degeneracy. If K
is algebraically closed we can rescale ey such that (epleg) = 1; in general we will write
co = 3(eole). Note that we can also find a basis of V' consisting of isotropic vectors, for
instance by replacing ey by eg 4+ e1 — cpe—1 in (1.2.1).

The following lemma will be used several times in the proof of our main theorem (to
be precise: in Claim 1.3.8, Claim 1.3.10 and Claim 1.3.11).
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Lemma 1.2.6. Let W1,Wy C V' be mazimal isotropic subspaces. Then for any choice
of decomposition

Wi = (W1 ﬂWg)@U1 and Wy = (Wl ﬂWQ)EBUg

the isomorphism V. — V* v (v| - ) restricts to an isomorphism Uy — Uj.
In particular, there exists a hyperbolic basis e1,e_1,. .., ey, e—p, (eo) of V', such that

Wi =(e1,...,eqeq41,---,€p) and Wa={(e1,...,€q,€_(qg41),->€p),
where ¢ = dim(W; N Wa).

Proof. Note that U; and Us have the same dimension because the maximal isotropic
subspaces W1 and W5 have the same dimension. Thus it suffices to show that the map
U — Uj is injective. Arguing by contradiction, assume there is some u; € U \ {0}
such that (ui1|uz) = 0 for all ug € Us. Then it also holds that (uj|w2) = 0 for all
we € (W1 NW3) @ Uy = Wy because (W1 N Wa) @ (u1) € W is isotropic. Since Wo and
u; € Uy C Wj are isotropic, this implies that also Wy @ (u1) is isotropic. But Wy is
strictly contained in Wo @ (uq) because uy € Uy \ {0}, contradicting the fact that Wy is
maximal isotropic.

To see how the first statement implies the second one, choose a basis e1, ..., e, of W
such that eq,..., e, forms a basis for W1 N Ws. Let Uy = <eq+1, cee ep> and choose some
Us such that Wy = (W7 N Ws) @ Us. It follows from the first part that there are unique
€_(g+1),- - -»€—p € Uz such that (ejle_j) = 045 for i,j = ¢+ 1,...,p. Since W1 and W5
are isotropic, it holds that W7 N Wy C Uf N UQL7 and W1 N W, is a maximal isotropic

subspace of Ui-NU;- by reasons of dimension. So there exist e_1,...,e_g, (eg) € UL NUs-
such that ej,e_1,...,eq,e_q, (eg) forms a hyperbolic basis of Ull N UQL. This completes
the proof. O

1.2.2 The Isotropic Grassmann Cone

We now introduce the isotropic Grassmann cone. We continue to work in a quadratic
space V' of dimension either 2p or 2p + 1 satisfying Convention 1.2.4.

Definition 1.2.7 (Isotropic Grassmann cone). For k < p, the isotropic Grassmann cone
is defined as

—~ k
Griso(k, V) 1= {vl/\~--/\vk€/\ V‘(vih)j):Ofor alllgi,jgk}.

If kK = p, then we call it the mazimal isotropic Grassmann cone.
Note that w € é\r(k), V) \ {0} lies in (/ﬂiso(k:, V) if and only if L, C V is isotropic.

Definition 1.2.8 (IGCP map). A linear map ® : A"V — A?W is isotropic Grassmann
cone preserving (IGCP) if

@ (Grio(h, V) € Grisolg, W),

13



We will only need one explicit family of IGCP maps; they are the analogue of the
GCP maps from Example 1.1.3. Let v € Vis, be a nonzero isotropic vector. Define
V, := v+ /{v) (note that (v) C v* because v is isotropic). It is easy to see that

(v1|02)v,, = (v1]v2)v,

where v; € V, denotes the equivalence class of v; € vt in Vy, 1s a well-defined non-
degenerate bilinear form on V,, (i.e., the formula is independent of the choice of repre-
sentatives vy, vy € v1). Moreover, (V,, (-|-)y,) again has maximal Witt index. We denote
by m, the projection v+ — V.

Definition 1.2.9. For v € Vs, \ {0} we define the linear map

q)v:/\kv_)/\k—lvv

as the following composition

k k—1 k=1 k—1
ANVENT AT AT,
where ¢, := i(,|.) is the contraction map introduced in Example 1.1.3. Explicitly, this
map is given by
k .
Oy(vr A Avp) =D (=17 wlo)BL A AT A+ AT (1.2.2)
j=1

Since &, is a composition of two GCP maps, it is itself GCP. By the same proof as

FExample 1.1.3, one readily sees that ®, is in fact IGCP. More explicitly, the following
holds.

Lemma 1.2.10. Forw € é\riso(k:,V),
1. ifv e L}, then ®,(w) =0,
2. ifv ¢ L, then ®@,(w) # 0, and
Lo, ) = (LN vh)/(v).

Proof. If v € L}, then (v,w) = 0 for all w € L,,. Therefore, ¢,(w) = 0 and hence also

w

®,(w) = 0. This proves the first statement. For the second statement, suppose v ¢ L
and choose a basis where w = v1 A+ - -Avg, Ly, = (vy, ..., v,) and LyNot = (vg, ..., vp_1).
By evaluating ®,(w) using (1.2.2), we obtain the result. O

We now give a more coordinate-independent description of ®,. The bilinear form
on V induces an isomorphism V — V* v — (v|-). Together with the natural isomor-
phism A" V* 2 Alt* V| this yields an isomorphism b : A*V = Alt* V. Then ®, is the
composition

k b k o b1 p—1 k—1
N\ VS AFYV =AY, 2 AT,
where the middle map CIDI,’U is given by the formula

(W) (01, ..., Up—1) = & (v, 01, . . ., Vp_1) (1.2.3)

with v1,...,v5_1 € V+. Note that since w’

choice of representatives v; € V+ for o; € V.

is alternating, this does not depend on a
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1.2.3 Two Lemmas About IGCP Maps

We finish this section by proving two lemmas that will play a central role throughout
the proof of our main theorem. The first lemma states that no nonzero w are annihilated
by all IGCP maps:

Lemma 1.2.11. Let w € AV with 0 < k < dim V. If ®,(w) = 0 for all v € Vis, \ {0},
then w = 0.

Proof. If ®,(w) = 0 for all v € Vig,\{0}, then w’ (v, va, ..., v) = 0 forall v € Vi, \ {0} and
Vg, ..., € v due to (1.2.3). But then by Proposition 1.2.12 below, w’ (w1, . ..,wy) =0
for all wy,...,w; € V. So w” = 0, and hence w = 0. This completes the proof. O

Proposition 1.2.12. If 0 < k < dimV, then the set
k
{v/\vg/\---/\v;C 6/\ V’vGViSO\{O} and v, ...,V GUL}

spans N\° V.

Proof. Let S be the span of the given set in /\k V. We choose a hyperbolic basis
e1,e—1,...,€p,e_p, (eg) for V. It suffices to show that each pure wedge e;; A --- A e,
is in S. If there exists 7 # 0 such that #({j,—j} N {é1,...,ix}) = 1, then clearly
ei, N---ANejy, € S. So we only need to show that e;; Ae_j A---ANej, Ne_j, €S
when k = 2m, or ej; ANe_j; N---Nej, Ne_j, Neg € S when k = 2m + 1, where
1y erjm € {1, ..., p}.

If m < p, we choose an index jo € {1,...,p} \ {Jj1,..-,Jm}.- We then define 7 as
n=ejNe_j N---Nej, Ne_j, if kiseven, and n =ej, ANe_j, N---Nej, Ne_j,, Aeg if
k is odd. Based on the definition of jo and S, we have (ej, +e;,) A (e—j, —e—j;) An € S.
Expanding this expression, we obtain:

(ejo +€j,) N (e—jy —e—j) An=(ej, Ne—j, —ej, ANe—j ) An+ (terms in S).
Therefore, we conclude that
(€jo Ne—jo —e€j, Ne—j ;) An€S. (1.2.4)
Similarly, by considering (ej, +e—;,) A (e—j, —€j,) An € S, we can deduce
(€jo Ne—jo —e—j, Nej ) An€S. (1.2.5)

By subtracting (1.2.4) from (1.2.5) and using the anti-symmetry of the wedge product
A, we obtain that 2e; Ae_; An € S. Given that Char(K) # 2, this implies that
ey Ne—j N---Nej, N e,jm(/\eo) eSs.

We still need to consider the case where m = p; i.e., we still need to show that
etNe_1A---NepNe_p € Sif dimV = 2p+1. For this we write n = eaAe_aA---NeyNe—p

as before, and note that
2cper Ne_1 An= ((eo +e1 —coe—1) A(e1 +coe—1) —eg Aer — coeg A 6_1) AnEeS,

where co = 3(egleg). O

15



The second lemma is a more technical variant of Lemma 1.2.11. We will use it to
prove Claims 1.3.12 and 1.3.13 in the proof of the main theorem.

Lemma 1.2.13. Assumep > 2 and 0 < k < dimV, and let w € /\k V' be nonzero. Let
W and W' be mazimal isotropic subspaces of V' with dim(W NW') = p—1, and suppose
that ®,(w) = 0 for every isotropic v e WU W’.

e If k> p, then w is of the form a AW, where « lies in the one-dimensional space
AW+ W),
o Ifk<pthenwe N"(W-nw').
Proof. We choose a hyperbolic basis of the vector space V such that W = (e1, e2,...,€p)
and W' = (e_1,ea,...,ep). For {i1,...,i,} C{1,—1,...,p,—p,(0)}, we will then write

VA~ -~ f0r<61|1¢{11,57’€}>gv

B yeenyiy
We prove by induction on ¢ = 2,...,p+ 1 that
w=eNe_1Nea A+ Nei_1 Aw, + W, (1.2.6)
with )
/ k—i v d 7 k v
wie N Vigg o and W e NVi 5 5 o

and we put the first summand equal to zero if ¢ > k.
First, let us show that (1.2.6) holds for ¢ = 2. Indeed we can write

w=eiNe_1Awh+erAa+e_1AB+wh

with

k—2 k—1
wy € /\ Vi_1 a,f e /\ Vi_1 5 € /\ 1,-1
By assumption we have

el (w) = (1)61 (6—1 A O‘)?

0=90
0 (1)671 (w) = (befl (61 A 5)7

hence a = = 0.
Next we assume (1.2.6) for some 7, and want to show it for ¢ + 1. We can write
I / / /
wi=¢e ANwj g +e Ao+
wi =wi +eNeg Ao +e_y AP,

where
k—i—1 I k
v €N Via i Wi € N Vigs
k—i—1 y k—2
o e\ %i_ma S A e
k—1 I k—1
FeN Viz i B7eN Visaa
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We compute 0 = @, (w) =& Aé_gAéa A---Ag_1 A/ + (7, so we can conclude
that o/ = 8" = 0.
Next we compute

e,y (W) =Pe,—c, (1 Ne—1 Aea A ANei—1 ANeg Awiyq)
+ @, (e1Ae_1 Aea A= Aei—1 AB)
+ P,y (Wily1)
+ &, e (es Ne—y A Q")

The first and third summand are zero by Lemma 1.2.10. So we get
Do, oy (W) =E1 NEIN---NEi_1 ANB —& N,

soea A+ Aei—1 A B =" If we do the analogous computation for ®.,_._, (w) we find
that es A---Ae;_1 AB = —a”. So B = a” =0, and we get

w:el/\e,l/\62/\---/\6i/\w§+1—1—w§'+1,

which is exactly (1.2.6) for ¢ 4+ 1 instead of .
Finally, note that the case ¢ = p + 1 is exactly what we want. Indeed we have

w:el/\e_l/\egA---/\epAw'+w”,

with o' € A*P71Vp5 o qand o’ € Va5 o 5 = AF(WE N W) However, if

2,...p,
k < p, the first summand is zero, and if £k > p the second summand is zero since
dimVT@“ﬁfT:dimV—p—l§p<k. O

1.3 Universality for Maximal Isotropic Grassmannians

1.3.1 Statement and Consequences of the Main Result

For this entire section, let V' be a quadratic space of maximal Witt index p = Lidirgvj

over a field K of characteristic not 2.

Theorem 1.3.1 (Main Result). Assume dimV > 8 and let w € AP V. If for every
isotropic vector v € Viso, the tmage of v under the isotropic Grassmann cone preserving
map ®, lies in Grigo(p — 1,Vy), then w itself lies in Grigo(p, V).

From this we easily deduce the following.

Corollary 1.3.2 (Universality). For any w € APV, it holds that w € (/}\riso(p, V) if and
only if

e cvery IGCP map to N> K™ maps w to é\riso(3, 7), if dimV =2p+1,

e cvery IGCP map to /\4 K® maps w to (/}\1"130(4, 8), if dimV = 2p.
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Proof of Corollary 1.3.2 assuming Theorem 1.3.1. One direction follows directly from
the definition of an IGCP map. To prove the other direction, we consider three cases
depending on the dimension of V.

If dimV > 8, we can repeatedly apply Theorem 1.3.1 to obtain the desired result. If
dimV =8 or dimV = 7, we can just apply the assumption to the identity map (which
is trivially preserves the isotropic Grassmann cone). For dim V' < 7, we observe that the
map ¢ : N°V — AP (V @ (ep11,e_p1)), which sends w to w A e,11, has the property
that w lies in the isotropic Grassmann cone if and only if ¢(w) lies in the isotropic
Grassmann cone. By applying these maps iteratively until we reach /\3 K7 or /\4 K8, we
complete the proof. O

Similar to [KRPS08, Theorem 4.1], we obtain a statement about the ranks of quadrics
defining the isotropic Grassmann cone, where we use the fact that Griso(p, 2p) has two
irreducible components [Har92, Theorem 22.14].

Corollary 1.3.3. The isotropic Grassmannian (/}\riso(p, 2p+1) in its Plicker embedding
can_be defined by quadrics of rank at most 4. Furthermore, both irreducible components
of Griso(p, 2p) can be defined by linear equations and quadrics of rank at most 4.

Proof. By Corollary 1.1.5 it suffices to show the statement is true for (/}\1"130(3, 7) and
Griso(4, 8). This can be done by an explicit calculation, see Section 1.5. ]

Remark 1.3.4. The statement in Corollary 1.3.3 can also be deduced using the Cartan
embedding, see Section 1.5.

Remark 1.3.5. A natural question arises: is there a similar result if we replace the
symmetric form with a skew-symmetric form, focusing on Lagrangian Grassmannians?
The answer, in the case of considering only the Lagrangian Grassmann cone preserving
(LGCP) maps ®, for v € V, defined as in Definition 1.2.9, is no.

To illustrate this, consider an 8-dimensional vector space V with basis ej,...,e_4
and skew-symmetric form given by (e;le_;) = 1 and (e_;|le;) = —1 for @ > 1, and all
other pairings equal to 0.

Now, consider the 2-form o« = e; Ae_1 +eas Ae_g+e3 ANe_3+eqg Ae_y, and define

4
w=aANa=2 E ei/\e_i/\ej/\e_je/\V.
1<i<j<4

It can be observed that w does not lie in the Grassmann cone since w Aw is a nonzero
multiple of ey Ae_1Aea Ae_o AesANe_gAeqg Ne_yq. However, upon explicit computation, it
can be seen that every LGCP map ®, maps w to zero, and thus it lies in the Lagrangian
Grassmann cone.

This example can be generalized to any space of dimension 4m by considering the
m-form w = o™ € /\2m V. Therefore, we have a counterexample to the analogue of
Theorem 1.3.1 (and even to the analogue of Lemma 1.2.11). However, it is not yet a
counterexample to the analogue of Corollary 1.3.2, as there might be additional LGCP
maps that could be considered.
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1.3.2 Structure of the Proof

The aim of this subsection is twofold. First, we aim to prove Proposition 1.3.7, which will
serve as the key ingredient in proving Theorem 1.3.1. Secondly, we will give an outline
of the proof of Theorem 1.3.1 to make it more accessible, as it involves some technical
aspects.

We assume p > 2. Note that we can always decompose V as

V=V [a) <ep7 e_p>, (131)

where e, e_, is a collection of hyperbolic vectors, and V' := (e,, e_,)* which again has
maximal Witt index. For the remaining part of this section, we will be working with this
fixed decomposition. Any w € AP V' can be uniquely written as

w=wiAepANe_p+wrAep,+w3zAe_p+wy (1.3.2)

where wy € AP 2V, wy,wz € APV and wy € AP V'. The following observation shows
that for v € V', a decomposition of w maps to a decomposition of @, (w).

Observation 1.3.6. Let w be as in (1.3.2). Then for any v € V' we have
Py(w) =10 =wi Ay ANe_p+wiAe,+wy Ae_p+ w, (1.3.3)
where w} = D, (w;).
Next, we give conditions for w to be in the isotropic Grassmann cone.

Proposition 1.3.7. Suppose we have written w € APV in the form given by (1.3.2).
Assume w € Grigo(p, V'), then one of the following holds:

1. w1 :w3:w4:0 andwg eé\riso(p_lavl>?
2. wi=wy=ws4 =0 andwg G(/}\I'iso(p_]-avl)ﬂ
3. w1 =0, and wa, w3, wy are nonzero. Then

o wy,w3 € Grigo(p — 1, V'), wy € Gr(p, V'),
e L,, =L, CL,,.

This case only occurs if dim'V' is odd.

4. wi, wy, ws, wa are all nonzero. Then

® Wy € é\riso<p - 27 Vl); w2, ws S é\riso(p - 17 Vl); wyq € é\r<p7 Vl);
o Ly N Loy, = Lo, and L, + Lo, = Lo,.

Proof. We define L' := L, N V'. Note that p — 2 < dim L’ < p — 1, where the second
inequality holds since L’ is an isotropic subspace of V’. We proceed by considering cases
based on dim L'. More precisely, we will show that (1), (2) or (3) hold if dim L' = p — 1,
and that (4) holds if dim L' = p — 2.

Case 1. If dim L' = p—1, then L’ is a maximal isotropic subspace of V’. Since L’ has
codimension one in L, there exists a vector v € L, such that L, = L'+ (v). Since L, is
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isotropic, we have L, C Lt C L'*. Therefore, v € L', We can write v = w + v/, where
w € (ep,e_p) and v’ € V. Moreover, note that w € L'+, and therefore, v/ = v—w € L'*.
If dimV is even, then L' = L' NV, hence v' € L'. Consequently, we have

Ly=L+ (w+7) =L+ (w).
Since w is isotropic, the vector w is also isotropic. Thus, we can conclude that either
w € (ep) or weE (e_p).

So we conclude
L,=L+{e,) or Ly,=1L+{e_p),
and therefore
w=wa2/ANe, Or w=w3zAe_p,

where ws, w3 € (/}\riso(p —1,V".
If dim V is odd, there is a possibility that v" ¢ L’. Nevertheless, we still have

Ly,=L+ (w+2).

Writing w = e, + pe_p, we obtain that 2\p + (v/[v") = 0. Since L' is maximal isotropic
in V', the vector v/ cannot be isotropic. Hence, we have A # 0 # u. Consequently, we
can write
w=w A (Xep+ pe_p+ '),

where L, = L'. By doing so, we have expressed w in the form (1.3.2), with w; = 0,
wo = \', wg = puw’, and wy = W’ A v'. One can verify that this proves all the claims in
(3).

Case 2. If dim L' = p—2, we can write L, = (e, +u,e_,+v) & L' for some u,v € V'.
We choose vy, ...,v,—2 as a basis of L’ and express w as

w=v1 A Avp_a A(ep+u)A(e—p+0)
=:wi A (ep+u) A (e—p +0)
=wiNepNep—wi AvAet+wi AuNep+wi AuAv

=twiNepNe_pt+wrNep+ w3 Ae_p+ wy.

To show that all w; are nonzero, we need to show that vi,v,...,vp,—2,u,v are linearly
independent. We already know that v, ..., v,—2 are linearly independent since they form
a basis of L’. Furthermore, v is also linearly independent from vy, ..., v,_2; otherwise
e_p € Ly, but this would imply (e,+ule—,) = 0. Hence, we need to show that w is linearly
independent from vy, ..., vp_2,v. Assuming u = \v + v/, where v’ € L', we obtain

w=v A ANvp_a A (ep + Av) A (e—p +v),

where the vectors vy,...,v,_2,e,+ Av,e_,+v are all isotropic. In particular, the pairing
(vlv) = 0. However, this implies (e, + Av|e—, + v) = 1, contradicting the isotropy of
L,,. Hence, the vectors vi,v2,...,vp_2,u,v are linearly independent, implying that all
w; are nonzero. Note that by definition all w; belong to the corresponding Grassmann
cone. Furthermore, since u and v are isotropic and (v;|v;) = 0, (u|v;) =0, (v|v;) = 0 for
all 7, j, we can conclude that wy,ws and ws are isotropic. This proves the first statement
in (4). The second statement follows from the definition and linear independence of
V1, V2, ..., Up—2, U, V. ]

20



For the proof of Theorem 1.3.1, we will fix w € APV satisfying the assumption. We
decompose w as in (1.3.2). Then w has one of the following zero patterns:

W1 W2 W3 Wwq | W1 W2 W3 W4
© 0 0 0 0% 0 0 0 (8
(1) 0 0 0 x|{* 0 0 = (9
2) 0 0 = 0] 0 =« 0 (10)
3 0 0 *x % | *x 0 = x (11)
4 0 = 0 0| =*x = 0 0 (12
B5) 0 %= 0 %= | *x % 0 x (13
6) 0 x x 0| =*x =x x 0 (14
(7)) 0 % % x| x x x * (15)

The proof splits into the Claims 1.3.8-1.3.14 which are based on the different zero pat-
terns. First, we show that zero patterns (0), (1), (3), (5), (6), (8)-(14) and (7) (if V is
even-dimensional) are not possible:

e Claim 1.3.8 shows that the only possible zero patterns are (2), (4), (7) and (15),
with (7) only occurring when V' has odd dimension.

Note that the highlighted zero patterns align with the cases in Proposition 1.3.7. We
proceed by proving that Theorem 1.3.1 is true if w € APV has one of the highlighted
zero patterns as follows:

e Claim 1.3.9 proves that Theorem 1.3.1 is true if w has zero pattern (2) or (4).

e Claim 1.3.10 and Claim 1.3.11 show that if w has zero pattern (7) or (15), there
are three possibilities for the dimension of the intersection L, N Ly,,:

(a) dim(Ly, N Ly,) =p — 2 (when dim V' is even);
(b) dim(Ly, N Ly,) = p — 2 (when dim V' is odd);
(¢) dim(Ly, N Lys) =p—1 (when dim V' is odd).

e Claim 1.3.12 shows that Theorem 1.3.1 holds for case (a).
e Claim 1.3.13 shows that Theorem 1.3.1 holds for case (b).

e Claim 1.3.14 shows that Theorem 1.3.1 holds for case (c).

1.3.3 Proof of the Main Theorem

We will now prove Theorem 1.3.1 following the strategy we just explained. Throughout
this section, let w # 0 satisfy the assumption of Theorem 1.3.1. Trivially, w cannot have
zero pattern (0).

Claim 1.3.8. w cannot have zero pattern (1), (3), (5), (6), or (8)-(14). If dim V is even
it also cannot have zero pattern (7).
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Proof.

Step 1. If wy # 0, then we, w3y and w4 are also nonzero. In other words, w cannot have
zero patterns (8)—(14).

Proof. If wy # 0, according to Lemma 1.2.11, there exists v € V/, such that ®,(w;) # 0.
Therefore, applying case (4) of Proposition 1.3.7 to

Oy (w) = Cy(wr) Nep Ae—p + Py(wa) Aep + Poy(ws) Aep + Py(wa)

we can conclude that ®,(wq), ®,(ws3) and ®,(wy) are nonzero. This implies that wa, ws
and wy are nonzero as well. O

Step 2. If wy # 0, then either w has zero pattern (15), or dim V' is odd and w has zero
pattern (7). In other words, w cannot have zero patterns (1), (3), (5), and also not (7)
if dim V' is even.

Proof. As before, by Lemma 1.2.11 there exists v € Vi, such that ®,(ws) # 0. The result

follows by applying Proposition 1.3.7 to ®,(w) as before. O
Step 3. w cannot have zero pattern (6).

Proof. Assume w has zero pattern (6). Our goal is to find a vector v € Vi such that
Py (w2) # 0 # ®y(ws). Then W' := P, (w) also has the property that wj = 0 = wjj but
wh # 0 # wh. So by Proposition 1.3.7 w' is not in (/}\riso(p— 1,V,), which is a contradiction
with the assumption of Theorem 1.3.1. We consider two cases:

Case 1. Assume Ly, + Lo, C V’. This case holds if dim V' is odd, and also if dim V" is
even except when L, N Ly, = 0. Since V is spanned by isotropic vectors, we can find
an isotropic vector v that does not lie in the linear subspace L, + L,. Then we have
the desired property that ®,(w2) # 0 # ®,(w3) by Lemma 1.2.10.

Case 2. Assume L, + L,, = V'. In this case, dimV is even and L, N L,, = 0. By
Lemma 1.2.6 we can choose a hyperbolic basis such that

wy=ae; A---Nep—1 and w3 =fe_1 A - ANe_pi1.
Taking v := e; + e_2, we have ®,(w2) # 0 # @, (w3), satisfying the desired property. [
We now have considered all cases, and the proof of Claim 1.3.8 is complete. O

We now know that w has one of the highlighted zero patterns. Next, we prove that
Theorem 1.3.1 holds if w has zero pattern (2) or (4).

Claim 1.3.9. Theorem 1.3.1 is true if w has zero pattern (2) or (4).

Proof. Let w have zero pattern (2). Then w = w3 A e_p,. For v = ¢,, by (1.2.2), we
have @, (w) = Fws, which by assumption lies in Griso(p — 1,V4) = Griso(p — 1, V') and
therefore also w € (/}\riso(p, V). If w has zero pattern (4) we proceed analogously, using
v =e_yp. U

For the rest of the proof, we assume that w has zero pattern (15) or (7); where (7)
can only occur if dim V' is odd.
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Claim 1.3.10. The intersection L, N Ly, is nonzero.

Proof. Assume by contradiction that L, N Ly, = 0. Then by Lemma 1.2.6 we can find
a hyperbolic basis of V' such that

wy=oaer A---ANep—1 and w3z = Pe_1 A Ae_pt1.
If dimV is even we take v = e; + e_3. By Observation 1.3.6 we get
Py(w) =1 w =W Nep ANe_p +wh Ay + wh Ae_p+wy.

Note that in the quotient space AP~ (e1 +e_o)/(e1 + e_3), wh and wh have only the
basis vector €, = €_5 in common, thus

dlm(Lwé N Lwé) =1.
Since w’ € (/ﬁ"iso(p —1,V,), we can conclude by Proposition 1.3.7 that the intersection
Lwé N Lwé = wal , in particular
diIIl(Lw/2 N Lw’g) =p—3.

This contradicts our assumption dim V' > 8, which for dim V' even implies p > 4.
If dim V' is odd we take v = eg + e_1 — cgeq, where ¢g = %(eo\eo). Then we find

wy =aea A ANepm1 and  wh = —cofe_g A Ae_pi1.

Note that also in the quotient space AP~ (eg + e_1 — coer)™/{eq + e—1 — coer), we have
that
dlm(Lwé N Lwé) =0.

But by inspecting cases (3) and (4) of Proposition 1.3.7, we see that
dim(Lwé N Lwé) e{p—2,p—3}.

This is again a contradiction because, if dim V" is odd, our assumption that dimV > 8
implies p > 3. O

We will use this result and distinguish if the dimension of V is odd or even.
Claim 1.3.11. One of the following holds.
(a) dimV is even, and dim(L,, N Ly,) =p — 2,
(b) dimV is odd, and dim(Ly, N Ly,) =p — 2,
(¢) dimV is odd, and dim(Ly,, N Ly,) =p — 1 and thus Ly, = Ly,

Proof. We write ¢ := dim(Ly, N Ly,) > 0. By Lemma 1.2.6 we can find a hyperbolic
basis of V/ such that

wr=e N---NegNwy and w3 =e; A---AegAws,
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where Wy, w3 € é\riso(p —q¢—1,V)and V = (€g+1,€—g—1,---+€p—1,€—pt1). Now if we
choose v as any negative indexed basis vector e_; and write w’ = ®,(w), by Observa-
tion 1.3.6 we get

wy =g A A1 A€ AEip1 A+ Aeg AWa,
wy=deg A A1 A€ AEip1 A Aeg A Ws.
Therefore we have L, N L,; = (€1,...,€i—1,€i,€i41,-..,€q) and it holds that
dlm(Lwé N Lwé) =q—1.
If dim V' is even, then
diHl(Lw/2 N Lwé) =p—3,
hence we conclude ¢ = p — 2, as desired. Similarly, if dim V is odd, then
dim(Ly, N Lyy) € {p—2,p — 3}.

We conclude g € {p — 2,p — 1}. In other words, either ¢ = p — 2, or Ly, = Ly,. O

We will finish the proof by a case analysis of the cases in Claim 1.3.11. For the first
two cases we need Lemma 1.2.13.

Claim 1.3.12. Theorem 1.5.1 holds in case (a).

Proof. Observe that for every vector v € Ly, U Ly,, either ®,(w2) or ®,(ws) is zero.
According to Observation 1.3.6 and Proposition 1.3.7 and consequently the possible
zero patterns, this implies that ®,(w;) and ®,(w4) are also zero. Therefore, applying
Lemma 1.2.13 with V/ yields that w; € AP"V7(LL nLL) = APV (Le, N Ly,) and
wy € /\(p _I)H(Lw2 + L,,). After choosing a hyperbolic basis for V' such that L, =
(€1,€2,...,ep—1) and Ly, = (e_1,€2,...,€ep—1), and defining W := (e1,e_1,ep,e_p), we
can write

w=eA--Nep,_1An (1.3.4)

for some 7 € A\>W. Note that Ly, N Ly, = (e2,...e,_1) is isotropic and orthogonal
to W. Next, we choose v = e_p1. Consequently, V,, is isomorphic to V' & W, where
V" = (ez,e_2,...,€p—1,€_pt1). Using (1.3.4) we can write

Oy(w) =t A Aep_g A

By assumption we have ®,(w) € aiso(p —1,V,). So we find that n € (/}\1“150(2, W), which
in turn implies w € Griso(p, V). O

Claim 1.3.13. Theorem 1.5.1 holds in case (b).

Proof. We start by choosing a hyperbolic basis of V’ where Ly, = (e1,e2,...,ep—1) and
L., =(e_1,e2,...,ep—1). Applying Lemma 1.2.13 to w; and ws we get

p—2
wlé/\ (Li‘QﬂLiﬂ)) and wg=vejNe_1ANea A---Nepq
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for some v € K*. So we can write

p—1
w:<,u062/\--~/\ep1+60AZpi62A---A€iA---AeP1>/\ep/\€p
=2

+oaet NeaA---Nep_1 Nep+Pe_1 ANeaA---Nep_1 Ne_p
+rvegNe_1 ANea A---Nep_1.
Picking v = e_g yields

p—1
@v(w):<u063/\---/\ep_1—eo/\z,uieg/\---/\’e}/\---/\ep_l) Nep Ne_p
i=3
—aet Nes N~ Nep_1Nep—PBe_1 Aezg A= Nep—1 Nep
+rvegNe 1 NegAN---Nep 1.

By assumption v’ = ®,(w) € C/%\riso(p — 1,V,). Thus, by Proposition 1.3.7 one of the
cases (1) — (4) holds. Clearly, case (1) and (2), and since L, # L, also case (3),

are not possible. Thus, case (4) holds, which implies that w| € é\riso(p —3,V]) and
L; = Ly, N Ly . In coordinates, this means that p; = 0 for ¢ = 3,...,p — 1, and that
po # 0. The same argument! with v = e_3 shows that also pp = 0. We now have written
w as in (1.3.4), and can proceed exactly as in Claim 1.3.12. O

Claim 1.3.14. Theorem 1.5.1 holds in case (c).
Proof. The proof is divided into several steps:
e Step 1 shows that w; = 0.
e Steps 2-4 show that ws =ej; A--- A ep—1 Au for some u € V'.

— Step 2 shows that we can write:
wg=e A Nep_1 ANu—+ Z e Ne—j N+ ANej, Ne_j,(Neg),
Jisende

where we write p = 2¢ or p = 2¢ 4 1, and the factor Aeg only appears in the
latter case.

— Step 3 shows that all iy are equal and thus:

wp=erN--Nep_1 ANu+p Z ej, Ne—j, A---Nej, ANe_j,(Aeg).
J1yeese

— Step 4 shows that u = 0.

e Step 5 then concludes that w € (/}\riso(p, V).

here we use p > 4
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Step 1. w1 =0

., if we consider W' = ®,(w) € C/}\riso(p - 1,V,), we
have L,; = L,y. This implies that either w’ = 0, or w’ is in case (3) of Proposition 1.3.7.

Proof. Note that for every v € Vi

In both cases we conclude w] = 0. So we proved ®,(w;) = 0 for each v € Vi, , which by
Lemma 1.2.11 implies that w; = 0. O
Now we choose a hyperbolic basis of V’ such that L, = L., = (e1,...,¢ep). For any

v € Vigo, we can apply Proposition 1.3.7 to ®,(w) and find:
1. If v € Ly,,, we have ®,(w4) = 0.
2. If v € Vigo \ Ly, we have ®,(ws) € Gr(p — 1,V,) with L, C Lo, ()
Step 2. wy is of the form
et Aepr Aut Y e Aeoj A Aej, Aej (Aeo),
J1sede
where we write p = 2¢ or p = 2¢ 4+ 1, and the factor Aey only appears in the latter case.

Proof. We will write
Wy = Z )\i17._.7ip6i1 FANRERWAY €y

i1yerip

where we always order the indices as follows: 1,—1,2,—2,....,p —1,—p + 1,0. We will
abbreviate A;; ..;, to Ar, where I = {i1,...,i,} C{1,-1,2,-2,...,p—1,—-p+1,0}. If
we choose v = e;, then (1) tells us that

—1
0= <I>v(w4) = Z iA[é[\{,i} e /\p 62‘/<6i>,
—icli¢l

where the occurring vectors ep\ (_;) are linearly independent. So if —i € I but i ¢ I then
Ar = 0. On the other hand, if we choose v = e_;, then (2) tells us that

_ p—1
(I)U((,U4) = Z i)\[@[\{i} S /\ €in/<€_i>
—igl el

is of the form
ELAAGA-NEp1Au

for some u € V'. So if i € I but —i ¢ I, then \; = 0, unless {1,2,...,p — 1} C I.
Together with the above, this implies the claim. ]

Step 3. All uy are equal, so we can write

wi=e N Nep_1 ANu+p Z ej, Ne—j N---Nej, ANe_j,(Aeg).
J15eeJe
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Proof. Take v = e; — e; with 4, j positive. Then ®,(w1) = 0 and P, (w2) = Py (w3) =0,
hence by Proposition 1.3.7 we get ®,(ws4) = 0. But

QDU(U.)4) = — Z,LLJGJ'I Ne—j N---Ne; ANe_; N A €5, N 67]‘[(/\60)
ieJ
+ pgej, Neojy A Aeg AB_j A Aej, Ae,(Aeg).
Jj€J

After projecting to AP~" (e; — ;) /(e; — ;) we get

0=0y(ws) =— > g8 Aejy Ao N&G A A+ A&, NE_j,(Aeo)
icJj¢]
Y s NEjy A NG NG A AEj, A e, (AE)
jedig¢J
=e; N\ Z (_MJ’U{Z‘} + NJ’U{j})éj{ A\ e_j JANREIVAN éjé—l A é_j2_1(/\éo)'

So we find that gy = pugsy for every J' C {1,... iy ,3, ...,p—1}. Letting ¢ and
7 vary yields the result. O

Step 4. pg =0

Proof. Finally, take v = ey + e_1 — cpe1, where as before ¢y = %(eo|eo). If p = 2¢ we can
write

(I)U(W4) =e N Neéep 1 A u+ MZ(é_l + Coél) Nejy Ne—_j, N---Néej, Ne_j,
J31

and if p = 20 + 1 we have

Oy(ws) =€ A- Ay 1 AT+ 1Y (E-1+ Cof1) AEjy AE_jy A=+ ANEjy, Ne—j, A&

J31
+ 201 Y €y NE_j Ao NEj, NEj,.
J
In both cases we have L, () O (€2, -, €p—1) by (2) from which we conclude = 0. [

Step 5. w € (/}\riso(p, V)
Proof. Since w; =0 and wg = €1 A -+ A ep—1 Au for some u € V', we can write
w=e A Nep_g AU
for some v’ € (eq,ep,e_1,...,e_pt1,e_p). Choose v = e_;, then we have
Dy(w) = A Aép 1 At € Grigo(p—1,V3)

hence (u'|u’) = 0 and (ej|u’) =0 for all j =2,...,p—1. Replacing v = e_; with v = e_»
yields that also (ej|u’) = 0, hence w € Grigo(p, V). O

This proves Claim 1.3.14. O
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1.4 Counterexamples in Small Dimensions

In Theorem 1.3.1, we assumed that dim V' > 8. In this section, we will show that this
assumption is actually necessary. In both /\3 K7 and /\4 K8, we will give a p-form w that
does not lie in the isotropic Grassmannian, but which maps to the isotropic Grassman-
nian upon applying any IGCP map ®,,. For case of simplicity, we assume the underlying
field K is either C or R.

1.4.1 Counterexample in Dimension 7

Let V be a 7-dimensional K-vector space with a fixed basis eg, e, e2,e3,e_1,€_9,€_3,
and a quadratic form given by the matrix

—2]0]0
J = 01s],
0 |I3]0

where I3 is the (3 x 3)-identity matrix. Choose
wri=eyNegNes+e_1Ne_aNe_g+eyA(eg Ne_1+eaNe_a+e3Ne_3).

One verifies that w; ¢ Gr(3,V), so in particular wy ¢ Grige(3,V). In Claim 1.4.2 below
we will show that every ®, maps wy to the isotropic Grassmann cone (/}\1‘150(2, 5). One
could verify this by a direct computation for an arbitrary isotropic vector v. However,
we will exploit the fact that wy is sufficiently symmetric (Claim 1.4.1), so it suffices to
do the computation for one fixed v € Vig.

Consider the algebraic group

SO(V) ={¢ € SL(V) | (¢(z)|o(y)) = (zly) Vx,yeV}
={AeSL(7,K) | ATJA=TJ}
and its subgroup
G = stab(wy) = {p € SO(V) | ¢ w7 =wr}.
Claim 1.4.1. The action of G on Vig, is transitive.

Proof. Take any vg € Viso. We want to show that its orbit G - vy has dimension six. Then
G - vy is a full-dimensional subvariety of the irreducible 6-dimensional variety Vig,, and
hence is equal to Vig,. For this we use the formula

dim(G - vg) = dim G — dim(stabg(vo)),

where stabg(vg) = {¢ € G | ¢ - vog = vo} is the stabilizer. We will compute both terms
dim G and dim(stabg(vg)) by switching to Lie algebras.
The Lie algebra of SO(V) is given by

so(V)={X esl(7,K) | X" J + JX =0}

0| —2y" | =227
{ x a b x,yGKS,a,b,ceK3X3,b+bT:c+cT:0}.
y c —a
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We introduce the following notation.

I 0 —XI3 T2
For x = | x5 | we write [, := | x3 0 —x
I3 — X9 I 0

We can compute the Lie algebra g C so(V) of G as follows:

g={X€so(V)| X -wr=0}

0| —2¢y7 | —22T
—{ x| a ly l’,yGKg,CLEE[(g,K)}.
Y Iz —a’

Observe that dimg = 3+ 3 + 8 = 14 and since dim G = dim g, G has also dimension 14.
For the stabilizer, if we take vy = e_3 € Vigo, we see that

stabg(vg) ={X € g| X -e_3 =0}

is the set of matrices in g whose final column is zero, which has dimension 8. So we get
dim(G - vg) = 14 — 8 = 6 = dim Vi, as desired. O

Claim 1.4.2. For every v € Vi, it holds that ®,(wy) € @iso(z, Vo).

Proof. By the previous claim, it suffices to prove the claim for one fixed vg € Vigo. Indeed,
then any v € Vg, is of the form g - vy for some g € stab(wr), and we get

(@U(w’?) = (Pg"UO (g : w7) = g : ¢1}0 (w7) € Griso(zu ‘/’U)v

where g : V,,, — V, is the isometry induced by g. So we take vg = e_3, and readily
compute .
q)e—s ((,U7) =e1 A\ ez € Grigo (27 ‘/6_3) . L]

__ In summary, this shows how Theorem 1.3.1 fails for the isotropic Grassmannian
Griso(3,7): by Claim 1.4.2 w; satisfies the assumption but is itself not in Grig(3,7). In
particular, this means that é\riso(?), 7) cannot be defined by pulling back the equations
of é\riso(Q, 5) along IGCP maps of the form ®,. We originally constructed our counterex-
ample by analyzing where our proof fails if dim V' = 7. However, it turned out, that wy;
is interesting also from different points of view, which we will discuss in the following
remarks.

Remark 1.4.3. In 1900, Engel [Eng00] showed that if w is a generic 3-form on C7, its
symmetry group is isomorphic to the exceptional group G, and that such a 3-form gives
rise to a bilinear form S,. If we choose coordinates such that w agrees with our form
wy, then this group Gs is precisely the stabilizer G we computed in Claim 1.4.1, and S,
is up to scaling equal to our bilinear form given by J. For more about G2, we refer the
reader to [Fonl8].

Remark 1.4.4. Alternatively we can construct wy as the triple product on the split
octonions. Here we will follow the notation from [BH14]|. Recall that the space H of
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quaternions is the 4-dimensional real vector space with basis {1,1, , k}, equipped with
a bilinear associative product specified by Hamilton’s formula

i? =42 =k =ijk=—1.

The conjugate of a quaternion x = a + bi + ¢j + dk is given by T = a — bi — ¢j — dk. We
also have a quadratic form given by Qp,) = 27 = Tz = a? + b% + ¢ + d%. The space
of split octonions is the vector space Qg := H & H with a bilinear (but nonassociative)
product given by

(a,b)(c,d) := (ac + db,ad + cb).

The conjugate of an octonion (a,b) is given by (a,b) = (a,—b). Additionally, we de-
fine a quadratic form Qg,, of signature (4,4), by Qo,(z) = T = Zx; or equivalently
Qo.((a,b)) = Qu(a) — Qu(b). We will write

€p = (1,0) €1 1= (i,O) €9 1= (], 0) €3 1= (k‘,O)
€4 = (0, 1) €5 = (O,i) €6 ‘= (O,j) €7 = (0, k)
Let Opy = {z € Qs | £ = —a} = (e1,...e7) denote the imaginary split octonions. On

O1m we can define a cross product given by the commutator:

1
T XY= 5(%@/ —yx),

and a triple product T': Oy, X Oy X Oy — R, given by
T(x,y,z2) = (z,y X 2),

where (-,-) is the bilinear form coming from Qg,. This triple product is an alternating
trilinear form, and hence can be identified with an element w € /\3 V*, where V = Opy.
Explicitly, writing e} € V* for the dual vector to e;, we have

w=e] Aes Nes+e] Ney ANer +el Neg Nes+e5Ney e
—esNet Ner+ ez Aey Aes+ex Aeg A eg.

Note that the terms in w correspond to the lines in the Fano plane:

This w agrees with wry up to a change of basis. Explicitly, if we substitute

* * * * * * *
e e;+e e, +e esx +e
4 1 5 2 6 3 7
€ — —=, €1~ ——F—, €z — ) 3 )
V2 V2 V2 V2
* * * * * *
ey —e €5 — e €z — €
e_q — 1 5 e_o 2 6 e N 3 7

V2 B NN NG

into w7, we recover w (up to scaling).
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1.4.2 Counterexample in Dimension 8

Let V be an 8-dimensional vector space with basis e, eq, e3,€e4,e_1,e_2,e_3,e_4, and

quadratic form given by the matrix
( 0|1y )
J = o)

wg:=2e1 Nea NegNes+2e_1Ne_oNe_3Ne_y4
+eiNeasNe_1Ne_g+eiNesNe_1Ne_3+ei1NesNe_1Ne_y (1.4.1)
+eaNegNe_oNe_g+exNesNe_gNe_g+e3NesNe_3/N\e_y.

Choose

One can verify that wg ¢ é\r(él, V), so in particular wg ¢ é\riso(él, V). As before, we
consider the algebraic group

SO(V) ={¢ € SL(V) | (¢()|o(y)) = (z]y) Vx,yeV}
={A € SL(,K) | ATJA = J}

and its subgroup
G :=stab(wg) = {¢ € SO(V) | ¢ - wg = ws}.

Claim 1.4.5. The action of G on Vig, is transitive.

Proof. Take any vg € Viso; we want to show that its orbit G - vy has dimension equal to
dim Vigo = 7. The Lie algebra of SO(V) is given by

so(V) ={X €sl(8,K) | XTJ +JX =0}

B a b
B c|—at

We introduce the following notation

a,b,c€K4X4,b+bT:c+cT:O}.

0 b2 b1z bus 0  —bzs bay —Dbog

for b — —biz 0 baz  bo4 write B b34 0 —buya i3
—biz —baz 0 b3y —boy b1 0  —bi2

—big —bay —bzs O bz —biz b2 0

We can compute the Lie algebra g C so(V') of G as follows:
g={X€so(V)| X -wg=0}

acsl(4,K),b+b" =0

As before dim G = dim g = 21. For the stabilizer, if we take vg = e_4 € Vigo, we see that
stabg(vg) ={X €g| X -e_4 =0}
is the set of matrices in g whose final column is zero, which has dimension 14. So

dim(G - vp) =21 — 14 = 7 = dim Viso, as desired. O
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As before, we conclude the following claim.
Claim 1.4.6. For every v € Vig,, it holds that ®,(wg) € é\riso(g, V).

Proof. As in Claim 1.4.2, it suffices to prove the claim for one fixed v € Vig,. Taking
v = e_1, we compute that

®,(ws) = 283 A3 A ey € Griso(3, Vo, ). O

In summary, this shows how Theorem 1.3.1 fails for é\riso(ll, 8). As before, this means
that Griso(4,8) cannot be defined by pulling back the equations of Gris. (3, 6) along IGCP
maps of the form ®,.

Remark 1.4.7. The Lie algebra g defined above is in fact isomorphic to so(7). An explicit
isomorphism s0(7) — g can be given by

d a a —c 0 —: 1 T
0|21 —2y» —2y3| 221 —229 —2a3 11 12 13 23 Ys Y2 1
b b az1  dea a3 <13 Y3 0 Y1 T2
r1| a1 a2 a13 0 12 13 d 0
b b az;  asz 33 —Ci2 | Y2 Y1 T3
To | az  az  azz | —bi2 0 23 b b b d . . o 0
b b 0 23 —biz  bio 44 | —T1 —w2  —I3
T3 | az1  azz  azz | —biz  —bog — i b
0 —x3 X2 n —ai1 —a21 —azr —b23
v 0 C12 c13 | —air —az  —asy 0 d b
y2 | —c12 0 co3 | —aiz —ae —as s I B
y . . 0 “ u a -3 X1 0 ys | —a13 —azz —dzz —bia
3| —C13  —C23 —a13 —azz —ass
-y1 —y2 -y3 O c3  —c13  c12  —dy

where for the left hand side we used the notation from Section 1.4.1, and in the right
hand side we have

a1p — G2 — a33  —a11 +a —as3 __ —a11 —aze +ass a1 +az +ass
—dyy =, dgz =, dyg = ———— .

diy = =
1 2 2 2 2

1.5 Ranks of Defining Quadrics

In Section 1.5.1, we will finish the proof of Corollary 1.3.3, by verifying the following
fact:

Claim 1.5.1. @130(3,7), as well as both irreducible components of (/}\riso(él, 8), can be
set-theoretically defined by quadrics of rank at most 4.

In Section 1.5.2, we explain how Corollary 1.3.3 can be deduced from the literature
on isotropic Grassmannians, in particular the Cartan embedding.
1.5.1 Computational Approach

Our verification is based on an algorithm, which we implemented in Macaulay2 [GS].
We sketch the steps of the algorithm below. Let X be either Grigo(3,7), or one of the
components of Griso(4,8).

1. Compute the ideal I defining X by parametrizing an open subset and performing
a Grobner basis computation. The ideal I is generated by linear equations and
quadrics.

2. Get rid of the linear equations by substituting variables.
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3. View the space I3 of quadrics in I as a representation of SO(V'), and decompose
it into weight spaces.

4. Find a highest weight vector p € Is of minimal rank.

5. Compute the subrepresentation generated by p, using the lowering operators in
so(V).

6. If we generated all of I2, we are done.
7. Otherwise, find the highest weight space we did not yet generate, let p be a quadric
of minimal rank in it, and return to step (5).

By construction, the SO(V)-orbits of the quadrics p we found give sufficiently many
equations to define X. Since acting with SO(V') does not change the rank of a quadric, it
follows that if each of our quadrics has rank at most 4, then X can be defined by quadrics
of rank at most 4. For Griso(3,7), our algorithm returned the following quadrics:

333,172 + 271,2,371,2,-3,

zo,1,2(T1,2,—2 + 21,3,-3) + 2712 3%0,1,3,

Z0,1,3%0,1,—3 + Z0,1,2%0,1,-2;

r1,23(0,1,-1 + ZTo2,—2 — T0,3,-3) + To,1,2(T2,3,2 + T13,1),

2511 — (T02-2+ 03,-3)" + 2(x1,3-3 + T12,—2) (w3, 1,3 + T2,_1,-2).

For one of the components of (/}\riso(4, 8), we found the following quadrics:

2

T12,3,-3 — 2£1,2,3,4%1,2,—3,—4,

20193, -3%1,34,—1 — £1,2,34(T1,2,—1,—2 — T1,3,-1,-3 — T1,4,—1,4);
2

(X1,4,—1,—4+ X24,—2 -4 — X34,-3,-4)" — 4234 12212 -3 4.

Since all quadrics listed above have rank at most 4, and since both components of
Griso(4, 8) are isomorphic, our verification is now complete.

1.5.2 Rank 4 Quadrics via the Cartan Embedding

In this section we will sketch an alternative proof that Grig(p, 2p+ 1) and the connected
components of Griso(p, 2p), in their Pliicker embedding, are defined by linear equations
and quadrics of rank at most 4, using the Cartan embedding (sometimes called spinor
embedding), cf. [Car81] or [HB21]. The proof follows by combining the following facts:

e The image of the Cartan embedding is defined by quadrics [Car81].

e The Pliicker embedding factors as the Cartan embedding followed by a degree two
Veronese embedding ([BHH21, Theorem 2.1] and [CP13, Theorem 1]).

e The image of a degree two Veronese embedding is defined by quadrics of rank 3
and 4.

The idea is that the Veronese embedding turns the quadratic equations of the Cartan
embedding into linear equations, so the only quadrics we need are the ones coming from
the Veronese embedding.
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Chapter 2

Topological Noetherianity of the
Infinite Half-Spin Representations

2.1 Finite Spin Representations and the Spin Group

In this section we collect some preliminaries on spin groups and their defining representa-
tions. Throughout we will assume that K is an algebraically closed field of characteristic
zero. We follow [Man09] in our set-up; for more general references on spin groups and
their representations see [LM89, Pro07].

2.1.1 The Clifford Algebra

Let V be a finite-dimensional vector space over K endowed with a quadratic form g. The
Clifford algebra C1(V, q) of V' is the quotient of the tensor algebra T'(V)) = P 5 V@l by
the two-sided ideal generated by all elements

v@v—gq)-1,veV. (2.1.1)

This is also the two-sided ideal generated by

vRW+w®v—2(vw)-1, v,w eV, (2.1.2)

where (|-) denotes the bilinear form associated to ¢ defined by

(q(v +w) — q(v) — q(w)).

N =

(v|w) =

The Clifford algebra is a functor from the category of vector spaces equipped with
a quadratic form to the category of (unital) associative algebras. That is, any linear
map ¢: (V,q) — (V',¢') with ¢'(p(v)) = ¢(v) for all v € V induces a homomorphism
of associative algebras Cl(y): CI(V,q) — CL(V',¢'). If ¢ is an inclusion V' C V'] then
Cl(¢p) is injective, and hence Cl(V,q) is a subalgebra of Cl(V’,¢’).

The decomposition of T(V) into the even part T7 (V) := @, cren VE? and the odd
part T=(V) = @ oqq V& induces a decomposition CI(V,q) = CI*(V,q) @ C1™(V,q),
turning Cl(V, q) into a Z/27Z-graded associative algebra. Note that, via the commutator
on CI(V,q), the even Clifford algebra C17(V, q) is a Lie subalgebra of CI(V,q).
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The anti-automorphism of T'(V') determined by v1 ® - - - ®vg — v4®- - - @1 preserves
the ideal in the definition of Cl(V, ¢) and therefore induces an anti-automorphism x +— z*
of CI(V, q).

2.1.2 The Grassmann Algebra as a Cl(V)-Module

From now on, we will write C1(V') for C1(V, ¢q) when ¢ is clear from the context. If ¢ = 0,
then Cl(V) = AV, the Grassmann algebra of V. If E C V is an isotropic subspace,
that is, a subspace for which ¢|g = 0, then this fact allows us to identify A E with the
subalgebra Cl(E) of CI(V).

For general ¢, C1(V) is not isomorphic as an algebra to A\ V, but A V is naturally a
Cl(V)-module as follows. For v € V define o(v) : AV — AV (the “outer product”) as
the linear map

o(Vw:=vAw

and ¢(v) : AV — AV (the “inner product”) as the linear map determined by

k
(v)wy A= Awg 1= Z(—l)iil(v\wi)wl N NW A A wg.
i=1

Here, and elsewhere in the paper, ~ indicates a factor that is left out. Now v — ¢(v)+o(v)
extends to an algebra homomorphism Cl(V) — End(A V). To see this, it suffices to
consider v, wy,...,wg € V and verify

(t(v) + o(v) w1 A - Awy = (v|v)wi A -+ Awg.

We write a @ w for the outcome of a € CI(V) acting on w € A V. Using induction on
the degree of a product, the linear map Cl(V) — AV,a — a e 1 is easily seen to be an
isomorphism of vector spaces. In particular, C1(V') has dimension 24mV

2.1.3 Embedding so(V) into the Clifford Algebra

From now on, we assume that ¢ is non-degenerate and write SO(V') = SO(V, q) for the
special orthogonal group of ¢. Its Lie algebra so(V') consists of linear maps V. — V
that are skew-symmetric with respect to (-|-), that is, those A € End(V) such that
(Avjw) = —(v|Aw) for all v,w € V. We have a unique linear map ¢ : A*V — CIT(V)
with ¥ (u A v) = uv — vu, and 1) is injective. A straightforward computation shows that
the image L of v is closed under the commutator in C1(V'), hence a Lie subalgebra. We
claim that L is isomorphic to so(V'). Indeed, for u,v,w € V we have

[Y(uAv),w| = [[u,v],w] = 4(vjw)u — 4(u|w)v.

We see, first, that V' C Cl(V) is preserved under the adjoint action of L; and second,
that L acts on V' via skew-symmetric linear maps, so that L maps into so(V'). Since
every map in s0(V') is a linear combination of the linear maps above, and considering
that dim(L) = dim(so(V)), the map L — so(V) is an isomorphism. We will identify
s0(V) with the Lie subalgebra L C Cl(V) via the inverse of this isomorphism, and
we will identify A%V with so(V) via the map u A v — (w — (v|w)u — (u|w)v). The
concatenation of these identifications is the linear map %zp.
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2.1.4 The Half-Spin Representations

From now on, we assume that dim(V') = 2n. We believe that all our results hold mutatis
mutandis also in the odd-dimensional case, but we have not checked the details. A
mazximal isotropic subspace U of V is an isotropic subspace which is maximal with
respect to inclusion. Since K is algebraically closed, ¢ has maximal Witt index, so that
every maximal isotropic subspace of V' has dimension n.

The spin representation of so(V') is constructed as follows. Let F be a maximal
isotropic subspace of V and let fi,..., f, be a basis of F'. Define f := f;--- f,, € CI(F);
this element in CI(F) = A F is well-defined up to a scalar. Then the left ideal C1(V')- f is
a left module for the associative algebra CI1(V'), and hence for its Lie subalgebra so(V).
This ideal is called the spin representation of so(V'). As CI(V) is Z/27Z-graded, the spin
representation splits into a direct sum of two subrepresentations for C17(V'), and hence
for s0(V) C C1T(V), namely, C17 (V) - f and C1~ (V) - f. These representations are called
the half-spin representations of so(V).

2.1.5 Explicit Formulas

We will need more explicit formulas for the action of so(V) on the half-spin represen-
tations. To this end, let E be another isotropic n-dimensional subspace of V' such that
V = E ® F. Then the map

NE=CUE) = CUV)f, wrwf

is a linear isomorphism, and we use it to identify A E with the spin representation. We
write p : s0(V) — End(/\ E) for the corresponding representation. This representation
decomposes as a direct sum of the half-spin representations py : so(V) — End(A" E)
and p_ : s0(V) — End(A\~ E), where AV E =@, . oon N"E and A E =B, aqa A" E.

In this model of the spin representation, the action of v € E C Cl(V') on the spin
representation /\ E is just the outer product on AE : o(v) : AE — AE, w— vAw,
while the action of v € F' C CI(V) is twice the inner product on A E:

2u(v)wy A - - /\wk:2z (v|wi)wi A~ AW A -+ A wg.

The factor 2 and the alternating signs come from the following identity in C1(V):
vu; = 2(v|v;) — vv for v € F and v; € E.

For a general v € V we write v = v +v” with v/ € E, v € F. Then the action of V on
A\ E is given by
v o(v) + 2u(v").

We now compute the linear maps by means of which so(V') acts on A E. To this end,
recall that a pair e, f € V is called hyperbolic if e, f are isotropic and (e|f) = 1. Given
the basis fi,..., fn of F, there is a unique basis e1, ..., e, of E so that (e;|f;) = d;;; then
€1y, €n, f1,..., fn is called a hyperbolic basis of V. Now the element e; A e; € so(V)
acts on /\ E ~ Cl(V)f via the linear map

1

1 (oteole) = oleg)ofen)) = solerole;):
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the element f; A f; acts via the linear map

1

() = 4l ) = 20Ful )

and the element e; A f; acts via the linear map

1 (oteo2i ) — 2u(foten)) = 5 (olee(sy) — foler):

In particular, wp := €1 A--- Ae, € A\ E is mapped to 0 by all elements e; A e; and all
elements e; A f; with ¢ # j, and it is mapped to %wo by all e; A f;.

2.1.6 Highest Weights of the Half-Spin Representations
Remember, for instance from [Jac62, Chapter IV, pages 140-141], that in the basis

€ly.+yen,y f1,..., fn, matrices in so(V') have the form
[é —iT] with BT = —B, and T = —C.

Here the (e;, e;)-entry of A is the coefficient of e; A f;, the (e;, f;)-entry of B is the
coefficient of e; A e;, and the (f;, e;j)-entry of C' is the coefficient of f; A f;.

The diagonal matrices e; A f; span a Cartan subalgebra of so(V) with standard
(Chevalley) basis consisting of h; = e; A fi — €41 A fig1 for i = 1,...,n — 1 and
hn = €n—1 A fn—1 + en A fr (this last element is forgotten in the basis of the Cartan
algebra on [Jac62, page 140]).

Now (e;Aej)wo = (e;A fj)wo = 0 for all ¢ # j. Furthermore, the elements hy, ..., hp—1
map wg to 0, while A,, maps wg to wy. Thus the Borel subalgebra maps the line Kwg into
itself and wy is a highest weight vector of the fundamental weight Ao := (0,...,0,1) in the
standard basis. Summarising, wg € /\ E generates a copy of the irreducible so(V)-module
V), with highest weight Ag. Clearly, the so(V')-module generated by wp is contained in
AT E if n is even, and contained in A~ E when n is odd. One can also show that both
half-spin representations are irreducible, hence one of them is a copy of V),. For the
other half-spin representation, consider the element

w1 ::el/\---/\en_le/\E.

This element is mapped to zero by e; A e; for all i # j and by e; A f; for all i < j. It is
further mapped to 0 by h1,...,h,—2, h,, and to w; by h,_1. For example, we have

hpwy = %(O(Bn—l)b(fn—l) — t(fa—1)o(en—1) + o(en)L(fn) — L(fn)o(en)>€1 A Nen—
= %(1 —040—1)w; =0, and similarly

1
hn_lwl = 5(1 —0- 0+ 1)w1 = W1.

Hence wy generates a copy of V), , the irreducible so(V')-module with the highest weight
vector Aj := (0,...,0,1,0); this is the other half-spin representation.

37



2.1.7 The Spin Group

Let p : s0(V) — End(/ E) be the spin representation. We can then define the spin
group Spin(V') as the subgroup of GL(A E) generated by the one-parameter subgroups
t — exp(tp(X)) where X runs over the root vectors e; A ej, fi A f; and e; A f; with
i # j. Note that p(X) is nilpotent for each of these root vectors, so that ¢ — exp(tp(X))
is an algebraic group homomorphism K — GL(A E). It is a standard fact that the
subgroup generated by irreducible curves through the identity in an algebraic group is
itself a connected algebraic group; see [Bor91, Proposition 2.2]. So Spin(V) is a connected
algebraic group, and one verifies that its Lie algebra is isomorphic to the Lie algebra
generated by the root vectors X, i.e., to so(V).

By construction, the (half-)spin representations A F, AT E and A\~ E are represen-
tations of Spin(V'). We use the same notation for these representations as we did for the
corresponding Lie algebra representations:

p: Spin(V) — GL (/\ E) , p+: Spin(V) — GL </\Jr E) ,
and
p—: Spin(V) — GL (/\_ E) .

Remark 2.1.1. The algebraic group Spin(V') is usually constructed as a subgroup of the
unit group CI*(V') as follows: consider first

L(V)={zeCl*(V)|2Vat =V},

sometimes called the Clifford group. Then Spin(V') is the subgroup of I'(V') of elements of
spinor norm 1; that is, zx* = 1, where x* denotes the involution defined in Section 2.1.1.
In this model of the spin group, one can easily observe that it admits a 2 : 1 covering
Spin(V') — SO(V'), namely, the restriction of the homomorphism I'(V') — O(V) given by
associating to x € I'(V) the orthogonal transformation w + zwx~!. For more details see
[Pro07]. Since our later computations involve the Lie algebra so(V') only, the definition
of Spin(V') above suffices for our purposes.

The half-spin representations are not representations of the group SO(V'); this can

be checked, e.g., by showing that the highest weights Ao and A; are not in the weight
lattice of SO(V).

2.1.8 Two Actions of gl(E) on A E

The definition of the (half-)spin representation(s) of so(V') and Spin(V) as C1F) (V) f
involves only the quadratic form ¢ and the choice of a maximal isotropic space F' C V.
Consequently, any linear automorphism of V' that preserves ¢ and maps F' into itself
also acts on C1#) (V) f. These linear automorphisms form the stabiliser of F' in SO(V),
which is the parabolic subgroup whose Lie algebra consists of the matrices in SO(V)
that are block lower triangular in the basis ey, ..., e, f1,..., fn. So, while SO(V') does
not act naturally on the (half-)spin representation(s), this stabiliser does.

In particular, in our model /\(i) E of the (half-)spin representation(s), the group
GL(FE), embedded into SO(V') as the subgroup of block diagonal matrices

el
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acts on /\ E in the natural manner. We stress that this is not the action obtained by
integrating the action of gl(E) C so(V) on A E regarded as the spin representation.
Indeed, the standard action of e; A f; € gl(E) on w :=e;; A---Nej, € A" E yields

0if j & {i1,...,ix}
(1) tei Ay A NG A Aey, if § =i,

k
Zeil /\'--/\ei(fj\eil)/\w-/\eik = {
=1

On the other hand, in the spin representation the action is given by the linear map

L (o(eq)el ) = e(f)o(er) ) 16 j # i and j & {ir, .. ik}, then
ofe:)u(f)w = o(fy)oles)w = 0.
If j # i and j = i;, then
ofe)ulf)w = (=)' ei Aeiy Ao NG A= Ay, = —ilfj)oles)e.

We conclude that for ¢ # j, the action of e; A f; is the same in both representations.
However, if ¢ = j, then

—%w if 7 ¢ {ily .. 'aik’}a and

F-D e Ne A AT A Ne, = swif i =g

5 (oleu(5) — fofen))w = {

We conclude that if p : gl(E) — End (/\ F) is the standard representation of gl(E), then
the restriction of the spin representation p : s0(V) — End(/ E) to gl(F) as a subalgebra
of so(V') satisfies

p(A) = p(A) — %tr(A) Iy g (2.1.3)

At the group level, this is to be understood as follows. The pre-image of the subgroup
GL(E) € SO(V) in Spin(V) is isomorphic to the connected algebraic group

H:= {(g,t) € GL(E) x K* | det(g) = t2}

for which (g,t) — g is a 2 : 1 cover of GL(FE), and the restriction of p to H satisfies
p(g,t) = p(g) -t~ 1, a “twist of the standard representation by the inverse square root of
the determinant”.

2.2 The Isotropic Grassmannian and Infinite Spin Repre-
sentations

2.2.1 The Isotropic Grassmannian in its Spinor Embedding

As before, let V' be a 2n-dimensional vector space over K endowed with a non-degenerate
quadratic form. The (maximal) isotropic Grassmannian Griso(V, q¢) parametrizes all max-
imal isotropic subspaces of V. It has two connected components, denoted Gri’;o(V) and
Gr,., (V). The goal of this subsection is to introduce the isotropic Grassmann cone, which
is an affine cone over Griso(V, ¢) in the spin representation.
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Fix a maximal isotropic subspace F' C V and as before set f = f1--- f, € C(V),
where fi,..., fn is any basis of F'. Now let H C V be another maximal isotropic space.
Then we claim that the space

Spr = {w €CV)f |v-w=0forallve H} C CUV)f (2.2.1)

is 1-dimensional. Indeed, we may find a hyperbolic basis ey, ..., ey, f1,..., fn of V such
that fi,..., fx span HNF, fi,..., fn span F, and exy1,...,€n, f1,..., fr span H. We
call this hyperbolic basis adapted to H and F. Then the element

wi = eptr1 e fr o fuforr - fn € CLV) S

lies in Sy since e;wy = fjwy = 0 for all i« > k and j < k. Conversely, if 4 € Sy, then

write .
B= Z Z Clir,...i}€ir "+~ €ir f-

1=0 i1<...<q
If ¢; # 0 for some I with I 2 {k+1,...,n}, then for any j € {k+1,...,n}\ I we find
that eju # 0. So all I with ¢; # 0 contain {k+1,...,n}. If some I with ¢ # 0 further
contains an ¢ < k, then f;u is nonzero. Hence Sy is spanned by wyr, as claimed. In what
follows, by slight abuse of notation, we will write wy for any nonzero vector in Sg.
The space H can be uniquely recovered from wp via

H:{’UGV‘U-szo}.

Indeed, we have already seen C. For the converse, observe that the vectors e;wp, fijwn
with ¢ < k and j > k are linearly independent.
The map that sends H € Grigo(V, q) to the projective point representing it, i.e.,

H — [wr] € P(C(V)S),

is therefore injective, and it is called the spinor embedding of the isotropic Grassmannian
(see [Man09]). The isotropic Grassmann cone is defined as

64\1'iso(‘/7 Q) = U<WH> - Cl(v)f7
H

where the union is the taken over all maximal isotropic subspaces H C V. We denote
— —
by Grie,(V, q) == Griso(V, q) N C1F(V) f the cones over the connected components of the

1S0
isotropic Grassmannian in its spinor embedding.

2.2.2 Contraction with an Isotropic Vector

Let e € V be a nonzero isotropic vector. Then V, := el /(e) is equipped with a natural
non-degenerate quadratic form, and there is a rational map Griso(V) — Grigo(Ve) that
maps an n-dimensional isotropic space H to the image in V, of the (n — 1)-dimensional
isotropic space H Net (this is defined if e ¢ H, which by maximality of H is equivalent
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to H ¢ et). This map is the restriction to the isotorpic Grassmannian Gris, (V) of the
rational map P(A" V) — P(A\" "' V.) induced by the linear map (“contraction with e”):

ce:/\"vﬁ/\"*lv& nHZ (e|lv)TT A ATy A~ AT

where 7; is the image of v; in V/(e). Note first that this map is the inner product ¢(e)
followed by a projection. Furthermore, a priori, the codomain of this map is the larger
space \""H(V/{e)), but one may choose v1,...,v, such that (e|v;) = 0 for i > 1, and
then it is evident that the image is indeed in A"~ ' V,.

We want to construct a similar contraction map at the level of the spin representation.
For reasons that will become clear in a moment, we restrict our attention first to a map
between two half-spin representations, as follows. Assume that e ¢ F, and choose a
basis fi,..., fn of F such that (e|f;) = din. As usual, write f := fi--- f,,, and write
fi=f1 fn_1,so that CIT(V.)f is a half-spin representation of so(V).

Then we define the map

7o : CIT (V) f — CIT(V.)f, 7e(af) := the image of %((—1)”_leaf—|—afe> in CI(V.)f,

where the implicit claim is that the expression on the right lies in Cl(et)f1 - f,_1, so
that its image in C1(V,)f is well defined (note that the projection e+ — V induces a
homomorphism of Clifford algebras), and that this image lies in the left ideal generated
by f. To verify this claim, and to derive a more explicit formula for the map above, let
e1,...,en = € be a basis of an isotropic space E complementary to F. Then it suffices
to consider the case where a = ¢;, - - - ¢;, for some i1 < ... < 7. We then have

eaf =eey - e f1- - fn
~ J0if g =mn, and
2(— 1)k+n le e fio fao1 + (—1)’”"61‘1 ---€;, f1- - fne otherwise.

Multiplying by (—1)"~! and using that k is even, the latter expression becomes
2€i, i f1-+ fa1 —afe.
Hence we conclude that

0 if i, = n, and

Te(€iy - €y f) = {

€, ---€;,f otherwise.

In short, in our models AT E and AT (E/(e)) for the half-spin representations of so(V)
and so0(V.), 7 is just the reduction-mod-e map. We leave it to the reader to check that
the reduction-mod-e map A~ E — /\" (E/(e)) arises in a similar fashion from the map

CIV)"f — Cl(Vo)" f, me(af):= the image of %((—1)”eaf + afe) in C1(V,)f.

We will informally call the maps m, “contraction with e”. Together they define a map
on Cl(V)f which we also denote by 7.
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Proposition 2.2.1. The contraction map 7. : CI(V)f — CI(V.)f is a homomorphism
of Cl(et)-representations.

Proof. Let v € et and consider a € C1™ (V). Then va € C1"(V) and hence m.(vaf) is
the image in C1(V,)f of

1

5((—1)”_1612(1]" + vafe) = %((—1)"06&]‘" + Uafe> = U%((—l)”eaf + afe),

where we have used (v]e) = 0 in the first equality. The right-hand side clearly equals ©
times the image of m.(af) in C1(V,)f. O

2.2.3 Multiplying with an Isotropic Vector

In a sense dual to the contraction maps c. : A"V — /\"_1 Ve are multiplication maps
defined as follows. Let e,h € V be isotropic with (e|h) = 1; such a pair is called a
hyperbolic pair. We then have V = (e, h)@(e, h)*, and the map from the second summand
to V., = et /(e) is an isometry. We use this isometry to identify V, with the subspace
(e, h)* of V and write s, for the corresponding inclusion map. Then we define

n—1 n
s N7V NV B AT AT A AT

which is just the outer product o(h). The projectivisation of this map sends Griso(Ve)
isomorphically to the closed subset of Griso (V) consisting of all H containing h. We
further observe that

Ce OMY, = id/\n_lve .

We define a corresponding multiplication map at the level of spin representations as
follows: first, we assume that h € F, and choose a basis fi,..., fn = h of F' such that
(elf;) = 6in. As usual, we set f = f1--- fp, and f = fy--- f,,_1. Then we define

7 CUV.)F — CUV)f,  mu(af) = af fu = af.

Note that, for a € Cl(V;), we have

e (n(af)) = me(af) = af,

where the last identity can be seen verified in the model A E for the spin representation,
where m, is the reduction-mod-e map, and 75, is just the inclusion A E/(e) — AFE
corresponding to the inclusion Vo — V. So me o1, = idCl(Ve)?' We will informally call 7,
the multiplication map with h.

Proposition 2.2.2. The multiplication map 7, : C1(V.)f — CL(V)f is a homomorphism
of Cl(V;)-representations, where Cl(Ve) is regarded a subalgebra of CI(V') via the section
Se: Ve — V.

Proof. Let v € V. and let a € CI(V;). Then
h(vaf) =vaf fn = vaf,

as desired. ]
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Corollary 2.2.3. Both the mappings 7. : CI(V)f — CI(V.)f and 73, : CL(V,)f — CL(V)f
are Spin(Ve)-equivariant, where Spin(Ve) is regarded as a subgroup of Spin(V') via the
orthogonal decomposition V.=V, @ (e, h).

Proof. Proposition 2.2.1 and Proposition 2.2.2 imply that both maps are homomor-
phisms of so(V;)-representations. Since Spin(V;) is generated by one-parameter sub-
groups corresponding to nilpotent elements of s0(V,), m. and 75, are Spin(V,)-equivariant.

O

2.2.4 Properties of the Isotropic Grassmannian

The goal of this subsection is to collect properties of the isotropic Grassmann cone that
will later motivate the definition of a (half-)spin variety (see Section 2.4). We fix a
maximal isotropic subspace F' C V and a hyperbolic pair (e,h) with h € F and e ¢ F
and identify V, = et /(e) with the subspace (e, h)* of V. We choose any basis f1,..., fn
of F with f, = h and (e|f;) = 0 for i < n and write f := f1---f, € CI(V) and
Fi=Fio Fa € CUVL).

Proposition 2.2.4. The isotropic Grassmann cone in CL(V)f has the following prop-
erties:

1. é\riSO(V) C CUV)f is Zariski closed and Spin(V')-stable.

2. Let o : CI(V)f — CI(V.)f be the contraction defined in Section 2.2.2. Then for
every maximal isotropic subspace H C'V we have

7e(Su) C S,
where H, C V, is the image of e N H in V,.

3. Let 7, : CI(V.)f — CIV)f be the map defined in Section 2.2.8. Then for every
mazimal isotropic H' C V., we have

Th(SH') = SHan)-

In particular, the contraction and multiplication map w. and T3, preserve the isotropic
Grassmann cones, i.e.,

We(é\riso(v)) - é\riso(v;a) and 7_h(é\riso(‘/e)) - C/%\riso(vv)-

Proof of Proposition 2.2.4. 1. This is well known. Indeed, the isotropic Grassmann
cone is the union of the cones over the two connected components, and these cones
are the union of {0} with the orbits of the highest weight vectors wy and w;. These
minimal orbits are always Zariski closed. For more detail see [Pro07, Theorem 1,
p.428].

2. Let wy be a spanning element of Sz. Then for all v € et N H we have
U Te(wpr) = me(v - wy) = m(0) =0,

where the first equality follows from Proposition 2.2.1. Hence 7 (wpr) lies in Sg, .

43



3. Let wys be a spanning element of Sy Then for all v € H' we have
v-1h(wpr) = (v -wy) = 13(0) =0
where the first equality holds by Proposition 2.2.2. Furthermore, we have
h-mp(wnr) = h-wy fn =0,

where we used the definition of 7, h L V. and h = f,,. Thus 7, (wpg) lies in SHig(h)-
The equality now follows from the fact that 7, is injective. O

Remark 2.2.5. If h € H, then H = H, @ (h) and since 7, o 7, is the identity on C1(V.)f
we find that

me(Su) = Te(Tn(SH,)) = SH,,

i.e., equality holds in (2) of Proposition 2.2.4. Later we will see that equality holds under
the weaker condition that e ¢ H, while w.(Sy) = {0} when e € H. These statements
can also be checked by direct computations, but some care is needed since for e, H, F’
in general position one cannot construct a hyperbolic basis adapted to H and F' that
moreover contains e.

2.2.5 The Dual of Contraction

Let e ¢ F C V be an isotropic vector. We want to compute the dual of the contraction
map 7. : CI(V)f — Cl(V,)f; indeed, we claim that this is essentially the map

e : Cl(VL) f — CI(V) f
defined by its restriction C1¥(V,)f — CIT(V)f as
%(571 o ﬂ) = iebfl e 'fna

where the sign is + on C17(V.)f and — on C1~(V,)f. The reason for the “flip” of the
choice of half-spin representation in the dual will become obvious below. Observe that
e is well-defined and, given a basis e1,..., e, = e of an isotropic space complementary
to F such that eq,...,en, fi,..., fa is a hyperbolic basis, maps €;f to ejufn)f-

Proposition 2.2.6. The following diagram:

(CUV)F)* — (CLV) )

| lg

CUV)F —— CUV)f

can be made commuting via a Spin(Ve)-module isomorphism on the left vertical arrow
and a Spin(V')-module isomorphism on the right vertical arrow.
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Remark 2.2.7. The statement of Proposition 2.2.6 holds true when replacing CI(V)f
by either one of the two half-spin representations by considering the correct “flip”. For
example, if n = dim F' is even, and eq,...,en, f1,..., fn is a hyperbolic basis as above,
then in the A E-model the correct grading is

*

(AY Enct)” 2 (AT B

% }

N Eny—— N E,.

To prove Proposition 2.2.6 we will consider the bilinear form § on the spin repre-
sentation Cl(V')f defined as in [Pro07] as follows: for af,bf € CI(V)f it turns out that
(af)*bf = f*a*bf, where % denotes the anti-automorphism from Section 2.1.1, is a scalar
multiple of f. The scalar is denoted S(af,bf). We have the following properties:

Lemma 2.2.8 ([Pro07, p. 430]). Let /8 be the bilinear form defined as above.
1. The form [ is non-degenerate and Spin(V')-invariant.
2. B is symmetric if n = 0,1 mod 4, and it is skew-symmetric if n = 2,3 mod 4.

3. The two half-spin representations are self-dual via B if n is even, and each is the
dual of the other if n is odd.

In the proof of Proposition 2.2.6 we will use a hyperbolic basis e1, ..., en, fi,-.-, fn
with e, = e. For a subset I = {i; < ... < iy} C[n]setef:=e€;---¢, € Cl(E) 2 \E,
where F is the span of the e;. We have seen in Section 2.1.5 that the spin representation
has as a basis the elements e;f with I running through all subsets of [n].

Proof of Proposition 2.2.6. Consider the bilinear forms 3 on C1(V)f and 8. on CI(Ve) f
as defined above. By Lemma 2.2.8 the spin representations C1(V') f and C1(V,)f are self-
dual via 3 and B, respectively. Thus it suffices to prove, for a € C1(V)) and b € Cl(et),

that
0 -
Be (melaf),b) = 3B (af, ve(])) .

We may assume that a = ey, b=-ey with I C [n], J C [n — 1].

In the A E-model 7, is the mod-e map, and hence the left-hand side is zero if n € I.
If n & I, then the left-hand side equals the coefficient of f in f*eT*ﬁf. This is nonzero
if and only if [n — 1] is the disjoint union of I and J, and then it is 2"~ ! times a sign
corresponding to the number of swaps needed to move the factors f; of f* to just before
the corresponding factor €; in either €7 or €.

Apart from the factor %, the right-hand side is the coefficient of f in f*ereje, f.
This is nonzero if and only if [n] is the disjoint union of the sets {n},J, I, and in that
case it is 2" times a sign corresponding to the number of swaps needed to move the
factors f; of f* to the corresponding factor e; in either e; or ey or (in the case of f,,) to
just before the factor e,. The latter contributes (—1)"~!, and apart from this factor the
sign is the same as on the left-hand side. O
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2.2.6 Two Infinite Spin Representations

Let V4 be the countable-dimensional vector space with basis ey, f1, €2, f2, ..., and equip
Voo with the quadratic form for which this is a hyperbolic basis, i.e., (e;|e;) = (fi|f;) =0
and (e;|fj) = 0;; for all i, j. We write Eo, and Fi for the subspaces of Vo, spanned by
the e; and the f;, respectively.

Let V,, be the subspace of V, spanned by ey, f1, €2, fo, ..., en, fn, with the restricted
quadratic form. We further set E, := V,,N E and F,, := V,,N F. We define the infinite
spin group as

Spin(Veo) = lim Spin(V;,)
n
where Spin(V,,_1) is embedded into Spin(V},) as the subgroup that fixes (e, f,) element-
wise. Similarly, we write GL(E) := lim GL(Ey) and H for the preimage of GL(Ex)
in Spin(Vs ). We use the notation s0(Vy) and gl( E) for the corresponding direct limits
of the Lie algebras so(V},) and gl(E,). Here the direct limits are taken in the categories
of abstract groups, and Lie algebras, respectively.

The previous paragraphs give rise to various Spin(V;,_1)-equivariant maps between

the spin representations of Spin(V,,—1) and Spin(V},). First, contraction with e,,

ey - Cl(vn)fl te fn - Cl(vn—l)fl Tt fn—l;

and second, multiplication with f,,

Tty t CUVa) fro - fao1 — CUVL) f1- - fu.
We have that these satisfy 7., o 7y, = id. Third, the map

Q;Z)en : Cl(anl)fl ce fnfl - Cl(Vn)fl s fn
that is dual to 7., in the sense of Proposition 2.2.6.

Definition 2.2.9 (Direct and inverse spin representation). The direct (infinite) spin
representation is the direct limit of all spaces C1(V,,)f1 -+ f, along the maps v,. The
inverse (infinite) spin representation is the inverse limit of all spaces Cl(V,)f1--- fn
along the maps 7, .

Since the maps 1., and m, are Spin(V;,_1)-equivariant, both of these spaces are
Spin(Vs)-modules. As the dual of a direct limit is the inverse limit of the duals, and
since the maps 1., and 7, are dual to each other by Proposition 2.2.6, the inverse spin
representation is the dual space of the direct spin representation.

In our model A E,, of CI(V},)f1 -+ fn, the map v, is just the right multiplication

/\En,l — /\En, w— WA ey
Hence the direct spin representation has as a basis formal infinite products
e Neip N =1eg

where I = {i; < iy < ...} is a cofinite subset of N. We will write A, Es for this
countable-dimensional vector space. The action of the Lie algebra so(Vy) of Spin(Vy)
on this space is given via the explicit formulas from Section 2.1.5. In particular, the span
of the ey with [N\ /| even (respectively, odd) is a Spin(V)-submodule, and A Fu is
the direct sum of these (irreducible) modules.
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Remark 2.2.10. The reader may wonder why we do not introduce the direct spin repre-
sentation as the direct limit of all CI(V') f1 - - - f,, along the maps 7y, . This would make the
ordinary Grassmann algebra A\ Fo, a model for the direct spin representation, instead of
the slightly more complicated-looking space A Eu. However, the maps dual to the 7y,
correspond to contraction maps with f,, € F, which we have not discussed and which
interchange even and odd half-spin representations. We believe that our theorem below
goes through for this different setting, as well, but we have not checked the details.

2.2.7 Four Infinite Half-Spin Representations

Keeping in mind that the maps 1), interchange the even and odd subrepresentations,
we define the direct (infinite) half-spin representations /\fo E, to be the direct limit

N B =t (A B = AT = N NTB = N B )

along the maps v,,. For the sake of readability we will abbreviate this by

/\Oio Eo = h_n;/\i(_l)" E,, (2.2.2)

where +(—1)" denotes =+ if n is even and 7 if n is odd. In terms of the basis e; introduced
in Section 2.2.6, the half-spin representation /\;Lo E is spanned by all ey with [N\ I|
even, and A\ E by those with [N\ I| odd. The inverse (infinite) half-spin representa-
tions are defined as the duals of the direct (infinite) half-spin representations. Using the
isomorphisms from Remark 2.2.7 we observe

N BT

So the inverse (infinite) half-spin representations can be identified with the inverse limits
of the half-spin representations /\i L, along the projections 7, .

We can enrich the inverse spin representation to an affine scheme whose coordinate
ring is the symmetric algebra on A F, recalling the following remark.

Remark 2.2.11. Let K be any field (not necessarily algebraically closed) and W any K-
vector space (not necessarily finite dimensional). Then there are canonical identifications

W* = Spec (Sym(W))(K) C {closed points in Spec (Sym(W))}

So Spec(Sym(W)) can be seen as an enrichment of W* to an affine scheme. If W is
a linear representation for a group G, then G acts via K-algebra automorphisms on
Sym W and hence via K-automorphisms on the affine scheme corresponding to W*. For
W = /\fo FE, this construction extends the natural Spin(Vy)-action on the vector space
liinn /\jE E, ~ W™ to the corresponding affine scheme.

By abuse of notation, we will write (/\ ., Eoo)” also for the scheme itself, and similarly
for the inverse half-spin representations ( /\OiO Eoo)*. Later we will also write /\i E,, for

the affine scheme Spec <Sym (/\i(fl)n En)) by identifying /\i E, = (/\i(fl)n En>* as
in Equation (2.2.3).
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2.3 Noetherianity of the Inverse Half-Spin Representations

In this section we prove our main theorem.

*

Theorem 2.3.1 (Noetherianty). The inverse half-spin representation (N1 Ex)* is
topologically Noetherian with respect to the action of Spin(Vy). That is, every descending
chain

+ *
(AFx) 2X12X:2...
oo

of closed, reduced Spin(Vy,)-stable subschemes stabilises, and the same holds for the other
inverse half-spin representation.

Recall that the action of Spin(Va) on the inverse half-spin representation (as an
affine scheme) is given by K-automorphisms, as described in Remark 2.2.11. We write
R for the symmetric algebra on the direct spin representation A Fo, so the inverse
spin representation is Spec(R). Similarly, we write Rt for the symmetric algebras on the
direct half-spin representations, so RT is the coordinate ring of linn /\jE FE,, respectively.

Let us briefly outline the proof strategy. We will proceed by induction on the minimal
degree of an equation defining a closed subset X. Starting with such an equation p, we
show that there exists a partial derivative ¢ := %’I such that the principal open X[1/q] is
topologically H,,-Noetherian, where H,, is the subgroup of Spin(V,,) defined below. For
that we use that the Hj,-action corresponds to a “twist” of the usual GL(E )-action, as
observed in Section 2.1.8 (for the exact formula see (2.1.3)); this allows us to apply the
main result of [ES22]. Finally, for those points which are contained in the vanishing set
of the Spin(V,,)-orbit of ¢ we can apply induction, as the minimal degree of a defining
equation has been lowered by 1.

2.3.1 Shifting

Let G,, be the subgroup of G that fixes ey, ..., e, f1,..., fn element-wise. Note that G,
is isomorphic to G; at the level of the Lie algebras the isomorphism from G to G, is
given by the map

000 0
A B 0 A0 B
[C—AT]HOOOO

0 C 0 —AT

where the widths of the blocks are n, oo, n, co, respectively. We write H,, for H N G,
where H C Spin(V,) is the subgroup corresponding to the subalgebra gl(Fo) C s0(Vao)-
Then H, is the pre-image in Spin(Vy) of the subgroup GL(Ew)n, € GL(E) of all g
that fix eq,...,e, element-wise and maps the span of the e; with ¢ > n into itself. The
Lie algebra of H,, and of GL(FE), consists of the matrices above on the right with
B=C=0.

2.3.2 Acting with the General Linear Group on F

For every fixed k € Z>¢, the Lie algebra gl(Ew) C s0(Vi) preserves the linear space

(A Ex), = (fer:IN\I| = k}),
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and hence so does the corresponding subgroup H C Spin(Vy,). We let R<; C R be
the subalgebra generated by the spaces (A, Ex)r with £ < £. Crucial in the proof of
Theorem 2.3.1 is the following result.

Proposition 2.3.2. For every choice of nonnegative integers ¢ and n, Spec(R<y) is
topologically Hy-Noetherian, i.e., every descending chain

SpeC(RSg) 2 X1 2 Xg 2 .
of Hy-stable closed and reduced subschemes stabilizes.

The key ingredient in the proof of Proposition 2.3.2 is the main result of [ES22]. In
order to apply their result we need to do some preparatory work. We will start with the
following lemma.

Lemma 2.3.3. Every Hy,-stable closed subscheme of Spec(R<y) is also stable under the
group GL(Ew ), acting in the natural manner on \ . Es and its dual, and vice versa.

Proof. Equation (2.1.3) implies that gl(E) C s0(Vi) acts on A  Ex via

p(A) = p(A) — 5 tr(A)idp_ .

where p is the standard representation of gl(F«) on A, Ex. An Hj,-stable closed sub-
scheme X of Spec(R<y) is given by an H,-stable ideal I in the symmetric algebra R<,.
Such an [ is then also stable under the action of the Lie algebra gl(F), of H, by
derivations that act on variables in @izo( N Eso)i Via p.

We claim that I is a homogeneous ideal. Indeed, for f € I, choose m > n such that
all variables in f (which are basis elements e;) contain the basis element e, of F,. Let
A € gl(Eoo)n be the diagonal matrix with 0’s everywhere except a 1 on position (m,m).
Then p(A) maps each variable in f to 3 times itself. Hence, by the Leibniz rule, p(A)
scales the homogeneous part of degree d in f by g. Since I is preserved by p(A), it follows
that I contains all homogeneous components of f, and hence I is a homogeneous ideal.

Now let B € gl(Ex), and f € I be arbitrary. By the previous paragraph we can
assume f to be homogeneous of degree d, and we then have

p(B)f = p(B)f — S u(B)S.

and since I is p(B)-stable, we deduce p(B)f € I. This completes the proof in one
direction. The proof in the opposite direction is identical. ]

Remark 2.3.4. Note that by the proof above, any Spin(V,)-stable closed subscheme X
of (Ao Eso)* is an affine cone.

Following [ES22] the restricted dual (Ex)« of Ex is defined as the union |J,,5 ()"

We will denote by el,¢2,... the basis of (Ex)s« that is dual to the canonical basis
e1,ez,... of Es given by €'(e;) = d;;.

Lemma 2.3.5. There is an SL(E)-equivariant isomorphism

/\Oo Eoo — /\(EOO)*,

which restricts to an isomorphism
k
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We will use this isomorphism to view A __ Fo as the restricted dual of the Grassmann
algebra /\ Es. We stress, though, that this isomorphism is not GL(FE« )-equivariant.

Proof. We have a natural bilinear map

/\Eoo X/\ooEoo_)/\ooEoo’ (W, ) »wAW.

If I C N is finite and J C N is cofinite, then ey Aey is 0if INJ # () and ey otherwise,
where the sign is determined by the permutation required to order the sequence I, J.
We then define a perfect pairing v between the two spaces by

v(w,w’) := the coefficient of ey in w A w'.

The map @, : A, Ex — A(Eoo)x, W' — 7(-,w’) induced by 7 is the isomorphism given
by ey — £e!, where I¢ C N is the complement of I and ¢/ := &/t A --- A ek for a finite
set J ={j1,...,Jx}. Note that v(A -w, A-w') = det(A)y(w,w’) for all A € GL(E), and
hence 7 is SL(E« )-invariant. Therefore, the isomorphism ®. is SL(FE« )-equivariant. [J

Lemma 2.3.6. An ideal I C Sym(A(Fwo)s«) is SL(Ex)-stable if and only if it is
GL(E)-stable. The same holds for SL(Ew)n and GL(Ex ).

Proof. Assume that I is SL(E)-stable. Let f € I and A € GL(E) be arbitrary. Choose
m = m(f, A) € N large enough so that f € Sym(A(E,,)*) and A is the image of some
Ay € GL(Ey,). Define A,+1 € GL(E;+1) as the map given by An,41(e;) = Am(e;)
for i < m and Ani1(ems1) = (det(Anm)) H(emy1), and let A’ be the image of A1
in SL(E). Then the action of A,, and A,,;1 agree on (E,,)*. Hence they also agree
on Sym(A(Ep,)*). So A-f = A" - f € I since I was assumed to be SL(E.)-stable
and A" € SL(E). As f € I and A € GL(E) were arbitrary, this shows that I is
GL(E)-stable. O

Proof of Proposition 2.3.2. First, we claim that Spec (Sym (@i:o /\k(Eoo)*)) is topo-
logically GL(E )n-Noetherian. Indeed, the standard GL( E, )-representation of the space
@izo AF¥(Eo)s is an algebraic representation and this also remains true when we act
with GL(E4) via its isomorphism into GL(FE«),. Hence, the claim follows from [ES22,
Theorem 2]. Let (X;);en € Spec(R</) be a descending chain of Hj,-stable, closed, reduced
subschemes. By Lemma 2.3.3 every X; is also GL(FE« ),-stable. By Lemma 2.3.5 there is
an SL(Eu)n-equivariant isomorphism Spec(R<;) = Spec ( Sym (@i:o /\k(EOO)*)) Let
X! C Spec (Sym (@i:o /\k(Eoo)*)) be the closed, reduced, SL(E)-stable subscheme
corresponding to X; under this isomorphism. Using Lemma 2.3.6 we see that the sub-
schemes X/ are also GL(E ),-stable. Therefore, the chain (X/);en stabilizes by our first
claim. Consequently, also the chain (X;);cn stabilizes. O

Before we come to the proof of Theorem 2.3.1, we first want to recall the action
of fi N fj € s0(Va) on /\io E and its symmetric algebra RT in explicit terms. Recall
from Section 2.2.6 that a basis for /\;;j E is given by e; = ¢;; A ey, A ---, where
I ={i1 <ig <---} CNis cofinite and |N\ I| even. Then we have

(fi N f)er = {(_1)%(1)6’\{1'4} if i, j € I, and
0

otherwise,
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where ¢; j(I) depends on the position of 7,5 in I. (Note that there is no factor 4, since
in our identification of A®V to the Lie subalgebra L of C1(V) we had a factor 1.) The
corresponding action of f; A f; on polynomials in RT is as a derivation.

2.3.3 Proof of Theorem 2.3.1

Let RT™ C R be the symmetric algebra on the direct half-spin representation /\;rO FE, so
that Spec(R™) is the inverse half-spin representation (AL Eu,)*. We will prove topolog-
ical Spin(Vx,)-Noetherianity of Spec(R™); the corresponding statement for Spec(R™) is
proved in exactly the same manner.

For a closed, reduced Spin(V)-stable subscheme X of Spec(R'), we denote by
dx €{0,1,2,...,00} the lowest degree of a nonzero polynomial in the ideal [(X) C R*
of X. Here we consider the natural grading on RT = Sym( /\;rO E), where the elements
of AL Ew all have degree 1.

We proceed by induction on §x to show that X is topologically Noetherian; we may
therefore assume that this is true for all Y with dy < dx. We have dx = oo if and only
if X = Spec(R™"). Then a chain

Spec(RT)=XDX1DX22D...

of Spin(Vu)-closed subsets is either constant or else there exists an ¢ with dx, < oc.
Hence it suffices to prove that X is Noetherian under the additional assumption that
dx < 00. At the other extreme, if §x = 0, then X is empty and there is nothing to prove.
So we assume that 0 < dx < oo and that all Y with dy < dx are Spin(V,,)-Noetherian.

Let p € RT be a nonzero polynomial in the ideal of X of degree dx. By Remark 2.3.4,
since X is a cone, p is in fact homogeneous of degree dx. Let ey be a variable appearing
in p such that k := |I¢| is maximal among all variables in p; note that k is even. Then
choose n > k 4 2 even such that all variables of p are contained in /\+ E,, i.e., they are
of the form ey with J D {n+1,n+2,...}.

Now act on p with the element f;; A fi, € s0(Vx) with i1 < iy the two smallest
elements in I. Since X is Spin(Vy)-stable, the result p; is again in the ideal of X.
Furthermore, p; has the form

P1=ten (i) 4+

where ¢ = %’I contains only variables ey with |J¢| < k and where r; does not contain
€1\{i1,in} Put may contain other variables e; with |J¢| = k + 2 (namely, those with

i1,13 & J for which ey, 4,3 appears in p).

If n =Fk+2, then I\ {i1,i2} = {n+ 1,n+2,...} and, since all variables e; in p;
satisfy J 2 {n+1,n+2,...}, ep (i ip} 18 the only variable e in py with [J¢| =k + 2. If
n > k 4+ 2, then we continue in the same manner, now acting with f;; A f;, on p1, where
i3 < i4 are the two smallest elements in I\ {i1,i2}. We write py for the result, which is
now of the form

P2 = €1\ {iy igig ia} -4 T 72

where ¢ is the same polynomial as before and 73 does not contain the variable ey ¢;,
but may contain other variables ey with |J¢| =k + 4.

12,394}
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Iterating this construction we find the polynomial

be = ie{n+1,n+2,...} g+ Ty

in the ideal of X, where ¢ = (n — k)/2, q is the same polynomial as before and 7, only
contains variables e; with |J¢| < n. Let Z := X[1/q] be the open subset of X where ¢ is
nonzero.

Lemma 2.3.7. For every variable e; with |J¢| > n, the ideal of Z in the localisation
R*[1/q] contains a polynomial of the form e; — s/q® for some d € Z>o and some s €

+
RZ, 5.

Proof. We proceed by induction on |J¢| =: m. By successively acting on p;, with the
elements fn, A fot1, fntr2 A fatss ooy fm—1 A fm, we find the polynomial

ie{m+1,m+2,...} g+

in the ideal of X, where r contains only variables ey, with |L¢| < m. Now act with
elements of gl(Ey) to obtain an element

:l:eJ-q—i-F

where 7 still contains only variables ey with |L¢| < m. Inverting ¢, this can be used
to express ey in such variables er. By the induction hypothesis, all those e;, admit an
expression, on Z, as a polynomial in Rin_Q times a negative power of g. Then the same
holds for ej. - O

Lemma 2.3.8. The open subscheme Z = X|[1/q| is stable under the group H, and
H,,-Noetherian.

Proof. By Lemma 2.3.3, X is stable under GL(E«),. The polynomial ¢ is homogeneous
and contains only variables ey with J O {n+ 1,n+2,...}. Every g € GL(E), scales
each such variable with det(g), and hence maps ¢ to a scalar multiple of itself. We
conclude that Z is stable under GL(FEw )n, hence by (a slight variant of) Lemma 2.3.3
also under H,.

By Lemma 2.3.7, the projection dual to the inclusion RY ,[1/q] € R™[1/q] restricts
on Z to a closed embedding, and this embedding is H,,-equivariant. By Proposition 2.3.2,
the image of Z is H,-Noetherian, hence so is Z itself. O

Proof of Theorem 2.3.1. Let
XD2X;D...

be a chain of reduced, Spin(V,)-stable closed subschemes. Let Y C X be the reduced
closed subscheme defined by the orbit Spin(V4,) - ¢. Since ¢ has degree éx — 1, we have
dy < dx and hence Y is Spin(V,,)-Noetherian by the induction hypothesis. It follows
that the chain

YD (YNnX)edD...

is eventually stable. On the other hand, the chain

Z2(ZnX)D...
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consists of reduced, H,-stable closed subschemes of Z, hence it is eventually stable by
Lemma 2.3.8.

Now pick a (not necessarily closed) point P € X; for ¢ > 0. If P € Y N X;, then
P € Y N X;_1 by the first stabilisation. On the other hand, if P ¢ Y N X;, then there
exists a g € Spin(V,) such that gP € Z. Then gP lies in X; N Z, which by the second
stabilisation equals X; 1N Z, hence P = g~ !(gP) lies in X;_1, as well. We conclude that
the chain (X;); of closed, reduced subschemes of X stabilises. Hence the inverse half-spin
representation (AL E)* is topologically Spin(Va,)-Noetherian. O

Remark 2.3.9. While the proof of Theorem 2.3.1 for the even half-spin case can be
easily adapted to a proof for the odd half-spin case, we do not know whether the spin
representation (/\ ., Eoo)* itself is topologically Spin(V)-Noetherian! Also, despite much
effort, we have not succeeded in proving that the inverse limit h(Lnn N"V,, along the
contraction maps ¢, is topologically SO (V4 )-Noetherian. Indeed, the situation is worse
for this question: like the inverse spin representation, this limit is the dual of a countable-
dimensional module that splits as a direct sum of two SO (V4 )-modules, and here we do
not even know whether the dual of one of these modules is topologically Noetherian!

2.4 Half-Spin Varieties and Applications

In this section we introduce the notion of half-spin varieties and reformulate our main
result Theorem 2.3.1 in this language. We start by fixing the necessary data determining
the half-spin representations of Spin(V).

Notation 2.4.1. As shorthand, we write V = (V,q, F) € Q to refer to a triple where
1. V is an even-dimensional vector space over K,
2. ¢ is a non-degenerate symmetric quadratic form on V', and
3. F is a maximal isotropic subspace of V.

An isomorphism V — V' = (V' ¢/, F’) of such triples is a linear bijection ¢ : V' — V’
with ¢/(#(0)) = g(v) and $(F) = .

Given a triple V, we have half-spin representations C1* (V) f, where f = f; - - - f,, with
fi,..., fn a basis of F' (recall that the left ideal C1(V') f does not depend on this basis).
Half-spin varieties are Spin(V')-invariant subvarieties of these half-spin representations
that are preserved by the contraction maps 7w, from Section 2.2.2 and the multiplication
maps 75, from Section 2.2.3. The precise definition below is inspired by the that of a
Pliicker variety in [DE18]. It involves a uniform choice of either even or odd half-spin
representations. For convenience of notation, we will only explicitly work with the even
half-spin representations, but all further results are valid for the odd counterparts as
well.

Definition 2.4.2 (Half-spin variety). A half-spin variety is a rule X that assigns to
each triple V = (V, ¢, F) € Q a closed, reduced subscheme X (V) C CIT(V)f such that

1. X (V) is Spin(V)-stable;
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2. for any isomorphism ¢ : V — V', the map Cl*(¢) maps X (V) into X (V');

3. for any isotropic e € V with e ¢ F, if we set V' := e*/(e), ¢’ the induced form on
V', F’ the image of FNet in V', and V' := (V' ¢, F'), then the contraction map
e : C1IT (V) f — CIT (V') f' maps X (V) into X (V'); and

4. for any V = (V,q, F), if we denote by V' the triple V' := V @ (e, h), ¢’ as the
quadratic form that restricts to ¢ on V, that makes the direct sum orthogonal, and
e, h a hyperbolic basis, if we set f := f-h, then the map 7, : C1T (V) f — CIT (V') f'
maps X (V) into X (V).

Examples 2.4.3. The following are examples of half-spin varieties.
1. Trivially, X (V) := CIT (V) f, X (V) := {0} and X (V) := ) define half-spin varieties.

2. By Proposition 2.2.4, the even component of the cone over the isotropic Grass-
. —~+ . . .
mannian, X (V) := Gri,(V, q), is a half-spin variety.

3. For two half-spin varieties X and X'’ their join X + X’ defined by

(X+X"V)={z+2 |z X(V),2 € X'(V)}
is a half-spin variety.

4. The intersection of two half-spin varieties X and X’ is a half-spin variety, which is
defined by (X N X")(V) = X(V)N X' (V).

Similar as in Section 2.2.6 we will use the following notation: for every n € N, we
consider the vector space V,, = (e1,...,en, f1,..., fn) together with the quadratic form
dn whose corresponding bilinear form (-|-) satisfies

(eilej) =0, (filf;) =0 and (ef;) = diy-

Furthermore, let E, = (e1,...,e,) and F,, = (f1,..., fn); these are maximal isotropic
subspaces of V,,. We will denote the associated tuple by V,, = (V,,, qn, F}).

Remark 2.4.4. A half-spin variety X is completely determined by the values X (V,,), that
is, if X and X’ are half-spin varieties such that X(V,) = X'(V,,) for all n € N, then
X(V) = X'(V) for all tuples V.

We now want to associate to each half-spin variety X an infinite-dimensional scheme
Xoo embedded inside the inverse half-spin representation ( /\;LO E)* as follows. Since
Vi = E, ® F,, we can use the isomorphism from Section 2.1.5 to embed X (V,) as a
reduced subscheme of AT E,, (recall from Section 2.2.7 that we view AT E, as the affine
scheme with coordinate ring Sym(/\H*l)n E,)). We abbreviate X,, == X(V,) C A" E...

For N > n let mn,, ¢ A" Ex — AT E,, resp. TN ° AT E, — AT Ey be the maps
induced by the canonical projection £y — FE,,, resp. by the injection F,, — Ep. Note
that 7, y is a section of my . Recall that (/\;rO Ey)* = @n /\Jr E,. We denote the
structure maps by Toon @ (AL Eoo)* — AT En and by Tnoo : AT En — (AL Ex)* the
inclusion maps induced by 7, .
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From the definition of a half-spin variety it follows that
Nn(XN) C X, and 7, n(Xp) C Xn. (2.4.1)

Hence the inverse limit
Xoo = lin X
n

is well-defined, and a closed, reduced, Spin (Vi )-stable subscheme of (A} Es)*. In order
to see this, write R,, := Sym(/\+(_1)n E,) and Ry == Sym(AL Ex). Let I, C R, be the
radical ideal associated to X, C Spec(R,), i.e. X,, = V(I,,) = Spec(R,/I,). As Spec(-)
is a contravariant equivalence of categories, it holds that

Xoo = lim X, = lim Spec(R,/I,) = Spec (h_rr)l(Rn/In))

n n n

So X corresponds to the ideal I = li)nn I, C Ry. As all I, C R, are radical, so is
I € Ry and therefore X, is a reduced subscheme.
It follows from Equation (2.4.1) that

Toom(Xoo) € Xy and 7y 00(Xp) € Xeo. (2.4.2)

Lemma 2.4.5. The mapping
X — Xao

is injective. That is, if X and X' are half-spin varieties such that Xoo = X/, then
X =X, i.e. X(V)=X'(V) for all tuples V.

Proof. Note that, for all n € N; it holds that
Xn = Toon(Xoo)-

Indeed, the inclusion D is contained in Equation (2.4.2), and the other direction C follows
from the fact that 7, o : X;, — X is a section of 7 . Hence, if Xoo = X/, then

X = T (Xo) = Toen(X) = X
By Remark 2.4.4 this shows that X = X'. O

For two half-spin varieties X and X', we will write X C X' if X(V) C X'(V) for all
V = (V,q, F). Theorem 2.3.1 then implies the following.

Theorem 2.4.6 (Noetherianity of half-spin varieties). Every descending chain of half-
spin varieties
X0 >5 xM o x@ o5 x@) 5

stabilizes, that is, there exists mg € N such that X(™ = X (mo) for all m > my.

Proof. Note that the mapping X — X, is order preserving, that is, if X C X', then
Xoo € X/ Hence, a chain

x(0) > x @ > x (2 > x©®) ...
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of half-spin varieties induces a chain
XOoxWox®o>xB o .

of closed, reduced, Spin (Vi )-stable subschemes in (A F.)*. By Theorem 2.3.1 we know
that (AL E)* is topologically Spin(Vy,)-Noetherian. Hence, the chain XM stabilizes.
But then, by Lemma 2.4.5 also the chain of half-spin varieties X (m) stabilizes. This
completes the proof. O

As a consequence we obtain the next results, which state how X, is determined by
the data coming from some finite level of X.

Theorem 2.4.7. Let X be a half-spin variety. Then there exists ng € N such that
Xoo =V (rad(Spin(Vio) - Iny))

where rad(Spin(Vao) - Iny) € Sym(AL Exo) is the radical ideal that is generated by the
Spin(Va)-orbits of the ideal I, C Sy]rn(/\”L(_l)n0 En,) defining Xpg € N Epg-

Proof. For each n € N set J,, = rad(Spin(Vs) - I,) € Sym(AL Ew). We denote by
Io € Sym(AL Ex) the ideal associated to Xo,. This ideal is Spin(Va)-stable, radical
and we have I, = h_rr)ln I,. Therefore, |J,, Jn = Iso.

Since (Jp)nen is an increasing chain of closed, Spin(V)-stable, radical ideals, there
exists ng € N such that J, = J,, for all n > ng by Theorem 2.3.1. Consequently,
Ino =U,, Jn = Jny and hence Xoo = V(Io) = V (Jp)- O

Corollary 2.4.8 (Universality for half-spin varieties). Let X be a half-spin variety.
There exists ng € N such that for all n > ng it holds that

X, = V(rad(Spin(V;,) - In,)).

Proof. Take ng as in Theorem 2.4.7. Then the statement follows from that theorem and
[Dral0, Lemma 2.1]. To apply that lemma, we must check condition (*) in that paper,
namely, that for ¢ > n > ng and g € Spin(V;) we can write

Tgng ©9d©C Tn,g = g// O Tm,ng © Tn,m © g/

for suitable m < ng and ¢’ € Spin(V,,) and ¢” € Spin(V,,). In fact, since half-spin
varieties are affine cones, it suffices that this identity holds up to a scalar factor. It also
suffices to prove this for g in an open dense subset U of Spin(V;), because the equations
for X,,, pulled back along the map on the left for g € U imply the equations for all g.
We will prove this, with m = ng, using the Cartan map in Lemma 2.5.6 below. O

_|_
iso

2.5 Universality of Gr (4,8) and the Cartan Map

2.5.1 Statement

In Chapter 1 we saw that in even dimension, the isotropic Grassmannian in its Plicker
embedding is set-theoretically defined by pulling back equations coming from Grigo (4, 8).
Using the Cartan map we can translate this into a statement about the isotropic Grass-
mannian in its spinor embedding and prove the following result.
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Theorem 2.5.1. For all n > 4 we have

Gryo (V) = V(rad(Spin(V;,) - 1)),
+
iso

where Iy is the ideal of polynomials defining Gr (Vy) C CIT(Vy) f.

In other words, the bound ng from Corollary 2.4.8 can be taken equal to 4 for the cone
over the isotropic Grassmannian. We give the proof of Theorem 2.5.1 in Section 2.5.5
using properties of the Cartan map that will be established in the following sections.

2.5.2 Definition of the Cartan Map

When we consider e; A -+ A e, as an element of the n-th exterior power A"V of
the standard representation V' of so(V'), then it is a highest weight vector of weight
(0,...,0,2) = 2Xg. Here, g is the fundamental weight introduced in Section 2.1.6 which
is the highest weight of the half-spin representation C1(—" (V) f. Similarly, the element
exNea A= Nep—1 A frn € \"V is a highest weight vector of weight (0,...,0,2,0) = 2\,
where A is the highest weight of the other half-spin representation. So A" V' contains
copies of the irreducible representations Vay,, Vax, of so(V); in fact, it is well known to
be the direct sum of these. To compare our results in this chapter about spin representa-
tions with the results from Chapter 1 about exterior powers, we will need the following
considerations.

Consider any connected, reductive algebraic group G, with maximal torus 7' and
Borel subgroup B O T. Let A be a dominant weight of GG, let V) be the corresponding
irreducible representation, and let vy € V) be a nonzero highest-weight vector (which
is unique up to scalar multiples). Then the symmetric square S?V) contains a one-
dimensional space of vectors of weight 2\, spanned by vy) := v?\. This vector is itself a
highest-weight vector, and hence generates a copy of V5y; this is sometimes called the
Cartan component of S?Vy. By semisimplicity, there is a G-equivariant linear projection
7+ S2Vy — Vay that restricts to the identity on V5. The map

UV — Vo, vr—>ﬂ'(v2).

is a nonzero polynomial map, homogeneous of degree 2, and hence induces a rational
map vy : PV), — PVs,. Note that this is the composition of the quadratic Veronese
embedding and the projection 7. We will refer to v and to 5 as the Cartan map.

Lemma 2.5.2. The rational map v2 is a morphism and injective.
We thank J.M. Landsberg for help with the following proof.

Proof. To show that 5 is a morphism, we need to show that 7(v?) is nonzero whenever
v is. Now the set Q of all [v] € PV}, for which 7(v?) is zero is closed and B-stable. Hence,
if Q # 0, then by Borel’s fixed point theorem, () contains a B-fixed point. But the only
B-fixed point in PV), is [v)], and v) is mapped to the nonzero vector vgy. Hence @ = 0.

Injectivity is similar but slightly more subtle. Assume that there exist distinct [v], [w]
with v9([v]) = va([w]). Then {[v], [w]} represents a point in the Hilbert scheme of two
points in PV). Now the locus @ of points S in said Hilbert scheme such that 1»(S) is a
single reduced point is a closed subset of a projective scheme, hence () contains a B-stable
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point S. This scheme S cannot consist of two distinct reduced points, since there is only
one B-stable point. Therefore, the reduced subscheme of S is {[vy]}, and S represents the
point [v)] together with a nonzero tangent direction in 7j,,)PV) = V) /Kuv,, represented
by w € V). Furthermore, B-stability of S implies that the B-module generated by w
equals (w,vy)k. That S lies in (Q means that

7 ((vx + ew)?) = vy mod €.

We find that 7(vyw) = 0, so that the G-module generated by vyw € S?V does not
contain V). But since vy is (up to a scalar) fixed by B, the B-module generated by
vyw equals vy times the B-module gene rated by w, and hence contains Ug\ = Vo), a

contradiction. O

Observe that v, maps the unique closed orbit G - [vy] in PV} isomorphically to the
unique closed orbit G - [vg)], both are isomorphic to G/P, where P O B is the stabiliser
of the line Kvy and of the line Kuvyy. In our setting above, where G = Spin(V) and
A € {Xo, A1}, the closed orbit G - [vey] is one of the two connected components of the
Grassmannian Grig, (V') of n-dimensional isotropic subspaces of V', in its Pliicker embed-
ding; and the closed orbit in the projectivised half-spin representation PV), is the same
component of the isotropic Grassmannian but now in its spinor embedding.

In what follows we will need a more explicit understanding both of the embedding
of the isotropic Grassmannian in the projectivised (half-)spin representations and of the
map 5. These are treated in the next two paragraphs.

2.5.3 The Map 3 from the Spin Representation to the Exterior Power

In Section 2.5.2 we argued the existence of Spin(V')-equivariant quadratic maps from the
half-spin representations to the two summands of A" V. In [Man09] these two maps are
described jointly as

vy CUV)f — /\nV7 af +— the component in /\nV of (afa*)el e /\V,

where o stands for the Cl(V)-module structure of A V' from Section 2.1.2 and a* refers
to the anti-automorphism of the Clifford algebra from Section 2.1.1.

Lemma 2.5.3. The map Us maps the isotropic Grassmann cone in its spinor embedding
to the isotropic Grassmann cone in its Plicker embedding, i.e.,
o~ —~PI
V2 (GriSO(V)) = Griso(v)7
_~Pl
where Gri,, (V) is the isotropic Grassmann cone in its Plicker embedding (see Defini-
tion 1.2.7 in Chapter 1).

Proof. Let H C V be a maximal isotropic subspace that intersects F' in a k-dimensional
space. Choose a hyperbolic basis e1,..., €, f1,..., fo adapted to H and F, so that
H = (ep41,---,€n, f1,..., fr) is represented by the vector wy 1= eg11 - enf € Grigo(V)
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where f = fi--- fn; see Section 2.2.1. Set a := ep41 - - - €. Now

afa* :€k+1enf1fnenek+l
= €k+1 " 'enfl s 'fn—1(2 - enfn)en—l c k4l

= 26l~c-|—1 o enfl T fnflenfl T4l

=2"Fep i enfr fr

where we have used the definition of C1(V') (in the first step), the fact that the second
copy of e, is perpendicular to all elements before it and multiplies to zero with the first
copy of e, (in the second step), and have repeated this another n — k — 1 times in the
last step. We now find that

(afa*) @1 =2"Fer i Ao ANen AfL A A S,

so that (afa*)e1 lies in one of the two summands of A" V and spans the line representing
the space H in the Pliicker embedding. This shows that 75 maps the isotropic Grassmann
cone in its spinor embedding to the isotropic Grassmann cone in its Pliicker embedding,
as desired. O

Remark 2.5.4. While the spin representation C1(V') f depends only on the space F, since
F determines f up to a scalar, which doesn’t affect the left ideal CI(V)f, the map
actually depends on f itself: for f := ¢ f with t € K*, the map 05 constructed from f
sends af = (t‘la)f to t~taft la* =t lafa*, so the new 0 is t~! times the old map.

2.5.4 Contraction and the Cartan Map Commute

Recall from Section 2.5.2 that we have quadratic maps 5 from the half-spin represen-
tations to the two summands of A" V; together, these form a quadratic map 5 which
we discussed in Section 2.5.3. By abuse of terminology, we call this, too, the Cartan
map. Given an isotropic vector e € V that is not in F', we write 75 also for the Cartan
map C1(V.)f — A" 'V, (notation as in Section 2.2.2). Recall from Section 2.2.2 the
contraction map ¢, : A"V — A""'V, and its spin analogue 7 : CI(V)f — CI(V,)f.
Also, for a fixed h = f,, € F with (e, h) = 1, recall from Section 2.2.3 the multiplication
map my, : A" 'V, — A"V and its spin analogue 73, : C1(V,)f — CL(V)f. The relations
between these maps are as follows.

Proposition 2.5.5. The following diagrams essentially commute:

CIV)f = CUV)f  and  CUV.)f——=CLUV)f (2.5.1)
/\n 174 - /\n—l ‘/e /\n—l ‘/e o /\n 174

More precisely, one can rescale the restrictions of c. to the two so(V')-submodules of
A"V each by +1 in such a manner that the diagram commutes, and similarly for my,.
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Naturally, we could have chosen the scalars in the definition of ¢, (or, using a square
root of —1, in that of m.) such that the diagram literally commutes. However, we have
chosen the scalars such that c. has the most natural formula and 7., 7, have the most
natural formulas in our model A E for the spin representation.

Proof. We may choose a hyperbolic basis e1, ..., e,, f1,..., fn of V such that e = e,, and
fis- .-, fn is a basis of F. We write f := f1--- fpand f:= fy--- f,_1.

Since the vertical maps are quadratic, it is not sufficient to show commutativity on
a spanning set. We therefore consider

where, for I = {iy < ... <1} we write ef := e;, - - - €;,. We then have
me(af) = > crerf = af
I'ngl

and

— —1 —_
3(af) = the component in /\n V. of Z (cicjerfe; ) el e /\Ve.
1,J:ngIUJ

Now note that, since f has n — 1 factors, if I, J do not have the same parity, then acting
with e7fe;* on 1 yields a zero contribution in /\"_1 V.. Hence the sum above may be
split into two sums, one of which is

—1 _
the component in /\n Ve of Z (crejerfes) e 1. (2.5.2)
1,J:|1|,|J| even, ng¢IUJ

On the other hand, consider

3(af) = the component in /\nV OfZ(CICJ@]fe*J) olc /\V.
1.J

For the same reason as above, this splits into two sums, and we want to compare the
following expression to (2.5.2):

Ce (the component in /\n V of Z (cregerfey) e 1). (2.5.3)
1,J:|I|,|J| even

Now recall that the action of e = e, € V. C CI(V) on AV is via o(e) + ¢(e), while ¢, is
te followed by projection to /\"71 Ve. Hence to compute (2.5.3), we may as well compute
the summands of

n
the component in /\ V of Z (crey-e-erfey) el
1,J:|I],|J| even

that do not contain a factor e. Terms with n € I do not contribute, because then ee; = 0.
Terms with n & I but n € J do not contribute because when e gets contracted with f, a
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factor e in e’ survives, and when e does not get contracted with f,, we use ee’; = 0. So
we may restrict attention to the terms with n ¢ ITUJ. Let I, J correspond to such a term,
that is, |I],|J| are even and n & TUJ. Write I = {i; < ... <ix}and J = {j1 < ... < ji}.
Then

(eerfe) o1 = ((—1)"*161f1 . fn_lefnef,) ol
= ((—1)"_161f1 e fn71€> o (fulej A ANej)
- ((—1)"*1eff1 . fn_1> (e, N---Nej,+eAfaNej, A Nej,).

The second term in the last expression will contribute only terms with a factor e to the
final result, and the former term contributes

—1 _
the component in /\n V, of (=1)" (e fes*) e 1.

Comparing this with (2.5.2), we see that the diagram commutes on terms in C17(V)f
up to the factor (—1)"~!. A similar computation shows that it commutes on terms in
CI (V) f up to a factor factor (—1)".

We now consider the second diagram, where V' is split as the orthogonal direct sum
Ve @ (e, h) with e = e,,h = f,,. Consider a € Cl({ey,...,e,—1)). By the same argument
as above, it suffices to consider the case where all summands of a in the basis e; have
indices I with |I| of the same parity, say even. Then 7 o 75, in the diagram sends af
to the component in A"V of afa* e 1. Since the summands e; in a all have n & I, in
afa* e 1 all summands have a factor f,,, and indeed

(afa*) el = f, A(afa*el)

(when all terms in a have |I| odd, we get a minus sign). The component in A" V' of this
expression is the same as the one obtained via my, o Us. ]

2.5.5 Proof of Theorem 2.5.1

In this section we use the Cartan map to prove Theorem 2.5.1, and finish the proof of
Corollary 2.4.8 via a similar argument.

Proof of Theorem 2.5.1. For a quadratic space of dimension 2n, we will denote the

—~Pl
isotropic Grassmann cone over the Pliicker embedding by Gri,(V) € A"V . Given
a maximal isotropic subspace F' C V with basis fi,...,f, and f = fi--- fpn, let
vy : CIT(V)f — A"V be the Cartan map defined in Section 2.5.3. For any isotropic

v € V\ F the diagram

CUV)f —= CU(V,)f

commutes up to scalar factor at the bottom by Proposition 2.5.5, where V, := v*/(v)
and where f is the image of a product of a basis of v N F},.

The proof of Corollary 1.3.2 in Chapter 1 shows that for w € A" V the following are
equivalent:
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Pl
1. w e Gry,

(V);

2. for any sequence v1 € V, va € Vi, 3 € (Vi Jugs+ -y Un—a € (- (Vo )wg)ug *** Jum_s
of isotropic vectors, it holds that
—~PI
C(w) € Gr;

180

(W)7

where we abbreviate W := (- (Vo )uy)vs - Jo,_s and C : N"V — A*W is
the composition C' := ¢,, , o---0 ¢, of the contraction maps ¢, introduced in
Section 2.2.2.

By slight abuse of notation, we also write vy,...,v,_4 for preimages of these vectors
in V. These span an (n — 4)-dimensional isotropic subspace U of V (provided that
each v; chosen above in the successive quotients is nonzero), and W equals U+ /U. For

any fixed w, the condition that C(w) lies in é\rEL(W) is a closed condition on U, and
hence it suffices to check that condition for U in a dense subset of the Grassmannian of
isotropic (n — 4)-dimensional subspaces of V. In particular, it suffices to check this when
UNEF,=/{0}.

Fix n > 4 and = € Cl(V,,)f1 - - - fn such that p(g-z) = 0 for all g € Spin(V,,) and all
p € Iy. This means precisely that 7, 4(g-z) € Gr,. (V) for all g € Spin(V;,). We need to

180
—~4 -~
show that @ € Grig,(V5,). To this end, consider w := Da(x) € A" V;,. It suffices to show

1 —~
]ZO(Vn). Indeed, this follows from the fact that v (Gr~+ (V)) is one of the

that w € é\l‘i iso

—~PI
two irreducible components of Gri,, (V') (see Lemma 2.5.3) and because vs is an injective
morphism by Lemma 2.5.2. Let vy, v, ...,v,—4 € V,, as above: linearly independent, and
such that the span U := (vy,...,v,_4) is an isotropic space that intersects F,, trivially.

Let C :=¢,, , 0---0c, be the composition of the associated contractions. We need to
—~Pl
show that C(w) € Gry, (W), where W := U+/U.

180
—~ —~PI1
Now v (Grito(w )) C Griso(W) by Lemma 2.5.3, and the diagram

A"V, ¢ y A*w

-] o

CUV,) f —n=t2 L cyw) 7,

where f is the image of the product of a basis of U+ N F},, commutes up to a scalar
factor in the bottom map due to Proposition 2.5.5. Therefore, it suffices to check that
Ty, 4 O+ 0my (T) € (/}\rlto(W) Now there exists an element g € Spin(V;,) that maps
F,, into itself (not with the identity!) and sends v; to e, 41— for i = 1,...,n — 4. This
induces an isometry W := U+/U — (U'):/U" = V4 = (e1,...,e4, f1,..., f1), where
U := {(e5,...,eyn). This in turn induces a linear isomorphism (unique up to a scalar)
CI(W) - f — CI(Vi) - f1--- f1 (where f on the left is the product of a basis of Fj, N U~)
that maps (/}\rjsro(W) onto (/}\r;go(YQ). Since, by assumption, 7, 4(g-x) = Tz 0+ - -0, (- )
lies in the latter isotropic Grassmann cone, m,, , © -0 my, (x) lies in the former. O
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Lemma 2.5.6. Let ¢ > n > ng. Then for all g in some open dense subset of Spin(Vj)
there exist g € Spin(V;,) and g" € Spin(V,,,) such that

1 /
Tqno ©9dOTng =9 ©Tnnyg©4d
holds up to a scalar factor.

Proof. The proof is similar to that above; we just give a sketch. Using the Cartan map,
which is equivariant for the relevant spin groups, this lemma follows from a similar
statement for the corresponding (halfs of) exterior power representations. Specifically,
define

E = (epg+1,---,€q) C Vg,
E' = {eng+1s---sen) C Vp, and
F = <fn+1»'--7fq> - Vq

Then the desired identity is
ceogomp=g'ocgpog (2.5.4)

(up to a scalar), where

q no
CE ‘= Cen0+1o"'oceq:/\ Vq_>/\ Vo>

n no
CE' = Cpg+1 0" - 0Ce, : /\ VnH/\ Vo, and

n q
iy omg NV AV,

and the ce, and my, are as defined in Section 2.2.2 and Section 2.2.3, respectively.
Furthermore, since the exterior powers are representations of the special orthogonal
groups, we may take g, ¢’, ¢" to be in SO(V}),SO(V,,), SO(V4,, ), respectively.

We investigate the effect of the map on the left on (a pure tensor in A" Vj, corre-
sponding to) a maximal (i.e., n-dimensional) isotropic subspace W of V,,. First, W is
extended to W’ := W @ F, then ¢ is applied to W’, and the final contraction map sends
gW' to the image in V,/E of (gW’) N E+.

Instead of intersecting g\’ with £, we may intersect W/ = W& F with (E”)* where
E" := g~ E, followed by the isometry g : (E")*/E" — E*/E induced by g. Accordingly,
one can verify that the map on the left-hand side of Equation (2.5.4) becomes (a scalar
multiple of)

gocgromp

where cgr @ A7Vy — A" ((E”)/E") is the composition of contractions with a basis
of E”, and where we write g also for the map that g induces from A" ((E")L/E") to
A" (EL/E).

Now consider the space E” N (V,, & F) C V,. For ¢ in an open dense subset of SO(V),
this intersection has the expected dimension (¢ — ng) + (2n +¢q —n) — 2¢ = n — ng, and
for g in an open dense subset of SO(V,) we also have (E”): N F = {0} (because (E")*:
has codimension g —ng, which is at least the dimension ¢ —n of F'). We restrict ourselves
to such g. Then in particular E” N F = {0} and therefore the projection E C V,, of
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E’"N(V, ® F) along F has dimension n — ng, as well. Note that E is isotropic because
E" is and because F is the radical of the bilinear form on V,, @ F.
Furthermore, the projection V,, & F' — V,, restricts to a linear isomorphism

(Va® F)N (E")" — B,

where the latter is the orthogonal complement of E inside V,,. This linear isomorphism
induces an isometry

hy - ((Vn @ F)N (E”)L> J (Vo ® F)NE") - E+/E

between spaces of dimension 2ng equipped with a non-degenerate bilinear forms. On the
other hand, the inclusion V,, ® F' — V, also induces an isometry

hy - ((Vn @ F)N (E”)L> / (Vo & FYNE") — (E")*/E".
Now a computation shows that, up to a scalar, we have
CgEr Omp = h2 o h1_1 e} CE,

where ¢z : A"V, — A" (E+/E) is a composition of contractions with a basis of E. Now
choose g’ € SO(V},) such that ¢’E = E’, so that we have

cpog :?ocﬁ,
where ¢ is the isometry EL/E — (E'):/E’ induced by ¢'. We then conclude that
cgogomp=gohaohi o(g) tocmoyg
and hence we are done if we set

f i=gemenite ) €50 ((E)/E) - 5004) -
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Chapter 3

Noetherianty and Universality for
Lagrangian Plucker Varieties

3.1 Foundations

3.1.1 General Vector Spaces

Throughout this entire subsection V' denotes a finite dimensional vector space over an
arbitrary field K.

Denote by Alt*(V) the space of alternating multilinear maps V x --- x V — K. The
following maps will be central in this article.

Definition 3.1.1 (Contraction maps). For 8 € V* the contraction with (3, or interior
multiplication by [, is the map

18 : /\kV — /\k_1 ker 5 C /\k_lv
given by

k
VA Avg = Y (1) T B ur A AT A A, (3.1.1)
=1

where < indicates that the factor is omitted. Similarly, for w € Alt?(V) the contraction
with w, or interior multiplication by w, is the map

k k—2
iw:/\ V—>/\ \%4
sending v A -+ - A vg to

Z (—1)i+j_1w(?}i,1}j>’l}1 A AU A A i}\j ARERWAN ™ (3.1.2)
1<i<j<k

In the following sections, whenever we will consider symplectic vector spaces, we will
exclusively consider i, with w being the symplectic form on V.

Below we will give a more conceptual description of the contraction maps. To this
avail, recall that the evaluation pairing is the non-degenerate pairing

(.7.)evz/\kV></\kV*_>K
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given by
(V1A A g, BEA - A BF)ey 1= det ((5i(vj))1§i7j§k> . (3.1.3)

Example 3.1.2. Let ey, ..., e, be a basis of V, and denote by €',...,e" € V* the dual
basis given by ’(e;) = §;;. For any 1 <i3 <...< iy <nand 1 <j; <...<jp <nit
then holds

(eiy Nvs Neig e Ao NeTR) =

ev

1 if11:j17'-‘7zk:jk
0 otherwise.

This also implies that the evaluation pairing is non-degenerate.

The evaluation pairing induces an isomorphism AF(V*) = (A" V)* because it is
non-degenerate. Moreover, by the universal property of /\k V', there also is a canonical
isomorphism Alt*(V) = (A*V)* ([Liic12, p. 183]). Composing these we get an isomor-
phism

k
AltF(V) = ATV (3.1.4)
Under this isomorphism, for all £ € Alt*(V) = A¥(V*) and vy, ..., v, € V it holds

E(viye ey vk) = (V1A AVE, ey, (3.1.5)

where on the left hand side we think of £ as an element of Alt*(V) and on the right hand
side as an element of \"(V*).

Under the isomorphism (A" V)* 2 A¥(V*) induced from the evaluation pairing, the
contraction maps ig and i, (see Definition 3.1.1) are dual to the maps

AN v o Aveemgne and AV S ATV emwng,

where we use the isomorphism (3.1.4) to think of w € Alt?>(V) as an element in A? V*.
Namely, for all p € A*V and € € A*! V* it holds

(18(1): &) ey = (1, BA E)evs (3.1.6)

and similarly
(1w (1), E)ev = (N, w A §)ev (3.1.7)

for all p € A¥V and € € A¥ 2 V* (see [FHO1, p. 260, p. 476 and Exercise B.15(ii)]).
In other words the maps ig, resp. iy, can coordinate-independently be described as the
maps dual to wedging with the respective form 3 or w.

We now recall the definition of the (ordinary) Grassmann cone.

Definition 3.1.3 (Grassmann cone). For k < dim(V') the Grassmann cone é\r(k, V) is
defined as

_— k

Gr(k;,V) = {Ul/\”'/\’l)k E/\ Vv ‘ Vl,..., Uk GV}.

For § = vy A+ Ay € (/}\r(k, V) \ {0}, we will denote the corresponding subspace
(v1,...,v,) €V as L¢. Here we use the notation (vq,...,vx) to denote the span of the
vectors vy, ...,V in V.

Later (in the proof of Lemma 3.4.8) we will use the following result.
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Lemma 3.1.4. Suppose £1,& € (/}\r(k, V) \ {0} are such that & + & € @(/@,V). Then
dim(L51 N Léz) >k—1.

Proof. We abbreviate & = & +& and W = Lg, + Lg,, so that £ € A" W and ¢ € Gr(k, W)
by assumption. If £ = 0, then the lemma trivially holds. So we may assume & # 0.
Consider the map ¢ : W — /\k”Jrl W, w +— w A €. Observe that

dim (ker(v¢)) > k (3.1.8)

because L¢ C ker(v)¢) (L¢ is defined since £ € é\r(k, W)\ {0}). Arguing by contradiction,
we assume that dim(L¢, N Lg,) = k —m for some m > 2. We fix a basis {wpm41,..., wi}
of L¢, N Le, and extend it to a basis of L,, and L,,, that is, we choose u1, ..., un € L¢,
and u},...,u), € Lg¢, such that

Le, = (U1, ooy Uy Wit 1, - - - wg) and Lgy, = (U], ..o Uy, Wingts - - -, W)
Hence, after potentially rescaling u; and ), it holds
L =ul AN AUy ANWpt1 A--- Awg  and 52:ull/\‘--/\u;n/\wmﬂ/\"-/\wk.
Therefore, keeping in mind that £ = & + £ and m > 2, we see that the images

Ye(ug) = us ANy Ao ANupy Aot A+ Awy, (1 <i<m)
wg(u;):u;-/\ul/\---/\um/\wm+1/\---/\wk (1<i<m)

are linearly independent, so that dim(im(t¢)) > 2m. But then
dim(ker(¢p¢)) = dim(W) — dim(im(¢y¢)) < (k +m) —2m < k
due to the dimension formula. However, this contradicts (3.1.8). O

3.1.2 Symplectic Vector Spaces

From now on we consider a finite dimensional vector space V over a field K of Char(K) =
0 equipped with a symplectic form w, i.e., a non-degenerate skew-symmetric bilinear
form on V. It is well-known that such a symplectic space always has even dimension (see
[Leel2, Proposition 22.7]).

We start by recalling some basic definitions. The symplectic group Sp(V') is the set
of all automorphisms of V' preserving the symplectic form, i.e.,

Sp(V) = {A e GL(V) ) w(Av, Aw) = w(v, w) for all v,w € v}
whose Lie algebra is
sp(V) = {L € End(V) ‘ w(Lv,w) + w(v, Lw) = 0 for all v,w € V} )
The orthogonal complement of a subspace L C V is

LL::{UEV’w(v,u)zOforalluEL}.
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We call a subspace L C V isotropic if L C L*, i.e., if w(u,v) = 0 for all u,v € L.
Moreover, a subspace L C V is called Lagrangian if L = Lt, or equivalently, if L is
isotropic and dim(L) = § dim(V).

Analogous to the definition of the (ordinary) Grassmann cone, we can now define
the isotropic and Lagrangian Grassmann cone.

Definition 3.1.5 (Isotropic and Lagrangian Grassmann cone). For k < 1 dim(V) the

isotropic Grassmann cone (/}\riso(k‘, V') is defined as
— k
Griso(k, V) := {yl Ao~ Avg € /\ \% ’ w(vi,v;) =0forall 1 <i,j< k}
The Lagrangian Grassmann cone C/%\rL(V) is defined as (/}\I'jso(k, V) for k = 1 dim(V), i.e,
_ (1 .
Gr,(V) := Grigo <2 d1m(V),V> )

Note that £ € C/%\r(k:, V) \ {0} lies in (/}\riso(k, V) if and only if L¢ C V is isotropic.
Similarly, if dim(V') = 2n, then { € Gr(n, V) \ {0} is in Grp,(V) if and only if L C V' is
Lagrangian.

Remark 3.1.6. The projectivization of (/}\rL(V) is the Lagrangian Grassmannian Gry,(V);
it parametrizes Lagrangian subspaces of a symplectic space V.

Throughout the article we will frequently use the following terminology.
Definition 3.1.7 (Symplectic basis). A basis e1,e_1,...,e,,e_, of V is called a sym-

plectic basis if w(e;,e—;) =1 for all i € {1,...,n} and if for all 4,5 € {£1,...,+n} it
holds w(e;, e;) = 0 whenever i # —j.

Note that, if e;,e_1,...,e,,e_y, is a symplectic basis of V', then w(e_;,e;) = —1 for
1 <14 < n since w is skew-symmetric.
The following elementary lemma will be prove useful.

Lemma 3.1.8. Let Ly, Ly CV be Lagrangian subspaces. Then for any choice of decom-
position
L= (LlﬁLg)@Ul and Lo :(LlﬁLg)@UQ

the musical isomorphism b (see (3.1.9)) restricts to an isomorphism Uy — Us. In par-
ticular, there exists a symplectic basis e1,e_1,...,en,e_n of V, such that

Ly=(e1,..-,eq€q41,---,n) and Lo ={(e1,...,€q€_(g41),--+1€-n),
where ¢ = dim(L; N La).

Proof. This was proven in Lemma 1.2.6 in Chapter 1 for quadratic spaces, i.e., spaces
equipped with a non-degenerate symmetric bilinear form. However, the proof also works
for symplectic spaces without any modifications. O
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Since the skew-symmetric form w is non-degenerate, it induces the musical isomor-
phism
bV =V v i=w(v, ). (3.1.9)

This induces a map on the exterior powers, which by abuse of notation we still denote
by b,
k k
b:/\ V—>/\ V5 0L Ao Avg = 0] A= Aol (3.1.10)

We will denote the image of any n € /\k V' under this isomorphism by nb.

Example 3.1.9. Let ej,e_1,...,en, e_, be a symplectic basis of V', and denote the dual
basis of V* by el,e7!, ..., e, e Then for 1 < i < n it holds

i

‘ = —€.

—¢' and €

eb‘ —i

(]
Hence {, :=e1ANe_1+---+e, Ne_, € /\2 V satisfies

€ =c'Ne Tl 4" AT =w.

w

Here we use the isomorphism Alt?(V) = A? V* from (3.1.4) to interpret the symplectic
form w as an element of A\? V*.

We want to point out a connection between the musical isomorphism and the evalu-
ation map, as it will be important for us later on. Namely, for all n,£ € /\k V' it holds

(1,€)ew = (=1 (&7 )ev- (3.1.11)
This follows from the definition (3.1.3) of the evaluation pairing, and the fact that for
all v,w € V it holds v*(w) = w(v,w) = —w(w,v) = —w’(v) since w is skew-symmetric.

Next we want to use the symplectic form to extend Definition 3.1.1 to also define the
contraction with a vector v € V.

Definition 3.1.10 (Contraction map). For v € V the contraction with v is the map

k k—1
Yo /\ V— /\ vt
defined by
k .
VA Avp = Y (1) T w0, v v A AT A A (3.1.12)
1=1
Note that ¢, = ig for 3 = v" (see Definition 3.1.1).

Let v € V be a nonzero vector. Define V, := v*/{v) (note that (v) C v* because w
is skew-symmetric). It is easy to see that

wy (01, U2) = w(vy,v2), (3.1.13)

where ©; € V,, denotes the equivalence class of v; € v in Vj, is a well-defined symplectic
form on V,, (i.e., the formula is independent of the choice of representatives vy, vo € v™).
We denote by 7, the projection v — V.
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Definition 3.1.11. For any nonzero v € V we define the linear map

o, Nvo AT, (3.1.14)

as the composition

NV 2 N A AFT

where @, is the contraction map introduced in Definition 3.1.10. Explicitly, this map is
given by

k
CI)v(Ul VANERIVAN Uk) = Z(—l)j_lw(v,vj)m VANCIERWAN @\j VARERWAN ¥} (3.1.15)

Jj=1

The map @, can alternatively be described as follows. Analogous to ig (see (3.1.1)),
any v € V defines an interior multiplication (also see [Leel2, p. 358])

iy /\k vV — /\kil ker(v),

where ker(v) := {a € V*|a(v) = 0} C V*. Choose a section s, : V, — v+ of m,, and
consider its dual map sy : V* — V;J, a — a o s,. Then the diagram

v |= = =, (3.1.16)

commutes (up to sign (—1)). Moreover, under the canonical isomorphisms from (3.1.4),

the lower horizontal map (A"~' s*) o i, agrees with the map

AR (V) — APH(V,), € €(v, 50(-), - - -, 50(-)). (3.1.17)

So, up to the musical isomorphisms and the canonical isomorphisms from (3.1.4), (3.1.17)
can be thought of as an coordinate-independent description for ®, (up to sign (—1)).
Using this description we can characterize when ®,(n) is zero.

Lemma 3.1.12. Let v € V be nonzero and n € \*V. Then ®,(n) = 0 if and only if

(v/\vg/\---/\vk,nb)evzo for allvg,...,vkEUJ‘,

where nb € /\k V* is the image of n € /\kV under the induced musical isomorphism
b NPV = APV
Proof. From (3.1.16) and (3.1.17) we see that ®,(n) = 0 if and only if

(0, 84(02), ..., 55(0)) =0 for all Ty,..., 0 € V.

Note that v+ = s,(V,) @ (v) because s, is a section of 7, : v+ — v /(v) = V,,. Therefore,

because 7” is alternating, ®,(n) = 0 holds if and only if
(v, v, ... v;)  forall vg, ..., v € 5u(Vo) @ (v) = v

Keeping in mind (3.1.5), this completes the proof. O
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3.2 Counterexample and New Setting

3.2.1 Counterexample

A quadratic space is a vector space equipped with a non-degenerate symmetric bilinear
form (-,-), and a vector v € V is called isotropic if (v,v) = 0. In Chapter 1 the main
result was the following.

Theorem 3.2.1 (Theorem 1.3.1 in Chapter 1). Let V be a quadratic space over a field
K with Char(K) # 2 and dim(V) > 8. Consider n € AP, where p = |1 dim(V)]. If
®,(n) € (/?}iso(p — 1,V,) for every isotropic vector v € Vig, then n € (/}\riso(p, V).

This does not generalize directly to symplectic vector spaces. Indeed, the following
example shows that there exist n € A"V such that ®,(n) = 0 for all v € V, but
né¢ é\I'L(V). Nonetheless, we will show in this chapter that the main result of Chapter 1
holds for the Lagrangian Grassmann cone if we consider a different setting.

Example 3.2.2 (Counterexample). Let V be a symplectic vector space of dimension
2n = 4m. Denote by &, € /\2 V be the preimage of w under the induced musical isomor-
phism b : A2V — A?V* (see Example 3.1.9). Define

m 2m
77ex=€w=§w/\"'/\§w€/\ V.
We claim that, for every v € V,

Po(Tlex) = —mu A EZFTY, (3.2.1)

where ¢, is the contraction we map introduced in Definition 3.1.10. Because the map
d, = (/\n_1 m) o ¢y, where m, : vt — vt/(v) = V, is the projection, this shows
O, (nex) = 0 for every v € V. Moreover, one can easily check, for example by working in
a hyperbolic basis (see Example 3.1.9), that nex A 7ex 7 0, and hence ey ¢ é\r(n, V).
So it remains to prove (3.2.1). Recall that ¢, = ig with 8 = v’ (see Definition 3.1.1).
We will use that for all &, € A"V and & € A’V it holds (see [Leel2, Lemma 14.13(b)])

ig(61 A &) = ip(61) Ao+ (1) & Nig(&a). (3.2.2)

Thus
Po(Nex) = 1,p (€57 = My (€w) A - (3.2.3)

Keeping in mind that & = w, we obtain for all w € V

(3.1.6) (3.1.11) (

(i'u" (éw), wb)ev (6w> 0 A wb)ev vAw, fﬁ;)ev = (VA W,W)ey = w(v, w),

and thus
(T (fw),wb)ev = —w(w,v) = —wb(v) (3.1:5) —(v,wb)ev

by the skew-symmetry of w and the definition (3.1.9) of w’. As w € W was arbitrary,
this implies .5 (&,) = —v. Therefore, (3.2.1) follows from (3.2.3).
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3.2.2 New Setting

The goal of this subsection is to find, for each symplectic vector space V' with dim(V') =
2n, a subspace Uy C A"V such that

(i) The counterexample 7ex is not contained in Uy;

(ii) The Lagrangian Grassmann cone @L(V) is a subset of Uy;
(iii) The map P, introduced in (3.1.14) is well-defined on Uy, i.e, ®,(Uy) C Uy,.

We will prove that ker(i,) C A"V satisfies all those conditions, where i, is the contrac-
tion with the symplectic from w introduced in Definition 3.1.1.

Note that Sp(V) naturally acts on A"V by A- (v A+ Awv,) = Avy A -+ A Avy,.
Due to the definition of Sp(V') and i,,, we have i,,(An) = A-i,(n) for all A € Sp(V') and
ne N\'V.So A-n e ker(iy,) if n € ker(iy,), i.e., the action of Sp(V') on A"V restricts to
an action on ker(iy). This, in turn, induces an action of the Lie algebra sp(V') on ker(iy,).

Even though we will not make use of it, we mention here the following result.

Theorem 3.2.3 (Theorem 17.5 in [FH91)). Let (V,w) be a symplectic vector space
of dimension 2n. Then, for every 1 < k < n, ker(i,) C /\kV s the k-th irreducible
fundamental representation of sp(V').

Equivalently, ker(i,,) is an irreducible Sp(V')-representation. This shows that ker (i)
is also a natural space to consider.

Since the contraction i, is dual to the multiplication map wAe : A" 2 V* — A" V* by
(3.1.7), the kernel ker(4,,) can also be described as the orthogonal complement im(w A o)+
of the image of the multiplication map.

We now check that ker(i,,) satisfies the conditions above.

Lemma 3.2.4. The counterexample nex is not contained in ker(iy).
Proof. Note that, for all 81,8 € V* and & € /\k V*, we have

5056 CED B A Ba A CED (i3 00%,)() = (ig, 0i5,)*(6),

and hence ig, rg, = i, 0ig,. Choose a hyperbolic basis ej,e_1,...,ey,e_, of V. Then
w=y1, e A eb_z- (see Example 3.1.9). Thus, as ¢, = i,

)

n
io = Pe_, 0 Pe;- (3.2.4)
=1

From (3.2.1) we know
Pe;(Nex) = —me; NET. (3.2.5)
Moreover, from (3.2.2) and (3.2.1) (applied to €™~ 1), we obtain

3.2.2) _ _
B2 e () NEM — e Mg (€™

(B2 1 e A ( —(m—1)e_; A 52172)

w

Pe_; (ei N gZunil)

= — ‘T*l +(m—1)e; Ne_; /\53%2.
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Recall that &, =" | e; Ae—; and n = 2m. So by summing over i = 1,...,n we get
n
D e (€Nl =gl 4 (m = DENT = —(m+ 1)
i=1

Combining this with (3.2.4) and (3.2.5) yields

i) = m(im + 1)ER.
In particular, iy, (nex) # 0, i.e., Nex ¢ ker(iy). O
Lemma 3.2.5. The Lagrangian Grassmann cone é\rL(V) is a subset of ker(iy,).

Proof. Let £ € (/}\I"L(V) be arbitrary. By Definition 3.1.5 we can write £ = vy A -+ A vy,
for some v1,...,v, € V such that w(v;,v;) =0 for all 1 <4, j < n. But then the formula
(3.1.2) for i, immediately yields i, (§) = 0, i.e., £ € ker(iy,). O

Finally, we will show that ®, is well-defined on ker(i,,).

Lemma 3.2.6. For every v € V we have ®,((ker(iy,)) C ker(iy,), where w, is the
symplectic form on V, defined in (3.1.13).

Proof. Since &, = ( /\”_1 7TU) 0y, it suffices to show that the diagram

n—1
Ty

/\n 174 P /\n—l UJ‘ /\n—l v;)

T

_ _ AN tn _
/\n 2V Pu /\n SUJ_ v n3%

commutes. To this avail, recall ¢, = ig for 8 = ¢’ and that, by (3.1.6) and (3.1.7),
the dual maps are given by zE(f) = [ ANE and i () = w A& So it’s easy to see that
z/”é o =150 ig, and thus the left square commutes. That the right square commutes
follows immediately from (3.1.2) since w(v;, v;) = wy(my(v;), Ty (v5)) for all v;, v; € vt by
the definition (3.1.13) of w,. O

3.3 Preliminary Results

In this section we prove the three main technical ingredients for the proof of the Main
Theorem 3.4.1.

Proposition 3.3.1. Let n € ker(i,) € A¥V for some 2 < k < dim(V) and assume
®,(n) =0 for allv e V. Then n = 0.

The general proof of Proposition 3.3.1 is a bit technical. However, in the case when
2<k< %dim(V)7 we can use Theorem 3.2.3 to give a simpler proof, which we include
here for the convenience of the reader.
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Proof of Proposition 3.3.1 when 2 <k < %dim(V). Fix2<k< %dim(V) and define
k
W= {n € ker(iy) C \'V ‘ (1) = 0 for all v € V} .

The statement of Proposition 3.3.1 is equivalent to W = 0. We will show that W is an
Sp(V)-invariant subspace of ker(i,,). Then, since ker(i,,) is an irreducible representation
by Theorem 3.2.3, it follows that W = 0 or W = ker(i,). But W # ker(i,) because
there clearly exist n € ker(i,) such that ®,(n) # 0 for some v € V.

It remains to show that W is an Sp(V')-invariant. Because of Lemma 3.1.12 it suffices
to show that for all n € /\k V,v €V, vg,...,u €v* and g € Sp(V) it holds

(VAva A Ay, (gn)b)ev = (g_lv Ag lug Ao A gy, nb)ev. (3.3.1)

Towards the proof of (3.3.1) we first observe that for all u,w € V' we have

W (gw) = w(u, guw) = wlgg  u, gw) = w(g u,w) = (g7 )" (w),

where the third equality holds because g € Sp(V') preserves w. As a consequence, for all
n,& € A"V it holds
(9m,€") o, = (0, (g71€)) - (3.3.2)

Set £ :=vAvg A Avg € A\¥ V. Together with (3.1.11) we obtain

& )., “EY k(g ) CEY ke, e, CEY (5.

which, due to the definition of ¢, is equivalent to (3.3.1). This completes the proof. [
We now come to the general proof of Proposition 3.3.1.

Proof of Proposition 3.3.1. Let S C /\k V' be the span of §; U Sy for the sets
k
Slz{UAvg/\--'Avke/\ V)UGV&Hd’Ug,...,U}CGUL}

and
k
SQZ{{UJ/\vg/\---/\'l}kG/\ V‘Ug,...,’l)kEV},

where the 2-form &, € /\2 V is the preimage of w under the induced musical isomorphism
b: A2V — A2 V* (see Example 3.1.9).

We will prove Proposition 3.3.1 in two steps. First we will show that (£,7")e, = 0
for all £ € S. Then we will show that the § = /\k V. Since the evaluation pairing is
non-degenerate, this will imply 7° = 0, which is equivalent to 1 = 0.

Step 1 (1 wvanishes on S): By assumption we have ®,(n) = 0 for all v € V. By
Lemma 3.1.12 this is equivalent to (v A vg A --+ A Uk,nb)ev = 0 for all v € V and
va, ..., v, € v, Thus, we have

Dy(n) =0 VoeV < (1) =0 VYEES. (3.3.3)

Furthermore, n € ker(iy), meaning i,(n) = 0, is equivalent to (iy,(n),3)ev = 0 for all
B e /\k_2 V* because the evaluation-pairing is non-degenerate. Moreover, using that i,
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is dual to wedging with w by (3.1.7), we get n € ker(iy) if and only if (n,w A B)ey = 0
for all § € /\kiZV*. Let £ =&, AvgA--- Avg. Then, & :cu/\v:b,,/\-u/\v,"c since {Z, = w.
Therefore, by (3.1.11), we get

@,/\vg/\---/\vk,nb v = —1k?7,(,u/\v|’/\---/\vb ev = 0.
3 k

So we obtain
neker(iy) < (£,1)ev =0 VEES,. (3.3.4)

Since (-,1")ey = 0 is a linear condition, we conclude (£,7°)ey = 0 for all £ € S by
combining (3.3.3) and (3.3.4).

Step 2 (S = /\k V' ): We choose a symplectic basis e1,e_1, ..., ey, e_, for V. It suffices
to show that each pure wedge e;; A---Ae; isin S.

If there exists j € {£1,...,£n} such that j € {i1,...,ix} but —j & {i1,...,ix}, then
clearly e;; A---Nej, € S; € S by the definition of S;. In particular, this always holds if
k is odd. So we may from now on assume that k = 2m is even.

It remains to show e;; Ae_j; A---Aej, Ne_j,. € S for ji,...,5m € {1,...,n}.
Abbreviate ey = ej, Ne_j, A---Aej, ANe_j,.. Define R :={1,...,n}\{j1,...,jm} Recall
that {, =e; Ae_1+---+ey, Ae_y (see Example 3.1.9). Note that by definition of R and
Sy we have

(ejl Ne_j + ZeT A e_T> Nej=E,Ney €8s. (3.3.5)

reR

Moreover, by definition of R and S;, we also have
(er+ej)AN(e—r —e_j) Neg €81
for all » € R. Expanding this expression we obtain
(er+e€j,)AN(e—r —e—j) Neg=(er Ne—pr —ej, Ne—j,) Aey+ (terms in Sy).

Thus, we conclude that (e, Ae_, —ej; Ae_j ) Aey € S for all r € R. Subtracting the
sum ) ple, Ae—p —ej Ae_j) Aey from (3.3.5) we get

(IRl +1)ej, Ne—jy A---Nej, Ne—j, Neg €S.

7jm

Since Char(K) = 0, we obtain ej; Ae_j; A---Aej, Ae_j, € S. This completes the
proof. O

We will also need the following more technical version of Proposition 3.3.1.

Proposition 3.3.2. Let V be a symplectic space of with dimension 2n >4, L, L' CV
Lagrangian subspaces with dim(LNL') =n—1, and n € \*V such that ®,(n) = 0 for
allve LUL'.

(i) If k <n—1 and n € ker(iy,), then n € N*(LN L.

(it) If k=n+1 and iy(n) € N" (LN L), thenne N"TH (L + L').

75



Proof. By Lemma 3.1.8 there exists a symplectic basis e1,e_1,...,e,,e_, for V such
that
L={e1,...,en) and L' '={(e_1,es...,¢ep).

We first prove the first statement (i). For this we let S be the span of S; USs for the
sets

k ! 1
S = UAUQ/\"'AUkG/\ V‘UGLUL and vg,...,V €V

and
k
ng{ﬁw/\vg/\--J\Uk G/\ V‘viEV},

where, again, &, € /\2 V is the preimage of w under the induced musical isomorphism
b: A2V — A2 V* (see Example 3.1.9).

If ®,(n) =0 for every v € LU L’ and n € ker(i,), then exactly as in Step 1 in the
proof of Proposition 3.3.1 we deduce

(&,7)ev =0 forall € €S. (3.3.6)

Note that es, ..., e, is a basis for L N L'. So, in terms of the basis e; (|.J| = k) for
A"V, the desired conclusion n € A"(L N L') is equivalent to the fact that 7 is a linear
combination of those ey with J C {2,...,n}. Due to Example 3.1.9 this holds if and
only if 7” € A¥V* is a linear combination of those e/ with I C {=2,...,—n}, where
elel ... " e™ e V* is the dual basis. In other words, the desired conclusion holds if
and only if the e’-coefficient of 7)” is zero whenever I is not contained in {—2,...,—n}.

By Example 3.1.2 the e’-coefficient of 7" is (e7,7”)ev. So 7 € AP(L N L) is equivalent to
(eil JANRIWAN eik77]b)ev =0 (337)

if at least one of the indices i1, ...,%; is equal to —1,1,2,...n. Therefore, combining
Equation (3.3.6) and Equation (3.3.7) it suffices to show that

er=ey N---Nej, €S if {ig, ... i} N{-1,1,2,... ,n} # 2.

We will prove this using a case analysis where we distinguish if e; contains only singles,
ie., if +i € I, then Fi ¢ I, or also pairs e; A e_;.

Case 1 (The wedge ey only contains singles): By assumption we know that at least
one of the indices i1, ...,y is contained in {—1,1,2,...,n}. We denote this index by j.
Then, by choosing v = e;, we obtain e; € § by definition of S. This proves Case 1.

Case 2 (The wedge ey contains at least one pair): We may assume that e;; A e_;;
is the pair occurring in e;, and write the wedge ase;; Ae_;; Aej; A--- Ae; and set
ey =€ AN Nej. Set

R = {re{l,...,i:,...,p} r,—r@é{ig,...,ik}}.
By the definition of R and &; the terms

(er +e€i,) N(e—r —e_i;) Ney (3.3.8)
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are contained in S for all » € R. Expanding the term in 3.3.8 we obtain
(er +ei,)N(e—p —e_iy) Neg=(er Ne—p — ey Ne—iy) Ney + (terms in Sy),
and hence we conclude that for all r € R
(er Ne—p —ej, Ne—j) Ney €S. (3.3.9)

Recall &, = Ae7t+ .-+ Ae™" (see Example 3.1.9). Using the definition of R and
So, we obtain

(eil Ne_i +Zer/\e_r> Nej=E,Nes €8s (3.3.10)
reR

Therefore, subtracting > p(e; Ae_r —e;; Ae_jy ) Aey from (3.3.10) and keeping in mind
(3.3.9), shows that
(|IR| 4+ 1)ei;, Ne—iyy Ney €S.

Since Char(K) = 0, also e;, Ae_;; Aey € S. This proves Case 2.
Next we will prove the second statement (ii). Let S be the span of S; U Sy for the
sets

n+1
Slz{vAv2/\---/\Un+1€/\ 14 ‘UELUL/ andvg,...,vnﬂevl}

and
n+1 . .

Sy = {gw/\ej3 N Nej,,, € /\ | ‘ {Jay - s Jny1} # {—2,...,—n}}.
Similar to before, it suffices to show that e; = e;; A---Ae;, ., is contained in S whenever
I #{1,-1,-2,...,—n}. Fix such an [I. Since |I| = n + 1, there exists i € {1,...,n}
such that i, —i € I. So we can write e; = ¢; A e_; A ey where J = I\ {i,—i}. Note that
J #{=2,...,—n} since I # {1,—1,...,—n}. Thus, {, A ey € S3. Now the arguments
from Case 2 in the proof of (i) apply without any changes. O

We choose a symplectic basis e1,e_1,...,¢en,e_, of V and define V' as {(e,,e_,)* =
(e1,6-1,. - en—1,6_(p_1)). Any n € /\k V' can uniquely be written as
n=mAey, Ne_p+naANe,+n3Ne_p+n4, (3.3.11)

where 71 € A2V na,n3 € A"V’ and ny € A" V’. The next Proposition character-
izes in terms of 11,712,713, N4 when 7 is in the Lagrangian Grassmann cone.

Proposition 3.3.3. Suppose we have written n € /\k V asin (3.3.11), and assume that
n € Gr,(V). Then one of the following holds:

(a) It holds
m =0, mn3€CGr (V') and ny=0.

Moreover, no and ns are multiples of each other, that is, either 1o = Ang orns = A
for some A € K.
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(b) The n1,m2,13,n4 are all nonzero. Moreover, it holds
m e C/;’\riso(n - 27 V/)v n2,1M3 € aL(V/>7 N4 € é\r(na V/)7
Ly, N Lpy =Ly, and Ly, + Ly, = Ly,.

Proof. We abbreviate L' = L, N V'. Note that dim(L’) > dim(L,) — 2 = n — 2 because
V! C V has codimension 2. Moreover, since L' C V' is isotropic, we also know that
dim(L) < dimT(V,) =n — 1. Thus, n — 1 > dim(L’) > n — 2. We proceed by considering
cases based on the dimension of L’. More precisely, we will show that the statement in
(a) holds if dim(L’) = n — 1, and the statement in (b) holds if dim(L") =n — 2.

Case 1 (dim(L') = n — 1): Then L' C V' is Lagrangian. Moreover, L' C L, has
codimension one, and so there exists a vector v € L,, such that

L,=L& (v). (3.3.12)
Below we will show that in fact
the exists a vector w € (e, e_y) such that L, = L' & (w). (3.3.13)

Then, if vq,...,v,—1 is a basis for L', it holds L, = L' @ (w) = (v1,...,vp—1,w). There-
fore, as w = ae_,, + be, for some a,b € K, we can conclude (up to constants)

N=vi A Avp_1 Aw=(avy A+ - ANvp—1) N e_p + (bvg Avp—1) A ey.

Hence n1,m4 = 0,12 = bvi A---Av,—1 and n3 = avi A+ - - Avy—1. This proves the statement
in (a) of Proposition 3.3.3.

It remains to prove the claim in (3.3.13). We write v = v/ + w with v/ € V’ and
w € {e_p, e,). It suffices to show v' € L', because then

Ly=L® @=L +w) =L & w).
Because L' C V' is Lagrangian, it holds
LI'={ueV'|wul)=0forallte L'} = (L) nV,

where the second equality holds due to the definition of (L')*. Therefore, since v’ € V'
by definition, it suffices to show v’ € (L')*.

Keeping in mind that L, is Lagrangian, (3.3.12) shows that v L L/, i.e., v € (L)*.
Moreover, w | L' because w € {en,e_y), L’ C V' and (e,,e_y,) L V'. Since v/ = v — w,
this shows that v’ € (L')*, completing the proof (3.3.13).

Case 2 (dim(L’") = n — 2): In this case we can write L, = (e, + u,e_, +v) @ L’ for
some u,v € V'. Choose a basis v1,...,v,_2 of L', and set 71 := vy A+ Av,_2. Then it
holds (up to scalars)

n=mA (en+u)A(e_p+v)
=mAegANe_p—(MAV)ANen+ (MmAu)ANe—p+m1 AuAv,

so that n2 = —m Av, i3 = m Au and ng = m A u A wv. Thus, it will suffice to show
that vy, v9,...,v,_9,u,v are linearly independent. Indeed, if they are independent, then
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N1,7M2,M3,M4 are all nonzero elements of the Grassmann cone and its easy to see that
the identities L,, N Ly, = Ly, and L, + Ly, = L,, are true. As we already know that
L,, = L' s isotropic, in order to see that L,, and L,, are Lagrangian, it suffices to check
u,v L L'. However, this follows from the fact that for all £ € L’ it holds

w(u, ) = w(en, l) +w(u,l) = wle, +u,f) =0, (3.3.14)

and similarly for v. Here the first equality holds because L’ C V’ 1 e, and the last one
because (e, + u,e_, +v) & L' = L, is Lagrangian by assumption.

Arguing by contradiction we assume that vy, vs,...,v,_2,u, v linearly dependent, so
that we can write v = Au + v’ for some A\ € K and ¢ € L. But then

w(en +u,e_p +v) =w(en, +u,e_p + Au+£)
=w(en,e—pn) +w(en, Au+L) +w(u,e_,) + Aw(u,u) + w(u, )
—14+04+040+0=1,

contradicting the fact that e, +u,e_, +v € L, and that L, is Lagrangian. Here we used
that w(en, Au+¢) = 0 = w(u,e_y,) since Au+ l,u € V' L ey, e_pn, w(u,u) = 0 by the
anti-symmetry of w, and w(u,?) = 0 by (3.3.14). This shows that vi,ve, ..., vp_2,u,v
linearly independent, completing the proof of Case 2. O

3.4 Universality Result for the Lagrangian Grassmannian

In this section we prove the first main result of the article, which we state here again for
the convenience of the reader.

Theorem 3.4.1. Let (V,w) be a symplectic vector space of dimension 2n > 6, and let
n € ker(iy) C A\" V. If ®,(n) € Gr,(Vy) for allv € V, then n € Gr,(V).

Remark 3.4.2. The Main Theorem 3.4.1 is wrong if dim(V') = 4. Indeed, if dim(V') = 4,
then Vj, is a two dimensional symplectic space, and thus Gry(V,) = /\1 Vo = V. So
®,(n) € Gry,(V,) for every 5 € ker(i,,). But there clearly exist n € ker(i,) € A®V that

—

are not in Grp, (V).

If V,W are symplectic spaces of respective dimensions 2n and 2m, a Lagrangian
Grassmann cone preserving map (LGCP map) from V to W is a linear map

@ : ker(iy, ) C /\n V' — ker(iy, ) C /\m w

such that ¢ (@L(V)) - aL(W) For example, for any v € V, the maps ®, are an
LGCP map from V to V, (see Example 1.1.3(2) in Chapter 1).

As an immediate corollary we get that the Lagrangian Grassmann cone can set-
theoretically be defined by pullbacks of the Lagrangian Grassmann cone Grp,(K*) along

all maps that preserve the Lagrangian Grassmann cone (compare with [KRPS08, The-
orem 3.4]).
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Corollary 3.4.3 (Universality for the Lagrangian Grassmannian). Let (V,w) be a sym-
plectic space of dimension 2n and n € ker(i,) € A" V. Then the following are equivalent.

1. ne Gr(V);
2. ®(n) € é\rL(K4) for every LGCP map from V to K*.

Throughout this entire section we assume that n € ker(i,) € A"V satisfies the
assumption in the Main Theorem 3.4.1. Moreover, we can without loss of generality
assume that 7 # 0.

We will again write n as in (3.3.11). Namely, we choose a symplectic pair e,,e_, € V
and write V'’ = (e,, e_,)". Then 7 can uniquely be written as

nN=mANepNe_n+n2Ne,+n3Ae_p+ N4, (3.4.1)

where n; € A" 2V, mg,m3 € A" 1V and n4 € A" V'. Note that 7 then has one of the
following zero patterns, where ”*” stands for "nonzero”:

M M2 M3 M4 | 72 M3 M4
© 0 0 0 0]+ 0 0 0 (8
() 0 0 0 x|[x*x 0 0 =« (9
2) 0 0 * O0|=*x 0 =x 0 (10
3) 0 0 =x x| *x 0 x x (11)
4 0 % 0 0|=x = 0 0 (12)
5) 0 % 0 x|x % 0 =« (13
6) 0 = * 0= =x= x 0 (14
(7) 0 x % x| x % x x (15)

We will split the proof of the Main Theorem 3.4.1 into different lemmas which are based
on these zero patterns.

We will often apply Proposition 3.3.1 and Proposition 3.3.2 to 11,792,713 or n4. To
check the assumptions in Proposition 3.3.1 and Proposition 3.3.2 we will make use of
the following lemma.

Lemma 3.4.4. Forn e A"V consider the decomposition in (3.4.1). Then n € ker(i)
if and only if m € ker(i,) € A"V, m2,ms € ker(iy) € A"V and iy(na) = —n1.

Proof. Since 1, € /\"_2 V' and e,,e_, L V' it follows from the formula (3.1.2) for i,
that

iw(Mm A en N e—pn) =iu(m) Aen Ae_y + (_1)(n71)+n71w(6n7 e_n)Mm
=i, (M) Nen Ae_p +n1.

Similarly, one checks iy, (12 A e) = i, (n2) A ey, and i,(n3 A e—p) = iw(n3) A e—y,. Hence
iw(n) = iw(m) Aen Ae—n +iu(m2) Aen +iw(n3) Ae—n + (iw(na) +m).
From this the desired equivalence easily follows. O

Moreover, we will frequently apply Proposition 3.3.3 to ®,(n). To do so the following
observation will be useful. For its formulation, note that for v € V' there is a canonical
isomorphism V,, 2 (V'), & (en, €—n).
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Observation 3.4.5. Let n be as in (3.4.1) and v € V'. Then, under the canonical
isomorphism V,, = V] & (en, e_y), it holds

D,(n) = Py(m) Aen Ae—p + Py(m2) A ey + Py(n3) A ey + Poy(na). (3.4.2)

After these preliminary observations we can now start with the proof of Theo-
rem 3.4.1. First, we will rule out all the non highlighted zero patterns.

Lemma 3.4.6. 1 cannot have zero pattern (1),(3),(5),(7), or (8) — (14).

Proof. We will first show that if n; # 0, then 72,13 and n4 are also nonzero. So 7 cannot
have zero patterns (8) — (14).

Let n; # 0. Since 1 € ker(i,), by Lemma 3.4.4 also n; € ker(i,) € A" 2V’. But
then according to Proposition 3.3.1, there exists v € V/ such that ®,(n;) # 0. Therefore,
applying Proposition 3.3.3(b) to

Dy(n) = Cy(m) Nen Ae—p + Poy(m2) Aen + Py(n3) Ae—pn + Poy(n4)

we can conclude that @, (1), ®y,(n2), y(n3) and P, (n4) are nonzero. This then implies
that 72,3 and n4 are nonzero as well.

We may assume 7; = 0 from now on. We will show that then n4 = 0, that is, n can
not have zero patterns (1), (3),(5) or (7). Arguing by contradiction assume 74 # 0. By
Lemma 3.4.4 i,(n4) = —n1. By assumption 71 = 0 and therefore clearly n4 € ker(iy,).
Similar as before, we may invoke Proposition 3.3.1 to find v € V’ such that ®,(n4) # 0,
and then apply Proposition 3.3.3 to ®,(n) to conclude that ®,(n;) # 0 for i = 1,2, 3, 4.
Therefore also n; # 0 for i = 1,2,3,4. But this contradicts the assumption n; =0. [

So we have shown that 7 has one of the highlighted zero patterns. Next, we will prove
the Main Theorem 3.4.1 if  has zero pattern (2) or (4).

Lemma 3.4.7. If n has zero pattern (2) or (4), then n € (/}\rL(V).

Proof. Let n have zero pattern (2). Then, n = 73 A e_,,. Choose v = ¢, and note
that then there is a canonical identification V,, = V’. Using the formula (3.1.15) for
®,, we obtain ®,, () = (—1)""lns, which by assumption lies in Grr,(V’). Therefore,
n=mn3Ne_, € (/}\rL(V) since e_,, 1 V'. If 5 has zero pattern (4) we proceed analogously
using v = e_,,. O

So we are left to show that the Main Theorem 3.4.1 holds if n has zero pattern
(6) or (15). In particular, ny and 13 are nonzero. We saw in the proof of Lemma 3.4.7
that choosing v = e, implies that 1,73 € Gr.(V'). So Ly,, Ly, C V' are well-defined
Lagrangian subspaces. In order to prove the Main Theorem 3.4.1, we will first show that
n—2<dim(Ly, N Ly,) <n-—1.

Lemma 3.4.8. If n has zero pattern (6) or (15), then dim(L,, N Ly,) > n — 2.

Proof. We choose v = e, + e_,, and consider ¢,(n A e, A e_y,) where 1, € /\n*2 V.
Using the formula (3.1.12) for ¢, we get
ou(m Nep Ne_y) = (—1)("_1)_1w(v, en)m A e_n+ (=1)"tw(v,e_n)m Aey
= (1) 'm A (e—n + en),
(—1)"71771 Av
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since the first (n — 2) summands in (3.1.12) are zero because v L V’. After projecting
to V, this will become zero, i.e., we get ®,(m A e, A e_p,) = 0. Similarly, one can
show ®,(n2 A ey) = —(=1)""na, ®y(n3 Ae_y) = (—1)" 13 and ®,(n4) = 0, where we
implicitly use the canonical identification V,, = V’. So by assumption we get

Grr (V') 3 @y(n) = (—=1)"n2 + (—1)" .

Thus, 12,713 and 1y — n3 are all contained in (/}\rL(V’ ). But then by Lemma 3.1.4 we have
that
dim(Ly, N Ly,) > (n—1)—1=n—-2.

This completes the proof. O
We can now complete the proof of the Main Theorem 3.4.1.
Lemma 3.4.9. If n has zero pattern (6) or (15), then n € (/}\rL(V).

Proof. Because of Lemma 3.4.8 we know dim(L,, N L,,) € {n —2,n — 1}. We will make
a case distinction. The proof will show that if dim(L,, N L,,) = n — 1, then n has zero
pattern (6), and if dim(L,, N L,,) = n — 2, then 1 has zero pattern (15).

Case 1 (dim(Ly, N Ly,) = n —1): Then 7y and 73 are multiples of each other. Let
v € V' be arbitrary. Then, by Observation 3.4.5 we have

Dy(n) = Pu(m) Nen ANe—n + Py(n2) A ey + Pu(03) A ey + Py(ma),

which by assumption lies in é\rL(Vv). Since ®,(n2) and ®,(n3) are multiples of each
other, Proposition 3.3.3 shows that ®,(n1) = 0 and ®,(n4) = 0 for all v € V'. As
m € ker(i,) € A" 2V’ by Lemma 3.4.4, it follows from Proposition 3.3.1 that 1, = 0.
Consequently, i.,(n74) = —n1 = 0 due to Lemma 3.4.4, and thus also 4 = 0 thanks to
Proposition 3.3.1.

Since 1y and 73 are multiples of each other, and because 171 = 0 and 74 = 0, we can
write n = maAen+n3ANe_n, = naA(en+Ae_y,) for some A € K. Therefore, as 12 € é\I'L(V/)
and e, + Ae_, L V' we conclude n € (/}\rL(V). This completes the proof of Case 1.

Case 2 (dim(Ly, N Ly,) = n—2): Observe that for every v € Ly, U L,, either ®,(n2)
or ®,(n3) is zero. Thus applying Proposition 3.3.3 to

‘I’v(ﬁ) = @v(nl) Nen Ne_p+ (I)U(UQ) Nen+ cl)v(n?)) Ne_p+ ‘1%(774)

shows that ®,(m1) = 0 and ®,(ns) = 0 for all v € L,, U L,,. Therefore, and due
to Lemma 3.4.4, we can apply Proposition 3.3.2(1) to m; € /\(”_1)_1 V' to conclude
that 7 € /\(”_1)_1(Ln2 N Ly,). Consequently, i, () = —m1 € /\(”_1)_1([/,72 N Ly,) by
Lemma 3.4.4. Hence, ny € A" V(L,, + L,,) follows from Proposition 3.3.2(ii).
By Lemma 3.1.8 there exists a symplectic basis e1,e_1,...,en—1,€_(;,_1) of V' such
that
Ly, = (e1,e2,...,en—1) and Ly, = (e_1,€2,...,€p_1).

Set W := (e1,e_1, e, e_p). It follows from the above and the decomposition (3.4.1) that
we can write
nN=exN---Nep_1NE
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for some £ € A\ W. Choosing v = €_(n—1) shows that

Gr(Vy) 2 @y(n) = ea A+~ Aena A€,

where we implicitly use the canonical identification Vi, = ({e;, e—;}ixn—1) (this uses the
assumption n > 3 from the Main Theorem 3.4.1). This implies £ € Gr,(W). Therefore,
n € Gr,(V) because W L V'. This completes the proof of Case 2. O

3.5 Topological Noetherianity of the Dual (ker.,)*

3.5.1 Statement of the Noetherianity Result

Let again K be a field of characteristic zero. For each n € N we denote by V,, the
symplectic vector space with a fixed symplectic basis ej,e_1,...,e,,e_,. For ease of
notation we will abbreviate the spaces ker(i,,) introduced in Section 3.2.2 by

ker,, := ker(i,,) C /\n V.

Observe that the embedding

n n+1
Meyyq - /\ Vo — /\ Vat1, n—=nAepta
restricts to an embedding
ker,, — ker,41 .
Indeed, for all n € ker,, we have i,(n A ept1) = iw(n) Aepsy1 = 0 A epp1 = 0, ie,

NN ent1 € kerpq1, since e, is orthogonal to V,,. So we can define the direct limit

kery, := lim ker,,
n

. Meqy Meg Mey
:= lim ( kery — kerg —= kerg —— -+ .
n

Explicitly, this is the set of infinite wedges
ker,o = {nn ANepnt1 Nepgo A ’ Nn € ker, and n € N}.

Next, we want to define the infinite symplectic group Sp(Vs). The obvious embedding
V= V41 induces an inclusion Sp(V;,) < Sp(V,,41) by sending a matrix A € Sp(V,,) to

=4 € Sp(Viar),
i
where the order of the basis on V11 is e, e—1,...,ent1, €_(nt1)- Taking the direct limit
over these inclusions we define
Voo := h_r)n Vi

n
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and
Sp(Veo) = 1im Sp(V5,).
n
The actions of Sp(V},) on ker,, introduced in Section 3.2.2 induce an action of Sp(Vs) on
keroo, and hence also on the dual space (ker,)*. Since every ker,, is Sp(V},)-irreducible
(Theorem 3.2.3), kery, is an irreducible Sp(V4)-representation.

For Theorem 3.5.1 below, it will be important to consider (kers)* not just as a vector
space, but as an affine scheme. For this we recall that for any field K (not necessarily
algebraically closed) and any K-vector space W (not necessarily finite dimensional) there
are canonical identifications

W* = Spec (Sym(W))(K) C {closed points in Spec ( Sym(W))} .

So Spec (Sym(W)) can be seen as an enrichment of W* to an affine scheme. From now
on we will, for any vector space W, denote by W* the affine scheme Spec(Sym(W)).
We can now finally state our Noetherianity result.

Theorem 3.5.1 (Noetherianity). The dual (kerso)* of the Sp(V)-representation kers,
is topologically Sp(Vao)-Noetherian. That is, every descending chain

(ketoo)* 2 X1 D X9 2 X3 2D -+
of Sp(Vo)-stable closed subsets stabilizes.

Given that any closed subset X of an affine scheme corresponds uniquely to a reduced
closed subscheme X.q whose underlying topological space is X (see [GW10, Proposition
3.52] ), we could express Theorem 3.5.1 equivalently by stating that any chain of Sp(V)-
stable reduced closed subschemes in (kery,)* stabilizes.

3.5.2 Proof Strategy for the Noetherianity Result

In this subsection, we will outline the strategy we will use in order to prove Theorem 3.5.1.
More details will be given in Section 3.8.

Let X C (kerso)* be a closed subset. We denote by dx € {0,1,2,...,00} the lowest
degree of a nonzero polynomial in the radical ideal Iy C Sym(kery,) defining X. It will
suffice to show that any X with dx < oo is topologically Sp(Vy)-Noetherian. We will
proceed by induction on dx to show that this holds. So we assume 0 < dx < oo and
that all Sp(V4,)-stable closed subsets Y with dy < dx are Sp(V,)-Noetherian.

We choose a polynomial p € Ix with deg(p) = dx and assume that a specific variable
(which we will explain in more detail in Section 3.7.4) e; is a variable of p. We then
consider the formal partial derivative

_ 9
1= Oeg
and define
Y :=V(Sp(Vx) -q) and Z:= X[1/q],

where X[1/q] is the open subset of X where ¢ is nonzero. Since ¢ has degree at most
dx — 1, we have 0y < dx and hence the closed Y defined by the orbit Sp(Vy) - ¢ is
Sp(Vs )-Noetherian by the induction hypothesis.
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The main effort to prove Theorem 3.5.1 will be to show that, for some m € N large
enough, Z is topologically SL(E_)n-Noetherian, where the precise definition of the
subgroups SL(E_s)m < Sp(Vao) will be given in Section 3.7.1.

Proposition 3.5.2. For all large enough m € N the open subset Z := X[1/q] C X is
SL(E_oo)m-stable and topologically SL(E_)m-Noetherian.

To prove that X is topologically Sp(V,,)-Noetherian take a chain
X2OX12X02D -
of Sp(V)-stable closed subsets in X. It will follow from the definition of Y and Z that
Xi=(YNX;)USp(Vo) - (ZNX;).

Since Y and Z are both topologically Noetherian relative to suitable groups, the chains
(YNX;)ien CY and (ZNX;);en C Z will stabilize. Consequently, the chain (X;);eny € X
stabilizes, showing that X is topologically Sp(Vs)-Noetherian.

3.6 Preliminaries for the Proof of Proposition 3.5.2

In this section we collect some elementary preliminary results that will be needed in the
forthcoming discussion.

3.6.1 An Equivariant Isomorphism

For any vector space W of dimension n the Hodge *-isomorphism identifies /\"_k w
with A® W*. We can combine this with the musical isomorphism b as follows.

Consider V,, as introduced in Section 3.5, with E,, and E_,, denoting the Lagrangian
subspaces (e1,...,e,) and (e_1,...,e_y) respectively. Note that the musical isomor-
phism b : V' — V* defined in (3.1.9) induces an isomorphism b : /\’C V — /\k V*, which
further restricts to an isomorphism b : A* E,, — A*(E_,,)* (see Example 3.1.9). That is,
for cach € € A" E,, we have & € A\F(E_,)*. Note that the pairing

/\kEn x /\”_kEn L/\"EH%K

and the evaluation pairing (-, )ey : A" F_n x A¥(E_,)* — K are both non-degenerate.
Thus there exists, for each 0 < k < n, an isomorphism

n—k o k
¢o: N\ En— )\ E-n
that for all n € A" " E, and ¢ € \* E,, satisfies

EAn= (¢(n>7§b)ev * €[n)s (361)

where e, :=e1 A---Aep € N\" E, is the canonical generator.
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Example 3.6.1. The isomorphism ¢ satisfies
dlekr1 N Nep) =e_1 A+ ANe_y.

More generally, for any I C {1,...,n} with |I| = n — k we have ¢(e;) = te_je for an
appropriate sign +. This can be checked using Example 3.1.2 and Example 3.1.9.

The following twisted equivariance property of ¢ will be central.

Lemma 3.6.2. Let A € Sp(V},) be such that A(E,) C E,, and A(E_,)) C E_,,. Then for
alln e N E, we have
¢(An) = det(Alg,) Ap(n).

Proof. Since the evaluation-paring is non-degenerate, it suffices to show that for every
¢ e \* E, we have
(¢(An), & )ev = det(Ag, ) (Ad(), & e,

or equivalently,
($(AN), € )ex - e = det(Al, ) (AG(1), ey - €jn), (3.6.2)

where ep,] = e1 A --+ A e,. By the defining property (3.6.1) of ¢ we can write the left
hand side of (3.6.2) as

(6(An), &)ex - efu = € A An
Recall from (3.3.2) that for all A € Sp(V,,) and n,& € A*V we have
(A, € )ev = (1, (A7) )ev- (3.6.3)
Combining this with (3.6.1) and (3.6.3) we obtain for the right hand side of (3.6.2)
det(A], ) (AB(0), € )ov - ey "= det(Alg, @), (A1) - e
(3.6.1)

=" det(Alg,) (A ¢ An),

By the definition of the determinant, and as A(E,) C E,, the action of A on \" E,, is
just multiplication with det(A|g,). Hence

det(Alp,)(A7'EAn) = A- (AT'EAn) = €N An.

Therefore, both sides of (3.6.2) equal £ A An. This completes the proof. O

3.6.2 The Root System of sp(V},)

In this subsection we recall some standard facts about the root system of sp(V;,) and
use this as an opportunity to fix notation. We refer the reader to [FH91, Section 16.1]
for more details.

In the following we will write £}, , for the endomorphism of V,, mapping e, to e and
all other basis vectors to zero. The elements

Hz' = Ei,i — E—i,—i (1 < ) < n)
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span the Cartan subalgebra b, of sp(V},). We use the notation Li,..., L, € b} for the
dual basis.
The root system of sp(V},) is then as follows. For 1 <i,7 <n

Xij=Eij—FE_j_j€sp(Vy) (3.6.4)
is a root vector for the root L; — L; € b;. Moreover, for ¢ # j
Y,i=F,_j+FE;_; and Z;;=F_;; +E_j;
are root vectors for the roots L; + L; € b}, and —L; — L; € by, respectively. Finally,
Ui=E;—; and V;=FE_;; (3.6.5)

are root vectors for the roots 2L; € b, and —2L; € b}, respectively.

We define a functional ¢ : by — K by £(>°7" a;L;) = cia1 + -+ + cpa,, where
c1 > -+ > ¢, > 0is a fixed choice of constants (this is not the same as in [FH91]). Then
the positive roots are

RY = {Li + Lj}i>j U{Li — Lj}i>;. (3.6.6)

3.7 Z is Topologically Noetherian

The main goal of this section is to prove Proposition 3.5.2. However, this requires
some preliminary work. The main ingredients for the proof are Proposition 3.7.2 and
Lemma 3.7.5. For the sake of clarity we will split these two results and their proofs into
separate subsections. Before we can come to these proofs, we however first have to make
some definitions.

Throughout this entire section let V,, be as in Section 3.5 and denote by F,, and E_,
the Lagrangian subspaces (e1,...,e,) and (e_1,...,€e_y).

3.7.1 The Groups SL(F_»)m

In this section we define the subgroups SL(F_)m of Sp(Vx) appearing in Proposi-
tion 3.5.2.

Let E_o be the direct limit along the canonical inclusions E_,, — E_(, 1), le.,
lim E_,. Analogous to the definition of Sp(Vs) we also define GL(E_) as the direct
limit lim GL(E-,) along the canonical inclusions. For each m € N we define GL(E_co)m
to be the image in GL(E_) of the shifting by m embedding

1, O
GL(E_o) — GL(E_o), A — <o A),

where 1, is the (m x m)-identity matrix, and the 0’s stand for the zero (m x oo)- and
(0o x m)-matrices. The groups SL(E_) and SL(E_ )., are defined analogously.

We are left to explain how we see these groups as subgroups of Sp(V,). For this fix
n € N. The group GL(E_,,) embedds into Sp(V},) via

g <9; 2) (3.7.1)
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where the order of the basis of V,, is e1,...,en,€e_1,...,e_y,. This induces the embedding
of Lie algebras gl(E_,,) — sp(V,),
—-Lt 0
L+— < 0 L> .

We will always identify GL(E_,) and gl(E_,) with their images in Sp(V;,) and sp(V;,).
Note that the root vectors X; ; defined in (3.6.4) span gl(E_,) C sp(Vx).

We obtain embeddings GL(E_~) — Sp(V) and gl(E_) — sp(V) by taking
the direct limit over these embeddings. Again, we will always identify GL(E_~) and
gl(E_o) with their images under these embeddings. We also use this embedding to see
SL(E_oc)m as subgroups of Sp(V).

3.7.2 The Spaces (kery)<

Fix n € N. Since V,, = E, ® E_,, we have the decomposition

N Vi = é} </\kEn®/\n_kEn> :

k=

where /\k EF_,® /\”_k E,, is the span of all wedges e;, A- - -Ae;,, with exactly k of the indices
i1,...,1y being negative. For each 0 < k < n we define the subspace (ker,); C ker, as
the space of all 5 € ker,, that can be written as a sum of wedges with k£ negative indexed

vectors, i.e.,
k n—Fk
(kery,)y := (ker,,) N (/\ E ,® /\ En> .

Similarly, we define
k

(kery)<p := @D (kery);.

=0
Due to the definition (3.7.1) of the embedding GL(E_,,) C Sp(V},) all the spaces (ker, )

are GL(E_j,)-stable. In fact, we have the following, explaining the representation theo-
retic significance of these spaces.

Lemma 3.7.1. The space ker,, decomposes as

n

ker,, = @(kern)k,

k=0

and for all 0 < k < n the space (ker,)y is an irreducible s\(E_,)-representation with
highest weight vector e_1 A--- ANe_g ANegr1 A--- Aey.

Proof. According to [FH91, p. 261], the decomposition of ker,, C A" V,, into irreducible
representations of sl,, is given by ker,, = @, _, Wn=bb) where W ("=t is the irreducible
sl,-representation with highest weight vector (in the convention of [FH91], which is
opposite to ours)

w0 = ey A Ay A €_(n—br1) N+ Aep.
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Clearly, w(™=?) ¢ (ker,);, and hence W(=bb) C (ker,,), since (ker,); is sl,-stable. Since
the subspaces (ker,); are pairwise disjoint, this implies Wn—bb) — (kery,)p. Therefore,
(kery,)p is sl(E_,)-irreducible and ker, = @;_, (kery)s.

It remains to check that e_1 A---Ae_g Aegy1 A--- Aey is the highest weight vector
of (kery,),. By (3.6.6) the positive root vectors of gl(E_,) C sp(V},) are the X; ; defined
in (3.6.4) with ¢ > j. But one can easily check that, for all 1 < j < i < n, the action of
Xijsendse_y A---Ae_p Aegyr A~ Aey to zero. This implies the desired result. [

The structure maps me,, ., : ker,, — ker, 1 map (ker,); into (ker,41)x. Thus we can
take the direct limit and define

(keroo ) := lim(kery ).
n

Then every subspace (keroo)r is GL(E_)-stable and s[(E_x )-irreducible with highest

weight vector e_q1 A--- Ae_p Aegy1 Aegypa A---. Moreover,
0
kero, = EB(keroo)k.
k=0

Finally, we define
k

(keroo) <k = P (kerso)s.

1=0

3.7.3 First Key Ingredient

The goal of this subsection is to prove the following proposition, which is the first key
result towards the proof of Proposition 3.5.2.

Proposition 3.7.2. The dual (kerso)%, is topologically SL(E_)m-Noetherian for all
k,m € N. B

The main technical ingredient of the proof will be Draisma’s main result in [Dral9]
about the topological Noetherianity of finite degree polynomial functors. But we have
to do some preliminary work before we can apply it.

For each n € N and 0 < k < n the spaces (ker,); are by definition subspaces of
/\k E_,® /\”_k E,. Recall from Section 3.6.1 that we have, for every 0 < k& < n, an

isomorphism
n—k o k
/\ E, — /\ E_,.

From Lemma 3.6.2 and the definition (3.7.1) of the embedding SL(E_,,) € GL(E_,)
it follows that this isomorphism is SL(E_, )-equivariant. Moreover, this isomorphism is
compatible with the structure maps, i.e., the diagram

e |

N By —— AV E_ (i)
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commutes, where the horizontal map on the right is induced by the obvious inclusion
E_, C E_(,11) (see Example 3.6.1). Therefore, we obtain SL(E_;)-equivariant embed-
dings

(kern)k R— /\k E ,® /\k E_,

that are compatible with the structure maps. Taking the direct limit we obtain an
SL(E_)-equivariant embedding

(kerog ) g — /\k E o® /\k E_o.

By taking the direct sum we also obtain an SL(F_ )-equivariant embedding

k . .
o (kerao)<k = PN Eose ® \ Eooo = WL (3.7.2)
=0

It follows from Lemma 3.7.3(1) and Lemma 3.7.4 below that the dual U* of the image
U :=Im(p) C W=F is topologically Noetherian.

o0

Lemma 3.7.3. The following statements hold:
1. A subspace U C W=E is SL(E_.)-stable if and only if it is GL(E_s)-stable.
2. Anideal I C Sym(W=E),, is SL(E_s)-stable if and only if it is GL(E_s)-stable.
The analogous statements with SL(E_s ), and GL(E_«)m hold as well.

Proof. Since the proof of both statements are similar, we only prove the second state-
ment. Assume that I C Sym(W=") is SL(E_u)-stable. Let f € I and A € GL(E_s) be
arbitrary. Choose n = n(f, A) € N large enough so that f € Sym(@fzo N E_ 9N E_p)
and A is the image of some A_,, € GL(E_,). Define A_(, 1) € SL(E_(;41)) as the
map given by A_1)(e;)) = A_p(e) for —n < i < —1 and A_gy(e_(ny1) =
(det(A_,)) " (e_(n+1)), and let A’ be the image of A_(, 41y in SL(E_). Then the action
of A_, and A_(,,; ) agree on E_,,. Hence they also agree on Sym(@F_y N E_n O\ E_p).
Therefore, A - f = A’ - f € I because I was assumed to be SL(E_u)-stable and
A" € SL(E_). As f € T and A € GL(E_) were arbitrary, this shows that I is
GL(E_)-stable. O

Lemma 3.7.4. If U C Wfoko is GL(E_o)m—stable then its dual U* is topologically
GL(E_x)m—Noetherian.

Proof. We start by showing that (ng )* is topologically GL(E_),—Noetherian. For

—00

every k,m € N consider the functor Fy, ,, : Vecxk — Veck defined by

k

FnV) =D (N @ ev)o N Era)).

=0

This is a polynomial functor of finite degree. So by applying Draisma’s Noetherianity
result in [Dral9] we deduce that the dual of the direct limit lim = F} ;, (K") is topologically
GLoo-Noetherian, where GLy, := hLQn GL(K™). But, up to the canonical isomorphism
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GL(F—00)m = GL(E_o), the action of GL(E_oo)m on W=F is the same as the action

oo
of GLoo on lim  Fj ., (K™). Therefore, (W_Sfo)* is topologically GL(E_«)m-Noetherian.

The rest follows from the following general claim. Let G be a group and W a G-vector
space such that W* is topologically G-Noetherian. Then, for any G-stable subspace
U C W, the dual U* is also topologically G-Noetherian.

To prove this claim we first observe that the map if; : W* — U™ induced by the
inclusion iy : U — W is G-equivariant and surjective. Indeed, as U is a G-stable
subspace, the inclusion iy is clearly G-equivariant, and thus the induced map i7; is also
G-equivariant. To prove surjectivity choose a projection 7 : W — U such that |y = idy,

or equivalently, so that the diagram

idy

/\

U—"Ysw _-—~"5U

commutes (m does not need to be G-equivariant). Applying the contravariant functor
Spec(Sym(-)) we get the commutative diagram

i«

which implies that i}, is surjective.

Now take a chain (X;);eny € U* of G-stable closed subsets. For all i € N we set
X; = (if)""(X;) € W*. Then (X;)iey € W* is a chain of G-stable closed subsets
because if; is G-equivariant and continuous. As W* is topologically G-Noetherian, we
deduce that the chain (X;);ey stabilizes. But, due to the surjectivity of if;, we have
X; = Z*U(Xz) for all + € N, and hence the chain (X;);cn also stabilizes. This proves that
U™ is topologically G-Noetherian. O

We can now prove Proposition 3.7.2

Proof of Proposition 3.7.2. We define U := ¢p((kers)<i) where ¢ is the embedding men-
tioned in (3.7.2). Then, because ¢ is an SL(E_)-equivariant embedding, we have
a SL(E_u)-equivariant isomorphism (kers)<; = U and hence also ((kerso)<g)* =
U*. In particular, U C V[/_SokO is SL(E_)-stable, and therefore, by Lemma 3.7.3, it
is also GL(E_)-stable. Lemma 3.7.4 then implies that the dual U* is topologically
GL(E_)m-Noetherian for every m € N.

Now take a chain (X;)ien C ((kerss)<k)* of SL(E_)m-stable closed subsets. Since
there is an SL(E_q)-equivariant isomorphism ((ker)<x)* = U™, this corresponds to a
chain (X;)jeny € U* of SL(E_ o )m-stable closed subsets. Note that by the second part of
Lemma 3.7.3 every element of the chain is in fact GL(E_)n,-stable. Using that, by the
above paragraph, U™ is topologically GL(E_x)m-Noetherian, we deduce that the chain

(Xi)ien stabilizes. Consequently, the chain (X;);cn stabilizes. As the chain (X;);en was
arbitrary, this proves that ((kers)<x)* is SL(E_s)m-Noetherian. O
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3.7.4 Second Key Ingredient

In this subsection we prove the second key ingredient for the proof of Proposition 3.5.2.
Before we can formulate it, we need to fix some notation.

For a Sp(V,)-stable closed subset X C (kerso)* let dx € {0,1,2,...,00} be the
lowest degree of a nonzero polynomial in the radical ideal Ix C Sym(kery).

Assume that X is such that dx < oo. Choose a (nonzero) polynomial p € Ix of
minimal degree dx. Consider the smallest integer k such that p € Sym((keros)<g), and
fix n > k such that p € Sym((ker,)<j). In words this means that the variables of the
polynomial p have at most k£ negative-indexed vectors and every variable in p is of the
form n, Aepi1Aepta/A- - for some n, € ker,,. Because (ker )y is an irreducible sl(E_)-
representation with highest weight vector e;, :=e_1 A---Ne_p Aegp1 Aegya A---, and
since I'x is sp(Vio)-stable, we may without loss of generality assume that p contains the
variable ey, . Set p; := p. We define ¢ € Sym(kery) as the formal partial derivative

= Opk
der,

Observe that for m > n the action of SL(E_ ), fixes ¢. Indeed, this follows from the
fact that for m > n the groups SL(E_o ), act trivially on V,, and the fact that the
action of g € SL(E_so)m on €py1 A epya A--- is just multiplication with det(g~!) = 1.

Recall that (kers )<y is GL(E_)-stable subspace of kers. So, Sym((kers)<x)[1/¢]
is an SL(E_s)m-stable subring of the localization ring Sym(kers)[1/¢]. In particular,
the map

i* 1 (keroo)*[1/q] — (keroo)Zy[1/d]

induced by the inclusion is SL(E_)m-equivariant. Also, if we define Z C (kers)*[1/q]
as the open subset of X where ¢ does not vanish, i.e.,

Z = X[1/q],

then Z is SL(E_s)m-stable.

We can now formulate the second key ingredient for the proof of Proposition 3.5.2.
The first part just summarizes the above discussion. The key part is the second state-
ment.

Lemma 3.7.5. For every m > n the map

i+ (keroo)*[1/q] — (keroo)%y[1/q]

induced by the inclusion is SL(E_x)m-equivariant. Moreover, the restriction of i* to Z
1 a closed embedding.

Lemma 3.7.6. There exists p, € Ix of the form

Pn = €1,4 + Tn,

where ef, =e_1 AN---Ne_pNepr1 A+, ¢ = gg’“ and r, € Sym ((keroo)<p—1)-
N <
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Proof. During the proof we will abbreviate e;, :=e_1 A---ANe_yANepp1 Negra A---. By
(3.6.5) the maps V; sending e; to e_; (and all other basis vectors to zero) are contained
in sp(V;,). Note that

(Vno---oVi)(er,) = er,,

where by abuse of notation we write (V;, o --- o Viy1)(es,) for the successive action

Vi (Va—1(- -+ (Visa(e,)) -+ ) of sp(V3) on ey,
First, we act with Vi1 on pg. Since X is assumed to be Sp(V4)-stable, the resulting
polynomial pgy1 is again in the ideal I'x. Moreover, pi41 has the form

Pt = Ver1(Pr) = €1,,9 + Tkt 1,

where ¢ = gp’“ and 7,11 € Sym((kerso)<g+1). To illustrate why pgyq is of this form, we
I <

consider the following example.
Example 3.7.7. Let ey € (kers )<y be a variable different from ey, , e.g.,
ey :6_1/\6_2/\63/\6_4/\~~Ae_k/\6k+1/\6k+2/\6,(k+3) Nepgqg N+

Let pr be the polynomial p; = (ejk)zej. Then, by the Leibniz-Rule, we get for any
L esp(Vy,)

()L

((er,)?es)

(ejk)GIkGJ + GIkL(GIk)BJ + €]k€]kL(€J)
= L((es )(2%@) + (e, )*L(es)

(er )7 + (e, )*Ley)

I,

=: L(C[k)q + TE41-

L

Note that for L = Vi1 we have L(es,) = e, ., and
L(€J) =e_1Ne_a2NesNe_4N--- N €—(k+1) N €pa N €_(k+3) N €pga N\

Therefore, the remainder 741 can indeed still contain variables in (kers )1, i.e., vari-
ables that have exactly k 4+ 1 negative indexed vectors.

From this example we can also see that the only variables in ryy; that are in
(kerso)g+1 are those of the form Vji1(n) for a variable n € (kers)r in pg different
from ey, .

Next, we act with Vg2 on pgy1. The resulting polynomial py,o will again be in Iy
since I'x is sp(V},)-stable. We compute

Prr2 = Vira(Pra1)
= Vip2(€r,1 0 + 7h11)
= Viera(er)a + (en.4, Vir2(9) + Vira(rh41))
=€ .9+ Tky2.

Observe that the remainder 79 is contained in Sym((kerso)<py2). Indeed, we clearly
have ey, | € (kerso)py1. Also Viyo(q) € Sym((keroo)<p1) since g = gg’; € Sym((kerso)r)

by construction. Finally, ry41 € (kerss)<g41 implies Viyo(r1) € (kerss)<p2.
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Similarly as for 7.1, the only variables of ri o that are in (kery,)xio are those of
the form Viy2(Viy1(n)), where 7 is a variable of py in (kery), different form ey, .
Iterating this construction we find a polynomial

Pn =e€r,q+ 1y € Ix

where now r, is not just in Sym((kers)<n), but in fact r, is in Sym((kerso)<n—1).
Indeed, if r, had a variable in (kery )y, then this variable would have to be of the form
(Vo0 Viy1)(n), where n is a variable of p; € (kery)y different form ey, . Recall
that by construction every variable in py, is in (kery)y € A¥ E_, @ A" " E,,. But the
composition

VnO“-OVk_H:/\kE*n@)/\n_kEn—’/\nE*"@/\oE”

maps any variable e different from ej, to zero. In particular, any variable n in (kery, )
different from e;, gets mapped to zero. Therefore, r,, does not contain any variables
in (kerss)p, so that r, € Sym((kers)<p—1). We again illustrate this by continuing the
example from before.

Example 3.7.8. In the example above, the only variable of r;1 that is in (kers)gy1 is
Vk+1(€]) =e_1Ne_gNe3sNe_4g4N--- A € (k+1) N €42 N € (k+3) N €pga N-re .

Hence, after applying Vi, o the only variable of rx19 in (kerso)gy2 is

Vk+2(Vk+1(€J)) =e_1Ne_a2ANesNe_4N--- N\ €—(k+1) A €_(k+2) A € (k+3) N €ya N--+.

So 742 € Sym((kerso)<i42). However, in the next step, when applying V.43 the remain-
der 743 will be in Sym((kers)<k+2) because the above variable gets send to zero by
Vik13 as it does not contain ey 3.

This completes the proof of Lemma 3.7.6. O

We will from now on abbreviate R = Sym(ker,) and R<;, := Sym((kers)<p). Recall
that Z := X[1/q| C (kers)*[1/q]. We denote by I, C R[1/q] the radical ideal of Z.

Lemma 3.7.9. The composition
i I
R<y[1/q] = R[1/q) — R[1/q]/I7

of the canonical inclusion i and the canonical projection mr, is surjective, i.e., for all
a € R[1/q| there exists b € R<y[1/q] such that a =b (mod Iz).

Proof. Note R = J,,cn R<m- Therefore it suffices to prove that for all m > n and all
a € R<,, there exists b € R<,, and k£ € N such that

b

a =
qk

(mod Iy).

We will prove this by induction on m. So fix m > n and assume the statement holds
for m — 1. Since (kers ), is an sl(E_ )-irreducible representation with highest weight
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vector ef,, = e_1 A+ -Ne_pm Aemi1 Aemia A+ (see Lemma 3.7.1), we get from [FHI1,
Observation 14.16] that there exists a basis {wq}aca,, of (kerso)m such that for any
basis element w,, there exist Li,..., Ly € s[(E_) such that successively acting on ey,
by Li,..., Ly yields w,, i.e.,

Ln(Ln-1(---(La(er,)) ) = wa.
Since {wq }aca,, is a basis for (kers)m, it suffices to prove the above claim for a = wy,.
From Lemma 3.7.6 we know that there exists r, € R<,—1 such that
Pn =€1,q+ 7y € Ix.
Proceeding as in the proof of Lemma 3.7.6, by successively applying the root vectors
Vat1, -+, Vin € 5p(V;,) defined in (3.6.5) we see that
Pm =€1,9 +Tm € Ix

for some 7, € R<pm—1. Choose Ly, ..., Ly € sl(E_4) such that successively acting on
er,, by Li,..., Ly yields w,. Recall that the rings R<,,—1 are gl(E_o)-stable. Thus, by
successively applying Li,..., Ly to p,, we get that

Waq + T;n €lx
for some r}, € R<;,—1. Dividing by ¢ in R[1/q] yields

7'/

1
wa—i-?m € 6IX gfx[l/q] =1y,

e, wy = ~Tm (mod Iz). Since 7, € R<py—1, by the induction hypothesis there exists
b € R<, and k € N such that
p b
Tm = — (mod Iz).
q
Hence w, = q,j—fl (mod Iz) with —b € R<,,, completing the proof. O

We now use this to show that the induced map 7* when restricted to Z is a closed
embedding.

Proof of Lemma 3.7.5. By Lemma 3.7.9 the composition 77, o4 is surjective. Now set
J := ker(nr, o4). Then, by the first isomorphism theorem, there is an induced isomor-
phism R<,[1/q]/J = R[1/q|/Iz. Applying the contravariant functor Spec(-) to

R<n[l/q) —— R[1/q]

| [

(=23

Ren[l/ql/J --=-- > R[1/q]/17

yields the commutative diagram

(kerse)%,,[1/q] +—"—— (kerso)*[1/q]

I [

o)

Spec(R<n[1/q]/J) <----- Spec(R[1/q]/Iz)



Recall that for any ring A and any ideal a C A the map Spec(A/a) — Spec(A) induced
by the projection A — A/a is a closed embedding with image V' (a). Since V(Iz) = Z by
definition of Iz, this implies that the restriction of i* to Z is a closed embedding. O

3.7.5 Poof of Proposition 3.5.2

We have established all necessary preliminary results for the proof of Proposition 3.5.2.

Proof of Proposition 3.5.2. With the same notation as in Section 3.7.4 fix some m > n.
Let (Z;)ien € Z be a chain of SL(E_ )m-stable closed subsets. By Lemma 3.7.5 the
restriction

|z Z — (kereo) <, [1/4q]

is an SL(E_o)m-equivariant closed embedding. Thus (Z));en = ((i*\z)(Zi))ieN is a
chain of SL(E_o)m-stable closed subsets in (kers)%,[1/¢]. By Proposition 3.7.2 the
dual (kers)%, is topologically SL(E_s)m-Noetherian. But then (kers)%, [1/q] is also
topologically SL(E_)m-Noetherian. So we can conclude that the chain (Z!);en stabi-
lizes. But as i*|z is an embedding, this implies that the chain (Z;);cy itself stabilizes.
This proves that Z is topologically SL(E_)m-Noetherian. O

3.8 Proof of Theorem 3.5.1

After having established Proposition 3.5.2 we can now give the detailed proof of our
Noetherianity result.

Proof of Theorem 3.5.1. As before, for any closed subset X C (kero,)* we denote by
d0x € {0,1,2,...,00} the lowest degree of a nonzero polynomial in the radical ideal
Ix C Sym(kery,) of X.

Observe that dx = oo if and only if X = (kero)*. So a chain

(keroo)* D X1 D X5 D -+

of Sp(Vy)-stable closed subsets is either constant or else there exists an ¢ € N with
dx, < oo. Therefore, it suffices to show that any Sp(V) closed subset X C (kery)* with
dx < oo is topologically Sp(Va)-Noetherian. We will prove this by induction on dx.

For the base case dx = 0, note that dx = 0 if and only if X = (). So the base case
trivially holds.

Now fix a Sp(Va) closed subset X C (kery)* with 0 < dx < oo, and assume that all
Sp(Vo) closed subset Y C (keroo)* with dy < dx are Sp(Va)-Noetherian.

Choose a nonzero polynomial p € Ix with deg(p) = dx and define g := %Dz as at the
beginning of Section 3.7.4. Set

Y :=V(Sp(Ve) -q) and Z:= X[1/q].

Then Y is a Sp(Vu)-stable closed subset with dy < deg(q) < deg(p) — 1 < dx, and so
Y is topologically Sp(Vs)-Noetherian by the induction hypothesis. By Proposition 3.5.2
there exists m € N large enough such that Z is SL(E_)m,-stable and topologically
SL(E_so)m-Noetherian.
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Take a chain (X;);en € X of Sp(V,o)-stable closed subsets. Observe that for all i € N
we have

X; = (Y N X;)USp(Vao) - (Z N X2). (3.8.1)

Indeed, fix a point p € X; (not necessarily closed). If p ¢ Y, then, by the definition of Y’
and Z, there exists g € Sp(V) such that g-p € Z, and hence g-p € Z N X; since X; is
Sp(Vso)-stable.

Since Y and X; are Sp(V)-stable closed subsets, their intersections (Y N X;);cn are
a chain of Sp(V)-stable closed subsets in Y. As Y is topologically Sp(V)-Noetherian,
the chain (Y N X;);en stabilizes.

Similarly, every ZNX; is SL(E_ )m-stable and a closed subset of Z (by the definition
of the subspace topology), and so the chain (Z N X;);cn also stabilizes.

Because the chains (Y N X;);en and (ZNX;);en both stabilize, it follows from (3.8.1)
that the chain (X;);cn itself stabilizes. As the chain (X;);cny was arbitrary, this proves
that X is topologically Sp(Vs,)-Noetherian. O

3.9 Lagrangian Pliicker Varieties and Applications

3.9.1 The Dual (ker,,)* as a Projective Limit

Before we can come to the applications of our Noetherianity result (Theorem 3.5.1), we
first have to find an alternative description of (kers,)* as a projective limit.

Recall that ker,, was defined as the direct limit ker,, := hLQn ker,, along the multi-
plication maps

n—1 n
Mme,, ker,,_1 C /\ V-1 — ker,, C /\ Vi, m— 1 A en.

Thus, as taking the dual turns direct limits into projective limits, we have

* * *

(keroo)™ = lim < . e, (kers)* T, (kerg)* Tea, (kerl)*> .

By Lemma 3.9.1 below, under the musical isomorphism, the duals mg, of the multipli-
cation maps correspond to the maps ®., defined in Definition 3.1.10. Therefore,

, ®, o, ®.
(keroo)”™ = lim < - —% kerg —> kerg —=» kerl) ,

i.e., the dual (ker,)* can be identified with the projective limit linn ker,, along the maps
O, : ker,, — ker,,_;. We will use this interpretation of (kers,)* in Section 3.9.2 below.

It remains to show that contraction maps are dual to multiplication maps, which is
contained in the next lemma. In its formulation, for a symplectic vector space V and a
nonzero v € V, we choose a section s, : V,, — v’ of the projection 7, : vt — v /{v) =
Vy, and define the multiplication m, as v A /\”_1 Sy, 1.€.,

1
mo: N Vo= N ViBL A ATt = 0 A S0(T1) A A $u(Ta1).

Using that s, is an isometric embedding, one can easily check that m,, restricts to a map
my : ker(iy, ) — ker(i,). Moreover, m, is independent of the choice of section s,,.
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Notice that, up to this point, multiplication has always been defined by wedging
with a vector from the right. Moving forward, it will be more convenient to consider
multiplication maps as wedging with a vector from the left. However, aside from a sign
change, these operations are the same.

Lemma 3.9.1. The restriction of the musical ismorphism

ker(io) € A"V 2 N = (ATV) I (er(i))”
s again an isomorphism, and the diagram

ker(i,,) RN ker (i, )

bvlg glb Vi

(ker(iy,))" M, (ker(iy,))"

commutes (up to the sign —1), where ®,, is the map defined in Definition 3.1.10.

Proof. Recall from (3.1.6) that vAe is dual to 4,. Hence the dual m* of m, = v AA" ' s,
is the composition

N've s Ny A A vy

But by (3.1.16) the diagram

—_—
bvlg glbv %lb Ve

. n—1 _x
/\n V* [ /\n—l ker(v) /\ Sy /\k—l ‘/v*

commutes (up to the sign —1). If we restrict to ker(i,) we see that the diagram in
Lemma 3.9.1 commutes (up to the sign —1).
It remains to show for each symplectic vector space V' that the composition

ker(in) € NV 2 \'(v) = ( A" V>* Testriotion, (eer (i)

is an isomorphism for n = 1 dim(V). By reasons of dimension, it suffices to show that
this map is injective. This translates into showing that for all € ker(i,,) nonzero there
exists € € ker(i,,) such that (£,7)ey # 0. Since (&,1")ey = (—1)™(1,&”)ey by (3.1.11), this
is equivalent to showing that for all nonzero n € ker(i,) there exists £ € ker(i,) such
that (1, £ )ev # 0, i.e., we have to show that

W .= {77 € ker(iy) ‘ (n,fb)ev =0 for all £ € ker(iw)}

satisfies W = 0. Observe that W is Sp(V)-stable. Indeed, by (3.3.2) we have for all
AeSp(V),ne W and € € ker(iy)

(An7£b)ev (3i2) (777 (A—lg)b)ev _ O,
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showing that An € W. Since ker(iy) is Sp(V)-irreducible by Theorem 3.2.3, it follows
that either W = 0 or W = ker(iy,). But (e_.1 A~ Ae_p,(e1 A Aen))ey = 1 due to
Example 3.1.9 and Example 3.1.2, and hence e_1 A---Ae_, ¢ W . So W # ker(i,,), and
therefore W = 0. This completes the proof. O

In accordance with Lemma 3.9.1 we will also write ker,, for the affine scheme (kery,)* =
Spec(Sym(kery,)), so that (kers)” is not just the projective limit lim ker,, when seen as
a vector space, but also when we think of it as an affine scheme (as in Theorem 3.5.1).

3.9.2 Lagrangian Pliicker Varieties

Our goal in this section is to introduce Lagrangian Pliicker varieties and explain how
Theorem 3.5.1 can be used to prove some important properties they have as we will see
in Theorem 3.9.8 and Corollary 3.9.11.

We want to introduce the definition of Lagrangian Pliicker Variety, which takes inspi-
ration from the notion of Pliicker variety in [DE18] or more specifically from the notion
of a half-spin variety in Chapter 2. Similar to half-spin varieties we will consider linear
maps ker(iy) € A"V — ker(iy) € A" V’, where (V,w) resp. (V/,w') are symplectic
vector spaces of dimension 2n resp. 2n/, that are compositions of maps of the following
type:

o)

e For any isometry ¢ : V — V' the induced map A" ¢ : A"V — A" V' restricts to
an isomorphism

/\n ¢ : ker(iy,) =N ker(i,);

e For each nonzero v € V the contraction maps @, : A"V — /\"_1 Vy restrict to a
map
®, : ker(i,) — ker(iy,)

by Lemma 3.2.6;

e The multiplication maps

Me_,, - /\n_l Vi1 — /\n Va,m—e_n An

restrict to a map
me_,, : kerp,_1 — kery,

where V,, and ker,, are as in Section 3.5.
Observe that m._, is a section of . .

Definition 3.9.2 (Lagrangian Pliicker variety). A Lagrangian Pliicker variety is a rule
X that assigns to every finite dimensional symplectic vector space V = (V,w) a Zariski
closed Sp(V')-stable subset

X(V) Cker(in) € 'V,

where n = %dim(V), that is stable under the above type of maps, i.e., such that
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1. for every isometry ¢ : V. — V'

2. for every v € V' \ {0}

3. foralln e N
Me_, (X(Vaz1)) € X (Va).

Equivalently, one could, as for Theorem 3.5.1, define X (V') to be a reduced closed
subscheme (instead of just a Zariski closed subset) with the given properties.

Note that, by definition, any A € Sp(V) is an isometry A : V — V. Thus, as
A € Sp(V) acts on A"V via A" A, Definition 3.9.2(1) automatically implies that X (V)
is Sp(V)-stable.

Examples 3.9.3. The following are examples of Lagrangian Pliicker varieties.

1. Trivially, X (V) := ker(iy), X (V) := {0} and X (V') := 0 define Lagrangian Pliicker
varieties.

2. For two Lagrangian Pliicker varieties X and X’ their join X + X', which is defined
by

(X+XYV)={z+a |ze X(V), 2/ e X' (V)},
is a Lagrangian Pliicker variety.

3. For a Lagrangian Pliicker variety X, the k-th secant variety Sec*(X) of X defined
by

Seck(X)(V) :={x1 +-- +ap |z, € X(V)}
is again a Lagrangian Pliicker variety.

4. The intersection of two Lagrangian Pliicker varieties X and X’ is again a La-
grangian Pliicker variety. We denote it as (X N X')(V) := X(V) N X' (V).

Example 3.9.4. The Lagrangian Grassmann cone X (V) := é\rL(V) defined in Defini-
tion 3.1.5 is a Lagrangian Pliicker variety.

Proof. Tt is well-known that through the Pliicker embedding the (ordindary) Grassman-
nian Gr(n, V) is a projective variety in P(A" V). In particular, the (ordinary) Grass-
mann cone C/%\r(n, V) C A"V is Zariski closed. It easily follows from Definition 3.1.5 that
C/é\rL(V) = (/}\r(n, V) Nker(i,). Hence, the Lagrangian Grassmann cone é\I'L(V) C ker(iy,)
is also Zariski closed. Keeping in mind that being Sp(V)-stable follows automatically
from Definition 3.9.2(1), it remains to check the properties (1)-(3) in Definition 3.9.2.

First, let ¢ : V. — V' be an isometry and let £ € é\rL(V) be arbitrary. By Def-
inition 3.1.5 we can write can write £ = vy A --- A v, for some vy,...,v, € V with
w(vi,v;) = 0 for all 1 < 4,5 < n. Observe that w'(¢(vi), ¢(v;)) = w(v;,v;) = 0 for all
1 <4,5 < n since ¢ is an isometry, and thus

(/\n 90> (&) =) A Np(v,) € (/}\TL(V/).
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This shows (A" ¢) (@L(V)) C Gr,(V'). Replacing ¢ by ¢! also implies the other
inclusion, thus proving equality.

Second, the same argument as in Example 1.1.3(2) in Chapter 1 shows that ¢, maps
(/ﬁrL(V) into C/ﬁiso(n —1,v%). Since @, = (/\”_1 7rv) oy, by Definition 3.1.10, this shows
that ®, maps Grp,(V) into Grise(n — 1,V,) = Grp(V,).

Finally, let £ € é\rL(Vn,l) be arbitrary. Again, we can write { = vy A --- A v,_1 for
some vy, ...,Up—1 € Vi1 with w(v;,v;) =0 for all 1 <4,j <n — 1. Then

Mme () =e_n ANE=€e_n AT A~ ANVp_1 € (/}\rL(Vn)

because e_,, 1 Vj,_1 and (vy,...,vp-1) C V1. O

Since any symplectic vector space is isometric to some V,, (see Lemma 3.1.8), the
following remark follows immediately from Definition 3.9.2(1).

Remark 3.9.5. A Lagrangian Pliicker variety X is completely determined by the values
X (Vy,), that is, if X and X’ are Lagrangian Pliicker varieties such that X (V,,) = X'(V},)
for all n € N, then X(V) = X'(V) for all V.

We will from now on abbreviate X,, := X (V},) C kery,.

We want to associate to each Lagrangian Pliicker variety X a closed Sp(V,)-stable
subset Xoo C (keroo)*. Recall from Section 3.9.1 that (kerso)* can be identified with the
projective limit @n ker,, along the contraction maps ®.,, i.e.,

. ®. o, ®.
(keroo)”™ = lim ( - —% kerg —> kerg —>» kerl) .

By Definition 3.9.2(2) each ®., : ker,, — ker,_; satisfies @, (X,) € X,,—1. Thus the
projective limit

(] P

ey X3

. e q>e *
Xoo i= 1&1 < 5 Xy —2 Xl) C (keryo)
is well defined. Moreover, X, C (kers)* is closed and Sp(V,)-stable since X,, C ker,, is
closed and Sp(V,,)-stable for all n € N. If one thinks of X,, as closed reduced subschemes
of kery,, then also X is a closed reduced subscheme of (kers,)*. Moreover, we have the
following.

Remark 3.9.6. The closed subset X, C (kers,)* is an affine cone.

Proof. Let I, C Sym(kers) be the radical ideal defining X, and note that I is
sp (Voo )-stable since X is Sp(Vao)-stable.

We have to show that I, is a homogeneous ideal. Let f € I be arbitrary. Choose
n € N large enough such that f is contained in Sym(ker,) C Sym(kery,), i.e., so that
any variable ) € kery, of f is of the form n, A ep1 A epta A -+ for some 7, € ker,,. By
Section 3.6.2 the endomorphism Hy, 11 of Voo mapping €,41 t0 €nt1, €_(n41) 10 —€_(541)
and all other basis vectors to zero is an element of sp(Vs). The action of H,11 on kers
sends any variable of f to itself. So, by the Leibniz rule, the action of H,; multiplies
the degree d homogeneous part of f by d. Since Hy41 - f € I, this implies that every
homogeneous part of f is contained in I,. This completes the proof. O
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For all N > n we denote by 7y, : kery — ker, the composition @, ,
of the contraction maps. Similarly, 7, ;v : ker,, — kery shall denote the composition
Me O OMe_(, . Note that 7, n is a section of 7y, because, for every k € N, m,_,
is a section of @, . It follows from Definition 3.9.2(2),(3) that

Nn(Xn) C X, and 7, n(Xp) C Xp. (3.9.1)

o0---0P,,

We also denote by 7o, @ (kers)* — ker, the structure maps of the projective limit
mn kery,, and we write 7, o : ker, — (kery)* for the map induced by the maps 7, .
Then 7,  is a section of 7w ,,. Moreover, it follows from Equation (3.9.1) that

Toom(Xoo) € Xy and 7y 0o(Xp) € Xeo. (3.9.2)
We are now in a position to prove the following useful lemma.

Lemma 3.9.7. The mapping
X — Xo

is injective, i.e., if X and X' are Lagrangian Plicker varieties such that Xo = X/,
then X = X'.

Proof. Note that, for all n € N, we have
Xn = Toon(Xoo)-

Indeed, the inclusion 2O is contained in (3.9.2). The other direction C follows from the
fact that 7, ~ is a section of ma,, and that 7, o (Xp) € Xoo by (3.9.2).
Hence, if Xoo = X/, then

X = Toon(Xoo) = Toon(X) = X,,.
By Remark 3.9.5 this shows that X = X'. O]

For two Lagrangian Pliicker varieties X and X', we will write X C X' if, for all
symplectic vector spaces V, we have X(V) C X'(V). Theorem 3.5.1 then implies the
following.

Theorem 3.9.8 (Noetherianity of Lagrangian Pliicker varieties). FEvery descending
chain of Lagrangian Plicker varieties

X0 > xM o5 x@ o5 xG) 5.,
stabilizes, that is, there exists mg € N such that X(™) = X (mo) for all m > mg.

Proof. Note that the mapping X — X is order preserving, that is, if X C X’, then
Xoo € X/ Hence, a chain

X0 o5 xM o x@ 5 x6) 5.,
of Lagrangian Pliicker varieties induces a chain
XOoxWox®ox® o, .

of closed Sp(Vs)-stable subsets in (kers)*. By Theorem 3.5.1 we know that (kers,)* is
topologically Sp(Vs)-Noetherian. Hence, the chain (Xé;n ))m cy Stabilizes. But then, by

Lemma 3.9.7 also the chain of Lagrangian Pliicker varieties (X (m))m N stabilizes. This
completes the proof. O
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As a further consequence of Theorem 3.5.1 we obtain the next results, which states
that X is determined by the data coming from some finite level of X.

Theorem 3.9.9. Let X be a Lagrangian Pliicker variety. Then there exists ng € N such
that
Xoo =V (Sp(Vo) - Ino) )

where Sp(Vao) « I, are the Sp(Vso)-orbits of the radical ideal I, C Sym(ker,,) defining
Xnoy C kery,.

Here, by a slight abuse of notation, we identify I, C Sym(ker,,) with its image in
Sym(kers,) under the embedding induced by the inclusion ker,, — kero.

Remark 3.9.10. If we would think of a Lagrangian Pliicker variety as a rule assigning to
each symplectic vector space V a reduced closed subscheme X (V'), then in Theorem 3.9.9
we would have to replace V (Sp(Vao ) In,) by V (rad(Sp(Veo ) Ing) ), where rad(Sp(Vio) - Ing )
is the radical ideal generated by Sp(Vao) - In,-

Proof. For each n € N set J,, :=rad(Sp(V) - I,) € Sym(kers,). Note that as subsets of
(kerog)* we have V(Jp) = V(Sp(Voo) - In). Let oo = lim I, C Sym(kero) be the radical
ideal associated to Xo. Then J,, Jn = I because I is Sp(V)-stable and radical.
Since (Jp)nen is an increasing chain of Sp(V)-stable radical ideals, by Theorem 3.5.1
there exists ng € N such that J,, = J,, for all n > ng. Therefore, Io = U,, Jn = Jng»
and hence Xoo = V(I) = V(Jn) = V(Sp(Vao) - Iny)- O

Using a result of Draisma [Dral0] , we will obtain the following corollary.

Corollary 3.9.11 (Universality for Lagrangian Pliicker varieties). Let X be a La-
grangian Pliicker variety. There exists ng € N such that for all n > ng it holds that

Xp = V(Sp(Vp) - Ing )

Before coming to the proof of Corollary 3.9.11, we first make some comments.

In Corollary 3.9.11 we make the same abuse of notation as in Theorem 3.9.9 and
identify I,, € Sym(ker,,) with its image in Sym(ker,) under the inclusion of rings
Sym(kery,) — Sym(ker,) induced by the inclusion ker,, — ker,. In other words, for a
polynomial f defined on ker,, we denote the polynomial f o 7, ,, defined on ker,, still
by f. Therefore, Corollary 3.9.11 can be reformulated as follows.

Remark 3.9.12. Let X be a Lagrangian Pliicker variety. Then there exists ng € N with
the following property: For every n > ng and z € ker,, C A" V,, we have

reX, <= M (A -x)eX,, forall AeSp(V,).

Together with the following example, which is a consequence of Theorem 3.4.1, this
explains how Corollary 3.9.11 can be thought of as a generalization of Theorem 3.4.1 to
arbitrary Lagrangian Pliicker varieties.

Example 3.9.13. For all n > 2 and 7 € ker,, C \" V,, we have
ne GrL(Vy) <= mua(A-n) e Gro(Vh) for all A € Sp(V,),

where 1,9 = ®c,0-- 0D, .
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Here we think of ker,, only as a vector space.

Proof. We prove this by induction. In the base case n = 2 there is nothing to prove.
Now take n > 2 and assume that the result is true for n — 1. If 5y € Grp(V},), then
Tn2(A-n) € GrL(Vg) for all A € Sp(V},) because V — GrL(V) is a Lagrangian Pliicker
variety by Example 3.9.4. To prove the other direction, we argue by contradiction, i.e.,
we assume that there exists 1 € ker,, such that m,2(A-n) € @L(Y/g) for all A € Sp(V,)
but 7 ¢ Gri,(V, Vn).

Since 7 ¢ GrL( ) there exists, due to Theorem 3.4.1, a vector v € V;, \ {0} such
that ®,(n) ¢ GrL((V) ). Choose some A € Sp(V},) such that Av = e,. Note that
A(UJ‘) = because A preserves the symplectic form w. So A induces an isometry

2 (Vi)

dlagram

o
TL
— (Vp)e, = Vn—1. Using again that A preserves w, one checks that the

n—1
A"V, LN /\n—l ot M) /\n—l(vn)v

A" Alg A" Al% gl/\"*l A

n—1
A"V, _Pen /\nfle# AN /\nianfl

commutes. In particular, n’ := &, (An) = (/\n*1 A)(Pu(n)) ¢ GrL( —1). By induction
hypothesis there exists A" € Sp(V;,—1) such that m,_12(A" - 7') ¢ GrL(V3). Note that,
due to the definition of the embedding Sp(V;,,—1) C Sp(V4), A’ fixes ey, and hence ®.,
is A’-equivariant. So A" -1/ = &, (A’A-n), and therefore

Tao(A'A-n) = mu_19(®e, (A'A- 1)) = mu12(A"- ) ¢ Gr(Va).
This contradicts our assumption on 7 and thus completes the proof. O
We now come to the proof of Corollary 3.9.11.

Proof of Corollary 3.9.11. Let ng € N be as in Theorem 3.9.9. Then the statement
follows from Theorem 3.9.9 and [DralO, Lemma 2.1]. To apply that lemma, we must
check condition (*) in that paper, i.e., that for all ¢ > n > ny and g € Sp(V;) we can
write
Tqng ©9©° Tng = g// © Tm,ng © TTn,m © g,

for suitable m < ng and ¢’ € Sp(V,,) and ¢” € Sp(V,,). Since X, is an affine cone by
Remark 3.9.6, the proof of [Dral0, Lemma 2.1] shows that it suffices that this identity
holds up to a scalar factor. It also suffices to prove this for g in an open dense subset U
of Sp(Vy), because the equations for X,,, pulled back along the map on the left for g € U

imply the equations for all g. We will prove this, with m = ng, using Lemma 3.9.14
below. ]

Lemma 3.9.14. Let g > n > ng. Then for all A in an open dense subset of Sp(Vy)
there exist A’ € Sp(V,,) and A" € Sp(V,,,) such that

/

o "
Tq,no © Ao Tn,g = C(Q)A O Tn,ng © A,

where c(g) is a constant only depending on g.

104



A sketch of proof for the analogous statement for the spin group was given in
Lemma 2.5.6 in Chapter 2. Nonetheless, we include a more detailed proof for the conve-
nience of the reader.

Proof. Throughout this proof we will abbreviate
E = (eng+1,---,6q) C Vg, E' = (eng+1,---,n) CVy, F = (e_(n41)>---r€—q) S Vi

We start by making two observations. First, the map g, = ®
as the composition of

q eq =1 | Peq q-2 1 Peqg—2 Peng+1 no |
N N e T N et T T A\ B

eng1 O 0P, is the same

and the map A" E+ — A" V,,, induced by the projection E+ — E+/E =V, (here (-)*
stands for the orthogonal complement in V;). Second, for any subspace U = (uq, ... u)
of V; the composition

q Pu q—1 Pup_1q q—2 Pup_o Pu q—k
AV 20 N N gt S AT

is well-defined (i.e., independent of the choice of basis) up to a constant. Indeed, by
(3.1.6) this composition is dual to u; A --- Auy Ae, and for a different basis u}, ..., u) of
U the two k-forms uj A --- Aug and uj A --- A agree up to a multiplicative constant.
So for any subspace U the map @y := @y, 0 - 0 ¢y, is well-defined (up to scalars).
Furthermore, we will denote by @y : A?V, — ATFUL /U the composition of ¢y and
the map induced by the projection V;, — V, /U, e.g., g = 7y p,-

For any A € Sp(V;) we will for ease of notation also abbreviate

E':=AT'ECV,
which is isotropic because F is isotropic. Then we have (up to scalars)

Tqmo © A= Ao Qp, (3.9.3)

o)

where A : (E")+/E" = E+/E =V, is an isometry induced by A.
Consider the subspace E” N (V,, & F) C V,. For A in an open dense subset of Sp(Vj)
this has the expected dimension
dim (E" N (V, ® F)) =dim(E") + dim(V,, ® F) — dim(V)
=(qg—no)+(2n+q—n)—2q
=n — ny. (3.9.4)

Moreover, since (E”)* C V, has codimension dim(E") = ¢ —ng > ¢ — n = dim(F), for
A in an open dense subset of Sp(V;) we also have

(E"YtnF=o0. (3.9.5)

We will from now on only consider A € Sp(V}) satisfying (3.9.4) and (3.9.5). Note that,
as E" is isotropic, (3.9.5) also implies E” N F = 0. So the restriction of the projection
Vo @& F — V, to E'"N(V, &F) has trivial kernel, and hence the image

Ei=lm(E'0(Va® F) C Vo @ F 5 v,) €V,
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also has dimension n — ng due to (3.9.4). Note that E is also isotropic because the
projection V,, @ F — V,, preserves the symplectic form. Again using that the projection
preserves the symplectic form, we see that it restricts to an isomorphism

(E"Y-n(V, @ F) = E,
and hence induces an isometry

hy : ((E”)i NV, @ F)) J(E"A (V& F)) S BL/E

between symplectic vector spaces of dimension 2ng (here E'L C V, denotes the orthogonal
complement in V},). Similarly, due to reasons of dimension, the inclusion V;, & F' C V,
also induces an isometry

ho : ((E”)l N (V@ F)) J(E" O (V& F)) S (B"Y-E".
One can check that the following diagram commutes (up to scalars):

/\q Vq PE" /\no (E//)J_ mod E” /\no (E//)J_/E//

i
e Tincl. Tincl. %T/\"0 ha

n Tn, PE! N mo ¢ " ") ~
N Vi =5 NV @ F) 55 A"(E)E 0 (V, @ F) B9y A (et

. Jmod F gl/\”o h1
/\no EJ_ mod E y /\no EJ_/E

So we have (up to scalars)
q)Eu O Tn,g = hg o hl_l o (I)E'7

where ®pv = (mod E”) o pp» and similarly for ® ;. Choose A" € Sp(V},) such that

A'(E) = FE’. Then -
Alo®p =mypy 0 A,

where A’ : EL/E = (E"):/E" = V,, is the isometry induced by A’. Together with
(3.9.3) we thus obtain (up to scalars)

Tgme © A0 Tngqg=Aohyo hfl o(AN7to Tnne © A’
which is exactly the desired equality if we define
A" :=Aohyohito (At € Sp(Vy,).

This completes the proof.
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