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Për gjyshin Qani.





Contents

Introduction 3

1 Universal Equations for Maximal Isotropic Grassmannians 10
1.1 The Ordinary Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Quadratic Spaces and the Isotropic Grassmannian . . . . . . . . . . . . . 11

1.2.1 Quadratic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 The Isotropic Grassmann Cone . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Two Lemmas About IGCP Maps . . . . . . . . . . . . . . . . . . . 15

1.3 Universality for Maximal Isotropic Grassmannians . . . . . . . . . . . . . 17
1.3.1 Statement and Consequences of the Main Result . . . . . . . . . . 17
1.3.2 Structure of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Counterexamples in Small Dimensions . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Counterexample in Dimension 7 . . . . . . . . . . . . . . . . . . . 28
1.4.2 Counterexample in Dimension 8 . . . . . . . . . . . . . . . . . . . 31

1.5 Ranks of Defining Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.1 Computational Approach . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.2 Rank 4 Quadrics via the Cartan Embedding . . . . . . . . . . . . . 33

2 Topological Noetherianity of the Infinite Half-Spin Representations 34
2.1 Finite Spin Representations and the Spin Group . . . . . . . . . . . . . . 34

2.1.1 The Clifford Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 The Grassmann Algebra as a Cl(V )-Module . . . . . . . . . . . . . 35
2.1.3 Embedding so(V ) into the Clifford Algebra . . . . . . . . . . . . . 35
2.1.4 The Half-Spin Representations . . . . . . . . . . . . . . . . . . . . 36
2.1.5 Explicit Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.6 Highest Weights of the Half-Spin Representations . . . . . . . . . . 37
2.1.7 The Spin Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.8 Two Actions of gl(E) on

∧
E . . . . . . . . . . . . . . . . . . . . . 38

2.2 The Isotropic Grassmannian and Infinite Spin Representations . . . . . . 39
2.2.1 The Isotropic Grassmannian in its Spinor Embedding . . . . . . . 39
2.2.2 Contraction with an Isotropic Vector . . . . . . . . . . . . . . . . . 40
2.2.3 Multiplying with an Isotropic Vector . . . . . . . . . . . . . . . . . 42
2.2.4 Properties of the Isotropic Grassmannian . . . . . . . . . . . . . . 43
2.2.5 The Dual of Contraction . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.6 Two Infinite Spin Representations . . . . . . . . . . . . . . . . . . 46

1



2.2.7 Four Infinite Half-Spin Representations . . . . . . . . . . . . . . . 47
2.3 Noetherianity of the Inverse Half-Spin Representations . . . . . . . . . . . 48

2.3.1 Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Acting with the General Linear Group on E . . . . . . . . . . . . . 48
2.3.3 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Half-Spin Varieties and Applications . . . . . . . . . . . . . . . . . . . . . 53

2.5 Universality of Ĝr
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Introduction

The guiding themes of this thesis are universality and topological Noetherianity. The core
of both of these topics lies within asymptotic algebra. But what exactly is asymptotic
algebra? In a very simplified way, in asymptotic algebra one tries to understand problems
in a ”large” setting (e.g. large dimension) or even in ”all large” settings by showing that
they can be completely determined by problems in a ”small” setting. More precisely, we
would like to have

• Objects: A collection of geometric or algebraic objects Xi for i ∈ I,

• Structure: with a reasonable structure on them, and

• Relations: some way to relate the Xi, e.g., morphisms between them.

Then one possible question in asymptotic algebra could be:

Can we characterize all objects (Xi)i∈I only using finitely many Xi?

Or more precisely, are there finitely many i1, . . . , in0 ∈ I such that every Xi (where i ∈ I)
can be rebuild from the finite collection Xi1 , . . . , Xin0

? If this is indeed the case, i.e., if
every Xi is completely determined by the finite collection, then the objects Xi1 , . . . , Xin0

are in some sense universal and therefore we will refer to this phenomenon as universality.
An illustrative example comes from the work of Kasman et al. in [KRPS08]. But be-

fore we can discuss their result, we first need to recall some facts about Grassmannians.
Grassmannians, denoted by Gr(k, n), are geometric spaces representing all k-dimensional
subspaces of an n-dimensional vector space V . The Plücker embedding is a way to embed
the Grassmannian into the projective space P(

∧k V ). In this way, the Plücker embedding
provides a representation of the Grassmannian as a projective variety. The defining ho-
mogeneous equations of this variety are called Plücker relations. The smallest nontrivial
Grassmannian is Gr(2, 4), which can be defined using only one Plücker relation, called
the Klein quadric. In 2005, Kasman et al. proved an interesting insight: they showed
that every Grassmannian Gr(k, n) can be set-theoretically defined purely by the Plücker
relations obtained from pulling back the Klein quadric. Relating this back to our discus-
sion of asymptotic algebra and the concept of universality, we recognize that the Klein
quadric is universal, as it completely determines all other Grassmannians.

An essential part of this thesis is to understand how this result extends if we consider
vector spaces equipped with an additional structure and special subspaces related to
those structures. Specifically, we will consider quadratic spaces and symplectic spaces as
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well as their maximal isotropic subspaces. In each setting we will consider the analogues
of Grassmannians and prove similar universality results.

A vast generalization of the result of Kasman et al. was obtained in 2014 by Draisma-
Eggermont in [DE18] by considering what they call Plücker varieties. A Plücker variety
is a family of varieties in exterior powers of vector spaces that, like the Grassmannian,
is functorial in the vector space and behaves well under duals. While the approach of
Kasman et al. is very concrete in nature, Draisma-Eggermont embark on a more abstract
path by studying the topological Noetherianity of a certain limit space up to a certain
group. Since topological Noetherianity represents the second central theme in this thesis
we will now give its precise definition.

Definition (Topological G-Noetherianty). Let X be a topological space equipped
with the action G ↷ X of a group G by homeomorphisms. Then X is topologically
G-Noetherian if every descending chain

X ⊇ X1 ⊇ X2 ⊇ X3 ⊇ · · ·

of G-stable closed subsets stabilizes, i.e., if there exists m0 ∈ N such that Xm = Xm+1

for all m ≥ m0. Here a subset Y ⊆ X is called G-stable if gY ⊆ Y for all g ∈ G.

In this thesis we will encounter certain infinite dimensional spaces and establish
topological Noetherianty results for them up to an infinite dimensional group that is
the limit of certain finite dimensional classical group. These results will be crucial for
developing a theory similar to the theory of Plücker varieties due to Draisma-Eggermont.

After this initial overview of the thematic framework, we will now give a detailed
chapter-by-chapter outline of the content of this thesis.

Universal Equations for Maximal Isotropic Grassmannians

The main goal of Chapter 1 is to establish an analogue of the universality result by
Kasman et al. for isotropic Grassmannians in quadratic spaces. A quadratic space V is
a vector space equipped with a non-degenerate symmetric bilinear form. In this context,
we will consider the so-called isotropic Grassmannians Griso(k, V ), which consist of the
k-dimensional subspaces in V where the bilinear form is identically zero. Similar to the
ordinary Grassmannian, the Plücker embedding maps the isotropic Grassmannian into
the projective space P(

∧k V ). For our universality result, we will consider the isotropic

Grassmann cone Ĝriso(k, V ) ⊆
∧k V and maps between exterior powers preserving the

isotropic Grassmann cones, which we call IGCP-maps. Our focus will be on the isotropic
subspaces of V that have the maximal possible dimension. Then, a consequence of our
main result will be the following:

Theorem A. Let V be a qaudratic space over an algebraically closed field K with
Char(K) ̸= 2. Then the maximal isotropic Grassmannian Griso(⌊dimV

2 ⌋, V ) in its Plücker
embedding can be defined set-theoretically by pulling back the defining equations of

• Griso(3, 7) if V is odd-dimensional

• Griso(4, 8) if V is even-dimensional

along all IGCP maps to
∧3K7 resp.

∧4K8.
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Since the ideals of Griso(3, 7) and Griso(4, 8), and indeed of any isotropic Grassman-
nian, are generated by finitely many quadrics, Theorem A implies a universal bound
on the ranks of the quadrics needed to set-theoretically define any maximal isotropic
Grassmannian. Notably, this bound is precisely four.

Theorem A is a direct consequence of the main result in Chapter 1, namely, Theo-
rem 1.3.1, where we consider only a specific family of IGCP maps. For this particular
family, the isotropic Grassmannians Griso(3, 7) and Griso(4, 8) in Theorem A can not
be replaced by isotropic Grasmannians of smaller dimension. Indeed, we have explicit
counterexamples showing that Theorem 1.3.1 cannot be improved. However, it may be
possible to reduce the dimension in Theorem A by considering additional IGCP maps.

Chapter 1 is organized as follows: In Section 1.1, we recall facts about the ordinary
Grassmannian and state the universality result of Kasman et al. in [KRPS08]. Section 1.2
provides the necessary background on quadratic spaces and introduces isotropic Grass-
mann cones and IGCP maps. In Section 1.3, we state and prove Theorem 1.3.1, which
implies Theorem A. A key ingredient in our proof is Proposition 1.3.7, which charac-
terizes forms in Ĝriso(⌊dimV

2 ⌋, V ). The counterexamples showing that Theorem 1.3.1 is
optimal are presented in Section 1.4. Finally, in Section 1.5, we show that any maximal
isotropic Grassmannian is defined set-theoretically by quadrics of rank at most four.

As we mentioned above, we are also interested in a universality result for Lagrangian
Grassmannians in symplectic spaces. We will see, however, that the proofs in Chapter 1
do not apply directly for symplectic spaces. Most importantly, Theorem 1.3.1 is wrong
in the symplectic setting, which we show using an explicit counterexample. Therefore, a
central goal is to establish an appropriate setting in which universality for the Lagrangian
Grassmannian holds. This will be discussed in Chapter 3.

Topological Noetherianity of the Infinite Half-Spin Representations

As mentioned earlier, Draisma-Eggermont obtained a generalization of the universality
result due to Kasman et al. by studying the topological Noetherianty of a particular
limit space. Now that we have established an analogous universality result for maximal
isotropic Grassmannians in quadratic spaces, the following question arises: Can we prove
topological Noetherianity of a certain limit space that implies Theorem A? This would
indeed follow if we could prove that the projective limit lim −n

∧nK2n is topologically
SO-Noetherian. Unfortunately, despite much effort, we were not able to show this.

However, we succeeded in proving a topological Noetherianity result by consider-
ing a different embedding of the istropic Grassmannian, namely the spinor embedding.
Unlike the Plücker embedding, the spinor embedding maps each of the two irreducible
components of the isotropic Grassmannian into the projective space of the half-spin
representations, which are irreducible representations of the spin group. Thus, the rele-
vant limit space we will consider is the projective limit of the half-spin representations.
More precisely, we consider a countable-dimensional vector space V∞ =

⋃
n Vn with basis

e1, f1, e2, f2, e3, f3, . . . and a bilinear form given by (ei|ej) = (fi|fj) = 0 and (ei|fj) = δij .
Moreover, we will construct a direct limit Spin(V∞) of all spin groups Spin(2n) and de-
fine the direct limit

∧+
∞E∞ of all even half-spin representations. This space has as its

basis all formal infinite products

ei1 ∧ ei2 ∧ ei3 ∧ · · ·

5



where {i1 < i2 < . . .} is a cofinite subset of the positive integers. The group Spin(V∞)
acts naturally on this space, and hence on its dual (

∧+
∞E∞)∗, which we regard as the

spectrum of the symmetric algebra on
∧+

∞E∞. The main theorem of Chapter 2 is as
follows.

Theorem B. The scheme (
∧+

∞E∞)∗ is topologically Spin(V∞)-Noetherian, i.e., every
descending chain (∧+

∞
E∞

)∗
⊇ X1 ⊇ X2 ⊇ X3 ⊇ · · ·

of Spin(V∞)-stable reduced closed subschemes stabilises.

The main result in [Nek20] is an exact analogue of Theorem B for the dual infinite
wedge, acted upon by the infinite general linear group. Even though we now have much
better tools available to study these kinds of questions than we had at the time of
[DE18], notably the topological Noetherianity of polynomial functors [Dra19] and their
generalisation to algebraic representations [ES22], spin representations are much more
intricate than polynomial functors. Therefore, part of Chapter 2 will be devoted to
establishing the precise relationship between the infinite half-spin representation and
algebraic representations of the infinite general linear group, so as to use those tools.

Theorem B fits in a general program that asks for which sequences of representations
of increasing groups one can expect Noetherianity results. This seems to be an extremely
delicate question. Indeed, while Theorem B establishes Noetherianity of the dual infinite
half-spin representation, we do not know whether the dual infinite spin representation is
Spin(V∞)-Noetherian; see Remark 2.3.9. Similarly, we do not know whether a suitable
inverse limit of exterior powers

∧n Vn is SO(V∞)-Noetherian, and there are many more
natural sequences of representations for which we do not yet have satisfactory results.

A main application of Theorem B is that we obtain a theory similar to the one
for Plücker varieties due to Draisma-Eggermont in [DE18]. Namely, we will introduce
the notion of half-spin varieties. Roughly speaking, a half-spin variety is a rule X that
assigns to each n ∈ N a Spin(2n)-stable closed reduced subscheme Xn of the even half-
spin representation

∧+En satisfying some additional axioms. The maximal isotropic
Grassmann cone over the spinor embedding represents the simplest example of such a
variety. However, the half-spin varieties that we introduce go far beyond this. Indeed,
this class of varieties is preserved under linear operations such as joins and tangential
varieties, and under finite unions and arbitrary intersections. In particular, the secant
variety of a half-spin variety will again be a half-spin variety.

One example how we can use Theorem B in the context of half-spin varieties is that
every half-spin variety is completely determined by data coming from a single finite level.

Theorem C. Let X be a half-spin variety. There exists n0 ∈ N such that for all n ≥ n0
it holds that

Xn = V
(
rad(Spin(2n) · In0)

)
,

where rad(Spin(2n) · In0) is the radical ideal generated by the Spin(2n)-orbits of the ideal
In0 defining Xn0 ⊆

∧+En0.

Consequently, any variety obtained from several copies of the maximal isotropic
Grassmannian by the operations mentioned above is defined by equations of some de-
gree bounded independently of n. We stress, though, that these results are of a purely
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topological/set-theoretic nature. In the case where X is the isotropic Grassmann cone
over the spinor embedding, we can use the Cartan map and Theorem A to show that n0
can be taken to be equal to 4.

In the context of secant varieties, we point out the work by Sam on Veronese vari-
eties: the k-th secant variety of the d-th Veronese embedding of P(Kn) is defined ideal-
theoretically by finitely many types of equations, independently of n, and in particular in
bounded degree [Sam17a]. Furthermore, a similar statement holds for the p-th syzygies
for any fixed p [Sam17b]. Similar results for ordinary Grassmannians were established
by Laudone in [Lau18]. It would be very interesting to know whether their techniques
apply to secant varieties of the maximal isotropic Grassmannian in its spinor embed-
ding. Theorem C gives a weaker set-theoretic statement, but for a more general class of
varieties.

After establishing Noetherianity, it would be natural to try to study additional ge-
ometric properties of Spin(V∞)-stable subvarieties of the dual infinite half-spin rep-
resentation. Perhaps there is a theory there analogous to the theory of GL-varietes
[BDES23a, BDES23b]. However, we are currently quite far from any such deeper under-
standing!

Chapter 2 is organized as follows: In Section 2.1, we first recall the construction of
the (finite-dimensional) half-spin representations. We mostly do this in a coordinate-free
manner, only choosing, as one must, a maximal isotropic subspace of an orthogonal space
for the construction. But for the construction of the infinite half-spin representation, we
will need explicit formulas, and these are derived in Section 2.1, as well. We describe the
spinor embedding of the maximal isotropic Grassmannian in the projectivised half-spin
representation in Section 2.2. Then, we define suitable contraction and multiplication
maps, which we show preserve the cones over these isotropic Grassmannians. Finally, we
use these maps to construct the infinite-dimensional half-spin representations. Section 2.3
is devoted to the proof of Theorem B. Then, in Section 2.4, we state and prove the main
results about half-spin varieties. Finally, in Section 2.5 we prove the universality of the
isotropic Grassmannian of 4-spaces in an 8-dimensional space.

Noetherianity and Universality for Lagrangian Plücker Varieties

As mentioned at the beginning, the main goals of this thesis are to establish universality
and topological Noetherianity results for quadratic and symplectic spaces. Whereas the
results in Chapter 1 and Chapter 2 were about quadratic spaces, we now turn to sym-
plectic spaces. A symplectic space V is a vector space equipped with a non-degenerate
skew-symmetric bilinear form. In contrast to quadratic spaces, symplectic spaces always
have even dimension 2n. Maximal isotropic subspaces of a symplectic space are called
Lagrangian subspaces. Similar to quadratic spaces, in this setting we will also consider
Lagrangian Grassmann cones and Lagrangian Grassmann cone preserving (LGCP) maps.
We mentioned in the description of Chapter 1 that the proof of the universality result
in quadratic spaces does not directly apply to symplectic spaces, as there are explicit
counterexamples to Theorem 1.3.1. Therefore, to establish a universality result for the
Lagrangian Grassmannian, we need to find an appropriate setting. More precisely, we
want to find a subspace of the exterior power that still contains the Lagrangian Grass-
mann cone but does not contain the counterexamples. A good candidate for this is the
n-th fundamental representation of the symplectic group Sp(2n), which we denote by
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kern. The choice of this notation will become clear later.
The following statement is the first main result of Chapter 3.

Theorem D. Let V be a symplectic space of dimension 2n over a field K of Char(K) = 0.

Then, the Lagrangian Grassman cone ĜrL(V ) ⊆ kern can set-theoretically be defined by

pulling back the defining equations of ĜrL(K4) along all LGCP maps to ker2 ⊆
∧2K4.

Actually, Theorem D can be generalized by introducing Lagrangian Plücker varieties.
Similar to half-spin varieties, a Lagrangian Plücker variety X is a collection of Sp(2n)-
stable closed subsets Xn ⊆ kern. For these, we will show the following universality
property:

Theorem E. Let X be a Lagrangian Plücker variety. Then there exists n0 ∈ N such
that for all n ≥ n0 we have

Xn =
{
η ∈ kern

∣∣∣ f(g · η) = 0 ∀g ∈ Sp(2n), ∀f ∈ In0

}
,

where In0 is the ideal of polynomials defining Xn0 ⊆ kern0.

We will obtain Theorem E as a consequence of the Noetherianity result that we estab-
lish in the second part of Chapter 3. For this, we will consider the countable dimensional
vector space ker∞, which is the direct limit lim−!n

kern along suitable multiplication maps.
The infinite symplectic group Sp(V∞), which is the direct limit of all symplectic groups
Sp(2n), naturally acts on ker∞. In fact, ker∞ is an irreducible Sp(V∞)-representation.
There is an induced action of Sp(V∞) on the dual space (ker∞)∗, which we see as the
spectrum of the symmetric algebra Sym(ker∞) endowed with the Zariski topology. We
can now state the second main theorem of Chapter 3.

Theorem F. The dual (ker∞)∗ of the irreducible Sp(V∞)-representation ker∞ is topo-
logically Sp(V∞)-Noetherian.

After reading the summary of Chapter 3, the reader might be inclined to think
that the proofs in this chapter are direct adaptations of the results in Chapter 1 and
Chapter 2. Even though the overall proof strategies remain the same, the technical
details of both results required considerable modifications. In Chapter 1 and Chapter 2,
we often used explicit calculations by working in a canonical basis. However, for the
relevant spaces considered in Chapter 3, there was no obvious choice for a basis. So one
of the main challenges was to find a useful coordinate-independent description of these
spaces. Working in a basis in Chapter 1 and Chapter 2 was beneficial, as it often made
our approach to the proofs straightforward. However, the calculations quickly became
cumbersome, hiding the main ideas. In the coordinate-free approach of Chapter 3, it was
more difficult to find the correct strategies, but once we had them, the essential ideas
became more transparent.

Chapter 3 is organized as follows: In Section 3.1, we collect the necessary background
information about general and symplectic vector spaces. Section 3.2 introduces the new
setting for Theorem D. In Section 3.3, we present the main auxiliary results. The com-
plete proof of Theorem D is presented in Section 3.4. We then state Theorem F and
outline its proof strategy in Section 3.5. Section 3.6 and Section 3.7 contain the neces-
sary preparation for the proof of Theorem F, which will then be given in Section 3.8.
Finally, Section 3.9 presents the applications to Lagrangian Plücker varieties.
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Final Thoughts

The results of this thesis naturally raise the question of whether there might be a more
general universality and Noetherianity result, with our work serving as an example of
such general principles. This seems plausible given the results on ordinary Grassmannians
and Plücker Varieties in [DE18], maximal isotropic Grassmannians and Spin Varieties
in [ST24, CDE+24], and Lagrangian Grassmannians and Lagrangian Plücker varieties
in Chapter 3.

However, such a broad generalization seems currently to be out of reach. For example,
in [CDE+24], we do not yet know how to prove the statement for the full spin represen-
tations, focusing only on the half spin representations. The details matter significantly,
and despite using similar ideas across the different settings, we had to address the spe-
cific properties unique to each case. Therefore, a more abstract and general statement
requires a deeper understanding.

Sources of the Material

A majority of the results in this thesis have been achieved through collaboration with
fellow researchers:

• Chapter 1 is based on the article [ST24], joint with Tim Seynnaeve;

• Chapter 2 is based on the paper [CDE+24], joint with Jan Draisma,
Rob Eggermont, Christopher Chiu and Tim Seynnaeve;

• Chapter 3 is independent work that has not yet appeared yet in print.

This thesis is not meant to be completely self-contained. Even though most prelim-
inaries are explained in each chapter, we assume some familiarity with basic concepts
from algebraic geometry, representation theory and the algebra of alternating tensors; all
the needed standard definitions and results can be found in, e.g., [Pro07, FH91, Lee12].

How to Read this Thesis

Each chapter is self-contained and the chapters can be read in a any order. The chapters
are arranged chronologically based on the appearance of the articles. While reading the
thesis linearly is straightforward, as, for example, Chapter 2 refers to the results in
Chapter 1 and Chapter 3 refers to the results in both Chapter 1 and Chapter 2, we
recommend starting with Chapter 3. This chapter explores similar ideas and methods as
used in the preceding ones but presents them in a more general context, without choosing
a specific basis or working in coordinates, as often done in Chapter 1 or Chapter 2. We
think that this makes it easier for the reader to grasp the key ideas and maintain an
overview, which can then help understand the technical and coordinate-heavy parts
in the previous chapters. Therefore, the recommended order is Chapter 3, followed by
Chapter 1, and Chapter 2.
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Chapter 1

Universal Equations for Maximal
Isotropic Grassmannians

1.1 The Ordinary Grassmannian

Let V be a finite-dimensional vector space over any field K, and k ≤ dimV . The Grass-
mann cone is defined as

Ĝr(k, V ) :=

{
v1 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ v1, . . . , vk ∈ V

}
,

where
∧k V is the k-th exterior power of V . For ω = v1∧· · ·∧vk ∈ Ĝr(k, V )\{0}, we will

denote the corresponding subspace span{v1, . . . , vk} ⊆ V as Lω. If dimV = n, we will

sometimes write Ĝr(k, n) instead of Ĝr(k, V ). Choosing a basis e1, . . . , en of V induces
coordinates {xI | I ⊂ {1, . . . , n}, |I| = k} on

∧k V , which are known as the Plücker
coordinates. The Grassmann cone is a subvariety of

∧k V , and its defining equations are
quadrics referred to as the Plücker relations [Sha94, (1.24)]. In the case where k = 2 and
V = K4, there exists only one Plücker relation, called the Klein quadric

P2,4 = x1,2x3,4 − x1,3x2,4 + x1,4x2,3.

The Grassmannian is the projectivization of the Grassmann cone:

Gr(k, V ) := P
(
Ĝr(k, V )

)
=
(
Ĝr(k, V ) \ {0}

)
/K∗ ⊆ P

(∧k
V

)
.

It is a projective variety whose defining equations are the Plücker relations.

Notation 1.1.1. From now on, for vectors v1, . . . , vk ∈ V , we will write ⟨v1, · · · , vk⟩ to
denote span{v1, . . . , vk}.

Definition 1.1.2 (GCP map). A linear map φ :
∧k V !

∧qW is Grassmann cone
preserving (GCP) if

φ
(
Ĝr(k, V )

)
⊆ Ĝr(q,W ).

Example 1.1.3. We give two examples of GCP maps.
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1. If f : V !W is a linear map, the induced map
∧k f :

∧k V !
∧kW is Grassmann

cone preserving.

2. For β ∈ V ∗ the contraction map

iβ :
∧k

V !
∧k−1

kerβ ⊆
∧k−1

V

defined as

v1 ∧ · · · ∧ vk 7!
k∑
j=1

(−1)j−1β(vi)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

is GCP. Below we give a coordinate-independent description of iβ.

Proof. Let v1 ∧ · · · ∧ vk ∈ Ĝr(k, V ) \ {0}. Note that the vectors v1, . . . , vk are
linearly independent. We will distinguish two cases. In the first case, assume that
⟨v1, . . . , vk⟩ ⊆ kerβ. Then, iβ(v1 ∧ · · · ∧ vk) = 0 ∈ Ĝr(k − 1, kerβ). Now consider
the case that kerβ ∩ ⟨v1, . . . , vk⟩ has dimension k − 1. After possibly replacing
v1, . . . , vk with some v′1, . . . , v

′
k such that v′1∧· · ·∧v′k = v1∧· · ·∧vk, we can assume

that v1 /∈ kerβ, but v2, . . . , vk ∈ kerβ. Then, iβ(v1 ∧ · · · ∧ vk) = β(v1)v2 ∧ · · · ∧ vk
is contained in Ĝr(k − 1, kerβ). This proof also shows that iβ takes values in∧k−1 kerβ.

The contraction map iβ can also be described coordinate-independently. Recall that

there is a natural isomorphism
∧k V ∼= Altk(V ∗), where Altk(V ∗) is the space of alter-

nating multilinear maps V ∗ × · · · × V ∗ ! K. Under this identification, iβ agrees with
the map

Altk(V ∗)! Altk−1(V ∗), ω 7! ω(β, · , . . . , · ).

Next, we recall the universality result by Kasman et al.

Theorem 1.1.4 ([KRPS08, Theorem 3.4]). Let ω ∈
∧k V . Then ω ∈ Ĝr(k, V ) if and

only if every GCP map to
∧2K4 maps ω to Ĝr(2, 4).

In fact, Kasman et al. show that the GCP maps can be chosen from an explicit finite
collection. We can rephrase Theorem 1.1.4 in terms of the Klein quadric, as follows.

Corollary 1.1.5. Any Grassmannian is set-theoretically defined by pullbacks of the Klein
quadric P2,4 along all GCP maps to

∧2K4, i.e.,

Ĝr(k, V ) =

{
ω ∈

∧k
V
∣∣∣ P2,4 (φ(ω)) = 0 ∀φ ∈ GCP

(∧k
V,
∧2

K4

)}
.

1.2 Quadratic Spaces and the Isotropic Grassmannian

Throughout the remainder of this chapter, we will work in a field K of characteristic not
2. In this section, we will introduce quadratic spaces and isotropic Grassmannians, and
establish several essential lemmas that we will later use to prove our main theorem.
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1.2.1 Quadratic Spaces

In this subsection we introduce quadratic spaces. The material is fairly standard, for
a reference see [Art57, Chapter 3]. For Lemma 1.2.6 we did not find a proof in the
literature, so we opted to give a proof here.

A quadratic space refers to a vector space V equipped with a quadratic form, or
equivalently, a symmetric bilinear form (·|·). We always assume that the bilinear form
is non-degenerate. A vector v ∈ V is considered isotropic if (v|v) = 0. The set of all
isotropic vectors in V is denoted by Viso. The orthogonal complement of a subspace
L ⊆ V is defined as the space L⊥ := {v ∈ V | (v|u) = 0 ∀u ∈ L}. We call a subspace
L ⊆ V isotropic if L ⊆ L⊥, i.e., if (u|v) = 0 for all u, v ∈ L. By polarization, using
Char(K) ̸= 2, this is equivalent to L ⊆ Viso. If L is isotropic but any proper superset
L′ ⊋ L is not isotropic, we refer to L as maximal isotropic.

Definition 1.2.1 (Hyperbolic basis). We call a collection of vectors e1, e−1, . . . , ek, e−k
in V hyperbolic if (ei|e−i) = 1 for i = 1, . . . , k, and (ei|ej) = 0 if i ̸= −j. Note that the
ei are necessarily linearly independent. If 2k = dimV , then we call e1, e−1, . . . , ek, e−k a
hyperbolic basis of V .

Theorem 1.2.2. Let L be an isotropic subspace of V , and e1, . . . , ek a basis of L. Then
we can find vectors e−1, . . . , e−k ∈ V \L such that e1, e−1, . . . , ek, e−k forms a hyperbolic
collection of vectors.

Proof. This is [Art57, Theorem 3.8] in the case where U = L is isotropic.

Theorem 1.2.3 (See [Art57, Theorem 3.10]). All maximal isotropic subspaces of V have
the same dimension, which is referred to as the Witt index of V .

Note that by Theorem 1.2.2, the Witt index can be at most
⌊
dimV

2

⌋
. Moreover,

this upper bound is attained when K is algebraically closed, regardless of the chosen
non-degenerate quadratic form.

Convention 1.2.4. From this point onward, we make the assumption that V has max-
imal Witt index

⌊
dimV

2

⌋
. We will denote this Witt index by p.

Remark 1.2.5. If dimV = 2p is even, then by Theorem 1.2.2, V has a hyperbolic basis.
Note that then a subspace L is maximal isotropic if and only if L = L⊥.

If dimV = 2p+ 1 is odd, then V has a basis

e1, e−1, . . . , ep, e−p, e0 (1.2.1)

such that e1, e−1, . . . , ep, e−p is hyperbolic and (e0|ei) = 0 for all i ̸= 0. We will call
e1, e−1, . . . , ep, e−p, e0 hyperbolic as well. Note that (e0|e0) ̸= 0 by non-degeneracy. If K
is algebraically closed we can rescale e0 such that (e0|e0) = 1; in general we will write
c0 :=

1
2(e0|e0). Note that we can also find a basis of V consisting of isotropic vectors, for

instance by replacing e0 by e0 + e1 − c0e−1 in (1.2.1).

The following lemma will be used several times in the proof of our main theorem (to
be precise: in Claim 1.3.8, Claim 1.3.10 and Claim 1.3.11).
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Lemma 1.2.6. Let W1,W2 ⊆ V be maximal isotropic subspaces. Then for any choice
of decomposition

W1 = (W1 ∩W2)⊕ U1 and W2 = (W1 ∩W2)⊕ U2

the isomorphism V ! V ∗, v 7! (v| · ) restricts to an isomorphism U1 ! U∗
2 .

In particular, there exists a hyperbolic basis e1, e−1, . . . , ep, e−p, (e0) of V , such that

W1 = ⟨e1, . . . , eq, eq+1, . . . , ep⟩ and W2 = ⟨e1, . . . , eq, e−(q+1), . . . , e−p⟩,

where q = dim(W1 ∩W2).

Proof. Note that U1 and U2 have the same dimension because the maximal isotropic
subspaces W1 and W2 have the same dimension. Thus it suffices to show that the map
U1 ! U∗

2 is injective. Arguing by contradiction, assume there is some u1 ∈ U1 \ {0}
such that (u1|u2) = 0 for all u2 ∈ U2. Then it also holds that (u1|w2) = 0 for all
w2 ∈ (W1 ∩W2)⊕ U2 = W2 because (W1 ∩W2)⊕ ⟨u1⟩ ⊆ W1 is isotropic. Since W2 and
u1 ∈ U1 ⊆ W1 are isotropic, this implies that also W2 ⊕ ⟨u1⟩ is isotropic. But W2 is
strictly contained in W2 ⊕ ⟨u1⟩ because u1 ∈ U1 \ {0}, contradicting the fact that W2 is
maximal isotropic.

To see how the first statement implies the second one, choose a basis e1, . . . , ep ofW1

such that e1, . . . , eq forms a basis for W1 ∩W2. Let U1 = ⟨eq+1, . . . , ep⟩ and choose some
U2 such that W2 = (W1 ∩W2)⊕ U2. It follows from the first part that there are unique
e−(q+1), . . . , e−p ∈ U2 such that (ei|e−j) = δij for i, j = q + 1, . . . , p. Since W1 and W2

are isotropic, it holds that W1 ∩W2 ⊆ U⊥
1 ∩ U⊥

2 , and W1 ∩W2 is a maximal isotropic
subspace of U⊥

1 ∩U⊥
2 by reasons of dimension. So there exist e−1, . . . , e−q, (e0) ∈ U⊥

1 ∩U⊥
2

such that e1, e−1, . . . , eq, e−q, (e0) forms a hyperbolic basis of U⊥
1 ∩ U⊥

2 . This completes
the proof.

1.2.2 The Isotropic Grassmann Cone

We now introduce the isotropic Grassmann cone. We continue to work in a quadratic
space V of dimension either 2p or 2p+ 1 satisfying Convention 1.2.4.

Definition 1.2.7 (Isotropic Grassmann cone). For k ≤ p, the isotropic Grassmann cone
is defined as

Ĝriso(k, V ) :=

{
v1 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ (vi|vj) = 0 for all 1 ≤ i, j ≤ k

}
.

If k = p, then we call it the maximal isotropic Grassmann cone.

Note that ω ∈ Ĝr(k, V ) \ {0} lies in Ĝriso(k, V ) if and only if Lω ⊆ V is isotropic.

Definition 1.2.8 (IGCP map). A linear map Φ :
∧k V !

∧qW is isotropic Grassmann
cone preserving (IGCP) if

Φ
(
Ĝriso(k, V )

)
⊆ Ĝriso(q,W ).

.
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We will only need one explicit family of IGCP maps; they are the analogue of the
GCP maps from Example 1.1.3. Let v ∈ Viso be a nonzero isotropic vector. Define
Vv := v⊥/⟨v⟩ (note that ⟨v⟩ ⊆ v⊥ because v is isotropic). It is easy to see that

(v̄1|v̄2)Vv := (v1|v2)V ,

where v̄i ∈ Vv denotes the equivalence class of vi ∈ v⊥ in Vv, is a well-defined non-
degenerate bilinear form on Vv (i.e., the formula is independent of the choice of repre-
sentatives v1, v2 ∈ v⊥). Moreover, (Vv, (·|·)Vv) again has maximal Witt index. We denote
by πv the projection v⊥ ↠ Vv.

Definition 1.2.9. For v ∈ Viso \ {0} we define the linear map

Φv :
∧k

V !
∧k−1

Vv

as the following composition∧k
V

φv
−!

∧k−1
v⊥

∧k−1 πv
−−−−−!

∧k−1
Vv,

where φv := i(v|·) is the contraction map introduced in Example 1.1.3. Explicitly, this
map is given by

Φv(v1 ∧ · · · ∧ vk) =
k∑
j=1

(−1)j−1(v|vj)v̄1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̄k. (1.2.2)

Since Φv is a composition of two GCP maps, it is itself GCP. By the same proof as
Example 1.1.3, one readily sees that Φv is in fact IGCP. More explicitly, the following
holds.

Lemma 1.2.10. For ω ∈ Ĝriso(k, V ),

1. if v ∈ L⊥
ω , then Φv(ω) = 0,

2. if v /∈ L⊥
ω , then Φv(ω) ̸= 0, and

LΦv(ω) = (Lω ∩ v⊥)/⟨v⟩.

Proof. If v ∈ L⊥
ω , then ⟨v, w⟩ = 0 for all w ∈ Lω. Therefore, φv(ω) = 0 and hence also

Φv(ω) = 0. This proves the first statement. For the second statement, suppose v /∈ L⊥
ω

and choose a basis where ω = v1∧· · ·∧vk, Lω = ⟨v1, . . . , vk⟩ and Lω∩v⊥ = ⟨v1, . . . , vk−1⟩.
By evaluating Φv(ω) using (1.2.2), we obtain the result.

We now give a more coordinate-independent description of Φv. The bilinear form

on V induces an isomorphism V
∼=−! V ∗, v 7! (v| · ). Together with the natural isomor-

phism
∧k V ∗ ∼= Altk V , this yields an isomorphism ♭ :

∧k V
∼=−! Altk V . Then Φv is the

composition ∧k
V

♭
−! Altk V

Φ♭
v−−! Altk−1 Vv

♭−1

−−!
∧k−1

Vv,

where the middle map Φ♭v is given by the formula

Φ♭v(ω
♭)(v̄1, . . . , v̄k−1) = ω♭(v, v1, . . . , vk−1) (1.2.3)

with v1, . . . , vk−1 ∈ V ⊥. Note that since ω♭ is alternating, this does not depend on a
choice of representatives vi ∈ V ⊥ for v̄i ∈ Vv.
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1.2.3 Two Lemmas About IGCP Maps

We finish this section by proving two lemmas that will play a central role throughout
the proof of our main theorem. The first lemma states that no nonzero ω are annihilated
by all IGCP maps:

Lemma 1.2.11. Let ω ∈
∧k V with 0 < k < dimV . If Φv(ω) = 0 for all v ∈ Viso \ {0},

then ω = 0.

Proof. If Φv(ω) = 0 for all v ∈ Viso\{0}, then ω♭(v, v2, . . . , vk) = 0 for all v ∈ Viso\{0} and
v2, . . . , vk ∈ v⊥ due to (1.2.3). But then by Proposition 1.2.12 below, ω♭(w1, . . . , wk) = 0
for all w1, . . . , wk ∈ V . So ω♭ = 0, and hence ω = 0. This completes the proof.

Proposition 1.2.12. If 0 < k < dimV , then the set{
v ∧ v2 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ v ∈ Viso \ {0} and v2, . . . , vk ∈ v⊥

}
spans

∧k V .

Proof. Let S be the span of the given set in
∧k V . We choose a hyperbolic basis

e1, e−1, . . . , ep, e−p, (e0) for V . It suffices to show that each pure wedge ei1 ∧ · · · ∧ eik
is in S. If there exists j ̸= 0 such that #({j,−j} ∩ {i1, . . . , ik}) = 1, then clearly
ei1 ∧ · · · ∧ eik ∈ S. So we only need to show that ej1 ∧ e−j1 ∧ · · · ∧ ejm ∧ e−jm ∈ S
when k = 2m, or ej1 ∧ e−j1 ∧ · · · ∧ ejm ∧ e−jm ∧ e0 ∈ S when k = 2m + 1, where
j1, ..., jm ∈ {1, ..., p}.

If m < p, we choose an index j0 ∈ {1, . . . , p} \ {j1, . . . , jm}. We then define η as
η = ej2 ∧ e−j2 ∧ · · · ∧ ejm ∧ e−jm if k is even, and η = ej2 ∧ e−j2 ∧ · · · ∧ ejm ∧ e−jm ∧ e0 if
k is odd. Based on the definition of j0 and S, we have (ej0 + ej1)∧ (e−j0 − e−j1)∧ η ∈ S.
Expanding this expression, we obtain:

(ej0 + ej1) ∧ (e−j0 − e−j1) ∧ η = (ej0 ∧ e−j0 − ej1 ∧ e−j1) ∧ η + (terms in S).

Therefore, we conclude that

(ej0 ∧ e−j0 − ej1 ∧ e−j1) ∧ η ∈ S. (1.2.4)

Similarly, by considering (ej0 + e−j1) ∧ (e−j0 − ej1) ∧ η ∈ S, we can deduce

(ej0 ∧ e−j0 − e−j1 ∧ ej1) ∧ η ∈ S. (1.2.5)

By subtracting (1.2.4) from (1.2.5) and using the anti-symmetry of the wedge product
∧, we obtain that 2ej1 ∧ e−j1 ∧ η ∈ S. Given that Char(K) ̸= 2, this implies that
ej1 ∧ e−j1 ∧ · · · ∧ ejm ∧ e−jm(∧e0) ∈ S.

We still need to consider the case where m = p; i.e., we still need to show that
e1∧e−1∧· · ·∧ep∧e−p ∈ S if dimV = 2p+1. For this we write η = e2∧e−2∧· · ·∧ep∧e−p
as before, and note that

2c0e1 ∧ e−1 ∧ η =
(
(e0 + e1 − c0e−1) ∧ (e1 + c0e−1)− e0 ∧ e1 − c0e0 ∧ e−1

)
∧ η ∈ S,

where c0 =
1
2(e0|e0).
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The second lemma is a more technical variant of Lemma 1.2.11. We will use it to
prove Claims 1.3.12 and 1.3.13 in the proof of the main theorem.

Lemma 1.2.13. Assume p ≥ 2 and 0 < k < dimV , and let ω ∈
∧k V be nonzero. Let

W and W ′ be maximal isotropic subspaces of V with dim(W ∩W ′) = p− 1, and suppose
that Φv(ω) = 0 for every isotropic v ∈W ∪W ′.

• If k > p, then ω is of the form α ∧ ω′, where α lies in the one-dimensional space∧p+1(W +W ′).

• If k ≤ p then ω ∈
∧k(W⊥ ∩W ′⊥).

Proof. We choose a hyperbolic basis of the vector space V such thatW = ⟨e1, e2, . . . , ep⟩
and W ′ = ⟨e−1, e2, . . . , ep⟩. For {i1, . . . , iℓ} ⊂ {1,−1, . . . , p,−p, (0)}, we will then write

Vî1,...,̂iℓ for ⟨ei | i /∈ {i1, . . . , iℓ}⟩ ⊆ V.

We prove by induction on i = 2, . . . , p+ 1 that

ω = e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ω′
i + ω′′

i , (1.2.6)

with

ω′
i ∈
∧k−i

V
1̂,2̂,3̂,...,̂i−1,−1̂

and ω′′
i ∈

∧k
V
1̂,−1̂,−2̂,...,−î+1

,

and we put the first summand equal to zero if i > k.
First, let us show that (1.2.6) holds for i = 2. Indeed we can write

ω = e1 ∧ e−1 ∧ ω′
2 + e1 ∧ α+ e−1 ∧ β + ω′′

2

with

ω′
2 ∈

∧k−2
V1̂,−1̂, α, β ∈

∧k−1
V1̂,−1̂, ω′′

2 ∈
∧k

V1̂,−1̂.

By assumption we have

0 = Φe1(ω) = Φe1(e−1 ∧ α),
0 = Φe−1(ω) = Φe−1(e1 ∧ β),

hence α = β = 0.
Next we assume (1.2.6) for some i, and want to show it for i+ 1. We can write

ω′
i = ei ∧ ω′

i+1 + e−i ∧ α′ + β′

ω′′
i = ω′′

i+1 + ei ∧ e−i ∧ α′′ + e−i ∧ β′′,

where

ω′
i+1 ∈

∧k−i−1
V1̂,2̂,...,̂i,−1̂, ω′′

i+1 ∈
∧k

V1̂,−1̂,−2̂,...,−î,

α′ ∈
∧k−i−1

V1̂,2̂,...,̂i,−1̂,−î, α′′ ∈
∧k−2

V1̂,̂i,−1̂,−2̂,...,−î,

β′ ∈
∧k−i

V1̂,2̂,...,̂i,−1̂,−î, β′′ ∈
∧k−1

V1̂,̂i,−1̂,−2̂,...,−î.
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We compute 0 = Φei(ω) = ē1 ∧ ē−1 ∧ ē2 ∧ · · · ∧ ēi−1 ∧ α′ + β′′, so we can conclude
that α′ = β′′ = 0.

Next we compute

Φei−e1(ω) =Φei−e1(e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ei ∧ ω′
i+1)

+ Φei−e1(e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei−1 ∧ β′)
+ Φei−e1(ω

′′
i+1)

+ Φei−e1(ei ∧ e−i ∧ α′′).

The first and third summand are zero by Lemma 1.2.10. So we get

Φei−e1(ω) =ē1 ∧ ē2 ∧ · · · ∧ ēi−1 ∧ β′ − ēi ∧ α′′,

so e2 ∧ · · · ∧ ei−1 ∧ β′ = α′′. If we do the analogous computation for Φei−e−1(ω) we find
that e2 ∧ · · · ∧ ei−1 ∧ β′ = −α′′. So β′ = α′′ = 0, and we get

ω = e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei ∧ ω′
i+1 + ω′′

i+1,

which is exactly (1.2.6) for i+ 1 instead of i.
Finally, note that the case i = p+ 1 is exactly what we want. Indeed we have

ω = e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ep ∧ ω′ + ω′′,

with ω′ ∈
∧k−p−1 V1̂,2̂,...,p̂,−1̂ and ω′′ ∈

∧k V1̂,2̂,...,p̂,−1̂ =
∧k(W⊥ ∩ W ′⊥). However, if

k ≤ p, the first summand is zero, and if k > p the second summand is zero since
dimV1̂,2̂,...,p̂,−1̂ = dimV − p− 1 ≤ p < k.

1.3 Universality for Maximal Isotropic Grassmannians

1.3.1 Statement and Consequences of the Main Result

For this entire section, let V be a quadratic space of maximal Witt index p = ⌊dimV
2 ⌋

over a field K of characteristic not 2.

Theorem 1.3.1 (Main Result). Assume dimV > 8 and let ω ∈
∧p V . If for every

isotropic vector v ∈ Viso, the image of v under the isotropic Grassmann cone preserving
map Φv lies in Ĝriso(p− 1, Vv), then ω itself lies in Ĝriso(p, V ).

From this we easily deduce the following.

Corollary 1.3.2 (Universality). For any ω ∈
∧p V , it holds that ω ∈ Ĝriso(p, V ) if and

only if

• every IGCP map to
∧3K7 maps ω to Ĝriso(3, 7), if dimV = 2p+ 1,

• every IGCP map to
∧4K8 maps ω to Ĝriso(4, 8), if dimV = 2p.
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Proof of Corollary 1.3.2 assuming Theorem 1.3.1. One direction follows directly from
the definition of an IGCP map. To prove the other direction, we consider three cases
depending on the dimension of V.

If dimV > 8, we can repeatedly apply Theorem 1.3.1 to obtain the desired result. If
dimV = 8 or dimV = 7, we can just apply the assumption to the identity map (which
is trivially preserves the isotropic Grassmann cone). For dimV < 7, we observe that the
map φ :

∧p V !
∧p+1 (V ⊕ ⟨ep+1, e−p−1⟩), which sends ω to ω ∧ ep+1, has the property

that ω lies in the isotropic Grassmann cone if and only if φ(ω) lies in the isotropic
Grassmann cone. By applying these maps iteratively until we reach

∧3K7 or
∧4K8, we

complete the proof.

Similar to [KRPS08, Theorem 4.1], we obtain a statement about the ranks of quadrics

defining the isotropic Grassmann cone, where we use the fact that Ĝriso(p, 2p) has two
irreducible components [Har92, Theorem 22.14].

Corollary 1.3.3. The isotropic Grassmannian Ĝriso(p, 2p+1) in its Plücker embedding
can be defined by quadrics of rank at most 4. Furthermore, both irreducible components
of Ĝriso(p, 2p) can be defined by linear equations and quadrics of rank at most 4.

Proof. By Corollary 1.1.5 it suffices to show the statement is true for Ĝriso(3, 7) and

Ĝriso(4, 8). This can be done by an explicit calculation, see Section 1.5.

Remark 1.3.4. The statement in Corollary 1.3.3 can also be deduced using the Cartan
embedding, see Section 1.5.

Remark 1.3.5. A natural question arises: is there a similar result if we replace the
symmetric form with a skew-symmetric form, focusing on Lagrangian Grassmannians?
The answer, in the case of considering only the Lagrangian Grassmann cone preserving
(LGCP) maps Φv for v ∈ V , defined as in Definition 1.2.9, is no.

To illustrate this, consider an 8-dimensional vector space V with basis e1, . . . , e−4

and skew-symmetric form given by (ei|e−i) = 1 and (e−i|ei) = −1 for i ≥ 1, and all
other pairings equal to 0.

Now, consider the 2-form α = e1 ∧ e−1 + e2 ∧ e−2 + e3 ∧ e−3 + e4 ∧ e−4, and define

ω = α ∧ α = 2
∑

1≤i<j≤4

ei ∧ e−i ∧ ej ∧ e−j ∈
∧4

V.

It can be observed that ω does not lie in the Grassmann cone since ω∧ω is a nonzero
multiple of e1∧e−1∧e2∧e−2∧e3∧e−3∧e4∧e−4. However, upon explicit computation, it
can be seen that every LGCP map Φv maps ω to zero, and thus it lies in the Lagrangian
Grassmann cone.

This example can be generalized to any space of dimension 4m by considering the
m-form ω = α∧m ∈

∧2m V . Therefore, we have a counterexample to the analogue of
Theorem 1.3.1 (and even to the analogue of Lemma 1.2.11). However, it is not yet a
counterexample to the analogue of Corollary 1.3.2, as there might be additional LGCP
maps that could be considered.
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1.3.2 Structure of the Proof

The aim of this subsection is twofold. First, we aim to prove Proposition 1.3.7, which will
serve as the key ingredient in proving Theorem 1.3.1. Secondly, we will give an outline
of the proof of Theorem 1.3.1 to make it more accessible, as it involves some technical
aspects.

We assume p ≥ 2. Note that we can always decompose V as

V = V ′ ⊕ ⟨ep, e−p⟩, (1.3.1)

where ep, e−p is a collection of hyperbolic vectors, and V ′ := ⟨ep, e−p⟩⊥ which again has
maximal Witt index. For the remaining part of this section, we will be working with this
fixed decomposition. Any ω ∈

∧p V can be uniquely written as

ω = ω1 ∧ ep ∧ e−p + ω2 ∧ ep + ω3 ∧ e−p + ω4 (1.3.2)

where ω1 ∈
∧p−2 V ′, ω2, ω3 ∈

∧p−1 V ′ and ω4 ∈
∧p V ′. The following observation shows

that for v ∈ V ′, a decomposition of ω maps to a decomposition of Φv(ω).

Observation 1.3.6. Let ω be as in (1.3.2). Then for any v ∈ V ′ we have

Φv(ω) =: ω′ = ω′
1 ∧ ēp ∧ ē−p + ω′

2 ∧ ēp + ω′
3 ∧ ē−p + ω′

4, (1.3.3)

where ω′
i = Φv(ωi).

Next, we give conditions for ω to be in the isotropic Grassmann cone.

Proposition 1.3.7. Suppose we have written ω ∈
∧p V in the form given by (1.3.2).

Assume ω ∈ Ĝriso(p, V ), then one of the following holds:

1. ω1 = ω3 = ω4 = 0 and ω2 ∈ Ĝriso(p− 1, V ′),

2. ω1 = ω2 = ω4 = 0 and ω3 ∈ Ĝriso(p− 1, V ′),

3. ω1 = 0, and ω2, ω3, ω4 are nonzero. Then

• ω2, ω3 ∈ Ĝriso(p− 1, V ′), ω4 ∈ Ĝr(p, V ′),

• Lω2 = Lω3 ⊆ Lω4.

This case only occurs if dimV is odd.

4. ω1, ω2, ω3, ω4 are all nonzero. Then

• ω1 ∈ Ĝriso(p− 2, V ′), ω2, ω3 ∈ Ĝriso(p− 1, V ′), ω4 ∈ Ĝr(p, V ′),

• Lω2 ∩ Lω3 = Lω1 and Lω2 + Lω3 = Lω4.

Proof. We define L′ := Lω ∩ V ′. Note that p − 2 ≤ dimL′ ≤ p − 1, where the second
inequality holds since L′ is an isotropic subspace of V ′. We proceed by considering cases
based on dimL′. More precisely, we will show that (1), (2) or (3) hold if dimL′ = p− 1,
and that (4) holds if dimL′ = p− 2.

Case 1. If dimL′ = p−1, then L′ is a maximal isotropic subspace of V ′. Since L′ has
codimension one in Lω, there exists a vector v ∈ Lω such that Lω = L′+ ⟨v⟩. Since Lω is
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isotropic, we have Lω ⊆ L⊥
ω ⊆ L′⊥. Therefore, v ∈ L′⊥. We can write v = w + v′, where

w ∈ ⟨ep, e−p⟩ and v′ ∈ V ′. Moreover, note that w ∈ L′⊥, and therefore, v′ = v−w ∈ L′⊥.
If dimV is even, then L′ = L′⊥ ∩ V ′, hence v′ ∈ L′. Consequently, we have

Lω = L′ + ⟨w + v′⟩ = L′ + ⟨w⟩.

Since ω is isotropic, the vector w is also isotropic. Thus, we can conclude that either

w ∈ ⟨ep⟩ or w ∈ ⟨e−p⟩.

So we conclude
Lω = L′ + ⟨ep⟩ or Lω = L′ + ⟨e−p⟩,

and therefore
ω = ω2 ∧ ep or ω = ω3 ∧ e−p,

where ω2, ω3 ∈ Ĝriso(p− 1, V ′).
If dimV is odd, there is a possibility that v′ /∈ L′. Nevertheless, we still have

Lω = L′ + ⟨w + v′⟩.

Writing w = λep+µe−p, we obtain that 2λµ+ (v′|v′) = 0. Since L′ is maximal isotropic
in V ′, the vector v′ cannot be isotropic. Hence, we have λ ̸= 0 ̸= µ. Consequently, we
can write

ω = ω′ ∧ (λep + µe−p + v′),

where Lω′ = L′. By doing so, we have expressed ω in the form (1.3.2), with ω1 = 0,
ω2 = λω′, ω3 = µω′, and ω4 = ω′ ∧ v′. One can verify that this proves all the claims in
(3).

Case 2. If dimL′ = p−2, we can write Lω = ⟨ep+u, e−p+v⟩⊕L′ for some u, v ∈ V ′.
We choose v1, . . . , vp−2 as a basis of L′ and express ω as

ω = v1 ∧ · · · ∧ vp−2 ∧ (ep + u) ∧ (e−p + v)

=: ω1 ∧ (ep + u) ∧ (e−p + v)

= ω1 ∧ ep ∧ e−p − ω1 ∧ v ∧ ep + ω1 ∧ u ∧ e−p + ω1 ∧ u ∧ v
=: ω1 ∧ ep ∧ e−p + ω2 ∧ ep + ω3 ∧ e−p + ω4.

To show that all ωi are nonzero, we need to show that v1, v2, . . . , vp−2, u, v are linearly
independent. We already know that v1, . . . , vp−2 are linearly independent since they form
a basis of L′. Furthermore, v is also linearly independent from v1, . . . , vp−2; otherwise
e−p ∈ Lω, but this would imply (ep+u|e−p) = 0. Hence, we need to show that u is linearly
independent from v1, . . . , vp−2, v. Assuming u = λv + v′, where v′ ∈ L′, we obtain

ω = v1 ∧ · · · ∧ vp−2 ∧ (ep + λv) ∧ (e−p + v),

where the vectors v1, . . . , vp−2, ep+λv, e−p+v are all isotropic. In particular, the pairing
(v|v) = 0. However, this implies (ep + λv|e−p + v) = 1, contradicting the isotropy of
Lω. Hence, the vectors v1, v2, . . . , vp−2, u, v are linearly independent, implying that all
ωi are nonzero. Note that by definition all ωi belong to the corresponding Grassmann
cone. Furthermore, since u and v are isotropic and (vi|vj) = 0, (u|vi) = 0, (v|vi) = 0 for
all i, j, we can conclude that ω1, ω2 and ω3 are isotropic. This proves the first statement
in (4). The second statement follows from the definition and linear independence of
v1, v2, . . . , vp−2, u, v.
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For the proof of Theorem 1.3.1, we will fix ω ∈
∧p V satisfying the assumption. We

decompose ω as in (1.3.2). Then ω has one of the following zero patterns:

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

(0) 0 0 0 0 ∗ 0 0 0 (8)
(1) 0 0 0 ∗ ∗ 0 0 ∗ (9)
(2) 0 0 ∗ 0 ∗ 0 ∗ 0 (10)
(3) 0 0 ∗ ∗ ∗ 0 ∗ ∗ (11)
(4) 0 ∗ 0 0 ∗ ∗ 0 0 (12)
(5) 0 ∗ 0 ∗ ∗ ∗ 0 ∗ (13)
(6) 0 ∗ ∗ 0 ∗ ∗ ∗ 0 (14)
(7) 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ (15)

The proof splits into the Claims 1.3.8–1.3.14 which are based on the different zero pat-
terns. First, we show that zero patterns (0), (1), (3), (5), (6), (8)-(14) and (7) (if V is
even-dimensional) are not possible:

• Claim 1.3.8 shows that the only possible zero patterns are (2), (4), (7) and (15),
with (7) only occurring when V has odd dimension.

Note that the highlighted zero patterns align with the cases in Proposition 1.3.7. We
proceed by proving that Theorem 1.3.1 is true if ω ∈

∧p V has one of the highlighted
zero patterns as follows:

• Claim 1.3.9 proves that Theorem 1.3.1 is true if ω has zero pattern (2) or (4).

• Claim 1.3.10 and Claim 1.3.11 show that if ω has zero pattern (7) or (15), there
are three possibilities for the dimension of the intersection Lω2 ∩ Lω3 :

(a) dim(Lω2 ∩ Lω3) = p− 2 (when dimV is even);

(b) dim(Lω2 ∩ Lω3) = p− 2 (when dimV is odd);

(c) dim(Lω2 ∩ Lω3) = p− 1 (when dimV is odd).

• Claim 1.3.12 shows that Theorem 1.3.1 holds for case (a).

• Claim 1.3.13 shows that Theorem 1.3.1 holds for case (b).

• Claim 1.3.14 shows that Theorem 1.3.1 holds for case (c).

1.3.3 Proof of the Main Theorem

We will now prove Theorem 1.3.1 following the strategy we just explained. Throughout
this section, let ω ̸= 0 satisfy the assumption of Theorem 1.3.1. Trivially, ω cannot have
zero pattern (0).

Claim 1.3.8. ω cannot have zero pattern (1), (3), (5), (6), or (8)-(14). If dimV is even
it also cannot have zero pattern (7).
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Proof.

Step 1. If ω1 ̸= 0, then ω2, ω3 and ω4 are also nonzero. In other words, ω cannot have
zero patterns (8)–(14).

Proof. If ω1 ̸= 0, according to Lemma 1.2.11, there exists v ∈ V ′
iso such that Φv(ω1) ̸= 0.

Therefore, applying case (4) of Proposition 1.3.7 to

Φv(ω) = Φv(ω1) ∧ ep ∧ e−p +Φv(ω2) ∧ ep +Φv(ω3) ∧ e−p +Φv(ω4)

we can conclude that Φv(ω2), Φv(ω3) and Φv(ω4) are nonzero. This implies that ω2, ω3

and ω4 are nonzero as well.

Step 2. If ω4 ̸= 0, then either ω has zero pattern (15), or dimV is odd and ω has zero
pattern (7). In other words, ω cannot have zero patterns (1), (3), (5), and also not (7)
if dimV is even.

Proof. As before, by Lemma 1.2.11 there exists v ∈ V ′
iso such that Φv(ω4) ̸= 0. The result

follows by applying Proposition 1.3.7 to Φv(ω) as before.

Step 3. ω cannot have zero pattern (6).

Proof. Assume ω has zero pattern (6). Our goal is to find a vector v ∈ V ′
iso such that

Φv(ω2) ̸= 0 ̸= Φv(ω3). Then ω′ := Φv(ω) also has the property that ω′
1 = 0 = ω′

4 but

ω′
2 ̸= 0 ̸= ω′

3. So by Proposition 1.3.7 ω′ is not in Ĝriso(p−1, Vv), which is a contradiction
with the assumption of Theorem 1.3.1. We consider two cases:

Case 1. Assume Lω2 + Lω3 ⊊ V ′. This case holds if dimV is odd, and also if dimV is
even except when Lω2 ∩ Lω3 = 0. Since V is spanned by isotropic vectors, we can find
an isotropic vector v that does not lie in the linear subspace Lω2 + Lω3 . Then we have
the desired property that Φv(ω2) ̸= 0 ̸= Φv(ω3) by Lemma 1.2.10.

Case 2. Assume Lω2 + Lω3 = V ′. In this case, dimV is even and Lω2 ∩ Lω3 = 0. By
Lemma 1.2.6 we can choose a hyperbolic basis such that

ω2 = αe1 ∧ · · · ∧ ep−1 and ω3 = βe−1 ∧ · · · ∧ e−p+1.

Taking v := e1+ e−2, we have Φv(ω2) ̸= 0 ̸= Φv(ω3), satisfying the desired property.

We now have considered all cases, and the proof of Claim 1.3.8 is complete.

We now know that ω has one of the highlighted zero patterns. Next, we prove that
Theorem 1.3.1 holds if ω has zero pattern (2) or (4).

Claim 1.3.9. Theorem 1.3.1 is true if ω has zero pattern (2) or (4).

Proof. Let ω have zero pattern (2). Then ω = ω3 ∧ e−p. For v = ep, by (1.2.2), we

have Φep(ω) = ±ω3, which by assumption lies in Ĝriso(p− 1, Vv) = Ĝriso(p− 1, V ′) and

therefore also ω ∈ Ĝriso(p, V ). If ω has zero pattern (4) we proceed analogously, using
v = e−p.

For the rest of the proof, we assume that ω has zero pattern (15) or (7); where (7)
can only occur if dimV is odd.
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Claim 1.3.10. The intersection Lω2 ∩ Lω3 is nonzero.

Proof. Assume by contradiction that Lω2 ∩ Lω3 = 0. Then by Lemma 1.2.6 we can find
a hyperbolic basis of V ′ such that

ω2 = αe1 ∧ · · · ∧ ep−1 and ω3 = βe−1 ∧ · · · ∧ e−p+1.

If dimV is even we take v = e1 + e−2. By Observation 1.3.6 we get

Φv(ω) =: ω′ = ω′
1 ∧ ēp ∧ ē−p + ω′

2 ∧ ēp + ω′
3 ∧ ē−p + ω′

4.

Note that in the quotient space
∧p−1 (e1 + e−2)

⊥/⟨e1 + e−2⟩, ω′
2 and ω′

3 have only the
basis vector ē1 = ē−2 in common, thus

dim(Lω′
2
∩ Lω′

3
) = 1.

Since ω′ ∈ Ĝriso(p − 1, Vv), we can conclude by Proposition 1.3.7 that the intersection
Lω′

2
∩ Lω′

3
= Lω′

1
, in particular

dim(Lω′
2
∩ Lω′

3
) = p− 3.

This contradicts our assumption dimV > 8, which for dimV even implies p > 4.
If dimV is odd we take v = e0 + e−1 − c0e1, where c0 =

1
2(e0|e0). Then we find

ω′
2 = αē2 ∧ · · · ∧ ēp−1 and ω′

3 = −c0βē−2 ∧ · · · ∧ ē−p+1.

Note that also in the quotient space
∧p−1 (e0 + e−1 − c0e1)

⊥/⟨e0 + e−1 − c0e1⟩, we have
that

dim(Lω′
2
∩ Lω′

3
) = 0.

But by inspecting cases (3) and (4) of Proposition 1.3.7, we see that

dim(Lω′
2
∩ Lω′

3
) ∈ {p− 2, p− 3}.

This is again a contradiction because, if dimV is odd, our assumption that dimV > 8
implies p > 3.

We will use this result and distinguish if the dimension of V is odd or even.

Claim 1.3.11. One of the following holds.

(a) dimV is even, and dim(Lω2 ∩ Lω3) = p− 2,

(b) dimV is odd, and dim(Lω2 ∩ Lω3) = p− 2,

(c) dimV is odd, and dim(Lω2 ∩ Lω3) = p− 1 and thus Lω2 = Lω3.

Proof. We write q := dim(Lω2 ∩ Lω3) > 0. By Lemma 1.2.6 we can find a hyperbolic
basis of V ′ such that

ω2 = e1 ∧ · · · ∧ eq ∧ ω̃2 and ω3 = e1 ∧ · · · ∧ eq ∧ ω̃3,
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where ω̃2, ω̃3 ∈ Ĝriso(p − q − 1, Ṽ ) and Ṽ = ⟨eq+1, e−q−1, . . . , ep−1, e−p+1⟩. Now if we
choose v as any negative indexed basis vector e−i and write w′ = Φv(ω), by Observa-
tion 1.3.6 we get

ω′
2 = ±ē1 ∧ · · · ∧ ēi−1 ∧ êi ∧ ēi+1 ∧ · · · ∧ ēq ∧ ω̃2,

ω′
3 = ±ē1 ∧ · · · ∧ ēi−1 ∧ êi ∧ ēi+1 ∧ · · · ∧ ēq ∧ ω̃3.

Therefore we have Lω′
2
∩ Lω′

3
= ⟨ē1, . . . , ēi−1, êi, ēi+1, . . . , ēq⟩ and it holds that

dim(Lω′
2
∩ Lω′

3
) = q − 1.

If dimV is even, then
dim(Lω′

2
∩ Lω′

3
) = p− 3,

hence we conclude q = p− 2, as desired. Similarly, if dimV is odd, then

dim(Lω′
2
∩ Lω′

3
) ∈ {p− 2, p− 3}.

We conclude q ∈ {p− 2, p− 1}. In other words, either q = p− 2, or Lω2 = Lω3 .

We will finish the proof by a case analysis of the cases in Claim 1.3.11. For the first
two cases we need Lemma 1.2.13.

Claim 1.3.12. Theorem 1.3.1 holds in case (a).

Proof. Observe that for every vector v ∈ Lω2 ∪ Lω3 , either Φv(ω2) or Φv(ω3) is zero.
According to Observation 1.3.6 and Proposition 1.3.7 and consequently the possible
zero patterns, this implies that Φv(ω1) and Φv(ω4) are also zero. Therefore, applying

Lemma 1.2.13 with V ′ yields that ω1 ∈
∧(p−1)−1(L⊥

ω2
∩L⊥

ω3
) =

∧(p−1)−1(Lω2 ∩Lω3) and

ω4 ∈
∧(p−1)+1(Lω2 + Lω3). After choosing a hyperbolic basis for V ′ such that Lω2 =

⟨e1, e2, . . . , ep−1⟩ and Lω3 = ⟨e−1, e2, . . . , ep−1⟩, and defining W := ⟨e1, e−1, ep, e−p⟩, we
can write

ω = e2 ∧ · · · ∧ ep−1 ∧ η (1.3.4)

for some η ∈
∧2W . Note that Lω2 ∩ Lω3 = ⟨e2, . . . ep−1⟩ is isotropic and orthogonal

to W . Next, we choose v = e−p+1. Consequently, Vv is isomorphic to V ′′
v ⊕W , where

V ′′ = ⟨e2, e−2, . . . , ep−1, e−p+1⟩. Using (1.3.4) we can write

Φv(ω) = ±ē2 ∧ · · · ∧ ēp−2 ∧ η.

By assumption we have Φv(ω) ∈ Ĝriso(p− 1, Vv). So we find that η ∈ Ĝriso(2,W ), which

in turn implies ω ∈ Ĝriso(p, V ).

Claim 1.3.13. Theorem 1.3.1 holds in case (b).

Proof. We start by choosing a hyperbolic basis of V ′ where Lω2 = ⟨e1, e2, . . . , ep−1⟩ and
Lω3 = ⟨e−1, e2, . . . , ep−1⟩. Applying Lemma 1.2.13 to ω1 and ω4 we get

ω1 ∈
∧p−2

(L⊥
ω2

∩ L⊥
ω3
) and ω4 = νe1 ∧ e−1 ∧ e2 ∧ · · · ∧ ep−1
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for some ν ∈ K∗. So we can write

ω =

(
µ0e2 ∧ · · · ∧ ep−1 + e0 ∧

p−1∑
i=2

µie2 ∧ · · · ∧ êi ∧ · · · ∧ ep−1

)
∧ ep ∧ e−p

+ αe1 ∧ e2 ∧ · · · ∧ ep−1 ∧ ep + βe−1 ∧ e2 ∧ · · · ∧ ep−1 ∧ e−p
+ νe1 ∧ e−1 ∧ e2 ∧ · · · ∧ ep−1.

Picking v = e−2 yields

Φv(ω) =

(
µ0e3 ∧ · · · ∧ ep−1 − e0 ∧

p−1∑
i=3

µie3 ∧ · · · ∧ êi ∧ · · · ∧ ep−1

)
∧ ep ∧ e−p

− αe1 ∧ e3 ∧ · · · ∧ ep−1 ∧ ep − βe−1 ∧ e3 ∧ · · · ∧ ep−1 ∧ e−p
+ νe1 ∧ e−1 ∧ e3 ∧ · · · ∧ ep−1.

By assumption ω′ = Φv(ω) ∈ Ĝriso(p − 1, Vv). Thus, by Proposition 1.3.7 one of the
cases (1) – (4) holds. Clearly, case (1) and (2), and since Lω′

2
̸= Lω′

3
, also case (3),

are not possible. Thus, case (4) holds, which implies that ω′
1 ∈ Ĝriso(p − 3, V ′

v) and
Lω′

1
= Lω′

2
∩ Lω′

3
. In coordinates, this means that µi = 0 for i = 3, . . . , p − 1, and that

µ0 ̸= 0. The same argument1 with v = e−3 shows that also µ2 = 0. We now have written
ω as in (1.3.4), and can proceed exactly as in Claim 1.3.12.

Claim 1.3.14. Theorem 1.3.1 holds in case (c).

Proof. The proof is divided into several steps:

• Step 1 shows that ω1 = 0.

• Steps 2-4 show that ω4 = e1 ∧ · · · ∧ ep−1 ∧ u for some u ∈ V ′.

– Step 2 shows that we can write:

ω4 = e1 ∧ · · · ∧ ep−1 ∧ u+
∑
j1,...,jℓ

µJej1 ∧ e−j1 ∧ · · · ∧ ejℓ ∧ e−jℓ(∧e0),

where we write p = 2ℓ or p = 2ℓ+ 1, and the factor ∧e0 only appears in the
latter case.

– Step 3 shows that all µJ are equal and thus:

ω4 = e1 ∧ · · · ∧ ep−1 ∧ u+ µ
∑
j1,...,jℓ

ej1 ∧ e−j1 ∧ · · · ∧ ejℓ ∧ e−jℓ(∧e0).

– Step 4 shows that µ = 0.

• Step 5 then concludes that ω ∈ Ĝriso(p, V ).

1here we use p ≥ 4
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Step 1. ω1 = 0

Proof. Note that for every v ∈ V ′
iso, if we consider ω′ := Φv(ω) ∈ Ĝriso(p − 1, Vv), we

have Lω′
2
= Lω′

3
. This implies that either ω′ = 0, or ω′ is in case (3) of Proposition 1.3.7.

In both cases we conclude ω′
1 = 0. So we proved Φv(ω1) = 0 for each v ∈ V ′

iso, which by
Lemma 1.2.11 implies that ω1 = 0.

Now we choose a hyperbolic basis of V ′ such that Lω2 = Lω3 = ⟨e1, . . . , ep⟩. For any
v ∈ Viso, we can apply Proposition 1.3.7 to Φv(ω) and find:

1. If v ∈ Lω2 , we have Φv(ω4) = 0.

2. If v ∈ Viso \ Lω2 , we have Φv(ω4) ∈ Ĝr(p− 1, Vv) with Lω2 ⊂ LΦv(ω4).

Step 2. ω4 is of the form

e1 ∧ · · · ∧ ep−1 ∧ u+
∑
j1,...,jℓ

µJej1 ∧ e−j1 ∧ · · · ∧ ejℓ ∧ e−jℓ(∧e0),

where we write p = 2ℓ or p = 2ℓ+ 1, and the factor ∧e0 only appears in the latter case.

Proof. We will write

ω4 =
∑
i1,...,ip

λi1,...,ipei1 ∧ · · · ∧ eip ,

where we always order the indices as follows: 1,−1, 2,−2, . . . , p − 1,−p + 1, 0. We will
abbreviate λi1,...,ip to λI , where I = {i1, . . . , ip} ⊂ {1,−1, 2,−2, . . . , p− 1,−p+ 1, 0}. If
we choose v = ei, then (1) tells us that

0 = Φv(ω4) =
∑

−i∈I,i/∈I

±λI ēI\{−i} ∈
∧p−1

e⊥i /⟨ei⟩,

where the occurring vectors ēI\{−i} are linearly independent. So if −i ∈ I but i /∈ I then
λI = 0. On the other hand, if we choose v = e−i, then (2) tells us that

Φv(ω4) =
∑

−i/∈I,i∈I

±λI ēI\{i} ∈
∧p−1

e⊥−i/⟨e−i⟩

is of the form
ē1 ∧ · · · ∧ êi ∧ · · · ∧ ēp−1 ∧ u

for some u ∈ V ′. So if i ∈ I but −i /∈ I, then λI = 0, unless {1, 2, . . . , p − 1} ⊂ I.
Together with the above, this implies the claim.

Step 3. All µI are equal, so we can write

ω4 = e1 ∧ · · · ∧ ep−1 ∧ u+ µ
∑
j1,...,jℓ

ej1 ∧ e−j1 ∧ · · · ∧ ejℓ ∧ e−jℓ(∧e0).
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Proof. Take v = ei − ej with i, j positive. Then Φv(ω1) = 0 and Φv(ω2) = Φv(ω3) = 0,
hence by Proposition 1.3.7 we get Φv(ω4) = 0. But

φv(ω4) =−
∑
i∈J

µJej1 ∧ e−j1 ∧ · · · ∧ ei ∧ ê−i ∧ · · · ∧ ejℓ ∧ e−jℓ(∧e0)

+
∑
j∈J

µJej1 ∧ e−j1 ∧ · · · ∧ ej ∧ ê−j ∧ · · · ∧ ejℓ ∧ e−jℓ(∧e0).

After projecting to
∧p−1 (ei − ej)

⊥/⟨ei − ej⟩ we get

0 = Φv(ω4) =−
∑

i∈J,j /∈J

µJ ēj1 ∧ ē−j1 ∧ · · · ∧ ēi ∧ ê−i ∧ · · · ∧ ējℓ ∧ ē−jℓ(∧ē0)

+
∑

j∈J,i/∈J

µJ ēj1 ∧ ē−j1 ∧ · · · ∧ ēj ∧ ê−j ∧ · · · ∧ ējℓ ∧ ē−jℓ(∧ē0)

=ēi ∧
∑
i,j /∈J ′

(−µJ ′∪{i} + µJ ′∪{j})ēj′1 ∧ ē−j′1 ∧ · · · ∧ ēj′ℓ−1
∧ ē−j′ℓ−1

(∧ē0).

So we find that µJ ′∪{i} = µJ ′∪{j} for every J ′ ⊂ {1, . . . , î, . . . , ĵ, . . . , p−1}. Letting i and
j vary yields the result.

Step 4. µ4 = 0

Proof. Finally, take v = e0 + e−1 − c0e1, where as before c0 =
1
2(e0|e0). If p = 2ℓ we can

write

Φv(ω4) = ē2 ∧ · · · ∧ ēp−1 ∧ ũ+ µ
∑
J∋1

(ē−1 + c0ē1) ∧ ēj2 ∧ ē−j2 ∧ · · · ∧ ējℓ ∧ ē−jℓ

and if p = 2ℓ+ 1 we have

Φv(ω4) =ē2 ∧ · · · ∧ ēp−1 ∧ ũ+ µ
∑
J∋1

(ē−1 + c0ē1) ∧ ēj2 ∧ ē−j2 ∧ · · · ∧ ējℓ ∧ ē−jℓ ∧ ē0

+ 2c0µ
∑
J

ēj1 ∧ ē−j1 ∧ · · · ∧ ējℓ ∧ ē−jℓ .

In both cases we have LΦv(ω4) ⊃ ⟨ē2, . . . , ēp−1⟩ by (2) from which we conclude µ = 0.

Step 5. ω ∈ Ĝriso(p, V )

Proof. Since ω1 = 0 and ω4 = e1 ∧ · · · ∧ ep−1 ∧ u for some u ∈ V ′, we can write

ω = e1 ∧ · · · ∧ ep−1 ∧ u′

for some u′ ∈ ⟨e0, ep, e−1, . . . , e−p+1, e−p⟩. Choose v = e−1, then we have

Φv(ω) = ē2 ∧ · · · ∧ ēp−1 ∧ u′ ∈ Ĝriso(p− 1, Vv)

hence (u′|u′) = 0 and (ej |u′) = 0 for all j = 2, . . . , p−1. Replacing v = e−1 with v = e−2

yields that also (e1|u′) = 0, hence ω ∈ Ĝriso(p, V ).

This proves Claim 1.3.14.
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1.4 Counterexamples in Small Dimensions

In Theorem 1.3.1, we assumed that dimV > 8. In this section, we will show that this
assumption is actually necessary. In both

∧3K7 and
∧4K8, we will give a p-form ω that

does not lie in the isotropic Grassmannian, but which maps to the isotropic Grassman-
nian upon applying any IGCP map Φv. For case of simplicity, we assume the underlying
field K is either C or R.

1.4.1 Counterexample in Dimension 7

Let V be a 7-dimensional K-vector space with a fixed basis e0, e1, e2, e3, e−1, e−2, e−3,
and a quadratic form given by the matrix

J =

−1
2 0 0

0 0 I3
0 I3 0

 ,

where I3 is the (3× 3)-identity matrix. Choose

ω7 := e1 ∧ e2 ∧ e3 + e−1 ∧ e−2 ∧ e−3 + e0 ∧ (e1 ∧ e−1 + e2 ∧ e−2 + e3 ∧ e−3).

One verifies that ω7 /∈ Ĝr(3, V ), so in particular ω7 /∈ Ĝriso(3, V ). In Claim 1.4.2 below

we will show that every Φv maps ω7 to the isotropic Grassmann cone Ĝriso(2, 5). One
could verify this by a direct computation for an arbitrary isotropic vector v. However,
we will exploit the fact that ω7 is sufficiently symmetric (Claim 1.4.1), so it suffices to
do the computation for one fixed v ∈ Viso.

Consider the algebraic group

SO(V ) = {ϕ ∈ SL(V ) | (ϕ(x)|ϕ(y)) = (x|y) ∀x, y ∈ V }
=
{
A ∈ SL(7,K) | ATJA = J

}
and its subgroup

G = stab(ω7) = {ϕ ∈ SO(V ) | ϕ · ω7 = ω7} .

Claim 1.4.1. The action of G on Viso is transitive.

Proof. Take any v0 ∈ Viso. We want to show that its orbit G ·v0 has dimension six. Then
G · v0 is a full-dimensional subvariety of the irreducible 6-dimensional variety Viso, and
hence is equal to Viso. For this we use the formula

dim(G · v0) = dimG− dim(stabG(v0)),

where stabG(v0) = {ϕ ∈ G | ϕ · v0 = v0} is the stabilizer. We will compute both terms
dimG and dim(stabG(v0)) by switching to Lie algebras.

The Lie algebra of SO(V ) is given by

so(V ) =
{
X ∈ sl(7,K) | XTJ + JX = 0

}
=

{0 −2yT −2xT

x a b

y c −aT

∣∣∣∣∣ x, y ∈ K3, a, b, c ∈ K3×3, b+ bT = c+ cT = 0

}
.
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We introduce the following notation.

For x =

x1x2
x3

we write lx :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .

We can compute the Lie algebra g ⊂ so(V ) of G as follows:

g = {X ∈ so(V ) | X · ω7 = 0}

=

{0 −2yT −2xT

x a ly
y lx −aT

∣∣∣∣∣ x, y ∈ K3, a ∈ sl(3,K)

}
.

Observe that dim g = 3+ 3+ 8 = 14 and since dimG = dim g, G has also dimension 14.
For the stabilizer, if we take v0 = e−3 ∈ Viso, we see that

stabg(v0) = {X ∈ g | X · e−3 = 0}

is the set of matrices in g whose final column is zero, which has dimension 8. So we get
dim(G · v0) = 14− 8 = 6 = dimViso, as desired.

Claim 1.4.2. For every v ∈ Viso, it holds that Φv(ω7) ∈ Ĝriso(2, Vv).

Proof. By the previous claim, it suffices to prove the claim for one fixed v0 ∈ Viso. Indeed,
then any v ∈ Viso is of the form g · v0 for some g ∈ stab(ω7), and we get

Φv(ω7) = Φg·v0(g · ω7) = ḡ · Φv0(ω7) ∈ Griso(2, Vv),

where ḡ : Vv0 ! Vv is the isometry induced by g. So we take v0 = e−3, and readily
compute

Φe−3(ω7) = ē1 ∧ ē2 ∈ Ĝriso
(
2, Ve−3

)
.

In summary, this shows how Theorem 1.3.1 fails for the isotropic Grassmannian
Ĝriso(3, 7): by Claim 1.4.2 ω7 satisfies the assumption but is itself not in Ĝriso(3, 7). In

particular, this means that Ĝriso(3, 7) cannot be defined by pulling back the equations

of Ĝriso(2, 5) along IGCP maps of the form Φv. We originally constructed our counterex-
ample by analyzing where our proof fails if dimV = 7. However, it turned out, that ω7

is interesting also from different points of view, which we will discuss in the following
remarks.

Remark 1.4.3. In 1900, Engel [Eng00] showed that if ω is a generic 3-form on C7, its
symmetry group is isomorphic to the exceptional group G2, and that such a 3-form gives
rise to a bilinear form βω. If we choose coordinates such that ω agrees with our form
ω7, then this group G2 is precisely the stabilizer G we computed in Claim 1.4.1, and βω
is up to scaling equal to our bilinear form given by J . For more about G2, we refer the
reader to [Fon18].

Remark 1.4.4. Alternatively we can construct ω7 as the triple product on the split
octonions. Here we will follow the notation from [BH14]. Recall that the space H of
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quaternions is the 4-dimensional real vector space with basis {1, i, j, k}, equipped with
a bilinear associative product specified by Hamilton’s formula

i2 = j2 = k2 = ijk = −1.

The conjugate of a quaternion x = a+ bi+ cj + dk is given by x = a− bi− cj − dk. We
also have a quadratic form given by QH(x) := xx = xx = a2 + b2 + c2 + d2. The space
of split octonions is the vector space Os := H ⊕ H with a bilinear (but nonassociative)
product given by

(a, b)(c, d) := (ac+ db̄, ād+ cb).

The conjugate of an octonion (a, b) is given by (a, b) = (ā,−b). Additionally, we de-
fine a quadratic form QOs , of signature (4, 4), by QOs(x) = xx = xx; or equivalently
QOs((a, b)) = QH(a)−QH(b). We will write

e0 := (1, 0) e1 := (i, 0) e2 := (j, 0) e3 := (k, 0)

e4 := (0, 1) e5 := (0, i) e6 := (0, j) e7 := (0, k).

Let OIm = {x ∈ Os | x̄ = −x} = ⟨e1, . . . e7⟩ denote the imaginary split octonions. On
OIm we can define a cross product given by the commutator:

x× y :=
1

2
(xy − yx),

and a triple product T : OIm ×OIm ×OIm ! R, given by

T (x, y, z) := (x, y × z),

where (·, ·) is the bilinear form coming from QOs . This triple product is an alternating
trilinear form, and hence can be identified with an element ω ∈

∧3 V ∗, where V = OIm.
Explicitly, writing e∗i ∈ V ∗ for the dual vector to ei, we have

ω =e∗1 ∧ e∗2 ∧ e∗3 + e∗1 ∧ e∗4 ∧ e∗5 + e∗1 ∧ e∗6 ∧ e∗7 + e∗2 ∧ e∗4 ∧ e∗6
− e∗2 ∧ e∗5 ∧ e∗7 + e∗3 ∧ e∗4 ∧ e∗7 + e∗3 ∧ e∗5 ∧ e∗6.

Note that the terms in ω correspond to the lines in the Fano plane:

4
21

7

36 5

This ω agrees with ω7 up to a change of basis. Explicitly, if we substitute

e0 7!
e∗4√
2
, e1 7!

e∗1 + e∗5√
2

, e2 7!
e∗2 + e∗6√

2
, e3 7!

e∗3 + e∗7√
2

,

e−1 7!
e∗1 − e∗5√

2
, e−2 7!

e∗2 − e∗6√
2

, e−3 7!
e∗3 − e∗7√

2

into ω7, we recover ω (up to scaling).
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1.4.2 Counterexample in Dimension 8

Let V be an 8-dimensional vector space with basis e1, e2, e3, e4, e−1, e−2, e−3, e−4, and
quadratic form given by the matrix

J =

(
0 I4
I4 0

)
.

Choose

ω8 :=2e1 ∧ e2 ∧ e3 ∧ e4 + 2e−1 ∧ e−2 ∧ e−3 ∧ e−4

+ e1 ∧ e2 ∧ e−1 ∧ e−2 + e1 ∧ e3 ∧ e−1 ∧ e−3 + e1 ∧ e4 ∧ e−1 ∧ e−4 (1.4.1)

+ e2 ∧ e3 ∧ e−2 ∧ e−3 + e2 ∧ e4 ∧ e−2 ∧ e−4 + e3 ∧ e4 ∧ e−3 ∧ e−4.

One can verify that ω8 /∈ Ĝr(4, V ), so in particular ω8 /∈ Ĝriso(4, V ). As before, we
consider the algebraic group

SO(V ) ={ϕ ∈ SL(V ) | (ϕ(x)|ϕ(y)) = (x|y) ∀x, y ∈ V }
={A ∈ SL(8,K) | ATJA = J}

and its subgroup
G := stab(ω8) = {ϕ ∈ SO(V ) | ϕ · ω8 = ω8}.

Claim 1.4.5. The action of G on Viso is transitive.

Proof. Take any v0 ∈ Viso; we want to show that its orbit G · v0 has dimension equal to
dimViso = 7. The Lie algebra of SO(V ) is given by

so(V ) ={X ∈ sl(8,K) | XTJ + JX = 0}

=

{(
a b

c −aT

)∣∣∣∣∣ a, b, c ∈ K4×4, b+ bT = c+ cT = 0

}
.

We introduce the following notation

for b =


0 b12 b13 b14

−b12 0 b23 b24
−b13 −b23 0 b34
−b14 −b24 −b34 0

 write b̃ :=


0 −b34 b24 −b23
b34 0 −b14 b13
−b24 b14 0 −b12
b23 −b13 b12 0

 .

We can compute the Lie algebra g ⊂ so(V ) of G as follows:

g = {X ∈ so(V ) | X · ω8 = 0}

=


a b

b̃ −aT

∣∣∣∣∣ a ∈ sl(4,K), b+ bT = 0

 .

As before dimG = dim g = 21. For the stabilizer, if we take v0 = e−4 ∈ Viso, we see that

stabg(v0) ={X ∈ g | X · e−4 = 0}

is the set of matrices in g whose final column is zero, which has dimension 14. So
dim(G · v0) = 21− 14 = 7 = dimViso, as desired.

31



As before, we conclude the following claim.

Claim 1.4.6. For every v ∈ Viso, it holds that Φv(ω8) ∈ Ĝriso(3, Vv).

Proof. As in Claim 1.4.2, it suffices to prove the claim for one fixed v ∈ Viso. Taking
v = e−1, we compute that

Φv(ω8) = 2ē2 ∧ ē3 ∧ ē4 ∈ Ĝriso(3, Ve−1).

In summary, this shows how Theorem 1.3.1 fails for Ĝriso(4, 8). As before, this means

that Ĝriso(4, 8) cannot be defined by pulling back the equations of Ĝriso(3, 6) along IGCP
maps of the form Φv.

Remark 1.4.7. The Lie algebra g defined above is in fact isomorphic to so(7). An explicit
isomorphism so(7)! g can be given by



0 −2y1 −2y2 −2y3 −2x1 −2x2 −2x3
x1 a11 a12 a13 0 b12 b13
x2 a21 a22 a23 −b12 0 b23
x3 a31 a32 a33 −b13 −b23 0

y1 0 c12 c13 −a11 −a21 −a31
y2 −c12 0 c23 −a12 −a22 −a32
y3 −c13 −c23 0 −a13 −a23 −a33


7!



d11 a12 a13 −c23 0 −y3 y2 x1
a21 d22 a23 c13 y3 0 −y1 x2
a31 a32 d33 −c12 −y2 y1 0 x3
b23 −b13 b12 d44 −x1 −x2 −x3 0

0 −x3 x2 y1 −d11 −a21 −a31 −b23
x3 0 −x1 y2 −a12 −d22 −a32 b13
−x2 x1 0 y3 −a13 −a23 −d33 −b12
−y1 −y2 −y3 0 c23 −c13 c12 −d44


,

where for the left hand side we used the notation from Section 1.4.1, and in the right
hand side we have

d11 :=
a11 − a22 − a33

2
, d22 :=

−a11 + a22 − a33
2

, d33 :=
−a11 − a22 + a33

2
, d44 :=

a11 + a22 + a33
2

.

1.5 Ranks of Defining Quadrics

In Section 1.5.1, we will finish the proof of Corollary 1.3.3, by verifying the following
fact:

Claim 1.5.1. Ĝriso(3, 7), as well as both irreducible components of Ĝriso(4, 8), can be
set-theoretically defined by quadrics of rank at most 4.

In Section 1.5.2, we explain how Corollary 1.3.3 can be deduced from the literature
on isotropic Grassmannians, in particular the Cartan embedding.

1.5.1 Computational Approach

Our verification is based on an algorithm, which we implemented in Macaulay2 [GS].

We sketch the steps of the algorithm below. Let X be either Ĝriso(3, 7), or one of the

components of Ĝriso(4, 8).

1. Compute the ideal I defining X by parametrizing an open subset and performing
a Gröbner basis computation. The ideal I is generated by linear equations and
quadrics.

2. Get rid of the linear equations by substituting variables.
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3. View the space I2 of quadrics in I as a representation of SO(V ), and decompose
it into weight spaces.

4. Find a highest weight vector p ∈ I2 of minimal rank.

5. Compute the subrepresentation generated by p, using the lowering operators in
so(V ).

6. If we generated all of I2, we are done.

7. Otherwise, find the highest weight space we did not yet generate, let p be a quadric
of minimal rank in it, and return to step (5).

By construction, the SO(V )-orbits of the quadrics p we found give sufficiently many
equations to define X. Since acting with SO(V ) does not change the rank of a quadric, it
follows that if each of our quadrics has rank at most 4, then X can be defined by quadrics
of rank at most 4. For Ĝriso(3, 7), our algorithm returned the following quadrics:

x20,1,2 + 2x1,2,3x1,2,−3,

x0,1,2(x1,2,−2 + x1,3,−3) + 2x1,2,3x0,1,−3,

x0,1,3x0,1,−3 + x0,1,2x0,1,−2,

x1,2,3(x0,1,−1 + x0,2,−2 − x0,3,−3) + x0,1,2(x2,3,−2 + x1,3,−1),

x20,1,−1 − (x0,2,−2 + x0,3,−3)
2 + 2(x1,3,−3 + x1,2,−2)(x3,−1,−3 + x2,−1,−2).

For one of the components of Ĝriso(4, 8), we found the following quadrics:

x21,2,3,−3 − x1,2,3,4x1,2,−3,−4,

2x1,2,3,−3x1,3,4,−1 − x1,2,3,4(x1,2,−1,−2 − x1,3,−1,−3 − x1,4,−1,−4),

(x1,4,−1,−4 + x2,4,−2,−4 − x3,4,−3,−4)
2 − 4x3,4,−1,−2x1,2,−3,−4.

Since all quadrics listed above have rank at most 4, and since both components of
Ĝriso(4, 8) are isomorphic, our verification is now complete.

1.5.2 Rank 4 Quadrics via the Cartan Embedding

In this section we will sketch an alternative proof that Griso(p, 2p+1) and the connected
components of Griso(p, 2p), in their Plücker embedding, are defined by linear equations
and quadrics of rank at most 4, using the Cartan embedding (sometimes called spinor
embedding), cf. [Car81] or [HB21]. The proof follows by combining the following facts:

• The image of the Cartan embedding is defined by quadrics [Car81].

• The Plücker embedding factors as the Cartan embedding followed by a degree two
Veronese embedding ([BHH21, Theorem 2.1] and [CP13, Theorem 1]).

• The image of a degree two Veronese embedding is defined by quadrics of rank 3
and 4.

The idea is that the Veronese embedding turns the quadratic equations of the Cartan
embedding into linear equations, so the only quadrics we need are the ones coming from
the Veronese embedding.
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Chapter 2

Topological Noetherianity of the
Infinite Half-Spin Representations

2.1 Finite Spin Representations and the Spin Group

In this section we collect some preliminaries on spin groups and their defining representa-
tions. Throughout we will assume that K is an algebraically closed field of characteristic
zero. We follow [Man09] in our set-up; for more general references on spin groups and
their representations see [LM89, Pro07].

2.1.1 The Clifford Algebra

Let V be a finite-dimensional vector space over K endowed with a quadratic form q. The
Clifford algebra Cl(V, q) of V is the quotient of the tensor algebra T (V ) =

⊕
d≥0 V

⊗d by
the two-sided ideal generated by all elements

v ⊗ v − q(v) · 1, v ∈ V. (2.1.1)

This is also the two-sided ideal generated by

v ⊗ w + w ⊗ v − 2(v|w) · 1, v, w ∈ V, (2.1.2)

where (·|·) denotes the bilinear form associated to q defined by

(v|w) := 1

2

(
q(v + w)− q(v)− q(w)

)
.

The Clifford algebra is a functor from the category of vector spaces equipped with
a quadratic form to the category of (unital) associative algebras. That is, any linear
map φ : (V, q) ! (V ′, q′) with q′(φ(v)) = q(v) for all v ∈ V induces a homomorphism
of associative algebras Cl(φ) : Cl(V, q) ! Cl(V ′, q′). If ϕ is an inclusion V ⊆ V ′, then
Cl(φ) is injective, and hence Cl(V, q) is a subalgebra of Cl(V ′, q′).

The decomposition of T (V ) into the even part T+(V ) :=
⊕

d even V
⊗d and the odd

part T−(V ) :=
⊕

d odd V
⊗d induces a decomposition Cl(V, q) = Cl+(V, q) ⊕ Cl−(V, q),

turning Cl(V, q) into a Z/2Z-graded associative algebra. Note that, via the commutator
on Cl(V, q), the even Clifford algebra Cl+(V, q) is a Lie subalgebra of Cl(V, q).
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The anti-automorphism of T (V ) determined by v1⊗· · ·⊗vd 7! vd⊗· · ·⊗v1 preserves
the ideal in the definition of Cl(V, q) and therefore induces an anti-automorphism x 7! x∗

of Cl(V, q).

2.1.2 The Grassmann Algebra as a Cl(V )-Module

From now on, we will write Cl(V ) for Cl(V, q) when q is clear from the context. If q = 0,
then Cl(V ) =

∧
V , the Grassmann algebra of V . If E ⊆ V is an isotropic subspace,

that is, a subspace for which q|E = 0, then this fact allows us to identify
∧
E with the

subalgebra Cl(E) of Cl(V ).
For general q, Cl(V ) is not isomorphic as an algebra to

∧
V , but

∧
V is naturally a

Cl(V )-module as follows. For v ∈ V define o(v) :
∧
V !

∧
V (the “outer product”) as

the linear map
o(v)ω := v ∧ ω

and ι(v) :
∧
V !

∧
V (the “inner product”) as the linear map determined by

ι(v)w1 ∧ · · · ∧ wk :=
k∑
i=1

(−1)i−1(v|wi)w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wk.

Here, and elsewhere in the paper, ·̂ indicates a factor that is left out. Now v 7! ι(v)+o(v)
extends to an algebra homomorphism Cl(V ) ! End(

∧
V ). To see this, it suffices to

consider v, w1, . . . , wk ∈ V and verify

(ι(v) + o(v))2w1 ∧ · · · ∧ wk = (v|v)w1 ∧ · · · ∧ wk.

We write a • ω for the outcome of a ∈ Cl(V ) acting on ω ∈
∧
V . Using induction on

the degree of a product, the linear map Cl(V ) !
∧
V, a 7! a • 1 is easily seen to be an

isomorphism of vector spaces. In particular, Cl(V ) has dimension 2dimV .

2.1.3 Embedding so(V ) into the Clifford Algebra

From now on, we assume that q is non-degenerate and write SO(V ) = SO(V, q) for the
special orthogonal group of q. Its Lie algebra so(V ) consists of linear maps V ! V
that are skew-symmetric with respect to (·|·), that is, those A ∈ End(V ) such that
(Av|w) = −(v|Aw) for all v, w ∈ V . We have a unique linear map ψ :

∧2 V ! Cl+(V )
with ψ(u ∧ v) = uv − vu, and ψ is injective. A straightforward computation shows that
the image L of ψ is closed under the commutator in Cl(V ), hence a Lie subalgebra. We
claim that L is isomorphic to so(V ). Indeed, for u, v, w ∈ V we have

[ψ(u ∧ v), w] = [[u, v], w] = 4(v|w)u− 4(u|w)v.

We see, first, that V ⊆ Cl(V ) is preserved under the adjoint action of L; and second,
that L acts on V via skew-symmetric linear maps, so that L maps into so(V ). Since
every map in so(V ) is a linear combination of the linear maps above, and considering
that dim(L) = dim(so(V )), the map L ! so(V ) is an isomorphism. We will identify
so(V ) with the Lie subalgebra L ⊆ Cl(V ) via the inverse of this isomorphism, and
we will identify

∧2 V with so(V ) via the map u ∧ v 7! (w 7! (v|w)u− (u|w)v). The
concatenation of these identifications is the linear map 1

4ψ.
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2.1.4 The Half-Spin Representations

From now on, we assume that dim(V ) = 2n. We believe that all our results hold mutatis
mutandis also in the odd-dimensional case, but we have not checked the details. A
maximal isotropic subspace U of V is an isotropic subspace which is maximal with
respect to inclusion. Since K is algebraically closed, q has maximal Witt index, so that
every maximal isotropic subspace of V has dimension n.

The spin representation of so(V ) is constructed as follows. Let F be a maximal
isotropic subspace of V and let f1, . . . , fn be a basis of F . Define f := f1 · · · fn ∈ Cl(F );
this element in Cl(F ) =

∧
F is well-defined up to a scalar. Then the left ideal Cl(V ) ·f is

a left module for the associative algebra Cl(V ), and hence for its Lie subalgebra so(V ).
This ideal is called the spin representation of so(V ). As Cl(V ) is Z/2Z-graded, the spin
representation splits into a direct sum of two subrepresentations for Cl+(V ), and hence
for so(V ) ⊆ Cl+(V ), namely, Cl+(V ) ·f and Cl−(V ) ·f . These representations are called
the half-spin representations of so(V ).

2.1.5 Explicit Formulas

We will need more explicit formulas for the action of so(V ) on the half-spin represen-
tations. To this end, let E be another isotropic n-dimensional subspace of V such that
V = E ⊕ F . Then the map∧

E = Cl(E)! Cl(V )f, ω 7! ωf

is a linear isomorphism, and we use it to identify
∧
E with the spin representation. We

write ρ : so(V ) ! End(
∧
E) for the corresponding representation. This representation

decomposes as a direct sum of the half-spin representations ρ+ : so(V ) ! End(
∧+E)

and ρ− : so(V )! End(
∧−E), where

∧+E =
⊕

d even

∧dE and
∧−E =

⊕
d odd

∧dE.
In this model of the spin representation, the action of v ∈ E ⊆ Cl(V ) on the spin

representation
∧
E is just the outer product on

∧
E : o(v) :

∧
E !

∧
E, ω 7! v ∧ ω,

while the action of v ∈ F ⊆ Cl(V ) is twice the inner product on
∧
E:

2ι(v)w1 ∧ · · · ∧ wk = 2

k∑
i=1

(−1)i−1(v|wi)w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wk.

The factor 2 and the alternating signs come from the following identity in Cl(V ):

vvi = 2(v|vi)− viv for v ∈ F and vi ∈ E.

For a general v ∈ V we write v = v′ + v′′ with v′ ∈ E, v′′ ∈ F . Then the action of V on∧
E is given by

v 7! o(v′) + 2ι(v′′).

We now compute the linear maps by means of which so(V ) acts on
∧
E. To this end,

recall that a pair e, f ∈ V is called hyperbolic if e, f are isotropic and (e|f) = 1. Given
the basis f1, . . . , fn of F , there is a unique basis e1, . . . , en of E so that (ei|fj) = δij ; then
e1, . . . , en, f1, . . . , fn is called a hyperbolic basis of V . Now the element ei ∧ ej ∈ so(V )
acts on

∧
E ≃ Cl(V )f via the linear map

1

4

(
o(ei)o(ej)− o(ej)o(ei)

)
=

1

2
o(ei)o(ej);
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the element fi ∧ fj acts via the linear map

1

4

(
4ι(fi)ι(fj)− 4ι(fj)ι(fi)

)
= 2ι(fi)ι(fj);

and the element ei ∧ fj acts via the linear map

1

4

(
o(ei)2ι(fj)− 2ι(fj)o(ei)

)
=

1

2

(
o(ei)ι(fj)− ι(fj)o(ei)

)
.

In particular, ω0 := e1 ∧ · · · ∧ en ∈
∧
E is mapped to 0 by all elements ei ∧ ej and all

elements ei ∧ fj with i ̸= j, and it is mapped to 1
2ω0 by all ei ∧ fi.

2.1.6 Highest Weights of the Half-Spin Representations

Remember, for instance from [Jac62, Chapter IV, pages 140–141], that in the basis
e1, . . . , en, f1, . . . , fn, matrices in so(V ) have the form[

A B
C −AT

]
with BT = −B, and CT = −C.

Here the (ei, ej)-entry of A is the coefficient of ei ∧ fj , the (ei, fj)-entry of B is the
coefficient of ei ∧ ej , and the (fi, ej)-entry of C is the coefficient of fi ∧ fj .

The diagonal matrices ei ∧ fi span a Cartan subalgebra of so(V ) with standard
(Chevalley) basis consisting of hi := ei ∧ fi − ei+1 ∧ fi+1 for i = 1, . . . , n − 1 and
hn := en−1 ∧ fn−1 + en ∧ fn (this last element is forgotten in the basis of the Cartan
algebra on [Jac62, page 140]).

Now (ei∧ej)ω0 = (ei∧fj)ω0 = 0 for all i ̸= j. Furthermore, the elements h1, . . . , hn−1

map ω0 to 0, while hn maps ω0 to ω0. Thus the Borel subalgebra maps the line Kω0 into
itself and ω0 is a highest weight vector of the fundamental weight λ0 := (0, . . . , 0, 1) in the
standard basis. Summarising, ω0 ∈

∧
E generates a copy of the irreducible so(V )-module

Vλ0 with highest weight λ0. Clearly, the so(V )-module generated by ω0 is contained in∧+E if n is even, and contained in
∧−E when n is odd. One can also show that both

half-spin representations are irreducible, hence one of them is a copy of Vλ0 . For the
other half-spin representation, consider the element

ω1 := e1 ∧ · · · ∧ en−1 ∈
∧
E.

This element is mapped to zero by ei ∧ ej for all i ̸= j and by ei ∧ fj for all i < j. It is
further mapped to 0 by h1, . . . , hn−2, hn, and to ω1 by hn−1. For example, we have

hnω1 =
1

2

(
o(en−1)ι(fn−1)− ι(fn−1)o(en−1) + o(en)ι(fn)− ι(fn)o(en)

)
e1 ∧ · · · ∧ en−1

=
1

2
(1− 0 + 0− 1)ω1 = 0, and similarly

hn−1ω1 =
1

2
(1− 0− 0 + 1)ω1 = ω1.

Hence ω1 generates a copy of Vλ1 , the irreducible so(V )-module with the highest weight
vector λ1 := (0, . . . , 0, 1, 0); this is the other half-spin representation.
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2.1.7 The Spin Group

Let ρ : so(V ) ! End(
∧
E) be the spin representation. We can then define the spin

group Spin(V ) as the subgroup of GL(
∧
E) generated by the one-parameter subgroups

t 7! exp(tρ(X)) where X runs over the root vectors ei ∧ ej , fi ∧ fj and ei ∧ fj with
i ̸= j. Note that ρ(X) is nilpotent for each of these root vectors, so that t 7! exp(tρ(X))
is an algebraic group homomorphism K ! GL(

∧
E). It is a standard fact that the

subgroup generated by irreducible curves through the identity in an algebraic group is
itself a connected algebraic group; see [Bor91, Proposition 2.2]. So Spin(V ) is a connected
algebraic group, and one verifies that its Lie algebra is isomorphic to the Lie algebra
generated by the root vectors X, i.e., to so(V ).

By construction, the (half-)spin representations
∧
E,
∧+E and

∧−E are represen-
tations of Spin(V ). We use the same notation for these representations as we did for the
corresponding Lie algebra representations:

ρ : Spin(V )! GL
(∧

E
)
, ρ+ : Spin(V )! GL

(∧+
E
)
,

and
ρ− : Spin(V )! GL

(∧−
E
)
.

Remark 2.1.1. The algebraic group Spin(V ) is usually constructed as a subgroup of the
unit group Cl∗(V ) as follows: consider first

Γ(V ) = {x ∈ Cl∗(V ) | xV x−1 = V },

sometimes called the Clifford group. Then Spin(V ) is the subgroup of Γ(V ) of elements of
spinor norm 1; that is, xx∗ = 1, where x∗ denotes the involution defined in Section 2.1.1.
In this model of the spin group, one can easily observe that it admits a 2 : 1 covering
Spin(V )! SO(V ), namely, the restriction of the homomorphism Γ(V )! O(V ) given by
associating to x ∈ Γ(V ) the orthogonal transformation w 7! xwx−1. For more details see
[Pro07]. Since our later computations involve the Lie algebra so(V ) only, the definition
of Spin(V ) above suffices for our purposes.

The half-spin representations are not representations of the group SO(V ); this can
be checked, e.g., by showing that the highest weights λ0 and λ1 are not in the weight
lattice of SO(V ).

2.1.8 Two Actions of gl(E) on
∧
E

The definition of the (half-)spin representation(s) of so(V ) and Spin(V ) as Cl(±)(V )f
involves only the quadratic form q and the choice of a maximal isotropic space F ⊆ V .
Consequently, any linear automorphism of V that preserves q and maps F into itself
also acts on Cl(±)(V )f . These linear automorphisms form the stabiliser of F in SO(V ),
which is the parabolic subgroup whose Lie algebra consists of the matrices in SO(V )
that are block lower triangular in the basis e1, . . . , en, f1, . . . , fn. So, while SO(V ) does
not act naturally on the (half-)spin representation(s), this stabiliser does.

In particular, in our model
∧(±)E of the (half-)spin representation(s), the group

GL(E), embedded into SO(V ) as the subgroup of block diagonal matrices[
a 0
0 −aT

]
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acts on
∧
E in the natural manner. We stress that this is not the action obtained by

integrating the action of gl(E) ⊆ so(V ) on
∧
E regarded as the spin representation.

Indeed, the standard action of ei ∧ fj ∈ gl(E) on ω := ei1 ∧ · · · ∧ eik ∈
∧k E yields

k∑
l=1

ei1 ∧ · · · ∧ ei(fj |eil) ∧ · · · ∧ eik =

{
0 if j ̸∈ {i1, . . . , ik}
(−1)l−1ei ∧ ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik if j = il.

On the other hand, in the spin representation the action is given by the linear map
1
2

(
o(ei)ι(fj)− ι(fj)o(ei)

)
. If j ̸= i and j ̸∈ {i1, . . . , ik}, then

o(ei)ι(fj)ω = ι(fj)o(ei)ω = 0.

If j ̸= i and j = il, then

o(ei)ι(fj)ω = (−1)l−1ei ∧ ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik = −ι(fj)o(ei)ω.

We conclude that for i ̸= j, the action of ei ∧ fj is the same in both representations.
However, if i = j, then

1

2

(
o(ei)ι(fi)− ι(fi)o(ei)

)
ω =

{
−1

2ω if i ̸∈ {i1, . . . , ik}, and
1
2(−1)l−1ei ∧ ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik = 1

2ω if i = il.

We conclude that if ρ̃ : gl(E)! End (
∧
E) is the standard representation of gl(E), then

the restriction of the spin representation ρ : so(V )! End(
∧
E) to gl(E) as a subalgebra

of so(V ) satisfies

ρ(A) = ρ̃(A)− 1

2
tr(A) Id∧E . (2.1.3)

At the group level, this is to be understood as follows. The pre-image of the subgroup
GL(E) ⊆ SO(V ) in Spin(V ) is isomorphic to the connected algebraic group

H :=
{
(g, t) ∈ GL(E)×K∗ ∣∣ det(g) = t2

}
for which (g, t) 7! g is a 2 : 1 cover of GL(E), and the restriction of ρ to H satisfies
ρ(g, t) = ρ̃(g) · t−1, a “twist of the standard representation by the inverse square root of
the determinant”.

2.2 The Isotropic Grassmannian and Infinite Spin Repre-
sentations

2.2.1 The Isotropic Grassmannian in its Spinor Embedding

As before, let V be a 2n-dimensional vector space over K endowed with a non-degenerate
quadratic form. The (maximal) isotropic Grassmannian Griso(V, q) parametrizes all max-
imal isotropic subspaces of V . It has two connected components, denoted Gr+iso(V ) and
Gr−iso(V ). The goal of this subsection is to introduce the isotropic Grassmann cone, which
is an affine cone over Griso(V, q) in the spin representation.
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Fix a maximal isotropic subspace F ⊆ V and as before set f := f1 · · · fn ∈ Cl(V ),
where f1, . . . , fn is any basis of F . Now let H ⊆ V be another maximal isotropic space.
Then we claim that the space

SH :=
{
ω ∈ Cl(V )f

∣∣ v · ω = 0 for all v ∈ H
}
⊆ Cl(V )f (2.2.1)

is 1-dimensional. Indeed, we may find a hyperbolic basis e1, . . . , en, f1, . . . , fn of V such
that f1, . . . , fk span H ∩ F , f1, . . . , fn span F , and ek+1, . . . , en, f1, . . . , fk span H. We
call this hyperbolic basis adapted to H and F . Then the element

ωH := ek+1 · · · enf1 · · · fkfk+1 · · · fn ∈ Cl(V )f

lies in SH since eiωH = fjωH = 0 for all i > k and j ≤ k. Conversely, if µ ∈ SH , then
write

µ =

n∑
l=0

∑
i1<...<il

c{i1,...,il}ei1 · · · eilf.

If cI ̸= 0 for some I with I ̸⊇ {k + 1, . . . , n}, then for any j ∈ {k + 1, . . . , n} \ I we find
that ejµ ̸= 0. So all I with cI ̸= 0 contain {k + 1, . . . , n}. If some I with cI ̸= 0 further
contains an i ≤ k, then fiµ is nonzero. Hence SH is spanned by ωH , as claimed. In what
follows, by slight abuse of notation, we will write ωH for any nonzero vector in SH .

The space H can be uniquely recovered from ωH via

H =
{
v ∈ V

∣∣ v · ωH = 0
}
.

Indeed, we have already seen ⊆. For the converse, observe that the vectors eiωH , fjωH
with i ≤ k and j > k are linearly independent.

The map that sends H ∈ Griso(V, q) to the projective point representing it, i.e.,

H 7! [ωH ] ∈ P(Cl(V )f),

is therefore injective, and it is called the spinor embedding of the isotropic Grassmannian
(see [Man09]). The isotropic Grassmann cone is defined as

Ĝriso(V, q) :=
⋃
H

⟨ωH⟩ ⊆ Cl(V )f,

where the union is the taken over all maximal isotropic subspaces H ⊆ V . We denote

by Ĝr
±
iso(V, q) := Ĝriso(V, q) ∩ Cl±(V )f the cones over the connected components of the

isotropic Grassmannian in its spinor embedding.

2.2.2 Contraction with an Isotropic Vector

Let e ∈ V be a nonzero isotropic vector. Then Ve := e⊥/⟨e⟩ is equipped with a natural
non-degenerate quadratic form, and there is a rational map Griso(V ) ! Griso(Ve) that
maps an n-dimensional isotropic space H to the image in Ve of the (n− 1)-dimensional
isotropic space H ∩ e⊥ (this is defined if e ̸∈ H, which by maximality of H is equivalent
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to H ̸⊆ e⊥). This map is the restriction to the isotorpic Grassmannian Griso(V ) of the
rational map P(

∧n V )! P(
∧n−1 Ve) induced by the linear map (“contraction with e”):

ce :
∧n

V !
∧n−1

Ve, v1 ∧ · · · ∧ vn 7!
n∑
i=1

(−1)i−1(e|vi)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn

where vi is the image of vi in V/⟨e⟩. Note first that this map is the inner product ι(e)
followed by a projection. Furthermore, a priori, the codomain of this map is the larger
space

∧n−1(V/⟨e⟩), but one may choose v1, . . . , vn such that (e|vi) = 0 for i > 1, and
then it is evident that the image is indeed in

∧n−1 Ve.
We want to construct a similar contraction map at the level of the spin representation.

For reasons that will become clear in a moment, we restrict our attention first to a map
between two half-spin representations, as follows. Assume that e /∈ F , and choose a
basis f1, . . . , fn of F such that (e|fi) = δin. As usual, write f := f1 · · · fn, and write
f := f1 · · · fn−1, so that Cl+(Ve)f is a half-spin representation of so(Ve).

Then we define the map

πe : Cl
+(V )f ! Cl+(Ve)f, πe(af) := the image of

1

2

(
(−1)n−1eaf+afe

)
in Cl(Ve)f,

where the implicit claim is that the expression on the right lies in Cl(e⊥)f1 · · · fn−1, so
that its image in Cl(Ve)f is well defined (note that the projection e⊥ ! Ve induces a
homomorphism of Clifford algebras), and that this image lies in the left ideal generated
by f . To verify this claim, and to derive a more explicit formula for the map above, let
e1, . . . , en = e be a basis of an isotropic space E complementary to F . Then it suffices
to consider the case where a = ei1 · · · eik for some i1 < . . . < ik. We then have

eaf = eei1 · · · eikf1 · · · fn

=

{
0 if ik = n, and

2(−1)k+n−1ei1 · · · eikf1 · · · fn−1 + (−1)k+nei1 · · · eikf1 · · · fne otherwise.

Multiplying by (−1)n−1 and using that k is even, the latter expression becomes

2ei1 · · · eikf1 · · · fn−1 − afe.

Hence we conclude that

πe(ei1 · · · eikf) =

{
0 if ik = n, and

ei1 · · · eikf otherwise.

In short, in our models
∧+E and

∧+(E/⟨e⟩) for the half-spin representations of so(V )
and so(Ve), πe is just the reduction-mod-e map. We leave it to the reader to check that
the reduction-mod-e map

∧−E !
∧−(E/⟨e⟩) arises in a similar fashion from the map

πe : Cl(V )−f ! Cl(Ve)
−f, πe(af) := the image of

1

2

(
(−1)neaf + afe

)
in Cl(Ve)f.

We will informally call the maps πe “contraction with e”. Together they define a map
on Cl(V )f which we also denote by πe.
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Proposition 2.2.1. The contraction map πe : Cl(V )f ! Cl(Ve)f is a homomorphism
of Cl(e⊥)-representations.

Proof. Let v ∈ e⊥ and consider a ∈ Cl−(V ). Then va ∈ Cl+(V ) and hence πe(vaf) is
the image in Cl(Ve)f of

1

2

(
(−1)n−1evaf + vafe

)
=

1

2

(
(−1)nveaf + vafe

)
= v

1

2

(
(−1)neaf + afe

)
,

where we have used (v|e) = 0 in the first equality. The right-hand side clearly equals v
times the image of πe(af) in Cl(Ve)f .

2.2.3 Multiplying with an Isotropic Vector

In a sense dual to the contraction maps ce :
∧n V !

∧n−1 Ve are multiplication maps
defined as follows. Let e, h ∈ V be isotropic with (e|h) = 1; such a pair is called a
hyperbolic pair. We then have V = ⟨e, h⟩⊕⟨e, h⟩⊥, and the map from the second summand
to Ve = e⊥/⟨e⟩ is an isometry. We use this isometry to identify Ve with the subspace
⟨e, h⟩⊥ of V and write se for the corresponding inclusion map. Then we define

mh :
∧n−1

Ve !
∧n

V, v1 ∧ · · · ∧ vn−1 7! h ∧ v1 ∧ · · · ∧ vn−1,

which is just the outer product o(h). The projectivisation of this map sends Griso(Ve)
isomorphically to the closed subset of Griso(V ) consisting of all H containing h. We
further observe that

ce ◦mh = id∧n−1 Ve
.

We define a corresponding multiplication map at the level of spin representations as
follows: first, we assume that h ∈ F , and choose a basis f1, . . . , fn = h of F such that
(e|fi) = δin. As usual, we set f = f1 · · · fn and f = f1 · · · fn−1. Then we define

τh : Cl(Ve)f ! Cl(V )f, τh(af) := affn = af.

Note that, for a ∈ Cl(Ve), we have

πe
(
τh(af)

)
= πe(af) = af,

where the last identity can be seen verified in the model
∧
E for the spin representation,

where πe is the reduction-mod-e map, and τh is just the inclusion
∧
E/⟨e⟩ !

∧
E

corresponding to the inclusion Ve ! V . So πe ◦ τh = idCl(Ve)f
. We will informally call τh

the multiplication map with h.

Proposition 2.2.2. The multiplication map τh : Cl(Ve)f ! Cl(V )f is a homomorphism
of Cl(Ve)-representations, where Cl(Ve) is regarded a subalgebra of Cl(V ) via the section
se : Ve ! V .

Proof. Let v ∈ Ve and let a ∈ Cl(Ve). Then

τh(vaf) = vaffn = vaf,

as desired.
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Corollary 2.2.3. Both the mappings πe : Cl(V )f ! Cl(Ve)f and τh : Cl(Ve)f ! Cl(V )f
are Spin(Ve)-equivariant, where Spin(Ve) is regarded as a subgroup of Spin(V ) via the
orthogonal decomposition V = Ve ⊕ ⟨e, h⟩.

Proof. Proposition 2.2.1 and Proposition 2.2.2 imply that both maps are homomor-
phisms of so(Ve)-representations. Since Spin(Ve) is generated by one-parameter sub-
groups corresponding to nilpotent elements of so(Ve), πe and τh are Spin(Ve)-equivariant.

2.2.4 Properties of the Isotropic Grassmannian

The goal of this subsection is to collect properties of the isotropic Grassmann cone that
will later motivate the definition of a (half-)spin variety (see Section 2.4). We fix a
maximal isotropic subspace F ⊆ V and a hyperbolic pair (e, h) with h ∈ F and e ̸∈ F
and identify Ve = e⊥/⟨e⟩ with the subspace ⟨e, h⟩⊥ of V . We choose any basis f1, . . . , fn
of F with fn = h and (e|fi) = 0 for i < n and write f := f1 · · · fn ∈ Cl(V ) and
f := f1 · · · fn−1 ∈ Cl(Ve).

Proposition 2.2.4. The isotropic Grassmann cone in Cl(V )f has the following prop-
erties:

1. Ĝriso(V ) ⊆ Cl(V )f is Zariski closed and Spin(V )-stable.

2. Let πe : Cl(V )f ! Cl(Ve)f be the contraction defined in Section 2.2.2. Then for
every maximal isotropic subspace H ⊆ V we have

πe(SH) ⊆ SHe ,

where He ⊆ Ve is the image of e⊥ ∩H in Ve.

3. Let τh : Cl(Ve)f ! Cl(V )f be the map defined in Section 2.2.3. Then for every
maximal isotropic H ′ ⊆ Ve we have

τh(SH′) = SH′⊕⟨h⟩.

In particular, the contraction and multiplication map πe and τh preserve the isotropic
Grassmann cones, i.e.,

πe
(
Ĝriso(V )

)
⊆ Ĝriso(Ve) and τh

(
Ĝriso(Ve)

)
⊆ Ĝriso(V ).

Proof of Proposition 2.2.4. 1. This is well known. Indeed, the isotropic Grassmann
cone is the union of the cones over the two connected components, and these cones
are the union of {0} with the orbits of the highest weight vectors ω0 and ω1. These
minimal orbits are always Zariski closed. For more detail see [Pro07, Theorem 1,
p.428].

2. Let ωH be a spanning element of SH . Then for all v ∈ e⊥ ∩H we have

v · πe(ωH) = πe(v · ωH) = πe(0) = 0,

where the first equality follows from Proposition 2.2.1. Hence πe(ωH) lies in SHe .
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3. Let ωH′ be a spanning element of SH′ . Then for all v ∈ H ′ we have

v · τh(ωH′) = τh(v · ωH′) = τh(0) = 0

where the first equality holds by Proposition 2.2.2. Furthermore, we have

h · τh(ωH′) = h · ωH′fn = 0,

where we used the definition of τh, h ⊥ Ve and h = fn. Thus τh(ωH′) lies in SH′⊕⟨h⟩.
The equality now follows from the fact that τh is injective.

Remark 2.2.5. If h ∈ H, then H = He ⊕ ⟨h⟩ and since πe ◦ τh is the identity on Cl(Ve)f
we find that

πe(SH) = πe(τh(SHe)) = SHe ,

i.e., equality holds in (2) of Proposition 2.2.4. Later we will see that equality holds under
the weaker condition that e ̸∈ H, while πe(SH) = {0} when e ∈ H. These statements
can also be checked by direct computations, but some care is needed since for e,H, F
in general position one cannot construct a hyperbolic basis adapted to H and F that
moreover contains e.

2.2.5 The Dual of Contraction

Let e ̸∈ F ⊆ V be an isotropic vector. We want to compute the dual of the contraction
map πe : Cl(V )f ! Cl(Ve)f ; indeed, we claim that this is essentially the map

ψe : Cl(Ve)f ! Cl(V )f

defined by its restriction Cl±(Ve)f ! Cl∓(V )f as

ψe(b · f1 · · · fn−1) := ±ebf1 · · · fn,

where the sign is + on Cl+(Ve)f and − on Cl−(Ve)f . The reason for the “flip” of the
choice of half-spin representation in the dual will become obvious below. Observe that
ψe is well-defined and, given a basis e1, . . . , en = e of an isotropic space complementary
to F such that e1, . . . , en, f1, . . . , fn is a hyperbolic basis, maps eJf to eJ∪{n}f .

Proposition 2.2.6. The following diagram:

(Cl(Ve)f)
∗

≃
��

π∗
e // (Cl(V )f)∗

≃
��

Cl(Ve)f
ψe

// Cl(V )f

can be made commuting via a Spin(Ve)-module isomorphism on the left vertical arrow
and a Spin(V )-module isomorphism on the right vertical arrow.
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Remark 2.2.7. The statement of Proposition 2.2.6 holds true when replacing Cl(V )f
by either one of the two half-spin representations by considering the correct “flip”. For
example, if n = dimF is even, and e1, . . . , en, f1, . . . , fn is a hyperbolic basis as above,
then in the

∧
E-model the correct grading is

(∧+En−1

)∗
≃
��

π∗
en //

(∧+En
)∗

≃
��∧−En−1

ψen

//
∧+En.

To prove Proposition 2.2.6 we will consider the bilinear form β on the spin repre-
sentation Cl(V )f defined as in [Pro07] as follows: for af, bf ∈ Cl(V )f it turns out that
(af)∗bf = f∗a∗bf , where ∗ denotes the anti-automorphism from Section 2.1.1, is a scalar
multiple of f . The scalar is denoted β(af, bf). We have the following properties:

Lemma 2.2.8 ([Pro07, p. 430]). Let β be the bilinear form defined as above.

1. The form β is non-degenerate and Spin(V )-invariant.

2. β is symmetric if n ≡ 0, 1 mod 4, and it is skew-symmetric if n ≡ 2, 3 mod 4.

3. The two half-spin representations are self-dual via β if n is even, and each is the
dual of the other if n is odd.

In the proof of Proposition 2.2.6 we will use a hyperbolic basis e1, . . . , en, f1, . . . , fn
with en = e. For a subset I = {i1 < . . . < ik} ⊆ [n] set eI := ei1 · · · eik ∈ Cl(E) ≃

∧
E,

where E is the span of the ei. We have seen in Section 2.1.5 that the spin representation
has as a basis the elements eIf with I running through all subsets of [n].

Proof of Proposition 2.2.6. Consider the bilinear forms β on Cl(V )f and βe on Cl(Ve)f
as defined above. By Lemma 2.2.8 the spin representations Cl(V )f and Cl(Ve)f are self-
dual via β and βe, respectively. Thus it suffices to prove, for a ∈ Cl(V ) and b ∈ Cl(e⊥),
that

βe
(
πe(af), bf

)
=

(−1)n−1

2
β
(
af, ψe(bf)

)
.

We may assume that a = eI , b = eJ with I ⊆ [n], J ⊆ [n− 1].
In the

∧
E-model πe is the mod-e map, and hence the left-hand side is zero if n ∈ I.

If n ̸∈ I, then the left-hand side equals the coefficient of f in f
∗
eI

∗eJf . This is nonzero
if and only if [n − 1] is the disjoint union of I and J , and then it is 2n−1 times a sign
corresponding to the number of swaps needed to move the factors fi of f

∗
to just before

the corresponding factor ei in either eI
∗ or eJ .

Apart from the factor (−1)n−1

2 , the right-hand side is the coefficient of f in f∗eIeJenf .
This is nonzero if and only if [n] is the disjoint union of the sets {n}, J, I, and in that
case it is 2n times a sign corresponding to the number of swaps needed to move the
factors fi of f

∗ to the corresponding factor ei in either eI or eJ or (in the case of fn) to
just before the factor en. The latter contributes (−1)n−1, and apart from this factor the
sign is the same as on the left-hand side.
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2.2.6 Two Infinite Spin Representations

Let V∞ be the countable-dimensional vector space with basis e1, f1, e2, f2, . . . , and equip
V∞ with the quadratic form for which this is a hyperbolic basis, i.e., (ei|ej) = (fi|fj) = 0
and (ei|fj) = δij for all i, j. We write E∞ and F∞ for the subspaces of V∞ spanned by
the ei and the fi, respectively.

Let Vn be the subspace of V∞ spanned by e1, f1, e2, f2, . . . , en, fn, with the restricted
quadratic form. We further set En := Vn∩E∞ and Fn := Vn∩F∞. We define the infinite
spin group as

Spin(V∞) := lim−!
n

Spin(Vn)

where Spin(Vn−1) is embedded into Spin(Vn) as the subgroup that fixes ⟨en, fn⟩ element-
wise. Similarly, we write GL(E∞) := lim−!n

GL(En) and H for the preimage of GL(E∞)
in Spin(V∞). We use the notation so(V∞) and gl(E∞) for the corresponding direct limits
of the Lie algebras so(Vn) and gl(En). Here the direct limits are taken in the categories
of abstract groups, and Lie algebras, respectively.

The previous paragraphs give rise to various Spin(Vn−1)-equivariant maps between
the spin representations of Spin(Vn−1) and Spin(Vn). First, contraction with en,

πen : Cl(Vn)f1 · · · fn ! Cl(Vn−1)f1 · · · fn−1,

and second, multiplication with fn,

τfn : Cl(Vn−1)f1 · · · fn−1 ! Cl(Vn)f1 · · · fn.

We have that these satisfy πen ◦ τfn = id. Third, the map

ψen : Cl(Vn−1)f1 · · · fn−1 ! Cl(Vn)f1 · · · fn

that is dual to πen in the sense of Proposition 2.2.6.

Definition 2.2.9 (Direct and inverse spin representation). The direct (infinite) spin
representation is the direct limit of all spaces Cl(Vn)f1 · · · fn along the maps ψen . The
inverse (infinite) spin representation is the inverse limit of all spaces Cl(Vn)f1 · · · fn
along the maps πen .

Since the maps ψen and πen are Spin(Vn−1)-equivariant, both of these spaces are
Spin(V∞)-modules. As the dual of a direct limit is the inverse limit of the duals, and
since the maps ψen and πen are dual to each other by Proposition 2.2.6, the inverse spin
representation is the dual space of the direct spin representation.

In our model
∧
En of Cl(Vn)f1 · · · fn, the map ψen is just the right multiplication∧

En−1 !
∧
En, ω 7! ω ∧ en.

Hence the direct spin representation has as a basis formal infinite products

ei1 ∧ ei2 ∧ . . . =: eI

where I = {i1 < i2 < . . .} is a cofinite subset of N. We will write
∧

∞E∞ for this
countable-dimensional vector space. The action of the Lie algebra so(V∞) of Spin(V∞)
on this space is given via the explicit formulas from Section 2.1.5. In particular, the span
of the eI with |N \ I| even (respectively, odd) is a Spin(V∞)-submodule, and

∧
∞E∞ is

the direct sum of these (irreducible) modules.
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Remark 2.2.10. The reader may wonder why we do not introduce the direct spin repre-
sentation as the direct limit of all Cl(V )f1 · · · fn along the maps τfn . This would make the
ordinary Grassmann algebra

∧
E∞ a model for the direct spin representation, instead of

the slightly more complicated-looking space
∧

∞E∞. However, the maps dual to the τfn
correspond to contraction maps with fn ∈ F , which we have not discussed and which
interchange even and odd half-spin representations. We believe that our theorem below
goes through for this different setting, as well, but we have not checked the details.

2.2.7 Four Infinite Half-Spin Representations

Keeping in mind that the maps ψen interchange the even and odd subrepresentations,
we define the direct (infinite) half-spin representations

∧±
∞E∞ to be the direct limit

∧±

∞
E∞ = lim−!

(∧±
E0 !

∧∓
E1 !

∧±
E2 !

∧∓
E3 !

∧±
E4 ! · · ·

)
along the maps ψen . For the sake of readability we will abbreviate this by∧±

∞
E∞ = lim−!

n

∧±(−1)n

En, (2.2.2)

where ±(−1)n denotes ± if n is even and ∓ if n is odd. In terms of the basis eI introduced
in Section 2.2.6, the half-spin representation

∧+
∞E∞ is spanned by all eI with |N \ I|

even, and
∧−

∞E∞ by those with |N \ I| odd. The inverse (infinite) half-spin representa-
tions are defined as the duals of the direct (infinite) half-spin representations. Using the
isomorphisms from Remark 2.2.7 we observe(∧±

∞
E∞

)∗
= lim −

n

(∧±(−1)n

En

)∗
≃ lim −

n

∧±
En. (2.2.3)

So the inverse (infinite) half-spin representations can be identified with the inverse limits
of the half-spin representations

∧±En along the projections πen .
We can enrich the inverse spin representation to an affine scheme whose coordinate

ring is the symmetric algebra on
∧

∞E∞, recalling the following remark.

Remark 2.2.11. Let K be any field (not necessarily algebraically closed) and W any K-
vector space (not necessarily finite dimensional). Then there are canonical identifications

W ∗ = Spec
(
Sym(W )

)
(K) ⊆

{
closed points in Spec

(
Sym(W )

)}
.

So Spec
(
Sym(W )

)
can be seen as an enrichment of W ∗ to an affine scheme. If W is

a linear representation for a group G, then G acts via K-algebra automorphisms on
SymW and hence via K-automorphisms on the affine scheme corresponding to W ∗. For
W =

∧±
∞E∞, this construction extends the natural Spin(V∞)-action on the vector space

lim −n
∧±En ≃W ∗ to the corresponding affine scheme.

By abuse of notation, we will write (
∧

∞E∞)∗ also for the scheme itself, and similarly

for the inverse half-spin representations
(∧±

∞E∞
)∗
. Later we will also write

∧±En for

the affine scheme Spec
(
Sym

(∧±(−1)n En

))
by identifying

∧±En ∼=
(∧±(−1)n En

)∗
as

in Equation (2.2.3).
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2.3 Noetherianity of the Inverse Half-Spin Representations

In this section we prove our main theorem.

Theorem 2.3.1 (Noetherianty). The inverse half-spin representation (
∧+

∞E∞)∗ is
topologically Noetherian with respect to the action of Spin(V∞). That is, every descending
chain (∧+

∞
E∞

)∗
⊇ X1 ⊇ X2 ⊇ . . .

of closed, reduced Spin(V∞)-stable subschemes stabilises, and the same holds for the other
inverse half-spin representation.

Recall that the action of Spin(V∞) on the inverse half-spin representation (as an
affine scheme) is given by K-automorphisms, as described in Remark 2.2.11. We write
R for the symmetric algebra on the direct spin representation

∧
∞E∞, so the inverse

spin representation is Spec(R). Similarly, we write R± for the symmetric algebras on the
direct half-spin representations, so R± is the coordinate ring of lim −n

∧±En, respectively.
Let us briefly outline the proof strategy. We will proceed by induction on the minimal

degree of an equation defining a closed subset X. Starting with such an equation p, we
show that there exists a partial derivative q := ∂p

∂eI
such that the principal open X[1/q] is

topologically Hn-Noetherian, where Hn is the subgroup of Spin(V∞) defined below. For
that we use that the Hn-action corresponds to a “twist” of the usual GL(E∞)-action, as
observed in Section 2.1.8 (for the exact formula see (2.1.3)); this allows us to apply the
main result of [ES22]. Finally, for those points which are contained in the vanishing set
of the Spin(V∞)-orbit of q we can apply induction, as the minimal degree of a defining
equation has been lowered by 1.

2.3.1 Shifting

Let Gn be the subgroup of G that fixes e1, . . . , en, f1, . . . , fn element-wise. Note that Gn
is isomorphic to G; at the level of the Lie algebras the isomorphism from G to Gn is
given by the map [

A B
C −AT

]
7!


0 0 0 0
0 A 0 B
0 0 0 0
0 C 0 −AT


where the widths of the blocks are n,∞, n,∞, respectively. We write Hn for H ∩ Gn,
where H ⊆ Spin(V∞) is the subgroup corresponding to the subalgebra gl(E∞) ⊆ so(V∞).
Then Hn is the pre-image in Spin(V∞) of the subgroup GL(E∞)n ⊆ GL(E∞) of all g
that fix e1, . . . , en element-wise and maps the span of the ei with i > n into itself. The
Lie algebra of Hn and of GL(E∞)n consists of the matrices above on the right with
B = C = 0.

2.3.2 Acting with the General Linear Group on E

For every fixed k ∈ Z≥0, the Lie algebra gl(E∞) ⊆ so(V∞) preserves the linear space(∧
∞
E∞

)
k
:=
〈
{eI : |N \ I| = k}

〉
,
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and hence so does the corresponding subgroup H ⊆ Spin(V∞). We let R≤ℓ ⊆ R be
the subalgebra generated by the spaces (

∧
∞E∞)k with k ≤ ℓ. Crucial in the proof of

Theorem 2.3.1 is the following result.

Proposition 2.3.2. For every choice of nonnegative integers ℓ and n, Spec(R≤ℓ) is
topologically Hn-Noetherian, i.e., every descending chain

Spec(R≤ℓ) ⊇ X1 ⊇ X2 ⊇ . . .

of Hn-stable closed and reduced subschemes stabilizes.

The key ingredient in the proof of Proposition 2.3.2 is the main result of [ES22]. In
order to apply their result we need to do some preparatory work. We will start with the
following lemma.

Lemma 2.3.3. Every Hn-stable closed subscheme of Spec(R≤ℓ) is also stable under the
group GL(E∞)n acting in the natural manner on

∧
∞E∞ and its dual, and vice versa.

Proof. Equation (2.1.3) implies that gl(E∞) ⊆ so(V∞) acts on
∧

∞E∞ via

ρ(A) = ρ̃(A)− 1

2
tr(A) id∧

∞ E∞

where ρ̃ is the standard representation of gl(E∞) on
∧

∞E∞. An Hn-stable closed sub-
scheme X of Spec(R≤ℓ) is given by an Hn-stable ideal I in the symmetric algebra R≤ℓ.
Such an I is then also stable under the action of the Lie algebra gl(E∞)n of Hn by
derivations that act on variables in

⊕ℓ
k=0(

∧
∞E∞)k via ρ.

We claim that I is a homogeneous ideal. Indeed, for f ∈ I, choose m > n such that
all variables in f (which are basis elements eI) contain the basis element em of E∞. Let
A ∈ gl(E∞)n be the diagonal matrix with 0’s everywhere except a 1 on position (m,m).
Then ρ(A) maps each variable in f to 1

2 times itself. Hence, by the Leibniz rule, ρ(A)

scales the homogeneous part of degree d in f by d
2 . Since I is preserved by ρ(A), it follows

that I contains all homogeneous components of f , and hence I is a homogeneous ideal.
Now let B ∈ gl(E∞)n and f ∈ I be arbitrary. By the previous paragraph we can

assume f to be homogeneous of degree d, and we then have

ρ(B)f = ρ̃(B)f − d

2
tr(B)f,

and since I is ρ(B)-stable, we deduce ρ̃(B)f ∈ I. This completes the proof in one
direction. The proof in the opposite direction is identical.

Remark 2.3.4. Note that by the proof above, any Spin(V∞)-stable closed subscheme X
of (
∧

∞E∞)∗ is an affine cone.

Following [ES22] the restricted dual (E∞)∗ of E∞ is defined as the union
⋃
n≥1(En)

∗.

We will denote by ε1, ε2, . . . the basis of (E∞)∗ that is dual to the canonical basis
e1, e2, . . . of E∞ given by εi(ej) = δij .

Lemma 2.3.5. There is an SL(E∞)-equivariant isomorphism∧
∞
E∞ −!

∧
(E∞)∗,

which restricts to an isomorphism(∧
∞
E∞

)
k
−!

∧k
(E∞)∗.
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We will use this isomorphism to view
∧

∞E∞ as the restricted dual of the Grassmann
algebra

∧
E∞. We stress, though, that this isomorphism is not GL(E∞)-equivariant.

Proof. We have a natural bilinear map∧
E∞ ×

∧
∞
E∞ !

∧
∞
E∞, (ω, ω′) 7! ω ∧ ω′.

If I ⊆ N is finite and J ⊆ N is cofinite, then eI ∧eJ is 0 if I∩J ̸= ∅ and ±eI∪J otherwise,
where the sign is determined by the permutation required to order the sequence I, J .
We then define a perfect pairing γ between the two spaces by

γ(ω, ω′) := the coefficient of eN in ω ∧ ω′.

The map Φγ :
∧

∞E∞ !
∧
(E∞)∗, ω

′ 7! γ(·, ω′) induced by γ is the isomorphism given
by eI 7! ±εIc , where Ic ⊆ N is the complement of I and εJ := εj1 ∧ · · · ∧ εjk for a finite
set J = {j1, . . . , jk}. Note that γ(A ·ω,A ·ω′) = det(A)γ(ω, ω′) for all A ∈ GL(E∞), and
hence γ is SL(E∞)-invariant. Therefore, the isomorphism Φγ is SL(E∞)-equivariant.

Lemma 2.3.6. An ideal I ⊆ Sym(
∧
(E∞)∗) is SL(E∞)-stable if and only if it is

GL(E∞)-stable. The same holds for SL(E∞)n and GL(E∞)n.

Proof. Assume that I is SL(E∞)-stable. Let f ∈ I and A ∈ GL(E∞) be arbitrary. Choose
m = m(f,A) ∈ N large enough so that f ∈ Sym(

∧
(Em)

∗) and A is the image of some
Am ∈ GL(Em). Define Am+1 ∈ GL(Em+1) as the map given by Am+1(ei) = Am(ei)
for i ≤ m and Am+1(em+1) = (det(Am))

−1(em+1), and let A′ be the image of Am+1

in SL(E∞). Then the action of Am and Am+1 agree on (Em)
∗. Hence they also agree

on Sym(
∧
(Em)

∗). So A · f = A′ · f ∈ I since I was assumed to be SL(E∞)-stable
and A′ ∈ SL(E∞). As f ∈ I and A ∈ GL(E∞) were arbitrary, this shows that I is
GL(E∞)-stable.

Proof of Proposition 2.3.2. First, we claim that Spec
(
Sym

(⊕ℓ
k=0

∧k(E∞)∗
))

is topo-
logically GL(E∞)n-Noetherian. Indeed, the standard GL(E∞)-representation of the space⊕ℓ

k=0

∧k(E∞)∗ is an algebraic representation and this also remains true when we act
with GL(E∞) via its isomorphism into GL(E∞)n. Hence, the claim follows from [ES22,
Theorem 2]. Let (Xi)i∈N ⊆ Spec(R≤ℓ) be a descending chain ofHn-stable, closed, reduced
subschemes. By Lemma 2.3.3 every Xi is also GL(E∞)n-stable. By Lemma 2.3.5 there is
an SL(E∞)n-equivariant isomorphism Spec(R≤ℓ) ∼= Spec

(
Sym

(⊕ℓ
k=0

∧k(E∞)∗
))
. Let

X ′
i ⊆ Spec

(
Sym

(⊕ℓ
k=0

∧k(E∞)∗
))

be the closed, reduced, SL(E∞)-stable subscheme
corresponding to Xi under this isomorphism. Using Lemma 2.3.6 we see that the sub-
schemes X ′

i are also GL(E∞)n-stable. Therefore, the chain (X ′
i)i∈N stabilizes by our first

claim. Consequently, also the chain (Xi)i∈N stabilizes.

Before we come to the proof of Theorem 2.3.1, we first want to recall the action
of fi ∧ fj ∈ so(V∞) on

∧+
∞E∞ and its symmetric algebra R+ in explicit terms. Recall

from Section 2.2.6 that a basis for
∧+

∞E∞ is given by eI = ei1 ∧ ei2 ∧ · · · , where
I = {i1 < i2 < · · · } ⊆ N is cofinite and |N \ I| even. Then we have

(fi ∧ fj)eI =

{
(−1)ci,j(I)eI\{i,j} if i, j ∈ I, and

0 otherwise,
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where ci,j(I) depends on the position of i, j in I. (Note that there is no factor 4, since
in our identification of

∧2 V to the Lie subalgebra L of Cl(V ) we had a factor 1
4 .) The

corresponding action of fi ∧ fj on polynomials in R+ is as a derivation.

2.3.3 Proof of Theorem 2.3.1

Let R+ ⊆ R be the symmetric algebra on the direct half-spin representation
∧+

∞E∞, so
that Spec(R+) is the inverse half-spin representation (

∧+
∞E∞)∗. We will prove topolog-

ical Spin(V∞)-Noetherianity of Spec(R+); the corresponding statement for Spec(R−) is
proved in exactly the same manner.

For a closed, reduced Spin(V∞)-stable subscheme X of Spec(R+), we denote by
δX ∈ {0, 1, 2, . . . ,∞} the lowest degree of a nonzero polynomial in the ideal I(X) ⊆ R+

of X. Here we consider the natural grading on R+ = Sym(
∧+

∞E∞), where the elements
of
∧+

∞E∞ all have degree 1.
We proceed by induction on δX to show that X is topologically Noetherian; we may

therefore assume that this is true for all Y with δY < δX . We have δX = ∞ if and only
if X = Spec(R+). Then a chain

Spec(R+) = X ⊇ X1 ⊇ X2 ⊇ . . .

of Spin(V∞)-closed subsets is either constant or else there exists an i with δXi < ∞.
Hence it suffices to prove that X is Noetherian under the additional assumption that
δX <∞. At the other extreme, if δX = 0, then X is empty and there is nothing to prove.
So we assume that 0 < δX <∞ and that all Y with δY < δX are Spin(V∞)-Noetherian.

Let p ∈ R+ be a nonzero polynomial in the ideal of X of degree δX . By Remark 2.3.4,
since X is a cone, p is in fact homogeneous of degree δX . Let eI be a variable appearing
in p such that k := |Ic| is maximal among all variables in p; note that k is even. Then
choose n ≥ k + 2 even such that all variables of p are contained in

∧+En, i.e., they are
of the form eJ with J ⊇ {n+ 1, n+ 2, . . .}.

Now act on p with the element fi1 ∧ fi2 ∈ so(V∞) with i1 < i2 the two smallest
elements in I. Since X is Spin(V∞)-stable, the result p1 is again in the ideal of X.
Furthermore, p1 has the form

p1 = ±eI\{i1,i2} · q + r1

where q = ∂p
∂eI

contains only variables eJ with |Jc| ≤ k and where r1 does not contain
eI\{i1,i2} but may contain other variables eJ with |Jc| = k + 2 (namely, those with
i1, i2 ̸∈ J for which eJ∪{i1,i2} appears in p).

If n = k + 2, then I \ {i1, i2} = {n + 1, n + 2, . . .} and, since all variables eJ in p1
satisfy J ⊇ {n+ 1, n+ 2, . . .}, eI\{i1,i2} is the only variable eJ in p1 with |Jc| = k+ 2. If
n > k+ 2, then we continue in the same manner, now acting with fi3 ∧ fi4 on p1, where
i3 < i4 are the two smallest elements in I \ {i1, i2}. We write p2 for the result, which is
now of the form

p2 = ±eI\{i1,i2,i3,i4} · q + r2

where q is the same polynomial as before and r2 does not contain the variable eI\{i1,i2,i3,i4}
but may contain other variables eJ with |Jc| = k + 4.
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Iterating this construction we find the polynomial

pℓ = ±e{n+1,n+2,...} · q + rℓ

in the ideal of X, where ℓ = (n − k)/2, q is the same polynomial as before and rℓ only
contains variables eJ with |Jc| < n. Let Z := X[1/q] be the open subset of X where q is
nonzero.

Lemma 2.3.7. For every variable eJ with |Jc| ≥ n, the ideal of Z in the localisation
R+[1/q] contains a polynomial of the form eJ − s/qd for some d ∈ Z≥0 and some s ∈
R+

≤n−2.

Proof. We proceed by induction on |Jc| =: m. By successively acting on pℓ with the
elements fn ∧ fn+1, fn+2 ∧ fn+3, . . . , fm−1 ∧ fm, we find the polynomial

±e{m+1,m+2,...} · q + r

in the ideal of X, where r contains only variables eL with |Lc| < m. Now act with
elements of gl(E∞) to obtain an element

±eJ · q + r̃

where r̃ still contains only variables eL with |Lc| < m. Inverting q, this can be used
to express eJ in such variables eL. By the induction hypothesis, all those eL admit an
expression, on Z, as a polynomial in R+

≤n−2 times a negative power of q. Then the same
holds for eJ .

Lemma 2.3.8. The open subscheme Z = X[1/q] is stable under the group Hn and
Hn-Noetherian.

Proof. By Lemma 2.3.3, X is stable under GL(E∞)n. The polynomial q is homogeneous
and contains only variables eJ with J ⊇ {n + 1, n + 2, . . .}. Every g ∈ GL(E∞)n scales
each such variable with det(g), and hence maps q to a scalar multiple of itself. We
conclude that Z is stable under GL(E∞)n, hence by (a slight variant of) Lemma 2.3.3
also under Hn.

By Lemma 2.3.7, the projection dual to the inclusion R+
≤n−2[1/q] ⊆ R+[1/q] restricts

on Z to a closed embedding, and this embedding is Hn-equivariant. By Proposition 2.3.2,
the image of Z is Hn-Noetherian, hence so is Z itself.

Proof of Theorem 2.3.1. Let
X ⊇ X1 ⊇ . . .

be a chain of reduced, Spin(V∞)-stable closed subschemes. Let Y ⊆ X be the reduced
closed subscheme defined by the orbit Spin(V∞) · q. Since q has degree δX − 1, we have
δY < δX and hence Y is Spin(V∞)-Noetherian by the induction hypothesis. It follows
that the chain

Y ⊇ (Y ∩X1)
red ⊇ . . .

is eventually stable. On the other hand, the chain

Z ⊇ (Z ∩X1)
red ⊇ . . .
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consists of reduced, Hn-stable closed subschemes of Z, hence it is eventually stable by
Lemma 2.3.8.

Now pick a (not necessarily closed) point P ∈ Xi for i ≫ 0. If P ∈ Y ∩ Xi, then
P ∈ Y ∩ Xi−1 by the first stabilisation. On the other hand, if P ̸∈ Y ∩ Xi, then there
exists a g ∈ Spin(V∞) such that gP ∈ Z. Then gP lies in Xi ∩ Z, which by the second
stabilisation equals Xi−1∩Z, hence P = g−1(gP ) lies in Xi−1, as well. We conclude that
the chain (Xi)i of closed, reduced subschemes of X stabilises. Hence the inverse half-spin
representation (

∧+
∞E∞)∗ is topologically Spin(V∞)-Noetherian.

Remark 2.3.9. While the proof of Theorem 2.3.1 for the even half-spin case can be
easily adapted to a proof for the odd half-spin case, we do not know whether the spin
representation (

∧
∞E∞)∗ itself is topologically Spin(V∞)-Noetherian! Also, despite much

effort, we have not succeeded in proving that the inverse limit lim −n
∧n Vn along the

contraction maps cen is topologically SO(V∞)-Noetherian. Indeed, the situation is worse
for this question: like the inverse spin representation, this limit is the dual of a countable-
dimensional module that splits as a direct sum of two SO(V∞)-modules, and here we do
not even know whether the dual of one of these modules is topologically Noetherian!

2.4 Half-Spin Varieties and Applications

In this section we introduce the notion of half-spin varieties and reformulate our main
result Theorem 2.3.1 in this language. We start by fixing the necessary data determining
the half-spin representations of Spin(V ).

Notation 2.4.1. As shorthand, we write V = (V, q, F ) ∈ Q to refer to a triple where

1. V is an even-dimensional vector space over K,

2. q is a non-degenerate symmetric quadratic form on V , and

3. F is a maximal isotropic subspace of V .

An isomorphism V ! V ′ = (V ′, q′, F ′) of such triples is a linear bijection ϕ : V ! V ′

with q′(ϕ(v)) = q(v) and ϕ(F ) = F ′.

Given a triple V, we have half-spin representations Cl±(V )f , where f = f1 · · · fn with
f1, . . . , fn a basis of F (recall that the left ideal Cl(V )f does not depend on this basis).
Half-spin varieties are Spin(V )-invariant subvarieties of these half-spin representations
that are preserved by the contraction maps πe from Section 2.2.2 and the multiplication
maps τh from Section 2.2.3. The precise definition below is inspired by the that of a
Plücker variety in [DE18]. It involves a uniform choice of either even or odd half-spin
representations. For convenience of notation, we will only explicitly work with the even
half-spin representations, but all further results are valid for the odd counterparts as
well.

Definition 2.4.2 (Half-spin variety). A half-spin variety is a rule X that assigns to
each triple V = (V, q, F ) ∈ Q a closed, reduced subscheme X(V) ⊆ Cl+(V )f such that

1. X(V) is Spin(V )-stable;

53



2. for any isomorphism ϕ : V ! V ′, the map Cl+(ϕ) maps X(V) into X(V ′);

3. for any isotropic e ∈ V with e ̸∈ F , if we set V ′ := e⊥/⟨e⟩, q′ the induced form on
V ′, F ′ the image of F ∩ e⊥ in V ′, and V ′ := (V ′, q′, F ′), then the contraction map
πe : Cl

+(V )f ! Cl+(V ′)f ′ maps X(V) into X(V ′); and

4. for any V = (V, q, F ), if we denote by V ′ the triple V ′ := V ⊕ ⟨e, h⟩, q′ as the
quadratic form that restricts to q on V , that makes the direct sum orthogonal, and
e, h a hyperbolic basis, if we set f ′ := f ·h, then the map τh : Cl+(V )f ! Cl+(V ′)f ′

maps X(V) into X(V ′).

Examples 2.4.3. The following are examples of half-spin varieties.

1. Trivially, X(V) := Cl+(V )f , X(V) := {0} and X(V) := ∅ define half-spin varieties.

2. By Proposition 2.2.4, the even component of the cone over the isotropic Grass-

mannian, X(V) := Ĝr
+

iso(V, q), is a half-spin variety.

3. For two half-spin varieties X and X ′ their join X +X ′ defined by

(X +X ′)(V) := {x+ x′ | x ∈ X(V), x′ ∈ X ′(V)}

is a half-spin variety.

4. The intersection of two half-spin varieties X and X ′ is a half-spin variety, which is
defined by (X ∩X ′)(V) := X(V) ∩X ′(V).

Similar as in Section 2.2.6 we will use the following notation: for every n ∈ N, we
consider the vector space Vn = ⟨e1, . . . , en, f1, . . . , fn⟩ together with the quadratic form
qn whose corresponding bilinear form (·|·) satisfies

(ei|ej) = 0, (fi|fj) = 0 and (ei|fj) = δij .

Furthermore, let En = ⟨e1, . . . , en⟩ and Fn = ⟨f1, . . . , fn⟩; these are maximal isotropic
subspaces of Vn. We will denote the associated tuple by Vn = (Vn, qn, Fn).

Remark 2.4.4. A half-spin variety X is completely determined by the values X(Vn), that
is, if X and X ′ are half-spin varieties such that X(Vn) = X ′(Vn) for all n ∈ N, then
X(V) = X ′(V) for all tuples V.

We now want to associate to each half-spin variety X an infinite-dimensional scheme
X∞ embedded inside the inverse half-spin representation (

∧+
∞E∞)∗ as follows. Since

Vn = En ⊕ Fn, we can use the isomorphism from Section 2.1.5 to embed X(Vn) as a
reduced subscheme of

∧+En (recall from Section 2.2.7 that we view
∧+En as the affine

scheme with coordinate ring Sym(
∧+(−1)n En)). We abbreviate Xn := X(Vn) ⊆

∧+En.
For N ≥ n let πN,n :

∧+EN !
∧+En, resp. τn,N :

∧+En !
∧+EN be the maps

induced by the canonical projection EN ! En, resp. by the injection En ↪! EN . Note
that τn,N is a section of πN,n. Recall that (

∧+
∞E∞)∗ = lim −n

∧+En. We denote the

structure maps by π∞,n : (
∧+

∞E∞)∗ !
∧+En and by τn,∞ :

∧+En ! (
∧+

∞E∞)∗ the
inclusion maps induced by τn,N .
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From the definition of a half-spin variety it follows that

πN,n(XN ) ⊆ Xn and τn,N (Xn) ⊆ XN . (2.4.1)

Hence the inverse limit
X∞ := lim −

n

Xn

is well-defined, and a closed, reduced, Spin(V∞)-stable subscheme of (
∧+

∞E∞)∗. In order

to see this, write Rn := Sym(
∧+(−1)n En) and R∞ := Sym(

∧+
∞E∞). Let In ⊆ Rn be the

radical ideal associated to Xn ⊆ Spec(Rn), i.e. Xn = V (In) = Spec(Rn/In). As Spec(·)
is a contravariant equivalence of categories, it holds that

X∞ := lim −
n

Xn = lim −
n

Spec(Rn/In) = Spec
(
lim−!
n

(Rn/In)
)
.

So X∞ corresponds to the ideal I∞ := lim−!n
In ⊆ R∞. As all In ⊆ Rn are radical, so is

I∞ ⊆ R∞ and therefore X∞ is a reduced subscheme.
It follows from Equation (2.4.1) that

π∞,n(X∞) ⊆ Xn and τn,∞(Xn) ⊆ X∞. (2.4.2)

Lemma 2.4.5. The mapping
X 7! X∞

is injective. That is, if X and X ′ are half-spin varieties such that X∞ = X ′
∞, then

X = X ′, i.e. X(V) = X ′(V) for all tuples V.

Proof. Note that, for all n ∈ N, it holds that

Xn = π∞,n(X∞).

Indeed, the inclusion ⊇ is contained in Equation (2.4.2), and the other direction ⊆ follows
from the fact that τn,∞ : Xn ! X∞ is a section of π∞,n. Hence, if X∞ = X ′

∞, then

Xn = π∞,n(X∞) = π∞,n(X
′
∞) = X ′

n.

By Remark 2.4.4 this shows that X = X ′.

For two half-spin varieties X and X ′, we will write X ⊆ X ′ if X(V) ⊆ X ′(V) for all
V = (V, q, F ). Theorem 2.3.1 then implies the following.

Theorem 2.4.6 (Noetherianity of half-spin varieties). Every descending chain of half-
spin varieties

X(0) ⊇ X(1) ⊇ X(2) ⊇ X(3) ⊇ . . .

stabilizes, that is, there exists m0 ∈ N such that X(m) = X(m0) for all m ≥ m0.

Proof. Note that the mapping X 7! X∞ is order preserving, that is, if X ⊆ X ′, then
X∞ ⊆ X ′

∞. Hence, a chain

X(0) ⊇ X(1) ⊇ X(2) ⊇ X(3) ⊇ . . .
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of half-spin varieties induces a chain

X(0)
∞ ⊇ X(1)

∞ ⊇ X(2)
∞ ⊇ X(3)

∞ ⊇ . . .

of closed, reduced, Spin(V∞)-stable subschemes in (
∧+

∞E∞)∗. By Theorem 2.3.1 we know

that (
∧+

∞E∞)∗ is topologically Spin(V∞)-Noetherian. Hence, the chain X
(m)
∞ stabilizes.

But then, by Lemma 2.4.5 also the chain of half-spin varieties X(m) stabilizes. This
completes the proof.

As a consequence we obtain the next results, which state how X∞ is determined by
the data coming from some finite level of X.

Theorem 2.4.7. Let X be a half-spin variety. Then there exists n0 ∈ N such that

X∞ = V
(
rad(Spin(V∞) · In0)

)
,

where rad(Spin(V∞) · In0) ⊆ Sym(
∧+

∞E∞) is the radical ideal that is generated by the

Spin(V∞)-orbits of the ideal In0 ⊆ Sym(
∧+(−1)n0

En0) defining Xn0 ⊆
∧+En0.

Proof. For each n ∈ N set Jn := rad(Spin(V∞) · In) ⊆ Sym(
∧+

∞E∞). We denote by
I∞ ⊆ Sym(

∧+
∞E∞) the ideal associated to X∞. This ideal is Spin(V∞)-stable, radical

and we have I∞ = lim−!n
In. Therefore,

⋃
n Jn = I∞.

Since (Jn)n∈N is an increasing chain of closed, Spin(V∞)-stable, radical ideals, there
exists n0 ∈ N such that Jn = Jn0 for all n ≥ n0 by Theorem 2.3.1. Consequently,
I∞ =

⋃
n Jn = Jn0 and hence X∞ = V (I∞) = V (Jn0).

Corollary 2.4.8 (Universality for half-spin varieties). Let X be a half-spin variety.
There exists n0 ∈ N such that for all n ≥ n0 it holds that

Xn = V (rad(Spin(Vn) · In0)).

Proof. Take n0 as in Theorem 2.4.7. Then the statement follows from that theorem and
[Dra10, Lemma 2.1]. To apply that lemma, we must check condition (*) in that paper,
namely, that for q ≥ n ≥ n0 and g ∈ Spin(Vq) we can write

πq,n0 ◦ g ◦ τn,q = g′′ ◦ τm,n0 ◦ πn,m ◦ g′

for suitable m ≤ n0 and g′ ∈ Spin(Vn) and g′′ ∈ Spin(Vn0). In fact, since half-spin
varieties are affine cones, it suffices that this identity holds up to a scalar factor. It also
suffices to prove this for g in an open dense subset U of Spin(Vq), because the equations
for Xn0 pulled back along the map on the left for g ∈ U imply the equations for all g.
We will prove this, with m = n0, using the Cartan map in Lemma 2.5.6 below.

2.5 Universality of Ĝr
+

iso(4, 8) and the Cartan Map

2.5.1 Statement

In Chapter 1 we saw that in even dimension, the isotropic Grassmannian in its Plücker
embedding is set-theoretically defined by pulling back equations coming from Ĝriso(4, 8).
Using the Cartan map we can translate this into a statement about the isotropic Grass-
mannian in its spinor embedding and prove the following result.
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Theorem 2.5.1. For all n ≥ 4 we have

Ĝr
+

iso(Vn) = V (rad(Spin(Vn) · I4)),

where I4 is the ideal of polynomials defining Ĝr
+

iso(V4) ⊆ Cl+(V4)f.

In other words, the bound n0 from Corollary 2.4.8 can be taken equal to 4 for the cone
over the isotropic Grassmannian. We give the proof of Theorem 2.5.1 in Section 2.5.5
using properties of the Cartan map that will be established in the following sections.

2.5.2 Definition of the Cartan Map

When we consider e1 ∧ · · · ∧ en as an element of the n-th exterior power
∧n V of

the standard representation V of so(V ), then it is a highest weight vector of weight
(0, . . . , 0, 2) = 2λ0. Here, λ0 is the fundamental weight introduced in Section 2.1.6 which
is the highest weight of the half-spin representation Cl(−1)n(V )f . Similarly, the element
e1∧ e2∧ · · · ∧ en−1∧ fn ∈

∧n V is a highest weight vector of weight (0, . . . , 0, 2, 0) = 2λ1,
where λ1 is the highest weight of the other half-spin representation. So

∧n V contains
copies of the irreducible representations V2λ0 , V2λ1 of so(V ); in fact, it is well known to
be the direct sum of these. To compare our results in this chapter about spin representa-
tions with the results from Chapter 1 about exterior powers, we will need the following
considerations.

Consider any connected, reductive algebraic group G, with maximal torus T and
Borel subgroup B ⊇ T . Let λ be a dominant weight of G, let Vλ be the corresponding
irreducible representation, and let vλ ∈ Vλ be a nonzero highest-weight vector (which
is unique up to scalar multiples). Then the symmetric square S2Vλ contains a one-
dimensional space of vectors of weight 2λ, spanned by v2λ := v2λ. This vector is itself a
highest-weight vector, and hence generates a copy of V2λ; this is sometimes called the
Cartan component of S2Vλ. By semisimplicity, there is a G-equivariant linear projection
π : S2Vλ ! V2λ that restricts to the identity on V2λ. The map

ν̂2 : Vλ ! V2λ, v 7! π(v2).

is a nonzero polynomial map, homogeneous of degree 2, and hence induces a rational
map ν2 : PVλ ! PV2λ. Note that this is the composition of the quadratic Veronese
embedding and the projection π. We will refer to ν2 and to ν̂2 as the Cartan map.

Lemma 2.5.2. The rational map ν2 is a morphism and injective.

We thank J.M. Landsberg for help with the following proof.

Proof. To show that ν2 is a morphism, we need to show that π(v2) is nonzero whenever
v is. Now the set Q of all [v] ∈ PVλ for which π(v2) is zero is closed and B-stable. Hence,
if Q ̸= ∅, then by Borel’s fixed point theorem, Q contains a B-fixed point. But the only
B-fixed point in PVλ is [vλ], and vλ is mapped to the nonzero vector v2λ. Hence Q = ∅.

Injectivity is similar but slightly more subtle. Assume that there exist distinct [v], [w]
with ν2([v]) = ν2([w]). Then {[v], [w]} represents a point in the Hilbert scheme of two
points in PVλ. Now the locus Q of points S in said Hilbert scheme such that ν2(S) is a
single reduced point is a closed subset of a projective scheme, henceQ contains a B-stable
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point S. This scheme S cannot consist of two distinct reduced points, since there is only
one B-stable point. Therefore, the reduced subscheme of S is {[vλ]}, and S represents the
point [vλ] together with a nonzero tangent direction in T[vλ]PVλ = Vλ/Kvλ, represented
by w ∈ Vλ. Furthermore, B-stability of S implies that the B-module generated by w
equals ⟨w, vλ⟩K. That S lies in Q means that

π
(
(vλ + ϵw)2

)
= v2λ mod ϵ2.

We find that π(vλw) = 0, so that the G-module generated by vλw ∈ S2V does not
contain V2λ. But since vλ is (up to a scalar) fixed by B, the B-module generated by
vλw equals vλ times the B-module gene rated by w, and hence contains v2λ = v2λ, a
contradiction.

Observe that ν2 maps the unique closed orbit G · [vλ] in PVλ isomorphically to the
unique closed orbit G · [v2λ], both are isomorphic to G/P , where P ⊇ B is the stabiliser
of the line Kvλ and of the line Kv2λ. In our setting above, where G = Spin(V ) and
λ ∈ {λ0, λ1}, the closed orbit G · [v2λ] is one of the two connected components of the
Grassmannian Griso(V ) of n-dimensional isotropic subspaces of V , in its Plücker embed-
ding; and the closed orbit in the projectivised half-spin representation PVλ is the same
component of the isotropic Grassmannian but now in its spinor embedding.

In what follows we will need a more explicit understanding both of the embedding
of the isotropic Grassmannian in the projectivised (half-)spin representations and of the
map ν̂2. These are treated in the next two paragraphs.

2.5.3 The Map ν̂2 from the Spin Representation to the Exterior Power

In Section 2.5.2 we argued the existence of Spin(V )-equivariant quadratic maps from the
half-spin representations to the two summands of

∧n V . In [Man09] these two maps are
described jointly as

ν̂2 : Cl(V )f !
∧n

V, af 7! the component in
∧n

V of (afa∗) • 1 ∈
∧
V,

where • stands for the Cl(V )-module structure of
∧
V from Section 2.1.2 and a∗ refers

to the anti-automorphism of the Clifford algebra from Section 2.1.1.

Lemma 2.5.3. The map ν̂2 maps the isotropic Grassmann cone in its spinor embedding
to the isotropic Grassmann cone in its Plücker embedding, i.e.,

ν̂2
(
Ĝriso(V )

)
= Ĝr

Pl

iso(V ),

where Ĝr
Pl

iso(V ) is the isotropic Grassmann cone in its Plücker embedding (see Defini-
tion 1.2.7 in Chapter 1).

Proof. Let H ⊆ V be a maximal isotropic subspace that intersects F in a k-dimensional
space. Choose a hyperbolic basis e1, . . . , en, f1, . . . , fn adapted to H and F , so that
H = ⟨ek+1, . . . , en, f1, . . . , fk⟩ is represented by the vector ωH := ek+1 · · · enf ∈ Ĝriso(V )
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where f = f1 · · · fn; see Section 2.2.1. Set a := ek+1 · · · en. Now

afa∗ = ek+1 · · · enf1 · · · fnen · · · ek+1

= ek+1 · · · enf1 · · · fn−1(2− enfn)en−1 · · · ek+1

= 2ek+1 · · · enf1 · · · fn−1en−1 · · · ek+1

= . . .

= 2n−kek+1 · · · enf1 · · · fk

where we have used the definition of Cl(V ) (in the first step), the fact that the second
copy of en is perpendicular to all elements before it and multiplies to zero with the first
copy of en (in the second step), and have repeated this another n − k − 1 times in the
last step. We now find that

(afa∗) • 1 = 2n−kek+1 ∧ · · · ∧ en ∧ f1 ∧ · · · ∧ fk,

so that (afa∗)•1 lies in one of the two summands of
∧n V and spans the line representing

the space H in the Plücker embedding. This shows that ν̂2 maps the isotropic Grassmann
cone in its spinor embedding to the isotropic Grassmann cone in its Plücker embedding,
as desired.

Remark 2.5.4. While the spin representation Cl(V )f depends only on the space F , since
F determines f up to a scalar, which doesn’t affect the left ideal Cl(V )f , the map ν̂2
actually depends on f itself: for f̃ := tf with t ∈ K∗, the map ν̂2 constructed from f̃
sends af = (t−1a)f̃ to t−1af̃t−1a∗ = t−1afa∗, so the new ν̂2 is t−1 times the old map.

2.5.4 Contraction and the Cartan Map Commute

Recall from Section 2.5.2 that we have quadratic maps ν̂2 from the half-spin represen-
tations to the two summands of

∧n V ; together, these form a quadratic map ν̂2 which
we discussed in Section 2.5.3. By abuse of terminology, we call this, too, the Cartan
map. Given an isotropic vector e ∈ V that is not in F , we write ν̂2 also for the Cartan
map Cl(Ve)f !

∧n−1 Ve (notation as in Section 2.2.2). Recall from Section 2.2.2 the
contraction map ce :

∧n V !
∧n−1 Ve and its spin analogue πe : Cl(V )f ! Cl(Ve)f .

Also, for a fixed h = fn ∈ F with ⟨e, h⟩ = 1, recall from Section 2.2.3 the multiplication
map mh :

∧n−1 Ve !
∧n V and its spin analogue τh : Cl(Ve)f ! Cl(V )f . The relations

between these maps are as follows.

Proposition 2.5.5. The following diagrams essentially commute:

Cl(V )f

ν̂2
��

πe // Cl(Ve)f

ν̂2
��∧n V ce

//
∧n−1 Ve

and Cl(Ve)f

ν̂2
��

τh // Cl(V )f

ν̂2
��∧n−1 Ve mh

//
∧n V.

(2.5.1)

More precisely, one can rescale the restrictions of ce to the two so(V )-submodules of∧n V each by ±1 in such a manner that the diagram commutes, and similarly for mh.
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Naturally, we could have chosen the scalars in the definition of ce (or, using a square
root of −1, in that of πe) such that the diagram literally commutes. However, we have
chosen the scalars such that ce has the most natural formula and πe, τh have the most
natural formulas in our model

∧
E for the spin representation.

Proof. We may choose a hyperbolic basis e1, . . . , en, f1, . . . , fn of V such that e = en and
f1, . . . , fn is a basis of F . We write f := f1 · · · fn and f := f1 · · · fn−1.

Since the vertical maps are quadratic, it is not sufficient to show commutativity on
a spanning set. We therefore consider

a :=
∑
I⊆[n]

cIeI

where, for I = {i1 < . . . < ik} we write eI := ei1 · · · eik . We then have

πe(af) =
∑
I:n̸∈I

cIeIf =: af

and

ν̂2(af) = the component in
∧n−1

Ve of
∑

I,J :n̸∈I∪J
(cIcJeIfeJ

∗) • 1 ∈
∧
Ve.

Now note that, since f has n− 1 factors, if I, J do not have the same parity, then acting
with eIfeJ

∗ on 1 yields a zero contribution in
∧n−1 Ve. Hence the sum above may be

split into two sums, one of which is

the component in
∧n−1

Ve of
∑

I,J :|I|,|J | even, n̸∈I∪J

(cIcJeIfeJ
∗) • 1. (2.5.2)

On the other hand, consider

ν̂2(af) = the component in
∧n

V of
∑
I,J

(cIcJeIfe
∗
J) • 1 ∈

∧
V.

For the same reason as above, this splits into two sums, and we want to compare the
following expression to (2.5.2):

ce

(
the component in

∧n
V of

∑
I,J :|I|,|J | even

(cIcJeIfe
∗
J) • 1

)
. (2.5.3)

Now recall that the action of e = en ∈ V ⊆ Cl(V ) on
∧
V is via o(e) + ι(e), while ce is

ιe followed by projection to
∧n−1 Ve. Hence to compute (2.5.3), we may as well compute

the summands of

the component in
∧n

V of
∑

I,J :|I|,|J | even

(cIcJ · e · eIfe∗J) • 1

that do not contain a factor e. Terms with n ∈ I do not contribute, because then eeI = 0.
Terms with n ̸∈ I but n ∈ J do not contribute because when e gets contracted with fn a
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factor e in e∗J survives, and when e does not get contracted with fn, we use ee∗J = 0. So
we may restrict attention to the terms with n ̸∈ I∪J . Let I, J correspond to such a term,
that is, |I|, |J | are even and n ̸∈ I∪J . Write I = {i1 < . . . < ik} and J = {j1 < . . . < jl}.
Then

(eeIfe
∗
J) • 1 =

(
(−1)n−1eIf1 · · · fn−1efne

∗
J

)
• 1

=
(
(−1)n−1eIf1 · · · fn−1e

)
• (fn ∧ ejl ∧ · · · ∧ ej1)

=
(
(−1)n−1eIf1 · · · fn−1

)
• (ejl ∧ · · · ∧ ej1 + e ∧ fn ∧ ejl ∧ · · · ∧ ej1).

The second term in the last expression will contribute only terms with a factor e to the
final result, and the former term contributes

the component in
∧n−1

Ve of (−1)n−1(eIfeJ
∗) • 1.

Comparing this with (2.5.2), we see that the diagram commutes on terms in Cl+(V )f
up to the factor (−1)n−1. A similar computation shows that it commutes on terms in
Cl−(V )f up to a factor factor (−1)n.

We now consider the second diagram, where V is split as the orthogonal direct sum
Ve ⊕ ⟨e, h⟩ with e = en, h = fn. Consider a ∈ Cl(⟨e1, . . . , en−1⟩). By the same argument
as above, it suffices to consider the case where all summands of a in the basis eI have
indices I with |I| of the same parity, say even. Then ν̂2 ◦ τh in the diagram sends af
to the component in

∧n V of afa∗ • 1. Since the summands eI in a all have n ̸∈ I, in
afa∗ • 1 all summands have a factor fn, and indeed

(afa∗) • 1 = fn ∧ (afa∗ • 1)

(when all terms in a have |I| odd, we get a minus sign). The component in
∧n V of this

expression is the same as the one obtained via mh ◦ ν̂2.

2.5.5 Proof of Theorem 2.5.1

In this section we use the Cartan map to prove Theorem 2.5.1, and finish the proof of
Corollary 2.4.8 via a similar argument.

Proof of Theorem 2.5.1. For a quadratic space of dimension 2n, we will denote the

isotropic Grassmann cone over the Plücker embedding by Ĝr
Pl

iso(V ) ⊆
∧n V . Given

a maximal isotropic subspace F ⊆ V with basis f1, . . . , fn and f := f1 · · · fn, let
ν̂2 : Cl+(V )f !

∧n V be the Cartan map defined in Section 2.5.3. For any isotropic
v ∈ V \ F the diagram ∧n V

∧n−1 Vv

Cl(V )f Cl(Vv)f

cv

πv

ν̂2 ν̂2

commutes up to scalar factor at the bottom by Proposition 2.5.5, where Vv := v⊥/⟨v⟩
and where f is the image of a product of a basis of v⊥ ∩ Fn.

The proof of Corollary 1.3.2 in Chapter 1 shows that for ω ∈
∧n V the following are

equivalent:
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1. ω ∈ Ĝr
Pl

iso(V );

2. for any sequence v1 ∈ V , v2 ∈ Vv1 , v3 ∈ (Vv1)v2 , . . . , vn−4 ∈ (· · · ((Vv1)v2)v3 · · · )vn−3

of isotropic vectors, it holds that

C(ω) ∈ Ĝr
Pl

iso(W ),

where we abbreviate W := (· · · ((Vv1)v2)v3 · · · )vn−4 and C :
∧n V !

∧4W is
the composition C := cvn−4 ◦ · · · ◦ cv1 of the contraction maps cvi introduced in
Section 2.2.2.

By slight abuse of notation, we also write v1, . . . , vn−4 for preimages of these vectors
in V . These span an (n − 4)-dimensional isotropic subspace U of V (provided that
each vi chosen above in the successive quotients is nonzero), and W equals U⊥/U . For

any fixed ω, the condition that C(ω) lies in Ĝr
Pl

iso(W ) is a closed condition on U , and
hence it suffices to check that condition for U in a dense subset of the Grassmannian of
isotropic (n−4)-dimensional subspaces of V . In particular, it suffices to check this when
U ∩ Fn = {0}.

Fix n ≥ 4 and x ∈ Cl(Vn)f1 · · · fn such that p(g · x) = 0 for all g ∈ Spin(Vn) and all

p ∈ I4. This means precisely that πn,4(g ·x) ∈ Ĝr
+

iso(V4) for all g ∈ Spin(Vn). We need to

show that x ∈ Ĝr
+

iso(Vn). To this end, consider ω := ν̂2(x) ∈
∧n Vn. It suffices to show

that ω ∈ Ĝr
Pl

iso(Vn). Indeed, this follows from the fact that ν̂2
(
Ĝr

+

iso(V )
)
is one of the

two irreducible components of Ĝr
Pl

iso(V ) (see Lemma 2.5.3) and because ν2 is an injective
morphism by Lemma 2.5.2. Let v1, v2, . . . , vn−4 ∈ Vn as above: linearly independent, and
such that the span U := ⟨v1, . . . , vn−4⟩ is an isotropic space that intersects Fn trivially.
Let C := cvn−4 ◦ · · · ◦ cv1 be the composition of the associated contractions. We need to

show that C(ω) ∈ Ĝr
Pl

iso(W ), where W := U⊥/U .

Now ν̂2
(
Ĝr

+

iso(W )
)
⊆ Ĝr

Pl

iso(W ) by Lemma 2.5.3, and the diagram

∧n Vn
∧4W

Cl(Vn)f Cl(W )f,

C

πvn−4◦···◦πv1

ν̂2 ν̂2

where f is the image of the product of a basis of U⊥ ∩ Fn, commutes up to a scalar
factor in the bottom map due to Proposition 2.5.5. Therefore, it suffices to check that

πvn−4 ◦ · · · ◦ πv1(x) ∈ Ĝr
+

iso(W ). Now there exists an element g ∈ Spin(Vn) that maps
Fn into itself (not with the identity!) and sends vi to en+1−i for i = 1, . . . , n − 4. This
induces an isometry W := U⊥/U ! (U ′)⊥/U ′ = V4 = ⟨e1, . . . , e4, f1, . . . , f4⟩, where
U ′ := ⟨e5, . . . , en⟩. This in turn induces a linear isomorphism (unique up to a scalar)
Cl(W ) · f ! Cl(V4) · f1 · · · f4 (where f on the left is the product of a basis of Fn ∩ U⊥)

that maps Ĝr
+

iso(W ) onto Ĝr
+

iso(V4). Since, by assumption, πn,4(g ·x) = πe5 ◦· · ·◦πen(g ·x)
lies in the latter isotropic Grassmann cone, πvn−4 ◦ · · · ◦ πv1(x) lies in the former.
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Lemma 2.5.6. Let q ≥ n ≥ n0. Then for all g in some open dense subset of Spin(Vq)
there exist g′ ∈ Spin(Vn) and g

′′ ∈ Spin(Vn0) such that

πq,n0 ◦ g ◦ τn,q = g′′ ◦ πn,n0 ◦ g′

holds up to a scalar factor.

Proof. The proof is similar to that above; we just give a sketch. Using the Cartan map,
which is equivariant for the relevant spin groups, this lemma follows from a similar
statement for the corresponding (halfs of) exterior power representations. Specifically,
define

E := ⟨en0+1, . . . , eq⟩ ⊆ Vq,

E′ := ⟨en0+1, . . . , en⟩ ⊆ Vn, and

F := ⟨fn+1, . . . , fq⟩ ⊆ Vq.

Then the desired identity is

cE ◦ g ◦mF = g′′ ◦ cE′ ◦ g′ (2.5.4)

(up to a scalar), where

cE := cen0+1 ◦ · · · ◦ ceq :
∧q

Vq !
∧n0

Vn0 ,

cE′ := cn0+1 ◦ · · · ◦ cen :
∧n

Vn !
∧n0

Vn0 , and

mF := mfq ◦ · · · ◦mfn+1 :
∧n

Vn !
∧q

Vq

and the cei and mfj are as defined in Section 2.2.2 and Section 2.2.3, respectively.
Furthermore, since the exterior powers are representations of the special orthogonal
groups, we may take g, g′, g′′ to be in SO(Vq),SO(Vn),SO(Vn0), respectively.

We investigate the effect of the map on the left on (a pure tensor in
∧n Vn corre-

sponding to) a maximal (i.e., n-dimensional) isotropic subspace W of Vn. First, W is
extended to W ′ :=W ⊕F , then g is applied to W ′, and the final contraction map sends
gW ′ to the image in Vq/E of (gW ′) ∩ E⊥.

Instead of intersecting gW ′ with E⊥, we may intersectW ′ =W⊕F with (E′′)⊥ where
E′′ := g−1E, followed by the isometry g : (E′′)⊥/E′′ ! E⊥/E induced by g. Accordingly,
one can verify that the map on the left-hand side of Equation (2.5.4) becomes (a scalar
multiple of)

g ◦ cE′′ ◦mF

where cE′′ :
∧q Vq !

∧n0
(
(E′′)⊥/E′′) is the composition of contractions with a basis

of E′′, and where we write g also for the map that g induces from
∧n0

(
(E′′)⊥/E′′) to∧n0(E⊥/E).

Now consider the space E′′∩ (Vn⊕F ) ⊆ Vq. For g in an open dense subset of SO(Vq),
this intersection has the expected dimension (q − n0) + (2n+ q − n)− 2q = n− n0, and
for g in an open dense subset of SO(Vq) we also have (E′′)⊥ ∩ F = {0} (because (E′′)⊥

has codimension q−n0, which is at least the dimension q−n of F ). We restrict ourselves
to such g. Then in particular E′′ ∩ F = {0} and therefore the projection Ẽ ⊆ Vn of
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E′′ ∩ (Vn ⊕ F ) along F has dimension n− n0, as well. Note that Ẽ is isotropic because
E′′ is and because F is the radical of the bilinear form on Vn ⊕ F .

Furthermore, the projection Vn ⊕ F ! Vn restricts to a linear isomorphism

(Vn ⊕ F ) ∩ (E′′)⊥ ! Ẽ⊥,

where the latter is the orthogonal complement of Ẽ inside Vn. This linear isomorphism
induces an isometry

h1 :
(
(Vn ⊕ F ) ∩ (E′′)⊥

)
/
(
(Vn ⊕ F ) ∩ E′′)! Ẽ⊥/Ẽ

between spaces of dimension 2n0 equipped with a non-degenerate bilinear forms. On the
other hand, the inclusion Vn ⊕ F ! Vq also induces an isometry

h2 :
(
(Vn ⊕ F ) ∩ (E′′)⊥

)
/
(
(Vn ⊕ F ) ∩ E′′)! (E′′)⊥/E′′.

Now a computation shows that, up to a scalar, we have

cE′′ ◦mF = h2 ◦ h−1
1 ◦ c

Ẽ
,

where c
Ẽ
:
∧n Vn !

∧n0(Ẽ⊥/Ẽ) is a composition of contractions with a basis of Ẽ. Now

choose g′ ∈ SO(Vn) such that g′Ẽ = E′, so that we have

cE′ ◦ g′ = g′ ◦ c
Ẽ
,

where g′ is the isometry Ẽ⊥/Ẽ ! (E′)⊥/E′ induced by g′. We then conclude that

cE ◦ g ◦mF = g ◦ h2 ◦ h−1
1 ◦ (g′)−1 ◦ cE′ ◦ g′

and hence we are done if we set

g′′ := g ◦ h2 ◦ h−1
1 ◦

(
g′
)−1 ∈ SO

(
(E′)⊥/E′

)
= SO(Vn0).
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Chapter 3

Noetherianty and Universality for
Lagrangian Plücker Varieties

3.1 Foundations

3.1.1 General Vector Spaces

Throughout this entire subsection V denotes a finite dimensional vector space over an
arbitrary field K.

Denote by Altk(V ) the space of alternating multilinear maps V × · · · × V ! K. The
following maps will be central in this article.

Definition 3.1.1 (Contraction maps). For β ∈ V ∗ the contraction with β, or interior
multiplication by β, is the map

iβ :
∧k

V !
∧k−1

kerβ ⊆
∧k−1

V

given by

v1 ∧ · · · ∧ vk 7!
k∑
i=1

(−1)i−1β(vi)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk, (3.1.1)

where ·̂ indicates that the factor is omitted. Similarly, for ω ∈ Alt2(V ) the contraction
with ω, or interior multiplication by ω, is the map

iω :
∧k

V !
∧k−2

V

sending v1 ∧ · · · ∧ vk to∑
1≤i<j≤k

(−1)i+j−1ω(vi, vj)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk. (3.1.2)

In the following sections, whenever we will consider symplectic vector spaces, we will
exclusively consider iω with ω being the symplectic form on V .

Below we will give a more conceptual description of the contraction maps. To this
avail, recall that the evaluation pairing is the non-degenerate pairing

(·, ·)ev :
∧k

V ×
∧k

V ∗ ! K
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given by

(v1 ∧ · · · ∧ vk, β1 ∧ · · · ∧ βk)ev := det
((
βi(vj)

)
1≤i,j≤k

)
. (3.1.3)

Example 3.1.2. Let e1, . . . , en be a basis of V , and denote by ε1, . . . , εn ∈ V ∗ the dual
basis given by εj(ei) = δij . For any 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . < jk ≤ n it
then holds (

ei1 ∧ · · · ∧ eik , ε
j1 ∧ · · · ∧ εjk

)
ev

=

{
1 if i1 = j1, . . . , ik = jk
0 otherwise.

This also implies that the evaluation pairing is non-degenerate.

The evaluation pairing induces an isomorphism
∧k(V ∗) ∼= (

∧k V )∗ because it is
non-degenerate. Moreover, by the universal property of

∧k V , there also is a canonical
isomorphism Altk(V ) ∼= (

∧k V )∗ ([Lüc12, p. 183]). Composing these we get an isomor-
phism

Altk(V ) ∼=
∧k

V ∗. (3.1.4)

Under this isomorphism, for all ξ ∈ Altk(V ) ∼=
∧k(V ∗) and v1, . . . , vk ∈ V it holds

ξ(v1, . . . , vk) = (v1 ∧ · · · ∧ vk, ξ)ev, (3.1.5)

where on the left hand side we think of ξ as an element of Altk(V ) and on the right hand
side as an element of

∧k(V ∗).
Under the isomorphism (

∧k V )∗ ∼=
∧k(V ∗) induced from the evaluation pairing, the

contraction maps iβ and iω (see Definition 3.1.1) are dual to the maps∧k−1
V ∗ !

∧k
V ∗, ξ 7! β ∧ ξ and

∧k−2
V ∗ !

∧k
V ∗, ξ 7! ω ∧ ξ,

where we use the isomorphism (3.1.4) to think of ω ∈ Alt2(V ) as an element in
∧2 V ∗.

Namely, for all η ∈
∧k V and ξ ∈

∧k−1 V ∗ it holds

(iβ(η), ξ)ev = (η, β ∧ ξ)ev, (3.1.6)

and similarly
(iω(η), ξ)ev = (η, ω ∧ ξ)ev (3.1.7)

for all η ∈
∧k V and ξ ∈

∧k−2 V ∗ (see [FH91, p. 260, p. 476 and Exercise B.15(ii)]).
In other words the maps iβ, resp. iω, can coordinate-independently be described as the
maps dual to wedging with the respective form β or ω.

We now recall the definition of the (ordinary) Grassmann cone.

Definition 3.1.3 (Grassmann cone). For k ≤ dim(V ) the Grassmann cone Ĝr(k, V ) is
defined as

Ĝr(k, V ) :=

{
v1 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ v1, . . . , vk ∈ V

}
.

For ξ = v1 ∧ · · · ∧ vk ∈ Ĝr(k, V ) \ {0}, we will denote the corresponding subspace
⟨v1, . . . , vk⟩ ⊆ V as Lξ. Here we use the notation ⟨v1, . . . , vk⟩ to denote the span of the
vectors v1, . . . , vk in V .

Later (in the proof of Lemma 3.4.8) we will use the following result.
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Lemma 3.1.4. Suppose ξ1, ξ2 ∈ Ĝr(k, V ) \ {0} are such that ξ1 + ξ2 ∈ Ĝr(k, V ). Then
dim(Lξ1 ∩ Lξ2) ≥ k − 1.

Proof. We abbreviate ξ = ξ1+ξ2 andW = Lξ1+Lξ2 , so that ξ ∈
∧kW and ξ ∈ Ĝr(k,W )

by assumption. If ξ = 0, then the lemma trivially holds. So we may assume ξ ̸= 0.
Consider the map ψξ :W !

∧k+1W, w 7! w ∧ ξ. Observe that

dim (ker(ψξ)) ≥ k (3.1.8)

because Lξ ⊆ ker(ψξ) (Lξ is defined since ξ ∈ Ĝr(k,W )\{0}). Arguing by contradiction,
we assume that dim(Lξ1 ∩Lξ2) = k−m for some m ≥ 2. We fix a basis {wm+1, . . . , wk}
of Lξ1 ∩Lξ2 and extend it to a basis of Lη1 and Lη2 , that is, we choose u1, . . . , um ∈ Lξ1
and u′1, . . . , u

′
m ∈ Lξ2 such that

Lξ1 = ⟨u1, . . . , um, wm+1, . . . , wk⟩ and Lξ2 = ⟨u′1, . . . , u′m, wm+1, . . . , wk⟩.

Hence, after potentially rescaling u1 and u′1, it holds

ξ1 = u1 ∧ · · · ∧ um ∧ wm+1 ∧ · · · ∧ wk and ξ2 = u′1 ∧ · · · ∧ u′m ∧ wm+1 ∧ · · · ∧ wk.

Therefore, keeping in mind that ξ = ξ1 + ξ2 and m ≥ 2, we see that the images

ψξ(ui) = ui ∧ u′1 ∧ · · · ∧ u′m ∧ wm+1 ∧ · · · ∧ wk (1 ≤ i ≤ m)

ψξ(u
′
i) = u′i ∧ u1 ∧ · · · ∧ um ∧ wm+1 ∧ · · · ∧ wk (1 ≤ i ≤ m)

are linearly independent, so that dim(im(ψξ)) ≥ 2m. But then

dim(ker(ψξ)) = dim(W )− dim(im(ψξ)) ≤ (k +m)− 2m < k

due to the dimension formula. However, this contradicts (3.1.8).

3.1.2 Symplectic Vector Spaces

From now on we consider a finite dimensional vector space V over a field K of Char(K) =
0 equipped with a symplectic form ω, i.e., a non-degenerate skew-symmetric bilinear
form on V . It is well-known that such a symplectic space always has even dimension (see
[Lee12, Proposition 22.7]).

We start by recalling some basic definitions. The symplectic group Sp(V ) is the set
of all automorphisms of V preserving the symplectic form, i.e.,

Sp(V ) =
{
A ∈ GL(V )

∣∣∣ ω(Av,Aw) = ω(v, w) for all v, w ∈ V
}

whose Lie algebra is

sp(V ) =
{
L ∈ End(V )

∣∣∣ ω(Lv,w) + ω(v, Lw) = 0 for all v, w ∈ V
}
.

The orthogonal complement of a subspace L ⊆ V is

L⊥ :=
{
v ∈ V

∣∣∣ ω(v, u) = 0 for all u ∈ L
}
.

67



We call a subspace L ⊆ V isotropic if L ⊆ L⊥, i.e., if ω(u, v) = 0 for all u, v ∈ L.
Moreover, a subspace L ⊆ V is called Lagrangian if L = L⊥, or equivalently, if L is
isotropic and dim(L) = 1

2 dim(V ).
Analogous to the definition of the (ordinary) Grassmann cone, we can now define

the isotropic and Lagrangian Grassmann cone.

Definition 3.1.5 (Isotropic and Lagrangian Grassmann cone). For k ≤ 1
2 dim(V ) the

isotropic Grassmann cone Ĝriso(k, V ) is defined as

Ĝriso(k, V ) :=

{
v1 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ ω(vi, vj) = 0 for all 1 ≤ i, j ≤ k

}
.

The Lagrangian Grassmann cone ĜrL(V ) is defined as Ĝriso(k, V ) for k = 1
2 dim(V ), i.e.,

ĜrL(V ) := Ĝriso

(
1

2
dim(V ), V

)
.

Note that ξ ∈ Ĝr(k, V ) \ {0} lies in Ĝriso(k, V ) if and only if Lξ ⊆ V is isotropic.

Similarly, if dim(V ) = 2n, then ξ ∈ Ĝr(n, V ) \ {0} is in ĜrL(V ) if and only if Lξ ⊆ V is
Lagrangian.

Remark 3.1.6. The projectivization of ĜrL(V ) is the Lagrangian Grassmannian GrL(V );
it parametrizes Lagrangian subspaces of a symplectic space V .

Throughout the article we will frequently use the following terminology.

Definition 3.1.7 (Symplectic basis). A basis e1, e−1, . . . , en, e−n of V is called a sym-
plectic basis if ω(ei, e−i) = 1 for all i ∈ {1, . . . , n} and if for all i, j ∈ {±1, . . . ,±n} it
holds ω(ei, ej) = 0 whenever i ̸= −j.

Note that, if e1, e−1, . . . , en, e−n is a symplectic basis of V , then ω(e−i, ei) = −1 for
1 ≤ i ≤ n since ω is skew-symmetric.

The following elementary lemma will be prove useful.

Lemma 3.1.8. Let L1, L2 ⊆ V be Lagrangian subspaces. Then for any choice of decom-
position

L1 = (L1 ∩ L2)⊕ U1 and L2 = (L1 ∩ L2)⊕ U2

the musical isomorphism ♭ (see (3.1.9)) restricts to an isomorphism U1 ! U∗
2 . In par-

ticular, there exists a symplectic basis e1, e−1, . . . , en, e−n of V , such that

L1 = ⟨e1, . . . , eq, eq+1, . . . , en⟩ and L2 = ⟨e1, . . . , eq, e−(q+1), . . . , e−n⟩,

where q = dim(L1 ∩ L2).

Proof. This was proven in Lemma 1.2.6 in Chapter 1 for quadratic spaces, i.e., spaces
equipped with a non-degenerate symmetric bilinear form. However, the proof also works
for symplectic spaces without any modifications.

68



Since the skew-symmetric form ω is non-degenerate, it induces the musical isomor-
phism

♭ : V ! V ∗, v 7! v♭ := ω(v, · ). (3.1.9)

This induces a map on the exterior powers, which by abuse of notation we still denote
by ♭,

♭ :
∧k

V !
∧k

V ∗, v1 ∧ · · · ∧ vk 7! v♭1 ∧ · · · ∧ v♭k. (3.1.10)

We will denote the image of any η ∈
∧k V under this isomorphism by η♭.

Example 3.1.9. Let e1, e−1, . . . , en, e−n be a symplectic basis of V , and denote the dual
basis of V ∗ by ε1, ε−1, . . . , εn, ε−n. Then for 1 ≤ i ≤ n it holds

e♭i = ε−i and e♭−i = −εi.

Hence ξω := e1 ∧ e−1 + · · ·+ en ∧ e−n ∈
∧2 V satisfies

ξ♭ω = ε1 ∧ ε−1 + · · ·+ εn ∧ ε−n = ω.

Here we use the isomorphism Alt2(V ) ∼=
∧2 V ∗ from (3.1.4) to interpret the symplectic

form ω as an element of
∧2 V ∗.

We want to point out a connection between the musical isomorphism and the evalu-
ation map, as it will be important for us later on. Namely, for all η, ξ ∈

∧k V it holds

(η, ξ♭)ev = (−1)k(ξ, η♭)ev. (3.1.11)

This follows from the definition (3.1.3) of the evaluation pairing, and the fact that for
all v, w ∈ V it holds v♭(w) = ω(v, w) = −ω(w, v) = −w♭(v) since ω is skew-symmetric.

Next we want to use the symplectic form to extend Definition 3.1.1 to also define the
contraction with a vector v ∈ V .

Definition 3.1.10 (Contraction map). For v ∈ V the contraction with v is the map

φv :
∧k

V !
∧k−1

v⊥

defined by

v1 ∧ · · · ∧ vk 7!
k∑
i=1

(−1)i−1ω(v, vi)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk. (3.1.12)

Note that φv = iβ for β = v♭ (see Definition 3.1.1).
Let v ∈ V be a nonzero vector. Define Vv := v⊥/⟨v⟩ (note that ⟨v⟩ ⊆ v⊥ because ω

is skew-symmetric). It is easy to see that

ωv(v̄1, v̄2) := ω(v1, v2), (3.1.13)

where v̄i ∈ Vv denotes the equivalence class of vi ∈ v⊥ in Vv, is a well-defined symplectic
form on Vv (i.e., the formula is independent of the choice of representatives v1, v2 ∈ v⊥).
We denote by πv the projection v⊥ ↠ Vv.
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Definition 3.1.11. For any nonzero v ∈ V we define the linear map

Φv :
∧k

V !
∧k−1

Vv (3.1.14)

as the composition ∧k
V

φv
−!

∧k−1
v⊥

∧k−1 πv
−−−−−!

∧k−1
Vv,

where φv is the contraction map introduced in Definition 3.1.10. Explicitly, this map is
given by

Φv(v1 ∧ · · · ∧ vk) =
k∑
j=1

(−1)j−1ω(v, vj)v̄1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̄k. (3.1.15)

The map Φv can alternatively be described as follows. Analogous to iβ (see (3.1.1)),
any v ∈ V defines an interior multiplication (also see [Lee12, p. 358])

iv :
∧k

V ∗ !
∧k−1

ker(v),

where ker(v) := {α ∈ V ∗ |α(v) = 0} ⊆ V ∗. Choose a section sv : Vv ! v⊥ of πv, and
consider its dual map s∗v : V

∗ ! V ∗
v , α 7! α ◦ sv. Then the diagram

∧k V
∧k−1 v⊥

∧k−1 Vv

∧k V ∗ ∧k−1 ker(v)
∧k−1 V ∗

v

∼=♭V

φv

Φv

∼= ♭V

∧k−1 πv

∼= ♭Vv

iv
∧k−1 s∗v

(3.1.16)

commutes (up to sign (−1)). Moreover, under the canonical isomorphisms from (3.1.4),
the lower horizontal map (

∧k−1 s∗v) ◦ iv agrees with the map

Altk(V )! Altk−1(Vv), ξ 7! ξ(v, sv(·), . . . , sv(·)). (3.1.17)

So, up to the musical isomorphisms and the canonical isomorphisms from (3.1.4), (3.1.17)
can be thought of as an coordinate-independent description for Φv (up to sign (−1)).

Using this description we can characterize when Φv(η) is zero.

Lemma 3.1.12. Let v ∈ V be nonzero and η ∈
∧k V. Then Φv(η) = 0 if and only if(

v ∧ v2 ∧ · · · ∧ vk, η♭
)
ev

= 0 for all v2, . . . , vk ∈ v⊥,

where η♭ ∈
∧k V ∗ is the image of η ∈

∧k V under the induced musical isomorphism
♭ :
∧k V !

∧k V ∗.

Proof. From (3.1.16) and (3.1.17) we see that Φv(η) = 0 if and only if

η♭(v, sv(v̄2), . . . , sv(v̄k)) = 0 for all v̄2, . . . , v̄k ∈ Vv.

Note that v⊥ = sv(Vv)⊕⟨v⟩ because sv is a section of πv : v
⊥ ! v⊥/⟨v⟩ = Vv. Therefore,

because η♭ is alternating, Φv(η) = 0 holds if and only if

η♭(v, v2, . . . , vk) for all v2, . . . , vk ∈ sv(Vv)⊕ ⟨v⟩ = v⊥.

Keeping in mind (3.1.5), this completes the proof.
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3.2 Counterexample and New Setting

3.2.1 Counterexample

A quadratic space is a vector space equipped with a non-degenerate symmetric bilinear
form (·, ·), and a vector v ∈ V is called isotropic if (v, v) = 0. In Chapter 1 the main
result was the following.

Theorem 3.2.1 (Theorem 1.3.1 in Chapter 1). Let V be a quadratic space over a field
K with Char(K) ̸= 2 and dim(V ) > 8. Consider η ∈

∧p, where p = ⌊12 dim(V )⌋. If

Φv(η) ∈ Ĝriso(p− 1, Vv) for every isotropic vector v ∈ Viso, then η ∈ Ĝriso(p, V ).

This does not generalize directly to symplectic vector spaces. Indeed, the following
example shows that there exist η ∈

∧n V such that Φv(η) = 0 for all v ∈ V , but

η /∈ ĜrL(V ). Nonetheless, we will show in this chapter that the main result of Chapter 1
holds for the Lagrangian Grassmann cone if we consider a different setting.

Example 3.2.2 (Counterexample). Let V be a symplectic vector space of dimension
2n = 4m. Denote by ξω ∈

∧2 V be the preimage of ω under the induced musical isomor-
phism ♭ :

∧2 V !
∧2 V ∗ (see Example 3.1.9). Define

ηex = ξmω = ξω ∧ · · · ∧ ξω ∈
∧2m

V.

We claim that, for every v ∈ V ,

φv(ηex) = −mv ∧ ξm−1
ω , (3.2.1)

where φv is the contraction we map introduced in Definition 3.1.10. Because the map
Φv =

(∧n−1 πv
)
◦ φv, where πv : v⊥ ! v⊥/⟨v⟩ = Vv is the projection, this shows

Φv(ηex) = 0 for every v ∈ V . Moreover, one can easily check, for example by working in

a hyperbolic basis (see Example 3.1.9), that ηex ∧ ηex ̸= 0, and hence ηex /∈ Ĝr(n, V ).
So it remains to prove (3.2.1). Recall that φv = iβ with β = v♭ (see Definition 3.1.1).

We will use that for all ξ1 ∈
∧k V and ξ2 ∈

∧ℓ V it holds (see [Lee12, Lemma 14.13(b)])

iβ(ξ1 ∧ ξ2) = iβ(ξ1) ∧ ξ2 + (−1)kξ1 ∧ iβ(ξ2). (3.2.2)

Thus
φv(ηex) = iv♭(ξ

m
ω ) = miv♭(ξω) ∧ ξω. (3.2.3)

Keeping in mind that ξ♭ω = ω, we obtain for all w ∈ V

(iv♭(ξω), w
♭)ev

(3.1.6)
= (ξω, v

♭ ∧ w♭)ev
(3.1.11)
= (v ∧ w, ξ♭ω)ev = (v ∧ w,ω)ev

(3.1.5)
= ω(v, w),

and thus

(iv♭(ξω), w
♭)ev = −ω(w, v) = −w♭(v) (3.1.5)

= −(v, w♭)ev

by the skew-symmetry of ω and the definition (3.1.9) of w♭. As w ∈ W was arbitrary,
this implies iv♭(ξω) = −v. Therefore, (3.2.1) follows from (3.2.3).
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3.2.2 New Setting

The goal of this subsection is to find, for each symplectic vector space V with dim(V ) =
2n, a subspace UV ⊆

∧n V such that

(i) The counterexample ηex is not contained in UV ;

(ii) The Lagrangian Grassmann cone ĜrL(V ) is a subset of UV ;

(iii) The map Φv introduced in (3.1.14) is well-defined on UV , i.e, Φv(UV ) ⊆ UVv .

We will prove that ker(iω) ⊆
∧n V satisfies all those conditions, where iω is the contrac-

tion with the symplectic from ω introduced in Definition 3.1.1.
Note that Sp(V ) naturally acts on

∧n V by A · (v1 ∧ · · · ∧ vn) = Av1 ∧ · · · ∧ Avn.
Due to the definition of Sp(V ) and iω, we have iω(Aη) = A · iω(η) for all A ∈ Sp(V ) and
η ∈

∧n V . So A · η ∈ ker(iω) if η ∈ ker(iω), i.e., the action of Sp(V ) on
∧n V restricts to

an action on ker(iω). This, in turn, induces an action of the Lie algebra sp(V ) on ker(iω).
Even though we will not make use of it, we mention here the following result.

Theorem 3.2.3 (Theorem 17.5 in [FH91]). Let (V, ω) be a symplectic vector space
of dimension 2n. Then, for every 1 ≤ k ≤ n, ker(iω) ⊆

∧k V is the k-th irreducible
fundamental representation of sp(V ).

Equivalently, ker(iω) is an irreducible Sp(V )-representation. This shows that ker(iω)
is also a natural space to consider.

Since the contraction iω is dual to the multiplication map ω∧• :
∧n−2 V ∗ !

∧n V ∗ by
(3.1.7), the kernel ker(iω) can also be described as the orthogonal complement im(ω∧•)⊥
of the image of the multiplication map.

We now check that ker(iω) satisfies the conditions above.

Lemma 3.2.4. The counterexample ηex is not contained in ker(iω).

Proof. Note that, for all β1, β2 ∈ V ∗ and ξ ∈
∧k V ∗, we have

i∗β1∧β2(ξ)
(3.1.7)
= β1 ∧ β2 ∧ ξ

(3.1.6)
= (i∗β1 ◦ i

∗
β2)(ξ) = (iβ2 ◦ iβ1)∗(ξ),

and hence iβ1∧β2 = iβ2 ◦ iβ1 . Choose a hyperbolic basis e1, e−1, . . . , en, e−n of V . Then
ω =

∑n
i=1 e

♭
i ∧ e♭−i (see Example 3.1.9). Thus, as φv = iv♭ ,

iω =

n∑
i=1

φe−i ◦ φei . (3.2.4)

From (3.2.1) we know
φei(ηex) = −mei ∧ ξm−1

ω . (3.2.5)

Moreover, from (3.2.2) and (3.2.1) (applied to ξm−1
ω ), we obtain

φe−i

(
ei ∧ ξm−1

ω

) (3.2.2)
= φe−i(ei) ∧ ξm−1

ω − ei ∧ φe−i(ξ
m−1
ω )

(3.2.1)
= −ξm−1

ω − ei ∧
(
− (m− 1)e−i ∧ ξm−2

ω

)
= −ξm−1

ω + (m− 1)ei ∧ e−i ∧ ξm−2
ω .
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Recall that ξω =
∑n

i=1 ei ∧ e−i and n = 2m. So by summing over i = 1, . . . , n we get

n∑
i=1

φe−i

(
ei ∧ ξm−1

ω

)
= −nξm−1

ω + (m− 1)ξm−1
ω = −(m+ 1)ξm−1

ω .

Combining this with (3.2.4) and (3.2.5) yields

iω(ηex) = m(m+ 1)ξm−1
ω .

In particular, iω(ηex) ̸= 0, i.e., ηex /∈ ker(iω).

Lemma 3.2.5. The Lagrangian Grassmann cone ĜrL(V ) is a subset of ker(iω).

Proof. Let ξ ∈ ĜrL(V ) be arbitrary. By Definition 3.1.5 we can write ξ = v1 ∧ · · · ∧ vn
for some v1, . . . , vn ∈ V such that ω(vi, vj) = 0 for all 1 ≤ i, j ≤ n. But then the formula
(3.1.2) for iω immediately yields iω(ξ) = 0, i.e., ξ ∈ ker(iω).

Finally, we will show that Φv is well-defined on ker(iω).

Lemma 3.2.6. For every v ∈ V we have Φv((ker(iω)) ⊆ ker(iωv), where ωv is the
symplectic form on Vv defined in (3.1.13).

Proof. Since Φv =
(∧n−1 πv

)
◦ φv, it suffices to show that the diagram

∧n V
∧n−1 v⊥

∧n−1 Vv

∧n−2 V
∧n−3 v⊥

∧n−3 Vv

iω

φv

iω

∧n−1 πv

iωv

φv
∧k−1 πv

commutes. To this avail, recall φv = iβ for β = v♭ and that, by (3.1.6) and (3.1.7),
the dual maps are given by i∗β(ξ) = β ∧ ξ and i∗ω(ξ) = ω ∧ ξ. So it’s easy to see that
i∗β ◦ i∗ω = i∗ω ◦ i∗β, and thus the left square commutes. That the right square commutes

follows immediately from (3.1.2) since ω(vi, vj) = ωv(πv(vi), πv(vj)) for all vi, vj ∈ v⊥ by
the definition (3.1.13) of ωv.

3.3 Preliminary Results

In this section we prove the three main technical ingredients for the proof of the Main
Theorem 3.4.1.

Proposition 3.3.1. Let η ∈ ker(iω) ⊆
∧k V for some 2 ≤ k ≤ dim(V ) and assume

Φv(η) = 0 for all v ∈ V . Then η = 0.

The general proof of Proposition 3.3.1 is a bit technical. However, in the case when
2 ≤ k ≤ 1

2 dim(V ), we can use Theorem 3.2.3 to give a simpler proof, which we include
here for the convenience of the reader.
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Proof of Proposition 3.3.1 when 2 ≤ k ≤ 1
2 dim(V ). Fix 2 ≤ k ≤ 1

2 dim(V ) and define

W :=

{
η ∈ ker(iω) ⊆

∧k
V
∣∣∣ Φv(η) = 0 for all v ∈ V

}
.

The statement of Proposition 3.3.1 is equivalent to W = 0. We will show that W is an
Sp(V )-invariant subspace of ker(iω). Then, since ker(iω) is an irreducible representation
by Theorem 3.2.3, it follows that W = 0 or W = ker(iω). But W ̸= ker(iω) because
there clearly exist η ∈ ker(iω) such that Φv(η) ̸= 0 for some v ∈ V .

It remains to show thatW is an Sp(V )-invariant. Because of Lemma 3.1.12 it suffices
to show that for all η ∈

∧k V , v ∈ V , v2, . . . , vk ∈ v⊥ and g ∈ Sp(V ) it holds(
v ∧ v2 ∧ · · · ∧ vk, (gη)♭

)
ev

=
(
g−1v ∧ g−1v2 ∧ · · · ∧ g−1vk, η

♭
)
ev
. (3.3.1)

Towards the proof of (3.3.1) we first observe that for all u,w ∈ V we have

u♭(gw) = ω(u, gw) = ω(gg−1u, gw) = ω(g−1u,w) = (g−1u)♭(w),

where the third equality holds because g ∈ Sp(V ) preserves ω. As a consequence, for all
η, ξ ∈

∧k V it holds (
gη, ξ♭

)
ev

=
(
η, (g−1ξ)♭

)
ev
. (3.3.2)

Set ξ := v ∧ v2 ∧ · · · ∧ vk ∈
∧k V . Together with (3.1.11) we obtain(

ξ, (gη)♭
)
ev

(3.1.11)
= (−1)k

(
gη, ξ♭

)
ev

(3.3.2)
= (−1)k

(
η, (g−1ξ)♭

)
ev

(3.1.11)
=

(
g−1ξ, η♭

)
ev
,

which, due to the definition of ξ, is equivalent to (3.3.1). This completes the proof.

We now come to the general proof of Proposition 3.3.1.

Proof of Proposition 3.3.1. Let S ⊆
∧k V be the span of S1 ∪ S2 for the sets

S1 =

{
v ∧ v2 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ v ∈ V and v2, . . . , vk ∈ v⊥

}
and

S2 =

{
ξω ∧ v3 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ v3, . . . , vk ∈ V

}
,

where the 2-form ξω ∈
∧2 V is the preimage of ω under the induced musical isomorphism

♭ :
∧2 V !

∧2 V ∗ (see Example 3.1.9).
We will prove Proposition 3.3.1 in two steps. First we will show that (ξ, η♭)ev = 0

for all ξ ∈ S. Then we will show that the S =
∧k V . Since the evaluation pairing is

non-degenerate, this will imply η♭ = 0, which is equivalent to η = 0.
Step 1 (η♭ vanishes on S): By assumption we have Φv(η) = 0 for all v ∈ V. By

Lemma 3.1.12 this is equivalent to (v ∧ v2 ∧ · · · ∧ vk, η
♭)ev = 0 for all v ∈ V and

v2, . . . , vk ∈ v⊥. Thus, we have

Φv(η) = 0 ∀ v ∈ V ⇐⇒ (ξ, η♭)ev = 0 ∀ ξ ∈ S1. (3.3.3)

Furthermore, η ∈ ker(iω), meaning iω(η) = 0, is equivalent to (iω(η), β)ev = 0 for all
β ∈

∧k−2 V ∗ because the evaluation-pairing is non-degenerate. Moreover, using that iω
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is dual to wedging with ω by (3.1.7), we get η ∈ ker(iω) if and only if (η, ω ∧ β)ev = 0
for all β ∈

∧k−2 V ∗. Let ξ = ξω ∧ v3 ∧ · · · ∧ vk. Then, ξ♭ = ω ∧ v♭3 ∧ · · · ∧ v♭k since ξ♭ω = ω.
Therefore, by (3.1.11), we get

(ξω ∧ v3 ∧ · · · ∧ vk, η♭)ev = (−1)k(η, ω ∧ v♭3 ∧ · · · ∧ v♭k)ev = 0.

So we obtain
η ∈ ker(iω) ⇐⇒ (ξ, η♭)ev = 0 ∀ ξ ∈ S2. (3.3.4)

Since ( · , η♭)ev = 0 is a linear condition, we conclude (ξ, η♭)ev = 0 for all ξ ∈ S by
combining (3.3.3) and (3.3.4).

Step 2 (S =
∧k V ): We choose a symplectic basis e1, e−1, . . . , en, e−n for V . It suffices

to show that each pure wedge ei1 ∧ · · · ∧ eik is in S.
If there exists j ∈ {±1, . . . ,±n} such that j ∈ {i1, . . . , ik} but −j /∈ {i1, . . . , ik}, then

clearly ei1 ∧ · · · ∧ eik ∈ S1 ⊆ S by the definition of S1. In particular, this always holds if
k is odd. So we may from now on assume that k = 2m is even.

It remains to show ej1 ∧ e−j1 ∧ · · · ∧ ejm ∧ e−jm ∈ S for j1, . . . , jm ∈ {1, . . . , n}.
Abbreviate eJ = ej2 ∧e−j2 ∧· · ·∧ejm ∧e−jm . Define R := {1, . . . , n}\{j1, . . . , jm}. Recall
that ξω = e1 ∧ e−1+ · · ·+ en ∧ e−n (see Example 3.1.9). Note that by definition of R and
S2 we have (

ej1 ∧ e−j1 +
∑
r∈R

er ∧ e−r

)
∧ eJ = ξω ∧ eJ ∈ S2. (3.3.5)

Moreover, by definition of R and S1, we also have

(er + ej1) ∧ (e−r − e−j1) ∧ eJ ∈ S1

for all r ∈ R. Expanding this expression we obtain

(er + ej1) ∧ (e−r − e−j1) ∧ eJ = (er ∧ e−r − ej1 ∧ e−j1) ∧ eJ + (terms in S2).

Thus, we conclude that (er ∧ e−r − ej1 ∧ e−j1) ∧ eJ ∈ S for all r ∈ R. Subtracting the
sum

∑
r∈R(er ∧ e−r − ej1 ∧ e−j1) ∧ eJ from (3.3.5) we get

(|R|+ 1)ej1 ∧ e−j1 ∧ · · · ∧ ejm ∧ e−jm ∧ eJ ∈ S.

Since Char(K) = 0, we obtain ej1 ∧ e−j1 ∧ · · · ∧ ejm ∧ e−jm ∈ S. This completes the
proof.

We will also need the following more technical version of Proposition 3.3.1.

Proposition 3.3.2. Let V be a symplectic space of with dimension 2n ≥ 4, L,L′ ⊆ V
Lagrangian subspaces with dim(L ∩ L′) = n − 1, and η ∈

∧k V such that Φv(η) = 0 for
all v ∈ L ∪ L′.

(i) If k ≤ n− 1 and η ∈ ker(iω), then η ∈
∧k(L ∩ L′).

(ii) If k = n+ 1 and iω(η) ∈
∧n−1(L ∩ L′), then η ∈

∧n+1(L+ L′).
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Proof. By Lemma 3.1.8 there exists a symplectic basis e1, e−1, . . . , en, e−n for V such
that

L = ⟨e1, . . . , en⟩ and L′ = ⟨e−1, e2 . . . , en⟩.

We first prove the first statement (i). For this we let S be the span of S1 ∪S2 for the
sets

S1 =

{
v ∧ v2 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ v ∈ L ∪ L′ and v2, . . . , vk ∈ v⊥

}
and

S2 =

{
ξω ∧ v3 ∧ · · · ∧ vk ∈

∧k
V
∣∣∣ vi ∈ V

}
,

where, again, ξω ∈
∧2 V is the preimage of ω under the induced musical isomorphism

♭ :
∧2 V !

∧2 V ∗ (see Example 3.1.9).
If Φv(η) = 0 for every v ∈ L ∪ L′ and η ∈ ker(iω), then exactly as in Step 1 in the

proof of Proposition 3.3.1 we deduce

(ξ, η♭)ev = 0 for all ξ ∈ S. (3.3.6)

Note that e2, . . . , en is a basis for L ∩ L′. So, in terms of the basis eJ (|J | = k) for∧k V , the desired conclusion η ∈
∧k(L ∩ L′) is equivalent to the fact that η is a linear

combination of those eJ with J ⊆ {2, . . . , n}. Due to Example 3.1.9 this holds if and
only if η♭ ∈

∧k V ∗ is a linear combination of those εI with I ⊆ {−2, . . . ,−n}, where
ε1, ε−1, . . . , εn, ε−n ∈ V ∗ is the dual basis. In other words, the desired conclusion holds if
and only if the εI -coefficient of η♭ is zero whenever I is not contained in {−2, . . . ,−n}.
By Example 3.1.2 the εI -coefficient of η♭ is (eI , η

♭)ev. So η ∈
∧k(L∩L′) is equivalent to

(ei1 ∧ · · · ∧ eik , η
♭)ev = 0 (3.3.7)

if at least one of the indices i1, . . . , ik is equal to −1, 1, 2, . . . n. Therefore, combining
Equation (3.3.6) and Equation (3.3.7) it suffices to show that

eI := ei1 ∧ · · · ∧ eik ∈ S if {i1, . . . , ik} ∩ {−1, 1, 2, . . . , n} ≠ ∅.

We will prove this using a case analysis where we distinguish if eI contains only singles,
i.e., if ±i ∈ I, then ∓i /∈ I, or also pairs ej ∧ e−j .

Case 1 (The wedge eI only contains singles): By assumption we know that at least
one of the indices i1, . . . , ik is contained in {−1, 1, 2, . . . , n}. We denote this index by j.
Then, by choosing v = ej , we obtain eI ∈ S by definition of S2. This proves Case 1.

Case 2 (The wedge eI contains at least one pair): We may assume that ei1 ∧ e−i1
is the pair occurring in eI , and write the wedge asei1 ∧ e−i1 ∧ ei3 ∧ · · · ∧ eik and set
eJ := ei3 ∧ · · · ∧ eik . Set

R :=
{
r ∈ {1, . . . , î1, . . . , p}

∣∣∣ r,−r /∈ {i3, . . . , ik}
}
.

By the definition of R and S1 the terms

(er + ei1) ∧ (e−r − e−i1) ∧ eJ (3.3.8)
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are contained in S for all r ∈ R. Expanding the term in 3.3.8 we obtain

(er + ei1) ∧ (e−r − e−i1) ∧ eJ = (er ∧ e−r − ei1 ∧ e−i1) ∧ eJ + (terms in S1),

and hence we conclude that for all r ∈ R

(er ∧ e−r − ei1 ∧ e−i1) ∧ eJ ∈ S. (3.3.9)

Recall ξω = ε1 ∧ ε−1 + · · ·+ εn ∧ ε−n (see Example 3.1.9). Using the definition of R and
S2, we obtain (

ei1 ∧ e−i1 +
∑
r∈R

er ∧ e−r

)
∧ eJ = ξω ∧ eJ ∈ S2. (3.3.10)

Therefore, subtracting
∑

r∈R(er∧e−r−ei1 ∧e−i1)∧eJ from (3.3.10) and keeping in mind
(3.3.9), shows that

(|R|+ 1)ei1 ∧ e−i1 ∧ eJ ∈ S.

Since Char(K) = 0, also ei1 ∧ e−i1 ∧ eJ ∈ S. This proves Case 2.
Next we will prove the second statement (ii). Let S be the span of S1 ∪ S2 for the

sets

S1 =
{
v ∧ v2 ∧ · · · ∧ vn+1 ∈

∧n+1
V
∣∣∣ v ∈ L ∪ L′ and v2, . . . , vn+1 ∈ v⊥

}
and

S2 =
{
ξω ∧ ej3 ∧ · · · ∧ ejn+1 ∈

∧n+1
V
∣∣∣ {j3, . . . , jn+1} ≠ {−2, . . . ,−n}

}
.

Similar to before, it suffices to show that eI = ei1 ∧· · ·∧ein+1 is contained in S whenever
I ̸= {1,−1,−2, . . . ,−n}. Fix such an I. Since |I| = n + 1, there exists i ∈ {1, . . . , n}
such that i,−i ∈ I. So we can write eI = ei ∧ e−i ∧ eJ where J = I \ {i,−i}. Note that
J ̸= {−2, . . . ,−n} since I ̸= {1,−1, . . . ,−n}. Thus, ξω ∧ eJ ∈ S2. Now the arguments
from Case 2 in the proof of (i) apply without any changes.

We choose a symplectic basis e1, e−1, . . . , en, e−n of V and define V ′ as ⟨en, e−n⟩⊥ =
⟨e1, e−1, . . . , en−1, e−(n−1)⟩. Any η ∈

∧k V can uniquely be written as

η = η1 ∧ en ∧ e−n + η2 ∧ en + η3 ∧ e−n + η4, (3.3.11)

where η1 ∈
∧n−2 V ′, η2, η3 ∈

∧n−1 V ′ and η4 ∈
∧n V ′. The next Proposition character-

izes in terms of η1, η2, η3, η4 when η is in the Lagrangian Grassmann cone.

Proposition 3.3.3. Suppose we have written η ∈
∧k V as in (3.3.11), and assume that

η ∈ ĜrL(V ). Then one of the following holds:

(a) It holds

η1 = 0, η2, η3 ∈ ĜrL(V
′) and η4 = 0.

Moreover, η2 and η3 are multiples of each other, that is, either η2 = λη3 or η3 = λη2
for some λ ∈ K.
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(b) The η1, η2, η3, η4 are all nonzero. Moreover, it holds

η1 ∈ Ĝriso(n− 2, V ′), η2, η3 ∈ ĜrL(V
′), η4 ∈ Ĝr(n, V ′),

Lη2 ∩ Lη3 = Lη1 and Lη2 + Lη3 = Lη4 .

Proof. We abbreviate L′ = Lη ∩ V ′. Note that dim(L′) ≥ dim(Lη)− 2 = n− 2 because
V ′ ⊆ V has codimension 2. Moreover, since L′ ⊆ V ′ is isotropic, we also know that

dim(L′) ≤ dim(V ′)
2 = n − 1. Thus, n − 1 ≥ dim(L′) ≥ n − 2. We proceed by considering

cases based on the dimension of L′. More precisely, we will show that the statement in
(a) holds if dim(L′) = n− 1, and the statement in (b) holds if dim(L′) = n− 2.

Case 1 (dim(L′) = n − 1): Then L′ ⊆ V ′ is Lagrangian. Moreover, L′ ⊆ Lη has
codimension one, and so there exists a vector v ∈ Lη such that

Lη = L′ ⊕ ⟨v⟩. (3.3.12)

Below we will show that in fact

the exists a vector w ∈ ⟨en, e−n⟩ such that Lη = L′ ⊕ ⟨w⟩. (3.3.13)

Then, if v1, . . . , vn−1 is a basis for L′, it holds Lη = L′ ⊕ ⟨w⟩ = ⟨v1, . . . , vn−1, w⟩. There-
fore, as w = ae−n + ben for some a, b ∈ K, we can conclude (up to constants)

η = v1 ∧ · · · ∧ vn−1 ∧ w = (av1 ∧ · · · ∧ vn−1) ∧ e−n + (bv1 ∧ vn−1) ∧ en.

Hence η1, η4 = 0, η2 = bv1∧· · ·∧vn−1 and η3 = av1∧· · ·∧vn−1. This proves the statement
in (a) of Proposition 3.3.3.

It remains to prove the claim in (3.3.13). We write v = v′ + w with v′ ∈ V ′ and
w ∈ ⟨e−n, en⟩. It suffices to show v′ ∈ L′, because then

Lη = L′ ⊕ ⟨v⟩ = L′ ⊕ ⟨v′ + w⟩ = L′ ⊕ ⟨w⟩.

Because L′ ⊆ V ′ is Lagrangian, it holds

L′ =
{
u ∈ V ′ ∣∣ ω(u, ℓ) = 0 for all ℓ ∈ L′} = (L′)⊥ ∩ V ′,

where the second equality holds due to the definition of (L′)⊥. Therefore, since v′ ∈ V ′

by definition, it suffices to show v′ ∈ (L′)⊥.
Keeping in mind that Lη is Lagrangian, (3.3.12) shows that v ⊥ L′, i.e., v ∈ (L′)⊥.

Moreover, w ⊥ L′ because w ∈ ⟨en, e−n⟩, L′ ⊆ V ′ and ⟨en, e−n⟩ ⊥ V ′. Since v′ = v − w,
this shows that v′ ∈ (L′)⊥, completing the proof (3.3.13).

Case 2 (dim(L′) = n− 2): In this case we can write Lη = ⟨en + u, e−n + v⟩ ⊕ L′ for
some u, v ∈ V ′. Choose a basis v1, . . . , vn−2 of L′, and set η1 := v1 ∧ · · · ∧ vn−2. Then it
holds (up to scalars)

η = η1 ∧ (en + u) ∧ (e−n + v)

= η1 ∧ en ∧ e−n − (η1 ∧ v) ∧ en + (η1 ∧ u) ∧ e−n + η1 ∧ u ∧ v,

so that η2 = −η1 ∧ v, η3 = η1 ∧ u and η4 = η1 ∧ u ∧ v. Thus, it will suffice to show
that v1, v2, . . . , vn−2, u, v are linearly independent. Indeed, if they are independent, then

78



η1, η2, η3, η4 are all nonzero elements of the Grassmann cone and its easy to see that
the identities Lη2 ∩ Lη3 = Lη1 and Lη2 + Lη3 = Lη4 are true. As we already know that
Lη1 = L′ is isotropic, in order to see that Lη2 and Lη3 are Lagrangian, it suffices to check
u, v ⊥ L′. However, this follows from the fact that for all ℓ ∈ L′ it holds

ω(u, ℓ) = ω(en, ℓ) + ω(u, ℓ) = ω(en + u, ℓ) = 0, (3.3.14)

and similarly for v. Here the first equality holds because L′ ⊆ V ′ ⊥ en and the last one
because ⟨en + u, e−n + v⟩ ⊕ L′ = Lη is Lagrangian by assumption.

Arguing by contradiction we assume that v1, v2, . . . , vn−2, u, v linearly dependent, so
that we can write v = λu+ v′ for some λ ∈ K and ℓ ∈ L′. But then

ω(en + u, e−n + v) =ω(en + u, e−n + λu+ ℓ)

=ω(en, e−n) + ω(en, λu+ ℓ) + ω(u, e−n) + λω(u, u) + ω(u, ℓ)

= 1 + 0 + 0 + 0 + 0 = 1,

contradicting the fact that en+u, e−n+v ∈ Lη and that Lη is Lagrangian. Here we used
that ω(en, λu + ℓ) = 0 = ω(u, e−n) since λu + ℓ, u ∈ V ′ ⊥ en, e−n, ω(u, u) = 0 by the
anti-symmetry of ω, and ω(u, ℓ) = 0 by (3.3.14). This shows that v1, v2, . . . , vn−2, u, v
linearly independent, completing the proof of Case 2.

3.4 Universality Result for the Lagrangian Grassmannian

In this section we prove the first main result of the article, which we state here again for
the convenience of the reader.

Theorem 3.4.1. Let (V, ω) be a symplectic vector space of dimension 2n ≥ 6, and let

η ∈ ker(iω) ⊆
∧n V . If Φv(η) ∈ ĜrL(Vv) for all v ∈ V , then η ∈ ĜrL(V ).

Remark 3.4.2. The Main Theorem 3.4.1 is wrong if dim(V ) = 4. Indeed, if dim(V ) = 4,

then Vv is a two dimensional symplectic space, and thus ĜrL(Vv) =
∧1 Vv = Vv. So

Φv(η) ∈ ĜrL(Vv) for every η ∈ ker(iω). But there clearly exist η ∈ ker(iω) ⊆
∧2 V that

are not in ĜrL(V ).

If V,W are symplectic spaces of respective dimensions 2n and 2m, a Lagrangian
Grassmann cone preserving map (LGCP map) from V to W is a linear map

Φ : ker(iωV ) ⊆
∧n

V ! ker(iωW ) ⊆
∧m

W

such that Φ
(
ĜrL(V )

)
⊆ ĜrL(W ). For example, for any v ∈ V , the maps Φv are an

LGCP map from V to Vv (see Example 1.1.3(2) in Chapter 1).
As an immediate corollary we get that the Lagrangian Grassmann cone can set-

theoretically be defined by pullbacks of the Lagrangian Grassmann cone ĜrL(K4) along
all maps that preserve the Lagrangian Grassmann cone (compare with [KRPS08, The-
orem 3.4]).
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Corollary 3.4.3 (Universality for the Lagrangian Grassmannian). Let (V, ω) be a sym-
plectic space of dimension 2n and η ∈ ker(iω) ⊆

∧n V . Then the following are equivalent.

1. η ∈ ĜrL(V );

2. Φ(η) ∈ ĜrL(K4) for every LGCP map from V to K4.

Throughout this entire section we assume that η ∈ ker(iω) ⊆
∧n V satisfies the

assumption in the Main Theorem 3.4.1. Moreover, we can without loss of generality
assume that η ̸= 0.

We will again write η as in (3.3.11). Namely, we choose a symplectic pair en, e−n ∈ V
and write V ′ = ⟨en, e−n⟩⊥. Then η can uniquely be written as

η = η1 ∧ en ∧ e−n + η2 ∧ en + η3 ∧ e−n + η4, (3.4.1)

where η1 ∈
∧n−2 V ′, η2, η3 ∈

∧n−1 V ′ and η4 ∈
∧n V ′. Note that η then has one of the

following zero patterns, where ”∗” stands for ”nonzero”:

η1 η2 η3 η4 η1 η2 η3 η4
(0) 0 0 0 0 ∗ 0 0 0 (8)
(1) 0 0 0 ∗ ∗ 0 0 ∗ (9)
(2) 0 0 ∗ 0 ∗ 0 ∗ 0 (10)
(3) 0 0 ∗ ∗ ∗ 0 ∗ ∗ (11)
(4) 0 ∗ 0 0 ∗ ∗ 0 0 (12)
(5) 0 ∗ 0 ∗ ∗ ∗ 0 ∗ (13)
(6) 0 ∗ ∗ 0 ∗ ∗ ∗ 0 (14)
(7) 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ (15)

We will split the proof of the Main Theorem 3.4.1 into different lemmas which are based
on these zero patterns.

We will often apply Proposition 3.3.1 and Proposition 3.3.2 to η1, η2, η3 or η4. To
check the assumptions in Proposition 3.3.1 and Proposition 3.3.2 we will make use of
the following lemma.

Lemma 3.4.4. For η ∈
∧n V consider the decomposition in (3.4.1). Then η ∈ ker(iω)

if and only if η1 ∈ ker(iω) ⊆
∧n−2 V ′, η2, η3 ∈ ker(iω) ⊆

∧n−1 V ′ and iω(η4) = −η1.

Proof. Since η1 ∈
∧n−2 V ′ and en, e−n ⊥ V ′, it follows from the formula (3.1.2) for iω

that

iω(η1 ∧ en ∧ e−n) =iω(η1) ∧ en ∧ e−n + (−1)(n−1)+n−1ω(en, e−n)η1

=iω(η1) ∧ en ∧ e−n + η1.

Similarly, one checks iω(η2 ∧ en) = iω(η2) ∧ en and iω(η3 ∧ e−n) = iω(η3) ∧ e−n. Hence

iω(η) = iω(η1) ∧ en ∧ e−n + iω(η2) ∧ en + iω(η3) ∧ e−n + (iω(η4) + η1).

From this the desired equivalence easily follows.

Moreover, we will frequently apply Proposition 3.3.3 to Φv(η). To do so the following
observation will be useful. For its formulation, note that for v ∈ V ′ there is a canonical
isomorphism Vv ∼= (V ′)v ⊕ ⟨en, e−n⟩.
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Observation 3.4.5. Let η be as in (3.4.1) and v ∈ V ′. Then, under the canonical
isomorphism Vv = V ′

v ⊕ ⟨en, e−n⟩, it holds

Φv(η) = Φv(η1) ∧ en ∧ e−n +Φv(η2) ∧ en +Φv(η3) ∧ e−n +Φv(η4). (3.4.2)

After these preliminary observations we can now start with the proof of Theo-
rem 3.4.1. First, we will rule out all the non highlighted zero patterns.

Lemma 3.4.6. η cannot have zero pattern (1), (3), (5), (7), or (8)− (14).

Proof. We will first show that if η1 ̸= 0, then η2, η3 and η4 are also nonzero. So η cannot
have zero patterns (8)− (14).

Let η1 ̸= 0. Since η ∈ ker(iω), by Lemma 3.4.4 also η1 ∈ ker(iω) ⊆
∧n−2 V ′. But

then according to Proposition 3.3.1, there exists v ∈ V ′ such that Φv(η1) ̸= 0. Therefore,
applying Proposition 3.3.3(b) to

Φv(η) = Φv(η1) ∧ en ∧ e−n +Φv(η2) ∧ en +Φv(η3) ∧ e−n +Φv(η4)

we can conclude that Φv(η1),Φv(η2),Φv(η3) and Φv(η4) are nonzero. This then implies
that η2, η3 and η4 are nonzero as well.

We may assume η1 = 0 from now on. We will show that then η4 = 0, that is, η can
not have zero patterns (1), (3), (5) or (7). Arguing by contradiction assume η4 ̸= 0. By
Lemma 3.4.4 iω(η4) = −η1. By assumption η1 = 0 and therefore clearly η4 ∈ ker(iω).
Similar as before, we may invoke Proposition 3.3.1 to find v ∈ V ′ such that Φv(η4) ̸= 0,
and then apply Proposition 3.3.3 to Φv(η) to conclude that Φv(ηi) ̸= 0 for i = 1, 2, 3, 4.
Therefore also ηi ̸= 0 for i = 1, 2, 3, 4. But this contradicts the assumption η1 = 0.

So we have shown that η has one of the highlighted zero patterns. Next, we will prove
the Main Theorem 3.4.1 if η has zero pattern (2) or (4).

Lemma 3.4.7. If η has zero pattern (2) or (4), then η ∈ ĜrL(V ).

Proof. Let η have zero pattern (2). Then, η = η3 ∧ e−n. Choose v = en and note
that then there is a canonical identification Vv = V ′. Using the formula (3.1.15) for

Φv, we obtain Φen(η) = (−1)n−1η3, which by assumption lies in ĜrL(V
′). Therefore,

η = η3 ∧ e−n ∈ ĜrL(V ) since e−n ⊥ V ′. If η has zero pattern (4) we proceed analogously
using v = e−n.

So we are left to show that the Main Theorem 3.4.1 holds if η has zero pattern
(6) or (15). In particular, η2 and η3 are nonzero. We saw in the proof of Lemma 3.4.7

that choosing v = e±n implies that η2, η3 ∈ ĜrL(V
′). So Lη2 , Lη3 ⊆ V ′ are well-defined

Lagrangian subspaces. In order to prove the Main Theorem 3.4.1, we will first show that
n− 2 ≤ dim(Lη2 ∩ Lη3) ≤ n− 1.

Lemma 3.4.8. If η has zero pattern (6) or (15), then dim(Lη2 ∩ Lη3) ≥ n− 2.

Proof. We choose v = en + e−n and consider φv(η1 ∧ en ∧ e−n) where η1 ∈
∧n−2 V ′.

Using the formula (3.1.12) for φv we get

φv(η1 ∧ en ∧ e−n) = (−1)(n−1)−1ω(v, en)η1 ∧ e−n + (−1)n−1ω(v, e−n)η1 ∧ en
= (−1)n−1η1 ∧ (e−n + en),

= (−1)n−1η1 ∧ v
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since the first (n − 2) summands in (3.1.12) are zero because v ⊥ V ′. After projecting
to Vv this will become zero, i.e., we get Φv(η1 ∧ en ∧ e−n) = 0. Similarly, one can
show Φv(η2 ∧ en) = −(−1)n−1η2, Φv(η3 ∧ e−n) = (−1)n−1η3 and Φv(η4) = 0, where we
implicitly use the canonical identification Vv = V ′. So by assumption we get

ĜrL(V
′) ∋ Φv(η) = (−1)nη2 + (−1)n−1η3.

Thus, η2, η3 and η2− η3 are all contained in ĜrL(V
′). But then by Lemma 3.1.4 we have

that
dim(Lη2 ∩ Lη3) ≥ (n− 1)− 1 = n− 2.

This completes the proof.

We can now complete the proof of the Main Theorem 3.4.1.

Lemma 3.4.9. If η has zero pattern (6) or (15), then η ∈ ĜrL(V ).

Proof. Because of Lemma 3.4.8 we know dim(Lη2 ∩Lη3) ∈ {n− 2, n− 1}. We will make
a case distinction. The proof will show that if dim(Lη2 ∩ Lη3) = n − 1, then η has zero
pattern (6), and if dim(Lη2 ∩ Lη3) = n− 2, then η has zero pattern (15).

Case 1 (dim(Lη2 ∩ Lη3) = n − 1): Then η2 and η3 are multiples of each other. Let
v ∈ V ′ be arbitrary. Then, by Observation 3.4.5 we have

Φv(η) = Φv(η1) ∧ en ∧ e−n +Φv(η2) ∧ en +Φv(η3) ∧ e−n +Φv(η4),

which by assumption lies in ĜrL(Vv). Since Φv(η2) and Φv(η3) are multiples of each
other, Proposition 3.3.3 shows that Φv(η1) = 0 and Φv(η4) = 0 for all v ∈ V ′. As
η1 ∈ ker(iω) ⊆

∧n−2 V ′ by Lemma 3.4.4, it follows from Proposition 3.3.1 that η1 = 0.
Consequently, iω(η4) = −η1 = 0 due to Lemma 3.4.4, and thus also η4 = 0 thanks to
Proposition 3.3.1.

Since η2 and η3 are multiples of each other, and because η1 = 0 and η4 = 0, we can
write η = η2∧en+η3∧e−n = η2∧(en+λe−n) for some λ ∈ K. Therefore, as η2 ∈ ĜrL(V

′)

and en + λe−n ⊥ V ′, we conclude η ∈ ĜrL(V ). This completes the proof of Case 1.
Case 2 (dim(Lη2 ∩Lη3) = n− 2): Observe that for every v ∈ Lη2 ∪Lη3 either Φv(η2)

or Φv(η3) is zero. Thus applying Proposition 3.3.3 to

Φv(η) = Φv(η1) ∧ en ∧ e−n +Φv(η2) ∧ en +Φv(η3) ∧ e−n +Φv(η4)

shows that Φv(η1) = 0 and Φv(η4) = 0 for all v ∈ Lη2 ∪ Lη3 . Therefore, and due

to Lemma 3.4.4, we can apply Proposition 3.3.2(i) to η1 ∈
∧(n−1)−1 V ′ to conclude

that η1 ∈
∧(n−1)−1(Lη2 ∩ Lη3). Consequently, iω(η4) = −η1 ∈

∧(n−1)−1(Lη2 ∩ Lη3) by

Lemma 3.4.4. Hence, η4 ∈
∧(n−1)+1(Lη2 + Lη3) follows from Proposition 3.3.2(ii).

By Lemma 3.1.8 there exists a symplectic basis e1, e−1, . . . , en−1, e−(n−1) of V
′ such

that
Lη2 = ⟨e1, e2, . . . , en−1⟩ and Lη3 = ⟨e−1, e2, . . . , en−1⟩.

Set W := ⟨e1, e−1, en, e−n⟩. It follows from the above and the decomposition (3.4.1) that
we can write

η = e2 ∧ · · · ∧ en−1 ∧ ξ
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for some ξ ∈
∧2W . Choosing v = e−(n−1) shows that

ĜrL(Vv) ∋ Φv(η) = e2 ∧ · · · ∧ en−2 ∧ ξ,

where we implicitly use the canonical identification Vv = ⟨{ei, e−i}i ̸=n−1⟩ (this uses the
assumption n ≥ 3 from the Main Theorem 3.4.1). This implies ξ ∈ ĜrL(W ). Therefore,

η ∈ ĜrL(V ) because W ⊥ V ′. This completes the proof of Case 2.

3.5 Topological Noetherianity of the Dual (ker∞)∗

3.5.1 Statement of the Noetherianity Result

Let again K be a field of characteristic zero. For each n ∈ N we denote by Vn the
symplectic vector space with a fixed symplectic basis e1, e−1, . . . , en, e−n. For ease of
notation we will abbreviate the spaces ker(iω) introduced in Section 3.2.2 by

kern := ker(iω) ⊆
∧n

Vn.

Observe that the embedding

men+1 :
∧n

Vn −!
∧n+1

Vn+1, η 7! η ∧ en+1

restricts to an embedding
kern ↪! kern+1 .

Indeed, for all η ∈ kern we have iω(η ∧ en+1) = iω(η) ∧ en+1 = 0 ∧ en+1 = 0, i.e.,
η ∧ en+1 ∈ kern+1, since en+1 is orthogonal to Vn. So we can define the direct limit

ker∞ := lim−!
n

kern

:= lim−!
n

(
ker1

me2−−! ker2
me3−−! ker3

me4−−! · · ·
)
.

Explicitly, this is the set of infinite wedges

ker∞ =
{
ηn ∧ en+1 ∧ en+2 ∧ · · ·

∣∣ ηn ∈ kern and n ∈ N
}
.

Next, we want to define the infinite symplectic group Sp(V∞). The obvious embedding
Vn ↪! Vn+1 induces an inclusion Sp(Vn) ↪! Sp(Vn+1) by sending a matrix A ∈ Sp(Vn) to

A′ =
A

1
1


 ∈ Sp(Vn+1),

where the order of the basis on Vn+1 is e1, e−1, . . . , en+1, e−(n+1). Taking the direct limit
over these inclusions we define

V∞ := lim−!
n

Vn
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and
Sp(V∞) := lim−!

n

Sp(Vn).

The actions of Sp(Vn) on kern introduced in Section 3.2.2 induce an action of Sp(V∞) on
ker∞, and hence also on the dual space (ker∞)∗. Since every kern is Sp(Vn)-irreducible
(Theorem 3.2.3), ker∞ is an irreducible Sp(V∞)-representation.

For Theorem 3.5.1 below, it will be important to consider (ker∞)∗ not just as a vector
space, but as an affine scheme. For this we recall that for any field K (not necessarily
algebraically closed) and any K-vector spaceW (not necessarily finite dimensional) there
are canonical identifications

W ∗ = Spec
(
Sym(W )

)
(K) ⊆

{
closed points in Spec

(
Sym(W )

)}
.

So Spec
(
Sym(W )

)
can be seen as an enrichment of W ∗ to an affine scheme. From now

on we will, for any vector space W , denote by W ∗ the affine scheme Spec(Sym(W )).
We can now finally state our Noetherianity result.

Theorem 3.5.1 (Noetherianity). The dual (ker∞)∗ of the Sp(V∞)-representation ker∞
is topologically Sp(V∞)-Noetherian. That is, every descending chain

(ker∞)∗ ⊇ X1 ⊇ X2 ⊇ X3 ⊇ · · ·

of Sp(V∞)-stable closed subsets stabilizes.

Given that any closed subset X of an affine scheme corresponds uniquely to a reduced
closed subscheme Xred whose underlying topological space is X (see [GW10, Proposition
3.52] ), we could express Theorem 3.5.1 equivalently by stating that any chain of Sp(V∞)-
stable reduced closed subschemes in (ker∞)∗ stabilizes.

3.5.2 Proof Strategy for the Noetherianity Result

In this subsection, we will outline the strategy we will use in order to prove Theorem 3.5.1.
More details will be given in Section 3.8.

Let X ⊆ (ker∞)∗ be a closed subset. We denote by δX ∈ {0, 1, 2, . . . ,∞} the lowest
degree of a nonzero polynomial in the radical ideal IX ⊆ Sym(ker∞) defining X. It will
suffice to show that any X with δX < ∞ is topologically Sp(V∞)-Noetherian. We will
proceed by induction on δX to show that this holds. So we assume 0 < δX < ∞ and
that all Sp(V∞)-stable closed subsets Y with δY < δX are Sp(V∞)-Noetherian.

We choose a polynomial p ∈ IX with deg(p) = δX and assume that a specific variable
(which we will explain in more detail in Section 3.7.4) eI is a variable of p. We then
consider the formal partial derivative

q =
∂p

∂eI

and define
Y := V (Sp(V∞) · q) and Z := X[1/q],

where X[1/q] is the open subset of X where q is nonzero. Since q has degree at most
δX − 1, we have δY < δX and hence the closed Y defined by the orbit Sp(V∞) · q is
Sp(V∞)-Noetherian by the induction hypothesis.
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The main effort to prove Theorem 3.5.1 will be to show that, for some m ∈ N large
enough, Z is topologically SL(E−∞)m-Noetherian, where the precise definition of the
subgroups SL(E−∞)m ⩽ Sp(V∞) will be given in Section 3.7.1.

Proposition 3.5.2. For all large enough m ∈ N the open subset Z := X[1/q] ⊆ X is
SL(E−∞)m-stable and topologically SL(E−∞)m-Noetherian.

To prove that X is topologically Sp(V∞)-Noetherian take a chain

X ⊇ X1 ⊇ X2 ⊇ · · ·

of Sp(V∞)-stable closed subsets in X. It will follow from the definition of Y and Z that

Xi = (Y ∩Xi) ∪ Sp(V∞) · (Z ∩Xi).

Since Y and Z are both topologically Noetherian relative to suitable groups, the chains
(Y ∩Xi)i∈N ⊆ Y and (Z∩Xi)i∈N ⊆ Z will stabilize. Consequently, the chain (Xi)i∈N ⊆ X
stabilizes, showing that X is topologically Sp(V∞)-Noetherian.

3.6 Preliminaries for the Proof of Proposition 3.5.2

In this section we collect some elementary preliminary results that will be needed in the
forthcoming discussion.

3.6.1 An Equivariant Isomorphism

For any vector space W of dimension n the Hodge ∗-isomorphism identifies
∧n−kW

with
∧kW ∗. We can combine this with the musical isomorphism ♭ as follows.

Consider Vn as introduced in Section 3.5, with En and E−n denoting the Lagrangian
subspaces ⟨e1, . . . , en⟩ and ⟨e−1, . . . , e−n⟩ respectively. Note that the musical isomor-
phism ♭ : V ! V ∗ defined in (3.1.9) induces an isomorphism ♭ :

∧k V !
∧k V ∗, which

further restricts to an isomorphism ♭ :
∧k En !

∧k(E−n)
∗ (see Example 3.1.9). That is,

for each ξ ∈
∧k En we have ξ♭ ∈

∧k(E−n)
∗. Note that the pairing∧k

En ×
∧n−k

En
∧−−!
∧n

En ∼= K

and the evaluation pairing (·, ·)ev :
∧k E−n×

∧k(E−n)
∗ −! K are both non-degenerate.

Thus there exists, for each 0 ≤ k ≤ n, an isomorphism

ϕ :
∧n−k

En
∼=−−!
∧k

E−n

that for all η ∈
∧n−k En and ξ ∈

∧k En satisfies

ξ ∧ η = (ϕ(η), ξ♭)ev · e[n], (3.6.1)

where e[n] := e1 ∧ · · · ∧ en ∈
∧nEn is the canonical generator.
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Example 3.6.1. The isomorphism ϕ satisfies

ϕ(ek+1 ∧ · · · ∧ en) = e−1 ∧ · · · ∧ e−k.

More generally, for any I ⊆ {1, . . . , n} with |I| = n − k we have ϕ(eI) = ±e−Ic for an
appropriate sign ±. This can be checked using Example 3.1.2 and Example 3.1.9.

The following twisted equivariance property of ϕ will be central.

Lemma 3.6.2. Let A ∈ Sp(Vn) be such that A(En) ⊆ En and A(E−n) ⊆ E−n. Then for
all η ∈

∧n−k En we have
ϕ(Aη) = det(A|En)Aϕ(η).

Proof. Since the evaluation-paring is non-degenerate, it suffices to show that for every
ξ ∈

∧k En we have
(ϕ(Aη), ξ♭)ev = det(A|En)(Aϕ(η), ξ

♭)ev,

or equivalently,

(ϕ(Aη), ξ♭)ev · e[n] = det(A|En)(Aϕ(η), ξ
♭)ev · e[n], (3.6.2)

where e[n] = e1 ∧ · · · ∧ en. By the defining property (3.6.1) of ϕ we can write the left
hand side of (3.6.2) as

(ϕ(Aη), ξ♭)ev · e[n] = ξ ∧Aη

Recall from (3.3.2) that for all A ∈ Sp(Vn) and η, ξ ∈
∧k V we have

(Aη, ξ♭)ev = (η, (A−1ξ)♭)ev. (3.6.3)

Combining this with (3.6.1) and (3.6.3) we obtain for the right hand side of (3.6.2)

det(A|En)(Aϕ(η), ξ
♭)ev · e[n]

(3.6.3)
= det(A|En)(ϕ(η), (A

−1ξ)♭)ev · e[n]
(3.6.1)
= det(A|En)

(
A−1ξ ∧ η

)
,

By the definition of the determinant, and as A(En) ⊆ En, the action of A on
∧nEn is

just multiplication with det(A|En). Hence

det(A|En)
(
A−1ξ ∧ η

)
= A ·

(
A−1ξ ∧ η

)
= ξ ∧Aη.

Therefore, both sides of (3.6.2) equal ξ ∧Aη. This completes the proof.

3.6.2 The Root System of sp(Vn)

In this subsection we recall some standard facts about the root system of sp(Vn) and
use this as an opportunity to fix notation. We refer the reader to [FH91, Section 16.1]
for more details.

In the following we will write Ek,ℓ for the endomorphism of Vn mapping eℓ to ek and
all other basis vectors to zero. The elements

Hi := Ei,i − E−i,−i (1 ≤ i ≤ n)
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span the Cartan subalgebra hn of sp(Vn). We use the notation L1, . . . , Ln ∈ h∗n for the
dual basis.

The root system of sp(Vn) is then as follows. For 1 ≤ i, j ≤ n

Xi,j = Ei,j − E−j,−i ∈ sp(Vn) (3.6.4)

is a root vector for the root Li − Lj ∈ h∗n. Moreover, for i ̸= j

Yi,j = Ei,−j + Ej,−i and Zi,j = E−i,j + E−j,i

are root vectors for the roots Li + Lj ∈ h∗n and −Li − Lj ∈ h∗n, respectively. Finally,

Ui = Ei,−i and Vi = E−i,i (3.6.5)

are root vectors for the roots 2Li ∈ h∗n and −2Li ∈ h∗n, respectively.
We define a functional ℓ : h∗n ! K by ℓ(

∑n
i=1 aiLi) = c1a1 + · · · + cnan, where

c1 > · · · > cn > 0 is a fixed choice of constants (this is not the same as in [FH91]). Then
the positive roots are

R+ = {Li + Lj}i≥j ∪ {Li − Lj}i>j . (3.6.6)

3.7 Z is Topologically Noetherian

The main goal of this section is to prove Proposition 3.5.2. However, this requires
some preliminary work. The main ingredients for the proof are Proposition 3.7.2 and
Lemma 3.7.5. For the sake of clarity we will split these two results and their proofs into
separate subsections. Before we can come to these proofs, we however first have to make
some definitions.

Throughout this entire section let Vn be as in Section 3.5 and denote by En and E−n
the Lagrangian subspaces ⟨e1, . . . , en⟩ and ⟨e−1, . . . , e−n⟩.

3.7.1 The Groups SL(E−∞)m

In this section we define the subgroups SL(E−∞)m of Sp(V∞) appearing in Proposi-
tion 3.5.2.

Let E−∞ be the direct limit along the canonical inclusions E−n ! E−(n+1), i.e.,
lim−!n

E−n. Analogous to the definition of Sp(V∞) we also define GL(E−∞) as the direct
limit lim−!n

GL(E−n) along the canonical inclusions. For eachm ∈ N we define GL(E−∞)m
to be the image in GL(E−∞) of the shifting by m embedding

GL(E−∞)! GL(E−∞), A 7!

(
1m 0
0 A

)
,

where 1m is the (m×m)-identity matrix, and the 0’s stand for the zero (m×∞)- and
(∞×m)-matrices. The groups SL(E−∞) and SL(E−∞)m are defined analogously.

We are left to explain how we see these groups as subgroups of Sp(V∞). For this fix
n ∈ N. The group GL(E−n) embedds into Sp(Vn) via

g 7−!

(
g−t 0
0 g

)
(3.7.1)
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where the order of the basis of Vn is e1, . . . , en, e−1, . . . , e−n. This induces the embedding
of Lie algebras gl(E−n) ↪! sp(Vn),

L 7−!

(
−Lt 0
0 L

)
.

We will always identify GL(E−n) and gl(E−n) with their images in Sp(Vn) and sp(Vn).
Note that the root vectors Xi,j defined in (3.6.4) span gl(E−n) ⊆ sp(V∞).

We obtain embeddings GL(E−∞) ↪! Sp(V∞) and gl(E−∞) ↪! sp(V∞) by taking
the direct limit over these embeddings. Again, we will always identify GL(E−∞) and
gl(E−∞) with their images under these embeddings. We also use this embedding to see
SL(E−∞)m as subgroups of Sp(V∞).

3.7.2 The Spaces (ker∞)≤k

Fix n ∈ N. Since Vn = En ⊕ E−n we have the decomposition

∧n
Vn =

n⊕
k=0

(∧k
E−n ⊗

∧n−k
En

)
,

where
∧k E−n⊗

∧n−k En is the span of all wedges ei1∧· · ·∧ein with exactly k of the indices
i1, . . . , in being negative. For each 0 ≤ k ≤ n we define the subspace (kern)k ⊆ kern as
the space of all η ∈ kern that can be written as a sum of wedges with k negative indexed
vectors, i.e.,

(kern)k := (kern) ∩
(∧k

E−n ⊗
∧n−k

En

)
.

Similarly, we define

(kern)≤k :=
k⊕
i=0

(kern)i.

Due to the definition (3.7.1) of the embedding GL(E−n) ⊆ Sp(Vn) all the spaces (kern)k
are GL(E−n)-stable. In fact, we have the following, explaining the representation theo-
retic significance of these spaces.

Lemma 3.7.1. The space kern decomposes as

kern =
n⊕
k=0

(kern)k,

and for all 0 ≤ k ≤ n the space (kern)k is an irreducible sl(E−n)-representation with
highest weight vector e−1 ∧ · · · ∧ e−k ∧ ek+1 ∧ · · · ∧ en.

Proof. According to [FH91, p. 261], the decomposition of kern ⊆
∧n Vn into irreducible

representations of sln is given by kern =
⊕n

b=0W
(n−b,b), whereW (n−b,b) is the irreducible

sln-representation with highest weight vector (in the convention of [FH91], which is
opposite to ours)

w(n−b,b) := e1 ∧ · · · ∧ en−b ∧ e−(n−b+1) ∧ · · · ∧ e−n.
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Clearly, w(n−b,b) ∈ (kern)b, and henceW (n−b,b) ⊆ (kern)b since (kern)b is sln-stable. Since
the subspaces (kern)b are pairwise disjoint, this implies W (n−b,b) = (kern)b. Therefore,
(kern)b is sl(E−n)-irreducible and kern =

⊕n
b=0(kern)b.

It remains to check that e−1 ∧ · · · ∧ e−k ∧ ek+1 ∧ · · · ∧ en is the highest weight vector
of (kern)k. By (3.6.6) the positive root vectors of gl(E−n) ⊆ sp(Vn) are the Xi,j defined
in (3.6.4) with i > j. But one can easily check that, for all 1 ≤ j < i ≤ n, the action of
Xi,j sends e−1 ∧ · · · ∧ e−k ∧ ek+1 ∧ · · · ∧ en to zero. This implies the desired result.

The structure maps men+1 : kern ! kern+1 map (kern)k into (kern+1)k. Thus we can
take the direct limit and define

(ker∞)k := lim−!
n

(kern)k.

Then every subspace (ker∞)k is GL(E−∞)-stable and sl(E−∞)-irreducible with highest
weight vector e−1 ∧ · · · ∧ e−k ∧ ek+1 ∧ ek+2 ∧ · · · . Moreover,

ker∞ =

∞⊕
k=0

(ker∞)k.

Finally, we define

(ker∞)≤k =
k⊕
i=0

(ker∞)i.

3.7.3 First Key Ingredient

The goal of this subsection is to prove the following proposition, which is the first key
result towards the proof of Proposition 3.5.2.

Proposition 3.7.2. The dual (ker∞)∗≤k is topologically SL(E−∞)m-Noetherian for all
k,m ∈ N.

The main technical ingredient of the proof will be Draisma’s main result in [Dra19]
about the topological Noetherianity of finite degree polynomial functors. But we have
to do some preliminary work before we can apply it.

For each n ∈ N and 0 ≤ k ≤ n the spaces (kern)k are by definition subspaces of∧k E−n ⊗
∧n−k En. Recall from Section 3.6.1 that we have, for every 0 ≤ k ≤ n, an

isomorphism ∧n−k
En

∼=−−!
∧k

E−n.

From Lemma 3.6.2 and the definition (3.7.1) of the embedding SL(E−n) ⊆ GL(E−n)
it follows that this isomorphism is SL(E−n)-equivariant. Moreover, this isomorphism is
compatible with the structure maps, i.e., the diagram

∧n−k En
∧k E−n

∧n+1−k En+1
∧k E−(n+1)

men+1

∼=

∼=
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commutes, where the horizontal map on the right is induced by the obvious inclusion
E−n ⊆ E−(n+1) (see Example 3.6.1). Therefore, we obtain SL(E−n)-equivariant embed-
dings

(kern)k ↪−!
∧k

E−n ⊗
∧k

E−n

that are compatible with the structure maps. Taking the direct limit we obtain an
SL(E−∞)-equivariant embedding

(ker∞)k ↪−!
∧k

E−∞ ⊗
∧k

E−∞.

By taking the direct sum we also obtain an SL(E−∞)-equivariant embedding

φ : (ker∞)≤k ↪−!
k⊕
i=0

∧i
E−∞ ⊗

∧i
E−∞ =:W≤k

−∞. (3.7.2)

It follows from Lemma 3.7.3(1) and Lemma 3.7.4 below that the dual U∗ of the image
U := Im(φ) ⊆W≤k

−∞ is topologically Noetherian.

Lemma 3.7.3. The following statements hold:

1. A subspace U ⊆W≤k
−∞ is SL(E−∞)-stable if and only if it is GL(E−∞)-stable.

2. An ideal I ⊆ Sym(W≤k
−∞)m is SL(E−∞)-stable if and only if it is GL(E−∞)-stable.

The analogous statements with SL(E−∞)m and GL(E−∞)m hold as well.

Proof. Since the proof of both statements are similar, we only prove the second state-
ment. Assume that I ⊆ Sym(W≤k

−∞) is SL(E−∞)-stable. Let f ∈ I and A ∈ GL(E−∞) be

arbitrary. Choose n = n(f,A) ∈ N large enough so that f ∈ Sym(
⊕k

i=0

∧iE−n⊗
∧iE−n)

and A is the image of some A−n ∈ GL(E−n). Define A−(n+1) ∈ SL(E−(n+1)) as the
map given by A−(n+1)(ei) = A−n(ei) for −n ≤ i ≤ −1 and A−(n+1)(e−(n+1)) =
(det(A−n))

−1(e−(n+1)), and let A′ be the image of A−(n+1) in SL(E−∞). Then the action

of A−n and A−(n+1) agree on E−n. Hence they also agree on Sym(
⊕k

i=0

∧iE−n⊗
∧iE−n).

Therefore, A · f = A′ · f ∈ I because I was assumed to be SL(E−∞)-stable and
A′ ∈ SL(E−∞). As f ∈ I and A ∈ GL(E−∞) were arbitrary, this shows that I is
GL(E−∞)-stable.

Lemma 3.7.4. If U ⊆ W≤k
−∞ is GL(E−∞)m–stable then its dual U∗ is topologically

GL(E−∞)m–Noetherian.

Proof. We start by showing that (W≤k
−∞)∗ is topologically GL(E−∞)m–Noetherian. For

every k,m ∈ N consider the functor Fk,m : VecK ! VecK defined by

Fk,m(V ) =

k⊕
i=0

(∧k
(Km ⊕ V )⊗

∧k
(Km ⊕ V )

)
.

This is a polynomial functor of finite degree. So by applying Draisma’s Noetherianity
result in [Dra19] we deduce that the dual of the direct limit lim−!n

Fk,m(Kn) is topologically
GL∞-Noetherian, where GL∞ := lim−!n

GL(Kn). But, up to the canonical isomorphism
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GL(E−∞)m ∼= GL(E−∞), the action of GL(E−∞)m on W≤k
−∞ is the same as the action

of GL∞ on lim−!n
Fk,m(Kn). Therefore, (W≤k

−∞)∗ is topologically GL(E−∞)m-Noetherian.
The rest follows from the following general claim. Let G be a group andW a G-vector

space such that W ∗ is topologically G-Noetherian. Then, for any G-stable subspace
U ⊆W , the dual U∗ is also topologically G-Noetherian.

To prove this claim we first observe that the map i∗U : W ∗ ! U∗ induced by the
inclusion iU : U ↪! W is G-equivariant and surjective. Indeed, as U is a G-stable
subspace, the inclusion iU is clearly G-equivariant, and thus the induced map i∗U is also
G-equivariant. To prove surjectivity choose a projection π :W ! U such that π|U = idU ,
or equivalently, so that the diagram

U W U
iU

idU

π

commutes (π does not need to be G-equivariant). Applying the contravariant functor
Spec(Sym(·)) we get the commutative diagram

U∗ W ∗ U∗i∗U π∗

idU∗

,

which implies that i∗U is surjective.
Now take a chain (Xi)i∈N ⊆ U∗ of G-stable closed subsets. For all i ∈ N we set

X̃i := (i∗U )
−1(Xi) ⊆ W ∗. Then (X̃i)i∈N ⊆ W ∗ is a chain of G-stable closed subsets

because i∗U is G-equivariant and continuous. As W ∗ is topologically G-Noetherian, we
deduce that the chain (X̃i)i∈N stabilizes. But, due to the surjectivity of i∗U , we have
Xi = i∗U (X̃i) for all i ∈ N, and hence the chain (Xi)i∈N also stabilizes. This proves that
U∗ is topologically G-Noetherian.

We can now prove Proposition 3.7.2

Proof of Proposition 3.7.2. We define U := φ((ker∞)≤k) where φ is the embedding men-
tioned in (3.7.2). Then, because φ is an SL(E−∞)-equivariant embedding, we have
a SL(E−∞)-equivariant isomorphism (ker∞)≤k ∼= U and hence also ((ker∞)≤k)

∗ ∼=
U∗. In particular, U ⊆ W≤k

−∞ is SL(E−∞)-stable, and therefore, by Lemma 3.7.3, it
is also GL(E−∞)-stable. Lemma 3.7.4 then implies that the dual U∗ is topologically
GL(E−∞)m-Noetherian for every m ∈ N.

Now take a chain (Xi)i∈N ⊆ ((ker∞)≤k)
∗ of SL(E−∞)m-stable closed subsets. Since

there is an SL(E−∞)-equivariant isomorphism ((ker∞)≤k)
∗ ∼= U∗, this corresponds to a

chain (X̃i)i∈N ⊆ U∗ of SL(E−∞)m-stable closed subsets. Note that by the second part of
Lemma 3.7.3 every element of the chain is in fact GL(E−∞)m-stable. Using that, by the
above paragraph, U∗ is topologically GL(E−∞)m-Noetherian, we deduce that the chain
(X̃i)i∈N stabilizes. Consequently, the chain (Xi)i∈N stabilizes. As the chain (Xi)i∈N was
arbitrary, this proves that ((ker∞)≤k)

∗ is SL(E−∞)m-Noetherian.
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3.7.4 Second Key Ingredient

In this subsection we prove the second key ingredient for the proof of Proposition 3.5.2.
Before we can formulate it, we need to fix some notation.

For a Sp(V∞)-stable closed subset X ⊆ (ker∞)∗ let δX ∈ {0, 1, 2, . . . ,∞} be the
lowest degree of a nonzero polynomial in the radical ideal IX ⊆ Sym(ker∞).

Assume that X is such that δX < ∞. Choose a (nonzero) polynomial p ∈ IX of
minimal degree δX . Consider the smallest integer k such that p ∈ Sym((ker∞)≤k), and
fix n > k such that p ∈ Sym((kern)≤k). In words this means that the variables of the
polynomial p have at most k negative-indexed vectors and every variable in p is of the
form ηn∧en+1∧en+2∧· · · for some ηn ∈ kern. Because (ker∞)k is an irreducible sl(E−∞)-
representation with highest weight vector eIk := e−1 ∧ · · · ∧ e−k ∧ ek+1 ∧ ek+2 ∧ · · · , and
since IX is sp(V∞)-stable, we may without loss of generality assume that p contains the
variable eIk . Set pk := p. We define q ∈ Sym(ker∞) as the formal partial derivative

q =
∂pk
∂eIk

.

Observe that for m > n the action of SL(E−∞)m fixes q. Indeed, this follows from the
fact that for m > n the groups SL(E−∞)m act trivially on Vn and the fact that the
action of g ∈ SL(E−∞)m on en+1 ∧ en+2 ∧ · · · is just multiplication with det(g−1) = 1.

Recall that (ker∞)≤k is GL(E−∞)-stable subspace of ker∞. So, Sym((ker∞)≤k)[1/q]
is an SL(E−∞)m-stable subring of the localization ring Sym(ker∞)[1/q]. In particular,
the map

i∗ : (ker∞)∗[1/q] −! (ker∞)∗≤k[1/q]

induced by the inclusion is SL(E−∞)m-equivariant. Also, if we define Z ⊆ (ker∞)∗[1/q]
as the open subset of X where q does not vanish, i.e.,

Z := X[1/q],

then Z is SL(E−∞)m-stable.
We can now formulate the second key ingredient for the proof of Proposition 3.5.2.

The first part just summarizes the above discussion. The key part is the second state-
ment.

Lemma 3.7.5. For every m > n the map

i∗ : (ker∞)∗[1/q] −! (ker∞)∗≤k[1/q]

induced by the inclusion is SL(E−∞)m-equivariant. Moreover, the restriction of i∗ to Z
is a closed embedding.

Lemma 3.7.6. There exists pn ∈ IX of the form

pn = eInq + rn,

where eIn = e−1 ∧ · · · ∧ e−n ∧ en+1 ∧ · · · , q = ∂pk
∂eIk

and rn ∈ Sym ((ker∞)≤n−1).
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Proof. During the proof we will abbreviate eIℓ := e−1 ∧ · · · ∧ e−ℓ ∧ eℓ+1 ∧ eℓ+2 ∧ · · · . By
(3.6.5) the maps Vi sending ei to e−i (and all other basis vectors to zero) are contained
in sp(Vn). Note that

(Vn ◦ · · · ◦ Vk+1)(eIk) = eIn ,

where by abuse of notation we write (Vn ◦ · · · ◦ Vk+1)(eIk) for the successive action
Vn(Vn−1(· · · (Vk+1(eIk)) · · · ) of sp(Vn) on eIk .

First, we act with Vk+1 on pk. Since X is assumed to be Sp(V∞)-stable, the resulting
polynomial pk+1 is again in the ideal IX . Moreover, pk+1 has the form

pk+1 := Vk+1(pk) = eIk+1
q + rk+1,

where q = ∂pk
∂eIk

and rk+1 ∈ Sym((ker∞)≤k+1). To illustrate why pk+1 is of this form, we

consider the following example.

Example 3.7.7. Let eJ ∈ (ker∞)≤k be a variable different from eIk , e.g.,

eJ = e−1 ∧ e−2 ∧ e3 ∧ e−4 ∧ · · · ∧ e−k ∧ ek+1 ∧ ek+2 ∧ e−(k+3) ∧ ek+4 ∧ · · · .

Let pk be the polynomial pk = (eIk)
2eJ . Then, by the Leibniz-Rule, we get for any

L ∈ sp(Vn)

L(pk) = L((eIk)
2eJ)

= L(eIk)eIkeJ + eIkL(eIk)eJ + eIkeIkL(eJ)

= L((eIk)
(
2eIkeJ

)
+ (eIk)

2L(eJ)

= L(eIk)
∂pk
∂eIk

+ (eIk)
2L(eJ)

=: L(eIk)q + rk+1.

Note that for L = Vk+1 we have L(eIk) = eIk+1
and

L(eJ) = e−1 ∧ e−2 ∧ e3 ∧ e−4 ∧ · · · ∧ e−(k+1) ∧ ek+2 ∧ e−(k+3) ∧ ek+4 ∧ · · ·

Therefore, the remainder rk+1 can indeed still contain variables in (ker∞)k+1, i.e., vari-
ables that have exactly k + 1 negative indexed vectors.

From this example we can also see that the only variables in rk+1 that are in
(ker∞)k+1 are those of the form Vk+1(η) for a variable η ∈ (ker∞)k in pk different
from eIk .

Next, we act with Vk+2 on pk+1. The resulting polynomial pk+2 will again be in IX
since IX is sp(Vn)-stable. We compute

pk+2 := Vk+2(pk+1)

= Vk+2

(
eIk+1

q + rk+1

)
= Vk+2(eIk+1

)q +
(
eIk+1

Vk+2(q) + Vk+2(rk+1)
)

=: eIk+2
q + rk+2.

Observe that the remainder rk+2 is contained in Sym((ker∞)≤k+2). Indeed, we clearly

have eIk+1
∈ (ker∞)k+1. Also Vk+2(q) ∈ Sym((ker∞)≤k+1) since q =

∂pk
∂eIk

∈ Sym((ker∞)k)

by construction. Finally, rk+1 ∈ (ker∞)≤k+1 implies Vk+2(r1) ∈ (ker∞)≤k+2.

93



Similarly as for rk+1, the only variables of rk+2 that are in (ker∞)k+2 are those of
the form Vk+2(Vk+1(η)), where η is a variable of pk in (ker∞)k different form eIk .

Iterating this construction we find a polynomial

pn = eInq + rn ∈ IX

where now rn is not just in Sym((ker∞)≤n), but in fact rn is in Sym((ker∞)≤n−1).
Indeed, if rn had a variable in (ker∞)n, then this variable would have to be of the form
(Vn ◦ · · · ◦ Vk+1)(η), where η is a variable of pk ∈ (ker∞)k different form eIk . Recall

that by construction every variable in pk is in (kern)k ⊆
∧k E−n ⊗

∧n−k En. But the
composition

Vn ◦ · · · ◦ Vk+1 :
∧k

E−n ⊗
∧n−k

En −!
∧n

E−n ⊗
∧0

En

maps any variable eJ different from eIk to zero. In particular, any variable η in (kern)k
different from eIk gets mapped to zero. Therefore, rn does not contain any variables
in (ker∞)n, so that rn ∈ Sym((ker∞)≤n−1). We again illustrate this by continuing the
example from before.

Example 3.7.8. In the example above, the only variable of rk+1 that is in (ker∞)k+1 is

Vk+1(eJ) = e−1 ∧ e−2 ∧ e3 ∧ e−4 ∧ · · · ∧ e−(k+1) ∧ ek+2 ∧ e−(k+3) ∧ ek+4 ∧ · · · .

Hence, after applying Vk+2 the only variable of rk+2 in (ker∞)k+2 is

Vk+2(Vk+1(eJ)) = e−1 ∧ e−2 ∧ e3 ∧ e−4 ∧ · · · ∧ e−(k+1) ∧ e−(k+2) ∧ e−(k+3) ∧ ek+4 ∧ · · · .

So rk+2 ∈ Sym((ker∞)≤k+2). However, in the next step, when applying Vk+3 the remain-
der rk+3 will be in Sym((ker∞)≤k+2) because the above variable gets send to zero by
Vk+3 as it does not contain ek+3.

This completes the proof of Lemma 3.7.6.

We will from now on abbreviate R = Sym(ker∞) and R≤n := Sym((ker∞)≤n). Recall
that Z := X[1/q] ⊆ (ker∞)∗[1/q]. We denote by IZ ⊆ R[1/q] the radical ideal of Z.

Lemma 3.7.9. The composition

R≤n[1/q]
i
−! R[1/q]

πIZ−−! R[1/q]/IZ

of the canonical inclusion i and the canonical projection πIZ is surjective, i.e., for all
a ∈ R[1/q] there exists b ∈ R≤n[1/q] such that a ≡ b (mod IZ).

Proof. Note R =
⋃
m∈NR≤m. Therefore it suffices to prove that for all m ≥ n and all

a ∈ R≤m there exists b ∈ R≤n and k ∈ N such that

a ≡ b

qk
(mod IZ).

We will prove this by induction on m. So fix m > n and assume the statement holds
for m − 1. Since (ker∞)m is an sl(E−∞)-irreducible representation with highest weight

94



vector eIm := e−1∧ · · ·∧ e−m∧ em+1∧ em+2∧ · · · (see Lemma 3.7.1), we get from [FH91,
Observation 14.16] that there exists a basis {wα}α∈Am of (ker∞)m such that for any
basis element wα there exist L1, . . . , LN ∈ sl(E−∞) such that successively acting on eIm
by L1, . . . , LN yields wα, i.e.,

LN (LN−1(· · · (L1(eIm)) · · · ) = wα.

Since {wα}α∈Am is a basis for (ker∞)m, it suffices to prove the above claim for a = wα.
From Lemma 3.7.6 we know that there exists rn ∈ R≤n−1 such that

pn = eInq + rn ∈ IX .

Proceeding as in the proof of Lemma 3.7.6, by successively applying the root vectors
Vn+1, . . . , Vm ∈ sp(Vn) defined in (3.6.5) we see that

pm = eImq + rm ∈ IX

for some rm ∈ R≤m−1. Choose L1, . . . , LN ∈ sl(E−∞) such that successively acting on
eIm by L1, . . . , LN yields wα. Recall that the rings R≤m−1 are gl(E−∞)-stable. Thus, by
successively applying L1, . . . , LN to pm we get that

wαq + r′m ∈ IX

for some r′m ∈ R≤m−1. Dividing by q in R[1/q] yields

wα +
r′m
q

∈ 1

q
IX ⊆ IX [1/q] = IZ ,

i.e., wα ≡ − r′m
q (mod IZ). Since r

′
m ∈ R≤m−1, by the induction hypothesis there exists

b ∈ R≤n and k ∈ N such that

r′m ≡ b

qk
(mod IZ).

Hence wα ≡ −b
qk+1 (mod IZ) with −b ∈ R≤n, completing the proof.

We now use this to show that the induced map i∗ when restricted to Z is a closed
embedding.

Proof of Lemma 3.7.5. By Lemma 3.7.9 the composition πIZ ◦ i is surjective. Now set
J := ker(πIZ ◦ i). Then, by the first isomorphism theorem, there is an induced isomor-
phism R≤n[1/q]/J ∼= R[1/q]/IZ . Applying the contravariant functor Spec(·) to

R≤n[1/q] R[1/q]

R≤n[1/q]/J R[1/q]/IZ

πJ

i

πIZ

∼=

yields the commutative diagram

(ker∞)∗≤n[1/q] (ker∞)∗[1/q]

Spec(R≤n[1/q]/J) Spec(R[1/q]/IZ)

i∗

∼=

.
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Recall that for any ring A and any ideal a ⊆ A the map Spec(A/a)! Spec(A) induced
by the projection A! A/a is a closed embedding with image V (a). Since V (IZ) = Z by
definition of IZ , this implies that the restriction of i∗ to Z is a closed embedding.

3.7.5 Poof of Proposition 3.5.2

We have established all necessary preliminary results for the proof of Proposition 3.5.2.

Proof of Proposition 3.5.2. With the same notation as in Section 3.7.4 fix some m > n.
Let (Zi)i∈N ⊆ Z be a chain of SL(E−∞)m-stable closed subsets. By Lemma 3.7.5 the
restriction

i∗|Z : Z ↪−! (ker∞)∗≤n[1/q]

is an SL(E−∞)m-equivariant closed embedding. Thus (Z ′
i)i∈N :=

(
(i∗|Z)(Zi)

)
i∈N is a

chain of SL(E−∞)m-stable closed subsets in (ker∞)∗≤n[1/q]. By Proposition 3.7.2 the
dual (ker∞)∗≤n is topologically SL(E−∞)m-Noetherian. But then (ker∞)∗≤n[1/q] is also
topologically SL(E−∞)m-Noetherian. So we can conclude that the chain (Z ′

i)i∈N stabi-
lizes. But as i∗|Z is an embedding, this implies that the chain (Zi)i∈N itself stabilizes.
This proves that Z is topologically SL(E−∞)m-Noetherian.

3.8 Proof of Theorem 3.5.1

After having established Proposition 3.5.2 we can now give the detailed proof of our
Noetherianity result.

Proof of Theorem 3.5.1. As before, for any closed subset X ⊆ (ker∞)∗ we denote by
δX ∈ {0, 1, 2, . . . ,∞} the lowest degree of a nonzero polynomial in the radical ideal
IX ⊆ Sym(ker∞) of X.

Observe that δX = ∞ if and only if X = (ker∞)∗. So a chain

(ker∞)∗ ⊇ X1 ⊇ X2 ⊇ · · ·

of Sp(V∞)-stable closed subsets is either constant or else there exists an i ∈ N with
δXi <∞. Therefore, it suffices to show that any Sp(V∞) closed subset X ⊆ (ker∞)∗ with
δX <∞ is topologically Sp(V∞)-Noetherian. We will prove this by induction on δX .

For the base case δX = 0, note that δX = 0 if and only if X = ∅. So the base case
trivially holds.

Now fix a Sp(V∞) closed subset X ⊆ (ker∞)∗ with 0 < δX <∞, and assume that all
Sp(V∞) closed subset Y ⊆ (ker∞)∗ with δY < δX are Sp(V∞)-Noetherian.

Choose a nonzero polynomial p ∈ IX with deg(p) = δX and define q := ∂p
∂eI

as at the
beginning of Section 3.7.4. Set

Y := V (Sp(V∞) · q) and Z := X[1/q].

Then Y is a Sp(V∞)-stable closed subset with δY ≤ deg(q) ≤ deg(p) − 1 < δX , and so
Y is topologically Sp(V∞)-Noetherian by the induction hypothesis. By Proposition 3.5.2
there exists m ∈ N large enough such that Z is SL(E−∞)m-stable and topologically
SL(E−∞)m-Noetherian.
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Take a chain (Xi)i∈N ⊆ X of Sp(V∞)-stable closed subsets. Observe that for all i ∈ N
we have

Xi = (Y ∩Xi) ∪ Sp(V∞) · (Z ∩Xi). (3.8.1)

Indeed, fix a point p ∈ Xi (not necessarily closed). If p /∈ Y , then, by the definition of Y
and Z, there exists g ∈ Sp(V∞) such that g · p ∈ Z, and hence g · p ∈ Z ∩Xi since Xi is
Sp(V∞)-stable.

Since Y and Xi are Sp(V∞)-stable closed subsets, their intersections (Y ∩Xi)i∈N are
a chain of Sp(V∞)-stable closed subsets in Y . As Y is topologically Sp(V∞)-Noetherian,
the chain (Y ∩Xi)i∈N stabilizes.

Similarly, every Z∩Xi is SL(E−∞)m-stable and a closed subset of Z (by the definition
of the subspace topology), and so the chain (Z ∩Xi)i∈N also stabilizes.

Because the chains (Y ∩Xi)i∈N and (Z ∩Xi)i∈N both stabilize, it follows from (3.8.1)
that the chain (Xi)i∈N itself stabilizes. As the chain (Xi)i∈N was arbitrary, this proves
that X is topologically Sp(V∞)-Noetherian.

3.9 Lagrangian Plücker Varieties and Applications

3.9.1 The Dual (ker∞)∗ as a Projective Limit

Before we can come to the applications of our Noetherianity result (Theorem 3.5.1), we
first have to find an alternative description of (ker∞)∗ as a projective limit.

Recall that ker∞ was defined as the direct limit ker∞ := lim−!n
kern along the multi-

plication maps

men : kern−1 ⊆
∧n−1

Vn−1 ! kern ⊆
∧n

Vn, η 7! η ∧ en.

Thus, as taking the dual turns direct limits into projective limits, we have

(ker∞)∗ ∼= lim −

(
· · ·

m∗
e4−−! (ker3)

∗ m∗
e3−−! (ker2)

∗ m∗
e2−−! (ker1)

∗
)
.

By Lemma 3.9.1 below, under the musical isomorphism, the duals m∗
ei of the multipli-

cation maps correspond to the maps Φei defined in Definition 3.1.10. Therefore,

(ker∞)∗ ∼= lim −

(
· · ·

Φe4−−! ker3
Φe3−−! ker2

Φe2−−! ker1

)
,

i.e., the dual (ker∞)∗ can be identified with the projective limit lim −n kern along the maps
Φen : kern ! kern−1. We will use this interpretation of (ker∞)∗ in Section 3.9.2 below.

It remains to show that contraction maps are dual to multiplication maps, which is
contained in the next lemma. In its formulation, for a symplectic vector space V and a
nonzero v ∈ V , we choose a section sv : Vv ! v⊥ of the projection πv : v⊥ ! v⊥/⟨v⟩ =
Vv, and define the multiplication mv as v ∧

∧n−1 sv, i.e.,

mv :
∧n−1

Vv !
∧n

V, v̄1 ∧ · · · ∧ v̄n−1 7! v ∧ sv(v̄1) ∧ · · · ∧ sv(v̄n−1).

Using that sv is an isometric embedding, one can easily check that mv restricts to a map
mv : ker(iωv)! ker(iω). Moreover, mv is independent of the choice of section sv.
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Notice that, up to this point, multiplication has always been defined by wedging
with a vector from the right. Moving forward, it will be more convenient to consider
multiplication maps as wedging with a vector from the left. However, aside from a sign
change, these operations are the same.

Lemma 3.9.1. The restriction of the musical ismorphism

ker(iω) ⊆
∧n

V
♭
−!
∧n

(V ∗) ∼=
(∧n

V
)∗ restriction
−−−−−−!

(
ker(iω)

)∗
is again an isomorphism, and the diagram

ker(iω) ker(iωv)

(
ker(iω)

)∗ (
ker(iωv)

)∗♭V ∼=

Φv

♭Vv∼=

m∗
v

commutes (up to the sign −1), where Φv is the map defined in Definition 3.1.10.

Proof. Recall from (3.1.6) that v∧• is dual to iv. Hence the dual m
∗
v of mv = v∧

∧n−1 sv
is the composition ∧n

V ∗ iv−!
∧n−1

V ∗
∧n−1 s∗v−−−−−!

∧n−1
V ∗
v .

But by (3.1.16) the diagram

∧n V
∧n−1 v⊥

∧n−1 Vv

∧n V ∗ ∧n−1 ker(v)
∧k−1 V ∗

v

∼=♭V

φv

Φv

∼= ♭V

∧n−1 πv

∼= ♭Vv

iv
∧n−1 s∗v

commutes (up to the sign −1). If we restrict to ker(iω) we see that the diagram in
Lemma 3.9.1 commutes (up to the sign −1).

It remains to show for each symplectic vector space V that the composition

ker(iω) ⊆
∧n

V
♭
−!
∧n

(V ∗) ∼=
(∧n

V
)∗ restriction
−−−−−−!

(
ker(iω)

)∗
is an isomorphism for n = 1

2 dim(V ). By reasons of dimension, it suffices to show that
this map is injective. This translates into showing that for all η ∈ ker(iω) nonzero there
exists ξ ∈ ker(iω) such that (ξ, η♭)ev ̸= 0. Since (ξ, η♭)ev = (−1)n(η, ξ♭)ev by (3.1.11), this
is equivalent to showing that for all nonzero η ∈ ker(iω) there exists ξ ∈ ker(iω) such
that (η, ξ♭)ev ̸= 0, i.e., we have to show that

W :=
{
η ∈ ker(iω)

∣∣ (η, ξ♭)ev = 0 for all ξ ∈ ker(iω)
}

satisfies W = 0. Observe that W is Sp(V )-stable. Indeed, by (3.3.2) we have for all
A ∈ Sp(V ), η ∈W and ξ ∈ ker(iω)(

Aη, ξ♭
)
ev

(3.3.2)
=

(
η, (A−1ξ)♭

)
ev

= 0,
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showing that Aη ∈ W . Since ker(iω) is Sp(V )-irreducible by Theorem 3.2.3, it follows
that either W = 0 or W = ker(iω). But (e−1 ∧ · · · ∧ e−n, (e1 ∧ · · · ∧ en)♭)ev = 1 due to
Example 3.1.9 and Example 3.1.2, and hence e−1 ∧ · · · ∧ e−n /∈W . So W ̸= ker(iω), and
therefore W = 0. This completes the proof.

In accordance with Lemma 3.9.1 we will also write kern for the affine scheme (kern)
∗ =

Spec(Sym(kern)), so that (ker∞)∗ is not just the projective limit lim −n kern when seen as
a vector space, but also when we think of it as an affine scheme (as in Theorem 3.5.1).

3.9.2 Lagrangian Plücker Varieties

Our goal in this section is to introduce Lagrangian Plücker varieties and explain how
Theorem 3.5.1 can be used to prove some important properties they have as we will see
in Theorem 3.9.8 and Corollary 3.9.11.

We want to introduce the definition of Lagrangian Plücker Variety, which takes inspi-
ration from the notion of Plücker variety in [DE18] or more specifically from the notion
of a half-spin variety in Chapter 2. Similar to half-spin varieties we will consider linear
maps ker(iω) ⊆

∧n V ! ker(iω′) ⊆
∧n′

V ′, where (V, ω) resp. (V ′, ω′) are symplectic
vector spaces of dimension 2n resp. 2n′, that are compositions of maps of the following
type:

• For any isometry φ : V ! V ′ the induced map
∧n φ :

∧n V
∼=−!
∧n V ′ restricts to

an isomorphism ∧n
φ : ker(iω)

∼=−! ker(iω′);

• For each nonzero v ∈ V the contraction maps Φv :
∧n V !

∧n−1 Vv restrict to a
map

Φv : ker(iω)! ker(iωv)

by Lemma 3.2.6;

• The multiplication maps

me−n :
∧n−1

Vn−1 !
∧n

Vn, η 7! e−n ∧ η

restrict to a map
me−n : kern−1 ! kern,

where Vn and kern are as in Section 3.5.

Observe that me−n is a section of Φen .

Definition 3.9.2 (Lagrangian Plücker variety). A Lagrangian Plücker variety is a rule
X that assigns to every finite dimensional symplectic vector space V = (V, ω) a Zariski
closed Sp(V )-stable subset

X(V ) ⊆ ker(iω) ⊆
∧n

V,

where n = 1
2 dim(V ), that is stable under the above type of maps, i.e., such that
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1. for every isometry φ : V ! V ′(∧n
φ
) (
X(V )

)
= X(V ′);

2. for every v ∈ V \ {0}
Φv
(
X(V )

)
⊆ X(Vv);

3. for all n ∈ N
me−n

(
X(Vn−1)

)
⊆ X(Vn).

Equivalently, one could, as for Theorem 3.5.1, define X(V ) to be a reduced closed
subscheme (instead of just a Zariski closed subset) with the given properties.

Note that, by definition, any A ∈ Sp(V ) is an isometry A : V ! V . Thus, as
A ∈ Sp(V ) acts on

∧n V via
∧nA, Definition 3.9.2(1) automatically implies that X(V )

is Sp(V )-stable.

Examples 3.9.3. The following are examples of Lagrangian Plücker varieties.

1. Trivially, X(V ) := ker(iω), X(V ) := {0} and X(V ) := ∅ define Lagrangian Plücker
varieties.

2. For two Lagrangian Plücker varieties X and X ′ their join X+X ′, which is defined
by

(X +X ′)(V ) := {x+ x′ | x ∈ X(V ), x′ ∈ X ′(V )},

is a Lagrangian Plücker variety.

3. For a Lagrangian Plücker variety X, the k-th secant variety Seck(X) of X defined
by

Seck(X)(V ) := {x1 + · · ·+ xk | xi ∈ X(V )}

is again a Lagrangian Plücker variety.

4. The intersection of two Lagrangian Plücker varieties X and X ′ is again a La-
grangian Plücker variety. We denote it as (X ∩X ′)(V ) := X(V ) ∩ X ′(V ).

Example 3.9.4. The Lagrangian Grassmann cone X(V ) := ĜrL(V ) defined in Defini-
tion 3.1.5 is a Lagrangian Plücker variety.

Proof. It is well-known that through the Plücker embedding the (ordindary) Grassman-
nian Gr(n, V ) is a projective variety in P(

∧n V ). In particular, the (ordinary) Grass-

mann cone Ĝr(n, V ) ⊆
∧n V is Zariski closed. It easily follows from Definition 3.1.5 that

ĜrL(V ) = Ĝr(n, V )∩ker(iω). Hence, the Lagrangian Grassmann cone ĜrL(V ) ⊆ ker(iω)
is also Zariski closed. Keeping in mind that being Sp(V )-stable follows automatically
from Definition 3.9.2(1), it remains to check the properties (1)-(3) in Definition 3.9.2.

First, let φ : V ! V ′ be an isometry and let ξ ∈ ĜrL(V ) be arbitrary. By Def-
inition 3.1.5 we can write can write ξ = v1 ∧ · · · ∧ vn for some v1, . . . , vn ∈ V with
ω(vi, vj) = 0 for all 1 ≤ i, j ≤ n. Observe that ω′(φ(vi), φ(vj)) = ω(vi, vj) = 0 for all
1 ≤ i, j ≤ n since φ is an isometry, and thus(∧n

φ
)
(ξ) = φ(v1) ∧ · · · ∧ φ(vn) ∈ ĜrL(V

′).
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This shows (
∧n φ)

(
ĜrL(V )

)
⊆ ĜrL(V

′). Replacing φ by φ−1 also implies the other
inclusion, thus proving equality.

Second, the same argument as in Example 1.1.3(2) in Chapter 1 shows that φv maps

ĜrL(V ) into Ĝriso(n−1, v⊥). Since Φv =
(∧n−1 πv

)
◦φv by Definition 3.1.10, this shows

that Φv maps ĜrL(V ) into Ĝriso(n− 1, Vv) = ĜrL(Vv).

Finally, let ξ ∈ ĜrL(Vn−1) be arbitrary. Again, we can write ξ = v1 ∧ · · · ∧ vn−1 for
some v1, . . . , vn−1 ∈ Vn−1 with ω(vi, vj) = 0 for all 1 ≤ i, j ≤ n− 1. Then

me−n(ξ) = e−n ∧ ξ = e−n ∧ v1 ∧ · · · ∧ vn−1 ∈ ĜrL(Vn)

because e−n ⊥ Vn−1 and ⟨v1, . . . , vn−1⟩ ⊆ Vn−1.

Since any symplectic vector space is isometric to some Vn (see Lemma 3.1.8), the
following remark follows immediately from Definition 3.9.2(1).

Remark 3.9.5. A Lagrangian Plücker variety X is completely determined by the values
X(Vn), that is, if X and X ′ are Lagrangian Plücker varieties such that X(Vn) = X ′(Vn)
for all n ∈ N, then X(V ) = X ′(V ) for all V .

We will from now on abbreviate Xn := X(Vn) ⊆ kern.
We want to associate to each Lagrangian Plücker variety X a closed Sp(V∞)-stable

subset X∞ ⊆ (ker∞)∗. Recall from Section 3.9.1 that (ker∞)∗ can be identified with the
projective limit lim −n kern along the contraction maps Φen , i.e.,

(ker∞)∗ ∼= lim −

(
· · ·

Φe4−−! ker3
Φe3−−! ker2

Φe2−−! ker1

)
.

By Definition 3.9.2(2) each Φen : kern ! kern−1 satisfies Φen(Xn) ⊆ Xn−1. Thus the
projective limit

X∞ := lim −

(
· · ·

Φe4−−! X3
Φe3−−! X2

Φe2−−! X1

)
⊆ (ker∞)∗

is well defined. Moreover, X∞ ⊆ (ker∞)∗ is closed and Sp(V∞)-stable since Xn ⊆ kern is
closed and Sp(Vn)-stable for all n ∈ N. If one thinks of Xn as closed reduced subschemes
of kern, then also X∞ is a closed reduced subscheme of (ker∞)∗. Moreover, we have the
following.

Remark 3.9.6. The closed subset X∞ ⊆ (ker∞)∗ is an affine cone.

Proof. Let I∞ ⊆ Sym(ker∞) be the radical ideal defining X∞, and note that I∞ is
sp(V∞)-stable since X∞ is Sp(V∞)-stable.

We have to show that I∞ is a homogeneous ideal. Let f ∈ I∞ be arbitrary. Choose
n ∈ N large enough such that f is contained in Sym(kern) ⊆ Sym(ker∞), i.e., so that
any variable η ∈ ker∞ of f is of the form ηn ∧ en+1 ∧ en+2 ∧ · · · for some ηn ∈ kern. By
Section 3.6.2 the endomorphism Hn+1 of V∞ mapping en+1 to en+1, e−(n+1) to −e−(n+1)

and all other basis vectors to zero is an element of sp(V∞). The action of Hn+1 on ker∞
sends any variable of f to itself. So, by the Leibniz rule, the action of Hn+1 multiplies
the degree d homogeneous part of f by d. Since Hn+1 · f ∈ I∞, this implies that every
homogeneous part of f is contained in I∞. This completes the proof.
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For all N > n we denote by πN,n : kerN ! kern the composition Φen+1 ◦ · · · ◦ ΦeN
of the contraction maps. Similarly, τn,N : kern ! kerN shall denote the composition
me−N ◦ · · · ◦me−(n+1)

. Note that τn,N is a section of πN,n because, for every k ∈ N, me−k

is a section of Φek . It follows from Definition 3.9.2(2),(3) that

πN,n(XN ) ⊆ Xn and τn,N (Xn) ⊆ XN . (3.9.1)

We also denote by π∞,n : (ker∞)∗ ! kern the structure maps of the projective limit
lim −n kern, and we write τn,∞ : kern ! (ker∞)∗ for the map induced by the maps τn,N .
Then τn,∞ is a section of π∞,n. Moreover, it follows from Equation (3.9.1) that

π∞,n(X∞) ⊆ Xn and τn,∞(Xn) ⊆ X∞. (3.9.2)

We are now in a position to prove the following useful lemma.

Lemma 3.9.7. The mapping
X 7! X∞

is injective, i.e., if X and X ′ are Lagrangian Plücker varieties such that X∞ = X ′
∞,

then X = X ′.

Proof. Note that, for all n ∈ N, we have

Xn = π∞,n(X∞).

Indeed, the inclusion ⊇ is contained in (3.9.2). The other direction ⊆ follows from the
fact that τn,∞ is a section of π∞,n and that τn,∞(Xn) ⊆ X∞ by (3.9.2).

Hence, if X∞ = X ′
∞, then

Xn = π∞,n(X∞) = π∞,n(X
′
∞) = X ′

n.

By Remark 3.9.5 this shows that X = X ′.

For two Lagrangian Plücker varieties X and X ′, we will write X ⊆ X ′ if, for all
symplectic vector spaces V , we have X(V ) ⊆ X ′(V ). Theorem 3.5.1 then implies the
following.

Theorem 3.9.8 (Noetherianity of Lagrangian Plücker varieties). Every descending
chain of Lagrangian Plücker varieties

X(0) ⊇ X(1) ⊇ X(2) ⊇ X(3) ⊇ · · ·

stabilizes, that is, there exists m0 ∈ N such that X(m) = X(m0) for all m ≥ m0.

Proof. Note that the mapping X 7! X∞ is order preserving, that is, if X ⊆ X ′, then
X∞ ⊆ X ′

∞. Hence, a chain

X(0) ⊇ X(1) ⊇ X(2) ⊇ X(3) ⊇ · · ·

of Lagrangian Plücker varieties induces a chain

X(0)
∞ ⊇ X(1)

∞ ⊇ X(2)
∞ ⊇ X(3)

∞ ⊇ . . .

of closed Sp(V∞)-stable subsets in (ker∞)∗. By Theorem 3.5.1 we know that (ker∞)∗ is

topologically Sp(V∞)-Noetherian. Hence, the chain
(
X

(m)
∞
)
m∈N stabilizes. But then, by

Lemma 3.9.7 also the chain of Lagrangian Plücker varieties
(
X(m)

)
m∈N stabilizes. This

completes the proof.
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As a further consequence of Theorem 3.5.1 we obtain the next results, which states
that X∞ is determined by the data coming from some finite level of X.

Theorem 3.9.9. Let X be a Lagrangian Plücker variety. Then there exists n0 ∈ N such
that

X∞ = V (Sp(V∞) · In0) ,

where Sp(V∞) · In0 are the Sp(V∞)-orbits of the radical ideal In0 ⊆ Sym(kern0) defining
Xn0 ⊆ kern0.

Here, by a slight abuse of notation, we identify In0 ⊆ Sym(kern0) with its image in
Sym(ker∞) under the embedding induced by the inclusion kern0 ! ker∞.

Remark 3.9.10. If we would think of a Lagrangian Plücker variety as a rule assigning to
each symplectic vector space V a reduced closed subscheme X(V ), then in Theorem 3.9.9
we would have to replace V (Sp(V∞)·In0) by V

(
rad(Sp(V∞)·In0)

)
, where rad(Sp(V∞)·In0)

is the radical ideal generated by Sp(V∞) · In0 .

Proof. For each n ∈ N set Jn := rad(Sp(V∞) · In) ⊆ Sym(ker∞). Note that as subsets of
(ker∞)∗ we have V (Jn) = V (Sp(V∞) · In). Let I∞ = lim−!n

In ⊆ Sym(ker∞) be the radical
ideal associated to X∞. Then

⋃
n Jn = I∞ because I∞ is Sp(V∞)-stable and radical.

Since (Jn)n∈N is an increasing chain of Sp(V∞)-stable radical ideals, by Theorem 3.5.1
there exists n0 ∈ N such that Jn = Jn0 for all n ≥ n0. Therefore, I∞ =

⋃
n Jn = Jn0 ,

and hence X∞ = V (I∞) = V (Jn0) = V (Sp(V∞) · In0).

Using a result of Draisma [Dra10] , we will obtain the following corollary.

Corollary 3.9.11 (Universality for Lagrangian Plücker varieties). Let X be a La-
grangian Plücker variety. There exists n0 ∈ N such that for all n ≥ n0 it holds that

Xn = V (Sp(Vn) · In0).

Before coming to the proof of Corollary 3.9.11, we first make some comments.
In Corollary 3.9.11 we make the same abuse of notation as in Theorem 3.9.9 and

identify In0 ⊆ Sym(kern0) with its image in Sym(kern) under the inclusion of rings
Sym(kern0) ! Sym(kern) induced by the inclusion kern0 ! kern. In other words, for a
polynomial f defined on kern0 we denote the polynomial f ◦ πn,n0 defined on kern still
by f . Therefore, Corollary 3.9.11 can be reformulated as follows.

Remark 3.9.12. Let X be a Lagrangian Plücker variety. Then there exists n0 ∈ N with
the following property: For every n ≥ n0 and x ∈ kern ⊆

∧n Vn we have

x ∈ Xn ⇐⇒ πn,n0(A · x) ∈ Xn0 for all A ∈ Sp(Vn).

Together with the following example, which is a consequence of Theorem 3.4.1, this
explains how Corollary 3.9.11 can be thought of as a generalization of Theorem 3.4.1 to
arbitrary Lagrangian Plücker varieties.

Example 3.9.13. For all n ≥ 2 and η ∈ kern ⊆
∧n Vn we have

η ∈ ĜrL(Vn) ⇐⇒ πn,2(A · η) ∈ ĜrL(V2) for all A ∈ Sp(Vn),

where πn,2 = Φe3 ◦ · · · ◦ Φen .
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Here we think of kern only as a vector space.

Proof. We prove this by induction. In the base case n = 2 there is nothing to prove.
Now take n > 2 and assume that the result is true for n − 1. If η ∈ ĜrL(Vn), then

πn,2(A · η) ∈ ĜrL(V2) for all A ∈ Sp(Vn) because V 7! ĜrL(V ) is a Lagrangian Plücker
variety by Example 3.9.4. To prove the other direction, we argue by contradiction, i.e.,
we assume that there exists η ∈ kern such that πn,2(A · η) ∈ ĜrL(V2) for all A ∈ Sp(Vn)

but η /∈ ĜrL(Vn).

Since η /∈ ĜrL(Vn) there exists, due to Theorem 3.4.1, a vector v ∈ Vn \ {0} such

that Φv(η) /∈ ĜrL((Vn)v). Choose some A ∈ Sp(Vn) such that Av = en. Note that
A(v⊥) = e⊥n because A preserves the symplectic form ω. So A induces an isometry

Ā : (Vn)v
∼=−! (Vn)en = Vn−1. Using again that A preserves ω, one checks that the

diagram ∧n Vn
∧n−1 v⊥

∧n−1(Vn)v

∧n Vn
∧n−1 e⊥n

∧n−1 Vn−1

φv

∧n A ∼=

∧n−1 πv

∧n−1 A ∼=
∧n−1 Ā∼=

φen

∧n−1 πen

commutes. In particular, η′ := Φen(A·η) =
(∧n−1 Ā

)(
Φv(η)

)
/∈ ĜrL(Vn−1). By induction

hypothesis there exists A′ ∈ Sp(Vn−1) such that πn−1,2(A
′ · η′) /∈ ĜrL(V2). Note that,

due to the definition of the embedding Sp(Vn−1) ⊆ Sp(Vn), A
′ fixes en, and hence Φen

is A′-equivariant. So A′ · η′ = Φen(A
′A · η), and therefore

πn,2(A
′A · η) = πn−1,2

(
Φen(A

′A · η)
)
= πn−1,2(A

′ · η′) /∈ ĜrL(V2).

This contradicts our assumption on η and thus completes the proof.

We now come to the proof of Corollary 3.9.11.

Proof of Corollary 3.9.11. Let n0 ∈ N be as in Theorem 3.9.9. Then the statement
follows from Theorem 3.9.9 and [Dra10, Lemma 2.1]. To apply that lemma, we must
check condition (*) in that paper, i.e., that for all q ≥ n ≥ n0 and g ∈ Sp(Vq) we can
write

πq,n0 ◦ g ◦ τn,q = g′′ ◦ τm,n0 ◦ πn,m ◦ g′

for suitable m ≤ n0 and g′ ∈ Sp(Vn) and g′′ ∈ Sp(Vn0). Since X∞ is an affine cone by
Remark 3.9.6, the proof of [Dra10, Lemma 2.1] shows that it suffices that this identity
holds up to a scalar factor. It also suffices to prove this for g in an open dense subset U
of Sp(Vq), because the equations for Xn0 pulled back along the map on the left for g ∈ U
imply the equations for all g. We will prove this, with m = n0, using Lemma 3.9.14
below.

Lemma 3.9.14. Let g ≥ n ≥ n0. Then for all A in an open dense subset of Sp(Vq)
there exist A′ ∈ Sp(Vn) and A

′′ ∈ Sp(Vn0) such that

πq,n0 ◦A ◦ τn,q = c(g)A′′ ◦ πn,n0 ◦A′,

where c(g) is a constant only depending on g.
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A sketch of proof for the analogous statement for the spin group was given in
Lemma 2.5.6 in Chapter 2. Nonetheless, we include a more detailed proof for the conve-
nience of the reader.

Proof. Throughout this proof we will abbreviate

E := ⟨en0+1, . . . , eq⟩ ⊆ Vq, E
′ := ⟨en0+1, . . . , en⟩ ⊆ Vn, F := ⟨e−(n+1), . . . , e−q⟩ ⊆ Vq.

We start by making two observations. First, the map πq,n0 = Φen+1 ◦ · · · ◦Φeq is the same
as the composition of∧q

Vq
φeq
−−!

∧q−1
e⊥q

φeq−1
−−−−!

∧q−2
⟨eq−1, eq⟩⊥

φeq−2
−−−−! · · ·

φen0+1
−−−−!

∧n0
E⊥,

and the map
∧n0 E⊥ !

∧n0 Vn0 induced by the projection E⊥ ! E⊥/E = Vn0 (here (·)⊥
stands for the orthogonal complement in Vq). Second, for any subspace U = ⟨u1, . . . uk⟩
of Vq the composition∧q

Vq
φuk−−!

∧q−1
u⊥k

φuk−1
−−−−!

∧q−2
⟨uk−1, uk⟩⊥

φuk−2
−−−−! · · ·

φu1−−!
∧q−k

U⊥

is well-defined (i.e., independent of the choice of basis) up to a constant. Indeed, by
(3.1.6) this composition is dual to u1 ∧ · · · ∧uk ∧•, and for a different basis u′1, . . . , u

′
k of

U the two k-forms u1 ∧ · · · ∧ uk and u′1 ∧ · · · ∧ u′k agree up to a multiplicative constant.
So for any subspace U the map φU := φu1 ◦ · · · ◦ φuk is well-defined (up to scalars).

Furthermore, we will denote by ΦU :
∧q Vq !

∧q−k U⊥/U the composition of φU and
the map induced by the projection Vq ! Vq/U , e.g., ΦE = πq,n0 .

For any A ∈ Sp(Vq) we will for ease of notation also abbreviate

E′′ := A−1E ⊆ Vq,

which is isotropic because E is isotropic. Then we have (up to scalars)

πq,n0 ◦A = Ā ◦ ΦE′′ , (3.9.3)

where Ā : (E′′)⊥/E′′ ∼=−! E⊥/E = Vn0 is an isometry induced by A.
Consider the subspace E′′ ∩ (Vn ⊕F ) ⊆ Vq. For A in an open dense subset of Sp(Vq)

this has the expected dimension

dim
(
E′′ ∩ (Vn ⊕ F )

)
=dim(E′′) + dim(Vn ⊕ F )− dim(Vq)

=(q − n0) + (2n+ q − n)− 2q

=n− n0. (3.9.4)

Moreover, since (E′′)⊥ ⊆ Vq has codimension dim(E′′) = q − n0 ≥ q − n = dim(F ), for
A in an open dense subset of Sp(Vq) we also have

(E′′)⊥ ∩ F = 0. (3.9.5)

We will from now on only consider A ∈ Sp(Vq) satisfying (3.9.4) and (3.9.5). Note that,
as E′′ is isotropic, (3.9.5) also implies E′′ ∩ F = 0. So the restriction of the projection
Vn ⊕ F ! Vn to E′′ ∩ (Vn ⊕ F ) has trivial kernel, and hence the image

Ẽ := Im
(
E′′ ∩ (Vn ⊕ F ) ⊆ Vn ⊕ F

mod F
−−−−! Vn

)
⊆ Vn
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also has dimension n − n0 due to (3.9.4). Note that Ẽ is also isotropic because the
projection Vn ⊕ F ! Vn preserves the symplectic form. Again using that the projection
preserves the symplectic form, we see that it restricts to an isomorphism

(E′′)⊥ ∩ (Vn ⊕ F )
∼=−! Ẽ⊥,

and hence induces an isometry

h1 :
(
(E′′)⊥ ∩ (Vn ⊕ F )

)
/
(
E′′ ∩ (Vn ⊕ F )

) ∼=−! Ẽ⊥/Ẽ

between symplectic vector spaces of dimension 2n0 (here Ẽ
⊥ ⊆ Vn denotes the orthogonal

complement in Vn). Similarly, due to reasons of dimension, the inclusion Vn ⊕ F ⊆ Vq
also induces an isometry

h2 :
(
(E′′)⊥ ∩ (Vn ⊕ F )

)
/
(
E′′ ∩ (Vn ⊕ F )

) ∼=−! (E′′)⊥/E′′.

One can check that the following diagram commutes (up to scalars):∧q Vq
∧n0(E′′)⊥

∧n0(E′′)⊥/E′′

∧n Vn
∧q(Vn ⊕ F )

∧n0(E′′)⊥ ∩ (Vn ⊕ F )
∧n0 (E′′)⊥∩(Vn⊕F )

(E′′)∩(Vn⊕F )

∧n0 Ẽ⊥ ∧n0 Ẽ⊥/Ẽ

φE′′ mod E′′

τn,q

τn,q

φẼ

φE′′

incl. incl.

mod E′′

mod F

∼=
∧n0 h2

∼=
∧n0 h1

mod Ẽ

So we have (up to scalars)

ΦE′′ ◦ τn,q = h2 ◦ h−1
1 ◦ ΦẼ ,

where ΦE′′ = (mod E′′) ◦ φE′′ and similarly for ΦẼ . Choose A
′ ∈ Sp(Vn) such that

A′(Ẽ) = E′. Then
A′ ◦ ΦẼ = πn,n0 ◦A′,

where A′ : Ẽ⊥/Ẽ
∼=−! (E′)⊥/E′ = Vn0 is the isometry induced by A′. Together with

(3.9.3) we thus obtain (up to scalars)

πq,n0 ◦A ◦ τn0,q = A ◦ h2 ◦ h−1
1 ◦ (A′)−1 ◦ πn,n0 ◦A′,

which is exactly the desired equality if we define

A′′ := A ◦ h2 ◦ h−1
1 ◦ (A′)−1 ∈ Sp(Vn0).

This completes the proof.
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[Lüc12] W. Lück. Algebraische Topologie: Homologie und Mannigfaltigkeiten. vieweg
studium; Aufbaukurs Mathematik. Vieweg+Teubner Verlag, 2012.

[Man09] L. Manivel. On spinor varieties and their secants. SIGMA. Symmetry,
Integrability and Geometry: Methods and Applications, 5:078, 2009.

[Nek20] I. Nekrasov. Dual infinite wedge is GL∞-equivariantly noetherian, 2020.
Preprint, arXiv:2008.09531.

[Pro07] C. Procesi. Lie groups. Universitext. Springer, New York, 2007. An approach
through invariants and representations.

[Sam17a] S. V. Sam. Ideals of bounded rank symmetric tensors are generated in
bounded degree. Invent. Math., 207(1):1–21, 2017.

108

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/


[Sam17b] S. V. Sam. Syzygies of bounded rank symmetric tensors are generated in
bounded degree. Math. Ann., 368(3–4):1095–1108, 2017.

[Sha94] I. R. Shafarevich. Basic algebraic geometry 1. Springer-Verlag, Berlin, sec-
ond edition edition, 1994.

[ST24] T. Seynnaeve and N. Tairi. Universal equations for maximal isotropic Grass-
mannians. J. Symbolic Comput., 121:Paper No. 102260, 23, 2024.

109


	1
	Introduction
	Universal Equations for Maximal Isotropic Grassmannians
	The Ordinary Grassmannian
	Quadratic Spaces and the Isotropic Grassmannian
	Quadratic Spaces
	The Isotropic Grassmann Cone
	Two Lemmas About IGCP Maps

	Universality for Maximal Isotropic Grassmannians
	Statement and Consequences of the Main Result
	Structure of the Proof
	Proof of the Main Theorem

	Counterexamples in Small Dimensions
	Counterexample in Dimension 7
	Counterexample in Dimension 8

	Ranks of Defining Quadrics
	Computational Approach
	Rank 4 Quadrics via the Cartan Embedding


	Topological Noetherianity of the Infinite Half-Spin Representations
	Finite Spin Representations and the Spin Group
	The Clifford Algebra
	The Grassmann Algebra as a Cl(V)-Module
	Embedding so(V) into the Clifford Algebra
	The Half-Spin Representations
	Explicit Formulas
	Highest Weights of the Half-Spin Representations
	The Spin Group
	Two Actions of  on 

	The Isotropic Grassmannian and Infinite Spin Representations
	The Isotropic Grassmannian in its Spinor Embedding
	Contraction with an Isotropic Vector
	Multiplying with an Isotropic Vector
	Properties of the Isotropic Grassmannian
	The Dual of Contraction
	Two Infinite Spin Representations
	Four Infinite Half-Spin Representations

	Noetherianity of the Inverse Half-Spin Representations
	Shifting
	Acting with the General Linear Group on E
	Proof of Theorem 2.3.1

	Half-Spin Varieties and Applications
	Universality of the isotropic Grassmannian in dimension 8 and the Cartan Map
	Statement
	Definition of the Cartan Map
	The Map  from the Spin Representation to the Exterior Power
	Contraction and the Cartan Map Commute
	Proof of Theorem 6.1


	Noetherianty and Universality for Lagrangian Plücker Varieties
	Foundations
	General Vector Spaces
	Symplectic Vector Spaces

	Counterexample and New Setting
	Counterexample
	New Setting

	Preliminary Results
	Universality Result for the Lagrangian Grassmannian
	Topological Noetherianity of the Dual 
	Statement of the Noetherianity Result
	Proof Strategy for the Noetherianity Result

	Preliminaries for the Proof of Proposition 3.5.2
	An Equivariant Isomorphism
	The Root System of 

	-is Topologically Noetherian
	The Groups -
	The Spaces 
	First Key Ingredient
	Second Key Ingredient
	Poof of Proposition 3.5.2

	Proof of Theorem 3.5.1
	Lagrangian Plücker Varieties and Applications
	The Dual  as a Projective Limit
	Lagrangian Plücker Varieties


	Bibliography

