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Introduction

This thesis studies the one-variable fragments of a broad family of first-order
logics and (partially) tackles the challenge of providing a general approach to
axiomatizing them. (Equational) consequence in one-variable first-order logics
can be translated — by replacing any atom P (x) with a propositional variable
p and occurrences of the quantifiers (∀x) and (∃x) with the modalities □ and

, respectively — into consequence in a class of algebras with modalities.
Therefore, the challenge of finding axiomatizations for one-variable fragments
may be interpreted as the challenge of finding a (natural) equational basis
for the corresponding classes of algebras. We show that in certain cases, this
class can be defined by “S5-like” equations. This thesis is based on the two
papers [24] and [25].

Propositional logics deal with propositions, i.e., statements that hold some
truth value, and ways of altering and combining them to form more (compli-
cated) propositions. For example, in classical propositional logic, the statement
’this cat is cute’ follows from the statement ’this cat is cute and all crocodiles
are scary’. This argument can be formalized in classical propositional logic as
follows:

p ∧ q p : this cat is cute
p q : all crocodiles are scary

Note that this argument holds independently of the meaning of p and q. Propo-
sitional logic considers the logical operations, such as ’and’, ’or’, ’not’, and not
the meaning of the individual parts of a statement, such as ’this’, ’is’, ’are’,
’all’.

There are some quantified statements that can be formalized in proposi-
tional logic. For example,

All cats are cute.
Filou is a cat.
Hence, Filou is cute.

can be formalized in classical propositional logic as:

A→ B A : x is a cat
C → A B : x is cute
Hence, C → B C : x is Filou
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However, this formalization is very clunky and the same approach does
not work if we reason about more than one object at the same time. Thus,
propositional logics can be very useful, but their expressive power is limited.
Consider for example the following argument:

Every cat-owner wants to pet their cat.
Filou is my cat.
Therefore, I want to pet Filou.

This argument cannot be formalized in propositional logic; however, in first-
order classical logic it can be formalized as:

(∀x)(∀y)((C(y) ∧O(x, y)) → P (x, y)) C(y) : y is a cat
C(Filou) ∧O(Naomi, Filou) O(x, y) : x owns y
Therefore, P (Naomi, Filou) P (x, y) : x wants to pet y

First-order logics are much more expressive than their propositional coun-
terparts. We can reason about objects and their relationships, we can quantify
over these objects and we can argue about all or some of them without be-
ing specific. However this expressivity comes with a significant downside for
many first-order logics, namely, the lack of decidability. We call a logic C
decidable, if there is an algorithm to decide whether a given formula is valid
and undecidable, if there is no such algorithm. Most of the first-order log-
ics that are well studied are undecidable. Church [20] showed that first-order
classical logic is undecidable and via Gödel’s double negation translation (see,
e.g., [87]) it was shown that any first-order intermediate logic — logics that
are stronger than intuitionistic logic and weaker than classical logic — is also
undecidable. Hilbert-style axiomatizations have been presented for first-order
classical logic [41, 45] and some first-order intermediate logics, in particular,
first-order intuitionistic logic [40].

Decidability and axiomatization results have been obtained for other (non-
classical) logics, such as many-valued and substructural logics. Many-valued
logics were first considered by  Lukasiewicz in [51] where he considered a three-
valued logic. This idea was expanded to n-valued logics and infinite-valued
logic, the latter is nowadays called  Lukasiewicz logic. The valid formulas for
first-order  Lukasiewicz logic are not recursively enumerable [78]. Gödel [35]
introduced a family of finite-valued (intermediate) logics and Dummett [30]
presented the infinite-valued version called Gödel (or Gödel-Dummett) logic.
Gödel logic is an intermediate logic, which means that its first-order version
is undecidable (as mentioned above). An axiomatization for first-order Gödel
logic is given by Horn in [42]. Substructural logics can be considered as logics
given by proof systems that lack some “structural” rules. Alternatively, sub-
structural logics can be considered algebraically, as those logics that have a
class of FL-algebras (or pointed residuated lattices) as an algebraic semantics.
These logics have been studied extensively, see [31,58,73,76]. The Full Lambek
calculus FL and its extensions are prominent examples of substructural logics.
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Whereas the function-free fragments of the first-order versions of FL,FLe,FLw,
and FLew are decidable (see [44]), even propositional FLc and FLec are unde-
cidable (see [21] and [70], respectively). Hilbert-style axiomatizations for these
substructural logics can be found in [26,29].

One way to remedy this problem while maintaining some of the expressivity
of first-order logics, is by restricting the signature or formulas and considering
fragments of the first-order logics. There are many ways to do this. Fragments
that have been considered in the literature include monadic fragments, fluted
fragments, guarded fragments, prenex fragments and fragments that restrict
the number of variables that occur in the formulas. The latter have been
studied to some extent, although in order to obtain a decidable fragment,
the maximum number of variables considered is quite small: For example
the one-variable and two-variable fragments of first-order classical logic are
decidable (see, e.g., [49] and [79, 80]), whereas its three-variable fragment is
undecidable [81]. For first-order intuitionistic logic its one-variable fragment is
decidable [11], but its two-variable fragment is already undecidable [47]. The
one-variable fragments of first-order Gödel logic and first-order  Lukasiewicz
logic are decidable (see [13] and [77], respectively), but decidability for their
two-variable fragments remain unknown. Note that the examples of one-, two-,
and three-variable fragments given above are all equality-free logics.

In this thesis, we focus on one-variable fragments of first-order logics and
the challenge of providing axiomatizations for them. The one-variable frag-
ment of a first-order logic1 is the restriction of the consequence relation to
consequences in the logic constructed using one distinguished variable x, unary
predicates, propositional operations, and the quantifiers (∀x) and (∃x). The
statements “All cats are cute”, “Filou is a cat”, and “Filou is cute” can be
formalized using one-variable formulas. Let us consider another example of an
argument:

All cats either love going outside or love being petted.
There exists a cat that does not love going outside.
Hence, there exists a cat that loves being petted.

This argument can be formalized in first-order classical logic as follows:

(∀x)(C(x) → (G(x) ∨ P (x))) C(x) : x is a cat
(∃x)(C(x) ∧ ¬G(x)) G(x) : x loves going outside
Hence, (∃x)(C(x) ∧ P (x)) P (x) : x loves being petted

In particular, since only one variable is used, this is a formalization in the one-
variable fragment of first-order classical logic. One-variable fragments may
be reformulated as propositional modal logics, by replacing occurrences of an
atom P (x) with a propositional variable p, and occurrences of (∀x) and (∃x)
with the modalities □ and , respectively. Typically, this modal logic is

1In this thesis (first-order) logics are equated with consequence relations.
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algebraizable, that is, it is sound and complete with respect to some suitable
class of algebraic structures (in an algebraic signature containing □ and ).
Therefore, these one-variable fragments may be studied via the corresponding
class of algebraic structures using the tools of universal algebra. Using this
translation, we can formulate the above argument in propositional modal logic
as follows:

□(c→ (g ∨ p)) c : x is a cat
(c ∧ ¬g) g : x loves going outside

Hence, (c ∧ p) p : x loves being petted

In Chapter 1 we define a semantics for a first-order logic based on a class
of L-lattices, i.e., algebras with a lattice-reduct, and see that this induces a
semantics for its one-variable fragment. However, note that in general the task
of finding an axiomatization of the one-variable fragment of a first-order logic
is not trivial. A Hilbert-style axiomatization of a first-order logic does not (at
least directly) yield a Hilbert-style axiomatization of (the modal counterpart
of) its one-variable fragment, since derivations of one-variable formulas may
introduce new variables. Nevertheless, axiomatizations for some one-variable
first-order logics have been obtained. For example, the modal counterpart of
the one-variable fragment of first-order classical logic is S5, first axiomatized
by Wajsberg [91], and corresponds to the variety of monadic Boolean alge-
bras introduced by Halmos [38]. The modal counterpart of the one-variable
fragment of first-order intuitionistic logic is MIPC, as shown by Bull [11], and
corresponds to the variety of monadic Heyting algebras introduced by Mon-
teiro and Varsavsky [61]. Varieties of monadic Heyting algebras corresponding
to the modal counterparts of the one-variable fragments of first-order interme-
diate logics have been investigated in [7, 8, 13, 72, 82, 83]. In particular, it was
shown that the one-variable fragments of first-order Gödel logic and Corsi’s
first-order logic of linear frames correspond to the variety of monadic Gödel
algebras [15] and the variety of monadic Heyting algebras satisfying the prelin-
earity axiom [14], respectively. The one-variable fragments of other first-order
many-valued logics have also been studied, in particular, the modal counter-
parts of the one-variable fragments of first-order  Lukasiewicz logic and Abelian
logic correspond to monadic MV-algebras [17, 28, 77] and monadic Abelian ℓ-
groups [59], respectively.

Despite of all these results, a general approach to axiomatizing this class
of algebraic structures corresponding to the one-variable fragment of a first-
order logic, has been lacking. In this thesis, we take a first step towards
overcoming this challenge, by proving that the class of algebraic structures
corresponding to the one-variable fragment of a first-order logic based on a
variety of L-lattices that has the superamalgamation property (corresponding
to the Craig interpolation property in some cases) admits a (natural) axiom-
atization by “S5-like” equations. To this end, we develop both algebraic and
proof-theoretic approaches. We illustrate the main ideas of our methods via
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classes of FLe-algebras (or commutative pointed residuated lattices), that en-
compass the running examples in this thesis. Classes of FLe-algebras provide
semantics for particular substructural logics. In the following, we give a more
detailed outline of the thesis and of how this result is achieved.

Outline of the Thesis

In Chapter 1 we introduce the preliminary notions needed in this thesis. In
particular, we introduce the logics that will be used as recurring examples. In
Section 1.1 we first recall some basic definitions from universal algebra. We
define L-lattices, the main algebraic structures of this thesis, and FLe-algebras,
particular L-lattices that encompass the running examples used to illustrate
the main concepts. In Section 1.2 we define first-order logics via a semantics
based on classes of L-lattices. We prove that if a class K of L-lattices ad-
mits regular completions, then the first-order logics based on K and the class
of complete members of K coincide. We conclude this section by presenting
the first-order extensions of some of the logics introduced in Section 1.1. Sec-
tion 1.3 is used to introduce some proof-theoretic notions. In particular, we
define proof systems and present a Hilbert-style axiomatization for FLe, the
variety of FLe-algebras, and a sequent calculus for Lat , the variety of lattices.
We introduce the sequent calculus ∀CFL, a multiset version of the first-order
Full Lambek calculus with exchange, and prove that it has cut elimination. We
also consider the first-order versions of the running examples and discuss some
proof systems that have been obtained for them. In Section 1.4 we define
one-variable fragments of first-order logics via a restriction of the semantics
for the first-order logics introduced in Section 1.2. Then we consider some
axiomatizations that have been obtained for (the modal counterparts of) the
one-variable fragments of the logics considered in Section 1.2.

In Chapter 2 we define modal extensions of L-lattices and prove that in
certain cases, they provide axiomatizations for the class of algebraic structures
corresponding to the one-variable fragments of first-order logics defined over
classes of L-lattices. In Section 2.1 we define m-L-lattices, extensions of L-
lattices with the unary operators □ and , that satisfy “S5-like” equations.
For any class of L-lattices K, we denote by mK the class of m-L-lattices with an
L-lattice reduct in K. We consider some examples of one-variable fragments of
first-order logics from the literature that correspond to classes of m-L-lattices.
In Section 2.2 we prove a one-to-one correspondence between m-L-lattices and
ordered pairs of L-lattices and subalgebras that satisfy a relative completeness
condition. This generalizes previous results in the literature (see, e.g., [7,
89]). In Section 2.3 we consider functional m-L-lattices consisting of certain
functions from a set W to an L-lattice A. We prove that the semantics of one-
variable first-order logics can be identified with evaluations into functional
m-L-lattices. If K is a class of L-lattices closed under taking subalgebras
and direct powers, we obtain a correspondence between consequence in the
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one-variable first-order logic defined over K and consequence in the functional
members of mK. In Section 2.4 we achieve the main goal of the chapter,
obtaining an axiomatization of the class of algebraic structures corresponding
to the one-variable fragment of first-order logics defined over certain varieties of
L-lattices. We consider classes of L-lattices, that have the superamalgamation
property, an important algebraic property, studied for example in [54–56], that
corresponds to the Craig interpolation property in the setting of FLe-algebras.
We then prove a functional completeness theorem for such a class K that is
closed under taking direct limits and subalgebras, showing that any member of
mK is functional (generalizing a representation theorem of Bezhanishvili and
Harding for monadic Heyting algebras [8]). This theorem together with the
results from Section 2.3 yields Corollary 2.4.2:

If V is a variety of L-lattices that has the superamalgamation
property, then for any set Σ∪{φ ≈ ψ} of one-variable equations,

Σ ⊨
∀1
V φ ≈ ψ ⇐⇒ Σ∗

⊨mV φ
∗ ≈ ψ∗,

where (−)∗ denotes the (standard) translation from one-variable formulas to
modal formulas that replaces atoms with propositional variables and quanti-
fiers (∀x) and (∃x) with □ and , respectively.

In Chapter 3 we provide an alternative proof-theoretic approach to proving
Corollary 2.4.2 for the one-variable fragments of certain first-order substruc-
tural logics. In Section 3.1 we introduce the sequent calculus ∀1CFL. This
sequent calculus is sound and complete with respect to consequence in the
one-variable first-order logic defined over FLe, introduced in Section 1.4. Sec-
tion 3.2 is used to prove an interpolation property for certain sequents derivable
in ∀1CFL, in particular, for sequents that occur in the derivation of a one-
variable sequent. In Section 3.3 we give an alternative proof of Corollary 2.4.2
for the variety FLe using proof-theoretic methods. The key idea of this proof
is to show (using the interpolation property) that additional variables in a
derivation of a one-variable sequent can be eliminated. In Section 3.4 we ap-
ply the method from Section 3.3 to extensions of ∀1CFL with sets of simple
rules that have exactly one premise. In particular, we prove Corollary 2.4.2
for the varieties FLew and FLec.

In Chapter 4 we summarize the achievements of this thesis and consider
cases of one-variable first-order logics that have been axiomatized in the lit-
erature, but are not covered by our methods. We also give an outlook on
future avenues to continue this work and axiomatize an even broader family
of one-variable first-order logics.
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Chapter 1

The Logics

This chapter introduces the logics that are considered in this thesis. In Sec-
tion 1.1 we introduce the algebraic structures that provide the algebraic se-
mantics for the propositional versions of these logics as well as the semantics
for the first-order versions defined in Section 1.2. In Section 1.3, we define some
proof-theoretic notions and introduce a first-order version of the Full Lambek
calculus with exchange. Finally, in Section 1.4, we introduce the one-variable
fragments of the first-order logics defined in Section 1.2. We assume familiarity
with basic notions of Universal Algebra as found in [12].

We begin by defining the formulas used in this thesis. Let L be an algebraic
signature. The sets of propositional formulas are defined as follows:

1. The set Fm(L) of propositional formulas is built inductively using a
countably infinite set of propositional variables {pi}i∈N and the opera-
tions in L. The elements of Fm(L) are called L-formulas and are usually
denoted by α, β, . . . .

2. The set Fm□(L) of modal propositional formulas is built inductively
using a countably infinite set of propositional variables {pi}i∈N, the op-
erations in L, and the unary operations symbols □ and . The elements
of Fm□(L) are called L□-formulas and are usually denoted by α, β, . . . .

Note that the first-order formulas considered in this thesis are all function-free
and equality-free. Hence, the sets of first-order formulas are defined as follows:

1. The set Fm∀(L) of first-order formulas is built inductively using the
union over all n ∈ N of the countably infinite sets of n-ary predicates
{Pn,i}i∈N, the countably infinite set Var of variables, the operations in L,
and quantifiers (∀x), (∃x) for any x ∈ Var. The elements of Fm∀(L) are
called L∀-formulas and are usually denoted by φ, ψ, χ, . . . .

2. The set Fm1
∀(L) of one-variable formulas is built inductively using the

countably infinite set of unary predicates {Pi}i∈N, a variable x, the oper-
ations in L, and quantifiers (∀x) and (∃x). The elements of Fm1

∀(L) are
called one-variable L∀-formulas and are usually denoted by φ, ψ, χ, . . . .

8



3. The set Fm1+
∀ (L) of extended one-variable formulas is built inductively

using the countably infinite set of unary predicates {Pi}i∈N, the variables
{x} ∪ {xi}i∈N such that {x} ∩ {xi}i∈N = ∅, the operations in L, and
quantifiers (∀x), (∃x). The elements of Fm1+

∀ (L) are called L+
∀ -formulas

and are usually denoted by φ, ψ, χ, . . . .

We now give the definition of a logic (see, e.g., [43]) used in this thesis. Let
Fm be one of the sets of formulas defined above. Let ⊢⊆ P(Fm) × Fm where
a pair ⟨T, α⟩ in ⊢ is denoted by T ⊢ α. We call ⊢ a consequence relation over
Fm, if it satisfies the following properties for any α ∈ Fm and T, S ⊆ Fm:

1. if α ∈ T , then T ⊢ α (reflexivity);

2. if T ⊢ α and T ⊆ S, then S ⊢ α (monotonicity);

3. if T ⊢ α and S ⊢ β for all β ∈ T , then S ⊢ α (transitivity).

A logic can be defined as the pair ⟨Fm,⊢⟩, where ⊢ is a consequence relation
over Fm1. If the set Fm is clear from the context, we equate the logic ⟨Fm,⊢⟩
with the consequence relation ⊢.

1.1 Algebraic Semantics

In this section we recall some basic algebraic notions such as the formula alge-
bra and consequence in a class of algebraic structures. We introduce L-lattices,
the algebraic structures that form the basis for the (algebraic) semantics for
all the logics considered in this thesis. We conclude this section with the intro-
duction of FLe-algebras, particular L-lattices, and a list of examples of logics
whose algebraic semantics are given by classes of FLe-algebras.

Let L be an arbitrary algebraic signature. Recall that we denote by Fm(L)
the set of L-formulas α, β, . . . built inductively using a countably infinite set
of propositional variables {pi}i∈N and the operations in L. An ordered pair of
L-formulas α ≈ β is called an Fm(L)-equation.

An algebraic structure in the signature L is called an L-algebra. Let us
denote by Ln the set of n-ary operations of L. Then the formula algebra of L
is the L-algebra

Fm(L) = ⟨Fm(L), {⋆Fm(L) | n ∈ N, ⋆ ∈ Ln}⟩,

where for each n ∈ N, ⋆ ∈ Ln, and α1, . . . , αn ∈ Fm(L),

⋆Fm(L)(α1 . . . , αn) = ⋆(α1, . . . , αn).

1In the case where Fm is a set of propositional formulas, we can assume that ⊢ is also
closed under substitutions.

9



A homomorphism from the formula algebra of L to an L-algebra A is called
an A-evaluation. Let K be a class of L-algebras. For a set of Fm(L)-equations
Σ ∪ {α ≈ β} we define

Σ ⊨K α ≈ β :⇐⇒ for every A ∈ K and A-evaluation f,

f(α′) = f(β′) for all α′ ≈ β′ ∈ Σ =⇒ f(α) = f(β),

and say that α ≈ β is a consequence of Σ in K. For sets of Fm(L)-equations
Σ and Σ′, we write Σ ⊨K Σ′ if Σ ⊨K φ ≈ ψ for all φ ≈ ψ ∈ Σ′.

Remark 1.1.1. Note that ⊨K is an equational consequence relation that satis-
fies the same properties for (sets of) equations instead of (sets of) formulas, as
a consequence relation on formulas (i.e., reflexivity, monotonicity, transitivity),
introduced at the beginning of Chapter 1.

Let K be a class of L-algebras, then H(K), S(K), P(K), I(K), PU(K), and
U(K) denote the classes of homomorphic images of L-algebras in K, subalge-
bras of L-algebras in K, direct products of L-algebras in K, isomorphic copies
of L-algebras in K, ultraproducts of L-algebras in K, and L-algebras A such
that every countably generated subalgebra of A belongs to K, respectively.

A variety is a class V of algebraic structures in the same signature that
is closed under taking homomorphic images, subalgebras and (direct) prod-
ucts. By Birkhoff’s Theorem [10], a class V is a variety if and only if it is
an equational class, that is, a class of algebraic structures defined by a set of
equations.

Before we introduce L-lattices, the main algebraic structures of this thesis,
we recall the definition of a lattice. Let Ll be the algebraic signature consisting
of the binary operations ∧ and ∨. A lattice is an Ll-algebra L = ⟨L,∧,∨⟩ such
that ∧ and ∨ are binary operations satisfying the following equations:

x ∧ y ≈ y ∧ x, x ∨ y ≈ y ∨ x,

x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z,

x ∧ x ≈ x, x ∨ x ≈ x,

x ∧ (x ∨ y) ≈ x, x ∨ (x ∧ y) ≈ x.

Alternatively, a lattice can be defined as a poset ⟨L,≤⟩ — a nonempty set L
with a reflexive, antisymmetric, transitive binary relation ≤ — such that for
all a, b ∈ L

inf{a, b} and sup{a, b}

exist in L. The two definitions of lattices are equivalent. Starting with a lattice
⟨L,∧,∨⟩, by setting

a ≤ b :⇐⇒ a ∧ b = a,

we obtain a lattice ⟨L,≤⟩. Starting with a lattice ⟨L,≤⟩ and defining

a ∧ b := inf{a, b} and a ∨ b := sup{a, b},

10



we obtain a lattice ⟨L,∧,∨⟩. The class of all lattices forms a variety, denoted
by Lat .

Let L′
l be the algebraic signature extending Ll with the constants ⊥ and

⊤. The L′
l-algebra ⟨L,∧,∨,⊥,⊤⟩ is called a bounded lattice if ⟨L,∧,∨⟩ is a

lattice and for all a ∈ L,
⊥ ≤ a ≤ ⊤.

A lattice or bounded lattice L is called distributive, if for any a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Let L be an algebraic signature. Whenever L2 contains distinct operations
∧ and ∨, we call L lattice-oriented and an L-algebra A an L-lattice, if the
reduct ⟨A,∧A,∨A⟩ is a lattice.

In particular, lattices are Ll-lattices.
An L-lattice A is called complete, if for all X ⊆ A,

∧

X := inf X and
∨

X := supX

exist in A. For any class K of L-lattices, we denote by Kc the class of all
complete L-lattices contained in K.

Let A and B be L-lattices, then B is called a regular completion of A, if
B is a complete L-lattice and there exists an L-lattice embedding h : A → B

that preserves all existing meets and joins in A, i.e., for any X, Y ⊆ A such
that the meet of X and the join of Y exist in A,

h(
∧

X) =
∧

h(X) and h(
∨

Y ) =
∨

h(Y ).

A class K of L-lattices is said to admit regular completions if for any A ∈ K,
there exists a regular completion of A in K.

An L-lattice A is called totally ordered, if for all a, b ∈ A,

a ≤ b or b ≤ a.

For a class K of L-lattices, we denote by Kto the class of all totally ordered
members of K.

At the beginning of this chapter, we introduced logics as consequence rela-
tions. We now define what it means for a class of L-lattices to be an algebraic
semantics for a logic. Let ⟨Fm(L),⊢⟩ be a logic, then we call a class K of
L-lattices an algebraic semantics for ⊢ if there exists a set of equations τ(x)
in one variable such that for all sets of L-formulas S ∪ {φ} the following is
satisfied:

S ⊢ φ ⇐⇒ τ(S) ⊨K τ(φ),

where τ(φ) denotes the set of Fm(L)-equations obtained by substituting x
with φ in all equations in τ(x), and τ(S) is the union of the sets τ(ψ) for all
ψ ∈ S.
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Note that an algebraic semantics for a logic ⊢ is not unique. In particular,
we have the following relationships between consequence in varieties and con-
sequence in classes that generate them in different ways (see, e.g., [12]). Let
V be a variety of L-lattices. If V is generated as a variety by K ⊆ V , i.e.,
V = HSP(K), then for any Fm(L)-equation ε,

⊨V ε ⇐⇒ ⊨K ε.

If V is generated as a quasivariety by K ⊆ V , i.e., V = ISPPU(K), then for any
finite set Σ ∪ {ε} of Fm(L)-equations,

Σ ⊨V ε ⇐⇒ Σ ⊨K ε.

If V is generated as a generalized quasivariety by K ⊆ V , i.e., V = ISPU(K)
(see [62]), then for any set Σ ∪ {ε} of Fm(L)-equations,

Σ ⊨V ε ⇐⇒ Σ ⊨K ε.

Thus, if K generates V as a generalized quasivariety, K and V provide equivalent
algebraic semantics for the same logic.

Let Ls be the signature consisting of the binary operations ∧,∨, ·, and →
and the constants f and e. An FLe-algebra (see, e.g., [31, 58]) is an Ls-lattice
⟨A,∧,∨, ·,→, f, e⟩ such that ⟨A, ·, e⟩ is a commutative monoid and → is the
residual of ·, that is, for any a, b, c ∈ A,

a · b ≤ c ⇐⇒ a ≤ b→ c.

FLe-algebras are also referred to as commutative pointed residuated lattices and
the class of all FLe-algebras can be defined by the equations defining lattices
(given above), the equations defining commutative monoids, i.e.,

x · (y · z) ≈ (x · y) · z,
x · y ≈ y · x,
x · e ≈ x,

and the following (in)equations

x · (y ∨ z) ≈ x · y ∨ x · z,
x→ y ≤ x→ (y ∨ z),
x · (x→ y) ≤ y ≤ x→ (x · y).

Therefore, the class of all FLe-algebras forms a variety denoted by FLe, which
provides an algebraic semantics for the Full Lambek Calculus with exchange
FLe, or alternatively, the propositional version of the calculus ∀CFL intro-
duced in Section 1.3. Varieties of FLe-algebras provide algebraic semantics
for substructural logics. For example, FLew and FLec are the varieties of
FLe-algebras that satisfy the inequations

f ≤ x ≤ e and x ≤ x · x,

12



respectively. FLew and FLec provide algebraic semantics for the Full Lambek
calculus with exchange and weakening and the Full Lambek calculus with
exchange and contraction, respectively. First-order versions of these calculi
are introduced in Section 1.3 and in Chapter 3 the one-variable fragments of
FLe, FLew, and FLec are studied.

Remark 1.1.2. FL-algebras, i.e., pointed residuated lattices (see, e.g., [31,58])
are also examples of L′

s-lattices for the signature L′
s consisting of the binary

operations ∧,∨, ·, \, and / and the constants f and e. The variety FL of FL-
algebras forms an algebraic semantics for the Full Lambek calculus and FLe

is term-equivalent to the subvariety of FL defined by x · y ≈ y · x (identify
\ and /). Hence, FL-algebras fit in this framework of L-lattices, however, we
use FLe-algebras as the basis for the examples in this thesis, since the main
theorems do not apply in the case of FL.

Let A be an Ls-lattice and consider for each X ⊆ A,

Xu := {a ∈ A | a ≥ x for all x ∈ X},

X l := {a ∈ A | a ≤ x for all x ∈ X}.

Then the (Dedekind) MacNeille completion of A (see, e.g., [31, 58]) is the
Ls-lattice

N (A) := ⟨P(A)ul,∩,∪N , ·N ,→N , eN , fN ⟩,

where
P(A)ul := {X ∈ P(A) | (Xu)l = X}

and for all X, Y ∈ P(A)ul,

X ∪N Y := (X ∪ Y )ul, X ·N Y := {x · y | x ∈ X, y ∈ Y }ul,

eN := {e}l, X →N Y := {z | x · z ∈ Y for all x ∈ X},

fN := {f}l.

For any FLe-algebra A, the Ls-lattice N (A) is an FLe-algebra and

l : A → N (A); x 7→ {x}l

is an embedding that preserves all existing meets and joins, making N (A) a
regular completion of A. Thus, any class of FLe-algebras that is closed under
MacNeille completions admits regular completions.

For any class K of FLe-algebras we can define a consequence relation on
formulas2 corresponding to ⊨K. Let T ∪ {α} be a set of Ls-formulas, then

T ⊨K α :⇐⇒ {e ≤ β | β ∈ T} ⊨K e ≤ α.

2Indeed, such a consequence relation on formulas can be defined for any class K of
L-lattices such that any member of K has an FLe-algebra reduct. We will denote both
consequence relations by ⊨K.
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We can also go from a consequence of formulas to a consequence of equations.
Let Σ ∪ {α ≈ β} be a set of Fm(Ls)-equations, then

Σ ⊨K α ≈ β ⇐⇒ {α′ ↔ β′ | α′ ≈ β′ ∈ Σ} ⊨K α ↔ β,

where α ↔ β := (α → β)∧(β → α). That is, we may view every class K of FLe-
algebras as determining a (substructural) propositional logic where K provides
an algebraic semantics for it (via the set of equations τ(x) := {e ≤ x}).

Now we present the main running examples of L-lattices that provide al-
gebraic semantics for the logics considered in this thesis.

Example 1.1.3. The following examples can all be defined as special classes
of FLe-algebras. Let Li be the signature Ls without · and f, e replaced with 0, 1,
respectively. The lattice-oriented signature Lb consists of the binary operations
∧,∨, the unary operation ¬ and the constants 0, 1 and the lattice-oriented
signature La contains the binary operations ∧,∨, and +, the unary operation
−, and the constant 0.

• An Li-lattice H = ⟨H,∧,∨,→, 0, 1⟩ is called a Heyting algebra whenever
⟨H,∧,∨, 0, 1⟩ is a bounded distributive lattice and → is the residual of
∧. The variety of Heyting algebras is denoted by HA and provides an al-
gebraic semantics for intuitionistic propositional logic IPC (see e.g. [18]).
Heyting algebras are term-equivalent to FLe-algebras satisfying

x · y ≈ x ∧ y and f ≤ x ≤ e,

where we identify 0 and f, and 1 and e. Thus, the variety HA is term-
equivalent to FLewc = FLew ∩ FLec. Varieties of Heyting algebras pro-
vide algebraic semantics for intermediate logics. See [9] for an extended
survey of propositional intermediate logics and their different semantics.

• An Lb-lattice B = ⟨B,∧,∨,¬, 0, 1⟩ is called a Boolean algebra if the
algebra ⟨B,∧,∨, 0, 1⟩ is a bounded distributive lattice satisfying

x ∧ ¬x ≈ 0 and x ∨ ¬x ≈ 1.

The class of all Boolean algebras forms the variety BA that is term-
equivalent to the subvariety of HA defined by

(x→ 0) → 0 ≈ x.

The variety BA provides an algebraic semantics for classical logic CPC.
The standard Boolean algebra is the 2-element Boolean algebra 2 =
⟨{0, 1},∧,∨,¬, 0, 1⟩, where

a ∧ b = min{a, b}, a ∨ b = max{a, b}, ¬0 = 1, ¬1 = 0.

The Lb-algebra 2 generates BA as a generalized quasivariety and for any
set of Lb-formulas T ∪ {α},

T ⊨BA α ⇐⇒ T ⊨2 α.
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• A Heyting algebra G is called a Gödel algebra, if it satisfies the equation

(x→ y) ∨ (y → x) ≈ e.

The standard Gödel algebra G is the Gödel algebra ⟨[0, 1],∧,∨,→, 0, 1⟩,
where for any a, b ∈ [0, 1], a ∧ b = min{a, b}, a ∨ b = max{a, b}, and

a→ b =

{

1 if a ≤ b,

b otherwise.

We denote the variety of Gödel algebras by GA, which provides an alge-
braic semantics for the (infinite-valued) Gödel (or Gödel-Dummett) logic
LC (see, e.g., [3]), which was first presented by Dummett [30].

Subalgebras of G provide algebraic semantics for what are known as
Gödel logics, a family of many-valued logics. An infinite family of finite-
valued Gödel logics was introduced by Gödel to show that there are
infinitely many logics between IPC and CPC [35]. The standard Gödel
algebra G as well as any infinite subalgebra of G provide an alternative
algebraic semantics for LC.

There are countably infinitely many different (propositional) Gödel logics
and exactly one infinite-valued one.

• An MV-algebra (introduced by Chang in [19]) is an algebraic structure
A = ⟨A,⊕,¬, 0⟩, in the algebraic signature Lmv containing the binary
operation ⊕, the unary operation ¬, and the constant 0, satisfying

x⊕ (y ⊕ z) ≈ (x⊕ y) ⊕ z, ¬¬x ≈ x,
x⊕ y ≈ y ⊕ x, x⊕ ¬0 ≈ ¬0,
x⊕ 0 ≈ x, ¬(¬x⊕ y) ⊕ y ≈ ¬(¬y ⊕ x) ⊕ x.

The class of all MV-algebras forms the variety MV and is term-equivalent
to the variety of FLe-algebras satisfying

f ≤ x ≤ e and (x→ y) → y ≈ x ∨ y.

The variety MV provides an algebraic semantics for  Lukasiewicz logic
 L (see e.g., [63], [23]), introduced by  Lukasiewicz in [53]. The standard
MV-algebra is the MV-algebra  L = ⟨[0, 1],⊕,¬, 0⟩, where

a⊕ b := min{a+ b, 1} and ¬a := 1 − a.

The variety MV is generated as a quasivariety by  L and for any finite
set T ∪ {α} of Lmv-formulas,

T ⊨MV α ⇐⇒ T ⊨ L α.
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• An La-lattice A = ⟨A,∧,∨,+,−, 0⟩ is called a lattice-ordered abelian
group (abelian ℓ-group for short), if ⟨A,+,−, 0⟩ is an abelian group and
for all a, b, c ∈ A,

a ≤ b =⇒ a+ c ≤ b+ c.

The class of all abelian ℓ-groups forms a variety, denoted by LG, that is
term-equivalent to the variety of FLe-algebras satisfying

(x→ e) · x ≈ e and f ≈ e.

The variety LG provides an algebraic semantics for Abelian logic, in-
troduced independently in [60] and [16]. We define the algebra R =
⟨R,∧,∨,+,−, 0⟩ where ⟨R,+,−, 0⟩ is the usual additive group of the
reals and for all a, b ∈ R,

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

The La-lattice R generates LG as a quasivariety and for any finite set of
La-formulas T ∪ {α},

T ⊨LG α ⇐⇒ T ⊨R α.

The final example in this section does not fully fit in the previous frame-
work, since these L-lattices are not special FLe-algebras, but they can be viewed
as extensions of Boolean algebras with a particular unary operation □.

Example 1.1.4. Let Lm be the signature Lb together with a unary operation
□. An Lm-lattice M = ⟨M,∧,∨,¬, 0, 1,□⟩ where ⟨M,∧,∨,¬, 0, 1⟩ is a Boolean
algebra is called a modal algebra if it satisfies

□1 ≈ 1 and □(x ∧ y) ≈ □x ∧□y.

The class of all modal algebras, denoted by MA forms a variety and provides
an algebraic semantics for the modal logic K. Subvarieties of MA provide
algebraic semantics for well-known modal logics, e.g., the subvariety S4 of
MA defined by

□x ≤ x and □x ≤ □□x

provides an algebraic semantics for S4 and the subvariety S5 of S4 defined by

□ x ≈ x

provides an algebraic semantics for S5. The modal algebras in S5 correspond
to the monadic Boolean algebras studied in [38]. See [18] for a study of modal
logic.

16



1.2 First-Order Logics

We now introduce a broad family of first-order logics defined algebraically
based on classes of L-lattices. Note that this is only one way to define first-
order logics. First-order logics can also be defined via Kripke semantics (see,
e.g., [48]), proof systems (introduced in Section 1.3), etc. In particular, (first-
order) intermediate logics and (first-order) substructural logics are frequently
defined via Kripke semantics and sequent calculi, respectively.

First-order logics can be defined over an arbitrary first-order language with
formulas built using the propositional operations from the algebraic signa-
ture L (see, e.g., [26, Section 7.1]). However, we can restrict our attention to a
fixed (generic) first-order language here. We consider the set of predicate sym-
bols P , the union of the countably infinite sets of n-ary predicates {Pn,i}i∈N,
for each n ∈ N, and the countably infinite set Var of variables, usually denoted
by x, y, z, x1, x2, . . . . Recall that Fm∀(L), the set of L∀-formulas, denoted by
φ, ψ, χ, . . . , is defined inductively as follows:

1. Let x1, . . . , xn be variables, then Pn,i(x1, . . . , xn) is an (atomic) L∀-formula
for all n, i ∈ N.

2. Let ⋆ ∈ Ln and let φ1, . . . , φn be L∀-formulas, then ⋆(φ1, . . . , φn) is an
L∀-formula.

3. Let x be a variable and φ an L∀-formula, then (∀x)φ and (∃x)φ are
L∀-formulas.

Remark 1.2.1. Note that a first-order language may contain function sym-
bols, which means that in the inductive definition of first-order formulas above,
the arguments of atomic first-order formulas are arbitrary terms. The terms
considered in this thesis consist only of the variables in Var. We will be focus-
ing on the function-free, equality-free fragments of these first-order logics, but
we will refer to these fragments as the first-order logics throughout this thesis.

An Fm∀(L)-equation is an ordered pair of L∀-formulas φ, ψ and is usually
written as φ ≈ ψ.3 We now define a semantics where L∀-formulas are evaluated
in L-lattices. Let S be a non-empty set. An S-valuation is a map v from Var
to S and for a ∈ S and x ∈ Var, we denote by vx=a the S-valuation defined by

vx=a(y) =

{

v(y) if y ̸= x

a if y = x.

Let A be an L-lattice and let I(Pn,i) be a map from Sn to A for each n ∈ N

and i ∈ N. Then we call S = ⟨S, I⟩ an A∀-structure, if the following values

3Let us emphasize that an Fm∀(L)-equation φ ≈ ψ is a primitive syntactic object that
relates two formulas and not terms. In some settings (e.g., first-order substructural logics),
φ ≈ ψ can be replaced by a formula such as φ ↔ ψ and semantical consequence can be
defined between formulas, but this is not always the case.
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are defined for any S-valuation v

∥Pn,i∥
S

v
= I(Pn,i)(v(x1), . . . , v(xn)) n, i ∈ N

∥(∀x)φ∥Sv =
∧

{∥φ∥Svx=a
| a ∈ S}

∥(∃x)φ∥Sv =
∨

{∥φ∥Svx=a
| a ∈ S}

∥⋆(φ1, . . . , φm)∥Sv = ⋆A(∥φ1∥
S

v , . . . , ∥φm∥
S

v ) m ∈ N, ⋆ ∈ Lm,

where we set ∥(∀x)φ∥Sv and ∥(∃x)φ∥Sv to be undefined if the respective (pos-

sibly infinite) meet and join do not exist in A and set ∥⋆(φ1, . . . , φn)∥Sv to be

undefined if ∥φi∥
S

v is undefined for some i ∈ {1, . . . ,m}.
We say that an Fm∀(L)-equation φ ≈ ψ is valid in an A∀-structure S,

denoted by S |= φ ≈ ψ, if ∥φ∥Sv = ∥ψ∥Sv for any S-valuation v. If S |= φ ≈ ψ
for any A∀-structure S, we write A |= φ ≈ ψ and say that φ ≈ ψ is valid in
A, and if A |= φ ≈ ψ for any L-lattice A in a class K of L-lattices, we write
K |= φ ≈ ψ and say that φ ≈ ψ is valid in K.

These definitions can also be extended to sets of Fm∀(L)-equations. Let Σ
be a set of Fm∀(L)-equations. Then we write S |= Σ, A |= Σ, and K |= Σ if
for all φ ≈ ψ ∈ Σ, S |= φ ≈ ψ, A |= φ ≈ ψ, and K |= φ ≈ ψ, respectively.

For any set Σ ∪ {φ ≈ ψ} of Fm∀(L)-equations and class of L-structures
K we write Σ ⊨

∀
K φ ≈ ψ and say that φ ≈ ψ is a (sentential4) semantical

consequence of Σ in K, if for any L-lattice A ∈ K and A∀-structure S,

S |= φ′ ≈ ψ′, for all φ′ ≈ ψ′ ∈ Σ =⇒ S |= φ ≈ ψ.

Note that ⊨∀
K is an equational consequence relation5 in the sense of Remark 1.1.1,

which we call the first-order logic based on K.
In certain cases, we can restrict our attention to the complete members Kc

of K.

Proposition 1.2.2. Let K be a class of L-lattices that admits regular comple-
tions. Then for any set of Fm∀(L)-equations Σ ∪ {φ ≈ ψ},

Σ ⊨
∀
K φ ≈ ψ ⇐⇒ Σ ⊨

∀
Kc φ ≈ ψ.

Proof. The left-to-right direction is clear, since Kc is a subclass of K. For the
right-to-left direction suppose that Σ ⊭

∀
K φ ≈ ψ. Then there exists A ∈ K and

an A∀-structure ⟨S, I⟩ such that for all φ′ ≈ ψ′ ∈ Σ

∥φ′∥
S

v = ∥ψ′∥
S

v ,

4Note that we use the qualifier “sentential” to distinguish between consequences of a set
of equations of propositional formulas in K (introduced in Section 1.1) and consequences of
a set of equations of first-order formulas in K.

5Whenever it is clear from the context which consequence relation we mean, we call both
⊨K and ⊨

∀

K
equational consequence relations.
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for all S-valuations v, but for some S-valuation v′

∥φ∥Sv′ ̸= ∥ψ∥Sv′ .

By assumption, there exists a regular completion B of A in Kc together with
an L-lattice embedding h : A → B that preserves all existing meets and joins
in A. Since S is an A∀-structure and h preserves all existing meets and joins,
taking S

h = ⟨S, Ih⟩ with

Ih(Pn,i) := h ◦ I(Pn,i)

for all n, i ∈ I, yields a B∀-structure, that satisfies

∥χ∥S
h

v = h ◦ ∥χ∥Sv

for all χ ∈ Fm∀(L) and S-valuations v. Then we obtain

∥φ′∥
Sh

v = h ◦ ∥φ′∥
S

v = h ◦ ∥ψ′∥
S

v = ∥ψ′∥
Sh

v

for all φ′ ≈ ψ′ ∈ Σ and S-valuations v, as well as

∥φ∥S
h

v′ = h ◦ ∥ψ∥Sv′ ̸= h ◦ ∥ψ∥Sv′ = ∥ψ∥S
h

v′ .

Therefore, Σ ⊭
∀
Kc φ ≈ ψ.

The following example serves as an illustration of the definitions given
above.

Example 1.2.3. We consider the signature Lb and the consequence relation
⊨
∀
2

between sets of Fm∀(Lb)-equations and an Fm∀(Lb)-equation, where 2 is the
two-element Boolean algebra. Since 2 is a finite structure, the infinite meets
and joins considered above always exist and any S = ⟨S, I⟩ is a 2∀-structure.
For an example, let us consider S = N and I such that for the unary predicate
P and the binary predicate Q,

I(P ) : N → A; k 7→

{

1 if k is even,

0 if k is odd;

I(Q) : N2 → A; ⟨k, l⟩ 7→

{

1 if k < l,

0 otherwise.

Then for the valuation v(x) = 1, v(y) = 2 some of the values are:

∥P (x)∥Sv = I(P )(v(x)) = I(P )(1) = 0,

∥Q(x, y)∥Sv = I(Q)(v(x), v(y)) = I(Q)(1, 2) = 1,

∥(∀x)P (x)∥Sv =
∧

{∥P (x)∥Svx=k
| k ∈ N} =

∧

{0, 1} = 0,

∥(∃x)P (x)∥Sv =
∨

{∥P (x)∥Svx=k
| k ∈ N} =

∨

{0, 1} = 1,

∥(∀x)(∃y)Q(x, y)∥Sv =
∧

{
∨

{∥Q(x, y)∥Svx=k,y=l
| l ∈ N} | k ∈ N}

=
∧

{
∨

{I(Q)(k, l) | l ∈ N} | k ∈ N}

= 1.
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Thus we get S |= (∃x)P (x) ≈ (∀x)(∃y)Q(x, y).

For any first-order logic based on a class K of FLe-algebras, ⊨
∀
K, we can

define a consequence relation on formulas the same way as in Section 1.1. For
any set of Ls∀-formulas T ∪ {φ},

T ⊨
∀
K φ ⇐⇒ {e ≤ ψ | ψ ∈ T} ⊨

∀
K e ≤ φ.

That is, the first-order logic based on K determines a (first-order) logic in
the sense of the definition at the beginning of Chapter 1. In the examples
below, we mean the consequence relation on formulas instead of the equational
consequence relation whenever we write ⊨

∀
K.

Example 1.2.4. We consider the first-order versions of the logics introduced
in Example 1.1.3.

• First-order Classical logic ⊨
∀
2

corresponds to ⊨
∀
BA and, since BA admits

regular completions, also to ⊨
∀
BAc .

• First-order intuitionistic logic was first studied by Heyting [40]. As re-
marked at the beginning of this section, intuitionistic logic as well as its
first-order version are usually defined via a Kripke semantics. However,
we can give an equivalent definition of first-order intuitionistic logic via
the semantics defined above. First-order intuitionistic logic corresponds
to ⊨

∀
HA and also to ⊨

∀
HAc , since HA admits regular completions.

• First-order intermediate logics have been studied by Umezawa [90] and
Ono [67]. In particular, the first-order version of infinite-valued Gödel
logic ⊨

∀
G

was first investigated by Horn [42]. He showed that ⊨
∀
G

cor-
responds to ⊨

∀
HAto

, where HAto is the class of totally ordered Heyting
algebras. As mentioned in Section 1.1, there is only one infinite-valued
propositional Gödel logic, however in [4], the authors show that there
are (countably) infinitely many different infinite-valued first-order Gödel
logics. See [3, 4] for a study of first-order Gödel logics.

The consequence relation ⊨
∀
GA corresponds to Corsi’s first-order logic of

linear frames introduced in [27].

• First-order substructural logics can be defined as consequence relations
on formulas ⊨

∀
V , for varieties V of FLe-algebras. A broad family of vari-

eties of FLe-algebras are closed under MacNeille completions and there-
fore, for any such variety V , the consequence relations ⊨

∀
V and ⊨

∀
Vc coin-

cide.

• First-order  Lukasiewicz logic corresponds to ⊨
∀
 L
, where  L is the standard

MV-algebra defined in Example 1.1.3. The first-order logic based on
MV to, ⊨

∀
MVto

(studied by Hájek [37]) does not correspond to first-order
 Lukasiewicz logic.

First-order Abelian logic can be considered as ⊨
∀
R

. The one-variable
fragment of ⊨∀

R
is studied in [59,89].
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1.3 Proof Theory

In this section, we recall some basic proof-theoretic notions (found, e.g., in [58])
and present sequent calculi that correspond to some of the first-order logics
introduced in Section 1.2. In particular, in Figure 1.4, we present ∀CFL, a
multiset version of the first-order Full Lambek Calculus with exchange. We
consider extensions of ∀CFL with structural rules. Finally, we give a proof of
a fundamental property of these sequent calculi, that is, cut elimination.

Suppose that A is a set of structures, e.g., equations, formulas, or sequents.
An ordered pair ⟨{S1, . . . , Sn}, S⟩ consisting of a finite (possibly empty) set
{S1, . . . , Sn} ⊆ A and an element S ∈ A is called an inference for A. The
structures S1, . . . , Sn are called premises and the structure S is called the
conclusion of the inference. An inference is usually denoted by

S1 . . . Sn

S

A rule for A, usually denoted by r, is a set of inferences for A that are
referred to as instances of r. Typically, rules are defined schematically using
metavariables to denote arbitrary members of A or to construct the members
of A. Schematically defined rules with no premises are called axioms. An
ordered pair ⟨A,R⟩, where A is a set of structures and R a set of rules for A,
is called a proof system.

Let C = ⟨A,R⟩ be a proof system and X∪{S} ⊆ A. We define a derivation
d of S from X in C, denoted by d;X ⊢C S, to be a finite tree of members of
A such that

1. the root is S;

2. each node S ′ is an element in X, or has child nodes S1, . . . , Sn for n ∈ N

such that

S1 . . . Sn

S ′

is an instance of a rule in R.

We say that S is derivable from X in C, if there exists a derivation d of S from
X in C and we write X ⊢C S. For X = ∅, we just say that d is a derivation of
S in C, or S is derivable in C, and write d ⊢C S and ⊢C S, respectively. The
height ht(d) of a derivation d is the maximum length of the branches of d.

If the set of structures is the set of (propositional or first-order) formulas
Fm for some algebraic signature, the proof system is called a Hilbert-style
axiomatization. Usually Hilbert-style axiomatizations have many axioms and
only a few rules, and derivations are often given as a list of formulas.
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Let C be a Hilbert-style axiomatization. Then ⊢C is a consequence re-
lation over Fm, that is, C determines a logic ⊢C. We call C a Hilbert-style
axiomatization for the logic ⊢, if for any set of formulas T ∪ {φ},

T ⊢ φ ⇐⇒ T ⊢C φ,

and we say that C axiomatizes the logic ⊢.
For a first-order formula φ ∈ Fm∀(L), we define the complexity of φ, de-

noted by cp(φ), inductively as follows:

1. If φ is an atomic formula, then cp(φ) = 0.

2. If φ = ⋆(φ1, . . . , φn) for ⋆ ∈ Ln and formulas φ1, . . . , φn, then cp(φ) =
cp(φ1) + · · · + cp(φn) + 1.

3. If φ is (∀x)ψ or (∃x)ψ for a formula ψ, then cp(φ) = cp(ψ) + 1.

We call an occurrence of a variable x in a first-order formula bound, if it
is in the scope of a quantifier (∀x) or (∃x) and free, otherwise. A formula in
which every occurrence of a variable is bound is called a sentence.

Let x, y be variables and φ ∈ Fm∀(L). We define that y is free for x in φ
inductively as follows:

1. y is free for x in any atomic formula.

2. If φ = ⋆(φ1, . . . , φn) for ⋆ ∈ Ln, then y is free for x in φ, if y is free for
x in φi for all i ∈ {1, . . . , n}.

3. If φ = (∀z)ψ or φ = (∃z)ψ, then y is free for x in φ, if

(a) either y ̸= z and y is free for x in ψ

(b) or x does not occur freely in φ.

Example 1.3.1. The variety of FLe-algebras FLe provides an algebraic se-
mantics for the logic determined by the Hilbert-style axiomatization HCFL
(see, e.g., [31]) given in Figure 1.1. Then the translation given in the previous
section of the defining equations of FLe from Section 1.1 are all derivable in
HCFL. We give the derivation of (α → β) → (α → (β ∨ γ)), the formula
corresponding to the inequation x → y ≤ x → (y ∨ z), as an example. The
formulas in 1. and 2. are instances of axioms.

1. β → (β ∨ γ)
2. (β → (β ∨ γ)) → ((α → β) → (α → (β ∨ γ)))
3. (α → β) → (α → (β ∨ γ)) (mp) with 1., 2.

We obtain a Hilbert-style axiomatization ∀HCFL for ⊨
∀
FLe

, the substructural
first-order logic based on FLe, by adding the rule and axioms from Figure 1.2
to HCFL (see, e.g., [29]).
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α → α (α ∧ β) → α
(α → β) → ((γ → α) → (γ → β)) (α ∧ β) → β
(α → (β → γ)) → (β → (α → γ)) α → (α ∨ β)
((α → β) ∧ (α → γ)) → ((α → (β ∧ γ)) β → (α ∨ β)
((α → γ) ∧ (β → γ)) → ((α ∨ β) → γ)) e
((α ∧ e) · (β ∧ e)) → (α ∧ β) e → (α → α)
(β → (α → γ)) → (α · β → γ) β → (α → α · β)

α α → β

β
(mp) α

α ∧ e
(adju)

Figure 1.1: The Proof System HCFL

(∀x)φ(x) → φ(y) y is free for x in φ
φ(y) → (∃x)φ(x) y is free for x in φ
(∀x)(ψ → φ) → (ψ → (∀x)φ) x does not occur freely in ψ
(∀x)(φ→ ψ) → ((∃x)φ→ ψ) x does not occur freely in ψ

φ

(∀x)φ
(gen)

Figure 1.2: Additional axioms and rule for ∀HCFL

In [26], the authors show that for certain first-order logics given by a con-
sequence relation on formulas, a suitable Hilbert-style axiomatization that ex-
tends the Hilbert-style axiomatization of the respective propositional logic can
be obtained. In particular, this method can be applied to first-order logics
given by a consequence relation ⊨

∀
V based on a variety V of FLe-algebras [26,

Section 7.5]. Hence, we obtain an axiomatization for the first-order logic given
by this consequence relation on formulas.

Example 1.3.2. In this example we give some references of Hilbert-style ax-
iomatizations for some of the logics considered in the previous sections:

• A first system for first-order classical logic was given by Hilbert and
Ackermann in 1928 in [41], where they pose the question of completeness
for their system but do not answer it. It was Gödel in [34] that proved
completeness of their system. A Hilbert-style axiomatization is also given
by Kleene in [45].

• Heyting [40] was the first to study and give a Hilbert-style axiomatization
for first-order intuitionistic logic. Kleene [45] also gave a Hilbert-style
axiomatization for first-order intuitionistic logic, denoted by IQC.
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• First-order Gödel logic was first axiomatized by Horn in [42]. He proved
that adding the prelinearity and constant domain axioms,

(φ→ ψ) ∨ (ψ → φ) and (∀x)(φ ∨ (∀x)ψ) → ((∀x)φ ∨ (∀x)ψ),

to IQC, yields a Hilbert-style axiomatization for first-order Gödel logic
⊨
∀
G

. Takeuti and Titani [85] provided a different axiomatization.

• Hilbert-style axiomatizations for some propositional substructural logics
have been given in [1] and can be extended to Hilbert-style axiomati-
zations for the corresponding first-order substructural logics using the
method in [26, Section 7.5]. Hilbert-style axiomatizations for the first-
order logics ⊨

∀
FL and ⊨

∀
FLe

are given in [31].

• First-order  Lukasiewicz logic was shown to not be recursively enumer-
able (see [78]). In contrast, the first-order logic based on MV to was
axiomatized by Hájek in [37].

Let us now introduce the main proof systems that are used in this thesis,
i.e., sequent calculi. In the scope of this thesis, a sequent6 is an ordered pair of
(finite) multisets of formulas ⟨Γ,∆⟩ such that ∆ contains at most one formula,
denoted by Γ ⇒ ∆. If the formulas in Γ and ∆ are in Fm, where Fm is one
of the sets of formulas defined at the beginning of this chapter, then we call
Γ ⇒ ∆ an Fm-sequent. We denote by Γ,Π the multiset union of the multisets
Γ and Π, moreover ⇒ ∆ and Γ ⇒ denote the sequents ⟨∅,∆⟩ and ⟨Γ, ∅⟩,
respectively. Suppose that S is a set of sequents and R is a set of rules for S,
then the proof system C = ⟨S,R⟩ is called a sequent calculus.

In this section we give explicit sequent calculi only for a small number of log-
ics. However, sequent calculi can be given for a large family of logics. The first
sequent calculi were introduced by Gentzen in 1935 in [32], where he introduced
LK and LJ, sequent calculi (where sequents are ordered pairs of sequences of
formulas) for first-order classical and intuitionistic logic, respectively. LK is
a multi-conclusion sequent calculus, whereas LJ is a single-conclusion sequent
calculus.

Example 1.3.3. We present a basic example of a sequent calculus correspond-
ing to consequence in the variety Lat of lattices. Let us consider the signature
Ll. The structures we consider in order to obtain a proof system for lattices
are unary sequents of Ll-formulas, that is, ordered pairs of the form ⟨α, β⟩ with
α, β ∈ Fm(Ll), written α ⇒ β7. The sequent calculus Lat consists of all unary
Fm(Ll)-sequents together with the rules shown in Figure 1.3. The proof sys-

6Indeed, sequents of this form are called single-conclusion, whereas in some settings multi-

conclusion versions are studied. Note also that in the literature, sequents are frequently
considered to be ordered pairs of sequences of formulas instead of multisets.

7Here we consider a subset of all sequents of Ll-formulas, namely the set of all unary
sequents.

24



Identity Axioms

α ⇒ α
(id)

Cut Rule

α ⇒ γ γ ⇒ β

α ⇒ β
(cut)

Operation Rules

α1 ⇒ β

α1 ∧ α2 ⇒ β
(∧⇒)1

α ⇒ β1
α ⇒ β1 ∨ β2

(⇒∨)1

α2 ⇒ β

α1 ∧ α2 ⇒ β
(∧⇒)2

α ⇒ β2
α ⇒ β1 ∨ β2

(⇒∨)2

α ⇒ β1 α ⇒ β2
α ⇒ β1 ∧ β2

(⇒∧)
α1 ⇒ β α2 ⇒ β

α1 ∨ α2 ⇒ β
(∨⇒)

Figure 1.3: The Proof System Lat

tem Lat is sound and complete with respect to equational consequence in Lat
(cf. [58]), that is, for any set of unary Fm(Ll)-sequents Γ and α, β ∈ Fm(Ll),

Γ ⊢Lat α ⇒ β ⇐⇒ {γ ≤ δ | γ ⇒ δ ∈ Γ} ⊨Lat α ≤ β.

We give an example of a derivation in Lat, proving that one inequation of the
distributivity property for Lat holds:

(id)
α ⇒ α (∧⇒)1

α ∧ β ⇒ α

(id)
β ⇒ β

(⇒∨)1
β ⇒ β ∨ γ

(∧⇒)2
α ∧ β ⇒ β ∨ γ

(⇒∧)
α ∧ β ⇒ α ∧ (β ∨ γ)

(id)
α ⇒ α (∧⇒)1α ∧ γ ⇒ α

(id)
γ ⇒ γ

(⇒∨)2
γ ⇒ β ∨ γ

(∧⇒)2
α ∧ γ ⇒ β ∨ γ

(⇒∧)
α ∧ γ ⇒ α ∧ (β ∨ γ)

(∨⇒)
(α ∧ β) ∨ (α ∧ γ) ⇒ α ∧ (β ∨ γ)

Hence, by soundness and completeness,

⊨Lat (α ∧ β) ∨ (α ∧ γ) ≤ α ∧ (β ∨ γ).

Let {xi}i∈N and {yi}i∈N be two sets of variables such that

{xi}i∈N ∩ {yi}i∈N = ∅.

We now introduce ∀CFL, a multiset sequent calculus version for the first-
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order Full Lambek calculus with exchange8, where the sequents Γ ⇒ ∆ consist
of multisets Γ,∆ in Fm∀(Ls)

∗ ⊆ Fm∀(Ls) and Fm∀(Ls)
∗ is the set of Ls∀-

formulas φ such that any bound variable in φ is in {xi}i∈N and any free variable
in φ is in {yi}i∈N.

The calculus ∀CFL is given in Figure 1.4, where the rules (⇒∀) and (∃⇒)

satisfy the eigenvariable condition (marked by ∗ in Figure 1.4), i.e., the variable
y in {yi}i∈N does not occur in the conclusion of the rule. Note that u in the
premise of the rules (∀⇒) and (⇒∃) is a variable in {yi}i∈N, since Ls does not
contain any function symbols and the only terms are variables.

The cut rule

Γ ⇒ φ Π, φ⇒ ∆
(cut)

Γ,Π ⇒ ∆

corresponds to the transitivity of ≤, i.e., the quasi-equation

x ≤ y & y ≤ z =⇒ x ≤ z.

The cut rule is useful to establish soundness and completeness of ∀CFL with
respect to consequence in the variety of all FLe-algebras FLe, but it is prob-
lematic when trying to establish the derivability of an arbitrary formula. We
will address this problem later in this section. The formula φ of the cut rule
is called the cut-formula of that specific instance of (cut).

Let r be a rule in a sequent calculus. A formula that occurs in a premise and
the conclusion of r in the same form is called non-principal and the multiset
of all non-principal formulas of r is called the context of r. The formula(s) not
in the context of r are called the principal formula(s) of r. For example in
the cut rule of the sequent calculus ∀CFL, the context is Γ,Π,∆ and φ is the
principal formula.

Rules are called structural, if they only manipulate the structure of sequents
without referring to particular formulas.

We proceed by giving examples of some common structural rules:

1. The weakening rules

Γ ⇒ ∆ (wl)
Γ,Π ⇒ ∆

Π ⇒ (wr)
Γ,Π ⇒ ∆

allow us to add (multisets of) formulas on the left and a formula on the
right. These rules correspond to the equations

x ≤ e and f ≤ x.

8Note here that this is not the usual Full Lambek calculus with exchange, since sequents
are defined by using multisets of formulas instead of sequences of formulas. As “,” is read
as multiplication on the left we build commutativity x · y ≈ y · x into each rule of the Full
Lambek calculus individually by considering multisets instead of sequences.
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Axioms

φ⇒ φ
(id)

f ⇒
(f⇒)

⇒ e
(⇒e)

Cut Rule

Γ ⇒ φ Π, φ⇒ ∆
Γ,Π ⇒ ∆

(cut)

Operation Rules

Γ ⇒ ∆
Γ, e ⇒ ∆

(e⇒)
Γ ⇒
Γ ⇒ f

(⇒ f)

Γ1 ⇒ φ Γ2, ψ ⇒ ∆

Γ1,Γ2, φ→ ψ ⇒ ∆
(→⇒)

Γ, φ⇒ ψ

Γ ⇒ φ→ ψ
(⇒→)

Γ, φ, ψ ⇒ ∆

Γ, φ · ψ ⇒ ∆
(·⇒)

Γ1 ⇒ φ Γ2 ⇒ ψ

Γ1,Γ2 ⇒ φ · ψ
(⇒·)

Γ, φ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧⇒)1

Γ ⇒ φ

Γ ⇒ φ ∨ ψ
(⇒∨)1

Γ, ψ ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧⇒)2

Γ ⇒ ψ

Γ ⇒ φ ∨ ψ
(⇒∨)2

Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Γ, φ ∨ ψ ⇒ ∆
(∨⇒)

Γ ⇒ φ Γ ⇒ ψ

Γ ⇒ φ ∧ ψ
(⇒∧)

Γ, φ(u) ⇒ ∆

Γ, (∀x)φ(x) ⇒ ∆
(∀⇒)

Γ ⇒ ψ(y)

Γ ⇒ (∀x)ψ(x)
(⇒∀)∗

Γ, φ(y) ⇒ ∆

Γ, (∃x)φ(x) ⇒ ∆
(∃⇒)∗

Γ ⇒ ψ(u)

Γ ⇒ (∃x)ψ(x)
(⇒∃)

Figure 1.4: The Sequent Calculus ∀CFL
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2. The contraction rule9

Γ,Π,Π ⇒ ∆
(c)

Γ,Π ⇒ ∆

allows us to combine consecutive copies of (multisets of) formulas on the
left and it corresponds to the “square-increasing law”,

x ≤ x · x.

3. The mingle rule

Γ,Π1 ⇒ ∆ Γ,Π2 ⇒ ∆
(mingle)

Γ,Π1,Π2 ⇒ ∆

corresponds to the “square-decreasing” law,

x · x ≤ x.

4. For any k ∈ N
>2, the k-contraction rule

Γ,Πk ⇒ ∆
(k-contr)

Γ,Π ⇒ ∆

corresponds to the equation

x ≤ xk.

Note that the 2-contraction rule and the contraction rule coincide.

We denote the sequent calculi that extend ∀CFL by adding the rules (wl)

and (wr), or (c) by ∀CFLw and ∀CFLc, respectively. ∀CFL extended with the
three rules (wl), (wr), and (c), denoted by ∀CFLwc

10, provides an alternative
sequent calculus for first-order intuitionistic logic.

A large family of substructural logics11 is obtained by removing structural
rules from sequent calculi for (fragments of) classical and intuitionistic logics,
where the operations may be split whenever necessary. More generally, sub-
structural logics can be considered as logics given by proof systems that lack
some structural rules. Alternatively, substructural logics can be given as those
logics whose algebraic semantics are given by classes of residuated lattices (seen

9In the context of a single-conclusion sequent calculus, this is indeed “the contraction
rule”. However, in a multi-conclusion sequent calculus, we also consider the version of the
rule that combines consecutive copies of (multisets of) formulas on the right.

10Note that in the presence of (wl), (wr), and (c) the operations ∧ and · coincide.
11A term coined by Došen during the conference on “logics with restricted structural

rules” in Tübingen in 1990.
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in Sections 1.1 and 1.2 for classes of FLe-algebras). In 1958 Lambek [50] in-
troduced a sequent calculus without any structural rules that was first applied
in the field of linguistics and is now called the Lambek calculus. Girard [33]
developed a sequent calculus for linear logic that corresponds (with a different
syntax) to the propositional part of LK with the contraction and the weak-
ening rules removed. A semantical study of intuitionistic propositional logics
without the contraction rule was developed by Ono and Komori in 1985 [71],
where the authors show that these logics admit cut elimination and are sound
and complete with respect to a semantics based on SO-monoids. Ono and
Komori both begin to extend this work on propositional substructural logics
to some of the respective first-order versions in [66] and [46]. The sequence-
version sequent calculus FL obtained from ∀CFL by splitting the operation
→ into \ and / and adding rules for these symbols was first called the Full
Lambek calculus by Ono in [68].

We define for n ∈ N
>0 and φ1, . . . , φn, ψ ∈ Fm∀(Ls),

∏

(φ1, . . . , φn) := φ1 · · ·φn,
∏

() := e,
∑

(ψ) := ψ,
∑

() := f.

Then we obtain the following soundness and completeness results:

Theorem 1.3.4 (cf. [46,71]). Let C be ∀CFL, ∀CFLw, ∀CFLc, or ∀CFLwc and
let V be FLe,FLew,FLec, or FLewc, respectively. For any sequent Γ ⇒ ∆ in
Fm∀(Ls)

∗,
⊢C Γ ⇒ ∆ ⇐⇒ ⊨

∀
V

∏

Γ ≤
∑

∆.

Remark 1.3.5. Take C and V to be the same as in the previous theorem.
Let Γ and ∆ be multisets in Fm∀(Ls). Then there are multisets Γ′ and ∆′ in
Fm∀(Ls)

∗ (obtained by substituting the bound and free variables with variables
in {xi}i∈N and {yi}i∈N, respectively) such that

⊨
∀
V

∏

Γ ≤
∑

∆ ⇐⇒ ⊨
∀
V

∏

Γ′ ≤
∑

∆′.

Using Theorem 1.3.4, we can prove

⊢C Γ′ ⇒ ∆′ ⇐⇒ ⊨
∀
V

∏

Γ ≤
∑

∆,

and we obtain soundness and completeness of the sequent calculus C with
respect to (sentential) semantical consequence in the variety V .

Proof systems such as sequent calculi are usually built to satisfy certain
properties. In particular, sequent calculi where every rule has the subformula
property — every formula occurring in the premise(s) of an instance of that rule
is the subformula of a formula occurring in the conclusion — are very useful.
For example, every rule in Lat except for the cut rule has the subformula
property. Starting with any unary sequent and applying the rules except (cut)

backwards, we terminate with a unary sequent consisting only of propositional
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variables. Thus, derivations are much easier dealt with in this setting. In
∀CFL, most of the rules have the subformula property, only the cut rule and
the quantifier rules do not. However, the quantifier rules do have a version of
the subformula property, where the premises of an instance of these rules are
subformulas of the conclusion with some of the variables substituted by others.
This means that as well as for Lat, starting with a sequent in Fm∀(Ls)

∗ and
applying the rules from ∀CFL except for (cut) backwards, we terminate with
a sequent consisting only of atomic formulas. Thus, we would like to be able to
consider derivations without the use of the cut rule. Let ∀CFL◦ denote ∀CFL
without (cut). We can show that ∀CFL has cut elimination, that is,

Theorem 1.3.6 (cf. [46, 71]). For any Fm∀(Ls)
∗-sequent S,

⊢∀CFL S ⇐⇒ ⊢∀CFL◦ S.

Proof. It suffices to prove that any sequent Γ ⇒ ∆ with a derivation d of the
form

d1
...

Γ ⇒ φ

d2
...

φ,Π ⇒ ∆
(cut)

Γ,Π ⇒ ∆

where d1 and d2 are cut-free derivations, can be derived without using the
(cut)-rule. We prove this by induction on the lexicographically ordered pair
⟨cp(φ), ht(d1) + ht(d2)⟩. If both Γ ⇒ φ and φ,Π ⇒ ∆ are instances of an
axiom, then they must both be an instance of (id) (all other cases are not
possible) and Γ,Π ⇒ ∆ is again an instance of (id).

For the induction step, there are three cases. Either the cut-formula φ is
non-principal in the last rule applied in d1, φ is non-principal in the last rule
applied in d2, or φ is principal in the last rules applied in both d1 and d2.

For the first case, suppose φ is non-principal in r, the last rule applied
in d1, and r is not (∃⇒). Then we apply the (cut)-rule to the premise(s)
and φ,Π ⇒ ∆. Applying the induction hypothesis to the derivation(s) (of
lower height than d1) and the rule again yields the desired cut-free derivation.
Suppose the last rule applied in d1 is (∃⇒), then the premise is of the form
Γ′, ψ(y) ⇒ φ for some variable y that does not occur in Γ′, (∃x)ψ(x) ⇒ φ. If
y does not occur in φ,Π ⇒ ∆, then we can again apply (cut) to Γ′, ψ(y) ⇒ φ
and φ,Π ⇒ ∆, apply the induction hypothesis and (∃⇒) to obtain the desired
derivation. If y occurs in φ,Π ⇒ ∆, then we take a variable y′ in {yi}i∈N that
does not occur in either sequent and consider the derivation d′1 of Γ′, ψ(y) ⇒ φ.
We denote by d′1(y

′), the derivation d′1 with all occurrences of y substituted by
y′. Then d′1(y

′) is a derivation of Γ′, ψ(y′) ⇒ ∆ with ht(d′1(y
′)) < ht(d1) and

we obtain the derivation
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d′1(y
′)

...
Γ′, ψ(y′) ⇒ φ

d2
...

φ,Π ⇒ ∆
(cut)

Γ′, ψ(y′),Π ⇒ ∆

By the induction hypothesis, there is a cut-free derivation of Γ′, ψ(y′),Π ⇒ ∆
and we can apply (∃⇒) to obtain a cut-free derivation of Γ,Π ⇒ ∆. The cases
where φ is non-principal in the last rule applied in d2 are very similar.

Now we consider the cases where φ is principal in the last rules applied in
both d1 and d2. Suppose that φ = φ1 → φ2 and d is

d11
...

Γ, φ1 ⇒ φ2
(⇒→)

Γ ⇒ φ1 → φ2

d21
...

Π1 ⇒ φ1

d22
...

φ2,Π2 ⇒ ∆
(→⇒)

φ1 → φ2,Π1,Π2 ⇒ ∆
(cut)

Γ,Π1,Π2 ⇒ ∆

We obtain a derivation of the form

d21
...

Π1 ⇒ φ1

d11
...

Γ, φ1 ⇒ φ2
(cut)

Γ,Π1 ⇒ φ2

Since cp(φ1) < cp(φ), an application of the induction hypothesis yields a cut-
free derivation d3 of Γ,Π1 ⇒ φ2 and we can consider the derivation of the
form

d3
...

Γ,Π1 ⇒ φ2

d22
...

φ2,Π2 ⇒ ∆
(cut)

Γ,Π1,Π2 ⇒ ∆

Since cp(φ2) < cp(φ), we can apply the induction hypothesis and obtain a cut-
free derivation of Γ,Π1,Π2 ⇒ ∆. All other propositional cases can be proved
very similarly.

Suppose now that φ = (∀x)ψ(x) and d is

d′1
...

Γ ⇒ ψ(y)
(⇒∀)

Γ ⇒ (∀x)ψ(x)

d′2
...

ψ(u),Π ⇒ ∆
(∀⇒)

(∀x)ψ(x),Π ⇒ ∆
(cut)

Γ,Π ⇒ ∆

where y is a variable that does not occur (freely) in Γ ⇒ (∀x)ψ(x). Let y′ ∈
{yi}i∈N be a variable that does not occur in Γ ⇒ ψ(y) and ψ(u),Π ⇒ ∆. Then
d′1(y

′) denotes d′1 with all free occurrences of y substituted by y′, and d′2(y
′),

Π(y′) and ∆(y′) denote d′2, Π and ∆ with all free occurrences of u substituted
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by y′. By the eigenvariable condition, y does not occur in Γ and Γ(y′) =
Γ. Thus, d′1(y

′) is a derivation of Γ ⇒ ψ(y′) and d′2(y
′) is a derivation of

ψ(y′),Π(y′) ⇒ ∆(y′) and we obtain

d′1(y
′)

...
Γ ⇒ ψ(y′)

d′2(y
′)

...
ψ(y′),Π(y′) ⇒ ∆(y′)

(cut)
Γ,Π(y′) ⇒ ∆(y′)

Since cp(ψ(y′)) < cp((∀x)ψ(x)), an application of the induction hypothesis
yields a cut-free derivation d3 of Γ,Π(y′) ⇒ ∆(y′). Let d3(u) denote d3 with
all free occurrences of y′ substituted by u, then d3(u) is a cut-free derivation of
Γ,Π ⇒ ∆. The case where φ = (∃x)ψ(x) is principal in the last rule applied
in both d1 and d2 is very similar.

This method of cut elimination extends to a large family of both propo-
sitional and first-order logics, see for example the textbooks [57, 84, 88]. Cut
elimination was first established by Gentzen in [32] for LK and LJ, sequent
calculi for first-order classical and intuitionistic logic, respectively. Cut elimi-
nation has been proven for a number of substructural logics, in particular, cut
elimination was shown for FL, FLe, FLw, FLew, FLec, and FLewc (see [70]),
which also established decidability in these logics. The failure of cut elimi-
nation was shown for FLc. Ono and Kiriyama [44, 69] proved cut elimination
and decidability for all the first-order extensions of the propositional substruc-
tural logics mentioned above except for the first-order version of FLec, which
was shown to have cut elimination but to be undecidable. Girard [33] also
showed that Linear logic has cut elimination. Restall [76] provided conditions
that guarantee cut elimination for a wide range of sequent calculi for sub-
structural logics. Ciabattoni and Terui [22, 86] give a sufficient condition for
single-conclusion sequent calculi to have cut elimination.

For certain logics sequent calculi have not (yet) been found, but there are
other more general proof systems that have been introduced for these logics.
First-order  Lukasiewicz logic was shown to not be recursively enumerable by
Scarpellini [78]. Nonetheless, proof systems, containing some rule with in-
finitely many premises, have been obtained for it (see, e.g., [2, 5, 6, 37, 39]).
Sequent calculi are not a convenient framework to deal with fuzzy logics, how-
ever, there are very elegant hypersequent calculi for these logics (see, e.g., [57]).

1.4 One-Variable Fragments

In Section 1.2, we introduced full first-order logics via a semantics based on
classes of L-lattices. In this section, we restrict these semantics to one variable
and obtain semantics of the one-variable fragments of first-order logics based
on L-lattices. We then present some axiomatizations of such fragments that
are known.

32



Although we can restrict certain semantics of a first-order logic to semantics
for its one-variable fragment, a Hilbert-style axiomatization of a first-order
logic does not directly yield a Hilbert-style axiomatization of the respective
one-variable fragment, since derivations of one-variable formulas may involve
additional variables. In this section, we give the standard translation functions
between one-variable first-order formulas and modal formulas, where (∀x) and
(∃x) are interpreted as □ and , and vice versa. Therefore, we can consider
a class of algebraic structures K such that consequence in the one-variable
fragment corresponds to consequence in K (under this translation) and we
may interpret the challenge of finding an axiomatization of the one-variable
fragment of a first-order logic as finding an equational basis for K. In the
case of substructural logics, using the translations from Section 1.1, these
axiomatizations of the corresponding varieties can be translated into Hilbert-
style axiomatizations.

In order to define the one-variable fragments of the first-order logics intro-
duced in Section 1.2, it suffices here to restrict our attention to the one-variable
setting and a fixed (generic) predicate language. Thus, the following defini-
tions will be analogous to the definitions in Section 1.2. Recall that Fm1

∀(L)
denotes the set of one-variable L∀-formulas φ, ψ, χ, . . . built inductively using
a countably infinite set of unary predicates {Pi}i∈N, a distinguished variable
x, operations in L, and quantifiers (∀x) and (∃x). We call an ordered pair of
one-variable L∀-formulas φ, ψ ∈ Fm1

∀(L), written φ ≈ ψ, an Fm1
∀(L)-equation.

Now let A be any L-lattice, let S be a non-empty set, and let I(Pi) be
a map from S to A for each i ∈ N. We call the ordered pair S = ⟨S, I⟩ an
A-structure if the following values are defined for any u ∈ S:

∥Pi(x)∥Su = I(Pi)(u) i ∈ N

∥(∀x)φ∥Su =
∧

{

∥φ∥Sv | v ∈ S
}

∥(∃x)φ∥Su =
∨

{

∥φ∥Sv | v ∈ S
}

∥⋆(φ1, . . . , φn)∥Su = ⋆A
(

∥φ1∥
S

u , . . . , ∥φn∥
S

u

)

n ∈ N, ⋆ ∈ Ln

where we set ∥(∀x)φ∥Su and ∥(∃x)φ∥Su to be undefined if the respective meet

and join do not exist in A and set ∥⋆(φ1, . . . , φn)∥Su to be undefined if ∥φ1∥
S

u

is undefined for some i ∈ {1, . . . , n}. Note that for each φ ∈ Fm1
∀(L), we can

define a map from S to A as follows:

∥φ∥S : S → A; u 7→ ∥φ∥Su .

Thus, ⟨S, I⟩ is an A-structure if and only if the partial map ∥·∥S : Fm1
∀(L) →

AS is total. In the following, we work with the map ∥·∥S instead of the
particular values.

If A is complete, then S = ⟨S, I⟩ is always an A-structure; otherwise,
whether or not the partial map ∥·∥S is total depends on I. E.g., for A =
⟨N,min,max⟩ and S = N, if I(P0)(n) := n, for all n ∈ N, then ∥(∃x)P0(x)∥S
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is undefined, but if I(Pi)(n) ≤ K for all i ∈ N and n ∈ S, for some fixed
K ∈ N, then S is an A-structure.

We say that an Fm1
∀(L)-equation φ ≈ ψ is valid in an A-structure S, and

write S |= φ ≈ ψ, if ∥φ∥S = ∥ψ∥S. More generally, consider any class of L-
lattices K. We say that an Fm1

∀(L)-equation φ ≈ ψ is a (sentential) semantical
consequence of a set of Fm1

∀(L)-equations Σ in K, and write Σ ⊨
∀1
K φ ≈ ψ, if

for any A ∈ K and A-structure S,

S |= φ′ ≈ ψ′, for all φ′ ≈ ψ′ ∈ Σ =⇒ S |= φ ≈ ψ.

Similarly to the full first-order case, in certain cases, we can restrict our
attention to the complete members of K. We obtain the following corollary of
Proposition 1.2.2:

Corollary 1.4.1. Let K be a class of L-lattices that admits regular comple-
tions. Then for any set of Fm1

∀(L)-equations Σ ∪ {φ ≈ ψ},

Σ ⊨
∀1
K φ ≈ ψ ⇐⇒ Σ ⊨

∀1
Kc φ ≈ ψ.

Similarly as in Section 1.2, we can define a consequence relation on formu-
las, whenever we consider a one-variable first-order logic based on a class K of
FLe-algebras. We use ⊨

∀1
K to denote both consequence relations.

The following two theorems follow from [26].

Theorem 1.4.2 (Compactness). Let V be a variety of FLe-algebras. Then for
any set of Fm1

∀(Ls)-equations Σ ∪ {φ ≈ ψ},

Σ ⊨
∀1
V φ ≈ ψ ⇐⇒ Σ′

⊨
∀1
V φ ≈ ψ for some finite Σ′ ⊆ Σ.

Theorem 1.4.3 (Local Deduction Theorem, see also [57]). Let V be a variety
of FLe-algebras. Then for any set of one-variable Ls∀-formulas T ∪ {ψ} and
any one-variable Ls∀-sentence φ,

T ∪ {φ} ⊨
∀1
V ψ ⇐⇒ T ⊨

∀1
V (φ ∧ e)n → ψ for some n ∈ N

>0.

Recall that Fm□(L) denotes the set of (propositional) L□-formulas α, β, . . .
built inductively using a countably infinite set of propositional variables {pi}i∈N,
the operations in L, and the unary operations □ and .

The (standard) translation functions (−)∗ and (−)◦ between Fm1
∀(L) and

Fm□(L) are defined inductively by

(Pi(x))∗ = pi p◦i = Pi(x) i ∈ N

(⋆(φ1, . . . , φn))∗ = ⋆(φ∗
1, . . . , φ

∗
n) (⋆(α1, . . . , αn))◦ = ⋆(α◦

1, . . . , α
◦
n) ⋆ ∈ Ln

((∀x)φ)∗ = □φ∗ (□α)◦ = (∀x)α◦

((∃x)φ)∗ = φ∗ ( α)◦ = (∃x)α◦,

and lift in the obvious way to (sets of) Fm1
∀(L)-equations and Fm□(L)-equations.

Clearly, (φ∗)◦ = φ for any φ ∈ Fm1
∀(L) and (α◦)∗ = α for any α ∈ Fm□(L),
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and we may therefore switch between first-order and modal notations as con-
venient.

To axiomatize consequence in the one-variable first-order logic based on a
class of L-lattices K, it therefore suffices to find a (natural) axiomatization
of a class C of algebras in the signature of L expanded with □, such that
⊨
∀1
K corresponds to equational consequence in C. Our goal in this thesis is

to provide a (natural) axiomatization of a variety V such that for any set of
Fm1

∀(L)-equations Σ ∪ {φ ≈ ψ},

Σ ⊨
∀1
K φ ≈ ψ ⇐⇒ Σ∗

⊨V φ
∗ ≈ ψ∗.

Example 1.4.4. We now continue the running examples of this chapter by
considering the one-variable fragments of the first-order logics introduced in
Example 1.2.4.

• The first axiomatization of the one-variable fragment of first-order classi-
cal logic was given by Wajsberg in [91]. He proved that the one-variable
fragment of first-order classical logic corresponds to the modal logic S5
(introduced in Section 1.1), which in particular shows, that

Σ ⊨
∀1
2
φ ≈ ψ ⇐⇒ Σ∗

⊨S5 φ
∗ ≈ ψ∗,

for any set Σ ∪ {φ ≈ ψ} of Fm1
∀(Lb)-equations.

• In [74], Prior axiomatized the S5-like modal logic MIPC as a modal ex-
tension of the intuitionistic logic IPC. In [61] it was shown that the va-
riety V of monadic Heyting algebras provides an algebraic semantics for
MIPC, where a monadic Heyting algebra as presented in [7]12 is an alge-
braic structure H = ⟨H,∧,∨,→, 0, 1,□, ⟩ such that ⟨H,∧,∨,→ , 0, 1⟩
is a Heyting algebra, □ and are unary operations, and for all a, b ∈ H,

□a ≤ a, a ≤ a,
□(a ∧ b) = □a ∧□b, (a ∨ b) = a ∨ b,
□1 = 1, 0 = 0,
□ a = a, □a = □a,

( a ∧ b) = a ∧ b.

Bull showed in [11] that the one-variable fragment of first-order intuition-
istic logic can be axiomatized by MIPC, and thus, for any set Σ∪{φ ≈ ψ}
of Fm1

∀(Li)-equations,

Σ ⊨
∀1
HA φ ≈ ψ ⇐⇒ Σ∗

⊨V φ
∗ ≈ ψ∗.

• Ono and Suzuki (see [64, 65, 67, 72, 82, 83]) found a continuum of logics
over MIPC that correspond to the one-variable fragments of first-order
intermediate logics. Bezhanishvili [7] further studied logics extending
MIPC and showed that not all of those logics correspond to a one-variable
fragment of a first-order intermediate logic.

12Bezhanishvili considers the unary operators ∀ and ∃ instead of □ and .
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• The one-variable fragment of first-order Gödel logic, ⊨
∀1
G

, was axioma-
tized in [15] by Caicedo and Rodŕıguez. They showed that for any set
Σ ∪ {φ ≈ ψ} of Fm1

∀(Li)-equations,

Σ ⊨
∀1
G
φ ≈ ψ ⇐⇒ Σ∗ |=V φ

∗ ≈ ψ∗,

where V is the variety of monadic Gödel algebras, i.e., the variety of
monadic Heyting algebras satisfying the prelinearity and the constant
domain axioms:

(x→ y) ∨ (y → x) ≈ e and □(□x ∨ y) ≈ □x ∨□y.

The one-variable fragment of (Corsi’s) first-order logic of linear frames,
⊨
∀1
GA, corresponds to the variety of monadic Heyting algebras defined by

the prelinearity axiom [14].

• Interestingly, despite the fact that first-order  Lukasiewicz logic is not re-
cursively enumerable, the one-variable-fragment of first-order  Lukasiewicz
logic ⊨∀1

 L
was axiomatized by Rutledge in [77], proving that it corresponds

to the variety MMV of monadic MV-algebras. A monadic MV-algebra
is an algebraic structure M = ⟨M,⊕,¬, 0, ⟩ where ⟨M,⊕,¬, 0⟩ is an
MV-algebra and is a unary operation satisfying for all a, b ∈M ,

a ≤ a, (a ∨ b) = b ∨ b,
¬ a = ¬ a, ( a⊕ b) = a⊕ b,
(a⊗ a) = a⊗ a, (a⊕ a) = a⊕ a,

where a⊗ b := ¬(¬a⊕ ¬b) and □a := ¬ ¬a.

• The one-variable fragment of first-order Abelian logic corresponds to the
variety of monadic Abelian ℓ-groups [59]. A monadic abelian ℓ-group is
an algebraic structure G = ⟨G,∧,∨,+,−, 0,□⟩ where ⟨G,∧,∨,+,−, 0⟩
is an abelian ℓ-group, □ is a unary operation, and for all a, b ∈ G

□(a+ b) ≤ □a+ □b, □(a ∧ b) = □a ∧□b,
□a ≤ a, (a ∧ b) = a ∧ b,
a = □ a, □(a+ b) = □a+ □b,

where a := −□− a.
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Chapter 2

Algebraic approach

In this chapter we introduce potential modal counterparts of the one-variable
first-order logics introduced in Section 1.4. We prove that for a large family
of one-variable first-order logics based on a class K of L-lattices a variety V of
these modal counterparts provides a (natural) axiomatization, that is, for any
set of Fm1

∀(L)-equations Σ ∪ {φ ≈ ψ},

Σ ⊨
∀1
K φ ≈ ψ ⇐⇒ Σ∗

⊨V φ
∗ ≈ ψ∗.

In Section 2.1 we define m-L-lattices to be modal structures that extend
L-lattices with the modalities □ and , and satisfy “S5-like” equations, de-
noting for a class K of L-lattices, the class of m-L-lattices with an L-lattice
reduct in K, by mK. In Section 2.2 we formulate and prove some properties
of m-L-lattices, in particular, a correspondence theorem between m-L-lattices
and ordered pairs of L-lattices and their relatively complete subalgebras. In
Section 2.3 we introduce functional m-L-lattices and establish a relationship
between consequence in the one-variable first-order logic based on K and con-
sequence in the functional members of mK. Finally, in Section 2.4, we prove a
functional representation theorem for a class mK such that K is closed under
taking direct limits and subalgebras, and has the superamalgamation property.
In particular, we prove that for a variety V that has the superamalgamation
property, the equations defining mV provide a (natural) method for axioma-
tizing the one-variable first-order logic defined over V .

2.1 Modal Extensions of L-Lattices

In this section we define m-L-lattices and show that they encompass several
examples of known algebraic counterparts of the one-variable fragments of
first-order logics found in the literature.

As our basic modal structures, let us define an m-lattice to be any algebraic
structure ⟨L,∧,∨,□, ⟩ with lattice reduct ⟨L,∧,∨⟩ that satisfies the following
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equations:

(L1□) □x ∧ x ≈ □x (L1 ) x ∨ x ≈ x
(L2□) □(x ∧ y) ≈ □x ∧□y (L2 ) (x ∨ y) ≈ x ∨ y
(L3□) □ x ≈ x (L3 ) □x ≈ □x.

Recall from Section 1.1, that x ≤ y stands for x∧ y ≈ x, and since x∧ y ≈ x if
and only if x ∨ y ≈ y, x ≤ y also stands for x ∨ y ≈ y. It is easily shown that
every m-lattice also satisfies the following equations and quasi-equations:

(L4□) □□x ≈ □x (L4 ) x ≈ x
(L5□) x ≤ y =⇒ □x ≤ □y (L5 ) x ≤ y =⇒ x ≤ y.

Now let L be any fixed lattice-oriented signature. We define an m-L-lattice to
be any algebraic structure ⟨A,□, ⟩ such that A is an L-lattice, ⟨A,∧,∨,□, ⟩
is an m-lattice, and the following equation is satisfied for each n ∈ N and
⋆ ∈ Ln:

(⋆□) □(⋆(□x1, . . . ,□xn)) ≈ ⋆(□x1, . . . ,□xn).

Let us consider an m-L-lattice ⟨A,□, ⟩. Then for each n ∈ N and ⋆ ∈ Ln we
obtain for any a1, . . . , an ∈ A,

(⋆( a1, . . . , an)) = (⋆(□ a1, . . . ,□ an)) (L3□)
= □(⋆(□ a1, . . . ,□ an)) (⋆□)
= □(⋆(□ a1, . . . ,□ an)) (L3 )
= ⋆(□ a1, . . . ,□ an) (⋆□)
= ⋆( a1, . . . , an) (L3□)

and ⟨A,□, ⟩ also satisfies the equation

(⋆ ) (⋆( x1, . . . , xn)) ≈ ⋆( x1, . . . , xn).

Given a class K of L-lattices, let mK denote the class of m-L-lattices with
an L-lattice reduct in K. Note that if K is a variety, then so is mK.

Example 2.1.1. It is straightforward to show that the notion of an m-Ls-
lattice encompasses other algebraic structures considered in the literature. In
particular, mBA is the variety S5 introduced in Example 1.1.4 and corresponds
to the variety of monadic Boolean algebras [38] and mHA is the variety of
monadic Heyting algebras [61] defined in Example 1.4.4.

Moreover, if A is an FLe-algebra, then every m-Ls-lattice ⟨A,□, ⟩ satisfies
the equations

(L6□) □(x→ □y) ≈ x→ □y (L6 ) □(□x→ y) ≈ □x→ □y,

and mFLe is therefore the variety of monadic FLe-algebras introduced in [89].
Let us just check (L6□), the proof for (L6 ) being very similar. First we show
that for any a, b, c, d ∈ A such that a ≤ b, also a · c ≤ b · c and b→ d ≤ a→ d.
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Since b · c ≤ b · c, using residuation, b ≤ c→ b · c and hence also a ≤ c→ b · c.
Another application of residuation yields a ·c ≤ b ·c. Since also b→ d ≤ b→ d,
applying residuation, we obtain b · (b→ d) ≤ d. Using the previous argument,
we obtain a·(b→ d) ≤ b·(b→ c) by taking c to be b→ d. Hence, a·(b→ d) ≤ d
and applying residuation yields b → d ≤ a → d. By (L1 ), a ≤ a, and we
obtain a→ □b ≤ a→ □b. Hence, using (L3□), (→□), and (L5□),

a→ □b = □ a→ □b

= □(□ a→ □b)

= □( a→ □b)

≤ □(a→ □b).

Conversely, by using residuation twice,

□(a→ □b) ≤ a→ □b ⇐⇒ a ·□(a→ □b) ≤ □b

⇐⇒ a ≤ □(a→ □b) → □b.

Since □(a → □b) ≤ a → □b by (L1□), also a ≤ □(a → □b) → □b. Hence,
using (L5 ), (L3 ), and (→ ),

a ≤ (□(a→ □b) → □b)

= ( □(a→ □b) → □b)

= □(a→ □b) → □b

= □(a→ □b) → □b.

By residuation again,

a ≤ □(a→ □b) → □b ⇐⇒ a ·□(a→ □b) ≤ □b

⇐⇒ □(a→ □b) ≤ a→ □b.

Thus, from a ≤ □(a→ □b) → □b we obtain □(a→ □b) ≤ a→ □b.

In the following examples, we consider some more of the one-variable first-
order logics from Example 1.4.4.

Example 2.1.2. The variety mGA corresponds to the one-variable fragment
of Corsi’s first-order logic of linear frames [14], whereas the variety of monadic
Gödel algebras — axiomatized relative to mGA by the constant domain axiom
□(□x∨y) ≈ □x∨□y — corresponds to the one-variable fragment of first-order
Gödel logic, the first-order logic of linear frames with a constant domain [15].

Example 2.1.3. Note that the variety axiomatized relative to mMV by the
constant domain axiom does not satisfy

x · x ≈ (x · x)
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and therefore properly contains the variety MMV of monadic MV-algebras
studied in [17,28,77] and defined in Example 1.4.4. Consider, for example, the
MV-algebra (in the signature of FLe-algebras)

 L3 = ⟨{0, 1
2
, 1},∧,∨, ·,→, 0, 1⟩

with the usual order, where

a · b := max(0, a+ b− 1) and a→ b := min(1, 1 − a+ b).

Let
□0 = □

1
2

= 0 = 0 and □1 = 1
2

= 1 = 1.

Then ⟨ L3,□, ⟩ ∈ mMV satisfies the constant domain axiom, but

1
2
· 1

2
= 1 · 1 = 1 ̸= 0 = 0 = (1

2
· 1
2
)

and mMV does not correspond to the one-variable fragment of first-order
 Lukasiewicz logic.

2.2 A General Correspondence Theorem

We now establish a correspondence theorem between m-L-lattices and ordered
pairs of L-lattices and their relatively complete subalgebras, which provides a
useful description of m-L-lattices that generalizes results in the literature for
varieties such as monadic Heyting algebras [7] and monadic FLe-algebras [89].

Lemma 2.2.1. Let ⟨A,□, ⟩ be any m-L-lattice. Then □A := {□a | a ∈ A}
forms a subalgebra □A of A, where □A = A := { a | a ∈ A} and for any
a ∈ A,

□a = max{b ∈ □A | b ≤ a} and a = min{b ∈ □A | a ≤ b}.

Proof. Let ⋆ ∈ Ln and □a1, . . . ,□an ∈ □A. Then using (⋆□), we obtain

⋆(□a1, . . . ,□an) = □(⋆(□a1, . . . ,□an)) ∈ □A,

and hence, □A forms a subalgebra of A. Since

□a = □a ∈ A and a = □ a ∈ □A,

by (L3□) and (L3 ), also □A = A. Now consider any a ∈ A. If b ∈ □A
satisfies b ≤ a, then

b = □b ≤ □a,

by (L4□) and (L5□). But □a ≤ a, by (L1□), so

□a = max{b ∈ □A | b ≤ a}.

Analogous reasoning establishes that a = min{b ∈ □A | a ≤ b}.
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Let us call a sublattice L0 of a lattice L relatively complete if for any a ∈ L,
the sets

{b ∈ L0 | b ≤ a} and {b ∈ L0 | a ≤ b}

contain a maximum and minimum, respectively. Equivalently, L0 is relatively
complete if the inclusion map

f0 : ⟨L0,≤⟩ ↪→ ⟨L,≤⟩

has left and right adjoints, that is, if there exist order-preserving maps

□ : L→ L0 and : L→ L0

such that for all a ∈ L and b ∈ L0,

f0(b) ≤ a ⇐⇒ b ≤ □a and a ≤ f0(b) ⇐⇒ a ≤ b.

Let us also say that a subalgebra A0 of an L-lattice A is relatively complete
if this property holds with respect to their lattice reducts. In particular, by
Lemma 2.2.1, the subalgebra □A of A is relatively complete for any m-L-
lattice ⟨A,□, ⟩. The following result establishes a converse.

Lemma 2.2.2. Let A0 be a relatively complete subalgebra of an L-lattice A,
and define for each a ∈ A

□0a := max{b ∈ A0 | b ≤ a} and 0a := min{b ∈ A0 | a ≤ b}.

Then ⟨A,□0, 0⟩ is an m-L-lattice and □0A = 0A = A0.

Proof. It is straightforward to check that ⟨A,∧,∨,□0, 0⟩ is an m-lattice; for
example, it satisfies (L2□), since for any a1, a2 ∈ A,

□0(a1 ∧ a2) = max{b ∈ A0 | b ≤ a1 ∧ a2}

= max{b ∈ A0 | b ≤ a1 and b ≤ a2}

= max{b ∈ A0 | b ≤ a1} ∧ max{b ∈ A0 | b ≤ a2}

= □0a1 ∧□0a2.

Since A0 is a subalgebra of A, clearly ⟨A,□0, 0⟩ also satisfies (⋆□). Hence
⟨A,□0, 0⟩ is an m-L-lattice and □0A = 0A = A0.

Combining Lemmas 2.2.1 and 2.2.2 yields the following representation the-
orem for m-L-lattices.

Theorem 2.2.3. Let K be any class of L-lattices. Then there exists a
one-to-one correspondence between the members of mK and ordered pairs
⟨A,A0⟩ such that A ∈ K and A0 is a relatively complete subalgebra of A,
implemented by the maps

⟨A,□, ⟩ 7→ ⟨A,□A⟩ and ⟨A,A0⟩ 7→ ⟨A,□0, 0⟩.
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2.3 Functional m-L-Lattices

In this section we introduce functional m-L-lattices and show that evaluations
into functional m-L-lattices can be identified with the semantics of one-variable
first-order logics. This identification is then used to establish a relationship
between consequence in one-variable first-order logics and consequence in a
class of m-L-lattices.

Given any L-lattice A and set W , let AW be the L-lattice with universe
AW , where the operations are defined pointwise.

Proposition 2.3.1. Let A be an L-lattice, W a set, and B a subalgebra of
AW such that for each f ∈ B, the elements

∧

v∈W

f(v) and
∨

v∈W

f(v)

exist in A and the following constant functions belong to B,

□f : W → A; u 7→
∧

v∈W

f(v) and f : W → A; u 7→
∨

v∈W

f(v).

Then ⟨B,□, ⟩ is an m-L-lattice. Moreover, if A belongs to a class K of L-
lattices closed under taking subalgebras and direct powers, then ⟨B,□, ⟩ ∈
mK.

Proof. It is straightforward to check that ⟨B,∧,∨,□, ⟩ satisfies (L1□), (L2□),
(L1 ), and (L2 ). Let us just show that (L2 ) holds. For any u ∈ W ,

(f ∨ g)(u) =
∨

v∈W

(f ∨ g)(v)

=
∨

v∈W

f(v) ∨
∨

v∈W

g(v)

= f(u) ∨ g(u).

To confirm that ⟨B,□, ⟩ is an m-L-lattice — and therefore, if A belongs
to a class K of L-lattices closed under taking subalgebras and direct powers,
a member of mK — observe that □f and f are, by definition, constant
functions for any f ∈ B. Hence ⟨B,∧,∨,□, ⟩ clearly also satisfies (L3□)
and (L3 ). Moreover, for any n ∈ N, ⋆ ∈ Ln, and f1, . . . , fn ∈ B, the func-
tion ⋆(□f1, . . . ,□fn) is constant and therefore equal to □(⋆(□f1, . . . ,□fn)),
so ⟨B,□, ⟩ satisfies (⋆□).

Let us call an m-L-lattice ⟨B,□, ⟩ ⟨A,W ⟩-functional if it is constructed
as described in Proposition 2.3.1 for some L-lattice A and set W . Given any
class of L-lattices K, we call an m-L-lattice K-functional if it is isomorphic to
an ⟨A,W ⟩-functional m-L-lattice for some A ∈ K and set W , omitting the
prefix K- if the class is clear from the context.

The following result identifies the semantics of one-variable first-order logics
with evaluations into functional m-L-lattices.
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Proposition 2.3.2. Let A be any L-lattice.

(a) Let S = ⟨S, I⟩ be any A-structure. Then B := {∥φ∥S | φ ∈ Fm1
∀(L)}

forms an ⟨A, S⟩-functional m-L-lattice B and the B-evaluation gS, de-
fined by setting gS(pi) := I(Pi) for each i ∈ N, satisfies for all φ, ψ ∈
Fm1

∀(L),

gS(φ∗) = ∥φ∥S and S |= φ ≈ ψ ⇐⇒ gS(φ∗) = gS(ψ∗).

(b) Let B be any ⟨A,W ⟩-functional m-L-lattice for some set W , and let g
be any B-evaluation. Then W = ⟨W,J ⟩, where J (Pi) := g(pi) for each
i ∈ N, is an A-structure satisfying for all φ, ψ ∈ Fm1

∀(L),

g(φ∗) = ∥φ∥W and W |= φ ≈ ψ ⇐⇒ g(φ∗) = g(ψ∗).

Proof. (a) To show that B is ⟨A, S⟩-functional, it suffices to observe that for
any ∥φ∥S ∈ B, since S is an A-structure, the elements

∧

{∥φ∥S (v) | v ∈ S} and
∨

{∥φ∥S (v) | v ∈ S}

exist in A and correspond to the constant functions ∥(∀x)φ∥S ∈ B and
∥(∃x)φ∥S ∈ B, respectively. The fact that gS(φ∗) = ∥φ∥S for all φ ∈ Fm1

∀(L),
follows by an easy induction on the definition of φ, from which it follows also
that for all φ, ψ ∈ Fm1

∀(L)

S |= φ ≈ ψ ⇐⇒ gS(φ∗) = gS(ψ∗).

(b) Since B is ⟨A,W ⟩-functional, the elements

∧

v∈W

f(v) and
∨

v∈W

f(v)

exist in A for every f ∈ B. We prove that g(φ∗) = ∥φ∥W, by induction on
the definition of φ, from which it follows immediately that W = ⟨W,J ⟩ is an
A-structure and

W |= φ ≈ ψ ⇐⇒ g(φ∗) = g(ψ∗)

for all φ, ψ ∈ Fm1
∀(L). In particular, for the case where φ = (∀x)ψ, using the

induction hypothesis for the second line,

∥(∀x)ψ∥W (u) =
∧

{∥ψ∥W (v) | v ∈ W}

=
∧

{g(ψ∗)(v) | v ∈ W}

= □g(ψ∗)(u)

= g(((∀x)ψ)∗)(u).

The case where φ = (∃x)ψ is very similar.
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Let K be any class of L-lattices and denote by f K the class of all K-
functional m-L-lattices. Then, as a direct consequence of Proposition 2.3.2,
for any set of Fm1

∀(L)-equations T ∪ {φ ≈ ψ},

Σ∗
⊨fK φ

∗ ≈ ψ∗ ⇐⇒ Σ ⊨
∀1
K φ ≈ ψ,

recalling from Section 1.4 that (−)∗ denotes the translation function from
Fm1

∀(L) to Fm□(L) and from (sets of) Fm1
∀(L)-equations to Fm□(L)-equations.

If K is closed under taking subalgebras and direct powers, then f K ⊆ mK,
by Proposition 2.3.1, and we obtain the following relationship between conse-
quence in the first-order logic based on K and consequence in the class mK.

Corollary 2.3.3. Let K be a class of L-lattices closed under taking subalgebras
and direct powers. Then for any set of Fm1

∀(L)-equations Σ ∪ {φ ≈ ψ},

Σ∗
⊨mK φ

∗ ≈ ψ∗ =⇒ Σ ⊨
∀1
K φ ≈ ψ.

Moreover, if every member of mK is K-functional (i.e., f K = mK), then

Σ∗
⊨mK φ

∗ ≈ ψ∗ ⇐⇒ Σ ⊨
∀1
K φ ≈ ψ.

Let us remark that a stricter notion of a functional algebra for a class K of
L-lattices is considered in [8, 24] that coincides in our setting with the notion
of being Kc-functional, where Kc is the class of complete members of K. That
is, an m-L-lattice ⟨B,□, ⟩ is Kc-functional if it is isomorphic to a subalgebra
of ⟨AW ,□, ⟩ for some complete L-lattice A ∈ K and set W , where □ and
are defined as described in Proposition 2.3.1.

Adapting Proposition 2.3.2 slightly, we can formulate a stronger version of
Corollary 2.3.3, which uses this notion of Kc-functional m-L-lattices.

Corollary 2.3.4. Let K be a class of L-lattices closed under taking subalgebras
and direct powers. If every member of mK is Kc-functional, then for any set
of Fm1

∀(L)-equations Σ ∪ {φ ≈ ψ},

Σ∗
⊨mK φ

∗ ≈ ψ∗ ⇐⇒ Σ ⊨
∀1
Kc φ ≈ ψ.

2.4 A Functional Representation Theorem

Adapting the proof of a similar result for Heyting Algebras [8, Theorem 3.6],
we prove in this section that if a variety V of L-lattices has the superamal-
gamation property, then every member of mV is V-functional, and hence, by
Corollary 2.3.3, consequence in the one-variable first-order logic based on V
corresponds to consequence in mV .

We first recall the necessary algebraic notions. Let K be a class of L-lattices.
A V-formation in K is a 5-tuple ⟨A,B1,B2, f1, f2⟩ consisting of A,B1,B2 ∈
K and embeddings f1 : A → B1, f2 : A → B2. An amalgam in K of a V-
formation ⟨A,B1,B2, f1, f2⟩ in K is a triple ⟨C, g1, g2⟩ consisting of C ∈ K
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A

B1 B2

C

f1 f2

g1 g2

a

b1

b2

g2(b2)

g1(b1)
gi ◦ fi(a)

Figure 2.1: Depiction of the superamalgamation property

and embeddings g1 : B1 → C, g2 : B2 → C such that g1 ◦ f1 = g2 ◦ f2; it is
called a superamalgam if also for any bi ∈ Bi, bj ∈ Bj and distinct i, j ∈ {1, 2},

gi(bi) ≤ gj(bj) =⇒ gi(bi) ≤ gi ◦ fi(a) = gj ◦ fj(a) ≤ gj(bj) for some a ∈ A.

The class K is said to have the superamalgamation property if every V-
formation in K has a superamalgam in K. In Figure 2.1 we depict the supera-
malgam ⟨C, g1, g2⟩ of the V-formation ⟨A,B1,B2, f1, f2⟩.

Theorem 2.4.1. Let K be a class of L-lattices that is closed under taking
direct limits and subalgebras, and has the superamalgamation property. Then
every member of mK is functional.

Proof. Consider any ⟨A,□, ⟩ ∈ mK. Then A ∈ K and, since K is closed un-
der taking subalgebras, also □A ∈ K. We let W := N

>0 and define inductively
a sequence of L-lattices ⟨Ai⟩i∈W in K and sequences of L-lattice embeddings

⟨fi : □A → Ai⟩i∈W , ⟨gi : A → Ai⟩i∈W , ⟨si : Ai−1 → Ai⟩i∈W .

Let A0 := A and let f0 : □A → A be the inclusion map. For each i ∈ W ,
there exists inductively, by assumption, a superamalgam ⟨Ai, si, gi⟩ of the V-
formation ⟨□A,Ai−1,A, fi−1, f0⟩, and we define also

fi := si ◦ fi−1 = gi ◦ f0 = gi|□A. (2.1)

Now let L be the direct limit of the system ⟨⟨Ai, si⟩⟩i∈W with an associated
sequence of L-lattice embeddings ⟨li : Ai → L⟩i∈W . Since K is closed under
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taking direct limits, L belongs to K. The first two superamalgamation steps
of this construction are depicted in the following diagram:

□A A

A A1 A2 A3

L

· · ·

f0

f0

f1
g3g2

g1

s1 s2 s3

l1
l2

l3

Since the operations of LW are defined pointwise, B := {⟨li ◦ gi(a)⟩i∈W | a ∈ A}
is the universe of a subalgebra B of LW . We can also show that for each a ∈ A,
the elements

∧

j∈W

lj ◦ gj(a) and
∨

j∈W

lj ◦ gj(a)

exist in L and hence that ⟨B,□, ⟩, with □ and defined in Proposition 2.3.1,
is an ⟨L,W ⟩-functional m-L-lattice. Let a ∈ A and fix some i ∈ W . It suffices
to show that li ◦ gi(□a) and li ◦ gi( a) are the greatest lower bound and least
upper bound, respectively, of S := {lj ◦ gj(a) | j ∈ W}. Observe first that for
any k ∈ W ,

lk ◦ gk(□a) = lk ◦ fk(□a)

= lk+1 ◦ sk+1 ◦ fk(□a)

= lk+1 ◦ gk+1(□a),

where the first and last equations follow from (2.1) and the second follows from
the fact that L is a direct limit. Hence for each j ∈ W ,

li ◦ gi(□a) = lj ◦ gj(□a)

≤ lj ◦ gj(a).

So li ◦ gi(□a) is a lower bound of S. Now suppose that c ∈ L is another lower
bound of S. Since L is a direct limit, there exist k ∈ W and d ∈ Ak such that

lk+1 ◦ sk+1(d) = lk(d)

= c

≤ lk+1 ◦ gk+1(a).
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Since lk+1 is an embedding, sk+1(d) ≤ gk+1(a). Hence, since ⟨Ak+1, sk+1, gk+1⟩
is a superamalgam of ⟨□A,Ak,A, fk, f0⟩, there exists b ∈ □A such that

sk+1(d) ≤ sk+1 ◦ fk(b)

= gk+1 ◦ f0(b)

≤ gk+1(a).

But sk+1 and gk+1 are embeddings and f0 is the inclusion map, so

d ≤ fk(b) and b ≤ a.

The latter inequality together with b ∈ □A, yields

b = □b ≤ □a.

Hence also
fk(b) ≤ fk(□a) = gk(□a),

and, using the first inequality,

c = lk(d)

≤ lk ◦ fk(b)

≤ lk ◦ gk(□a)

= li ◦ gi(□a).

So
∧

j∈W

lj ◦ gj(a) = li ◦ gi(□a)

exists in L and the constant function ⟨li ◦ gi(□a)⟩i∈W belongs to B. Also,
symmetrically,

∨

j∈W

lj ◦ gj(a) = li ◦ gi( a)

exists in L and the constant function ⟨li ◦ gi( a)⟩i∈W belongs to B.
To show that ⟨A,□, ⟩ is functional, it remains to prove that the following

map is an isomorphism:

f : ⟨A,□, ⟩ → ⟨B,□, ⟩; a 7→ ⟨li ◦ gi(a)⟩i∈W .

Since the operations of LW are defined pointwise and li and gi are L-lattice
embeddings for each i ∈ W , also f is an L-lattice embedding. Clearly, it is
onto, by the definition ofB. Moreover, recalling that li◦gi(□a) =

∧

j∈W li◦gi(a)
for each a ∈ A, it follows that

f(□a) = ⟨li ◦ gi(□a)⟩i∈W

= ⟨
∧

j∈W

lj ◦ gj(a)⟩i∈W

= □⟨li ◦ gi(a)⟩i∈W

= □f(a),

and, similarly, f( a) = f(a).
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Combining Theorem 2.4.1 with Corollary 2.3.3 yields the following result.

Corollary 2.4.2. If V is a variety of L-lattices that has the superamalgamation
property, then for any set Σ ∪ {φ ≈ ψ} of Fm1

∀(L)-equations,

Σ ⊨
∀1
V φ ≈ ψ ⇐⇒ Σ∗

⊨mV φ
∗ ≈ ψ∗.

Example 2.4.3. The variety of lattices has the superamalgamation prop-
erty [36]. Hence, by Theorem 2.4.1, every m-lattice is functional, and conse-
quence in the one-variable first-order lattice logic, understood as an equational
consequence relation, corresponds to consequence in m-lattices.

Example 2.4.4. FLe, FLew, and FLec, and many other varieties of FLe-
algebras have the superamalgamation property, which is equivalent in this
setting to the Craig interpolation property for the associated substructural
logic (see, e.g., [31]). Hence, for any such variety V — notably, for V ∈
{FLe,FLew,FLec} — every member of mV is functional, and consequence
in the one-variable first-order substructural logic based on V corresponds to
consequence in mV .

Example 2.4.5. Maksimova [55] showed that there are exactly 7 varieties of
Heyting algebras (e.g., HA, BA, and GA) that have the (super-)amalgamation
property. Therefore, for any variety V of these 7 varieties, every member of
mV is functional, and consequence in the one-variable first-order intermediate
logic based on V corresponds to consequence in mV .

Example 2.4.6. A normal modal logic has the Craig interpolation property if
and only if the associated variety of modal algebras — Boolean algebras with
an operator — has the superamalgamation property [56]. Moreover, there exist
infinitely many such logics [75], including well-known cases such as K, KT, K4,
and S4. Hence our results yield axiomatizations for the one-variable fragments
of infinitely many first-order logics based on varieties of modal algebras.

Remark 2.4.7. The one-variable fragments of first-order Gödel and first-order
 Lukasiewicz logic are based on the standard Gödel algebra G and the standard
 Lukasiewicz algebra  L, and correspond to the varieties of monadic Gödel alge-
bras and monadic MV-algebras, axiomatized relative to mGA and mMV by
additional equations, respectively. Hence these fragments do not fit into the
framework of this thesis. However, as mentioned in Example 2.4.5, the variety
GA does have the superamalgamation property, but the first-order logic based
on GA corresponds to Corsi’s first-order logic of linear frames and our method
provides an axiomatization of consequence in the one-variable first-order logic
of linear frames.

Suppose finally that K is a class of L-lattices that is not only closed under
taking direct limits and subalgebras, and has the superamalgamation property,
but also admits regular completions. In this case, we can adapt the proof of
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Theorem 2.4.1 to show that every member of K is Kc-functional, which —
as noted at the end of Section 2.3 — corresponds to the stricter notion of a
functional algebra considered in [8, 24].

Corollary 2.4.8. Let K be a class of L-lattices closed under taking direct
limits and subalgebras, that has the superamalgamation property, and admits
regular completions. Then every member of mK is Kc-functional.

Proof. Given some ⟨A,□, ⟩ ∈ mK, the direct limit L ∈ K constructed in
the proof of Theorem 2.4.1 embeds into some L̄ ∈ Kc and hence, reasoning as
before, ⟨A,□, ⟩ is isomorphic to a subalgebra of ⟨L̄W ,□, ⟩.

Combining Corollary 2.3.4 and Corollary 2.4.8, we obtain the following
result.

Corollary 2.4.9. If V is a variety of L-lattices that has the superamalgamation
property and admits regular completions, then for any set Σ ∪ {φ ≈ ψ} of
Fm1

∀(L)-equations,

Σ ⊨
∀1
Vc φ ≈ ψ ⇐⇒ Σ∗

⊨mV φ
∗ ≈ ψ∗.

Example 2.4.10. In [8], Bezhanishvili and Harding proved that every monadic
Heyting algebra is HAc-functional. Hence, by Corollary 2.3.4, the variety
of monadic Heyting algebras provides an axiomatization for the one-variable
fragment of first-order intuitionistic logic (since ⊨

∀1
HA and ⊨

∀1
HAc coincide).
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Chapter 3

Proof-Theoretic Approach

In this chapter, we describe an alternative proof-theoretic strategy for estab-
lishing completeness of axiomatizations for one-variable fragments of first-order
logics. The key step is to prove that a derivation of a one-variable formula in a
sequent calculus for the first-order logic can be transformed into a derivation
that uses just one variable. To illustrate, we consider a first-order version of
the full Lambek calculus with exchange, then extend the method to a broader
family of first-order substructural logics.

In Section 3.1 we define a set of first-order formulas Fm1+
∀ (Ls) that extends

Fm1
∀(Ls), the one-variable L∀-formulas given in Section 1.4, with a countably

infinite set of variables that are distinct from x and are always free. We
also introduce ∀1CFL, a cut-free sequent calculus satisfying for all Fm1

∀(Ls)-
sequents Γ ⇒ ∆,

⊢
∀1CFL

Γ ⇒ ∆ ⇐⇒ ⊨
∀1
FLe

∏

Γ ≤
∑

∆,

where in a derivation of an Fm1
∀(Ls)-sequent extra (free) variables may be intro-

duced. This explains our need for L+
s∀-formulas and a sequent calculus ∀1CFL

that operates on Fm1+
∀ (Ls)-sequents. Section 3.2 is used to prove an inter-

polation property for derivations in ∀1CFL, finding for any derivable sequent
Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z) of a certain form an interpolant χ(w̄) such that the
sequents Γ(w̄, y) ⇒ χ(w̄) and Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z) are derivable. In Sec-
tion 3.3, we provide an alternative (proof-theoretic) proof of Corollary 2.4.2
for the variety FLe using this interpolation property. In Section 3.4 we extend
this proof for FLe to varieties of FLe-algebras defined by equations of a certain
simple form. In particular, we extend the proof to the varieties FLew and
FLec.

3.1 A Sequent Calculus for the One-Variable

Fragment of ∀CFL

We begin this section by introducing Fm1+
∀ (Ls), a set of first-order formulas

that use quantifiers (∀x) and (∃x) for a distinct variable x and a countably
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infinite set of variables {xi}i∈N that only occur freely. Then we present ∀1CFL,
a sequent calculus based on L+

s∀-formulas, that is sound and complete with
respect to validity of equations in the one-variable first-order logic based on
FLe.

The crucial feature of the first-order version of FLe needed for our approach,
proved in Section 1.3, is the fact that it can be presented as a cut-free sequent
calculus with the standard rules for quantifiers. Any derivation of a one-
variable formula φ in this calculus will therefore consist of sequents containing
only subformulas of φ with some free occurrences of the variable x replaced
by other variables. In particular, such a derivation will not introduce any new
occurrences of quantifiers or bound variables, but may introduce free variables
not occurring in φ via the rules for the universal quantifier on the right and the
existential quantifier on the left. Hence, to reason about derivations of one-
variable formulas, we may consider a fragment of the sequent calculus restricted
to formulas that contain only unary predicates and one bound variable, but
may contain further free variables.

More formally, let us recall from Chapter 1 that Fm1+
∀ (Ls) is the set of

first-order formulas built inductively using unary predicates {Pi}i∈N, variables
{x}∪{xi}i∈N, operations in Ls, and quantifiers (∀x) and (∃x). The elements of
Fm1+

∀ (Ls) are called L+
s∀-formulas. Clearly, Fm1

∀(Ls) ⊆ Fm1+
∀ (Ls). We write

φ(w̄) to denote that the free variables of φ ∈ Fm1+
∀ (Ls) belong to a set w̄, and

indicate by φ(w̄, y) that y is not among the variables in w̄.
In this chapter, sequents are ordered pairs of finite multisets of formulas

Γ,∆ in Fm1+
∀ (Ls). We write Γ(w̄) to denote that the free variables occurring

in a finite multiset of formulas Γ belong to a set w̄.
The sequent calculus ∀1CFL is displayed in Figure 3.1, where the quantifier

rules are subject to the following side-conditions:

(i) if the conclusion of an application of (∀⇒) or (⇒∃) contains at least one
free occurrence of a variable, then the variable u occurring in its premise
also occurs freely in its conclusion1;

(ii) the variable y occurring in the premise of an application of (⇒∀) or (∃⇒)

does not occur freely in its conclusion.

Recall from Section 1.3 that if there exists a derivation d of a sequent Γ ⇒ ∆
in a sequent calculus S, we write d ⊢

S
Γ ⇒ ∆ or simply ⊢

S
Γ ⇒ ∆.

The following relationship between derivability of Fm1
∀(Ls)-sequents in

∀1CFL and (first-order) validity of equations in the variety FLe is a direct
consequence of soundness and completeness and cut elimination for ∀CFL
(Theorem 1.3.4 and Theorem 1.3.6).

1Note that in the literature, the variable u is often allowed to be an arbitrary term.
However, by substituting certain variables, we can require u to be a variable that already
occurs freely in the conclusion of the rule. Since this simplifies the proof of Lemma 3.2.1,
we require our sequent calculus to satisfy condition (i).
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Axioms

φ⇒ φ
(id)

f ⇒
(f⇒)

⇒ e
(⇒e)

Operation Rules

Γ ⇒ ∆
Γ, e ⇒ ∆

(e⇒)
Γ ⇒
Γ ⇒ f

(⇒ f)

Γ1 ⇒ φ Γ2, ψ ⇒ ∆

Γ1,Γ2, φ→ ψ ⇒ ∆
(→⇒)

Γ, φ⇒ ψ

Γ ⇒ φ→ ψ
(⇒→)

Γ, φ, ψ ⇒ ∆

Γ, φ · ψ ⇒ ∆
(·⇒)

Γ1 ⇒ φ Γ2 ⇒ ψ

Γ1,Γ2 ⇒ φ · ψ
(⇒·)

Γ, φ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧⇒)1

Γ ⇒ φ

Γ ⇒ φ ∨ ψ
(⇒∨)1

Γ, ψ ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧⇒)2

Γ ⇒ ψ

Γ ⇒ φ ∨ ψ
(⇒∨)2

Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Γ, φ ∨ ψ ⇒ ∆
(∨⇒)

Γ ⇒ φ Γ ⇒ ψ

Γ ⇒ φ ∧ ψ
(⇒∧)

Γ, φ(u) ⇒ ∆

Γ, (∀x)φ(x) ⇒ ∆
(∀⇒)(ii)

Γ ⇒ ψ(y)

Γ ⇒ (∀x)ψ(x)
(⇒∀)(i)

Γ, φ(y) ⇒ ∆

Γ, (∃x)φ(x) ⇒ ∆
(∃⇒)(i)

Γ ⇒ ψ(u)

Γ ⇒ (∃x)ψ(x)
(⇒∃)(ii)

Figure 3.1: The Sequent Calculus ∀1CFL

Proposition 3.1.1 (cf. [46,71]). For any sequent Γ ⇒ ∆ containing formulas
from Fm1

∀(Ls),

⊢
∀1CFL

Γ ⇒ ∆ ⇐⇒ ⊨
∀1
FLe

∏

Γ ≤
∑

∆.

3.2 An Interpolation Property

We now establish an interpolation property for the calculus ∀1CFL. For
any derivation d of a sequent in ∀1CFL, let md(d) denote the maximum
number of applications of the rules (⇒∀) and (∃⇒) that occur on a branch
of d. We prove by induction on the height of the derivation of a sequent
Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z) that there exists a formula χ(w̄) and derivations
d1 and d2 of Γ(w̄, y) ⇒ χ(w̄) and Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z), respectively, such
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that md(d1),md(d2) ≤ md(d). We prove this by constructing χ(w̄) accord-
ing to the structure of the derivation of Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z). Let us
illustrate the idea of the proof by considering an example. Let

P (y), (∀x)R(x), (∃x)((∃x)P (x) → Q(x)) ⇒ (∃x)Q(x) ·R(z)

be a sequent with the following derivation d

(id)
P (y) ⇒ P (y)

(⇒∃)
P (y) ⇒ (∃x)P (x)

(id)
Q(w) ⇒ Q(w)

(⇒∃)
Q(w) ⇒ (∃x)Q(x)

(→⇒)
P (y), (∃x)P (x) → Q(w) ⇒ (∃x)Q(x)

(id)
R(z) ⇒ R(z)

(∀⇒)
(∀x)R(x) ⇒ R(z)

(⇒·)
P (y), (∀x)R(x), (∃x)P (x) → Q(w) ⇒ (∃x)Q(x) ·R(z)

(∃⇒)
P (y), (∀x)R(x), (∃x)((∃x)P (x) → Q(x)) ⇒ (∃x)Q(x) ·R(z)

Following the structure of d, we now construct a formula χ (in this case it
is even a sentence) and derivations d1, d2 such that

d1 ⊢∀1CFL
P (y), (∀x)R(x) ⇒ χ,

d2 ⊢∀1CFL
(∃x)((∃x)P (x) → Q(x)), χ⇒ (∃x)Q(x) ·R(z).

We consider the premise of the last application of (∃⇒) in d, P (y), (∃x)P (x) →
Q(w), (∀x)R(x) ⇒ (∃x)Q(x) ·R(z) and try to find a formula χ1(w) and deriva-
tions d′1, d

′
2 such that

d′1 ⊢∀1CFL
P (y), (∀x)R(x) ⇒ χ1(w),

d′2 ⊢∀1CFL
(∃x)P (x) → Q(w), χ1(w) ⇒ (∃x)Q(x) ·R(z).

Next we consider the premises of (⇒·) in d,

P (y), (∃x)P (x) → Q(w) ⇒ (∃x)Q(x) and (∀x)R(x) ⇒ R(z)

and try to find formulas χ2(w), χ3 and derivations d11, d12, d21, d22 such that

d11 ⊢∀1CFL
P (y) ⇒ χ2(w), d12 ⊢∀1CFL

(∃x)P (x) → Q(w), χ2(w) ⇒ (∃x)Q(x),

d21 ⊢∀1CFL
(∀x)R(x) ⇒ χ3, d22 ⊢∀1CFL

χ3 ⇒ R(z).

We can set χ2(w) := ((∃x)P (x) → Q(w)) → (∃x)Q(x), since we are then able
to obtain derivations d11 and d12 as follows:

(id)
P (y) ⇒ P (y)

(⇒∃)
P (y) ⇒ (∃x)P (x)

(id)
Q(w) ⇒ Q(w)

(⇒∃)
Q(w) ⇒ (∃x)Q(w)

(→⇒)
P (y), (∃x)P (x) → Q(w) ⇒ (∃x)Q(x)

(⇒→)
P (y) ⇒ ((∃x)P (x) → Q(w)) → (∃x)Q(x)

(id)
(∃x)P (x) → Q(w) ⇒ (∃x)P (x) → Q(w)

(id)
(∃x)Q(x) ⇒ (∃x)Q(x)

(→⇒)
(∃x)P (x) → Q(w), χ2(w) ⇒ (∃x)Q(x)
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We can also set χ3 := (∀x)R(x), since in that case d21 is an instance of (id)

and d22 is the an instance of (id) together with an application of (∀⇒). Setting
χ1(w) = χ2(w) · χ3 then yields derivations d′1 and d′2 of the form

d11
...

P (y) ⇒ χ2(w)
(id)

(∀x)R(x) ⇒ χ3
(⇒·)

P (y), (∀x)R(x) ⇒ χ2(w) · χ3

d12
...

(∃x)P (x) → Q(w), χ2(w) ⇒ (∃x)Q(x)

d22
...

χ3 ⇒ R(z)
(⇒·)

(∃x)P (x) → Q(w), χ2(w), χ3 ⇒ (∃x)Q(x) ·R(z)
(·⇒)

(∃x)P (x) → Q(w), χ2(w) · χ3 ⇒ (∃x)Q(x) ·R(z)

Finally, we obtain the derivations d1, d2 by setting χ = (∀x)χ1(x):

d′1
...

P (y), (∀x)R(x) ⇒ χ1(w)
(⇒∀)

P (y), (∀x)R(x) ⇒ (∀x)χ1(x)

d′2
...

(∃x)P (x) → Q(w), χ1(w) ⇒ (∃x)Q(x) ·R(z)
(∀⇒)

(∃x)P (x) → Q(w), (∀x)χ1(x) ⇒ (∃x)Q(x) ·R(z)
(∃⇒)

(∃x)((∃x)P (x) → Q(x)), (∀x)χ1(x) ⇒ (∃x)Q(x) ·R(z)

Note that md(d) = 1 and we found a formula

χ = (∀x)((((∃x)P (x) → Q(w)) → (∃x)Q(x)) · (∀x)R(x))

and derivations d1 and d2 satisfying md(d1),md(d2) = 1 ≤ md(d) and

d1 ⊢∀1CFL
P (y), (∀x)R(x) ⇒ χ,

d2 ⊢∀1CFL
(∃x)((∃x)P (x) → Q(x)), χ⇒ (∃x)Q(x) ·R(z).

Lemma 3.2.1. Let Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z) be any sequent such that y ̸= z,
x ̸∈ w̄ ∪ {y, z}, and no variable in w̄ ∪ {y, z} lies in the scope of a quantifier.
If

d ⊢
∀1CFL

Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z),

then there exist χ(w̄) ∈ Fm1+
∀ (Ls) and derivations d1, d2 in ∀1CFL such that

md(d1),md(d2) ≤ md(d) and

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄), d2 ⊢∀1CFL

Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).
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Proof. By a straightforward inspection of the rules of ∀1CFL, no variable in
w̄ ∪ {y, z} can lie in the scope of a quantifier in a sequent occurring in a
derivation in ∀1CFL of Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z). We prove the claim by
induction on the height of d, considering in turn the last rule applied in the
derivation.

Observe first that if y does not occur in Γ, we can define

χ(w̄) :=
∏

Γ

and obtain a derivation d1 of Γ(w̄, y) ⇒ χ(w̄), ending with repeated applica-
tions of (⇒·), (⇒e), and (id), and a derivation d2 of Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z)
that extends d with repeated applications of (·⇒) and (e⇒), such that md(d1) =
0 and md(d2) = md(d).

Similarly, if z does not occur in Π,∆, we can define

χ(w̄) :=
∏

Π →
∑

∆

and obtain a derivation d1 of Γ(w̄, y) ⇒ χ(w̄) that extends d with repeated
applications of (·⇒), (e⇒), and (⇒ f), followed by an application of (⇒→), and
a derivation d2 of Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z) ending with repeated applications
of (id), (⇒·), (⇒e), and (f⇒), followed by an application of (→⇒), such that
md(d1) = md(d) and md(d2) = 0.

For the base cases where d ends with (id), (⇒e), or (f⇒), either y does not
occur in Γ or z does not occur in Π,∆. For the remainder of the proof, let us
assume that y occurs in Γ and z occurs in Π,∆.

• (∀⇒): Suppose first that Γ(w̄, y) is Γ′(w̄, y), (∀x)φ(x) and

d′ ⊢
∀1CFL

Γ′(w̄, y), φ(u),Π(w̄, z) ⇒ ∆(w̄, z),

where md(d′) = md(d) and, using the assumption that no other variable
lies in the scope of a quantifier, x is the only variable occurring in φ. Since
y occurs in Γ and z occurs in Π,∆, it follows from side-condition (i) for
(∀⇒) that u ∈ w̄∪{y, z}. For the first subcase, suppose that u ∈ w̄∪{y}.
An application of the induction hypothesis produces χ(w̄) ∈ Fm1+

∀ (Ls)
and derivations d′1, d2 such that md(d′1),md(d2) ≤ md(d′) and

d′1 ⊢∀1CFL
Γ′(w̄, y), φ(u) ⇒ χ(w̄), d2 ⊢∀1CFL

Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

If u occurs in Γ′(w̄, y), χ(w̄), then extending d′1 with an application of
(∀⇒) yields a derivation d1 such that md(d1) = md(d′1) ≤ md(d′) =
md(d) and

d1 ⊢∀1CFL
Γ′(w̄, y), (∀x)φ(x) ⇒ χ(w̄).

Otherwise, by substituting u uniformly with y in d′1, we obtain a deriva-
tion of Γ′(w̄, y), φ(y) ⇒ χ(w̄) and obtain d1 as described previously.
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For the second subcase, consider u = z. An application of the induction
hypothesis produces χ′(w̄) ∈ Fm1+

∀ (Ls) and derivations d′1, d
′
2 such that

md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢∀1CFL
Γ′(w̄, y) ⇒ χ′(w̄), d′2 ⊢∀1CFL

φ(z),Π(w̄, z), χ′(w̄) ⇒ ∆(w̄, z).

Let χ(w̄) := χ′(w̄)·(∀x)φ(x). Combining an instance (∀x)φ(x) ⇒ (∀x)φ(x)
of (id) with d′1 and an application of (⇒ ·) yields a derivation d1 such
that md(d1) = md(d′1) ≤ md(d′) = md(d) and

d1 ⊢∀1CFL
Γ′(w̄, y), (∀x)φ(x) ⇒ χ(w̄).

Also, d′2 extended with applications of (∀⇒) and (·⇒) yields a derivation
d2 such that md(d2) = md(d′2) ≤ md(d′) = md(d) and

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

Suppose next that Π(w̄, z) is Π′(w̄, z), (∀x)φ(x) and

d′ ⊢
∀1CFL

Γ(w̄, y),Π′(w̄, z), φ(u) ⇒ ∆(w̄, z),

where md(d′) = md(d) and x is the only variable occurring in φ. Since
y occurs in Γ and z occurs in Π,∆, it follows from side-condition (i) for
(∀⇒) that u ∈ w̄ ∪ {y, z}. The case of u ∈ w̄ ∪ {z} is very similar to the
first subcase above, so consider u = y. An application of the induction
hypothesis produces χ′(w̄) ∈ Fm1+

∀ (Ls) and derivations d′1, d
′
2 such that

md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢∀1CFL
Γ(w̄, y), φ(y) ⇒ χ′(w̄), d′2 ⊢∀1CFL

Π′(w̄, z), χ′(w̄) ⇒ ∆(w̄, z).

Let χ(w̄) := (∀x)φ(x) → χ′(w̄). Extending d′1 with applications of (∀⇒)

and (⇒→) yields a derivation d1 such that md(d1) = md(d′1) ≤ md(d′) =
md(d) and

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄).

Also, d′2 and an instance (∀x)φ(x) ⇒ (∀x)φ(x) of (id) combined with an
application of (→⇒) yields a derivation d2 such that md(d2) = md(d′2) ≤
md(d′) = md(d) and

d2 ⊢∀1CFL
Π′(w̄, z), (∀x)φ(x), χ(w̄) ⇒ ∆(w̄, z).

• (⇒∀): Suppose that ∆(w̄, z) is (∀x)φ(x) and for some variable u that
does not occur freely in Γ(w̄, y),Π(w̄, z) ⇒ (∀x)φ(x),

d′ ⊢
∀1CFL

Γ(w̄, y),Π(w̄, z) ⇒ φ(u),
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where md(d′) = md(d)− 1 and x is the only variable occurring in φ. An
application of the induction hypothesis produces χ′(w̄, u) ∈ Fm1+

∀ (Ls)
and derivations d′1, d

′
2 such that md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ′(w̄, u), d′2 ⊢∀1CFL

Π(w̄, z), χ′(w̄, u) ⇒ φ(u).

Let χ(w̄) := (∀x)χ′(w̄, x). Extending d′1 with an application of (⇒∀)

yields a derivation d1 such that md(d1) = md(d′1) + 1 ≤ md(d′) + 1 =
md(d) and

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄).

Also, extending d′2 with applications of (∀⇒) and (⇒∀) yield a derivation
d2 such that md(d2) = md(d′2) + 1 ≤ md(d′) + 1 = md(d) and

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ (∀x)φ(x).

• (⇒∃): Suppose that ∆(w̄, z) is (∃x)φ(x) and

d′ ⊢
∀1CFL

Γ(w̄, y),Π(w̄, z) ⇒ φ(u),

where md(d′) = md(d) and x is the only variable occurring in φ. Since
y occurs in Γ and z occurs in Π,∆, it follows from side-condition (i) for
(⇒∃) that u ∈ w̄∪{y, z}. For the first subcase, suppose that u ∈ w̄∪{z}.
An application of the induction hypothesis produces χ(w̄) ∈ Fm1+

∀ (Ls)
and derivations d1, d

′
2 such that md(d1),md(d′2) ≤ md(d′) and

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄), d′2 ⊢∀1CFL

Π(w̄, z), χ(w̄) ⇒ φ(u).

If u occurs in Π(w̄, z), χ(w̄), then extending d′2 with an application of
(⇒∃) yields a derivation d2 such that md(d2) = md(d′2) ≤ md(d′) and

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ (∃x)φ(x).

Otherwise, by substituting u uniformly with z in d′2, we obtain a deriva-
tion of Π(w̄, z), χ(w̄) ⇒ φ(z) and obtain d2 as described previously.

For the second subcase, consider u = y. An application of the induction
hypothesis produces χ′(w̄) ∈ Fm1+

∀ (Ls) and derivations d′1, d
′
2 such that

md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢∀1CFL
Π(w̄, z) ⇒ χ′(w̄), d′2 ⊢∀1CFL

Γ(w̄, y), χ′(w̄) ⇒ φ(y).

Let χ(w̄) := χ′(w̄) → (∃x)φ(x). Combining d′2 with applications of (⇒∃)

and (⇒→) yields a derivation d1 such that md(d1) = md(d′2) ≤ md(d′) =
md(d) and

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄).

Also, combining the instance (∃x)φ(x) ⇒ (∃x)φ(x) of (id) and d′1 with
(→⇒) yields a derivation d2 such that md(d2) = md(d′1) ≤ md(d′) =
md(d) and

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ (∃x)φ(x).
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• (∃ ⇒): Suppose first that Γ(w̄, y) is Γ′(w̄, y), (∃x)φ(x) and for some
variable u that does not occur freely in Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z),

d′ ⊢
∀1CFL

Γ′(w̄, y), φ(u),Π(w̄, z) ⇒ ∆(w̄, z),

where md(d′) = md(d)− 1 and x is the only variable occurring in φ. An
application of the induction hypothesis produces χ′(w̄, u) ∈ Fm1+

∀ (Ls)
and derivations d′1, d

′
2 such that md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢∀1CFL
Γ′(w̄, y), φ(u) ⇒ χ′(w̄, u),

d′2 ⊢∀1CFL
Π(w̄, z), χ′(w̄, u) ⇒ ∆(w̄, z).

Let χ(w̄) := (∃x)χ′(w̄, x). Combining d′1 with applications of (⇒∃) and
(∃⇒) yields a derivation d1 such that md(d1) = md(d′1)+1 ≤ md(d′)+1 =
md(d) and

d1 ⊢∀1CFL
Γ′(w̄, y), (∃x)φ(x) ⇒ χ(w̄).

Also, extending d′2 with an application of (∃⇒) yields a derivation d2 such
that md(d2) = md(d′2) + 1 ≤ md(d′) + 1 = md(d) and

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

Now suppose that Π(w̄, z) is Π′(w̄, z), (∃x)φ(x) and for some variable u
that does not occur freely in Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z),

d′ ⊢
∀1CFL

Γ(w̄, y),Π′(w̄, z), φ(u) ⇒ ∆(w̄, z),

where md(d′) = md(d)− 1 and x is the only variable occurring in φ. An
application of the induction hypothesis produces χ′(w̄, u) ∈ Fm1+

∀ (Ls)
and derivations d′1, d

′
2 such that md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ′(w̄, u),

d′2 ⊢∀1CFL
Π′(w̄, z), φ(u), χ′(w̄, u) ⇒ ∆(w̄, z).

Let χ(w̄) := (∀x)χ′(w̄, x). The derivation d′1 together with an application
of (⇒∀) yields a derivation d1 such that md(d1) = md(d′1)+1 ≤ md(d′)+
1 = md(d) and

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄).

Also, d′2 together with applications of (∀⇒) and (∃⇒) yields a derivation
d2 such that md(d2) = md(d′2) + 1 ≤ md(d′) + 1 = md(d) and

d2 ⊢∀1CFL
Π(w̄, y), (∃x)φ(x), χ(w̄) ⇒ ∆(w̄, z).
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• (→⇒): Suppose for the first subcase that Γ(w̄, y) is Γ1(w̄, y),Γ2(w̄, y),
φ(w̄, y) → ψ(w̄, y) and Π(w̄, z) is Π1(w̄, z),Π2(w̄, z), and

d′1 ⊢∀1CFL
Γ1(w̄, y),Π1(w̄, z) ⇒ φ(w̄, y),

d′2 ⊢∀1CFL
Γ2(w̄, y), ψ(w̄, y),Π2(w̄, z) ⇒ ∆(w̄, z),

where md(d′1),md(d′2) ≤ md(d). Two applications of the induction hy-
pothesis produce χ1(w̄), χ2(w̄) ∈ Fm1+

∀ (Ls) and derivations d′11, d
′
12, d

′
21,

d′22 such that md(d′11),md(d′12) ≤ md(d′1), md(d′21),md(d′22) ≤ md(d′2),
and

d′11 ⊢∀1CFL
Γ1(w̄, y), χ1(w̄) ⇒ φ(w̄, y),

d′12 ⊢∀1CFL
Π1(w̄, z) ⇒ χ1(w̄),

d′21 ⊢∀1CFL
Γ2(w̄, y), ψ(w̄, y) ⇒ χ2(w̄),

d′22 ⊢∀1CFL
Π2(w̄, z), χ2(w̄) ⇒ ∆(w̄, z).

Let χ(w̄) := χ1(w̄) → χ2(w̄). Then d′11 and d′21, together with ap-
plications of (→⇒) and (⇒→), and d′12 and d′22, together with an ap-
plication of (→⇒), yield derivations d1 and d2, respectively, such that
md(d1),md(d2) ≤ md(d) and

d1 ⊢∀1CFL
Γ1(w̄, y),Γ2(w̄, y), φ(w̄, y) → ψ(w̄, y) ⇒ χ(w̄),

d2 ⊢∀1CFL
Π1(w̄, z),Π2(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

For the second subcase, suppose that Γ(w̄, y) is Γ1(w̄, y),Γ2(w̄, y) and
Π(w̄, z) is Π1(w̄, z),Π2(w̄, z), φ(w̄, z) → ψ(w̄, z), and

d′1 ⊢∀1CFL
Γ1(w̄, y),Π1(w̄, z) ⇒ φ(w̄, z),

d′2 ⊢∀1CFL
Γ2(w̄, y),Π2(w̄, z), ψ(w̄, z) ⇒ ∆(w̄, z),

where md(d′1),md(d′2) ≤ md(d). Two applications of the induction hy-
pothesis produce χ1(w̄), χ2(w̄) ∈ Fm1+

∀ (Ls) and derivations d′11, d
′
12, d

′
21,

d′22 such that md(d′11),md(d′12) ≤ md(d′1), md(d′21),md(d′22) ≤ md(d′2),
and

d′11 ⊢∀1CFL
Γ1(w̄, y) ⇒ χ1(w̄),

d′12 ⊢∀1CFL
Π1(w̄, z), χ1(w̄) ⇒ φ(w̄, z),

d′21 ⊢∀1CFL
Γ2(w̄, y) ⇒ χ2(w̄),

d′22 ⊢∀1CFL
Π2(w̄, z), ψ(w̄, z), χ2(w̄) ⇒ ∆(w̄, z).

Let χ(w̄) := χ1(w̄)·χ2(w̄). Then d′11 and d′21, together with an application
of (⇒·), and d′12 and d′22, together with applications of (→⇒) and (·⇒),
yield derivations d1 and d2, respectively, such that md(d1),md(d2) ≤
md(d) and

d1 ⊢∀1CFL
Γ1(w̄, y),Γ2(w̄, y) ⇒ χ(w̄),

d2 ⊢∀1CFL
Π1(w̄, z),Π2(w̄, z), φ(w̄, z) → ψ(w̄, z), χ(w̄) ⇒ ∆(w̄, z).
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• (⇒→): Suppose that ∆(w̄, z) is φ(w̄, z) → ψ(w̄, z) and

d′ ⊢
∀1CFL

Γ(w̄, y),Π(w̄, z), φ(w̄, z) ⇒ ψ(w̄, z).

By the induction hypothesis, there exist χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d1, d
′
2 such that

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄), d′2 ⊢∀1CFL

Π(w̄, z), φ(w̄, z), χ(w̄) ⇒ ψ(w̄, z).

The derivation d′2 with an application of (⇒→) yields a derivation d2 such
that

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ φ(w̄, z) → ψ(w̄, z).

The constraints on md(d1) and md(d2) clearly hold.

• (∨⇒): Suppose first that Γ(w̄, y) is Γ′(w̄, y), φ(w̄, y) ∨ ψ(w̄, y) and

d′1 ⊢∀1CFL
Γ′(w̄, y), φ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z),

d′2 ⊢∀1CFL
Γ′(w̄, y), ψ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z).

By the induction hypothesis, there exist χ1(w̄), χ2(w̄) ∈ Fm1+
∀ (Ls) and

derivations d′11, d
′
12, d

′
21, d

′
22 such that

d′11 ⊢∀1CFL
Γ′(w̄, y), φ(w̄, y) ⇒ χ1(w̄),

d′12 ⊢∀1CFL
Π(w̄, z), χ1(w̄) ⇒ ∆(w̄, z),

d′21 ⊢∀1CFL
Γ′(w̄, y), ψ(w̄, y) ⇒ χ2(w̄),

d′22 ⊢∀1CFL
Π(w̄, z), χ2(w̄) ⇒ ∆(w̄, z).

Define χ(w̄) := χ1(w̄) ∨ χ2(w̄). The derivations d′11, d
′
21, together with

applications of (⇒∨)1, (⇒∨)2, and (∨⇒), yield a derivation d1, and the
derivations d′12, d

′
22, together with an application of (∨⇒), yield a deriva-

tion d2, satisfying

d1 ⊢∀1CFL
Γ′(w̄, y), φ(w̄, y) ∨ ψ(w̄, y) ⇒ χ1(w̄) ∨ χ2(w̄),

d2 ⊢∀1CFL
Π(w̄, z), χ1(w̄) ∨ χ2(w̄) ⇒ ∆(w̄, z).

Clearly, md(d1),md(d2) ≤ md(d).

Suppose now that Π(w̄, z) is Π′(w̄, z), φ(w̄, z) ∨ ψ(w̄, z) and

d′1 ⊢∀1CFL
Γ(w̄, y),Π′(w̄, z), φ(w̄, z) ⇒ ∆(w̄, z),

d′2 ⊢∀1CFL
Γ(w̄, y),Π′(w̄, z), ψ(w̄, z) ⇒ ∆(w̄, z).

By the induction hypothesis, there exist χ1(w̄), χ2(w̄) ∈ Fm1+
∀ (Ls) and

derivations d′11, d
′
12, d

′
21, d

′
22 such that

d′11 ⊢∀1CFL
Γ(w̄, y) ⇒ χ1(w̄),

d′12 ⊢∀1CFL
Π′(w̄, z), φ(w̄, z), χ1(w̄) ⇒ ∆(w̄, z),

d′21 ⊢∀1CFL
Γ(w̄, y) ⇒ χ2(w̄),

d′22 ⊢∀1CFL
Π′(w̄, z), ψ(w̄, z), χ2(w̄) ⇒ ∆(w̄, z).
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Let χ(w̄) := χ1(w̄) ∧ χ2(w̄). Then the derivations d′11, d
′
21, together with

an application of (⇒∧), and the derivations d′12, d
′
22, together with appli-

cations of (∧⇒)1, (∧⇒)2, and (∨⇒), yield derivations d1 and d2, respec-
tively, such that

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ1(w̄) ∧ χ2(w̄),

d2 ⊢∀1CFL
Π′(w̄, z), φ(w̄, z) ∨ ψ(w̄, z), χ1(w̄) ∧ χ2(w̄) ⇒ ∆(w̄, z).

Clearly, again md(d1),md(d2) ≤ md(d).

• (⇒∨): Suppose that ∆(w̄, z) is φ1(w̄, z) ∨ φ2(w̄, z) and

d′ ⊢
∀1CFL

Γ(w̄, y),Π(w̄, z) ⇒ φi(w̄, z).

By the induction hypothesis, there exist χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d1, d
′
2 such that

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ(w̄), d′2 ⊢∀1CFL

Π(w̄, z), χ(w̄) ⇒ φi(w̄, z).

The derivation d′2 together with an application of (⇒∨)i yields a deriva-
tion d2 such that

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ φ1(w̄, z) ∨ φ2(w̄, z).

The constraints on md(d1) and md(d2) clearly hold.

• (⇒∧): Suppose that ∆(w̄, z) is φ(w̄, z) ∧ ψ(w̄, z) and

d′1 ⊢∀1CFL
Γ(w̄, y),Π(w̄, z) ⇒ φ(w̄, z),

d′2 ⊢∀1CFL
Γ(w̄, y),Π(w̄, z) ⇒ ψ(w̄, z).

By the induction hypothesis, there exist χ1(w̄), χ2(w̄) ∈ Fm1+
∀ (Ls) and

derivations d′11, d
′
12, d

′
21, d

′
22 such that

d′11 ⊢∀1CFL
Γ(w̄, y) ⇒ χ1(w̄), d′12 ⊢∀1CFL

Π(w̄, z), χ1(w̄) ⇒ φ(w̄, z),

d′21 ⊢∀1CFL
Γ(w̄, y) ⇒ χ2(w̄), d′22 ⊢∀1CFL

Π(w̄, z), χ2(w̄) ⇒ ψ(w̄, z).

Let χ(w̄) := χ1(w̄) ∧ χ2(w̄). Then the derivations d′11, d
′
21, together with

an application of (⇒∧), and the derivations d′12, d
′
22, together with appli-

cations of (∧⇒)1, (∧⇒)2, and (⇒∧), yield derivations d1 and d2, respec-
tively, such that

d1 ⊢∀1CFL
Γ(w̄, y) ⇒ χ1(w̄) ∧ χ2(w̄),

d2 ⊢∀1CFL
Π(w̄, z), χ1(w̄) ∧ χ2(w̄) ⇒ φ(w̄, z) ∧ ψ(w̄, z).

Clearly, the constraints on md(d1) and md(d2) are satisfied in this case.
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• (∧⇒): Suppose that Γ(w̄, y) is Γ′(w̄, y), φ1(w̄, y) ∧ φ2(w̄, y) and

d′ ⊢
∀1CFL

Γ′(w̄, y), φi(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z).

By the induction hypothesis, there exist χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d′1, d2 such that md(d′1),md(d2) ≤ md(d) and

d′1 ⊢∀1CFL
Γ′(w̄, y), φi(w̄, y) ⇒ χ(w̄), d2 ⊢∀1CFL

Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

The derivation d′1 and an application of (∧⇒)i yield a derivation d1 sat-
isfying md(d1) = md(d′1) and

d1 ⊢∀1CFL
Γ′(w̄, y), φ1(w̄, y) ∧ φ2(w̄, y) ⇒ χ(w̄).

The case where Π(w̄, z) is Π′(w̄, z), φ1(w̄, z) ∧ φ2(w̄, z) is very similar.

• (⇒·): Suppose that ∆(w̄, z) is φ(w̄, z)·ψ(w̄, z). Suppose also that Γ(w̄, y)
is Γ1(w̄, y),Γ2(w̄, y), and Π(w̄, z) is Π1(w̄, z),Π2(w̄, z), and

d′1 ⊢∀1CFL
Γ1(w̄, y),Π1(w̄, z) ⇒ φ(w̄, z),

d′2 ⊢∀1CFL
Γ2(w̄, y),Π2(w̄, z) ⇒ ψ(w̄, z).

By the induction hypothesis, there exist χ1(w̄), χ2(w̄) ∈ Fm1+
∀ (Ls) and

derivations d′11, d
′
12, d

′
21, d

′
22 such that

d′11 ⊢∀1CFL
Γ1(w̄, y) ⇒ χ1(w̄), d′12 ⊢∀1CFL

Π1(w̄, z), χ1(w̄) ⇒ φ(w̄, z),

d′21 ⊢∀1CFL
Γ2(w̄, y) ⇒ χ2(w̄), d′22 ⊢∀1CFL

Π2(w̄, z), χ2(w̄) ⇒ ψ(w̄, z).

Let χ(w̄) := χ1(w̄) · χ2(w̄). Then the derivations d′11, d
′
21, together with

an application of (⇒·), and the derivations d′12, d
′
22, together with appli-

cations of (⇒·) and (·⇒), yield derivations d1 and d2, respectively, such
that

d1 ⊢∀1CFL
Γ1(w̄, y),Γ2(w̄, y) ⇒ χ1(w̄) · χ2(w̄),

d2 ⊢∀1CFL
Π1(w̄, z),Π2(w̄, z), χ1(w̄) · χ2(w̄) ⇒ φ(w̄, z) · ψ(w̄, z).

The constraints on md(d1) and md(d2) clearly hold.

• (·⇒): Suppose that Γ(w̄, y) is Γ′(w̄, y), φ(w̄, y) · ψ(w̄, y) and

d′ ⊢
∀1CFL

Γ′(w̄, y), φ(w̄, y), ψ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z).

By the induction hypothesis, there exist χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d′1, d2 such that

d′1 ⊢∀1CFL
Γ′(w̄, y), φ(w̄, y), ψ(w̄, y) ⇒ χ(w̄),

d2 ⊢∀1CFL
Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

Then d′1 and an application of (·⇒) yield a derivation d1 such that

d1 ⊢∀1CFL
Γ′(w̄, y), φ(w̄, y) · ψ(w̄, y) ⇒ χ(w̄).

The constraints on md(d1) and md(d2) clearly hold.

The case that Π(w̄, z) is Π′(w̄, z), φ(w̄, z) · ψ(w̄, z) is very similar.
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3.3 An Alternative Completeness Proof

In this section, we reprove, by proof-theoretic means, the special case of Corol-
lary 2.4.2 for the variety FLe. The main idea is to prove for any sequent Γ ⇒ ∆
of one-variable Ls∀-formulas

d ⊢
∀1CFL

Γ ⇒ ∆ =⇒ ⊨mFLe
(
∏

Γ)∗ ≤ (
∑

∆)∗.

This proof is established by induction on the lexicographically ordered pair
⟨md(d), ht(d)⟩, where most cases are a quite straightforward application of the
induction hypothesis and the equations defining mFLe. If the last rule applied
in d is (⇒∀) or (∃⇒), then we introduce a new variable and we cannot apply the
induction hypothesis. With an application of Lemma 3.2.1 we obtain sequents
of one-variable Ls∀-formulas and we can finish the proof with applications of
the induction hypothesis and the equations defining mFLe.

Theorem 3.3.1. For any set Σ ∪ {φ ≈ ψ} of Fm1
∀(Ls)-equations,

Σ ⊨
∀1
FLe

φ ≈ ψ ⇐⇒ Σ∗
⊨mFLe

φ∗ ≈ ψ∗.

Proof. The right-to-left direction follows directly from Corollary 2.3.3. For the
converse, note first that due to compactness and the local deduction theorem
for ⊨

∀1
V , stated in Section 1.4, we can restrict to the case where Σ = ∅. Hence,

by Proposition 3.1.1, it suffices to prove for any sequent Γ ⇒ ∆ of one-variable
Ls∀-formulas

d ⊢
∀1CFL

Γ ⇒ ∆ =⇒ ⊨mFLe
(
∏

Γ)∗ ≤ (
∑

∆)∗.

We proceed by induction on the lexicographically ordered pair ⟨md(d), ht(d)⟩.
The base cases are clear and the cases for the last application of a rule in
d except (⇒∀) and (∃⇒) all follow by applying the induction hypothesis and
the equations defining mFLe. Just note that for each such application, the
premise(s) contain only formulas from Fm1

∀(Ls) with at least one fewer sym-
bol. In particular, for (∀⇒) and (⇒∃), it can be assumed that the variable u
occurring in the premise is x and the result follows using (L1□) or (L1 ). Let
us consider one case where d ends with a rule for one of the propositional op-
erations. Suppose that the last rule applied in d is (⇒·) with premises Γ1 ⇒ φ
and Γ2 ⇒ ψ. Since Γ1 ⇒ φ and Γ2 ⇒ ψ are Fm1

∀(Ls)-sequents, an application
of the induction hypothesis yields

⊨mFLe
(
∏

Γ1)
∗ ≤ φ∗ and ⊨mFLe

(
∏

Γ2)
∗ ≤ ψ∗.

Since · is order preserving in both arguments,

⊨mFLe
(
∏

Γ1)
∗ · (

∏

Γ2)
∗ ≤ φ∗ · ψ∗.

By the definition of the translation function (−)∗ and
∏

,

⊨mFLe
(
∏

Γ1)
∗ · (

∏

Γ2)
∗ ≈ (

∏

(Γ1,Γ2))
∗ and ⊨mFLe

φ∗ · ψ∗ ≈ (φ · ψ)∗,
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and therefore,
⊨mFLe

(
∏

(Γ1,Γ2))
∗ ≤ (φ · ψ)∗.

Suppose the last rule applied in d is (∀⇒). Then

d′ ⊢
∀1CFL

Γ, φ(x) ⇒ ∆,

and since Γ, φ(x) ⇒ ∆ is an Fm1
∀(Ls)-sequent, an application of the induction

hypothesis yields

⊨mFLe
(
∏

Γ)∗ · φ(x)∗ ≈ (
∏

(Γ, φ(x)))∗ ≤ (
∑

∆)∗.

Since ⊨mFLe
((∀x)φ(x))∗ ≈ □φ(x)∗ ≤ φ(x)∗ by (L1□), also

⊨mFLe
(
∏

Γ)∗ · ((∀x)φ(x))∗ ≤ (
∏

Γ)∗ · φ(x)∗

and
⊨mFLe

(
∏

(Γ, (∀x)φ(x)))∗ ≤ (
∏

Γ)∗ · φ(x)∗ ≤ (
∑

∆)∗.

Suppose now that the last rule applied in d is (⇒∀), where ∆ is (∀x)ψ(x)
and x may occur freely in Γ. Then

d′ ⊢
∀1CFL

Γ ⇒ ψ(z)

with md(d′) = md(d) − 1, where z is a variable distinct from x. We write
Γ(y) and d′(y) to denote Γ and d′ with all free occurrences of x replaced by y.
Clearly,

d′(y) ⊢
∀1CFL

Γ(y) ⇒ ψ(z)

with md(d′(y)) = md(d′). Note also that no occurrence of y or z lies in the
scope of a quantifier in Γ(y) ⇒ ψ(z). Hence, by Lemma 3.2.1, there exist a
sentence χ and derivations d1, d2 such that md(d1),md(d2) ≤ md(d′) and

d1 ⊢∀1CFL
Γ(y) ⇒ χ, d2 ⊢∀1CFL

χ⇒ ψ(z).

Since χ is a sentence and x does not occur freely in Γ(y) or ψ(z), we can assume
that d1 and d2 do not contain any free occurrences of x, and, by substituting
all occurrences of y in d1, and z in d2, with x, obtain derivations d′1 of Γ ⇒ χ
and d′2 of χ⇒ ψ(x) with md(d′1) = md(d1) and md(d′2) = md(d2). Hence, by
the induction hypothesis twice,

⊨mFLe
(
∏

Γ)∗ ≤ χ∗ and ⊨mFLe
χ∗ ≤ ψ(x)∗.

Since ((∀x)χ)∗ = □χ∗ and χ is a sentence,

⊨mFLe
χ∗ ≈ ((∀x)χ)∗,

and hence the equations defining mFLe yield also

⊨mFLe
χ∗ ≤ ((∀x)ψ(x))∗.
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So finally we obtain

⊨mFLe
(
∏

Γ)∗ ≤ ((∀x)ψ(x))∗.

For the last case, suppose that the last rule applied in d is (∃⇒), where Γ
is Γ′, (∃x)ψ(x) and x may occur freely in Γ′ and ∆. Then

d′ ⊢
∀1CFL

Γ′, ψ(y) ⇒ ∆

with md(d′) = md(d)−1, where y is a variable distinct from x. We write Γ′(z),
∆(z), and d′(z) to denote Γ′, ∆, and d′ with all free occurrences of x replaced
by z. Clearly,

d′(z) ⊢
∀1CFL

Γ′(z), ψ(y) ⇒ ∆(z)

with md(d′(z)) = md(d′). By Lemma 3.2.1, there exist a sentence χ and
derivations d1, d2 such that md(d1),md(d2) ≤ md(d′) and

d1 ⊢∀1CFL
ψ(y) ⇒ χ, d2 ⊢∀1CFL

Γ′(z), χ⇒ ∆(z).

Since χ is a sentence and x does not occur freely in ψ(y), Γ′(z), or ∆(z), we
can assume that d1 and d2 do not contain any free occurrences of x, and, by
substituting all occurrences of y in d1, and z in d2, with x, obtain derivations d′1
of ψ(x) ⇒ χ and d′2 of Γ′, χ⇒ ∆ with md(d′1) = md(d1) and md(d′2) = md(d2).
Hence, by the induction hypothesis,

⊨mFLe
ψ(x)∗ ≤ χ∗ and ⊨mFLe

(
∏

(Γ′, χ))∗ ≤ (
∑

∆)∗.

Since ((∃x)χ)∗ = χ∗ and χ is a sentence,

⊨mFLe
χ∗ ≈ ((∃x)χ)∗,

and hence the equations defining mFLe yield also

⊨mFLe
((∃x)ψ(x))∗ ≤ χ∗.

Therefore, we finally obtain

⊨mFLe
(
∏

(Γ′, (∃x)ψ(x)))∗ ≤ (
∑

∆)∗.

3.4 Extensions of the Calculus ∀1CFL

In this section, we extend the proof-theoretic strategy for proving Corol-
lary 2.4.2 to varieties of FLe-algebras axiomatized relative to FLe by equations
of a certain simple form.
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Given a variable x, let x0 := e and xk+1 := x ·xk, for each k ∈ N, and given
a multiset Π and k ∈ N, let Πk denote the multiset union of k copies of Π. We
define sequent rules

r(x ≤ xk) :=
Γ,Πk ⇒ ∆
Γ,Π ⇒ ∆

and r(f ≤ x) := Γ ⇒
Γ ⇒ ∆

.

Note that these rules correspond to simple structural rules with exactly one
premise, that is, some of the structural rules introduced in Section 1.3. In
particular, r(x ≤ x0) is (wl), r(f ≤ x) is (wr), r(x ≤ x2) is (c), and r(x ≤ xk)
for k > 2 is (k-contr). The rule (mingle) is not covered, since it corresponds to
the equation x2 ≤ x and has two premises. We show at the end of this section
why (even simple) rules with multiple premises may cause problems with our
method.

Let S be the set of equations {x ≤ xk | k ∈ N} ∪ {f ≤ x}. Given any
S ′ ⊆ S, denote by FLe + S ′ the variety of FLe-algebras axiomatized relative
to FLe by the equations in S ′, and by ∀1CFL + r(S ′) the sequent calculus
∀1CFL extended with the rules r(ε) for each equation ε in S ′. Then for any
sequent Γ ⇒ ∆ containing formulas from Fm1

∀(Ls) (see, e.g., [46, 71]),

⊢
∀1CFL+r(S′)

Γ ⇒ ∆ ⇐⇒ ⊨
∀1
FLe+S′

∏

Γ ≤
∑

∆.

We now formulate Lemma 3.2.1 for ∀1CFL + r(S ′) and extend the proof:

Lemma 3.4.1. Let Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z) be any sequent such that y ̸= z,
x ̸∈ w̄ ∪ {y, z}, and no variable in w̄ ∪ {y, z} lies in the scope of a quantifier.
If

d ⊢
∀1CFL+r(S′)

Γ(w̄, y),Π(w̄, z) ⇒ ∆(w̄, z),

then there exist χ(w̄) ∈ Fm1+
∀ (Ls) and derivations d1, d2 in ∀1CFL+r(S ′) such

that md(d1),md(d2) ≤ md(d) and

d1 ⊢∀1CFL+r(S′)
Γ(w̄, y) ⇒ χ(w̄), d2 ⊢∀1CFL+r(S′)

Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

Proof. This proof is an extension of the proof for Lemma 3.2.1 and it is enough
to just consider the additional cases for the rules in r(S ′).

Suppose first that (wr) = r(f ≤ x) ∈ r(S ′) is the last rule applied in d and

d′ ⊢
∀1CFL+r(S′)

Γ(w̄, y),Π(w̄, z) ⇒ .

An application of the induction hypothesis yields χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d1, d
′
2 satisfying md(d1),md(d′2) ≤ md(d′) = md(d) and

d1 ⊢∀1CFL+r(S′)
Γ(w̄, y) ⇒ χ(w̄), d′2 ⊢∀1CFL+r(S′)

Π(w̄, z), χ(w̄) ⇒ .

Then d′2 together with an application of (wr) yields a derivation d2 with
md(d2) = md(d′2) ≤ md(d) and

d2 ⊢∀1CFL+r(S′)
Π(w̄, z), χ(w̄) ⇒ ∆(w̄, z).
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Suppose now that (wl) = r(x ≤ x0) ∈ r(S ′) is the last rule applied in d
and Γ(w̄, y) is Γ1(w̄, y),Γ2(w̄, y) and Π(w̄, z) is Π1(w̄, z),Π2(w̄, z), and

d′ ⊢
∀1CFL+r(S′)

Γ1(w̄, y),Π1(w̄, z) ⇒ ∆(w̄, z).

An application of the induction hypothesis yields χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d′1, d
′
2 satisfying md(d′1),md(d′2) ≤ md(d′) = md(d) and

d′1 ⊢∀1CFL+r(S′)
Γ1(w̄, y) ⇒ χ(w̄), d′2 ⊢∀1CFL+r(S′)

Π1(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

Taking d′1 and d′2 together with an application of (wl) yields

d1 ⊢∀1CFL+r(S′)
Γ1(w̄, y),Γ2(w̄, y) ⇒ χ(w̄),

d2 ⊢∀1CFL+r(S′)
Π1(w̄, z),Π2(w̄, z), χ(w̄) ⇒ ∆(w̄, z),

where the derivations d1 and d2 satisfy md(d1),md(d2) ≤ md(d).
Suppose finally that for some k ∈ N

>0, r(x ≤ xk) ∈ r(S ′) is the last rule in
d and Γ(w̄, y) is Γ1(w̄, y),Γ2(w̄, y) and Π1(w̄, z),Π2(w̄, z), and

d′ ⊢
∀1CFL+r(S′)

Γ1(w̄, y),Γ2(w̄, y)k,Π1(w̄, z),Π2(w̄, z)k ⇒ ∆(w̄, z).

An application of the induction hypothesis yields χ(w̄) ∈ Fm1+
∀ (Ls) and deriva-

tions d′1, d
′
2 satisfying md(d′1),md(d′2) ≤ md(d′) = md(d) and

d′1 ⊢∀1CFL+r(S′)
Γ1(w̄, y),Γ2(w̄, y)k ⇒ χ(w̄),

d′2 ⊢∀1CFL+r(S′)
Π1(w̄, z),Π2(w̄, z)k, χ(w̄) ⇒ ∆(w̄, z).

The derivations d′1 and d′2 together with an application of r(x ≤ xk) yields
derivations d1 and d2 satisfying md(d1),md(d2) ≤ md(d) and

d1 ⊢∀1CFL+r(S′)
Γ1(w̄, y),Γ2(w̄, y) ⇒ χ(w̄),

d2 ⊢∀1CFL+r(S′)
Π1(w̄, z),Π2(w̄, z), χ(w̄) ⇒ ∆(w̄, z).

Hence, following the proof of Theorem 3.3.1 yields the following more gen-
eral result.

Theorem 3.4.2. For any S ′ ⊆ S and set Σ ∪ {φ ≈ ψ} of Fm1
∀(L)-equations,

Σ ⊨
∀1
FLe+S′ φ ≈ ψ ⇐⇒ Σ∗

⊨mFLe+S′ φ∗ ≈ ψ∗.

In particular, we obtain alternative proof-theoretic proofs of completeness for
the axiomatizations of the one-variable fragments of the first-order extensions
of FLew, FLec, and FLewc (intuitionistic logic).

As mentioned in the beginning of this section, we only consider extensions of
∀1CFL with simple rules that only have one premise. Let us consider ∀1CFL+
{(mingle)} to illustrate why our method fails when we add rules with more
than one premise to ∀1CFL. Suppose we have a derivation of the sequent

Γ(w̄, y),Γ1(w̄, y),Γ2(w̄, y),Π(w̄, z),Π1(w̄, z),Π2(w̄, z) ⇒ ∆(w̄, z)

of the form
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d1
...

Γ,Γ1,Π,Π1 ⇒ ∆

d2
...

Γ,Γ2,Π,Π2 ⇒ ∆
(mingle)

Γ,Γ1,Γ2,Π,Π1,Π2 ⇒ ∆

where we leave out the free variables to save space. If we assume d1 and
d2 are derivations that do not contain an application of (mingle), then by
Lemma 3.2.1, we obtain formulas χ1(w̄), χ2(w̄) in Fm1+

∀ (Ls) and derivations
d11, d12, d21, d22 such that

d11 ⊢∀1CFL
Γ,Γ1 ⇒ χ1, d12 ⊢∀1CFL

Π,Π1, χ1 ⇒ ∆,

d21 ⊢∀1CFL
Γ,Γ2 ⇒ χ2, d22 ⊢∀1CFL

Π,Π2, χ2 ⇒ ∆.

We would like to find χ(w̄) ∈ Fm1+
∀ (Ls) constructed from χ1(w̄) and χ2(w̄),

and derivations d′1, d
′
2 such that

d′1 ⊢∀1CFL+{(mingle)}
Γ,Γ1,Γ2 ⇒ χ and d′2 ⊢∀1CFL+{(mingle)}

Π,Π1,Π2, χ⇒ ∆.

However, the only rules with two premises where the contexts of the premises
do not match are (→⇒), (mingle), and (⇒·). An application of (→⇒) can not
work, since it would combine formulas where y occurs freely with formulas
where z occurs freely. The rule (mingle) cannot be applied to the sequents
Γ,Γ1 ⇒ χ1 and Γ,Γ2 ⇒ χ2, since χ1 and χ2 do not necessarily match. We
could take d11 and d21 and apply (⇒∨)1 and (⇒∨)2, respectively. Then an
application of (mingle) yields a derivation of Γ,Γ1,Γ2 ⇒ χ1 ∨ χ2, but since
we cannot apply (∨⇒) to Π,Π1, χ1 ⇒ ∆ and Π,Π2, χ2 ⇒ ∆ we cannot find
a suitable derivation d′2. Considering (⇒·) we can almost solve the problem.
Consider the following derivations:

d11
...

Γ,Γ1 ⇒ χ1

d21
...

Γ,Γ2 ⇒ χ2
(⇒·)

Γ,Γ,Γ1,Γ2 ⇒ χ1 · χ2

d12
...

Π,Π1, χ1 ⇒ ∆

d22
...

Π,Π2, χ2 ⇒ ∆
(mingle)

Π,Π1,Π2, χ1, χ2 ⇒ ∆
(·⇒)

Π,Π1,Π2, χ1 · χ2 ⇒ ∆

The conclusion of the first derivation is the desired sequent with an additional Γ
on the left-hand-side. There is no method to remove it in ∀1CFL+{(mingle)},
however, if we add (c), then we obtain
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d11
...

Γ,Γ1 ⇒ χ1

d21
...

Γ,Γ2 ⇒ χ2
(⇒·)

Γ,Γ,Γ1,Γ2 ⇒ χ1 · χ2
(c)

Γ,Γ1,Γ2 ⇒ χ1 · χ2

and χ(w̄) := χ1(w̄) · χ2(w̄) together with the above derivations are the desired
formula and derivations, respectively.
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Chapter 4

Concluding Remarks

In this thesis, we studied the one-variable fragments of a family of first-order
logics based on classes of L-lattices K and addressed the challenge of pro-
viding a (natural) axiomatization of the equational consequence relation ⊨

∀1
K ,

or, equivalently, in algebraic terms, providing a (natural) axiomatization of
the generalized quasivariety generated by the class of all ⟨A,W ⟩-functional
m-L-lattices, where A ∈ K and W is a set.

In Chapter 2 we addressed this challenge algebraically for certain classes
of L-lattices. We defined m-L-lattices to be L-lattices expanded with □ and

satisfying certain “S5-like” equations, and for any class K of L-lattices, we
let mK denote the class of m-L-lattices with an L-lattice reduct in K. We saw
that a number of one-variable fragments of first-order logics defined over classes
of L-lattices that have already been axiomatized in the literature, correspond
to some variety mV of m-L-lattices. We proved a correspondence theorem
between m-L-lattices and pairs consisting of L-lattices and their relatively
complete subalgebras. We showed that whenever K is closed under taking
subalgebras and direct powers, for A ∈ K and a set W , any ⟨A,W ⟩-functional
m-L-lattice belongs to mK. We identified the semantics of one-variable first-
order logics with evaluations into functional m-L-lattices, which allowed us to
prove that if K is closed under taking subalgebras and direct powers, then con-
sequence inmK implies consequence in the one-variable first-order logic defined
over K. We proved a functional completeness theorem, that is, if K is closed
under taking direct limits and subalgebras, and has the superamalgamation
property, then any member of mK is functional. With this functional com-
pleteness theorem, we obtained the correspondence of consequence in mK and
consequence in the one-variable first-order logic based on K in certain cases,
specifically, we proved that if K is a variety that has the superamalgamation
property, then for any set Σ∪{φ ≈ ψ} of Fm1

∀(L)-equations (Corollary 2.4.2),

Σ ⊨
∀1
K φ ≈ ψ ⇐⇒ Σ∗

⊨mK φ
∗ ≈ ψ∗.

However, if K lacks the superamalgamation property or is not a variety, further
axioms may be required.
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In Chapter 3 we approached this challenge proof-theoretically and pro-
vided an alternative proof of Corollary 2.4.2 for certain substructural logics
extending FLe that have a cut-free sequent calculus. We introduced the cut-
free sequent calculus ∀1CFL that is sound and complete with respect to the
one-variable fragment of the first-order logic based on FLe. Derivations of
Fm1

∀(Ls)-sequents in ∀1CFL do not introduce new quantifiers, but they may
introduce additional variables. We proved an interpolation property for ∀1CFL
showing that these additional variables can be eliminated from such a deriva-
tion. We extended this strategy to varieties of FLe-algebras axiomatized rela-
tive to FLe by equations of a certain simple form, that correspond to simple
structural rules with exactly one premise.

Let us conclude this thesis by mentioning some interesting directions for
further research. We have obtained axiomatizations for consequence in the
one-variable fragments of first-order logics based on varieties of L-lattices that
have the superamalgamation property. Hence, a potential generalization is to
consider varieties of L-lattices that have a weaker property, the super gener-
alized amalgamation property. For substructural logics (even those without
exchange) the super generalized amalgamation property corresponds to the
Craig interpolation property [31]. Obtaining a functional completeness theo-
rem for varieties of L-lattices that have this property, would yield axiomati-
zation results for an even larger family of one-variable fragments of first-order
logics. In particular, such a result would yield an axiomatization for the one-
variable fragment of the first-order version of the full Lambek Calculus FL.
However, we conjecture that in these cases, completeness does not hold for
consequences but only for valid equations. An alternative generalization is to
extend our proof-theoretic approach from Chapter 3 to first-order versions of
substructural logics like FL that have a cut-free sequent calculus, although
considering the first-order version of FL would require us to lift this proof-
theoretic strategy to sequent calculi where sequents are based on sequences of
formulas instead of multisets of formulas.

Another interesting way of continuing this investigation of one-variable
fragments of first-order logics and the problem of axiomatizing them is to
consider classes that consist of the totally ordered members of a variety of
L-lattices, and hence forms a positive universal class. An Ls-lattice is called
semilinear, if it is isomorphic to a subdirect product of totally ordered FLe-
algebras. Then for any variety V of semilinear FLe-algebras, we can show that

⊨
∀1
V (∃x)φ · (∃x)φ ≈ (∃x)(φ · φ).

In Example 2.1.3 we proved that whenever  L3 ∈ V , then

⊭mV x · x ≈ (x · x),

and in this case mV does not correspond to the one-variable fragment of the
first-order logic based on V . In particular, if V is MV or the variety of all
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semilinear FLe-algebras, mV does not correspond to the one-variable fragment
of the first-order logic based on V . If we consider Vto, then additionally to

⊨
∀1
Vto

(∃x)φ · (∃x)φ ≈ (∃x)(φ · φ)

we can also show
⊨
∀1
Vto

(∀x)(φ ∨ ψ) ≈ (∀x)φ ∨ ψ

where x does not occur in ψ. Although a general approach to obtaining ax-
iomatizations of the one-variable fragments of the first-order logics based on
V and Vto is lacking, success for certain cases suggests a possible future line of
investigation. Let us consider a specific case; the one-variable fragment of first-
order  Lukasiewicz logic can be defined over MV to, the class of totally ordered
MV-algebras, which corresponds to the variety of monadic MV-algebras [77].
The variety of monadic MV-algebras [77] can be defined relative to mMV by

x · x ≈ (x · x) and □(□x ∨ y) ≈ □x ∨□y.

Interestingly, a proof that the one-variable fragment of first-order  Lukasiewicz
logic corresponds to the variety of monadic MV-algebras is given in [17] using
the fact that MV to has the amalgamation property (see also [59,89] for related
results). This suggests that the method of Chapter 2 might be adapted to one-
variable fragments of first-order logics defined over classes of totally ordered
algebras that have the amalgamation property.
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147 (2007), 23–47.

[5] L. P. Belluce, Further results on infinite valued predicate logic, J. Symb. Log. 29 (1964),
69–78.

[6] L. P. Belluce and C. C. Chang, A weak completeness theorem for infinite valued first

order logic, J. Symb. Log. 28 (1963), 43–50.

[7] G. Bezhanishvili, Varieties of monadic Heyting algebras - part I, Studia Logica 61

(1998), no. 3, 367–402.

[8] G. Bezhanishvili and J. Harding, Functional monadic Heyting algebras, Algebra Uni-
versalis 48 (2002), 1–10.

[9] G. Bezhanishvili and W. H. Holliday, A semantic hierarchy for intuitionistic logic,
Indagationes Mathematicae 30 (2019), no. 3, 403–469.

[10] G. Birkhoff, On the Structure of Abstract Algebras, Mathematical Proceedings of the
Camridge Philosophical Society 31 (1935), no. 4, 433–454.

[11] R.A. Bull, MIPC as formalisation of an intuitionist concept of modality, J. Symb. Log.
31 (1966), 609–616.

[12] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, 1981.
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[14] X. Caicedo, G. Metcalfe, R. Rodŕıguez, and O. Tuyt, One-variable fragments of inter-

mediate logics over linear frames., Inform. and Comput. 287 (2022).
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