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Introduction

This thesis studies the one-variable fragments of a broad family of first-order
logics and (partially) tackles the challenge of providing a general approach to
axiomatizing them. (Equational) consequence in one-variable first-order logics
can be translated — by replacing any atom P(x) with a propositional variable
p and occurrences of the quantifiers (V) and (3z) with the modalities [J and
<, respectively — into consequence in a class of algebras with modalities.
Therefore, the challenge of finding axiomatizations for one-variable fragments
may be interpreted as the challenge of finding a (natural) equational basis
for the corresponding classes of algebras. We show that in certain cases, this
class can be defined by “Sb5-like” equations. This thesis is based on the two
papers [24] and [25].

Propositional logics deal with propositions, i.e., statements that hold some
truth value, and ways of altering and combining them to form more (compli-
cated) propositions. For example, in classical propositional logic, the statement
'this cat is cute’ follows from the statement ’this cat is cute and all crocodiles
are scary’. This argument can be formalized in classical propositional logic as

follows:
pAq p : this cat is cute

D q : all crocodiles are scary

Note that this argument holds independently of the meaning of p and g. Propo-
sitional logic considers the logical operations, such as ’and’, ’or’, 'not’, and not
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the meaning of the individual parts of a statement, such as ’this’, ’is’, ’are’,
"all’.

There are some quantified statements that can be formalized in proposi-
tional logic. For example,

All cats are cute.
Filou is a cat.
Hence, Filou is cute.

can be formalized in classical propositional logic as:

A— B A:xisacat
C— A B : x is cute
Hence, C — B C : x is Filou



However, this formalization is very clunky and the same approach does
not work if we reason about more than one object at the same time. Thus,
propositional logics can be very useful, but their expressive power is limited.
Consider for example the following argument:

Every cat-owner wants to pet their cat.
Filou is my cat.
Therefore, I want to pet Filou.

This argument cannot be formalized in propositional logic; however, in first-
order classical logic it can be formalized as:

(Vo) (Vy)((Cy) A Oz, y)) = P(x,y)) C(y) : y is a cat
C(Filou) A O(Naomi, Filou) O(z,y) : x owns y
Therefore, P(Naomi, Filou) P(z,y) : x wants to pet y

First-order logics are much more expressive than their propositional coun-
terparts. We can reason about objects and their relationships, we can quantify
over these objects and we can argue about all or some of them without be-
ing specific. However this expressivity comes with a significant downside for
many first-order logics, namely, the lack of decidability. We call a logic C
decidable, if there is an algorithm to decide whether a given formula is valid
and undecidable, if there is no such algorithm. Most of the first-order log-
ics that are well studied are undecidable. Church [20] showed that first-order
classical logic is undecidable and via Godel’s double negation translation (see,
e.g., [87]) it was shown that any first-order intermediate logic — logics that
are stronger than intuitionistic logic and weaker than classical logic — is also
undecidable. Hilbert-style axiomatizations have been presented for first-order
classical logic [11,45] and some first-order intermediate logics, in particular,
first-order intuitionistic logic [40].

Decidability and axiomatization results have been obtained for other (non-
classical) logics, such as many-valued and substructural logics. Many-valued
logics were first considered by Lukasiewicz in [51] where he considered a three-
valued logic. This idea was expanded to m-valued logics and infinite-valued
logic, the latter is nowadays called Lukasitewicz logic. The valid formulas for
first-order Lukasiewicz logic are not recursively enumerable [78]. Godel [35]
introduced a family of finite-valued (intermediate) logics and Dummett [30]
presented the infinite-valued version called Gdédel (or Gidel-Dummett) logic.
Godel logic is an intermediate logic, which means that its first-order version
is undecidable (as mentioned above). An axiomatization for first-order Godel
logic is given by Horn in [12]. Substructural logics can be considered as logics
given by proof systems that lack some “structural” rules. Alternatively, sub-
structural logics can be considered algebraically, as those logics that have a
class of FL-algebras (or pointed residuated lattices) as an algebraic semantics.
These logics have been studied extensively, see [31,58,73,76]. The Full Lambek
calculus FL and its extensions are prominent examples of substructural logics.



Whereas the function-free fragments of the first-order versions of FL, FL, FL,,,
and FL, are decidable (see [11]), even propositional FL. and FL.. are unde-
cidable (see [21] and [70], respectively). Hilbert-style axiomatizations for these
substructural logics can be found in [26,29].

One way to remedy this problem while maintaining some of the expressivity
of first-order logics, is by restricting the signature or formulas and considering
fragments of the first-order logics. There are many ways to do this. Fragments
that have been considered in the literature include monadic fragments, fluted
fragments, guarded fragments, prenex fragments and fragments that restrict
the number of variables that occur in the formulas. The latter have been
studied to some extent, although in order to obtain a decidable fragment,
the maximum number of variables considered is quite small: For example
the one-variable and two-variable fragments of first-order classical logic are
decidable (see, e.g., [19] and [79,80]), whereas its three-variable fragment is
undecidable [81]. For first-order intuitionistic logic its one-variable fragment is
decidable [11], but its two-variable fragment is already undecidable [17]. The
one-variable fragments of first-order Godel logic and first-order Lukasiewicz
logic are decidable (see [13] and [77], respectively), but decidability for their
two-variable fragments remain unknown. Note that the examples of one-, two-,
and three-variable fragments given above are all equality-free logics.

In this thesis, we focus on one-variable fragments of first-order logics and
the challenge of providing axiomatizations for them. The one-variable frag-
ment of a first-order logic! is the restriction of the consequence relation to
consequences in the logic constructed using one distinguished variable x, unary
predicates, propositional operations, and the quantifiers (Vz) and (3x). The
statements “All cats are cute”, “Filou is a cat”, and “Filou is cute” can be
formalized using one-variable formulas. Let us consider another example of an
argument:

All cats either love going outside or love being petted.
There exists a cat that does not love going outside.
Hence, there exists a cat that loves being petted.

This argument can be formalized in first-order classical logic as follows:

(Vx)(C(z) = (G(z) V P(x))) C(z): z is a cat
(Fz)(C(z) AN G(x)) G(z): = loves going outside
Hence, (3z)(C(z) A P(z)) P(x): x loves being petted

In particular, since only one variable is used, this is a formalization in the one-
variable fragment of first-order classical logic. One-variable fragments may
be reformulated as propositional modal logics, by replacing occurrences of an
atom P(z) with a propositional variable p, and occurrences of (Vz) and (3x)
with the modalities (1 and <, respectively. Typically, this modal logic is

n this thesis (first-order) logics are equated with consequence relations.



algebraizable, that is, it is sound and complete with respect to some suitable
class of algebraic structures (in an algebraic signature containing [J and <).
Therefore, these one-variable fragments may be studied via the corresponding
class of algebraic structures using the tools of universal algebra. Using this
translation, we can formulate the above argument in propositional modal logic
as follows:

O(c— (g VD) c:xis a cat
(e N —g) g: x loves going outside
Hence, < (¢ A p) p: x loves being petted

In Chapter 1 we define a semantics for a first-order logic based on a class
of L-lattices, i.e., algebras with a lattice-reduct, and see that this induces a
semantics for its one-variable fragment. However, note that in general the task
of finding an axiomatization of the one-variable fragment of a first-order logic
is not trivial. A Hilbert-style axiomatization of a first-order logic does not (at
least directly) yield a Hilbert-style axiomatization of (the modal counterpart
of) its one-variable fragment, since derivations of one-variable formulas may
introduce new variables. Nevertheless, axiomatizations for some one-variable
first-order logics have been obtained. For example, the modal counterpart of
the one-variable fragment of first-order classical logic is S5, first axiomatized
by Wajsberg [91], and corresponds to the variety of monadic Boolean alge-
bras introduced by Halmos [35]. The modal counterpart of the one-variable
fragment of first-order intuitionistic logic is MIPC, as shown by Bull [11], and
corresponds to the variety of monadic Heyting algebras introduced by Mon-
teiro and Varsavsky [01]. Varieties of monadic Heyting algebras corresponding
to the modal counterparts of the one-variable fragments of first-order interme-
diate logics have been investigated in [7,8, 13,72, 82, 83]. In particular, it was
shown that the one-variable fragments of first-order Godel logic and Corsi’s
first-order logic of linear frames correspond to the variety of monadic Godel
algebras [15] and the variety of monadic Heyting algebras satisfying the prelin-
earity axiom [11], respectively. The one-variable fragments of other first-order
many-valued logics have also been studied, in particular, the modal counter-
parts of the one-variable fragments of first-order Lukasiewicz logic and Abelian
logic correspond to monadic MV-algebras [17,28,77] and monadic Abelian /(-
groups [59], respectively.

Despite of all these results, a general approach to axiomatizing this class
of algebraic structures corresponding to the one-variable fragment of a first-
order logic, has been lacking. In this thesis, we take a first step towards
overcoming this challenge, by proving that the class of algebraic structures
corresponding to the one-variable fragment of a first-order logic based on a
variety of L-lattices that has the superamalgamation property (corresponding
to the Craig interpolation property in some cases) admits a (natural) axiom-
atization by “S5-like” equations. To this end, we develop both algebraic and
proof-theoretic approaches. We illustrate the main ideas of our methods via



classes of FLc-algebras (or commutative pointed residuated lattices), that en-
compass the running examples in this thesis. Classes of FL.-algebras provide
semantics for particular substructural logics. In the following, we give a more
detailed outline of the thesis and of how this result is achieved.

Outline of the Thesis

In Chapter 1 we introduce the preliminary notions needed in this thesis. In
particular, we introduce the logics that will be used as recurring examples. In
Section 1.1 we first recall some basic definitions from universal algebra. We
define L-lattices, the main algebraic structures of this thesis, and FL.-algebras,
particular L-lattices that encompass the running examples used to illustrate
the main concepts. In Section 1.2 we define first-order logics via a semantics
based on classes of L-lattices. We prove that if a class K of L-lattices ad-
mits regular completions, then the first-order logics based on K and the class
of complete members of K coincide. We conclude this section by presenting
the first-order extensions of some of the logics introduced in Section 1.1. Sec-
tion 1.3 is used to introduce some proof-theoretic notions. In particular, we
define proof systems and present a Hilbert-style axiomatization for FL,., the
variety of FL.-algebras, and a sequent calculus for Lat, the variety of lattices.
We introduce the sequent calculus VCFL, a multiset version of the first-order
Full Lambek calculus with exchange, and prove that it has cut elimination. We
also consider the first-order versions of the running examples and discuss some
proof systems that have been obtained for them. In Section 1.4 we define
one-variable fragments of first-order logics via a restriction of the semantics
for the first-order logics introduced in Section 1.2. Then we consider some
axiomatizations that have been obtained for (the modal counterparts of) the
one-variable fragments of the logics considered in Section 1.2.

In Chapter 2 we define modal extensions of L-lattices and prove that in
certain cases, they provide axiomatizations for the class of algebraic structures
corresponding to the one-variable fragments of first-order logics defined over
classes of L-lattices. In Section 2.1 we define m-L-lattices, extensions of L-
lattices with the unary operators [J and <, that satisfy “S5-like” equations.
For any class of L-lattices IC, we denote by m/C the class of m-L-lattices with an
L-lattice reduct in K. We consider some examples of one-variable fragments of
first-order logics from the literature that correspond to classes of m-L-lattices.
In Section 2.2 we prove a one-to-one correspondence between m-L-lattices and
ordered pairs of L-lattices and subalgebras that satisfy a relative completeness
condition. This generalizes previous results in the literature (see, e.g., [7,

]). In Section 2.3 we consider functional m-L-lattices consisting of certain
functions from a set W to an L-lattice A. We prove that the semantics of one-
variable first-order logics can be identified with evaluations into functional
m-L-lattices. If K is a class of L-lattices closed under taking subalgebras
and direct powers, we obtain a correspondence between consequence in the



one-variable first-order logic defined over K and consequence in the functional
members of mK. In Section 2.4 we achieve the main goal of the chapter,
obtaining an axiomatization of the class of algebraic structures corresponding
to the one-variable fragment of first-order logics defined over certain varieties of
L-lattices. We consider classes of L-lattices, that have the superamalgamation
property, an important algebraic property, studied for example in [51-56], that
corresponds to the Craig interpolation property in the setting of FL.-algebras.
We then prove a functional completeness theorem for such a class K that is
closed under taking direct limits and subalgebras, showing that any member of
mlIC is functional (generalizing a representation theorem of Bezhanishvili and
Harding for monadic Heyting algebras [8]). This theorem together with the
results from Section 2.3 yields Corollary 2.4.2:

If V is a variety of L-lattices that has the superamalgamation

property, then for any set U{¢ ~ 1} of one-variable equations,

TEY prY = YR ety

where (—)* denotes the (standard) translation from one-variable formulas to
modal formulas that replaces atoms with propositional variables and quanti-
fiers (Vx) and (3x) with O and <, respectively.

In Chapter 3 we provide an alternative proof-theoretic approach to proving
Corollary 2.4.2 for the one-variable fragments of certain first-order substruc-
tural logics. In Section 3.1 we introduce the sequent calculus V1CFL. This
sequent calculus is sound and complete with respect to consequence in the
one-variable first-order logic defined over F L., introduced in Section 1.4. Sec-
tion 3.2 is used to prove an interpolation property for certain sequents derivable
in VICFL, in particular, for sequents that occur in the derivation of a one-
variable sequent. In Section 3.3 we give an alternative proof of Corollary 2.4.2
for the variety F L. using proof-theoretic methods. The key idea of this proof
is to show (using the interpolation property) that additional variables in a
derivation of a one-variable sequent can be eliminated. In Section 3.4 we ap-
ply the method from Section 3.3 to extensions of VICFL with sets of simple
rules that have exactly one premise. In particular, we prove Corollary 2.4.2
for the varieties FL., and FL...

In Chapter 4 we summarize the achievements of this thesis and consider
cases of one-variable first-order logics that have been axiomatized in the lit-
erature, but are not covered by our methods. We also give an outlook on
future avenues to continue this work and axiomatize an even broader family
of one-variable first-order logics.



Chapter 1

The Logics

This chapter introduces the logics that are considered in this thesis. In Sec-
tion 1.1 we introduce the algebraic structures that provide the algebraic se-
mantics for the propositional versions of these logics as well as the semantics
for the first-order versions defined in Section 1.2. In Section 1.3, we define some
proof-theoretic notions and introduce a first-order version of the Full Lambek
calculus with exchange. Finally, in Section 1.4, we introduce the one-variable
fragments of the first-order logics defined in Section 1.2. We assume familiarity
with basic notions of Universal Algebra as found in [12].

We begin by defining the formulas used in this thesis. Let £ be an algebraic
signature. The sets of propositional formulas are defined as follows:

1. The set Fm(L) of propositional formulas is built inductively using a
countably infinite set of propositional variables {p;};cn and the opera-
tions in £. The elements of Fm(L) are called £-formulas and are usually
denoted by «, (3, .. ..

2. The set Fmp(L) of modal propositional formulas is built inductively
using a countably infinite set of propositional variables {p;}en, the op-
erations in £, and the unary operations symbols [J and <. The elements
of Fmp (L) are called Ln-formulas and are usually denoted by «, 3, . ...

Note that the first-order formulas considered in this thesis are all function-free
and equality-free. Hence, the sets of first-order formulas are defined as follows:

1. The set Fmy(L) of first-order formulas is built inductively using the
union over all n € N of the countably infinite sets of n-ary predicates
{P,.i}ien, the countably infinite set Var of variables, the operations in L,
and quantifiers (Vx), (3z) for any = € Var. The elements of Fmy (L) are
called Ly-formulas and are usually denoted by ¢, v, x, . ...

2. The set Fm} (L) of one-variable formulas is built inductively using the
countably infinite set of unary predicates { P; };cn, a variable z, the oper-
ations in £, and quantifiers (Vz) and (3z). The elements of FmJ(L) are
called one-variable Ly-formulas and are usually denoted by ¢, v, x, .. ..
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3. The set Fm}* (L) of extended one-variable formulas is built inductively
using the countably infinite set of unary predicates { P, };cn, the variables
{z} U {x;}ien such that {x} N {z;};en = 0, the operations in £, and
quantifiers (Vx), (3x). The elements of Fm)" (L) are called L} -formulas
and are usually denoted by ¢, ¥, x, .. ..

We now give the definition of a logic (see, e.g., [13]) used in this thesis. Let
Fm be one of the sets of formulas defined above. Let FC P(Fm) x Fm where
a pair (T, «) in F is denoted by T'F a. We call F a consequence relation over
Fm, if it satisfies the following properties for any o € Fm and 7, S C Fm:

1. if « € T, then T + « (reflexivity);
2.fTHaand T C S, then S+ a (monotonicity);
3. if THaand Sk g forall § €T, then St « (transitivity).

A logic can be defined as the pair (Fm, ), where - is a consequence relation
over Fm!. If the set Fm is clear from the context, we equate the logic (Fm, )
with the consequence relation .

1.1 Algebraic Semantics

In this section we recall some basic algebraic notions such as the formula alge-
bra and consequence in a class of algebraic structures. We introduce L-lattices,
the algebraic structures that form the basis for the (algebraic) semantics for
all the logics considered in this thesis. We conclude this section with the intro-
duction of FL.-algebras, particular L-lattices, and a list of examples of logics
whose algebraic semantics are given by classes of FL.-algebras.

Let £ be an arbitrary algebraic signature. Recall that we denote by Fm(L)
the set of L-formulas «, 3,... built inductively using a countably infinite set
of propositional variables {p;};cn and the operations in £. An ordered pair of
L-formulas o = f is called an Fm(L)-equation.

An algebraic structure in the signature £ is called an L-algebra. Let us
denote by L,, the set of n-ary operations of £. Then the formula algebra of L
is the L-algebra

Fm(L) = (Fm(L), {H+xF™5) | neN,x € L£,}),
where for each n € N, x € £, and oy, ..., a, € Fm(L),

KAL) () ay) = (o, ap).

Tn the case where Fm is a set of propositional formulas, we can assume that F is also
closed under substitutions.



A homomorphism from the formula algebra of £ to an L-algebra A is called
an A-evaluation. Let IC be a class of L-algebras. For a set of Fm(L£)-equations
YU {a =~ B} we define

Y Fr a~x f:<= for every A € K and A-evaluation f,

fl@) = f(#) forall o/ = ' € £ = f(a) = f(B),

and say that o ~ [ is a consequence of ¥ in K. For sets of Fm(L)-equations
Y and Y, we write ¥ Fr X if X Fx o =~ 1 for all p = € Y.

Remark 1.1.1. Note that Fx is an equational consequence relation that satis-
fies the same properties for (sets of) equations instead of (sets of ) formulas, as
a consequence relation on formulas (i.e., reflexivity, monotonicity, transitivity),
introduced at the beginning of Chapter 1.

Let K be a class of L-algebras, then H(K), S(K), P(K), I(K), Py(K), and
U(K) denote the classes of homomorphic images of L-algebras in K, subalge-
bras of L-algebras in K, direct products of L-algebras in K, isomorphic copies
of L-algebras in K, ultraproducts of L-algebras in I, and L-algebras A such
that every countably generated subalgebra of A belongs to K, respectively.

A wariety is a class V of algebraic structures in the same signature that
is closed under taking homomorphic images, subalgebras and (direct) prod-

ucts. By Birkhoff’s Theorem [10], a class V is a variety if and only if it is
an equational class, that is, a class of algebraic structures defined by a set of
equations.

Before we introduce L-lattices, the main algebraic structures of this thesis,
we recall the definition of a lattice. Let £; be the algebraic signature consisting
of the binary operations A and V. A [attice is an L;-algebra L = (L, A, V) such
that A and V are binary operations satisfying the following equations:

TNy ~=yANux, zrVy=yVvuae,
cA(YyANz)=(zAy) Az, zV(yVz)=(@Vy)Vz,
TNT R, rVzr=uz,

zA(zVy) ~x, zV(rAy) =~ x.

Alternatively, a lattice can be defined as a poset (L, <) — a nonempty set L
with a reflexive, antisymmetric, transitive binary relation < — such that for
all a,b € L

inf{a, b} and sup{a, b}

exist in L. The two definitions of lattices are equivalent. Starting with a lattice
(L, N\, V), by setting
a<b <= aANb=a,

we obtain a lattice (L, <). Starting with a lattice (L, <) and defining

a Ab:=inf{a,b} and aVb:=sup{a,b},

10



we obtain a lattice (L, A, V). The class of all lattices forms a variety, denoted
by Lat.
Let L) be the algebraic signature extending £; with the constants L and
T. The Lj-algebra (L,A,V, L, T) is called a bounded lattice if (L, N\, V) is a
lattice and for all @ € L,
1 <a<T.

A lattice or bounded lattice L is called distributive, if for any a,b,c € L,
aN(bVe)=(anb)V(aAec) and aV (bAc)=(aVDb)A(aVc).

Let £ be an algebraic signature. Whenever £, contains distinct operations
A and V, we call £ lattice-oriented and an L-algebra A an L-lattice, if the
reduct (A, A% VA) is a lattice.

In particular, lattices are L£;-lattices.

An L-lattice A is called complete, if for all X C A,

/\X = inf X and \/X =sup X

exist in A. For any class I of L-lattices, we denote by K¢ the class of all
complete L-lattices contained in K.

Let A and B be L-lattices, then B is called a reqular completion of A, if
B is a complete L-lattice and there exists an L-lattice embedding h: A — B
that preserves all existing meets and joins in A, i.e., for any X,Y C A such
that the meet of X and the join of ¥ exist in A,

H(AX)=A\nX) and  h(\/YV)=\/ ).

A class I of L-lattices is said to admit reqular completions if for any A € K,
there exists a regular completion of A in .
An L-lattice A is called totally ordered, if for all a,b € A,

a<b or b <a.

For a class K of L-lattices, we denote by K, the class of all totally ordered
members of K.

At the beginning of this chapter, we introduced logics as consequence rela-
tions. We now define what it means for a class of L-lattices to be an algebraic
semantics for a logic. Let (Fm(L),F) be a logic, then we call a class K of
L-lattices an algebraic semantics for b if there exists a set of equations 7(x)
in one variable such that for all sets of L-formulas S U {p} the following is
satisfied:

Ste <= 7(5) Fc7(0),

where 7(p) denotes the set of Fm(L)-equations obtained by substituting «
with ¢ in all equations in 7(z), and 7(5) is the union of the sets 7(1) for all

Y es.
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Note that an algebraic semantics for a logic I is not unique. In particular,
we have the following relationships between consequence in varieties and con-
sequence in classes that generate them in different ways (see, e.g., [12]). Let
VY be a variety of L-lattices. If V is generated as a variety by K C V, i.e.,
VY = HSP(K), then for any Fm(L)-equation &,

':V€ <~ ':IC E.

If V is generated as a quasivariety by K C V, i.e., V = ISPPy(K), then for any
finite set ¥ U {e} of Fm(L)-equations,

E':yg < E':}C&

If V is generated as a generalized quasivariety by I C V, i.e., V = ISPU(K)
(see [62]), then for any set X U {e} of Fm(L)-equations,

YXFye <— > Fie.

Thus, if K generates V as a generalized quasivariety, K and V provide equivalent
algebraic semantics for the same logic.

Let L, be the signature consisting of the binary operations A,V, -, and —
and the constants f and e. An FLe-algebra (see, e.g., [31,58]) is an Ls-lattice
(A, N, V, -, —, f e) such that (A, - e) is a commutative monoid and — is the
residual of -, that is, for any a,b,c € A,

a-b<c < a<b—ec

FL.-algebras are also referred to as commutative pointed residuated lattices and
the class of all FLe-algebras can be defined by the equations defining lattices
(given above), the equations defining commutative monoids, i.e.,

r-(y-2)~(x-y)- 2
rT-yYy=y- -z,
r-exux,

and the following (in)equations

r-(yVz)maz-yVa-z,
r—=y<z—(yVz),
r-(z—=y) <y<z—(r-y).

Therefore, the class of all FL.-algebras forms a variety denoted by F L., which
provides an algebraic semantics for the Full Lambek Calculus with exchange
FL., or alternatively, the propositional version of the calculus VCFL intro-
duced in Section 1.3. Varieties of FL.-algebras provide algebraic semantics
for substructural logics. For example, FL., and FL.. are the varieties of
FL.-algebras that satisfy the inequations

f<zx<e and r<ux-x,

12



respectively. F L., and FL.. provide algebraic semantics for the Full Lambek
calculus with exchange and weakening and the Full Lambek calculus with
exchange and contraction, respectively. First-order versions of these calculi
are introduced in Section 1.3 and in Chapter 3 the one-variable fragments of
FLe, FL¢y, and FL.. are studied.

Remark 1.1.2. FL-algebras, i.e., pointed residuated lattices (see, e.g., [31,58])
are also examples of L/ -lattices for the signature £ consisting of the binary
operations A, V, -, \, and / and the constants f and e. The variety FL of FL-
algebras forms an algebraic semantics for the Full Lambek calculus and FL.
is term-equivalent to the subvariety of FL defined by = -y ~ y - x (identify
\ and /). Hence, FL-algebras fit in this framework of L-lattices, however, we
use FL.-algebras as the basis for the examples in this thesis, since the main
theorems do not apply in the case of FL.

Let A be an L -lattice and consider for each X C A,

X" ={a€Ala>xforalze X},
X'={acAla<xforalze X}
Then the (Dedekind) MacNeille completion of A (see, e.g., [31,58]) is the

L-lattice
N(A) = (P(A)", N, Un, ws = e ),

where

PA)" = {X e P(4) | (X*)' = X}
and for all X,Y € P(A)4,

XUyY = (XuYy) X yY={r-ylzecXyecY}
en = {e}, X —=yY ={z|z-ze€Y forall z € X},
frr = {f}L.

For any FlLe-algebra A, the L -lattice N'(A) is an FLe-algebra and
I: A = N(A); v {z}

is an embedding that preserves all existing meets and joins, making N (A) a
regular completion of A. Thus, any class of FL.-algebras that is closed under
MacNeille completions admits regular completions.

For any class K of FL.-algebras we can define a consequence relation on
formulas® corresponding to Fx. Let T'U {a} be a set of L-formulas, then

TEcka <= {e<p|feT}EFre<a.

?Indeed, such a consequence relation on formulas can be defined for any class K of
L-lattices such that any member of K has an FlL.-algebra reduct. We will denote both
consequence relations by Fg.

13



We can also go from a consequence of formulas to a consequence of equations.
Let ¥ U {a ~ (8} be a set of Fm(L,)-equations, then

Yrcarp << {def|d=peX}Erae b,

where a <> == (o — S)A(B — «). That is, we may view every class K of FLe-
algebras as determining a (substructural) propositional logic where K provides
an algebraic semantics for it (via the set of equations 7(z) := {e < z}).

Now we present the main running examples of L-lattices that provide al-
gebraic semantics for the logics considered in this thesis.

Example 1.1.3. The following examples can all be defined as special classes
of FLe-algebras. Let £; be the signature £, without - and f, e replaced with 0, 1,
respectively. The lattice-oriented signature £, consists of the binary operations
A,V, the unary operation — and the constants 0,1 and the lattice-oriented
signature £, contains the binary operations A, V, and +, the unary operation
—, and the constant 0.

e An L;-lattice H = (H, A, V,—,0,1) is called a Heyting algebra whenever
(H,A\,V,0,1) is a bounded distributive lattice and — is the residual of
A. The variety of Heyting algebras is denoted by H.A4 and provides an al-
gebraic semantics for intuitionistic propositional logic IPC (see e.g. [18]).
Heyting algebras are term-equivalent to FL.-algebras satisfying

TYyxT Ay and f<z<e,

where we identify 0 and f, and 1 and e. Thus, the variety H.A is term-
equivalent to FLeye. = FLew N FLe. Varieties of Heyting algebras pro-
vide algebraic semantics for intermediate logics. See [9] for an extended
survey of propositional intermediate logics and their different semantics.

e An Ly-lattice B = (B, A,V,—,0,1) is called a Boolean algebra if the
algebra (B, A, V,0,1) is a bounded distributive lattice satisfying

z Az ~0 and zV -z~ 1.

The class of all Boolean algebras forms the variety B.A that is term-
equivalent to the subvariety of H.A defined by

(x —=0) >0~z

The variety BA provides an algebraic semantics for classical logic CPC.
The standard Boolean algebra is the 2-element Boolean algebra 2 =
({0,1},A,V,—,0,1), where

aANb=min{a, b}, aVb=max{a,b}, —-0=1, -1=0.

The Ly-algebra 2 generates BA as a generalized quasivariety and for any
set of Ly-formulas T'U {a},

T Fpa = T FE5 a.
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e A Heyting algebra G is called a Gddel algebra, if it satisfies the equation
(x—=y)V(y—z)~e

The standard Gédel algebra G is the Godel algebra ([0, 1], A, vV, —,0, 1),
where for any a,b € [0,1], a A b =min{a, b}, a Vb = max{a,b}, and

1 ifa<b,
a—b= .
b  otherwise.

We denote the variety of Godel algebras by GA, which provides an alge-
braic semantics for the (infinite-valued) Gédel (or Gédel-Dummett) logic
LC (see, e.g., [3]), which was first presented by Dummett [30)].

Subalgebras of G provide algebraic semantics for what are known as
Gadel logics, a family of many-valued logics. An infinite family of finite-
valued Godel logics was introduced by Godel to show that there are
infinitely many logics between IPC and CPC [35]. The standard Godel
algebra G as well as any infinite subalgebra of G provide an alternative
algebraic semantics for LC.

There are countably infinitely many different (propositional) Gédel logics
and exactly one infinite-valued one.

e An MV-algebra (introduced by Chang in [19]) is an algebraic structure
A = (A,®,-,0), in the algebraic signature L,,, containing the binary
operation ¢, the unary operation —, and the constant 0, satisfying

@ (ydz)= (DY) d z, ——x R,
rhby~=ydur, x @ -0~ 0,
r®0~x, (@Y by~ -(-ydx)d .

The class of all MV-algebras forms the variety MV and is term-equivalent
to the variety of FL.-algebras satisfying

f<r<e and (r—y) —y=zVy.

The variety MYV provides an algebraic semantics for Lukasiewicz logic
L (see e.g., [63], [23]), introduced by Lukasiewicz in [53]. The standard
MV -algebra is the MV-algebra L = ([0, 1], ®, =, 0), where

a®b:=min{a+b,1} and -a:=1-a.

The variety MYV is generated as a quasivariety by L and for any finite
set T'U{a} of L,,,~-formulas,

TFEmy a <~ T Fy, .
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e An L,-lattice A = (A, A,V,+,—,0) is called a lattice-ordered abelian
group (abelian (-group for short), if (A, 4+, —,0) is an abelian group and
for all a,b,c € A,

a<b = a+c<b+ec

The class of all abelian ¢-groups forms a variety, denoted by LG, that is
term-equivalent to the variety of FLe-algebras satisfying

(x —e)-zre and f~e.

The variety LG provides an algebraic semantics for Abelian logic, in-
troduced independently in [60] and [I6]. We define the algebra R =
(R,A,V,+,—,0) where (R, +,—,0) is the usual additive group of the
reals and for all a,b € R,

a Ab:=min{a,b} and  aVb:=max{a,b}.

The L,-lattice R generates LG as a quasivariety and for any finite set of
L,-formulas T'U {a},

T Erg « = T Er .

The final example in this section does not fully fit in the previous frame-
work, since these L-lattices are not special FLe-algebras, but they can be viewed
as extensions of Boolean algebras with a particular unary operation [J.

Example 1.1.4. Let £,, be the signature £, together with a unary operation
O. An L,,-lattice M = (M, A, V,—,0,1,0) where (M, A,V,—,0, 1) is a Boolean
algebra is called a modal algebra if it satisfies

Ol~1 and Oz Ay) =~ Oz A Qy.

The class of all modal algebras, denoted by MA forms a variety and provides
an algebraic semantics for the modal logic K. Subvarieties of MA provide
algebraic semantics for well-known modal logics, e.g., the subvariety S4 of
MA defined by

Oz <z and Oz < OOz

provides an algebraic semantics for S4 and the subvariety S5 of §4 defined by

0Cxr ~Ox
provides an algebraic semantics for S5. The modal algebras in 85 correspond
to the monadic Boolean algebras studied in [38]. See [18] for a study of modal
logic.
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1.2 First-Order Logics

We now introduce a broad family of first-order logics defined algebraically
based on classes of L-lattices. Note that this is only one way to define first-
order logics. First-order logics can also be defined via Kripke semantics (see,
e.g., [18]), proof systems (introduced in Section 1.3), etc. In particular, (first-
order) intermediate logics and (first-order) substructural logics are frequently
defined via Kripke semantics and sequent calculi, respectively.

First-order logics can be defined over an arbitrary first-order language with
formulas built using the propositional operations from the algebraic signa-
ture L (see, e.g., [20, Section 7.1]). However, we can restrict our attention to a
fixed (generic) first-order language here. We consider the set of predicate sym-
bols P, the union of the countably infinite sets of n-ary predicates {P,; }ien,
for each n € N, and the countably infinite set Var of variables, usually denoted
by x,y, z,x1,Z2,.... Recall that Fmy(L), the set of Ly-formulas, denoted by
0,0, X, ..., is defined inductively as follows:

1. Let zy,...,x, be variables, then P, ;(x1, ..., x,) is an (atomic) Ly-formula
for all n,7 € N.

2. Let x € L, and let 1, ..., ¢, be Ly-formulas, then *(p1,...,p,) is an
Ly-formula.

3. Let x be a variable and ¢ an Ly-formula, then (Vz)p and (3x)¢ are
Ly-formulas.

Remark 1.2.1. Note that a first-order language may contain function sym-
bols, which means that in the inductive definition of first-order formulas above,
the arguments of atomic first-order formulas are arbitrary terms. The terms
considered in this thesis consist only of the variables in Var. We will be focus-
ing on the function-free, equality-free fragments of these first-order logics, but
we will refer to these fragments as the first-order logics throughout this thesis.

An Fmy(L)-equation is an ordered pair of Ly-formulas ¢, and is usually
written as ¢ & 1.> We now define a semantics where Ly-formulas are evaluated
in L-lattices. Let S be a non-empty set. An S-valuation is a map v from Var
to S and for a € S and = € Var, we denote by v,—, the S-valuation defined by

{v(y) ify#a

Ve=a(y) = a if y = .

Let A be an L-lattice and let Z(P, ;) be a map from S™ to A for each n € N
and i € N. Then we call & = (S,Z) an Ay-structure, if the following values

3Let us emphasize that an Fmy(L)-equation ¢ =~ v is a primitive syntactic object that
relates two formulas and not terms. In some settings (e.g., first-order substructural logics),
p &~ 1 can be replaced by a formula such as ¢ <> ¢ and semantical consequence can be
defined between formulas, but this is not always the case.
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are defined for any S-valuation v
1PillS = Z(Poi) (v(@), . .., v(w)) n,i € N
[(V2)lS = /\{||90Hi:a |a €S}

S S
1G2)elly = \Aliely,_, [a €S}
be(prs s em)lly = #*eenlly - lemlly) m e N, x € Lo,

where we set ||(Vz)p||S and ||(3z)¢]|S to be undefined if the respective (pos-
sibly infinite) meet and join do not exist in A and set |[*x(¢1, ..., gpn)||f to be
undefined if ||;]|S is undefined for some i € {1,...,m}.

We say that an Fmy(L)-equation ¢ ~ 1 is valid in an Ay-structure S,
denoted by & = ¢ ~ 1, if ||||S = ||¢||S for any S-valuation v. If & = ¢ ~ 1
for any Ay-structure &, we write A = ¢ &~ ¢ and say that ¢ ~ ¢ is valid in
A, and if A = ¢ ~ 1) for any L-lattice A in a class K of L-lattices, we write
K | ¢ = 1 and say that ¢ ~ 1 is valid in .

These definitions can also be extended to sets of Fmy(L)-equations. Let 3
be a set of Fmy(L)-equations. Then we write & = X, A = X, and K = X if
forall p=yY e X, G EFpxY, AE p=, and K | ¢ & 1, respectively.

For any set ¥ U {¢ ~ 9} of Fmy(L)-equations and class of L-structures
K we write X F}. ¢ &~ 1 and say that ¢ =~ 1 is a (sententialt) semantical
consequence of > in K, if for any L-lattice A € K and Ay-structure G,

SEYrY, forall =y e = G Ep=1

Note that F}- is an equational consequence relation® in the sense of Remark 1.1.1,
which we call the first-order logic based on K.
In certain cases, we can restrict our attention to the complete members K€

of IC.

Proposition 1.2.2. Let K be a class of L-lattices that admits reqular comple-
tions. Then for any set of Fmy(L)-equations ¥ U {p =~ 1},

YEL pr = LEL o~

Proof. The left-to-right direction is clear, since K¢ is a subclass of K. For the
right-to-left direction suppose that ¥ ¥} ¢ ~ 1. Then there exists A € K and
an Ay-structure (S,Z) such that for all ¢’ = ¢’ € ¥

S S
Il = 191

4Note that we use the qualifier “sentential” to distinguish between consequences of a set
of equations of propositional formulas in I (introduced in Section 1.1) and consequences of
a set of equations of first-order formulas in K.

SWhenever it is clear from the context which consequence relation we mean, we call both
Fx and lzz equational consequence relations.
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for all S-valuations v, but for some S-valuation v’

lelly # 111y

By assumption, there exists a regular completion B of A in K¢ together with
an L-lattice embedding h: A — B that preserves all existing meets and joins

in A. Since & is an Ay-structure and h preserves all existing meets and joins,
taking &" = (S, ") with

I"(P,;) = hoZ(P,,)
for all n,7 € I, yields a By-structure, that satisfies

&h &
[l = Ao lixll,
for all x € Fmy(£) and S-valuations v. Then we obtain

&h & & &h
Il = holle'lly =hellll, = llv]l,
for all ¢’ = 1" € ¥ and S-valuations v, as well as

h h
lolls” = hollglly #hollwly = Il -
Therefore, 3 EY.. ¢ = 1). O

The following example serves as an illustration of the definitions given
above.

Example 1.2.3. We consider the signature £, and the consequence relation
3 between sets of Fmy (L )-equations and an Fmy (L )-equation, where 2 is the
two-element Boolean algebra. Since 2 is a finite structure, the infinite meets
and joins considered above always exist and any & = (S,Z) is a 2y-structure.
For an example, let us consider S = N and Z such that for the unary predicate
P and the binary predicate @),

if k£ is even,

if £ is odd;

{1 if k<1,
0  otherwise.
Then for the valuation v(z) = 1, v(y) = 2 some of the values are:
[Pz )||6 = Z(P)(v(x)) = Z(P)(1) = 0,
IIQ(fE yIIy =Z(Q)(v(x),0(y) = T(Q)(1,2) = 1,
1(va) P(2); /\{||P(l’)||% keNy=A{o,1} =
1G2)P@)7 = \VAIP@I; |’<7€N}=\/{0 1} =1,
1(V2)(3y)@ x,y)H = AtVilQ@yl;_,,_ |1eN} | keN}
_/\{\/{z )(k,1) | 1 € N} | k € N}

Z(P): N — A; k’r—>{1

l

Z(Q): N> — A;
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Thus we get & = (Jz)P(z) = (Vx)(Jy)Q(x, y).

For any first-order logic based on a class K of FL-algebras, Ff., we can
define a consequence relation on formulas the same way as in Section 1.1. For
any set of Lg-formulas T'U {p},

TEL ¢ = {e<y|veT}Fre<o,

That is, the first-order logic based on I determines a (first-order) logic in
the sense of the definition at the beginning of Chapter 1. In the examples
below, we mean the consequence relation on formulas instead of the equational
consequence relation whenever we write F}-.

Example 1.2.4. We consider the first-order versions of the logics introduced
in Example 1.1.3.

e First-order Classical logic F§ corresponds to Fj 4 and, since BA admits
regular completions, also to Fj e

e First-order intuitionistic logic was first studied by Heyting [10]. As re-
marked at the beginning of this section, intuitionistic logic as well as its
first-order version are usually defined via a Kripke semantics. However,
we can give an equivalent definition of first-order intuitionistic logic via
the semantics defined above. First-order intuitionistic logic corresponds
to EY, 4 and also to EJ, 4., since H.A admits regular completions.

e First-order intermediate logics have been studied by Umezawa [90] and
Ono [67]. In particular, the first-order version of infinite-valued Godel
logic Fg was first investigated by Horn [12]. He showed that EY cor-
responds to FY, A,,» Where HA;, is the class of totally ordered Heyting
algebras. As mentioned in Section 1.1, there is only one infinite-valued
propositional Godel logic, however in [1], the authors show that there
are (countably) infinitely many different infinite-valued first-order Godel
logics. See [3,4] for a study of first-order Godel logics.

The consequence relation IZZ 4 corresponds to Corsi’s first-order logic of
linear frames introduced in [27].

e First-order substructural logics can be defined as consequence relations
on formulas FY,, for varieties V of FLc-algebras. A broad family of vari-
eties of FLc-algebras are closed under MacNeille completions and there-
fore, for any such variety V, the consequence relations Fy, and FY,. coin-
cide.

e First-order Lukasiewicz logic corresponds to Fy , where L is the standard
MV-algebra defined in Example 1.1.3. The first-order logic based on
MV, Elyy,, (studied by Héjek [37]) does not correspond to first-order
Lukasiewicz logic.

First-order Abelian logic can be considered as F%. The one-variable
fragment of g is studied in [59,39].
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1.3 Proof Theory

In this section, we recall some basic proof-theoretic notions (found, e.g., in [58])
and present sequent calculi that correspond to some of the first-order logics
introduced in Section 1.2. In particular, in Figure 1.4, we present VCFL, a
multiset version of the first-order Full Lambek Calculus with exchange. We
consider extensions of VCFL with structural rules. Finally, we give a proof of
a fundamental property of these sequent calculi, that is, cut elimination.

Suppose that A is a set of structures, e.g., equations, formulas, or sequents.
An ordered pair ({S1,...,S,},5) consisting of a finite (possibly empty) set
{S1,...,5} € A and an element S € A is called an inference for A. The
structures Sy,...,S, are called premises and the structure S is called the
conclusion of the inference. An inference is usually denoted by

S S,
S

A rule for A, usually denoted by r, is a set of inferences for A that are
referred to as instances of r. Typically, rules are defined schematically using
metavariables to denote arbitrary members of A or to construct the members
of A. Schematically defined rules with no premises are called azioms. An
ordered pair (A, R), where A is a set of structures and R a set of rules for A,
is called a proof system.

Let C = (A, R) be a proof system and X U{S} C A. We define a derivation
d of S from X in C, denoted by d; X F¢ S, to be a finite tree of members of
A such that

1. the root is S;

2. each node S’ is an element in X, or has child nodes Si,...,S, forn € N
such that

Sy S,
Sl

is an instance of a rule in R.

We say that S is derivable from X in C, if there exists a derivation d of S from
X in C and we write X F¢ S. For X = (), we just say that d is a derivation of
S in C, or S is derivable in C, and write d ¢ S and ¢ S, respectively. The
height ht(d) of a derivation d is the maximum length of the branches of d.

If the set of structures is the set of (propositional or first-order) formulas
Fm for some algebraic signature, the proof system is called a Hilbert-style
axiomatization. Usually Hilbert-style axiomatizations have many axioms and
only a few rules, and derivations are often given as a list of formulas.

21



Let C be a Hilbert-style axiomatization. Then ¢ is a consequence re-
lation over Fm, that is, C determines a logic F-¢. We call C a Hilbert-style
azxiomatization for the logic =, if for any set of formulas T'U {¢},

THy <<= Tklkco,

and we say that C axiomatizes the logic .
For a first-order formula ¢ € Fmy (L), we define the complezity of ¢, de-
noted by cp(y), inductively as follows:

1. If v is an atomic formula, then cp(p) = 0.

2. If o = x(p1,...,pn) for x € L, and formulas ¢4, ..., p,, then cp(p) =
cp(p1) + -+ +cplpn) + 1.

3. If v is (V) or (Fz)¢ for a formula 1, then cp(p) = cp(¢) + 1.

We call an occurrence of a variable x in a first-order formula bound, if it
is in the scope of a quantifier (Vz) or (3z) and free, otherwise. A formula in
which every occurrence of a variable is bound is called a sentence.

Let x,y be variables and ¢ € Fmy(L). We define that y is free for x in ¢
inductively as follows:

1. y is free for x in any atomic formula.

2. If o = x(¢1,...,pn) for x € L, then y is free for x in ¢, if y is free for
zin @; foralli e {1,...,n}.

3. If o = (V2)¥ or ¢ = (J2)1, then y is free for x in ¢, if

(a) either y # z and y is free for z in ¥

(b) or z does not occur freely in ¢.

Example 1.3.1. The variety of FlL.-algebras FL. provides an algebraic se-
mantics for the logic determined by the Hilbert-style axiomatization HCFL
(see, e.g., [31]) given in Figure 1.1. Then the translation given in the previous
section of the defining equations of FL. from Section 1.1 are all derivable in
HCFL. We give the derivation of (&« — ) — (a — (8 V 7)), the formula
corresponding to the inequation x — y < x — (y V z), as an example. The
formulas in 1. and 2. are instances of axioms.

L g—=(BVy)
2. (B=(BVY) = ((a—=pF) = (a—=(BV7y))
3. (a—=p)—=(a— (V) (mp) with 1., 2.

We obtain a Hilbert-style axiomatization YHCFL for %, , the substructural
first-order logic based on FL., by adding the rule and axioms from Figure 1.2
to HCFL (see, e.g., [29]).
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a— (N B) = «
(@—=p8) = ((y = a) = (y—p)) (anp)—p
(@=(B—=7) =B = (@=9) a— (V)
(@ = B)A(a—=7)) = ((@—=(BA7)) B = (aVp)
((a =) AB—=7) = (aVi)—=7)) e
((ane)-(BAe)) = (aNp) e—(a—a)
(6= (a=7) = (a5 —=7) B = (a—a-p)

aaﬁ_}B (mp) e (adi)

Figure 1.1: The Proof System HCFL
(Vx)p(x) = o(y) y is free for z in ¢
e(y) = (F)p(x) y is free for z in ¢
(V) (v — @) = (Y — (Vz)p) x does not occur freely in
(Vz) (@ = ) = ((Fz)p — V) x does not occur freely in

¥
(V1) (gen)

Figure 1.2: Additional axioms and rule for VHCFL

In [26], the authors show that for certain first-order logics given by a con-
sequence relation on formulas, a suitable Hilbert-style axiomatization that ex-
tends the Hilbert-style axiomatization of the respective propositional logic can
be obtained. In particular, this method can be applied to first-order logics
given by a consequence relation FY, based on a variety V of FL.-algebras [26,
Section 7.5]. Hence, we obtain an axiomatization for the first-order logic given
by this consequence relation on formulas.

Example 1.3.2. In this example we give some references of Hilbert-style ax-
iomatizations for some of the logics considered in the previous sections:

e A first system for first-order classical logic was given by Hilbert and
Ackermann in 1928 in [11], where they pose the question of completeness
for their system but do not answer it. It was Godel in [31] that proved
completeness of their system. A Hilbert-style axiomatization is also given
by Kleene in [15].

e Heyting [10] was the first to study and give a Hilbert-style axiomatization
for first-order intuitionistic logic. Kleene [15] also gave a Hilbert-style
axiomatization for first-order intuitionistic logic, denoted by 1QC.
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e First-order Godel logic was first axiomatized by Horn in [12]. He proved
that adding the prelinearity and constant domain axioms,

(p=Y)V (W —¢) and (Vz)(pV (V2)¥) — ((Vo)p V (VI)¥),

to IQC, yields a Hilbert-style axiomatization for first-order Godel logic
Fg. Takeuti and Titani [35] provided a different axiomatization.

e Hilbert-style axiomatizations for some propositional substructural logics
have been given in [I] and can be extended to Hilbert-style axiomati-
zations for the corresponding first-order substructural logics using the
method in [20, Section 7.5]. Hilbert-style axiomatizations for the first-
order logics F%, and F¥%, are given in [31].

e First-order Lukasiewicz logic was shown to not be recursively enumer-
able (see [78]). In contrast, the first-order logic based on MV, was
axiomatized by Héjek in [37].

Let us now introduce the main proof systems that are used in this thesis,
i.e., sequent calculi. In the scope of this thesis, a sequent® is an ordered pair of
(finite) multisets of formulas (I'; A) such that A contains at most one formula,
denoted by I' = A. If the formulas in I and A are in Fm, where Fm is one
of the sets of formulas defined at the beginning of this chapter, then we call
I' = A an Fm-sequent. We denote by I', Il the multiset union of the multisets
I' and II, moreover = A and I'= denote the sequents (), A) and (T, ),
respectively. Suppose that S is a set of sequents and R is a set of rules for S,
then the proof system C = (S, R) is called a sequent calculus.

In this section we give explicit sequent calculi only for a small number of log-
ics. However, sequent calculi can be given for a large family of logics. The first
sequent calculi were introduced by Gentzen in 1935 in [32], where he introduced
LK and LJ, sequent calculi (where sequents are ordered pairs of sequences of
formulas) for first-order classical and intuitionistic logic, respectively. LK is
a multi-conclusion sequent calculus, whereas LJ is a single-conclusion sequent
calculus.

Example 1.3.3. We present a basic example of a sequent calculus correspond-
ing to consequence in the variety Lat of lattices. Let us consider the signature
L;. The structures we consider in order to obtain a proof system for lattices
are unary sequents of £;-formulas, that is, ordered pairs of the form (o, ) with
a, B € Fm(L;), written a = 37. The sequent calculus Lat consists of all unary
Fm(L,;)-sequents together with the rules shown in Figure 1.3. The proof sys-

6Indeed, sequents of this form are called single-conclusion, whereas in some settings multi-
conclusion versions are studied. Note also that in the literature, sequents are frequently
considered to be ordered pairs of sequences of formulas instead of multisets.

"Here we consider a subset of all sequents of £;-formulas, namely the set of all unary
sequents.
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Identity Axioms

(1)

o= o

Cut Rule

a=v v=p
a=f

(cuT)

Operation Rules

a = 3 a= 5
ap Nag = f3 (A=) a= BV [P &V
ay = 3 a = 3
ap ANag = 3 (h=)e a= BV P SV
a= 0 a= [ ar = ag=p
Oé:>51/\52 (é/\) 041\/042:>ﬁ (\/é)

Figure 1.3: The Proof System Lat

tem Lat is sound and complete with respect to equational consequence in Lat
(cf. [58]), that is, for any set of unary Fm(L,;)-sequents I" and «, 8 € Fm(L;),

e o = — {v<o|y=deTl} Frua<p.

We give an example of a derivation in Lat, proving that one inequation of the
distributivity property for Lat holds:

(ID) (1D)
B=8 Y=
o = o (H(D/)\:>) B:>Bv’7 (:(/\vi) o= o (H(D/)\:) 7:5\/’7 (:(\/)2)
alp =« ! aNB=[Vy (i/\)2 alNy =« 1 a/\'y:>ﬁV'y( /\)2

aNB=aNn(BV7) aNy=aN(BVy)

(@AB)V (@A) = an(BVa) (V=)

Hence, by soundness and completeness,

Fra (@ AB)V(aAy) <aA(BVYy).

Let {x;}ien and {y; }ien be two sets of variables such that

{zi}ien N {yi}ien = 0.

We now introduce VCFL, a multiset sequent calculus version for the first-
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order Full Lambek calculus with exchange®, where the sequents I' = A consist
of multisets T'; A in Fmy(Ls)* € Fmy(Ls) and Fmy(L,)* is the set of Lyy-
formulas ¢ such that any bound variable in ¢ is in {x; };cny and any free variable
in ¢ is in {y; }ien-

The calculus VCFL is given in Figure 1.4, where the rules (=V) and (3=)
satisfy the eigenvariable condition (marked by * in Figure 1.4), i.e., the variable
y in {y; }ien does not occur in the conclusion of the rule. Note that u in the
premise of the rules (v=) and (=3) is a variable in {y;}cn, since L, does not
contain any function symbols and the only terms are variables.

The cut rule

=9 ILe=A
riI= A

(cur)

corresponds to the transitivity of <, i.e., the quasi-equation
r<y & y<z = z<z

The cut rule is useful to establish soundness and completeness of VCFL with
respect to consequence in the variety of all FLe-algebras FL., but it is prob-
lematic when trying to establish the derivability of an arbitrary formula. We
will address this problem later in this section. The formula ¢ of the cut rule
is called the cut-formula of that specific instance of (cur).

Let r be a rule in a sequent calculus. A formula that occurs in a premise and
the conclusion of r in the same form is called non-principal and the multiset
of all non-principal formulas of r is called the contezt of r. The formula(s) not
in the context of r are called the principal formula(s) of r. For example in
the cut rule of the sequent calculus VCFL, the context is I', II, A and ¢ is the
principal formula.

Rules are called structural, if they only manipulate the structure of sequents
without referring to particular formulas.

We proceed by giving examples of some common structural rules:

1. The weakening rules

I'=A
OLII= A

=
LI= A

(WL) (WR)

allow us to add (multisets of ) formulas on the left and a formula on the
right. These rules correspond to the equations

r<e and f <ua.

8Note here that this is not the usual Full Lambek calculus with exchange, since sequents
are defined by using multisets of formulas instead of sequences of formulas. As “” is read
as multiplication on the left we build commutativity x - y ~ y - « into each rule of the Full

Lambek calculus individually by considering multisets instead of sequences.
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Axioms

A = = S (=e)
Cut Rule
r :>IS‘0,H11;SOA:> A (cur)
Operation Rules
Fet i ) T2 (5
Frll,zli;,ow Efﬁ:AA (==) mﬂ (=—)
szi (=) F}fpf ;fp ff (=)
% (A=) Fimb (=)
1% (N=)z Fimb (= V)2
T SR =
Fa?i)(zzx:;jA (V=) T i:&;/})( )(x) (=V),
r,gf)(sz)(;i A 3 . T w)( wzx) (=3)

Figure 1.4: The Sequent Calculus VCFL
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2. The contraction rule®

DILI = A
IiI= A

()

allows us to combine consecutive copies of (multisets of) formulas on the
left and it corresponds to the “square-increasing law”,

r<x-x.
3. The mingle rule

F,HlﬁA F,Hg@A
F7H17H2$A

(MINGLE)

corresponds to the “square-decreasing” law,

r-x <
4. For any k € N”2, the k-contraction rule

= A
OLII= A

(K-CONTR)

corresponds to the equation

ychk.

Note that the 2-contraction rule and the contraction rule coincide.

We denote the sequent calculi that extend VCFL by adding the rules (wr)
and (wr), or (¢) by VCFL,, and VCFL, respectively. VCFL extended with the
three rules (wr), (wr), and (c), denoted by YOFL.!'?, provides an alternative
sequent calculus for first-order intuitionistic logic.

A large family of substructural logics'! is obtained by removing structural
rules from sequent calculi for (fragments of) classical and intuitionistic logics,
where the operations may be split whenever necessary. More generally, sub-
structural logics can be considered as logics given by proof systems that lack
some structural rules. Alternatively, substructural logics can be given as those
logics whose algebraic semantics are given by classes of residuated lattices (seen

9In the context of a single-conclusion sequent calculus, this is indeed “the contraction
rule”. However, in a multi-conclusion sequent calculus, we also consider the version of the
rule that combines consecutive copies of (multisets of) formulas on the right.

ONote that in the presence of (WL), (WR), and (C) the operations A and - coincide.

LA term coined by Dosen during the conference on “logics with restricted structural
rules” in Tiibingen in 1990.
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in Sections 1.1 and 1.2 for classes of FL.-algebras). In 1958 Lambek [50] in-
troduced a sequent calculus without any structural rules that was first applied
in the field of linguistics and is now called the Lambek calculus. Girard [33]
developed a sequent calculus for linear logic that corresponds (with a different
syntax) to the propositional part of LK with the contraction and the weak-
ening rules removed. A semantical study of intuitionistic propositional logics
without the contraction rule was developed by Ono and Komori in 1985 [71],
where the authors show that these logics admit cut elimination and are sound
and complete with respect to a semantics based on SO-monoids. Ono and
Komori both begin to extend this work on propositional substructural logics
to some of the respective first-order versions in [06] and [16]. The sequence-
version sequent calculus FL obtained from VCFL by splitting the operation
— into \ and / and adding rules for these symbols was first called the Full
Lambek calculus by Ono in [68].
We define for n € N*% and ¢4, ..., ¢,, ¢ € Fmy(L,),

H(‘plw"v(pn) =1 P, H() =6,
>o(W) =1, >() =1

Then we obtain the following soundness and completeness results:

Theorem 1.3.4 (cf. [16,71]). Let C be VCFL,VCFLy, VCFL., or VCFLy. and
let V be FLoy, FLew, FLec, 07 FLewe, respectively. For any sequent I' = A in
FmV(‘Cs)*f

Fel=A = F,[[T<YA

Remark 1.3.5. Take C and V to be the same as in the previous theorem.
Let I and A be multisets in Fmy(L;). Then there are multisets IV and A’ in
Fmy(Ls)* (obtained by substituting the bound and free variables with variables
in {z; }ien and {y; }ien, respectively) such that

FLIIT <Y A = EJIIV<> AL
Using Theorem 1.3.4, we can prove
eI = A = E I <Y A,

and we obtain soundness and completeness of the sequent calculus C with
respect to (sentential) semantical consequence in the variety V.

Proof systems such as sequent calculi are usually built to satisfy certain
properties. In particular, sequent calculi where every rule has the subformula
property — every formula occurring in the premise(s) of an instance of that rule
is the subformula of a formula occurring in the conclusion — are very useful.
For example, every rule in Lat except for the cut rule has the subformula
property. Starting with any unary sequent and applying the rules except (cur)
backwards, we terminate with a unary sequent consisting only of propositional
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variables. Thus, derivations are much easier dealt with in this setting. In
VCFL, most of the rules have the subformula property, only the cut rule and
the quantifier rules do not. However, the quantifier rules do have a version of
the subformula property, where the premises of an instance of these rules are
subformulas of the conclusion with some of the variables substituted by others.
This means that as well as for Lat, starting with a sequent in Fmy(L;)* and
applying the rules from YCFL except for (cur) backwards, we terminate with
a sequent consisting only of atomic formulas. Thus, we would like to be able to
consider derivations without the use of the cut rule. Let VCFL® denote VCFL
without (cut). We can show that VCFL has cut elimination, that is,

Theorem 1.3.6 (cf. [16,71]). For any Fmy(Ls)*-sequent S,
I_VCFL S < I_VCFLO S.

Proof. Tt suffices to prove that any sequent I' = A with a derivation d of the
form

dq da

=9 o, 1= A
IiI= A
where dy and dy are cut-free derivations, can be derived without using the
(cut)-rule. We prove this by induction on the lexicographically ordered pair
(cp(p), ht(dy) + ht(d2)). If both I' = ¢ and ¢, Il = A are instances of an
axiom, then they must both be an instance of (ip) (all other cases are not
possible) and I", I = A is again an instance of (ip).

For the induction step, there are three cases. Either the cut-formula ¢ is
non-principal in the last rule applied in d;, ¢ is non-principal in the last rule
applied in dy, or ¢ is principal in the last rules applied in both d; and ds.

For the first case, suppose ¢ is non-principal in r, the last rule applied
in dy, and r is not (3=). Then we apply the (cur)-rule to the premise(s)
and ¢,II = A. Applying the induction hypothesis to the derivation(s) (of
lower height than d;) and the rule again yields the desired cut-free derivation.
Suppose the last rule applied in d; is (3=), then the premise is of the form
IV, ¢ (y) = ¢ for some variable y that does not occur in I, (Fz)(z) = ¢. If
y does not occur in @, IT = A, then we can again apply (cur) to [V, (y) = ¢
and ¢, Il = A, apply the induction hypothesis and (3=) to obtain the desired
derivation. If y occurs in ¢, I = A, then we take a variable 3 in {y; };en that
does not occur in either sequent and consider the derivation d} of I, ¥ (y) = .
We denote by d)(y'), the derivation d} with all occurrences of y substituted by
y'. Then d|(y') is a derivation of I'",¢(y") = A with ht(d}(y")) < ht(d;) and
we obtain the derivation

(cur)
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d(y') d

Doy) = ¢ o= A
F’,w(y’),H:>A

By the induction hypothesis, there is a cut-free derivation of I, ¥ (y'), I = A
and we can apply (3=) to obtain a cut-free derivation of I', IT = A. The cases
where ¢ is non-principal in the last rule applied in ds are very similar.

Now we consider the cases where ¢ is principal in the last rules applied in
both d; and dy. Suppose that ¢ = p; — @9 and d is

(cuT)

dyy day das
L', o1 = ¢ (= I = o1 @, Il = A ()
F:>901_>902 Q01—>Q02,H1,H2$A (CUT)
I, I = A
We obtain a derivation of the form
da dy;

H1$g01 F,(,Oli(,DQ
Fa]:[l = (Vo)

(cur)

Since cp(¢1) < cp(¢), an application of the induction hypothesis yields a cut-
free derivation d3 of I',Il; = ¢s and we can consider the derivation of the
form

d3 d22

ILIL = o g, Il = A
F,Hl,Hg = A

Since cp(p2) < cp(p), we can apply the induction hypothesis and obtain a cut-
free derivation of I',II{,IIs = A. All other propositional cases can be proved
very similarly.

Suppose now that ¢ = (Va)y(z) and d is

(cur)

dy dsy
I = () (), T = A
I (@) ) Mo dosA o)
I = A (cuT)

where y is a variable that does not occur (freely) in I' = (Va)y(z). Let ¢ €
{yi }ien be a variable that does not occur in I' = ¢ (y) and ¢(u), 1T = A. Then
d}(y') denotes d} with all free occurrences of y substituted by ¢/, and dj(y/),
II(y) and A(y') denote d,, IT and A with all free occurrences of u substituted
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by ¢'. By the eigenvariable condition, y does not occur in I" and T'(y") =
. Thus, d)(y') is a derivation of T' = ¢(y’) and dy(y’) is a derivation of
»(y'),1(y') = A(y') and we obtain

dy(y') dy(y')

F=v()  ¢@) 1Y) = Al)

[y = A(Y)
Since cp(¢(y')) < cp((Vz)y(x)), an application of the induction hypothesis
yields a cut-free derivation d3 of I',II(y/) = A(y’). Let d3(u) denote ds with
all free occurrences of ¢ substituted by wu, then ds(u) is a cut-free derivation of
[ 1T = A. The case where ¢ = (3x)1(x) is principal in the last rule applied
in both d; and ds is very similar. O

(cur)

This method of cut elimination extends to a large family of both propo-
sitional and first-order logics, see for example the textbooks [57, 841, 88]. Cut
elimination was first established by Gentzen in [32] for LK and LJ, sequent
calculi for first-order classical and intuitionistic logic, respectively. Cut elimi-
nation has been proven for a number of substructural logics, in particular, cut
elimination was shown for FL, FL., FLy, FLey, FLee, and FLeye (see [70]),
which also established decidability in these logics. The failure of cut elimi-
nation was shown for FL.. Ono and Kiriyama [11,09] proved cut elimination
and decidability for all the first-order extensions of the propositional substruc-
tural logics mentioned above except for the first-order version of FL.., which
was shown to have cut elimination but to be undecidable. Girard [33] also
showed that Linear logic has cut elimination. Restall [76] provided conditions
that guarantee cut elimination for a wide range of sequent calculi for sub-
structural logics. Ciabattoni and Terui [22,30] give a sufficient condition for
single-conclusion sequent calculi to have cut elimination.

For certain logics sequent calculi have not (yet) been found, but there are
other more general proof systems that have been introduced for these logics.
First-order Lukasiewicz logic was shown to not be recursively enumerable by
Scarpellini [78]. Nonetheless, proof systems, containing some rule with in-
finitely many premises, have been obtained for it (see, e.g., [2,5, 0,37, 39]).
Sequent calculi are not a convenient framework to deal with fuzzy logics, how-
ever, there are very elegant hypersequent calculi for these logics (see, e.g., [77]).

1.4 One-Variable Fragments

In Section 1.2, we introduced full first-order logics via a semantics based on
classes of L-lattices. In this section, we restrict these semantics to one variable
and obtain semantics of the one-variable fragments of first-order logics based
on L-lattices. We then present some axiomatizations of such fragments that
are known.
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Although we can restrict certain semantics of a first-order logic to semantics
for its one-variable fragment, a Hilbert-style axiomatization of a first-order
logic does not directly yield a Hilbert-style axiomatization of the respective
one-variable fragment, since derivations of one-variable formulas may involve
additional variables. In this section, we give the standard translation functions
between one-variable first-order formulas and modal formulas, where (Vz) and
(3x) are interpreted as [0 and <, and vice versa. Therefore, we can consider
a class of algebraic structures K such that consequence in the one-variable
fragment corresponds to consequence in K (under this translation) and we
may interpret the challenge of finding an axiomatization of the one-variable
fragment of a first-order logic as finding an equational basis for K. In the
case of substructural logics, using the translations from Section 1.1, these
axiomatizations of the corresponding varieties can be translated into Hilbert-
style axiomatizations.

In order to define the one-variable fragments of the first-order logics intro-
duced in Section 1.2, it suffices here to restrict our attention to the one-variable
setting and a fixed (generic) predicate language. Thus, the following defini-
tions will be analogous to the definitions in Section 1.2. Recall that Fm{(L)
denotes the set of one-variable Ly-formulas ¢, x, ... built inductively using
a countably infinite set of unary predicates {P;};en, a distinguished variable
x, operations in £, and quantifiers (Vz) and (3z). We call an ordered pair of
one-variable Ly-formulas ¢, € Fmy(L), written o ~ ¢, an Fmy(L)-equation.

Now let A be any L-lattice, let S be a non-empty set, and let Z(P;) be
a map from S to A for each i € N. We call the ordered pair & = (S,7Z) an
A -structure if the following values are defined for any v € S:

1P:(2)]|] = Z(P,)(u) i €N
I(v)elly = A {llelly | ve s}
1G)elly =\ {llelly | ve s}

& S S
Ieors s en)lly =+ (llenlly s - leally) neNxe L,
where we set ||(Vm)<,0||;5 and ||(Elx)g0||i5 to be undefined if the respective meet
and join do not exist in A and set |[x(1, ..., ©n)||S to be undefined if ||¢:]|S
is undefined for some i € {1,...,n}. Note that for each ¢ € Fm}(L), we can
define a map from S to A as follows:

S S
lell™: S = Ay uwelell, -

Thus, (S,Z) is an A-structure if and only if the partial map [|-|® : Fm}(£) —
AS is total. In the following, we work with the map [|-||° instead of the
particular values.

If A is complete, then & = (S,Z) is always an A-structure; otherwise,
whether or not the partial map [|-|° is total depends on Z. E.g., for A =
(N, min, max) and S = N, if Z(Py)(n) := n, for all n € N, then ||(3z)Py(x)||°
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is undefined, but if Z(P;)(n) < K for all : € N and n € S, for some fixed
K € N, then & is an A-structure.

We say that an Fmy(L£)-equation ¢ = 1 is valid in an A-structure &, and
write & | ¢ & 1, if Hgo||6 = H@/JHG More generally, consider any class of £-
lattices K. We say that an Fm(£)-equation ¢ = 1) is a (sentential) semantical
consequence of a set of Fmy(L)-equations ¥ in K, and write ¥ FJ* ¢ ~ 1, if
for any A € K and A-structure G,

SEY~Y forall ¢ ey = S p~1

Similarly to the full first-order case, in certain cases, we can restrict our
attention to the complete members of K. We obtain the following corollary of
Proposition 1.2.2:

Corollary 1.4.1. Let K be a class of L-lattices that admaits reqular comple-
tions. Then for any set of Fm{(L)-equations ¥ U {¢ =~ 1},

YEd o = TER o

Similarly as in Section 1.2, we can define a consequence relation on formu-
las, whenever we consider a one-variable first-order logic based on a class IC of
FLe-algebras. We use EJ! to denote both consequence relations.

The following two theorems follow from [26].

Theorem 1.4.2 (Compactness). Let V be a variety of FLe-algebras. Then for
any set of Fmy,(L,)-equations ¥ U {p ~ 9},

SES o~ = YES o~ for some finite ¥ C X

Theorem 1.4.3 (Local Deduction Theorem, see also [77]). Let V be a variety
of FLe-algebras. Then for any set of one-variable Lgy-formulas T'U {1} and
any one-variable Lqy-sentence p,

TU{p}EV Y <= TEV (pAe)” =1 for somen € N0

Recall that Fmp (L) denotes the set of (propositional) Lo-formulas «, 3, . . .
built inductively using a countably infinite set of propositional variables {p; };en,
the operations in £, and the unary operations [J and <.

The (standard) translation functions (—)* and (—)° between Fml(£) and
Fmp(L£) are defined inductively by

(Pi(x))" = pi = Py(x) i €N
k(15 n) =1,y 0rn) (Ko, n)) =x*(aj,...,ap) *€ Ly,

(Vz)p)" = Dso (Oa)® = (Vz)a®

((Bz)p)” = (Ca)” = (Fr)a®

and lift in the obvious way to (sets of ) Fm{(£)-equations and Fmp(L)-equations.
Clearly, (¢*)° = ¢ for any ¢ € Fmy(£) and (a°)* = a for any a € Fmg(L),
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and we may therefore switch between first-order and modal notations as con-
venient.

To axiomatize consequence in the one-variable first-order logic based on a
class of L-lattices I, it therefore suffices to find a (natural) axiomatization
of a class C of algebras in the signature of £ expanded with [J,< such that
FY! corresponds to equational consequence in C. Our goal in this thesis is
to provide a (natural) axiomatization of a variety V such that for any set of
Fm{(£)-equations ¥ U {¢ = 1},

Zh?gpz@b — YFyeptryh

Example 1.4.4. We now continue the running examples of this chapter by
considering the one-variable fragments of the first-order logics introduced in
Example 1.2.4.

e The first axiomatization of the one-variable fragment of first-order classi-
cal logic was given by Wajsberg in [91]. He proved that the one-variable
fragment of first-order classical logic corresponds to the modal logic S5
(introduced in Section 1.1), which in particular shows, that

TE oy = Nks ¢t Ryt
for any set X U {¢ =~ 1} of Fm(L,)-equations.

e In [71], Prior axiomatized the S5-like modal logic MIPC as a modal ex-
tension of the intuitionistic logic IPC. In [01] it was shown that the va-
riety V of monadic Heyting algebras provides an algebraic semantics for
MIPC, where a monadic Heyting algebra as presented in [7]'? is an alge-
braic structure H = (H, A, V,—,0,1,0,<$) such that (H,A,V,— ,0,1)
is a Heyting algebra, [1 and < are unary operations, and for all a,b € H,

Ua < a, a <<a,

O(a Ab) = Oa A O, Clavb) =Cavob,
01 =1, S0 =0,

(Ca =<a, <O Oa = Oa,

O(Canb)=CaAndb,

Bull showed in [I 1] that the one-variable fragment of first-order intuition-
istic logic can be axiomatized by MIPC, and thus, for any set XU{p ~ ¢}
of Fm}(L;)-equations,

YEL oY <= Y Ey et =yt

e Ono and Suzuki (see [61,05,067,72,82, 83]) found a continuum of logics
over MIPC that correspond to the one-variable fragments of first-order
intermediate logics. Bezhanishvili [7] further studied logics extending

MIPC and showed that not all of those logics correspond to a one-variable
fragment of a first-order intermediate logic.

12Bezhanishvili considers the unary operators V and 3 instead of O and <.
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e The one-variable fragment of first-order Gédel logic, FY, was axioma-
tized in [15] by Caicedo and Rodriguez. They showed that for any set
YU {p ~ 9} of Fm}(L;)-equations,

SEG ey = Ty ot Ryt

where V is the variety of monadic Godel algebras, i.e., the variety of
monadic Heyting algebras satisfying the prelinearity and the constant
domain axioms:

(x—=y)V(y—x)~e and OzVy)~OxVvy.

The one-variable fragment of (Corsi’s) first-order logic of linear frames,
izgh, corresponds to the variety of monadic Heyting algebras defined by
the prelinearity axiom [14].

e Interestingly, despite the fact that first-order Lukasiewicz logic is not re-
cursively enumerable, the one-variable-fragment of first-order Lukasiewicz
logic Fy! was axiomatized by Rutledge in [77], proving that it corresponds
to the variety MMV of monadic MV-algebras. A monadic MV -algebra
is an algebraic structure M = (M, @, —,0,$) where (M, @, —-,0) is an
MV-algebra and < is a unary operation satisfying for all a,b € M,

a<<a, Olavh) =0bvOb,
O=Ca=-"a, CCadOb) =CadOb,
Cla®a)=Ca®a, Olada)=ada,

where a ® b := =(—a @ —b) and Oa == = —a.

e The one-variable fragment of first-order Abelian logic corresponds to the
variety of monadic Abelian ¢-groups [59]. A monadic abelian (-group is
an algebraic structure G = (G, A, V, +, —,0,0) where (G, A,V,+,—,0)
is an abelian /-group, [J is a unary operation, and for all a,b € G

O(a+0) <Oa+0b, O(aAb)=0aAOb,
Oa < a, Clanob) =Ca oD,
Ca=0Ca, O(a + b) = Oa + O,

where $a = —[1 — a.
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Chapter 2

Algebraic approach

In this chapter we introduce potential modal counterparts of the one-variable
first-order logics introduced in Section 1.4. We prove that for a large family
of one-variable first-order logics based on a class IC of L-lattices a variety V of
these modal counterparts provides a (natural) axiomatization, that is, for any
set of Fm{,(£)-equations ¥ U {p ~ ¢},

SEf prY = TEy ot gt

In Section 2.1 we define m-L-lattices to be modal structures that extend
L-lattices with the modalities [J and <, and satisfy “S5-like” equations, de-
noting for a class IC of L-lattices, the class of m-L-lattices with an L-lattice
reduct in K, by m/C. In Section 2.2 we formulate and prove some properties
of m-L-lattices, in particular, a correspondence theorem between m-L-lattices
and ordered pairs of L-lattices and their relatively complete subalgebras. In
Section 2.3 we introduce functional m-L-lattices and establish a relationship
between consequence in the one-variable first-order logic based on K and con-
sequence in the functional members of mK. Finally, in Section 2.4, we prove a
functional representation theorem for a class m/C such that K is closed under
taking direct limits and subalgebras, and has the superamalgamation property.
In particular, we prove that for a variety V that has the superamalgamation
property, the equations defining m) provide a (natural) method for axioma-
tizing the one-variable first-order logic defined over V.

2.1 Modal Extensions of L£-Lattices

In this section we define m-L-lattices and show that they encompass several
examples of known algebraic counterparts of the one-variable fragments of
first-order logics found in the literature.

As our basic modal structures, let us define an m-lattice to be any algebraic
structure (L, A, V, 0, &) with lattice reduct (L, A, V) that satisfies the following
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equations:

(L1p) Oz Az~0Oz (Lly) Caxvr=ow
(L2n) O(x Ay)=~0OzADQy (L2y) Oz Vvy) = Oz VvOy
(L3n) OOz =~<Ox (L3¢y) <Oz =~ Oa.

Recall from Section 1.1, that x < y stands for x Ay ~ z, and since x Ay ~ z if
and only if x Vy ~ y, v <y also stands for x Vy ~ y. It is easily shown that
every m-lattice also satisfies the following equations and quasi-equations:

(L4n) OOz =~ Oz (Ldy) OOz =Ox
(Lon) z<y = Oz <Oy (Loy) o<y = Ca <Oy

Now let £ be any fixed lattice-oriented signature. We define an m-L-lattice to
be any algebraic structure (A, [0, <) such that A is an L-lattice, (A, A, V, 0, )
is an m-lattice, and the following equation is satisfied for each n € N and
* € L,

(x0) OOz, ...,0z,)) = (O, ..., 0Ox,).

Let us consider an m-L-lattice (A, [0,$). Then for each n € N and * € £,, we
obtain for any aq,...,a, € A,

O *Cay,...,Ca,)) = OCHOCay,...,00a,)) (L3p)
= OOOCay,...,00a,)) (*o)
= OxOCay,...,00a,)) (L3¢o)
= *(OCay,...,00a,) (*xo)
= *x(Cay,...,Cay) (L3n)

and (A, [0,<) also satisfies the equation
(xo) OCHOwy,...,0my)) mA(Cwy,...,Omy).

Given a class KC of L-lattices, let mK denote the class of m-L-lattices with
an L-lattice reduct in L. Note that if IC is a variety, then so is mK.

Example 2.1.1. It is straightforward to show that the notion of an m-L-
lattice encompasses other algebraic structures considered in the literature. In
particular, mB.A is the variety S5 introduced in Example 1.1.4 and corresponds
to the variety of monadic Boolean algebras [35] and mH.A is the variety of
monadic Heyting algebras [01] defined in Example 1.4.4.

Moreover, if A is an FLc-algebra, then every m-L,-lattice (A, 0, <) satisfies
the equations

(L6p) Oz - Oy) =Sz — Oy (L6¢y) OOz — y) ~ Oz — Oy,

and mF L, is therefore the variety of monadic FLe-algebras introduced in [89)].
Let us just check (L6g), the proof for (L6¢,) being very similar. First we show
that for any a,b,c,d € A such that a < b, alsoa-c<b-candb—d <a—d.
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Since b - ¢ < b- ¢, using residuation, b < ¢ — b- ¢ and hence alsoa < c— b-c.
Another application of residuation yields a-¢ < b-c. Since also b — d < b — d,
applying residuation, we obtain b- (b — d) < d. Using the previous argument,
we obtain a-(b — d) < b-(b — ¢) by taking ¢ to be b — d. Hence, a-(b — d) < d
and applying residuation yields b — d < a — d. By (Ll), a < <$a, and we
obtain ¢a — b < a — Ob. Hence, using (L3n), (—n), and (L5n),

Ca—Ub=0Ca — LD
= O(Oa — Ob)
— O(Ga — Ob)
< O(a — O0).

Conversely, by using residuation twice,

O(@—0b) <a—0b <= a-0O(—0b) <0Ob
<— a<0O(a— 0Ob) — 0.

Since O(a — 0b) < a — 0b by (L1p), also a < O(a — 0b) — Ob. Hence,
using (L5¢,), (L3¢ ), and (=),

Ca <O (H(a — Ob) — Ob)
=< (OH(a — Ob) — < 0b)
=<o0(a — 0Ob) - <00
= O(a — 0Ob) — Ob.

By residuation again,

Ca<O(a—0b) -0b «— <a-0O(e—0b) <0Ob
<~ [O(a—0b) <Sa— O

Thus, from ¢a < O(a — Ob) — Ob we obtain O(a — 0b) < <a — Ob.

In the following examples, we consider some more of the one-variable first-
order logics from Example 1.4.4.

Example 2.1.2. The variety mG.A corresponds to the one-variable fragment
of Corsi’s first-order logic of linear frames [11], whereas the variety of monadic
Godel algebras — axiomatized relative to mG.A by the constant domain axiom
O(OxVy) ~ OxVOy — corresponds to the one-variable fragment of first-order
Godel logic, the first-order logic of linear frames with a constant domain [15].

Example 2.1.3. Note that the variety axiomatized relative to mMYV by the
constant domain axiom does not satisfy

Cr - Crx=o(x-x)
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and therefore properly contains the variety MMV of monadic MV-algebras
studied in [17,28,77] and defined in Example 1.4.4. Consider, for example, the
MV-algebra (in the signature of FL.-algebras)

L3 = ({0,1,1},A,v,-,—,0,1)

)99
with the usual order, where
a-b:=max(0,a+b—1) and a — b:=min(1,1 —a+b).

Let
00=05;=00=0 and O1=01=01=1.

Then (L3, [0,<) € mMYV satisfies the constant domain axiom, but
CL.03=1-1=1#0=00="(5- 1)

and mMYV does not correspond to the one-variable fragment of first-order
Lukasiewicz logic.

2.2 A General Correspondence Theorem

We now establish a correspondence theorem between m-L-lattices and ordered
pairs of L-lattices and their relatively complete subalgebras, which provides a
useful description of m-L-lattices that generalizes results in the literature for
varieties such as monadic Heyting algebras [7] and monadic FLc-algebras [39].

Lemma 2.2.1. Let (A,00,0) be any m-L-lattice. Then OA :={0a | a € A}
forms a subalgebra OA of A, where A = A = {Ca | a € A} and for any
a€ A,

Oa=max{b€ JA|b<a} and Oa=min{be OA|a <b}.
Proof. Let x € L,, and Oay, ...,0a, € OA. Then using (*g), we obtain
*(Oay, ...,0a,) = Ox(0ay, ...,0a,)) € OA,
and hence, [JA forms a subalgebra of A. Since
Oa=C0aeCA and $a=00Ca € LA,

by (L3g) and (L3 ), also OA = G A, Now consider any a € A. If b € A
satisfies b < a, then
b =0b < Oa,

by (L4p) and (L55). But Oa < a, by (L1p), so
Oa = max{b e OJA | b <a}.

Analogous reasoning establishes that Ga = min{b € A | a < b}. O

40



Let us call a sublattice Lg of a lattice L relatively complete if for any a € L,
the sets
{beLo|b<a} and {be Ly|a<b}

contain a maximum and minimum, respectively. Equivalently, Ly is relatively
complete if the inclusion map

fo: (Lo, <) = (L, <)
has left and right adjoints, that is, if there exist order-preserving maps
O: L — Ly and Oy L — Ly
such that for all a € L and b € Ly,
fo() <a <= b<0a and a< fy(b) <= <Ca <.

Let us also say that a subalgebra Ay of an L-lattice A is relatively complete
if this property holds with respect to their lattice reducts. In particular, by
Lemma 2.2.1, the subalgebra [JA of A is relatively complete for any m-L-
lattice (A,0,<). The following result establishes a converse.

Lemma 2.2.2. Let Ay be a relatively complete subalgebra of an L-lattice A,
and define for each a € A

Coa :=max{b € Ay |b<a} and <pa:=min{b € Ay |a < b}.
Then (A, Oy, Og) is an m-L-lattice and CgA = gA = Ap.

Proof. Tt is straightforward to check that (A, A, V, 0y, Og) is an m-lattice; for
example, it satisfies (1.20), since for any ay,as € A,

Co(ar Aaz) =max{b e Ay | b<ai; Aas}
=max{be€ Ay | b<a; and b < a}
=max{b € Ay | b < a1} Amax{b e Ay | b < as}
= Uyaq A Ogas.

Since Ay is a subalgebra of A, clearly (A,y, <) also satisfies (xp). Hence
(A, Oy, Op) is an m-L-lattice and g A = OgA = Ay. O

Combining Lemmas 2.2.1 and 2.2.2 yields the following representation the-
orem for m-L-lattices.

Theorem 2.2.3. Let K be any class of L-lattices. Then there exists a
one-to-one correspondence between the members of mIC and ordered pairs
(A, Ag) such that A € K and Ay is a relatively complete subalgebra of A,
implemented by the maps

(A,0,0) — (A, OA) and (A, Ao) — (A, Ty, o).
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2.3 Functional m-L-Lattices

In this section we introduce functional m-£L-lattices and show that evaluations
into functional m-£-lattices can be identified with the semantics of one-variable
first-order logics. This identification is then used to establish a relationship
between consequence in one-variable first-order logics and consequence in a
class of m-L-lattices.

Given any L-lattice A and set W, let A" be the L-lattice with universe
AW where the operations are defined pointwise.

Proposition 2.3.1. Let A be an L-lattice, W a set, and B a subalgebra of
AW such that for each f € B, the elements

Af@)  ad \ f)
veW veW
exist in A and the following constant functions belong to B,
Df:W—)A;UI—)/\f(U) and <>f:W—>A;uH\/f(U).
veW veW

Then (B,0,$) is an m-L-lattice. Moreover, if A belongs to a class K of L-
lattices closed under taking subalgebras and direct powers, then (B,0,$) €
miC.

Proof. 1t is straightforward to check that (B, A, Vv, 0, <) satisfies (L1n), (L20),
(Lley), and (L2 ). Let us just show that (L2 ) holds. For any v € W,

O(fvgu) =\ (f Vg

veW
=\ f)v '\ g(v)

— & f(u) VOg(u).

To confirm that (B,,<) is an m-L-lattice — and therefore, if A belongs
to a class K of L-lattices closed under taking subalgebras and direct powers,
a member of mK — observe that (Jf and < f are, by definition, constant
functions for any f € B. Hence (B,A,V,[0,0) clearly also satisfies (L3n)
and (L3¢,). Moreover, for any n € N, x € L, and f1,..., f, € B, the func-
tion (O f1,...,0f,) is constant and therefore equal to O(x(Of,...,0f,)),
so (B,,<) satisfies (xp). O

Let us call an m-L-lattice (B,0,$) (A, W)-functional if it is constructed
as described in Proposition 2.3.1 for some L-lattice A and set W. Given any
class of L-lattices IC, we call an m-L-lattice IC-functional if it is isomorphic to
an (A, W)-functional m-L-lattice for some A € K and set W, omitting the
prefix IC- if the class is clear from the context.

The following result identifies the semantics of one-variable first-order logics
with evaluations into functional m-L-lattices.
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Proposition 2.3.2. Let A be any L-lattice.

(a) Let & = (S,ZI) be any A-structure. Then B == {||¢||° | ¢ € Fm} (L)}
forms an (A, S) functional m-L-lattice B and the B-evaluation ¢®, de-
fined by setting g®(p;) = Z(P;) for each i € N, satisfies for all p,v €
FmV([’);

%) = llell® and S Ep=Y = ¢°(p") =g ).

(b) Let B be any (A, W)-functional m-L-lattice for some set W, and let g
be any B-evaluation. Then 2 = (W, T), where J(F;) = g(pi) for each
i € N, is an A-structure satisfying for all v, € Fmi(L),

g(e") = llell® and WEp~b <= gl¢") = g¥").

Proof. (a) To show that B is (A, S)-functional, it suffices to observe that for
any ||¢||° € B, since & is an A-structure, the elements

Al () [vesy and  \/{llel® () [ve S}

exist in A and correspond to the constant functions ||(V:B)90H6 € B and
1(32)¢||€ € B, respectively. The fact that ¢ (%) = ||| for all ¢ € Fml(L),
follows by an easy induction on the definition of ¢, from which it follows also
that for all ¢, € Fm}(L)

S~y = g%(¢) =g
(b) Since B is (A, W)-functional, the elements

N f) and \/ f(v)

veW veW

exist in A for every f € B. We prove that g(¢*) = |l¢||*, by induction on
the definition of ¢, from which it follows immediately that Qﬂ = (W, J) is an
A-structure and

WEerY <= g(¢) =g

for all ¢,9 € Fm{(L£). In particular, for the case where ¢ = (Vx)v, using the
induction hypothesis for the second line,

V) 1™ () = ALII™ (v) | 0 € W)
= N\g(w)(w) [vew}
= Og(¥")(u)
= g(((Ve))") (w).
The case where ¢ = (Jx)1) is very similar. O
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Let K be any class of L-lattices and denote by fK the class of all K-
functional m-L-lattices. Then, as a direct consequence of Proposition 2.3.2,
for any set of Fm{(£)-equations T'U {¢ =~ v},

YR ot Yt = LER o,

recalling from Section 1.4 that (—)* denotes the translation function from
Fm(£) to Fmg(£) and from (sets of ) Fm{,(£)-equations to Fmg(£)-equations.
If K is closed under taking subalgebras and direct powers, then fIC C m/C,
by Proposition 2.3.1, and we obtain the following relationship between conse-
quence in the first-order logic based on K and consequence in the class mkC.

Corollary 2.3.3. Let K be a class of L-lattices closed under taking subalgebras
and direct powers. Then for any set of Fml(L)-equations ¥ U {¢ = 1)},

Dk ¢t Ry = TEC o,
Moreover, if every member of miC is K-functional (i.e., fIC = mk), then
Yk ot = SEM o).

Let us remark that a stricter notion of a functional algebra for a class IC of
L-lattices is considered in [3,24] that coincides in our setting with the notion
of being K°-functional, where K¢ is the class of complete members of IC. That
is, an m-L-lattice (B, [0,<) is K-functional if it is isomorphic to a subalgebra
of (AW ,[0,0) for some complete L-lattice A € K and set W, where [0 and &
are defined as described in Proposition 2.3.1.

Adapting Proposition 2.3.2 slightly, we can formulate a stronger version of
Corollary 2.3.3, which uses this notion of K°functional m-L-lattices.

Corollary 2.3.4. Let K be a class of L-lattices closed under taking subalgebras
and direct powers. If every member of mIC is K¢-functional, then for any set
of Fmy(L)-equations X U {p ~ 1},

S Enk ot Rt = SEL o

2.4 A Functional Representation Theorem

Adapting the proof of a similar result for Heyting Algebras [3, Theorem 3.6,
we prove in this section that if a variety V of L-lattices has the superamal-
gamation property, then every member of m) is V-functional, and hence, by
Corollary 2.3.3, consequence in the one-variable first-order logic based on V
corresponds to consequence in m) .

We first recall the necessary algebraic notions. Let K be a class of L-lattices.
A V-formation in K is a 5-tuple (A, B, Bs, f1, fo) consisting of A, By,B; €
KC and embeddings fi: A — By, fo: A — By, An amalgam in IC of a V-
formation (A, B;,Bo, fi1, f2) in K is a triple (C, g;, g2) consisting of C € K
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Figure 2.1: Depiction of the superamalgamation property

and embeddings ¢g;: By — C, go: B — C such that gy o f; = g5 0 fo; it is
called a superamalgam if also for any b; € B;, b; € B; and distinct i, j € {1, 2},

gi(bi) < gj(b;)) = gi(b;)) < gio fila) =gjo fij(a) < gj(b;) for some a € A.

The class K is said to have the superamalgamation property if every V-
formation in K has a superamalgam in K. In Figure 2.1 we depict the supera-
malgam (C, g1, g2) of the V-formation (A, By, Ba, f1, f2).

Theorem 2.4.1. Let K be a class of L-lattices that is closed under taking
direct limits and subalgebras, and has the superamalgamation property. Then
every member of mIC is functional.

Proof. Consider any (A,0,<$) € mK. Then A € K and, since K is closed un-
der taking subalgebras, also JA € K. We let W := N>Y and define inductively
a sequence of L-lattices (A;);ew in K and sequences of L-lattice embeddings

(fi: OA = Ajiew, (0it A= Ajiew,  (sit Ais1 = Aj)iew.

Let Ay = A and let fy: JA — A be the inclusion map. For each i € W,
there exists inductively, by assumption, a superamalgam (A;, s;, g;) of the V-
formation (DA, A; 1, A, fi_1, fo), and we define also

fi=sio fio1=gio fo=gilna. (2.1)

Now let L be the direct limit of the system ((A;, s;))iew with an associated
sequence of L-lattice embeddings (l;: A; — L);ew. Since K is closed under
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taking direct limits, L belongs to K. The first two superamalgamation steps
of this construction are depicted in the following diagram:

Jo

A —— A

g3
‘/fox ‘/glx
S1 So

A A, Ay ——— Ay -
l l
\ hb/
L

Since the operations of L' are defined pointwise, B := {{l; 0 gi(a))icw | a € A}
is the universe of a subalgebra B of L. We can also show that for each a € A,
the elements

/\ ljog;(a) and \/ ljog;a)
JEW JEW

exist in L and hence that (B, ;< ), with [ and & defined in Proposition 2.3.1,
is an (L, W)-functional m-L-lattice. Let a € A and fix some i € W. It suffices
to show that [; o g;(Ca) and [; 0 g;(<a) are the greatest lower bound and least
upper bound, respectively, of S := {l; 0 g;(a) | j € W}. Observe first that for
any ke W,

lk o gk([]a) = lk (0] fk(Da)
= lj41 © Sp41 © fk(DG)

= lg41 0 gey1(0a),

where the first and last equations follow from (2.1) and the second follows from
the fact that L is a direct limit. Hence for each j € W,

li 0 g;(0a) = 1; 0 g;(0a)
<ljogj(a).

So l; 0 g;(Ca) is a lower bound of S. Now suppose that ¢ € L is another lower
bound of S. Since L is a direct limit, there exist £ € W and d € A;, such that

li+1 0 sg4a(d) = lx(d)

=C

<110 gry1(a).
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Since li41 is an embedding, sx11(d) < gry1(a). Hence, since (Agi1, Skr1, Grr1)
is a superamalgam of (DA, Ay, A, fx, fo), there exists b € JA such that
Sk41(d) < st 0 fi(b)
= gr+1© fo(b)
< gri1(a).
But si11 and gxy1 are embeddings and fy is the inclusion map, so
d < fr(b) and b < a.
The latter inequality together with b € [IA, yields
b= 0b < Oa.
Hence also
fu(0) < fr(Oa) = g(Ha),
and, using the first inequality,
Cc = lk(d)
<o fx(b)
< I o gx(Oa)

N\ e gj(a) =0 g:(Ca)

JEW
exists in L and the constant function (I; o g;(0da));ew belongs to B. Also,
symmetrically,

\/ ljogila)=10g(Ca)
jEW
exists in L and the constant function (l; o g;(<a));ew belongs to B.
To show that (A, 0,<) is functional, it remains to prove that the following
map is an isomorphism:

f(AO0) = (B,L,C); ar (liogia))iew
Since the operations of L are defined pointwise and I, and g; are L-lattice
embeddings for each ¢« € W, also f is an L-lattice embedding. Clearly, it is
onto, by the definition of B. Moreover, recalling that l;og;(La) = Aoy licgi(a)
for each a € A, it follows that
f(@a) = {li 0 gi(Da))iew
= </\ lj o gj(a))iew
jEW

= U(li 0 gi(a))iew

= Of(a),
and, similarly, f(Ca) =< f(a). O
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Combining Theorem 2.4.1 with Corollary 2.3.3 yields the following result.

Corollary 2.4.2. IfV is a variety of L-lattices that has the superamalgamation
property, then for any set ¥ U {¢ =~ 1} of Fmy(L)-equations,

YEV ot = T L of =yt

Example 2.4.3. The variety of lattices has the superamalgamation prop-
erty [30]. Hence, by Theorem 2.4.1, every m-lattice is functional, and conse-
quence in the one-variable first-order lattice logic, understood as an equational
consequence relation, corresponds to consequence in m-lattices.

Example 2.4.4. FL., FL.,, and FL,.., and many other varieties of FL,-
algebras have the superamalgamation property, which is equivalent in this
setting to the Craig interpolation property for the associated substructural
logic (see, e.g., [31]). Hence, for any such variety ¥V — notably, for V €
{FLe, FLew, FLcc} — every member of m) is functional, and consequence
in the one-variable first-order substructural logic based on V' corresponds to
consequence in m).

Example 2.4.5. Maksimova [55] showed that there are exactly 7 varieties of
Heyting algebras (e.g., HA, BA, and GA) that have the (super-)amalgamation
property. Therefore, for any variety V of these 7 varieties, every member of
mY is functional, and consequence in the one-variable first-order intermediate
logic based on V corresponds to consequence in mV .

Example 2.4.6. A normal modal logic has the Craig interpolation property if
and only if the associated variety of modal algebras — Boolean algebras with
an operator — has the superamalgamation property [56]. Moreover, there exist
infinitely many such logics [75], including well-known cases such as K, KT, K4,
and S4. Hence our results yield axiomatizations for the one-variable fragments
of infinitely many first-order logics based on varieties of modal algebras.

Remark 2.4.7. The one-variable fragments of first-order Godel and first-order
Lukasiewicz logic are based on the standard Godel algebra G and the standard
Lukasiewicz algebra L, and correspond to the varieties of monadic Godel alge-
bras and monadic MV-algebras, axiomatized relative to mg.A and mMYV by
additional equations, respectively. Hence these fragments do not fit into the
framework of this thesis. However, as mentioned in Example 2.4.5, the variety
GA does have the superamalgamation property, but the first-order logic based
on GA corresponds to Corsi’s first-order logic of linear frames and our method
provides an axiomatization of consequence in the one-variable first-order logic
of linear frames.

Suppose finally that K is a class of L-lattices that is not only closed under
taking direct limits and subalgebras, and has the superamalgamation property,
but also admits regular completions. In this case, we can adapt the proof of
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Theorem 2.4.1 to show that every member of K is K¢functional, which —
as noted at the end of Section 2.3 — corresponds to the stricter notion of a
functional algebra considered in [3,24].

Corollary 2.4.8. Let IC be a class of L-lattices closed under taking direct
limits and subalgebras, that has the superamalgamation property, and admits
reqular completions. Then every member of mK is K¢-functional.

Proof. Given some (A,[0,$ ) € mKC, the direct limit L € K constructed in
the proof of Theorem 2.4.1 embeds into some L € K¢ and hence, reasoning as
before, (A,[0,<) is isomorphic to a subalgebra of (LY, [00,<). O]

Combining Corollary 2.3.4 and Corollary 2.4.8, we obtain the following
result.

Corollary 2.4.9. IfV is a variety of L-lattices that has the superamalgamation
property and admits reqular completions, then for any set ¥ U {¢p ~ ¥} of
Fmi (L)-equations,

SERprY = T E, ¢t m Yt

Example 2.4.10. In [3], Bezhanishvili and Harding proved that every monadic
Heyting algebra is H.Afunctional. Hence, by Corollary 2.3.4, the variety
of monadic Heyting algebras provides an axiomatization for the one-variable
fragment of first-order intuitionistic logic (since F}}, and EJ} . coincide).
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Chapter 3

Proof-Theoretic Approach

In this chapter, we describe an alternative proof-theoretic strategy for estab-
lishing completeness of axiomatizations for one-variable fragments of first-order
logics. The key step is to prove that a derivation of a one-variable formula in a
sequent calculus for the first-order logic can be transformed into a derivation
that uses just one variable. To illustrate, we consider a first-order version of
the full Lambek calculus with exchange, then extend the method to a broader
family of first-order substructural logics.

In Section 3.1 we define a set of first-order formulas Fm}*(£,) that extends
Fmi(L,), the one-variable L,-formulas given in Section 1.4, with a countably
infinite set of variables that are distinct from x and are always free. We
also introduce V1CFL, a cut-free sequent calculus satisfying for all FmJ,(L,)-
sequents I' = A,

V1CFL

= F'=A — FL JIT<>A,

where in a derivation of an Fm{(L,)-sequent extra (free) variables may be intro-
duced. This explains our need for £} -formulas and a sequent calculus V1CFL
that operates on Fmlt(L,)-sequents. Section 3.2 is used to prove an inter-
polation property for derivations in V1CFL, finding for any derivable sequent
[(w,y), I(w, z) = A(w, z) of a certain form an interpolant x(w) such that the
sequents I'(w,y) = x(w) and II(w, 2), x(w) = A(w, z) are derivable. In Sec-
tion 3.3, we provide an alternative (proof-theoretic) proof of Corollary 2.4.2
for the variety F L. using this interpolation property. In Section 3.4 we extend
this proof for FL, to varieties of FLc-algebras defined by equations of a certain
simple form. In particular, we extend the proof to the varieties FL., and

FLec.

3.1 A Sequent Calculus for the One-Variable
Fragment of VCFL

We begin this section by introducing Fm\lf(ﬁs), a set of first-order formulas
that use quantifiers (Vz) and (3z) for a distinct variable z and a countably
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infinite set of variables {z; };en that only occur freely. Then we present V1CFL,
a sequent calculus based on L] -formulas, that is sound and complete with
respect to validity of equations in the one-variable first-order logic based on
FLe.

The crucial feature of the first-order version of FL, needed for our approach,
proved in Section 1.3, is the fact that it can be presented as a cut-free sequent
calculus with the standard rules for quantifiers. Any derivation of a one-
variable formula ¢ in this calculus will therefore consist of sequents containing
only subformulas of ¢ with some free occurrences of the variable x replaced
by other variables. In particular, such a derivation will not introduce any new
occurrences of quantifiers or bound variables, but may introduce free variables
not occurring in ¢ via the rules for the universal quantifier on the right and the
existential quantifier on the left. Hence, to reason about derivations of one-
variable formulas, we may consider a fragment of the sequent calculus restricted
to formulas that contain only unary predicates and one bound variable, but
may contain further free variables.

More formally, let us recall from Chapter 1 that Fmlt(L,) is the set of
first-order formulas built inductively using unary predicates { P, };cy, variables
{z}U{z;}ien, operations in Ly, and quantifiers (V) and (3x). The elements of
Fml* (L) are called L, -formulas. Clearly, Fm}(L,) C Fm}"(L,). We write
¢(w) to denote that the free variables of p € Fm\;" (L) belong to a set w, and
indicate by (w,y) that y is not among the variables in w.

In this chapter, sequents are ordered pairs of finite multisets of formulas
[, A in Fml"(£,). We write I'(w) to denote that the free variables occurring
in a finite multiset of formulas I" belong to a set w.

The sequent calculus V1CFL is displayed in Figure 3.1, where the quantifier
rules are subject to the following side-conditions:

(i) if the conclusion of an application of (V=) or (=3) contains at least one
free occurrence of a variable, then the variable u occurring in its premise
also occurs freely in its conclusion’;

(ii) the variable y occurring in the premise of an application of (=V) or (3=)
does not occur freely in its conclusion.

Recall from Section 1.3 that if there exists a derivation d of a sequent I' = A
in a sequent calculus S, we write d =, I' = A or simply -, I' = A.

The following relationship between derivability of Fmy(L,)-sequents in
V1CFL and (first-order) validity of equations in the variety FL. is a direct
consequence of soundness and completeness and cut elimination for VCFL
(Theorem 1.3.4 and Theorem 1.3.6).

!'Note that in the literature, the variable u is often allowed to be an arbitrary term.
However, by substituting certain variables, we can require u to be a variable that already
occurs freely in the conclusion of the rule. Since this simplifies the proof of Lemma 3.2.1,
we require our sequent calculus to satisfy condition (i).
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Axioms
PN (D) r (f=) . (=e)
Operation Rules
b =) rot 0
I‘1:>(10 F27¢:>A F790:>¢
I, T, p == A ==) F:gp—>¢(:>_>)
F7907¢:>A F1:>§0 F2:>¢
F,w-@béﬁ(':) [Ty =9 =
M= A =
Tong=A ) = ovg OV
Ly =A =
Tong=A 7 F= vy V)
Fe=A T ¢y=A '=e¢ I'svy
Fovo=A V) Fsorgy N
Lo =4 L= v)
L, (Vo)p(z) = A = (Vz)i(x)
Looly) = A @) ['= ¢(u) (=)
[, (3z)e(z) = A ['= (3z)y(x)
Figure 3.1: The Sequent Calculus V1CFL
Proposition 3.1.1 (cf. [16,71]). For any sequent I' = A containing formulas

from Fml(L,),

+ I'=A — FL JIT<YA

V1CFL

3.2 An Interpolation Property

We now establish an interpolation property for the calculus V1CFL. For
any derivation d of a sequent in V1CFL, let md(d) denote the maximum
number of applications of the rules (=V) and (3=) that occur on a branch
of d. We prove by induction on the height of the derivation of a sequent
I(w,y),I(w, z) = A(w, z) that there exists a formula y(w) and derivations
dy and ds of I'(w,y) = x(w) and II(w, z), x(w) = A(w, z), respectively, such
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that md(d;), md(d2) < md(d). We prove this by constructing x(w) accord-
ing to the structure of the derivation of I'(w,y),II(w, z) = A(w, z). Let us
illustrate the idea of the proof by considering an example. Let

P(y), (Vo) R(z), Br)((Bx) P(z) = Q) = (B)Q(z) - R(2)

be a sequent with the following derivation d

(ID) (D)
Ply) = P(y) Q(w) = Q( .
Py > Gora) T Qs Goee (D FESRe
P(y). (3)P(x)  Qw) = (F)Q() ()R = RG) |
Py). (Fa)R(2), Bo)P() + Qlu) = Go)Qa) - BE)

P(y), (Vo) R(z), F2)((Bz) P(z) = Q(z)) = (Fr)Q(x) - R(2)
Following the structure of d, we now construct a formula x (in this case it

is even a sentence) and derivations dy, dy such that

dy |_V10FL P(y)7 (VI)R(ZE) =X,

da |_V10FL (EL’L')((H:E)P(:C) — Q(iﬂ))’x = (Hl')Q(x) R(Z)
We consider the premise of the last application of (3=) in d, P(y), (3x)P(x) —
Q(w), (Vx)R(z) = (Jx)Q(z)- R(2) and try to find a formula x; (w) and deriva-
tions d}, d, such that

dy Fyeee P(y), (Vo) R(z) = xa(w),

dy o (F0)P(2) = Qw), xa(w) = (32)Q(z) - R(=).

Next we consider the premises of (=) in d,
P(y), (3z)P(z) — Q(w) = (32)Q(z) and (Vz)R(z) = R(z)
and try to find formulas yo(w), x3 and derivations di1, dia, da1, dag such that

di |_VICFL P(?J) = X2(w)7 diz }_VICFL (Ell‘)P(SL‘) — Q(w)7X2(w) = (3%)@(@’),
doy I+ (Vz)R(x) = x3, dat X3 = R(2).

V1CFL V1CFL

We can set xa(w) := ((Iz)P(z) — Q(w)) — (Fx)Q(z), since we are then able
to obtain derivations d;; and d;s as follows:

(D)

P(y) = Py

(B2)P(z) = Qw) = (Fr) P(x) — Q(w) (B2)Q(z) = (3r)Q(2)
(F)P(x) = Q(w), x2(w) = (I7)Q(x)
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We can also set 3 = (Vz)R(z), since in that case dy; is an instance of (ip)
and dys is the an instance of (ip) together with an application of (v=). Setting
X1(w) = x2(w) - x3 then yields derivations d; and dj, of the form

dll

Ply) = volw)  (Va)RE) = x
P(y), (Va)R(z) = xa(w) - X3

d12 d22

(J2)P(z) = Q(w), x2(w) = (A)Q(x) x5 = R(2)
(30)P(x) = Q(w), xa(w), xs = (30)Q(x) - R(2)
(Fz)P(z) = Q(w), x2(w) - x3 = (Fx)Q(z) - R(z)

Finally, we obtain the derivations d;, ds by setting x = (Vz)x1(z):

(=)
(=

(32)P(x) = Q(w), 1 (w) = (32)Q(x) - R(2)
30)P() = Qw), (V) (x) = (F0)Q() - Rz
(@) (@) P(x) — Q). (Vo)xi (@) = (30)Q(z) - R(2)

Note that md(d) = 1 and we found a formula
x = (Vo) (Bz) P(x) = Q(w)) = (3r)Q(x)) - (V) R(x))
and derivations d; and dy satisfying md(d;), md(ds) = 1 < md(d) and

(V=)
(3=)

di Fyicr P(?/)» (Vm)R(a:) = X
s Fosen, (30)((32) P(2) = Q) x = (3)Q(x) - R().

Lemma 3.2.1. Let I'(w,y),1(w, z) = A(w, z) be any sequent such thaty # z,
x & wU{y,z}, and no variable in w U {y, z} lies in the scope of a quantifier.
If

dF [(w,y),(w, z) = A(w, 2),

V1CFL

then there exist x(w) € Fml' (L) and derivations dy,dy in V1CFL such that
md(d;), md(dz) < md(d) and

dl |_VICFL F(w’ y) = X(w)7 d2 |_VICFL H(w’ 2)7 X(w) = A(w7 Z)



Proof. By a straightforward inspection of the rules of V1CFL, no variable in
w U {y,z} can lie in the scope of a quantifier in a sequent occurring in a
derivation in V1CFL of I'(w,y),II(w, 2) = A(w, z). We prove the claim by
induction on the height of d, considering in turn the last rule applied in the
derivation.

Observe first that if y does not occur in I', we can define

x(w) =T

and obtain a derivation d; of I'(w,y) = x(w), ending with repeated applica-
tions of (=), (=e), and (ip), and a derivation dy of II(w, z), x(w) = A(w, 2)
that extends d with repeated applications of (-=) and (e=), such that md(d;) =
0 and md(dy) = md(d).

Similarly, if z does not occur in II, A, we can define

x(w):=][T—=> A

and obtain a derivation d; of I'(w,y) = x(w) that extends d with repeated
applications of (-=), (e=), and (=f), followed by an application of (=—), and
a derivation dy of II(w, 2), x(w) = A(w, z) ending with repeated applications
of (in), (=), (=e), and (f=), followed by an application of (—=), such that
md(d;) = md(d) and md(dy) = 0.

For the base cases where d ends with (ip), (=e), or (f=), either y does not
occur in I' or z does not occur in II, A. For the remainder of the proof, let us
assume that y occurs in I and z occurs in II, A.

e (V=): Suppose first that I'(w,y) is I(w, y), (Vz)p(z) and

d' b ee T'(0,), (), 1w, 2) = A(w, 2),

where md(d') = md(d) and, using the assumption that no other variable
lies in the scope of a quantifier, x is the only variable occurring in . Since
y occurs in I and z occurs in IT, A it follows from side-condition (i) for
(V=) that u € wU{y, z}. For the first subcase, suppose that v € wU{y}.
An application of the induction hypothesis produces y(w) € Fml"(L,)

and derivations d/, ds such that md(d}), md(ds) < md(d’) and
d?l }_VICFL F/(/U_J7 y)’ SO(’U/) :> X(w)7 d2 l_VICFL H(/u_)7 2)7 X(/ID) :> A<w7 'Z)

If w occurs in I"(w,y), x(w), then extending d} with an application of
(V=) yields a derivation d; such that md(d;) = md(d}) < md(d') =
md(d) and

dl l_v1CFL F,(II}, y)? (VZL‘)QO(.CE) = X(’LU).

Otherwise, by substituting u uniformly with y in d}, we obtain a deriva-
tion of I(w, y), ¢(y) = x(w) and obtain d; as described previously.
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For the second subcase, consider u = z. An application of the induction
hypothesis produces x'(w) € Fm\"(L,) and derivations d},d) such that
md(d}), md(d,) < md(d') and

dy Fpep D@, y) = X(@0), dy - (2), I(w, 2), X' (w) = A(w, ).

V1CFL SO
Let x(w) == x/(w)-(Vx)¢(x). Combining an instance (Vz)p(x) = (Vr)p(z)
of (ID) with d} and an application of (= -) yields a derivation d; such
that md(d;) = md(d}) < md(d') = md(d) and

dy Fyyep T, y), (Va)o(x) = X ().

Also, di, extended with applications of (V=) and (- =) yields a derivation
dy such that md(dy) = md(d) < md(d") = md(d) and

dy + [(w, z), x(0) = A(w, 2).

V1CFL
Suppose next that II(w, z) is I'(w, 2), (Vx)e(x) and

d' by, T, 9), I (0, 2), o(u) = A(w, 2),

where md(d’) = md(d) and z is the only variable occurring in ¢. Since
y occurs in I and z occurs in IT, A it follows from side-condition (i) for
(V=) that u € wU {y, z}. The case of u € wU {z} is very similar to the
first subcase above, so consider u = y. An application of the induction
hypothesis produces x'(w) € Fm\"(L,) and derivations d;,d, such that

md(d;), md(d,) < md(d') and
i Foer T(@,9), 0(y) = X'(@), - dy by, (@, 2), X' (@) = A(@, 2).

Let x(w) = (Vx)p(x) — x'(w). Extending d| with applications of (v=)
and (=-) yields a derivation d; such that md(d;) = md(d}) < md(d’) =
md(d) and

dq I_V10FL F(ﬂ),y) = X(w)'

Also, d}, and an instance (Vz)p(z) = (Vz)p(x) of (1) combined with an
application of (—=) yields a derivation ds such that md(ds) = md(dj) <
md(d") = md(d) and

dy ' (w, ), (Va)p(z), x(0) = A(w, 2).

V1CFL

(=V): Suppose that A(w, z) is (Vx)e(x) and for some variable u that
does not occur freely in I'(w, y), [I(w, z) = (Vx)p(z),

d + C(w,y), (w, z) = ¢(u),

V1CFL
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where md(d') = md(d) — 1 and z is the only variable occurring in ¢. An
application of the induction hypothesis produces x/(w,u) € Fml*(L,)
and derivations d, d, such that md(d}), md(d,) < md(d') and

d, + D(w,y) = X' (w,u), dyb, e H(w,2), X (0, u) = o(u).

V1CFL
Let x(w) = (Vx)x'(w,x). Extending d; with an application of (=V)
yields a derivation d; such that md(d;) = md(d}) +1 < md(d') + 1 =
md(d) and

dy I_vlcFL F(u?,y) = X(w)'
Also, extending di, with applications of (V=) and (=V) yield a derivation
ds such that md(d;) = md(d;) + 1 < md(d') + 1 = md(d) and
da I_v1CFL H(U_),Z),X(’U_J) = (Vx)gp(x)
(=3): Suppose that A(w, z) is (3x)p(z) and
d, l_VICFL F(’LI}, y)7 H(w7 Z) = (p(u)’

where md(d’) = md(d) and z is the only variable occurring in ¢. Since
y occurs in I and z occurs in IT, A it follows from side-condition (i) for
(=3) that u € wU{y, z}. For the first subcase, suppose that u € wU{z}.

An application of the induction hypothesis produces y(w) € Fm{" (L)
and derivations dy, d, such that md(d;), md(d},) < md(d’) and

dl |_V1CFL P(w7 y) = X(w)7 d,2 |_V1CFL H(w7 Z>7 X(?I]) = SO(U)

If w occurs in II(w, z), x(w), then extending d, with an application of
(=3) yields a derivation dy such that md(dy) = md(d,) < md(d') and

do Foyep H(w, 2), x(0) = (Fz)p(x).

Otherwise, by substituting v uniformly with z in d,,, we obtain a deriva-
tion of II(w, 2), x(w) = ¢(z) and obtain dy as described previously.

For the second subcase, consider u = y. An application of the induction
hypothesis produces x ( ) € Fm"(L,) and derivations d, d}, such that
md(d}), md(d,) < md(d’') and
di Foop T, 2) = X(@),  dy Fyyep, T(@,9), X' (@) = ¢(y).
Let x(w) = x'(w) — (3x)¢(x). Combining d, with applications of (= 3)
and (=—) yields a derivation d; such that md(d;) = md(d,) < md(d’) =
md(d) and
dy |_V1CFL F(w7y) = X(ﬂ)).

Also, combining the instance (3x)p(z) = (Jz)p(x) of (ip) and d} with
(—=) yields a derivation dy such that md(dy) = (d’ ) < md(d') =
md(d) and

do by (W, 2), x(@0) = (3z)p(2).
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e (3 =): Suppose first that I'(w,y) is I"(w,y), (3z)p(z) and for some
variable u that does not occur freely in I'(w, y), II(w, z) = A(w, 2),
d'F e, T'(0,y), (), H(w, 2) = A(w, 2),

V1CFL

where md(d') = md(d) — 1 and z is the only variable occurring in ¢. An
application of the induction hypothesis produces x/(w,u) € Fmlt(L,)
and derivations d}, d}, such that md(d}), md(d;) < md(d’) and

dy Fyyee, T, y), 0(u) = X' (0, w),
dy - (w, ), X' (w0, u) = A(w, z).

V1CFL

Let x(w) == (3z)x/(w, x). Combining d} with applications of (=3) and
(3=) yields a derivation d; such that md(d;) = md(d})+1 < md(d')+1 =
md(d) and

dy By T, y), Bx)(x) = x ().

Also, extending d, with an application of (3=) yields a derivation dy such
that md(dy) = md(dy) + 1 < md(d’) + 1 = md(d) and

dy (w, z), x(w) = A(w, 2).

V1CFL

Now suppose that II(w, z) is II'(w, z), (3z)p(x) and for some variable u
that does not occur freely in I'(w, y), II(w, 2) = A(w, 2),

d, I_V1CFL F<w7 y)’ H/(U_), Z)? gp(u) = A(’LD, Z)’

where md(d') = md(d) — 1 and z is the only variable occurring in ¢. An
application of the induction hypothesis produces x/(w,u) € Fml*(L,)
and derivations d, d, such that md(d}), md(d,) < md(d') and

dll }_VICFL ].—‘(QD, y) = X/(w’ u)7
dl2 |_V1CFL H/(/LD7 Z>7 <ID(U/)? X/(/ID7 u) = A<w7 Z)’

Let x(w) == (Vx)x'(w, z). The derivation d} together with an application
of (=V) yields a derivation d; such that md(d;) = md(d})+1 < md(d') +
1 = md(d) and

dy I_VICFL F(ﬂ),y) = X(w)'

Also, dj together with applications of (V=) and (3=) yields a derivation
dy such that md(d;) = md(d;) + 1 < md(d') + 1 = md(d) and

dy e, @, y), B)p(2), x(0) = Aw, 2).
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e (—=): Suppose for the first subcase that I'(w,y) is I'y(w, y), s (w, y),
o(w,y) = Y(w,y) and (w, 2) is I (w, z), y(w, ), and

d,l I_v1CFL ( ) Hl(w Z) = So(w 3/)
dy oo T2(@, ), (@, ), o (w, 2) = A(w, 2),

V1CFL

where md(d}), md(d,) < md(d). Two applications of the induction hy-
pothesis produce x1 (@), x (w) € Fml"(L,) and derivations d,,, d,, dy,
dyy such that md(d);), md(d},) < md(d}), md(dy,), md(dy,) < md(d,),
and

d/ll '_V1CFL Fl v, y)?X1(U_J) = (,O(U_J, y)?
d/12 |_v1CFL Hl w, Z) = Xl(w)a
(0, y) = Xo(W),

(
(
dy1 Foromn, D2(0,9), 9
dyy Forpe, (@, 2), x2(w) = A(w, 2).
)

Let x(w) = x1(w) — x2(w). Then d}; and di,, together with ap-
plications of (—»=) and (=-), and d}, and d),, together with an ap-

plication of (—=), yield derivations d; and d,, respectively, such that
md(d;), md(dz) < md(d) and

V1CFL I (U_)> y)a FQ(U_]a y) (

di = y) —
Iy (w, 2), Hy(w, 2), x(w0) =

Y(w,y) = x(w),
dy - A(w, z).

V1CFL

For the second subcase, suppose that I'(w,y) is I'y(w,y), [2(w,y) and
II(w, z) is Hl(w,z),HQ(w,z),go( z) = Y(w, z), and

dll |_V10FL Fl(u_}vy) H1<w Z) = 90( )
d,2 |_V10FL FQ(wv y)7 H2<w’ 2)7 w(w’ Z) = A(w, Z)a

where md(d}), md(d,) < md(d). Two applications of the induction hy-
pothesis produce 1 (), x2(0) € Fm{"(L,) and derivations d,,, d,, djy,
dy, such that md(dy;), md(d},) < md(d’)7 md(dy;), md(d}y) < md(d),

and

d/ll V1CFL Fl( _73/) = X1 (71) )
d,12 V1CFL H1<U7, Z) X1 (7) = QD(ZT),Z),
d,21 V1CFL F2( 7ay) = X2 (ﬁ) )

Let x(w) := x1(w)-x2(w). Then d|; and d,;, together with an application
of (=), and d}, and d),, together with applications of (—=) and (=),
yield derivations d; and da, respectively, such that md(d;), md(ds) <
md(d) and

dl |_V1CFL Fl(wa y)> FZ(way) = X(’LD),
dy = Iy (w, 2), s (w, 2), p(w, z) = Y(w, z), x (W) = A(w, z).

V1CFL



e (=—): Suppose that A(w, z) is p(w, z) = ¥ (w, z) and
d/ |_V1CFL F(,u_)7 y)’ H('LT), z)? (p(w7 Z) = ’l/}(w7 z)

By the induction hypothesis, there exist x(w) € Fm}"(£,) and deriva-
tions dy, d, such that

dl }_VlcFL F<U_}7 y) = X(U_})7 d/2 I_VlCFL H<U_J7 Z)’ SO(U_}7 Z)’ X(’ll_]) = ¢<U_], Z)

The derivation di, with an application of (=—) yields a derivation ds such
that

d2 I_VICFL H(w7 Z)’X(w) : QD(/II)7 Z) —> w(w7 Z)
The constraints on md(d;) and md(dy) clearly hold.
e (V=): Suppose first that I'(w, y) is I"(w,y), p(w,y) V (w0, y) and
d) Foop U0, y), (w0, y), (w0, 2) = A(w, 2),
dy e (@0, y), (0, y), I(w, 2) = A(w, 2).

By the induction hypothesis, there exist x;(w), xo(w) € Fml"(L,) and
derivations d, d,, dy,, d5, such that

diy Foer, T(0, 1), 0(0,y) = xa(w)
iy Forepn, LW, 2), x1(w0) = A(w, 2),
dyy Fororr I'(0, ), (0, y) = x2(w0),
dyy Foremn, 1L, 2), X2 (0) = A(w, 2).

).

)

S |

V1CFL

Define x(w) = x1(w) V x2(w). The derivations d},, d},, together with
applications of (=V);1, (=V)a, and (v=), yield a derivation d;, and the
derivations d},, d,, together with an application of (v=), yield a deriva-
tion d, satisfying

dl |_VICFL F/(ﬂ) 90<U77 y) V
d2 - H(U_},Z),XI(U_})\/X2<U_J) = A(U_},Z).

Clearly, md(d;), md(dy) < md(d)
Suppose now that [I(w, 2) is [I'(w, 2), ¢

V1CFL

(
dll '_VlcFL F(w’y)7ﬂl(w7z)7¢ 772) = A(w7z)7
de I_VlcFL F(w7y)7nl(w7z) w

By the induction hypothesis, there exist x;(w), xo(w) € Fm{"(L,) and
derivations dy, d}5, dy;, d5, such that

11 Foee, D(0,y) = xa (),
dyy Foer, (W, 2), (w0, 2), x1(0) = A(w, 2),
dyy Fyyor, T(0,y) = Xa(10),
dhy F oy, (@, 2), (W, 2), x2(w) = A, 2).

60



Let x(w) == x1(w) A x2(w). Then the derivations d},, d,,, together with
an application of (=), and the derivations d},, dy,, together with appli-
cations of (A=), (A=)2, and (v=), yield derivations d; and ds, respec-
tively, such that

dl l_VICFL F(’Lﬁ,y) = Xl(w) N XQ(’LD%
da I_VICFL H,(ID, 2)7 (,0(@, Z) \% ¢(w, Z)u Xl(w) N XQ(w) = A(w’ Z)

Clearly, again md(d;), md(dy) < md(d).
(=V): Suppose that A(w, z) is ¢1(w, 2) V ps(w, z) and
d/ |_V1CFL F(,u_)7 y)’ H(,u_)7 Z) = tpl(w7 Z)

By the induction hypothesis, there exist x(w) € Fm}* (L) and deriva-
tions dy, d}, such that

dl }_VICFL F<w7 y) = X(U_)>7 d,2 '_VlcFL ]'_'[</LD7 Z)7 X(w) = ¢1<w7 Z)'

The derivation d, together with an application of (= V); yields a deriva-
tion ds such that

do by, H(W, 2), x(0) = p1(w, 2) V @2(w0, 2).
The constraints on md(d;) and md(ds) clearly hold.
(= A): Suppose that A(w, z) is ¢(w, z) A ¥ (w, z) and

d?l }_VICFL F(/II)7 y>7 H<w7 Z) :> (p(/u_)7 2)7
dy = ['(w,y), [(w, z) = ¥(w, 2).

V1CFL

By the induction hypothesis, there exist x;(w), xo(w) € Fm{"(L,) and
derivations dy, d},, dy;, d5, such that
di,
dh, =

F(QI}7y) = Xl(u_])v d/12
L(w,y) = xa2(w), dy

V1CFL

I_vlcFL H(?I), Z>’X1(w) = QD(ID, Z)u
Foiorn (W, 2), x2(0) = (W, 2).

g

V1CFL

Let x(w) == x1(w) A x2(w). Then the derivations d},, d,,, together with
an application of (=), and the derivations d},, d,, together with appli-
cations of (A=), (A=)a, and (=A), yield derivations d; and ds, respec-
tively, such that

dl l_V1CFL F(ﬁ), y) = Xl(w) A XZ(w)v
da |_V1CFL H(ﬁ), Z)v X1<7IJ) A XQ(w) = <p(u_), Z) A 1/}(11), Z)'

Clearly, the constraints on md(d;) and md(dy) are satisfied in this case.
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e (A=): Suppose that I'(w, y) is I'(0,y), ¢1(w, y) A 2(w, y) and
d }_\ﬂCFL F/(w,y), @i(w; y) ( ) = A(’U_J Z).

By the induction hypothesis, there exist x(w) € Fm}"(£,) and deriva-
tions d), ds such that md(d}), md(ds) < md(d) and

i Foor T(0,9), @i(w,y) = x(@0), da byon THW, 2), x(w) = A, 2).

The derivation d} and an application of (A=), yield a derivation d; sat-
isfying md(d;) = md(d}) and

dy l_VICFL ( ) ( JY) N @Q(M y) = X( )
The case where II(w, z) is II'(w, 2), p1(w, 2) A p2(w, 2) is very similar.

)
1(w,
(=-): Suppose that A(w, z) is p(w, z)-1(w, z). Suppose also that I'(w, y)
is 'y (w, y), [y(w, y), and I(w, z) is 11 (w, z), [I3(w, z), and
d) +
dy

Fl(w y) Hl(w ):> SO(ZD?Z/)’
Co(w,y), Hy(w, z) = Y(w, 2).

V1CFL
V1CFL
By the induction hypothesis, there exist x; (@), xo(w) € Fm{"(L,) and
derivations d, d5, dy;, d5, such that
dlll }_V1CFL Fl(wvy) = X1<w)= d/12 I_v1CFL Hl(w> Z)? Xl(w> = gO(lD, Z)?
d,21 I_v1CFL FZ(U_)>y) = X2<U_})v d/22 |_V1CFL HQ(U_): Z), X?.(u_)) = w(u_)> Z)
Let x(w) = x1(w) - xo(w). Then the derivations d},, d},, together with
an application of (=), and the derivations d},, d,, together with appli-
cations of (=) and (-=), yield derivations d; and ds, respectively, such
that
dy I_v1CFL Iy (?D, y)’ FQ(wu y) = X1 (ﬂ)) ’ X2<w)’
da |_V10FL Hl(w7 Z)? HQ(w7 Z)v Xl(w) : XQ(w) = (,D(ﬂ), Z) ’ @D(ﬂ}, z)
The constraints on md(d;) and md(ds) clearly hold.

(-=): Suppose that I'(w, y) is I'(w,y), (w0, y) - ¥(w,y) and

d' gy T'(0,9), (0, ), 9 (0,), I(w, 2) = A, 2).

By the induction hypothesis, there exist x(w) € Fm}" (L) and deriva-
tions d}, ds such that

dy Fyor T'(@,), 0(0,y), ¥ (w, y) = x (),
do Foyop (W, 2), x(0) = A(w, 2).
Then d| and an application of (-=) yield a derivation d; such that

dy Fyyep, D@, 9), (0, y) - (@, y) = x(@).
The constraints on md(d;) and md(dy) clearly hold.
The case that I[I(w, z) is I'(w, z), p(w, 2) - ¥(w, z) is very similar. O
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3.3 An Alternative Completeness Proof

In this section, we reprove, by proof-theoretic means, the special case of Corol-
lary 2.4.2 for the variety FL.. The main idea is to prove for any sequent I' = A
of one-variable £z -formulas

V1CFL

This proof is established by induction on the lexicographically ordered pair
(md(d), ht(d)), where most cases are a quite straightforward application of the
induction hypothesis and the equations defining mF L,. If the last rule applied
in d is (=V) or (3=), then we introduce a new variable and we cannot apply the
induction hypothesis. With an application of Lemma 3.2.1 we obtain sequents
of one-variable L -formulas and we can finish the proof with applications of
the induction hypothesis and the equations defining mFL..

Theorem 3.3.1. For any set ¥ U {p ~ ¢} of Fm{(L,)-equations,
SER oY = S Egr, o R YN

Proof. The right-to-left direction follows directly from Corollary 2.3.3. For the
converse, note first that due to compactness and the local deduction theorem
for FY}, stated in Section 1.4, we can restrict to the case where ¥ = (). Hence,
by Proposition 3.1.1, it suffices to prove for any sequent I' = A of one-variable
L o-formulas

V1CFL

We proceed by induction on the lexicographically ordered pair (md(d), ht(d)).
The base cases are clear and the cases for the last application of a rule in
d except (=V) and (3=) all follow by applying the induction hypothesis and
the equations defining mJFL.. Just note that for each such application, the
premise(s) contain only formulas from Fm{(£,) with at least one fewer sym-
bol. In particular, for (v=) and (=3), it can be assumed that the variable u
occurring in the premise is # and the result follows using (L1g) or (L1l ). Let
us consider one case where d ends with a rule for one of the propositional op-
erations. Suppose that the last rule applied in d is (=) with premises ' = ¢
and I'y = 1. Since I'; = ¢ and I'y = v are Fmy(L,)-sequents, an application
of the induction hypothesis yields

Fmre. (JIT1)* <¢* and  Fure, ([[T2)" <o

Since - is order preserving in both arguments,

Fonre, ([TT0)" - ([TT2)* < 9™ - ™.

By the definition of the translation function (—)* and [],
Fmre. ([TT)"- (ITT2)" = (1N, T2))" and - Eppe, @ -7 = (0 - 4)7,
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and therefore,
Fmrc. (1101, T2))" < (- 9)".
Suppose the last rule applied in d is (v=). Then

d + [ p(x) = A,

V1CFL

and since T', p(z) = A is an Fmy,(L,)-sequent, an application of the induction
hypothesis yields

Fmre. (ITT)" - o(2)" = (TI(, ¢(2)))" < 2 A)"
Since Fprr, ((V2)p(r))" = Op(r)” < ¢(z)* by (L1g), also

Fmre. (ITT)" - (Ve)p(x))” < (ITT)" - o(2)*

and
Fmrc. (I, (Va)p(2)))" < (ITT)" - e(z)” < Q2 A)"
Suppose now that the last rule applied in d is (=V), where A is (Vx)y(x)
and x may occur freely in I'. Then

d/ I_VlCFL F = 1/1(2’)

with md(d’) = md(d) — 1, where z is a variable distinct from z. We write
['(y) and d'(y) to denote " and d’ with all free occurrences of z replaced by y.
Clearly,

d/(y) l_VICFL F(y) = w(z)

with md(d’(y)) = md(d'). Note also that no occurrence of y or z lies in the
scope of a quantifier in I'(y) = ¢(z). Hence, by Lemma 3.2.1, there exist a
sentence x and derivations dy, dy such that md(d;), md(dy) < md(d’) and

dl I_\11CFL F(y) = X> d2 I_vlcFL X = @b(z)

Since x is a sentence and x does not occur freely in I'(y) or 1(z), we can assume
that d; and dy do not contain any free occurrences of x, and, by substituting
all occurrences of y in dy, and z in dy, with =, obtain derivations d} of I' = x
and d}, of x = ¢(x) with md(d}) = md(d;) and md(d,) = md(dy). Hence, by
the induction hypothesis twice,

Fnre, (IIT) <x* and  Fpre x* < ()

Since ((Vz)x)* = Ox* and x is a sentence,

Fmrc. X* ~ ((V2)x)",

and hence the equations defining mF L, yield also
Frre. X < ((V2)y(x))".
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So finally we obtain

Fmrc. (IIT)" < ((Vo)p(2))"

For the last case, suppose that the last rule applied in d is (3=), where I
is IV, (3z)¢(z) and = may occur freely in I'" and A. Then

d + I (y) = A

V1CFL

with md(d’) = md(d) — 1, where y is a variable distinct from z. We write I"(z2),
A(z), and d'(z) to denote IV, A, and d’ with all free occurrences of = replaced
by z. Clearly,

d'(z) Foem I'(2),0(y) = A(z)

with md(d’(z)) = md(d’). By Lemma 3.2.1, there exist a sentence y and
derivations dy, dy such that md(d;), md(dy) < md(d') and

dl |_V1C1FL 77Z)(y) = X d2 |_V1CFL P,<Z)7 X = A(Z)

Since x is a sentence and x does not occur freely in ¥ (y), I'(z), or A(z), we
can assume that d; and dy do not contain any free occurrences of x, and, by

substituting all occurrences of y in dy, and z in dy, with z, obtain derivations d]
of (z) = x and d, of I, x = A with md(d}) = md(d;) and md(d,,) = md(dy).
Hence, by the induction hypothesis,

Forc, ¥(@)" < X" and  Fuze, ([ITY, X)) < (O2A)
Since ((Jz)x)* =< x* and y is a sentence,
Fmre. X = ((32)X)",
and hence the equations defining mJF L. yield also
Fmre. ((Q2)0(2))" < X"

Therefore, we finally obtain

Fmre. ([T, Ba)i(x)))" < Q2 A)™. =

3.4 Extensions of the Calculus V1CFL

In this section, we extend the proof-theoretic strategy for proving Corol-
lary 2.4.2 to varieties of FLe-algebras axiomatized relative to F L. by equations
of a certain simple form.
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Given a variable z, let 2° := e and 2**! := x- 2%, for each k € N, and given

a multiset II and k € N, let IT* denote the multiset union of & copies of II. We
define sequent rules

k

I i
. f < =

T I'=A"

Note that these rules correspond to simple structural rules with exactly one
premise, that is, some of the structural rules introduced in Section 1.3. In
particular, r(x < 2%) is (wr), 7(f < 2) is (Wr), r(z < 2?) is (¢), and r(z < 2¥)
for k > 2 is (k-conTr). The rule (MiNGLE) is not covered, since it corresponds to
the equation 2% < z and has two premises. We show at the end of this section
why (even simple) rules with multiple premises may cause problems with our
method.

Let S be the set of equations {z < 2% | k € N} U {f < z}. Given any
S C S, denote by FL, + S’ the variety of FL.-algebras axiomatized relative
to FL. by the equations in S’, and by VICFL + r(S’) the sequent calculus
V1CFL extended with the rules r(¢) for each equation € in S’. Then for any
sequent I' = A containing formulas from Fm{(L,) (see, e.g., [16,71]),
T=A = F o[IT<XA

V1CFL4r(S/
We now formulate Lemma 3.2.1 for VICFL + r(S’) and extend the proof:

Lemma 3.4.1. LetI'(w,y), [I(w, z) = A(w, 2) be any sequent such thaty # z,
x & wU{y,z}, and no variable in w U {y, z} lies in the scope of a quantifier.
If

ar D, ), (i, ) = A, 2),

V1CFL+r(S’)

then there exist x(w) € Fml" (L) and derivations dy, dy in VICFL+7(S") such
that md(d;), md(dz) < md(d) and

dy I_WCFL+r(S’) P(w’ y> = X(U_J), dy |_VICFL+r(S/) H(?I), Z), X(U_J) = A(w, Z)'

Proof. This proof is an extension of the proof for Lemma 3.2.1 and it is enough
to just consider the additional cases for the rules in r(5").
Suppose first that (wr) = r(f < z) € r(5’) is the last rule applied in d and
d Foeriiey L (@, y), 1w, 2) =

An application of the induction hypothesis yields x () € Fm\"(L,) and deriva-
tions dy, d), satisfying md(d;), md(d5) < md(d’) = md(d) and

dy |_V1CFL+r(S’) I'(w,y) = x(w), d/2 - (w, ), x(w) =

V1CFL+r(S’)
Then df together with an application of (wr) yields a derivation dy with
md(dy) = md(d}) < md(d) and

dy [I(w, 2), x(w) = A(w, 2).

V1CFLA4r(S)
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Suppose now that (wr) = r(z < 2°) € r(9’) is the last rule applied in d
and T'(w,y) is T'y(w,y), Te(w, y) and TI(w, z) is 1y (w, z), [Is(w, ), and

d + Iy (w,y), I (w, 2) = A(w, 2).

V1CFL+r(S’)

An application of the induction hypothesis yields x (w) € Fm\"(L,) and deriva-
tions d}, d, satisfying md(d}), md(d}) < md(d’) = md(d) and

dll l_VICFL-l»r(S’) Fl(,u_)7 y) j X(’II}), d/2 l_ ) Hl(U_J7 Z>7X<w) j A('II}’ Z)

V1CFL+r(S/

Taking d; and d), together with an application of (wt) yields

dy }_VICFLJrr(S’)Fl(U_}’ y), a(w,y) = x(w),
dy = )Hl(w,z),ﬂg(w,z),x(w) = A(w, 2),

V1CFLA4r(8/

where the derivations d; and dy satisfy md(d;), md(ds) < md(d).
Suppose finally that for some k € N>0 r(z < z*) € r(9’) is the last rule in
d and I'(w, y) is ['1(w, y), [y(w, y) and I (w, 2), Iy (w, z), and

d + : Ty (w,y), Ta(w, y)*, I (w, 2), Ha(w, 2)* = A(w, 2).

V1CFL+r(S/

An application of the induction hypothesis yields x () € Fm{"(L,) and deriva-
tions d}, d), satisfying md(d}), md(d};) < md(d’) = md(d) and

dll I_VICFL+r(S’)F1 (w,y), Ta(w, y)k = x(w),
dy - )Hl(w,z),ﬂg(w,z)k,x(w) = A(w, z).

V1CFLA4r(S/

The derivations d} and d}, together with an application of 7(x < 2*) yields
derivations d; and ds satisfying md(d; ), md(dy) < md(d) and

dy l_VICFL+r(S/)F1(w7 y)7 Iy (’U_J, y) = X(U_)>7
d2 - )Hl(U_),Z),HQ(U_),Z),X(ZT)) = A(’U_J,Z). [

V1CFL+r(S/
Hence, following the proof of Theorem 3.3.1 yields the following more gen-
eral result.

Theorem 3.4.2. For any S’ C S and set ¥ U {p ~ 9} of Fm{(L)-equations,
SER g eRY = T Enrras @ R U

In particular, we obtain alternative proof-theoretic proofs of completeness for
the axiomatizations of the one-variable fragments of the first-order extensions
of FLey, FLee, and FLey. (intuitionistic logic).

As mentioned in the beginning of this section, we only consider extensions of
V1CFL with simple rules that only have one premise. Let us consider VICFL+
{(mingLE)} to illustrate why our method fails when we add rules with more
than one premise to VICFL. Suppose we have a derivation of the sequent

D(w,y), I (w,y), a(w,y), I(w, ), I1; (w, 2), [s(w, 2) = Aw, 2)

of the form
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d da

LTI = A T, Ty, 1L T, = A

[0, Do, IL I, Ty = A (MINGLE)

where we leave out the free variables to save space. If we assume d; and
dy are derivations that do not contain an application of (mingLE), then by
Lemma 3.2.1, we obtain formulas y;(@), x2(@) in Fmlt(£,) and derivations
dH, d12, d217 d22 such that

dy F
d21 F

Iy = xa, dys =
'y = xo, dao =

H,Hl,xl = A,
H,HQ,XQ = A.

V1CFL V1CFL

V1CFL V1CFL

We would like to find y(w) € Fm}"(L,) constructed from x;(w) and ya(®),
and derivations d}, d, such that
dy +

. F,F17F2:>X and dé - ) H,Hl,Hg,XiA.

V1CFLA+{(MINGLE V1CFL+{(MINGLE

However, the only rules with two premises where the contexts of the premises
do not match are (—=), (mincLE), and (=-). An application of (—=) can not
work, since it would combine formulas where y occurs freely with formulas
where 2z occurs freely. The rule (mincLE) cannot be applied to the sequents
'y = x1 and I',T'y = x9, since x; and yo do not necessarily match. We
could take dj; and dy; and apply (=V); and (=V)a, respectively. Then an
application of (MmiNGLE) yields a derivation of I',1I',I's = x1 V X2, but since
we cannot apply (v=) to I II;,x; = A and II, Il5, xyo = A we cannot find
a suitable derivation d. Considering (=-) we can almost solve the problem.
Consider the following derivations:

dll d21

' = xa '’y = xo (=)
LT Ty = xa - xe

d12 d22
H7H1>X1:>A H>H27X2:>A

H7H1>H27X17X2 = A (:)
ILIT Do, X1 - x2 = A

(MINGLE)

The conclusion of the first derivation is the desired sequent with an additional I
on the left-hand-side. There is no method to remove it in V1ICFL+ {(miNGLE) },
however, if we add (c), then we obtain
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dll d21

L= xa Iy = x2
IO, Ty = xa xe
I, Ty = xa - xe

(=

0)

and y(w) = x1(w) - x2(w) together with the above derivations are the desired
formula and derivations, respectively.
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Chapter 4

Concluding Remarks

In this thesis, we studied the one-variable fragments of a family of first-order
logics based on classes of L-lattices K and addressed the challenge of pro-
viding a (natural) axiomatization of the equational consequence relation F},
or, equivalently, in algebraic terms, providing a (natural) axiomatization of
the generalized quasivariety generated by the class of all (A, W)-functional
m-L-lattices, where A € K and W is a set.

In Chapter 2 we addressed this challenge algebraically for certain classes
of L-lattices. We defined m-L-lattices to be L-lattices expanded with [J and
<& satistying certain “S5-like” equations, and for any class K of L-lattices, we
let m/C denote the class of m-L-lattices with an L-lattice reduct in . We saw
that a number of one-variable fragments of first-order logics defined over classes
of L-lattices that have already been axiomatized in the literature, correspond
to some variety m) of m-L-lattices. We proved a correspondence theorem
between m-L-lattices and pairs consisting of L-lattices and their relatively
complete subalgebras. We showed that whenever K is closed under taking
subalgebras and direct powers, for A € K and a set W, any (A, W)-functional
m-L-lattice belongs to mK. We identified the semantics of one-variable first-
order logics with evaluations into functional m-L-lattices, which allowed us to
prove that if IC is closed under taking subalgebras and direct powers, then con-
sequence in m/K implies consequence in the one-variable first-order logic defined
over K. We proved a functional completeness theorem, that is, if K is closed
under taking direct limits and subalgebras, and has the superamalgamation
property, then any member of mKC is functional. With this functional com-
pleteness theorem, we obtained the correspondence of consequence in miC and
consequence in the one-variable first-order logic based on K in certain cases,
specifically, we proved that if K is a variety that has the superamalgamation
property, then for any set XU {p ~ 9} of Fm{,(£)-equations (Corollary 2.4.2),

SEL prg e S Rt U

However, if IC lacks the superamalgamation property or is not a variety, further
axioms may be required.
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In Chapter 3 we approached this challenge proof-theoretically and pro-
vided an alternative proof of Corollary 2.4.2 for certain substructural logics
extending FL. that have a cut-free sequent calculus. We introduced the cut-
free sequent calculus V1CFL that is sound and complete with respect to the
one-variable fragment of the first-order logic based on FL.. Derivations of
Fm{,(L,)-sequents in VICFL do not introduce new quantifiers, but they may
introduce additional variables. We proved an interpolation property for V1CFL
showing that these additional variables can be eliminated from such a deriva-
tion. We extended this strategy to varieties of FLe-algebras axiomatized rela-
tive to FL. by equations of a certain simple form, that correspond to simple
structural rules with exactly one premise.

Let us conclude this thesis by mentioning some interesting directions for
further research. We have obtained axiomatizations for consequence in the
one-variable fragments of first-order logics based on varieties of L-lattices that
have the superamalgamation property. Hence, a potential generalization is to
consider varieties of L-lattices that have a weaker property, the super gener-
alized amalgamation property. For substructural logics (even those without
exchange) the super generalized amalgamation property corresponds to the
Craig interpolation property [31]. Obtaining a functional completeness theo-
rem for varieties of L-lattices that have this property, would yield axiomati-
zation results for an even larger family of one-variable fragments of first-order
logics. In particular, such a result would yield an axiomatization for the one-
variable fragment of the first-order version of the full Lambek Calculus FL.
However, we conjecture that in these cases, completeness does not hold for
consequences but only for valid equations. An alternative generalization is to
extend our proof-theoretic approach from Chapter 3 to first-order versions of
substructural logics like FL that have a cut-free sequent calculus, although
considering the first-order version of FL. would require us to lift this proof-
theoretic strategy to sequent calculi where sequents are based on sequences of
formulas instead of multisets of formulas.

Another interesting way of continuing this investigation of one-variable
fragments of first-order logics and the problem of axiomatizing them is to
consider classes that consist of the totally ordered members of a variety of
L-lattices, and hence forms a positive universal class. An L,-lattice is called
semilinear, if it is isomorphic to a subdirect product of totally ordered FL.-
algebras. Then for any variety V of semilinear FL.-algebras, we can show that

F (F)p - (3r)e = (32)(p - ).
In Example 2.1.3 we proved that whenever L3 € V| then
Eny Cx-Cx~o(x-x),

and in this case m} does not correspond to the one-variable fragment of the
first-order logic based on V. In particular, if V is MV or the variety of all
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semilinear FL-algebras, m) does not correspond to the one-variable fragment
of the first-order logic based on V. If we consider V,,, then additionally to

Fye (F2)p - (G)e ~ (Fz) (¢ 9)

we can also show
Fre (Vo) (e V) & (Vo) V o

where x does not occur in 1. Although a general approach to obtaining ax-
iomatizations of the one-variable fragments of the first-order logics based on
VY and Vy, is lacking, success for certain cases suggests a possible future line of
investigation. Let us consider a specific case; the one-variable fragment of first-
order Lukasiewicz logic can be defined over MV,,, the class of totally ordered
MV-algebras, which corresponds to the variety of monadic MV-algebras [77].
The variety of monadic MV-algebras [77] can be defined relative to mMYV by

Cr-Orro(x- x) and OOz Vy) =~ Oz VvOy.

Interestingly, a proof that the one-variable fragment of first-order Lukasiewicz
logic corresponds to the variety of monadic MV-algebras is given in [17] using
the fact that MV, has the amalgamation property (see also [59,89] for related
results). This suggests that the method of Chapter 2 might be adapted to one-
variable fragments of first-order logics defined over classes of totally ordered
algebras that have the amalgamation property.

72



Bibliography

1]
2]

[15]
[16]
[17]

[18]

A. R. Anderson and N. D. Belnap, Entailment, Vol. 1, Princeton University Press, 1975.

M. Baaz and G. Metcalfe, Proof theory for first order Lukasiewicz logic, Proceedings of
tableaux 2007, 2007, pp. 24-28.

M. Baaz and N. Preining, Gddel-Dummett Logics, Handbook of mathematical fuzzy
logic, 2011, pp. 585-625.

M. Baaz, N. Preining, and R. Zach, First-order Gddel logics, Ann. Pure Appl. Logic
147 (2007), 23-47.

L. P. Belluce, Further results on infinite valued predicate logic, J. Symb. Log. 29 (1964),
69-78.

L. P. Belluce and C. C. Chang, A weak completeness theorem for infinite valued first
order logic, J. Symb. Log. 28 (1963), 43-50.

G. Bezhanishvili, Varieties of monadic Heyting algebras - part I, Studia Logica 61
(1998), no. 3, 367-402.

G. Bezhanishvili and J. Harding, Functional monadic Heyting algebras, Algebra Uni-
versalis 48 (2002), 1-10.

G. Bezhanishvili and W. H. Holliday, A semantic hierarchy for intuitionistic logic,
Indagationes Mathematicae 30 (2019), no. 3, 403-469.

G. Birkhoff, On the Structure of Abstract Algebras, Mathematical Proceedings of the
Camridge Philosophical Society 31 (1935), no. 4, 433-454.

R.A. Bull, MIPC as formalisation of an intuitionist concept of modality, J. Symb. Log.
31 (1966), 609-616.

S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, 1981.

X. Caicedo, G. Metcalfe, R. Rodriguez, and J. Rogger, Decidability in order-based modal
logics, J. Comput. System Sci. 88 (2017), 53-74.

X. Caicedo, G. Metcalfe, R. Rodriguez, and O. Tuyt, One-variable fragments of inter-
mediate logics over linear frames., Inform. and Comput. 287 (2022).

X. Caicedo and R. Rodriguez, Bi-modal Gddel logic over [0, 1]-valued Kripke frames, J.
Logic Comput. 25 (2015), no. 1, 37-55.

E. Casari, Comparative logics and abelian £-groups, Logic colloquium ’88, 1989, pp. 161—
190.

D. Castano, C. Cimadamore, J.P.D. Varela, and L. Rueda, Completeness for monadic
fuzzy logics via functional algebras, Fuzzy Sets and Systems 407 (2021), 161-174.

A. Chagrov and M. Zakharyaschev, Modal logic, Oxford Univ. Press, 1996.

73



[19]

C. C. Chang, Algebraic analysis of many-valued logics, Transactions of the American
Mathematical Society 88 (1958), 467-490.

A. Church, A note on the Entscheidungsproblem, J. Symb. Log. 1 (1936), 40-41.

K. Chvalovsky and R. Hor¢ik, Full lambek calculus with contraction is undecidable, The
Journal of Symbolic Logic 81 (2016), no. 2, 524-540.

A. Ciabattoni and K. Terui, Towards a semantic characterization of cut-elimination.,
Studia Logica 82 (2006), no. 1, 95-119.

R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici, Algebraic foundations of many-valued
reasoning, Trends in Logic, vol. 7, Kluwer, Dordrecht, 1999.

P. Cintula, G. Metcalfe, and N. Tokuda, Algebraic semantics for one-variable lattice-
valued logics, Proceedings of AiML 2022, 2022, pp. 237-257.

, One-variable fragments of first-order logics, The Bulletin of Symbolic Logic
(2024), 1-23.

P. Cintula and C. Noguera, Logic and Implication: An Introduction to the General
Algebraic Study of Non-classical Logics, Trends in Logic, vol. 57, Springer, 2021.

G. Corsi, Completeness theorem for Dummett’s LC quantified, Studia Logica 51 (1992),
317-335.

A. di Nola and R. Grigolia, On monadic MV-algebras, Ann. Pure Appl. Logic 128
(2004), no. 1-3, 125-139.

K. Dosen, Modal translations in substructural logics, Journal of Philosophical Logic 21
(1992), no. 3, 283-336.

M. Dummett, A propositional calculus with denumerable matriz, J. Symb. Log. 24
(1959), 97-106.

N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated lattices: An algebraic
glimpse at substructural logics, Elsevier, 2007.

G. Gentzen, Untersuchungen tiber das Logische Schliessen, Math. Zeitschrift 39 (1935),
176,-210,405-431.

J. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987), 1-101.

K. Godel, Die Vollstindigkeit der Axiome des logischen Funktionenkalkiils, Monatshefte
fiir Mathematik und Physik 37 (1930), 349-360.

K. Godel, Zum intuitionistischen Aussagenkalkiil, Anzeiger der Akademie der Wis-
senschaften in Wien 69 (1932), 65-66.

G. Gratzer, General lattice theory, 2nd ed., Birkh&user, 1998.
P. Héjek, Metamathematics of fuzzy logic, Kluwer, Dordrecht, 1998.

P.R. Halmos, Algebraic logic, I. Monadic Boolean algebras, Compos. Math. 12 (1955),
217-249.

L. S. Hay, Aziomatization of the infinite-valued predicate calculus, J. Symb. Log. 28
(1963), no. 1, 77-86.

A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsbericht PreuBis-
che Akademie der Wissenschaften Berlin, physikalisch-mathematische Klasse 1T (1930),
42-56.

D. Hilbert and W. Ackermann, Grundzige der theoretischen Logik, Springer, Berlin,
1928.

74



[42]
[43]
[44]

[45]
[46]

[47]

[54]
[55]

[56]

[58]
[59]
[60]
[61]

[62]

A. Horn, Logic with truth values in a linearly ordered Heyting algebra, J. Symb. Log.
34 (1969), no. 3, 395-409.

R. Iemhoff, Consequence relations and admissible rules, Journal of Philosophical Logic
45 (2016), no. 3, 327-348.

E. Kiriyama and H. Ono, The contraction rule and decision problems for logics without
structural rules, Studia Logica 50 (1991), 299-319.

S. C. Kleene, Introduction to metamathematics, P. Noordhoff N.V., Groningen, 1952.

Y. Komori, Predicate logics without the structural rules, Studia Logica 45 (1986), no. 4,
393-104.

R. Kontchakov, A. Kurucz, and M. Zakharyaschev, Undecidability of first-order intu-
itionistic and modal logics with two variables, Bulletin of Symbolic Logic 11 (2005),
no. 3, 428-438.

S.A. Kripke, Semantical analysis of intuitionistic logic I, Formal systems and recursive
functions, 1965, pp. 92-130.

R. E. Ladner, The computational complezity of provability in systems of modal propo-
sitional logic, STAM J. Comput. 6 (1977), no. 3, 467-480.

J. Lambek, The mathematics of sentence structure, American Mathematical Monthly
65 (1958), 154-170.

J. Lukasiewicz, O logice trojwarto$ciowej, Ruch Filozoficzny 5 (1920), 169-171.
Reprinted and translated in [52].

, Selected works, North-Holland Publishing Company, 1970. Edited by L.
Borowski.

J. Lukasiewicz and A. Tarski, Untersuchungen tber den Aussagenkalkil, Comptes Ren-
dus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe 111 23
(1930). Reprinted and translated in [52].

Judit X. Madarasz, Interpolation and amalgamation; pushing the limits. part i, Studia
Logica: An International Journal for Symbolic Logic 61 (1998), no. 3, 311-345.

L.L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties
of pseudo-Boolean algebras, Algebra i Logika 16 (1977), 643-681.

, Modal logics and varieties of modal algebras: The Beth properties, interpolation,
and amalgamation, Algebra i Logika 31 (1992), no. 2, 145-166.

G. Metcalfe, N. Olivetti, and D. Gabbay, Proof theory for fuzzy logics, Applied Logic,
vol. 36, Springer, 2008.

G. Metcalfe, F. Paoli, and C. Tsinakis, Restduated structures in algebra and logic, Math-
ematical Surveys and Monographs, vol. 277, American Mathematical Society, 2023.

G. Metcalfe and O. Tuyt, A monadic logic of ordered abelian groups, Proceedings of
AiML 2020, 2020, pp. 441-457.

R.K. Meyer and J.K. Slaney, Abelian logic from A to Z, Paraconsistent logic: Essays on
the inconsistent, 1989, pp. 245-288.

A. Monteiro and O. Varsavsky, Algebras de Heyting monddicas, Actas de las X Jornadas
de la Unién Matemdtica Argentina, Bahia Blanca (1957), 52-62.

T. Moraschini, A gentle introduction to the leibniz hierarchy, Janusz czelakowski on
logical consequence, 2024, pp. 123-201.

75



[63] A. Di Nola and I. Leugtean, Lukasiewicz Logic and MV-Algebras, Handbook of mathe-
matical fuzzy logic, 2011, pp. 469-583.

[64] H. Ono, On some intuitionistic modal logics, Publ. RIMS, Kyoto Univ. 13 (1977), 687—
722.

[65] , Model extension theorem and craig’s interpolation theorem for intermediate

predicate logics, Reports on Mathematical Logic 15 (1983), 41-58.

[66] , Semantical analysis of predicate logics without the contraction rule, Studia

Logica 44 (1985), no. 2, 187-196.

[67] , Some problems in intermediate predicate logics, Reports on Mathematical Logic

21 (1987), 55-67.

[68] , Structural rules and a logical hierarchy, Mathematical logic, 1990, pp. 95-104.
[69] —, Decidability and finite model property of substructural logics (199512).
[70] , Proof-theoretic methods in nonclassical logic — an introduction, Theories of

types and proofs, 1998, pp. 207-254.

[71] H. Ono and Y. Komori, Logic without the contraction rule, J. Symb. Log. 50 (1985),
169-201.

[72] H. Ono and N.-Y. Suzuki, Relations between intuitionistic modal logics and intermediate
predicate logics, Rep. Math. Logic 22 (1988), 65-87.

3] F. Paoli, Substructural logics: A primer, Kluwer Academic Publishers, Dordrecht, 2002.
4] A. Prior, Time and modality, Clarendon Press, Oxford, 1957.

5] W. Rautenberg, Modal tableau calculi and interpolation, J. Philos. Log. 12 (1983), no. 4,
403-423.

[76] G. Restall, An introduction to substructural logics, Routledge, London, 1999.

[77] J.D. Rutledge, A preliminary investigation of the infinitely many-valued predicate cal-
culus, Ph.D. Thesis, 1959.

[78] B. Scarpellini, Die Nichtaxiomatisierbarkeit des unendlichwertigen Prddikatenkalkiils
von Lukasiewicz, J. Symb. Log. 27 (1962), no. 2, 159-170.

[79] D. Scott, A decision method for validity of sentences in two variables, Journal of Sym-
bolic Logic 27 (1962), 377.

[80] K. Segerberg, Two-dimensional modal logic, Journal of Philosophical Logic 2 (1973),
no. 1, 77-96.

[81] J. Surdnyi, Zur Reduktion des Entscheidungsproblems des logischen Funktioskalkiils,
Mathematikai és Fizikai Lapok 50 (1943), 51-74.

[82] N.-Y. Suzuki, An algebraic approach to intuitionistic modal logics in connection with
intermediate predicate logics, Studia Logica 48 (1989), 141-155.

, Kripke bundles for intermediate predicate logics and Kripke frames for intu-
itionistic modal logics, Studia Logica 49 (1990), no. 3, 289-306.

[84] G. Takeuti, Proof theory, Second, Studies in Logic and the Foundations of Mathematics,
vol. 81, North Holland, Amsterdam, 1987.

[85] G. Takeuti and T. Titani, Intuitionistic fuzzy logic and intuitionistic fuzzy set theory,
J. Symb. Log. 49 (1984), no. 3, 851-866.

86] K. Terui, Which structural rules admit cut elimination? — an algebraic criterion, J.
) g b

Symb. Log. 72 (2007), no. 3, 738-754.

76



[87] A.S. Troelstra, Principles of intuitionism. lectures presented at the summer conference
on intuitionism and proof theory at suny at buffalo, n.y, Journal of Symbolic Logic 40
(1975), no. 3, 447-448.

[88] A. S. Troelstra and H. Schwichtenberg, Basic proof theory, 2nd ed., Cambridge Univer-
sity Press, 2000.

[89] O. Tuyt, One-variable fragments of first-order many-valued logics, Ph.D. Thesis, 2021.

[90] T. Umezawa, On logics intermediate between intuitionistic and classical predicate logic,
Journal of Symbolic Logic 24 (1959), no. 2, 141-153.

[91] M. Wajsberg, Ein erweiterter Klassenkalkil, Monatshefte fiir Mathematik und Physik
40 (1933), 113-126.

77



	1
	Introduction
	The Logics
	Algebraic Semantics
	First-Order Logics
	Proof Theory
	One-Variable Fragments

	Algebraic approach
	Modal Extensions of L-Lattices
	A General Correspondence Theorem
	Functional m-L-Lattices
	A Functional Representation Theorem

	Proof-Theoretic Approach
	A Sequent Calculus for the One-Variable Fragment of CFL
	An Interpolation Property
	An Alternative Completeness Proof
	Extensions of the Calculus 1 CFL

	Concluding Remarks

