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Chapter 1

Introduction

1.1 Reactive transport modelling

Reactive transport modelling investigates coupled physical and chemical processes at different
spatial and temporal scales by means of computer models (Steefel et al., 2005). Computational
models of this kind rely on rigorous physical and chemical models that help to explain the
behavior of the system (or parts of it), as well as to understand both the coupling between
processes and their interactions.

Reactive transport models have been widely applied in broad context of scientific research
and industrial applications, including pollutant migration and groundwater transport (Bear and
Verruijt, 1987), nuclear waste disposal (Xu et al., 2008; Marty et al., 2009; Seigneur et al., 2019),
heat transfer and thermal energy storage (Sheikholeslami et al., 2019), in-situ bioremediation
and biogeochemical reactions (Barry et al., 2002; Gharasoo et al., 2012), engine combustion
(Glarborg et al., 2018), CO2 sequestration (Xu et al., 2011), oil reservoir prediction (Trangenstein,
1987), and diagenetic processes (Hensen et al., 1997).

Coupled geochemical modelling and mass transport has been one of the most dynamic
research areas, combining geology, physical chemistry, and computer science. One of the main
challenges is connected to the computational costs of geochemical modelling, which often
impose limits on coupled transport modelling. Over the last 60 years — and especially in recent
decades thanks to increases in computational power — thermodynamic modelling and reactive
transport simulations have been the subject of ongoing research and have become standard tools
in geochemistry (Millington, 1959; Hooyman, 1961; Ingri et al., 1967; Zeleznik and Gordon,
1968; Meissner et al., 1969; Zeggeren, 1970; Bos and Meershoek, 1972; Helgeson and Kirkham,
1974a,b, 1976; Crerar, 1975; Nordstrom et al., 1979; W. E. Dibble, 1981; Reed, 1982; Lichtner,
1985; Kharaka et al., 1988; Yeh and Tripathi, 1991; Wolery, 1992; Steefel and Lasaga, 1994;
Appelo et al., 1998; Xu et al., 2006; Steefel and Maher, 2009; Kosakowski and Watanabe, 2014;
Leal et al., 2016; Bilke et al., 2019; Damiani et al., 2020; Idiart et al., 2020).

Moreover, modern computational technologies, such as machine learning (ML) and artificial
intelligence (AI) have significantly contributed to the efficiency of reactive transport modelling
by making possible a more detailed description of the processes (Christo et al., 1996; Jatnieks
et al., 2016; Guerillot and Bruyelle, 2016; Laloy and Jacques, 2019; Guérillot and Bruyelle, 2020;
Leal et al., 2020; Prasianakis et al., 2020; Wei et al., 2020; Su et al., 2020; Yekta et al., 2021;
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Lapeyre et al., 2021).
Application-driven implementations of different conceptual models and numerical approaches

resulted in the development of powerful simulation packages, each having its specific advantages,
functionalities, and limitations (Steefel et al., 2015; Damiani et al., 2020). Nevertheless, it is pos-
sible to notice that improvements and developments in a specific field often lead to compromises
and commitments that set back the flexibility and customization of a code.

Reactive transport modelling can have a high computational cost, when it is applied to solve
a very large system of coupled nonlinear equations in order to describe the coupled processes and
combine spatial and temporal discretizations (Liu et al., 2016; Berkowitz et al., 2016; Hunt and
Sahimi, 2017). Nonetheless, reactive transport modelling has proven to be a uniquely useful tool
when it comes to analyzing fluid-rock interactions — for example, in the prediction of in-situ
conditions in deep geological repositories used for nuclear waste disposal (Tsang et al., 2012;
Jenni et al., 2017) — because it enables the evolution of the system to be predicted over a very
long timeframe.

Attempts to overcome the limitations inherent in specific reactive transport modelling areas
include, for example, the spatial dimension and temporal scale (Hoch et al., 2012; Li et al.,
2017; Ge et al., 2020), the geochemical models and thermodynamic databases (Johnson et al.,
1992; Thoenen et al., 2014; Lothenbach et al., 2019; Leal et al., 2017), the type of coupling
between physical (transport) and chemical processes (Steefel et al., 2015), pore-scale properties
and upscaling (Narsilio et al., 2009; Prasianakis et al., 2017), the numerical approach, robustness,
usability, and high-performance computing (HPC) compatibility (Keyes et al., 2013; Nardi et al.,
2014; Su et al., 2017).

Nevertheless, the field of reactive transport modelling field still faces a number of unresolved
challenges (Keyes et al., 2013), such as understanding pore-scale properties and processes. One
popular approach involves using X-ray micro-tomography in order to analyze the heterogeneities
on the surface of porous media and make 3D models (Lai et al., 2015; Flukiger and Bernard,
2009; Godinho and Withers, 2018). However, tomographic methods are not yet accurate enough
to resolve nanometric pores in clays and cement. Additionally, attempts to expand pore-scale
processes to cover a continuum approach, which usually involves several orders of magnitude
difference in the temporal and spatial scale, presents a number of difficulties and imposes inherent
limitations on the description of the pore-medium properties (e.g., tortuosity, surface area). Such
simulations are heavily dependent on the availability of experimental data for porous media
properties (e.g., porosity, tortuosity, surface charge density), which may not be fully available
or represented in an appropriate parametric form (Bossart et al., 2002; Mäder et al., 2017).
Additionally, the software might not be compatible with modern HPC architectures, while the
necessary computational power may be too expensive or even unavailable (Sohrabi et al., 2019).

Most codes tend to support functionalities relevant to a specific research domain. For
this reason, initiatives aimed at developing state-of-the-art, general-purpose reactive transport
modelling frameworks are essential for different research fields and thus highly in demand.

1.2 Objectives

In this context, the objectives for this thesis are:

3



• The development of a general-purpose reactive transport framework that:

– couples physical and chemical processes accurately and with a high degree of com-
plexity, including diffusive and advective transport and mineral precipitation and
dissolution reactions

– supports a flexible description of the temporal and spatial properties

– is easy to use, useful, and allows a high level of customization without the need for
advanced programming knowledge

– provides a modular approach, in order to facilitate the usage of different chemical and
transport solvers, as well as a straightforward abstraction of physical and chemical
processes, along with their initial and boundary conditions

– uses state-of-the-art computational tools and enables the exploration of new com-
putational techniques in order to improve the performance and efficiency of the
models

– is validated with known benchmarks and experimental data

• The application of the developed framework to investigate:

– the impact of electrochemical migration and electric potential on reactive transport

– the Hydrogen Transfer (HT) experiment:

∗ explore the mass transport mechanism between the borehole and the Opalinus
Clay
∗ explore the impact of (bio)geochemical reactions and the presence of microbes

on the overall evolution of the chemical composition, pressure, and aqueous
content in the borehole
∗ verify and test hypotheses concerning how the system is affected by different

physical and chemical processes
∗ analyze long-term HT experimental data

1.3 Development of a reactive transport framework

In view of the overall objectives of this thesis, the aim is to implement an open-source, general-
purpose reactive transport framework that goes beyond standard solvers by providing usage flexi-
bility, state-of-the-art simulation methods, and computational efficiency using modern computer
architectures. Even though multiple reactive transport codes are available, new computational
technologies permit a much broader, more efficient, and more realistic way of describing and
coupling the physical and chemical phenomena related to reactive transport modelling.

Hence, a newer, more modern, and more flexible reactive transport code that carries out
numerical simulations without rewriting extensive codes could potentially have an enormous
positive impact. It should provide the flexibility necessary to test parameters and hypotheses
rapidly and predict the physical and chemical evolution of fluid-rock systems in a robust, accurate,
and problem-oriented way. Python was used for the development of this framework. It is a
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performant programming language, which is intuitive and self-explanatory to nonprofessional
programmers. Furthermore, it allows the use of object-orientation concepts in order to produce a
modular and reusable reactive transport modelling tool.

During the development of this framework, the design concepts were carefully planned to
provide a flexible, customizable, and realistic way of describing the processes in different temporal
and spatial scales. Furthermore, in light of the above-mentioned objectives, the developed reactive
transport framework was subjected to stress scenarios, in order to validate and test its design
concepts.

1.3.1 Transport of solutes in porous media

Diffusion, advection-dispersion, and electromigration are physical mass transport processes
driven by the concentration gradient, pressure gradient, and electrostatic force (Steefel and Maher,
2009), respectively. The volumetric concentration c (mol ·m−3) of a substance dissolved in
water is:

c =
m

v
(1.1)

where m is the mol amount and v is the volume of the solution. The flux J (mol ·m−2 · s−1)is
defined as the amount that passes through a selected area A (m2) during a time interval ∆t (s):

J =
m

A∆t
(1.2)

The advective-dispersive flux in porous media is described as:

Jadv = θV c−Dm
∂c

∂t
(1.3)

where Jadv is the advective-dispersive flux, θ is the porosity, V is the linear velocity of the moving
front (m · s−1), and Dm is the mechanical dispersion coefficient (m2 · s−1). Dm is defined as:

Dm = αV (1.4)

where α is the dispersivity or dispersion length, which can also be considered a diffusion process
(Bear, 1972).

In the presence of a concentration gradient, the solutes are transported by diffusion and
follow Fick’s first law (Steefel et al., 2015). The diffusive flux is proportional to the substance’s
concentration gradient and is known as Fick’s first law. The diffusive flux is described as:

Jdif = −De
∂c

∂t
(1.5)

where De is the effective diffusion coefficient in porous media (m2 · s−1). To account for the
complexity of the pore space, following Appelo et al. (2010), the effective diffusion coefficient is
often derived as:

De = D0 · (θ
δ

τ2
) = D0 · (θ

1

G
) (1.6)

whereD0 is the solute’s diffusion coefficient in bulk water (m2 · s−1), τ is the tortuosity (m ·m−1)
and δ is the constrictivity (m ·m−1). Tortuosity is the ratio of the diffusion paths within the pore
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space and the straight distance. Constrictivity is the ratio of the diameter of the diffusing particle
to the pore diameter. Tortuosity and constrictivity are often combined into G, the so-called
geometric factor. G can be related to the accessible porosity (θa) via Archie’s law (Archie, 1942;
Epstein, 1989; Van Loon et al., 2007):

δ

τ2
=

1

G
= θa

n (1.7)

where n is an empirical factor. D0 may be experimentally measured or estimated using the
Stokes-Einstein relation (Reid et al., 1977). D0 is the intrinsic mobility of the solutes, which
means that it is independent of the concentration gradient, as in:

D0 =
kbT

6πµR0
(1.8)

where kb is the Boltzmann constant (J ·K−1), T is the temperature (K), µ is the solvent viscosity
(N · s ·m−2), and R0 is the diffusing particle radius (m). Combining equations 1.7 and 1.8, De

is:
De =

kbTθ

6πµR0G
(1.9)

For charged particles in the presence of an electric field, the electromigration flux must be taken
into account, since it has a major impact on ion transport. In a multi-component system with
charged species in a porous media, the Fickian diffusion is insufficient to describe the electrostatic
interaction between the ions during the transport (Liu et al., 2011). For example, it was found
that the effect of charged mineral surfaces is not negligible and needs to be taken into account
for radionuclide diffusion in clay-based materials (Van Loon et al., 2007; Glaus et al., 2010;
Tournassat and Appelo, 2011; Gimmi and Kosakowski, 2011). The Nernst-Planck equation,
which describes the diffusive transport of a charged ion in the presence of an electric potential, is:

Jelec = −De · (
cFz

RT
∇Φ) (1.10)

where F is the Faraday constant (C ·mol−1), R is the gas constant (8.31J ·K−1 ·mol−1), z is
the charge (C), and Φ is the electrical potential (V). The relation between the concentration
of charged ions and the electric field is described, as in Samson and Marchand (1999), via the
Poisson equation:

∇2Φ +
F

ε
(

m∑

i=1

zici + w) = 0 (1.11)

where ε is the dielectric constant (or relative permitivity) of the material (C ·V−1 ·m−1) and w
is the charge density of the medium (C ·m−1). This equation 1.11 is necessary to describe, for
example, what occurs when an electric field is applied as a driving force in combination with the
concentration gradient (Maes et al., 2004). Assuming that both the electroneutrality condition
and the null current condition are satisfied, respectively:
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m∑

i=1

zici = 0 (1.12)

F
m∑

i=1

ziJitot = 0 (1.13)

where ci is the concentration of the ith species among the total number of species m, in the
multi-species system. One can describe the electric potential Φ in terms of concentration of the
charged species, as expressed in Liu et al. (2011) and Steefel and Maher (2009):

∇Φ = −

m∑
i=1

ziDi∇ci

F
RT

m∑
i=1

z2
iDici

(1.14)

the electrochemical flux can be expressed, when combining equations 1.10 and 1.14, as:

Jelec = −
m∑

k=1

Dik∇ci (1.15)

where Dik is the cross diffusion term and is defined as:

Dik = Diδik −
zizkDiDkci
m∑
k=1

z2
kDkck

(1.16)

where δ is the Kronecker symbol (1 if i = j or 0 otherwise). Combining Jadv, Jdif and Jelec, we
obtain the total flux Jitot for species i:

Jitot = Jiadv + Jidif + Jielec = θV ci −Dei(
∂ci
∂t

+
ciFzi
RT

∇Φ) (1.17)

As the dispersive flux term in equation 1.3 is analogous to the diffusive flux term in equation 1.5,
for the sake of simplification, it is considered as an additional diffusion flux and combined into
De in equation 1.17.

Finally, the mass transport equation for each ith transported aqueous species, based on Bear
and Bachmat (1990), is in a general form:

∂ci
∂t

= −∇Jitot +Qi (1.18)

where Qi is the source/sink term. Combining the equations 1.11, 1.17, and 1.18 gives the Poisson-
Nernst-Planck (PNP) system of coupled equations, which is necessary to describe the transport
of species in the presence of an electric potential. Such an electric potential can be generated, for
example, by minerals with charged surfaces or by the movement of charged species.
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Transport solver

The reactive transport framework presented in this thesis focuses on continuum scale models.
It describes the transport of species in an aqueous phase for a constant temperature in a fully
saturated medium and a non-compressible solvent, i.e., the volume of the solution does not
change in relation to composition, pressure, or other processes. Such conditions can be assumed,
for example, in cases of diffusion-dominated transport in clay and cementitious material, and
are properly defined and described in chapters 2, 3, and 4. Pore-scale properties are averaged or
upscaled to continuum scale using the notion of a representative elementary volume, known as
REV (Kanit et al., 2003).

The transport equations are solved with the FEniCS library (Alnaes et al., 2015), a collection
of numerical tools for solving partial differential equations (PDE) based on Finite Element (FE)
numerical methods. In order to solve a PDE in FEniCS, it is necessary to define the PDE in its
weak formulation and then to describe it using the Unified Form Language (UFL) (Alnaes et al.,
2012), which is part of the FEniCS framework. The weak formulation, which is numerically
easier to solve, is obtained by multiplying the regular PDE with a smooth, continuous, and
differentiable test function (v) and integrating the product over the simulation domain. For
example, the corresponding weak formulation of equation 1.11 is described as follows:

∫

Ω
∇Φ · ∇vΦdx−

∫

Ω

F

ε
(

m∑

i=1

zici + w) · vΦdx = 0 (1.19)

Full access to the PDE level implemented in FEniCS provides the flexibility necessary for the
development of a general-purpose reactive transport framework. For example, it is straightforward
and requires little effort to change the numerical method and to add new physical processes, as
well as source/sink terms.

FEniCS provides HPC portability via PETSc (Balay et al., 2021a,b; Dalcin et al., 2011), an
open-source parallel numerical software for solving PDEs, and offers spatial discretization in 1D,
2D, and 3D. It also enables the use of meshes generated by third-party software, like GMESH
(Geuzaine and Remacle, 2009). FEniCS supports different boundary conditions, predefined
solvers (e.g., minimal residual method, generalized minimal residual method, PETSc built-in
LU solver, and biconjugate gradient stabilized method), and preconditioners (e.g., incomplete
LU factorization and PETSc algebraic multigrid). Furthermore, FEniCS makes it possible to
easily adopt different families of finite elements by directly changing the weak formulation (e.g.,
arbitrary order continuous and discontinuous Lagrange). FEniCS is available in both C++ and
Python.

1.3.2 Chemical solver

For the calculation of the chemical equilibrium condition, GEMS3K (Kulik et al., 2013) and
Reaktoro (Leal et al., 2017) were used. Both codes use the Gibbs Energy Minimization (GEM)
algorithm in order to calculate the equilibrium condition and to enable the description of non-ideal
and ideal multicomponent solution phases, ion exchange, multiple activity models, and several
equations of states for multicomponent fluid systems. The GEM algorithm problem is based on the
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Figure 1.1: Sequential non-iterative approach (SNIA) diagram.

total mole amounts of chemical elements, pressure, and temperature. It consists of finding, based
on the thermodynamic data, the equilibrium phase assembly, equilibrium speciation, component
activities, saturation indexes, and other properties by minimizing the Gibbs energy of the system
of interest. Alternatively, a very common approach among popular chemical solvers, such as
Phreeqc (Parkhurst and Appelo, 2013) and Orchestra (Meeussen, 2003), is the law of mass action
(LMA). The LMA calculates the equilibrium condition of the chemical system by solving a
system of mass balance equations (Reed, 1982). The extended LMA (xLMA), presented in (Leal
et al., 2016), improves the traditional LMA by adopting concepts of the GEM algorithm in order
to determine the stable phases and improve performance.

The large computational resources needed for such chemical equilibrations, as discussed in
Kulik et al. (2013) and Leal et al. (2020), may result in these calculations taking much longer
than the solution of the transport equations (as described in section 1.3.1). This problem is known
to represent the bottleneck in reactive transport simulations. Therefore, an efficient reactive
transport framework requires a fast, robust, and accurate chemical solver (Leal et al., 2016).

1.3.3 Coupling of chemical and transport processes

The sequential non-iterative approach (SNIA) (Walter et al., 1994; Carrayrou et al., 2004; Hunds-
dorfer and Verwer, 1995; Appelo et al., 1998) is used for coupling transport and chemical solvers.
For each time step and node, the transport equations are solved, the changed concentrations
are updated, and a chemical equilibrium state is calculated. This process is repeated until the
simulation time reaches the total time. At each time step iteration, a chemistry step follows a
transport step. Figure 1.1 presents the SNIA diagram.

When implementing the SNIA approach, the implicit time step scheme is adopted, which is
mathematically described as:

∂ci
∂t
≈ cni − cn−1

i

∆t
(1.20)

where ∆t is the time step (s), ci and cn−1 are, respectively, the concentration of species i at times
n and n− 1. The ∆t is adjusted according to the Von Neumann stability stability criteria in order
to avoid negative concentrations (Charney et al., 1950).

One way to accelerate the chemical step is to implement a multi-threading approach, as
described in Kosakowski and Watanabe (2014). Multi-threading can be implemented in the
developed reactive transport framework with the help of the python threading library. When using
multi-threading, multiple instances of the geochemical solver calculate the chemical equilibrations
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in parallel. This technique was used in 3 for the reactive transport in Opalinus Clay. Another
approach for accelerating the chemical step is described in subsection 1.3.4 and was used in 4.

1.3.4 Machine learning as chemical solver

The usage of modern machine learning algorithms (Hinton et al., 2006) to mimic the role of
traditional chemical solvers in reactive transport modelling makes it possible to address complex
problems in more detail, while improving performance without sacrificing accuracy (Tu, 1996).
Tensorflow (Abadi et al., 2015) and Jupyter notebooks (Kluyver et al., 2016) were used to create
an infrastructure that makes it possible to investigate the impact of hyperparameters (parameters
that control the network’s learning process), as well as to create deep neural networks (DNN)
(Schmidhuber, 2015) that emulate the chemical solver’s speciation. Similar to a conventional
chemical solver, the neural network’s input is the independent components and the output is
the aqueous speciation and mole amounts of mineral phases. Tensorflow offers several building
blocks for different machine learning and numerical computation algorithms. In addition to
deep learning, which represents its most popular algorithms, it also offers K-means clustering,
Random Forests, Support Vector Machines, Gaussian mixture model clustering, and linear/logistic
regression. It runs on a traditional central processing unit (CPU), but also on GPU computational
architectures with no code changes required. The usage of a neural network requires a preliminary
training phase, which can be highly computing-intensive and which demands a careful definition
and analysis of hyperparameters. Moreover, a large data set is needed to provide the information
necessary during training, and some of the information found in the traditional chemical solver is
not present (e.g., thermodynamic properties). Nevertheless, thanks to the development conducted
in this work, one has all the necessary tools bundled into a unique framework that investigates
several machine learning techniques. It starts from the geochemical solver, which produces
the training dataset, uses machine learning to train and test a DNN, and then goes on to run
the complete reactive transport problem with both the geochemical solver and the DNN. This
automated procedure, with all its ingredients, allows strategies to be developed for testing and
validating machine learning algorithms in an unprecedented way.

1.4 Deep geological disposal of radioactive waste

Nuclear waste is produced in different sectors of the modern economy, for example, by nuclear
power plants, medicine, industry, and research facilities. Nuclear waste and its disposal can
potentially threaten our environment and humankind due to its high radiotoxicity. Therefore, the
development and implementation of a safe disposal strategy is of great importance and represents
an ethical commitment on the part of modern society towards future generations (NEA, 1995).

The concept of the deep geological disposal of radioactive waste, accepted by many countries
as the most reliable and sustainable solution, relies on a combination of geological and engineered
barriers that retard the transport of radionuclides (NAGRA, 2002). Depending on its half-life, all
radionuclides will decay to stable nuclei given enough time. Some radionuclides have a half-life
on the order of seconds, while that of others lasts millions of years. Depending on its activity and
inventory, the waste is classified into one of two groups: 1) Low and Intermediate-Level Waste
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(L/ILW); 2) High-Level Waste (HLW) (NAGRA, 2008). L/ILW consists of waste from radioactive
operations (e.g., activated components of the reactor vessel, protective medical clothing, and
laboratory tools). HLW is highly radioactive and primarily composed of spent fuel from nuclear
power plants. It may need 105 to 106 years to decay to the level of natural uranium ore. Therefore,
a nuclear waste disposal concept must be capable of protecting the environment for extended
periods on a geological timescale.

The arguments for the safety case of deep geological disposal are based on four main
principles (NAGRA, 2002; Mazurek et al., 2008): site selection and characterization (NAGRA,
2008; Nussbaum et al., 2011); modelling (Kulik et al., 2013; Marty et al., 2015); rock laboratories
(Kickmaier, 2002); and natural analogues (Alexander et al., 2015). In order to gain a deep and
comprehensive understanding of long-term repository evolution, these topics are the subject
of intensive scientific research and analysis (Bossart et al., 2017). Among other things, the
safety-relevant characteristics of a repository are addressed: for example, how will the steel
endure over the years and what is the impact of anoxic corrosion of the steel? (Saheb et al.,
2010; Necib et al., 2017; Mancini et al., 2020) How can mineral dissolution and precipitation
compromise the long-term stability of the repository? (Poonoosamy et al., 2015) What is the
influence and solubility of radionuclides and their interactions with cementitious materials?
(Kulik and Kersten, 2001) Which host rock offers natural advantages for radionuclides retention
(e.g., low permeability, swelling and sorption mechanisms)? (Pape et al., 1999; Skipper et al.,
2006; Van Loon et al., 2007; Bradbury and Baeyens, 2009; Wigger and Van Loon, 2018; Al Reda
et al., 2020; Poonoosamy et al., 2020) How does microbial activity inside the host rock affect the
overall physical and chemical processes? (Lovley and Chapelle, 1995; Stroes-Gascoyne et al.,
2007a)

Opalinus Clay is a potential host rock for waste disposal in Switzerland. It is an argillaceous
claystone with low permeability and high sorption capacity. Figure 1.2 presents a possible layout
of the Swiss L/ILW concept for the deep geological repository, which includes surface facilities,
tunnels for access, ventilation and operation shafts, a pilot facility, a test area, and the L/ILW
facilities. In the L/ILW concept, for example, the wastes are conditioned into the waste matrix
and placed inside drums (1.2C). These drums are then inserted into a concrete container (1.2B)
and placed inside the tunnels (1.2A).

Laboratory experiments and underground rock laboratories (URL), such as the Mont Terri
underground rock laboratory (Thury and Bossart, 1999), are of great importance for the hy-
drogeological, geochemical, and geotechnical characterization of the materials, as well as for
understanding processes, testing model concepts, and estimating parameters (Pearson et al., 2003;
Van Loon et al., 2004; Glaus et al., 2015; Blechschmidt and Vomvoris, 2017; Van Loon et al.,
2018; Mäder et al., 2017; Jenni et al., 2014; Stroes-Gascoyne et al., 2007b). The safety assess-
ment imposed by regulatory requirements can only be performed once the physical and chemical
processes that change the repository system over periods of hundreds of thousands of years have
been thoroughly understood (De Windt et al., 2004; Gaucher and Blanc, 2006; Trotignon et al.,
2007; Koroleva et al., 2011; Kosakowski and Berner, 2013; Mazurek and de Haller, 2017).

Reactive transport models represent the most reliable tool for analyzing and predicting the
evolution of deep geological nuclear waste repositories. Reactive transport models increase confi-
dence that the repositories satisfy the safety requirements, effectively retaining the radionuclides
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Figure 1.2: Multibarrier concept for the Swiss geological L/ILW repository (combined from
Kosakowski et al. (2014) and NAGRA (2002))

and thus the harmful radioactivity from nuclear waste.

1.5 Outline of the thesis

This thesis consists of three chapters derived from publications in peer-reviewed journals. Chapter
2 presents the governing equations, a description of the developed innovative reactive transport
modelling approach, and the benchmarks used to validate it. This chapter has been published as
Damiani, L. H., Kosakowski, G., Glaus, M. A., & Churakov, S. V. (2020). A framework for reactive
transport modelling using FEniCS–Reaktoro: governing equations and benchmarking results.
Computational Geosciences, 24(3), 1071–1085. https://doi.org/10.1007/s10596-019-09919-3

In chapter 3, we apply a new approach to investigate the interaction of gases in Opalinus
Clay at the Hydrogen Experiment (HT) at the Mont Terri rock laboratory (Vinsot et al., 2017).
This chapter has been published in Environmental Geotechnics, for a special themed issue of
Physical-Chemical Coupling, as Damiani, L. H., Kosakowski, G., Vinsot, A., & Churakov, S. V.
(2021). Hydrogen gas transfer between a borehole and claystone: Experiment and geochemical
model https://doi:10.1680/jenge.21.00061.

Chapter 4 presents a machine learning assisted framework that uses deep neural networks
instead of the traditional chemical solver in reactive transport modelling. The ML framework
has enormous potential to tackle much more complex problems thanks to its computational
advantages. We discuss the advantages and limitations of the geochemical ML framework and
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present the application results inspired by a popular reactive transport benchmark. This chapter
is currently being prepared for submission to a peer-reviewed journal as Damiani, L. H., Haller,
R. L. I., Kosakowski, G., Miron, G. D., Kulik, D. A., Churakov, S. V. & Prasianakis, N. (in
preparation) Machine learning assisted geochemical reactive transport modelling: a unified
modular computational framework

In Chapter 5, the summary and potential directions for future research are discussed.

13



Chapter 2

A framework for reactive transport
modeling using FEniCS–Reaktoro:
governing equations and benchmarking
results

Reproduced with permission from Springer Nature
https://doi.org/10.1007/s10596-019-09919-3
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Abstract
Reactive transport codes are widely applied in geoscience to predict or reconstruct spatial and temporal evolution of
geochemical systems. To provide an accurate description of natural systems at different spatial and temporal scales, the
reactive transport code has to deal with coupling of different physical and chemical phenomena. Many reactive transport
codes have been developed in the past and each of these codes has specific strengths and limitations. Here, we present a
new versatile reactive transport framework based on the FEniCS equations solver and the chemical solver Reaktoro. This
development was motivated by the need for an advanced open-source tool allowing user-friendly modeling environment
and, at the same time, full control over the numerical methods. Unlike most of the currently available codes, the developed
FEniCS–Reaktoro framework offers full flexibility in setting up the reactive transport simulations of arbitrary complexity
in terms of process couplings, simulation domain geometry and the boundary conditions applied. The simulations are
setup using a simple high-level scripting language intuitively linked to the equation based model definition without the
need of advanced programming skills. The chemical solver Reaktoro allows thermodynamic modeling of multicomponent
multiphase system with several fluids and solid phases, including highly non-ideal solid solutions. The coupling of
transport and chemistry is implemented using the sequential non-iterative approach (SNIA) in which the transport of the
aqueous components and the chemical reactions are solved in two consequent steps. The flexibility and results of the
FEniCS–Reaktoro framework are demonstrated against several widely accepted reactive transport benchmarks.

Keywords Reactive transport · Electrochemical transport · Multicomponent diffusion · Finite element method ·
Porous media · Gibbs energy minimization · Operator splitting approach

1 Introduction

Reactive transport modeling is widely applied to study the
temporal and special evolution of geochemical conditions
in natural system in various geoscientific fields [1]. To
provide an accurate description of natural systems at dif-
ferent spatial and temporal scales, the reactive transport
code has to deal with the coupling of different physical and
chemical phenomena, such as heat transfer [2], advective
fluid transport in porous and fractured media [3], diffusive
and electrochemical migration of chemical species [4],
electromigration [5, 6], mechanical stress [7], and heteroge-
neous chemical reactions [8, 9].

� Leonardo Hax Damiani
Leonardo.Hax@psi.ch

Extended author information available on the last page of the article.

To allow for full control in the system description, a
general purpose code should thus be:

– Able to solve chemical systems of realistic complexity
– Able to model physical processes for arbitrary complex

geometries
– Numerically accurate and robust
– Easily scalable in terms of process coupling and system

complexity
– Compatible with HPC architecture
– Well documented and preferably available as open-

source

Table 1 compares the capabilities of popular reactive
transport codes currently available to the scientific commu-
nity. Each code listed in Table 1 has specific advantages
and limitations related to the specific implementation of
the modeling approach. These are analyzed in detail in the
following sections.

Computational Geosciences (2020) 24:1071–1085
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The selection of the simulation tool should be based on
a careful evaluation of code functionality to assure that the
simulation tools meet the user’s requirements. In addition to
a broad range of physical phenomena, a number of recently
developed codes also support parallelism and provide HPC
compatibility [31–33]. The numerical performance and
scalability of the codes are essential criteria when realistic
2D and 3D natural systems are considered.

Chemical solvers based on law of mass action (LMA)
(e.g., equilibrium constant of chemical reactions) are most
commonly used to calculate equilibrium speciation in reac-
tive transport codes due to the simplicity of the algorithm
[34]. The LMA solvers have limitations when multicom-
ponent phases (e.g., solid solutions, non-ideal liquid, and
gaseous phases) need to be considered. The Gibbs energy
minimization (GEM) algorithm [8] is the method of choice
for the simulations of multiphase systems and is based on
the standard chemical potentials. Both LMA and GEMS
have pros and cons when practical applications are consid-
ered. Both approaches are based on different algorithms and
assumptions but are equivalent from the theoretical point
of view and must, therefore, provide the same result.
Recently, Leal et al. [35] developed an innovative approach
referred to as xLMA method which combines the basic
algorithms used in the LMA and GEM approach resulting
in substantial improvement of the stability and performance
of the chemical solver.

Depending on the code design, the mass transport
equations can be built-in into the code or defined by the
user via an external interface or by a high-level scripting
language. Most commonly, the partial differential equations
(PDE) are hard-coded within the core routines and not
accessible or changeable by the user, as in [25]. In contrast,
in a more flexible approach, some codes provide a scripting
or graphical interface that allows the user to define the mass
transport equation, as in [23, 36].

Coupling of reactions and transport can be implemented
using the operator splitting (OS) approach [37, 38], or
the global implicit (GI) method [39, 40]. In practice, both
methods become intractable for the complex system due to
the complexity of numerical implementation and increasing
computer memory requirements. The pros and cons of each
approach have been discussed extensively in the literature,
as in [41–43].

The characteristic time scale of physical and chemical
phenomena or spatial heterogeneities in natural systems can
span over several orders of magnitude [44]. Numerical sim-
ulations of such systems are very challenging because the
appropriate integration time and the spatial discretization of
the domain are typically limited by the fastest small-scale
phenomena. Numerical codes typically hit the performance
limits when pore-scale phenomena [45] controls the pro-
cesses at the field scale [46, 47]. Particularly challenging

are the simulations of systems with strong chemical gra-
dients such as nuclear waste disposal sites or geochemical
installations [48, 49].

Transport equations can be solved by different numeri-
cal methods: finite elements (FE) [50–52], finite differences
(FD), or finite volumes (FV) [53]. FE is well suited for
dealing with complex geometries and provides extra stabil-
ity by using small elements where the function is changing
rapidly and bigger elements elsewhere. The FE method has
disadvantages as far as the mass and the energy conserva-
tion are concerned. The FV method ensures local mass and
energy conservation but requires more efforts to describe
irregular geometries. For the sake of completeness, it is
worth mentioning an alternative approach based on lattice
Boltzmann method [54]. The particular strength of the LB
method is the exceptional stability of the LB equations in a
wide range of hydrodynamic regimes and a straightforward
implementation of a parallelization algorithm.

The ability of a code to allow the description of materials
properties by different constitutive relationships, i.e.,
porosity [55], tortuosity [56], diffusivity [57], and boundary
conditions [58], is critical for successful implementation of
system setup. The possibility to allow user-controlled para-
metrization and consideration of more specific processes
and interaction, e.g., anisotropic diffusion [59] or porosity–
permeability relation [60], are highly desirable features
which are not commonly available in most of the codes.

The numerical performance of the code and the compat-
ibility with high-performance computing (HPC), as in [11,
32, 61], deliver better performance when treating a large
system of equations necessary for describing the physical
and chemical phenomena. The numerical approaches take
advantage of the usage of HPC during the multithreaded
node-oriented chemical calculation, in the OS approach,
or by an efficient solution of the large equation system,
in the GI approach. Since the speed of the clock is stag-
nated at 2–3 GHz, the further increase of code performance
needs to be improved by taking advantage of multicore
core architecture CPUs and massively parallel HPC facili-
ties. The multi-threading is a simple way of improving the
code performance but is limited essentially to the shared
memory architecture. Most of the modern HPC facili-
ties rely on distributed memory architecture. Use of such
a resources prerequisite decomposition of the simulated
domain and explicit data exchange between subdomains.

The usage of commercial closed source (or proprietary)
codes, for example, [19, 36], often involves costs for licens-
ing and subscriptions that easily exceed the costs of research
projects and make them accessible only to a limited number
of researchers. Commercial codes’ usability is based on
a predefined application programming interface (API)
which typically limits their flexibility and transparency.
Nonetheless, for the most part, they offer good quality
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documentation and support. The open-source codes, like
[21, 28], are typically developed at research institutes and
universities as part of scientific projects. The develop-
ment is often discontinued and many times the projects are
short on documentation and reduced support. Most of the
open-source codes have a potential to benefit from collab-
orative development and intensive benchmarking by users,
as in the SeS Bench (Subsurface Environmental Simulation
benchmark) [62]. Exemplary, the potential of the Num-
FOCUS https://numfocus.org/, which has been recognized
by research and industry communities in multiple projects
[63–66].

2 FEniCS–Reaktoro framework

In this work, we present a new framework for reactive
transport simulations called FEniCS–Reaktoro, able to deal
with complex multicomponent heterogeneous systems. It
follows an object-oriented (OO) approach and uses Python
scripting interface for the system setup and coupling of the
PDE solver FEniCS [67] with the chemical solver Reaktoro
[68]. It allows fast and flexible system setup with a mod-
erate requirement of programming skills. The framework
is suited for systems with different spatial and temporal
scales such as modeling of a short-term laboratory scale
and medium-term field-scale reactive transport experiments,
or large-scale reservoir modeling. In the following section,
we present a detailed description of the tools used, design,
architecture, and capabilities of the FEniCS–Reaktoro
framework. We also describe the equations used in the
benchmarks as well as the description of the model setup.
Numerical benchmarks and applications are presented to
demonstrate the versatility of the FEniCS–Reaktoro frame-
work. The combination of such features is not currently
available in another open-source reactive transport code,
which makes FEniCS–Reaktoro a unique and thriving mod-
eling platform.

2.1 FEniCS

FEniCS is a popular open-source computing framework for
solving PDEwith several FE-based families. The significant
advantage of using FeniCS, compared to other existing
software packages, is the flexibility of an automated and
efficient solver for the differential equations. The user has
essentially to define the equations, and FEniCS takes care
of numeric methods necessary to solve the mathematical
problem. With FEniCS, the PDE is expressed in the weak
form in a math-like human-readable way called Unified
Form Language (UFL). For more details on the weak
formulation and UFL, we refer to [69]. FEniCS provide the
user with full control on the PDE level and allow a quick

change of the FE family, equation definition (as well as
addition of extra terms into the equation), equation solver,
and use other geometries and dimensions (1D, 2D, or 3D).
FEniCS offers different inbuilt boundary conditions such as
Dirichlet, Neumann, Robin, several solvers (i.e., minimal
residual method, generalized minimal residual method,
PETSc library built-in LU solver, and biconjugate gradient
stabilized method), and preconditioners (i.e., incomplete
LU factorization, and PETSc algebraic multigrid). FEniCS
provides portability to HPC [70] without rewriting existing
codes based on the PETSc [71]. The documentation and
examples are available at https://www.fenicsproject.com
and it is available in C++ and Python.

2.2 Reaktoro

Reaktoro is an open-source software for modeling chemi-
cally reactive systems [68]. It implements efficient numer-
ical methods for solving chemical equilibrium and kinetics
for multiphase systems that are particularly suitable for
demanding applications such as reactive transport modeling.
Reaktoro takes advantage of the GEM method to define the
stable phases in equilibrium and is able to import files con-
taiing thermodynamic systems from GEM–Selektor [8] and
Phreeqc [25].

Reaktoro can model non-ideal aqueous solutions using
Davies, Debye–Huckel, Pitzer, and HKF activity models.
For gases, Reaktoro implements cubic equations of state
such as Peng–Robinson, Redlich–Kwong, Soave–Redlich–
Kwong, and some models specific for certain mixtures, such
as [72] for H2O − CO2 and [73] for H2O − CO2 − CH4.
Reaktoro can also model the non-ideal thermodynamic
behavior of solid solutions using, for example, Redlich–
Kister solid solution model.

Reaktoro also offers support for the CEMDATA, which
is a cement specific database [74], the PSI-Nagra database
[75], the SUPCRT92 [76], and the Phreeqc [25] databases.
Reaktoro allows the flexibility to model high temperatures
and pressures (up to 1000 °C and 5000 bar).

Reaktoro is implemented in C++ and offers a Python
interface. Its source code, documentation, and examples are
available at https://www.reaktoro.com.

3Mathematical setup

The reference model discussed in the following section
describes the single-phase transport of aqueous species in
fully saturated porous media with a realistic description of
the chemical system. The model includes the following:

– Advection, diffusion, and electrochemical migration of
aqueous species in an incompressible flow (aqueous
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phase). Including the transport across pores confined
by charged mineral surfaces [77, 78] by the Poisson–
Nernst–Planck equation

– The multiphase chemical systems, including ternary
or higher order non-ideal solid solutions, in which
precipitation and dissolution of minerals can alter
material properties [79]

The description of the reactive mass transport in a general
form, based in [80], is as follows:

∂ci

∂t
= −∇(

V ci − Di(∇ci + ziF ci

R T
∇�)

) + Qi (1)

and
∂ci

∂t
= �(c1...cm) (2)

where ci is the volumetric concentration (mol/m3) of the
ith transported species, t is time (s), V is the pore velocity
(m/s), Di is the diffusion coefficient (m2/s), zi is the charge
(C), F is the Faraday constant (C/mol), � is the electrical
potential (V ), R is the gas constant (J/mol/K), T is the
temperature (K), Qi is the source/sink term, �(c1...cm) is
the chemical change rate term (mol/s), and m is the total
number of species in the multi-species system. In the right
side of Eq. 1, the first term refers to the advective transport,
the second term to the aqueous diffusion, the third to the
electrochemical migration, and the last to the source/sink
term. The Poisson equation that describes �, as in [81], is
as follows:

∇2� + F

ε
(

m∑

i=1

zici + w) = 0 (3)

where ε is the dielectric constant (or relative permitivity)
of the material (C/V/m) and w is the charge density of the
medium (C/m). The combination of Eqs. 1 and 3 is known as
the Poisson–Nernst–Planck (PNP) equations. Such equation
system also needs a definition of initial and boundary
values for concentrations and electric potential, which are
defined according each model’s definition. For solving
transient transport with FE methods (as implemented in
FEniCS), we discretize the above equation system in time
and transform it into the so-called weak form. We choose
the OS approach with an implicit time discretization scheme
due to its stability when coupling transport and chemical
solvers using OS [82] in combination with small time step
length. The implicit time step scheme, as in [10], is as
follows:

∂ci

∂t
≈ cn − cn−1

�t
(4)

where cn is the current unknown concentration, cn−1 is the
known concentration from previous time step, and �t is
the time step size. In the OS approach, the transport of the
aqueous components and the chemical reactions are solved

in two sequential steps. It allows maximal flexibility for
coupling the transport and chemical solvers but requires a
time step size that respects the Courant–Friedrichs–Lewy
(CFL) condition [83], the von Neumann criteria [84], and
the rate-limiting step (RLS) [85] for kinetically controlled
reactions. The time step size needs to account correctly the
transport rates as well as the equilibrium (fast) and kinetic
(slow) reaction rates, and properly address the different
orders of magnitude between them (from microseconds up
to several days) [86]. Thus, it could be expected thousands
or millions of time step iterations from the initial condition
until some time of interest according to each model.

The weak formulation is achieved by multiplying the
regular PDE form with a test function (vi) and integrating
over the domain. Such test function needs to be smooth,
continuous, and differentiable inside the domain. Therefore,
the solution of the system becomes numerically easier, if
compared to solving the system based on its regular PDE
form, also known as strong form.

In this work, all the weak formulations presented are
defined for the Lagrange family of FE basis with linear
interpolation, and we assume either a constant pore velocity
or zero, for cases without advective transport. Alternatively,
one could use the discontinuous Galerkin (DG) family
of elements [87, 88], which can be done in FEniCS by
describing the weak formulation in the appropriate DG
form, as in [89, 90].

3.1 Transport solver

Table 2 summarizes the equations implemented and
presented in this work:

3.1.1 Poisson–Nernst–Planck equation

In a strongly diffusion dominated transport materials, e.g.,
low permeability bentonite or Opalinus clay [91], it is
possible to neglect the advective term. Assuming the
source/sink term zero and combining (1) and 4, we achieve
the following:

cn − cn−1

�t
= −∇( − Di(∇ci + ziF ci

R T
∇�)

)
(5)

Table 2 Description of the equations implemented for the benchmarks
presented in this work

Transport equation description Eq.

Poisson–Nernst–Planck (PNP) Eqs. 7 and 6

Nernst–Planck equations (assuming Eq. 13

electroneutrality and null current conditions)

Advection–diffusion equation Eq. 15
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after algebraic manipulation and the introduction of the
porosity term (θ ), we present the weak formulation,
respectively, of Eqs. 3 and 5:

∫

�

∇� · ∇v�dx −
∫

�

F

ε
(

m∑

i=1

zici + w) · v�dx = 0 (6)

∫

�

θcn
i vidx=

∫

�

θcn−1
i vi−θ�tDi(∇cn

i+
ziF cn

i

R T
∇�)·∇vidx

(7)

where v� is the test function associated with the electric
potential.

3.1.2 Nernst–Planck equation (concentration-based
description of the electric potential)

Assuming that the electroneutrality condition is as follows:

m∑

i=1

zici + w = 0 (8)

and the null current condition:

F

m∑

i=1

ziJi = 0 (9)

are satisfied, one can describe � in terms of concentration
of species, as expressed in [92]:

∇� = −

m∑

i=1
ziDi∇ci

F
R T

m∑

i=1
z2i Dici

(10)

Combining (7) and (10):

∂ci

∂t
= −

m∑

k=1

Dik∇ci (11)

where Dik is the cross-diffusion term and is defined as
follows:

Dik = Diδik − zizkDiDkci

m∑

k=1
z2kDkck

(12)

where δ is the Kronecker symbol (1 if i = j or 0 otherwise).
Finally, we introduce the porosity term and present the weak
formulation of Eq. 11:

∫

�

θcn
i vidx =

∫

�

(
θcn−1

i vi − θ�t

m∑

k=1

Dik∇cn
k

) · ∇vidx

(13)

3.1.3 Advection–diffusion equation

Equation 5 becomes the known advection–diffusion
equation, when the electrochemical migration and the
source/sink term are neglected, as in [92]:

∂ci

∂t
= −∇ · (

V ci − Di(∇ci)
)

(14)

The weak formulation for a porous medium is then [93]:

∫

�

θcn
i vidx =

∫

�

(
θcn−1

i − θ�t(V ci − Di∇cn
i )

) · ∇vidx

(15)

3.2 Chemical solver

The thermodynamic solver calculates the chemical term
�(c1...cm). It describes the equilibrium and kinetic reactions
that occur in the fully saturated multicomponent system
with an arbitrary number of mineral and gases phases. The
chemical equilibrium is calculated with the GEM approach
at a given temperature, pressure, and bulk composition, with
volume treated as a free parameter. Setup of the chemical
system comprises the definition and thermodynamic data
for possible solid/liquid/gas phases, temperature, pressure,
and the total bulk elemental composition of the system to
equilibrate. The newly equilibrated equilibrium state is then
used to extract the updated species concentrations.

Reaktoro allows to calculate Lasaga-type kinetics rates
[94]. If one needs to describe a special kinetically controlled
rate, FEniCS–Reaktoro framework allows one to implement
it into the reactive transport loop directly.

In all the benchmarks presented in the following section,
the thermodynamic database set up uses the PSI–Nagra
database [75].

3.3 Transport and chemical coupling

The chemical and the transport processes are coupled
using the sequential non-iterative approach (SNIA) as
conceptualized in Fig. 1.

Within each time step, the PDEs for transport of the aque-
ous components are solved first. The new composition of the
chemical system, at each FE, node is passed to Reaktoro for
the calculation of thermodynamic equilibria or kinetically
controlled chemical reactions. After the chemical equilibra-
tion step, the concentrations for each transported species are
passed back to each FE node for the next time step.

The transport PDEs are implemented using volumet-
ric concentrations while the chemical solver uses abso-
lute amounts of moles elements. The coupling between
transport and chemical solver involves the conversion of
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Fig. 1 FEniCS–Reaktoro operator splitting SNIA approach

the volumetric concentrations transported to total moles
amounts needed for the chemical solver and backward.

In Appendix A, we present details of the main core class
responsible for the transport chemical coupling as well as
the UML class and sequence diagram [95].

4 Benchmarking results

In this section, we present four 1D benchmarks that illus-
trate the code capability to simulate: diffusion dominated
flow and advection–diffusion flow, effects of electrochem-
ical migration, mineral precipitation, and dissolution reac-
tions. The results are compared with results from other
codes and validated against experimental data. The first
benchmark describes the cross-diffusion of ions due to
electrochemical coupling. In the second benchmark, simu-
lations of the electrochemical diffusion of ions through an
uncharged membrane are compared with experimental data.
The third benchmark presents the diffusion of ions through
a charged membrane under an external electric field. The
fourth benchmark deals with mineral precipitation and dis-
solution in porous media. Table 3 summarizes the physical
processes and the equations used to describe them for each
benchmark case.

4.1 Benchmark 1: Coupled electrochemical
migration diffusion

This benchmark was developed by [96], inspired by [97].
It describes the multicomponent diffusion of HNO3 from a
pH = 4 solution to a pH = 6 solution, with a constant NaCl
background concentration. The left side (at x = 0) has a
fixed concentration, while on the right side (at x = 1.0) an
open boundary condition is applied. There are no chemical
reactions taking place in this simulation. Table 4 presents
the details of the benchmark 1.

Our results show a perfect agreement with the results
obtained from Phreeqc and CrunchFlow, as presented in
Fig. 2.

4.2 Benchmark 2: coupled electrochemical diffusion
through an unchargedmembrane

Benchmark 2 represents a simple laboratory experiment
similar to benchmark 1. The experiment determines the
electrochemical flux of KCl between two reservoirs with an
initially identical concentration of KCl. The electrochemical
flux of KClis triggered by the HNO3 concentration gradient
imposed between the two reservoirs. The experimental
set up consists of two adjacent reservoirs separated by a
cellulose acetate membrane. Cellulose acetate represents
an uncharged porous medium. An electroneutral and non-
sorbing tracer, HTO (tritiated water), is used to measure the

Table 3 Benchmark descriptions and equations used to describe the
transport mechanisms

Benchmark Description Eq.

1 Coupled electrochemical Eq. 13

migration diffusion

2 Coupled electrochemical Eq. 13

migration diffusion through

an uncharged membrane

3 Coupled electrochemical Eqs. 6 and 7

migration diffusion through

a charged membrane with

external electric field

4 Mineral precipitation and Eq. 15

dissolution based on the advective

inflow of MgCl2through a calcite

column
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Table 4 Chemical composition, diffusion coefficients, and boundary
conditions for the electrochemical effect benchmark

Species Diffusion Boundary Initial

coefficient condition at condition at

[m2×s−1] x =0 [mol×m−3] t =10 [mol×m−3]

H+ 9.311 × 10−9 0.001 × 10−3 1.0 × 10−4

NO−
3 1.902 × 10−9 0.001 × 10−3 1.0 × 10−4

Na+ 1.334 × 10−9 1.0 × 10−4 1.0 × 10−4

Cl− 2.032 × 10−9 1.0 × 10−4 1.0 × 10−4

geometric transport properties (tortuosity) of the membrane.
The diffusion of HNO3 induces an additional flux of KCl to
maintain the charge balanced at all times. In the experiment,
fluxes of K and Cl against their concentration gradient are
observed. This is the so-called “uphill fluxes.” It is when
the movement of electrolyte originate from the different
mobilities of the involved ions, and initially, such fluxes
are controlled by the electrochemical migration term. The
differences compared to benchmark 1 are as follows: (1)
constantly stirred reservoirs on both sides instead of a
constant concentration on the boundary; (2) separation of
the solutions by a porous membrane.

To model this experiment properly, a volume adjustment
factor was introduced in the weak formulation to account
for the different cross-sectional areas and volume sizes of
the nodes representing different domains (membrane and
tanks). This allows to use a simple 1D FE discretization and
no additional discretization of the reservoirs are needed. The
membrane porosity is 0.44, the diameter is 23 mm, and the
width is 0.13 mm. The domain is discretized into 29 cells,
and the volume adjustment factor (α) for membrane cells

Fig. 2 Comparison of the electrochemical benchmark results, inspired
in [97] and [96], after 1-h diffusion time

is 4.156 × 10−4 while for tanks cells are 1.0. The updated
version of Eq. 13 becomes as follows:

∫

�

αθcn
i vidx =

∫

�

(
αθcn−1

i vi −αθ�t

m∑

k=1

Dik∇cn
k

) ·∇vidx

(16)

The diffusion coefficients, as well as the chemical
composition, are presented in Table 5. The initial condition
for the membrane at t = 0 is assumed to be the same as the
left reservoir.

Figures 3 and 4 present the evolution of the concentration
in each reservoir over time. Our results show a very good
agreement with Phreeqc, Flotran, and the experimental data.
The small differences for temporal evolution of HTO can
be explained by the different numerical methods and to the
numerical precision among the compared codes.

The electromigration term fully controls the transport
phenomena observed in this benchmark [98, 99] and,
therefore, the traditional Fickian approach is not sufficient
to adequately describe the fluxes observed experimentally,
as also discussed in [100].

4.3 Benchmark 3: Coupled electrochemical diffusion
through a chargedmembrane with external electric
field

An external electric field is widely used in laboratory
experiments [101] to accelerate the transport of charged
aqueous species and assist measurements of ion transport
properties in a timely manner. In benchmark 3, inspired
by [81], the diffusion of ions through a charged membrane
is modeled in the presence of an external electric field.
The chemical composition and diffusion coefficients are
presented in Table 6. The membrane’s porosity is 1.0 and
a charge of 50 mol m−3 is equally distributed at every
membrane node. The magnitude of the applied membrane
charge is comparable with the typical surface charge of clay
and cement minerals [102].

Table 5 Chemical composition, diffusion coefficients, and left and
right reservoirs concentrations

Species Diffusion Right Left reservoir

coefficient reservoir [mol × L−1]

[m2 · s−1] [mol × L−1]

H+ 9.0 × 10−9 0.001 × 10−3 1.0 × 10−3

NO−
3 1.9 × 10−9 0.001 × 10−3 1.0 × 10−3

K+ 2.0 · 10−9 1.0 · 10−3 1.0 · 10−3

Cl− 2.0 · 10−9 1.0 · 10−3 1.0 · 10−3

HTO 2.3 · 10−9 3.44 · 10−10 1.0 · 10−15
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Fig. 3 Left upstream reservoir evolution of reservoir concentration
with time for charged species diffusion through a porous uncharged
membrane

The external electric gradient of 13 V m−1 is oriented
from left to right. The dielectric constant of the membrane
and the temperature are set to 7.0832 × 10−10 C V−1 m−1

and 300 K, respectivelly. The 1 cm thick membrane
is discretized into 50 equidistant cells. This benchmark
represents the stationary problem obtained from Eq. 7 by
setting the change in concentration over time to zero:

0 =
∫

�

−θDi(∇cn
i + ziF cn

i

RT
∇�) · ∇vidx (17)

Figure 5 presents the comparison between our results
and the values calculated by [81] for the stationary case of

Fig. 4 Right downstream reservoir evolution of reservoir concen-
tration with time for charged species diffusion through a porous
uncharged membrane

Table 6 Chemical Composition, diffusion coefficient and boundary
conditions

Species Diffusion Left boundary Right boundary

coefficient condition condition

[m2 · s−1] [mmol · L−1] [mmol · L−1]

SO2−
4 3.0 · 10−10 50.0 41.725

Mg2+ 3.0 · 10−10 25.0 0.0

Na+ 3.0 · 10−10 0.0 8.45

K+ 5.0 · 10−10 0.0 25.0

coupled ion diffusion through a charged membrane in the
presence of an external electric field.

Ions are forced by the external electric field to move
towards the oppositely charged electrode. The concentration
of counter-charged ions near the charged surface will be
enriched to compensate the electric potential while same-
charge ions will be repelled, as observed in clay materials
[103]. In a highly compacted medium, as the nanopores in
clay interlayers, the counter-ions can be entirely excluded
from the pore space between charged mineral surfaces [78].
The obtained results are in perfect agreement with the
simulations of [81].

4.4 Benchmark 4: Mineral precipitation
and dissolution due to injection of MgCl2
into a calcite column

This benchmark, originally proposed by [104], is used for
the validation of several reactive transport codes [13, 15,
105–107]. The setup consist of a 0.5-m long 1D calcite
column which is infiltrated with MgCl2 through the left
side boundary. The initial system porosity is 0.32 and the
advective velocity of pore fluid is 9.375 × 10−6m s−1. A
detailed description of the chemical and transport properties

Fig. 5 Results for the stationary diffusion through a charged
membrane in the presence of an external electric field
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Fig. 6 Comparison of a mineral dissolution-precipitation benchmark
where a calcite column is flushed with MgCl2 causing calcite
dissolution and dolomite precipitation

of the system can be found in [106]. The constant inflow
of MgCl2 causes calcite dissolution and temporary dolomite
precipitation close to the reaction front as well as an
increase of Mg2+ in solution. Figure 6 presents the results
obtained after 21,000 s of simulation and demonstrates a
good agreement between the results of FEniCS–Reaktoro
and OpenGeoSys–GEMS.

5 Conclusion

The development of FEniCS–Reaktoro framework was
driven by the need for an advanced open-source tool that
could provide a flexible modeling environment and, at the
same time, allow full control over the numerical methods.
FEniCS–Reaktoro was developed using an object-oriented
approach and permits the solution of user-defined single
or multiphase fluid transport problems in saturated porous
media coupled to thermodynamic and kinetic chemical
equilibria between a fluid and numerous solid phases. An
intuitive math equations alike scripting language allows
quick system setup of arbitrary complexity regarding
process couplings, domain geometry, and the boundary
conditions without need of deep programming skills. All in
all, FEniCS–Reaktoro is a goal-oriented and easy to learn
framework for reactive transport modeling that combines
the computing engine from two state-of-the-art platforms
for describing physical and chemical processes.

Several peculiar features of the FEniCS–Reaktoro
include the ability to tackle the transport equations at a PDE
level allowing adjustments, changes, and implementation
of new terms, in a straightforward way. Another aspect
of FEniCS–Reaktoro is the combination of electrochemical

migration transport, based on the Nernst–Planck equation
with the ability to deal with complex multiphase chemical
systems including solid solutions. FEniCS–Reaktoro is
compatible with distributed memory HPC architecture
offered with PETSc-based parallelization.

The chemical solver, Reaktoro, is probably the most
advanced chemical solver available and combines the
advantages of existing LMA and GEM thermodynamic
solvers. Recently, the standalone numerical kernel of Reak-
toro has been significantly improved in numerical perfor-
mance and convergence speed thanks to machine learning–
based algorithms, which help to obtain an initial guess close
to the optimal solution.

The open-source FEniCS–Reaktoro framework for reac-
tive transport simulations was described in detail and val-
idated against several conceptually different experimental
and numerical benchmarks. Overall, an excellent agreement
between the simulation results and the benchmark could be
achieved. FEniCS–Reaktoro could reproduce the essential
transport relevant processes and chemical reactions con-
sistently demonstrating an enormous potential for further
applications.
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Appendix A

The core class of FEniCS–Reaktoro encapsulates two parts:
(1) the initialization routine and (2) the reactive trans-
port loop. The initialization routine prepares the underlying
structure and defines multiple properties: temporal and spa-
tial; initial conditions, boundary conditions, and constants;
single diffusion coefficient or species-dependent diffusion
coefficients; the equation system; and the chemical systems.
The reactive transport loop is where the transport and chem-
ical equations are solved within a one-time loop until total
simulation time is reached.

The finite element mesh and the chemical system are
defined during the initialization routine before the reactive
transport loop. This process includes the definition of (1) all
species and phases involved in the chemical reactions; (2)
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governing equations necessary to describe the transport of
such species; and (3) initialization of the cells necessary for
the domain representation using FE infrastructure provided
by FEniCS.

Figures 7 and 8 present the class and sequence diagram,
respectively, of the FEniCS–Reaktoro framework using the
UML language.

The usage of FEniCS–Reaktoro coupled code to run a
reactive transport simulations requires the generation of the
following:

– The chemical system file: the chemical system file can
be generated using (a) the GEM-Selektor v.3 graphical
user interface, (b) the Phreeqc graphical user interface,
or (c) Reaktoro’s manual chemical system editor

– The mesh file: the mesh file can be generated using (a)
GMSH or (b) FEniCS, depending on the complexity of
the geometry

– The 4 files included in the user-defined input package:
main input file, transport file, boundary conditions file
and diffusion coefficients file

The detailed composition of the 4 files from the user-
defined input package is as follows:

– Main input file: contains the temporal and spatial prop-
erties, finite element family and degree, type of trans-
port equation used, chemical composition (composed
by external chemical definition files), and constants
(optional)

– Transport file: contains the description of the physical
processes, through the definition of the weak formula-
tion of the PDE

– The boundary conditions file: defines the boundary
conditions of the simulation

– Diffusion coefficients file: defines the diffusion coeffi-
cient of the species (single or multicomponent diffusion
are supported).

We point to the framework’s repository located at
bitbucket.org/lhdamiani/fenics-reaktoro, where one can
find instructions, licensing information, documentation, and
demos.

Fig. 7 The UML class diagram
description of FEniCS–Reaktoro
framework
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Fig. 8 The FEniCS–Reaktoro
framework UML sequence
diagram depicting the interaction
between the components
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Abstract 

The Hydrogen Transfer (HT) experiment, located at the Mont Terri underground rock 

laboratory in Switzerland, is an in situ experimental study of the interactions and transport of 

hydrogen injected into a borehole installed within Opalinus Clay, a claystone formation.  

A python-based model was developed to analyse and model the experimental data, for diffusion 

of dissolved gases and solutes in claystone pore water, for thermodynamic modelling of gas-

water-solid phase equilibria in the injection interval and for simulations of chemical equilibria 

and reaction kinetics in claystone and injection interval.  

The developed model reproduces the temporal evolution of gas pressure, composition and 

solute concentrations measured in situ with a minimum set of adjustable parameters. The 

effective diffusion coefficients for dissolved gases in Opalinus Clay derived by the modelling 

of experimental data were found to be very close to values measured in other experimental 

studies. It was discovered that an accurate description of the temporal variations in hydrogen 

injection and temporal changes in the inflow of formation water is essential for modelling of 

microbial mediated hydrogen consumption in the injection interval.   
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Notation 

B molal concentration of biomass for Michaelis-Menten kinetics (mol/kg) 

Bmax max. biomass concentration for Michaelis-Menten kinetics (mol/kg) 

bhigh model variant with low biomass concentration 

blow model variant with high biomass concentration 

breference model with reference biomass concentration 

C volumetric concentration (mol/m3) 

De effective diffusion coefficient (m²/s) 

De_high effective diffusion coefficient, model with high values: (m²/s) 

De_low effective diffusion coefficient, model with low values (m²/s) 

Dp pore diffusion coefficient (m²/s) 

Dw diffusion coefficient in water (m²/s) 

f source/sink term ((mol/m3)/s) 

geo geometry factor 

k1/2  half-rate constants for Michaelis-Kinetics (mol/kg) 

kBd  first order death rate of the bacteria for Michaelis-Menten kinetics (s-1) 

m material dependent exponent  

mx molal concentration for species x (mol/kg) 

n  amount (mol) 

P pressure (Pa) 

pCO2 partial pressure for carbon dioxide (CO2)  (bar) 

R molar gas constant ((J/K)/mol) 

T, tc temperature (°C) 

T, tK temperature (K) 

t time (s) 
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V volume (m3) 

Y yield factor for Michaelis-Menten kinetics (mol B/mol  sulfate (SO4
2-)) 

ηw water viscosity ((kg/m)/s) 

𝜙 porosity 

𝜙𝑚   material dependent tortuosity 

μmax specific degradation rate for Michaelis-Menten kinetics (s-1) 

𝛻𝑥 gradient operator with respect to the variable x 

𝜕𝑥

𝜕𝑦
 partial derivative of variable x with respect to variable y 

Introduction 

Deep geological disposal of radioactive waste is foreseen in several countries for long-term 

isolation of radioactive waste from the environment (Alexander and McKinley, 2007; IAEA, 

2011). Some countries plan to use claystone formations as the host rock for their disposals, for 

example, France (Callovo-Oxfordian clay rock) and Switzerland (Opalinus Clay rock). In 

various disposal concepts, massive steel disposal casks are used for the initial isolation of high-

level nuclear waste. The anoxic corrosion of steel may release large amounts of hydrogen (H2). 

The microbial degradation of organic matter, if present, may produce methane (CH4) and 

carbon dioxide (CO2). Transport of such gases in claystone is also of great interest to other 

types of deep underground space usage. Because of the low-permeability matrix, claystone 

caprocks are often the seal for oil and gas reservoirs (Grunau, 1987; Selley and Sonnenberg, 

2014), for carbon dioxide sequestration (Benson and Cole, 2008; Gaus et al., 2005) or the 

storage of hydrogen in the geological underground (Crotogino, 2016).  

The Hydrogen Transfer (HT) experiment, located at the Mont Terri Rock Laboratory, is 

implemented to investigate the in situ diffusion of various dissolved gases in Opalinus Clay 

(Vinsot et al., 2014, 2017). The experimental setup is demonstrated in Figure 1. The studies 
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are focused on (a) the diffusion of inert gases and hydrogen in the Opalinus Clay; (b) the 

interaction of hydrogen with the clay rock; and (c) the potential for microbial hydrogen 

consumption. Experimental data suggest a very fast decrease of the hydrogen amount in the 

injection interval, which could not be explained by the hydrogen diffusion into the claystone 

alone and was accounted for by the biotic hydrogen consumption involving hydrogen 

oxidation, sulfate reduction, and Fe(III) reduction (Vinsot et al., 2014). Appelo and Vinsot 

(2012) modelled the HT experiment using the PHREEQC code (Parkhurst and Appelo, 2013) 

and successfully reproduced key experimental observations (Vinsot et al., 2014, 2017). The 

previous modelling approach leaves potential for improvement regarding the representation of 

the borehole tilt, the calculation of gas fluxes between the injection reservoir and the rock, and 

resolution of concentration gradients near the borehole/rock interface.  

This work presents a new model for the HT experiment, which couples a reactive 

thermodynamic model describing the chemical conditions in the injection reservoir with a 

reactive transport model for diffusion of dissolved gases in the Opalinus Clay. It was 

successfully applied to re-produce the general evolution of measured pressure, gas phase 

composition and water composition. Furthermore, different conceptualizations of modelled 

processes were tested in order to improve the understanding of the processes and process 

couplings that influence the experiment. 

HT experiment  

The HT experimental setup in Figure 1 is extensively described in Vinsot et al. (2014, 2017). 

A borehole of 0.076 m diameter was drilled under an argon atmosphere perpendicular to the 

anisotropic Opalinus Clay bedding, with a 48o inclination. A 5 m long injection interval section 

with a total volume of 0.0095m3 (9.5 litres) was isolated with packers. It was equipped with 

temperature and pressure sensors and circulation tubes to allow injection or extraction of gases 



 

6 

and water (Vinsot et al., 2017). Measurement and circulation lines are made of stainless steel 

for gas and PEEK (polyether ether ketone) for water to prevent chemical interaction with the 

fluids. The installation includes a stainless-steel inner tube coated with PFA (perfluoroalkoxy 

alkanes) of 40 mm diameter surrounded by a ceramic filter screen of 14.75 mm thickness and 

porosity of 0.42.  

The experiment started on the 21st of April 2009, when the drilling was finished. Until now, 

three experimental phases were conducted. Vinsot et al. (2017) reports the first two phases, a 

calibration phase (2009-2010) and the first hydrogen injection phase (2011-2013). The 

measurement and modelling for the second hydrogen injection phase (2015-2017) are 

published for the first time in this paper. More details on the chronology of the tests are given 

in the electronic Supplement. 

Model implementation  

The new model developed in this work uses a newly implemented python interface to couple 

FEniCS (Alnæs et al., 2015), a library for solving partial differential equations with Finite-

Element methods, and the Gibbs Energy based thermodynamic solver GEMS3K (Kulik et al., 

2012). The latter was used for thermodynamic modelling of borehole gas and liquid phases and 

Opalinus Clay pore-water composition. A 2D Finite Element (FE) model was applied for 

diffusive transport of dissolved gases and solutes in the claystone. The thermodynamic pressure 

and equilibrium chemical composition of gas, fluid and mineral phases in the injection interval 

were calculated based on the minimisation of Helmholtz Energy with GEMS3K. The 

thermodynamic model for injection interval and the transport model for host rocks were 

coupled via flux terms for dissolved gases and solutes. The composition of the water phase in 

the borehole provides a concentration boundary for the transport model, while diffusive fluxes 

into and out of the injection interval were calculated from transport model results based on 
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concentration gradients at the borehole wall. In this approach, the transport of dissolved gases 

and other species in the rock pore-water is characterised by transient and relatively large-scale 

concentration gradients in the claystone induced by fast and strongly changing concentrations 

at the borehole/rock interface. Post-processing of the modelling results was implemented with 

Jupyter notebooks (Kluyver et al., 2016), allowing a well-documented and reproducible data 

analysis and graphical representation of the simulation results. 

Modelled processes 

Diffusive transport in claystone 

Transport of dissolved gases in the Opalinus Clay was implemented based on the partial 

differential equation for the diffusion in a water-saturated porous medium 

𝜕𝜙𝐶

𝜕𝑡
= 𝛻(𝜙𝐷𝑝𝛻𝐶) + 𝑓      (1) 

where 𝜙 denotes the porosity; C denotes volumetric concentration (mol/m3); Dp is the species-

dependent pore diffusion coefficient (m²/s), which is related to the effective diffusion 

coefficient De = 𝜙 Dp; and f is a source/sink term ((mol/m3)/s).  

The influence of pore space geometry and temperature on diffusion can be considered via a 

material and temperature-dependent geometry factor geo, which includes a tortuosity 𝜙m in the 

porous medium and a correction term to a specific temperature tK in Kelvin.  

The tortuosity can be expressed via the porosity  and a material-dependent exponent m 

𝑔𝑒𝑜 = 𝜙𝑚 ⋅
𝑡𝐾⋅0.891

298.0⋅𝜂𝑤
      (2) 

The influence of temperature tK =288.65 K (tc =15.6 °C) for the investigated system was 

implemented via a temperature-dependent water viscosity ηw following Appelo and Postma 

(2005). Compared to 20 °C, the effective diffusion coefficient is reduced by factor 0.77 at 15.6 

°C, similar to corrections proposed by Van Loon et al. (2005). 



 

8 

Finally, the effective diffusion coefficient for all species at the desired temperature was 

calculated based on the species diffusion coefficient in water (at reference temperature) and the 

geometry factor. Please note that the pore diffusion coefficient Dp is in this definition 
𝐷𝑤⋅𝑔𝑒𝑜

𝜙
 

𝐷𝑒 = 𝐷𝑤 ⋅ 𝑔𝑒𝑜 = 𝜙 ⋅ 𝐷𝑝     (3) 

The temperature and the porosity of the claystone are known. Therefore, the only unknown 

parameter in this definition of the effective diffusion coefficient is the tortuosity exponent m. 

Table 1 lists water diffusion coefficients, effective diffusion coefficients for dissolved gases, 

and gas diffusion coefficients used in this study. For dissolved gases species-specific diffusion 

coefficients were used. All other charged and neutral species were modelled using the same 

diffusion coefficient to ensure local charge conservation.  

The Opalinus Clay is an anisotropic medium with different diffusion coefficients parallel and 

perpendicular to bedding (Gimmi et al., 2014; Van Loon, Soler, et al., 2004). The 3D natural 

geometry of the experiment was simplified based on the radial symmetry of the experimental 

layout. For the given geometry it is possible to use a 2D model domain perpendicular to the 

borehole and parallel to the rock bedding for transport calculations in Opalinus Clay. 

 

Thermodynamic equilibration of borehole  

Thermodynamic and geochemical conditions in the borehole and the Opalinus Clay pore-water 

were calculated using the python interface to the chemical equilibrium solver GEMS3K.  

From the implemented fluid models (equation of states) described in Wagner et al. (2012), the 

ideal gas law was used.  

 

𝑉

𝑛
=

𝑅𝑇

𝑃
        (4) 

V denotes the volume (m3); n, the amount of gas (mol); T, the temperature (K); P, the pressure 

(Pa); and R, the molar gas constant ((J/K)/mol). 
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GEMS3K uses the Gibbs Energy minimisation (GEM) method for calculation of chemical 

equilibria for a fixed bulk composition, temperature, and pressure while the volume is the free 

variable. Since the borehole and the attached gas circulation system have a fixed volume, the 

thermodynamic equilibrium for this system was calculated by minimising the Helmholtz 

energy based on constant bulk composition, temperature, and volume (Dimian et al., 2014). In 

the Helmholtz energy minimisation, the pressure is the free variable. The solution was obtained 

iteratively, adjusting the pressure for GEM calculations until the equilibrated system's volume 

is consistent with the desired volume (cf. supplement figure S1). 

Temporal changes in the borehole composition were implemented by adding or removing 

components from the gas or aqueous phase during each time step, which changes the bulk 

composition in the borehole. For interaction with the surrounding rock, dissolved gases and 

other dissolved species were removed or added. Water and dissolved species were added to 

mimic the inflow of Opalinus Clay water. 

It is assumed that hydrogen consumption in the borehole is mainly controlled by hydrogen-

fueled, microbial mediated sulfate reduction (Appelo and Vinsot, 2012; Bagnoud, Chourey, et 

al., 2016; Bagnoud, Leupin, et al., 2016; Boylan et al., 2019; Leupin et al., 2017; Vinsot et al., 

2014, 2017).  

The implemented sulfate reduction mimics the kinetic model in the technical note by Appelo 

and Vinsot (2012). Boylan et al. (2019) proposed that bisulfide (HS-) produced from sulfate 

reduction reacts with iron (II) (Fe2+) to form iron (II) sulfide (FeS). Sulfate and iron (II) 

concentration might be controlled by the celestite and siderite solubility, respectively. The 

overall reaction can be written as: 

SO4
2- + Fe2+ + 4H2 = FeS + 4H2O      (5) 

The temporal rate of reduction of sulfate is described by Michaelis-Menten kinetics following 

Appelo and Postma (2005)  
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d
𝑚

𝑆𝑂4
2−

d𝑡
= −𝜇𝑚𝑎𝑥

𝐵

𝑌
       (6) 

which is coupled to the temporal change of bacterial mass B  

d𝐵

d𝑡
= 𝑌

𝑑 𝑚
𝑆𝑂4

2−

d𝑡
− 𝑘𝐵𝑑𝐵       (7) 

t is the time (s), m is the molal concentration of sulfate and hydrogen (mol/kg), μmax = 

2.0 ×  10−6 is the specific degradation rate (s-1), B is the molal concentration of the actual 

biomass (mol/kg) with an initial value of B = 1.0×10-5 (mol). Y = 0.2 is the yield factor (mol 

B/mol SO4
2-), k1/2 = 1.0×10-5 are the half-rate constants for sulfate and hydrogen (mol/kg), and 

kBd = 1.0×10-9 is the first order death rate of the bacteria (s-1). All parameter values were taken 

from Appelo and Vinsot (2012). 

Thermodynamic setup 

A unified setup in terms of (aqueous, gas and mineral) phases definition based on the 

Thermoddem DB (Blanc et al., 2012) has been used for all the thermodynamic calculations. 

Some of the gases of interest, specifically N2 and CH4, are considered non-reactive species in 

the gas and water phases. Reactivity of H2 in the borehole is kinetically controlled, as described 

further before. 

It should be stressed that the same thermodynamic setup is used throughout both models, 

equilibration of the borehole and the reactive transport in Opalinus Clay, and the models rely 

on the GEM algorithm to determine the stability and composition of phases from the bulk 

elemental composition provided. 

The thermodynamic setup for reactive transport in Opalinus Clay is based on the Opalinus Clay 

pore-water model by Pearson et al. (2011). The pore-water composition is described by 

equilibria with mineral phases and a cation exchanger phase, which is implemented as an ideal 

solid solution phase following Kulik (2010). Pearson et al. (2011) compared Opalinus Clay 

water models that use different combinations of clay minerals for equilibration. Scoping 
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calculations suggest that the combination of kaolinite, illite, celestite, dolomite, and some 

minor amount of daphnite reported in Table 2 gives a pore-water composition that is close to 

the measured composition of HT borehole water in terms of major cations and sulfate 

concentrations. A comparison of water properties between the model and those used by Vinsot 

et al. (2014) is given in Table 3. More details on the setup are provided in the Supplement. 

The initial phase composition and the major speciation of the aqueous water phase in the 

injection interval are given Table 2 and Table 3, respectively. The system was created by 

equilibrating the equivalent of 10 ml of Opalinus Clay with 0.16 litres of Opalinus Clay pore-

water and 6.762 mol of argon. The system's total initial volume is about 9.6 litres, of which 

about 9.4 litres is occupied by the gas phase, 0.16 litre by the liquid phase, and 0.04 litres by 

several mineral phases. Also, siderite was added to be the source of iron for microbial mediated 

sulfate reduction during hydrogen injection.  

This setup gives an equilibrated borehole water composition different to that of the Opalinus 

Clay pore-water, as the liquid to solid ratio is much higher in the borehole. It was assumed that 

celestite is not present in the borehole to avoid a buffering of sulfate concentrations during 

microbial-mediated hydrogen consumption.  

Mass transfer across the borehole wall 

The borehole wall is a boundary between two compartments: a gas-filled injection interval and 

a water-saturated claystone. The models for both compartments are coupled via the 

concentration boundary condition for the transport model based on the thermodynamic model 

for the injection interval, while the mass balance in the injection interval model was adjusted 

based on the mass fluxes across the borehole wall provided by the transport model.  

Diffusive fluxes of dissolved gases between the Opalinus Clay and the injection interval are 

calculated based on the concentration gradients in Opalinus Clay at the interfaces, which are 

available from the solution of the transport equations. Positive fluxes are directed from the 
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borehole towards the Opalinus Clay, whereas negative fluxes are directed from the Opalinus 

Clay towards the borehole. 

The borehole wall is assumed to be covered by a thin water film (Figure 2) which is in 

equilibrium with the gas phase in injection interval. It is assumed that biochemical reactions 

(i.e., hydrogen consumption by sulfate-reducing microorganisms) occur preferably in the liquid 

film at the borehole wall, and then the induced changes in species and gas concentrations set a 

concentration boundary condition at the surface of Opalinus Clay.  

Gravitational forces let the water in the film flow downward towards the bottom of the 

borehole, where water accumulates. The water film is replenished by the (slow) advective flux 

of pore-water from claystone towards the borehole due to a time-varying large-scale pressure 

gradient. Mixing of water at the walls with water at the bottom is fast, therefore thermodynamic 

equilibrium of all water and gas in the injection interval is assumed in the models.  

Other processes related to experimental setup and operation 

The model also includes other processes or events to improve the description of experimental 

measurements. Gas leakage from the circulation system and an air ingress, due to a major leak 

in the gas circulation system, are the most relevant.  

The gas circulation module is not entirely tight and showed gas losses of about 0.022 mmol/day 

during a tightness test with 2.2 vol% hydrogen in an argon atmosphere for a 0.11 MPa pressure. 

This rate corresponds to a pressure drop of 0.05 kPa/day and a volume loss of 0.5 ml gas/day 

at standard temperature and pressure conditions (Vinsot et al., 2014). Observed relative gas 

losses for hydrogen were significantly higher than for argon. In line with the observations, this 

gas loss was implemented as a diffusive process, i.e., fractions of total losses for each gas were 

calculated based on a weighted average with mole fraction and gas diffusion coefficients from 

Table 1 as weights. In addition, the total loss rate was linearly scaled at each time step by the 
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quotient between the actual borehole pressure and a reference pressure of 0.11 MPa, the 

pressure at which the tightness test for the gas circulation module was conducted.  

The experiment was also affected by two leakage events. The first occurred during the 

calibration phase after 1.5 years (day 565), and, more importantly, the second one (day 1233) 

took place during the semi-continuous injection of hydrogen. After the first leak, the borehole 

was flushed with Argon. The second event is characterized by a sudden measured increase in 

nitrogen and drop of argon concentrations in the borehole gas phase. There was no pressure 

change recorded that can be associated with this event. For this event, a total of 45 mmol of 

gas had to be removed from the borehole model. As for the gas losses from the gas module, 

single gas fractions were removed accordingly to their mole/fraction and gas diffusion 

coefficients. The total removed amount was replaced with nitrogen to maintain the borehole 

pressure.  

Results and discussion  

Despite the apparent simplicity of the HT experimental setup, the gas pressure measurements, 

water height, gas phase and water compositions in the injection interval showed a rather 

complex evolution over the monitoring period. This is reflected in short and long-term 

variations in gas fluxes across the borehole wall (cf. Figure S3 in the supplement). Accordingly, 

the underlying model matching the experimental observations has to include several coupled 

processes and becomes quite complex. This section discusses the modelling results based on 

the major processes: (a) the influx of rock pore-water and the amount of water in the borehole; 

(b) the diffusion of dissolved gases in the claystone; and (c) the biochemical reaction in the 

borehole.  
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Influx of rock pore-water 

The pressure evolution in the injection interval and estimation of the inflow variation of 

Opalinus Clay water are shown in Figure 3. No water extraction from the borehole occurred 

during the first experimental phase (the calibration phase). The inflow of water caused an 

increase in gas pressure during the first year. Several hundred mL of water were removed 

manually from the borehole to prevent the water level from rising above the injection line in 

the test interval (see appendix of Vinsot et al., 2017). After one year (day 364), an automatic 

water extraction system was installed. The water height in the injection interval (middle part 

of Figure 3) was estimated from the differential pressure between gas pressure and water 

pressure measured ’below’ the borehole. It was attempted to keep the water height constant 

below 10 cm by extracting the water. Due to the complex geometry of the inclined injection 

interval (Figure 1) with build-in infrastructure, there is no simple translation from water height 

into water volume. Based on the geometric considerations, on average, 1 cm height should 

correspond to about 37 ml. For water levels close to the bottom, i.e. below 6 cm, the tilt will 

change the relation to about 14 ml/cm. Figure 3 shows that the water height varies significantly 

during the first calibration phase of the experiment. Within this study, inflow rates were varied 

manually to fit pressure evolution, which averaged at 11-12 ml/day. 

With the start of the first hydrogen injection phase after day 778, the water height stabilises, 

and water inflow is estimated at about 18 ml/day, assuming that the long-term average water 

extraction rate corresponds to the average water inflow rate.  

A closer look at the daily extraction rates reveals quite some scatter in the recorded data points 

caused by the measurement error for the water height. The water height in the borehole is 

calculated from the difference of two pressure measurements, each with a measurement 

accuracy of 0.4 kPa (or a pressure head of 4 cm H2O). Averaging the extraction rates with a 

rolling average shows systematic changes in the extraction rate that are not reflected in the 
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water height. Therefore, a piecewise linear fit of the cumulative water extraction curves slope 

was applied, and the fitted extraction rates were used as inflow rates in the model. The 

measured extraction rates were adopted in the model as is, except if the borehole's water 

volume would go below the lower limit of 380 ml (equivalent to about 14 cm), then the 

extraction rates were adjusted to zero. This reference approach to calculate water inflow and 

extraction is indicated as model V in Figure 4.  

The alternative model (model C in Figure 4) assumed a constant inflow of 11 ml/day up to day 

556, then 12 ml/day up to day 780 and 18 ml/day with a constant extraction of 18 ml/day after 

day 780. This implementation ensures a constant residual water level in the borehole and results 

in a constant water exchange rate.  

Figure 4 shows for both extraction approaches the results for pressure, water in the borehole, 

and evolution of the gas phase in the borehole system. The calculated pressure evolution in the 

upper left figure panel reproduces the experimental values quite well, although there is a 

general tendency to overestimate pressure slightly. The use of measured water extraction rates 

in model V can reproduce some short-term pressure variations, while model C with constant 

extraction seems to fit slightly better the long-term average pressure evolution. Despite the 

difference between models V and C the influence on long term gas composition in the borehole 

is small. 

The most recognizable effects on gas pressure are related to the time-varying inflow of rock 

pore-water into the borehole combined with time-varying water extraction. Furthermore, 

pressure variations are caused by in- and out-diffusion of gases between the borehole and the 

adjacent claystone, a long-term small gas loss from the gas circulation system, the injection of 

hydrogen, or experimental manipulations, like the addition of evacuated sampling cylinders, 

for example at day 2059, which causes a visible pressure decrease. Gas leakage from the gas 

circulation system has a significant influence on the long–term pressure evolution in the 
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borehole. For example, a relatively small increase of this gas loss rate can easily compensate 

for model's V high pressure values.  

Diffusion of gases in claystone 

The evolution of gas composition could be reproduced very well for major components like 

argon, methane, and nitrogen (Figures 4 and 5). The effective diffusion coefficients for 

dissolved gases in Opalinus Clay were fitted by adjusting manually the geometry factor 

(Equation 2) in terms of the exponent m. The effect of changing the geometry factor for 

Opalinus Clay rock is demonstrated in Figure 5. 

A value of m=1.2 would result in an effective diffusion coefficient for HTO (tritiated water 

tracer) of 3.1×10-11 m/s (Dw=2.24×10-9, =0.16, m=1.2, T=15.6 ºC). This value for De is slightly 

lower than values obtained in previous studies. A temperature corrected value of 4.2 ±

0.4 × 10−11m/s (=0.17, T=14 ºC) was measured for HTO in samples from Mont Terri in the 

laboratory (Van Loon, Soler, et al., 2004) and the value of 4.0×10-11 m/s (=0.15, T=14 ºC) 

was estimated within an in situ migration experiment (Van Loon, Wersin, et al., 2004).  

In addition to the reference model with m=1.2, Figure 5 contains results for m=1.0 (De_high = 

4.4×10-11 m/s for HTO) and for m=1.4 (De_low = 2.1×10-11 m/s for HTO). Generally, the results 

for the two additional model variants envelope the experimentally measured concentrations in 

the gas phase. In terms of gas composition, the agreements for De_low (m=1.4) seems better 

during the calibration phase, but for this variant, gas pressures in the borehole drop significantly 

below the measured values in the long term. Besides, the volume fractions and the in-diffusion 

of methane and nitrogen are underestimated in the long term. Visualizations of typical 

concentration profiles for dissolved gases are included in the supplement.  

On day 566, hydrogen injection experiments started. In a first test, the injection interval was 

filled with a mixture of 85 vol% argon, 5 vol% neon (Ne), 5 vol% Helium (He), and 5 vol % 
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hydrogen. The model considered that the measured fractions for neon, helium and hydrogen in 

the injection interval were about 20% less.  

It was supposed that neon and helium behave like other inert gases, but unexpectedly, their 

concentrations dropped faster than expected (Figure 4). The effective diffusion coefficients for 

helium and neon in Opalinus Clay are not high enough to explain the concentration decrease, 

which occurs only during the injection of hydrogen. After the first hydrogen injection is 

finished, the slopes of modelled and measured concentration curves for helium and neon seem 

to match. This indicates that the implemented diffusion model and its parameterisation 

describes the long-term behaviour of these two gases. 

The exact reason for the high losses of helium and neon during hydrogen injection phases is 

not clear, but might be related to the hydrogen injection procedure. In addition, there is a 

considerable jump in neon and helium concentrations during the gas leak event after 1233 days. 

This event has been included in the modelling process, and fractions of both gases were 

removed from the borehole in relation to their partial pressures and gas diffusion coefficients.  

Figure 4 and 6 show the trace amount of carbon dioxide in the gas phase. For the implemented 

thermodynamic setup, the carbon dioxide concentration in borehole water and in the inflowing 

water from Opalinus Clay are mainly controlled by equilibrium with minerals and only to a 

very small degree by diffusive transport in Opalinus Clay.  

Hydrogen injection variations 

The fast drop in the hydrogen concentration relative to the one of inert gases (Figures 4) was 

interpreted as the consequence of its consumption by microbial mediated sulfate reduction 

(Vinsot et al., 2014). On day 926, a single hydrogen injection (14.3 mmol) was performed. On 

the day 1038, a semi-continuous hydrogen injection started. The hydrogen content in the 

borehole gas phase was kept constant at a value of about 4.5 % until day 1553. A second 

hydrogen injection phase started on day 2402, in which several hydrogen pulse injections were 
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conducted over about two months. Then, on day 2485, a semi-continuous injection started, 

which set the hydrogen fraction in the gas phase to about 2 % and, after about 1.5 years, on day 

3029, the injection was stopped. It should be noted, that measured hydrogen concentrations are 

comparable between online measurements and gas samplings, although the online 

measurements (H2 specific sensor and Raman spectroscopy) where more affected by rapid 

fluctuations (Vinsot et al., 2014). 

Figure 6 (upper left sub-figure) compares measured and modelled hydrogen volume fractions 

for different model variants. In Equation 7, the growth of biomass is only dependent on the 

availability of sulfate. Model variants not shown in the paper indicated that the growth of 

biomass must be limited to a value of Bmax in order to be able to model the semi-steady state 

hydrogen injection. Six model variants have been considered which differ in the maximum 

biomass amount in the borehole (low: 1.0×10-3 mol, reference: 1.2×10-3 mol and high: 1.5×10-

3 mol) and in the way the hydrogen is injected during the semi-continuous injection phases 

(mimic experimentally recorded injection rates or constant rate injection).  

The amount of biomass directly controls the hydrogen consumption rate (see Equations 6 and 

7). A smaller amount of biomass causes a slower decrease of hydrogen during the pulse 

injection of hydrogen gas and gives higher hydrogen concentrations during the semi-

continuous hydrogen injection. In addition to hydrogen consumption in the injection interval, 

hydrogen can also diffuse into the claystone. The model assumes that microbes do not consume 

hydrogen in the claystone because the microbes are expected to be in a dormant state and have 

only a reduced activity due to limited space and nutrients availability (Leupin et al., 2017). The 

predicted diffusive hydrogen flux into the adjacent claystone was at least two orders of 

magnitude slower than the microbial hydrogen consumption rate for all model variants 

considered in the study. 
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In general, all model variants reproduce the fast reduction of hydrogen concentrations during 

pulse injection. In addition, the slight pressure change during hydrogen injection into the 

borehole is well reproduced. The models with lower biomass amounts fit the measured 

behaviour better, while the models with high biomass amounts result in too fast hydrogen 

consumption.  

The hydrogen consumption rate directly depends on sulfate availability as implemented via the 

Michaelis-Menten rate law (Equations 6) and is directly reflected in the amount of mackinawite 

precipitated and the dissolved amount of siderite (Figure 6, lower left panel). The consumption 

of sulfate during hydrogen consumption is visible in the drop of sulfate concentrations 

measured and modelled in the borehole water after the beginning of the hydrogen injection 

phase (Figure 6, middle left panel). The decrease in sulfate concentration depends not only on 

the hydrogen consumption rates, but also on the amount of water in the borehole related to the 

sulfate replenishment due to inflow and water extraction.  

The water pH in the borehole did not change considerably, although the sulfate reduction 

should cause acidification of borehole water. In the models, the pH and alkalinity were buffered 

mainly by the precipitation of dolomite and calcite (Figure 6, lower left panel), which is also 

reflected in variations of measured and modelled calcium and magnesium concentrations 

(Figure 6 middle right panel). There is a slight increase in calculated CO2 in the gas phase, as 

the CO2 released by siderite dissolution is not entirely consumed by carbonate formation 

(Figure 6, lower right panel).  

In the reference model, the hydrogen injection is implemented as a time-dependent rate 

function extracted from the experimental recordings of injection rate. The injection rates show 

fluctuations that are reflected in the hydrogen concentrations during the semi-continuous 

hydrogen injection. The trend of experimental data from samples and online hydrogen 

measurements are not explicitly reproduced during the first semi-continuous injection period.  
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An alternative approach using constant injection rates ensures a constant hydrogen 

concentration (molar fraction) in the borehole’s gas phase. The modelled injection rates were 

manually adjusted such that the cumulative injected amount matches the experimental values.  

For both injection approaches, the differences between the observed and modelled system 

response to the hydrogen injection are related to the injection protocol. For hydrogen injection 

into the gas circulation system, the injection device contains a 540 ml syringe filled with 

hydrogen. During the initial ten days of continuous injection, the hydrogen injection rate was 

adapted manually to keep a constant 6 kPa (60 mbar) hydrogen partial pressure in the 

circulation system. Nevertheless, during this time, a valve stayed open, causing hydrogen gas 

to diffuse out of the syringe and into the gas circulation system, while other gases could enter 

the syringe and dilute the hydrogen inside. Specifically, helium and neon could accumulate in 

the syringe during continuous and semi-continuous operation due to their high gas diffusion 

coefficients. This could explain part of the unexpected fast concentration drop for these gases. 

As a consequence of the open valve, the apparent hydrogen injection rates measured (based on 

injected hydrogen volume) are too low for a hydrogen filled syringe, while they would be too 

high for a syringe in which the gas composition inside of the syringe is already nearly 

equilibrated with the gas circulation system.  

After the ten days period, an automatic semi-continuous injection procedure was used. This 

operation phase alternates short time intervals (minutes to hours) during which hydrogen was 

injected at a constant flow rate with more extended periods without injection.  

Conclusions 

This work presents a new conceptualisation and numerical analysis of the experimental data 

collected in the HT experiment at the Mont Terry Underground Rock Laboratory. More 

specifically, the developed model describes the relationships between transport processes and 



 

21 

chemical interactions controlling the behaviour of gases, both inert and reactive, in the borehole 

and the surrounding Opalinus Clay.  

The modelling study demonstrates that fluxes of non-reactive gases across the borehole wall 

are constrained mainly by diffusive transport of dissolved gases in Opalinus Clay. The 

borehole’s gas phase composition and pressure control the gas concentrations in the water 

phase at the borehole’s wall in the injection interval. The concentration difference in the water 

phase between the borehole wall and Opalinus Clay is the driving force for the diffusive 

transport of gases in the Opalinus Clay. Advective transport of dissolved gases is of secondary 

importance, while water accumulation in the borehole increases the borehole gas pressure. 

The model supports the hypothesis that sulfate reducing microbes consume hydrogen. The 

experimentally observed reduction in sulfate concentrations is controlled by an interplay 

between the inflow of Opalinus Clay water, water extraction by the automatic extraction system 

and the rate of sulfate reduction. Sulfate reduction should cause acidification of borehole water. 

The pH, borehole’s water composition and CO2 in the gas phase are buffered by mineral 

reactions, showing a good agreement between the thermodynamic model and the experimental 

observations.  

Given the uncertainty in estimating the pore-water composition in tight claystone (Gaucher et 

al., 2009; OECD, 2000; Wersin et al., 2009) and the time variability in sampled pore-waters 

from the HT experiment (Vinsot et al., 2017), the presented model reproduces well the 

observed behaviour major gases and sulfate concentrations in the water phase.  

Large-scale hydraulic gradients control water flow magnitude near the HT borehole. Little is 

known about the hydraulic conditions in the vicinity of the HT borehole. Specifically it is not 

clear, if water entering the HT borehole is confined to specific layers or spots with higher 

permeability, or if water flow is more or less homogeneously distributed from all directions 

into the borehole. The characteristics of water inflow might have consequences for 
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representation the Opalinus Clay pore-water in thermodynamic models and the basic 

underlying modelling assumption that the borehole can be treated as a homogeneous well-

mixed system.  
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Tables 

Table 1: Gas diffusion coefficients at 20 °C and 101.325 kPa (Rumble, 2019) and diffusion coefficients in water at 25 °C 

(Appelo and Vinsot, 2012; Engineering Toolbox, 2008) 

Species Gas diffusion 

coefficient 

(×10-4 m2/s) 

Binary gas mixture for gas 

diffusion coefficient 

Diffusion 

coefficient in 

water (×10-9m2/s) 

H2O  0.242 Large excess of air 2.24 

H2 (Hit2) 0.794 Equimolar mixture with Ar 5.13 

He 0.726 Equimolar mixture with Ar 7.29 

N2 0.190 Equimolar mixture with Ar 1.96 

Ne 0.313 Equimolar mixture with Ar 4.04 

Ar  0.189 Large excess of air 2.45 

CO2 0.148 Equimolar mixture with Ar 1.92 

CH4 (CitH4) 0.208 Equimolar mixture with N2 1.85 

O2 0.187 Equimolar mixture with Ar 2.42 

“default” 0.189 Identical to Ar 2.24 
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Table 2: Equilibrated Opalinus Clay system in terms of the liquid phase, gas phase, cation exchanger phase (OpaExchanger), 

and mineral phases. The total volume of the Opalinus Clay system is normalised to 1m3. The numbers were rounded for better 

readability. 

  Opalinus Clay Borehole 

Phase name  Phase 

volume: 

cm3 

Phase mass:   

g 

Phase 

volume: 

cm3 

Phase mass: 

g 

Liquid phase  160 162 160 162 

Gas phase  0.0 0.0 9402.3 39.087 

Mole fraction   Ar: 0.9985 

CO2: 3.0×10-4 

CitH4: 2.6×10-5 

H2: 9.6×10-4 

He: 1.0×10-8 

Hit2: 5.3×10-9 

N2: 0.00021 

Ne: 1.0×10-8 

O2: 0.0 

Cation exchange phase 

for Opalinus Clay: “Opa” 

 0.044 7.34 2.7×10-7 5.1×10-5 

Amount of 

Opa: meq 

 

0.272 2×10-6 

Mole fraction  

 

Opa2Ca: 0.051 

Opa2Fe: 0.00051 

Opa2Ca: 0.046 

Opa2Fe: 4.5×10-4 
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OpaK: 0.344 

Opa2Mg: 0.043 

OpaNa: 0.560 

Opa2Sr: 0.0015 

OpaK: 0.25 

Opa2Mg: 0.038 

OpaNa: 0.663 

Opa2Sr: 2.3×10-5 

Chlorite CCca-2   3.2 9.37 0.08 0.22 

Illite(Mg)  268.0 750.5 2.7 7.7 

Kaolinite      213.0 553.6 49.7 129.1 

Biomass       1.00×10-8 1.00×10-08 1×10-10 1×10-10 

Dolomite      0.42 1.2 0.041 0.12 

Calcite       167.6 454.2 1.7 4.5 

Siderite      10.5 41.5 32.3 127.3 

Pyrite  0.076 0.38 0* 0* 

Mackinawite (FeS)  0 0 0* 0* 

Celestite      6.027 23.9   

Quartz(alpha)    171.6 454.5 11.1 29.5 

* The precipitation/occurrence of pyrite and mackinawite in the borehole were suppressed. The amount of mackinawite in the borehole is 

kinetically controlled during injection of hydrogen.  
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Table 3: Comparison of pore-water properties and composition from Vinsot et al. (2014) and this work.  

Water analysis from 5. 

September 2012 (Table 2 of 

Vinsot et al. (2014)) 

Modeled values for Opalinus 

Clay (this work, 0.22 MPa) 

Initial setup for 

borehole system 

(0.25 MPa) 

Lab pH  6.9  pH 7.6 7.8 

Lab 

temperature: 

°C 20 

Temperature: 

°C 15.6 

15.6 

log(pCO2) -2.0 log(pCO2) -2.99 -3.12 

     

Species 

Concentration

: mmol/l Species/element 

Concentration:

mmol/kg 

Concentration: 

mmol/kg 

Na 255 Total Na 254.0 247.1 

K 1.47 Total K 5.8 3.5 

NH4 0.524  -  

Mg 18.6 Total Mg 15.5 8.8 

Ca 16.3 Total Ca 17.1 9.5 

Sr 0.369 Total Sr 6.1 6×10-3 

Cl 295 Total Cl 291.4 286.1 

TIC 2.5 Total C 1.22 1.25 
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SO4 14.4 Total S 17.0 16.3 

  Total N 4.4 8.1×10-4 

  

Non-reactive 

CH4 0.3 

1.1×10-4 
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Figures 

 

 

Figure 1: Experimental layout of the Mont Terri HT experiment. (from Vinsot et al., 2014, Fig.1). 
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Figure 2: Conceptual description of processes controlling the gas and water equilibria in the borehole. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Gas pressure evolution (left), cumulated extracted water and water height (middle) in the borehole, and 

approximation of water inflow rates by fitting cumulated water extraction (middle and right) after start of the hydrogen 

injection phase (day 778). 
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Figure 4: Comparison of the calibrated reference model V with measured data and an alternative model C for constant water 

inflow and extraction. The maximum biomass in the borehole available for hydrogen consumption is 1.2×10-4 mol. 
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Figure 5:  Influence of effective gas diffusion coefficients on the predicted pressure and gas phase composition in borehole. 

The variable water extraction model Vwas used for the simulations. 
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Figure 6: Evolution of hydrogen, sulphur, calcium concentrations, biomass, selected mineral phases and pH during injection 

of hydrogen. The reference model bref  contains maximally 1.2×10-4 mol biomass in the borehole, while the low biomass model 

blow contains maximally 1.1×10-4 and the high biomass model bhigh maximally 1.3×10-4 mol biomass. 
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Chronology of tests 

The test interval was closed 1.2 days after the end of the drilling operation and filled 
with argon at a pressure of 1.3 (±0.1) bar. 
On day 23, the external gas circulation module was connected, which added 
0.00093 m3 (0.93 litres) for gas circulation. The gas circulation module also allows 
online measurements of the borehole's gas atmosphere composition and includes 
cylinders for sampling the gas. 
The “calibration phase” starts with installing the gas circulation module, in which 
the composition of the gas phase and the pressure in the borehole were monitored. 
From day 23 on, periodically, gas samples were taken and analysed. An increase in 
the gas pressure was observed. On day 220, the water line valve was opened, 100ml 
of water was removed, and a gas leak occurred at the end of such removal. On day 
364, 160ml of water and gas were sampled. In addition, an automatic water removal 
system was installed to keep the water amount in the borehole constant. Based on 
the long-term automatically extracted water amount, the rock water inflow was 
approximated to be about 18 ml/day. Inverse modelling of water inflow rates 
indicated that water inflow had to be smaller before installing the automatic water 
extraction system (Vinsot et al., 2017). Between days 452 and 565, the automatic 
water extraction was interrupted. On day 566, the test interval was flushed with 
argon, and on day 575, the gas circulation was interrupted. This first experimental 
phase is essentially a diffusion test that includes the out-diffusion of argon and the 
in-diffusion of gases dissolved in the Opalinus Clay pore water, specifically 
nitrogen, CO2, methane, and other light alkanes. Back fitting the gas phase 
evolution in the borehole allows estimating effective diffusion coefficients for 
dissolved gases in the Opalinus Clay  
On day 779, the second experimental phase started. The “first hydrogen injection 
phase” consists of a diffusion experiment with inert gases (helium, neon, argon) 
and hydrogen, which is known to potentially participate in various chemical and 
biochemical reactions (Carden and Paterson, 1979). First, the borehole was filled 
with a new gas mixture (85 vol% Ar, 5 vol% H2, 5 vol% Ne, and 5 vol% He) at 
about 1.5 bar. It was observed that hydrogen concentration dropped much faster 
than inert tracer gases. 
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On day 926, a single hydrogen injection (14.3 mmol) was performed. On day 1038, 
a semi-continuous hydrogen injection started. The hydrogen content in the borehole 
gas phase was kept constant at a value of about 4.5%. On day 1233, a gas leak in 
the circulation system occurred, making it necessary to consider that 68 mmol 
nitrogen entered the gas circuit simultaneously as the borehole pressure kept stable 
at about 1.35 bar. The semi-continuous injection was stopped on day 1553. After 
that, gas circulation and water extraction systems were still running, which 
corresponds to a long-term diffusion test. 
In November 2015, on day 2402, the “second hydrogen injection phase” started. 
Initially, several hydrogen pulse injections were conducted over about two months. 
Moreover, on day 2485, a semi-continuous injection was performed, which set the 
hydrogen fraction in the gas phase to about 2%. After about 1.5 years, on day 3029, 
the injection was stopped. Similarly to the period after the first hydrogen injection 
phase, the gas circulation and water extraction proceeded further. As the borehole's 
gas phase was not artificially replaced since the first hydrogen injection phase, this 
is a very long-term equilibration of the borehole and adjacent clay rock, interrupted 
only by the hydrogen injection experiments. 

FE solution of the diffusion equation 

The model presented in this work is based on the reactive transport framework 
developed and described in Damiani et al. (2020). Python-based interface and the 
UFL language to the FEniCS framework (Alnæs et al., 2015; Hoffman et al., 2012) 
are used to describe the transport of dissolved species in a porous medium.  

The partial differential equation (PDE) for the diffusion in a water-saturated porous 
medium is 

!"#
!$

= 𝛻$𝜙𝐷%𝛻𝐶( + 𝑓,      (1) 

where 𝜙 denotes the porosity [-], C denotes volumetric concentration [mol m-3], Dp 
is the species-dependent pore diffusion coefficient [m² s-1] which is related to the 
effective diffusion coefficient De = f Dp, and f is a source/sink term [mol m-3 s-1]. 
For a system with constant porosity, the equation can be simplified dividing by f 
and get 

!#
!$
= 𝛻𝐷%𝛻𝐶 +

&
'

.       (2) 

Forward Euler approach was adopted for time integration of Equation 2 for which 
the time derivative of the unknown concentrations is replaced by $𝐶()* − 𝐶(( 𝛥𝑡⁄  
with time step size Δt and known concentrations Ci at the current time step (i) and 
unknown concentrations Ci+1 at next time step (i+1): 
#!"#+#!

,$
= 𝛻𝐷%𝛻𝐶()* +

&!

'
.      (3) 

This transforms into a sequence of spatial and temporal problems starting with a 
known C0 at t=0 

𝐶- = 𝐶-; 	𝑓- = 𝑓-
𝐶()* − 𝛥𝑡𝛻𝐷%𝛻𝐶()* = 𝐶( + 𝛥𝑡 &

!

'

.     (4) 
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The term on the left side includes the unknown concentrations and, on the right 
side, all known terms, representing the discretised bi-linear formulation. 
To solve the equation system with FEniCS, the PDEs (one per transported species) 
are transformed into a variational problem by multiplying it with a continuous and 
differentiable function v, the so-called test function, and integrating it over the 
domain Ω. Second-order terms 𝛻𝐷%𝛻𝐶 are integrated by parts. The unknown 
concentrations Cn+1 are referred to as C (also called trial function) and ordered 
according to standard notation a(C,v) = Ln+1(v) (with a the left side and L the right 
side) 

𝑎(𝐶, 𝑣) = ∫ $𝐶𝑣 + 𝛥𝑡𝐷% ⋅ 𝛻𝐶 ⋅ 𝛻𝑣(. 𝑑𝑥

𝐿()*(𝑣) = ∫ ;𝐶( + 𝛥𝑡 &
!"#

'
<. 𝑣𝑑𝑥

    (5) 

Neumann boundaries (flux boundaries) can be added to the right side of 
Equation (5) 

𝐿()*(𝑣) = ∫ ;𝐶( + 𝛥𝑡 &
!"#

'
<. 𝑣𝑑𝑥 + ∫ /

'
𝛥𝑡𝑣𝑑𝑠0    (6) 

where j is the flux [mol m-2 s-1] across boundary Γ. 
Dirichlet boundary conditions, i.e., setting fixed concentrations at a boundary, are 
set explicitly as part of the trial space.  
Identical pore diffusion coefficients for mass transport in the Opalinus Clay 
formation was applied for all aqueous species, except for dissolved gases. This 
ensures charge conservation during the transport of dissolved species, without the 
need to solve computationally expensive Nernst-Planck equations for charge-
coupled transport of ionic species. Dissolved gases are uncharged neutral species 
and can be modelled independently with diffusion coefficients taken from Vinsot 
et al. (2017). In FEniCS, a setup was implemented where the underlying matrices 
for solving a single transport equation are assembled once and then re-used to 
calculate transport for each species separately and sequentially. This reduces 
computing time, as the assembly of matrices is a relatively time-consuming task.  

Model implementation 

The implementation for coupling transport and chemical equilibrium calculations 
is based on the reactive transport framework described in Damiani et al. (2020) and 
uses a sequential non-iterative approach (SNIA).  
At each time step, the diffusion equations for all dissolved species are solved and 
then new concentrations are updated (optionally) by calculating new chemical 
equilibria between pore-water and mineral phases with the xGEMS thermodynamic 
solver. xGEMS (https://bitbucket.org/gems4/xgems/) is a C++ and python API 
(application programming interface) for accessing the GEMS3K thermodynamic 
solver.  
Based on the symmetry of the experimental setup, a 2D triangular mesh in the form 
of an annulus sector with 8421 nodes and 16000 elements represents the 3D rock 
surrounding the borehole (Figure S1). The mesh is oriented perpendicular to the 
borehole and parallel to the bedding of the Opalinus Clay rock. The inner circle 
corresponds to the borehole wall, while the outer circle has a radius of 2 m. The 
mesh is refined towards the inner circle, as spatial and temporal concentration 
changes at the borehole walls are expected to be highest. Besides, for an accurate 
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calculation of the flux, an adequate spatial resolution of concentration gradients is 
required at the boundary.  
A simplified flow chart for the simulations is shown in Figure S2. At the beginning 
of the simulations, concentrations for dissolved species, including dissolved gases, 
are set based on the equilibrated Opalinus Clay setup.  
The straight left and right boundaries of the modelling domain are treated as “no-
flux” boundaries. The outer circle of the annulus sector is a Dirichlet boundary with 
constant concentrations, identical to initial concentrations in the whole domain. The 
inner circle, which corresponds to the borehole wall, also forms a Dirichlet 
boundary. Concentrations at the inner circle are assumed to be in equilibrium with 
the borehole system and are updated each time step according to the borehole 
equilibration results. 
The model’s workflow represents a typical sequential non-iterative approach 
(SNIA) for reactive transport calculations. After reading input files, initialising the 
transport solver, and the geochemical solver instances, the time loop starts by 
calculating transport equations. If desired, at each FE node, the chemical system is 
equilibrated based on the newly calculated concentrations from the transport 
solution. This is done via multi-threaded instances of the GEMS3K solver (Kulik 
et al., 2012), which are executed concurrently to speed up the calculations. After 
updating the concentrations, the fluxes across the inner boundary (borehole wall) 
are calculated and, after being converted to species amounts, are added/removed 
from the borehole system during the current time step. Besides, the influx of water 
into the borehole is done by adding a defined amount of Opalinus Clay pore water 
with a composition equivalent to the water at the borehole wall.  
The species fluxes change species concentrations in the liquid phase of the 
borehole. Since the borehole’s liquid film at its surface and the bulk water 
accumulated at its bottom are treated as one homogeneous liquid phase, it is not 
possible to resolve any differences in terms of composition between water films and 
bulk water.  
The difference between solute concentrations in the water film and the accumulated 
water at the bottom is likely to be negligible, as the residual water amount in the 
borehole did not exceed ~570 ml during the automatic water extraction period and 
is most of the time much less. For an inflow of rock pore water with the rate of 18 
ml/day, at least 1/30 of the water would be replaced per day. 
Finally, other events like the gas phase sampling are implemented by adjusting the 
bulk composition in the borehole and possibly changing the reference volume of 
the gas circulation system.  
After a first equilibration of the borehole composition, a fraction of the aqueous 
phase in the borehole is removed to keep the amount of water in the borehole 
constant. This mimics the automatic water extraction, conducted only if the pressure 
and the amount of water in the borehole exceed pre-defined thresholds.  
After the water extraction routine, the borehole’s system is equilibrated again, and 
the consumption of hydrogen is calculated with the kinetic equations. After 
adjusting the bulk composition in the borehole by adding “reactive hydrogen” and 
removing “non-reactive hydrogen”, and dissolving the required amount of siderite, 
the borehole system needs to be equilibrated again. 
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Finally, the simulation time step is incremented, and the calculation loop starts 
again by updating the transport boundary condition at the borehole wall based on 
the last equilibrated borehole composition. 
A variable time-stepping scheme is implemented for the time loop. The initial 
minimum time step size is increased successively by multiplication with 1.1 until a 
maximum time step size is reached. If an event changes the composition of the 
borehole and the boundary condition for the transport solver significantly, the time 
step size is set to the minimum value. It was found that for the investigated 
scenarios, a value of 1 000 s for the minimum time step and 10 000 s for the 
maximum time step gives a good compromise between the need to resolve temporal 
changes in fluxes across the borehole wall and the need to minimize computational 
costs of the simulation runs. 
 

 
Figure S1: Conceptual sketch of the borehole and the FE-mesh used for modelling diffusive transport in 
Opalinus Clay. Please note that the size of borehole is not in correct relation to the size of the FE-mesh used 
for modelling. The radius of the borehole should be 0.038 m with a length of 5 m for the injection interval; the 
FE-mesh should extend up to 2 m from borehole centre. 
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Figure S2: Flow chart diagram of the modelling algorithm implemented using python scripting to simulate 
experimental data from the HT experiment. 
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a) 

 
b) 

 
Figure S3: Fluxes of dissolved gases across the borehole wall calculated from the FE transport model in 
claystone. Subfigure a) uses linear axis for fluxes. Negative fluxes indicate flux direction towards the borehole, 
while positive fluxes are towards the claystone. Subfigure b) uses logarithmic axis to plot absolute values for 
fluxes.  



8 

 
Figure S4: Concentration profiles in radial direction for selected dissolved gases in clayrock water for two 
simulation times. Solid lines denote day 770, about 9 days before the first hydrogen injection. Dashed lines 
denote the concentration at day 4000. 

Thermodynamic setup 

A unified setup in terms of phase and species definition based on the Thermoddem 
DB (Blanc et al., 2012) has been used for all the thermodynamic calculations. Some 
of the gases of interest, specifically N2, CH4, and H2, are considered non-reactive 
species in the gas and water phases.  

Opalinus Clay setup 

The thermodynamic setup for Opalinus Clay is based on the approach of modelling 
Opalinus Clay pore water described in Pearson et al. (2011). The pore water 
composition is described by equilibria with mineral phases and a cation exchanger 
phase, which is implemented as an ideal solid solution phase (Kulik, 2010). 
Fixing pore water composition by mineral equilibria makes it challenging to 
accurately reproduce the average Opalinus Clay pore water composition given in 
Vinsot et al. (2014). The pore water compositions can be manipulated by changing 
the cation exchanger's composition, adjusting exchanger constants or choosing 
other minerals (clay) phases for equilibration. Pearson et al. (2011) compared 
Opalinus Clay water models that use different combinations of clay minerals for 
equilibration. Scoping calculations suggest that the combination of kaolinite, illite, 
celestite, dolomite, and some minor amount of daphnite gives a pore-water 
composition in Opalinus Clay, which is close to the desired composition in terms 
of major cations and sulphate concentrations. A comparison of pore-water 
properties between the model and those used by Vinsot et al. (2014) is provided in 
the paper. The concentration of strontium deviates considerably from measured 
values because, in the model, celestite is used to fix both sulphate and strontium 
concentrations. Potassium concentrations are lower than measured, but they are in 
line with those of Pearson et al. (2011). The partial pressure of CO2 at equilibrium 
with water is one order of magnitude lower than the value deduced from the 
observed water composition. Finally, magnesium concentrations are slightly lower 
than measured and modelled by Pearson et al. (2011) due to the influence of 
changed cation exchanger composition. The agreement with the desired pore-water 
composition can be further improved by adjusting the mineral phase stabilities, 
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cation exchanger constants, and by adaption of cation exchanger capacity and 
occupancy.  
The modelled pH is set by equilibria with alumino-silicate minerals, specifically 
illite, kaolinite, and chlorite. The calculated value of 7.6 is comparable with the 
values calculated by Pearson et al. (2011) but is also significantly higher than the 
measured values.  

Borehole setup 

The same thermodynamic setup used for the Opalinus Clay chemical system 
definition is used to equilibrate the borehole system with a different bulk 
composition. An initial setup in terms of phase composition included is given in 
Table 2 of the paper and the major properties of the aqueous water phase in Table 
3. The system was created by equilibrating the equivalent of 10 ml of Opalinus Clay 
with 0.16 litres of Opalinus Clay pore water and 6.762 moles of Ar. The system's 
total initial volume is about 9.6 litres, of which about 9.4 litres is occupied by the 
gas phase, 0.16 litre by the liquid phase, and 0.04 litres by several mineral phases. 
In addition, siderite was added to be the source of iron for microbial mediated 
sulphate reduction during hydrogen injection.  
This setup gives an equilibrated borehole water composition different to that of the 
Opalinus Clay pore water, as the liquid to solid ratio is much higher in the borehole. 
Specifically, the much smaller cation exchanger capacity and a gas phase's 
existence enforces different equilibrium concentrations for most dissolved species. 
Also, the celestite phase was removed from the borehole’s setup to avoid a buffering 
of sulphate concentrations during microbial mediated consumption of hydrogen.  
It is assumed that hydrogen consumption in the borehole is mainly caused by H2-
fueled, kinetically controlled microbial mediated sulphate reduction (Appelo and 
Vinsot, 2012; Bagnoud, Chourey, et al., 2016; Bagnoud, Leupin, et al., 2016; 
Boylan et al., 2019; Leupin et al., 2017; Vinsot et al., 2014, 2017). 

How long does it take to equilibrate water at the borehole wall? 

Tokunaga and Wan (1997) estimated the water layer thickness to vary between 2 
and 70 µm for a water film flowing along fracture surfaces of porous rock. For a 
very rough estimation of the time needed to equilibrate such a water film with the 
adjacent rock, it was assumed that water is entering homogeneously over the total 
borehole surface and forms a film with a thickness of 10 µm. The amount of water 
in the film layer covering the entire borehole surface corresponds to a water volume 
of ~1.2e-5 m3 (12 ml). The influx of Opalinus Clay pore water was estimated to be 
about 18 ml/day (Vinsot et al., 2017). Therefore, it would take about less than one 
day to completely replenish such a layer with the rock pore water solution. 
According to the square root relationship for diffusion in an infinite medium x 
~√2𝐷𝑡 (Crank, 1975) with a gas diffusion coefficient of D ~2e-9 m/s in the water, 
any concentration differences across the water film are expected to level out in 
much less than one day. 
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ABSTRACT Reactive transport modeling is a standard computational tool used to analyze and predict
physical and chemical phenomena. The objective of reactive transport codes is to carry out accurate
simulations of natural systems; hence, the more complex and detailed the phenomena analyzed by the
reactive transport model, the higher the computational costs. Machine learning and other new computing
techniques allow modern reactive transport codes to tackle complex problems in full detail by reducing
computational costs, for example, by using high-performance computing and GPU architecture. This article
presents a geochemical machine learning framework that bundles together several tools in order to carry
out reactive transport simulations using deep neural networks (DNN) instead of the traditional chemical
solver. A framework of this kind has enormous potential, since it makes it possible to first create the training
dataset with a traditional geochemical solver, then to use machine learning to identify patterns and train the
neural network (or any other major machine learning technique) to predict correct outputs, and, finally, to
harness the deep neural network to perform fast geochemical equilibrium calculations needed by the reactive
transport simulations. In order to validate the framework presented here, we consider a typical geochemical
application in which a 1.0mol MgCl2 is injected into a calcite column, causing calcite dissolution and
dolomite precipitation. The results show a very high level of agreement between the traditional geochemical
solver and the accelerated machine learning based approach. Additionally, we present a second application,
in which a second DNN is used with the supporting role of providing thermodynamic data for the reactive
transport simulation, making possible a more comprehensive emulation of the geochemical solver.

INDEX TERMS Artificial neural network, finite element method, geochemical modeling, reactive transport
in porous media, machine learning

I. INTRODUCTION

REACTIVE transport modeling is a valuable tool for
analyzing coupled physical and chemical processes in

the natural sciences [1]. These models consider geochemi-
cal properties and reactions (e.g., the precipitation and dis-
solution of minerals, swelling and sorption mechanisms)
combined with mass transport phenomena (e.g., diffusion,
advection). They have a variety of applications, for example,
in CO2 sequestration [2], deep geological repositories for ra-
dioactive waste [3], and geothermal energy [4]. Application-
related geochemical characteristics have led to different nu-
merical algorithms and specific functionalities, producing
several reactive transport packages over the years [5], [6].

Geochemical equilibration is known to be the bottleneck
in reactive transport modeling (RTM) [7]. Moreover, depend-

ing on the complexity of the geochemical system described
(e.g., the number of components, the presence of ideal and
non-ideal mineral and fluid phases, chemical reactions of
interest), such simulations can be highly time-consuming and
computationally expensive.

Consequently, alternative solutions and efforts to reduce
computational costs and overcome this bottleneck have
emerged. For example, one straightforward approach is to
adopt a simplified chemical system with fewer phases and
components that focuses on specific aspects of interest, while
ignoring others [8], [9]. Look-up tables have also been used
to approximate the chemical reactions and achieve very
similar results with a numerically efficient and truthfully
equivalent approach [10]–[14].

Recently, numerous studies have adopted machine learn-
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ing (ML) and artificial intelligence (AI) techniques. They
both perform well and can deal with large amounts of data
relatively accurately, for example, drug discovery and de-
scription [15], hand-gesture recognition [16], image analysis
and reconstruction [17], protein structure prediction [18],
and water treatment [19]. More specifically, neural networks
(NN) have gained popularity in, for example, combustion
[20] and geochemical modeling [21]–[25]. These innovative
techniques have enormous potential to decrease the compu-
tational costs incurred by algorithms of this kind.

Some criticism has been directed towards the claim that
ML represent actual learning [26]: One of the arguments
stresses that these algorithms do not learn as humans do, but
instead associate statistical analysis and correlations to pro-
duce correct answers that are perhaps not always grounded
in valid reasons. Nevertheless, the neural networks are sup-
posed to mimic human neurons. In most applications, the
algorithms are data-driven and can encode the structures and
underlying physics presented in the form of a multidimen-
sional dataset. Even if they do not outperform the accuracy
of human experience in relation to several problems, they
certainly exceed human throughput capacity.

In NN mathematical descriptions, some hyperparameters
(e.g., the number of neurons, layers, activation function, ker-
nel initialization) control the NN settings and are responsible
for the behavior of the NN model, whose aim is to produce
accurate outputs from the inputs provided. Currently, there
is no predefined method for selecting the best set of hy-
perparameters [27]. However, while finding the appropriate
hyperparameters is highly relevant, it is not a straightforward
task. Moreover, the training routine can take a long time and
be very computationally intensive.

Finding the right combination of an efficient training al-
gorithm with a good set of hyperparameters is fundamen-
tal when it comes to creating a NN model that correctly
identifies the patterns from the training dataset and produces
accurate outputs. For example, a NN with more neurons can
solve complex problems, but, at the same time, it can also
result in slow performance and overfitting (i.e., when the data
outliers are mistakenly considered part of the training data)
[28].

In this paper, we present a geochemical reactive transport
modeling framework that enables the efficient, flexible, and
accurate replacement of the traditional geochemical solver
with an NN model. Additionally, we provide the complete
geochemical neural network pipeline in a single bundled and
modular framework: from the dataset generation based on a
choice of a traditional chemical solver, through searching for
and tuning the proper hyperparameters, to the creation and
training of the NN model, and, finally, the deployment of the
NN model in a wholly integrated reactive transport modeling
framework in order to perform geochemical simulations. This
pipeline logic is presented in Fig. 1.

Using a NN to emulate the traditional geochemical solver
can dramatically decrease simulation time, while maintaining
good accuracy. It is an exciting approach to tackling com-

plex reactive transport modeling problems using a powerful
technique with state-of-the-art AI computational tools. The
framework presented here allows us to explore the hyper-
parameters of the NN, in order to find the most suitable
ones in a self-contained, easy and interactive way. Moreover,
it makes it possible to train the models—a very compu-
tationally demanding task—in high-performance computing
(HPC) facilities without any code change. Finally, one can
compare the results of different NN models and examine
how they perform against the fully coupled reactive transport
results. Once the neural network has been produced and
benchmarked in, e.g., a 1D reactive transport test case, its
efficiency is assessed and may be used for the demanding
3D reactive transport simulations. A typical example of high-
performance computing of a 3D reactive transport simula-
tion (e.g., using the lattice Boltzmann method) is usually
described in a 1000× 103 computational nodes. While mass
transport operations are generally fast, the slow geochemical
calculations must be performed at every computational node
and at every time step. With time steps being of the order of
100K–1M, the resulting number of geochemical calculations
is more than one quadrillion (10× 1015 ) per simulation,
making it impractical to use detailed geochemistry in the
traditional sense. Therefore, the use of neural networks opens
new horizons, since it enables the acceleration of geochem-
ical calculations by a factor of approximately 10× 103 to
10× 104 , essentially making the calculation of chemistry
computationally less expensive than the transport.

This paper describes the details of the transport and chem-
ical solvers, as well as how the sequential non-iterative
approach (SNIA) is used to couple both. Then, we present
the artificial neural network definitions and properties. After
that, we validate the methodology using a benchmark in
which a calcite column is flushed with MgCl2, causing
calcite dissolution and dolomite precipitation. Additionally,
we propose a reactive transport setup using an auxiliary
neural network that provides specific thermodynamic data in
order to emulate the traditional geochemical solver in a more
comprehensive way. To conclude, we examine the temporal
and computational costs, summarize our work, and discuss
future possibilities for the geochemical deep learning neural
network infrastructure presented here.

II. METHODOLOGY
For this paper, we use a variation of the reactive transport
framework defined in [6]. It performs reactive transport sim-
ulations in fully saturated multiphase-multicomponent het-
erogeneous systems with chemical equilibrium and kinetics,
using the Gibbs Energy Minimization (GEM) algorithm.

For the chemical equilibrium calculations, we use Reak-
toro [29], a robust geochemical framework for modeling
chemically reactive systems that calculates the equilibrium
condition for a given chemical system using the GEM algo-
rithm. It supports non-ideal multicomponent solid solutions,
a variety of activity models, and several equations of states
for multicomponent fluid systems.
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FIGURE 1. Pipeline for the geochemical machine learning framework showing the fully integrated bundled infrastructure

For the reactive transport simulation module, the partial
differential equation (PDE) solver FEniCS [30] is used,
which describes the physical mass transport of solutes using
its weak formulation via the Unified Form Language (UFL)
[31]. Moreover, it offers several Finite Element (FE)–based
numerical methods, which enables great flexibility by giving
full access to the PDE level and compatibility with distributed
memory HPC architecture PETSc-based parallelization.

A. TRANSPORT OF SOLUTES
Diffusion and advection are mass transport processes that
depend on concentration and pressure gradients [32]. In a
general multicomponent form description [33], the diffusive
and advective fluxes in a porous medium are:

θ
∂ci
∂t

= −∇ · θ
(
V ci −De(∇ci)

)
(1)

where ci is the volumetric concentration (mol ·m−3) of
the i-th transported species, t is time (s), θ is the porosity
(dimensionless), V is the pore velocity (m · s−1), and De is
the effective diffusion coefficient (m2 · s−1). An implicit time
discretization scheme is used due to its stability (respecting
the Von Neumann criteria [34], [35]) when coupling transport
and chemical solvers using operator-splitting [36] in combi-
nation with a short time step length. The implicit time step
scheme is:

∂ci
∂t
≈ cn − cn−1

∆t
(2)

where cn is the current unknown concentration, cn−1 is the
known concentration from the previous time step and ∆t is
the time step size. The corresponding weak formulation of
(1), using the Lagrange finite element family and combining
(2), is:
∫

Ω
θcni vidx =

∫

Ω

(
θcn−1

i − θ∆t(V cni −De∇cni )
)
· ∇vidx

(3)

where vi is the test function, a smooth, continuous, and
differentiable function inside the domain [37].

B. CHEMICAL EQUILIBRIUM CALCULATION
Two popular methods for performing equilibrium calcula-
tions are Gibbs Energy Minimization (GEM) [38]and the

Law of Mass Action (LMA) [39], which use Gibbs energy
(G) and the equilibrium constant (K) respectively. Both have
been extensively studied and used in RTM over the years
[24], [40]–[45] and they are mathematically equivalent under
certain conditions [46]. As stated in [5], LMA is used in pop-
ular RTM codes (e.g., EQ3/6 [47], Phreeqc [48], GWB [49])
and it is a stoichiometric-based approach that benefits from
the fact that multiple thermodynamic databases are available
that contain the equilibrium constants of reactions [50]. GEM
is the preferred method used in this paper for modeling the
multiphase-multicomponent geochemical systems, thanks to
the advantages it confers when modeling multiphase systems,
including non-ideal solid solutions, and the fact that it is
based on the standard chemical potentials. It is used via the
chemical solver Reaktoro [29]. We refer to [29] and [38] for
the governing equations and details of the GEM chemical
equilibrium algorithm.

This paper aims to present an alternative approach in
which a deep neural network replaces the chemical solver
(e.g., GEMS or Reaktoro) during the reactive transport sim-
ulation to reduce the overall simulation time. However, the
traditional solver is still very relevant, since it provides the
training data, in addition to being used for cross-validation
and benchmarking.

C. COUPLING OF TRANSPORT AND CHEMICAL
SOLVER
In order to preserve the modular nature of the framework
and to quickly provide the possibility of coupling the dif-
ferent modules together, we adopt SNIA [51], [52]. Using
SNIA, we couple the transport solver, which is responsible
for the physical mass transfer processes, and the chemical
solver or NN, which is responsible for the chemical reactions
and equilibration. For each time step, the partial differential
equations that describe the transport of aqueous components
are solved first. Then, the result is forwarded to the chemical
solver or NN, which calculates each node’s new equilibrium
condition. After that, the new amounts of transported species
and minerals are updated based on the equilibration results.
The loop is then repeated until the total simulation time is
reached.
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III. GEOCHEMICAL MACHINE LEARNING APPROACH
The traditional deterministic programming algorithms re-
quire the input data and a set of instructions for producing
the output. When using ML, this approach is replaced with a
less constrained, self-learning, output-oriented concept: The
input and output are provided beforehand, while a choice
among several ML training algorithms is responsible for
calibrating and adjusting the internal parameters of the NN
model in order to reproduce the output. One of the challenges
of replacing the chemical solver with an NN is the number of
inputs and outputs, because the inputs and outputs directly
impact its accuracy and ease of training. Essentially, numer-
ous inputs mean that the data lies in multidimensional sur-
faces, and many neurons and layers might be needed for such
a description. The larger the network, the more challenging
it is to train it to achieve the desired accuracy. Moreover, as
stated in [21], the simple feedforward NN architectures are
not fully mass conservative, and if the mass balance error is
significant and biased, it may grow cumulatively with each
time step.

A. NEURAL NETWORK CONCEPTS
Neural networks (NN) are traditionally applied to classifi-
cation tasks, in which the output is a class or category, as
well as to data regression problems, in which the output is
a number. NN is composed of interconnected neuron nodes
responsible for processing the inputs to produce outputs [53].
The "neurons," or processing units, generate outputs based on
a non-linear function of the sum of its inputs. Therefore, the
more information and guidelines are provided to the neurons
during the training period, the higher the chances of the
NN’s internal algorithm making appropriate decisions and
producing accurate outputs.

NN with multiple layers were initially presented in [54]–
[56] and the term "deep learning" was coined a few years
later in [57]. Nevertheless, only after the dissemination of
the effective techniques presented in [58] did the deep neural
networks (DNN) start to gain popularity due to the new
efficient training routines and their ability to deal with a
large amount of data. Fig. 2 shows a feed-forward DNN
architecture, for illustration purposes, in which the multiple
neurons from each layer are fully connected.

Fig. 3 shows how the neuron weights the inputs and pro-
duces the output using a non-linear activation function. Each
neural network property (e.g., number of layers, neurons,
activation function) has its advantages and limitations, and
often one needs to find the best combination empirically. For
a detailed description, we refer to [59].

The training process of a NN optimizes each neuron’s
weight based on the samples from the training dataset
through an interactive process in which, for a given set of
inputs, the correct parameters are given at the output [60].
In order to achieve this, it is possible to use, for example,
gradient descent algorithms. The adjustment of the iterative
weights is known as the back-propagation phase. It is a very
popular procedure and a crucial phase in neural network

FIGURE 2. Deep neural network architecture with three inputs, two hidden
layers, and one output

FIGURE 3. Each neuron produces a nonlinear output based on the weighted
summation of its inputs. Nonlinearity is achieved using an activation function

training, as it is responsible for tuning the weights in order
to ensure lower error rates on later iterations [61]–[64].

There are many techniques, algorithms, and approaches to
training a DNN [65], [66], but there are still many unresolved
challenges, such as how to efficiently and accurately train
a high dimension neural network [67], [68]. One popular
technique used to assist training routines is early stopping
callback [69], which is commonly used to monitor and halt
training when a particular metric of interest (e.g., accuracy)
does not improve after a certain threshold. Another important
technique is the dropout, which randomly ignores certain
neurons during the training routine, causing an overall im-
provement in the results and thus helping mitigate the effects
of overfitting [70]. The objective is to keep the network as
simple as possible (with a reduced number of layers and neu-
rons) and sufficiently robust to learn and predict accurately.
This ensures a rapidly trainable and high-performing neural
network.

NN hyperparameters play an important role in its behavior,
as well as in the optimization process [59], [71]. A few of
these hyperparameters are summarized as follows:

• Layers: a container of neurons that receives an input,
performs a calculation, and produces outputs. In Fig. 2,
the layers are indicated with dashed rectangles.

• Neurons: the processing units, which perform mathe-
matical functions on their inputs in order to produce out-
puts. The neurons are placed inside layers, as indicated
in Fig. 2, and their behavior is detailed in Fig. 3.
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• Batch size: the number of samples used in each training
iteration before updating the weight of each neuron.
Usually, the use of small batch sizes is desirable in
order to stimulate smaller, but consistent updates to the
learning algorithm.

• Epoch: the number of iterations (or cycles) for which the
learning algorithm will use the dataset. Typically, a high
number of epochs is used in order to allow the learning
algorithm to evaluate the data multiple times and to
decrease prediction errors by adjusting the weights.

• Learning rate (LR): the size of the change in weight at
each step based on the error metric. A small LR results
in a slow training routine, while an excessively large LR
results in unstable training.

• Momentum: increases or reduces the impact of the LR.
It can accelerate the learning algorithm or decrease the
changes, once a minimum gradient of descent has been
found.

• Activation function: is the mathematical function mech-
anism that produces an output based on the neuron’s
weights. It significantly impacts the NN’s performance,
and different layers can have different activation func-
tions. Popular activation functions are, for example, the
sigmoids, the tanh and the rectified linear activation
function (RELU), with the latter returning the value
provided as input or zero if the input is equal or smaller
than zero.

• Kernel initialization: the initial weights attributed to the
neurons. Usually, a random distribution is preferred to
avoid the influence of an initial seed.

• Optimizers: the training algorithms that adjust the
weights of the neurons and learning rate during training,
in order to reduce the model’s losses and to produce
the most accurate output possible. Several training al-
gorithms exist (each with its own advantages and dis-
advantages): e.g., Stochastic Gradient Descent (SGD)
[72], RMSprop [73], Adam [72], and Adadelta [74].
New algorithms are constantly being developed in this
rapidly evolving field.

B. GEOCHEMICAL SOLVER EMULATION
INFRASTRUCTURE
In this paper, a regression NN model is used. It takes as
its input the amount of each independent component (in
moles) and produces as an output an equilibrium condition
in amounts of aqueous species and minerals (in moles).
Alternatively, the output could be expanded to include other
properties of the traditional geochemical solver, such as pH,
Eh, volume, and pressure. The trained NN model is coupled
within the SNIA algorithm, as shown in Fig. 4, and provides
a seamless tool in the reactive transport framework.

The size and quality of the existing samples in the train-
ing dataset are essential to producing an accurate neural
network, and there are multiple ways to create the dataset.
For demonstration purposes, we use the output of the fully
coupled reactive transport model to constrain the dataset

and to ensure that the dataset represents the whole reactive
transport simulation domain.

The geochemical ML infrastructure presented in this paper
is based on TensorFlow, a free and open-source machine
learning application, and Keras, a high-level Python interface
that facilitates the usage of TensorFlow. In addition, Keras
provides methods for building and training neural networks,
enabling fast experimentation and the exploration of machine
learning algorithms in a few lines of code. For the dataset
generation, this work uses the chemical solver Reaktoro
[29], and ThermoFun [75]. ThermoFun is an open-source
provider of thermodynamic properties of substances and
reactions at the temperature and pressure of interest [75]. The
geochemical ML infrastructure, presented in this work, has
been bundled together using Python, Conda packages, and
Jupyter notebooks, allowing for the quick deployment of the
framework, as well as for a seamless user experience [76].

C. HYPERPARAMETER SEARCH
Finding the appropriate set of hyperparameters that effec-
tively produces a performant NN is a challenging task (en-
capsulated in the middle component of Fig. 1). It involves:
defining a complete set of parameters; performing a full
training; evaluating the NN model; conducting the reactive
transport simulation with the NN and analyzing the results;
fine-tuning it and tracking its evolution; and, if necessary,
restarting the iteration. The geochemical ML infrastructure
presented in this paper includes an integrated hyperparameter
search tool, in order to assist with the iterative task of finding
suitable parameters. It allows the user to fix a set of hy-
perparameters while varying others and compares them side
by side, making it possible to graphically visualize which
ones are likely to be the most suitable combination. For
demonstration purposes, this section presents the evaluation
of the hyperparameter search tool, while exploring the most
suitable activation function, epoch, and batch size for the
calcite-dolomite application presented in the next section.
When attempting to establish the most suitable value for
a given hyperparameter, all the others are fixed. The other
neural network training routine parameters are defined as
follows: 6 inputs and 5 outputs; dataset size with 45, 000
entries; 3 hidden layers with 12 neurons each; and Adam
as the training algorithm optimizer and relu as the activation
function. The evaluation is based on Tensorflow’s metrics:
loss (mean squared error or MSE), accuracy (ACC), and
root mean squared error (RMSE). Table 1 presents the (a)
accuracy, (b) RMSE, and (c) loss (MSE) for the different NN
models evaluated during the hyperparameter search routine,
when changing the number of epochs, batch size, and activa-
tion function.

The purpose of a metric is to indicate a NN’s property,
which is normally intended to be minimized or maximized
through the iterations and learning process. Additionally, [53]
is referred to for details of each activation function, which
are omitted here because they fall outside the scope of this
work. Moreover, the framework presented here also provides
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FIGURE 4. SNIA with the two possibilities for calculation of the chemical equilibrium condition: chemical solver or neural network

TABLE 1. Compilation of the NN’s metrics (loss, accuracy, and RMSE)
generated during the hyperparameter’s search for number of epoch, batch
size, and activation function.

epoch batch metrics

# size loss accuracy RMSE

50 16 2.8370× 10−5 9.9980× 10−1 5.3263× 10−3

50 32 3.3975× 10−5 9.9980× 10−1 5.8288× 10−3

50 64 4.4702× 10−5 9.9980× 10−1 6.6860× 10−3

500 16 2.3201× 10−5 9.9980× 10−1 4.8167× 10−3

500 32 2.2338× 10−5 9.9980× 10−1 4.7263× 10−3

500 64 2.7731× 10−5 9.9980× 10−1 5.2660× 10−3

1000 16 2.7046× 10−5 9.9928× 10−1 5.2006× 10−3

1000 32 2.3455× 10−5 9.9980× 10−1 4.8430× 10−3

1000 64 4.9052× 10−3 9.6088× 10−1 7.0037× 10−2

activation metrics

function loss accuracy RMSE

relu 2.2732× 10−5 9.9980× 10−1 4.7678× 10−3

softmax 1.8440× 10−4 9.9960× 10−1 1.3579× 10−2

tanh 3.0838× 10−5 9.9933× 10−1 5.5532× 10−3

sigmoid 2.3661× 10−5 9.9980× 10−1 4.8643× 10−3

hard sigmoid 4.9281× 10−3 9.6088× 10−1 7.0200× 10−2

softplus 2.4107× 10−5 9.9980× 10−1 4.9099× 10−3

softsign 2.4948× 10−5 9.9946× 10−1 4.9948× 10−3

a graphical comparison between the trained NN models to
facilitate the comprehension of the impact of different hyper-
parameters on the overall quality of the NN model and on
the simulation. Fig. 5 and Fig. 6 present the NN’s metrics
evaluation for the first 5 epochs.

In Fig. 7, which shows a comparison between the predicted
and true values for different activation functions, the perfect
identity diagonal plot represents an accurate model, in which
the NN’s predictions match the true values from the dataset.
It is possible to verify that for this specific trial of dataset and
combination of hyperparameters, the hard sigmoid activation
function does not perform well (indicated by the horizontal
lines). However, relu and tanh are suitable candidates (indi-

TABLE 2. Boundary condition (BC) and initial condition (IC) definition based
on the bulk composition (independent components) of the chemical system.

Element BC [mol] IC [mol]

C 2.707 53× 10−2 4.878 00× 10−1

Ca 4.878 00× 10−1 4.878 00× 10−1

Cl 6.149 09× 10−1 3.158 36× 10−21

H 3.413 26× 101 3.506 43× 101

Mg 3.074 55× 10−1 3.158 36× 10−21

O 7.700 30× 101 7.735 12× 101

Si 29.9277 29.1784

cated by their overlap with the identity diagonal).

IV. APPLICATIONS
A. DOLOMITIZATION APPLICATION
The benchmark presented here is inspired by [24], [38], [77],
[78]. A 1M MgCl2 solution flows, injected from the left
boundary, into a 1D 0.5m long calcite column with a fixed
effective porosity of 0.32 and 50 equidistant nodes 0.01m
apart from each other. The simulation runs for a total time
of 10, 000s with a time step ∆t = 200 s. The advective
velocity is 9.375× 10−5 ms−1 and the diffusion coefficient
is 6.281 25× 10−7 m2 s−1.

The temperature and pressure of the chemical system are,
respectively, 60◦C (333.15K) and 100 bar.The independent
components of the chemical system are presented in table 2.
The boundary condition (BC) amounts are strong Dirichlet
BC imposed at the left boundary of the domain (x = 0.0).
The initial conditions (IC) are the initial amounts of the
species throughout the domain (0.0 < x <= 0.5). Table 3
presents the chemical system phases and speciation.

For this benchmark, a reduced chemical system with only
the main species was adopted in order to slightly reduce the
chemical system’s dimensionality. The transported species
are Mg+2, Cl– and Ca+2. The reactive mineral phases are
calcite (CaCO3) and dolomite (CaMg(CO3)2).
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FIGURE 5. Plot evaluation of the metrics using the hyperparameter search tool with regard to number of epochs and batch size (subtitle format: epoch_batch)

FIGURE 6. Plot evaluation of metrics using the hyperparameter search tool with regard to the optimizer

FIGURE 7. Evaluation of models with different activation functions and
comparison with the identity diagonal

TABLE 3. Phases and species in the chemical composition definition.

Phase

Aqueous Quartz Calcite Dolomite

H2O(l) H+ OH– Ca +
2 Cl– HCO –

3 Mg +
2 SiO2 CaCO3 CaMg(CO3)2

The benchmark workflow is divided into three connected,
sequentially ordered parts: the definition of the chemical sys-
tem and the generation of the training dataset; the generation
of the NN model after the learning routines and hyperparam-

eters tuning; and, finally, the reactive transport simulation
using the neural network as an emulation of the chemical
solver, as well as the comparison between the results from
both reactive transport approaches and the computational
costs. All three parts are bundled together into a unique
geochemical machine learning infrastructure presented in
this paper.

The training dataset is composed of 915, 000 samples and
was generated using a refined spatial discretization mesh,
in order to ensure that the entire simulation domain is rep-
resented in the dataset. Each node exports its bulk compo-
sition and equilibrium results at every iteration during the
simulation time, plus a variation of ±5% around the exact
values. Each sample is composed of independent components
(inputs) and equilibrated composition of transported species
and minerals (outputs) for a specific time step, as presented
in equation 4.

input =




C
Ca
Cl
H
O
Mg



output =




Mg+2

Cl−

Ca+2

calcite
dolomite




(4)

Quartz is present in the chemical system as an inert (non-
reactive) phase solely for the purpose of porosity adjustment.
For this reason, it was removed from the training dataset.
Table 4 presents the hyperparameters of the DNN used in
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TABLE 4. Deep neural network hyperparameter details.

Hyperparameter

Layers Neurons Initializer Optimizer Activation function Epoch Batch size

3 7 uniform adam relu 1000 32

FIGURE 8. Evaluation of the DNN through a comparison between the true
values and the NN predictions

the emulation of the geochemical solver for the benchmark
problem.

Fig. 8 presents the model’s comparison of predictions with
true values. The predictions of the NN model match with a
high degree of agreement the identity diagonal. An outsider
point is present on the evaluation plot, but does not strongly
impact the reactive transport model.

Fig. 9 presents the comparison after 10, 000s between
the reactive transport model using Reaktoro and the alter-
native approach using NN. On the left side, the transported
species are presented, on the right side, the minerals. The
inflow of MgCl2, starting from the left-side boundary, causes
dissolution of the existing calcite, followed by dolomite
precipitation. It is possible to verify that there is a high
level of agreement between the NN predictions and the full
equilibrium calculation using Reaktoro. It is also interesting
to observe the behavior of the aqueous Cl– , which is a
non-reactive aqueous tracer. It shows the advective-diffusive
transport front without interacting with the minerals, but it
follows the precipitation-dissolution front.

1) Computational cost analysis
A larger dataset, with 1.178 212× 107 entries, is used to an-
alyze the computational and temporal costs between NN and
Reaktoro. Fig. 10 shows that, on average, each NN prediction
or Reaktoro equilibration takes, respectively, 4.063× 10−8 s
and 1.8914× 10−4 s.

Depending on the number of nodes, the computational cost
is most likely to derive from the chemical equilibration part
of the model. For temporal analysis purposes, the calcite-
dolomite benchmark presented above was performed again,
but this time with 10, 000 nodes (instead of 50). For this
variation, the time consumed in the chemical equilibrium

TABLE 5. Hyperparameter details of the ThermoFun thermodynamic neural
network used for better geochemical solver emulation.

Hyperparameter

Layers Neurons Initializer Optimizer Activation function Epoch Batch size

5 50 lecun uniform adamax relu 100 32

corresponds to approximately 95% of the total time and 5%
of the transport solver. With this NN, one could achieve
an increase of speed of around 4650 , that is, three to four
orders of magnitude, which is in agreement with [23]. Such
an increase in speed would make it possible to tackle even
more complex problems.

B. THERMODYNAMIC NEURAL NETWORK
The use of a DNN as an emulated chemical solver, as pre-
sented in section IV-A, brings with it certain limitations. For
example, the reaction details and substance’s thermodynamic
properties are no longer available, unless they are explicit
outputs of the DNN that had been previously defined when
preparing the dataset for the training routine. In order to
provide a more comprehensive geochemical ML reactive
transport infrastructure, this paper also presents an approach
to better emulating the chemical solver by providing ther-
modynamic data with an auxiliary DNN. ThermoFun [75] is
used to generate a species-related thermodynamic database,
which, based on the temperature and pressure, provides the
Gibbs energy, enthalpy, entropy, heat capacity, and volume.
The details of the neural network are presented in the equa-
tion 5. The NN details are presented in 5.

input =

[
temperature
pressure

]
output =




Gibbs energy
enthalpy
entropy

heatcapacity
volume




(5)
Fig. 11 shows on the left and the right, respectively, the

comparison between different optimizers and the evaluation
of the finished, trained model.

With an auxiliary neural network focused on thermody-
namic properties, the reactive transport simulation can access
thermodynamic information from the substances and reac-
tions while acquiring the necessary performance and flexibil-
ity, as a result of its not depending on the traditional chem-
ical solver. These thermodynamic properties can be used,
for example, to detect problems with the evolution of the
reactive transport simulation, because the approach presented
in this work is not fully mass conservative. An extension of
the developed framework presented in this work would be
to perform smart adjustments on the main neural network
chemical equilibration predictions based on the auxiliary
thermodynamic data neural network: a thermodynamically
consistent neural network architecture.
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FIGURE 9. Aqueous transported species comparison between DNN and Reaktoro

FIGURE 10. Comparison of total time needed to perform 1.178 212 × 107

predictions (DNN) and equilibrations (Reaktoro)

V. SUMMARY AND CONCLUSION

Machine learning and neural network algorithms are inno-
vative techniques that are being widely applied. They help
us deal with and understand the enormous amount of data
generated nowadays. This paper presents a fully integrated
state-of-the-art machine learning infrastructure that enables
the exploration and design of reactive transport models using
neural networks instead of direct couplings with the tradi-
tional chemical solver. This represents an innovative engine
that brings machine learning possibilities to reactive transport
modeling. The machine learning infrastructure presented in
this paper makes it possible to: (i) generate training data sets
using a geochemical solver (e.g., GEMS or Reaktoro), also
as a result of a simple full reactive transport simulation; (ii)
train and test the neural networks and explore the multiple
hyperparameters, in order to verify which are the most appro-
priate; (iii) validate the resulting neural network against the
reactive transport benchmark and compare its performance
with that of the traditional geochemical solver. This infras-
tructure allows us to overcome two severe and inherent lim-
itations of chemical solvers: the non-parallelizable nature of

the chemical solvers and their non-transferability to various
computer architectures. At the same time, the neural network
is, per se, highly parallelizable and may be deployed in all
existing computer architectures both in software and recently
also in hardware mode (e.g., neural engines of M1 Apple
CPU, Intel, GPU tensor cores). Moreover, it takes advantage
of high-performance computing, while maintaining accuracy
and a flexible description of the physical and chemical phe-
nomena. Among other challenges, there is no predefined
recipe for finding the most suitable hyperparameter for neural
networks. For this reason, a single framework that makes it
possible to define, train, and test hyperparameters, as well
as to compare the results of a neural network with those of
a chemical solver has immense potential, when it comes to
designing and solving complicated reactive transport sim-
ulations. We stress that it is necessary for there to be an
initial phase in which the dataset is generated and the neural
network trained. However, the results for the benchmark
presented here display an extremely high level of agreement
and, even though the increase in speed is not generalizable
to all applications (since it depends heavily on the chemical
system’s definition and training routine), it demonstrates
the possibility of taking reactive transport modeling to the
next level of high-performance computing and of addressing
more complex problems in full detail. For complex or high-
performance computing simulations, the training cost is a
small fraction of the overall computational time, providing
a one to three orders of magnitude (depending on the mass
transport solver) overall acceleration to find the solution. In
future research, the current machine learning infrastructure
could generate auxiliary neural networks that emulate other
processes from the chemical solvers. For example, in a sim-
ilar way to the proof-of-concept, in which a DNN was used
to provide thermodynamic properties based on ThermoFun,
one could integrate an additional neural network, in order to
describe non-ideal solid solutions. Additionally, by taking ad-
vantage of the Jupyter notebook approach, it would be possi-
ble to make the geochemical machine learning infrastructure
presented in this work available to many users via an online
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FIGURE 11. Comparison with different optimizers and final evaluation of the ThermoFun DNN model

web app without code changes. Finally, the modular nature
of the framework allows different testing combinations of
chemical solvers, neural network architectures, and machine
learning techniques, as well as of different mass transport
solvers.
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Chapter 5

Summary and outlook

5.1 Summary

Reactive transport modelling is the basic tool used in modern computational geochemistry. In
practice, its predictive accuracy in relation to complex natural phenomena and its ability to
account for the relevant process couplings is often limited by the performance and flexibility of
the available numerical tools. In this research project, an open-source simulation framework was
developed, which provides a versatile modelling environment, while simultaneously ensuring full
control over the numerical methods. Taken as a whole, it represents a goal-oriented and easy-to-
learn framework for reactive transport modelling, one that combines various computing engines
optimized for state-of-the-art hardware platforms that are designed to describe physical and
chemical processes. Basic reactive transport equations that are predefined for typical geochemical
problems are easily scalable by means of the coupling of additional physical and chemical
phenomena using a simple, intuitive, high-level programming language. To cite just one example,
the framework has been benchmarked for electrochemically coupled multicomponent diffusion
across charged or uncharged membranes, as well as in combination with complex geochemical
reactions (Chapter 2). This flexible and easily customizable framework makes possible the further
development of the model, as well as geochemical applications that are not easily implemented
in existing reactive transport codes. Accordingly, the framework was used to investigate and
model the data collected from the Hydrogen Transfer (HT) experiment (Chapter 3) conducted
at the Mont Terri underground rock laboratory in Switzerland. Modelling the HT experiment
requires a coupled geochemical setup, in which the evolution of a borehole gas and water phase
sets boundary conditions for the transport of dissolved gases in the surrounding Opalinus Clay
formation. In turn, the evolution of the borehole gas phase is back-coupled to the diffusive
transport of dissolved gases in the Opalinus Clay, the flow of formation water into the borehole,
the extraction of accumulated water from the borehole, the injection of hydrogen and other gases
into the borehole, and the microbially mediated hydrogen reaction.

The customized model accurately reproduces both the observed temporal evolution of gas
composition in the borehole and the composition of the extracted water. The modelling study
demonstrated that fluxes of non-reactive gases across the borehole wall are primarily constrained
by the diffusive transport of dissolved gases in Opalinus Clay. The estimated effective diffusion
coefficients displayed a high level of agreement with those measured by previous laboratory and
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field studies on Opalinus Clay conducted at Mont Terri. The experimentally observed reduction
in sulphate concentration is controlled by the interplay between the inflow of Opalinus Clay water,
water extraction via an automatic extraction system, and the microbially driven consummation of
hydrogen via sulphate reduction.

For many geochemical applications, chemical equilibria calculations are one of the key
processes controlling the evolution of the system. Unfortunately, the chemical solvers often
represent a computational bottleneck for reactive transport modelling. The reactive transport
framework developed here provides a straightforward, modular method for coupling external
chemical solvers. Machine learning (ML) and artificial intelligence (AI) are innovative technolo-
gies that are being widely applied in both research and industry. They facilitate the processing
and understanding of the enormous amounts of data being generated nowadays. For example, the
use of ML makes it possible to improve the performance of geochemical calculations by several
orders of magnitude, without compromising modelling accuracy. Chapter 4 of the thesis describes
an innovative modelling engine that applies ML techniques to reactive transport modelling in a
novel way.

The developd machine learning toolbox presented and tested in chapter 4 makes it possible:
(i) to generate training data sets using a geochemical solver (e.g., GEMS or Reaktoro), as the
result of a simple full reactive transport simulation; (ii) to train and test the neural networks and
explore the multiple hyperparameters, in order to verify which are the most appropriate; (iii) to
validate the resulting neural network against the reactive transport benchmark and to compare
its performance with that of the traditional geochemical solver. Applications of the ML-based
approach enables us to overcome two severe limitations inherent in chemical solvers: (i) their
non-parallelizable nature and (ii) their non-transferability to various computer architectures. By
contrast, the neural network is highly parallelizable and can be deployed in all existing computer
architectures, both in software and, more recently, in hardware mode (e.g., the neural engines
of M1 Apple CPU, Intel, GPU tensor cores). These advantages were demonstrated in order to
compare reactive transport models using neuronal networks with traditional reactive models that
use direct coupling with the traditional chemical solvers.

Moreover, neural network–based chemical-solver surrogate models make it possible to take
advantage of high-performance computing, while maintaining accuracy and preserving a flexible
description of the physical and chemical phenomena. Finally, the modular nature of the framework
allows for different testing combinations of chemical solvers, neural network architectures, and
machine learning techniques, as well as different mass transport solvers.

5.2 Outlook

The developer experience and numerous numerical benchmarks presented in this thesis suggest
that the future development of reactive transport codes will be driven by the need to be more
realistic regarding the description and coupling of the processes and to consider the different
spatial and temporal scales of these processes. Furthermore, the multiscale aspect, in particular,
anticipates the need for the development of faster and more flexible computer code, capable of
exploiting the rapidly evolving modern computer architecture.

The framework developed here was specifically designed to be easily extendable, to allow
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the coupling of other physical processes, and to create a thermo-hydro-chemical-mechanical
(THMC) framework. The insertion of thermal, hydraulic, and continuum mechanical processes
(e.g., deformation) is straightforward. They can be implemented in the form of additional coupled
Partial Differential Equations (PDE) in the FEnICS software. Other mechanical processes (e.g.,
crack formation) will require the additional coupling of specialized codes into the framework.

The chemical description and equilibrium calculation of the natural systems must be reliable
and based on accurate (and accessible) thermodynamic data. It could be that, depending on the
application, a specific choice of chemical solver is more appropriate — for example, law-of-mass
action (LMA) or Gibbs Energy Minimization (GEM). Therefore, it is recommendable to analyze
the availability of thermodynamic data needed to describe the system.

Pore and molecular-scale phenomena are of fundamental importance for the understanding
mechanism of reactive transport processes in porous media. However, consideration of pore-scale
processes in large continuum-scale models requires some level of abstraction and approximation.
Therefore, in practice, pore-scale phenomena are considered in large-scale models in the form of
effective parametric relationships.

The spatial heterogeneities and characteristic time scale of coupled dynamic processes have
an enormous impact on the overall stability, robustness, and applicability of the reactive transport
simulations. Small-scale phenomena usually impose limitations on the integration time scale and
model resolution, as well as heavily impacting the overall computational performance.

Considering the recent evolution of software and hardware, the reactive transport codes must
take advantage of the available computational power by using parallelization and HPC techniques
in order to improve performance and enable a more detailed description of the physical and
chemical processes. A general problem in software development is the rapid evolution of new
hardware. Therefore, modularity and the possibility of quickly exchanging existing software is
needed, if it cannot be effectively used on new computing platforms.

Moreover, given that the chemical equilibrium calculation is usually the most time-consuming
task for the models, it is necessary to consider feasibility, by taking into account the computational
costs of the reactive transport simulations and, if necessary, possible simplifications in order to
enable performance gains. For example, for large-scale simulations as chemical engineering
applications with different geometries of the modelling domain, but with a similar chemical setup,
one should also consider using surrogate chemical solvers, such as neural networks or lookup
tables.
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