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S U M M A RY

Precipitation plays an irreplaceable role in many aspects of the climate sys-
tem, including the global water cycle, climate change, and weather prediction.
However, the current mainstream technologies for obtaining precipitation in-
formation have its inherent limitations. The potential of ground-based mi-
crowave radiometers for rain parameter retrieval is complementary to these
techniques. The main aim of my thesis is thus to optimally estimate precipi-
tation for microwave radiometers and further apply these retrieval methods
to monitor precipitation systems in synergy with other remote sensing or in
situ techniques.

This thesis is divided in three parts. Part i summarizes the formation process
and categorization of precipitation in Chapter 1. The virga phenomenon, the
inter-relations of aerosols, clouds, and precipitation, and the precursors of
rainfall are also introduced.

Part ii covers the principles of radiative transfer and tropospheric microwave
radiometers in Chapter 2 and presents the datasets used and the methodol-
ogy for rain rate retrieval and data analysis in Chapter 3.

Part iii comprises six of my studies that have been published or submitted to
peer-reviewed journals. Firstly, based on the physical characteristics of rain-
drops in the atmosphere that affect microwave radiation signals, I detected
rainfall with high accuracy and high time resolution from rain-contaminated
microwave radiometer data using Gradient Boosted Decision Tree (GBDT) al-
gorithms in Chapter 4. The rain type classification from micro rain radar
(MRR) is used as the target labels to train this model. Secondly, I investi-
gated an optical depth based physical method in Chapter 5 and developed
two machine learning based methods in Chapter 6, to retrieve rain rates from
the tropospheric microwave radiometers. By comparing with rain rates mea-
sured by rain gauges or MRR, all these methods perform excellently. Then, I
assessed the performance of indoor and outdoor microwave radiometers for
brightness temperature and atmospheric water measurements, and explored
the source of deviation in brightness temperature using GBDT by comparing
the importance of various factors on the biases in Chapter 7. The innova-
tive device setting of the indoor microwave radiometer effectively avoids the
water film on the radome due to rain. Finally, as applications for rain estima-
tion, I investigated the characteristics of atmospheric parameters observed
from ground-based microwave radiometer and weather station using a su-
perposed epoch analysis method before, during, and after rain events over
the Swiss Plateau, deducing the temporal evolution of rain events and iden-

ii



tifying possible rainfall precursors in Chapter 8. Moreover, I monitored the
inter-relations between various factors, such as aerosols, clouds, and mete-
orological variables, and precipitation systems using ground-based remote
sensing and in situ instruments in Granada including a microwave radiome-
ter, ceilometer, cloud radar, nephelometer, and weather station in Chapter 9.
I analyzed the potential reasons for the predominant rain type, the main rain
intensity class, and the occurrence of the virga phenomenon over southern
Spain.
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Part I

M E T E O R O L O G I C A L B A C K G R O U N D

This part offers an overview of precipitation, covering its forma-
tion and various types. It also explores the interrelations between
aerosols, clouds, and rainfall, along with the precursors of rain.



1 P R E C I P I TAT I O N

Water continuously cycles between the Earth and the troposphere, as shown
in Figure 1.1. The total amount of water in the cycle remains roughly con-
stant, but the spatio-temporal distribution and the phases of water in the var-
ious processes of evaporation, condensation, precipitation, and runoff is con-
stantly changing. Liquid water or solid ice and snow on the Earth’s surface
can transit into the atmosphere through evaporation or sublimation, forming
water vapor, the primary atmospheric water form. Water vapor in the atmo-
sphere condenses to form clouds and is eventually released as precipitation
(Bengtsson, 2010).

Figure 1.1: Atmospheric water cycle diagram.
https://www.teachengineering.org/curricularunits/view/cub_wate

r_cycle_unit

Precipitation forms in the atmosphere and falls back to the ground. Its for-
mation involves complex meteorological processes, including advection of
humid air, vertical winds, adiabatic cooling and condensation of water va-
por on aerosols and ice crystals. The subsequent growth of cloud droplets
and ice crystals to raindrops, snowflakes or other hydrometers depends on
microphysical processes, atmospheric composition, thermodynamics and dy-

2
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1.1 precipitation processes 3

namics. Various meteorological conditions and formation mechanisms give
rise to diverse types of rainfall, such as frontal rain, convective rain, and
orographic rain. Although meteorologists have made significant progress in
rainfall research, accurate rainfall predictions remain a formidable challenge.

This chapter offers a general introduction to the topic of this thesis, namely
precipitation in the troposphere. In Section 1.1, the processes responsible
for precipitation formation are presented, namely, collision-coalescence and
the ice crystal process. Different types of precipitation and the virga phe-
nomenon are detailed in Section 1.2 and Section 1.3, respectively. Section 1.4
explores the intricate connections between aerosols, clouds, and rainfall, while
Section 1.5 introduces the concept of rainfall precursors. Geographical and
climatic characteristics of the two regions under study (Swiss Plateau and
Andalusia) are provided in Section 1.6.

1.1 precipitation processes

Precipitation primarily occurs through two processes: collision-coalescence
and ice crystal process (Wegener–Bergeron–Findeisen process). The two pro-
cesses are distinguished by cloud temperature. Warm clouds, with temper-
atures above 0°C, are composed of liquid droplets and hence the collision-
coalescence process is effective. Cold clouds, with temperatures below 0°C,
prevail in middle and high latitudes, and here the ice crystal process is effec-
tive (Ritter, 2017).

Cloud droplets are small, with an average diameter of around 0.02 mm, mak-
ing them approximately 100 times smaller than typical raindrops (Ahrens
and Henson, 2019b). Figure 1.2a shows the process of the cloud droplet colli-
sion and coalescence to form the raindrop, where t0 to tn represent various
moments in time. The cloud droplet at t0 moves upwards due to the updraft.
The droplet at t1 collides and captures smaller droplets along its path to
grow larger. As droplet at t2 reaches a certain altitude, a balance between the
cloud’s updraft and the droplet’s gravity is established, allowing the droplet
to remain suspended in the air. The droplet at t3 slowly falls as it grows
larger. The falling droplet at t4 captures larger cloud droplets, leading to
further growth. As the droplet moves through the cloud at t5, it transforms
into a sizable raindrop. These raindrops fall rapidly, contributing to warm
convective cumulus cloud showers.

Figure 1.2b shows the ice crystal process of stratiform precipitation. Cloud
droplets, due to their small size, can remain in liquid form even at very
low temperatures (as low as -40°C), called supercooled droplets. Cold clouds
contain supercooled droplets and ice crystals. The saturated vapor pressure
above water is higher than that above ice. This saturated vapor pressure gra-
dient causes the water molecules of droplets to transfer to the ice crystals,
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providing a continuous water source for the rapid growth of ice crystals. As
the gravity of the ice crystal becomes stronger than the updraft, it begins
to fall. In warmer cloud layers, the collision of ice crystals with supercooled
droplets leads to the incorporation of droplets into the ice, forming grau-
pel. As graupel falls, it can break into smaller pieces and develop into new
graupel. In cooler cloud layers, delicate ice crystals collide with other crys-
tals and break into tiny ice pellets that come into contact with supercooled
droplets and freeze them. In both cases, numerous ice crystals merge to create
snowflakes through aggregation. The snowflake melts while passing through
the melting layer (0°C) before reaching the ground, transforming into rain-
drops (Ahrens and Henson, 2019b).

(a)

(b)

Figure 1.2: Diagrams of (a) collision-coalescence process of convective precipitation
and (b) ice crystal process of stratiform precipitation.

— Houze Jr. (2014)

1.2 categorization of precipitation

Precipitation is typically categorized into three types based on their forma-
tion mechanisms: frontal rain, convective rain, and orographic rain. Frontal
rain occurs at the boundary of cold and warm air masses, where warm air
is lifted up by cold air to form clouds and precipitation. This type of rain
is typically steady, uniform, and of moderate intensity. Convective rain is
when the ground heats up and and the humid air rises to form a convection
cell that leads to altocumulus or thunderstorm clouds and precipitation. This
type of rain usually covers relatively small areas and is relatively intense. La-
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tent heat release due to condensation of water vapor amplifies the vertical
updraft and the size of the convection cell. Orographic rainfall is when moist
air is forced up by terrain obstacles such as mountains. Adiabatic cooling of
the rising humid air leads to formation of clouds and precipitation. In na-
ture, the multiple factors influencing precipitation are often interconnected,
so that resulting rain is not always easily categorized into a single type. In
all cases, the occurrence of vertical winds and the adiabatic cooling of rising
moist air are essential for the formation of precipitation. In addition, atmo-
spheric instability due to surface heating, enhanced atmospheric humidity
and latent heat release of moist air generates convective rain.

1.2.1 Frontal rain

Frontal rain refers to the precipitation phenomenon caused when cold fronts,
warm fronts or other fronts appear. A front is a cold front when cooler air
passes by and replaces warmer air. Cold air retreats and is overlayed by warm
air, forming a warm front (Ahrens and Henson, 2019a).

1.2.1.1 Cold front

Cold air shovels under the warm air like a snowplow, forcing the warm air
to rise as if it were snow being plowed. The cold front causes rising of warm
and moist air with subsequent generation of clouds and precipitation. Strati-
form clouds (nimbostratus) become the predominant cloud type. Due to their
slower movement, cold fronts often lead to extensive cloud coverage in the
area behind them. The leading edge of a front is steep because friction slows
the airflow near the ground. An active band of thunderstorms ahead of the
front can produce heavy rain with gusty winds. Cooler air follows behind
the front, and rainfall ends as pressure rises.

1.2.1.2 Warm front

Less dense warm air rises and overrides the denser cold air, creating clouds
and precipitation ahead of the front. Over time, the clouds become thicker,
going from altostratus to nimbostratus. The warm front separating the warm
and cold air masses has a far gentler slope than a typical cold front. Weather
changes near fronts are noticeable, yet much milder compared to cold fronts,
exhibiting gradual transitions rather than abrupt shifts. Under stable weather
conditions with relatively dry upper warm air, only mid-to-high clouds will
develop, and no precipitation will take place. Heavy showers can occur when
the warm air is both humid and unstable, often accompanied by thunder-
storms within the clouds, some of which are elevated storms (Ahrens and
Henson, 2019a).
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1.2.2 Convective rain

The sun’s radiant energy heats the Earth’s surface. Water evaporates into
water vapor. The shallow air near the ground is hotter and less dense than
the surrounding air, while the cooler, denser air descends. This movement
causes the warmer air mass to rise, forming a convection cell which is further
amplified by latent heat release by condensation of water vapor. Convection
cells can range from a few kilometers in vertical height (e.g., cumulus humilis
clouds) to over a dozen kilometers (e.g., cumulonimbus capillatus). As the
moist, warm air rises, it cools and condenses at higher altitudes, forming
clouds composed of tiny water droplets and producing rain. Rainfall occurs
through the collision-coalescence of droplets, as shown in Figure 1.2a. This
type of rainfall is typically characterized by a relatively small aerial coverage
and intermittent occurrence. Strong vertical convection motion leads to the
formation of deep convection, which gives rise to towering cumulonimbus
clouds capable of causing heavy rainfall and thunderstorms (Marshall and
Schott, 1999).

1.2.3 Orographic rain

Moist air is blocked by mountains and forced to rise. Adiabatic cooling of
the rising air mass leads to the formation of cloud and orographic rain. The
intensity of orographic rain hinges on several factors, including the amount
of lifted water vapor, the steepness and elevation of the mountain, and tem-
perature difference with the ground. When water vapor condenses, latent
heat is released, heating the air parcel and causing it to rise further. Thus, a
moist air parcel can reach higher altitudes than a dry one. The major part
of the precipitation takes place on the windward side, whereas the leeward
side is dry, and lenticular clouds sometimes appear in the updraft area of the
leeward wave. Although orographic rain can be a vital source of river flow, it
can also pose issues such as mudslides and landslides (Guernsey, 1987).

1.3 virga

Virga refers to rain, ice, or snow that transforms into water vapor before it
reaches the ground. According to the American Meteorological Society’s glos-
sary of meteorology, virga is defined as "Wisps or streaks of water or ice par-
ticles falling out of a cloud but vaporizing before reaching the Earth’s surface
as precipitation." The shape of virga often appears hook-like, with streaks de-
scending nearly vertically from the source of precipitation but transitioning
to an almost horizontal orientation at their lower ends (AMS, 2015). Figure 1.3
shows an example of virga above Granada. This distinctive shape is a result
of strong vertical wind shear, while the evaporation-induced shrinking of the
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droplets also contributes to their reduced falling speed. This phenomenon
can be attributed to the increase in temperature heating as the precipitation
particles near the ground. In regions where the ice crystal process predom-
inates, particularly in high latitudes, these crystals melt into rain droplets
and then evaporate. In the case of snow virga, the snowflakes undergo direct
sublimation (Beynon and Hocke, 2022; Jullien et al., 2020).

A wet downburst inside virga cloud may transition into a dry downburst
below the cloud (Beynon and Hocke, 2022). The cooling effect from the evap-
oration of rain droplets or the melting of snowflakes generates downbursts
(Srivastava, 1987), posing a risk to low-flying aircraft. Virga can also trigger
droughts and inaccurate weather forecasts, and have a negative impact on
agricultural irrigation.

1.4 aerosols , clouds , and rainfall

The interrelationships between aerosols, clouds, and climate are pivotal in
shaping weather and climate change. Aerosols influence cloud formation and
affect the frequency and intensity of rain events. Conversely, rainfall has the
capacity to remove aerosols from the atmosphere.

Aerosols from natural sources (e.g., Saharan dust, salt from ocean spray) or
anthropogenic emission (e.g., motor vehicle exhaust) lead to the presence of
a significant number of aerosol particles in the air. The aerosols act as con-
densation nuclei, increasing the condensation of water vapor and forming
cloud droplets. The latent heat released by this process triggers the air to rise.
More water droplets are transported upward, promoting the vertical growth
of clouds. As the cloud height increases, it forms deep convection. The pro-
cess of collision-coalescence of water droplets, which often originate high in
clouds, increases the intensity of rain events (Rosenfeld, 2006).

Regions impacted by aerosol pollution can also experience decreased rain-
fall and even drought conditions. For shallow clouds with limited moisture
content, an accumulation of condensation nuclei results in the formation of
numerous tiny droplets that remain suspended in the air, delaying their trans-
formation into raindrops (Rosenfeld et al., 2008). Additionally, aerosols create
a stable layer in the atmosphere that hinders convection, thereby suppressing
precipitation (Dave et al., 2017). Both, aerosols and clouds, have a strong in-
fluence on atmospheric radiative transfer and the vertical structure of the
atmosphere (Zhu et al., 2023).

Precipitation aids in depositing aerosol particles to the ground due to the nu-
merous condensation nuclei (aerosols) contained within raindrops (Cugerone
et al., 2018). It is crucial to recognize that not all aerosols can be effectively
removed. Wet removal efficiency depends largely on particle size (Ohata et



1.5 rainfall precursors 8

al., 2016). Certain tiny aerosol particles resist adsorption and persist in the
atmosphere.

1.5 rainfall precursors

Rainfall precursors are the signs of weather, atmosphere, and meteorological
phenomena (e.g. virga) that precede the onset of rain. For example, Table 1

shows the variations in weather factors before the frontal rain in the Northern
Hemisphere. These precursors may exhibit regional and seasonal variations.
The prediction of rainfall in the next 0-6 hours based on various observations
is referred to as the precipitation nowcasting. It can issue timely weather
warnings for severe rain events like thunderstorms, formulate emergency re-
sponse strategies, and enhance public safety. Being able to provide precursors
in the short period before rainfall will improve the accuracy of nowcasting
and also play a vital role as model input. Accurate rainfall prediction neces-
sitates the comprehensive consideration of multiple parameters (Wang and
Hocke, 2022). The convection and transport of water vapor are closely re-
lated to rainfall. Before rain, moist air accumulates in the atmosphere and
the Integrated Water Vapor (IWV) increases. Changes in meteorological pa-
rameters also show the instability of the atmosphere before rain. Moreover,
ground-based microwave radiometers show potential in weather forecasting.
Cimini et al. (2015) indicated that the Forecast Indexs (FIs) commonly used in
operational meteorology derived from a commercial microwave radiometer
correlate well with those calculated from radiosonde values. The continuous
monitoring of the troposphere with a high temporal resolution by ground-
based microwave radiometers is invaluable for nowcasting.

weather factor cold front warm front

Winds South or southwest South or southwest

Temperature Falling Slowly warming

Pressure Falling steadily Usually falling

Clouds
Increasing cirrostratus
and cirrus

Cirrostratus, cirrus,
altostratus, nimbostratus,
stratus, and fog

Dew point High Steady rise

Table 1: Prior to frontal rain in the Northern Hemisphere (Ahrens and Henson,
2019a)
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1.6 study area

For this thesis, I analyzed ground-based observations from two regions: Bern
and Granada. Granada was selected because my research stay at the Univer-
sity of Granada in 2022 provided access to instruments and data from the
Andalusian Global ObseRvatory of the Atmosphere (AGORA).

Bern is situated at the center of the Swiss Plateau, with the Gurten and the
Bantiger being its two closest mountains. Bern has a maritime climate with
an annual mean precipitation of approximately 1059 mm (MeteoSwiss, 2014).
Brandsma and Buishand (1997) suggests that the region is characterized by
pre-frontal or post-frontal showers and thunderstorms during the summer
months (from June to August), resulting in the highest total rainfall. Winter
in Bern is characterized by primarily frontal rain influenced by uphill or lee-
ward effects, resulting in a notably drier season.

Granada, situated in southern of Spain, is encompassed by the Sierra Nevada,
Sierra de Huétor, and Sierra de Almijara mountain ranges. Granada has a
Mediterranean climate characterized by hot and arid summers, while winters
are mild and relatively humid. July registers as the hottest month, with an
average maximum temperature of 34.2°C (AEMET, 2012). Rainfall predom-
inantly takes place from October to May. Granada is affected by local and
European anthropogenic pollution as well as North African Saharan dust,
causing its complex precipitation (Wang et al., 2024).
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(a)

(b)

Figure 1.3: Virga appears in the sky over (a) city of Granada and (b) the University
of Granada urban station (UGR) on the afternoon of January 11, 2023.
https://twitter.com/GFAT_ugr/status/1613186058665201666?s=20

https://twitter.com/GFAT_ugr/status/1613186058665201666?s=20


Part II

I N S T R U M E N TAT I O N A N D M E T H O D O L O G Y

This part introduces radiative transfer and the principles of ground-
based microwave radiometry, outlines the datasets employed for
the study of atmospheric water and precipitation including the
basic meteorological parameters. The new retrieval of the rain
rate from radiometer data is explained in detail. Data analysis
methods such as machine learning and composite analysis are de-
scribed.



2 R A D I AT I V E T R A N S F E R A N D
M I C R O WAV E R A D I O M E T RY

Solar radiation is the primary energy source for the Earth, undergoing pro-
cesses of atmospheric absorption, scattering, and transmission before reach-
ing the Earth’s surface. Part of it is absorbed by the surface and converted
into heat energy, while the remaining part is reflected back to the atmosphere
and space. Absorption of radiation energy at various wavelengths by gases,
clouds, and particles in the atmosphere contributes to an increase in atmo-
spheric temperature. Greenhouse gases (e.g. water vapor and carbon dioxide)
redirect the heat energy radiated from the Earth back towards the surface,
while a portion of the heat is released into space. The Earth maintains the
radiation budget in the above-described way, and Figure 2.1 shows the radia-
tive transfer process (Zhang, 2019).

The radiative transfer equation is essential to comprehending the transport
and distribution of solar radiation in the atmosphere and on the Earth’s sur-
face. To fully grasp this equation (Section 2.1.3), it is necessary to first in-
troduce blackbody radiation and its related laws in Section 2.1.1, as well as
the interaction, emission, and scattering of microwave radiation across vari-
ous frequency bands in the presence of atmospheric particles in Section 2.1.2.
I focus on microwave radiation since most of the instruments in my thesis
receive and/or transmit microwave radiation. A tropospheric microwave ra-
diometer captures and analyzes microwave radiation signals from the atmo-
sphere to characterize tropospheric parameters. I describe the principles of
the radiometer measurement process (Section 2.2).

2.1 radiation principles

2.1.1 Blackbody radiation

Microwave radiometers are receivers designed for measuring thermally emit-
ted electromagnetic radiation. To grasp the fundamental principle of mi-
crowave radiometers, it is essential to introduce the concept of of blackbody
radiation. A blackbody is an idealized body that absorbs all incident radia-
tion without any reflection or transmission, while it is also a complete emitter
that is solely dependent on its temperature (Planck, 1914). When in thermal

12
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Figure 2.1: Schematic diagram of global annual average radiation budget from
March 2000 to May 2004 (W m´2). Arrows indicate energy flow.

— Trenberth et al. (2009)

equilibrium, meaning at a constant temperature, a blackbody has an emissiv-
ity of 1.

2.1.1.1 Planck’s law

Planck’s law describes the intensity of electromagnetic radiation emitted by a
blackbody at temperature in thermal equilibrium, when the blackbody is in
equilibrium with the radiation field (Planck, 1914). Planck’s law has several
forms depending on the correspondence between spectral variable such as
wavelength λ, frequency ν, and wavenumber ν̃. As a function of temperature
and wavelength, the spectral radiance is

BλpTq “
2hc2

λ5
1

e
hc
λkT ´ 1

(1)

where c “ 2.998ˆ 108 m s´1 is the speed of light. h “ 6.626ˆ 10´34 J Hz´1 is
the Planck constant, and k “ 1.381ˆ10´23 J K´1 is the Boltzmann constant. T
is the absolute temperature of blackbody in Kelvin. Bλ is the energy radiated
at unit wavelength λ intervals from unit area and unit solid angle.

Figure 2.2 shows the Planck curve for blackbodies at various temperatures.
The higher the temperature of a blackbody is, the more radiation it emits
at each frequency. When short wavelengths (i.e., ν “ c

λ Ñ 8 ), Planck’s
law approaches Wien’s approximation, while long wavelengths (i.e., ν Ñ 0),
Planck’s law approaches Rayleigh–Jeans law.
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Figure 2.2: Spectral radiance of a blackbody as a function of frequency. The solid red
and green lines represent the blackbody temperatures at 5770 K and 288

K for the spectral radiation of the Sun and Earth surface. The dashed line
is the frequency of peak spectral radiation of a blackbody calculated by
Wien’s displacement law. Background colors indicate spectra in different
frequency ranges.

— Peter L. Ward. All Rights Reserved
https://ozonedepletiontheory.info/ImagePages/plancks-law-frequ

ency1/

2.1.1.2 Wien’s displacement law

Wien’s displacement law describes the peak wavelength or frequency in the
radiation curve of a blackbody as a function of temperature (Wien, 1894).
This displacement is directly connected to Planck’s law and expresses the
common observation in quantitative form that the peak wavelengths of spec-
tral radiation shift towards higher values as the temperature decreases (Ma
et al., 2009). The peak at wavelength λpeak is given by

λpeak “
b

T
(2)

where T is the absolute temperature of blackbody in Kelvin. b “ 2.898 ˆ

10´3mK is the Wien’s displacement constant.

As Figure 2.2 shows, the sun can be described as a remarkably effective black-
body, exhibiting a temperature of around 5770 K, which aligns with Wien’s
law and indicates the peak emission within the visible region of the spectrum.
The Earth’s surface can be roughly regarded as a blackbody at a temperature
of 280 K, whereby the maximum spectral radiation occurs in the thermal
infrared region of the spectrum.

https://ozonedepletiontheory.info/ImagePages/plancks-law-frequency1/
https://ozonedepletiontheory.info/ImagePages/plancks-law-frequency1/
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2.1.1.3 Stefan–Boltzmann law

Stefan–Boltzmann law describes the total energy radiated by the surface of
a blackbody as a function of its temperature (Boltzmann, 1884; Stefan, 1879),
i.e. the blackbody radiant emittance or radiant flux FpTq. T is the absolute
temperature of blackbody in Kelvin.

FpTq “

8
ż

0

BλpTqdλ “ σT4 (3)

where σ is the Stefan–Boltzmann constant and is derived from Planck con-
stant h, Boltzmann constant k, and speed of light in the vacuum c.

σ “
2π5k4

15c2h3
« 5.67 ˆ 10´8Wm´2K´4 (4)

The stefan-Boltzmann law quantifies the energy emitted by the Sun at a spe-
cific temperature, allowing for the determination of the Sun’s temperature
based on the energy received by the Earth per square meter. Additionally,
this law predicts the amount of heat radiated by the Earth into space.

2.1.1.4 Rayleigh–Jeans law

Rayleigh-Jeans law is a large wavelength approximation of Planck’s radiation
law for the blackbody radiation. In the large wavelength limit for λ " hc

kT , the
first-order expansion of Taylor polynomial is e

hc
λkT « 1` hc

λkT . Rayleigh–Jeans
law is given by

BλpTq “
2ckT

λ4
(5)

In the microwave range (0.3 GHz to 300 GHz frequency range), the large
wavelength limit is fulfilled so that a linear relationship between radiance
BpTq and T according to equation 5 exists. Due to its ability to circumvent the
complexities of Planck’s law and simplify calculations, the Rayleigh-Jeans
law finds widespread application in microwave radiometry.

2.1.1.5 Brightness temperature

Given the spectral radiance, the (Planck-equivalent) brightness temperature
Tb of a blackbody emitting this radiation can be calculated. The expression
of Tb is deduced from the Rayleigh–Jeans law

Tb “
Bλλ

4

2ck
(6)

2.1.2 Radiation and interactions

Radiation propagates through a medium, such as air, and undergoes interac-
tions with particles, such as raindrops, which consist of various dielectric ma-
terials. Figure 2.3 illustrates the interactions. Absorption involves the transfer
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of energy from the radiation to particles, while scattering alters the direction
of the radiation beam without changing its energy or frequency. The com-
bination of absorption and scattering are referred to as extinction. Further
details regarding absorption and scattering are described in the following
section. The radiation emitted by the particles is called emission and is given
by Planck’s and Kirchhoff’s laws.

Figure 2.3: Diagram of potential optical interactions between radiation and particles.
Scattering represents the effects of reflection, refraction, and diffraction
for small particles, while fluorescence and Raman radiation are excluded
from the discussion.

— Redmond et al. (2010)

2.1.2.1 Kirchhoff’s law

Kirchhoff’s law of thermal radiation states that in thermodynamic equilib-
rium, the emitted and absorbed radiation are equal at a given temperature
and wavelength (Kirchhoff, 1978). The absorptivity is equal to the emissivity

ελ “ αλ (7)

where ε is the emissivity, and α is the absorptivity. λ is the wavelength. This
formula represents the general form of Kirchhoff’s law, applicable not only
within a medium but also at interfaces between different media. Violation of
this law results in deviations from local thermal equilibrium, leading to the
medium becoming either colder or warmer.

In remote sensing radiation observation, based on the Local Thermodynamic
Equilibrium (LTE), the radiation emission of the actual body can be expressed
as

BλpTbq “ ελ ¨ BλpTq (8)

where BλpTbq represents the radiance emitted by a body with a temperature
of Tb, and BλpTq represents the radiance of a blackbody with the same tem-
perature T of the body.
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2.1.2.2 Atmospheric absorption

As radiation passes through the atmosphere, it undergoes absorption by at-
mospheric particles, resulting in energy attenuation. The degree of attenua-
tion is influenced by the internal structure and shape of the particles. Water
vapor (H2O) and Oxygen (O2) in the atmosphere strongly absorb microwave
radiation, while the contributions of other gases to gas absorption lines are
negligible due to their low concentrations or a lack of microwave absorption
lines (e.g. nitrogen) (Grody, 1976).

Microwave radiation is absorbed differently by various compositions of the
atmosphere such as water vapor, oxygen, clouds, and precipitation. Specific
frequencies correspond to significant absorption peaks for certain composi-
tions, allowing for effective detection of these parameters when these fre-
quencies are selected. Figure 2.4 shows the variation of atmospheric trans-
mittance with frequency in the microwave band. It can be seen that the water
vapor absorption line causes obvious atmospheric attenuation at 22.235 GHz,
which can be used to detect the water vapor content in the atmosphere. H2O

exhibits a weak pressure-induced broadening absorption line at 22.235 GHz
and a strong absorption line at 183 GHz (Cimini et al., 2009; Kummerow,
2020). The 31.4 GHz frequency has a low total atmospheric absorption (ab-
sorption by water vapor and oxygen), a relatively clean atmospheric window,
corresponding to the window between the resonant water vapor lines. The
absorption at 31.4 GHz is mainly due to liquid water. The absorption lines
enable the calculation of the absorption and emission coefficients of these
gases at specific frequencies. The oxygen molecule has a magnetic dipole
moment resulting from the collective spin of its two unpaired electrons in
the electronic ground state. The variation in electron spin orientation with
respect to molecular rotation gives rise to a prominent magnetic dipole tran-
sition band at 60 GHz and a single transition at 118.75 GHz (Li, 2019). Colli-
sions between Nitrogen (N2) molecules contribute to enhanced atmospheric
absorption. In the stratosphere, Ozone (O3) absorption plays a significant role
in atmospheric attenuation (Klein and Gasiewski, 2000; Zhang, 2019).

The chemical and physical properties of liquid water are very complex and
are greatly affected by hydrogen bonds (Han et al., 2023). Microwaves are
electromagnetic waves with frequencies ranging from 300 MHz to 300 GHz.
When microwaves pass through water droplets, the electric dipole moments
of water molecules inside a droplet are redirected to rotate along the direc-
tion of the electric field, and microwave radiation is absorbed. As a result,
water molecules absorb microwaves more significantly while overcoming the
effects of hydrogen bonds, leading to high dielectric loss in the microwave
frequency band. According to Kirchhoff’s theory, raindrops exhibit strong
microwave radiation, which is introduced in detail in Section 3.2.1.2.
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Figure 2.4: Vertical atmospheric transmittance (total, H2O and O2) of standard atmo-
sphere as a function of frequency.

— Kummerow (2020)

2.1.2.3 Scattering

In clear skies, microwave radiative transmission is primarily affected by the
absorption and emission of atmospheric gases. However, when hydromete-
ors (e.g., cloud and rain droplets) are present, they interact with radiation
through scattering. Typically, particles in the atmosphere can be considered
incoherent and the contribution of a single particle can be extrapolated to
multiple particles. For atmospheric ice crystals and water droplets, they are
assumed to be spherical in shape (Zhang, 2019). The significance of particle
scattering depends on the specific scattering regimes involved, as shown in
Figure 2.5. The scattering characteristics of particles are determined by the di-
mensionless size parameter χ, representing the ratio of the particle perimeter
to the radiation wavelength (Muinonen et al., 2011).

χ “
2πr

λ
(9)

where r is the particle radius. As shown in Figure 2.5, when particle sizes are
much smaller than the wavelength (2πr ! λ), the scattering by particles is
small compared to the absorption, and the multiple-scattering plays a minor
role. Particles smaller than the radiation wavelength undergo Rayleigh scat-
tering (χ ă 1) (Moosmüller and Arnott, 2009). For particle sizes comparable
to the radiation wavelength (χ ě 1), the Mie theory is utilized. When particle
size becomes significantly larger (χ " 1) compared to the wavelength, the
light can be described by rays, and geometric optics can be applied to com-
pute the scattering (Leuenberger, 2009).
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2.1.2.4 Absorption and scattering by clouds and precipitation

Essentially, the interaction between microwaves and cloud and rain particles
is completely different from the interaction with other gases like oxygen and
water vapor. Hydrometeors both absorb and scatter microwaves, and this
absorption and scattering is related to the physical parameters of the parti-
cles, such as size, shape, and dielectric constant. When the raindrop sizes are
much larger than the wavelength, the interaction between the particle and
the electromagnetic wave is mainly scattering, otherwise it is mainly absorp-
tion.

For the microwave frequency band (1-300 GHz, 1 mm-1 cm), Figure 2.5 shows
that scattering behavior varies depending on the size and composition of par-
ticles present in the atmosphere. Air molecules (below 1 nm), fog (below 10

µm), and haze (2.5 µm) exhibit negligible scattering. Cloud droplets (5-50

µm), ice crystals (10-100 µm), and light raindrops (about 100 µm) undergo
Rayleigh scattering. Raindrops (0.1-3 mm) can exhibit either Rayleigh scatter-
ing or Mie scattering, depending on the frequency. Hailstones (about 1 cm)
follow Mie scattering principles (Zhang, 2019).

Figure 2.5: Scattering regimes and size parameter χ as a function of radiation wave-
length and atmospheric particles radius. The dashed line is the transition
value of the scattering regimes.

— Cho et al. (2021)

Cross section and Mie theory

Absorption and scattering cross sections (σabs and σsca) represent the pro-
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portion of energy that is absorbed and scattered after an incident electromag-
netic wave interacts with a particle.

σabs “
Wabs

Ii
(10)

σsca “
Wsca

Ii
(11)

and the extinction cross section is defined as

σext “ σabs ` σsca (12)

where Wabs and Wsca are the absorbed and scattered power. Ii is the inci-
dent irradiance.

The Mie extinction and scattering efficiencies (Qext and Qsca) can be written
as

Qext “
σext

σgeom
“

2

χ2

8
ÿ

n“1

p2n ` 1qℜpan ` bnq (13)

Qsca “
σsca

σgeom
“

2

χ2

8
ÿ

n“1

p2n ` 1qp|an|
2

` |bn|
2

q (14)

and

Qabs “ Qext ´ Qsca (15)

where σgeom “ πr2 is the geometrical cross section of an imaginary sphere
particle with radius r. χ is the size parameter. an and bn are Mie coefficients,
which are calculated by the spherical Bessel function (Bohren and Huffman,
1998). ℜ represents the real part.

Rayleigh scattering

Rayleigh scattering occurs when particles are much smaller than the wave-
length of the incident electromagnetic wave (Bohren and Huffman, 1998;
Rayleigh, 1871). The Rayleigh absorption and scattering efficiencies (Qabs

and Qsca) are given by

Qabs “ ´4χℑ

ˆ

m2 ´ 1

m2 ` 2

˙

9
1

λ
(16)

Qsca “
8

3
χ4

ˇ

ˇ

ˇ

ˇ

m2 ´ 1

m2 ` 2

ˇ

ˇ

ˇ

ˇ

2

9
1

λ4
(17)
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and

Qext “ Qabs ` Qsca (18)

where m is the complex refractive index. ℑ represents the imaginary part.

Ice scatters microwave radiation but does not absorb it. The extent of ab-
sorption and scattering in ice and water depends on their size relative to the
microwave frequency. At 22-31 GHz, the scattering effect of ice is negligible,
making ice almost transparent to microwave radiation. This characteristic is
useful for estimating rain rates (Li, 2019).

2.1.3 Radiative transfer

2.1.3.1 Optical depth and formal radiative transfer equation

In radiation transmission, the total attenuation caused by medium absorption
and scattering per unit cross-sectional area is called optical depth, which is a
dimensionless quantity (Mätzler and Melsheime, 2006). The optical depth τ

at frequency ν along the path between two points s0 and s1 is defined by

τν :“

s1
ż

s0

κνρds (19)

which can also be written as dτν “ ´κνρds. κν is the opacity or absorption
coefficient, and ρ is the mass density.

The radiation intensity I increases by dI as it propagates through a thickness
of ds. The formal radiative transfer equation considering only absorbing (and
non-emitting) media is

dIν

κνρds
“ ´Iν (20)

Given the incident radiation at position s0, denoted as Iν,s0 , then the radia-
tion intensity at position s1 can be determined by integrating the Equation
20, where s0 ă s1.

Iν,s1 “ Iν,s0 ¨ e´τν (21)

Radiation enhancement is caused by medium emitting and multiple scatter-
ing into the observation direction. The source function J is added to Equation
20 to characterize it and replace ´dτν with κνρds. The complete formal radia-
tive transfer equation is

´
dIν

dτν
“ ´Iν ` Jν (22)
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Multiplying both sides of Equation 22 by e´τ and integrating it from τν “ 0

to τν gives

Iν,τν “ Iν,0 ¨ e´τν `

τν
ż

0

Jν,τ ¨ e´τdτ (23)

In the Rayleigh–Jeans approximation, the radiance Iν replaced by the bright-
ness temperature Tb, and Equation 23 becomes

Tb,τν
“ Tb,0 ¨ e´τν `

τν
ż

0

Tτ ¨ e´τdτ (24)

where Tb,0 is the input. If the temperature Tτ of the emitting medium layer
is constant, the expression for Tb,τν

after integration is

Tb,τν
“ Tb,0 ¨ e´τν ` Tm ¨ p1 ´ e´τνq (25)

where Tm is the temperature of homogeneous layer, called effective mean
temperature.

2.1.3.2 Effective mean temperature

Equation 25 is very practical even though usually the temperature of the layer
is not constant. The effective mean temperature can be calculated such that
Equation 25 is valid (Dicke et al., 1946; Mätzler and Melsheime, 2006).

Tm “

τν
ş

0

Tτ ¨ e´τdτ

1 ´ e´τν
(26)

where a frequent assumption is that Tτ follows a temperature profile linear
distribution with increasing or decreasing optical depth τ.

Tτ “ Tc ` Tdτ (27)

where Tc is the cosmic-microwave background brightness temperature (ap-
proximately to 2.73 K). Td is the temperature gradient. Equation 27 is inserted
into Equation 26 to get

Tm “ Tc ` Td

„

1 ´
τν ¨ e´τν

1 ´ e´τν

ȷ

(28)

For the solution of Tm, there are two cases: Tm Ñ Tc `0.5Tdτν for an optically
thin layer (τν ! 1), and Tmpτ “ 1q Ñ Tc ` Td for an optically thick layer
(τν " 1).
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2.2 ground-based microwave radiometer

Ground-based microwave radiometers are passive microwave remote sensing
instruments used for measuring the power of the thermal noise emitted by
bodies at a physical temperature greater than 0 K (Emery and Camps, 2017).
They have become popular across various fields due to their highly sensitive
receivers that can operate in all weather conditions, day and night (Hocke
et al., 2017). Radiometers require low maintenance and are often equipped
with multiple channels. Passive microwave remote sensing is widely recog-
nized as the most precise method for continuous measurements of integrated
water vapor, integrated liquid water, and temperature profiles in the tropo-
sphere over land. This capability plays a vital role in the evaluation and near
real time data supply for future high-resolution Numerical Weather Predic-
tion (NWP) models.

Microwave radiometers receive radiation and expresses it as the brightness
temperature. In the microwave range, several atmospheric gases display ab-
sorption signatures as shown in Figure 2.4. At the 183 GHz water vapor line
or oxygen absorption bands, where the atmospheric optical depth is large,
the detected radiation originates from the vicinity of the radiometer. In case
of weaker lines which are optically thin, the radiometer captures radiation
from more distant regions. For example, the weak 22 GHz H2O line can be
used for measuring water vapor in the stratosphere and mesosphere using a
ground-based microwave radiometer (Deuber et al., 2004).

2.2.1 Calibration techniques

A microwave radiometer measures the output voltage to determine the bright-
ness temperature (Wu et al., 2010). Calibration establishes an equation be-
tween the radiometer output voltage and the antenna or sky temperature.
This process involves observing the output voltage from hot and cold tar-
gets with known brightness temperatures (Tien et al., 2007). The common
calibration methods include liquid nitrogen calibration and tipping curve
calibration, which I performed for the two radiometers at the University of
Bern. Regular calibrations of the radiometers are required in order to obtain
accurate and reliable observations.

2.2.1.1 Liquid Nitrogen (LN2) calibration

The nonlinear expression of radiometer detector voltage V and spectral radi-
ation Bν is:

V “ G ¨ Bα
ν (29)

where G is the system gain, and α the non-linearity parameter. The spec-
tral radiance Bν of the calibration load is obtained directly from the known
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temperature according to Planck’s law (Equation 1). The total system noise
temperature Tsys is the sum of receiver noise temperature TR and antenna
temperature TA (Maschwitz et al., 2013).

Tsys “ TR ` TA (30)

Figure 2.6a shows the external liquid nitrogen calibration technique, which
can determine the unknown variables G, Tsys, and α (Küchler et al., 2016).
The noise temperature Tnoise is injected/added separately by noise diode at
the hot temperature Thot of the internal ambient target and the cold temper-
ature Tcold of the LN2 cryogenic load, so that four equations are established
to solve the above four unknowns (G, Tsys, α, and Tn).

(a) (b)

Figure 2.6: (a) External liquid nitrogen cold load for the radiometer. The conical
blackbody is immersed within a non-absorbing polystyrene container.
(b) Liquid nitrogen calibration for Humidity And Temperature PROfilers
(HATPRO).

— Miacci et al. (2015)

2.2.1.2 Tipping curve calibration

The radiometer comprises two calibration reference targets: a hot target and
a cold target with known temperatures Thot and Tcold, respectively. The an-
tenna brightness temperature has a linear relationship with the radiometer
output voltage (Han and Westwater, 2000; Tien et al., 2007), which can be
written as

Tsky “
Vsky ´ Vhot

Vhot ´ Vcold
pThot ´ Tcoldq ` Thot (31)
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where Vsky, Vhot, and Vcold are radiometer detector voltages detected from
the radiation sources of the sky, hot target, and cold target, respectively. Tsky
is the sky brightness temperature.

The tipping curve calibration uses sky measurements taken at various eleva-
tion angles to determine the optical depth of the horizontally stratified atmo-
sphere (Wu et al., 2010). Zenith optical depth over zenith angle θ is derived
from Equation 25:

τν,zenpθq “ ´µ ¨ ln
ˆ

Tm ´ Tskypθq

Tm ´ Tc

˙

(32)

where µ is the cosine of θ. Tm is the effective mean temperature (Equation
26). The zenith optical depth τν,zen can be determined as the slope of a linear
function, represented by the equation y “ τν,zen ¨x, where x “ 1{µ “ 1{ cos θ
and y “ ´ ln

`

pTm ´ Tskypθqq{pTm ´ Tcq
˘

. By performing a linear regression
analysis on the observation point pairs from various directions of the ra-
diometer, τν,zen can be solved.

2.2.2 Tropospheric radiometers

TROpospheric WAter RAdiometer (TROWARA) and HATPRO are ground-based
passive microwave radiometers used for measuring atmospheric water in the
troposphere. TROWARA, developed and operated by the Institute of Applied
Physics (IAP) at the University of Bern, has been in operation since Novem-
ber 1994 in Bern, Switzerland. Numerous studies have compared it with GPS,
field instruments, and reanalysis data, consistently demonstrating its supe-
rior ability to retrieve atmospheric water, particularly IWV (Cossu et al., 2015;
Hocke et al., 2011; Wang et al., 2021). The HATPRO, a commercial radiometer
manufactured by Radiometer Physics GmbH (RPG), finds wide application in
weather monitoring and forecasting networks globally (Rose et al., 2005).

2.2.2.1 TROpospheric WAter RAdiometer (TROWARA)

The TROWARA radiometer operates with a time resolution of 7 seconds and
measures brightness temperatures at three microwave frequency channels.
Two channels are at frequencies of 21.385 GHz (bandwidth=100 MHz) and
31.5 GHz (bandwidth=200 MHz), while the third channel, added in Novem-
ber 2007, operates at 22.235 GHz (bandwidth=400 MHz). The antenna beams
of TROWARA have a half-power beam width of 4° for all frequencies. TROWARA

conducts sky observations with an elevation angle of 40°. Additionally, TROWARA

includes an infrared channel at 9.5–11.5 µm.

In November 2002, TROWARA was relocated from an outdoor setting to an in-
door laboratory with a controlled temperature (Morland, 2002). The antenna
captures atmospheric radiation through a microwave-transparent window,
while the overhang design of the wall effectively prevents rainwater from



2.2 ground-based microwave radiometer 26

entering. The windows get wet only in the rare case of strong southeast-
erly winds of rainy season. Operating indoors, TROWARA has successfully
avoided measurement contamination caused by wet antennas, allowing ac-
curate measurements even in rainy weather (Wang et al., 2023). Peter and
Kämpfer (1992) provides a description of the original design and construc-
tion of TROWARA. In 2004, the cooled cold load was replaced with the Active
Cold Load (ACL), featuring two ferrite switches each frequency to alternate
between the antenna, ACL, and the matching waveguide termination serving
as the hot load (Morland, 2007). TROWARA conducts manual tipping curve
calibration using the clear sky brightness temperature at various antenna
elevation angles ranging from 20º to 45º as the cold load. The brightness tem-
perature measurements of TROWARA are stable, requiring only a manual
tipping curve calibration every six months. Optionally, larger elevation an-
gles up to the zenith angle can be reached by means of a mirror outside of
the laboratory. The developed radiometer model accurately estimates the an-
tenna temperature by measuring the reflection and transmission coefficients
of all radiometer components, and enables automatic internal calibration at
7 seconds (Hocke et al., 2019; Morland, 2002; Wang et al., 2023).

2.2.2.2 Humidity And Temperature PROfilers (HATPRO)

The HATPRO Generation 2 (G2) is a ground-based dual polarization radiome-
ter that offers a remarkable time resolution of 1-2 seconds. The radiometer is
equipped with seven microwave channels in the water vapor band (K-band)
spanning from 22.24 to 31.4 GHz, allowing for measurements of atmospheric
water vapor and cloud liquid water content in the troposphere. For this band,
the user can select the bandwidth, ranging from 0.1 to 2 GHz, and the half-
power beamwidth of the antenna beam is 3.5°. The other seven channels
are in the oxygen band (V-band), ranging from 51 to 58 GHz, designed to
characterize atmospheric temperature. The HATPRO is equipped with an GPS
system and a weather sensor that accurately measures weather parameters
including surface temperature, pressure, and relative humidity. This thesis
utilizes two HATPRO instruments: one conducting sky observations in Bern
at a 40° elevation angle, and another performing zenith and profile observa-
tions in Granada, Spain. The HATPRO in Granada has an additional infrared
radiometer. Rose et al. (2005) described the HATPRO instrument in detail.

The HATPRO operates in outdoor conditions, with its receiver functioning
within a temperature range of -30°C to 40°C. The HATPRO antenna receives
atmospheric radiation through a microwave radome, which is designed with
hydrophobic material and radial blowers to prevent or minimize water film
during and after rainfall. The HATPRO incorporates a rain sensor to detect
rain, and the speed of the blowers is automatically controlled based on software-
defined humidity thresholds (RPG, 2014; Wang et al., 2023).

The absolute calibration of the HATPRO uses a liquid nitrogen cooled load
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attached to the outside of the radiometer box, as shown in Figure 2.6b. The
ambient load is a pyramidal absorber material made of carbon loaded foam
with very low thermal capacity, serving as the hot load (Rose et al., 2005). A
built-in noise diode in each receiver of the HATPRO replaces the liquid nitro-
gen cold load, enabling automatic internal calibration. HATPRO G2 offers the
option of tipping curve calibration for high transparency channels.



3 D ATA A N D M E T H O D O L O G Y

Obtaining accurate precipitation information is challenging due to the in-
herent limitations of precipitation monitoring technologies. Rain gauges are
sparsely distributed and susceptible to environmental influences such as
wind (Marzano et al., 2010, 2006); weather radars are costly and prone to
measurement errors due to instrument calibration, ground clutter, and beam
blocking (Villarini and Krajewski, 2010); satellite microwave radiation mea-
surements have low spatial and temporal resolution and uncertainty about
land precipitation (Marzano et al., 2002). Ground-based microwave radiome-
ters can operate effectively in rainy conditions and detect rain signals against
a cold, homogeneous sky background (Wang et al., 2021). They can comple-
ment rain gauges and radars in monitoring rainfall and provide tools to val-
idate spaceborne radiometer rainfall estimates. An effective way to improve
the accuracy of rainfall quantification is to integrate all these data sources
(radiometers, rain gauges, and radars) into a synergistic scheme for high
temporal resolution precipitation monitoring (Marzano et al., 2006).

This thesis draws on long-term datasets from two sites, each of which em-
ploys a variety of ground-based remote sensing and in situ techniques to
measure tropospheric water vapor, clouds, precipitation, and aerosols. One
site operates various meteorological instruments on the roof of the Exakte
Wissenschaften (ExWi) building at the University of Bern, where I focus on
the two tropospheric microwave radiometers TROWARA and HATPRO, a Micro
Rain Radar (MRR), and a weather station. The other site is the AGORA ob-
servatory in Granada, equipped with a ground-based microwave radiometer
HATPRO, a ceilometer, a cloud radar, a nephelometer, and a weather station,
as shown in Figure 1.3b. The latest Atmospheric Reanalysis ERA5 data from
the European Center for Medium-Range Weather Forecasts (ECMWF) was also
used to compare radiometer-estimated rain rates. ERA5 assimilates rain rate
information from surface radar observations and rain gauges into climate
or weather models to reconstruct the most accurate estimate of precipitation
(Hersbach et al., 2018). Section 3.1 provides a detailed description of the in-
strument measurements.

For the methodology, TROWARA and HATPRO use physical and quadratic re-
gression methods to retrieve IWV and Integrated Liquid Water (ILW), respec-
tively. I developed and applied an optical depth-based physical method and
two machine learning methods, including Random Forest (RF) and Gradi-
ent Boosted Decision Tree (GBDT), to retrieve the rain rate from microwave

28
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radiometer measurements. I also employed GBDT to detect rainfall from rain-
contaminated microwave radiometer data and investigate the source of the
brightness temperature deviation between TROWARA and HATPRO. The Superposed
Epoch Analysis (SEA) method is used to study the evolution of atmospheric
parameters during rain events. Section 3.2 explains the retrieval and data
analysis methods involved. Special attention is given to the new retrievals of
the rain rate from radiometer data.

3.1 datasets

3.1.1 Remote sensing datasets

3.1.1.1 Microwave radiometers

The technical specifications of TROWARA and HATPRO were presented in the
previous chapter Section 2.2. The two tropospheric microwave radiometers
provide information on water vapor, liquid water, and rainfall. TROWARA

utilizes an optical depth-based physical retrieval algorithm to accurately es-
timate IWV, ILW, and high-quality rain rates (Mätzler and Morland, 2009).
During the thesis, I further refined and validated the rain rate retrieval for
the TROWARA radiometer by using data from the years 2005 to 2019 (Wang
et al., 2021). HATPRO G2 employs the quadratic regression algorithm in its
manufacturer-provided software to retrieve IWV and ILW. I applied the rain
rate retrieval developed for TROWARA to the HATPRO data set.

3.1.1.2 Ceilometer

The Jenoptik CHM15k ceilometer in Granada, which is part of the E-PROFILE
project (European networks of wind and aerosols profiles, https://e-prof
ile.eu/), provides information on vertical distribution and concentration of
aerosol, cloud layers, and rainfall (Alexander and Protat, 2018; Ceccaldi et al.,
2013; Guyot et al., 2022). The ceilometer measures atmospheric backscatter
profiles with a time resolution of 15 seconds. It operates a Nd:YAG narrow-
beam microchip laser at 1064 nm, with a pulse energy of 8.4 µJ and a pulse
repetition rate of 5-7 kHz. The field of view receiver is 0.45 mrad, and the
laser beam divergence is less than 0.3 mrad. The ceilometer has an altitude
range of 15-15000 m and a vertical resolution of 15 m. Full optical overlap
occurs at 1500 m above the ceilometer, and the manufacturer’s overlap func-
tion allows for achieving 90% overlap between 555 and 885 m above ground
level. The calculation of the Range Corrected Signal (RCS) for the CHM15k is
described by Cazorla et al. (2017).

https://e-profile.eu/
https://e-profile.eu/
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3.1.1.3 Cloud radar

The 94 GHz Doppler cloud radar in Granada, manufactured by RPG, mea-
sures vertical reflectivity profiles with a time resolution of 3-4 seconds. The
target classification for this instrument data is available on the ACTRIS-Cloudnet
website (Hogan and O’Connor, 2004; Illingworth et al., 2007, https://cloudn
et.fmi.fi/). The cloud radar operates at a wavelength of 3.19 mm which en-
ables the measurement of aerosols, cloud droplets and raindrops with high
sensitivity. It is zenith-pointing, covering an altitude range of 50-12000 m
with a vertical resolution of 30 m. The radar system incorporates precise
absolute calibration and a reliable rain protection mechanism. Reliable oper-
ation and low maintenance are achieved using a low transmit power of 1.5
W (Myagkov and Rose, 2016).

3.1.1.4 Micro rain radar

The MRR, manufactured by Meteorologische Messtechnik GmbH (METEK)
(METEK, 2009), has been located 2 m from TROWARA since March 2007. This
compact Frequency Modulated Continuous Wave (FMCW) Doppler radar op-
erates at 24.23 GHz and captures data with a 10-second time resolution. The
MRR measures the Doppler frequency shift between the transmitted and re-
ceived signals, which relates to the falling velocity of the hydrometeors, al-
lowing their diameter to be inferred. It has a vertical measurement range of
100 to 3,100 m with a resolution of 100 m, a 3 dB beamwidth of 1.5°, and a
modulation bandwidth range of 0.5 to 15 MHz. Garcia-Benadi et al. (2020)
developed a model that processes the spectral raw data of the MRR to classify
precipitation types into five categories: snow, drizzle, rain, hail, and mixed.
The mixed types include wet snow, a mixture of dry snow and rain, or grau-
pel. The classification utilizes a decision tree that considers the empirical rela-
tionship between hydrometeor fall velocity and equivalent radar reflectivity,
as well as the size and particle properties of various hydrometeors, along
with the presence or absence of bright bands. The model also calculated the
rain rate (RMRR) by integrating the droplet diameter.

RMRR “
π

6

8
ż

0

NpDqD3vpDqdD (33)

where NpDq represents the drop size distribution corrected for attenuation
for a raindrop of diameter D, indicating the number of drops per unit volume
per diameter. vpDq represents the corrected terminal falling velocity. Beynon
(2022) compared rainfall recorded by the MRR with that from the ExWi rain
gauge and found the MRR operated reliably from 2008 to 2010.

https://cloudnet.fmi.fi/
https://cloudnet.fmi.fi/
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3.1.2 In situ datasets

3.1.2.1 Nephelometer

The TSI Model 3563 integrating nephelometer in Granada provides informa-
tion about aerosols by measuring the light scattering coefficient and Ångström
exponent (AE) of aerosol particles at wavelengths of 450, 550, and 700 nm un-
der dry conditions with a time resolution of 1 minute (Titos et al., 2012).
The wide-angle integral of the nephelometer covers an angular range of 7 to
170°, while the backscatter measurement focuses on the range of 90 to 170°.
The instrument undergoes regular routine maintenance and calibration, in-
volving the use of CO2 and filtered air. Non-idealities caused by truncation
errors and non-Lambertian lighting were corrected (Anderson and Ogren,
1998), and the scattering coefficient has an uncertainty of approximately 7%
(Heintzenberg et al., 2006). Further details on data preprocessing and pro-
cessing can be found in the work by Pandolfi et al. (2018).

Scattering coefficients reflect the concentration of aerosol mass or volume,
while AE estimates the average size of primary aerosols in dry conditions.
AE>2 suggests the dominance of fine particles, while AE<1 indicates the dom-
inance of coarse particles.

3.1.2.2 Weather stations

The ExWi automatic weather station in Bern, located near the TROWARA on
the ExWi building, records surface air temperature, pressure, relative humid-
ity, and precipitation monitored by a Vaisala Weather Transmitter WXT520.
In this station wind speed was measured by a Vaisala Wind Sensor WS425.
The weather station supplements TROWARA retrieval algorithms by providing
these meteorological parameters with a time resolution of 10 minutes. The
WXT520 rain sensor with a precision of 0.1 mm was utilized until September
2012, and this station also had a tipping bucket rain gauge with a precision
of 0.2 mm until September 2016. In August 2017, the Vaisala Weather Trans-
mitter was replaced by the WXT-536 model, which offers a precipitation pre-
cision of 0.01 mm. The rain sensor is very sensitive to snow. Additionally, the
Zimmerwald Observatory near Bern uses a Vaisala automatic weather station
with a rain sensor of 0.2 mm precision (Wang et al., 2021).

The UGR automatic weather station in Granada records surface air tempera-
ture and relative humidity monitored by a Vaisala HMP60 probe , and pres-
sure monitored by a Vaisala PTB110 barometer. In this station wind speed
was measured by an anemometer model 05103, manufactured by Campbell
Scientific (Arruda Moreira et al., 2022). The time resolution of these parame-
ters measurements is 1 minute. The rain sensor at the station delivers precip-
itation data from 2020 to 2022 with a precision of 0.1 mm, and another rain
sensor operated on the roof from 2010 to 2022 with a precision of 0.2 mm.
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Comparisons between the two rain sensors demonstrate consistent results
for the overlapping period of 2020 to 2022.

3.2 methodology

3.2.1 Retrieval methods for radiometers

3.2.1.1 IWV and ILW retrieval

TROWARA

TROWARA retrieval derives optical depth at two frequencies (ν “ 21.385 GHz
and 31.5 GHz) to estimate the IWV and ILW respectively. Assuming a plane-
parallel and non-scattering atmosphere, zenith optical depth τν,zen is de-
rived from Equation 25:

τν,zen “ ´µ ¨ ln
ˆ

Tm,ν ´ Tb,ν

Tm,ν ´ Tc

˙

(34)

where µ is the cosine of zenith angle which is 50 degrees for TROWARA. Tb,ν

is the brightness temperature measured by TROWARA, and Tc is the bright-
ness temperature of the cosmic microwave background. Tm,ν represents the
effective mean temperature in the troposphere. The calculation of Tm,ν in-
volves a linear equation with surface temperature Ts, relative humidity RHs,
and pressure Ps observed by ExWi weather station as variables, which is also
dependent on the frequency and location.

Tm,ν “ A0,ν ` A1,ν ¨ Ts ` A2,ν ¨ RHs ` A3,ν ¨ Ps (35)

where the coefficients Ai, i “ 0, 1, 2, 3 are determined by radiosonde data
based on the Rosenkranz radiation model (Mätzler and Morland, 2009; Rosenkranz,
1998).

Microwave radiation from ice and dry snow is negligible due to their small
dielectric losses (Mätzler and Morland, 2014). Equation 34 can thus be ex-
pressed as a linear combination for the clear sky, water vapor, liquid water,
and rain (Leuenberger, 2009).

τν,zen “ paν ` bν ¨ IWV ` cν ¨ ILWq ` τν,rain,zen (36)

τν,rain,zen “ cν ¨ Gν,Mie ¨ VIL (37)

where the coefficients aν and bν are determined statistically by simultaneous
measurements of radiosondes and refined during clear sky periods (Mätzler
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and Morland, 2009). The coefficient cν is the Rayleigh mass absorption coeffi-
cient of cloud water and is determined by a dielectric model of water (Ellison,
2007; Mätzler and Morland, 2014). τν,rain,zen is the zenith optical depth of
rain layer. Gν,Mie is the Mie gain of raindrops (Wang et al., 2021). Vertically
Integrated Liquid (VIL) contains only rainwater. IWV and ILW retrieval equa-
tions can be derived by joint computation of Equation 36 at 21.385 (subscript
21) and 31.5 (subscript 31) GHz during no rainfall (Gν,Mie “ 0). The selec-
tion of these two frequency channels is due to the absorption and scattering
properties of water vapor and cloud droplets (Section 2.1.2).

IWV “
τ21,zen ´ a21 ´ γpτ31,zen ´ a31q

b21p1 ´ βγq
(38)

ILW “
τ31,zen ´ a31 ´ βpτ21,zen ´ a21q

c31p1 ´ βγq
(39)

where β “ b31{b21 ă 0.5, and γ “ c21{c31 – 0.5.

Two criteria are employed to detect cloud-free periods: the standard devia-
tion of ILW and the Infrared (IR) brightness temperature. A threshold σmax

for the standard deviation of retrieved ILW values σILW during the analysis
period is used to identify ILW « 0, which increases slightly with the mean
daily air temperature Ts.

σILW ă σmax “ 0.0011 ` 0.000012 ¨ Ts (40)

where the units of σmax and Ts are mm and °C respectively.

In the case of fog interference in the lower troposphere in winter, IR bright-
ness temperature T IR

b is lower than the most likely cloud-free brightness tem-
perature T IR

b,cloudfree based on IWV empirical fitting.

T IR
b ă T IR

b,cloudfree “ 192 ` 3 ¨ IWV ´ 0.032 ¨ IWV2 (41)

where the units of T IR
b,cloudfree and IWV are K and mm respectively.

Assume a cloud-free case where at least one of these two criteria is satisfied,
then calculate β and IWV from Equations 39 and 38.

β “
τ31,zen ´ a31

τ21,zen ´ a21
(42)

IWV “
τ21,zen ´ a21

b21
(43)

The coefficient b21 is fairly constant and can be calculated using a linear
equation.

b21 “ B0 ` B1τ21,zen ` B2 ¨ τ21,zen ` B3 ¨ Ts ` B4 ¨ Dwv (44)
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where the coefficients Bi, i “ 0, 1, 2, 3, 4 are determined statistically by ra-
diosonde data (Mätzler and Morland, 2009). Dwv is the surface water vapor
density.

HATPRO

The HATPRO software provided by RPG manufacturer retrieves IWV and ILW

for HATPRO G2 (RPG, 2014). The retrieval method is a quadratic regression
(QR) which is expressed as

Out “δ `
ÿ

sensors

MLs ¨ Ms `
ÿ

sensors

MQs ¨ M2
s

`
ÿ

freq

TLν ¨ Tb,ν `
ÿ

freq

TQν ¨ T2
b,ν

(45)

where Out is the output parameter (IWV or ILW). δ is the offset. Ms is the
sth meteorological parameter (temperature, pressure, relative humidity) from
the weather sensor. MLs and MQs are the linear primary and quadratic co-
efficient of Ms respectively. Tb,ν is the brightness temperature observed by
HATPRO at the νth microwave frequency. TLν and TQν are the linear primary
and quadratic coefficient of Tb,ν respectively (RPG, 2014). These coefficients
were obtained from long-term datasets of radiosondes. This retrieval method
is limited to be useful in the atmospheric conditions involved in these train-
ing datasets (Rose et al., 2005).

3.2.1.2 Physical retrieval of rain rate

The HATPRO software lacks the retrieval of the rain rate. An optical depth-
based physical method to estimate the rain rate was introduced by Mätzler
and Morland (2014). In my thesis, I refined and tested this method using a
large dataset of TROWARA observations together with rain gauge measure-
ments and ERA5. After validating the rain rate retrieval for TROWARA, I ap-
plied this method to the HATPRO measurements. In the following, I provide a
detailed description of the rain rate retrieval method. An ILW threshold value
ILWrain is utilized as a criterion to detect rain, usually ranging between
0.1 and 0.6 mm. Rain is assumed to be present if the following condition is
satisfied.

ILW ą ILWrain (46)

Even imprecise values are effective in identifying rain, as the increase in
Mie emission causes a significant rise in ILW values when the diameter of
droplet in the atmosphere exceeds 0.3 mm which is already the size of a
raindrop. I selected 0.4 mm and 0.6 mm as thresholds ILWrain to detect rain
for TROWARA and HATPRO, respectively. The threshold for HATPRO is a bit
higher because the retrieval algorithm of HATPRO overestimates ILW. Even in
a clear sky without clouds, the ILW of HATPRO is greater than 0 (Wang et al.,
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2023).

For the frequencies used, the absorption of raindrops in the atmosphere is
much higher than the scattering. Raindrops lead to a strong increase in the
observed brightness temperature because the radiation emitted by the Earth’s
surface is scattered by the backward hemisphere of the raindrops. Their sum
gives the effective absorption coefficient for rain in Equation 37.

cν ¨ GMie,ν “ Qabs,rain ` Qsca,rain ¨
1´ ă cosθ ą

2
(47)

where Qabs,rain (Equation 15 and 16) is the rain absorption coefficient, and
Qsca,rain ¨ 1´ăcosθą

2 is the scattering coefficient Qsca,rain (Equation 14 and
17) in the backward hemisphere.

The VIL associated with rain rate Rν can be illustrated as follows.

VIL “ Rν ¨
Hrain

v
(48)

where Hrain is the height from the melting layer to the ground, which is
calculated by the ratio of the difference between the surface temperature (Ts)
and the melting layer temperature (TML “ 273.15K) to the temperature gra-
dient with altitude (Γ “ dT

dH ). v is the velocity at which the raindrops fall.

The relationship between rain rate Rν and rain zenith optical depth τν,rain,zen

is deduced by Equations 37 and 48.

Rν “
τν,rain,zen

gν,rain ¨ Hrain
(49)

where gν,rain “ cν ¨ GMie,ν{v is the specific and effective rain absorption
coefficient. Since gν,rain is almost independent of rain rate and very weakly
dependent on temperature, a constant value is assumed for a given frequency.
At 21 GHz and 31 GHz, the values of gν,rain is set to 0.0165 h/mm/km and
0.0345 h/mm/km, respectively, which guarantees 20% accuracy (Mätzler and
Morland, 2014). τν,rain,zen is determined iteratively by the radiative transfer
equation.

τ
pk`1q

ν,rain,zen “ ´µ ¨ ln

˜

Tm,ν,rainpτ
pkq

ν,rain,zenq ´ Tb,ν,rain

Tm,ν,rainpτ
pkq

ν,rain,zenq ´ Tb,ν,rainfree

¸

(50)

where τ
pk`1q

ν,rain,zen is the rain zenith optical depth at the kth iteration. Tb,ν,rain

is the brightness temperature measured by ground-based microwave radiome-
ter during rain. Tb,ν,rainfree is the brightness temperature without rain, that
is, the atmospheric water contains only water vapor and clouds. Tm,ν,rain is
the effective mean temperature during rain. Tb,ν,rainfree and Tm,ν,rain give:

Tb,ν,rainfree “ Tc ¨ e´τν,rainfree,zen{µ ` Tm,ν

´

1 ´ e´τν,rainfree,zen{µ
¯

(51)
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Tm,ν,rainpτν,rain,zenq “

τν,rain,zen{µ
ş

0

Tpτq ¨ e´τdτ

1 ´ e´τν,rain,zen{µ
– Ts ´

1

2
pTs ´ TMLq ¨e´0.19¨τν,rain,zen{µ

(52)

where τν,rainfree,zen is the zenith optical depth without rain. Microwave ra-
diometers are unable to measure it during rainfall, so it is estimated through
temporal interpolation of measurements obtained during intermittent peri-
ods with no rain. Equation 50 basically converges after two iterations.

3.2.2 Machine learning methods

3.2.2.1 Gradient Boosted Decision Trees (GBDT)

GBDT is a powerful machine learning method known for its high generaliza-
tion ability and robustness. GBDT fits the residual of previous base learners
using the negative gradient of the loss function, gradually reducing the resid-
ual at each round to achieve accurate predictions (Hu et al., 2021). It is an en-
semble learning method for building strong learners by combining decision
trees. Algorithm 1 shows the regression procedure of GBDT. It generates a
forest with M regression trees based on a dataset D, where N is the number
of training samples, J is the number of leaf terminal node of trees, 1p¨q is an
indicator function, it is 1 if the argument (e.g. x P Rmj) is true, otherwise zero.
γ is the transcendental parameter.

GBDT has the capability to select features that contribute more to the pre-
diction in each iteration and output feature importance scores (Zhang et al.,
2022). The calculation of GBDT feature selection was proposed by Breiman et
al. (1984). The basic idea is to gauge the importance of a feature n by tallying
how frequently it is selected on average. During the splitting process of the
regression tree, if the input feature is chosen more often as the splitting fea-
ture, it is considered more important. This frequency is then generalized to
relative influences In of the individual inputs xn, and the average frequency
of feature selection is computed across all regression trees (Friedman, 2001).

Î2npTq “

J´1
ÿ

t“1

î2j 1pvj “ nq (53)

where vj is the splitting variable associated with nonterminal split node j

for a decision tree T . î2t is the empirical improvement in the square of loss
reduction due to splits.

Assuming that every tree is a binary tree, Equation 53 can be generalized
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Algorithmus 1 : Gradient Boosting Decision Tree
Input : Training dataset

D “ tpx1,y1q, px2,y2q, ¨ ¨ ¨ , pxN,yNqu , xn P X Ď Rn,yn P Y Ď R;
Loss function Lpy, fpxqq;

Output : GBDT model fM pxq;
1 Initialize f0 pxq “ argmin

γ

řN
n“1 L pyn,γq;

2 for m P r1,Ms do
3 for n P r1,Ns do

4 Compute residual: rmn “ ´

”

BLpyn,fpxnqq

Bfpxnq

ı

fpxq“fm´1pxq
;

5 end
6 Fit a regression tree with pxi, rmnq to obtain a leaf node set of the

mth tree: Rmj, j P r1, Js;
7 for j P r1, Js do
8 Minimized loss function:

γmj “ argmin
γ

ř

xnPRmj
L pyn, fm´1 pxnq ` γq;

9 end
10 Update prediction: fm pxq “ fm´1 pxq `

řJ
j“1 γmj1

`

x P Rmj

˘

;
11 end
12 Get the final GBDT function:

f̂ pxq “ fM pxq “
řM

m“1

řJ
j“1 γmj1

`

x P Rmj

˘

;
13 return fM pxq;

by averaging it over a collection of decision trees tTmu
M
1 obtained through

boosting.

Î2n “
1

M

M
ÿ

m“1

Î2npTmq (54)

3.2.2.2 Random Forest (RF)

RF, proposed by Breiman (2001), is a machine learning algorithm in the bag-
ging category of ensemble methods. It excels in regression tasks and is widely
used in precipitation studies due to its robust performance (Zhang et al.,
2021). RF incorporates two important randomness settings: it samples the
original dataset using the bootstrap method and randomly selects a subset of
features, from which the best ones are chosen. In a random forest, each node
is split using the best value among a randomly chosen subset of predictors
at that node (Liaw, Wiener, et al., 2002). The final model averages the predic-
tions from all decision trees. Hastie et al. (2009) demonstrated the process of
the RF algorithm.

Evaluating feature importance is crucial in RF as it aids in selecting features
that improve model performance and generalization. In RF, each tree is built
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Algorithmus 2 : Random Forest
Input : Training dataset

D “ tpx1,y1q, px2,y2q, ¨ ¨ ¨ , pxN,yNqu , xn P X Ď Rn,yn P Y Ď R;
Output : Output the ensemble of trees tTmu

M
1 ;

1 Initialize an empty forest F;
2 for m P r1,Ms do
3 a. Draw a bootstrap sample Dm from D;
4 b. Grow a random-forest tree Tm using the bootstrapped data by

recursively repeating the following steps for each terminal node
until the minimum node size is reached:

5 for n P r1,Ns do
6 i. Select n variables at random from the N variables;
7 ii. Pick the best variable or split-point among the n;
8 iii. Split the node into two daughter nodes;
9 end

10 end
11 Get the final RF function:
12 f̂ pxq “ fM pxq “ 1

M

řM
m“1 Tm pxq;

13 return fM pxq;

by recursively selecting the best splitting features and calculating the Mean
Decrease Impurity (MDI) from these splits. A feature’s importance is deter-
mined by summing its impurity reductions at each split across all trees and
then averaging these sums to compute the importance score of the feature
(Louppe et al., 2013).

3.2.3 Superposed epoch analysis (SEA)

Superposed epoch analysis (SEA) (Chree, 1913), also referred to as composite
analysis method, is simple and one of the most powerful widely used sta-
tistical analysis techniques (Walton and Murphy, 2022). Python also releases
packages that perform SEA. Studies have utilized SEA for a range of evolu-
tionary characteristics of meteorological or climatic phenomena that are chal-
lenging to observe as a whole or events occurring over an extended period.
To identify the evolution of time series of atmospheric variables affected by
rain events, SEA is an effective option. SEA can be divided into two phases:
pre-epoch and post-epoch. An epoch can be a specific point in time or a dis-
crete event in time, such as a rain event. Before and after the occurrence of
an epoch is a long continuous uniformly sampled time series, such as atmo-
spheric variables observations (Rao et al., 2019). These events are assumed
to result in the characteristics of a continuous time series. These two phases
for each epoch are combined and put into a set of equally spaced bins, the
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number of bins N being the same as the number of events. A statistic is
determined, such as mean, for all binned data (Rong et al., 2020).

Vpxq “
1

N

N
ÿ

epoch“1

Vx,epoch (55)

where V is the observation of atmospheric variables. x is the time between
´a and b. If conducting a 2D SEA, the data is organized into bins in the
second dimension before computing the statistics for each bin. To form the
superposed epoch analysis of rain events, the criteria are:

‚ the onset time of rainfall is set as epoch time 0. The occurrence/dura-
tion time of a rain event is set as t. 1 hour before rainfall is set as ´1, 1
hour during rainfall is set as `1, and 1 hour after rainfall is set as t ` 1.

‚ ILW=0.4 and ILW=0.6 determine the start and end time of rain detection
by TROWARA and HATPRO respectively (Cossu et al., 2015; Löhnert and
Crewell, 2003; Mätzler and Morland, 2009; Wang et al., 2023).

‚ If no rainfall occurs during a hours before the epoch 0 and during b

hours after the time t, then this rain event is selected.



Part III

R E S U LT S A N D D I S C U S S I O N

This part presents six studies that have either been published or
submitted to peer-reviewed journals. These studies focus on rain-
fall retrieval, tropospheric radiometers, and precipitation over the
Swiss Plateau and Mediterranean climates affected by Saharan
dust.



4 R A I N D E T E C T I O N B Y
M I C R O WAV E R A D I O M E T E R

4.1 summary of the study

Measurements of brightness temperature and retrieval of atmospheric pa-
rameters (e.g. water vapour and clouds) from ground-based microwave ra-
diometers are valid under most weather conditions, but are no longer ap-
plicable during rainfall. Microwave radiometer data can be contaminated be-
cause the radiation signal is affected by raindrops in the atmosphere. Several
physical and statistical methods have been presented in recent years that
specifically use rain-contaminated microwave radiometer data for rain rate
retrieval (Marzano et al., 2005a; Marzano et al., 2005b; Wang et al., 2021), but
the premise is that rain-free and rain-contaminated data have been identified.
An effective rain detection model can directly detect rain-contaminated data,
eliminating the dependence on rain gauges, and can serve as rain flags for
co-located remote sensing instruments facing similar challenges.

The article presented in this chapter proposed a GBDT-based rain detection
method for microwave radiometer measurements. Using rain detected by
MRR as target variable, my method considered various precipitation patterns
contained in different seasons and demonstrates strong generalization ability.
It can detect rain-contaminated microwave radiometer time series data with
high time resolution (10 seconds), effectively overcoming the time depen-
dence of rain occurrence. The rain detection capability is competitive, achiev-
ing 98.4% accuracy, 97% precision, 99.9% recall, and a 98.4% F1 score.

The following article was submitted to Journal of Hydrology in July 2024.

4.2 publication

full citation

Wang Wenyue, Wenzhi Fan, and Klemens Hocke. "Rain detection for rain-
contaminated ground-based microwave radiometer data using physics-
informed machine learning method." In: Journal of Hydrology, in review.
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Radiometer Data Using Physics-Informed Machine Learning Method
Wenyue Wanga,b,∗, Wenzhi Fanc and Klemens Hockea,b

aInstitute of Applied Physics, University of Bern, 3012, Bern, Switzerland
bOeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
cSchool of Earth and Space Sciences, Peking University, 100084, Beijing, China

A R T I C L E I N F O
Keywords:
Rain detection
GBDT
Microwave radiometer
Micro rain radar

A B S T R A C T
Because the radiation signal is strongly influenced by emission and scattering from rain, microwave
radiometer data suffer from rain contamination. The traditional method of using rain gauges to detect
rain for microwave radiometers has limitations. For example, it can only detect rain that reaches the
ground and is ineffective for raindrops suspended in the atmosphere that can still contaminate remote
sensing data. This article presents a rain detection method for microwave radiometer measurements,
based on Gradient Boosted Decision Trees (GBDT). First, the characteristic that the increase in
microwave radiometer brightness temperature when raindrops are present in the atmosphere, along
with the seasonal dependency of rainfall patterns, is combined with meteorological variables to form
feature vectors. Then, the GBDT is employed to classify data into rain-free and rain-contaminated
categories. Microwave radiometer (MWR) measurements and simultaneous Micro Rain Radar (MRR)
target classification collected from the Swiss Plateau in 2008 are utilized to train the model, which is
subsequently tested using two testing schemes: ten-fold cross-validation technique and time series
test sets. Compared with the detection accuracy of the integrated liquid water (ILW) threshold
method (73.6% and 68.3%) in both testing schemes, our GBDT-based method achieved superior
accuracy, recording approximately 100% and 98.4%, respectively. The proposed method exhibits
strong generalization capabilities, allowing it to directly detect rain contamination in time series data
and effectively overcome the time dependence of rainfall occurrence. In addition, compared with
the ILW threshold method, the GBDT-based method considers various rainfall patterns contained in
various seasons. Features selected for this method enable its direct application to other tropospheric
microwave radiometer systems.

1. Introduction
Ground-based microwave radiometers have been devel-

oped as widely used atmospheric remote sensors because
of their continuous, all-weather observations both day and
night (Hocke, Bernet, Hagen, Murk, Renker and Mätzler,
2019). On the other hand, microwave radiometers are espe-
cially crucial for cross-validation of satellite observations,
thanks to their high temporal resolution and precise re-
trieval capabilities for atmospheric parameters (Sauvageat,
Hocke, Maillard Barras, Hou, Errera, Haefele and Murk,
2023). Various methods have been proposed to retrieve water
vapor, cloud liquid water, temperature, ozone, and wind
from brightness temperatures (𝑇𝐵) measured by microwave
radiometers (Wang, Hocke and Mätzler, 2021; Sauvageat,
Maillard Barras, Hocke, Haefele and Murk, 2022; Krochin,
Navas-Guzmán, Kuhl, Murk and Stober, 2022). Although
these methods are effective under most weather conditions,
they are no longer suitable during rainfall, as the radiation
signal is affected by strong emission and scattering from
raindrops in the atmosphere, and water films form on ra-
diometers’ radome (Wang, Murk, Sauvageat, Fan, Dätwyler,
Hervo, Haefele and Hocke, 2023). This leads to a degra-
dation in the data quality of atmospheric 𝑇𝐵 and these
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parameters retrieval. No algorithms have yet been devel-
oped to mitigate the effects of rain. Therefore, microwave
radiometer data contaminated by rainfall should be detected
and excluded. Several physical and statistical methods have
been presented in recent years that specifically use rain-
contaminated microwave radiometer data for rain rate re-
trieval (Marzano, Cimini and Ware, 2005b; Marzano, Ci-
mini, Ciotti and Ware, 2005a; Wang et al., 2021; Marzano,
Fionda and Ciotti, 2006), but the premise is that rain-free
and rain-contaminated data have been identified. Tradition-
ally, rain gauges, rain sensors, or rain detector, with a time
resolution typically ranging from 1 to 10 minutes, serve as
rain flags for detecting rainfall and quantifying the amount
of precipitation reaching the ground. Löhnert and Crewell
(2003) indicated that Integrated Liquid Water (ILW) can
serve as a threshold for detecting rain-contaminated mi-
crowave radiometer data. In their study of atmospheric water
parameters, Cossu, Hocke, Martynov, Martius and Mätzler
(2015) utilized an ILW threshold greater than 0.4 mm for
rain detection on the tropospheric microwave radiometer
TROWARA. The ILW threshold method is straightforward,
but precise ILW retrieval is essential, and the threshold value
can only be determined empirically. The accuracy of ILW
threshold method in detecting rain-contaminated data has
also not been previously analyzed. Hence, it is imperative
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to propose a novel detection method for tropospheric mi-
crowave radiometers that is accurate and adaptable to vari-
ous measurement setups. In addition, an effective rain detec-
tion model allows for direct detection of rain-contaminated
data, eliminating reliance on rain gauges, and can function as
a rain flag for co-located remote sensing instruments facing
similar challenges (Chen, Huang, Zhao and Tian, 2020).

Rain detection essentially boils down to a binary clas-
sification task, segregating microwave radiometer measure-
ments into two categories: rain-free and rain-contaminated
(Chen et al., 2020). The machine learning method Gradi-
ent Boosted Decision Trees (GBDT) captures the complex
nonlinear relationships of data through the combination
of multiple decision trees (Friedman, 2001, 2002). Also,
GBDT can efficiently handle large-scale data with mixed
feature types and has certain robustness to data with noise
and outliers. GBDT is widely used in classification tasks
in remote sensing field to solve recognition problems, such
as cloud detection from microwave humidity sounder (Liu,
Yin, Chu and An, 2020) and diagnosis of precipitation types
from surface observations (Zhuang, Lehner and DeGaetano,
2024; Fu, Kan, Liu, Liang, He and Ding, 2023). To the
best of our knowledge, this article is the first article on rain
detection in rain-contaminated ground-based microwave ra-
diometer data using GBDT. Previous studies, such as the
one mentioned in (Ma, Zhang and Lu, 2018), applied GBDT
to identify hourly rain areas during the summer using data
from the advanced Himawari imager. Another study cited
in (Lei, Zhao and Ao, 2022) utilized GBDT for precipitation
identification and estimation from multi-source precipitation
products, including one reanalysis product and five satellite
precipitation products, along with rain gauge observations
from 2000 to 2017 over China. However, none of these
studies explored the use of GBDT for detecting rain in
ground-based microwave radiometer data, marking a novel
contribution of this research. In addition, in this article,
features take into account various rainfall patterns in various
seasons. Note that the method must possess exceptional
generalization capabilities, as rainfall is a time-dependent
dynamic phenomenon with varying intensity and duration
at each time step (Pudashine, Guyot, Petitjean, Pauwels,
Uijlenhoet, Seed, Prakash and Walker, 2020).

Here, we apply both the proposed GBDT-based method
and the ILW threshold method to detect rain-contaminated
data for microwave radiometer. The article is structured as
follows. Section II introduces and derives the rain detection
method based on GBDT. Section III compares and analyzes
the results obtained from the two testing schemes using the
proposed technique and the ILW threshold method. Discus-
sion and conclusions are in Section IV and V.

2. GBDT-based rain-contaminated data
detection

2.1. Effect of raindrops on radiometric signals
The radiometer used in this article is a ground-based tro-

pospheric microwave radiometer at 21.385, 22.235, and 31.5

GHz operating indoors for monitoring atmospheric water va-
por and cloud liquid water. The microwave radiometer func-
tions by receiving signals emitted from microwave radiation
in the atmosphere that originate from particles (Battaglia,
Simmer, Crewell, Czekala, Emde, Marzano, Mishchenko,
Pardo, Prigent et al., 2006), such as raindrops. In other
words, radiation traverses through the atmosphere and inter-
acts with raindrops, where absorption refers to the transfer of
energy from the radiation to raindrops, whereas scattering
alters the direction of the radiation beam without affecting
its energy or frequency. The combination of absorption and
scattering is called extinction (𝑄𝑒𝑥𝑡). For the microwave
frequency band (1-300 GHz), scattering depends on the
size and composition of particles present in the atmosphere.
Light raindrops (approximately 100 𝜇m) undergo Rayleigh
scattering (Bohren and Huffman, 2008; Rayleigh, 1871).
Raindrops (0.1-3 mm) can exhibit Rayleigh scattering or Mie
scattering (Mishchenko, Yatskiv, Rosenbush and Videen,
2011). Rayleigh absorption and scattering efficiencies (𝑄𝑎𝑏𝑠and 𝑄𝑠𝑐𝑎) are given by

𝑄𝑎𝑏𝑠 = −4𝜒ℑ
(
𝑚2 − 1
𝑚2 + 2

)
∝ 1

𝜆
(1)

𝑄𝑠𝑐𝑎 =
8
3
𝜒4 ||||

𝑚2 − 1
𝑚2 + 2

||||
2
∝ 1

𝜆4
(2)

and
𝑄𝑒𝑥𝑡 = 𝑄𝑎𝑏𝑠 +𝑄𝑠𝑐𝑎 (3)

where 𝜒 is the dimensionless size parameter. 𝑚 is the com-
plex refractive index. 𝜆 is the wavelength. ℑ represents
the imaginary part. The effect of raindrops on microwave
radiation signals is directly related to 𝑄𝑎𝑏𝑠 and 𝑄𝑠𝑐𝑎. Ice
primarily scatters microwave radiation without absorbing
it, whereas raindrops both absorb and scatter microwave
radiation, with absorption being the dominant interaction
(Mätzler and Morland, 2014). The extent of absorption and
scattering in ice and water is contingent upon their magni-
tude relative to the microwave frequency. For frequencies
ranging from 22 to 31 GHz, the scattering effect of ice is
negligible, rendering ice nearly transparent to microwave
radiation (Mätzler and Wegmüller, 1987).

Figure 1 shows the effect of precipitation types on the
microwave radiometer. Figure 1(b) illustrates a significant
increase in brightness temperature (𝑇𝐵) observed by the mi-
crowave radiometer at 21, 22, and 31 GHz during convective
rainfall on August 19, 2008 in Figure 1(a). For example, the
𝑇𝐵 at 31 GHz rose rapidly from approximately 30 to over
180 K from 14:40 to 15:40 UTC. The convective rain mainly
includes rain and drizzle types of precipitation. Furthermore,
mixed (rain and snow or graupel) also contaminates mi-
crowave radiometer data. As shown in Figure 1(c) and (d),
during periods dominated by mixed from 14:30 to 15:10
UTC on March 21, 2008, the 𝑇𝐵 exhibits higher values.
However, dry snow, composed mainly of ice crystals, has no
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Figure 1: Rain-contaminated microwave radiometer data. The time periods are from 12:00 to 16:00 UTC on August 19, from
13:00 to 17:00 UTC on March 21, and from 1:00 to 8:00 UTC on March 26, 2008, respectively. (a), (c), and (e) Micro Rain
Radar (MRR) target classification exist for rain, drizzle, mixed, and snow, respectively. (b), (d), and (f) brightness temperature
(𝑇𝐵) from microwave radiometer TROWARA. Channels at 21.385, 22.235, and 31.5 GHz are orange line, green line, and red line,
respectively.

significant impact on 𝑇𝐵 from the data presented in Figure
1(e) and (f). It follows that only certain precipitation types,
specifically rain, drizzle, and mixed, can affect microwave
radiation signals.
2.2. Data sources
2.2.1. Microwave radiometer data

The microwave radiometer data used in this study were
provided by the Tropospheric Water Radiometer (TROWARA)
(Peter and Kämpfer, 1992), which operates on the roof of the
Exakte Wissenschaften (ExWi) building (46.95°N, 7.44°E;
alt. 575 m asl) at the University of Bern since November
1994 in Bern, Switzerland. 𝑇𝐵 data were collected at a
temporal resolution of 7-11 seconds. The corresponding
bandwidths of the 21.385 GHz, 22.235 GHz and 31.5 GHz
microwave channels are 100 MHz, 400 MHz and 200 MHz
respectively. The half-power beamwidth of the antenna beam
is 4°. TROWARA is directed towards the southeast of the sky
at a zenith angle of 50°. Since November 2002, TROWARA
moved from outdoor to an indoor temperature-controlled
laboratory and reinstalled (Morland, 2002), where its an-
tenna receives atmospheric radiation through a microwave-
transparent window (Morland, 2007). The wall surrounding
the window is effectively shielded from rain, ensuring the
antenna remains dry and enabling TROWARA to conduct

measurements even on rainy days (Wang et al., 2023). In
addition, TROWARA is equipped with a thermal infrared
channel operating within the wavelength range of 9.5–11.5
𝜇m to measure infrared cloud base brightness temperature.
TROWARA can retrieve accurate integrated water vapour
(IWV) and integrated liquid water (ILW) using opacity
based physical retrieval algorithm (Mätzler and Morland,
2009). Assuming a plane-parallel atmosphere, the radiative
transfer equation for a non-scattering atmosphere is:

𝑇𝐵,𝑖 = 𝑇𝐶 ⋅ 𝑒−𝜏𝑖∕𝜇 + 𝑇𝑚𝑒𝑎𝑛,𝑖 ⋅ (1 − 𝑒−𝜏𝑖∕𝜇) (4)
where 𝜏𝑖 represents the zenith opacity, 𝜇 denotes the cosine
of the zenith angle, 𝑇𝐵,𝑖 stands for the TROWARA bright-
ness temperature at frequency 𝑖 (e.g., 31.5 GHz), and 𝑇𝐶 sig-
nifies the brightness temperature of the cosmic microwave
background. Furthermore, 𝑇𝑚𝑒𝑎𝑛,𝑖 represents the effective
mean temperature of the troposphere, which is dependent
on frequency (and site). 𝑇𝑚𝑒𝑎𝑛,𝑖 can be derived via a linear
equation that integrates meteorological parameters (Wang
et al., 2021).

The zenith opacity 𝜏𝑖 can be derived from Equation 4:

𝜏𝑖 = −𝜇 ⋅ ln
(𝑇𝑚𝑒𝑎𝑛,𝑖 − 𝑇𝐵,𝑖

𝑇𝑚𝑒𝑎𝑛,𝑖 − 𝑇𝐶

)
(5)
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Equation 5 can alternatively be represented as a linear
combination of IWV and ILW, both measured along the
zenith direction.

𝜏𝑖 = 𝑎𝑖 + 𝑏𝑖 ⋅ IWV + 𝑐𝑖 ⋅ ILW (6)
where the coefficients 𝑎𝑖 and 𝑏𝑖 are air pressure-dependent
and can be statistically derived from concurrent radiosonde
measurements, further refined during clear-sky periods. The
coefficient 𝑐𝑖 varies with air temperature and frequency and
represents the Rayleigh mass absorption coefficient of cloud
water, obtainable from a dielectric model of water (Ellison,
2006).
2.2.2. Meteorological data

The meteorological data used in this study were sourced
from a standard weather station situated a few meters away
from TROWARA on the roof of ExWi building. The weather
station provides weather conditions and supplementary data
essential for the rain detection model, including surface air
temperature, air pressure, and relative humidity, recorded at
a 10-minute time resolution.
2.2.3. Micro rain radar data

The precipitation type classification data used in this
study were obtained from the Micro Rain Radar (MRR)
manufactured by Meteorologische Messtechnik GmbH (Metek)
(METEK, 2009), located two meters away from TROWARA
on the roof of the ExWi building since March 2007. The
MRR is a compact frequency modulated continuous wave
(FMCW) Doppler radar operating at a frequency of 24.23
GHz, pointed towards the zenith direction with a time
resolution of 10 seconds. The MRR system can measure
vertically over ranges from 100 to 3100 m with a resolution
of 100 m. The 3-dB beamwidth is 1.5°, and the modulation
bandwidth ranges from 0.5 to 15 MHz. For classification,
the model developed by Garcia-Benadi, Bech, Gonzalez,
Udina, Codina and Georgis (2020) was employed to process
the MRR’s spectral raw data, enabling the classification
of precipitation types into five categories including snow,
drizzle, rain, hail, and mixed. The mixed category includes
wet snow, a mixture of dry snow and rain, or graupel. The
classification employs a decision tree that incorporates the
empirical relationship between hydrometeor fall velocity
and equivalent radar reflectivity, as well as the size and
particle properties of various hydrometeors and the presence
or absence of bright bands. Beynon (2022) compared the rain
time recorded by the MRR with the rain gauge and showed
that the MRR operated most reliably in 2008, and the data
loss caused by the shutdown was negligible, so this article
uses the 2008 data to train the model.
2.3. GBDT algorithm for rain detection

Gradient Boosting Decision Trees (GBDT) is one of the
best algorithms for fitting actual distributions among tradi-
tional machine learning algorithms. It demonstrates strong
generalization capabilities and is effective for classification
tasks. GBDT binary classification is an ensemble learning

algorithm that combines multiple weak learners (trees) to
form a strong learner. Each weak learner is a binary decision
tree that corrects the residuals caused by all previous trees
using iterations, and uses the negative gradient of the loss
function to fit a new decision tree model that minimizes the
classification error of the previous model (Friedman, 2002).
Assume that given the training set to train rain detection
model{𝑥1, 𝑦1

}{
𝑥2, 𝑦2

}
,… ,

{
𝑥𝑛, 𝑦𝑛

} (
𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {0, 1}

),
where 𝑛 is the sample size, and 𝑖 from 1 to 𝑛. 𝑥𝑖 represents a
feature vector of sample 𝑖. 𝑦𝑖 represents a binary label, which
is marked as rain-free (category 0) or rain-contaminated
(category 1). The weak classifier 𝑓𝑚 (𝑥) is assembled into
the final GBDT model 𝐹𝑀 (𝑥) through the additive model
after the 𝑚-th round of iteration.

𝐹𝑀 (𝑥) =
𝑀∑
𝑚=1

𝑓𝑚 (𝑥) (7)

where 𝑀 is the number of decision trees or weak learners,
and 𝑚 is from 1 to 𝑀 .

The process of model training is as follows (Liu et al.,
2020; Shen and Yong, 2021):

1. Initialize the first learner 𝐹0 (𝑥) as prior information
in binary classification.

𝐹0 (𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

𝑛∑
𝑖=1

𝐿(𝑦𝑖, 𝑐) (8)

where 𝐿 is the loss function. 𝑐 is the optimal constant
predictor.

2. Calculate the error residual 𝑟𝑚𝑖 between each tree and
the previous result, that is, the negative gradient of
the loss function with respect to the current model
𝑓𝑚−1(𝑥).

𝑟𝑚𝑖 = −

[
𝜕𝐿

(
𝑦𝑖, 𝑓 (𝑥𝑖)

)

𝜕𝑓
(
𝑥𝑖
)

]

𝑓 (𝑥)=𝑓𝑚−1(𝑥)

= 𝑦𝑖−𝑦𝑖 (9)

3. Calculate the optimal fitting value of leaf node 𝑗 =
1, 2, ..., 𝐽 in each partitioning method to approximate
the residual error.

𝑐𝑚𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

∑
𝑥𝑖∈𝑅𝑚𝑗

𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝑐) (10)

where 𝑅𝑚𝑗 represents the set of predicted values of all
leaf nodes of the 𝑚-th sub-tree.

4. Update the model to adjust to a better fit to the training
data by adding newly trained trees.

𝑓𝑚 (𝑥) = 𝑓𝑚−1 (𝑥) +
𝐽∑
𝑗=1

𝑐𝑚𝑗𝐼
(
𝑥 ∈ 𝑅𝑚𝑗

) (11)

where 𝐼 is a function. If the sample on the node of
𝑅𝑚𝑗 , then 𝐼 = 1, otherwise 𝐼 = 0.

5. Repeat step 2-4 until the preset number of iterations
is reached or the improvement is no longer signifi-
cant. The strong classifier obtained by the final model
𝐹𝑀 (𝑥) can be applied to predict new samples.
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The GBDT-based model assesses the importance of
features by calculating their average selection frequency 𝐽
in tree branching. This metric is derived by normalizing
and averaging how frequently each feature is selected as
a branch point across all regression trees. Essentially, the
more frequently a feature is chosen, the more important it
is considered (Wang et al., 2023; Friedman, 2001).

𝐽 2 = 1
𝑀

𝑀∑
𝑚=1

𝐽 2
(
𝑇𝑚

) (12)

The importance of a feature within a decision tree T is
calculated as follows:

𝐽 2 (𝑇 ) =
𝑁−1∑
𝑡=1

𝑖2𝑡 1
(
𝑣𝑡
) (13)

In this context, each tree is assumed to be binary, with 𝑁
representing the number of terminal nodes and 𝑁 − 1 the
number of nonterminal nodes. The variable 𝑣𝑡 denotes the
feature used for splitting at node 𝑡, and 𝑖2𝑡 quantifies the
squared loss reduction resulting from that split. A larger
value of 𝑖2𝑡 signifies a more significant reduction in loss,
highlighting the importance of the feature at that node.

The quantitative evaluation of rain detection results is
based on metrics such as accuracy, precision, recall, and
F1 score, as detailed in Table 1. The samples are divided
into two categories: positive (rain-contaminated data) and
negative (rain-free). TP (True Positives): the number of pos-
itive samples correctly predicted as positive. TN (True Neg-
atives): the number of negative samples correctly predicted
as negative. FP (False Positives): the number of negative
samples incorrectly predicted as positive. FN (False Nega-
tives): the number of positive samples incorrectly predicted
as negative. Accuracy is calculated as the sum of all cor-
rect predictions divided by the total number of predictions.
Accuracy represents the proportion of correct predictions
by the model for the rain-contaminated data and rain-free
categories, and it is the most straightforward metric in the
case of balancing positive and negative samples. Precision
represents the proportion of rain-contaminated data among
all samples predicted by the model that are actually rain-
contaminated. High precision means that the proportion of
mislabeled cases that the model labels as rain-contaminated
data is low. Recall is the model’s ability to correctly identify
actual rain-contaminated data. A high recall means that the
model effectively captures rain-contaminated data, that is,
fewer missed detection occur. F1 score is a comprehensive
reflection of the two metrics of precision and recall.

TROWARA provides three variables: brightness temper-
ature at 31.5 GHz, infrared cloud base brightness tempera-
ture, and integrated water vapor. These, along with the three
variables air temperature, air pressure, and relative humidity
provided by the weather station, are used as feature inputs
for the GBDT learning dataset, with rain detection by MRR
serving as the label, covering the period from January 1
to December 31, 2008. TROWARA’s time resolution is 11

Table 1
Validation metrics with the range and optimum.

Metrics Equation Range Optimum

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

[0,1] 1

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

[0,1] 1

Recall 𝑇𝑃
𝑇𝑃+𝐹𝑁

[0,1] 1

F1 Score 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

[0,1] 1

seconds in 2008. All the data is standardized to a uniform 10-
second time resolution using a sample resampling method.
The dataset comprises 340,536 samples, balanced at a 1:1
ratio between rain-contaminated and rain-free samples.

3. Experiment and results
3.1. Data preprocessing

To ensure the reliability of MRR data as rainfall labels,
data preprocessing should be performed to remove outlier
lines. As shown in Figure 2(a), MRR data often contain
numerous radial and large-area outlier lines due to interfer-
ence from the instrument and the environment. Figures 2(b)
and (c) provide enlarged views of these outliers. Outliers
in the MRR data can lead to misjudgments regarding the
presence of raindrops in the troposphere. To address this
issue, the data is filtered to include only rain events that last
for a minimum of three minutes, effectively removing these
outliers. In addition, considering that the melting layer can
be very low, only the presence of rain, drizzle, or mixed
below 200 m is selected as the positive category. Figure
2(d) shows the MRR target classification after outlier lines
removal from Figure 2(a). This study performs the above
preprocessing on all rain events in 2008.

Seasonal effects need to be considered when analyzing
rainfall-related data. This is because climatic factors, such
as temperature fluctuations, pressure systems and ocean cur-
rents, along with geographical factors like topography and
proximity to bodies of water, can cause rainfall patterns and
intensity to vary significantly across various seasons. Bern
is situated on the Swiss Plateau. The Swiss Plateau features
rolling hills and abundant lakes and rivers. It lies in the
transition zone between oceanic and continental climates,
resulting in variable and often cloudy weather. Summers
are cool due to frequent cloud cover, whereas winters are
relatively mild (Wang and Hocke, 2022). Figure 3(a), (b),
(c), and (d) show examples of rainfall across various seasons
spring, summer, autumn and winter respectively. In the
example from April 6, the melting layer was notably low
(about 500 m) and less distinct, with mixed also observed
after 3:40 UTC. In summer such as July, convective rain
occurs frequently. The stratiform rain with a melting layer
higher than about 2000 m on October 16. Winter in January
is a season of mixed and snow. Therefore, the months from
January to December were added to the features of the
GBDT model in this article using one-hot encoding (Lucas,
2014).
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Figure 2: Outlier lines in MRR data. (a) Raw MRR target classification data from 11:00 to 19:00 UTC on January 18, 2008. Part
of the outlier lines is outlined in two black box. (b) Zoom in on the left black box to view the outlier lines. (c) Zoom in on the
right black box to view large distribution outlier lines. (d) MRR target classification data with outlier lines removed and rainfall
duration exceeding 3 minutes.

To comprehensively evaluate the fitting potential and
predictive ability of the GBDT-based rain detection model,
we adopted two test methods: Testing scheme 1 and Testing
scheme 2. Testing scheme 1 employs the ten-fold cross-
validation (CV) technique (Rodriguez, Perez and Lozano,
2010). The entire sample is randomly split into 10 equal
subsets. One subset is used to test the model, whereas the
remaining subsets train it. This process is repeated ten times,
with the overall performance of the model evaluated by
averaging the outcomes of these ten tests. On the other
hand, considering rainfall has a strong dependence on time
(Pudashine et al., 2020), as the onset and end of rainfall
interact with atmospheric parameters (Wang and Hocke,
2022). Testing scheme 2 is designed that the test set consists
of the time series from the last two rainy days of each month,
and the remaining data is used to train the model. The ratio
of training set and test set sample size for Testing scheme 2
is 9:1.
3.2. Test and validation

Table 2 shows rain detection results of microwave ra-
diometer (MWR) data based on GBDT and ILW threshold
method, where the threshold is denoted as ILW𝑅. Results
show that for Testing scheme 1, the GBDT method achieves
100% detection accuracy, precision, recall, and F1 score
across all testing samples. Note that it is impossible for

100% of the test samples to be detected correctly. The 100%
figure is a rounded from 99.9%. Using the ILW thresh-
old method, the corresponding metrics are 73.6% accuracy,
99.9% precision, 46.9% recall, and 63.8% F1 score. The
GBDT method is fully correct for the detection of rain-
free and rain-contaminated in Testing scheme 1. The high
precision of the ILW threshold method confirms that rain
detected by this method is indeed rain, whereas its low recall
indicates that many actual rain cases are missed. Figure 4
shows an example of the experimental results of Testing
scheme 1. In Figure 4(a), rain detected by MWR based on the
GBDT method is completely consistent with rain measured
by MRR. In Figure 4(b), rain detected by ILW>0.4 mm is
all correct, whereas rain-free detected by ILW≤ 0.4 mm
actually includes many rain cases. This example echoes the
results in Table 2, indicating that a significant amount of rain
goes undetected using ILW threshold method. Results show
that for Testing scheme 2, as detailed in Table 2, the GBDT
method achieves 98.4% accuracy, 97% precision, 99.9% re-
call, and 98.4% F1 score across all testing samples. Using the
ILW threshold method, the corresponding metrics are 68.3%
accuracy, 99.6% precision, 36.7% recall, and 53.6% F1 score.
The GBDT method still performs very well when the test set
is an unseen time series in Testing scheme 2, although the
recall is slightly better than the precision, which indicates
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Figure 3: Examples of various rainfall patterns in various seasons. (a) Spring: rain with low melting layer on April 6, 2008. (b)
Summer: convective rain on July 1, 2008. (c) Autumn: stratiform rain on October 16, 2008. (d) Winter: mixed (rain and snow
or graupel) on January 12, 2008.

Table 2
Rain detection results using GBDT based method and ILW threshold method in two testing schemes.

Method GBDT ILW𝑅 (0.4 mm)
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

[%] [%] [%] [%] [%] [%] [%] [%]
Testing scheme 1 100 100 100 100 73.6 99.9 46.9 63.8
Testing scheme 2 98.4 97.0 99.9 98.4 68.3 99.6 36.7 53.6

that there will be a small number of false rain detections,
but almost no missed detections. The performance of the
ILW threshold method in Testing Scheme 2 is significantly
inferior to that in Testing Scheme 1, but the same missed
detection with low recall. Figure 5 shows an example of the
experimental results of rain detection of Testing scheme 2.
Rain event is stratiform rain with a melting layer of around
1000 m from 22:53:10 UTC on January 24 to 04:15:20 UTC
on January 25, 2008. In Figure 5(b), rain detected by MWR
based on the GBDT method is completely consistent with
rainfall measured by MRR except for several time points
between 4:13 UTC to 4:15 UTC. In Figure 5(c), rain detected
by ILW>0.4 mm is all correct, whereas rain cases below
ILW=0.4 mm is missed by the ILW threshold method.

Figure 6 shows rain detection performance in various
seasons. As shown in Figure 6(a), rain detection by the
MWR based on the GBDT method achieves nearly 100%
accuracy, precision, recall, and F1 score in all seasons, with
the best performance observed in summer and winter. On
the other hand, as shown in Figure 6(b), rain detection by
the MWR based on the ILW threshold method achieves an
precision close to 100% in all seasons, but other metrics are
low. Performance was relatively good in the summer, with
these metrics above 68%.

4. Discussion
Due to their low cost and wide geographical coverage,

rain gauges are frequently used as target variables for de-
veloping machine learning rain detection methods (Chen
et al., 2020). The method presented in this article can also
consider using rain gauges to detect rain-contaminated data
in microwave radiometer measurements. Nonetheless, rain
gauges have their limitations, making the Micro Rain Radar
(MRR) a more suitable option. First, the rain gauge is an
in-situ instrument and can only measure precipitation that
falls on the ground, whereas the microwave radiometer is
a remote sensing instrument, and rain that does not reach
the ground will also affect the radiation signal, such as virga
(Beynon, 2022; Beynon and Hocke, 2022; Wang, Hocke,
Nania, Cazorla, Titos, Matthey, Alados-Arboledas, Millares
and Navas-Guzmán, 2024). Second, microwave radiometers
are affected by various forms of liquid precipitation like rain,
drizzle, and mixed but not by dry snow, whereas rain gauges
measure dry snow, but lack the capability to distinguish
between different precipitation types, such as distinguish-
ing rain from dry snow. As a remote sensing instrument,
micro rain radar can measure various precipitation types
and classify them. Moreover, rain gauges may be affected
by wind, evaporate water after rain, and be unable to hold
all the rainwater and overflow during heavy rain, resulting
in inaccurate measurements. Finally, the time resolution of
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Figure 4: Experimental results of rain and no rain detection for Testing scheme 1. The data are the first 200 samples of the test
set in Testing scheme 1. (a) Rain and no rain detected by microwave radiometer (MWR) based on GBDT method and MRR.
No rain and rain-contaminated data are marked as 0 and 1. (b) Rain and no rain detected by MWR based on ILW𝑅=0.4 mm.
The horizontal black line is the threshold ILW𝑅=0.4 mm. Correct or incorrect detection using ILW𝑅 is represented by blue and
red points, respectively.

tropospheric microwave radiometers is as high as 1 to 10
seconds, whereas the common time resolution of rain gauges
is 1 to 10 minutes. The 10-second time resolution of the
micro rain radar is closer to the 11-second time resolution
of the microwave radiometer.

The ILW threshold method commonly adopts an empir-
ical value of ILW𝑅=0.4 mm to exclude rain-contaminated
data in TROWARA measurements. To find methods or in-
strumental observations that effectively assess the reliability
of the ILW threshold of 0.4 mm is challenging. A smaller
ILW threshold can result in the exclusion of valuable cloud
information, whereas raising the threshold risks including
data that has been contaminated by rain. Figure 7(a) shows
that using ILW𝑅 =0.4 mm successfully covers most rain-
free samples, although it does result in the loss of a small
number of samples in the range of 0.4 mm to 0.6 mm. Figure
7(b) demonstrates that an ILW threshold of 0.4 mm fails to
detect rain accurately. For example, from 21:30:50 UTC to
23:04:50 UTC on February 1, 2008, there was rainfall that
the ILW threshold method did not register. This oversight
highlights the need to employ more sophisticated techniques,
such as the GBDT method, to more effectively detect rain-
contaminated data.

By selecting or constructing features that distinctly cap-
ture the physical characteristics pertinent to rain detection,
this makes the GBDT model of this article a physics-
informed machine learning that is interpretable and has
strong predictive capabilities. Figure 8 shows the variable
importance of features included in GBDT method for rain
detection. The first two important features are brightness
temperature at 31.4 GHz (𝑇𝐵,31) and infrared cloud base
brightness temperature (𝑇𝐵,𝐼𝑅). The frequency 31.4 GHz
is more sensitive to microwaves from atmospheric liquid
water (Hocke, Navas-Guzmán, Moreira, Bernet and Mätzler,

2017). 𝑇𝐵,𝐼𝑅 can obtain cloud dynamics and then infer
possible rain events by monitoring the temperature changes
at the cloud base (Wang and Hocke, 2022). The third to
sixth important features are, respectively, air pressure (P),
integrated water vapor (IWV), relative humidity (RH), and
air temperature (T). These variables evolve according to
various rainfall types before, during, and after rain (Wang
and Hocke, 2022; Wang et al., 2024). Furthermore, these
feature variables were chosen so that the method can also be
directly applied to other tropospheric microwave radiome-
ters. For example, the Humidity and Temperature Profiler
(HATPRO) radiometer, widely used in global weather mon-
itoring and forecasting networks, includes the 31.4 GHz
microwave channel and additional weather sensors, often
complemented by an infrared radiometer.

We also applied the machine learning method Support
Vector Machine (SVM) to detect rain-contamination in mi-
crowave radiometer data (Cortes and Vapnik, 1995). Results
show that for Testing scheme 2, the detection accuracy,
precision, recall, and F1 score across of all testing samples
are 88.1%, 81%, 99.5%, and 89.3%, respectively. In general,
the performance of the SVM method is slightly inferior to
the GBDT method when using microwave radiometer time
series data for rain detection. Potential reasons may stem
from inherent characteristics of these two models. The SVM
method tends to be less effective than the GBDT method
in handling complex non-linear datasets. Although neither
GBDT nor SVM are explicitly designed for time series data,
GBDT often exhibits superior adaptability, likely due to its
ability to automatically interact features and its robustness
against overfitting in large datasets.

: Preprint submitted to Elsevier Page 8 of 11

4.2 publication 49



Figure 5: Experimental results of rain detection for Testing scheme 2. The data is all rain times in the January test set (22:53:10
UTC on January 24 to 04:15:20 UTC on January 25, 2008) of Testing scheme 2. (a) MRR target classification data with outlier
lines removed and rainfall duration exceeding 3 minutes. (b) Rain detected by MWR based on GBDT method. No rain and
rain-contaminated data are marked as 0 and 1. (c) Rain detected by MWR based on ILW𝑅=0.4 mm. The horizontal black line is
the threshold ILW𝑅=0.4 mm. Correct or incorrect detection using ILW𝑅 is represented by blue and red points, respectively.

Figure 6: Detection performance in four seasons. (a) Detection performance using GBDT method. Metrics accuracy, precision,
recall and f1 score are blue straight line, red dashed line, green dashed line, and orange dashed line respectively. (b) Detection
performance using ILW threshold method. The threshold is ILW𝑅=0.4 mm. Metrics accuracy, precision, recall and f1 score are
blue straight line, red straight line, green straight line, and orange straight line respectively.

Figure 7: (a) ILW in all samples during no rain. (b) ILW from 17:00 UTC on February 1 to 6:00 UTC on February 2, 2008. The
horizontal black line is the threshold ILW𝑅=0.4 mm. Gray shades represent MRR-detected rainfall.
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Figure 8: Variable importance of features included in GBDT
method for rain detection.

5. Conclusions
This article presents a GBDT-based rain detection method

by accurately classifying microwave radiometer data into
rain-free and rain-contaminated categories. By understand-
ing the precipitation types (rain, drizzle, and mixed) that
affect microwave radiometer brightness temperatures, pre-
cipitation events contaminating microwave radiometer data
can first be accurately captured from the MRR target classi-
fication. After data preprocessing removes outliers, one-hot
encoding of months is then performed to consider that var-
ious seasons contain various rainfall patterns. Finally, these
characteristics, along with meteorological parameters, are
selected as feature variables to train the GBDT classification
model for rain detection.

The method was validated using two testing schemes on
the Swiss Plateau in 2008: ten-fold cross-validation tech-
nique and time series test sets. The simultaneous target
classification data collected by the MRR is used as ac-
tual rainfall data to determine whether the microwave ra-
diometer data is contaminated by raindrops in the atmo-
sphere. The results show that this method, compared to
ILW threshold method, achieves high detection accuracy in
both testing schemes. Specifically, while the ILW threshold
method reached accuracy of 73.6% and 68.3% for the two
schemes respectively, the GBDT method achieved 100%
and 98.4%. This proves that the GBDT method exhibits
strong generalization capabilities and is effective even on
time series test sets. This is particularly advantageous given
the time-dependent nature of rainfall occurrences. Moreover,
the method presented in this article accounts for different
rainfall patterns that vary across seasons, such as stratiform
rain with various melt layer heights and convective rain. The
GBDT method selects feature vectors based on the physical
relationships between rainfall and variables. The choice of
these features also enables the application of this method to
other tropospheric microwave radiometers. In contrast, the
ILW threshold method shows significant missing detection
in identifying rain-contaminated data. The rain detection
method of this article is anticipated to be useful for iden-
tifying water films on radomes caused by rainfall for out-
door tropospheric microwave radiometers and important for

other remote sensing instruments, such as Fourier transform
infrared (FTIR) spectrometers.
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5 P H Y S I C A L R E T R I E VA L O F R A I N
R AT E S

5.1 summary of the study

Physical algorithms are reasonable, interpretable, and estimate atmospheric
parameters with high accuracy by analyzing atmospheric physical mecha-
nisms. However, very few studies have applied physical algorithms to ground-
based microwave radiometers for retrieving rain rates. The article presented
in this chapter described and validated a novel physical rain rate retrieval
method for ground-based microwave radiometer. The method iteratively ad-
justs the rain effective temperature using the radiative transfer equation to
determine rain optical depth and then estimates rainfall based on the rela-
tionship between rain rate and rain optical depth. Compared to two nearby
rain gauges and ERA5 reanalysis data, the rain rate retrieved at the 31 GHz
channel closely matches actual situation.

The study contributed to the Global Climate Observing System (GCOS) Project
“Operational Monitoring of the Rain Rate by Ground-based Microwave Ra-
diometry in Switzerland”. For other work packages of the GCOS project, I
have also completed the following tasks:

‚ I improved the physical rain rate retrieval algorithm of TROWARA , mak-
ing it capable of processing the HATPRO dataset in Payerne. However,
HATPRO rain rate estimates show an unacceptable positive bias com-
pared to Payerne rain gauge measurements, possibly due to the water
film on the HATPRO radome during rain. Further research on this issue
is presented in Chapter 7.

‚ I processed the available data from the HATPRO radiometers in Schaffhausen
and Grenchen. As expected, the outdoor HATPRO radiometers in these
locations appear to overestimate rain rates, similar to the HATPRO in
Payerne.

‚ I built the STARTWAVE database website for near real-time operational
processing of TROWARA rain rates. It is publicly accessible on the In-
ternet (https://startwave.mw.iap.unibe.ch/). The website displays
daily cumulative rain, monthly and annual rain rate averages in Bern,
and provides downloadable long-term time series of TROWARA rain
rates in Bern from November 2002 to the present, HATPRO rain rates
in Payerne from September 2009 to February 2021, HATPRO rain rates
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in Schaffhausen from March 2010 to May 2012, HATPRO rain rates in
Grenchen from July 2020 to July 2021.

The GCOS Steering Committee raised the question of whether rain rates mea-
sured by ground-based microwave radiometers can replace the existing net-
work of rain gauges. The answer is that achieving this is difficult because
running a dense network of microwave radiometers is expensive and time-
consuming. Accurate rain rate measurements for tropospheric microwave ra-
diometers remain challenging, but the algorithm could be advantageous for
cross-validating precipitation obtained from atmospheric models and satel-
lite observations (Hocke, 2022).

The following article was peer-reviewed and published in Remote Sensing in
June 2021.
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Abstract: Because of its clear physical meaning, physical methods are more often used for space-
borne microwave radiometers to retrieve the rain rate, but they are rarely used for ground-based
microwave radiometers that are very sensitive to rainfall. In this article, an opacity physical retrieval
method is implemented to retrieve the rain rate (denoted as Opa-RR) using ground-based microwave
radiometer data (21.4 and 31.5 GHz) of the tropospheric water radiometer (TROWARA) at Bern,
Switzerland from 2005 to 2019. The Opa-RR firstly establishes a direct connection between the rain
rate and the enhanced atmospheric opacity during rain, then iteratively adjusts the rain effective
temperature to determine the rain opacity, based on the radiative transfer equation, and finally
estimates the rain rate. These estimations are compared with the available simultaneous rain rate
derived from rain gauge data and reanalysis data (ERA5). The results and the intercomparison
demonstrate that during moderate rains and at the 31 GHz channel, the Opa-RR method was close
to the actual situation and capable of the rain rate estimation. In addition, the Opa-RR method can
well derive the changes in cumulative rain over time (day, month, and year), and the monthly rain
rate estimation is superior, with the rain gauge validated R2 and the root-mean-square error value
of 0.77 and 22.46 mm/month, respectively. Compared with ERA5, Opa-RR at 31GHz achieves a
competitive performance.

Keywords: rain rate; opacity; physical algorithm; ground-based microwave radiometer; long-term
monitoring; precipitation; rain gauge; ERA5

1. Introduction

The rain rate is a key meteorological parameter used to measure the amount of
rainfall over time, and its level is closely tied to human life. Low rain rates are not
sufficient to irrigate crops. High rain rates may cause flash floods, soil erosion, and urban
waterlogging. Accurate rain rate information is essential for climate change models, water
resources management, and assimilation into numerical weather prediction (NWP) models
to improve rainfall forecasts [1,2].

To monitor rainfall, the rain gauge was developed to measure rainfall at sparsely dis-
tributed points, and it is the most commonly used instrument for comparing and verifying
land rain rates derived from space-borne and ground-based microwave radiometers. The
weather radar, on the other hand, can provide the three-dimensional (3D) image of rain
in addition to the rain rate over a given location, but the accuracy is limited by a strong
dependence on the drop-size distribution, ground clutter, instrument calibration, and beam
blockage. Even though space-borne microwave radiometers have been successfully applied
to rain-rate retrieval on a global scale and proved that microwave radiometry is fairly accu-
rate, at least over the ocean, its disadvantages include low spatial resolution and temporal
coverage; large uncertainties are found over land due to its heterogeneity and reduced
contrast with regard to the rain signal [3]. The ground-based radiometry is suitable for
operation under rainy conditions, and for the purpose of retrieving simultaneously water
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vapor, liquid water path [4,5], and rain [6]. Its main advantage is the large atmospheric
signal by atmospheric emitters, and especially for rain, against a cold and homogeneous
sky background [7].

The rain-rate retrievals of microwave radiometers can be divided into (1) statistical
algorithms, (2) physical-statistical algorithms, and (3) physical algorithms. Statistical algo-
rithms do not need to resort to complex radiation transmission models, so their calculation
speed is high and as a consequence their timeliness. Won et al. [8] used two simple statistical
algorithms, linear and logarithmic regression, to estimate the rain rate, and they analyzed
the relationship between brightness temperature and rain rate. Using historical radiosonde
data for training, Xu et al. [9] investigated the influence of the off-zenith neural network
method on the rain rate measurement of microwave radiometers. However, statistical
algorithms not only rely excessively on the number and representativeness of measured
samples, but also lack a physical explanation for the retrieval process. To overcome these
limitations, the physical-statistical algorithm is proposed to estimate the rain rate. For
example, Marzano et al. [3] conducted a statistical analysis of the relationship between
brightness temperature and rain rate on land, based on the numerical simulation data set of
the radiative transfer model, using ordinary multiple regression and a variance-constrained
regression algorithm.

The physical algorithm, compared with the above two algorithms, is more reason-
able and can get a higher estimated accuracy of atmospheric parameters, because it can
analyze from the perspective of atmospheric physical mechanisms and gain an in-depth
understanding of the retrieval process. However, few studies used this algorithm for
ground-based microwave radiometers. For example, Marzano et al. [7] performed detailed
radiometric simulations to derive the rain rate from measurements of ground-based passive
microwave systems.

In 2008, Mätzler and Morland [10] suggested a new physical method of the rain rate
estimation for a ground-based microwave radiometer and showed that the atmospheric
opacity at 31 GHz is closely related to the rain rate. However, this method only tested a few
rain events, and whether it can estimate the rain rate in the long-term is not yet clear. The
TROpospheric WAter RAdiometer (TROWARA) is a ground-based microwave radiometer
that has provided long-term high-quality data of the atmospheric opacity (optical depth)
every 6 s in Bern, Switzerland since 2005 [11]. Therefore, the objective of this article is
to use the rain zenith opacity derived from TROWARA for the long-term rain rate using
the new physical retrieval method and to perform operational processing and archiving
of the rain rate estimated by the TROWARA radiometer. For comparison, the correlation
between the rain rate from TROWARA and the rain rate measured by the rain gauges was
determined for the assessment of the performance of the rain rate retrieval. Later, the rain
rates of ECMWF Reanalysis v5 (ERA5) were compared with those of the rain gauges.

2. Data Set
2.1. Ground-Based Microwave Radiometer Data

The ground-based microwave radiometer, TROWARA, started working on the roof
of the Physics and Mathematics (ExWi) Building of the University of Bern in 1994. The
frequencies of the TROWARA microwave channel are 21.4 GHz (band width = 100 MHz)
and 31.5 GHz (band width = 200 MHz), and the thermal infrared radiometer (IR) channel is
at λ = 9.6–11.5 µm. The antenna coil of TROWARA at the full width of half-power is 4◦ and
observes the atmosphere in the southeast direction at an elevation angle of 40◦. TROWARA
was designed for retrieving the integrated water vapor (IWV) and integrated liquid water
(ILW) of cloud droplets, and it provides a practically uninterrupted time series with a time
resolution of 6 s in almost all-weather during day and night.

The radiative transfer equation in the Rayleigh-Jeans approximation is:

TB,i = TC · e−τi/µ+Tmean,i ·
(

1 − e−τi/µ
)

(1)
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where i represents the frequency channel (e.g., 21 GHz). TB,i is the radiant brightness
temperature observed by the radiometer, and TC = 2.7 K is the cosmic background temper-
ature. τi is the zenith opacity. µ is the cosine of the zenith angle θ, i.e., µ = cos θ. Tmean,i is
the effective mean temperature of the atmosphere [12,13].

The zenith opacity can be solved by Equation (1).

τi= − µ · ln
(

Tmean,i − TB,i

Tmean,i − TC

)
(2)

In fact, the microwave radiation measured by TROWARA during rain is strongly
enhanced by the microwave emission from raindrops (d > 0.2 mm) [11]. Thus, it is raining
when ILW exceeds a threshold value of about 0.4 mm. In times of rain, the retrieval of
ILW of cloud droplets is not possible. Instead, TROWARA will provide the rain rate [10].
The retrieval of ILW uses a refined physical algorithm based on the zenith opacity for
ground-based microwave radiometers [14].

ILW =
τ31 − a31 − β · (τ21 − a21)

c21 · (1 − β · γ)
(3)

where ai (i = 21 and 31) is the absorption of the dry atmosphere. β = b31/b21, and the
coefficient bi is the specific absorption by water vapor. γ = c31/c21, and the coefficient ci is
the specific absorption of cloud liquid water in the Rayleigh approximation. It is computed
from the dielectric constant of liquid water [15].

The initial construction and retrieval principles of TROWARA were given in Peter
and Kämpfer [16]. To estimate the antenna temperature well, a new radiometer model was
established, which uses continuous internal calibration and external tipping calibration a
few times each year [17]. In November 2002, the instrument was moved to an indoor labo-
ratory to observe the sky, and the antenna received the atmospheric microwave radiation
through a transparent window. The indoor operation of TROWARA prevents the antenna
from being exposed to rain [18]. In 2004, the new refined physical scripts [14] were used to
retrieve IWV and ILW, and TROWARA has continuously performed measurements in Bern
since then [11]. Therefore, to maintain the consistency of measurements and not be affected
by previous outdoor observations, we presume that the data after 2005 are well-suited for
the rain-rate estimation.

2.2. Meteorological Data

A standard weather station is located on the ExWi building together with TROWARA
and is known as the ExWi weather station. Another weather station is an automatic
Vaisala weather station at the Zimmerwald Observatory near Bern, called Zimmerwald
weather station. The weather data are composed of surface air temperature (TS, K), the
surface relative humidity (RHS, %), the surface atmospheric pressure (PS, hPa), rain
rate, and other parameters measured by the ExWi and Zimmerwald weather stations
with a time resolution of 10 min. Registered users can access the data for free from
the STudies in Atmospheric Radiative Transfer and WAter Vapor Effects (STARTWAVE)
database (http://www.iapmw.unibe.ch/research/projects/STARTWAVE/, accessed on
3 June 2021).

Under non-rainfall conditions, the effective mean temperature Tmean,i is estimated
from the linear combination:

Tmean,i= A0,i + A1,i · TS + A2,i · RHS + A3,i · PS (4)

where the coefficients An,i (n = 0, 1, 2, 3) were statistically obtained by radiosonde mea-
surements using the Rosenkranz [19] radiative model and making corrections through clear
sky observations. The information of Tmean,i is mainly derived from TS. The parameters
RHS and PS are used to consider the statistical characteristics of atmospheric anomalies,
such as detecting the atmosphere above the boundary layer.
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2.3. Rain-Rate Measurements

The rain gauge at ExWi weather station is a tipping bucket rain gauge with a resolution
of 0.2 mm, and its time resolution is 10 min. The maximum rain rate value that it can observe
is 50 mm/10 min. The tipping bucket rain gauge guides the rain in the receiving funnel
into two small bucket collectors. When a certain amount of rain (0.2 mm) accumulates
in one bucket, the weight of the water tips it and empties it. Then another bucket moves
under the funnel to collect the rain. The advantage of the tipping bucket rain gauge is that
it can easily identify rainfall intensity (light, moderate, heavy, or violent). Observers can
count the number of rain gauge marks within a set time period (10 min) to determine the
rain intensity.

However, the accuracy of tipping bucket rain gauges is usually not as good as that of
standard rain gauges. For example, it is possible that the bucket will not tip over until the
rain stops, and it may only take one or two drops of rain to tip the bucket when the next
rain starts. On the other hand, the tipping bucket rain gauge tends to underestimate the
rain rate [20,21], because it loses rain every time it tips [22].

The rain gauge at the Zimmerwald weather station has the same resolution as the
ExWi rain gauge (0.2 mm). In addition, an optical rain sensor with a resolution of 0.1 mm
at the ExWi weather station is another ground-based rain rate observation, and its time
resolution is 10 min.

2.4. ERA5 Reanalysis Data

ERA5 reanalysis is an atmospheric reanalysis product recently released by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) with a time resolution of 1 h
and a horizontal resolution of 30 km grid spacing [23]. ERA5 has been providing rain rate
data on the global land surface since 1950 and has assimilated rain rate information from
ground radar measurements since 2009. ERA5 used approximately 24 million observations
every day by the end of 2018. Users can access rain rates for free from the Climate Data
Store (CDS) website (https://cds.climate.copernicus.eu, accessed on 3 June 2021).

ERA5 uses the all-sky method instead of the clear sky method to assimilate a large
number of satellite channels that are sensitive to humidity. ERA5 not only provides
new information in rainy areas, but also solves the problem of abnormal precipitation
caused by the radiation assimilation technology on rainy days [24]. ERA5 also contains
the bias correction of assimilated data and benefits from model physics and core dynamics
developed over the years. In addition, the large-scale precipitation program of ERA5 has
been upgraded, including the improvement of the prognostic variables of rainfall and
snowfall, and many optimizations in the microphysical parameterization, especially for
warm rain processes [25].

However, previous research suggested that ERA5 reanalysis may overestimate the
rain rate. For example, Xu et al. [26] indicated that ERA5 typically has an overestimation of
the spring rain rate in the Assiniboine River Basin. Nogueira’s [27] process-based analysis
shows that ERA5 tends to overestimate precipitation and reveals positive bias (1 mm/day)
in most tropical oceans, as well as the Himalayas and Andes. Amjad et al. [28] evaluated
the rain rate of ERA5 under the complex terrain and climate change in Turkey and found
that ERA5 has a wet bias (0.5 mm/day) and consistently overestimates the rain rate in
all relatively wetter and slope levels. Moreover, ERA5 is not so reliable to distinguish
between rainy and non-rainy days (at least for Bern). Its original precipitation data show
that there is rain for 93% of the days from 2005 to 2019, which is unreasonable and will lead
to overestimation. However, our study avoids much of the overestimation of ERA5 because
the rain events we use are simultaneously available in all data sets. This ensures that there
will not be a situation where ERA5 detects rain on a certain day, while TROWARA and
rain gauges cannot detect it.
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3. Methods
3.1. Physical Retrieval Method Opa-RR for Rain-Rate Estimation
3.1.1. Effective Zenith Opacity and Specific Rain Absorption

Figure 1 shows the change in the total zenith opacity over time during a 6-day rain
event in 2019. The total zenith opacity is the sum of the rain zenith opacity τR,i and the
non-rain zenith opacity τ0,i, and their calculations are described in the next subsection. As
it can be observed from Figure 1, the total zenith opacity increases significantly when the
rain gauge detects rain. Moreover, the more accumulated rain in a short time (moderate
and heavy rain), the more the change of the total zenith opacity. Assuming the height of the
rain layer is known, this indicates that the zenith opacity is an excellent proxy for rain rate.
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Figure 1. An example of the total zenith opacity (red), the non-rain zenith opacity (blue), and the ExWi rain gauge
cumulative rain (green) versus time from 20 December 2019 to 25 December 2019. (a)The total zenith opacity measured by
TROWARA at 21 GHz. (b) The total zenith opacity measured by TROWARA at 31 GHz.

The radiative transfer equation of the rainy atmosphere usually includes the treatment
of radiation scattered by raindrops. Here we avoid considering the interaction of radiation
with raindrops. We still apply Equation (2) for the computation of an effective zenith
opacity τi for ground-based radiometry. Scattering is included in a simplified way. During
the rainfall period, the zenith opacity is be expressed as:

τi= (a i+bi · IWV + ci · ILW) + τR,i
τR,i = ci · GM,i · IRL

(5)

The content in the bracket of Equation (5) is the zenith opacity without rain, where the
coefficients ai, bi, and ci are the same as in Equation (3). The contribution of τR,i is caused
by the column of precipitation. GM,i is the Mie gain of raindrops, which can reach 10 at
21 GHz and 7 at 31 GHz [29], IRL is the integrated rain liquid, which is related to the rain
rate Ri as shown below:

IRL = Ri · HR/v (6)

where HR is the height of the rain column, and we assume a homogeneous rain column. HR
is calculated by the temperature lapse rate Γ = dT/dH, the surface temperature TS, and the
temperature of melting layer TML = 273.15 K, i.e., HR = (TS−TML)/Γ. The temperature
lapse rate Γ depends on weather conditions and is generally more than 4 K/km but less
than 8 K/km [30]. v is the vertical fall velocity of rain.

Since the dielectric loss of ice is very small, the absorption of dry snow above the rain
layer can be ignored. Furthermore, we ignore the influence of wet snow in the melting
layer and consider the rain column, only.
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For the frequencies used, the absorption coefficient of the rainy atmosphere is clearly
larger than the scattering coefficient as shown by simulations using Mie theory for spherical
raindrops [29]. This means that only single scattering may have an influence. In our
geometry, the forward-scattered radiation is from the cold sky and thus can be ignored.
However, the radiation emitted by the earth’s surface can be scattered by raindrops in
the backward hemisphere and received by the radiometer. The earth’s surface has high
emissivity. Its temperature is close to the rain temperature. This scattering of raindrops is
simulated by enhanced emission of the raindrops, using an effective absorption coefficient
given by the sum.

ci · GM,i= γa,R+γs,R · 1 − < cos θ >

2
(7)

where γa,R is the true absorption coefficient, while γs,R · 1 − <cos θ>
2 is the fraction of the

scattering coefficient γs,R that causes scattering in the backward hemisphere, and < cos θ >
is the mean cosine of the scattering angle.

From Equations (5) and (6), the rain opacity can be written as:

τR,i= gR,i · HR · Ri (8)

where gR,i= ci · GM,i/v is the specific and effective rain-absorption coefficient at frequency
i. Computations of gR,i with Mie theory for different drop-size distributions and for a
parameterized fall velocity [31] showed that the coefficient is almost constant, and nearly
independent of rain rate. In addition, the temperature dependence is weak, so we assume
constant values at a given frequency. At 21 GHz and at 31 GHz, the value of gR,i is set
to 0.0165 h/mm/km and 0.0345 h/mm/km, respectively, which ensures an accuracy of
20% [10].

3.1.2. Rain Zenith Opacity from TROWARA

Radiation changes with rainfall, which leads to the atmospheric effective temperature
to rise, while at the same time the low zenith opacity changes to a high zenith opacity. The
variability of the atmosphere caused by rain makes it difficult to directly obtain precise
formulas for radiative transfer problems of the rain layer. Based on Equation (5), the
rain layer includes contributions from the non-rainfall atmosphere and contributions
from rainfall. Therefore, an approximate but still accurate method is to assume that the
additional contribution of rainfall to the atmosphere is an additional layer on the non-
rainfall atmosphere, which can decouple the rainfall effect from the rest of the atmosphere.
Figure 2b shows the radiative transfer model of this additional layer, which is the same as
that of the non-rainfall period (Figure 2a). First, ILW is compared with the threshold value
ILWR and assume that ILW ≤ ILWR means the non-rainfall period, and ILW > ILWR
means the rainfall period. Next, Figure 2b shows the rain radiant brightness temperature
TB,R,i observed by the ground-based radiometer TROWARA is derived from:

(1) The non-rainfall brightness temperature TB,0,i. As shown in Figure 2, TB,0,i is the
background temperature during the rainfall period and is calculated from the radiative
transfer equation as:

TB,0,i= TC · e−τ0,i/µ+Tmean,i

(
1 − e−τ0,i/µ

)
(9)

where τ0,i/µ is the non-rainfall slant-path opacity.
(2) The rain effective mean temperature Tmean,R,i [31].

Tmean,R,i =

∫ τR,i/µ
0 T(τ) · e−τ d(τ)

1 − e−τR,i/µ
(10)

where τ is the slant-path opacity. T(τ) can be described by a linear temperature profile
T(τ) = TS − Γ · h. We assume that the constant extinction coefficient γe,R,i in the homoge-
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neous vertical rain column ranges from h = 0 to h = HR= τ · µ/γe,R,i and no extinction
above [32]. Insertion in Equation (10) gives:

Tmean,R,i(τR,i)= TS − Γ · µ

γe,R,i

[
1 − τR,i/µ · e−τR,i/µ

1 − e−τR,i/µ

]
(11)

From the function f (x) = 2 [1 − e −x(1 + x)]
x · (1 − e −x)

∼= e−0.19 x and replacing Γ · HR with

TS−TML, we can write:

Tmean,R,i(τR,i)= TS − Γ · HR ·
f (τ R,i /µ)

2
∼= TS − 1

2
(TS − TML) · e(− 0.19 τR,i/µ) (12)
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However, during rain, the zenith opacity τ0,i of the atmosphere without rain cannot
be measured. It has to be estimated by temporal interpolation of measurements obtained
during rain-free periods. Furthermore, the determination of the effective mean temperature
Tmean,i (Equation (4)) is delicate. This will cause the rain zenith opacity τR,i to be inaccurate.
The initial estimated value of the rain zenith opacity is τR,0,i= τi − τ0,i, where the zenith
opacity τi is also not very accurate as well because it is calculated based on Tmean,i. Because
of complications of the inversion problem, physical algorithms which attempt to directly
invert the optimal atmospheric parameters typically rely on the iterative adjustment of
the radiative transfer model [33]. Therefore, we iteratively determine the rain zenith
opacity τR,i.

τR,i
(k+1)= − µ · ln




Tmean,R,i

(
τR,i

(k)
)
− TB,R,i

Tmean,R,i
(
τR,i

(k)
)
− TB,0,i


 (13)

where τR,i
(k+1) is the (k+1)th iteration value of the rain zenith opacity. τR,0,i is used as

the input value of the iteration, i.e., τR,i
(0) = τR,0,i. According to Equation (13), the initial

estimate of the rain zenith opacity is gradually improved in an iterative manner. The basis
for the improvement is to correct the rain zenith opacity using the difference between the
rain effective mean temperature estimated in the kth iteration and the actual observed
brightness temperature. It was found that the results basically converge after two iterations.
However, this iteration distributes the error in the form of a natural logarithm, which
does not take into account the actual situation and will amplify the error. Moreover, the
correction value generated by the iteration is mainly positive, which is likely to cause the
overestimation of the light rain.
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3.2. Data Processing

Bern (46.95◦N, 7.45◦E) is the study area of this article. The TROWARA instrument
(46.95◦N, 7.44◦E; Alt. 575 m asl) together with the ExWi weather station is located near
the center of Bern. The ExWi optical rain sensor was discontinued in September 2012, so
it is only used for short-term rain rate comparisons. The Zimmerwald weather station
(46.88◦N, 7.47◦E; Alt. 907 m asl) is located about 8.4 km southeast of TROWARA, and
its position happens to be in the direction that TROWARA is pointing. The curve of the
accumulated rain obtained by the Zimmerwald rain gauge is too smooth and difficult
to clearly describe the details of the rainfall, so it is only used for long-term rain rate
comparisons. In the process of estimating and comparing the rain rate, the unit of all data
is unified as mm/h. TROWARA estimated the long-term series of the rain rate from 1
January 2005 to 31 December 2019 for 15 years. The following is the selection process for
the precipitation data:

• Step1: rain-day events detected by TROWARA;
• Step2: rain-day events detected by the rain gauge (ExWi or Zimmerwald rain gauge);
• Step3: simultaneous and available rain-day events at Step 1 and Step 2;
• Step4: the data of TROWARA, the rain gauge, and ERA5 all follow rain-day events of

Step 3.

Table 1 shows the number of rain-day events for different daily rainfall intensities [34].
After removing outliers that more than 3 standard deviations (σ), the total number of
rain-day events compared with the ExWi rain gauge from 2005 to 2018 is 1748, of which the
light rain and moderate rain account for about 94%; the total number of rain-day events
compared with the Zimmerwald rain gauge from 2008 to 2019 is 1529, of which the light
rain and moderate rain account for about 97%. Because the time periods of the two rain
gauges are different, and each rain gauge corresponds to different data missing, the above
steps are repeated for the ExWi rain gauge and the Zimmerwald rain gauge, respectively.
This means that the day-rain events of each rain gauge are not at exactly the same time.

Table 1. The classification of daily rainfall intensity and the corresponding number of rain-day events.

Rainfall Intensity Rain Accumulation
in a Day (mm)

Number of Rain-Day Events

ExWi Zimmerwald

Light rain R < 5 1030 963
Moderate rain 5 ≤ R < 20 610 515

Heavy rain 20 ≤ R < 50 105 51
Violent rain R ≥ 50 3 0

In this work we assume a constant temperature lapse rate Γ of 6 K/km. This is the
typical value for saturated-adiabatic temperature profiles and has proved that the estimated
rain rate using this value is in good agreement with the ground rain sensor in many cases.
The presence of raindrops is very likely when the ILW value exceeds 0.4 mm [14,35], so
this study uses 0.4 mm as the rain threshold value ILWR. It should be noted that ILWR is
usually between 0.1 mm and 0.6 mm, but the choice of the value of ILWR is not a big deal
for the detection of rainfall intervals. This is because the emission enhanced by the Mie
effects leads to a very strong increase in ILW value when the drop size (diameter) increases
to more than 0.3 mm [36].

The evaluation statistics are used to assess the robustness of the Opa-RR physical
algorithm, including the coefficient of determination (R2), the root-mean-square error
(RMSE), the bias, the intercept, and the slope. The daily rain rate is the accumulated
precipitation per day in mm/day; the monthly rain rate is the accumulated precipitation
per month in mm/month; the annual rain rate is the accumulated precipitation per year in
mm/year. We archive these estimated rain rate data in the STARTWAVE database.
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4. Results
4.1. Daily Rain-Rate Estimation

Figure 3 shows six rain events that each lasted less than one day representing heavy
(Figure 3a,d), moderate (Figure 3b,e), and light rain (Figure 3c,f), respectively, and the
stratiform rain events (Figure 3g) with the rain rate less than 10 m/h that lasted for 8 days.
As it can be observed from Figure 3, in these rain events, the cumulative rain curve of
Opa-RR at 21 GHz is higher than that of at 31 GHz. From the beginning and end of the rain
period, the changing trends of estimated value curves and observed value curves over time
are the same. For example, Figure 3d shows a heavy rain event on 31 May 2007. There was
no rain before 3:20 UT, and the value of accumulated rain was 0, then it drizzled for a few
minutes when the zenith opacity changed slightly. The zenith opacity reached a very high
value at 16:40 UT, and the cumulative rain increased rapidly. After 30 min, the cumulative
rain curves showed a certain slope change over time, and the rain decreased slightly. The
accumulated rain climbed above 35 mm in a time interval of 7 h. In addition, as shown
in Figure 3g, there are mainly light rain events from the third day to the fifth day, and the
other times are moderate rain or heavy rain events. The correlation between the estimated
moderate and heavy rain and observed values is better than that in light rain. Opa-RR at
21 GHz is more related to the ExWi optical rain sensor, and Opa-RR at 31 GHz is more
consistent with the ExWi rain gauge.

Figure 4 shows the verification scatter plots of the daily rain rate estimated by Opa-RR,
and the comparison between ERA5 and rain gauges. As can be observed from Figure 4,
the Opa-RR estimate of the 31 GHz channel achieves slightly better performance than
the 21 GHz channel, compared with the ExWi rain gauge (the Zimmerwald rain gauge),
with R2 and RMSE verifications are 0.44 (0.41) and 6.58 (5.63) mm/day, respectively. R2

and RMSE verifications of the Opa-RR estimation at 21 GHz are 0.43 (0.39) and 7.83 (6.75)
mm/day, respectively. This is not surprising because the sensor at 31 GHz is less sensitive
to water vapor than at 21 GHz [12].

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

precipitation per day in mm day⁄ ; the monthly rain rate is the accumulated precipitation 
per month in mm month⁄ ; the annual rain rate is the accumulated precipitation per year 
in mm year⁄ . We archive these estimated rain rate data in the STARTWAVE database. 

4. Results 
4.1. Daily Rain-Rate Estimation 

Figure 3 shows six rain events that each lasted less than one day representing heavy 
(Figure 3a,d), moderate (Figure 3b,e), and light rain (Figure 3c,f), respectively, and the 
stratiform rain events (Figure 3g) with the rain rate less than 10 m/h that lasted for 8 days. 
As it can be observed from Figure 3, in these rain events, the cumulative rain curve of 
Opa-RR at 21 GHz is higher than that of at 31 GHz. From the beginning and end of the 
rain period, the changing trends of estimated value curves and observed value curves 
over time are the same. For example, Figure 3d shows a heavy rain event on 31 May 2007. 
There was no rain before 3:20 UT, and the value of accumulated rain was 0, then it drizzled 
for a few minutes when the zenith opacity changed slightly. The zenith opacity reached a 
very high value at 16:40 UT, and the cumulative rain increased rapidly. After 30 min, the 
cumulative rain curves showed a certain slope change over time, and the rain decreased 
slightly. The accumulated rain climbed above 35 mm in a time interval of 7 h. In addition, 
as shown in Figure 3g, there are mainly light rain events from the third day to the fifth 
day, and the other times are moderate rain or heavy rain events. The correlation between 
the estimated moderate and heavy rain and observed values is better than that in light 
rain. Opa-RR at 21 GHz is more related to the ExWi optical rain sensor, and Opa-RR at 31 
GHz is more consistent with the ExWi rain gauge. 

   

   
Figure 3. Cont.

5.2 publication 63



Remote Sens. 2021, 13, 2217 10 of 16Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

 

Figure 3. Examples of cumulative rain versus time for Opa-RR at 21 GHz (solid red), at 31 GHz (dashed blue), the ExWi 
rain gauge (solid green), the ExWi optical rain sensor (dashed green). The black and grey lines are the total zenith opacity 
and the non-rain zenith opacity, respectively. (a) heavy rain on 05 May 2007; (b) moderate rain on 15 April 2006; (c) light 
rain on 7 January 2007; (d) heavy rain on 31 May 2007; (e) moderate rain on 4 December 2006; (f) light rain on 15 February 
2007; (g) 8-day stratiform rain from 24 February 2007 to 3 March 2007. 

Figure 4 shows the verification scatter plots of the daily rain rate estimated by Opa-
RR, and the comparison between ERA5 and rain gauges. As can be observed from Figure 
4, the Opa-RR estimate of the 31 GHz channel achieves slightly better performance than 
the 21 GHz channel, compared with the ExWi rain gauge (the Zimmerwald rain gauge), 
with R2 and RMSE verifications are 0.44 (0.41) and 6.58 (5.63) mm/day, respectively. R2 
and RMSE verifications of the Opa-RR estimation at 21 GHz are 0.43 (0.39) and 7.83 (6.75) 
mm/day, respectively. This is not surprising because the sensor at 31 GHz is less sensitive 
to water vapor than at 21 GHz [12]. 

   

   

 

Figure 3. Examples of cumulative rain versus time for Opa-RR at 21 GHz (solid red), at 31 GHz (dashed blue), the ExWi
rain gauge (solid green), the ExWi optical rain sensor (dashed green). The black and grey lines are the total zenith opacity
and the non-rain zenith opacity, respectively. (a) heavy rain on 05 May 2007; (b) moderate rain on 15 April 2006; (c) light
rain on 7 January 2007; (d) heavy rain on 31 May 2007; (e) moderate rain on 4 December 2006; (f) light rain on 15 February
2007; (g) 8-day stratiform rain from 24 February 2007 to 3 March 2007.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

 

Figure 3. Examples of cumulative rain versus time for Opa-RR at 21 GHz (solid red), at 31 GHz (dashed blue), the ExWi 
rain gauge (solid green), the ExWi optical rain sensor (dashed green). The black and grey lines are the total zenith opacity 
and the non-rain zenith opacity, respectively. (a) heavy rain on 05 May 2007; (b) moderate rain on 15 April 2006; (c) light 
rain on 7 January 2007; (d) heavy rain on 31 May 2007; (e) moderate rain on 4 December 2006; (f) light rain on 15 February 
2007; (g) 8-day stratiform rain from 24 February 2007 to 3 March 2007. 

Figure 4 shows the verification scatter plots of the daily rain rate estimated by Opa-
RR, and the comparison between ERA5 and rain gauges. As can be observed from Figure 
4, the Opa-RR estimate of the 31 GHz channel achieves slightly better performance than 
the 21 GHz channel, compared with the ExWi rain gauge (the Zimmerwald rain gauge), 
with R2 and RMSE verifications are 0.44 (0.41) and 6.58 (5.63) mm/day, respectively. R2 
and RMSE verifications of the Opa-RR estimation at 21 GHz are 0.43 (0.39) and 7.83 (6.75) 
mm/day, respectively. This is not surprising because the sensor at 31 GHz is less sensitive 
to water vapor than at 21 GHz [12]. 

   

   

 
Figure 4. Scatter plots of daily rain rates estimated by Opa-RR and provided by ERA5 versus measured by the ExWi rain
gauge over the period 2005 to 2018 (a–c) and the Zimmerwald rain gauge over the period 2008 to 2019 (d–f) in Bern. The
solid black line shows the x = y line, and the red dashed line shows the linear regression fit line. The color shows the density
of the data distribution calculated by Gaussian kernels.

Another finding worth noting in Figure 4 is that the daily rain rate using Opa-RR
is significantly lower than rain gauges when rain rates are between 20 mm/day and
50 mm/day (heavy rain), since the linear regression fit line is located below the x = y line.
Table 2 gives the biases of daily rain rates for different daily rainfall intensities, except
for the 21 GHz channel, the daily rain rate bias of heavy rains estimated by Opa-RR is all
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negative. This means that the proposed Opa-RR physical algorithm tends to underestimate
during heavy rains, which affects Opa-RR’s performance in estimating the daily rain rate to
a certain extent. The main reason for the heavy rain underestimation may be that (1) due to
its small scale and spatial complexity, heavy rain has an extreme variability of precipitation
in a short period of time, and it is usually difficult to accurately capture. Decreasing the
threshold ILWR increases the estimated amount of rain, but it will also extend the rainfall
period. Note that it is more effective to adapt the temperature lapse rate. (2) During heavy
rains, the brightness temperature tends to be saturated at higher frequencies such as the
31 GHz channel [3,37–39], thus underestimating rain. (3) The model requires that the rain
fill in the antenna’s field of view is fairly homogeneous, this means the rain zenith opacity
will lead to underestimation if there is any inhomogeneity [10].

Table 2. Bias statistics of the daily rain rate for different daily rainfall intensity, Opa-RR21 and Opa-RR31 represent the daily
rain rate estimated by Opa-RR at 21 GHz and 31 GHz of TROWARA, respectively.

Daily Rain Rate
Bias (mm/Day)

Light Rain Moderate Rain Heavy Rain Total

Opa-RR21 vs. ExWi rain gauge 2.12 2.30 0.31 1.96
Opa-RR31 vs. ExWi rain gauge 1.69 0.61 −4.19 0.89

ERA5 vs. ExWi rain gauge 2.64 0.04 −8.78 0.98
Opa-RR21 vs. Zimmerwald rain gauge 1.74 1.99 −2.46 1.69
Opa-RR31 vs. Zimmerwald rain gauge 1.35 0.48 −6.07 0.81

ERA5 vs. Zimmerwald rain gauge 2.72 0.56 −9.82 1.57

In moderate rain (5 mm/day to 20 mm/day), Figure 4 shows that the daily rain
rate estimated by Opa-RR at 31GHz works well, and the linear regression fit line almost
coincides with the x = y line. Their biases are all less than 0.61 mm/day (Table 2). However,
during light rains, the daily rain rate using Opa-RR is higher than the rain gauges, since
the mean value curve in the range of 0 mm/day to 5 mm/day is located above the x = y
line. The bias of light rains is all positive (Table 2). The possible explanations for the light
rain overestimation include (1) the tipping bucket rain gauge underestimated light rain
due to the limitations of the instrument’s working principle. (2) Virga is precipitation that
evaporates or sublimates before it reaches the ground, which is a likely explanation for the
discrepancy during light rain. In addition, the total biases between Opa-RR estimation at
31 GHz and rain gauges show a small bias on the daily scale.

It can be seen that the daily rain rate estimated by Opa-RR shows a better correlation
with the rain gauges than that of ERA5, especially at 31 GHz. Except for the RMSE, Opa-RR
estimations show a significant advantage over ERA5 for all verification factors (R2, the
bias, the intercept, and the slope). The slope of the linear fitting line of ERA5 scattered
points is only about 0.58 at most. Moreover, the correlation between ERA5 and rain gauges
is weaker and unstable, because the comparison results between ERA5 and different rain
gauges report a larger drop (from 0.43 to 0.36 for R2) than Opa-RR.

4.2. Monthly Rain-Rate Estimation

Figure 5 shows the verification scatter plots of the monthly rain rate estimated by Opa-
RR, and the comparison between ERA5 and rain gauges. As can be observed from Figure 5,
the Opa-RR estimate of the 31 GHz channel achieves slightly better performance than
the 21 GHz channel, compared with the ExWi rain gauge (the Zimmerwald rain gauge),
with R2 and RMSE verifications are 0.73 (0.77) and 29.33 (22.46) mm/month, respectively.
R2 and RMSE verifications of the Opa-RR estimation at 21 GHz are 0.72 (0.75) and 34.70
(26.79) mm/month, respectively. The monthly estimate of Opa-RR is slightly overestimated
because all the biases are positive. It can be seen that, except for R2 and RMSE compared
with ExWi rain gauge, Opa-RR at 31 GHz estimation shows some advantages over ERA5
for all verification factors (R2, RMSE, the bias, the intercept, and the slope) compared with
rain gauges.
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Figure 6 shows the monthly time series comparison of rain rates estimated by Opa-RR,
measured by the rain gauges, and provided by ERA5 reanalysis in Bern. As it can be
observed from Figure 6, the Opa-RR estimation is very close to the observations, and we
see a similar fluctuation trend, except for the overestimated rain in July 2007, May and
November 2009, June 2015. The observation data of the rain gauge indicated that some
extreme rainstorms occurred in these months, with the rain rate greater than 50 mm/10 min.
In addition, the monthly rain rate estimated by Opa-RR can well detect that Bern has more
rainfall in summer and less rainfall in winter [40]. For example, during the winter of
2010/2011 (December through February), the ExWi (Zimmerwald) rain gauge reported
137.20 (118.20) mm of precipitation, as well as Opa-RR at 21 GHz and 31 GHz estimated
161.47 (163.19) and 144.75 (146.35) mm of precipitation, respectively. During the summer of
2011 (June through August), the ExWi (Zimmerwald) rain gauge reported 273.60 (277.80)
mm of precipitation, as well as Opa-RR at 21 GHz and 31 GHz estimated 333.56 (334.97)
and 300.25 (301.70) mm of precipitation, respectively. Furthermore, there is a large amount
of missing data. For example, the cumulative rain reaches around 300 mm in July 2014 in
Figure 6a, while in Figure 6b this value is 0 mm. It is also obvious that the missing data
exist in 2008 and 2017 in Figure 6a and from 2016 to 2019 in Figure 6b. However, although
Figure 6a,b use rain gauges at different locations and not exactly the same rain events,
their monthly rain rate trends for many years are almost the same, such as from 2009 to
2013. The behavior of ERA5 and Opa-RR is almost similar, slightly overestimating the
cumulative rain for most months. However, the difference is that ERA5 is underestimated
in some months with more precipitation, such as from May to July 2007 in Figure 6a and
July 2009 in both Figure 6a,b.
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4.3. Annual Rain-Rate Estimation

Figure 7 shows the annual time series comparison of rain rates estimated by Opa-RR,
measured by the rain gauges, and provided by ERA5 reanalysis in Bern. As it can be
observed from Figure 7, the curve of annual rain rate estimated by Opa-RR and the situ
observations show a similar temporal variation and trend. For example, in Figure 7a, these
four curves all show the lowest annual rainfall in 2008 and 2017, and in 2012 they are
relatively high. Furthermore, the Opa-RR estimation has a good correlation with the rain
gauges. From 2005 to 2014 in Figure 7a and from 2008 to 2016 in Figure 7b, the curve of Opa-
RR at 31 GHz almost coincides with the rain gauge, but at 21 GHz has an overestimation.
From 2015 to 2018 in Figure 7a and in 2017 and 2019 in Figure 7b, compared with the
rain gauge, the performance of Opa-RR in estimating annual rain rates is not outstanding.
This may be because the tipping bucket rain gauge underestimated annual rain rates or
had instrumental errors. The behavior of Opa-RR and ERA5 is almost similar with slight
overestimation in comparison with in situ observations, while Opa-RR at 31GHz achieves
a better agreement than ERA5 in 2009 and 2010.
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5. Conclusions

Benefitting from a new physical retrieval method, based on the ground-based mi-
crowave radiometer, this article used the rain zenith opacity derived from TROWARA to
estimate the rain rate in Bern over a long-time interval from 2005 to 2019. The assumption
of homogeneous radiation beam filling established the relationship between rainfall rate
and zenith opacity. To calculate the rain zenith opacity, this retrieval method constructed an
additional layer through the non-rainy radiative transfer model to describe the contribution
of rain to radiation. The rain-rate estimation was tested by the time series of accumulated
rain (day, month, year), and the performance of this method in different rain intensities
(light, medium, and heavy) was evaluated. Compared with the measurements from the
ExWi rain gauge and Zimmerwald rain gauge, there is fairly good agreement between
estimations and observations. Compared with ERA5, it is found that the rain rate estimated
by Opa-RR at 31GHz obtains slightly better results, especially the daily rain rates (Figure 4
and Table 2).

Using zenith opacity to directly estimate the rain rate performs well in detecting daily
moderate rain. However, heavy rain is underestimated, which might be due to its spatial
complexity, the brightness temperature saturation at high frequencies, and the difficulty of
the antenna beam to be absolutely homogeneous. Light rain is overestimated, probably
because the temperature lapse rate will be affected by the weather, and the iteration for the
zenith opacity is the positive correction. Moreover, ground-based radiation measurements
at 21.4 and 31.5 GHz were used for experimental testing of retrieval algorithms and proved
that the microwave frequency of 31 GHz has superior rain rate retrieval capabilities due to
its lower sensitivity to water vapor. At the monthly timescale, Opa-RR 31 GHz precipitation
estimates are very close to the Zimmerwald rain gauge, a high R2 value reaches 0.77 and a
low RMSE value is 22.46 mm/month. The figures for the daily rain rate are slightly lower,
but they are stable no matter which of these two rain gauges are compared, the R2 value is
0.39 to 0.44, and the RMSE value is 5.63 to 7.83 mm/day.
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Ground-based microwave estimation of rain rate with high temporal resolution and
high sensitivity to ground rainfall has the potential to provide important support for fine
rainfall forecasting and disaster risk reduction. The high temporal resolution of ground-
based microwave radiometry is expected to reveal short-term processes of convective
rainfall events and atmospheric phenomena, such as virga, which are not accessible by rain
gauges. Furthermore, ground-based microwave radiometry is a new, independent data
source for rain rate measurement. This article is important not only for understanding the
physical mechanism of rain rate inversion and analyzing the variation of rainfall accumula-
tion over time, but also for enriching the research of ground-based microwave radiometry
for atmospheric environment remote sensing and promoting the further development of
the rain-rate estimation research.
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6 M A C H I N E L E A R N I N G R A I N
R AT E R E T R I E VA L

6.1 summary of the study

Considering the complex nonlinear relationship between precipitation and at-
mospheric variables, machine learning techniques were applied to the study
of microwave radiometer precipitation estimation. Raindrops significantly af-
fect microwave signals, not only causing extinction and emission but also in-
ducing various scattering phenomena. Based on these physical characteristics
I developed two novel machine learning-based rain rate retrieval algorithms,
RF and GBDT, with high temporal resolution for a ground-based microwave
radiometer over Swiss Plateau. The rain rates measured by MRR was used
as target variable for the algorithms. Compared with other machine learning
algorithms, Light Gradient-Boosting Machine (LightGBM) and Support Vector
Machine (SVM), the rain rate retrieval I studied is highly competitive in terms
of accuracy (R2 ą 0.95) and model training efficiency. The methods and re-
sults are described in the article presented in this chapter.

The following article was submitted to Journal of Hydrology in June 2024.
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A B S T R A C T
Precipitation is complex due to its significant temporal and spatial variability, and current mainstream
precipitation estimation techniques have their inherent limitations. The complementary role of ground-
based microwave radiometer in precipitation monitoring to these technologies is gaining increasing
attention. Based on the physical characteristics of microwave radiation signals affected by raindrops in
the atmosphere, this study presented two novel machine learning based rain rate retrieval algorithms,
random forest (RF) and gradient boosting decision tree (GBDT), for a ground-based microwave
radiometer (MWR) over Swiss Plateau from 2008 to 2010. Both methods are trained using the
rain rate observed by the remote sensing technology micro rain radar (MRR) as the target variable,
and consider meteorological parameters in the feature input. For data preprocessing of the retrieval
methods, outliers and noise in the MRR rain rate are removed. Cross-validation results show that both
RF-based and GBDT-based methods achieve superior precipitation estimation performance, with R2

values of 0.96 and 0.95 and mean square error of 0.01 mm/h and 0.02 mm/h, respectively. Comparing
light gradient-boosting machine (LightGBM) and support vector machine (SVM) algorithms, rain
rate retrieval based on RF and GBDT are highly competitive in terms of accuracy and model training
timeliness, respectively. This study offers an accurate and reliable method for high temporal resolution
(10 seconds) precipitation estimation from MWR under complex terrain conditions, and it also has
the potential for application in other regions and with other tropospheric microwave radiometers.

1. Introduction
Precipitation is a key element in assessing and predicting

climate change (Kundzewicz, 2008). With global warming,
rising temperatures cause the atmosphere to hold more wa-
ter vapor. The Clausius-Clapeyron equation indicates that
atmospheric water vapor content will rise by 7% for every
1-degree Celsius increase in temperature (Held and Soden,
2006). The events and intensity of precipitation, especially
extreme rainfall events, are therefore likely to increase, lead-
ing to more frequent natural disasters such as floods and
landslides (Hong, Adler, Negri and Huffman, 2007). Global
warming also affects the hydrological cycle, altering the
distribution of precipitation, which results in reduced rainfall
and increased drought in some areas (Kundzewicz, 2008;
Allen and Ingram, 2002). Effective disaster prevention and
mitigation strategies depend largely on accurate estimates
of precipitation (Netzel, Heldt and Denecke, 2021). The
variability of precipitation distribution in space and time
complicates retrieval, as all techniques show their potential
and limitations (Marzano, Fionda and Ciotti, 2006).

Rain gauges, which are low-cost and easy to maintain,
measure precipitation at fixed points and are sparsely dis-
tributed to form a network that provides large-area precip-
itation information through interpolation (Marzano, Cimini
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and Montopoli, 2010). Rain gauges collect data with minute-
level temporal resolution, but errors often occur due to wind
effects, evaporation and spillage. Weather radar, another
important technology for precipitation monitoring, is often
used for nowcasting the future location and intensity of var-
ious types of precipitation such as rain, snow, hail, and other
hydrometeors, as they provide near real-time data with high
resolution and cover a wide geographical area (Rombeek,
Leinonen and Hamann, 2024). Processing radar data is chal-
lenging and requires complex algorithms and models due
to factors such as instrument calibration, ground clutter and
anomalous propagation, beam blockage, and range degra-
dation, all of which can significantly impact precipitation
estimates (Villarini and Krajewski, 2010). The installation
and maintenance of an entire radar system typically in-
volve substantial costs. Over the past three decades, satellite
technology has rapidly advanced, enabling the capture of
global spatial distributions of precipitation using primarily
microwave radiation, infrared, and precipitation radar (Liu,
Yang, Shao, Wang, Liu, Tang, Xue and Bai, 2022; Wang,
Tang, Xiong, Ma and Zhu, 2021a). A wide array of satellite
precipitation products have been put into use such as the
Tropical Rainfall Measuring Mission (TRMM), the Climate
Prediction Center morphing technique (CMORPH), and Pre-
cipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN). Satellite
products suffer from poor spatial resolution (e.g., 0.1° or
less) and low temporal resolution (Shen and Yong, 2021).
In addition, the accuracy of satellite precipitation estimates
is influenced by altitude and precipitation intensity.
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Ground-based microwave radiometers have been applied
for widespread use in the estimation of atmospheric inte-
grated water vapor content, integrated cloud liquid water,
temperature and relative humidity profiles due to their ability
to provide continuous day and night, all-weather observa-
tions (Hocke, Bernet, Hagen, Murk, Renker and Mätzler,
2019; Hocke, Navas-Guzmán, Moreira, Bernet and Mät-
zler, 2017; Wang, Murk, Sauvageat, Fan, Dätwyler, Hervo,
Haefele and Hocke, 2023; Yu, Xu, Jin, Ma, Liu and Gong,
2022). The accurate retrieval of these atmospheric variables
by microwave radiometers is of great significance for moni-
toring changing trends of atmospheric parameters to assess
the impact of global warming. Microwave radiometers are
capable of capturing emitted and scattered radiation signals
from raindrops in the atmosphere and hold potential for
retrieval of rain rates (Wang et al., 2023; Mätzler and Mor-
land, 2014). Microwave radiometer may offer unparalleled
advantages over the above-mentioned techniques for precip-
itation estimation (Marzano, Fionda, Ciotti and Martellucci,
2002; Marzano et al., 2006, 2010; Wang, Hocke and Mätzler,
2021b). Compared to rain gauges, microwave radiometers
can estimate regional cumulative rainfall with a high tempo-
ral resolution of 1 to 10 seconds. In addition, tropospheric
microwave radiometers are remote sensing sensors that can
detect rain that does not reach the ground, such as Virga.
Compared to weather radar, microwave radiometers are not
only relatively low-cost and easier to maintain, but they can
also be portable sensors such as the commercial microwave
radiometer Humidity And Temperature PROfiler radiometer
(HATPRO) manufactured by Radiometer Physics GmbH
(RPG) (Rose, Crewell, Löhnert and Simmer, 2005). Com-
pared to satellite products, microwave radiometers enable
more precise hydrological monitoring in local regions and
can also facilitate large-area surveillance through a network
of multiple ground stations (Cimini, Hewison, Martin, Güld-
ner, Gaffard and Marzano, 2006). All these superior charac-
teristics of microwave radiometers are frequently utilized to
cross-validate and correct satellite observations (Sauvageat,
Hocke, Maillard Barras, Hou, Errera, Haefele and Murk,
2023). Due to the inability of single technologies such as
radiometers, radars, and rain gauges to estimate precipi-
tation with high accuracy, the development of synergis-
tic schemes that combine data from these instruments has
gained widespread attention.

Precipitation estimation for ground-based microwave ra-
diometers mainly uses statistical and physical algorithms
(Wang et al., 2021b). Statistical algorithms are computa-
tionally efficient as they do not require complex radiative
transfer models, but their accuracy heavily depends on the
quantity and representativeness of the measurement samples
(Won, Kim and Lee, 2009; Xu, Ware, Zhang, Feng, Liao and
Liu, 2014). Physical algorithms can be analyzed from the
perspective of atmospheric physical mechanisms to provide
physical explanations for the retrieval process (Marzano,
Cimini and Ware, 2005b). Considering the complex non-
linear relationship between precipitation and variables from
microwave radiometers and meteorology, machine learning

technology is applied to precipitation estimation research.
Marzano et al. (2006) proposed a precipitation retrieval
method based on an artificial neural network (ANN) feed-
forward algorithm for a ground-based microwave radiome-
ter, but the target variable used was the surface rain rate
measured by a rain gauge, rather than the MRR. Random
Forest (RF) and Gradient Boosting Decision Tree (GBDT)
are both ensemble learning methods known for their strong
performance in handling regression tasks (Breiman, 2001,
1996; Friedman, 2001, 2002). RF improves the overall pre-
diction accuracy and stability by combining the outcomes
of multiple decision trees. The training speed is relatively
fast, it also has a high tolerance for outliers and noise, and
it has strong resistance to overfitting. By gradually building
a decision tree model and iteratively correcting residuals of
the previous model, GBDT has the ability to automatically
select features during training and captures non-linear rela-
tionships within the data during training. Therefore, using
RF and GBDT for precipitation estimation from ground-
based microwave radiometers shows promising potential.

Here, we apply both the RF- and GBDT-based method
to retrieve rain rates with high time resolution and accuracy
for the ground-based microwave radiometer. The article is
structured as follows. Section 2 introduces study area and
data sets. Section 3 derives the rain rate retrieval method
based on RF and GBDT. Section 4 compares and analyzes
the results obtained from the two methods. Discussion and
conclusions are in Section 5 and 6.

2. Study area and data sets
2.1. Study area

The Swiss Plateau, locates north of the Alps, stretches
from Lake Geneva on the French border in the west to
Lake Constance on the German-Austrian border in the east,
with the Jura Mountains to the northwest. Characterized
by rolling hills, numerous lakes and rivers, and an average
altitude of 580 meters, it covers about one-third of Switzer-
land’s area but is home to two-thirds of its population.
According to the Köppen climate classification scheme, the
plateau lies in a transition zone between the oceanic (Cfb)
and continental (Dfb) climates, featuring changeable and
often cloudy weather. Summers are cool due to cloud cover,
while winters are relatively mild, with freezing temperatures
typically occurring from December to early March (Wang
and Hocke, 2022).

The ground-based microwave radiometer TRopospheric
WAter RAdiometer (TROWARA) used in this study is lo-
cated in Bern (46.95°N, 7.44°E, 575 m a.s.l.) on the Swiss
Plateau. The area experiences its highest rainfall in the
summer, averaging about 10 mm daily, typically from pre-
frontal or post-frontal showers and thunderstorms. Winter
features are mainly frontal rainfall due to uphill or leeward
winds, marking it as a relatively dry season with an average
daily rainfall of nearly 6 mm (Brandsma and Buishand,
1997). This article primarily focuses on precipitation types
including rain, drizzle, and mixed (rain and snow or grau-
pel), and only stratiform rain is considered. This limitation is
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caused by the properties of microwave radiometers (MWR)
and Micro rain radar (MRR). Microwave radiation signals
are not affected by dry snow (ice crystals) (Mätzler and
Morland, 2014). In the case of non-stratiform convective
rainfall, strong updrafts and downdrafts may lead to er-
roneous interpretation of fall velocity measured by MRR
(Leuenberger, 2009).
2.2. Data sets
2.2.1. MWR data

Ground-based microwave radiometer data include bright-
ness temperatures (𝑇𝐵) at 21.385, 22.235, and 31.5 GHz,
integrated water vapor (IWV), integrated liquid water (ILW),
and infrared cloud base brightness temperature (𝑇𝐵,𝐼𝑅) as
six feature variables for the retrieval model in this article.
The data are collected by the Tropospheric Water Radiome-
ter (TROWARA) located on the roof of the Exakte Wis-
senschaften (ExWi) building at the University of Bern since
November 1994. TROWARA is equipped with a thermal
infrared channel operating in the 9.5–11.5 𝜇m wavelength
range and has been functioning in an indoor constant-
temperature laboratory since November 2002 (Morland,
2002, 2007). Its antenna, which receives atmospheric ra-
diation through a microwave-transparent window facing
southeast at a 50° zenith angle, is designed to effectively
prevent rain interference, ensuring reliable measurements
even on rainy days. The time resolution for 𝑇𝐵 is 7-11
seconds, and the bandwidths for the 21.385 GHz, 22.235
GHz, and 31.5 GHz microwave channels are 100 MHz, 400
MHz, and 200 MHz, respectively, with an antenna beam
half-power beamwidth of 4° (Wang et al., 2023).

The radiative transfer equation in a plane-parallel atmo-
sphere for a non-scattering atmosphere can be expressed as:

𝑇𝐵,𝑖 = 𝑇𝐶 ⋅ 𝑒−𝜏𝑖∕𝜇 + 𝑇𝑚𝑒𝑎𝑛,𝑖 ⋅ (1 − 𝑒−𝜏𝑖∕𝜇) (1)
where 𝜏𝑖 is the opacity in zenith direction. Here, 𝜇 = cos 𝜃,
with 𝜃 being the zenith angle of the TROWARA observation.
𝑇𝐵,𝑖 is the brightness temperature measured by TROWARA
at frequency 𝑖 (e.g., 31.5 GHz), and 𝑇𝐶 is the cosmic mi-
crowave background brightness temperature. 𝑇𝑚𝑒𝑎𝑛,𝑖 repre-
sents the tropospheric effective mean temperature calculated
by a linear relationship based on temperature, pressure, and
relative humidity, varying by frequency and site location
(Wang et al., 2021b).

After deriving Equation 1, the zenith opacity 𝜏𝑖 can be
expressed as:

𝜏𝑖 = −𝜇 ⋅ ln
(𝑇𝑚𝑒𝑎𝑛,𝑖 − 𝑇𝐵,𝑖

𝑇𝑚𝑒𝑎𝑛,𝑖 − 𝑇𝐶

)
(2)

The zenith opacity 𝜏𝑖 can also be expressed as a linear
combination of IWV and ILW along the zenith directions.

𝜏𝑖 = 𝑎𝑖 + 𝑏𝑖 ⋅ IWV + 𝑐𝑖 ⋅ ILW (3)
where the coefficients 𝑎𝑖 and 𝑏𝑖 vary with air pressure and
are statistically derived from concurrent radiosonde mea-
surements, with further refinement during clear-sky periods.

The coefficient 𝑐𝑖 depends on air temperature and frequency
and represents the Rayleigh mass absorption coefficient of
cloud water. It can be derived from a dielectric model of
water (Ellison, 2006).

By incorporating different frequencies (21.385 and 31.5
GHz) into Equation 3 and combining them, IWV and ILW
can be retrieved as:

IWV =
𝜏21 − 𝑎21 − 𝛾(𝜏31 − 𝑎31)

𝑏21(1 − 𝛽𝛾)
(4)

ILW =
𝜏31 − 𝑎31 − 𝛽(𝜏21 − 𝑎21)

𝑐31(1 − 𝛽𝛾)
(5)

where 𝛽 = 𝑏31∕𝑏21 < 0.5 and 𝛾 = 𝑐21∕𝑐31 ≅ 0.5. Mätzler
and Morland (2009) described the retrieval process in detail.
2.2.2. Meteorological data

Meteorological data include air temperature, air pres-
sure, and relative humidity as three feature variables for the
retrieval model in this article. The data are collected by
the ExWi weather station located a few meters away from
TROWARA with a time resolution of 10 minutes (Wang
et al., 2021b). The ExWi weather station uses a tipping
bucket rain gauge with a measurement resolution of 0.2
mm to measure rainfall that reaches the ground. Although
this type of gauge can easily identify rainfall intensity class
(light, moderate, and heavy), it cannot classify precipita-
tion types and is generally less accurate than standard rain
gauges. For example, the bucket may not tip until the rain
event has ended, yet a mere drop or two can cause it to tip at
the onset of the next rainfall (Ahrens, 2015; Yilmaz, Hogue,
lin Hsu, Sorooshian, Gupta and Wagener, 2005).
2.2.3. MRR data

Rain rate at the second bin height (200 m a.g.l.) of
micro rain radar data is used as the target variable for the
retrieval model in this article. The data are collected by
a ground-based Micro Rain Radar (MRR) manufactured
by Meteorologische Messtechnik GmbH (Metek) (METEK,
2009) located 2 m away from TROWARA since March
2007. The MRR, a compact Frequency Modulated Con-
tinuous Wave (FMCW) Doppler radar operating at 24.23
GHz, captures data with a 10-second time resolution. It can
measure vertically from 100 to 3100 meters along the zenith
direction with a 100-meter height resolution. The radar has
a 3dB beamwidth of 1.5° and a modulation bandwidth rang-
ing from 0.5 to 15 MHz. Garcia-Benadi, Bech, Gonzalez,
Udina, Codina and Georgis (2020) developed a model that
processes the MRR’s spectral raw data to calculate rain rates
(RR) by integrating over the drop size.

RR = 𝜋
6

∞

∫
0

𝑁(𝐷)𝐷3𝑣(𝐷)𝑑𝐷 (6)

where 𝑁(𝐷) is the drop size distribution with attenuation
correction for a rain drop of diameter 𝐷, indicating the
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number of drops per unit volume per diameter. 𝑣(𝐷) is the
corrected terminal falling velocity. Beynon (2022) compared
rainfall occurrences recorded by the MRR with those from
the rain gauge and found that the MRR provided stable
operation from 2008 to 2010, so this article uses data from
January 1, 2008, to December 31, 2010, to train the rain rate
retrieval model.
2.3. Data preprocessing

MRR measures raindrop size distributions in the atmo-
sphere by changing the phase or frequency between the
transmitted radar signals and the received backscattered
signals (Maddikera, Kotamraju, Kavya and Gande, 2022).
However, radar waves reflected by other atmospheric par-
ticles can be confused with raindrop signals, leading to
misidentification and the creation of data outliers. The radar
instrument system itself can also generate a certain amount
of noise. To use accurate rain rates from the MRR as labels
for the machine learning retrieval model, outliers and noise
should first be removed from the data.

Figure1(a) shows the MRR target classification. Precip-
itation types are mainly divided into rain, drizzle, snow,
mixed, and hail. Figure1(b) shows the rain rate from MRR.
This is a stratiform rain with a melting layer around 900
m. By comparison with Figure1(a), it can be found that
the rain rate measured by MRR mainly includes rain types:
rain and drizzle. The two windows in Figure1(b) contain a
large number of outliers. In addition to the outliers, the right
window also captures a rain event lasting about 2 minutes.
Stratiform rain is characterized by wide coverage, uniform
intensity, and long duration, while this short rainfall event
may be caused by local air movement and is therefore not
considered. This paper uses the method of selecting only
rain events lasting more than 5 minutes to preprocess rain
rate outliers. Figure 1(c) shows the rain rate after removing
outliers.

After removing outliers, the rain rate data is denoised
using the median filtering method, as illustrated in Figure
2. To effectively eliminate noise while preserving the char-
acteristics of rainfall rate changes, the filter window size is
set to 9, corresponding to a duration of 90 seconds. The rain
rate is measured at the second bin height rather than the first
because data at 100 meters is excessively noisy. In addition,
meteorological and microwave radiometer data are filtered
using a window size of 7. Comparisons with rain gauge data
confirm that this filtering approach is reasonable. Note that
the rain gauge has a delay of about 10 minutes after the
rain stops compared to the radar. The time and measurement
resolution of the rain gauge may limit its response speed
during the final phase of low rainfall (Qiao, Li, Fu, Tian, Bi,
Zhou, Committee et al., 2012; Zhang, Wu, Zhang, Zhang,
Xiao, Wang, Zhou, Song and Peng, 2021).

Table 1 shows that the rain intensity of MRR is divided
into 3 grades according to meteorological standards (Qiao
et al., 2012; Zhang et al., 2021), and the number of samples
under these rain intensities. Light rain is the main rain

Table 1
Classification of rain intensity for samples in training set.

Intensity Range Number of samples
Light rain (0 mm/h, 1.5 mm/h] 217312
Moderate rain (1.5 mm/h, 7 mm/h] 12633
Heavy rain >7 mm/h 50

intensity in Bern (Wang et al., 2021b), constituting about
94% of training samples.

3. Methods
3.1. Precipitation observation characteristics of

ground-based microwave radiometer
Raindrops significantly affect microwave signals, not

only causing extinction and emission but also inducing vari-
ous scattering phenomena (Marzano et al., 2006). Radiative
transfer theory provides a comprehensive theoretical frame-
work for modeling the brightness temperature measured by
microwave radiometers due to precipitation (Marzano et al.,
2002). Consider a rain layer starting at a bottom height of 0
(surface) and extending to a top height of 𝐻 . The integral
form of zenith opacity 𝜏, or extinction, can be expressed as:

𝜏𝑖,𝑅 =
𝐻

∫
0

𝑘𝑒,𝑖(𝑧)𝑑𝑧 (7)

where 𝑧 is the vertical height from 0 to 𝐻 , and 𝑘𝑒,𝑖 is the
extinction coefficient. The scattering efficiency and angular
scattering of rainfall are measured by the volume albedo
𝑤 (where 𝑤 = 𝑘𝑒∕𝑘𝑠 and 𝑘𝑠 is the scattering coefficient)
and the volume phase function 𝑝, respectively. They together
with 𝜏 describe the single scattering properties of rainfall
(Marzano et al., 2006). The scattering effect of ice is neg-
ligible for frequency observations between 22 and 31 GHz,
making snow, which is composed of ice crystals, invisible
to the microwave radiometer used in this article (Mätzler
and Wegmüller, 1987). Microwave radiometer signals can
be primarily affected by precipitation types including rain,
drizzle and mixed.

Figure 3 shows the variations in brightness temperature
(𝑇𝐵) over time during the rain event from 11:00 to 21:00
UTC on October 6, 2008. As depicted in Figure 3(a), both the
Micro Rain Radar (MRR) and the rain gauge detect precipi-
tation, leading to a significant increase in 𝑇𝐵 at frequencies
of 21.385, 22.235, and 31.5 GHz, as shown in Figure 3(b).
Furthermore, the more intense the rain rate, ranging from
light to moderate, the greater the change observed in 𝑇𝐵 .
This suggests that 𝑇𝐵 serves as an excellent proxy of rain
rate. Statistical analysis reveals that the correlation coeffi-
cients between 𝑇𝐵 at 21.385, 22.235, and 31.5 GHz and the
MRR-measured rain rate across all samples are 0.61, 0.60,
and 0.69, respectively. These high correlation coefficients
further support the viability of using 𝑇𝐵 as a feature variable
in machine learning models for rain rate retrieval.
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Figure 1: Outliers in Micro Rain Radar (MRR) data on January 5, 2008. (a) Raw MRR target classification. (b) Raw MRR rain
rate. Part of the outliers is outlined in black box. (c) MRR rain rate data with outliers removed and rainfall duration exceeding 5
minutes.

Figure 2: Denoising MRR rain rate data at 200 m height using
median filtering and rain rates measured by rain gauge from
20:00 to 23:00 UTC on March 28, 2008.

3.2. Random Forest (RF)
RF is a machine learning algorithm that falls under the

bagging category of ensemble learning methods, originally
proposed by Breiman (2001). RF excels in regression tasks
and is extensively used in studies of precipitation due to
its robust performance Zhang et al. (2021); Xu, Tang, Li
and Wan (2024). To construct a diverse and uncorrelated
forest composed of many decision trees, RF includes two
key randomness settings: sampling the original dataset using
the bootstrap method, and randomly selecting a subset of
features from which the best are chosen. The final model

aggregates the predictions from all decision trees by taking
their average.

Feature importance evaluation is a critical for RF as it
helps in selecting features that enhance model performance
and generalization. In RF, each tree is built by recursively
selecting the best splitting features, calculating the Mean
Decrease Impurity (MDI) caused by the splitting. The im-
portance of a feature is quantified by summing the reduction
in impurity it causes at each split point across all trees,
and then averaging these sums over all trees to compute
the importance score of the feature (Louppe, 2014; Louppe,
Wehenkel, Sutera and Geurts, 2013).
3.3. Gradient Boosting Decision Trees (GBDT)

GBDT is a machine learning algorithm initially pro-
posed by Breiman and further developed by Friedman
(Breiman, 1996; Friedman, 2001, 2002). Employed for re-
gression tasks, GBDT has demonstrated its effectiveness in
various domains, especially precipitation estimation (Shen
and Yong, 2021). The algorithm builds decision trees it-
eratively, with each subsequent tree aiming to correct the
residuals left by the previous one, thus forming a robust
predictive model. GBDT constructs its final model 𝐹𝑀 by
integrating multiple weak learners, which can be expressed
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Figure 3: Effect of rain on radiation signal of microwave radiometer. (a) Denoised MRR rain rate at 200 m height (black) and rain
rates (red) measured by rain gauge from 11:00 to 21:00 UTC on October 6, 2008. (b) Brightness temperature from microwave
radiometer TROWARA at 21.385 (orange), 22.235 (green), and 31.5 GHz (red).

as follows (Shen and Yong, 2021):

𝐹𝑀 =
𝑀∑
𝑚=1

𝛾𝑚ℎ(𝑥; 𝜃𝑚) (8)

where 𝑀 is the number of trees. ℎ(𝑥; 𝜃𝑚) is the basic
decision tree of the 𝑚-th iteration. 𝑥 is the feature Variables.
𝜃𝑚 is the model parameter. 𝛾𝑚 is the weight of each decision
tree.

The GBDT-based model excels in identifying the im-
portance of various feature vectors for rainfall estimation.
Friedman (2002) presented the calculation of GBDT feature
importance selection. The importance of each feature in a
model is determined by the frequency with which it is used
to split nodes in all decision trees. This frequency is nor-
malized into relative frequencies, and the average of these
frequencies across all trees reflects the overall contribution
of each feature to the model (Wu, Xia and Jin, 2021; Wang
et al., 2023).

In this article, the RF and GBDT algorithms are imple-
mented using the mature scikit-learn toolkit available in the
Python module (https://scikit-learn.org/stable/).
3.4. Validation Strategy

Two strategies are employed to validate the rain rate
retrieval model (Shen and Yong, 2021): ten-fold cross-
validation method to assess the performance of the model
itself, and applying the model to time series cases to verify
rainfall estimates. The ten-fold cross-validation method
partitions the samples into 10 subsets. Nine subsets are used
for training the model, and one is used for testing the rainfall
estimation performance. This process is repeated 10 times,
with each subset being used once as the test set, and the re-
sults are averaged to ensure comprehensive evaluation across
all samples. Three validation metrics are employed: the
coefficient of determination (R2), mean square error (MSE),

and mean absolute error (MAE). The formulas for these
validation metrics are detailed in Table 2. The ten-fold cross-
validation can only evaluate the performance of the rainfall
retrieval model using these three years of rain events, but
rainfall is complex and depends on various meteorological
and geographical factors. Therefore, the effectiveness of the
rain rate retrieval model is further estimated by estimating
rainfall on time series.

The nine variables of the brightness temperature at
21.385 GHz, 22.235 GHz, and 31.5 GHz, the infrared cloud
bottom brightness temperature, IWV, ILW, air temperature,
air pressure, and relative humidity are used together as the
feature input of the RF and GBDT learning data sets, and
MRR-measured rain rates are used as labels, covering the
period from January 1, 2008 to December 31, 2010. From
2008 to 2010, TROWARA’s time resolution was 11 seconds.
All data are normalized to a uniform 10-second temporal
resolution using the sample resampling method. The dataset
contains 255,550 samples.

4. Results
Figure 4 shows the validation scatter plots of rain rates

from microwave radiometer (MWR) based on RF and GBDT
methods, and comparison with MRR-measured rain rates.
As can be seen from Figure 4(a) and (b), compared with the
MRR-measured rain rates, the RF-based method for MWR
rainfall estimation achieved slightly better performance than
the GBDT-based method, with R2, MSE, and MAE verified
to be 0.96, 0.01 mm/h, and 0.05 mm/h, respectively. The
R2, MSE, and MAE verification of MWR rainfall estimates
based on the GBDT method are 0.95, 0.02 mm/h, and
0.07 mm/h, respectively. This is not surprising since RF
is less sensitive to outliers relative to GBDT. In addition,
the calculation time of the RF method when retrieving rain
rate is also slightly faster than that of GBDT. In general,
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Table 2
Validation metrics with the range and optimum. 𝑦𝑖 is the true label values. �̂�𝑖 is the predictions of methods. 𝑛 is the number of
samples.

Metrics Equation Range Optimum

Coefficient of determination R2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖−�̂�𝑖)
2

∑𝑛
𝑖=1(𝑦𝑖−�̄�)2

[0,1] 1

Mean Squared Error MSE = 1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2 [0,∞] 0

Mean Absolute Error MAE = 1
𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − �̂�𝑖| [0,∞] 0

the two machine learning-based methods, RF and GBDT,
demonstrate high accuracy for rain rate retrieval for MWR
with a high time resolution of 10 seconds.

Another noteworthy finding in Figure 4 is that when rain
rates range between 2 mm/h and 8 mm/h (moderate to heavy
rain), the rain rates estimated by MWR are slightly lower
than those by MRR, as indicated by the regression fit line
lying below the x = y line. This discrepancy suggests that
the algorithm for rain retrieval using MWR based on RF
and GBDT methods tends to slightly underestimate rain,
particularly in moderate to heavy rain conditions, thereby
impacting the accuracy of rainfall estimation to some extent.
Several factors may contribute to this underestimation of
high-intensity rain:

• Inadequate Training Data: Heavy rain events often
involve rapid changes in intensity over short periods of
time and the spatial complexity of their rain patterns,
making them challenging to accurately capture. Ma-
chine learning models trained on insufficient samples
of moderate to heavy rain may fail to adequately
represent high-intensity rain patterns (Table 1).

• Saturation of Higher Frequency Channels: During
heavy rain, higher frequency channels, such as 31
GHz, are susceptible to brightness temperature satura-
tion (Marzano et al., 2006; Battaglia, Saavedra, Sim-
mer and Rose, 2009; Zhang, Xu, Xi, Ren, Wan, Zhou,
Cui and Wu, 2020). This saturation phenomenon may
lead to an underestimation of rain rates when using
MWR for rainfall retrieval.

• Overestimation by MRR: MRR may overestimate
rain rates within this range (Urgilés, Célleri, Trachte,
Bendix and Orellana-Alvear, 2021), contributing fur-
ther to the observed underestimation when compared
with MWR.

Figure 5 shows a case study where MWR rain rate retrieval
technologies are applied to time series data for verification
from 18:00 to 22:00 UTC on October 6, 2011. Notably,
this time period is not included in the training and testing
phases of the model. This serves as an example of light to
moderate stratiform rain, characterized by a melting layer
situated approximately 2000 m above the ground. As can
be seen from Figure 5 (b), from the beginning and end
of the rain period, the rain rate retrieved by MWR based
on RF and GBDT methods agrees well with the MRR-
measured data, and the changing trends of these curves over

time are consistent. After the end of the rainfall detected
by MRR, there is a delay of over 40 minutes observed by
the rain gauge between 19:20 and 20:00 UTC. The rain
rate curve recorded by the rain gauge is higher than that of
both MWR and MRR, particularly around 21:40 UTC with
notable differences observed. It is important to emphasize
that rain gauge data provide integrated measurements of a
ground point over time, and do not necessarily represent the
atmospheric opacity structure of microwave radiation mea-
surements (Marzano et al., 2006). Figure 6 shows another
case study verifying MWR rain rate retrieval technologies
from 13:00 to 20:00 UTC on January 6, 2011. This example
features light stratiform rain, with the melting layer situated
approximately 1400 m above the ground. Figure 6 is similar
to Figure 5, but the rain rate observed by the rain gauge in
Figure 6 exhibits better agreement with the rain rate provided
by the MWR and MRR in Figure 5.

5. Discussion
We also applied the machine learning method Light

Gradient-Boosting Machine (LightGBM) to retrieve rain
rates in microwave radiometer data (Ke, Meng, Finley,
Wang, Chen, Ma, Ye and Liu, 2017). The running speed of
the model based on LightGBM is very fast, each training
only takes 1 second. In comparison, for the parameters
corresponding to the existing results unchanged, the RF
and GBDT models require 377 seconds and 610 seconds,
respectively, for training. However, it is worth noting that the
accuracy of LightGBM is slightly inferior for precipitation
estimation, and results show that the R2, MSE, MAE are
0.81, 0.07 mm/h, and 0.15 mm/h, respectively. Potential
reasons may be determined by the characteristics of these
algorithms itself. Different from traditional tree-based al-
gorithms, LightGBM employs a histogram optimization
algorithm, which enhances training efficiency and speed but
may impact the regression accuracy of the model. Compared
with the robustness of RF and GBDT on small data sets,
LightGBM is more suitable for large-scale data sets and
more sensitive to data noise and outliers. Furthermore, this
article also tried to use the Support Vector Machine (SVM)
algorithm to retrieve rain rates (Cortes and Vapnik, 1995),
but it took at least 10 hours to run the model for training,
resulting in a high time cost. Considering that this study only
encompasses 3 years of data, achieving a more stable model
covering various rainfall types, patterns, and intensities in
the future would necessitate participation in training with
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Figure 4: Scatter density plot between rain rates retrieved by machine learning methods from MWR and measured by MRR over
the period 2008 to 2010. (a) Rain rate retrieved by RF from MWR. (b) Rain rate retrieved by GBDT from MWR. The black
solid line is the 1:1 line, and the red dashed line is the linear regression fit line. The blue colors show the density of the data
distribution calculated by Gaussian kernels.

Figure 5: Example of MWR retrieved, MRR and rain gauge
measured rain rates from 18:00 to 22:00 UTC on October 6,
2011. (a) MRR rain rates with the melting layer at an height
of 2000 m. (b) Rain rates retrieved by GBDT and RF method
from MWR, MRR rain rate at 200 m height, and rain gauge.

data spanning a longer period. Time-consuming models may
therefore not be a suitable choice, and RF and GBDT already
meet the accuracy requirements (Figure 4).

A good machine learning model should not only be
highly accurate in predicting rain rates but also offer strong
interpretability. Figure 7 shows the importance of feature
variables based on the GBDT rain rate retrieval method,
offering an intuitive depiction of the model’s reliance on var-
ious features. The first three important features are integrated
liquid water (ILW), brightness temperature at 21.385 GHz
(𝑇𝐵,21), and brightness temperature at 31.4 GHz (𝑇𝐵,31).
The results on feature importance align with the parameter
requirements of the physical algorithm for rain rate retrieval
developed by Wang et al. (2021b). ILW, also known as

Figure 6: Same as in 5, but from 13:00 to 20:00 UTC on
January 6, 2011 and the melting layer at an height of 1400 m.

Liquid Water Content (LWC), refers to the vertical inte-
gration of liquid water, specifically cloud droplets, in the
atmosphere. Clouds have a direct correlation with precip-
itation, for instance, cumulonimbus clouds are associated
with thunderstorms and heavy rain. 𝑇𝐵,21 is more sensitive
to microwaves emitted by water vapour and 𝑇𝐵,31 is more
sensitive to microwaves emitted by atmospheric liquid water
(Hocke et al., 2017). Both frequencies have been utilized
in rain rate retrieval (Wang et al., 2021b; Marzano, Cimini,
Ciotti and Ware, 2005a; Marzano et al., 2005b). The fourth to
ninth important features are air pressure (P), air temperature
(T), infrared cloud base brightness temperature (𝑇𝐵,𝐼𝑅),
brightness temperature at 22.235 GHz (𝑇𝐵,22), integrated
water vapor (IWV), relative humidity (RH), respectively. It
can be seen in Figure 7 that 𝑇𝐵,22 does not contribute as
significantly to rainfall estimation compared to 𝑇𝐵,21 and
𝑇𝐵,31. These variables except 𝑇𝐵,22 are closely related to the
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Figure 7: Variable importance of features included in GBDT
method for rain rate retrieval.

evolution of rainfall (Wang and Hocke, 2022; Wang, Hocke,
Nania, Cazorla, Titos, Matthey, Alados-Arboledas, Millares
and Navas-Guzmán, 2024).

Rain gauges can serve as an alternative to MRR as the
target variable of the methods in this article to retrieve the
rain rate for ground-based microwave radiometers, but some
limitations of rain gauges also need to be considered. First,
rain gauges ignore rainfall that does not fall to the ground,
such as virga (Beynon and Hocke, 2022; Beynon, 2022;
Wang et al., 2024), so meaning that using rain gauges as
tags does not fully capitalize on the potential of microwave
radiometers as remote sensing instruments to study such
rainfall (Wang et al., 2024). Second, rain gauges may expe-
rience decreased measurement accuracy due to wind effects.
Finally, the time resolution of rain gauges is relatively low
(1 to 10 minutes) compared to the high time resolution of
microwave radiometers (1 to 10 seconds). Figure 3 illustrates
the misalignment of time correspondences due to differences
in their time resolution. MRR not only offers high time
resolution but also serves as a remote sensing instrument
capable of observing virga (Beynon, 2022; Beynon and
Hocke, 2022).

6. Conclusions
Accurate and reliable precipitation estimation from ground-

based microwave radiometers is of great significance as a
complement to other precipitation measurement techniques.
In this article, we present two high temporal resolution
(10 seconds) rain rate retrieval models that can handle the
challenge of combining microwave radiometers with micro
rain radar observations to study precipitation over Swiss
Plateau from 2008 to 2010. To achieve precise retrieval, the
new machine learning-based models, employing algorithms
RF and GBDT, first eliminate outliers and noise from the rain
rate data obtained from the micro rain radar, which serves
as the target variable. Then, the models’ feature selection
process leverage the physical characteristics of atmospheric
raindrops affecting microwave radiation signals, while also
incorporating meteorological variables.

The models underwent validation using the ten-fold
cross-validation method and are subsequently applied to

time series data. Results show that both RF and GBDT-
based models for rain rate retrieval from the ground-based
microwave radiometer exhibit excellent performance, with
the GBDT-based model slightly inferior the RF-based. The
RF-based method achieves 0.96 R2, 0.01 mm/h MSE, and
0.05 mm/h MAE. Using the GBDT-based method, the cor-
responding metrics are 0.95 R2, 0.02 mm/h MSE, and 0.07
mm/h MAE. In the case study, reasonably good agreement
is achieved between microwave radiometer precipitation
estimates and micro rain radar measurements. These two
methods outperform LightGBM and SVM significantly in
terms of accuracy and training time efficiency, respectively.
This paper also discusses the advantages of using micro
rain radar as the target variable compared to rain gauges
for rain rate retrieval research on ground-based microwave
radiometers, and further explains the feature selection of
the models based on physical principles through the feature
importance of GBDT.

In future studies, the methods in this article can be
applied to other regions as well as other ground-based mi-
crowave radiometers. Due to limited instrumentation, rain
gauges can also be used as a substitute for micro rain radar in
measuring rain rate as the target variable for model training.
Another future study might be to analyze short-term charac-
teristics of precipitation, e.g. preferred rainfall frequencies
in high-resolution datasets.
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7 I N D O O R A N D O U T D O O R
T R O P O S P H E R I C M I C R O WAV E
R A D I O M E T E R S

7.1 summary of the study

Exploring the measurement capabilities of K-band (21.3-31.5 GHz) ground-
based microwave radiometers and analyzing biases and uncertainties in re-
trieving atmospheric water (water vapor, clouds, and rain) are critical for
climate change research (Ji et al., 2021; Nandan et al., 2022). Comparing data
from two microwave radiometers with different settings is beneficial for as-
sessing the reliability of atmospheric water measurements because they share
the same observational principle that helps account for various sources of
errors (Cimini et al., 2006; Mattioli et al., 2004, 2005). Moreover, indoor ob-
servations can effectively avoid issues such as radome and antenna wetting.
The water film on an outdoor radiometer radome caused by rain may affect
the radiation signal, making it difficult to distinguish the signals of raindrops
from other atmospheric parameters. However, previous studies have not ad-
equately analyzed the issues radiometers face during outdoor operation.

The article presented in this chapter compared the brightness temperature
measurements from the commercial outdoor microwave radiometer HATPRO

with those from the indoor microwave radiometer TROWARA, assessing their
performance in measuring atmospheric water. Since rain estimates are not
available in the HATPRO software, the same physical retrieval method based
on 31 GHz optical depth used for TROWARA was applied to retrieve rain
rates for HATPRO (Wang et al., 2021). My study was the first to provide
a detailed description that the innovative measurement device of indoor
TROWARA avoids issues caused by water films on the radome. I employed
GBDT to identify sources of brightness temperature deviations.

The study contributed to the GCOS Project. In September 2021, Swiss Federal
Office of Meteorology and Climatology (MeteoSwiss) transferred the HATPRO

radiometer from Payerne to Bern where it is operated in parallel with the
TROWARA radiometer, and I was actively involved in the installation and
the LN2 calibration of HATPRO. This campaign is unique because it pro-
vides simultaneous data from outdoor and indoor radiometers observing in
the same direction (southeast) and at the same elevation angle (40°) (Hocke,
2022).
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An Indoor Microwave Radiometer for Measurement
of Tropospheric Water

Wenyue Wang , Axel Murk, Eric Sauvageat, Wenzhi Fan, Christoph Dätwyler, Maxime Hervo,
Alexander Haefele, and Klemens Hocke

Abstract— This article presents the first detailed description
of the innovative measurement setup of an indoor tropo-
spheric microwave radiometer [TROpospheric WAter RAdiome-
ter (TROWARA)] that avoids water films on radome. We discuss
the performance of a commercial outdoor microwave radiometer
[Humidity And Temperature PROfiler radiometer (HATPRO)]
for measuring tropospheric water parameters in Bern, Switzer-
land. The HATPRO is less than 20 m from the TROWARA and
has different instrument characteristics. Brightness temperatures
measured by HATPRO are analyzed by comparing them with
coincident measurements from TROWARA and Radiative Trans-
fer Simulations based on the [European Centre for Medium-
Range Weather Forecasts (ECMWF)] operational analysis data
(denoted as RTSE). To find the source of brightness temperature
bias, a gradient boosting decision tree is used to analyze the
sensitivity of eight feature factors to bias. Data processing rou-
tines of the two radiometers use different algorithms to retrieve
integrated water vapor (IWV) and integrated cloud liquid water
(ILW), whereas the same physical algorithms based on the
radiative transfer equation are applied to obtain the opacity and
rain rate. Using 62 days of data with varied weather conditions,
it was found that TROWARA brightness temperatures are in
good agreement with RTSE. HATPRO brightness temperatures
are significantly overestimated by about 5 K at 22 GHz, compared
to TROWARA and RTSE. HATPRO brightness temperatures
at 31 GHz agree well with TROWARA and RTSE (within
about ±1 K). The overestimated brightness temperatures in
the K-band and the HATPRO retrieval algorithm lead to an
overestimation of IWV and ILW by HATPRO. The opacities
at 31 GHz match very well for TROWARA and HATPRO
during no rain with a verified R2 of 0.96. However, liquid
water floating or remaining water films on the radome of the
outdoor HATPRO radiometer induce an overestimation of the
rain rate. The physical reason for the overestimated 22-GHz
brightness temperatures of the HATPRO is mainly the result of
the combined effect of instrument calibration, the surrounding
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environment of the instrument, and the Sun elevation angle. This
can be a problem with the Generation 2 HATPRO radiometer
and this problem was resolved in the Generation 5 HATPRO
radiometer.

Index Terms— Atmospheric Radiative Transfer Simulator
(ARTS), brightness temperature, European Centre for Medium-
Range Weather Forecasts (ECMWF), gradient boosting decision
tree (GBDT), Humidity And Temperature PROfiler radiometer
(HATPRO), K-band, microwave radiometer, radiometer technol-
ogy, rain rate, remote sensing, water films, water vapor.

I. INTRODUCTION

ACCURATE measurements of tropospheric water (e.g.,
water vapor, cloud, and rain) are required for studies of

climate change. Water vapor is the most abundant greenhouse
gas [1]. Clouds affect the Earth’s radiation budget, and any
subtle change in cloud properties can alter climate responses
to anthropogenic aerosols or other factors associated with
global change [2]. Heavy rainfall often causes flooding [3].
The advantages of ground-based microwave radiometers in
the K-band (21.3–31.5 GHz) for measuring atmospheric water
are well known: continuous, automatic operation with high
time resolution in almost all weather conditions, day and
night [4], [5]. Bernet et al. [6] showed that ground-based
microwave radiometry is adequate to monitor long-term trends
of integrated water vapor (IWV). Ground-based microwave
radiometers are further important for cross validation of satel-
lite measurements of IWV [7], [8]. Compared to ground-
based global navigation satellite system (GNSS) receivers,
a radiometer can provide IWV with a higher temporal and
horizontal resolution (e.g., 10 s and 100 m). Thus, a ground-
based radiometer can achieve a high coincidence with an over-
head satellite observation of IWV, which is of interest for the
study of the small-scale variability of IWV [9]. Exploring mea-
surement capabilities of ground-based microwave radiometers
and analyzing biases and uncertainties in atmospheric water
retrievals are therefore necessary.

Microwave radiometers measure brightness temperatures
(Tb) to derive atmospheric water parameters, including IWV,
integrated cloud liquid water (ILW), and rain rate. To evaluate
the reliability of the derived IWV, it is often compared to
water vapor derived from other techniques such as radiosonde,
GNSS, Fourier transform infrared spectrometer (FTIR), and
Raman lidar [6], [10], [11]. Radiosondes cannot directly
observe the characteristics of the cloud liquid [2]. In situ mea-
surements of ILW can provide the most accurate microphysical
information on clouds [12], but it requires aircraft to traverse
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rapidly evolving clouds and cannot represent radiometer sam-
pling [13]. The vertical reflectivity of expensive and sparsely
distributed cloud radar is more suitable for obtaining ILW
with small droplets [14]. Rain rates are primarily verified
by the accumulated rain measured by rain gauges with a
coarser time resolution compared to radiometers. The inter-
comparison of two microwave radiometers with a different
setup is undoubtedly a good choice because they have the
same observation principle, which helps to account for various
sources of error. The Humidity And Temperature PROfiler
(HATPRO) radiometer manufactured by Radiometer Physics
GmbH (RPG) is widely used for meteorological monitoring
and forecasting networks worldwide [15]. The TROpospheric
WAter RAdiometer (TROWARA) built and operated by the
Institute of Applied Physics (IAP) at the University of Bern,
Bern, Switzerland, has been operational for 28 years. Many
studies have compared it to global positioning system (GPS),
in situ instruments, and reanalysis data and demonstrated
TROWARA’s superior ability to retrieve atmospheric water,
especially IWV [16], [17], [18], [19].

Cimini et al. [20] evaluated the agreement of Tb mea-
sured by two ground-based microwave radiometers during the
Temperature, hUmidity, and Cloud (TUC) profiling campaign.
Mattioli et al. [21] explored the scanning capabilities of three
microwave radiometers and their monitoring of IWV and ILW
during the 2003 Cloudiness Inter-Comparison Experiment.
Mattioli et al. [22] compared Tb calculated by radiosonde with
those measured by three microwave radiometers at 23.8 and
31.4 GHz as well as the IWV from the radiometers and a
GPS station. However, these studies lack an analysis of the
problems of radiometers due to outdoor operation. Microwave
radiation strongly emitted and scattered by rainwater on the
radome affects the radiometric signal, making it difficult to
identify the signal of raindrops in the air and other atmospheric
parameters. This leads to a decrease in the accuracy of the
atmospheric Tb measurements and parameter retrievals from
ground-based microwave radiometers [23], [24]. Instrument
hardware upgrades can reduce the water film bias [25], but
even with blowers and hydrophobic materials, rainwater is
still likely to float or remain on the radome during and after
rain [26]. Indoor observations can effectively avoid radome
and antenna wetting, so a comparison of indoor and outdoor
radiometers can reveal possible differences in Tb, opacity,
IWV, rain rate, and other atmospheric parameters, which are
caused by undesired water films on the outdoor radiometer
radome. TROWARA is the only indoor microwave radiometer
to our knowledge for the measurement of tropospheric water
parameters during rain and no rain, which is mentioned in
the literature (e.g., [6]). Thus, this present article includes
the details of the measurement setup of TROWARA, which
are useful for the installation of indoor radiometers at other
locations in the world.

This article is organized as follows. Section II describes the
study site and instrumentation. Section III outlines the prin-
ciple and feature selection of the gradient boosting decision
tree (GBDT) and methodologies for IWV, ILW, and rain rate
retrievals. Section IV presents brightness temperature, opacity,

and atmospheric water parameters comparisons in the K-band
for the 62 days of coincident measurements. The brightness
temperature bias for the two radiometers and the effect of
liquid water on the radome of an outdoor radiometer are also
discussed in this section. Conclusions are given in Section V.

II. INSTRUMENTATION

The HATPRO (HATPRO-G2) microwave radiometer was
operated in Payerne (46.82◦N, 6.95◦E; 491 m asl) from 2009 to
2021 by the Swiss Federal Institute of Meteorology and
Climatology (MeteoSwiss). The instrument was moved in
November 2021 from Payerne to the roof of the ExWi building
(46.95◦N, 7.44◦E; Alt. 575 m asl) at the University of Bern for
an intercomparison between the outdoor radiometer HATPRO
and the indoor radiometer TROWARA. This study assesses
the brightness temperature (Tb), opacity, and the retrieval
products IWV, ILW, and rain rates from December 1, 2021 to
January 31, 2022. In addition, the Tb of the two instruments
is also compared with the Tb simulations (RTSE Tb) based
on calculations of the Atmospheric Radiative Transfer Sim-
ulator (ARTS) using the daily operational analysis data of
the European Centre for Medium-Range Weather Forecasts
(ECMWF). The temporal and spatial resolutions of ECMWF
are 6 h and 1.125◦, respectively. By using the data of the ExWi
weather station, the ECMWF profiles from about 1.1 to 70 km
asl are linearly extrapolated to the surface at 0.575 km asl.
ARTS is a radiative transfer model focused on the microwave
frequency range [27]. Inputs to the model include pressure,
height, temperature, and water vapor density. H2O, O2, and
N2 concentrations are used to calculate the absorption coeffi-
cients over a range of microwave frequencies and simulate the
emission spectrum at the location of the instruments. We do
not consider hydrometeors or other aerosols in the simulation
so that the modeled brightness temperature is only accurate
during clear-sky periods. The outdoor HATPRO and the indoor
TROWARA radiometer conduct parallel observations from
locations less than 20 m apart at the same azimuth and
elevation angle, 130◦ (southeast) and 40◦, respectively.

A. Indoor Radiometer TROWARA

The TROWARA radiometer has been operated by the
IAP since 1994 on the roof of the University of Bern.
This instrument measures the brightness temperatures at three
microwave frequency channels with a time resolution of 7 s.
Two microwave channels are at frequencies of 21.385 GHz
(bandwidth = 100 MHz) and 31.5 GHz (bandwidth =

200 MHz), and the third channel built in November 2007 is
22.235 GHz (bandwidth = 400 MHz). The 22.235-GHz chan-
nel is located in the center of the water vapor line and is
more sensitive to microwave emission from atmospheric water
vapor than the 21.385-GHz channel. The 31.5-GHz channel
is more sensitive to microwave emission from atmospheric
liquid water than the other two channels. The half-power
beamwidth of TROWARA antenna beams is 4◦ for all frequen-
cies. TROWARA also includes an additional thermal infrared
channel at 9.5–11.5 µm. TROWARA can provide accurate
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IWV, ILW, and high-quality rain rate values using opacity-
based physical retrieval algorithms [19], [28]. A standard
weather station called ExWi Weather Station is also operated
on the ExWi building, a few meters away from TROWARA,
to provide weather information and auxiliary data for the
retrieval models.

TROWARA was on the roof outdoors from 1994 to April
2002. The disadvantages of its outdoor operation are twofold:
1) the temperature of the radiometer body was unstable due
to solar heating and 2) rain collected on the radiometer
radome caused unreliable measurements for up to several
hours after rainfall. TROWARA was moved from outdoor to
indoor constant temperature laboratory and was reinstalled in
November 2002 [29] [Fig. 1(a)]. The antenna receives atmo-
spheric radiation through a microwave transparent window that
is well protected against rain by a wall overhang [Fig. 1(b)].
The window only can get wet in case of strong southeast-
erly winds that are very rare during rain events in Bern.
This indoor operation avoids contamination of measurements
caused by antenna wetness and allows TROWARA to measure
even on rainy days. Generally, the stability and accuracy
of TROWARA’s measurements of IWV and ILW strongly
increased after TROWARA became an indoor radiometer in
2002, and the rain rate retrieval is not biased by water films
on the radome.

The original design and construction of TROWARA are
described by Peter and Kämpfer [30]. Scientists and engineers
from the IAP at the University of Bern improved TROWARA
and enabled TROWARA to measure continuously without
break points in the IWV time series since 2002. The amount of
data gaps after 2002 is less than 2%. The latest block diagram
of TROWARA is shown in Fig. 2. The developed radiometer
model provides a good estimate of the antenna temperature
by measuring the reflection and transmission coefficients of
all radiometer components and enables automatic internal
calibration at fairly small time intervals [29]. The active
cold loads (ACLs) replaced cooled cold loads in 2004, and
two ferrite switches for each frequency switch between the
antenna, the ACL, and a matched waveguide termination,
which is used as hot load [31]. TROWARA is calibrated with
the ACL and hot load. The ACL temperature is determined
by the manual tipping calibration using clear-sky brightness
temperatures at different antenna elevation angles between 20◦

and 45◦. Because of the high stability of TROWARA, only two
tipping curve calibrations are required per year.

B. Outdoor Radiometer HATPRO

The HATPRO Generation 2 (G2) is a ground-based
dual-polarization radiometer (R-DPR-09/016) manufactured
in 2009 with a time resolution of 1–2 s. This instrument
measures microwave radiances (brightness temperatures) at
14 frequencies. Seven microwave channels in the water vapor
band (K-band) 22.24, 23.04, 23.84, 25.44, 26.24, 27.84, and
31.4 GHz provide atmospheric humidity and cloud liquid
water content in the troposphere, and their bandwidth is
between 0.1 and 2 GHz. Another seven channels in the
oxygen band (V-band) from 51 to 58 GHz are used to deter-

Fig. 1. (a) TROWARA in an indoor laboratory on the ExWi roof.
(b) Measurement geometry of TROWARA observing the sky through a yellow
microwave transparent window.

mine atmospheric temperature properties [32]. The half-power
beamwidth of HATPRO antenna beams is 3.5◦ for K-band
frequencies. HATPRO also includes a GPS for instrument
location and observation time. HATPRO can retrieve IWV and
ILW using quadratic regression (QR) with software provided
by the HATPRO instrument manufacturer. The radiometer has
additional surface sensors to observe weather parameters such
as temperature, pressure, and relative humidity. These sensors
also provide input data for retrieval models. The complete
HATPRO instrument and software descriptions can be found
on the RPG website [33].

Generation 2 HATPRO (HATPRO G2) achieves thermal
stabilization through a dual-stage thermal control system con-
sisting of a main cooler followed by a Peltier stage for the
receivers [26]. The operating environment of its receiver is in
the temperature range of −30 ◦C to 40 ◦C. The antenna of the
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Fig. 2. Block diagram of TROWARA operating at 21.4, 22.2, and 31.5 GHz. The instrument is calibrated using two ferrite circulator switches to switch
between the lens antennas, an ambient temperature load, and an ACL with an effective temperature in the order of 120 K.

outdoor HATPRO receives atmospheric radiation through the
microwave transparent foil (radome). Hydrophobic material
radome and radial blower prevent or reduce the water film
on the radome during rain. The rain detector of the HATPRO
and software-defined humidity threshold automatically control
the speed of the blower.

HATPRO performs absolute calibration using a liquid
nitrogen-cooled load mounted externally to the radiometer box
and an internal blackbody load at ambient temperature as
targets [34]. During calibration, an internal scanning mirror
keeps the antenna pointed at each target, and the HATPRO
software automatically corrects for calibration errors due to
microwave reflections from the liquid nitrogen-air interface.
One built-in diode noise source for each receiver replaces
the liquid nitrogen-cooled load, enabling automatic internal
calibration of the HATPRO [26]. For low atmospheric opacity
(high transparency) channels, HATPRO G2 also has an option
of tipping curve calibration [35], which is not enabled for the
radiometer on site.

III. METHODOLOGY

A. Gradient Boosting Decision Tree

It is considered to be one of the best performing ensemble
learning methods in machine learning. GBDT uses the negative
gradient of the loss function to fit the residual of the previous
round of base learners so that the residual estimate of each
round gradually decreases close to the actual value [36].
GBDT improves the generalization ability and robustness of a
single model and has an interpretable regression procedure.

An advantage of GBDT is that the relative importance of the
features used by the model can be output after model training,
which is often used for feature selection to understand which
factors have a key impact on prediction [37]. Friedman [38]
proposed the computation of GBDT feature selection. The
basic idea is that the average selection frequency J j of the fea-
ture j serves as a statistic to measure its importance. The more
times an input feature is selected as a branch feature during
branching in a regression tree, the more important the feature
is. The number of times is normalized to the relative frequency,

and then, the selected frequencies of the input features in all
regression trees are averaged

ˆJ 2
j =

1
M

M∑

m=1

ˆJ 2
j (Tm) (1)

where M is the number of trees and m = 1, 2, . . . , M . The
importance of feature j for a decision tree T is given as
follows:

ˆJ 2
j (T ) =

L−1∑

t=1

î2
t 1(vt = j). (2)

Here, it is assumed that every tree is binary tree, so L is
the number of terminal nodes and L−1 is the number of
nonterminal nodes. vt is the splitting variable associated with
node t , and i2

t is the square of loss reduction after node t
splits.

B. IWV and ILW Retrieval

TROWARA uses the two microwave frequencies 21.385 and
31.5 GHz to retrieve IWV and integrated liquid water (ILW).
The following is a brief explanation of the retrieval technique.
It is assumed that there is a plane-parallel atmosphere, so the
radiative transfer equation for nonscattering atmospheres is

Tb f = Tbc · e−τ f /µ + Tm f ·
(
1 − e−τ f /µ

)
(3)

where τ f is the zenith opacity of the atmosphere. µ is the
cosine of the zenith angle θ , i.e., µ = cos θ . Tb f is the bright-
ness temperature observed by TROWARA, and Tbc is the
brightness temperature of the cosmic microwave background.
Tm f is the effective mean temperature of the troposphere
calculated by the linear equation of surface temperature,
pressure, and relative humidity. It is also frequency (and site)
dependent.

Equation (3) derives the zenith opacity as

τ f = −µ · ln
(

Tm f − Tb f

Tm f − Tbc

)
. (4)

Equation (4) can also be expressed as a linear combination
of IWV, ILW, and integrated rain liquid (IRL), where ILW
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is the integrated liquid water of the cloud droplets along the
zenith direction. Ice and dry snow contribute negligibly to
radiation because of their small dielectric losses

τ f = (a f + b f · IWV + c f · ILW) + τrf (5)
τrf = c f · G M, f · IRL (6)

where the coefficients a f and b f depend on air pressure. They
can be statistically obtained from simultaneous measurements
of radiosondes and fine-tuned during periods of a clear sky.
The coefficient c f depends on air temperature and frequency.
It is the Rayleigh mass absorption coefficient of cloud water,
which can be obtained from a dielectric model of water. τrf is
the rain zenith opacity. G M, f is the rain Mie gain.

The retrieval of IWV and ILW uses a physical algorithm
for microwave radiometer data during no rainfall (G M, f = 0)

IWV =
τ21 − a21 − γ (τ31 − a31)

b21(1 − βγ )
(7)

ILW =
τ31 − a31 − β(τ21 − a21)

c31(1 − βγ )
(8)

where subscripts 21 and 31 represent the microwave frequen-
cies of TROWARA at 21.385 and 31.5 GHz, respectively.
β = b31/b21 < 0.5, and γ = c21/c31 ∼= 0.5. Details of
TROWARA’s IWV and ILW retrieval algorithms are described
by Mätzler and Morland [28].

HATPRO G2 uses the seven K-band microwave frequencies
to retrieve IWV and ILW based on the QR method. The QR
retrieval technique can be described as

Outn = Osn +

∑

sensors

MLns · Mrs +

∑

sensors

MQns · Mr2
s

+

∑

freq

TLn f · Tb f +

∑

freq

TQn f · Tb2
f (9)

where n is the number of retrieval parameters and Outn is the
output parameter (IWV or ILW). Osn is the retrieval offset for
Outn . s is the number of times to check the surface sensor, and
Mrs is the meteorological parameters temperature, pressure,
and relative humidity read by the sensor. MLns and MQns are
the linear coefficient and quadratic coefficient of Mrs , respec-
tively. The subscript f denotes the microwave frequency. Tb f

is the brightness temperature observed by HATPRO. TLn f

and TQn f are the linear coefficient and quadratic coefficient
of Tb f , respectively. These coefficients are derived by RPG
based on long-term radiosonde datasets. The limitation is that
the retrieval algorithms can only be applied to the range
of atmospheric conditions included in their training datasets.
More details for the HATPRO retrieval are described in the
RPG operation and software guide [26], [39].

C. Rain Rate Retrieval

Because the rain rate retrieval is not included in the standard
HATPRO software, in this study, we use the same opacity-
based physical method as for TROWARA to retrieve rain rates
for HATPRO. During rain, τrf is determined iteratively. The

iterative equation can be expressed as

τ
(k+1)
rf = −µ · ln




Tmrf

(
τ

(k)
rf

)
− Tbrf

Tmrf

(
τ

(k)
rf

)
− Tb f


 (10)

where τ
(k+1)
rf is the rain zenith opacity at the kth iteration.

Tmrf is the effective mean temperature during rain. Tbrf is the
brightness temperature during rain, and Tb f is the brightness
temperature without rain. Equation (10) basically converges
after two iterations.

Rain rate R f can be calculated from rain zenith opacity

R f =
τrf

grf · Hr
(11)

where grf is the effective rain absorption coefficient calculated
with Mie theory. Hr is the vertical distance from the melting
layer to the surface when it rains. The details of the rain rate
retrieval algorithm for HATPRO and TROWARA are described
by Wang et al. [19].

IV. RESULTS AND DISCUSSION

A. Brightness Temperature Comparison

The HATPRO G2 radiometer was transferred from Payerne
to Bern in November 2021, and it was calibrated on November
11, 2021. Our study considers the HATPRO observations
after December 1, 2021. Fig. 3 shows a two-month Tb time
series of the same microwave channels 22 and 31 GHz from
HATPRO, TROWARA, and RTSE. The rain flag marks the
time of rain. RTSE Tb is missing during rainfall when Tb
observed by HATPRO and TROWARA increases remarkably.
As shown in Fig. 3(a), RTSE Tb agrees better with TROWARA
Tb than HATPRO Tb. The mean value of TROWARA Tb
at 22 GHz is around 22 K during no rainfall, and HATPRO
Tb is significantly overestimated by more than 5 K. This
overestimation can be clearly seen from January 22 to 26
(shaded area). As shown in Fig. 3(b), there is comparatively
good agreement between TROWARA Tb, HATPRO Tb, and
RTSE Tb. The mean value of TROWARA Tb at 31 GHz is
around 17 K during no rainfall, with HATPRO overestimating
Tb by around 1 K on average. During rainfall, HATPRO Tb
values are significantly higher than TROWARA Tb at both
22 and 31 GHz due to the influence of a water film on the
radome, which is described in detail next.

Fig. 4 shows the mean value and standard deviation of Tb
of HATPRO and TROWARA in the K-band for three days
of dry clear-sky conditions on January 1, 14, and 22, 2022,
and RTSE Tb as a function of frequency over the same time
period. The mean value of IWV and ILW is about 8.5 and
0 mm, respectively. As shown in Fig. 4(a), TROWARA Tb
at microwave frequencies 22 and 31 GHz agrees very well
with RTSE Tb, while there is a deviation of 2.5 K between
TROWARA and RTSE at 21 GHz. Since TROWARA retrieval
coefficients are corrected to match GPS and radiosonde data,
the intercomparison of IWV from TROWARA and ERA5
reanalysis only resulted in a small mean difference of 0.38 mm
for no rain conditions [40]. Note that the maximum value of
the RTSE curve appears to be at 22.5 GHz, while the line
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Fig. 3. Time series of the brightness temperature (Tb) observed by HATPRO
and TROWARA, as well as radiative transfer simulations based on the
operational analysis data ECMWF (RTSE) Tb at (a) 22 and (b) 31 GHz
from December 1, 2021 to January 31, 2022. The rain flag data observed by
the HATPRO rain detector are used to identify rain. The shaded area is from
January 22 to 26, 2022.

center of the water vapor line should be at 22.235 GHz. The
reason is the high pressure in the troposphere [41]. HATPRO
Tb is significantly enhanced at all microwave frequencies.
Compared to RTSE Tb, HATPRO Tb has a maximum devia-
tion of 5.3 K at 22 GHz and a minimum deviation of 1.0 K
at 31 GHz. As shown in Fig. 4(b), the standard deviations
of HATPRO and TROWARA are almost the same at 22 and
31 GHz. This further suggests that the changes of Tb they
observed are similar when HATPRO had no water film on the
radome under dry conditions.

The effect of common instrument characteristics on bright-
ness temperature is unlikely to be the main reason for the over-
estimation of HATPRO Tb, such as antenna beamwidth and
individual filter bandwidth. The beamwidths of HATPRO and
TROWARA are relatively narrow, with half-power beamwidths
of 3.5◦ and 4◦, respectively. At an observation elevation
angle of 40◦, the bias caused by these beamwidths can be
negligible in the K-band. Bandwidth errors of microwave
channels are less important for K-band. At these frequencies,
it is acceptable to use a wider bandwidth to improve detection
under low signal-to-noise ratio conditions [42]. It is worth
noting that a frequency offset of the channels can lead to a
considerable bias.

The HATPRO calibration bias is more likely a cause of the
overestimation of HATPRO Tb, including nonlinearities in the
calibration transfer characteristics and nonlinear corrections.

Fig. 4. (a) Mean and (b) standard deviation of Tb observed by HATPRO,
TROWARA, as well as RTSE Tb, only for clear conditions (three days).

Rose et al. [26] stated that the HATPRO-G2 is calibrated by
noise injection and based on a four-point method to correct
the nonlinearities. One possible explanation for the bias is that
the coefficients for this correction are incorrect. TROWARA
assumes a linear transfer characteristic. It should be less
prone to linearity errors since the calibration is done with the
ACL and ambient, whereas HATPRO has to extrapolate from
ambient and ambient plus noise diode (≫ 300 K) to a sky
temperature of 30 K. From 13:00 to 17:00 on September 22,
2022, we performed liquid nitrogen calibration during clear
sky for HATPRO. Fig. 5 shows the change in Tb from before
to after HATPRO calibration. Before the HATPRO calibration
at 22 GHz, the Tb bias between HATPRO and TROWARA is
7.7 K, much higher than the one in January 2022 in Fig. 4.
HATPRO calibration reduces the Tb bias, correcting 1.6 K
(21%) to 6.1 K. In addition, the small-scale variations of Tb
from TROWARA and HATPRO are perfectly correlated. Thus,
the variations are real atmospheric variations and not instru-
ment noise. We also checked the pointing accuracy of the two
radiometers by scanning the Sun to determine whether there is
any bias on the elevation angle that could explain the Tb bias
between the two instruments [43] and found that HATPRO has
a slightly higher elevation angle than TROWARA. The actual
elevation angles of TROWARA and HATPRO determined by
the solar drift scans were 40.05◦ and 41.53◦, respectively. The
effect of this difference in elevation angle on the Tb bias is
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Fig. 5. Time series of Tb observed by HATPRO and TROWARA on
September 22, 2022. HATPRO was calibrated with external liquid nitrogen
from 13:00 to 17:00, while TROWARA continued to observe.

about −0.68 K during a clear sky in January 2022. Given
that it would result in an underestimation of Tb, the pointing
bias might compensate partly for HATPRO’s other biases (e.g.,
nonlinearity of calibration).

Before the HATPRO moved to Bern, Hervo et al. [44] in
Payerne studied the difference between Tb measured by this
HATPRO G2 and a new Generation 5 HATPRO (HATPRO
G5) and radiative transfer simulations based on radiosonde
data (denoted as RTSR) from March 25 to August 25, 2021.
Fig. 6 is taken from their research report. As shown in
Fig. 6(a), the Tb bias between HATPRO G5 and RTSR is
significantly smaller than the HATPRO G2. HATPRO G2 Tb
at 22 GHz in Payerne is overestimated by about 2.19 K at
zenith compared to RTSR [Fig. 6(b)]. The overestimation of
HATPRO Tb occurs in a different manner in Payerne and Bern
due to instrument elevation of 90◦ in Payerne. An observation
elevation angle of 90◦ produces a lower overestimation than
measurements at much lower elevation angles. It may also be
due to different weather conditions in these two places.

The feature importance calculation of GBDT can further
quantify the sensitivity of multiple factors to the contribution
of Tb bias and thus infer the source of the bias [36]. The
bias may be caused by a combination of factors, includ-
ing voltages, channel gain (slope of the linear response),
and temperature of ambient blackbody target, which are
related to instrument calibration; environmental temperature
and environmental relative humidity, which are related to the
instrument surrounding environment; receiver temperature and
receiver stability, which are related to receiver performance;
and Sun elevation angle, which is related to the position of the
Sun relative to the instrument and diurnal distribution. These
eight factors provided by HATPRO are the input learning
datasets for GBDT here. Because TROWARA fits well with
RTSE and the lower temporal resolution of RTSE cannot meet
machine learning data volume requirements, the difference
between the Tb of HATPRO and TROWARA at 22 GHz is
marked as the actual value of the bias. More than 280 000
quality control samples in 23 clear-sky days are collected
to improve model generalization and prevent overfitting. The
training samples and test samples are randomly selected to
account for 90% and 10% of the total samples, respectively.
The GBDT model parameters set in this study are given as

Fig. 6. (a) Difference between brightness temperatures measured by
HATPRO G2 and HATPRO G5 and radiative transfer simulations based
on radiosonde data (RTSR) at 22 GHz in Payerne. (b) Mean value of the
difference in brightness temperature between measurements and simulations
at seven K-band frequencies.

follows: the learning rate is 0.07, the subsampling rate is
0.85, the maximum depth of decision tree is 26, the minimum
number of samples for leaf nodes is 22, the minimum number
of samples for internal nodes is 60, the number of features for
optimal segmentation is 2, the number of boosting stages to
perform is 1000, and the random state is 10. After training,
the GBDT model obtained a coefficient of determination (R2)
of 0.99 and a root-mean-square error (RMSE) of 0.004 K,
which means that one or more of these input factors are
responsible for the Tb bias. Fig. 7 shows the bias-contribution
scores. The top two with high bias-contribution scores are
instrument calibration, consisting of temperature of blackbody
target, channel gain, and voltages; and instrument surrounding
environment, consisting of relative humidity and temperature.
The sums of their associated factors are all above 0.37. The
Sun elevation angle also has a large bias contribution with
a score of 0.21, while the HATPRO receiver performance
contributes very little to the Tb bias.

B. Intercomparison of IWV, ILW, Opacity, and Rain Rate
Fig. 8 shows a two-month time series and a scatter plot of

HATPRO IWV and TROWARA IWV retrieved by (7) and (9),
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Fig. 7. Contribution of factors to the Tb bias at 22 GHz using the GBDT method.

Fig. 8. (a) Time series of the IWV provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022. The rain flag data observed by the
HATPRO rain detector are used to identify rain. (b) Scatter plot of IWV provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022.
The black solid line is the 1:1 line, and the red dashed line is the linear regression fit line. The blue gradient represents the density of the scatter distribution
calculated by the Gaussian kernel.

respectively. Note that the IWV during rain is not provided
by TROWARA, but obtained by interpolating the opacity
before and after rain. This interpolation of the TROWARA
retrieval is useful to study the variation of IWV during rain [3],
[40]. As shown in Fig. 8(a), during no rainfall, the mean
value of TROWARA IWV is around 7 mm. TROWARA
IWV values are higher during rainfall than during no rainfall.
Hocke et al. [40] showed that TROWARA IWV agrees with
GNSS IWV and ERA5 IWV even during rain conditions.
During no rainfall, the mean value of HATPRO IWV is
around 11 mm. HATPRO IWV increases dramatically during
rainfall. As shown in Fig. 8(b), HATPRO IWV is significantly
overestimated compared to TROWARA IWV. The slope and
intercept of the linear fit are 1.73 and −0.09 mm, respectively.
The area with the minimum distribution density (light blue
area) corresponds to large values of HATPRO IWV, and the
linear regression fit line is located above the 1:1 line. The
overestimation of IWV by this HATPRO also occurred in the
measurements in Payerne. Hocke et al. [40] intended to present
a comparison between IWV obtained by radiosonde, GNSS,
ERA5, and HATPRO at Payerne. However, they excluded
the HATPRO G2 from this intercomparison because of its
too strong positive deviations compared to the other three
sources. TROWARA IWV and HATPRO IWV also present
similar variations. The R2 and RMSE between TROWARA
and HATPRO IWV are 0.84 and 8.01 mm, respectively.

Fig. 9 shows a two-month time series and a scatter plot
of TROWARA ILW and HATPRO ILW retrieved by (8) and
(9), respectively. As shown in Fig. 9(a), during no rainfall,
the mean value of TROWARA ILW and HATPRO ILW is
around 0.08 and 0.2 mm, respectively. TROWARA ILW is
close to zero in cloudless conditions, while it is around 0.1 mm
for HATPRO. This confirms the fact that HATPRO retrievals
overestimate ILW. During rainfall, TROWARA ILW and
HATPRO ILW increase dramatically. As shown in Fig. 9(b),
HATPRO ILW is significantly overestimated compared to
TROWARA ILW. The slope and intercept of the linear fit
are 1.63 and −0.1 mm, respectively. The area with the
minimum distribution density (light blue area) corresponds
to large values of HATPRO ILW, and the linear regression
fit line is located above the 1:1 line. TROWARA ILW and
HATPRO ILW also present similar variations. The R2 and
RMSE between TROWARA and HATPRO ILW are 0.81
and 0.27 mm, respectively.

The overestimation of HATPRO IWV and ILW could be
due to the fact that Tb in the K-band observed by the
HATPRO radiometer is overestimated, e.g., in the 22-GHz
channel. We simply adjusted the brightness temperature of
HATPRO by a constant difference from RTSE and reretrieved
the IWV. Although the bias in IWV was slightly reduced, the
overestimation persisted. Therefore, the retrieval method itself
may be the main contributing factor to the overestimation of
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Fig. 9. (a) Time series of the ILW provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022. The rain flag data observed by the
HATPRO rain detector are used to identify rain. (b) Scatter plot of ILW provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022.
The black solid line is the 1:1 line, and the red dashed line is the linear regression fit line. The blue gradient represents the density of the scatter distribution
calculated by the Gaussian kernel. The subplot is the ILW scatter plot from 0 to 0.3 mm.

Fig. 10. (a) Time series of the rain-free zenith opacity provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022. (b) Scatter
plot of the rain-free zenith opacity provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022. The black solid line is the 1:1 line,
and the red dashed line is the linear regression fit line. The blue gradient represents the density of the scatter distribution calculated by the Gaussian kernel.
(c) Time series of the total zenith opacity provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022. The rain flag data observed
by the HATPRO rain detector are used to identify rain. (d) Scatter plot of the total zenith opacity provided by HATPRO and TROWARA from December 1,
2021 to January 31, 2022. The black solid line is the 1:1 line, and the red dashed line is the linear regression fit line. The blue gradient represents the density
of the scatter distribution calculated by the Gaussian kernel. The subplot is the ILW scatter plot from 0 to 0.1.

IWV. Rose et al. [26] indicated limitations of the HATPRO
G2 retrieval methods. The relationship between atmospheric
water and brightness temperature varies by region and season,
and statistical algorithms are problematic in a wide range
of applications. This weakness of the HATPRO QR affects
the retrieval accuracy of IWV and ILW. As we show in the
following, another cause leading to the overestimation of IWV
and ILW by HATPRO is the water film on the radome during
and shortly after rain events.

Opacities are used for rain rate retrieval at 31 GHz and
to study the effect of water on the radome. Fig. 10 shows a
two-month time series and scatter plot of the rain-free zenith
opacity and total zenith opacity (both rain-free zenith opacity
and rain zenith opacity). HATPRO opacity is not calculated
using the attenuation retrieved from the HATPRO QR, but
by (4) and (10) in the same way as TROWARA. Note that
the rain-free zenith opacity during rainfall is not provided by
radiometers but is obtained by interpolating before and after
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Fig. 11. (a) Time series of rain rates provided by HATPRO, TROWARA, and rain gauge from December 1, 2021 to January 31, 2022. (b) Scatter plot of
rain rates provided by HATPRO and TROWARA from December 1, 2021 to January 31, 2022. The solid black line is the 1:1 line, and the red dashed line is
the linear regression fit line. (c) Cumulative rain lines provided by HATPRO, TROWARA, and rain gauge on December 4, 2021. The time for the green line
is 12:58 UT. The shaded area is from 12:58 UT to 13:55 UT. (d) Cumulative rain provided lines by HATPRO, TROWARA, and rain gauge on January 5,
2022.

rain. There is a high possibility of raindrops in the atmosphere
if the ILW value is greater than or equal to 0.4 mm [18],
[45], so ILW = 0.4 mm is used as the rainfall threshold
for TROWARA. The ILW threshold for rainfall is usually
between 0.1 and 0.6 mm. In fact, even if the threshold is not as
accurate, the detection of rain occurrence is sufficient. This is
because the enhanced emission due to the Mie effect leads to
a very strong increase in ILW when the droplet size (diameter)
increases to 0.3 mm. Since HATPRO retrieved a higher ILW
as previously described, the threshold for rainfall is set to
0.6 mm. As shown in Fig. 10(a) and (b), during no rainfall, the
HATPRO zenith opacity agrees well with TROWARA zenith
opacity. The slope and intercept of the linear fit are 0.97 and
0.004, respectively. The zenith opacity of TROWARA and
HATPRO also presents the same variations. The R2 and RMSE
between TROWARA and HATPRO zenith opacity are 0.96 and
0.006, respectively. As shown in Fig. 10(c) and (d), during
rainfall, HATPRO zenith opacity is overestimated compared
to TROWARA zenith opacity. The slope and intercept of
the linear fit are 1.21 and −0.006, respectively. The linear
regression fit line is located above the 1:1 line. On the other
hand, the zenith opacity of TROWARA and HATPRO presents
similar variations. The R2 and RMSE between TROWARA
and HATPRO zenith opacity are 0.83 and 0.025, respectively.

Fig. 11(a) and (b) shows a two-month time series and
scatter plot of rain rates retrieved by (11) at 31 GHz. The
rain gauge data are from the ExWi weather station with a

time resolution of 10 min. As shown in Fig. 11(a), HATPRO
and TROWARA are very consistent in determining the occur-
rence/duration of rainfall. The more rain is measured by the
rain gauge, the higher the estimated rain rate for HATPRO and
TROWARA are. Note that HATPRO and TROWARA detect
rain, but the rain gauge does not measure any rain, such as
December 5 and 6 and January 19 and 20. This may be due
to two reasons. First, the time resolution of HATPRO and
TROWARA is high so that rain detected for a particularly short
time contributes very little to the cumulative rain. Second,
virga rainfall evaporates or sublimates before reaching the
ground [46]. As shown in Fig. 11(b), HATPRO rain rates are
significantly overestimated compared to TROWARA rain rates.
Some smaller values (less than 10 mm/h) of TROWARA rain
rates correspond to larger values (15–40 mm/h) of HATPRO
rain rates. The slope and intercept of the linear fit are 1.42 and
0.19 mm/h, respectively. The linear regression fit line is located
above the 1:1 line, and HATPRO rain rates agree poorly
with TROWARA rain rates. The R2 and RMSE between
TROWARA and HATPRO rain rates are 0.44 and 1.97 mm/h,
respectively. Fig. 11(c) and (d) shows the cumulative rain ver-
sus time for the heavy and moderate rain cases, respectively.
Cumulative rain of TROWARA presents similar variations to
rain gauge cumulative rain, but HATPRO continues to increase
after TROWARA and rain gauge stop increasing, such as
from 12:58 UT to 13:55 UT. As shown in Fig. 11(c), during
heavy rain, both HATPRO and TROWARA cumulative rain
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Fig. 12. Time series of total zenith opacity provided by HATPRO (blue solid line) and TROWARA (black dashed line), as well as rain rates measured by
rain gauge in (a) December 26, 2021; (b) December 27, 2021; (c) December 28, 2021; and (d) December 29, 2021. The shaded area marks when the zenith
opacity of HATPRO is much stronger than that of TROWARA.

are overestimated compared to rain gauge cumulative rain.
HATPRO is heavily overestimated to about nine times the rain
gauge values. As shown in Fig. 11(d), during moderate rain,
the TROWARA cumulative rain agrees relatively well with
rain gauge cumulative rain, as described by Wang et al. [19],
but HATPRO is heavily overestimated to about six times the
rain gauge values.

We used the same rain zenith opacity algorithm for
HATPRO and TROWARA at 31 GHz, but HATPRO shows
a significant rainfall overestimation. One of the reasons is
that the radome of the HATPRO radiometer placed outdoors
is contaminated with liquid water left on it by rainfall. This
situation can exist during and after rain. Fig. 12 shows the
examples of total zenith opacity for HATPRO and TROWARA
with rain. The rain rate decreases or stops, while the total
zenith opacity of HATPRO remains very strong, such as on
December 26 from 4:32 UT to 6:34 UT, December 27 from
15:22 UT to 16:57 UT, December 28 from 3:34 UT to 5:42 UT,
and December 29 from 11:52 UT to 15:08 UT. The HATPRO
zenith opacity is significantly higher than TROWARA by a
maximum of 0.2. There are also some cases with less impact
on HATPRO zenith opacity, such as on December 26 from
15:31 UT to 16:01 UT and 21:45 UT to 22:47 UT. When the
removal of the water film is effective, the HATPRO zenith
opacity agrees very well with TROWARA. This shows that
for outdoor radiometers, the blower and hydrophobic coating
play a role too.

V. CONCLUSION

The commercial radiometer HATPRO G2 is widely used
as a source of information on atmospheric water parameters
important to climate change research. To explore the bias
of measurements and the uncertainty of atmospheric water

retrievals of HATPRO, we compared it with a radiometer
TROWARA with the same observation principle but differ-
ent instrument characteristics for indoor and outdoor parallel
observations. The dataset contains more than 981 000 observa-
tions over a 62-day period from December 1, 2021 to January
31, 2022, during various weather conditions. TROWARA
brightness temperatures agree well with RTSE, but there
is a significant difference between brightness temperature
measurements from HATPRO and TROWARA. HATPRO has
the largest overestimation at 22.24 GHz, about 5 K, and
the minimum overestimation at 31.4 GHz, about 1 K. Their
retrieved IWV and ILW present similar changes, with R2 of
0.84 and 0.81, respectively. IWV and ILW retrieved from HAT-
PRO are significantly overestimated using the QR retrieval
method compared to TROWARA, with slopes of 1.73 and
1.63, respectively. Since the outdoor operation of HATPRO has
liquid water on the radome during and after rain, its retrieval
of rain rates is less than satisfactory. Nevertheless, rain-free
opacity calculated by HATPRO at 31.4 GHz using the radiative
transfer equation is in good agreement with TROWARA. The
R2 and slope are 0.96 and 0.97, respectively.

To explore the causes of the brightness temperature bias
in HATPRO and TROWARA at 22 GHz, we use the GBDT
to compare the importance of factors to the bias. The results
show that the instrument calibration, instrument surrounding
environment, and Sun elevation angle have major contributions
to the bias. The determination of the main contributing factors
can help to further establish correction models and optimize
the instrument.

TROWARA is possibly the sole indoor radiometer in the
world that can measure tropospheric water parameters during
rainfall. Our study showed that an indoor radiometer has many
advantages since it does not affect the microwave radiation
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due to the water film on the radome. It would be desirable
to install more indoor radiometers for weather observations in
the future so that rainfall events can be better accessed and
mobile outdoor radiometers can be cross-validated.

ACKNOWLEDGMENT

The authors thank Christian Mätzler for the software and
algorithm support that enabled the Humidity And Tempera-
ture PROfiler radiometer (HATPRO) to perform the rain rate
retrieval, as well as discussions and improvements of this
article. Wenyue Wang thanks Alistair Bell, Renaud Matthey,
and Roland Albers for discussions related to the present work.

REFERENCES

[1] D. Ji, J. Shi, H. Letu, W. Li, H. Zhang, and H. Shang, “A total
precipitable water product and its trend analysis in recent years based
on passive microwave radiometers,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 7324–7335, 2021.

[2] R. Nandan, M. V. Ratnam, V. R. Kiran, and D. N. Naik, “Retrieval
of cloud liquid water path using radiosonde measurements: Compar-
ison with MODIS and ERA5,” J. Atmos. Solar-Terr. Phys., vol. 227,
Jan. 2022, Art. no. 105799.

[3] W. Wang and K. Hocke, “Atmospheric effects and precursors of rainfall
over the Swiss Plateau,” Remote Sens., vol. 14, no. 12, p. 2938,
Jun. 2022.

[4] K. Hocke, L. Bernet, J. Hagen, A. Murk, M. Renker, and
C. Mätzler, “Diurnal cycle of short-term fluctuations of integrated water
vapour above Switzerland,” Atmos. Chem. Phys., vol. 19, no. 19,
pp. 12083–12090, Sep. 2019.

[5] E. Sauvageat et al., “Comparison of three high resolution real-time
spectrometers for microwave ozone profiling instruments,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 10045–10056,
2021.

[6] L. Bernet et al., “Trends of atmospheric water vapour in Switzerland
from ground-based radiometry, FTIR and GNSS data,” Atmos. Chem.
Phys., vol. 20, no. 19, pp. 11223–11244, Oct. 2020.

[7] J. Judge, J. F. Galantowicz, and A. W. England, “A comparison of
ground-based and satellite-borne microwave radiometric observations in
the Great Plains,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 8,
pp. 1686–1696, Aug. 2001.

[8] J. B. Snider, F. O. Guiraud, and D. C. Hogg, “Comparison of cloud liquid
content measured by two independent ground-based systems,” J. Appl.
Meteorol., vol. 19, no. 5, pp. 577–579, May 1980.

[9] S. Steinke et al., “Assessment of small-scale integrated water vapour
variability during HOPE,” Atmos. Chem. Phys., vol. 15, no. 5,
pp. 2675–2692, Mar. 2015.

[10] D. Cimini, E. R. Westwater, Y. Han, and S. J. Keihm, “Accuracy of
ground-based microwave radiometer and balloon-borne measurements
during the WVIOP 2000 field experiment,” IEEE Trans. Geosci. Remote
Sens., vol. 41, no. 11, pp. 2605–2615, Nov. 2003.

[11] A. Foth, H. Baars, P. Di Girolamo, and B. Pospichal, “Water vapour
profiles from Raman LiDAR automatically calibrated by microwave
radiometer data during HOPE,” Atmos. Chem. Phys., vol. 15, no. 14,
pp. 7753–7763, Jul. 2015.

[12] M. J. Tauc, D. W. Riesland, L. M. Eshelman, W. Nakagawa, and
J. A. Shaw, “Simulations and experimental results of cloud thermody-
namic phase classification with three SWIR spectral bands,” J. Appl.
Remote Sens., vol. 13, no. 3, p. 034526, 2019.

[13] S. Crewell and U. Löhnert, “Accuracy of cloud liquid water path from
ground-based microwave radiometry 2. Sensor accuracy and synergy,”
Radio Sci., vol. 38, no. 3, pp. 1–7, 2003.

[14] A. Bell et al., “W-band radar observations for fog forecast improvement:
An analysis of model and forward operator errors,” Atmos. Meas. Techn.,
vol. 14, no. 7, pp. 4929–4946, Jul. 2021.

[15] High-Precision Microwave Radiometers for Continuous Atmospheric
Profiling. Accessed: Jul. 19, 2022. [Online]. Available: https://www.
radiometer-physics.de/download/PDF/Radiometers/HATPRO/

[16] J. Morland, M. C. Coen, K. Hocke, P. Jeannet, and C. Mätzler,
“Tropospheric water vapour above Switzerland over the last 12 years,”
Atmos. Chem. Phys., vol. 9, no. 16, pp. 5975–5988, Aug. 2009.

[17] K. Hocke, N. Kämpfer, C. Gerber, and C. Mätzler, “A complete long-
term series of integrated water vapour from ground-based microwave
radiometers,” Int. J. Remote Sens., vol. 32, no. 3, pp. 751–765,
Feb. 2011.

[18] F. Cossu, K. Hocke, A. Martynov, O. Martius, and C. Mätzler,
“Atmospheric water parameters measured by a ground-based microwave
radiometer and compared with the WRF model,” Atmos. Sci. Lett.,
vol. 16, no. 4, pp. 465–472, Oct. 2015.

[19] W. Wang, K. Hocke, and C. Mätzler, “Physical retrieval of rain rate from
ground-based microwave radiometry,” Remote Sens., vol. 13, no. 11,
p. 2217, Jun. 2021.

[20] D. Cimini, T. J. Hewison, and L. Martin, “Comparison of brightness
temperatures observed from ground-based microwave radiometers dur-
ing TUC,” Meteorologische Zeitschrift, vol. 15, no. 1, pp. 19–26, 2006.

[21] V. Mattioli, E. Westwater, and V. Morris, “Monitoring of precipitable
water vapor and cloud liquid path from scanning microwave radiometers
during the 2003 cloudiness inter-comparison experiment,” in Proc. 14th
ARM Sci. Team Meeting, Mar. 2004, pp. 1–10.

[22] V. Mattioli, E. R. Westwater, S. I. Gutman, and V. R. Morris, “Forward
model studies of water vapor using scanning microwave radiometers,
global positioning system, and radiosondes during the cloudiness inter-
comparison experiment,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 5, pp. 1012–1021, May 2005.

[23] F. S. Marzano, D. Cimini, and R. Ware, “Monitoring of rainfall by
ground-based passive microwave systems: Models, measurements and
applications,” Adv. Geosci., vol. 2, pp. 259–265, Jul. 2005.

[24] F. S. Marzano, D. Cimini, P. Ciotti, and R. Ware, “Modeling and mea-
surement of rainfall by ground-based multispectral microwave radiome-
try,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 5, pp. 1000–1011,
May 2005.

[25] R. Ware, D. Cimini, P. Herzegh, F. Marzano, J. Vivekanandan, and
E. Westwater, “Ground-based microwave radiometer measurements dur-
ing precipitation,” in Proc. 8th Spec. Meeting Microw. Radiometry, 2004,
pp. 24–27.

[26] T. Rose, S. Crewell, U. Löhnert, and C. Simmer, “A network suitable
microwave radiometer for operational monitoring of the cloudy atmo-
sphere,” Atmos. Res., vol. 75, no. 3, pp. 183–200, May 2005.

[27] S. A. Buehler, J. Mendrok, P. Eriksson, A. Perrin, R. Larsson,
and O. Lemke, “ARTS, the atmospheric radiative transfer simulator—
Version 2.2, the planetary toolbox edition,” Geosci. Model Develop.,
vol. 11, no. 4, pp. 1537–1556, 2018.

[28] C. Mätzler and J. Morland, “Refined physical retrieval of integrated
water vapor and cloud liquid for microwave radiometer data,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1585–1594, Jun. 2009.

[29] J. Morland, “TROWARA-tropospheric water vapour radiometer:
Radiometer review and new calibration model,” Institut für Angew.
Physik, Universität Bern, Bern, Switzerland, IAP Res. Rep., 2002-15-
MW 2002.

[30] R. Peter and N. Kämpfer, “Radiometric determination of water vapor
and liquid water and its validation with other techniques,” J. Geophys.
Res., Atmos., vol. 97, no. D16, pp. 18173–18183, 1992.

[31] J. Morland, “TROWARA-Rain flag development and stability of instru-
ment and calibration,” Institut für Angew. Physik, Universität Bern,
Bern, Switzerland, IAP Res. Rep. 2007-13-MW, 2007.

[32] F. Navas-Guzmán, N. Kämpfer, and A. Haefele, “Validation of bright-
ness and physical temperature from two scanning microwave radiometers
in the 60 GHz O2 band using radiosonde measurements,” Atmos. Meas.
Techn., vol. 9, no. 9, pp. 4587–4600, 2016.

[33] Radiometer Physics GmbH. Accessed: Jul. 19, 2022. [Online]. Available:
http://www.radiometer-physics.de

[34] S. Kazama, T. Rose, R. Zimmermann, and R. Zimmermann, “A pre-
cision autocalibrating 7 channel radiometer for environmental research
applications,” J. Remote Sens. Soc. Jpn., vol. 19, no. 3, pp. 265–273,
1999.

[35] Y. Han and E. R. Westwater, “Analysis and improvement of tipping cal-
ibration for ground-based microwave radiometers,” IEEE Trans. Geosci.
Remote Sens., vol. 38, no. 3, pp. 1260–1276, May 2000.

[36] J. Hu et al., “Characterization of brightness temperature biases at
channels 13 and 14 for FY-3C MWHS-2,” IEEE Trans. Geosci. Remote
Sens., vol. 60, pp. 1–14, 2021.

[37] N. Zhang et al., “Forest height mapping using feature selection and
machine learning by integrating multi-source satellite data in Baoding
city, North China,” Remote Sens., vol. 14, no. 18, p. 4434, Sep. 2022.

[38] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

7.2 publication 96



WANG et al.: INDOOR MICROWAVE RADIOMETER FOR MEASUREMENT OF TROPOSPHERIC WATER 5301013

[39] Operation Principles and Software Description for Rpg Standard Single
Polarization Radiometers. Accessed: Jul. 19, 2022. [Online]. Available:
https://www.radiometer-physics.de/download/PDF/Radiometers/
HATPRO/

[40] K. Hocke, L. Bernet, W. Wang, C. Mätzler, M. Hervo, and A. Haefele,
“Integrated water vapor during rain and rain-free conditions above the
Swiss Plateau,” Climate, vol. 9, no. 7, p. 105, Jun. 2021.

[41] H. J. Liebe, M. C. Thompson, and T. A. Dillon, “Dispersion studies
of the 22 GHz water vapor line shape,” J. Quant. Spectrosc. Radiat.
Transf., vol. 9, no. 1, pp. 31–47, Jan. 1969.

[42] V. Meunier, U. Löhnert, P. Kollias, and S. Crewell, “Biases caused by
the instrument bandwidth and beam width on simulated brightness tem-
perature measurements from scanning microwave radiometers,” Atmos.
Meas. Techn., vol. 6, no. 5, pp. 1171–1187, May 2013.

[43] C. Straub, A. Murk, and N. Kämpfer, “MIAWARA-C, a new ground
based water vapor radiometer for measurement campaigns,” Atmos.
Meas. Techn., vol. 3, no. 5, pp. 1271–1285, Sep. 2010.

[44] M. Hervo, P. Bättig, and A. Haefele, “Evaluation of the new microwave
radiometer HATPRO-G5,” Eidgenössisches Departement des Innern
EDI, Bundesamt für Meteorologie und Klimatologie MeteoSchweiz,
Payerne, Switzerland, Res. Rep., 2021.

[45] U. Löhnert and S. Crewell, “Accuracy of cloud liquid water path from
ground-based microwave radiometry 1. Dependency on cloud model
statistics,” Radio Sci., vol. 38, no. 3, p. 8041, 2003.

[46] R. Beynon and K. Hocke, “Snow virga above the Swiss Plateau observed
by a micro rain radar,” Remote Sens., vol. 14, no. 4, p. 890, Feb. 2022.

Wenyue Wang received the M.Sc.(Eng.) degree in
cartography and geographical information engineer-
ing from the China University of Mining and Tech-
nology, Xuzhou, China, in 2019. She is currently
pursuing the Ph.D. degree in climate sciences with
the University of Bern, Bern, Switzerland.

Her research interests include microwave remote
sensing, atmospheric water detected from ground-
based microwave radiometer, estimation of rain rate,
and the study of rainfall precursors and nowcasting.

Axel Murk received the M.Sc. degree in physics
from the Technical University of Munich, Munich,
Germany, in 1995, and the Ph.D. degree in physics
from the University of Bern, Bern, Switzerland,
in 1999.

He is currently the Leader of the Microwave
Physics Division, Institute of Applied Physics, Uni-
versity of Bern. He has been involved in the
development and characterization of millimeter-
and submillimeter-wave instrumentation for different
ground-based and space-borne projects. His research

interests include digital real-time spectrometers and the radiometric calibration
of remote sensing instruments.

Eric Sauvageat received the M.S.(Eng.) degree
in energy management and sustainability from the
École Polytechnique Fédérale de Lausanne, Lau-
sanne, Switzerland, in 2018. He is currently pursuing
the Ph.D. degree in applied physics with the Univer-
sity of Bern, Bern, Switzerland.

His main research interests include microwave
remote sensing and data analysis of atmospheric pro-
cesses, with a focus on middle-atmospheric ozone.

Wenzhi Fan received the M.Sc.(Eng.) degree in
photogrammetry and remote sensing from the China
University of Mining and Technology, Xuzhou,
China, in 2019. He is currently pursuing the
Ph.D. degree in geophysics with Peking University,
Beijing, China.

His main research interests include research in
large-scale synthetic aperture radar (SAR) interfer-
ometry and applications to surface loading.

Christoph Dätwyler received the M.Sc. degree in
mathematics from the Eidgenössische Technische
Hochschule Zürich, Zürich, Switzerland, in 2014,
and the Ph.D. degree in climate sciences from the
University of Bern, Bern, Switzerland, in 2019.

His research interests include atmospheric physics.

Maxime Hervo currently works at the Fed-
eral Office of Meteorology and Climatology,
MeteoSwiss, Payerne, Switzerland. His research
interests include atmospheric physics.

Alexander Haefele received the M.S. and Ph.D.
degrees from the University of Bern, Bern,
Switzerland, in 2005 and 2009, respectively.

He currently works at the Federal Office of Mete-
orology and Climatology, MeteoSwiss, Payerne,
Switzerland.

Klemens Hocke received the Venia Legendi in
atmospheric physics from the University of Bern,
Bern, Switzerland, in 2011.

He is currently the Leader of the Atmospheric
Processes Group, Institute of Applied Physics, Uni-
versity of Bern. His research interests include atmo-
spheric dynamics, remote sensing, and data analysis
of atmospheric water and stratospheric ozone.

7.2 publication 97



8 AT M O S P H E R I C E F F E C T S A N D
P R E C U R S O R S O F R A I N FA L L

8.1 summary of the study

Numerical weather models offer rainfall forecasts by solving physical equa-
tions several days in advance, but often struggle with near-future predictions
due to insufficiently accurate information on the distribution of temperature
and humidity, or cloud status. Nowcasting bridges the gap in this time inter-
val limitation, typically spanning 0 to 6 hours, by utilizing available weather
parameters to extrapolate the evolution of the air mass. The MeteoSwiss em-
ploys a comprehensive approach to nowcasting, integrating weather radar,
satellite imagery, lightning detection, and model data. While weather radar
effectively detects precipitation particles (such as rain, snow, or hail), it lacks
the ability to directly observe water vapor, unlike microwave radiometers.
In less developed and remote areas without radar coverage, further analysis
of weather station network data for nowcasting may prove beneficial. More-
over, enhancing nowcasting accuracy requires a deep understanding of atmo-
spheric effects and the identification of rainfall precursors.

The article presented in this chapter derived the temporal evolution of eight
atmospheric parameters measured by the ground-based microwave radiome-
ter TROWARA and weather station during rain events using a SEA method.
I analyzed a total of 1199 rain events detected by TROWARA to identify the
favorable conditions that trigger rainfall over a 10-year period over the Swiss
Plateau and to examine their relationship with observed changes in water va-
por. My study revealed the typical behavior of rainfall and its inter-relations
with atmospheric parameters, while also delving into the rainfall precursors.

The following article was peer-reviewed and published in Remote Sensing in
June 2022.
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Abstract: In this study, we investigate the characteristics of atmospheric parameters before, during,
and after rain events in Bern, Switzerland. Ground-based microwave radiometer data of the TRO-
pospheric WAter RAdiometer (TROWARA) with a time resolution of 7 s, observations of a weather
station, and the composite analysis method are used to derive the temporal evolution of rain events
and to identify possible rainfall precursors during a 10-year period (1199 available rain events). A
rainfall climatology is developed using parameters integrated water vapor (IWV), integrated liquid
water (ILW), rain rate, infrared brightness temperature (TIR), temperature, pressure, relative humidity,
wind speed, and air density. It was found that the IWV is reduced by about 2.2 mm at the end of
rain compared to the beginning. IWV and TIR rapidly increase to a peak at the onset of the rainfall.
Precursors of rainfall are that the temperature reaches its maximum around 30 to 60 min before rain,
while the pressure and relative humidity are minimal. IWV fluctuates the most before rain (obtained
with a 10 min bandpass). In 60% of rain events, the air density decreases 2 to 6 h before the onset
of rain. The seasonality and the duration of rain events as well as the diurnal cycle of atmospheric
parameters are also considered. Thus, a prediction of rainfall is possible with a true detection rate
of 60% by using the air density as a precursor. Further improvements in the nowcasting of rainfall
are possible by using a combination of various atmospheric parameters which are monitored by a
weather station and a ground-based microwave radiometer.

Keywords: rainfall precursors; rainfall nowcasting; ground-based microwave radiometer; weather
station; precipitation; atmospheric parameters; composite analysis

1. Introduction

Continuous and heavy rainfall in Switzerland often triggers floods [1,2]. The Swiss
Plateau is the most densely populated place with frequent floods not only causing huge
economic losses but even endangering the safety of human life [3,4]. For example, flood
events in August 2005, October 2011, July 2014, June 2015, June 2018, and July 2021 occurred
on the Swiss Plateau, where villages and several major cities were severely affected. Due
to the geographical location of the Swiss Plateau between the Jura Mountains and the
Swiss Alps, rainfall is inherently complex [5,6]. Furthermore, local-scale detection of
heavy rainfall trends may be masked or amplified by natural variability [7], and numerical
weather prediction (NWP) models have difficulty in predicting them accurately [8]. A
complete and organized description of the occurrence and development of rainfall on the
Swiss Plateau, understanding of its effects with the evolution of atmospheric parameters,
and seeking atmospheric precursors of rainfall for the nowcasting or prediction therefore
become an urgent need.

Rainfall can be acquired by different techniques. Rain gauges and Doppler weather
radars both collect rainfall data in minutes, but the former may be degraded by wind
effects and the latter has a high operating cost. Satellite microwave radiometers have
low temporal sampling at a certain place and are limited in the inversion of rainfall over
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land [9]. To overcome these drawbacks, the ground-based microwave radiometer is now ex-
tensively being used for rainfall retrieval, nowcasting convective activity, and meteorological
analysis [10–13]. The TROpospheric WAter RAdiometer (TROWARA), as a ground-based
microwave radiometer, can reliably retrieve rain rate, IWV, and ILW values since 2004 in
Bern [14]. The enhanced microwave emission from rain droplets due to the Mie effect leads to
a rapid rise in the ILW when rain starts [15]. TROWARA rainfall retrieval takes advantage
of this physical property and uses the ILW acquired by the TROWARA radiometer as an
indicator to determine the onset of rain (ILW > 0.4 mm) [16]. Accurately identifying the
onset of rain is important for the nowcasting of rainfall, which can clearly distinguish be-
tween the variables needed to cause rainfall and their subsequent behavior [17]. Furthermore,
TROWARA’s data products are available nearly continuously and in all weather with a high
time resolution of 7 s [18]. Because of the intermittent nature and spatial complexity of rainfall,
high-temporal-resolution observations are necessary to accurately capture rainfall [19]. High
time resolution can also offer details of the microphysical, dynamic, and thermodynamic
characteristics of mesoscale rainfall phenomena [20].

The convection and transportation of water vapor are closely linked to rainfall [21].
Van Baelen et al. [22] found that water vapor plays an essential role in studying the life
cycle of rainfall and inducing convection. Rainfall and humidity are positively related,
and tracking water vapor advection and understanding the shallow-to-deep transition
of convection on the mesoscale can be enabled by integrated water vapor (IWV) [23,24].
Convergence of water vapor, anomalies in IWV, and increased tropospheric instability
before the onset of heavy rain are employed as nowcasting tools [13,25]. The warm conveyor
belt consists of coherent ascending airstreams along the cold front originated in extratropical
cyclones’ warm sector, delivering a steady stream of water vapor [26]. Heavy rainfall
events on the Swiss Plateau are typically associated with warm conveyor belts and water
vapor convectively enhanced lifting [21,27]. Analyses of changes in water vapor and the
relationship with rainfall are thus necessary.

Composite analysis is an excellent method to explore observations and to learn about
the temporal evolution of rainfall and atmospheric parameters. Adams et al. [28] conducted
the composite analysis of 320 convective rain events using 3.5 years of tropical GNSS-IWV.
The shallow-to-deep transition of mesoscale convection can be determined by a water vapor
convergence timescale. Zhang et al. [29] investigated 10 rain events with the composite
analysis using ground-based microwave radiometer and micro rain radar measurements
in central China. They found IWV increases by 5 mm before monsoon light rain events.
Sapucci et al. [30] studied the composite average of GNSS-IWV of 1 h before and after
18 heavy rain events. IWV increases sharply before heavy rain events, and there are
oscillations in the IWV time series. The composite analysis method is also commonly
applied to develop the precursors. Allan et al. [31] demonstrated atmospheric precursors of
25 heaviest rainfall events and 200 most intense 3-hourly events on regional scales through
the composite analysis of rain gauge records and ERA-Interim reanalysis data over the
United Kingdom. However, most related studies analyzed only a limited number of rain
events or lacked long-term observations. This is likely to have a weak robustness [32], and
composite results may rely on individual rain events and are not representative [33].

Air density is an important atmospheric parameter that interacts with and predicts
rainfall. When rainfall increases, the air density also increases [34], and the falling velocity
of raindrops is affected by the air density [35]. The air density is used as an input for
many rainfall prediction models [36–38]. For example, a computer-aided rule-based rainfall
prediction model is proposed by Ji et al. [39], and they found that the air density occurs at
the highest level of this rule, which means the air density is most important for predicting
hourly rainfall intensity.

Knowledge about atmospheric effects and precursors of rainfall contributes to a
better nowcasting. Nowcasting is the use of weather parameters already obtained by
technologies to extrapolate the likely future 0 to 6 h temporal evolution of the air mass.
Numerical weather models such as NWP can provide rainfall forecasts by solving physical
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equations a few days earlier. However, because the models do not have sufficiently
accurate temperature and humidity distribution or cloud state information at startup,
they tend to provide poor predictions in the short term. Nowcasting fills the limitations
for this important time interval and is typically applied to weather on the local scale
and mesoscale. Advances in communication technology, weather observations, and data
assimilation/numerical modeling and their combined synergy can offer better possibilities
for nowcasting, and the climate change adaptation requires progress in nowcasting [40]. The
Federal Office of Meteorology and Climatology (MeteoSwiss) of Switzerland uses weather
radar combined with satellite, lightning measurements, and model data for nowcasting.
However, the weather radars miss predictions because they can only locate precipitation
particles (rain, snow, or hail) and cannot observe water vapor as microwave radiometers
do. In the case of high-altitude and low-temperature mountainous areas, a large amount of
water vapor moves there, forming heavy rainfall rapidly, which may trigger flash floods.
In addition, due to the lack of radar systems for nowcasting in less developed and remote
areas, further analysis of data from the network of weather stations can be useful.

In this study, we investigate the potential of eight atmospheric parameters from a
ground-based microwave radiometer and a weather station for the nowcasting of rainfall.
We use 1199 rain events provided by TROWARA on the Swiss Plateau to identify conditions
favorable for the triggering rainfall over 10 years and to analyze how they are related to
observed changes in water vapor. The composite analysis is carried out in a long time
interval of 8 h before and 16 h after rain, with the onset of rain serving as the time marker
for this method. The aim of our study is to show the typical behavior of rainfall, to reveal
the interaction of rainfall with atmospheric parameters, and to explore the precursors
of rainfall. Section 2 outlines the derivation of the atmospheric parameters, the study
area, data, and methodology. Section 3 presents the temporal evolution of atmospheric
parameters, provides the analysis results, as well as analyzes rainfall mechanisms, the
ILW threshold, and diurnal cycles. Section 4 discusses multiple parameters and studies by
others. Conclusions are given in Section 5.

2. Study Area, Derivation, Data, and Methodology
2.1. Study Area

The Swiss Plateau lies north of the Alps and extends west–east from Lake Geneva on
the French border to Lake Constance on the German–Austrian border. To the northwest of
the plateau are the Jura Mountains. The entire plateau is covered with rolling hills, lakes,
and rivers, with an average elevation of 580 m. The Swiss Plateau covers about one-third
of Switzerland, but two-thirds of the population lives there. According to the Köppen
climate classification, the Swiss Plateau is in the transition zone between a marine climate
(Cfb) and a continental climate (Dfb). The weather is changeable and often overcast. It is
cool in summer due to the cover of clouds, while the climate is relatively milder in winter.
Freezing weather usually occurs from December to early March. The annual precipitation
in Switzerland is between 1000–2000 mm, and the average annual precipitation in three-
quarters of the region exceeds 1000 mm, and its precipitation is also greatly affected by
the terrain.

TROWARA is operated in a room on the roof of the Exakte Wissenschaften (ExWi)
(46.95°N, 7.44°E, 575 m a.s.l.) of the University of Bern. Bern is located on the Swiss Plateau.
The mean annual precipitation sum and temperature in Bern are about 1059 mm and 8.8 °C,
respectively [41]. Brandsma and Buishand [42] worked out that this area in summer is
dominated by pre-frontal or post-frontal showers or thunderstorms, and rainfall totals are
maximal during summer. The mean rain-day rainfall is about 10 mm from June to August.
In winter, it is mainly frontal rainfall because of uphill or leeward effects and is an obvious
dry season, nearly 6 mm rain per day.
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2.2. Derivation

TROWARA’s antenna receives the atmospheric radiation signal through the mi-
crowave transparent window in a temperature control room at an elevation angle of 40°
pointing to the southeast. The indoor operation avoids a water film caused by raindrops
falling on the antenna. TROWARA retrieves integrated water vapor (IWV) and integrated
liquid water (ILW) of cloud droplets during no rain (ILW ≤ 0.4 mm) and retrieves the
rain rate during rain (ILW > 0.4 mm). Mätzler and Morland [43] and Wang et al. [16]
described the TROWARA measurement principles and retrieval methods in detail, which
are briefly described in the following. The radiative transfer equation of the non-scattering
atmosphere is

TB,i = TC · e−τi/µ + Tmean,i · (1− e−τi/µ) (1)

where i is the frequency of the microwave channel (21 or 31 GHz). τi is the zenith opacity. µ
is the cosine of the zenith angle θ. TB,i is the brightness temperature observed by TROWARA.
TC is the brightness temperature of the cosmic background. Tmean,i is the effective mean
temperature calculated by linear combinations of the surface air temperature, pressure, and
relative humidity [43].

Equation (1) can be deduced to the zenith opacity as

τi = −µ · ln
(

Tmean,i − TB,i

Tmean,i − TC

)
(2)

The zenith opacity derived from TROWARA can be expressed as a function of IWV,
ILW, and integrated rain liquid (IRL). The contributions of ice and dry snow are neglected
because of their small dielectric loss.

τi = (ai + bi · IWV + ci · ILW) + ci · GM,i · IRL (3)

where the coefficients ai and bi rely on the air pressure, and they can be obtained statistically
by the coincident measurement of radiosondes and fine-tuned at clear sky [43]. The
coefficient ci is the Rayleigh mass absorption coefficient of cloud water and depends on
temperature (and frequency) rather than pressure. It is derived from the dielectric model of
water [44]. GM,i is the Mie gain of raindrops, up to 10 at 21 GHz and 7 at 31 GHz. When
there is no rain, i.e., GM,i = 0, IWV and ILW are calculated from the opacity measurement
values of 21 and 31 GHz channels in Equation (3), whereas IRL can be obtained when there
is rain. IWV during the rain period is filled by the IWV calculated by linear interpolation
of opacity before and after the rain [19]. The IRL provides the rain rate using a physical
retrieval method [16].

Air density (kg/m3) depends on temperature, pressure, and water vapor content
in the air [45]. The water vapor pressure pw is calculated by the saturation water vapor
pressure psw and the relative humidity RH [46]:

ln psw =
6

∑
i=0

giTi−2 + g7 ln T (4)

pw = RH · psw (5)

where the coefficients gi = [−0.29912729 × 104,−0.60170128 × 104, 0.1887643854 × 102,
−0.28354721× 10−1, 0.17838301× 10−4,−0.84150417× 10−9, 0.44412543× 10−12, 0.2858487
×101], i = 0, 1, 2, . . . , 7. T is the air temperature. The units of psw and T are Pa and K,
respectively. The air density ρ is related to pw [45] by
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q =
0.622 · pw

P− 0.378 · pw
(6)

TV = T · (1 + 0.61q) (7)

ρ =
P

R · TV
(8)

where q is the specific humidity and TV is the virtual temperature. P is the air pressure
and R = 287.047 (J/K·kg) is the specific gas constant of dry air. Here, we only consider the
atmospheric parameters which are monitored by a Vaisala weather station at ground with
a time resolution of 10 min.

2.3. Data and Methodology

To investigate the evolution of rainfall characteristics over time, the present study uses
eight atmospheric parameters and rain rate to develop rainfall “climatology”. The eight
atmospheric parameters are IWV, ILW, TIR, temperature, pressure, relative humidity, wind
speed, and air density. TROWARA, as a dual-channel microwave radiometer (21.4 and
31.5 GHz), retrieves IWV, ILW, and rain rate with a time resolution of 7 s. It also has a
9.5–11.5 µm infrared radiometer channel to measure sky temperature. A standard weather
station (ExWi weather station) similar to TROWARA on the roof of the ExWi building of the
University of Bern acquires surface meteorological data with a time resolution of 10 min.

The composite analysis method (superposed epoch method) consists of two indepen-
dent datasets. The first is discrete events in time, such as rain events. The second is the long,
continuous, uniformly sampled time series, such as observations of atmospheric parame-
ters [33]. The method assumes that these events lead to the characteristics of the continuous
time series, and intercepts time series before, during, and after the event through time
windows to construct a two-dimensional matrix. One row of the matrix represents a data
segment for a single event. The number of rows is the sample size of these events (e.g.,
1199 rain events). The columns are the epoch time. The number of columns depends on
the time resolution of the data. The arithmetic mean values of these columns yield the
composite of all events. The fundamental characteristic is to highlight the influence of
parameters at the critical moment while weakening the influence from other phenomena
and atmospheric noise [47]. It allows any fluctuations in the key time column to remain in
the average value, and the time fluctuations of the row-by-row movement are averaged
out [48]. To form the composite of rain events, the criteria are the following:

• The timing mark of a rain event is set as 0 epoch time (onset time of rainfall). The
occurrence/duration time of rainfall is set as t; 1 h before rainfall is set as −1, 1 h
during rainfall is set as +1, and 1 h after rainfall is set as t + 1.

• ILW = 0.4 mm is to identify the beginning and end time of rainfall [15,43,49].
• If no rainfall occurs during 8 h before the time 0 and during 16 h after the time t, then

this rain event is selected.

From 1 January 2011 to 31 December 2020, all compliant rainfall events detected by
TROWARA in Bern are considered. The number of rain events is denoted by N. There are,
in total, 1199 rain events, including N = 345 in summer (June, July, August), N = 273 in
winter (December, January, February), N = 428 long-duration rainfall (t > 16 h), and N = 497
short-duration rainfall (t < 8 h). The 8 h before rain is used because water vapor convection
can be observed on this time scale [28]. The use of 16 h during and after rain is to observe
the effect of rain on atmospheric parameters for as long as possible while maintaining a
certain amount of available rain events.

To investigate 10 min fluctuations of IWV, its time series are filtered by a digital non-
recursive, finite-impulse response (FIR), and fast-response bandpass filter. More details
about the selected bandpass filter are given by Studer et al. [50].
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3. Results
3.1. Atmospheric Effects of Rainfall

Figure 1a,b show the composites of IWV and ILW of all 1199 rain events before and
after rain in Bern. Note that IWV during the rainfall is skipped since TROWARA cannot
acquire IWV and ILW (of cloud droplets) during rain. The time before and after rain is
expressed as a negative number and t + number, respectively. During the 6 to 8 h before
rain, a slow increase is observed, and the mean IWV is around 17 mm. During the 0 to 6 h
before rain, a rapid increase is observed, and IWV reaches the maximum value of 20.6 mm
from 17 mm; it especially increases sharply by 0.6 mm within 5 min before the onset of rain.
Convective processes likely play a greater role in the increase of IWV before rain. At low
pressure or along the front, with the upward movement of water vapor, its convergence in
highly hygroscopic condensation nuclei leads to an increase in IWV [51,52]. IWV at the end
of rain is about 2.2 mm lower than at the beginning. The IWV decrease could be due to
the direct removal of atmospheric water vapor by rainfall or to horizontal transport effects
of water vapor. After rain, IWV decreases and remains at a stable level of 16 mm during
the 4 to 16 h. ILW variations slightly vary from that of IWV. The ILW threshold for rainfall
is approximately 0.4 mm [15,49]. During the 1 to 8 h before and after rain, ILW levels off
about 0.03 mm but increases to 0.4 mm dramatically when rain starts. This is due to the
opacity gain when the droplet diameter increases. During the 8 to 16 h after rain, ILW
increases to about 0.1 mm and fluctuates. This might be due to cloud (fog) formation as a
consequence of re-evaporation of surface water after rainfall.

Figure 1. Composites of (a) integrated water vapor (IWV, green solid line) and (b) integrated liquid
water (ILW, green dashed line) 8 h before and 16 h after rain, (c) the IWV composites in summer
(N = 345) and winter (N = 273), as well as (d) the IWV composites for long (N = 428)- and short
(N = 497)-duration rain events. The subplot is from 5 min before rain to 5 min after rain. IWV and
ILW acquired by the TROpospheric WAter RAdiometer (TROWARA) in Bern. The shaded area shows
the standard deviation of the mean (error of the mean σ/

√
n). Time t is the duration of rainfall. Short

horizontal lines mark the beginning and end of rainfall.
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Figure 1c,d show the composites of IWV for summer and winter as well as for short-
and long-duration rain events. IWV in summer is more than twice that in winter and shows
a larger peak. During the 8 h before rain, IWV in summer reaches a maximum value of
28.8 mm from 24.5 mm, and in winter it rises to 13.4 mm from 9.9 mm. IWV in summer
at the end of rain is about 2.7 mm lower than at the beginning, and in winter it is 2.1 mm.
As shown in Figure 1d, different duration of rainfall have different effects on IWV. The
longer the rainfall, the greater the reduction in IWV from the beginning to the end of rain.
The horizontal advection of water vapor plays a crucial role in cumulative rainfall. After
long-duration rainfall (t > 16 h), IWV decreases by 4.4 mm, but the average cumulative
rainfall of longer duration events is much larger than this value, about 11.8 mm. This may
be due to the convergence of a small area of precipitation from the horizontal advection of
a larger area of moist air. Statistics show that about 65% of all 1199 rain events have more
cumulative rainfall than the difference of IWV acquired by the microwave radiometer from
the onset to the end of rain. This finding may provide an indication of rainfall intensity
in rainfall predictions. The impact of short-duration rainfall on IWV changes is limited.
After short-duration rainfall (t < 8 h), IWV decreases by only 0.5 mm. IWV values of
long-duration rainfall and short-duration rainfall 8 h before rain are close: both are around
17 mm. However, the IWV for long-duration rainfall reaches a peak of 22.3 mm at the
beginning of rain, whereas for the short-duration rainfall, it is only 19.6 mm.

Figure 2a shows the composites of IWV, TIR, and rain rate of all 1199 rain events
before and during rain. Note that IWV during rain is not acquired but is interpolated from
TROWARA’s opacity measurements before and after rain [19]. The time before and during
rain is expressed as a negative and positive number, respectively. Rain starts when time is
0, and the rain rate gradually decreases over time. From 0 to 8 h before rain, IWV is the
same as in Figure 1, with an increase of 3.6 mm. It can be clearly seen that IWV reaches its
peak when rain starts, and then it shows a slow downward trend. TIR also reaches a peak at
the beginning of rain. The reason IWV and rain rate vary with TIR is that the water-holding
capacity of the atmosphere increases with temperature, i.e., the warmer the air, the more
water it can hold. At a given temperature, air reaches its maximum water-holding capacity
(also known as the dew point) and becomes saturated. When the atmospheric temperature
drops below the dew point and above 0°, the water vapor in the air condenses on the
dust to form rain. As raindrops fall, they make the atmosphere cooler by evaporation.
Figure 2b,c show the composites of IWV, TIR, and rain rate for summer and winter as well
as for short- and long-duration rain events. These three parameters in summer are higher
than in winter, and the TIR peak in summer is stronger and steeper than in winter. As
shown in Figure 2c, after the onset of rain, the slope of IWV, TIR, and rain rate are similar.
For long-duration rainfall, the rain rate continues to be high and maintains an average of
about 0.75 mm/h. IWV stays at about 22 mm for 6 h, and then drops slightly to 20.4 mm.
TIR remains at around 273 K. For short-duration rainfall, the rain rate gradually decreases
to 0 from time 0 to +8. IWV and TIR decrease for 8 h and continue to fall to about 16.4 mm
and 250 K after 8 h, respectively.
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Figure 2. Composites of (a) IWV (green solid line), TIR (red solid line), rain rate (blue area) 8 h before
and 16 h during rain, considering the rain events (b) in summer and winter, as well as (c) with long
and short duration.

3.2. Precursors of Rainfall

Figure 3a shows the composites of temperature, pressure, relative humidity, and wind
speed before and during rain. Before rain starts, the temperature rises steadily and reaches
its maximum of about 12.8 °C at 30 to 60 min before rain onset. The main reason for this
increase in temperature may be that (1) thicker clouds make ground radiation blocked
between the clouds and the ground, or (2) the increase of atmospheric water vapor affects
the surface and atmospheric longwave radiation, and its absorption of solar radiation
causes the surface temperature to increase [53]. On the other hand, at 30 to 60 min before
rain onset, the pressure and relative humidity reach their minima of 947.6 hPa and 68.2%,
respectively. The low density of moist air is the reason for the low pressure. The higher
surface temperature before rain determines the low relative humidity. After rain starts,
the temperature drops rapidly for 2 h, and then falls slowly until it remains stable. The
pressure rises slowly, while the relative humidity rises rapidly for 2 h and drops slightly
after reaching a maximum. These changes are because droplets begin to evaporate on the
surface and energy is absorbed in the form of heat (latent heat). The wind speed increases
rapidly before rain and reaches its maximum at the rain onset or a bit later. The main
reason for this increase in wind may be that (1) at the front, one air mass is lifted above
another, creating a low-pressure zone. The wind blows towards the low-pressure zone.
The greater the temperature difference between the two air masses, the stronger the wind.
(2) The falling rain creates downdrafts that spread air to the ground, creating gust fronts.
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Figure 3. Composites of (a) temperature (red solid line), pressure (green solid line), relative humidity
(blue solid line), and wind speed (black solid line) 8 h before and 16 h during rain, considering the
rain events (b) in summer and winter, as well as (c) with long and short duration. Subplot (a) is from
60 min before rain to the onset of rain.

Figure 3b,c show the composites of temperature, pressure, relative humidity, and wind
speed for summer and winter as well as for short- and long-duration rain events. The
temperature and pressure in summer are higher than those in winter, whereas the relative
humidity in summer is lower and shows a larger variation than in winter. In winter, the
temperature variation caused by rainfall is very small, only rising by nearly 1 °C, but the
pressure variation is relatively large. The wind speed in winter remains fluctuating at
1.3 m/s after rain starts. As shown in Figure 3c, long-duration rainfall has more obvious
effects on temperature, pressure, relative humidity, and wind speed. Compared with
short-duration rainfall, these four parameters show a larger variety and reach higher or
lower extreme values before rain onset.

Fluctuations in the IWV field are closely related to the approaching frontal rainfall [54].
Figure 4a shows an individual example for the magnitude of the 10 min IWV fluctuations.
To compare the difference before and after rain, the time is unified as 16 h. This rain event
happened in Bern from 02:11 UT to 07:05 UT on 8 January 2011, and it is marked by the
vertical blue line. The time series was obtained with a 10 min bandpass filter, and the
amplitude (or magnitude) was computed as a function of time [50]. It is evident that the
IWV fluctuation before rain is stronger than after rain. The maximum fluctuation is 2 to 4 h
before rain and reaches a peak of 0.15 mm. During the 4 to 13 h before rain, the fluctuation
remains at 0.05 to 0.1 mm. During the 13 to 16 h before rain and the 1 to 14 h after rain, it
is relatively stable, with a mean value of about 0.025 mm. Figure 4b shows the composite
of the IWV fluctuation amplitude 16 h before and during rain. IWV fluctuates the most
around the time when rain starts, up to 0.085 mm. Ten hours before rain, the fluctuation
increases from about 0.025 mm to 0.04 mm.
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Figure 4. (a) IWV fluctuation series 16 h before and after a rain event between 02:11 UT and 07:05
UT on 8 January 2011 (red). The blue vertical line represent the occurrence/duration time of rain.
(b) Composite of IWV fluctuation series of 759 rain events 16 h before and during rain (green).

Figure 5 shows the composite of air density 16 h before and during rain. The air
density also reaches its minimum during the 30 to 60 min before rain. Calculating the slope
in a time window is used to analyze the time derivative of the air density before rain. It was
found that in about 60% of 784 rain events (467÷784 = 59.57%), the air density decreases
2 to 6 h before rain from 1.15412 kg/m3 to 1.15034 kg/m3. This decrease in air density
may be due to two reasons: first, extratropical cyclones cause changes in air density. Before
the cold front rain passes through Bern, there is a warm front rain. Because the cold front
moves faster than the warm front, the cold air mass behind the cold front moves over time
into the area occupied by the warm air mass behind the warm front. The warm air has a
lower density, and the cold and cool air has a higher density. The warm air mass ahead
reduces the air density, and then the cold air mass replaces the warm air mass to increase
the air density. Second, the density of moist air is lower than that of dry air, as was first
proposed by Newton [55]. The molecular weight of water molecules is 18, which is lighter
than both nitrogen and oxygen. Water vapor, instead of nitrogen and oxygen, will reduce
the mass of air per cubic meter and reduce air density [56]. Before rain starts, water vapor
is abundant and the air density decreases accordingly. We have the impression that air
density is the best precursor because it changes earlier than the other parameters before the
rain onset.

Figure 5. Composite of air density 16 h before and during rain. Red dots represent the 6 h, 2 h before
rain, and the onset of the rain. The subplot is from 60 min before rain to the onset of rain. A total of
784 rain events is shown.
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Figure 6 shows an example of a rain event that started at 03:14:03 UT on 2 January
2016. There is no rainfall within 8 h before the rain starts. The ILW increases rapidly, and
the precipitation measured by rain gauge indicates the onset of rain when the ILW exceeds
0.4 mm in Figure 6a. As shown in Figure 6, before the onset of light rain, the IWV and
temperature increase, while the pressure, relative humidity, and air density decrease. When
the moderate rain starts, all these atmosphere parameters reach their extreme point. The
changes in the atmosphere parameters exhibited by this example are consistent with the
results of this study.

Figure 6. Time series of TROWARA and meteorological data from 1 January at 12:00 UT to 2 January
at 24:00 UT, 2016. (a) Time series of IWV (green solid line) and ILW (red area) provided by TROWARA,
and the precipitation (black area) observed by the rain gauge at the ExWi weather station. The two
purple vertical lines represent the onset of light rain and moderate rain, respectively. The purple
horizontal line is ILW = 0.4 mm. (b) Time series of surface pressure (green solid line) and wind speed
(black solid line) observed by the ExWi weather station. (c) Time series of surface temperature (red
solid line) and relative humidity (blue dashed line) observed by the ExWi weather station, as well as
air density (black solid line).

3.3. ILW Threshold and Diurnal Variations

Since the IWV and ILW retrieved by TROWARA coincide in space and time, the ILW
threshold is undoubtedly a good choice for identifying whether there is rain [19]. Further-
more, the physical retrieval algorithm used in this study estimates rainfall from below
the melting layer, avoiding the detection of rain events that are raindrops in clouds [16].
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Figure 7a shows the time series of IWV, ILW, and the rain gauge precipitation for an inter-
esting time interval of different weather situations in January 2016. The ILW is at a high
value when the rain gauge detects rain. The reason is that convergence and condensation
of water vapor cause the droplet size (diameter) to increase rapidly to above 0.3 mm,
resulting in a very strong rise in the ILW value. The ILW threshold is usually between
0.1 and 0.6 mm, but even an inaccurate threshold is sufficient to identify the rain period
as shown in Figure 7a. Mätzler [57] found that the ILW values of non-rain clouds do not
exceed 0.4 mm. Raindrops are likely to appear when the ILW value exceeds 0.4 mm [43,49],
so TROWARA uses ILW = 0.4 mm as the threshold of rainfall in the present study. This
threshold was also selected by Cossu et al. [15] for summer 2012. They analyzed that
non-precipitating clouds are typically associated with ILW values between 0.01 and 0.4 mm.
According to Cossu et al. [15], clear sky occurs if ILW is smaller than 0.01 mm, and rain
occurs if ILW is greater equal 0.4 mm. Furthermore, there is a certain difference between the
ILW threshold and the rain gauge in determining the start and end time of a rain event. For
example, for a rain event from 8–9 January in Figure 7a, the rainfall start time to end time
recorded by TROWARA and rain gauge are 10:22:35 UT on 8 January to 13:51:18 UT on
9 January and 12:20:00 UT on 8 January to 11:10:00 UT on 9 January, respectively. This time
difference between TROWARA and the rain gauge might be due to the higher sensitivity of
TROWARA for light rain or due to spatial variations of the rain area since the sounding
volume of TROWARA is not at the place of the rain gauge (horizontal distance is about
100–500 m). TROWARA detects rain occasionally, but the rain gauge does not, such as on
24 January. It may be because of the virga that the rain evaporates or sublimates before it
reaches the ground. There are also cases where only the rain gauge shows rain.

Diurnal variations of atmospheric parameters do not cause the main effect and domi-
nation during the rain period. Figure 8a shows the diurnal variation of IWV during the
long clear sky period from 25–28 January. Hocke et al. [58] described that the diurnal
cycle of IWV over Bern ranges from 0.5 mm below the daily average in the morning to
0.5 mm above the daily average in the evening. Because this change is less than 5%, it
can be assumed that the diurnal cycle of IWV has no direct effect on its changes during
the rain period. For example, there are two light rain events lasting 1 to 2 min at 22:58:01
UT on 2 January and at 5:07:11 UT on 3 January, and a rain event lasting three days from
5:20:07 UT on 10 January to 22:55:19 UT on 12 January. During these rain events, the
changes in IWV are consistent with the description in the previous subsection. As shown
in Figure 8b,c, the wind speed and pressure have no obvious diurnal cycle during the clear
sky period (with ILW = 0 mm), but temperature, relative humidity, and air density do. The
temperature is highest around 14 UT, while the relative humidity and air density are lowest.
The strong diurnal cycle of temperature during the clear sky period might be due to the
absence of cloud droplets and to the diurnal variation of the greenhouse gas water vapor.
Because only 22.6% of all 1199 rain events in this study occur in the afternoon from 14 to
17 UT, it can be assumed that the diurnal cycle of these parameters has no strong effect on
them as precursors of rainfall.
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Figure 7. Time series of TROWARA and meteorological data from 1–31 January 2016. (a) Time series
of IWV (green solid line), ILW (red area), and the precipitation (black area). The purple horizontal line
is ILW = 0.4 mm. The subplot is from 21:00 UT on 2 January to 6:00 UT on 3 January. (b) Time series
of surface pressure (green solid line) and wind speed (black solid line). (c) Time series of surface
temperature (red solid line), relative humidity (blue dashed line), and air density (black solid line).
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Figure 8. Time series of TROWARA and meteorological data from 24–29 January 2016. Between the
two purple vertical lines is a long clear sky period that lasts from 25–28 January. (a) Time series of
IWV (green line) and ILW (red area).The purple horizontal line is ILW = 0.4 mm. (b) Time series of
surface pressure (green line) and wind speed (black line). (c) Time series of surface temperature (red
line), relative humidity (blue dotted line), and air density (black line).

4. Discussion

Using only rainfall precursors obtained by a single parameter will limit the accuracy
of rainfall prediction. The performance of rainfall prediction is typically evaluated with a
true detection rate and a false alarm rate [29,59]. The true detection rate is the proportion
of rain events detected during rain, and the false alarm rate is the proportion of rain events
detected during no rain. For example, counting all 1199 rain events yields the result that
the air density was significantly reduced in 60% of the cases 2 to 6 h before rain. This is
the true detection rate using air density for predicting rainfall. However, because of the
diurnal cycle of air density during the clear sky period or other weather, false alarms are
inevitable. Therefore, considering all parameters provided by the weather station and the
radiometer would lead to a higher potential for high-precision rainfall nowcasting. This is
important for various meteorological and hydrological applications. During no rain, the
surface temperature, relative humidity, and air density provided by the weather station
have the diurnal cycle, whereas the surface pressure and wind speed have no diurnal cycle.
If these weather station parameters are used together for rainfall nowcasting, the diurnal
cycle problem may be avoided. IWV and ILW are directly related to rainfall processes. If
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these microwave radiometer parameters are added for rainfall nowcasting, the influence of
other weather may be excluded.

To the best of our knowledge, no studies in the literature have performed joint analysis
of IWV and other meteorological observations in the Swiss Plateau similar to our study,
which can achieve improvements to current nowcasting systems [25]. Manandhar et al. [60]
proposed a simple algorithm for nowcasting of rainfall by using the composite analysis
of observed changes in GNSS-IWV and its second derivative in the tropical region. The
true detection rate is 87.7%, and the false alarm rate is 38.6%. However, the formation of
rainfall in the tropics is simpler. It often rains in the afternoon after water vapor convection
due to the sun exposure. In addition, their study only can predict rainfall events 5 min
into the future. Manandhar et al. [59] applied GNSS-IWV and meteorological parameters
to a data-driven method for the rainfall prediction. The false alarm rate is significantly
reduced (20.3%), but they only identified characteristics of several atmospheric parameters
(temperature, relative humidity, dew point, and solar radiation). For complex atmospheric
states, the detailed studies of multiple atmospheric parameters inevitably enhance the
predictability of rainfall [61].

5. Conclusions

The ground-based microwave radiometer TROWARA, given its high temporal res-
olution, is very sensitive to rain intervals. Combined with data from a weather station,
we were able to derive the mean temporal evolution of eight atmospheric parameters
before, during, and after rainfall from 2011 to 2020 over the Swiss Plateau. This study helps
to further understand the atmospheric effects of rainfall and to achieve progress in the
nowcasting of rainfall by means of a microwave radiometer and a weather station. Our
study quantitatively describes the average behavior of 1199 rain events in the changes of
integrated water vapor (IWV), integrated liquid water (ILW), rain rate, infrared brightness
temperature (TIR), temperature, pressure, relative humidity, wind speed, and air density.
These parameters show noticeable variation under the influence of rainfall. For example,
at the onset of the rain, IWV reaches a peak, and ILW rises rapidly in a short time. IWV
at the end of rain is lower than at the beginning. Interestingly, IWV, TIR, and wind speed
show a sharp increase of around 3.6 mm, 25 K, and 0.27 m/s before rain. Temperature,
pressure, relative humidity, and air density reach their extrema 30 to 60 min before rain.
The IWV fluctuation amplitude increases slightly before rain. Air density decreases 2 to 6 h
before the onset of rain. The air density seems to be the best precursor for the prediction of
rainfall. We obtained a true detection rate of 60% for the nowcasting of rainfall 2 to 6 h in
advance by using our time series of air density.

Further improvement of the nowcasting of rainfall might be possible if we consider
a combination of different atmospheric parameters as precursors. Consideration of the
influence of the seasons on rainfall might be also helpful, such as convection in summer.
In terms of application, the results of this study can be used as an input factor for model
training, which is of great help in building a rainfall nowcasting model with high accuracy
and applicability. They can also be ingested into an expert system to provide forecasters
with better forecasts.
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I N T E R - R E L AT I O N S O F
P R E C I P I TAT I O N , A E R O S O L S ,
A N D C L O U D S O V E R S O U T H E R N
S PA I N

9.1 summary of the study

Atmospheric aerosols serve as cloud condensation nuclei, affecting cloud
cover and droplet size, which can intensify heavy rainfall and hinder weak
precipitation such as drizzle (Alizadeh-Choobari and Gharaylou, 2017; Sarangi
et al., 2017). Precipitation, in turn, affects aerosol concentration and size dis-
tribution through wet removal effects (Chang et al., 2016). Andalusia, located
in southern Spain, has a Mediterranean climate characterized by hot, dry
summers and warm, humid winters. The region suffers from intricate pre-
cipitation patterns due to Saharan dust intrusion and man-made pollution.
However, studying the interrelationships of multiple factors, such as aerosols,
clouds, and meteorological variables, with precipitation systems is challeng-
ing due to their complexity and high variability. This underscores the need
for remote sensing and in-situ multi-instrument observations.

AGORA in Granada is a unique ACTRIS facility that includes state-of-the-art
active and passive remote sensing and in-situ instruments for monitoring
aerosols, clouds, and precipitation. The article presented in this chapter in-
vestigated the inter-relations of precipitation on the evolution of multiple
atmospheric parameters using ground-based microwave radiometer HATPRO,
ceilometer, cloud radar, nephelometer, and weather station. The HATPRO iden-
tified 684 available rain events over a 10-year period based on the physical
retrieval method (Wang et al., 2021), and a SEA method was applied to de-
velop a precipitation climatology. My study sheds light on the formation
and evolution of clouds and precipitation in Andalusia by examining cloud
heights. I analyzed changes in aerosol scattering and particle size before, dur-
ing, and after rain to understand the mechanism of aerosol removal and its
interaction with water droplets. Meteorological conditions conducive to the
formation of virga were also observed.

This research is based on my two-month exchange and collaboration, sup-
ported by the IAP, as a guest researcher at the Andalusian Institute for Earth
System Research (IISTA-CEAMA) at the University of Granada, Spain, from Oc-
tober to November 2022.
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Abstract. The south-central interior of Andalusia experiences intricate precipitation patterns as a result of its
semi-arid Mediterranean climate and the impact of Saharan dust and human-made pollutants. The primary aim
of this study is to monitor the inter-relations between various factors, such as aerosols, clouds, and meteorolog-
ical variables, and precipitation systems in Granada using ground-based remote sensing and in situ instruments
including a microwave radiometer, ceilometer, cloud radar, nephelometer, and weather station. Over an 11-year
period, we detected rain events using a physical retrieval method that employed microwave radiometer mea-
surements. A composite analysis was applied to them to construct a climatology of the temporal evolution of
precipitation. It was found that convective rain is the dominant precipitation type in Granada, accounting for
68 % of the rain events. The height of the cloud base is mainly distributed at an altitude of 2 to 7 km. Integrated
water vapor (IWV) and integrated cloud liquid water (ILW) increase rapidly before the onset of rain. Aerosol
scattering at the surface level and hence the aerosol concentration are reduced during rain, and the predominant
mean size distribution of aerosol particles before, during, and after rain is almost the same. A meteorological
environment favorable for virga formation is observed in Granada. The surface weather station detected rainfall
later than the microwave radiometer, indicating virga according to ceilometer and cloud radar data. We used
889 rain-day events identified by weather station data to determine precipitation intensity classes and found that
light rain is the main precipitation intensity class in Granada, accounting for 72 % of the rain-day events. This
can be a result of the high tropospheric temperature induced by the Andalusian climate and the reduction of
cloud droplet size by the high availability of aerosol particles in the urban atmosphere. This study provides evi-
dence that aerosols, clouds, and meteorological variables have a combined impact on precipitation which can be
considered for water resource management and improving rain forecasting accuracy.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Precipitation is vital for human survival and development
as it affects the storage and distribution of water resources
(Wilheit et al., 1977). Continuous and heavy rainfall is of-
ten a trigger for natural disasters such as floods (Hong et al.,
2007). Precipitation as a driver of the hydrological cycle has
great significance for climate change responses and feed-
backs (Kundzewicz, 2008). Aerosols in atmosphere can act
as cloud condensation nuclei. The presence of a high con-
centration of aerosols might increase cloud cover and de-
crease the size of cloud droplets (Sarangi et al., 2017; Kant
et al., 2021). For heavy precipitation events such as torren-
tial rain, aerosols promote the merging of cloud droplets and
the growth of raindrops, increasing the intensity and distri-
bution of precipitation (Hazra et al., 2017). However, for
weak precipitation events such as drizzle, aerosols hinder
precipitation formation (Alizadeh-Choobari and Gharaylou,
2017). Chemical reactions and turbulence within clouds as
well as the washing effect of precipitation in turn might affect
the concentration and size distribution of aerosols (Hobbs,
1993; Chang et al., 2016; Zheng et al., 2019). The interac-
tion among precipitation, aerosols, and clouds is highly com-
plex and still contains many uncertainties, requiring further
research and exploration (Fan et al., 2016).

The inland regions of south-central Andalusia, such as
Granada, are semi-arid with average annual precipitation of
less than 500 mm and are highly vulnerable to extreme hy-
drological events due to climate change (AEMET, 2012;
Sumner et al., 2003). A decreasing trend in precipitation for
the period 1960–2006 has been observed in the Andalusia
area of the Spanish Mediterranean (Ruiz Sinoga et al., 2011).
Moreover, this region, like the rest of the Mediterranean re-
gion, is also prone to flooding from heavy rains, causing
property damage and even casualties (Barriendos et al., 2019;
Flores et al., 2022; Belmonte and Beltrán, 2001). On the
other hand, the region of Granada experiences numerous Sa-
haran dust outbreaks every year, which have a significant im-
pact on its environment and air quality (Guerrero-Rascado
et al., 2009; Navas-Guzmán et al., 2013; Cazorla et al., 2017;
López-Cayuela et al., 2023; Fernández et al., 2019). Rosen-
feld et al. (2008) indicated that aerosols affect precipitation
and prompt droughts and floods. Understanding the temporal
evolution of atmospheric variables during rain events under
these conditions is significant for weather forecasting and as-
sessing measures of artificially increased rainfall.

Deep convection contributes to the occurrence of heavy
rainfall events (Luu et al., 2022), and aerosols (Saharan dust)
can promote the formation of convective clouds and convec-
tive rain (Jiang et al., 2018; Gibbons et al., 2018; Khain et al.,
2005; Zhao et al., 2022; Xiao et al., 2023; Chen et al., 2020).
Jiang et al. (2018) discovered that various types and concen-
trations of aerosols have distinct impacts on deep convective
clouds. Continentally polluted aerosols tend to enhance con-
vection, while the effect of dust particles varies depending

on the region. Employing a spectral bin microphysics model,
Gibbons et al. (2018) observed that an increase in Saharan
dust particles leads to competition for available water vapor
during diffusive growth, resulting in the formation of nu-
merous and smaller crystals and/or droplets. This leads to
the release of more latent heat and promotes convective up-
drafts and heterogeneous nucleation mechanisms at higher
altitudes. As the concentration of ice nuclei increases, there is
a proportional decrease in total surface precipitation. Khain
et al. (2005) indicated that aerosols reduce precipitation ef-
ficiency of individual cumulus clouds, resulting in the for-
mation of convective clouds and thunderstorms with higher
rain rates. Chen et al. (2020) found that aerosols prompt the
formation of stronger updrafts to form mesoscale convective
systems that enhance vertical mass fluxes and precipitation.
As the concentration of aerosols rises, the frequency of deep
convective clouds increases, while the frequency of shallow
warm clouds decreases.

The inter-relations between precipitation, aerosols, and
clouds are highly dependent on meteorological conditions
(Zhu et al., 2023). The overall impact of aerosols on pre-
cipitation is contingent upon environmental conditions, such
as air humidity and wind shear, which determine whether
the increase in aerosols leads to an elevation in condensa-
tion production or loss (Khain, 2009). In addition, the forma-
tion of virga is influenced by meteorological factors, includ-
ing cloud height, temperature, humidity, air pressure, wind
speed, and air stability. Karle et al. (2023) used ceilometer
profiles, soundings, surface rain gauges, and radar data to
identify the seasonal patterns of virga events and assess the
influence of surface meteorological measurements. Virga for-
mation is more likely to occur when the cloud base is high, air
temperature is elevated, humidity is low, air pressure is low,
wind speed is high, and air instability is present, with small
raindrops also playing a role (Jullien et al., 2020; Beynon and
Hocke, 2022; Airey et al., 2021). Virga is linked not only to
severe climatic events like drought, but also to aerosol loads.
The average cloud-base temperature of virga is below 0 ◦C,
which results in effective loss of sublimation and reduced
surface precipitation (Evans et al., 2011). Water vapor that is
produced during evaporation or sublimation of virga can be
scavenged by aerosol particles (Tost et al., 2006). The virga,
which does not reach the ground, is missed in in situ precip-
itation observations on the surface.

Observational studies of the inter-relations of multiple fac-
tors with precipitation systems are challenging due to their
complexity and high variability. Aircraft observations have
proven effective in studying aerosol and cloud microphysics
near cloud bases and their impact on precipitation (Wehbe
et al., 2021), but the technique is expensive, and the num-
ber of measurements of this type is very limited, leading to
poor representativeness. Ground-based remote sensing and
in situ techniques are suitable alternatives with promising re-
sults. Various instruments, such as microwave radiometers,
ceilometers, Doppler cloud radars, integrating nephelome-
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ters, and weather stations, are widely utilized to measure
and characterize precipitation, aerosols, and clouds with high
temporal resolution. Ground-based microwave radiometers
have the advantage of being able to measure vertically in-
tegrated atmospheric column (integrated water vapor and in-
tegrated liquid water) and rain rate all day and in all weather
(Rose et al., 2005; Wang et al., 2021; Hocke et al., 2019).
Vertical profiles from ceilometers and Doppler cloud radars
make it possible to study atmospheric dynamics, the forma-
tion and evolution of clouds at different altitudes, precipita-
tion types, and the impact of dust aerosols in detail (Airey
et al., 2021). Sarna and Russchenberg (2016) showed that
the interaction between aerosols and clouds can be efficiently
and continuously monitored by leveraging the synergy of li-
dar, radar, and radiometers.
The following are the contributions and benefits of this study,
which fill the gaps of previous studies.

– The Andalusian region with a semi-arid Mediterranean
climate as the study area. The region is influenced by
Saharan dust and is highly vulnerable to climate change,
resulting in complex precipitation patterns. Neverthe-
less, there is a shortage of research on the relation-
ship between precipitation and atmospheric variables in
regions with similar conditions, such as the Mediter-
ranean.

– Synergy of cloud radar and other remote sensing instru-
ments. While lidar remote sensing has limitations in the
observation of clouds, cloud radar can penetrate clouds
to observe the internal structure of clouds and precipita-
tion with exceptional time and vertical resolution. Cloud
radar combined with aerosol lidar can significantly en-
hance the precision and accuracy of precipitation stud-
ies.

– Cloud evolution during rain events. Presenting the evo-
lution and height changes of clouds before, during, and
after rain can determine the mechanism and type of pre-
cipitation.

– Detection and observation of virga. Virga can cause in-
accuracies in weather forecasts in Andalusia.

The goal of this paper is to explore the inter-relations of mul-
tiple atmospheric variables with the precipitation system us-
ing multisource ground-based observations in the Andalu-
sian region. This paper is organized as follows. Section 2
describes the study area, remote sensing, and in situ instru-
ments. Section 3 presents the methods used for rain rate
retrieval and data analysis. Section 4 discusses the tempo-
ral evolution of precipitation, the impact of multiple factors
(including aerosols, clouds, water vapor, and meteorological
variables) on precipitation systems, and the phenomenon of
virga rain. Conclusions are given in Sect. 5.

2 Study site description and instrumentation

2.1 Study area

Granada is located in Andalusia in southern Spain. It is sur-
rounded by mountain ranges, including the Sierra Nevada to
the southeast, Sierra de Huétor to the northeast, and Sierra
de Almijara to the southwest. Differences exist between the
climate inside and around the metropolitan area due to the
blocking of mountains (Esteban-Parra et al., 2022). Granada
is close to the Mediterranean Sea, and the region exhibits a
Mediterranean climate with hot and dry summers. Winters
are mild and humid, and snow is rare. The hottest month
is July, with an average maximum temperature of 34.2 ◦C,
while the coldest month is January, with an average daily
temperature of 12.6 ◦C (AEMET, 2012). Rainfall mainly oc-
curs from October to May. Granada is a non-industrial city
with fewer than 230 000 inhabitants and sits in a depression
as a plain. The city is affected by local and European human-
made pollution, as well as natural dust from the Sahara
in northern Africa (Valenzuela et al., 2012; Navas-Guzmán
et al., 2013; Cazorla et al., 2017). These factors contribute to
the complex meteorological characteristics of Granada, par-
ticularly with regards to precipitation.

Measurements presented in this study were performed
at the University of Granada urban station (UGR), which
is part of the Andalusian Global ObseRvatory of the
Atmosphere (AGORA, https://atmosphere.ugr.es/en/about/
presentation/agora, last access: 13 December 2022). The sta-
tion is located in the Andalusian Institute of Earth System
Research (IISTA-CEAMA) in the southern part of the city
of Granada (37.16, 3.61◦ N; 680 m a.s.l.). AGORA combines
state-of-the-art active and passive remote sensing and in
situ measurements (Benavent-Oltra et al., 2021; Titos et al.,
2012). Most of its instruments are part of the Aerosols,
Clouds, and Trace gases Research Infrastructure of the Eu-
ropean Research Infrastructure Consortium (ACTRIS-ERIC,
https://www.actris.eu/, last access: 13 December 2022).

2.2 Remote sensing measurements

Tropospheric microwave observations were performed us-
ing a generation-2 Humidity And Temperature PROfiler
(HATPRO-G2) radiometer from Radiometer Physics GmbH
(RPG). This instrument performs continuous and automated
measurements of the brightness temperature of the sky, with
a radiometric resolution between 0.3 and 0.4 K in terms
of root mean square error at 1.0 s integration time (Navas-
Guzmán et al., 2014). The radiometer employs direct detec-
tion receivers in two bands: the water vapor band (K-band)
from 22 to 31 GHz and the oxygen band (V-band) from 51 to
58 GHz, with bandwidths between 0.1 and 2 GHz. The half-
power beamwidth for the K-band is 3.5◦ (Rose et al., 2005).
A quadratic regression is used to retrieve integrated water va-
por (IWV) and integrated cloud liquid water (ILW), among
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other products. Weather sensors on the HATPRO provide
some of the inputs to the retrieval process, such as environ-
mental temperature, relative humidity, and pressure (RPG,
2014). The instrument has an additional infrared radiometer
for obtaining cloud-base brightness temperature. It is part of
the MWRnet (International Network of Ground-based Mi-
crowave Radiometers, http://cetemps.aquila.infn.it/mwrnet/,
last access: 13 December 2022), and several studies have
shown its capability to retrieve IWV, temperature profiles,
and relative humidity profiles by comparing with radioson-
des (Navas-Guzmán et al., 2014; Bedoya-Velásquez et al.,
2019; Vaquero-Martínez et al., 2023).

The Jenoptik CHM15k ceilometer has measured atmo-
spheric backscatter profiles with a time resolution of 15 s
since November 2012. It is part of E-PROFILE (European
networks of wind and aerosols profiles, https://e-profile.eu/,
last access: 13 December 2022). The system uses an Nd:YAG
narrow-beam microchip laser that operates at 1064 nm and
generates pulses of 8.4 µJ at a repetition rate between 5 and
7 kHz. The receiver field of view is 0.45 mrad, and the laser
beam has a divergence of less than 0.3 mrad. The system can
measure vertically over ranges from 15 to 15 000 m with a
resolution of 15 m. Full overlap of the laser beam and the
telescope is realized at 1500 m above the ceilometer, while
90 % overlap can be achieved between 555 and 885 m a.g.l.
using the manufacturer’s overlap function calibration. Ca-
zorla et al. (2017) described the calculation of the range-
corrected signal (RCS) for the CHM15k.

The 94 GHz Doppler cloud radar used in this study was
manufactured by RPG based on the frequency modulation
continuous-wave technique. It measures the vertical profile
of reflectivity with a time resolution of 3–4 s, and ACTRIS-
Cloudnet (Illingworth et al., 2007, https://cloudnet.fmi.fi/,
last access: 13 December 2022) provides its target classifi-
cation (Hogan and O’Connor, 2004). The cloud radar oper-
ates at a wavelength of 3.19 mm, allowing high-sensitivity
detection of clouds and raindrops. It points to zenith, cover-
ing a range between 50 and 12 000 m at a resolution 30 m. It
includes accurate absolute calibration and a robust rain pro-
tection system. Use of low transmitter power (1.5 W) enables
reliable operation and low maintenance. Myagkov and Rose
(2016) described the instrument in more detail.

2.3 In situ measurements

The UGR weather station has measured air temperature, rel-
ative humidity, wind speed, pressure, and precipitation with a
time resolution of 1 min since 2005. A Vaisala HMP60 probe
gathers temperature and relative humidity, and a Campbell
Scientific model 05103 anemometer monitors wind speed
(de Arruda Moreira et al., 2022). The UGR weather station
barometer has low accuracy (1 hPa), so the pressure in this
study is only utilized for air density calculations and not for
composite analysis. A rain sensor at the weather station can
provide precipitation data for 2020 to 2022 with an accuracy

of 0.1 mm. Another rain sensor on the roof of the building
covers the entire analysis period of 2010–2022 with an accu-
racy of 0.2 mm. The two rain sensors show good agreement
during the overlap from 2020 to 2022. Air density was de-
rived from weather station data following Wang and Hocke
(2022).

Aerosol in situ measurements are registered in AGORA,
which in addition to its contribution to ACTRIS also oper-
ates in the framework of the NOAA/ESRL federated aerosol
network (Andrews et al., 2019) and has participated in
global analysis of climate-relevant aerosol properties (Laj
et al., 2020). The TSI model 3563 integrating nephelome-
ter measures the light-scattering coefficient of particles at
three wavelengths (450, 550, and 700 nm) at dry conditions
with relative humidity less than 40 %. The data have been
recorded at a time resolution of 1 min since January 2006
(Titos et al., 2012). The scattering coefficient obtained from
the nephelometer could be used as a proxy for aerosol mass
or volume concentration, while the Ångström exponent (AE)
provides an estimation of the predominant aerosol mean size
at dry conditions. Values of AE> 2 indicate a predominance
of fine particles, while values of AE< 1 indicate the predom-
inance of coarse particles. The total wide angular integration
is from 7 to 170◦, and the backscattering has an angular range
of 90 to 170◦. Temperature and pressure are measured to cal-
culate the scattering of air molecules. This value is subtracted
from the total scattering to isolate the scattering attributed
to aerosol particles (Lyamani et al., 2010). Routine mainte-
nance and calibration of the nephelometer are carried out pe-
riodically using CO2 and filtered air. Non-idealities due to
truncation errors and non-Lambertian illumination were cor-
rected following the procedure described in Anderson and
Ogren (1998). The uncertainty in the scattering coefficient is
about 7 % (Heintzenberg et al., 2006). A complete descrip-
tion of the procedures applied in data preprocessing and pro-
cessing is included in Pandolfi et al. (2018).

3 Methodology

3.1 Rain rate retrieval

The HATPRO software does not cover the retrieval of rain
rates, so this study uses an opacity-based physical retrieval
method to calculate rain rates. Wang et al. (2021) presented
the principle of this retrieval method in detail, and a brief
description is given below. The radiative transfer equation
for the Rayleigh–Jeans law is

Tbf = TbC · e
−τf /µ+ Tmf

· (1−e−τf /µ), (1)

where f is the microwave channel of HATPRO. The 31 GHz
channel is used to estimate rain rates in this study due to its
sensitivity to liquid water. Tbf is the non-rainfall brightness
temperature, τf is the non-rainfall opacity along the zenith,
µ is the cosine of the zenith angle, TbC is the cosmic back-
ground brightness temperature, and Tmf

is the effective mean
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temperature calculated by the linear equation of tempera-
ture, pressure, and relative humidity measured by HATPRO’s
weather sensors (Mätzler and Morland, 2009).

Equation (1) yields the zenith opacity as

τf =−µ · ln

(
Tmf
−Tbf

Tmf
−TbC

)
. (2)

During rain, the zenith opacity τrf can be computed itera-
tively:

τ
(k+1)
rf =−µ · ln

(
Tmrf (τ (k)

rf )−Tbrf

Tmrf (τ (k)
rf )−Tbf

)
, (3)

where τ (k+1)
rf is the rain zenith opacity obtained after the kth

iteration. Tmrf is the rain effective mean temperature. Tbrf is
the rain brightness temperature observed by HATPRO. Note
that Tbf cannot be observed during rain. It has to be estimated
by temporal interpolation of the opacity obtained during pe-
riods of no rain.

The relationship between rain rate Rf and rain zenith
opacity τrf is expressed as

Rf =
τrf

grf ·Hr
, (4)

where grf is the specific and effective rain-absorption coeffi-
cient. It is calculated by Mie theory with droplet distributions
and parameterized fall velocities. Hr is the vertical distance
between the melting layer and the ground, which is calcu-
lated by the temperature gradient. Note that determination of
rain stop time may be delayed by the outdoor HATPRO due
to the water film on the radome (Wang et al., 2023).

3.2 Composite analysis

The composite analysis method (superposed epoch method)
is a useful technique for characterizing meteorological or cli-
matic phenomena that are difficult to observe as a whole,
such as exploring and understanding the inter-relations be-
tween rainfall and atmospheric variables over time (Adams
et al., 2013; Zhang et al., 2020; Sapucci et al., 2019; Al-
lan et al., 2020). Composite analysis consists of two sepa-
rate datasets of discrete events (e.g., rain events) and con-
tinuous time series. A two-dimensional matrix is constructed
by intercepting part of the time series that may be affected
by the event. The columns of the matrix are time epochs, the
rows are events, and the arithmetic mean is computed over
the columns. All selected events are expressed as a function
of their epoch time so that the averaging process yields the
mean evolution of a parameter before, during, and after rain.
This method can highlight the impact of events on various at-
mospheric variables at critical moments and weaken the im-
pact of atmospheric noise (Zheng et al., 2019). The following
criteria are used for composite analysis of rain events.

– The timing mark of the onset and duration of rain-
fall is when ILW (measured by the HATPRO) exceeds
0.6 mm. The threshold for detecting rainfall using ILW
typically ranges between 0.1 and 0.6 mm. When rain-
drops larger than 0.3 mm in diameter are present in the
atmosphere, the emissivity increases significantly, mak-
ing the accuracy of the threshold less critical (Wang and
Hocke, 2022). Wang et al. (2023) showed that an ILW
of 0.6 mm is suitable for the outdoor HATPRO G2 to
identify rain, which obtains non-rainfall opacities that
agree well with an indoor microwave radiometer. In
addition, HATPRO in Granada detects rain event start
and end times using ILW= 0.6 mm (a rain period has
ILW>= 0.6 mm), which aligns with ceilometer attenu-
ated backscatter.

– The epoch time 0 represents the onset of rain, and t rep-
resents the duration of rain. −1, +1, and t+1 represent
1 h before, during, and after rain, respectively.

– All compliant rain events were filtered using the HAT-
PRO ILW threshold of no rainfall within 8 h before the
onset of rain and 8 h after the end of rain for the period
October 2010 to November 2021. A total of 22 % of data
are missing during this time interval for reasons such as
unexpected shutdown of HATPRO. There are, in total,
694 rain events, including 502 rain events for studying
8 h before and 16 h after rain, 615 rain events for study-
ing 8 h before and 16 h during rain, and 390 rain events
(from November 2012 to November 2021) for the com-
posite analysis of ceilometer data before and after rain.
The 8 h before rain can detect the water vapor convec-
tion (Adams et al., 2013), and the 16 h after rain is to
have enough time to detect the effect on the atmosphere
and ensure a certain number of rain events. Note that
the 16 h during rain (+16) indicates only one rain event
included within 16 h after the onset of rain and not the
duration of the rain event itself.

4 Results and discussion

4.1 Inter-relations of precipitation with cloud, water
vapor, and aerosols

March 2022 was one of wettest months in 61 years in Spain,
with heavy rainfall causing flooding in parts of Andalusian.
Because of this, March 2022 is used here as an example
of the potential of the instrumentation to detect and char-
acterize rain events and their impact on aerosols. Figure 1
provides an example of the vertical distribution of aerosols,
clouds, and rainfall, as obtained from ceilometer and cloud
radar measurements over 3 consecutive days from 12 to 14
March 2022. The ceilometer determines cloud bases and thin
clouds as shown in Fig. 1a, while the cloud radar can give
a full view of clouds as shown in Fig. 1b. Two cumulonim-
bus clouds with an anvil-shaped top can be seen up to 11 km
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height, which is often accompanied by severe weather such
as heavy torrential rain and hail. Cloud bases are from 2 to
7 km. The thickness of the clouds reaches about 9 km, indi-
cating deep convection. The clouds at a height of 3 to 5 km
are stratocumulus clouds from about 07:30 to 12:00 UT on
14 March 2022, while the ceilometer signal is mostly fully at-
tenuated above 1 km. Figure 1c shows the cloud radar target
classification from ACTRIS-Cloudnet. It can be seen from
Fig. 1a that the high attenuated backscatter values (more than
4× 10−6 m−1 sr−1) from clouds measured by the ceilometer
correspond to rainfall according to Cloudnet target classifi-
cation (Fig. 1c). The height of the melting layer (0 ◦C level)
here is between 2 and 3 km. A layer of attenuated backscatter
(less than 1× 10−6 m−1 sr−1) from 1 to 2 km before and af-
ter rain is due to aerosols. Solar background light affects the
ceilometer signal during daytime (i.e., 06:00 to 18:00 UT).

Due to limited data from the cloud radar, which only
cover a small number of rain events since March 2019, this
study relies on the composite analysis of the ceilometer. Fig-
ure 2 shows the composite analysis of ceilometer attenuated
backscatter before and after 390 rain events. To show the
cloud-base distribution more clearly, the height and time res-
olutions are reduced from 15 m and 15 s to 60 m and 900 s,
respectively, by computing the average value. Cloud-base
height is mainly distributed from 2 to 7 km during the 8 h
before rain and around 2 to 3 km during the 6 h after rain.
This result closely resembles that of Fig. 1. Statistics from
ceilometer data reveal that the predominant precipitation type
in Granada is convective rain, comprising 68 % of the 390
recorded rain events.

The likely reason for this pattern of mostly convective rain
in Granada is firstly due to the topography and climate of
Granada. Granada is surrounded by mountains, so humid air
from the Atlantic via the north-northwest is forced to rise
to higher altitudes to form convection. The high tempera-
ture in Granada also contributes to the upward lifting of the
air. Secondly, aerosols have the ability to enhance the cre-
ation of convective rain (Jiang et al., 2018). Aerosols in-
crease the quantity of cloud droplets or ice crystals and slow
down their growth rate. This causes the deposition process
to release more latent heat and triggers heterogeneous nu-
cleation mechanisms at higher altitudes, which as a result
promotes convection and has an impact on its development
(Gibbons et al., 2018). Figure 2 also indicates that the in-
tensity of the attenuated backscatter, which is proportional
to the aerosol concentration, is lower in the lower tropo-
sphere (below 1.8 km a.g.l.) after rain compared to before
rain (black box). This is because rainfall is effective in re-
moving aerosols, as explained in more detail below.

Figure 3 shows the composites of IWV and ILW from the
HATPRO radiometer in Granada. As shown in Fig. 3a, IWV
remains around 17.5 mm during the 6 to 8 h before rain but
increases rapidly to a maximum value of 23 mm during the
0 to 6 h before rain. Water vapor convection may be respon-
sible for the increase in IWV before rain. Water vapor mov-

ing up at low pressure or along a front, collecting around
highly hygroscopic condensation nuclei, causes increased
IWV (Koffi et al., 2013). IWV drops sharply and remains at
around 16 mm during the 8 to 16 h after rain. The changes in
IWV in Granada are slightly different from those observed in
Bern, Switzerland (Wang et al., 2021). There is more water
vapor in the atmosphere to form rain in Granada than in Bern.
The composite maximum of IWV at the onset of rain in Bern
was 21.5 mm, about 1.5 mm lower than in Granada. This pro-
vides plenty of vertically rising moist air for convection in
Granada. In addition, IWV in Bern is significantly reduced
at the end of rain compared to the beginning, which is not
the case for Granada. This may be due to the different pre-
cipitation types in Granada, whereas Bern has mainly strati-
form rain (Wang and Hocke, 2022). Rain events in Bern are
more likely to directly remove water vapor from the atmo-
sphere. Figure 3b shows the IWV and the infrared brightness
temperature before and during rain. We can see that IWV re-
mains 28 mm during the 4 h after the onset of rain and then
decreases. This may suggest that horizontal transport effects
play a major role for water vapor in Granada. It may also
be that short-duration rainfall accounts for a relatively large
proportion of all rain events, with short-duration rainfall of
less than 8 h accounting for 57 % in Granada but only 41 %
in Bern. The infrared brightness temperature (TIR) reaches
its maximum before the onset of rain and then decreases. As
shown in Fig. 3c, ILW is from 0.04 to 0.54 mm during the
2 h before rain with a decrease to 0.03 mm during the 2 h
after rain. The sharp increase in ILW is because of the opac-
ity gain as the droplet size (diameter) increases (Wang and
Hocke, 2022). The ILW composite peaks at 0.54 mm instead
of the ILW threshold of 0.6 mm due to the high temporal res-
olution of HATPRO. The value is 0.6 mm when calculating
the composite median.

Figure 4 shows the composites of scattering coefficient
at 550 nm and AE of aerosol particles from the integrating
nephelometer in Granada. As shown in Fig. 4a, the scatter-
ing coefficient before rain increases by 2 mm−1 from about
51 mm−1 and then decreases. In Granada, the scattering co-
efficient at 550 nm peaks between 08:00 and 12:00 UT in
the morning as well as between 18:00 and 22:00 UT in the
evening due to intense urban emissions (Lyamani et al.,
2010). As shown in Fig. 5, rain events mainly start to occur
from 12:00 to 18:00 UT in the afternoon. Because of insola-
tion, there is convection of moist air during daytime. In the
afternoon hours, the moist air has reached a high altitude so
that formation of cloud droplets and raindrops occurs in the
adiabatically cooled air parcel. It also illustrates that the diur-
nal variation pattern of aerosols is not the main cause of the
significant increase in scattering coefficient 4 h prior to the
onset of rain. The scattering coefficient increases gradually
after rain. Due to the removal of aerosols by rain, the scat-
tering coefficient at the end of rain is about 10 mm−1 lower
than at the beginning. To the same effect, the scattering coef-
ficient experiences a rapid decrease of 6 mm−1 from approx-
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Figure 1. (a) Attenuated backscatter measured by a CHM15k ceilometer, (b) reflectivity measured by an RPG Doppler cloud radar, and (c)
the radar target classification in Granada for 12–14 March 2022. Height is above sea level.

Figure 2. Composite of attenuated backscatter measured by a
CHM15k ceilometer 8 h before and 16 h after rain. t is the duration
of rain.−1 and t+1 represent 1 h before and after rain, respectively.
The range of the black box is below 1.8 km, 4 h before and after rain.
Altitude and time resolutions are 60 m and 900 s, respectively.

imately 48 mm−1 during the 4 h rain, followed by a slower
decline, and stabilizes at 38 to 42 mm−1 (Fig. 4b). As shown
in Fig. 4c and d, the AE first decreases by about 0.03 from 1.5
before rain, then increases during the 4 h rain period, and re-
mains at about 1.51. It increases gradually to 1.58 after rain.

Figure 6 shows a schematic representation of the temporal
evolution of aerosol scattering and particle size before, dur-
ing, and after rain, which makes the variation of scattering
coefficient and AE in Fig. 4 easy to understand. Before rain,
the aerosol concentration first increases and then decreases.
This is because the lower relative humidity in the atmosphere
before rain increases the surface tension of aerosol particles
and makes them easier to suspend in the air. Figure 7 shows
the change in relative humidity. Air movement may also
bring aerosols from other regions, leading to their increase.
Water vapor may condense on certain aerosol particles prior
to rainfall, gradually accumulating on their surfaces. After
the onset of rain, most aerosol particles are trapped in rain-
drops and the larger ones settle. Very few larger-sized aerosol
particles without a water film are also removed from the at-
mosphere. Smaller particles, due to their low mass, remain
suspended in the air and are not easily removed by rain. As
time progresses, larger particles account for a smaller pro-
portion of the remaining particles. After rain, pollution can
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Figure 3. Composites of (a) IWV 8 h before and 16 h after rain,
(b) IWV and TIR (green line) 8 h before and 16 h during rain,
and (c) ILW 8 h before and 16 h after rain provide by HATPRO in
Granada. The shaded areas show standard errors (errors of the mean
σ/
√
n ).

cause an increase in aerosol concentration. Since AE hardly
changes during rain events as shown in Fig. 4c and d, the pre-
dominant mean size distribution of aerosol particles before,
during, and after rain is almost the same. Note that the lack of
change in AE from the nephelometer data does not necessar-
ily indicate that the particle size remains constant. In ambient
conditions, particles can undergo hygroscopic growth by ab-
sorbing water, which would increase their size but may not
be detectable by the instrument. Conversely, the data from
the nephelometer indicate that the size of “dry” particles does
change, which may suggest that they have the same particle
type.

Figure 4. Composites of (a) scattering coefficient (grey) 8 h before
and 16 h after rain, (b) scattering coefficient (grey) 8 h before and
16 h during rain, (c) AE (grey) 8 h before and 16 h after rain, and (d)
AE (grey) 8 h before and 16 h during rain provided by an integrating
nephelometer in Granada. t is the duration of rain. 0 is the onset of
rain. −1, +1, and t + 1 represent 1 h before, during, and after rain,
respectively. The black lines are the mean value calculated over a
sliding window of 3 h.
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Figure 5. Stairs plot of the distribution of the number of rain events
(694 in total). The grey areas represent the peak time period of the
scattering coefficient at 550 nm between 08:00 and 12:00 UT and
between 18:00 and 22:00 UT.

4.2 Meteorological effects and virga

Figure 7 shows the composites of surface meteorological
variables before and during 615 rain events in Granada. As
shown in Fig. 7a, from 4 to 8 h before rain, the ground heat-
ing from the sun causes the temperature to rise, and air thus
warms and expands, reducing the relative humidity. From 0
to 4 h before rain, as convective clouds form and rise, the air
cools and the surface temperature decreases, increasing rel-
ative humidity. Evaporation of surface water increases wa-
ter vapor content without reaching saturation, which also
increases relative humidity. When rain starts, rain droplets
falling to the ground in Granada increase the water vapor
content, leading to a sudden 1.6 % increase in relative humid-
ity and a slight decrease in surface temperature. After the on-
set of rain, rain absorbs a large amount of latent heat, result-
ing in a continuous drop in temperature by 1.3 ◦C during the
12 h of rain and then an increase in temperature. Rainfall car-
ries away some of the water vapor and slows down the evap-
oration rate of water, resulting in a decrease of about 2.4 %
in relative humidity during the 2 h of rain. There is a slight
increase in relative humidity over the next 10 h and then a
large decrease in relative humidity. As shown in Fig. 7b, be-
fore rain, the pressure decreases by 0.9 hPa due to the lifting
of air. When it rains, the sudden pressure increase of 0.4 hPa
can be due to the water vapor pressure generated by the evap-
oration of rain droplets. This value is maintained for a dura-
tion of 4 h. From 4 to 9 h after the onset of rain, the pressure
continues to rise by 0.3 hPa and subsequently decreases. Be-
fore rain, the wind speed increases by about 0.3 m s−1. The
pressure gradient between the updraft of the convective sys-
tem and the stronger downdraft around it produces stronger
wind speeds. During the 5 h of rain, the wind speed is re-
duced by the drag force of raindrops on the air and sub-
sequently remains around 1.4 m s−1. As shown in Fig. 7c,
when rain starts, the rain rate increases rapidly. It peaks at
0.6 mm s−1 4 h after the onset of rain and then slowly de-
creases to 0.2 mm s−1.

Figure 7d shows composite of air density before and dur-
ing 615 rain events in Granada. Before rain, air density first
decreases and then increases. At 4 h prior to the onset of rain,

Figure 6. Schematic diagram of the temporal evolution of aerosols
before, during, and after rain. The dashed line indicates the onset of
rainfall, while the dotted line marks its end. The black dots repre-
sents aerosol particles, and the blue area represents the water film.
The dashed blue arrow represents water vapor, and the red arrow
represents particles falling to the ground.

the air density reaches its minimum value of 1.124 kg m−3.
During 12 h after the onset of rain, the air density continues to
rise from 1.126 to 1.134 kg m−3 and subsequently decreases.
Changes in air density before rain can be a rainfall precur-
sor and has the potential for nowcasting (Wang and Hocke,
2022). More water vapor in the air leads to a decrease in air
density due to the lower molecular weight of water vapor
compared to the average molecular weight of other gases in
the air. Unlike in Bern, the air density in Granada is more
dependent on surface temperature (Fig. 7a). The changes in
these two variables are exactly opposite to each other. Thus,
at Granada, the increased surface temperature before rain-
fall can be taken as a precursor of rainfall too. Overall, this
meteorological environment before rain is conducive to the
formation of virga.

Although the number of rain events in Granada detected
by HATPRO is not small, the amount of rain received by
the surface is small. Virga could be the cause. HATPRO, the
ceilometer, and cloud radar can detect raindrops in the at-
mosphere, while the rain sensor at the weather station mea-
sures the rain falling on the ground. Figure 8 shows ceilome-
ter attenuated backscatter and cloud radar target classifica-
tion for 19 April 2020 and 19 June 2021, which can reveal
cloud and rain information. The time of rain event onset is
marked with HATPRO and the weather station. As shown
in Fig. 8a and b, stratocumulus clouds between 2 and 5 km
produce stratiform rain. The onset of the rain detected by
HATPRO is 07:24 UT. This time is consistent with the cloud
radar target classification. The surface weather station mea-
sured the start of rain at 17:12 UT. There is a 10 h time dis-
crepancy between these instruments in detecting the onset
of rain, which could be attributed to the rapid absorption of
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Figure 7. Composites of (a) temperature (red line) measured by
the weather station, relative humidity (blue line) measured by the
weather station, (b) pressure (green line) measured by the HATPRO
weather sensor, wind speed (black line) measured by the weather
station, and (c) rain rate (black line) retrieved from HATPRO 8 h
before and 16 h during rain in Granada. 0 is the onset of rain. −1
and +1 represent 1 h before and during rain, respectively.

moisture by the dry air in Granada. Raindrops falling through
the dry air may evaporate before reaching the ground, lead-
ing to the formation of virga. Unlike cloud radar, almost no
rain can be seen from ceilometer attenuated backscatter at
07:00 and 09:00 UT. Cloud radar is more sensitive in detect-
ing rain as it can detect smaller raindrops that gradually evap-
orate and lose water. These smaller raindrops may not be
accurately captured by the ceilometer. As shown in Fig. 8c
and d, cumulonimbus clouds between 3 and 11 km produce
convective rain. The onset of the rain detected by HATPRO is
02:40 UT. This time is consistent with the ceilometer atten-
uated backscatter and cloud radar target classification. The
weather station indicated that it began to rain at 17:15 UT,
and the rain lasted only 10 min on the ground.

Figure 8e and f show ceilometer attenuated backscatter
and cloud radar reflectivity factor on 31 May 2020. Cu-
mulonimbus clouds between 3 and 11.5 km produce con-
vective rain. The onset of the rain detected by HATPRO
is 13:47 UT. This time is consistent with the ceilometer at-
tenuated backscatter and cloud radar target classification.
The surface weather station measured the start of rain at
16:29 UT. As shown in Fig. 8e, the virga only lasted a brief
period during both 14:00 and 15:00 UT, while the virga start-
ing around 15:30 UT continued for approximately 1 h. As
shown in Fig. 8f, some places in the cloud at about 8 km
have larger values of reflectivity factors. Water droplets or
ice crystals from virga can be lifted by convective updrafts
into cumulonimbus clouds and continuously grow and co-
alesce to form rain, such as from 16:29 to 17:29 UT. For
this rain event, the cumulative rain is not large, only 1.1 mm.
This could be due to the decay of deep convective clouds,
with weakened updrafts and decreased cloud height. Another
possibility is that the concentration of water vapor around
the cloud base is higher due to virga, and the warmer tem-
perature and higher cloud height promote continuous colli-
sion and merging of raindrops, resulting in drizzle. Rain-day
events are commonly used to evaluate precipitation intensity
classes, which represent the total cumulative amount of rain-
fall in a day (Wang et al., 2021). The weather station provided
889 rain-day events due to its ability to measure the amount
of rainfall reaching the ground. Statistics indicate that light
rain is the main precipitation intensity class in Granada (ac-
cumulation of daily rain less than 5 mm), accounting for 72 %
of these recorded rain-day events. Aerosols may be partly
responsible for it. Abundant aerosol particles in Granada
acted as cloud condensation nuclei, increasing the number of
cloud droplets. This intensified the competition among cloud
droplets for water vapor molecules, leading to smaller cloud
droplet sizes. Consequently, rain is finer and more disperse,
becoming drizzle or light rain.
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Figure 8. Ceilometer attenuated backscatter and cloud radar target classification for (a, b) 19 April 2020 and (c, d) 19 June 2021. (e) Ceilome-
ter attenuated backscatter and (f) cloud radar reflectivity factor on 31 May 2020. Dashed and dash-dotted lines are the onset of rain identified
by HATPRO and the weather station, respectively.

5 Conclusions

In this study, Andalusia, with a semi-arid Mediterranean cli-
mate region in southern Spain, is chosen as the study area
due to its persistent exposure to Saharan dust and vulner-
ability to climate change. The precipitation patterns in the
region are intricate, as evidenced by instances of severe rain-
fall causing flooding, as well as inaccurate weather forecasts
of precipitation over land. To comprehensively understand
the precipitation system in Andalusia, we utilize a combi-
nation of ground-based remote sensing and in situ instru-
ments to investigate the inter-relations of precipitation in the
evolution of various atmospheric variables. The instruments
used in this investigation include the microwave radiome-
ter, ceilometer, cloud radar, integrating nephelometer, and
weather station. Rain events and rain-day events were de-
tected by the microwave radiometer HATPRO and weather
station for 11 years from October 2010 to November 2021,
respectively. The time series of variables obtained from all
these instruments is subjected to composite analysis.

First, it was found that convective rain is the main type
of precipitation in Granada. Convective rainfall accounts for
68 % of the rain events. The vertical distribution of cloud,
rain, and aerosol observed by the ceilometer is well inter-
preted with the assistance of cloud radar. The cloud-base
height is primarily distributed in the 2–7 km range 8 h before
rain and around 2–3 km during the 6 h after rain. Integrated
water vapor (IWV) provided by the microwave radiometer
increases rapidly from 0 to 6 h before rain and remains above
28 mm within 4 h after the onset of rain. IWV is not signifi-
cantly reduced at the end of rain compared to the beginning.

Observations from both the ceilometer and the integrating
nephelometer show that aerosols are removed after rain, but
the latter instrument gives more detail. The integrating neph-
elometer data show that aerosol scattering increases slightly
before rain, followed by a decline with the removal by rain-
fall, with gradual recovery after rain. There is no significant
variation in the predominant mean size distribution of aerosol
particles before, during, and after rain.
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Before rain, the temperature shows an initial increase fol-
lowed by a decrease; the relative humidity decreases and then
increases, the pressure decreases by 0.9 hPa, and the wind
speed increases by 0.3 m s−1. At the onset of rain, the rain-
drops fall onto the warmer surface and evaporate, causing a
sudden increase in relative humidity of 1.6 % and a pressure
increase of 0.4 hPa. The meteorological environment before
rain is conducive to the formation of virga. Virga is identi-
fied by measuring the time delay between rainfall in the at-
mosphere and its arrival at the surface using the microwave
radiometer and weather station. The vertical distribution of
virga is well observed and shown by the ceilometer and cloud
radar. Furthermore, light rain is the main precipitation inten-
sity class in Granada. Light rain accounts for 72 % of the
rain-day events.

The results of this work on cloud heights before and after
rain lead to a better understanding of the formation and evo-
lution of clouds and precipitation in Andalusia. The changes
in aerosol scattering and particle size before, during, and af-
ter rain reveal the mechanism of aerosol removal and the in-
teraction between aerosol particles and water droplets. Ob-
servations and detections of virga can provide the knowl-
edge required for improvement of local precipitation fore-
casts, which is crucial for managing droughts, floods, soil
erosion, and water resources. Future research could explore
the impact of topographic settings and the proximity of the
Mediterranean Sea on meteorological changes and spatial
pattern assessment.
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10.1 conclusions

In this thesis, I present the work done to achieve optimal rain rate estimates
from ground-based microwave radiometers and the application of the re-
trieval method. This involves the synergy of multiple instruments (e.g. ra-
diometers, radars, and rain gauges).

The thesis contains six of my studies on precipitation in the troposphere. The
first study in Chapter 4 aims to achieve accurate rain detection. Detecting
rain is not only a prerequisite for the rain rate retrieval algorithms, but also
can effectively eliminate rain-contaminated data from microwave radiome-
ters due to raindrops in the atmosphere, thereby enhancing the credibility of
other atmospheric water parameter studies. In the first study, I detected pre-
cipitation (rain, drizzle, and mixed) from rain-contaminated TROWARA data
combined with the target variable MRR precipitation type classification data.
The approach is based on the machine learning method GBDT, accounting
for various seasons and rain types, and is compared with the ILW threshold
method. This study detects precipitation from the time series of microwave
radiometer measurements with a high temporal resolution of 10 s and a high
accuracy of 98.4%.

The second and third studies in Chapter 5 and Chapter 6 aim to achieve pre-
cise rain rate retrievals. Exploiting of the high temporal resolution and sensi-
tivity to rain of ground-based microwave radiometers for rain rate retrieval is
of great value for precipitation research. This will also complement the short-
comings of other precipitation monitoring technologies. In the second study,
I retrieved rain rates using an physical method for TROWARA. The method
is to obtain the physical relationship between the zenith rain optical depth
and the rain rate by establishing the radiation transfer equation during rain.
The 14-year cumulative rain over time (day, month, and year) was compared
with the two rain gauges and ERA5 reanalysis data. The comparison results
show that the method performs well in rain estimation at 31 GHz. I also
applied this physical rainfall rate retrieval algorithm to commercial radiome-
ters (HATPROs) in Payerne, Schaffhausen, Grenchen, Bern in Switzerland and
Granada in Spain. After understanding of the physical mechanism of rain es-
timation from microwave radiometers in the second study, I developed two
machine learning (RF and GBDT) based rain rate retrieval methods in the third

135



10.1 conclusions 136

study. The methods use TROWARA measurements as input variables and the
rain rate measured by MRR as the target variable, and the resulting estimated
rainfall has a temporal resolution of up to 10 s and and an R2 greater than
0.95.

The fourth study in Chapter 7 aims at the performance assessment of in-
door and outdoor microwave radiometers. In the fourth study, I compared
the brightness temperatures measured by indoor and outdoor coincident mi-
crowave radiometers (TROWARA and HATPRO) and the tropospheric water
they retrieved. Using the GBDT method, I identified the contribution of eight
factors related to both instruments to the deviation, with the goal of locat-
ing the sources of bias. Results indicate that the indoor installation design of
TROWARA effectively avoids the influence of water film on the radome on the
accuracy of precipitation and other tropospheric water measurements. On
the other hand, data deviations can reflect instrumental or observational un-
certainties in microwave radiometers. The overestimation in the brightness
temperature of HATPRO at 22 GHz is due to the instrument calibration, the
surrounding environment, and elevation angle of the Sun.

The fifth study in Chapter 8 aims at the identification of rainfall precursors.
By analyzing the time series of atmospheric parameters before and after the
onset of rain, a "climatology" can be built to provide a comprehensive de-
scription of rain occurrence and development, and enables seeking rainfall
precursors that can improve nowcasting. In the fifth study, I characterized the
temporal evolution of rain events over a 10-year period to identify potential
rainfall precursors. The approach uses a SEA method that takes into account
the variations of eight atmospheric parameters provided by TROWARA and
ExWi weather station. This study reveals that IWV rapidly increases to a peak
value when rainfall begins, and changes in air density 2 to 6 hours prior to
rainfall can serve as a precursor, with a true detection rate of 60%.

The sixth study in Chapter 9 aims at interrelationships of precipitation, aerosols,
and clouds. Studying multiple atmospheric parameters during rain, espe-
cially aerosols and clouds, helps to explain the complexities of precipitation
systems. Multi-instrument coordinated observations, both remote sensing
and in situ, can achieve this purpose. In the sixth study, I monitored the
interrelationships between various factors (such as aerosols, clouds and me-
teorological variables) and precipitation systems over southern Spain using
ground-based remote sensing and in situ instruments at the AGORA Obser-
vatory, including a microwave radiometer, a nephelometer, a cloud radar, a
ceilometer and a weather station. The approach is to conduct a SEA method
of these factors and construct a climatology of the temporal evolution of pre-
cipitation. The analysis suggests that Andalusia is affected by Saharan dust
and has a Mediterranean climate, which potentially leads to a dominant con-
vective rain type with high cloud base, light rain as the main precipitation
intensity class, and meteorological conditions for virga formation.
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10.2 outlook

The findings of my fourth study in Chapter 7 indicated that even though
HATPRO uses a blower and hydrophobic materials, the water film will remain
on its radome for a while after rain stops. The microwave radiation signal
will be affected by the strong emission and scattering of rain on the radome
and mistakenly regarded as raindrops in the atmosphere. This leads to a de-
crease in the accuracy of brightness temperature measurements and param-
eter retrievals of ground-based microwave radiometers before the water film
evaporates. Therefore, the detection method of rain-contaminated microwave
radiometer data in my first study in Chapter 4 can be extended to the study
of eliminating the influence of water film on the radome after rain, and com-
pared with the rain detected by the rain sensor equipped with HATPRO.

Rainfall estimation algorithms (physical and machine learning methods) for
ground-based microwave radiometers can still be improved. For the physical
rain rate retrieval algorithm, my GBDT-based rain detection model can replace
the ILW threshold method to detect the onset and end of rain. This is crucial
for the studies of the temporal evolution of complex precipitation systems
and rainfall precursors using microwave radiometers. The stratiform melting
layer heights (rain layer heights) in the physical algorithm were calculated by
the ratio of the temperature difference from the ground to the melting layer
and an assumed temperature gradient. Using the actual heights of the melt
layer observed by MRR is expected to improve the accuracy of the retrieval
algorithm. For the machine learning rain rate retrieval algorithms, it is nec-
essary to provide data from more locations or longer interval time series to
the training set. The reason is that rain patterns are highly sensitive to geo-
graphical location and climate, and adding a large number of samples under
different conditions can improve the generalization ability of the retrieval
model.

Spaceborne radiometry has been successfully applied for global-scale precip-
itation retrieval and has proven to be a fairly accurate tool (Lazri et al., 2020),
although its main drawbacks include poor spatial resolution and low tem-
poral sampling. Cross-validation between the precipitation products from
ground-based microwave radiometers, using physical and machine learning
retrievals of this thesis, and those from space-based radiometers is interest-
ing and holds promise for improving precipitation estimation models. For
example, ground-based data can provide correction factors for satellite mea-
surements by comparing precipitation estimates.

Noise in microwave radiometer data arises from both the instrument itself
and atmospheric effects. The coincident measurements by TROWARA and
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HATPRO in Bern have the potential to detect noise from atmospheric effects,
such as that caused by atmospheric turbulence. The study of atmospheric ef-
fects noise would enhance our understanding about tropospheric small-scale
inhomogeneities.
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