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Abstract 

The analysis of biofluids plays a pivotal role in the identification and tracking of 
disease-related biomarkers. Among these biofluids, blood is of particular interest due 
to its complex composition of cellular and molecular constituents, which offer insights 
into both organ-specific health (e.g., heart, liver, brain) and an individual's overall well-
being. Furthermore, the minimally-invasive nature of blood collection makes it an ideal 
source for health information. Recent advancements in the digitization of diagnostic 
pathology and data analysis tools have paved the way for the automation of blood-
based analytical tests, reducing the need for time-consuming and labor-intensive 
procedures. Leveraging high-throughput and automated techniques, driven by digital 
imaging and machine learning-based data analytics, holds great potential for 
improving the efficiency of blood sample processing and analysis, thereby expediting 
patient screening and monitoring. 

In the first part of the thesis, we show the development of the image and analysis 
framework for blood screening, based on digital holo-tomographic microscopy 
(DHTM). First, we optimized the best practices for blood collection and blood dilution 
in order to achieve high-resolution images. We subsequently developed the image 
processing pipeline, including noise filtering, background removal, image 
segmentation, feature recognition, and data extraction. For the morphological 
assessment of blood cells, we trained a machine learning classifier to automatically 
classify red blood cells (RBCs) based on their shape. Finally, we validated the 
morphological and chemical parameters obtained from DHTM- and atomic force 
microscopy (AFM)-based measurements in the context of RBC rheological properties 
and blood coagulation dynamics. 

In order to investigate the chemical effects on blood, we demonstrated the capability 
of DHTM to perform real-time, label-free monitoring of ibuprofen's concentration-
dependent and time-dependent effects on red blood cells (RBCs) from a healthy 
donor. To do so, we first validated our imaging and analysis framework for the 
screening of RBCs to identity shape changes between healthy and sickle cell disease
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donors. Additionally, we tested our methodology for the real-time monitoring of cell 
shape changes upon variations to the chemical environment, with the addition of urea 
and hydrogen peroxide-induced oxidative stress.  We then applied our DHTM-based 
approach for the label-free detection and quantification of ibuprofen-induced RBC 
shape changes. Here, we propose the employment of our DHTM-based technique for 
drug monitoring and we highlight the importance of taking into account RBC 
rheological properties when assessing safety levels for dose-dependent drug intake. 

The enduring health repercussions of the COVID-19 pandemic and its ongoing long-
term effects have initiated extensive research efforts aimed at unraveling the 
pathogenic mechanisms and comprehending the heterogeneous nature of symptoms. 
We extended the application of our DHTM- based imaging and analysis framework for 
the detection and characterization of microclots by screening plasma samples of 
COVID-19 donors.   

In order to delve into the nanoscale analysis of micrometer-sized blood clots and to 
elucidate the mechanisms by which chemicals and medications affect clot dissolution, 
we employed a combinatorial imaging platform, including DHTM and AFM analysis, to 
resolve and quantify the morphological parameters of synthetically-prepared blood 
clot fragments in aqueous solution. The proposed nanoscale investigation of fibrin-
rich clots could provide comprehensive insights into the role of blood clot morphology 
and composition in the development of targeted treatment strategies for thrombotic 
diseases. 

In the transition from cell to protein characterization using nanoscale analytics, we 
sought to investigate the dose dependent effect of Levodopa treatment on α-
Synuclein aggregation dynamics using AFM. In view of the identification of protein 
aggregates implicated in neurodegenerative disorders, like Alzheimer's and 
Parkinson's disease, in blood, it is crucial to determine the role of such medications in 
dissolving these aggregates and the potential dose-dependent adverse effects on 
blood rheology.  

Altogether, this thesis introduces an innovative imaging and analysis platform for 
clinical level screening of blood-related pathologies and drug-induced cytotoxic effect. 
As digital diagnostic hematology continues to progress, our point-of-care analytical 
tool could help develop tailored therapeutic approaches to optimize treatment 
outcomes and to mitigate the risk of drug-related side effects, thereby playing a pivotal 
role in advancing the field of personalized medicine.
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1. Introduction 

1.1. Background 

In the era of rapidly advancing biomedical technologies, innovative approaches for 
biomarker discovery, disease diagnostics, and personalized medicine are 
revolutionizing global health outcomes, making healthcare delivery more accessible 
and expeditious. Amidst these transformative developments, the comprehensive 
analysis of bodily fluids has become instrumental, providing invaluable insights into 
the physiological and pathological processes occurring within the human body. 
Biofluids, including blood, urine, cerebrospinal fluid (CSF), saliva, and sweat, 
containing a mixture of cells, proteins, metabolites, nucleic acids, and other 
biomolecules, collectively reflect an individual's biological state (Figure 1.1). 
Moreover, biofluid analysis not only enables the identification of biomarkers indicative 

Figure 1.1. Overview of biofluids and the role of biomarkers for clinical applications, 
such as disease detection and monitoring. Partly created with BioRender.com. 
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of various pathologies but also fosters a considerable understanding of the intricate 
interplay between different bodily systems [Xu & Veenstra, 2008]. Blood stands out as 
a dynamic and diverse source of information due to the abundance of cellular 
components and biomolecules it contains, including red blood cells (RBCs), white 
blood cells (WBCs), platelets, proteins, lipids, and metabolites [Bain, 2015]. The rich 
composition of blood and the minimal invasiveness of sampling make it routinely 
employed as an indispensable biofluid for disease diagnostics in the clinical setting. 
Over the years, scientific advancements have led to the identification of various blood-
based biomarkers that serve as valuable indicators of disease, paving the way for early 
diagnosis and personalized treatment strategies. 

Blood-based biomarkers encompass a wide range of molecular components within the 
blood, providing valuable information into the presence, progression, and prognosis 
of various diseases (Figure 1.2). For example, nucleic acid biomarkers, found in the 
bloodstream and including both DNA and RNA, have the capacity to carry genetic 
mutations that serve as indicators of inherited conditions or cancer-related changes 
[Schwarzenbach et al., 2011]. Additionally, cell-based biomarkers can offer insights 

Figure 1.2. Overview of blood-based biomarkers used for diagnostics and prognostics 
in the clinical practice. Created with BioRender.com. 
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into infections, immune disorders, hematological malignancies, and drug-induced side 
effects, by assessing hemoglobin levels and the count and distribution of RBCs and 
WBCs, thus enabling the diagnosis of conditions such as anemia, leukemia, and 
autoimmune diseases [Bain, 2015]. Similarly, coagulation biomarkers, such as platelet 
count, prothrombin time (PT) and D-dimer levels, play an essential role in evaluating 
the presence of coagulation disorders, thrombotic events, and monitoring 
anticoagulant therapies [Gram et al., 2014]. With the advancements in proteomics and 
mass spectroscopy, protein biomarkers have become the most prominent type of 
blood-based biomarkers, serving as critical components in assessing organ function, 
advancing early disease diagnostics, and monitoring of disease progression [Veenstra 
et al., 2005]. Furthermore, protein biomarkers have facilitated the discovery of novel 
disease biomarkers, offering a deeper understanding of disease mechanisms and 
potential therapeutic targets in the realm of neurodegenerative diseases.  

The ability to detect amyloid-β (Aβ) and tau proteins in blood makes blood a suitable 
biofluid that can mirror neuropathological changes and clinical decline in 
neurodegeneration [Carelli-Alinovi et al., 2019; Irmady et al., 2023; Iturria-Medina et 
al., 2020]. A recent example in the uncovering of blood-based biomarkers for early 
detection of neurodegenerative disorders was the observation of protein aggregates 
on RBCs that could serve as physical biomarkers for a screening platform for 
Alzheimer's disease (AD) [Nirmalraj et al., 2021]. Similarly, in Parkinson's disease, 
specific blood-based biomarkers associated with the aggregation of α-Synuclein (α-
Syn) and alterations in metabolic pathways have been explored [Barbour et al., 2008; 
Chahine et al., 2014; Foulds et al., 2013; Magalhães & Lashuel, 2022]. These 
conditions, characterized by the gradual decline of cognitive and motor functions, 
have posed significant diagnostic and therapeutic challenges. Traditionally, the 
diagnosis of neurodegenerative diseases has relied heavily on clinical symptoms and 
neuroimaging techniques, which are often invasive and expensive [Koníčková et al., 
2022]. However, recent advancements in the identification and validation of blood-
based biomarkers have the potential to revolutionize the field by offering non-invasive 
and cost-effective diagnostic tools [Chahine et al., 2014; Magalhães & Lashuel, 2022; 
Mohanty et al., 2010; Nardini et al., 2022; Nirmalraj et al., 2021]. 

Optical imaging and quantitative analysis of cell and protein structures can provide 
invaluable insights on the pathophysiology of diseases, specifically in the field of 
hematology [Kim et al., 2021]. The digitization of standard diagnostic pathology 
information has made a remarkable transformation from traditional to digital 
practices [Lin et al., 2023]. Historically, pathologists relied on glass slides and 
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microscopes to examine tissue specimens, a process limited by the physical 
distribution of samples, time-consuming workflows and the potential for human error 
[Bain, 2015]. However, advances in digital imaging technology and computational 
capabilities have enabled the digitization of tissue slides and the development of 
sophisticated image analysis algorithms [Baxi et al., 2022]. With the integration of 
digital pathology, pathologists can collaborate remotely, access vast digital data 
archives and improve automation, ultimately facilitating operation in resource-limited 
settings (Figure 1.3) [Dawson, 2022; El Alaoui et al., 2022]. This shift from traditional 
to digital pathology has not only enhanced the efficiency and accuracy of diagnosis but 
also opened doors to artificial intelligence (AI) and machine learning applications in 
pathology [Baxi et al., 2022; Lin et al., 2023]. 

Specifically, within the domain of diagnostic hematology, the automation of blood-
based analytical processes can yield substantial benefits. Morphological examination 
of blood cells constitutes an essential element for the diagnosis of blood-related 
pathologies and infectious diseases [Bain, 2015; Beck, 2009]. Presently, the evaluation 
of cell morphology continues to rely on the manual examination of blood smears 
conducted by highly-trained personnel. This approach involves labor-intensive 
procedures and demands access to expensive laboratory facilities [Lin et al., 2023]. 
Image acquisition, cell recognition and shape classification processes can be 
automated to achieve more standardized, faster, and more efficient blood smear 
analysis. Digitalized methods for morphological assessment employ digital images and 

Figure 1.3. Overview of the transition from (a) traditional to (b) digital pathology. 
Created with BioRender.com. 
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software algorithms to classify the shape and size of hematological cells, including 
RBCs and WBCs [Kim et al., 2022; Rawat et al., 2017; Yi et al., 2017; Yi et al., 2013]. For 
instance, an innovative method for the automated screening of sickle RBCs, indicative 
of sickle cell disease (SCD), was proposed by employing a 3D printed smartphone-
based microscope combined with deep learning techniques [de Haan et al., 2020]. As 
a result, this would provide a point-of-care (POC) solution for the cost-effective and 
rapid screening of SCD even in resource-limited settings. Overall, the transition to 
digital pathology holds great promise in accelerating medical research, improving 
patient outcomes, and driving the development of personalized therapies. 

Another important consideration is the integration of digital pathology into monitoring 
drug-induced effects on blood cells, leading to the development of patient-specific 
therapeutic strategies and efficient pharmacovigilance. Pharmaceutical agents, while 
designed to target specific biological pathways or diseases, can also impact 
hematopoiesis and the composition of blood [Garratty, 2010; Stoltz, 1981]. 
Hematological adverse reactions to medications can manifest as changes in blood cell 
morphology and function. By leveraging digital pathology, these alterations can be 
systematically and quantitatively assessed, providing a deeper understanding of how 
drugs impact hematological parameters and for the optimization of treatment 
regimens. Similarly, the effect of alterations to the chemical environment in the 
bloodstream on efficient oxygen transport can be assessed by monitoring RBC 
rheological properties [Sinha et al., 2015]. For instance, elevated levels of urea in the 
circulatory system, a condition known as uremia and primarily associated with chronic 
kidney disease, can be monitored by examining the occurrence of a morphological 
transition from normocytic RBCs to spherocytes and cell lysis [Khairy et al., 2010]. As 
personalized medicine continues to advance, the convergence of digital pathology and 
drug monitoring not only could enhance our capacity to customize drug therapies 
according to an individual's hematological profile but also holds great promise for 
incorporating diverse biomarkers into diagnostic and monitoring strategies, ultimately 
improving patient care. 
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1.2. The current research gap 

Alongside the emergence of novel technological advancements, current hematology 
laboratories are encountering significant challenges in the contemporary medical 
landscape. One of the foremost issues is the need and concurrent shortage of highly-
trained personnel for blood smear inspection, including experienced hematologists 
and skilled laboratory technologists, particularly in resource-limited areas [Obstfeld, 
2023]. As the demand for diagnostic testing continues to surge, laboratories are 
confronted with the rising testing volume, which often strains existing resources and 
threatens timely test result turnaround. Simultaneously, there is an increase in patient 
complexity due to the presence of multiple comorbidities, thus demanding the 
interpretation of progressively intricate blood profiles [Roberts & De Montalembert, 
2007]. Additionally, limitations in remote access to data and collaborative tools hinder 
pathologists' ability to share expertise and insights across geographical boundaries [de 
Haan et al., 2020]. Finally, inter-user variability in the interpretation of blood cell 
morphology poses a significant challenge in achieving consistent diagnostic outcomes. 
Addressing these challenges is imperative to ensure the continued effectiveness and 
efficiency of hematological diagnostics.  

1.2.1. Clinical requirements 

The digitization of diagnostic hematology processes unveils numerous prospects. 
Unlike traditional methods that rely on staining and the use of fluorescent markers to 
highlight specific cellular components, label-free imaging obviates the requirement for 
exogenous labeling agents while preserving the native state of blood cells, including 
their morphology. High-throughput and automated approaches, enabled by digital 
imaging and machine learning (ML)-based data analytics, can significantly enhance the 
efficiency of blood sample processing and analysis, facilitating the rapid screening and 
monitoring of patients. By leveraging such data-driven approaches, patterns, trends, 
and anomalies can be rapidly identified, ultimately facilitating the identification of 
novel biomarkers, the prediction of disease progression, and the tailoring of treatment 
strategies to individual patients [Walter et al., 2021]. This shift away from conventional 
"one-size-fits-all" approaches to medical treatment acknowledges the inherent 
variability among individuals in terms of genetics, metabolism, and overall health. 

In view of the current challenges in the digitization of diagnostic hematology, there is 
a need for novel label-free, high-throughput and quantitative approaches, compatible 
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with clinical settings, aimed at enabling real-time analysis and characterization of 
blood components and thereby expediting disease detection and monitoring. 

1.3. Label-free digital holotomography 

Holotomography (HT) is a laser-based microscopy technique designed for the label-
free acquisition of three-dimensional refractive index (RI) tomograms of microscopic 
specimens, including cells and tissues [Kim et al., 2021]. HT originates from the field of 
quantitative phase imaging (QPI), where both the amplitude and phase information of 
the light waves passing through a transparent specimen are converted into changes in 
brightness in the image and into a phase-shift image that is proportional to the optical 
thickness of the object, without the need for staining [Kim et al., 2021; Park et al., 
2018]. Biological samples feature a valuable natural physical marker, namely the 
refractive index, which describes how the medium impacts the propagation of light 
[Liu et al., 2016]. RI is defined as follows (Equation 1.1): 

 𝑛𝑛 =  
𝑐𝑐
𝑣𝑣

 (1.1) 

Where c is the speed of light in vacuum and v is the speed of light. By exploiting the 
refractive index as an inherent imaging contrast for transparent or phase objects, RI 
tomogram measurements offer the advantage of label-free quantitative imaging of 
microscopic phase structures [Pollaro et al., 2016]. In contrast to the conventional 
interference microscopes, such as phase contrast and differential interference 
contrast microscopy, that can only provide qualitative information, holo-tomographic 
microscopy allows for the extraction of quantitative information about the three-
dimensional morphology and the dry mass of individual cells and to perform 
continuous live cell imaging measurements of unstained cells [Barer, 1952; Kim et al., 
2021; Sandoz et al., 2019].  

One such tomographic QPI technique is digital holo-tomographic microscopy (DHTM). 
Although HT techniques have been studied in the field of cell biology since the early 
2000s, the first commercially available DHT microscope was developed in 2013 [Cotte 
et al., 2013], namely the 3D Cell Explorer (Nanolive SA, Switzerland) (Figure 1.4). DHTM 
operates based on the principles of holography and tomography. Holograms are 2D RI 
maps obtained via interferometry between the object and the reference laser beam 
(λ = 520 nm) (Figure 1.4). By acquiring multiple holographic images from different 
illumination angles through the rotation of a rotating arm 360°C around the sample, a 
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tomographic 3D reconstruction of the specimen is obtained (Figure 1.4). The 
combination of holography and tomography enables high-resolution imaging in all 
three spatial dimensions (Δx,y = 200 nm, Δz = 400 nm) and long-term monitoring of 
live cell dynamics in a label-free and non-invasive manner [Cotte et al., 2013; Pollaro 
et al., 2016]. 

DHTM has found diverse and impactful applications across various scientific 
disciplines, specifically in cell biology and in the biomedical field [Kim et al., 2021; Park 
et al., 2018]. This technique has enabled detailed investigations into cellular processes 
such as differentiation, motility, and response to stimuli, for instance in drug screening 
assays by monitoring the effects of pharmaceutical compounds on cellular behavior 
[Pollaro et al., 2016]. In particular, digital holography has been used for the rapid 
screening of blood cells, such as white blood cells (WBCs) [Yoon et al., 2015] and red 
blood cells (RBCs) [Kim et al., 2014; Memmolo et al., 2014; Moon et al., 2012], where 
the morphological and biochemical properties of thousands of single cells can be 
derived from small volumes of blood, thus allowing direct comparison to the current 
laboratory blood tests. 

Contrary to fluorescence microscopy, the label-free nature of DHTM eliminates the 
reliance on exogenous fluorescent markers and chemical fixation processes, thus 
making it suitable for high-throughput screening and enabling the acquisition of 
artefact-free and biologically-relevant findings. Given the quantitative and 
reproducible imaging capabilities of DHTM, the integration of complementary 
techniques aimed at replicating physiological or pathological conditions, such as 
microfluidic systems [Rizzuto et al., 2021; Sung et al., 2014], and the utilization of deep 
learning algorithms for rapid and automated image processing [Javidi et al., 2018; Yi 
et al., 2017], has significantly advanced the implementation of DHTM for disease 
diagnostics. 
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Figure 1.4. Overview of the DHT microscope used within the research projects presented in the context of this PhD thesis. (a) The 3D Cell 
Explorer (Nanolive SA, Switzerland) DHT microscope, with a unibody design, composed of a single aluminum piece. (b) Schematic of the 
3D Cell Explorer, depicting the key elements and working principle of the microscope. 
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1.4. Hypothesis and aim of the thesis 

This thesis hypothesizes that the tracking of the morphological, chemical and bio-
physical parameters of blood components would allow for the detection of blood-
related diseases and for the monitoring of drug-induced cytotoxic effects in blood.  

The central aim of this research is to develop an innovative imaging platform, guided 
by machine learning, for clinical level screening of pathological diseases by monitoring 
the shape, size and morphological changes occurring in RBCs. Following this approach, 
the goal is to extend our imaging and analysis framework for the detection and 
characterization of valuable disease biomarkers directly in blood, such as the presence 
of micrometer-size blood clots in COVID-19. 

The novelty of the current project over the state-of-the art lies in the development of 
a combinatorial imaging approach, consisting of high-throughput digital holo-
tomographic microscopy and high-resolution atomic force microscopy, for the 
nanoscale characterization of blood components in a label-free manner, focusing 
towards the realization of digital pathology. To this end, we focus on investigating the 
real-time dose-dependent chemical effects on RBCs and blood clots, with the ultimate 
goal of supporting clinicians in improving early disease detection, clinical prognosis 
and towards the development of more effective and personalized treatment 
strategies.  
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1.5. Outline of the thesis 

Following this introduction (Chapter 1), the thesis includes six chapters, described as 
follows: 

• Chapter 2 provides an overview of the best practices for sample preparation and 
the development of the imaging and analysis workflow for studying blood using 
label-free digital holo-tomographic microscopy.  

• Chapter 3 investigates the chemically-induced effects on red blood cell 
morphology in real time and in a label-free manner using digital holotomography 
and focuses specifically on the dose-dependent effect of ibuprofen drug.  

• Chapter 4 explores the application of digital holotomography for the detection 
and characterization of microclots directly in blood in order to assess disease 
severity in individuals with COVID-19. 

• Chapter 5 focuses on the study of chemical effects on the morphology of 
micrometer-size blood clots, highlighting the role of urea as a fibrin solubilizer. 
This is demonstrated through the use of both digital holo-tomographic 
microscopy and atomic force microscopy. 

• Chapter 6 details the interaction between Levodopa and α-Synuclein at the 
nanoscale and hints to the application of digital holotomography for the study 
of drug-induced cytotoxicity on blood cells in neurodegenerative diseases.  

• Finally, Chapter 7 summarizes the main findings of the work and provides an 
outlook for future research. 

Furthermore, the supplementary information for Chapters 3, 4 and 6 is available in 
Appendix A, B and C, respectively.
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2. Development of the imaging and 
analysis workflow for label-free 
digital holo-tomographic 
microscopy 

2.1. Best practices for blood sample preparation 

Blood is a complex bodily fluid with a precise and dynamic composition that plays a 
vital role in maintaining homeostasis and sustaining life [Weiss & Jelkmann, 1989]. It 
is primarily composed of plasma, a yellowish fluid comprising water, electrolytes, 
proteins, hormones, and waste products [Bain, 2015] (Figure 2.1). Plasma constitutes 
about 55% of total blood volume and serves as a medium for the transport of cells and 
molecules throughout the body [Bain, 2015]. The cellular components of blood 

Figure 2.1. Blood composition 
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collectively account for about 45% of total blood volume and consist of erythrocytes 
(RBCs), leukocytes (WBCs), and platelets. RBCs are specialized for oxygen transport 
and make up the majority of blood cells, while WBCs serve as the body's immune 
response, defending against infections [Bain, 2015]. Platelets are essential for blood 
clotting and wound healing [Bain, 2015]. The precise balance and regulation of these 
components is paramount for overall health, as any disruption in blood composition 
can lead to a wide range of medical conditions and diseases.  

Blood collection is a minimally invasive medical procedure used in various clinical and 
research applications. Several methods are employed to obtain blood samples, each 
tailored to specific needs [Bain, 2015] (Figure 2.2). Venipuncture collection is the most 
common method, involving puncturing a vein with a sterile needle and collecting blood 
into evacuated tubes [World Health Organization, 2010]. Alternatively, capillary blood 
sampling involves pricking the fingertip or heel to collect small volumes of blood, often 
used in pediatric and point-of-care testing [World Health Organization, 2010]. Arterial 
blood sampling, typically performed on the radial or femoral arteries, provides 
valuable information about blood gases and acid-base balance [World Health 
Organization, 2010]. For specialized applications, more invasive central venous 
catheters or arterial lines are utilized to obtain continuous blood samples or 
administer medications [World Health Organization, 2010]. Regardless of the method 
employed, strict adherence to aseptic techniques and proper patient identification is 
vital to ensure sample accuracy and minimize complications. Selecting the appropriate 
method depends on the clinical context and the specific analytes required, highlighting 
the importance of individualized approaches to blood collection in healthcare and 
research settings. 

Figure 2.2. Blood collection methods, including venipuncture collection, capillary 
sampling via fingerstick or heel stick and arterial blood collection. 
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For the imaging of blood using DHTM, a small volume of blood (~10 μL) is required for 
the assessment of cell morphology of WBCs, platelets and for thousands of RBCs. 
Hence, we mainly employed capillary blood collection by fingerstick sampling. 
Fingerstick blood sampling offers several distinct advantages in various clinical and 
research settings. First, it is minimally invasive, thus causing significantly less 
discomfort compared to traditional venipuncture, making it more tolerable for 
patients, particularly children and those with a fear of needles. Its simplicity and ease 
of use make it suitable for point-of-care testing, enabling rapid results and facilitating 
timely decision-making in clinical diagnoses. Moreover, fingerstick sampling allows for 
convenient and repeated sampling over time, essential for monitoring chronic 
conditions or assessing the dose-dependent effects of medications. Although capillary 
blood collection is not entirely immune to potential artifacts originating from the 
methodology itself, such as in coagulation assays, it is recognized as a reliable 
approach for the quantitative assessment of blood parameters, particularly when it 
comes to evaluating cell morphology [Cable et al., 2012; Fliervoet et al., 2022]. 

Using DHTM, blood can be assessed both in the wet or dry state. Sample preparation 
procedures for both methods rely on fingerstick sampling (Figure 2.3). Minimal sample 
preparation is required for imaging fresh and dry blood, including blood dilution and 
the creation of blood smears followed by coating with silicone oil, respectively. Blood 
dilution is particularly important to prevent the clustering of blood cells, particularly 
in the case of RBCs, which make up the majority of the visible cells (Figure 2.4). 
Furthermore, the use of petri dishes with a polymer coating, as opposed to an 
uncoated glass bottom, is essential for RBC imaging in order to prevent echinocytosis, 
an artifact that can occur when RBCs come into contact with glass surfaces. However, 
glass bottom petri dishes are preferred for the DHTM-based imaging of blood clots. 
For the measurement of dried blood samples, the creation of very thin blood smears 
is necessary to ensure that the cells are adequately dispersed (Figure 2.5). Additionally, 
the use of silicone oil as a coating medium, as opposed to PBS buffer, allows for 
optimal imaging and storage of the blood smears (Figure A.11). 
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Figure 2.3. Sample preparation procedures for blood imaging with DHTM. Blood is 
collected via fingerstick. (a) For blood in the wet state, blood is diluted with PBS and 
added to a petri dish for imaging. (b) For blood in the dry state, a blood smear is 
created and air-dried. A few drops of silicone oil are deposited and a coverslip is 
added on top, followed by sealing the edges with nail polish. 
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Figure 2.4. Optimization of the best combination of blood dilution (in PBS buffer) and 
volume to add to the petri dish. A dilution of 1 in 500 and a volume of 250 μL 
constitute the best solution for cell characterization in blood (green square). 
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Figure 2.5. Preparation of blood smears for DHTM imaging. (a) A thin blood smear 
ensures that blood cells are evenly distributed across the glass slide. (b) A thicker 
blood smear results in cell clustering and a worse image resolution. 
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2.2. Image processing and analysis 

Image processing and analysis provide the means to extract valuable information from 
complex visual data [Dufaux, 2021]. Employing DHTM for blood imaging requires the 
use of image analysis software capable of facilitating both 3D and 4D image processing 
and interpreting tomographic data. In our image processing and anaylsis workflow, we 
use the Imaris software for the processing of images obtained from DHTM, as well as 
for object detection, segmentation and classification. Figure 2.6 shows our image 
processing and analysis workflow for blood cell characterization. Acquired 3D images 

are exported as a single z-stack file, including 96 images corresponding to ~30 μm. 
Similarly, 4D data is exported as single 3D images (max. frame rate = 0.5 fps) and later 
merged as a video file using ImageJ. Next, 3D refractive index (RI) tomograms are 
imported into Imaris, where RI values are converted into intensity values. Imaris 
enables the 3D and 4D visualization of cells, allowing for more accurate image 
processing as opposed to software that processes each individual 2D image within the 
stack separately. A median filter is then applied in order to reduce noise without losing 
image features such as edges and sharp structures [Fan et al., 2019]. The use of a noise 
removal method as well as the type of filter should be adapted according to the nature 
of the sample. For example, when dealing with sharp structures such as those found 
in 3D RI tomograms of micrometer-sized blood clots, noise removal filters are typically 
avoided, as they could potentially eliminate crucial information from the image. Image 
segmentation is then implemented in order to eliminate the background signal and 
reconstruct the object signal in 3D through the creation of a surface. In the context of 
blood cells, segmentation also enables the detection of individual RBCs and the 
extraction of the quantitative parameters at a single cell level. Additionally, a machine 
learning (ML) classifier is used in order to achieve the automatic classification of RBC 
morphology. The decision tree classifier implemented in Imaris is a supervised ML 
method, where the data is iteratively divided based on specific parameters, ultimately 
resulting in distinct classes [Charbuty & Abdulazeez, 2021]. For RBCs, these 
parameters can include the cell diameter, thickness, sphericity, etc. Supervised ML 
algorithms require a training and a testing phase. To achieve RBC shape classification, 
a train-test data split of 33%-67% was applied. The training dataset consisted of 
individual RBCs of different morphologies imaged in blood from both healthy donors 
and donors with blood-related pathologies, such as sickle cell anemia (SCA).  
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Figure 2.6. Image processing and analysis workflow for blood imaging using label-free DHTM. Acquired images are exported as 3D RI 
tomograms and imported into Imaris. A median filter is then applied for signal noise removal. Following, image segmentation enables 
the reconstruction of the object signal without the background. A machine learning algorithm is then used in order to automatically 
classify RBC morphology. Finally, morphological and chemical parameters are extracted at a single cell levels. 
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At the end of the image processing and analysis workflow, the quantitative 
morphological and chemical parameters are automatically derived from each 
individual cell or segmented structure (Figure 2.7). In the context of RBCs 
characterization, the cell diameter, thickness, surface area, volume, sphericity, and 
hemoglobin (Hb) concentration and content, derived from the RI values, can be 
calculated. Similarly, the same parameters can be extracted from micrometer-sized 
blood clots, including clot size, fibril thickness and dry mass. In the case of 4D datasets, 
morphological and chemical parameters are extracted from every frame, providing 
both real-time qualitative and quantitative characterization. This is particularly 
valuable when investigating the impact of chemical compounds and medications on 
the morphology of RBCs and blood clots. 

Further details on the calculation of each morphological and chemical parameter, as 
well as their relevance in the context of blood rheology and blood clot structure, are 
provided in each chapter.   
  

Figure 2.7. Quantitative morphological and chemical parameters that can be extracted 
from 3D and 4D refractive index tomograms acquired with DHTM. 
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3. Label-free digital 
holotomography reveals 
ibuprofen-induced morphological 
changes to red blood cells* 

3.1. Abstract 

Understanding the dose-dependent effect of over-the-counter drugs on red blood 
cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to 
continuously record the real-time, drug-induced shape changes of RBCs in a label-free 
manner. Here, we demonstrate digital holotomography (DHTM) enabled real-time, 
label-free concentration-dependent and time-dependent monitoring of ibuprofen on 
RBCs from a healthy donor. The RBCs are segmented based on 3D and 4D refractive 
index tomograms and their morphological and chemical parameters are retrieved with 
their shapes classified using machine learning. We directly observed the formation and 
motion of spicules on the RBC membranes when aqueous solutions of ibuprofen were 
drop cast on wet blood, creating rough-membraned echinocyte forms. At low 
concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was 
transient but at high concentrations (1-3 mM) the spiculated RBC remained over a 
period of up to 1.5 hours. Molecular simulations confirmed that aggregates of 

                                                           
 
*Bergaglio, T., Bhattacharya, S., Thompson, D., Nirmalraj, P. N. Label-Free Digital Holotomography 

Reveals Ibuprofen-Induced Morphological Changes to Red Blood Cells. ACS Nanosci. Au, 3 (3), 241-255. 
2023. DOI: doi.org/10.1021/acsnanoscienceau.3c00004 
Contribution: T.B. was involved in the planning of the study, prepared the blood samples and 
conducted the holotomography and AFM measurements. T.B. performed the image processing, data 
analysis, interpretation and visualization of results. T.B wrote the original draft of the manuscript and 
revised it based on the suggestions from the co-authors. 
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ibuprofen molecules at high concentrations significantly disrupted the RBC membrane 
structural integrity and lipid order, but produced negligible effect at low ibuprofen 
concentrations. Control experiments on the effect of urea, hydrogen peroxide and 
aqueous solutions on RBCs showed zero spicule formation. Our work clarifies the dose-
dependent chemical effects on RBCs using label-free microscopes that can be 
deployed for the rapid detection of overdosage of over-the-counter (OTC) and 
prescribed drugs. 

3.2. Introduction 

The rheological properties of RBCs including deformability and aggregability help 
regulate blood flow through the circulatory system [Muravyov & Tikhomirova, 2015; 
Viallat & Abkarian, 2014]. Impaired RBC deformability can result in increased blood 
viscosity, impaired perfusion, occlusions in small blood vessels and could lead to 
ischemia [Jacob, 1975; Pretini et al., 2019]. Other factors can trigger changes to the 
membrane mechanical properties of RBCs, concentration changes of hemoglobin 
inside the cell and modifications of the RBC surface area or volume [Huisjes et al., 
2018; Iglic et al., 1998; Jaferzadeh et al., 2018; Khairy et al., 2010]. These factors range 
from the primary genetic mutations in the different forms of hereditary hemolytic 
anemia to secondary processes arising from mechanical or chemical alterations in the 
surrounding environment. The overall RBC shape change is conventionally used to 
describe RBC deformability. Failure to maintain optimal red cell deformability results 
in a lower RBC life span and contributes to the development of hemolytic anemia 
[Huisjes et al., 2018]. One pathology resulting from hemolytic anemia is sickle cell 
disease (SCD), a group of inherited hematological disorders affecting hemoglobin [G. 
J. Kato et al., 2018]. In sickle cell anemia (SCA), a significant population of RBCs are 
shaped as sickles, thus becoming less deformable, with a lower life span and with an 
increased risk of blood clot formation, infections and pain [Arishi et al., 2021; G. J. Kato 
et al., 2018]. Interactions with drugs (for example, vinblastine, colchicine and 
chlorpromazine) and signaling molecules can also negatively influence red cell 
rheological properties, by decreasing RBC deformability and increasing RBC 
aggregation [Chen & Huestis, 1997; Jacob, 1975; Muravyov & Tikhomirova, 2015]. 
Hemolytic anemia can thus be induced by a wide range of medications including 
cephalosporin-based antibiotics and oxaliplatin anti-cancer drugs [Barbaryan et al., 
2013; Chen & Zhan, 2014; Garratty, 2012]. Despite the low incidence rate of this side 
effect, drug-induced immune hemolytic anemia (DIIHA) is a serious condition most 
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observed from the use of OTC medications due to the higher risk of their misuse 
[Barbaryan et al., 2013; Martini et al., 2015]. Among these medications are 
nonsteroidal anti-inflammatory drugs (NSAIDs) widely used for their anti-
inflammatory, antipyretic and analgesic properties [Goldstein et al., 2011]. Ibuprofen 
is one such NSAID used for the treatment of rheumatoid arthritis and for the relief of 
pain, inflammation and fever [Martini et al., 2015]. In addition to increased risk of 
gastrointestinal injury, ibuprofen can influence hemostasis even at recommended 
doses, causing thrombocytopenia, reduced platelet aggregation resulting in increased 
clotting time and loss of hemoglobin, potentially leading to DIIHA [Goldstein et al., 
2011; Manrique-Moreno et al., 2011; Martini et al., 2015]. NSAID toxic side effects 
may result from their interaction with cellular membranes, which primarily act as a 
protective barrier and regulate materials transfer into and out of the cell, including 
drug delivery, based on precise molecular-level organization, fluidity and permeability 
[Di Foggia et al., 2017; Manrique-Moreno et al., 2011]. The RBC membrane can be 
considered an ideal model for the investigation of drug–cell interaction due to the 
presence of a single phospholipid bilayer membrane and the absence of internal 
organelles inside RBCs [Chen & Huestis, 1997; Di Foggia et al., 2017; Du et al., 2006].  

Hence, monitoring RBC deformability constitutes a crucial diagnostic tool, with shape 
change patterns allowing patient stratification by disease stage, and can be used in a 
pre-clinical setting to gauge the effect of pharmacological interventions on blood-
related disorders such as SCD, thalassemia, diabetes and COVID-19 [Chaichompoo et 
al., 2019; de Haan et al., 2020; Huisjes et al., 2018; Lee et al., 2017; O'Connor et al., 
2021]. Despite the well-reported interaction between ibuprofen and the lipid bilayer 
membrane [Du et al., 2006], to the best of our knowledge only one study has shown 
the potential effects of ibuprofen on RBC deformability [Manrique-Moreno et al., 
2011]. In this study, Manrique et al. [Manrique-Moreno et al., 2011] used scanning 
electron microscopy (SEM) to obtain snapshots of RBC morphological changes after 
incubation at different concentrations of ibuprofen and provide evidence for spicule 
formation on the cell membrane and echinocytosis with increasing ibuprofen dosages. 
Importantly, although RBC shape changes were observed with ibuprofen 
concentrations as low as 10 μM, the reversibility of these changes could not be 
determined due to the lack of dynamic cell behavior information. Hence, the effect of 
ibuprofen on RBC morphology and the dose-dependent interactions with the RBC lipid 
bilayer membrane remains to be clarified with high spatial clarity in real-time. 

Label-free digital holotomographic microscopy (DHTM) enables 3D morphometric 
imaging of live cells with nanoscale resolution at room temperature [Cotte et al., 



 
3. Label-free DHTM reveals ibuprofen-induced morphological changes to RBCs 

 

 
24 

 
 

2013]. Unlike fluorescent microscopy, DHTM does not rely on fluorescent labelling and 
uses a low-power laser beam that avoids phototoxic effects [Cotte et al., 2013]. Several 
studies have demonstrated the potential of digital holography in the field of 
hematology [Kim et al., 2021; Kim et al., 2014; Memmolo et al., 2014; Moon et al., 
2012; Park et al., 2018]. In particular, Kim et al. have previously demonstrated the use 
of common-path diffraction optical tomography (cDOT) for the visualization of RBCs 
and the quantification of RBC morphometric parameters [Kim et al., 2014]. Moreover, 
holotomography was employed to study the mechanobiology of RBCs upon exposure 
to Melittin [Hur et al., 2017]. Unlike previous studies, here we directly register the 
dosage dependent effect of ibuprofen on RBCs in real-time using DHTM. 

We demonstrate here a DHTM based approach for label-free detection and 
quantification of ibuprofen-induced RBC shape changes with high spatial and temporal 
resolution. As a control, we recorded the DHTM RI maps of RBCs from healthy 
individuals and from those with sickle cell anemia (SCA) and sickle cell trait (SCT) 
condition. The 3D and 4D RI tomograms were analyzed using a machine learning (ML) 
based classifier to identify difference in shapes between RBCs in healthy and 
pathological individuals (SCA and SCT). Next, we extended the imaging and analytics 
protocols to investigate the concentration and time dependent effect of ibuprofen on 
RBCs from healthy individuals. Monitoring the real-time changes in RBC morphology 
upon ibuprofen introduction from 0 to 20 minutes, we observed the formation of 
spicules on the RBC membrane, defined as echinocytosis. The nanoscopic details of 
the spicule morphology was further analyzed using atomic force microscopy (AFM) 
and the real-time motion of the spicules on RBC membrane was captured using DHTM. 
Spicule formation was observed to be reversible at lower ibuprofen concentrations 
(0.25 mM and 0.5 mM), but the normal RBC discocyte morphology did not recover 
with higher ibuprofen concentrations (1 mM, 1.5 mM and 3 mM), over a period of up 
to 1.5 hours. To understand the interaction and effect of ibuprofen molecules on RBC 
membrane morphology at experimentally inaccessible timescales of molecule–
molecule interaction (0-100 ns), we conducted atomic-scale molecular dynamics (MD) 
computer simulations. Models of membrane-bound single, very small (n=80), small 
(n=100), and large (n=1903) aggregates of ibuprofen molecules confirmed the 
extensive deformation of RBC lipid bilayer only at high concentrations with large 
aggregates of ibuprofen. Further control experimental measurements of drug-free 
RBCs in water and other chemicals such as urea and hydrogen peroxide (H2O2) 
confirmed that spicule formation only occurs with ibuprofen. These findings suggest 
that high-throughput microscopy and ML-driven automated image analysis methods 
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provide a valuable platform for the early diagnosis of blood disorders and for 
monitoring the efficiency of prescribed and OTC drugs in a simple, field-deployable 
and cost-effective manner [de Haan et al., 2020; Rawat et al., 2017]. 

3.3. Results 

3.3.1. Quantification and classification of RBCs using label-
free DHTM 

In order to deduce the chemical effects on RBCs, we first compared samples from a 
healthy donor, a donor diagnosed with sickle cell trait (SCT) and a donor diagnosed 
with sickle cell anemia (SCA). This benchmarking of the DHTM tool enabled live cell 
and artefact-free imaging. The principle and experimental scheme of DHTM is 
explained in Figure 3.1(a). DHTM allows for the fast acquisition of refractive index (RI) 
tomograms rendered in 3D that provide quantitative information regarding RBC 
morphology. Details on the preparation of RBC samples for DHTM imaging are 
provided in Methods (Figure 3.1(b)) and the demographic information on donors is 
provided in Table A.1. Figure 3.2(a) shows a 3D RI tomogram of healthy RBCs diluted 
in phosphate-buffered saline (PBS) solution, with a field of view of 90x90x30 μm. Here, 
the distinctive biconcave disciform shape of an RBC can be observed, with the inner 
part of the cell having a lower RI value compared to the outer area due to the concavity 
of the disk shape [Kim et al., 2014; Moon et al., 2012]. Figure 3.2(b) shows the 
corresponding segmented RI tomogram with the background signal removed and the 
voxels extracted for the single RBCs. The RBCs could be classified based on their 
morphology using a ML-based algorithm. As shown in Figure 3.2(c), all cells shown in 
the image were classified as normocytes. The same approach was applied to RBCs 
extracted from donors with SCT (Figure 3.2(d-f)) and SCA (Figure 3.2(g-i)). A greater 
variability in RBC morphology was evident in both SCT and SCA samples, including the 
presence of echinocytes, acanthocytes, spherocytes and sickle RBCs (Figure 3.2(f) and 
(i)). Importantly, the observed variability in cell morphology could at least in part be 
attributed to the transport and long storage time (∼15 days) between blood collection 
and analysis of the SCT and SCA samples. Long storage periods can negatively influence 
RBC rheological properties by altering RBC morphology from discocytes to 
echinocytes, creating a potential confounding effect in the assessment of RBC health, 
particularly in individuals with a blood-related pathology characterized by RBC  
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Figure 3.1. Principle of DHTM and sample preparation procedure for blood and ibuprofen solutions. (a) The holo-tomographic setup 
includes a low power laser beam (λ = 520 nm) that splits into the reference and the object beam before rejoining below the objective, 
where the interference is recorded. A 3D RI map is obtained by recording holograms with a rotational arm at 360° around the sample, 
at a 45° angle. Morphological and chemical parameters can be quantified for individual RBCs from the 3D RI tomogram. (b) 10 μL of 
whole blood is obtained from a finger prick and diluted in PBS buffer at a final concentration of 1:1000. 250 μL of blood solution is added 
to a petri dish for imaging. (c) Ibuprofen powder is obtained by crushing an ibuprofen tablet and is dissolved in PBS buffer to obtain five 
final concentrations (0.25 mM, 0.5 mM, 1 mM, 1.5 mM, 3 mM). 50 μL of each ibuprofen solution is added to the blood solution in the 
petri dish during the live cell imaging experiments. 
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Figure 3.2. 3D holotomographic imaging of RBCs and classification using machine 
learning (ML). (a) 3D refractive index (RI) tomogram of RBCs obtained from a healthy 
donor. The corresponding segmented RI tomogram and ML-classified RBC types are 
shown in (b) and (c). (d) 3D RI tomogram of RBCs from a donor with sickle cell trait 
(SCT). The corresponding segmented RI tomogram and ML-classified RBC types are 
shown in (e) and (f). (g) 3D RI tomogram of RBCs from a donor diagnosed with sickle 
cell anemia (SCA). The corresponding segmented RI tomogram and ML-classified RBC 
types are shown in (h) and (i). Field of view 90x90x30 μm. 
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morphological alterations, such as SCA [Doan et al., 2020; Moon et al., 2013]. For 
example, we observed from control experiments that blood from a healthy donor, 
diluted in PBS and stored at 4°C over a period of 11 days, resulted in the morphological 
transition of RBCs from mostly normocytes on day 0 to an increasing population of 
echinocytes over normocytes up to 70% on day 11 (Figure A.1). 

From the segmented RI tomograms, the quantitative information of the RBC 
morphological and chemical parameters, including diameter, surface area, volume, 
thickness, sphericity, hemoglobin (Hb) concentration and Hb content, was extracted 
at a single cell level (Figure 3.3). In order to assess the accuracy of the quantification 
of the RBC morphological measurements based on DHTM RI tomograms, we used 
micro-particles of silicon dioxide with nominal sizes of 2 and 5 μm (Figure A.2). The 
Imaris-based segmentation and quantification method yielded similar results in terms 
of bead diameter, surface area and volume compared to the nominal values reported 
by the manufacturer. A total of 351 healthy, 459 SCT and 230 SCA RBCs were analyzed 
and classified into RBC types (Table A.2). The measured values for normocytes were 
comparable in both healthy, SCT and SCA samples and were consistent with the 
literature, with a reported mean diameter of 8 μm (Figure 3.3(a)), mean surface area 
of 130 μm2 (Figure 3.3(b)) and mean volume of 90 fL (Figure 3.3(c)) [Canham & Burton, 
1968]. Figure 3.3(a) reveals variations in mean diameter between different RBC types. 
Stomatocytes (healthy = 6.88 μm, SCT = 6.18 μm, SCA = 7.95 μm), echinocytes (healthy 
= 6.69 μm, SCT = 6.56 μm, SCA = 7.63 μm), acanthocytes (SCT = 5.60 μm, SCA = 8.31 
μm) and spherocytes (SCT = 5.03 μm, SCA = 6.16 μm) had a lower diameter compared 
to normocytes (healthy = 7.77 μm, SCT = 7.81 μm, SCA = 8.45 μm). Conversely, sickle 
RBCs found in SCT (8.52 μm) and SCA (12 μm) samples had a higher diameter due to 
their elongated shape compared to normocytes. The values for the mean surface area 
(Figure 3.3(b)) and mean volume (Figure 3.3(c)) showed corresponding lower values 
for echinocytes (healthy: 100 μm2, 77.7 fL; SCT: 91.64 μm2, 59.28 fL; SCA: 115.79 μm2, 
75.20 fL), acanthocytes (SCT: 72.35 μm2, 43.94 fL; SCA: 110.24 μm2, 74.10 fL) and 
spherocytes (SCT: 64.46 μm2, 45.27 fL; SCA: 79.78 μm2, 52.84 fL) compared to 
normocytes (healthy: 127.51 μm2, 96.29 fL; SCT: 119.75 μm2, 79.53 fL; SCA: 129.58 
μm2, 86.88 fL). Spherocytes found in SCT and SCA samples also showed a slightly 
higher thickness (SCT = 2.26 μm, SCA = 1.77 μm) compared to normocytes (SCT = 2.03 
μm, SCA = 1.56 μm) due to the transition from a biconcave disciform shape to a 
spheroid morphology (Figure 3.3(d)). Consequently, the same pattern was found for 
the sphericity morphological parameter (Figure 3.3(e)), with values closer to 1, 
indicating a perfect sphere, (SCT = 0.94, SCA = 0.85) compared to normocytes (SCT = 
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0.75, SCA = 0.73). A similar pattern was observed in terms of thickness (Figure 3.3(d)) 
and sphericity (Figure 3.3(e)) for both echinocytes (healthy: 2.21 μm, 0.88; SCT: 1.77 
μm, 0.81; SCA: 1.67 μm, 0.75) and acanthocytes (SCT: 1.83 μm, 0.83; SCA: 1.47 μm, 
0.78) due to the tendency of these RBC types to be more spherical in shape compared 
to normal RBCs. The results from DHTM and our analysis methodology indicate that 
the RI can be used as a metric assessing Hb concentration and Hb content, as the 
cytoplasm of RBCs contains mainly Hb solution (see Methods for details on the 
calculation of Hb concentration and Hb content from RI values) [Kim et al., 2021]. 
Based on DHTM measurements, we observed a slightly higher Hb concentration and a 
corresponding lower Hb content (Figure A.3) for all RBC types compared to 
normocytes, which we attribute to the changes in RBC shape, specifically a decrease 
in RBC volume, and thus the possible rearrangement of Hb within a single RBC (Figure 
3.3(f)). The retrieved mean Hb concentration (healthy = 35.2 ± 0.5 g/dL, SCT = 35.5 ± 
1.2 g/dL, SCA = 34.4 ± 0.7 g/dL) and mean Hb content (healthy = 33.9 ± 4.0 pg, SCT = 
28.1 ± 5.3 pg SCA = 29.9 ± 4.4 pg) for normocytes are in agreement with the reference 
values for the mean corpuscular Hb concentration (MCHC) and the mean corpuscular 
Hb (MCH) reported in a complete blood count (CBC) of healthy individuals (MCHC = 
32-36 g/dL, MCH = 28-32 pg) [Bain, 2015]. 

With the imaging and analysis framework described in our study, we were able to 
optimize the DHTM based imaging technique to accurately resolve and quantify single 
RBCs in a label-free manner in both healthy and disease states. In addition, using a ML-
based classification approach, we were able to distinguish between different RBC 
types and identify morphological and chemical parameters that could be used to 
describe changes in RBC shape, as benchmarked against previous studies on RBC 
morphology using other label-free imaging methods [de Haan et al., 2020; Jaferzadeh 
et al., 2018; Kim et al., 2014; Lee et al., 2017; Memmolo et al., 2014]. 

3.3.2. Dose-dependent effect of ibuprofen on RBCs 

The dose-dependent effect of ibuprofen on healthy RBCs was evaluated in real-time 
using DHTM and analyzed using the protocols described above for the comparative 
analysis of RBCs from healthy, sickle cell trait and sickle cell anemia donors. Figure 3.4 
shows the segmented and ML-classified RI tomograms of RBCs during incubation with 
different concentrations (0.25 mM-3 mM) of ibuprofen, over a period of 20 minutes. 
An overview of the total number of analyzed RBCs for each ibuprofen concentration is 
provided in Table A.6. For all ibuprofen concentrations, the formation of spicules on  
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Figure 3.3. Quantification of size and shape variations in healthy, SCT and SCA RBC populations based on 3D tomograms. Single cell level 
comparison of (a) diameter, (b) surface area, (c) volume, (d) thickness, (e) sphericity and (f) Hb concentration between ML-based 
classified RBC types in healthy, SCT and SCA samples. Bars indicate mean values plus minimum and maximum values of all counted cells 
in each group. 
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the RBC membrane and a clear transition from normocytes to echinocytes was 
observed upon introduction of ibuprofen in the RBC environment (>34s). At low 
ibuprofen concentrations (0.25 mM and 0.5 mM) (Figure 3.4(a-b)), the loss of the 
normal biconcave disciform morphology was determined to be transient, with most 
RBCs transitioning from normocytes to echinocytes and back to normocytes within 20 
minutes (Movie A.1 and Movie A.2). However, at high ibuprofen concentrations (1 
mM, 1.5 mM and 3 mM) (Figure 3.4(c-e)), the echinocytosis deformation did not result 
in the recovery of the normocyte RBC morphology (Movie A.3, Movie A.4 and Movie 
A.5). The quantified morphological and chemical parameters for each ibuprofen 
concentration are shown in Figure A.4. In order to further investigate the dynamics of 
spicule formation, movement and ultimately dissolution across the RBC membrane, 
we imaged and quantified single cell dynamics for low and high ibuprofen 
concentrations (0.25 mM and 1.5 mM) (Figure 3.5). As shown in Figure 3.5(a), the 
segmented 3D single RBC begins transitioning into an echinocyte upon exposure to 
0.25 mM of ibuprofen (t = 44 s), with spicules forming on the RBC membrane, and 
continues to dynamically change before returning to a normal biconcave disciform 
shape at the 20 minutes time point. During this time, spicules can be observed forming 
(t = 44 s and 1:14 min), merging (t = 7:04 min), splitting (t = 7:36 min) and finally 
dissolving (t = 20 min) (Movie A.6). The corresponding variations in RI, as shown in the 
insets in Figure 3.5(a), reveal a rearrangement of hemoglobin inside the cell during the 
morphological transition, with areas containing protrusions having a higher RI value 
(1.39) compared to flatter regions (1.33). The time-dependent reversible 
morphological changes of the single RBC were quantified and are shown in Figure 
3.5(b-e). Upon the introduction of ibuprofen, the cell diameter (Figure 3.5(b)) 
decreased from 7.39 μm to as low as 6.57 μm and was followed by a gradual increase 
back to 7.87 μm at 20 minutes, associated with the transition from a normocyte to an 
echinocyte shape and later returning to a discocyte morphology. Likewise, the surface-
area to volume (S/V) ratio suffered an initial drop from 1.36 to 1.20, driven by a 
decrease in surface area unmatched by a decrease in cell volume (Figure A.5(a-b)), 
that later recovered up to 1.28. Upon the transition to a more spherical echinocyte-
shaped RBC, the cell sphericity (Figure 3.5(d)) also increased up to 0.90 and gradually 
returned within the range of a normocyte. Hb concentration (Figure 3.5(e)) was also 
subjected to a transient increase upon the introduction of ibuprofen, as reflected by 
the RI map inset in Figure 3.5(a). The higher values represent the time of spicule 
formation and movement across the RBC membrane, and the values gradually 
returning to a slightly lower Hb concentration compared to the starting point. Hb  
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Figure 3.4. 3D rendering and classification of RBCs treated with ibuprofen at varying 
concentrations during a 20-minute time-lapse using 3D digital holo-tomographic 
microscopy. (A) 0.25 mM, (B) 0.5 mM, (C) 1 mM, (D) 1.5 mM and (E) 3 mM. Red and 
yellow color coding indicates normocytes and echinocytes, respectively. Field of view 
90x90x30 μm. ibu = ibuprofen. 
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content initially decreased upon the introduction of ibuprofen and later returned to 
slightly higher values by the 20 minutes time point (Figure 3.5(c)).  

The segmented 3D individual RBCs treated with 1.5 mM ibuprofen is shown in Figure 
3.5(f) and the quantified RBC parameters are shown in Figure 3.5(g-j). At high 
ibuprofen concentration, spicules were observed forming and slightly moving across 
the RBC membrane but never dissolved by the 20 minutes time point (Movie A.7). 
Upon exposure to ibuprofen, the RBC transitioned to a sphero-echinocyte with a lower 
diameter, from 7.74 μm to 6.69 μm (Figure 3.5(g)), a reduced S/V ratio ranging from 
1.49 to 1.24 (Figure 3.5(h)) with decrease in surface area unmatched by decrease in 
cell volume (Figure A.5(d-e)), and a significant increase in cell sphericity (Figure 3.5(i)) 
up to 0.95 and later of 0.91 at the 20 minutes time point, reaching values very close 
to the sphericity of a perfect sphere. The increase in Hb concentration (Figure 3.5(j)) 
and Hb content (Figure A.5(f)) after exposure to high ibuprofen concentrations was 
associated with the morphological transition to a sphero-echinocyte, with the most 
significant protrusions showing the highest RI values (Figure 3.5(f) inset). Spicule 
movement on the RBC membrane was observed with high resolution and at a single 
cell level for all ibuprofen-treated RBCs. An example of a spicule that splits into two 
daughter spicules within a ~20 s time period is shown in Figure 3.5(k-m). Similarly, the 
dynamic dissolution of a spicule was observed in RBCs treated with low ibuprofen 
concentration and is portrayed in Figure 3.5(n-p).  

For the nanoscopic characterization of spicules on the RBC membrane, we used AFM 
in tapping mode to analyze RBCs present in air-dried blood. The blood smears were 
prepared after incubation of healthy blood with different ibuprofen concentrations 
(0.25 mM, 0.5 mM, 1.5 mM, 3 mM) for up to 1.5 hours (see Methods for details on 
sample preparation). A progressive increase in the number of echinocytes over 
normocytes was observed with increasing ibuprofen concentrations, with the majority 
of the RBCs incubated with 3 mM ibuprofen maintaining the echinocyte morphology 
after 1.5 hours (Figure A.6). In view of the 1-2 hours half-life of ibuprofen [Holstege, 
2005], we suggest that with a high ibuprofen concentrations (3 mM), echinocytosis is 
likely to persist even when ibuprofen has been excreted. Figure 3.6(a) shows a 3D 
rendered AFM height image of a single echinocyte RBC, with the white arrows 
indicating the individual spicules on the RBC membrane. The corresponding height and 
phase-contrast AFM images are shown in Figure 3.6(b-c). Variations in height between 
the flatter regions of RBC compared to the regions containing protrusions are visible 
in the AFM topograph shown in Figure 3.6(a) and were quantified using line sectional 
analysis as shown in Figure 3.6(d). Compared to the height profile extracted from a  
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Figure 3.5. RBC morphological changes upon exposure to low and high concentrations 
of ibuprofen during a 20-minute time-lapse. (a) 3D renderings of a single RBC treated 
with 0.25 mM ibuprofen showing the transient morphological alteration from a 
normocyte to an echinocyte (scale bar: x = 7.57 μm, y = 7.36 μm, z = 3.28 μm). Insets 
in (a) show the corresponding 2D RI maps at each time point. (b-e) Quantification of 
time-dependent morphological parameters: diameter, S/V ratio, sphericity and Hb 
concentration. (f) 3D renderings of a single RBC treated with 1.5 mM ibuprofen 
showing sphero-echinocytosis (scale bar: x = 7.74 μm, y = 6.92 μm, z = 2.82 μm). 
Insets in (f) show the corresponding 2D RI maps at each time point. (g-j) 
Quantification of time-dependent morphological parameters: diameter, S/V ratio, 
sphericity and Hb concentration. (k-m) 3D rendering of a single RBC treated with 0.25 
mM ibuprofen showing spicule splitting. (n-p) 3D rendering of a single RBC treated 
with 0.25 mM ibuprofen showing spicule dissolution. 
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healthy normocyte shown in green and in the inset in Figure 3.6(d), the height profile 
of the echinocyte (blue line) presents protrusions of variable sizes, ranging from ~100 
to 300 nm, and does not show the typical biconcave disciform profile. Analysis of 
surface roughness, normalized over an RBC area of 1 μm2, between ibuprofen-treated 
RBCs and healthy RBCs revealed a stark difference, with a higher mean surface 
roughness of 40.5 ± 20.8 nm for ibuprofen-treated RBCs compared to 8.9 ± 6.6 nm for 
healthy RBCs (Figure 3.6(e)). Qualitative and quantitative variations in RBC 
morphology and membrane topography are clearly distinguishable between 
ibuprofen-treated RBCs and normocytes. In order to register the size of ibuprofen 
aggregates, ibuprofen solution (concentration: 9.7 mM) was deposited on a gold thin 
film and the particles were measured using AFM. Figure 3.6(f) shows a height AFM 
image of the ibuprofen particles. The ibuprofen aggregates were measured on an 
atomically clean gold surface (surface roughness: <0.5 nm) instead of directly on the 
RBC surface because the surface of RBCs could also contain other protein aggregates, 
even in healthy donors, which can result in the misleading estimation of ibuprofen 
particle size distribution [Nirmalraj et al., 2021]. Averaging over the result from several 
line sectional profiles similar to those shown in Figure 3.6(g), we calculate a mean 
ibuprofen particle size of 13.5 nm, with confidence interval lower (CIL) bound of 11.5 
nm and confidence interval upper (CIU) of 14.9 nm. The confidence interval was 
calculated at 95% as shown in the non-gaussian statistical distribution plot (Figure 
3.6(h)). The quantitative assessment of ibuprofen particle size distribution suggests 
that ibuprofen drug molecules could be mostly present in the form of aggregates on 
the surface of RBCs. 

3.3.3. Control experiments to study the effect of other 
chemicals on RBC morphology 

In order to verify that spicule formation is a result of ibuprofen treatment, we 
performed additional control experiments to investigate the effect of drug-free 
solutions of urea (Figure A.7), H2O2 (Figure A.8) and double-distilled water (ddH2O) 
(Figure A.9) on RBC morphology. Urea is known to cross the red cell membrane and to 
weaken the membrane cytoskeleton by perturbing the structure of spectrin [Khairy et 
al., 2010]. RBCs treated with 2 M, 4 M and 6 M urea transitioned into spherocytes, 
with a lower diameter and an increased thickness, S/V ratio and sphericity (Figure 
A.7(a-c) and (e-j)). When 8 M urea was added to RBCs, spherocytosis was followed by 
vesiculation and lysis, associated with a drop in Hb concentration and Hb content,  
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Figure 3.6. Characterization of spicules on ibuprofen-treated RBCs. (a) 3D AFM image of an echinocyte. White arrows indicate spicules on 
RBC membrane. (b) and (c) Height and phase-contrast AFM images of an echinocyte. (d) Height profile extracted along the blue line 
indicated in (b) across an echinocyte. The green line indicates the corresponding height profile of a normocyte taken from the inset in 
(d). (e) Statistical distribution of surface roughness values obtained from AFM based analysis of healthy and ibuprofen-treated RBCs. (f) 
AFM height image of ibuprofen particles on gold surface. (g) Height profiles of ibuprofen particles extracted along the corresponding 
lines indicated in (f). (h) Ibuprofen particle size distribution; mean particle size: 13.5 nm, CIL: 11.5 nm and CIU: 14.9 nm. 
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within ∼2 minutes (Figure A.7(d-j)). Additionally, the effect of oxidative damage on RBC 
membrane function was assessed by introducing different concentrations of H2O2 
(2M, 4M, 6M, 8M) into the RBC environment, which resulted in a transient 
morphological transformation into stomatocytes. The stomatocytes displayed slightly 
decreased diameter and Hb concentration, markedly lower sphericity values and a 
higher S/V ratio that later mostly recovered to their original normocyte shape at the 
15 minutes time point (Figure A.8). H2O2 has been previously reported to impair RBC 
deformability by inducing oxidation of hemoglobin, alterations to membrane proteins 
and lipid peroxidation [Chen et al., 1991]. RBCs treated with ddH2O did not undergo 
any significant morphological change within ∼10 minutes, as reflected by a constant 
diameter, S/V ratio, sphericity and Hb concentration (Figure A.9). Based on these 
findings, echinocytosis was not observed as a result of urea, H2O2 and ddH2O 
treatment. In contrast, a morphological transition from normocytes to echinocytes 
was observed when imaging the RBCs in a petri dish with a glass surface (Figure A.10) 
and when storing blood diluted in PBS and stored at 4°C over a period of 11 days, in 
agreement with previous findings, highlighting the importance of studying freshly-
collected RBCs for the assessment of RBC morphology (Figure A.1) [Doan et al., 2020; 
Moon et al., 2013]. 

Taken together, the DHTM and AFM measurements provide evidence in support of a 
dose-dependent and time-dependent effect on the ibuprofen induced changes to RBC 
morphology. Our qualitative and quantitative data confirms that the RBC membrane 
undergoes distinctive changes when interfacing with ibuprofen drug molecules that 
can ultimately affect RBC morphology and RBC rheological properties. 

3.3.4. Modelling the effect of low vs. high concentrations of 
ibuprofen on the RBC membrane structure 

To understand the experimental dose-dependent effect and interactions of ibuprofen 
with the RBC membrane lipid bilayer (see Sub-section A.1.1, Figure A.12 and Table A.4 
for details of the membrane model composition), we performed extensive molecular 
dynamics (MD) computer simulations at different ibuprofen concentrations: one 
molecule of ibuprofen, which we name “single ibu”; preformed aggregates of 80 
ibuprofen molecules, “low ibu conc. I”; 100 ibuprofen molecules, “low ibu conc. II”; 
densely packed 1903 ibuprofen molecules under constant pressure, “high ibu conc. I”; 
and 1903 molecules at constant volume, “high ibu conc. II” (see Sub-section A.1.2 for 
more details on the computational models and methods). The structures formed 
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 during 0.1 μs of equilibrated, unconstrained dynamics for each system reveal that a 
single molecule of ibuprofen quickly permeates the RBC lipid outer layer (Figure 
A.13(f)) and remains bound in the lipid core. This is reflected in the improvement in 
ibu–lipid interaction energies after 10 ns (Figure A.13(k)) facilitated by favorable 
hydrophobic van der Waals (vdW) interactions of the ibuprofen propyl tail with the 
lipid aliphatic chains. The small aggregates of ibuprofen at low ibu conc. I and II make 
only transient interactions with the membrane bilayer (Figure A.13(g-h) and (l-m)) and 
remain in strongly aggregated clusters driven by ibuprofen–ibuprofen hydrophobic 
forces (Figure A.14(a-b)). Despite the favorable ibuprofen–ibuprofen vdW interactions 
(Figure A.14(c-d)), at the high ibu conc. I and II, the densely packed ibuprofen shows 
significantly improved interactions with the lipid bilayer (Figure A.14(n-o)), leading to 
disruption of the RBC bilayer as described below.  

Computed density profiles of all species (Figure A.14(e-i)) show that the thickness of 
the lipid bilayer is ~7 nm for all but the high ibu conc. II, where the bilayer is 
compressed to ∼6 nm (Figure A.14(i)). The small dip in the water density profile marks 
the position of the aggregated ibuprofen at low concentrations (Figure A.14(f-g)). By 
contrast, the water density is significantly replaced by densely packed ibuprofen near 
the outer membrane leaflet at high concentrations (Figure A.14(h-i)), also facilitating 
diffusion of several ibuprofen molecules into the membrane. There is apparent lateral 
diffusion of lipid molecules across the membrane as evident from the flattening 
density of the membrane center at high ibu conc. II (Figure A.14(i)), which otherwise 
shows a dip in membrane density at high ibu conc. I (Figure A.14(h)). This indicates the 
presence of hydrophobic tails of each leaflet facing each other sampling a dissipated 
central membrane thickness. To confirm lateral diffusion of lipids in the membrane 
due to high concentrations of adsorbed ibuprofen, we computed the mean square 
displacements (MSD) and diffusion coefficients (D) of lipid headgroup atoms (P, N, and 
O) for each system. The MSD plots reveal an increased displacement of lipid 
headgroups mediated by ibuprofen aggregates, but a significantly larger correlation of 
MSD with simulation time at high ibu conc. II (Figure A.15(a)). Similarly, the D reveals 
clear distinction between high ibu conc. II and other systems of aggregated ibuprofen 
on membrane, the former showing a significantly higher diffusivity of the membrane 
polar headgroups (Figure A.15(b)).  

We further mapped the lipid hydrocarbon tail deuterium order parameters (SCD, Figure 
A.15(c-g)) showing significant loss of lipid order at high ibu conc. II (Figure A.15(g)). 
Finally, we mapped the lipid heavy atoms number densities in the xy-plane and 
averaged over  the z-axis to obtain a top view of lipid densities in the membrane  
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Figure 3.7. Representative structures of ibuprofen (ibu) aggregates on RBC outer membrane bilayer obtained from Molecular Dynamics 
(MD) simulations of (a) low concentration of ibuprofen adsorbed on membrane, and (b) densely packed high concentration of ibuprofen 
adsorbed on membrane. (c) Total interaction energies between ibuprofen and lipid membrane at low and high concentrations. (d) 
Comparison of the diffusion coefficient, D of RBC lipid headgroup atoms (P, N and O) at low (black) and high (red) concentrations of 
ibuprofen on membrane. (e) Deuterium order parameters (SCD) of the hydrocarbon tails, SN-1 and SN-2 of Palmitoyl Oleoyl (PO) and 
Stearoyl (SSM) lipids of the RBC membrane bilayer in presence of low and high concentrations of ibuprofen. (f) Maps of average (over 
the z-axis) lipid number density in the plane (xy) of the RBC membrane bilayer. 
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(Figure A.15(h-l)). An ibuprofen concentration-dependent loss of lipid structuring 
could be observed where a single ibuprofen does not affect the lipid density (Figure 
A.15(h)), while at low concentrations, an uneven distribution is revealed (Figure A.15(i-
j)) with low-density pockets that are most prominent at high ibu conc. II (Figure 
A.15(l)). Overall, our modelling data predict that at low concentration, ibuprofen does 
not affect the RBC membrane structure (Figure 3.7(a)), but at high concentration, the 
lipid membrane is deformed (Figure 3.7(b)), due to large-area ibuprofen and lipid 
membrane interaction at high concentration (Figure 3.7(c)) driven by  hydrophobic 
vdW forces (Figure 3.7(l,o)). The significantly higher lipid diffusion coefficient 
computed at high ibuprofen concentration reveals that the lipids are in constant 
motion, while at low concentration, the polar headgroups are more stable (Figure 
3.7(d)). The disruption of lipid structural integrity at high concentration is supported 
also by the disordering of acyl carbon atoms (Figure 3.7(e)). Finally, lipid number 
density in the plane of the membrane clearly show the dense and ordered lipid packing 
at low ibuprofen concentration, as opposed to the non-uniform lipid distribution when 
highly concentrated densely packed ibuprofen is adborbed on the RBC membrane 
(Figure 3.7(f)). The data suggests that the lipid molecules undergo a substantial RBC 
membrane morphological deformation when exposed to high doses of ibuprofen but 
experience little to no change at low ibuprofen doses. 

3.4. Discussion 

In this study, we investigated the ibuprofen-induced morphological alterations to RBCs 
in real-time and in a label-free manner using DHTM. From the 3D RI tomograms, we 
tracked the formation of spicules on the RBC membrane associated with a clear 
morphological transition from normocytes to echinocytes upon exposure to ibuprofen 
drug solutions. The morphological changes in the RBCs were observed to be 
concentration-dependent and were either transient, at 0.25-0.50 mM ibuprofen 
concentrations, or never recovered their original shape, at 1-3 mM ibuprofen 
concentrations, monitored over a period of 20 minutes. The RBC morphological 
parameters were extracted from 3D RI tomograms and quantified as first 
demonstrated for healthy, SCT and SCA blood samples. The extracted quantitative 
information on ibuprofen-treated RBCs supported the qualitative evidence. All RBCs 
exposed to ibuprofen exhibited a decrease in diameter and S/V ratio, which is driven 
by a lower cell surface area and volume. This change is associated with the transition 
from normocytes to echinocytes, with simultaneous increase in sphericity and Hb 
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concentration in response to the decrease in RBC volume. Spicules were observed to 
form, merge, split and dissolve on the RBC membrane, correlating the cell shape 
alterations with the progression of both echinocytosis and spherocytosis processes. 
Both the cell parameters and shape of RBCs exposed to low ibuprofen concentrations 
(equivalent to a 200 mg and 400 mg tablet) gradually recovered after ~8 minutes from 
the introduction of ibuprofen particles, suggesting a reversible drug-induced effect on 
the RBC membrane. Previously, echinocytosis has also been observed using cell 
imaging techniques and attributed to presence of excessive EDTA, prolonged storage 
of RBCs prior to preparation of blood smears on solid surfaces and pathological causes 
such as in liver and kidney diseases [Hsi, 2017; Naeim et al., 2013].  However, in the 
present study we attribute the formation of spicules to the interaction of ibuprofen at 
high concentrations with RBCs. We deduce this result based on label-free imaging of 
healthy RBCs interacting with ibuprofen, urea (2M-8M), H2O2 (2M-8M) and ddH2O, 
where spicule formation was only observed for RBCs interacting with ibuprofen 
molecules. In particular, higher ibuprofen concentrations (equivalent to 800 mg, 1200 
mg and 2400 mg) caused RBC morphological changes that resulted in sphero-
echinocytes that did not recover to normocytes, revealing a critical dose-dependent 
effect of ibuprofen and a potential implication for side effects concerning RBC health 
and function from overdosage [Mullan et al., 2017]. 

Our results are consistent with previous findings based on SEM investigations, 
indicating progressive echinocytosis with increased ibuprofen concentrations 
[Manrique-Moreno et al., 2011]. In contrast to SEM-based investigations, we were 
able to track the dynamic behavior of RBCs upon introduction of ibuprofen and to 
determine the reversibility of the observed morphological changes over time. The 
morphological transition from a doughnut-like shape to an echinocyte morphology is 
suggested to originate from the interaction of the negatively charged ibuprofen 
particles with the RBC outer membrane bilayer, in accordance with the bilayer-couple 
hypothesis [Iglic et al., 1998; Lim et al., 2002]. An increase in the area between the 
inner and the outer monolayers of the RBC membrane, initiated by the binding of 
ibuprofen molecules, triggers echinocytosis (Figure 3.8) [Iglic et al., 1998]. Higher 
concentrations of echinocytogenic compounds may result in a sphero-echinocyte RBC 
morphology, with a more distinct spherical shape and less pronounced spicules 
[Hagerstrand & Isomaa, 1989], which is consistent with our results. Higher sphericity 
and qualitatively less sharp specular structures were observed with higher ibuprofen 
concentrations (1-3 mM). Our findings highlight the dynamic formation and 
movement of single spicules on the membrane of ibuprofen-treated RBCs in real-time  
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Figure 3.8. Summary schematic of the key findings in this study. (a) Schematic 
representation of a normocytic RBC membrane architecture showing the lipid 
bilayer, a transmembrane protein and the spectrin cytoskeleton. (b) Schematic 
representation of an echinocyte membrane architecture showing the interaction of 
one ibuprofen molecule (left) and multiple aggregates of ibuprofen molecules (right) 
with the lipid bilayer. A single ibuprofen molecule permeates and interacts with the 
RBC lipid outer layer while bigger ibuprofen molecule aggregates diffuse and deform 
the lipid bilayer, causing spicule formation. 
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and provide evidence for a dose-dependent reversibility of RBC morphological 
alterations. The shape of the RBC is dependent on the interplay between the two main 
membrane components, which are the lipid bilayer and the spectrin cytoskeleton 
[Lazaro et al., 2013; Melzak et al., 2020]. Thus, when the membrane asymmetry 
between the inner and the outer layers increases in favor of the outer layers, spicule 
formation is triggered as a natural response to the expansion of the outer leaflet 
coupled with the resistance of the cytoskeleton to the morphological distortion 
[Lazaro et al., 2013]. The theoretical elastic membrane energy model and available 
experimental data support the preferential initial spicule formation on the RBC 
contour due to the highest curvature of the cytoskeleton [Lazaro et al., 2013]. Driven 
by the continuous expansion of the outer monolayer, specular structures tend to move 
from the rim of the cell towards regions with a lower curvature, including the central 
area where the distinctive dimple is lost following the progression of echinocytosis, 
and finally distribute uniformly around the cell membrane [Melzak et al., 2020]. RBCs 
treated with higher ibuprofen concentrations showed that specular structures are 
more likely to steadily stay in place towards the later stages of echinocytosis, when a 
sphero-echinocyte morphology prevails. Before this occurs, the dynamic movement 
of spicules associated with increased membrane tension can induce spontaneous 
spicule splitting [Melzak et al., 2020; Zhu et al., 2018]. Here, a singular specular 
structure separates into two smaller daughter spicules as observed between 7:13 min 
and 7:36 min time points in Figure 3.5(k-m). Spicules are also seen dissolving (Figure 
3.5(n-p)) as the RBC shape returns to its discocyte morphology and the asymmetry 
between the two membrane leaflets is restored. Therefore, spicule motion tracking 
can provide real-time information on RBC nano-mechanics and it can act as a potential 
indicator for membrane bilayer defects [Melzak et al., 2020]. We suggest that in low 
ibuprofen concentration conditions, the rate of ibuprofen molecules interacting with 
the RBC membrane bilayer decreases over time, resulting in the transition back to a 
normocyte. With high ibuprofen concentrations, the constant interaction of ibuprofen 
molecules causes high RBC membrane asymmetry and the consequent inability of the 
sphero-echinocytes to recover their discocyte shape. Vesiculation and cell lysis are 
thought to occur at the final stages following spheroechinocytosis [Lazaro et al., 2013].  

Alterations of the normal discocyte morphology of RBCs have a direct effect on RBC 
deformability, which determines not only the rheological properties but also the 
health and life span of single RBCs [Huisjes et al., 2018; Reinhart & Chien, 1986]. 
Echinocytosis presents a rheological disadvantage characterized by higher viscosity as 
well as decreased deformability, mainly driven by the increase in sphericity, with a 
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direct impact on blood flow in large vessels and the ability of RBCs to squeeze through 
narrow capillaries, respectively [Geekiyanage et al., 2019; Reinhart & Chien, 1986]. 
The increased rigidity of echinocytes may also drive RBC aggregation, potentially 
contributing to a higher risk of occlusions of blood vessels and an impairment in the 
transport of oxygen [Jacob, 1975; Lazaro et al., 2013]. The RBC shape changes 
reported in the present study and the associated alterations to the RBC morphological 
parameters, including a reduced surface area to volume ratio and an increased 
sphericity, are in agreement with a detrimental effect of ibuprofen on RBC rheological 
properties and overall health. Importantly, in our study, the inability of RBCs to recover 
their doughnut-like morphology was solely observed with high ibuprofen 
concentrations (1-3 mM), which correspond to 800 mg, 1200 mg and 2400 mg doses 
that should never be taken all at once, without a medical prescription. The most 
commonly used ibuprofen doses of 200 mg and 400 mg, corresponding to low 
ibuprofen concentration ranges used in the present study, showed a temporary 
echinocytosis progression. The widespread availability of ibuprofen as an OTC drug 
increases the risk for overdosage and thus emphasizes the relevance of the 
observations reported in the present study in terms of drug safety. The potential risk 
from the continuous cumulative intake of standard ibuprofen doses over long periods 
of time, for instance for the treatment of rheumatoid arthritis, could not be assessed 
within the scope of this study.  

3.5. Conclusions 

In summary, the findings from our work highlight that the rheological properties of 
RBCs should be taken into account when formulating the safety levels for dose-
dependent OTC and prescribed drugs intake, particularly NSAIDs. We anticipate that 
our ML-based label-free imaging approach operable with high spatial and temporal 
resolution even in resource-limited settings could be extended for detection of 
pathologies that can adversely affect RBC morphology, such as in neurocognitive 
disorders [Nardini et al., 2022; Nirmalraj et al., 2021; Synhaivska et al., 2022] and 
transmissible diseases such as malaria [Park et al., 2008].  
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3.6. Methods 

3.6.1. Preparation of blood samples 

Whole blood was freshly obtained with the consent of a healthy donor from a finger 
prick with safety lancets (VWR). Sickle cell trait (SCT) (ZenBio, SER-PRBC-AS) and sickle 
cell anemia (SCA) (BioIVT, HMRBC-SCKD) human red blood cell samples were 
commercially obtained from a single donor, respectively (Table A.1). For all blood 
samples, 10 μL of fresh blood was diluted in 10 mL PBS buffer (VWR) as a stock blood 
solution and 250 μL of the stock solution was transferred in a 35-mm Ibidi ibiTreat μ-
Dish (Ibidi GmbH, Germany) for DHTM imaging. For AFM measurements, blood smears 
were prepared using 10 μL of fresh blood on SuperFrost glass slides (VWR) and were 
air-dried for 10 minutes. 

3.6.2. Preparation of urea, H2O2 and ibuprofen solutions 

Urea and H2O2 solutions were prepared by dissolving powder urea (∼0.48 g/mL, Merk 
Millipore) and 30% H2O2 (Merk Millipore) in ddH2O, respectively. 2M, 4M, 6M and 8M 
stock solutions were prepared for both urea (Figure A.7) and H2O2 (Figure A.8). For 
each experimental condition, 50 μL of stock solution were added to 250 μL of stock 
blood solution in the petri dish after ∼40s from the start of the live holo-tomographic 
video acquisition. The same volume of ddH2O alone was also tested as control (Figure 
A.9). Ibuprofen powder was obtained by crashing a 400 mg ibuprofen tablet (Mylan 
Pharma GmbH; stored under standard laboratory conditions) and stock solutions were 
prepared by dissolving ibuprofen (2 mg/mL) in 2 mL of PBS (VWR) (Figure 3.1(c)). Five 
concentrations of ibuprofen solution were prepared (0.25 mM, 0.5 mM, 1 mM, 1.5 
mM and 3 mM). Based on the healthy donor weight of 60 kg and estimated blood 
volume of 65 mL/kg, the ibuprofen stock solutions corresponded to ibuprofen dosages 
of 200 mg, 400 mg, 800 mg, 1200 mg and 2400 mg and ibuprofen plasma 
concentrations of 51 μg/mL, 103 μg/mL, 205 μg/mL, 308 μg/mL and 615 μg/mL 
[Martini et al., 2015] (Table A.5). 50 μL of each ibuprofen stock solution was added to 
the blood cells as described above. For AFM measurements, 250 μL of healthy blood 
was incubated with 50 μL of each ibuprofen solution for 1.5 hours at 37°C, after which 
10 μL was deposited on a glass slide and air-dried for 10 minutes. Additionally, 10 μL 
of ibuprofen solution (9.7 mM) was deposited on a gold thin film and air-dried 
overnight before imaging. 
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3.6.3. Label-free digital holo-tomographic microscopy 

Label-free holo-tomographic imaging was performed using a 3D Cell Explorer 
microscope (Nanolive SA, Switzerland). During imaging, a top-stage incubator (Okolab 
srl, Italy) was used in order to control temperature (25°C), humidity and CO2. 4D RI 
tomograms were obtained at the highest temporal resolution of one frame every two 
seconds. Prior to each measurement, the petri dish containing the stock blood solution 
was placed inside the chamber of the top-stage incubator and the cells were allowed 
to sediment to the bottom of the petri dish for 10 minutes before imaging. For DHTM 
imaging of ibuprofen- treated blood smears, 25 μL of silicone oil (5 cSt, Merk Millipore) 
was added on the smear and a coverslip was placed on top and sealed with nail varnish 
(Figure A.11). Silicone oil was previously demonstrated to be a protective layer of 
cellular structures to conduct high resolution imaging under standard laboratory 
conditions by circumventing buildup of hydrocarbon and ambient contaminants 
[Nirmalraj et al., 2018].  

3.6.4. Atomic force microscopy 

AFM measurements were performed on air-dried blood smear samples using the 
NaniteAFM with scan head 110 μm (Nanosurf AG, Switzerland). The glass slide was 
mounted onto the sample stage using the Nanite sample holder and the integral 
topview camera was used to locate a region of interest and to position it under the 
cantilever. The sideview camera was then used to perform an initial approach of the 
cantilever to the sample before the AFM final automatic approach. A Dyn190AI-10 
AFM cantilever (Nanosurf AG, Switzerland) with self-alignment grooves, aluminium 
reflection coating, force constant 48 n/m and resonance frequency 190 kHz was used 
in phase contrast mode. Large-area 80 μm x 80 μm AFM images were obtained in 
order to identify non-overlapping RBCs, subsequently followed by single cell ∼13 μm x 
13 μm high-resolution AFM images. All AFM measurements were conducted at a scan 
rate between 0.5 Hz and 1.3 Hz. For imaging ibuprofen particles AFM measurements 
were conducted using multimode AFM (Bruker) using Scout 70 HAR Si tips (70 KHz, 
2N/m) on ibuprofen particles deposited on gold thin films on mica substrate (Phasis 
Inc).  
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3.6.5. Image processing and analysis 

3D and 4D stacks obtained via DHTM were exported as TIFF files and imported into 
Imaris 9.8 (Bitplane AG, Switzerland). First, stacks were 3D cropped in the z-axis in 
order to include only slices that contained cells. Next, a 3x3x3 median filter was 
applied as a noise removal filter. Finally, a surface was fitted with background 
subtraction and automatic thresholding in order to achieve single cell segmentation. 
Additional filters were applied to the segmented image in order to filter out 
overlapping cells that could not be separated as well as partial cells touching the XY 
image borders. The morphologically-relevant features were quantitatively measured 
at the single cell level with Imaris, including the cell diameter, surface area, volume, 
thickness, sphericity and mean RI (Table A.3). The Hb concentration was calculated 
from the mean RI value of each single RBC, obtained from the 3D RI tomograms, using 
the following formula [Phillips et al., 2012]: 

𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �
𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛𝐻𝐻2𝑂𝑂

− 1� ∗
1
𝛼𝛼

 

where 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅  is the mean RI value of the RBC, 𝑛𝑛𝐻𝐻2𝑂𝑂 is the RI of water (1.333) and α is 
the wavelength-dependent RI increment for RBCs, which was set to 0.001983 for λ = 
520 nm [Friebel & Meinke, 2006]. The Hb content was calculated for each single RBC 
by multiplying the 𝑉𝑉 by the 𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 [Kim et al., 2014]. For 4D tomograms, the 
fitted surface was tracked during the entire duration of the time-lapse and the 
morphological features extracted for each individual frame. For the quantification of 
3D and 4D tomograms, the mean values for all measured RBCs were reported for each 
morphological and chemical feature. In order to benchmark the measurements for the 
morphological parameters with DHTM, we used micro-particles based on silicon 
dioxide (Merk Millipore) with diameters of 2 μm and 5 μm. The micro-particles were 
diluted in PBS, added to a glass slide and a coverslip was placed on top and sealed with 
nail polish in order to prevent drying. The morphological parameters were quantified 
with Imaris as described above and compared to the nominal values provided by the 
manufacturer (Figure A.2). For the ML-based classification, Imaris ML feature based 
on Random Forest classification was used. A train-test data split of 33%-67% was 
applied for each experimental condition. During the training phase, single RBCs were 
manually annotated based on their morphology as normocyte, stomatocyte, 
echinocyte, acanthocyte, spherocyte, ovalocyte, helmet cell, sickle cell and teardrop 
cell (Table A.2). Next, the classifier predicted the morphology of the remaining cells 
based on the training data. All predictions were manually checked for accuracy in view 
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of the low prevalence of some RBC types. For 4D tomograms, the ML-based 
classification was applied to each individual frame. For AFM image processing, the raw 
AFM data were analyzed using open source software Gwyddion 2.60. 2D levelling and 
scan line correction were applied before extraction of the height profile and surface 
roughness (RMS roughness, Sq) values. For the analysis of surface roughness 
distribution between healthy and ibuprofen-treated RBCs, a total of 250 single RBCs 
were analyzed for each sample. To calculate the size distribution of ibuprofen 
particles, a total of ∼500 were analyzed. 

3.6.6. Molecular dynamics simulations 

Modelling 

The details of modelling RBC membrane bilayer with CHARMM-GUI [Lee et al., 2019; 
Wu et al., 2014] based on the in silico lipid composition of the model erythrocyte 
membrane in ref. [Chan et al., 2020] is provided in Sub-section A.1.1. Details of 
preparation of the five ibuprofen-lipid systems and molecular dynamics simulations 
with Gromacs 2018.4 [Abraham et al., 2015] package using Charmm36m [Huang et al., 
2017] force field to represent lipids and CHARMM General force field 
[Vanommeslaeghe & MacKerell, 2012; Vanommeslaeghe et al., 2012] (CGenFF) to 
represent ibuprofen is provided in Sub-section A.1.2. Analyses of ibu–lipid and ibu–
ibuprofen interaction energies, lipid headgroup mean square displacements (MSD) 
and diffusion coefficients (D), lipid hydrocarbon tail deuterium order parameters (SCD), 
and lipid heavy atom number density maps were performed by using Gromacs tools. 
The computed interaction energies plotted are normalized per ibuprofen molecule. 
The models were visualized using VMD [Humphrey et al., 1996]. 
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4. 3D holo-tomographic mapping of 
COVID-19 microclots in blood to 
assess disease severity* 

 

This chapter is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International l License 

 

4.1. Abstract 

The coronavirus disease 2019 (COVID-19) has impacted health globally. Cumulative 
evidence points to long-term effects of COVID-19 such as cardiovascular and cognitive 
disorders diagnosed in patients even after the recovery period. In particular, 
micrometer-sized blood clots and hyperactivated platelets have been identified as 
potential indicators of long COVID. Here we resolve microclot structures in plasma of 
patients with different subphenotypes of COVID-19 in a label-free manner, using 3D 
digital holo-tomographic microscopy (DHTM). Based on 3D refractive index (RI) 
tomograms, the size, dry mass, and prevalence of microclot composites were 
quantified and then parametrically differentiated from fibrin-rich microclots and 
platelet aggregates in the plasma of COVID-19 patients. Importantly, fewer microclots 
and platelet aggregates were detected in the plasma of healthy controls when 
compared to COVID-19 patients. Our imaging and analysis workflow is built around a 
commercially available DHT microscope capable of operation in clinical settings with a 
two-hour time period from sample preparation, and data acquisition to results. 
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4.2. Introduction 

Coronavirus disease 2019 (COVID-19) is a complex disorder caused by infection with 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and affects many 
bodily functions, including excessive immunological response, autoimmunity, and 
endothelial dysfunction, that have been implicated in the risk of thrombotic events 
and coagulopathies [Bikdeli et al., 2020; Grobler et al., 2020; Gupta et al., 2020; Kell et 
al., 2022; Leng et al., 2023; Pretorius et al., 2021; Rahi et al., 2021]. While the acute 
phase of COVID-19 primarily manifests as a respiratory illness, with a wide range of 
symptoms including fever, headache, cough, fatigue, muscle pain, and shortness of 
breath, more severe clinical symptoms, such as systemic inflammatory response 
syndrome (SIRS), acute respiratory disease syndrome (ARDS), neurological and 
cardiovascular complications, have been associated with processes underlying 
coagulopathies and endotheliopathies [Bikdeli et al., 2020; Monje & Iwasaki, 2022; 
Pretorius et al., 2021]. Currently, it is estimated that approximately 30% of individuals 
with COVID-19 continue to suffer from a variety of different symptoms involving 
specific or multiple organ systems, with neurological, neuropsychiatric, and 
cardiorespiratory clinical presentations [Monje & Iwasaki, 2022; Pretorius et al., 2022], 
a condition known as post-acute sequelae of COVID (PASC) or long COVID [Monje & 
Iwasaki, 2022; Schiavone et al., 2023; Scholkmann & May, 2023]. Fatigue, cough, 
dyspnea, chest pain, headache, dizziness, cognitive impairment known as 'brain fog', 
and long-term smell and taste dysfunction are the most commonly reported 
symptoms in individuals suffering from long COVID [Nalbandian et al., 2021; Pretorius 
et al., 2022; Schiavone et al., 2023]. The World Health Organization defines long COVID 
as a condition in which individuals with a probable or confirmed infection with SARS-
CoV-2 still experience COVID-19-related symptoms usually three months post-
infection and lasting for at least two months, with no alternative diagnosis [World 
Health Organization, 2021]. Endotheliopathy, coagulopathy, and thrombosis are also 
now established complications of COVID-19 and can persist in individuals diagnosed 
with long COVID, contributing to the pathogenesis and clinical manifestations of these 
conditions [Leng et al., 2023; Ranucci et al., 2023; Thompson et al., 2023; Turner et al., 
2023]. 

The pathogenic mechanisms underlying coagulopathy in COVID-19 and long COVID are 
complex and multifactorial, including a patient’s pre-existing conditions [Rahi et al., 
2023; Russell et al., 2023]. The presence of SARS-CoV-2 has been detected within 
endothelial cells, suggesting a direct viral effect on the vascular system [Ackermann et 
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al., 2020; Grobbelaar et al., 2021]. Additionally, the dysregulated immune response 
triggered by the viral infection can lead to excessive inflammation and cytokine 
release, further promoting a pro-thrombotic state [Perico et al., 2021]. More 
specifically, COVID-19-related coagulopathy was associated with elevated levels of von 
Willebrand Factor (VWF), D-dimer, fibrinogen, and markers of platelet activation, as 
well as damaged red blood cells (RBCs) and reduced fibrinolysis, reflecting ongoing 
coagulation activation [Grobler et al., 2020; Luzak et al., 2023; Venter et al., 2020]. In 
long COVID, persistent coagulation abnormalities may contribute to the chronic and 
debilitating symptoms experienced by affected individuals [Lee et al., 2021; Leng et 
al., 2023; Monje & Iwasaki, 2022]. The formation of microclots, or microthrombi, 
within the pulmonary vasculature has been observed, contributing to respiratory 
compromise [De Michele et al., 2022; Kell et al., 2022; Pretorius et al., 2020]. The 
mechanisms underlying these persistent coagulation disturbances are not yet fully 
understood, but they may involve a combination of residual inflammation, immune 
dysregulation, and vascular damage [Gupta et al., 2020; Kell et al., 2022; Rahi et al., 
2021].  

The incidence of microvascular injury in COVID-19 patients has been detected in the 
lungs, brain, heart, and other organs during autopsy, using magnetic resonance 
imaging (MRI) and upon histological examination [Gąsecka et al., 2021; Lee et al., 
2021; Wallace Collett et al., 2021; Wool & Miller, 2021]. Previously, Pretorius and co-
workers [Pretorius et al., 2020] reported on the presence of microclots in COVID-19 
platelet-poor plasma (PPP), using thioflavin T (ThT) staining and fluorescent 
microscopy. These microclots, ranging in size between 1 and 200 μm, were 
determined to be amyloidogenic, indicated by the positive ThT signal, suggesting a 
more anomalous clot structure characterized by extensive ß-sheet structures and 
presenting resistance to fibrinolysis [Grobbelaar et al., 2021; Kell et al., 2022; Pretorius 
& Lipinski, 2013; Pretorius et al., 2016; Pretorius et al., 2021]. Due to their size, 
microclots are known to block micro-capillaries and prevent efficient oxygen transport 
through the blood circulation, which seems to be responsible for part if, not most of, 
the symptomatology in both acute and long COVID [Han et al., 2023; Kell et al., 2022; 
Perico et al., 2021].   

Scanning electron microscopy and microfluidic-based studies have also provided 
insights into the coagulation mechanisms in COVID-19 and long COVID compared to 
healthy plasma by inducing blood clot formation with/without thrombin and SARS-
CoV-2 spike protein [Baker et al., 2023; Grobbelaar et al., 2021]. Denser structures 
with thicker fibrils in the range of ~50-150 nm in diameter were observed, in addition 



 
4. 3D holo-tomographic mapping of COVID-19 microclots in blood 

 

 
52 

 
 

to increased clot rigidity and platelet hyperactivation in the COVID-19 samples.  
Additionally, proteomic-based analysis of microclots revealed the presence of 
additional plasma proteins, including VWF, complement factors, C-reactive protein, 
α2-antiplasmin and the SARS-CoV-2 virus, which may induce the production of 
different prothrombotic autoantibodies [Baker et al., 2023; Grobler et al., 2020; Kell 
et al., 2022; Kruger et al., 2022; Zuo et al., 2020].  

To date, evidence for the presence of microclots in the plasma of COVID-19 and long 
COVID patients has been mainly obtained using in vitro ThT staining and fluorescent 
microscopy [Pretorius et al., 2022; Pretorius et al., 2020; Pretorius et al., 2021]. 
Currently available diagnostic methods for the assessment of coagulopathies include 
qualitative assessment using ThT labeling-based fluorescent microscopy, or using 
semi-quantitative Thromboelastography (TEG) and D-dimer analysis [Grobler et al., 
2020; Kell et al., 2022; Laubscher et al., 2021; Pretorius et al., 2021]. Importantly, the 
presence of high levels of D-dimer can serve as an indicator for the production of blood 
clots and subsequent adequate fibrinolysis but does not sufficiently reflect the nature, 
composition, and number of the residual microclots in circulation [Kell et al., 2022]. 
Hence, it would be highly desirable to devise a methodology that would allow for 
direct determination of microclot morphology, composition, and prevalence in blood 
in a label-free manner compatible with operating even in resource-limited clinical 
settings. To address this pending need, we have developed an imaging methodology 
based on digital holo-tomographic microscopy (DHTM) to three-dimensionally map 
microclot structure and composition in plasma samples from patients diagnosed with 
COVID-19, with high spatial resolution and in a label-free manner. In this study, we 
have resolved chemically fixed micrometer-size blood clots and used them as samples 
for optimization of imaging protocols, and then extended the DHTM-based imaging 
methodology to directly characterize microclots in plasma under standard laboratory 
conditions. No fixation protocols were used to prepare the microclots in plasma 
samples.  

First, the refractive index (RI) maps of synthetically prepared blood clot fragments in 
aqueous solution from a healthy individual and a convalescent COVID-19 patient were 
registered using DHTM (see Methods section for details on clot synthesis procedure). 
The structural information and blood clot composition were quantified by segmenting 
and digitally staining the 3D RI tomograms, to identify differences in size and 
composition between blood clot types. Raman spectroscopy measurements were also 
conducted to further characterize the blood clot structure and composition. Next, we 
extended the imaging and analysis protocols to directly examine the plasma of 
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individuals with different COVID-19 subphenotypes, including COVID-19 positive and 
recovered. Microclots with varying structure and composition were detected in 
plasma samples from all the COVID-19 patients, regardless of symptom severity. 
Microclots were classified based on their composition as either microclot composites, 
fibrin-rich microclots or platelet aggregates. To understand whether microclot 
structure and composition would differ between COVID-19 subphenotypes, we 
quantified the overall size distribution and prevalence of microclot subtypes in plasma 
from COVID-19 compared to healthy donors. Our findings highlight that label-free 
high-throughput microscopy can be used as a point-of-care technique to visualize and 
quantify the presence of microclots directly in plasma without the need for 
complicated sample preparation techniques. Knowledge gained from such microclot 
analytics could be useful for developing effective treatment strategies to prevent and 
manage thrombotic complications in COVID-19 and long COVID patients, thereby 
improving patient outcomes. 

4.3. Results 

4.3.1. Label-free digital holo-tomographic microscopy of 
synthetically prepared blood clots 

Previously, we have shown that DHTM can be used to visualize and quantify the 
morphometry of red blood cells as they interact with ibuprofen drug in a non-invasive 
and label-free manner, with high spatial resolution [Bergaglio et al., 2023a]. In the 
current study, we first extended the use of DHTM (Figure B.1) to resolve the structure 
and composition of synthetically prepared blood clot fragments in aqueous solution 
(Figure 4.1). Blood from a healthy and a convalescent COVID-19 donor was collected 
and allowed to clot before imaging with DHTM (Methods). Details on the demographic 
information of the donors are provided in Table B.1. Figure 4.1(a) shows the 3D 
refractive index (RI) tomogram of synthetically prepared blood clot fragments from a 
healthy donor, revealing differences in the structural composition based on variations 
in RI values. From the corresponding segmented RI tomogram (Figure 4.1(b)), 
micrometer-sized blood clot fragments were digitally stained based on the RI values 
(Figure 4.1(c)) and a color-coded label was assigned to discriminate between different 
structural components, including fibrin strands and non-fibrin structures. The same RI 
classification was applied to spatially well-resolved blood clot fragments obtained 
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from a COVID-19 donor (Figure 4.1(d)), revealing similar structural components 
depicting a net-like fibrin network with smaller and circular non-fibrin structures. 

To further understand the compositional differences within a micrometer-size blood 
clot structure, we performed Raman spectroscopy on the same samples (Methods) 
used previously for DHTM measurements based on which data are shown in Figure 
4.1(a) and Figure 4.1(d) were obtained. Figure 4.1(e) shows the Raman spectra 
collected from synthetically prepared blood clot fragments of healthy (black spectrum) 
and COVID-19 (red spectrum) donors. Spectrochemical analysis revealed the presence 
of signal peaks in the spectral regions associated with the presence of fibrin (976, 
1248, and 1342 cm-1) [Virkler & Lednev, 2010], hemoglobin (567, 1000, 1368, 1542, 
and 1575 cm-1) [Atkins et al., 2017; Virkler & Lednev, 2010], and lipids (1266, 1300, 
1444 and 1655 cm-1) [Blat et al., 2019]. The averaged spectral signature of blood clot 
fragments from a patient with COVID-19 presented spectral similarities to the healthy 
blood clots in the hemoglobin and lipid regions. In the hemoglobin region, an increase 
in the intensity of the peak at 561 cm-1 was detected in the COVID-19 blood clots, 
indicative of stretching of the Fe-O2 bond [Atkins et al., 2017]. In contrast, a decrease 
in the intensity of the peak at 1360 cm-1 was observed in the COVID-19 compared to 
the healthy blood clots. In the lipid regions, a decrease in the intensity of the peaks at 
1266 cm-1 and 1655 cm-1 as well as the peaks at 1305 cm-1 and 1450 cm-1 was detected 
in the COVID-19 blood clot samples. These peaks are associated with unsaturated and 
saturated lipids, respectively [Blat et al., 2019]. In the fibrin regions, a maximum peak 
at 976 cm-1 was detected in the COVID-19 but not in the healthy blood clot fragments. 
Here, the presence of a peak at 937 cm-1 may be indicative of a shift of the fibrin band 
in the healthy blood clots. In contrast, both blood clot samples presented a maximum 
peak in a secondary fibrin region at 1342 cm-1, with a lower signal intensity in the 
COVID-19 blood clot fragments. The peak at 1100 cm-1 observed only in the blood clot 
fragments from a donor with COVID-19 has been previously reported to stem either 
from ghost RBCs or from heme present in biological samples [Atkins et al., 2017; Blat 
et al., 2019; Virkler & Lednev, 2010]. Such differences in the spectra between the 
healthy and COVID-19 blood clot samples may be indicative of changes occurring in 
the overall structure and composition of blood clots. The Raman spectroscopy data 
presented here is based on a combined average on several blood clot fragments 
distributed across the surface. 

The structural parameters of healthy and COVID-19 blood clot fragments were 
extracted and quantified, including the overall size, the fibrin fibrils diameter, and the 
dry mass. A two-sample t-test revealed a significant increase in clot length (healthy: 
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50.1 ± 18.9 μm; COVID-19: 66.2 ± 21.5 μm) (Figure 4.1(f)) and width (healthy: 31.0 ± 
14.5 μm; COVID-19: 49.1 ± 19.8 μm) (Figure 4.1(g)) in COVID-19 compared to healthy 
blood clots, suggesting an overall difference in the size of the clot fragments. In 
addition, the diameter of the fibrin fibrils was significantly larger in the COVID-19 
compared to the healthy samples (healthy: 0.64 ± 0.13 μm; COVID-19: 0.77 ± 0.14 μm) 
(Figure 4.1(h)). Finally, the dry mass was obtained from the RI measurements 
(Methods). No significant difference was detected between the healthy (5.90 ± 1.57 
g/dL) and COVID-19 (5.26 ± 1.5 g/dL) samples (Figure 4.1(i)), indicating a comparable 
structural composition of the analyzed blood clot fragments. 

4.3.2. Structural analysis of microclots in COVID-19 plasma 

The described DHTM imaging and analysis protocol was employed to assess the 
presence of microclots in plasma of five patients with COVID-19 (Table B.2). Different 
COVID-19 subphenotypes were identified, depending on the presence (positive or 
recovered) and severity of symptoms (mild, moderate, asymptomatic) at the time of 
blood collection. Microclots of varying sizes were observed during DHTM 
measurements in plasma from all five patients. The detected microclots were 
classified based on their composition: (i) microclot composites, defined as 
micrometer-size clot structures with mixed composition of plasma proteins [Kruger et 
al., 2022]; (ii) fibrin–rich microclots, defined as micrometer-size clot structures with 
prevalent fibrin fibrils and (iii) platelet aggregates, defined as aggregated platelets of 
different sizes depending on the number of platelets (<10 platelets, 10-50 platelets 
and >50 platelets). Microclots were found in all the analyzed COVID-19 plasma 
samples, regardless of age, symptomatology, and IgG and IgM antibody levels. Figure 
4.2 shows the results of the DHTM-based analysis of plasma collected from a 27-year-
old female patient (donor identified as sample PLS-CVDP2) with a COVID-19 positive 
and mild symptomatology subphenotype (Methods). The 3D RI tomograms show 
highly aggregated platelets and the presence of a fibrin-rich microclot of moderate 
size (∼35 μm) (Figure 4.2(a,c)). The microclot structures were segmented and 
classified based on the microclot type and platelet aggregate size (Figure 4.2(b,d)). To 
morphologically characterize the microclots, the size, and the dry mass were extracted 
and quantified from the RI tomograms (Methods). Fibrin-rich microclots were bigger 
in size (mean = 23.2 ± 7.9 μm) compared to microclot composites (mean = 16.5 ± 5.6 
μm), likely due to the length of the fibrin strands in a network format (Figure 4.2(e)). 
In contrast, the dry mass did not differ between the microclot structures (fibrin-rich 
microclots = 14.2 ± 0.7 g/dL, microclot composite = 14.9 ± 0.7 g/dL) (Figure 4.2(f)).   
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Figure 4.1. Structural and spectrochemical analysis of synthetically prepared fixed 
blood clots in aqueous solution. (a) Refractive index (RI) tomogram of a blood clot 
fragment obtained from a healthy donor. (b) Corresponding segmented RI tomogram 
and (c) digital RI staining for fibrin (blue) and non-fibrin structures (yellow). (d) Digital 
RI staining for fibrin (blue) and non-fibrin structures (yellow) of a blood clot obtained 
from a donor with COVID-19. (e) Averaged spectral signatures of blood clots obtained 
from a healthy donor (black line) and a donor with COVID-19 (red line). Quantification 
of (f) length, (g) width, (h) fibrin fibril diameter and (i) dry mass of blood clots from a 
healthy donor and a donor with COVID-19. 
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The size of platelet aggregates differed markedly based on the number of platelets 
(<10 platelets = 2.6 ± 1.3 μm, 10-50 platelets = 13.8 ± 8.2 μm, >50 platelets = 26.8 ± 
9.1 μm), with platelet aggregates of >50 platelets reaching sizes of up to 45 μm (Figure 
4.2(g)). No major differences were observed in the dry mass of the platelet aggregates 
(<10 platelets = 15.3 ± 1.3 g/dL, 10-50 platelets = 15.7 ± 1.0 g/dL, >50 platelets = 15.7 
± 0.7 g/dL) (Figure 4.2(h)), likely because these microclot structures are composed of 
mostly platelets. A total of ∼4 microclot composite structures, ∼5 fibrin-rich 
microclots, and ∼1570 platelet aggregates were observed in 75 μL of plasma (Figure 
4.2(i)), indicating extensive platelet pathology characterized by aggregated platelets in 
plasma from patient PLS-CVDP2.  

Next, we analyzed the plasma of a 26-year-old female patient (donor identified as 
sample PLS-CVDP1) with a COVID-19 positive and moderate symptomatology 
subphenotype (Figure 4.3 and Methods). A total of ∼20 microclots were detected in 
75 μL of plasma, classified as either microclot composite (Figure 4.3(a)) or fibrin-rich 
microclots (Figure 4.3(c,e)). The segmented and classified 3D RI tomograms show the 
spatially magnified structure of a microclot composite (Figure 4.3(b)) and reveal the 
presence of single fibrin fibrils in the plasma of this individual (Figure 4.3(d,f)). A clear 
size difference was observed between the two types of microclot structures (Figure 
4.3(g)). Similar to the PLS-CVDP2, the measured fibrin-rich microclots appeared larger 
in size (mean = 24.0 ± 6.7 μm) compared to the microclot composites (mean = 8.1 ± 
8.0 μm). Interestingly, the dry mass did not differ between microclot structures (fibrin-
rich microclots = 12.9 ± 0.5 g/dL, microclot composite = 13.4 ± 1.9 g/dL), except two 
microclot composites (Figure 4.3(h)). Overall, the described COVID-19 subphenotype 
was characterized by prevalent microclot composite structures and a few fibrin-rich 
microclots (Figure 4.3(i)). Platelet clumping was not observed in plasma from donor 
PLS-CVDP1. 

Finally, we report the analysis of plasma collected from a 23-year-old female patient 
(donor identified as sample PLS-CVDR2) with a COVID-19 recovered and mild 
symptomatology subphenotype (Figure 4.4 and Methods). The presence of microclots 
was detected in 75 μL of plasma, despite this patient being classified as COVID-19 
recovered and no longer experiencing symptoms at the time of blood collection. 
Microclot composites (n = 16) presented varying morphologies, including more dense 
structures with fibrin fibrils (Figure 4.4(a-b)) and net-like structures intertwined with 
platelets (Figure 4.4(c-f)). Platelet clumping was also observed (n = 83) (Figure 4.4(g-
h)). The size of fibrin-rich microclots and microclot composites did not significantly 
differ (fibrin-rich microclots = 19.0 ± 1.6 μm, microclot composites = 20.1 ± 19.1 μm) 
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Figure 4.2. Structural analysis of microclots in plasma of a COVID-19 positive patient 
with mild symptomatology (PLS-CVDP2). (a) Refractive index (RI) tomogram of 
platelet aggregates in plasma. (b) Corresponding segmented RI tomogram of the 
platelet aggregates of different sizes from the inset in (a). (c) RI tomogram of a fibrin-
rich microclot and platelet aggregates in plasma. (d) Corresponding segmented RI 
tomogram of the fibrin-rich microclot and the platelet aggregates of different sizes 
from the inset in (c). (e-f) Size and dry mass of fibrin-rich microclots and microclot 
composite structures in plasma. (g-h) Size and dry mass of platelet aggregates in 
plasma. Error bars represent the standard deviation from the mean. (i) Pie chart 
showing the microclot composition in plasma of donor PLS-CVDP2. 
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Figure 4.3. Structural analysis of microclots in plasma of a COVID-19 positive patient 
with moderate symptomatology (PLS-CVDP1). (a) Refractive index (RI) tomogram of 
a microclot composite in plasma. (b) Corresponding segmented RI tomogram of the 
microclot composite from the inset in (a). (c) RI tomogram of a fibrin-rich microclot 
in plasma. (d) Corresponding segmented RI tomogram of the fibrin-rich microclot 
from the inset in (c). (e) RI tomogram of a microclot composite and fibrin-rich 
microclots in plasma. (f) Corresponding segmented RI tomogram of a microclot 
composite and the fibrin-rich microclot from the inset in (e). (g-h) Size and dry mass 
of fibrin-rich microclots and microclot composite structures in plasma. Error bars 
represent the standard deviation from the mean. (i) Pie chart showing the microclot 
composition in plasma of donor PLS-CVDP1. 
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as shown in Figure 4.4(i). However, a few large microclot composite structures were 
detected, measuring up to ∼80 μm in size. Similarly, the dry mass was consistent 
between the microclot structures (fibrin-rich microclots = 14.3 ± 0.6 g/dL, microclot 
composite = 14.1 ± 1.3 g/dL) (Figure 4.4(j)). Platelet aggregates varied in size 
depending on the number of platelets (<10 platelets = 3.5 ± 1.9 μm, 10-50 platelets = 
15.5 ± 3.3 μm, >50 platelets = 37.9 ± 7.2 μm), reaching sizes of up to ~50 μm (Figure 
4.4(k)). Instead, the dry mass did not differ between platelet aggregate structures (<10 
platelets = 15.8 ± 0.6 g/dL, 10-50 platelets = 16.8 ± 0.4 g/dL, >50 platelets = 16.3 ± 0.6 
g/dL) (Figure 4.4(l)). Overall, this diverse COVID-19 subphenotype presented a mixed 
composition of microclot structures, with platelet clumping representing the most 
prevalent feature (Figure 4.4(m)). The structural analysis of the remaining COVID-19 
subphenotypes, including a COVID-19 positive female patient with no 
symptomatology (PLS-CVD3) and a COVID-19 recovered female patient with moderate 
symptomatology (PLS-CVDR1), and of the healthy controls are provided in the Figure 
B.2, Figure B.3 and Figure B.4, respectively. Interestingly, microclots were detected in 
plasma from PLS-CVD3 patient even in the absence of clinical features (Figure B.2). 

4.3.3. Quantification of microclot structure and composition 
in COVID-19 subphenotypes 

Following the in-depth description of the DHTM analysis of plasma from the single 
COVID-19 patients, we present the results on the quantification of microclot structure 
and composition of all COVID-19 subphenotypes as well as five healthy controls (Figure 
4.5). Figure 4.5(a) shows the prevalence of fibrin-rich microclots and microclot 
composites in 75 μL of plasma from five healthy donors and five patients with different 
COVID-19 subphenotypes. Overall, these microclot structures were more prevalent in 
plasma from all COVID-19 samples compared to the healthy controls (fibrin-rich 
microclot: 1 ± 2; microclot composite: 2 ± 2). Within the COVID-19 samples, microclot 
composites were more prevalent compared to fibrin-rich microclots, except the 
COVID-19 positive patient with mild symptomatology, which presented an equal 
number of microclot structures (Figure 4.5(a)). Additionally, a trend for a higher 
prevalence of fibrin-rich microclots in COVID-19 positive compared to COVID-19 
recovered patients can be observed (Figure 4.5(a)). Platelet clumping was also more 
prevalent in the COVID-19 positive compared to the recovered subphenotypes, 
although it was not observed in the COVID-19 positive patient with moderate 
symptomatology (Figure 4.5(b-e)). Aggregated platelets were not detected in any of  
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Figure 4.4. Structural analysis of microclots in plasma of a COVID-19 recovered patient 
with mild symptomatology (PLS-CVDR2). (a) Refractive index (RI) tomogram of a 
microclot composite and fibrin-rich microclots in plasma. (b) Corresponding 
segmented RI tomogram of the microclot composite and fibrin-rich microclots from 
the inset in (a). (c) RI tomogram of a microclot composite in plasma. (d) 
Corresponding segmented RI tomogram of the microclot composite from the inset 
in (c). (e) RI tomogram of a microclot composite with platelet aggregates in plasma. 
(f) Corresponding segmented RI tomogram of the microclot composite with platelet 
aggregates from the inset in (e). (g) RI tomogram of platelet aggregates in plasma. 
(h) Corresponding segmented RI tomogram of the platelet aggregates of different 
sizes from the inset in (g). (i-j) Size and dry mass of fibrin-rich microclots and 
microclot composite structures in plasma. (k-l) Size and dry mass of platelet 
aggregates in plasma. Error bars represent the standard deviation from the mean. 
(m) Pie chart showing the microclot composition in plasma of donor PLS-CVDR2. 
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the healthy samples. In all samples where platelet clumping was detected, platelet 
aggregates of <10 platelets were mostly prevalent (Figure 4.5(b-e)). Interestingly, 
larger platelet aggregates composed of >10 platelets were detected in the plasma of 
both COVID-19 patients (positive and recovered) with mild symptomatology (Figure 
4.5(b-e)). However, a correlation between microclot type and prevalence with the 
analyzed COVID-19 subphenotypes could not be determined.  

Due to the importance of microclot size in the risk of occlusion of micro-capillaries, the 
mean microclot size was plotted against the microclot type and grouped by healthy 
and COVID-19 subphenotypes (Figure 4.5(f)). The size of the detected microclots 
averaged between 1 and 60 μm. Size variation within fibrin-rich microclots and 
microclot composites between plasma samples was likely dependent on the length of 
the fibrin fibrils and on the mixed composition of the microclot composites, 
respectively (Figure 4.5(f)). The average size of platelet aggregates was comparable 
between COVID-19 subphenotypes and depended on the number of platelets in each 
aggregate (Figure 4.5(f)). The prevalence of microclots was also plotted against the 
microclot size and grouped by healthy and COVID-19 subphenotypes (Figure 4.5(g)). 
For all COVID-19 subphenotypes, microclots were mostly prevalent in the size range 
between 1 and 10 μm. Overall, the severity of COVID-19 symptomatology as well as 
the positive or recovered subphenotype did not seem to correlate with the size of the 
measured microclots. Moreover, a correlation between microclot prevalence and size 
and the patient age as well as the IgG and IgM antibodies levels was not observed 
(Figure B.5 and Figure B.6) within the limited number of patient samples analyzed in 
the present study.  

4.4. Discussion 

Microclots continue to receive clinical research interest as potential indicators of long 
COVID [Grobbelaar et al., 2021; Grobler et al., 2020; Kell et al., 2022; Laubscher et al., 
2021; Leng et al., 2023; Monje & Iwasaki, 2022; Nalbandian et al., 2021; Pretorius et 
al., 2022; Pretorius et al., 2020; Pretorius et al., 2021; Turner et al., 2023]. In this study, 
we employed DHTM as an analytical tool to characterize the composition of plasma 
from patients with COVID-19 subphenotypes. To test our imaging and analysis 
protocol, we studied synthetically prepared fixed blood clot fragments in an aqueous 
solution using DHTM. The preliminary step was to identify and obtain the quantitative 
morphological parameters from 3D RI tomograms of synthetically prepared blood clot 
fragments. Blood clot structure can be described by parameters such as the fibrin fibril  
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Figure 4.5. Morphological characterization of microclots in healthy and COVID-19 
positive and recovered patients. (a) Prevalence of fibrin-rich microclots and 
microclot composites detected in 75 μL of plasma from healthy and COVID-19 
positive and recovered patients. (b) Prevalence of platelet aggregates detected in 75 
μL of plasma from a COVID-19 positive patient with no symptomatology, (c) a COVID-
19 positive patient with mild symptomatology, (d) a COVID-19 recovered patient with 
mild symptomatology and (e) a COVID-19 recovered patient with moderate 
symptomatology. (f) Mean microclot size plotted against the microclot type and 
grouped by healthy and COVID-19 subphenotypes. Error bars correspond to the 
standard deviation. (g) Prevalence of microclots plotted against the microclot size 
and grouped by healthy and COVID-19 subphenotypes. 
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diameter, fibrin length, clot composition, clot density, and clot porosity [Mihalko & 
Brown, 2020]. These physical parameters also provide deeper insights into clot 
stiffness, stability, and degradation dynamics, which play a crucial role in hemolytic 
processes [Mihalko & Brown, 2020; Pretorius & Lipinski, 2013; Weisel, 2007]. 
Significant size differences were observed between healthy and COVID-19 blood clot 
fragments, with regard to the size and fibrin fibril thickness. Although these blood clots 
were passed through a 30 μm filter in order to fragment them, in general bigger 
fragments, evidenced by thicker fibrin fibrils, derived from COVID-19 patients, are 
suggestive of increased clot rigidity. Clot composition and density, estimated from the 
dry mass, were similar between the two samples, also supported by the 
spectrochemical signature from Raman measurements. Importantly, digital staining 
revealed details of an intricate network of fibrin fibrils with smaller and more circular 
structures trapped in between the fibrils. Similar to fluorescent markers in 
immunofluorescence, digital staining allows for specific labeling of multiple structures 
based on the refractive index values, but without altering the inherent features of the 
sample [Pollaro et al., 2016]. Although we were able to demonstrate the structural 
characterization of fixed blood clot fragments in an aqueous solution, we cannot 
explicitly identify the non-fibrin structures observed within these clot fragments. This 
is due to the inability to access the spatial RI distribution of protein and cellular 

structures smaller than the DHTM lateral resolution (~200 nm). Combining 
complementary techniques, such as fluorescent-based labeling or expansion 
microscopy with DHTM could be used to elucidate the nature of the non-fibrin 
structures. Taken together, DHTM analysis of micrometer-sized blood clot fragments 
reveals remarkable details of clot structure and composition in a label-free manner, 
which can be quantified and further classified into different blood clot types. The 
morphological parameters that we have identified in the first part of our study were 
then further extended to directly characterize microclots in plasma. 

Next, we extended our DHTM-based imaging protocol to study the composition of 
plasma from patients with COVID-19 and from healthy donors. Similar to previous 
studies [Grobbelaar et al., 2021; Laubscher et al., 2021; Pretorius et al., 2022; Pretorius 
et al., 2020; Pretorius et al., 2021; Venter et al., 2020], we observed microclots in all 
COVID-19 plasma samples. However, only fewer microclots were in plasma from 
healthy donors, suggesting microclotting as a salient feature of COVID-19. One of the 
most notable findings is the structural diversity of the observed microclots, which we 
have further classified based on their composition: microclot composites, fibrin-rich 
microclots and platelet aggregates. Microclot composites were found in all COVID-19 
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plasma samples, with the highest prevalence in the COVID-19 positive patient with 
moderate symptomatology. These composites structurally resemble the microclots 
previously reported by Pretorius and colleagues using fluorescence microscopy 
[Laubscher et al., 2021; Pretorius et al., 2022; Pretorius et al., 2020; Pretorius et al., 
2021], with a likely mixed composition of fibrin and other proteins [Grobler et al., 
2020; Kell et al., 2022; Kruger et al., 2022]. In some cases, platelets appear to be 
trapped in between the microclot composite structures. The structural variation in 
microclot composites observed throughout the COVID-19 plasma samples evidences 
the presence of a mixed population of fibrin structures and proteins. Microclots were 
also detected in the form of long fibrin networks. Single fibrin fibrils were also 
observed, which may stem from clot degradation and fibrinolysis [Grobbelaar et al., 
2021; Pretorius et al., 2021; Wallace Collett et al., 2021; Weisel, 2007]. Consistent with 
previous studies [Laubscher et al., 2021; Pretorius et al., 2022; Pretorius et al., 2021], 
platelet activation and persistent platelet clumping were prevalent features of platelet 
pathology in all COVID-19 plasma samples, with the exception of the COVID-19 positive 
patient with moderate symptomatology. Interestingly, the plasma of this patient was 
characterized by microclot composites and fibrin-rich microclots only, albeit 
presenting the most severe clinical presentation and high levels of IgG antibodies. 
Importantly, the size of the measured microclots in COVID-19 plasma samples using 
DHTM could be of potential clinical interest in regards to their ability to occlude 
microvasculature and thus impede oxygen transport [Kell et al., 2022]. Microclots 
formed in the vascular system are likely to explain the heterogeneous 
symptomatology and multi-organ dysfunction observed in COVID-19 and long COVID 
patients [Iba & Levy, 2023; Ranucci et al., 2023]. 

Based on our DHTM analysis, a correlation between microclot type, size and 
prevalence and COVID-19 subphenotypes could not be established in the small 
analyzed cohort. However, it is possible that many more pre-existing individual risk 
factors, aside from SARS-CoV-2 infection status (COVID-19 positive or recovered) and 
symptomatology, may contribute to the presence and to the extent of COVID-19-
related microvascular injury, including a history of smoking, vitamin D deficiency, 
exposure to air pollutants and the presence of other pathologies such as cancer or 
diabetes mellitus, for which we could not account for in our study [Bikdeli et al., 2020; 
Kell et al., 2022; Leng et al., 2023; Pretorius et al., 2020]. The identification of 
comorbidities is particularly relevant in assessing an individual's risk of developing long 
COVID [Pretorius et al., 2022; Russell et al., 2023; Thompson et al., 2023]. It is 
important to note that the symptomatology reported for the analyzed cohort (e.g. 
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headache, fever) may not directly reflect the coagulopathy status of the patients upon 
SARS-CoV-2 infection, which in turn would explain why we did not observe a distinct 
correlation between microclot prevalence and size with COVID-19 subphenotypes. 
The role of potential risk factors associated with the presence of microclots and the 
wide spectrum of clinical manifestations of both acute and long COVID may only be 
unraveled with a larger cohort [Zhang et al., 2023]. Future studies aimed at validating 
our DHTM methodology will require a larger sample size to be analyzed, comprising 
patients suffering from both acute COVID-19 and long COVID conditions. Sample 
stratification also needs to be included in the study for the identification of different 
comorbidities and risk factors, as well as differentiation between SARS-CoV-2 variants. 

In conclusion, the label-free DHTM-based approach demonstrated in our study could 
serve as a powerful tool for screening microclots in plasma. Information obtained in a 
label-free manner from such an approach, with high spatial resolution, could provide 
deeper insights into understanding the role of microclots in health and disease. 
Furthermore, the approach described in this paper is not only limited to microclot 
analysis in plasma, but can also be extended to resolve micrometer-size protein fibrils 
implicated in neurocognitive disorders in cerebrospinal fluid [Nirmalraj et al., 2023]. 
We anticipate that such an analytical technique, compatible with operation under 
standard laboratory conditions, could be easily integrated with the existing clinical 
pipeline for digitally monitoring protein aggregates in body fluids and assessing 
disease stages. 

4.5. Methods 

4.5.1. Patient characteristics 

In this study, we present data from healthy individuals, COVID-19 positive patients and 
patients who recently recovered from coronavirus 2 (SARS-CoV-2) infection upon 
blood collection. The patient characteristics were determined by in-house clinicians at 
the commercial source from where the samples were purchased. Fixed blood clots 
fragments in aqueous solution were prepared from fresh human blood collected from 
one healthy donor and one COVID-19 convalescent donor in the United States 
(Zenbio). In contrast, plasma was collected from five healthy donors in the United 
Kingdom (BioIVT) and five adult COVID-19 convalescent donors in the United States 
(BioIVT). Three COVID-19 patients were classified as COVID positive as they tested 
positive for the SARS-coV-2 serology test (IgG/IgM positive, IgG positive/IgM negative) 



 
4. 3D holo-tomographic mapping of COVID-19 microclots in blood 

 

 
67 

 
 

and they were symptomatic at the time of blood collection. Blood samples were 
collected within one month from the diagnosis of SARS-CoV-2 infection. In contrast, 
two COVID-19 patients were classified as COVID recovered as they were no longer 
symptomatic at the time of blood collection and presented with either a positive or 
negative serology test (IgG positive/IgM negative and IgG/IgM negative). Blood 
samples were collected between two to three months after COVID-19 diagnosis. The 
type and severity of symptoms in COVID-19 patients were heterogeneous. Within the 
COVID positive donor group, one was asymptomatic, one presented mild symptoms 
(body or muscle aches, chills, and headache) and one had moderate symptoms (body 
or muscle aches, chest pain, chills, confusion, congestion, cough, diarrhea, fatigue, 
headache, loss of smell, runny nose, shortness of breath, sneezing, trouble breathing 
and weakness). Similarly, in the COVID recovered subgroup, one donor had 
experienced mild symptoms (fatigue, headache, loss of smell and taste) and one donor 
had experienced a more moderate symptomatology (body or muscle aches, cough, 
diarrhea, fatigue, fever, headache, loss of smell and taste and shortness of breath). 
Summaries of the demographics and SARS-CoV-2 serology test results are presented 
in Table B.2. 

4.5.2. Preparation of fixed blood clot samples 

Healthy and COVID-19 fixed blood clots samples were commercially obtained (ZenBio) 
from a single donor, respectively. Whole blood was collected via venipuncture, added 
to an empty tube, and allowed to clot. The clot was mechanically disrupted and passed 
through a 30 μm filter in order to generate smaller clot fragments. Finally, the clots 
were fixed in 4% paraformaldehyde (PFA) and they were provided as 1 mL aliquots and 
stored at 4°C. For DHTM imaging, 200 μL of blood clots in aqueous solution was 
transferred in a 35-mm Ibidi ibiTreat μ-Dish (Ibidi GmbH, Germany) for DHTM imaging.  

4.5.3. Preparation of plasma 

Plasma was commercially obtained (BioIVT) for healthy and convalescent COVID-19 
donors. Whole blood was collected in K2EDTA vacutainers and centrifuged in order to 
separate plasma from the cell pallet. Plasma samples were transported and stored at 
-20°C. For all plasma samples, 50 μL of plasma was diluted in 200 μL of Alsever's 
solution (Sigma-Aldrich, A3551) and 250 μL was transferred in a 35-mm Ibidi ibiTreat 
μ-Dish (Ibidi GmbH, Germany) for DHTM imaging.  
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4.5.4. Label-free digital holo-tomographic microscopy 

Label-free holo-tomographic imaging was performed using a 3D Cell Explorer 
microscope (Nanolive SA, Switzerland). Before each measurement, the petri dish 
containing either the fixed blood clots in aqueous solution or the plasma solution was 
placed in the microscope sample holder and blood clots were allowed to sediment to 
the bottom of the petri dish for 10 minutes before imaging. A total of 75 μL of plasma 
was analyzed for each patient, which would require approximately 1 hour per sample. 
Each image acquired with the digital holo-tomographic microscope corresponds to a 
field of view of 90 x 90 x 30 μm. DHTM was operated under standard laboratory 
conditions.  

4.5.5. Image processing and analysis 

3D RI stacks obtained by DHTM were exported as TIFF files and imported into the 
open-source software Tomviz for 3D RI visualization. For the visualization of clot-
specific structures, 3D stacks obtained by DHTM were digitally stained based on the RI 
values using STEVE (Nanolive SA, Switzerland) and each channel was exported in the 
form of a 3D stack as a TIFF file. The single channel 3D stacks were imported into the 
open source software Fiji and a 2x2x2 mean filter was applied as a noise removal filter. 
The single channels were merged into one image, exported as a TIFF file and imported 
into Imaris 9.8 (Bitplane AG, Switzerland) in order to achieve a 3D surface 
segmentation. First, stacks were cropped along the x-axis and y-axis in order to exclude 
potential signal noise artefacts from the imaging process. Next, a surface was fitted 
for each channel with absolute intensity and automatic thresholding in order to 
achieve accurate signal segmentation. For the structural analysis and quantification of 
the blood clots, 3D RI stacks obtained by DHTM were imported into Imaris 9.8 and 
were cropped along the x-axis and y-axis in order to exclude potential signal noise 
artefacts. A 3x3x3 median filter was applied as a noise removal filter and a surface was 
fitted with absolute intensity and automatic thresholding. The morphologically-
relevant features were quantitatively measured, including the clot length, width, 
surface area, volume and mean RI (Table B.3). The dry mass was calculated from the 
mean RI value of each blood clot, obtained from the 3D RI tomograms, using the 
following formula [Phillips et al., 2012]: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝐻𝐻2𝑂𝑂

− 1� ∗
1
𝛼𝛼
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where 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the mean RI value of the blood clot, 𝑛𝑛𝐻𝐻2𝑂𝑂 is the RI of water (1.333) and 
α is the wavelength-dependent RI increment, which was set to 0.001983 for λ = 520 
nm [Friebel & Meinke, 2006]. Approximately a one-hour time period per sample is 
required to perform the image analysis and quantification. 

4.5.6. Raman spectroscopy setup and measurements 

Raman spectra were obtained using NT-MDT NTEGRA Spectra system equipped with 
Olympus LMPLFLN 100× objective with numerical aperture NA = 0.8, and 
spectrometer grating of 600 g/mm. Samples were illuminated with the 561 nm 
wavelength laser (10 mW laser power at the sample). Spectra were acquired in the 
reflection mode, with the integration time of 20 s and 10 accumulations. To obtain a 
representative spectrum of the measured sample, multiple spectra were acquired in 
different locations of the sample and then averaged. Raman spectroscopy was 
conducted only on air-dried fixed blood clots in aqueous solution deposited on 
SuperFrost glass slides. 
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5. Urea as a fibrin solubilizer: 
revisited using nanoscale 
imaging* 

5.1. Abstract 

Blood clots play a major role in thrombotic diseases, such as heart attacks, strokes, 
and pulmonary embolism. Comprehensive understanding of the fibrin structure, a key 
component of blood clots, is crucial in advancing diagnostics, treatment, and 
prevention of thrombotic disorders. Here, we use 3D digital holo-tomographic 
microscopy (DHTM) and atomic force microscopy (AFM) to resolve and quantify the 
morphological changes of micrometer-sized blood clot fragments treated with urea 
and aspirin, in a label-free manner. Segmented three-dimensional (3D) refractive 
index (RI) tomograms revealed a change in clot structural composition upon treatment 
with urea and aspirin solutions. AFM-based nanoscale analysis of single fibrin fibrils 
unveiled a significant decrease in size and surface roughness for both aspirin and urea 
treated blood clot fragments. Evidence for partial denaturation of fibrin was observed 
upon treatment with 8M urea. Our work provides a deeper understanding on the 
concentration- and time-dependent effect of chemically- and drug-induced 
morphological changes to blood clots and corroborates the role of urea as a fibrin 
solubilizer. This combinatorial imaging approach could serve as a screening tool for 
blood clot characterization in thrombotic disease and for monitoring efficiency of 
prescribed therapeutic interventions.

                                                           
 
*Hardmeier, S. C., Bergaglio, T., Nirmalraj, P. N. Urea as a fibrin solubilizer: revisited using nanoscale 

imaging and simulations. In preparation, 2023. 
Contribution: T.B. was involved in the planning of the study, developing the methodology and data 
analysis and discussion. T.B wrote the original draft of the manuscript with S.C.H. 
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5.2. Introduction 

Blood clot formation occurs physiologically as part of hemostasis in order to prevent 
excessive blood loss when vasculature is injured [Lippi et al., 2009]. The production of 
blood clots is a highly regulated process, however, under certain pathophysiological 
circumstances, blood clots can abnormally develop even in the absence of an extrinsic 
triggering event [Gailani & Renné, 2007]. The formation of anomalous blood clots may 
arise either due to congenital diseases, involving defects affecting various components 
of the coagulation cascade, such as antithrombin, protein C and protein S [Rosendaal 
& Reitsma, 2009], or due to external causes, such as immobilization, the use of oral 
contraceptives, hormonal replacement therapy and aging [Previtali et al., 2011; 
Rosendaal & Reitsma, 2009]. Moreover, conditions such as obesity, diabetes, 
hypertension, and smoking can increase the risk for blood clot formation in the arterial 
circulatory system [Previtali et al., 2011], contributing to an individual's risk of 
developing thrombotic complications [Favaloro & Gosselin, 2023]. Consequently, 
anomalous blood clot formation constitutes the major cause underlying thrombotic 
disorders such as a myocardial infarction (MI), acute ischemic stroke (AIS), deep vein 
thrombosis (DVT), and pulmonary embolism (PE) [Previtali et al., 2011; Roth et al., 
2020]. In these conditions, blood clots can partially or completely obstruct blood flow 
in different parts of the body's vascular system, thus leading to a state of hypoxia in 
organs such as the heart and the brain [Alkarithi et al., 2021; Lippi et al., 2009; 
Mackman, 2008; Wolberg et al., 2015].  

Among the different proteins participating in both extrinsic and intrinsic pathways of 
hemostasis, thrombin constitutes one of the most important players for the formation 
of blood clots [Gailani & Renné, 2007; Periayah et al., 2017]. Pathological blood clots 
are thus associated with either a loss of the regulatory mechanisms that control blood 
clot formation or with an increased activation of thrombin [Gailani & Renné, 2007; 
Macfarlane, 1977]. Different stages of hemostasis may be affected in thrombotic 
diseases [Favaloro & Gosselin, 2023]. Primary hemostasis, initiated by the contraction 
of blood vessels (vasoconstriction) as well as the formation of a platelet plug to stop 
the bleeding, [Favaloro & Gosselin, 2023; Periayah et al., 2017]; secondary hemostasis, 
characterized by the activation of the coagulation cascade, leading to the deposition 
of fibrin and the formation of a stable fibrin mesh [Favaloro & Gosselin, 2023]; and 
fibrinolysis, including the dissolution of the blood clot in order to facilitate the ongoing 
wound healing process [Favaloro & Gosselin, 2023; Periayah et al., 2017]. Importantly, 
fibrinolysis processes in pathological conditions likely result in unsuccessful clot 
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degradation and thus extend the presence of blood clots in the vasculature, ultimately 
increasing the risk for blood flow obstruction [Fatah et al., 1992; Pretorius & Lipinski, 
2013]. 

Blood clots are physiologically heterogeneous structures mainly composed of platelets 
[Heemskerk et al., 2013], fibrin [Litvinov & Weisel, 2016] and red blood cells (RBCs) 
[Cines et al., 2014; Jolugbo & Ariëns, 2021], in addition to other plasma-borne proteins 
such as von Willebrand factor (VWF) [Ruggeri, 2007] and white blood cells [Hagberg 
et al., 1998; Vilalta et al., 2017], including monocytes, lymphocytes, neutrophils, as 
well as extracellular DNA namely neutrophil extracellular traps (NETS) [Jolugbo & 
Ariëns, 2021; Martinod & Wagner, 2014]. Interestingly, the distinct structure and 
composition of blood clots can provide crucial information concerning the risk for the 
development and re-occurrence a thrombotic disorder and can determine the 
efficiency of a targeted treatment strategy [Alkarithi et al., 2021; Jolugbo & Ariëns, 
2021]. Characterization of blood clot composition, particularly fibrin structure and 
mechanical properties, is becoming a critical part for diagnostics, prevention and 
treatment of thrombotic diseases [Kattula et al., 2017]. Fibrin-rich clots found in 
thrombotic conditions such as MI, PE and DVT were found to have thicker fibers, 
smaller pores, less permeability and an extended lysis time [Mills et al., 2002; Undas 
et al., 2009; Zabczyk et al., 2017]. Altered fibrin composition was also observed in non-
thrombotic diseases such as renal disease [Undas et al., 2008], chronic obstructive 
pulmonary disease [Undas et al., 2009], rheumatoid arthritis [Kwasny-Krochin et al., 
2010], diabetes [Dunn et al., 2005; Dunn et al., 2006; Jörneskog et al., 1996] and 
COVID-19 [De Vries et al., 2021].  

The structure and morphology of blood clots has been investigated with different 
imaging techniques, such as scanning electron microscopy (SEM) [Silvain et al., 2017; 
Silvain et al., 2011; Zalewski et al., 2015], laser scanning confocal microscopy [Collet 
et al., 2000; Pretorius & Lipinski, 2013], magnetic resonance imaging (MRI) [Oliveira & 
Caravan, 2017], Positron emission tomography (PET) [Blasi et al., 2015; Oliveira & 
Caravan, 2017], immunohistochemistry [Marder et al., 2006; Staessens et al., 2020], 
and proteomics [Alonso-Orgaz et al., 2014; Muñoz et al., 2018]. Currently available 
diagnostics methods often require a combination of different techniques in order to 
achieve a comprehensive blood clot assessment and characterization [Alkarithi et al., 
2021]. For examples, AFM was used in combination with fluorescence microscopy to 
investigate the mechanisms of single fibrin fibres [Liu et al., 2010]. Extensive sample 
preparation processes, including specimen fixation and staining, coupled with low-
resolution image acquisition and phototoxicity-induced artefacts, yield data that is 
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predominantly semi-quantitative in nature [Alkarithi et al., 2021; Kim et al., 2021]. To 
address these challenges, we used label-free digital holo-tomographic microscopy 
(DHTM) and atomic force microscopy (AFM) as a complementary imaging platform for 
the label-free quantitative characterization of blood clots.  

Precise diagnostics and more accurate and personalized treatment strategies can be 
achieved by characterizing the structural components of blood clots. Efficient 
thrombus dissolution through thrombolysis primarily relies on the structural 
composition of the blood clots rather than the fibrinolytic agent itself [Lipinski, 2010]. 
Antithrombotic agents play an essential role in treating thrombosis and work through 
three distinct modes of action: antiplatelet, anticoagulant and fibrinolytic [Mackman 
et al., 2020]. Aspirin, a nonsteroidal anti-inflammatory drug (NSAID) classified as an 
antiplatelet agent, is often prescribed to patients at elevated risk of experiencing a 
thrombotic event such as MI or AIS [Antithrombotic Trialists, 2002; Mackman et al., 
2020]. Altered fibrin clot structure, characterized by thicker fibers and bigger pores, 
and resulting in a higher lysis rate, was observed in-vitro in fibrin fibers treated with 
aspirin [Ajjan et al., 2009]. Additionally, urea has been investigated as a strong protein 
denaturant and fibrin solubilizer in blood clots, increasing clotting time and hindering 
clot formation in fresh mammalian blood [Canchi et al., 2010; Foulger & Mills, 1930; 
Wallqvist et al., 1998]. The rate of degradation in the presence of urea is contingent 
upon the specific bonding forces inherent to the fibrin proteins [Bickford & Sokolow, 
1961; Laki & Lóránd, 1948; Lorand, 1950; Pérez-Escalante et al., 2020; Toyama et al., 
2017]. 

In the present work, we demonstrate a combinatorial imaging platform, including 
DHTM and AFM analysis, in order to investigate the morphological changes of blood 
clot fragments upon treatment with urea and aspirin. First, 3D RI tomograms of 
untreated blood clot fragments and blood clot fragments treated with urea and aspirin 
were acquired with DHTM. The morphological information on blood clot structure and 
composition was quantified from the segmented 3D RI tomograms to identify 
differences in size and dry mass. Furthermore, AFM was employed to investigate the 
morphological changes of blood clot fragments at the nanoscale to measure the size, 
surface composition and persistence length of singular fibrin fibrils. Our data 
contributes to a comprehensive quantitative analysis of the structural composition of 
blood clots in a label-free manner, thereby highlighting the role of blood clot structure 
in thrombotic , with the ultimate goal of supporting the development of efficient and 
personalized treatment strategies.  
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5.3. Results 

5.3.1. Characterization of untreated blood clot fragments 

Previously, we have shown that DHTM can be used to visualize and quantify the 
morphometry of micrometer-size blood clots in aqueous solution in a non-invasive and 
label-free manner, with high spatial resolution [Bergaglio et al., 2023b]. The untreated 
blood clot fragments served as a control group in order to compare the morphological 
changes upon urea and aspirin treatment. Figure 5.1(a-c) shows the 3D RI tomograms 
of the blood clot fragments dissolved in PBS, unveiling differences in blood clot 
morphology. From the corresponding segmented 3D RI tomograms (Figure 5.1(d-f)), 
the size and the dry mass of single blood clots fragments were extracted. For the 
nanoscopic characterization of blood clot fragments, the AFM was employed to 
resolve and analyze the structure of the fibrin strands observed within the single 
fragments (Figure 5.1(g-i)). The AFM height image of three blood clot fragments and 
the corresponding height profile are shown in Figure 5.1(j-l). 

5.3.2. Structural analysis of blood clot fragments treated with 
urea 

The dose-dependent effect of urea on blood clot fragments dissolved in PBS was 
evaluated using DHTM (Figure 5.2). Figure 5.2(a-d) show the segmented RI tomograms 
of the blood clot fragments during incubation with different concentrations of urea 
(2M, 4M, 6M and 8M, respectively), over a period of 15 minutes. No structural effect, 
such as fibrin denaturation or fragmentation due to urea, was visible on the fibrin 
structures as observed in these RI tomograms. Figure 5.2(e) shows the size distribution 
between the untreated and the urea treated blood clot fragments. A one-way ANOVA 
revealed no significant differences in the mean size of the blood clot fragments 
between the untreated (37.7 ± 23.7 μm) and urea-treated blood clot fragments (42.7 
± 25.6 μm for 2M concentration, 37.2 ± 23.1 μm for 4M, 38.3 ± 25.0 μm for 6M and 
42.8 ± 30.2 μm for 8M). In contrast, the dry mass was significantly lower in the blood 
clots incubated with urea at 2M (5.9 ± 0.9 g/dL), 4M (6.1 ± 1.1 g/dL) and 8M (6.4 ± 2.0 
g/dL) compared to the untreated blood clot fragments (7.3 ± 2.4 g/dL) (Figure 5.2(f)). 
Treatment with 6M urea yielded a trend for a decrease in dry mass (6.5 ± 1.9 g/dL). 
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Figure 5.1. DHTM and AFM characterization of untreated blood clot fragments. (a-c) 3D Refractive Index (RI) tomograms of synthetically 
prepared blood clot fragments from a COVID-19 patient. (d-f) Segmented RI tomograms of synthetically prepared blood clot fragments 
from a COVID-19 patient. (g-i) AFM height image showing synthetically prepared blood clot fragments on glass slide from a COVID19 
patient. (j-l) Height profile analysis of three cross-sectional areas of the blood clot fragments. 
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Figure 5.2. DHTM characterization of urea-treated blood clot fragments. (a-d) Segmented RI tomogram of synthetically prepared blood 
clot fragments from a COVID-19 patient with four different concentrations of urea (2M, 4M, 6M and 8M). (e) Fibrin size distribution 
across the untreated and urea treated blood clot fragments. (f) Dry mass distribution of the untreated versus the urea treated conditions.   
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Figure 5.3 shows the AFM-based analysis on the height profile distribution, surface 
roughness and persistence length quantification of blood clot fragments treated with 
urea, over two different incubation times (15 and 120 minutes). Figure 5.3(a) shows a 
blood clot fragment incubated with 8M urea over a period of 15 minutes. Similarly, 
blood clot fragments treated with 8M urea and incubated for 120 minutes are 
depicted in Figure 5.3(b-d). From each AFM height image, the corresponding 
topographic profile of single fibrin fibers was extracted (Figure 5.3(e-h)). The fibrin size 
distribution was quantified for the untreated and 8M urea-treated blood clot 
fragments with two incubation times (Figure 5.3(i)). A one-way ANOVA revealed an 
overall significant difference between conditions characterized by a treatment- and 
incubation time-dependent decrease in fibrin size (untreated = 483.0 ± 184.4 nm; 8M 
urea-15 min. = 312.9 ± 123.3 nm; 8M urea-120 min. = 251.4 ± 100.9 nm). Figure 5.3(j) 
shows the surface roughness distribution of the control and both 8M urea treatment 
conditions. A significant decrease in mean surface roughness between the untreated 
blood clot fragments (35.1 ± 18.6 nm), the urea treated clots with an incubation time 
of 15 minutes (28.8 ± 13.1 nm) and with an incubation of 120 minutes (17.1 ± 9.8 nm) 
was observed. Finally, the persistence length distribution of the measured fibrin fibers 
was quantified (Figure 5.3(k)) and yielded a significant decrease in the urea-treated 
blood clot fragments with 120 min. incubation time (1550.3 ± 335.5 nm) compared to 
the untreated clots (2041.9 ± 543.8 nm). Interestingly, no significant change in 
persistence length was observed between the untreated and the urea treated blood 
clot fragments with an incubation time of 15 minutes (2051.9 ± 556.2 nm). 

5.3.3. Structural analysis of blood clot fragments treated with 
aspirin 

Figure 5.4 shows the DHTM-based characterization of blood clot fragments dissolved in PBS 
and incubated with four different concentrations of aspirin (70 μM, 140 μM, 460 μM, and 1.42 
mM). Figure 5.4(a-d) shows the segmented 3D RI tomograms of the aspirin-treated blood clot 
fragments with different concentrations. Fibrin denaturation or fragmentation was not 
observed upon treatment with aspirin. Similarly to urea, the fibrin size distribution between 
the untreated and the aspirin-treated blood clot fragments was quantified (Figure 5.4(e)). A 
one-way ANOVA revealed no significant difference in mean blood clot size between the 
control and aspirin treatment groups (control = 37.7 ± 23.7 μm; 70 μM = 44.4 ± 27.4 μm; 140 
μM = 45.1 ± 30.5 μm; 460 μM = 31.8 ± 19.4 μm; 1.42 mM = 41.2 ± 28.8 μm). In contrast, the 
dry mass was significantly decreased in the aspirin treated blood clot fragments (70 μM = 6.3   
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Figure 5.3. AFM characterization of urea treated blood clot fragments. (a) AFM height 
image showing synthetically prepared blood clot fragments on glass slide from a 
COVID-19 patient treated with 8M urea concentration with an incubation time of 15 
minutes. (b-d) AFM height image showing synthetically prepared blood clot 
fragments on glass slide from a COVID-19 patient treated with 8M urea 
concentration with an incubation time of 120 minutes. (c) Height profile analysis of 
two cross-sectional areas of the blood clot fragments with an incubation time of 15 
minutes. (f-h) Height profile analysis of two cross-sectional areas of the blood clot 
fragments with an incubation time of 120 minutes. (i) Fibrin size distribution of 
untreated blood clot fragments, urea treated blood clot fragments with 8M urea, 15 
minutes incubation time and 120 minutes incubation time, respectively. (j) Surface 
roughness distribution of all untreated blood clot fragments and with 8M urea 
treated blood clot fragments with either 15 minutes or 120 minutes incubation time. 
(k) Persistence length distribution of the untreated fragments and both conditions 
of urea treated blood clot fragments (15 and 120 min.). 
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± 0.8 g/dL; 140 μM = 6.1 ± 1.1 g/dL; 460 μM = 6.2 ± 1 g/dL; 1.42 mM = 6.3 ± 1.2 g/dL) compared 
to the untreated group (7.3 ± 2.4 g/dL) and (Figure 5.4(f)).  

In order to characterize the nanoscopic changes of the blood clot fragments upon 
treatment with different aspirin concentrations, AFM was used to determine the 
effect of aspirin on the single fibrin strands (Figure 5.5). Figure 5.5(a-d) show the AFM 
height image of the resolved blood clot fragments incubated with 1.42 mM aspirin, 
with the corresponding height profiles (Figure 5.5(e-h)). A one-way ANOVA revealed a 
significant decrease in fibrin fiber size in the aspirin-treated (335.4 ± 119.8 nm) 
compared to the untreated blood clot fragments (482.0 ± 184.4 nm) (Figure 5.5(i)). 
Figure 5.5(j) shows the extracted surface roughness distribution in the untreated and 
aspirin-treated conditions. Fibrin fibers in the untreated blood clot fragments showed 
a significantly higher surface roughness (35.1 ± 18.6 nm) compared to the aspirin-
treated clots (27.2 ± 11.9 nm). In contrast, no significant difference in persistence 
length was observed between the untreated blood clot fragments (2041.9 ± 543.8 nm) 
and the clots incubated with aspirin (1815.7 ± 471.8 nm) (Figure 5.5(k)). 

5.4. Discussion 

The primary aim of this study was to investigate and characterize the morphological 
changes occurring in blood clot fragments treated with urea and aspirin, in a label-free 
manner using DHTM and AFM. With the acquired 3D RI tomograms obtained from 
DHTM, we extracted the morphological features of the blood clot fragments, such as 
size and dry mass. Untreated blood clot fragments served as a control group in order 
to establish a baseline understanding of our samples. The DHTM measurements 
revealed variations in size and dry mass of the blood clot fragments. These variations 
can be attributed to the diverse composition of the blood clots, including fibrin and 
likely other proteins and cell fragments that we were not able to quantify in these 
samples. With the application of AFM, we achieved high-resolution, nanoscale insights 
into the variations of fibrin size, surface roughness and persistence length, which 
reflect the heterogeneous nature of the blood clot fragments.  

From the DHTM measurements, we were able to resolve the intricate structure of 
micrometer-sized blood clots in 3D, with high-spatial, thus providing a greater level of 
detail of the morphology of single blood clot fragments. No significant size differences 
were observed after incubating the clot fragments with different concentrations urea 
(2M, 4M, 6M and 8M) and aspirin (70 μM, 140 μM, 460 μM, and 1.42 mM), indicating 
the absence of any structural alteration. Conversely, the measured decrease in dry  
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Figure 5.4. Digital Holo-tomographic Microscopy on aspirin treated blood clot fragments. (a-d) Segmented RI tomogram of synthetically 
prepared blood clot fragments from a COVID-19 patient with four different concentrations of aspirin (70 μM, 140 μM, 460 μM, and 1.42 
mM). (e) Length distribution across the untreated and aspirin treated blood clot fragments. (f) Dry mass compared between the 
untreated blood clot fragments and the four aspirin concentrations (70 uM, 140 uM, 460 uM and 1.42 mM). 
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Figure 5.5. Atomic force microscopy of aspirin treated blood clot fragments. (a-d) AFM 
height image showing synthetically prepared blood clot fragments on glass slide from 
a COVID-19 patient treated with 1.42 mM of aspirin. (e-h) Height profile analysis of 
two cross-sectional areas of the blood clot fragments shown in a-c. (i) Fibrin size 
distribution of untreated and aspirin-treated blood clot fragments. (j) Surface 
roughness distribution of untreated and aspirin-treated blood clot fragments. (k) 
Persistence length distribution between the untreated and aspirin treated blood clot 
fragments. 
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mass of blood clot fragments treated with all concentrations of urea (except for the 
6M concentration) and aspirin may be indicative of small, nanoscale changes to clot 
structural composition and density. Overall, we did not observe a concentration-
dependent effect of urea and aspirin treatment upon clot characterization with DHTM. 
However, the measured difference in dry mass between the untreated and urea- and 
aspirin-treated samples could imply changes in the structural composition of the blood 
clot fragments. 

In order to further study the effect of aspirin and urea on blood clots at the nanoscopic 
scale, we employed the AFM operating under standard laboratory conditions. From 
the AFM measurements, we were able to resolve single fibrin fibers within the blood 
clot fragments with nanometer-size spatial resolution. Based on the AFM height maps 
of the fibrin strands, we quantified the length, surface roughness and persistence 
length of individual fibrils. Overall, the fibrin size, surface roughness and persistence 
length were lower after treatment with urea when compared to the untreated clots. 
The decrease in fibrin size suggests that treatment with urea causes the fibrin strands 
to become smaller and more likely to fragment. Additionally, the lower persistence 
length values in the urea- and aspirin-treated clot fragments is indicative of a decrease 
in clot stiffness and rigidity. In this respect, the persistence length characterizes the 
flexibility or rigidity of a polymer by measuring the distance in nanometers over which 
the polymer maintains a straight conformation before undergoing any bending or 
flexing [MacKintosh et al., 1995]. The observed decrease in persistence length can be 
attributed to the interaction of urea and aspirin with the fibrin fibrils, characterized by 
the weakening of the protein's hydrogen bonds [Bennion & Daggett, 2003]. Finally, the 
decrease in surface roughness is an important observation, highlighting that urea, at 
a concentration of 8M and an incubation time of 120 minutes, has a partial 
denaturation effect on fibrin. In particular, the fibrin strands appeared to be more flat 
in morphology in the height profiles compared to untreated fibrin strands, which 
instead appeared cylindrical in morphology. This data suggests that urea molecules 
adsorb along the length of the fibrin strands and potentially loosen up the fibrin stack, 
leaving it rounder and flatter. Similar to the reduced persistence length, the decrease 
in surface roughness can be attributed to the interactions between urea and the 
protein's hydrogen bonding, leaving the fibrin fibers less compact and thus rounder 
[Bennion & Daggett, 2003]. Consistent with previous literature on the effect of urea 
on fibrin clots, urea seem to disrupt the weak intermolecular forces within a fibrin clot 
[Lorand, 1950]. The role of a globulin protein found in blood serum in rendering a fibrin 
clot more resistant to urea-induced dissolution may explain why the fibrin clots in the 
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experiments here did not completely dissolve or fragment into smaller pieces [Lorand, 
1950]. In view of the structural analysis obtained with both DHTM and AFM 
measurements, the presence of protein residues such as the serum factor cannot be 
ruled out. The structural transition of fibrin strands upon treatment with urea needs 
to be studied further, for instance by incubating urea with the blood clot fragments at 
elevated temperatures (e.g. 37°C) to mimic the physiological temperature in the 
human body. Overall, the nanoscale characterization of the treated blood clot 
fragments highlight the role of urea as a partial fibrin solubilizer at room temperature 
conditions. These results have both biological and clinical relevance, as elevated 
concentrations of urea in the body could affect diverse biomolecular structures, 
including blood clots and blood cells. Elevated concentrations of urea due to renal 
failure can potentially contribute to conditions like gout [Scott & Higgens, 1992] and 
elevate the risk for diseases such as cardiovascular diseases including hypertension 
[Laville et al., 2023]. This highlights the need for imaging techniques that can 
effectively observe and analyze the impact of urea on biomolecules such as blood 
clots.  

From the AFM measurements on the aspirin-treated blood clot fragments, only fibrin 
size and surface roughness were significantly reduced compared to the untreated 
clots. While aspirin notably reduced the size of blood clots, the individual fibrin strands 
did not appear flatter and more cylindrical as observed in the urea treated clots. This 
outcome differs from previous studies on the effect of aspirin on clot structure, where 
an increase in thickness of the fibrin fibers was observed [Ajjan et al., 2009]. Aspirin 
influences the fibrin clot through the action of acetylation during the process of fibrin 
cross-linking [Tehrani et al., 2012]. This modification enhances clot permeability, 
leading to more effective dissolution of the clot [Tehrani et al., 2012]. This mechanism 
operates in an antithrombotic manner and is beneficial for individuals with 
cardiovascular diseases in order to prevent any further thrombotic event [Neergaard-
Petersen et al., 2013]. However, the efficacy of aspirin treatment may diminish in cases 
where individuals have additional comorbidities like diabetes or a history of 
thrombotic events, such as myocardial infarction [Neergaard-Petersen et al., 2013; 
Tehrani et al., 2012]. The diminished effect partially originate from variations in fibrin 
composition in diabetic patients and patients with thrombotic diseases compared to 
healthy individuals [Neergaard-Petersen et al., 2013; Tehrani et al., 2012]. This 
highlights the significance of studying the dose-dependent effect of aspirin on blood 
clot fragments, particularly for common treatment options like baby aspirin (= 81 mg 
of aspirin) [Dalen, 2010].  
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In summary, we have studied the concentration- and time-dependent effect of urea 
and aspirin on blood clot fragments at the nanoscopic scale. In the present 
experiments, we primarily focused on blood clot fragments that were chemically fixed 
with PFA. As a future step, it would be important to use non-fixed blood clots or fresh 
blood samples to enhance its applicability in clinical settings. Since our blood clot 
samples were obtained from a COVID-19 convalescent donor, it is possible that the 
disease itself may have influenced the structure and behavior of blood clots when 
subjected to urea and aspirin treatment. Thus, further experiments are required to 
validate our imaging and analysis framework in blood clot fragments obtained from 
healthy donors and donors who suffer from specific coagulopathies. Additionally, we 
could further expand our research to investigate other diseases where blood clots 
appear to play an increasingly significant role, such as diabetes [Ajjan et al., 2009]. 
Importantly, to comprehensively characterize blood clot fragments at the nanoscopic 
and microscopic scale, it is imperative to employ a combinatorial approach, utilizing 
both DHTM and AFM techniques. This enables the concurrent examination of the 
same clot regions and acquisition of morphologically complementary data. 

In conclusion, the proposed imaging and analysis approach for blood clot 
characterization provides a deeper understanding of how blood clot morphology is 
influenced under different chemical environments. By combining nanoscale imaging 
with chemical analytics such as Raman or infrared spectroscopy on a common 
platform could provide additional details on the chemical composition of blood clots 
before and after treatment with chemicals, ranging from denaturants to over the 
counter and prescribed drugs.  

5.5. Methods 

5.5.1. Preparation of blood clot samples 

Synthetically created blood clot fragments that were chemically fixed with 
paraformaldehyde (PFA) from a single donor with COVID-19 were obtained from 
ZenBio through commercial acquisition. To perform the DHTM measurements, 125 μL 
of blood clot fragments were diluted with 375 μL of PBS buffer (VWR) at a 1:4 ratio. 
500 μL of blood clot fragments solution was then transferred into a 35-mm uncoated 
petri dish (Ibidi GmbH, Germany). For AFM measurements, 30 μL of untreated blood 
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clot fragments solution was deposited onto a SuperFrost glass slide (VWR) and air-
dried overnight.  

5.5.2. Preparation of urea and aspirin solutions 

Urea solution was prepared by dissolving urea pellets (~0.48 g/mL, Merk Millipore) in 
ddH2O (Merk Millipore) and stock solutions of 2M, 4M, 6M and 8M were obtained. 
Aspirin solution was prepared by crushing an aspirin tablet (Bayer) and dissolving it in 
PBS (3 mg/mL, VWR). From which four concentrations of aspirin stock solution were 
prepared (70 uM, 160 uM, 460 uM and 1.46 mM). The aspirin stock solutions 
corresponded to aspirin dosages of ~50 mg/day, ~100mg/day, ~325 mg/day and 
~1000 mg/day. For each DHTM experiment, 100 μL of either urea or aspirin stock 
solution was added to 500 μL of blood clot fragments solution and let incubate for ~15 
minutes before continuing data acquisition. For AFM measurements, urea treated 
blood clots fragments were incubated first for 15 minutes and a second batch was 
incubated for 120 minutes. Aspirin treated clots were incubated for 120 minutes. The 
incubated blood clots were then deposited onto a glass slide and the excess liquid was 
removed using an air gun after 15 minutes.  

5.5.3. Label-free digital holo-tomographic microscopy 

A 3D Cell Explorer microscope (Nanolive SA, Switzerland) was used for the digital holo-
tomographic measurements. Before each measurement, the petri dish containing the 
blood clot fragments solution was placed in the microscope sample holder and the 
blood clot fragments were allowed to sediment to the bottom of the petri dish for ~10 
minutes before imaging. For the untreated control group, 100 well-adhered and 
isolated blood clot fragments were imaged. After incubation of urea and aspirin with 
the blood clot fragment solution for 15 minutes, 30 images of blood clot fragments 
were taken around the petri dish for each experimental condition, resulting in a total 
of 240 DHTM images for both the urea and aspirin experimental groups.   

5.5.4. Atomic force microscopy 

The NaniteAFM (Nanosurf AG, Switzerland) was used to image air-dried blood clot 
fragments on a glass slide. For imaging, a Dyn190AI-10 tip was used in tapping mode 
to scan the sample. The glass slide was mounted on the AFM sample stage, followed 
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by a manual approach of the cantilever towards the vicinity of the sample before the 
final automatic approach, resulting in contact between the cantilever and the sample. 
A scan area of 80 µm x 80 µm was used to establish the presence of blood clot 
fragments. Subsequently, high-resolution imaging was conducted with either 512 or 
1024 points per line and a scan area ranging from 20 to 50 µm per single blood clot 
fragment. 

5.5.5. Image processing and analysis 

Imaris 9.9.0 (Bitplane AG, Switzerland) was used for the image and data analysis of the 
acquired 3D RI tomograms. DHTM images were imported into Imaris as TIFF files and 
converted into IMS files. The minimum and maximum intensity values were adjusted 
for each image manually in order to visually remove the background signal. A surface 
was fitted with the smooth parameter of 0.15 and enabled absolute intensity and 
automatic thresholding in order to segment each blood clot fragment. Additionally, 
any structure that was below 2 μm in size or touching the XY image border was 
manually deleted, in order to avoid potential artefacts. The morphologically relevant 
parameters were extracted from the segmented image, including the size (bounding 
box OO C) and mean intensity value of each blood clot fragment. Furthermore, the 
mean intensity value was used to calculate the dry mass of the blood clots, using the 
following formula [Phillips et al., 2012]: 

 

[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷] =  �
𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝐻𝐻20
− 1�  𝑥𝑥 

1
𝑘𝑘

 

 

Where 𝑅𝑅𝑅𝑅 is the mean refractive index of the blood clots that was obtained from the 
3D RI tomograms, 𝑅𝑅𝑅𝑅𝐻𝐻20 is the mean refractive index for water (1.333) and the variable 
𝑘𝑘 is representative for materials that do not have any specific light absorbance 
characteristic and was set to 0.002 [Barer, 1952]. 

The open source software Gwyddion 2.63 [Nečas & Klapetek, 2012] was used to 
analyze the AFM images. 2D levelling with mean plane facets point upward and scan 
line correction were applied. The height profile and the surface roughness (Root mean 
square (RMS) roughness, 𝑆𝑆𝑞𝑞) were extracted for each blood clot fragment. For blood 
clot fragment analysis of surface roughness distribution, ten areas measuring ~0.5 μm 
x 0.5 μm were averaged for each blood clot fragment. In total, 38 blood clot fragments 
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were analyzed for the untreated control group, 35 for the urea treated group and 24 
for the aspirin treated group.  

EasyWorm [Lamour et al., 2014] is an open-source software tool and was used to 
determine the persistence length of the blood clot fragments obtained through the 
AFM measurements. Lines were manually drawn along the longest axis of each blood 
clot fragment in EasyWorm 1, in order to establish the persistence length. The data 
was then processed by EasyWorm 2, where the persistence length was calculated 
using the contour / end-to-end method, yielding the persistence length measurement 
for each blood clot fragment in all three conditions.
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6. Capturing the effect of Levodopa 
on α-Synuclein fibrils at the 
nanoscale* 

6.1. Abstract 

Neurodegenerative conditions, such as Parkinson's disease (PD) and Alzheimer's 
disease (AD), are characterized by the aggregation of otherwise soluble proteins, 
resulting in the formation of pathological fibrillar deposits. Abnormal aggregation of 
α-synuclein (α-Syn) is a defining pathological feature of PD, leading to the 
degeneration of dopaminergic neurons. To counter this process, dopamine 
replacement therapies, namely levodopa (L-dopa), are used to alleviate the motor 
symptoms and to restore dopamine levels in the affected brain regions. In this study, 
we investigated the effect of L-dopa on the aggregation pathway of α-Syn in vitro, 
using atomic force microscopy (AFM), by characterizing the morphology of α-Syn 
fibrils observed after incubation with and without L-dopa (100 μM) over a period of 7 
days. Our findings reveal the formation of shorter and thinner α-Syn fibrils, 
characterized by a lower persistence length, upon treatment with L-dopa, indicative 
of less-organized fibrils with reduced β-sheet content. The prospect of dissolving 
abnormally aggregated α-Syn fibrils holds promise for exploring the pathomechansims 

                                                           
 
*Bergaglio, T., Kummer, N., Giovannini, G., Bhattacharya, S., Campioni, S., Thompson, D., Nirmalraj, P. 

N. Capturing the effect of Levodopa on α-Synuclein and amyloid-β 42 fibrils at the nanoscale. In 
preparation, 2023. 
Contribution: T.B. was involved in the planning of the study, prepared the α-Synuclein (with S.C.) and 
Levodopa solutions, and conducted the AFM measurements on the α-Synuclein fibrils. T.B. performed 
the image processing, data analysis, interpretation and visualization of the AFM results. T.B wrote the 
original draft of the manuscript. 
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underlying PD and for the development of effective therapeutic strategies aimed at 
halting or reversing the course of the disease. 

6.2. Introduction 

Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the 
progressive loss of dopaminergic neurons in the substantia nigra region of the brain 
[Tolosa et al., 2021]. This degeneration is responsible for a spectrum of motor 
symptoms, including bradykinesia, resting tremors, and muscle rigidity, and non-
motor symptoms like cognitive impairment, mood disorders, and autonomic 
dysfunction [Hayes, 2019]. Aberrant aggregation of the misfolded α-synuclein (α-Syn) 
protein, from its native soluble state to β-sheet-rich mature fibril structures, drives the 
formation of intracellular aggregates known as Lewy bodies and Lewy neurites, which 
constitute the central pathological hallmark of PD [Breydo et al., 2012; Magalhães & 
Lashuel, 2022; Mehra et al., 2019]. Disruption of cellular homeostasis, impairment of 
protein clearance pathways, mitochondrial dysfunction, and the initiation of 
neuroinflammatory responses, triggered by aggregated α-Syn species, are believed to 
induce neuronal toxicity [He et al., 2020; Picca et al., 2021]. Consequently, 
understanding the mechanisms underlying α-Syn aggregation and the impact of 
therapeutic interventions aimed at preventing or mitigating this process play a central 
role in unraveling the pathogenesis responsible for initiating and advancing PD. 

Pathogenic processes underlying the onset of PD occur years prior to the emergence 
of detectable symptoms of neurodegeneration [Tolosa et al., 2021]. Simultaneously, 
existing therapeutic approaches designed to mitigate the motor symptoms of PD are 
only relevant once these symptoms manifest, suggesting that significant neuronal 
damage may have already taken place by that point [Ossig & Reichmann, 2015; 
Yedlapudi et al., 2016]. Levodopa (L-dopa) is a fundamental component in the 
pharmacological management of PD, where, as a precursor to dopamine, it 
replenishes dopamine levels in the brain's depleted regions, providing effective relief 
from motor symptoms in PD patients [Yuan et al., 2010]. While the distribution and 
degree of α-synuclein buildup throughout the brain of individuals with PD are well-
documented, the effect of long-term dopamine replacement therapy on α-synuclein 
aggregation remains unknown [Deffains et al., 2021]. Importantly, prolonged L-dopa 
therapy can be associated with motor fluctuations, dyskinesia and a consequent 
reduction in the effectiveness of a given L-DOPA dose [Yedlapudi et al., 2016]. The 
generation of free radicals as well as L-dopa-induced toxicity to dopaminergic neurons 
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may in turn accelerate the neurodegenerative processes underlying PD [Ossig & 
Reichmann, 2015]. In addition, the simultaneous administration of decarboxylase 
inhibitors, such as carbidopa or benserazide, with L-dopa serves to minimize the 
occurrence of drug-induced adverse effects, like nausea and hypotension, while also 
enhancing the amount of medication capable of crossing the blood-brain-barrier 
[Ossig & Reichmann, 2015]. Although L-dopa cannot arrest or slow down the 
advancement of PD, nor reverse the course of the disease, in vitro studies have 
demonstrated that L-dopa can effectively hinder the formation of α-Syn fibrils and 
promote the disassembly of pre-existing fibrils [Conway et al., 2001; Li et al., 2004].  

Understanding the complex mechanisms governing α-Syn aggregation and the mode 
of action of dopamine replacement therapies is essential for the advancement of 
effective therapeutic interventions designed to halt PD progression. In this study, we 
used atomic force microscopy (AFM) to assess the role of L-dopa in having α-Syn 
fibrillation. To achieve this, we characterized α-Syn aggregates incubated with and 
without L-dopa solution for a period of 7 days at 37°C and under constant mechanical 
agitation. The formation of α-Syn fibrils was observed even when α-Syn was incubated 
with 100 μM L-dopa. However, treatment with L-dopa resulted in the formation of α-
Syn fibrils that were shorter and more slender in structure, hinting at potential 
variations in their morphology and pathological impact. Furthermore, within the 
sample of α-Syn incubated with L-dopa, L-dopa particles of different sizes were 
detected, suggesting that L-dopa molecules could be mostly present in the form of 
aggregates when interacting with α-Syn. Overall, our study highlights the central 
importance of L-dopa therapy as in the management of PD, shedding light on the 
nanoscale interactions between L-dopa and α-Syn aggregation. Ongoing efforts to 
elucidate the dose-dependent effects of L-dopa, whether used as a sole treatment or 
in conjunction with other medications, will contribute further insights into the 
development of personalized treatment approaches. 

6.3. Results 

The aggregation pathway of α-Syn, including the morphological transition from 
monomers to fibrils, measured over a span of 10 days was previously demonstrated 
by Synhaivska and colleagues [Synhaivska et al., 2022]. Here, we performed AFM 
characterization of α-Syn fibrils that had incubated with and without 100 μM L-dopa 
concentration for 6 days. Figure 6.1(a) shows an AFM image recorded after depositing 
the α-Syn solution, without L-dopa, after 6 days of incubation time under mechanical 
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agitation at 37°C. Aggregated α-Syn fibrils can be observed in the AFM height image. 
The corresponding AFM amplitude image provides a clearer depiction of the shape of 
the α-Syn fibrils (Figure 6.1(b)). Figure 6.1(c) illustrates the overlay between the height 
and amplitude AFM images of the untreated α-Syn fibrils. To determine the thickness 
of the single fibrils, we extracted the cross-sectional profiles from the height image 
(white and yellow lines, Figure 6.1(a)), as shown in Figure 6.1(c). Nanoscopic variations 
were observed between individual α-Syn fibrils, with the fibrils depicted in Figure 
6.1(a) ranging from ~9 nm to ~12 nm in height. Next, we compared the α-Syn fibrils 
incubated with 100 μM L-dopa for 6 days using AFM. The AFM height image (Figure 
6.1(d)) shows the presence of α-Syn fibrils and L-dopa particles (black arrows), visible 
both on the fibrils as well as throughout the sample. Figure 6.1(e) illustrates the 
corresponding AFM amplitude image showing the distinct shape of the α-Syn fibrils 
and L-dopa particles. The cross-sectional profiles extracted from the height image 
(white and pink lines, Figure 6.1(d)) and shown in Figure 6.1(f) may suggest a decrease 
in fibril thickness upon incubation with L-dopa (height ranging from ~4 nm to ~8 nm). 

In order to quantify the specific effect of L-dopa treatment on α-Syn aggregation, we 
extracted the height and length distribution, as well as the persistence length 
measurement, of α-Syn fibrils incubated without and with 100 μM L-dopa 
concentration for 6 days, under the same experimental conditions of 37°C and 
mechanical agitation (Figure 6.2). The key finding when analyzing the α-Syn fibrils 
incubated with L-dopa was a significant decrease in fibril length (Figure 6.2(a)) and 
thickness (Figure 6.2(b)). Upon measuring the length distribution of the fibrils from the 
AFM height images, a two sample t-test revealed a significant reduction in fibril length 
(Figure 6.2(a)) when incubated with 100 μM L-dopa (610 ± 330 nm) compared to the 
untreated fibrils (860 ± 590 nm). Similarly, the height (Figure 6.2(b)) of the individual 
fibrils was also reduced upon treatment with L-dopa (5.20 ± 1.83 nm) compared to the 
control condition (5.96 ± 1.95 nm). Additionally, we assessed the nanomechanical 
properties of the α-Syn fibrils with and without L-dopa treatment. Figure 6.2(c) shows 
the mean square end-to-end distance as a function of the contour length for untreated 
fibrils (blue) and fibrils incubated with 100 μM L-dopa (red) for 6 days. The calculated 
persistence length revealed a trend for different mechanical properties between 
experimental conditions, where untreated α-Syn fibrils showed a slightly higher 
persistence length (14.94 ± 5.70) than L-dopa-treated α-Syn fibrils (14.85 ± 5.48). 
Furthermore, initial findings from a ThT kinetics assay indicated that the introduction 
of L-dopa led to a decelerated and reduced aggregation of α-Syn (Figure C.1). Results 
from three repetitions for each condition indicated that about 4 days of incubation at 
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37°C and under mechanical agitation, were necessary to detect α-Syn aggregation 
without the addition of L-dopa (Figure C.1). A dose-dependent effect of L-dopa (10 
μM, 50 μM, and 100 μM) on α-Syn aggregation appeared to be present throughout a 
7-day incubation period (Figure C.1(a)). Specifically, L-dopa at a concentration of 100 
μM seemed to have the strongest effect at hindering α-Syn aggregation (Figure 
C.1(b)). Finally, we calculated the mean L-dopa particle size in order to characterize 
the L-dopa aggregates found in the samples with the α-Syn fibrils incubated with L-
dopa and deposited as a thin film on mica substrates. A mean L-dopa particle size of 
10.5 nm was calculated, with a confidence interval lower (CIL) bound of 10.3 nm and 
a confidence interval upper (CIU) bound of 10.7 nm. The quantitative analysis of the 
size distribution of L-dopa particles indicates that, when incubated with α-Syn solution 
in vitro, L-dopa molecules are likely to be predominantly found in the form of 
aggregates. 

6.4. Discussion 

With the aging global population, the prevalence of PD is on the rise, emphasizing the 
importance of understanding the disease pathogenesis for the development of 
effective treatment strategies. In this study, we used nanoscale imaging to elucidate 
the aggregation pathway of α-Syn when incubated both with and without L-dopa 
solution. We resolved and characterized α-Syn fibrils that formed during a 7-day 
incubation period at 37°C under constant mechanical agitation, using AFM. In line with 
prior research [Synhaivska et al., 2022], our findings revealed the onset of α-Syn 
fibrillar aggregation after 4 days of incubation, with evidence for the formation of 
protofibrils and fibrils at day 6. Exposure to micromolar concentrations of L-dopa 
solution was sufficient to delay and to some extent even hinder the aggregation of α-
Syn during the incubation period. This is in agreement with previous studies showing 
the inhibition of fibril formation and even the disassembly of α-Syn in vitro, upon 
incubation with L-dopa [Conway et al., 2001; Li et al., 2004]. Additionally, our data 
indicate that the α-Syn fibrils that formed in the presence of L-dopa exhibited distinct 
characteristics, featuring shorter and thinner fibrils with a reduced persistence length. 

The results from the present study highlight the significance of studying the size and 
conformation of α-Syn protein aggregates in response to treatment with dopamine 
replacement therapy, such as L-dopa. Extensive α-Syn fibril formation was observed in 
the absence of L-dopa treatment. . Conversely, incubation with 100 μM of L-dopa 
solution resulted in α-Syn protein aggregates that were significantly shorter an
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Figure 6.1. Characterization of α-Syn fibrils incubated with L-dopa. (a-b) Height and 
amplitude AFM images of untreated α-Syn fibrils. (c) Overlay of the height and 
amplitude AFM images and height profiles (shown in the bottom inset) extracted 
along the white and yellow lines indicated in (a) of untreated α-Syn fibrils. (d-e) 
Height and amplitude AFM images of α-Syn fibrils incubated with 100 μM L-dopa 
solution for 6 days. Black arrows in (d) indicate L-dopa particles. (f) Overlay of the 
height and amplitude AFM images and height profiles (shown in the bottom inset) 
extracted along the white and pink lines indicated in (d) of α-Syn fibrils incubated 
with 100 μM L-dopa. 
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Figure 6.2. Morphological characterization of α-Syn fibrils incubated with L-dopa. (a-b) 
Bar plot of the mean α-Syn fibril length and height without and with incubation with 
100 μM L-dopa. Error bars indicate the standard deviation from the mean. (c) 
Persistence length of α-Syn fibrils without (blue) and with incubation with 100 μM L-
dopa (red). The WLC model is plotted in dark gray. (d) L-dopa particle size 
distribution; mean particle size: 10.5 nm, CIL: 10.3 nm and CIU: 10.7 nm. 
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presented significantly smaller diameters. This evidence is consistent with the 
presence and accumulation primarily of protofibrils [Synhaivska et al., 2022]. 
Assessment of the nanomechanical properties of α-Syn fibrils unveiled persistence 
length values between 12 and 15 μm, that are in agreement with previous studies 
[Makky et al., 2016]. Importantly, our data also revealed a lower mean persistence 
length when α-Syn was incubated with L-dopa, indicative of the presence of less-
organized fibrils with reduced β-sheet content [Vandenakker et al., 2011]. This is 
further substantiated by the preliminary evidence from the ThT aggregation kinetics 
measurements. A trend indicating that L-dopa limits α-Syn aggregation was observed 
as a dose-dependent effect, with the most pronounced effect observed at the highest 
concentration of 100 μM. In view of the positive ThT signal originating from the β-
sheet content in fibrillar structures, it is reasonable to assume that a decrease in ThT 
signal detected in the α-Syn samples incubated with L-dopa may be indicative of the 
partial inhibition of fibril formation and the presence of protofibrillar structures 
[Groenning, 2010]. The concentration of L-dopa used in our experiments aligns with 
the estimated concentration in the brain following administration, thereby reflecting 
a physiologically relevant impact [Spencer et al., 1996]. 

Dopamine replacement therapy has been shown to ameliorate α-Syn pathology both 
in vitro and in vivo, in a mouse model of PD [Deffains et al., 2021; Yedlapudi et al., 
2016]. Nonetheless, extended L-dopa intake may result in the acceleration of 
neurodegenerative processes, driven by the generation of free radicals capable of 
inducing neurotoxicity [Ossig & Reichmann, 2015]. Additionally, the reduced efficacy 
of L-dopa over time is suggested to depend on the progressive loss in the ability of 
presynaptic neurons in the substantia nigra to store dopamine, thus highlighting the 
role of the chemical milieu in influencing the therapeutic effect of medications [Ossig 
& Reichmann, 2015]. In this context, evidence for L-dopa toxicity was investigated 
both in vitro and in vivo under conditions of oxidative stress that would normally be 
found in PD patients [Mytilineou et al., 2003]. L-dopa-induced toxicity was detected in 
cultured dopaminergic neurons but did not manifest when administered to neonatal 
rats [Mytilineou et al., 2003]. This prompts consideration of the challenges associated 
with the replication of such complex neurodegenerative diseases with in vitro and in 
vivo models and with the translation of these findings for the development of effective 
PD treatments. In addition, a recent study detected the formation of annular 
oligomers and accelerated α-Syn aggregation induced by exposure to copper, 
emphasizing their potential role as biomarkers for early detection and for the 
monitoring of neurodegenerative processes in PD [Synhaivska et al., 2022]. The role of 
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dopamine replacement therapies, specifically L-dopa, should be further explored 
within the context of different forms of α-Syn aggregates. Our findings that L-dopa 
particles are primarily present in the form of aggregates when incubated with α-Syn 
in vitro may play a crucial role in determining the pharmacokinetics, the effectiveness 
and the potential toxicity of the medication [Camargo et al., 2014].  

Important considerations should also be directed towards the documented side 
effects resulting from L-dopa in-take. Reports of significant blood pressure decrease, 
especially in older PD patients, as well as anemia resulting from vitamin B6 deficiency, 
emphasize the need for tools to routinely monitor drug-induced adverse effects and 
for the development of personalized treatment strategies [Su et al., 2023; Yasuda et 
al., 2022]. The disease status of individual PD patients, including the extent of α-Syn 
deposition, should play a pivotal role in determining and adapting the dose-dependent 
administration of L-dopa, in order to mitigate the risk for drug-induced cytotoxicity. 
Our AFM-based approach can provide nanoscopic insights into the dynamics of α-Syn 
aggregation and into the therapeutic impact of dopamine replacement therapies. 

6.5. Methods 

6.5.1. Preparation of Wild-Type α-Synuclein and Levodopa 
solutions 

Wild-type human α-Syn was obtained following the procedures outlined by Campioni 
et al. [Campioni et al., 2014]. To prepare the α-Syn solutions, the lyophilized protein 
(∼30 mg/mL) was first dissolved in 700 μL of PBS buffer (VWR). The pH was then 
adjusted to 7.4 using 1 M sodium hydroxide (NaOH). To filter the solution, the filter 
membrane of a 100 kDa NMWL centrifugal filter (Amicon Ultra-4 Centrifugal Filter 
Unit, Merk Millipore) was first hydrated with 4 mL of PBS buffer and centrifuged for 5 
minutes at 3200g for three times. Next, the α-Syn solution (~700 μL) was added to the 
centrifugal filter and centrifuged for 20 minutes at 3200g in order to filter out large α-
Syn particles that had not fully dissolved. Lastly, to extract any remaining α-Syn from 
the bottom of the filter, 100 μL of PBS buffer was added to the filter and mixed, 
followed by centrifugation for 5 min at 3200g. A spectrophotometer (Implen 
Nanophotometer NP80 UV−vis) was used to determine the final concentration of α-
Syn (ε280 = 5960 M−1 cm−1). The obtained α-Syn stock solution was further diluted with 
PBS buffer in order to reach a final concentration of 300 μM.  



 
6. The effect of Levodopa on α-synuclein fibrils at the nanoscale 

 

 
97 

 
 

To investigate the effect of L-dopa on α-Syn aggregation dynamics, a stock solution 
was prepared by dissolving L-dopa (Merk Millipore) in 1 mL PBS buffer (1.9719 
mg/mL). Three concentrations of L-dopa were prepared (20 μM, 100 μM, and 200 
μM). For each experimental condition, 250 μL of L-dopa solution was added to 250 μL 
of α-Syn (300 μM), leading to a final concentration of L-dopa of 10 μM, 50 μM, 100 
μM, respectively. The α-Syn, with and without L-dopa, was incubated at 37°C for 7 
days under mechanical agitation at 300 rpm. Only the α-Syn incubated with 100 μM L-
dopa concentration was used for AFM analysis. 

6.5.2. Atomic Force Microscopy 

Atomic force microscopy measurements were performed using a Dimension Icon AFM 
(Bruker). A SCOUT 70 HAR silicon AFM tip with a high aspect ratio, gold reflective 
backside coating, force constant 2 N/m, resonant frequency of 70 kHz, cone angle of 
<15° over the final 1 μm of the tip apex (NuNano) was used in tapping mode. AFM 
measurements were conducted on air-dried α-Syn incubated without and with 100 μL 
L-dopa concentration on day 6 and deposited as a thin film on mica discs. The raw AFM 
images were processed and analyzed using open source software Gwyddion 2.60. 2D 
leveling and scan line correction were applied, followed by measurements of the fibril 
height (Nuntreated = 316; NL-dopa = 277) and length (Nuntreated = 125; NL-dopa = 161). The size 
distribution of L-dopa particles observed in the treated α-Syn sample was calculated 
for a total of ~348 particles. The persistence length of the α-Syn fibrils (Nuntreated = 57; 
NL-dopa = 92) was calculated with the open source software EasyWorm, using the end-
to-end distance approach derived from the WLC model for semi-flexible polymers. 
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7. Overall discussion and outlook 

7.1. A bird's eye view of the thesis 

In this thesis, we developed an innovative imaging platform for clinical level screening 
of pathological diseases and monitoring of drug-induced cytotoxic effects by detecting 
and characterizing the morphological and biochemical changes of blood components. 
Our primary emphasis was directed toward evaluating red blood cells (RBCs) and blood 
clots in view of the significance of their morphology and RBC rheological properties in 
the diagnostics of blood-related diseases and in designing appropriate treatments. 
Through the proposed imaging and analysis framework, it becomes possible to directly 
assess fresh blood in a label-free manner, thereby offering a quantitative insight into 
blood structures and, ultimately, enabling the assessment of an individual's health 
status. For instance, the RBC characterization framework developed in this thesis for 
the automatic assessment and classification of RBC morphology could prove highly 
beneficial in the diagnostics of sickle cell disease (SCD), where the presence of sickle 
RBCs serves as a pathological hallmark. This holds particularly true in regions with 
limited resources, which coincidentally overlap with the areas where a majority of SCD 
patients reside. In such regions, the scarcity of diagnostic facilities and hematologists 
stands as a primary factor contributing to mortality rates [Gregory J. Kato et al., 2018]. 
For this reason, current approaches in traditional pathology would benefit significantly 
from a greater degree of automation in their processes. The research presented in this 
thesis brings us a step closer to the digitization of diagnostic hematology, by providing 
a digital, high-throughput and automated approach for blood screening. Additionally, 
the prospect of real-time evaluation of drug-induced cytotoxic effects on blood can 
provide endless opportunities in the domains of drug discovery and surveillance.  

The development of the imaging and analytical platform proposed in this thesis was 
based on the morphological assessment of RBCs. To benchmark our methodology, we 
developed all facets of our workflow, starting with the preparation of blood samples, 
extending to the optimization of DHTM-based imaging using Nanolive's 3D Cell



 
7. Overall discussion and outlook 

 

 
99 

 
 

Explorer microscope, and the creation of image and data analysis processes. By 
combining high-throughput DHTM and high-resolution AFM imaging, a 
comprehensive assessment and characterization of blood structures can be achieved. 
This is a step ahead of the state-of-the-art, as the nanoscale analysis of blood yields 
invaluable insights that are not always visually observable with conventional optical 
microscopy. A significant advantage of our blood screening platform is the possibility 
to analyze thousands of individual RBCs with only small blood volumes. This approach 
offers distinct benefits, including reduced patient discomfort and the potential for 
more frequent sampling, which is especially advantageous for drug monitoring and 
critical care or pediatric settings. Therefore, our approach strives for the realization of 
a point-of-care solution that ultimately leads to a more automated, non-invasive and 
quantitative blood screening platform.  

As a non-invasive and clinically accessible approach, screening RBC morphology can 
significantly contribute to drug safety assessments and therapeutic optimization. For 
instance, changes in cell shape, size, or the presence of abnormal structures like 
microclots in blood can be indicative of adverse drug reactions or potential drug-
induced hematological disorders. Moreover, the quantification of such morphological 
alterations provides valuable data for monitoring treatment response and adjusting 
drug regimens in personalized medicine. With our imaging and analysis framework, 
we could resolve RBC shape changes upon treatment with ibuprofen. A unique aspect 
of this approach is the label-free, real-time measurement of drug-cell interactions and 
the concomitant quantification of RBC morphological and chemical parameters. We 
are able to show the concurrent changes in cell diameter, surface area-to-volume 
ratio, thickness, sphericity, and hemoglobin concentration, which would then reflect 
the health and lifespan of RBCs and ultimately their ability to efficiently transport 
oxygen to all organs. Additionally, we demonstrated a dose-dependent effect of 
hydrogen peroxide-induced oxidative stress on RBC shape, characterized by a 
transient morphological transformation into stomatocytes. The chemical environment 
surrounding living cells holds profound significance, especially in pathological 
conditions, where alterations in the chemical milieu can lead to cellular dysfunction 
and contribute to the development of disease. Manipulation of the cellular 
microenvironment plays a pivotal role in comprehending the mechanisms underlying 
disease pathogenesis and serves as a focal point for therapeutic interventions. By 
exploiting RBC morphology to assess the effect of changes to the chemical 
environment, we demonstrated the detection and quantification of the dose-
dependent effect of drugs and elevated levels of oxidative stress and urea. This is of 
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particular significance for individuals suffering from blood-related pathologies as well 
as other medical conditions, such as chronic kidney disease.  

The method discussed in this thesis paves the way not only for studying alterations in 
RBC morphology, but also offers promising opportunities for elucidating disease 
pathogenesis and uncovering potential blood-based biomarkers. As an example, we 
found a higher prevalence of microclots in the plasma of individuals suffering from 
COVID-19 as opposed to healthy donors. On the one hand, we were able to 
demonstrate the possibility to detect and resolve microclots in plasma with high 
spatial resolution and in a label-free manner, thus contributing to the development of 
novel biomarkers for the diagnosis of COVID-19 and Long COVID pathologies. On the 
other hand, we resolved and quantified differences in microclot morphology and 
composition that may help elucidate the pathological mechanisms underlying 
symptom severity and coagulopathies in COVID-19. Hence, nanoscale analytics can act 
as a foundational step for the advancement and tailoring of therapeutic interventions. 
Another example is the study of the role of protein aggregates in neurodegenerative 
diseases. By investigating the effect of Levodopa treatment on α-Synuclein 
aggregation in vitro, at the nanoscopic scale, we were able to shed light on the 
structural changes and dynamics underlying fibril fragmentation. Future strategies for 
the dose-dependent administration of Levodopa to Parkinson's patients may consider 
the degree of pathology, thus the extent of α-Syn aggregation, and the risk of drug-
induced adverse effects. Given that this is the sole symptomatic treatment available 
for Parkinson's disease, it becomes paramount to employ a personalized approach, 
tailored to an individual's specific condition and the severity of their symptoms.  

Another important consideration is the involvement of clinicians and hematologists to 
validate and facilitate the integration of the proposed imaging and analysis platform 
into clinical practice. While there is a perception that AI-based tools may replace 
certain repetitive tasks performed by humans, it is important to emphasize that 
automated and machine learning-based analytical tools can never substitute the role 
of healthcare professionals. Therefore, engaging hospitals and clinicians in the 
development of these innovative tools would serve a dual purpose: firstly, to gain 
insights into their specific needs and challenges, and secondly, to facilitate a smoother 
transition from traditional healthcare practices to a more digitally-driven healthcare 
system. 

The label-free aspect of the high-throughput and quantitative approach presented in 
this thesis enables the acquisition of artefact-free and biologically-relevant findings. In 
turn, this approach can be applied for the real-time analysis and characterization of 



 
7. Overall discussion and outlook 

 

 
101 

 
 

blood components, as well as for the development of personalized treatment 
strategies, enhancing the likelihood of therapeutic success but also optimizing the 
overall safety of medical interventions. Moreover, this approach can be extended for 
the characterization of morphological and chemical parameters of other blood 
components, such as WBCs and platelets. To achieve this, it may be necessary to 
optimize sample preparation and imaging procedures to adapt to the characteristics 
of the different cell types. 

 

7.2. What's next? 

Label-free DHTM-based imaging and analysis approaches offer a vast array of 
possibilities for expanding their utilization across various domains. The applications 
proposed throughout this thesis, in the field of diagnostic hematology, require further 
validation through the analysis of a larger sample size, in order to accelerate the 
integration into clinical settings. In this thesis, we demonstrated the label-free 
characterization and automatic classification of RBC morphology in health and sickle 
cell anemia. The analysis of samples from donors with other blood-related diseases 
characterized by RBC shape changes, such as other forms of sickle cells disease, 
thalassemia, and diabetes, would enrich the diversity of our dataset. This, in turn, 
would contribute to the establishment of a comprehensive digital repository 
containing both morphological and chemical parameters specific to each RBC shape 
variation, facilitating the exploration of associations with various diseases. The same 
process would be extended to the investigation of the morphological changes in RBCs 
induced by chemicals and drugs, such as chemotherapeutic agents, nanoparticle-
based drug delivery systems and medications for neurodegenerative diseases, thereby 
enhancing our understanding of drug safety and efficacy, ultimately driving the 
advancement of personalized medicine. Access to biobanks would substantially 
enhance sample diversity, as it would grant access to donors with diverse 
comorbidities and ultimately facilitate sample stratification. This is of particular 
importance for the detection and characterization of microclots in COVID-19 and Long 
COVID, given the heterogeneous symptomatology and the uncertainty surrounding 
the role of COVID-19 variants and vaccine type on clinical outcomes. 

As a next step, the proposed methodology for label-free detection and 
characterization of microclots in plasma could be extended to other medical 
conditions characterized by the presence of microvasculature injury, such as diabetes 
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and neurodegenerative diseases [de Waal et al., 2018; Pretorius et al., 2020]. This 
approach has the potential to shed light on disease pathogenesis and to lead to the 
discovery of new blood-based biomarkers. Moreover, the integration of blood clot 
nanoscale analytics in the current diagnostic practices may facilitate the early 
diagnosis and continuous monitoring of thrombotic disorders, potentially predicting 
the likelihood of recurrent thrombotic events. 

Another potential application of our label-free, high-throughput and quantitative 
framework for the automated assessment of RBC morphology lies in the 
characterization of WBCs. This approach could facilitate the monitoring of infections, 
inflammation, autoimmune responses, and the body's reaction to chemotherapeutic 
agents, thereby adding an additional layer of blood-based biomarker analysis to our 
system. The use of ML-based techniques would allow for the efficient processing of 
large quantities of data obtained from our DHTM-based platform. Customizing ML 
algorithms for each specific application of the proposed system would subsequently 
accelerate the digitization of diagnostic hematology across healthcare environments. 
This, in turn, could enable the development of versatile point-of-care solutions for 
disease diagnostics and for the monitoring of drug-induced adverse effects, applicable 
also in resource-limited settings. 

Furthermore, our DHTM-based platform could be enhanced by integrating 
supplementary imaging and analysis systems. For instance, expansion microscopy 
(ExM) is an emerging transformative technique that allows to physically expand 
biological specimens, such as cells or tissues, while preserving their molecular and 
structural details [Chen et al., 2015; Wassie et al., 2019]. This expansion process is 
achieved through the incorporation of a swellable polymer mesh into the specimen, 
which, when triggered, expands uniformly, leading to a significant increase in the size 
of the sample [Wen et al., 2023]. As a result, structures that were once beyond the 
diffraction limit of conventional optical microscopy become resolvable [Gallagher & 
Zhao, 2023]. The integration of this groundbreaking approach with our DHTM-based 
system has the potential to unlock new opportunities for high-resolution imaging of 
subcellular structures in a label-free manner, with implications for protein analytics 
directly in blood. 

  



 
7. Overall discussion and outlook 

 

 
103 

 
 

7.2.1. Merits and challenges of integrating DHTM with 
microfluidics 

Additional systems capable of closely mimicking the physiological conditions inside the 
body could be combined with label-free imaging modalities. One such example is the 
integration of microfluidics to better replicate the physiological blood flow in vitro. 
Microfluidic devices offer a versatile platform for precise and efficient analysis of blood 
structures via the intricate network of channels and chambers that allow for the 
manipulation of small volumes of blood samples with exceptional control and 
precision [Matthews et al., 2017; Sebastian & Dittrich, 2018]. The use of microfluidic 
systems in diagnostic hematology could enhance the sensitivity and specificity of 
blood analysis and would enable rapid and cost-effective blood cell counting, blood 
typing, and the assessment of cellular morphology while aligning more closely with 
physiological conditions [McNamee et al., 2021]. Additionally, emerging technologies 
in microfluidics and tissue-on-a-chip platforms are enabling researchers to precisely 
control and manipulate the chemical microenvironment, opening new avenues for 
investigating cellular behavior and developing innovative therapeutic strategies in the 
field of precision medicine [Rizzuto et al., 2021]. However, important challenges arise 
when combining microfluidic devices with DHTM. Most importantly, a high frame rate 
(e.g. ∼100 frames/second) during the image acquisition process is imperative in order 
to detect and resolve cells passing through the microfluidic channel with high 
resolution. In the context of the DHT microscope employed for this thesis, a frame rate 
of one frame every two seconds poses a limitation on the integration of microfluidics. 
Furthermore, the dimensions of the microfluidic channels may also hinder the 
integration of microfluidics in a DHT setup. Important considerations pertaining to the 
DHT microscope used in this thesis include the channel thickness (max. 170 μm), 
sample thickness (max. 30 μm) and volume of medium (max 1.5 mL) inside the 
channel.  

Overall, our proposed DHTM-based analytical platform for blood screening plays a 
crucial role in the digitalization of diagnostic hematology, offering valuable insights 
into both normal physiology and disease pathology. The versatility of the proposed 
approach paves the way for its integration across multiple domains, including 
biomarker discovery, early disease diagnostics, and drug monitoring.
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A. Appendix to Chapter 3 

A.1. Molecular dynamics model details 

A.1.1. RBC membrane lipid bilayer model 

We modelled the RBC membrane lipid bilayer based on the in silico lipid composition 
of the model erythrocyte membrane in ref. [Chan et al., 2020], which have been 
previously experimentally validated. The membrane model was built using CHARMM-
GUI [Lee et al., 2019; Wu et al., 2014] web-interface and is composed of 20% and 20% 
cholesterol (CHL), 11% and 25% Palmitoyl Oleoyl PhosphoCholine (POPC), 38% and 
10% Palmitoyl Oleoyl PhosphoEthanolamine (POPE), 22% and 0% Palmitoyl Oleoyl 
PhosphoSerine (POPS), and 9% and 35% Stearoyl SphingoMyelin (SSM) in the inner 
and outer leaflets, respectively (Table A.4 and Figure A.12(a)), with 200 lipid molecules 
in each leaflet. The surface area of the lipid bilayer was 10.5 X 10.5 nm2 (Figure 
A.12(b)), large enough to study adsorption of ibuprofen aggregates on membrane 
surface. 

A.1.2. Preparation of the ibuprofen-lipid systems and 
molecular dynamics simulations 

Molecular Dynamics (MD) simulations were performed using Gromacs 2018.4 [Van 
Der Spoel et al., 2005] software. The ibuprofen molecules and RBC lipid bilayer were 
represented by CHARMM General force field [Vanommeslaeghe & MacKerell, 2012; 
Vanommeslaeghe et al., 2012] (CGenFF) and CHARMM36m [Huang et al., 2017] force 
field parameters, respectively. Five different ibuprofen aggregates were studied on 
top of RBC membrane bilayer – (1) single molecule of ibuprofen (Figure A.12(c)), 
preformed aggregates of (2) 80 ibuprofen molecules, representing very low 
concentration, and (3) 100 ibuprofen molecules representing low concentration, but 
higher than 80-molecule aggregate, densely packed box of ibuprofen containing 1903 
molecules under (4) isothermal-isobaric ensemble (NPT) conditions at constant 
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pressure, where the volume of the system is adjusted during simulation representing 
high concentration, and (5) canonical ensemble (NVT) at constant volume to model 
very high concentration of ibuprofen aggregates. System (1) will henceforth be 
regarded as “single ibu”, system (2) as “low ibu conc. I”, system (3) as “low ibu conc. 
II”, system (4) as “high ibu conc. I”, and system (5) as “high ibu conc. II”. The preformed 
aggregates of ibuprofen (80 and 100 molecules) were modelled by running a MD 
simulation of randomly dispersed molecules of ibuprofen in water with counter ions 
(Na+ and Cl-) (Figure A.12(d)). The ibuprofen aggregates formed instantly within 1 ns 
dynamics (Figure A.12(d)) due to strong hydrophobic intermolecular forces. The 
starting configuration of all five systems are shown in Figure A.12(a-e). All ibuprofen–
membrane complexes were solvated by filling the area above and below the 
membrane with water molecules represented by the modified TIP3P water model 
[Boonstra et al., 2016], creating a >20-Å thick water layer above the ibuprofen and 
below the membrane to mimic bulk solvation in the z-plane. Each simulation cell was 
neutralized by adding the appropriate number of counterions. After 5000 steps of 
energy minimization, each system was equilibrated over six consecutive steps (100 ps 
each), with the values of the force constants of position and dihedral restraints of lipids 
gradually decreased from 1000 to 0 (the unit for position and dihedral restraints are 
kJ/(mol.nm2) and kJ/(mol.rad2), respectively). During equilibration, the Berendsen 
thermostat and barostat were applied to maintain the temperature at 310 K and 
pressure at 1 atm. Semi-isotropic pressure coupling was applied to allow the lipid 
bilayer to fluctuate in the xy plane independent of the z-axis. For the production run, 
the Velocity rescaling thermostat and Parrinello-Rahman barostat were applied. Long-
range electrostatic interactions were treated using the particle-mesh Ewald (PME) 
method. The time step used in our MD simulations is 2 fs, and the structures were 
saved every 100 ps during 0.1 μs of production dynamics. 
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Figure A.1. Evolution of RBC quality over 11-days of storage time. 3D rendering of 
healthy RBCs diluted in PBS and stored at 4°C on (a) day 0, (b) day1, (c) day 2, (d) day 
3, (e) day 4, (f) day 7, (g) day 8, (h) day 9, (i) day 10, (j) day 11. (k) Percentage of 
normocytes and echinocytes in the same blood solution over 11 days. (l-q) 
Quantification of RBC morphological parameters over storage time: diameter, 
surface area, volume, thickness, sphericity and Hb concentration. Error bars depict 
the standard deviation. Field of view 90x90x30 μm. 
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Figure A.2. Benchmark for the quantification of the morphological parameters using micro-particles based on silicon dioxide (Merk 
Millipore). (a) 3D rendering of 2 μm beads with corresponding RI tomogram in the inset, obtained with DHTM. Comparison of the 
quantification of (b) the diameter, (c) the surface area and (d) the volume, between the Imaris-based image analysis and the nominal 
values provided by the manufacturer. (e) 3D rendering of 5 μm beads with corresponding RI tomogram in the inset, obtained with DHTM. 
(f) Comparison of the quantification of the diameter, (g) the surface area and (h) the volume, between the Imaris-based image analysis 
and the nominal values provided by the manufacturer. Error bars depict the minimum and maximum values. Field of view 90x90x30 μm. 
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Figure A.3. Quantification of Hb content in healthy, SCT and SCA RBC populations 
based on 3D tomograms. Single cell level comparison between ML-based classified 
RBC types in healthy, SCT and SCA samples. Bars indicate mean values plus minimum 
and maximum values of all counted cells in each group. 
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Figure A.4. Quantification of RBC morphological changes in diameter, thickness surface area to volume ratio (S/V Ratio), sphericity, Hb 
concentration and Hb content upon exposure to different concentrations of ibuprofen (0.25 mM, 0.5 mM, 1 mM, 1.5 mM and 3mM) 
during a 20-minute time-lapse. (a) 0.25 mM, (b) 0.5 mM, (c) 1 mM, (d) 1.5 mM and (e) 3 mM ibuprofen concentration. Blue line = field 
of view 1; red line = field of view 2. 
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Figure A.5. Quantification of RBC morphological changes in surface area, volume and Hb content upon exposure to low and high 
concentrations of ibuprofen during a 20-minute time-lapse. (a-c) Time-dependent changes to surface area, volume and Hb content of a 
single RBC treated with 0.25 mM ibuprofen. (d-f) Time-dependent changes to surface area, volume and Hb content of a single RBC 
treated with 1.5 mM ibuprofen. 
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Figure A.6. Ratio of normocytes and echinocytes in blood incubated with 0.25 mM, 0.5 
mM, 1.5 mM and 3 mM ibuprofen concentrations for 1.5 hours at 37°C. 
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Figure A.7. 3D holo-tomographic imaging of RBCs treated with urea at varying 
concentrations, during a 10-minute time-lapse. (a) 3D RI tomograms of RBCs treated 
with 2M urea, resulting in mild spherocytosis (t1: 0 s; t2: 1:24 min, urea added; t3: 
1:48 min; t4: 5:20 min; t5: 10 min). (b) 3D RI tomograms of RBCs treated with 4M 
urea, resulting in mild spherocytosis (t1: 0 s; t2: 1:02 min, urea added; t3: 1:26 min; 
t4: 4:58 min; t5: 10 min). (c) 3D RI tomograms of RBCs treated with 6M urea, 
resulting in mild spherocytosis (t1: 0 s; t2: 1:22 min, urea added; t3: 1:46 min; t4: 
5:18 min; t5: 10 min). (d) 3D RI tomograms of RBCs treated with 8M urea, resulting 
in spherocytosis and cell lysis, with formation of ghost cells (t1: 0 s; t2: 48 s, urea 
added; t3: 1:08 min; t4: 2:20 min; t5: 10 min). (e-j) Quantification of time-dependent 
morphological parameters in urea-treated RBCs, (e) diameter, (f) surface area, (g) 
volume, (h) thickness, (i) sphericity and (j) Hb concentration (red = 2M; green = 4M; 
blue = 6M; black = 8M). Field of view 90x90x30 μm. 
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Figure A.8. 3D holo-tomographic imaging of RBCs treated with H2O2 at varying 
concentrations, during a 10-minute time-lapse. (a) 3D RI tomograms of RBCs treated 
with 2M H2O2, resulting in mild stomatocytosis (t1: 0 s; t2: 1:02 min, H2O2 added; 
t3: 1:48 min; t4: 7:44 min; t5: 15 min). (b) 3D RI tomograms of RBCs treated with 4M 
H2O2, resulting in mild stomatocytosis (t1: 0 s; t2: 54 s, H2O2 added; t3: 1:34 min; 
t4: 6:34 min; t5: 15 min). (c) 3D RI tomograms of RBCs treated with 6M H2O2, 
resulting in mild stomatocytosis (t1: 0 s; t2: 44 s, H2O2 added; t3: 1:28 min; t4: 6:24 
min; t5: 15 min). (d) 3D RI tomograms of RBCs treated with 8M H2O2, resulting in 
more pronounced stomatocytosis (t1: 0 s; t2: 1:40 min, H2O2 added; t3: 2:20 min; 
t4: 7:20 min; t5: 15 min). (e-j) Quantification of time-dependent morphological 
parameters in urea-treated RBCs, (e) diameter, (f) surface area, (g) volume, (h) 
thickness, (i) sphericity and (j) Hb concentration (red = 2M; green = 4M; blue = 6M; 
black = 8M). Field of view 90x90x30 μm. 
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Figure A.9. 3D holo-tomographic imaging of RBCs treated with ddH2O, during a 10-
minute time-lapse. (a) 3D RI tomograms of RBCs treated with ddH2O2, resulting in 
no morphological alteration (t1: 0 s; t2: 44 s, ddH2O added; t3: 1:04 min; t4: 4:00 
min; t5: 10 min). (b-g) Quantification of time-dependent morphological parameters 
in urea-treated RBCs, (b) diameter, (c) surface area, (d) volume, (e) thickness, (f) 
sphericity and (g) Hb concentration. Field of view 90x90x30 μm. 
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Figure A.10. Effect of petri dish surface used to image blood solutions with DHTM. (a) Echinocytosis resulting from RBCs contact with a 
glass surface. (b) Polymer-coated surface resulting in unaltered RBC morphology.  
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Figure A.11. Comparison between PBS and silicone oil (5 cSt) coating for optimal blood 
smear imaging with DHTM. (a) RI tomogram of healthy RBCs from a blood smear 
coated with PBS. (b) RI tomogram of healthy RBCs from a blood smear coated with 
silicone oil (5 cSt). (c) Example of storage artifacts in a blood smear coated with PBS 
and sealed with a coverslip and nail varnish after 4 days storage at room 
temperature. (d) Example of absence of storage artifacts in a blood smear coated 
with silicone oil (5 cSt) and sealed with a coverslip and nail varnish after 4 days 
storage at room temperature. 
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Figure A.12. (a) Model RBC lipid bilayer composition at the outer/top and inner/bottom leaflets used in this study also showing the (b) 
membrane dimensions in the xy-plane. (c) Stick representation of a single molecule of ibuprofen (ibu). (d) Preformed aggregates of 
ibuprofen molecules (at low concentration) obtained in this study from 1 ns dynamics in explicit water. 
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Figure A.13. (a-e) Initial and (f-j) final snapshots of (a, f) single ibuprofen molecule, aggregates of (b, g) 80 ibuprofen molecules, (c, h) 100 
ibuprofen molecules, densely packed (d, i) 1903 ibuprofen molecules under NPT conditions, and (e, j) 1903 ibuprofen molecules under 
NVT conditions. (k-o) Ibuprofen–membrane interaction energies and their Coulombic electrostatic and van der Waals (vdW) components 
for all systems modelled in this study. 
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Figure A.14. Ibuprofen–ibuprofen interaction energies and their electrostatic and vdW components for (a) low conc. I, (b) low conc. II, (c) 
high conc. I, and (d) high conc. II (see Appendix to Chapter 3 A.1.2 for these definitions). (e-i) Average density profiles of all species in the 
simulation box for all systems used in this study. 



 
A. Appendix to Chapter 3 

 

 
154 

 
 

  

Figure A.15. Comparison of (a) Mean Square Displacement (MSD) and (b) diffusion coefficient, D for all systems modelled in this study. (c-
g) Lipid hydrocarbon tail deuterium order parameter (SCD) for RBC membrane lipids (Palmitoyl Oleoyl and Stearoyl) with two acyl chains, 
SN-1 and SN-2, and (h-l) lipid heavy atoms number densities in the xy-plane averaged over the z-axis to obtain a top view of lipid densities 
in the membrane for all systems. 
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Table A.1. Summary of the demographics of the healthy blood and SCT and SCA RBC 
samples. 

 Gender Age Ethnicity 

Healthy F 27 Caucasian 

SCT M 34 Caucasian 

SCA F 28 African American 

 

Table A.2. Overview of the total number of analyzed RBCs for the healthy, SCT and SCA 
samples and the percentages of each RBC type that was present in each sample. 
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0  
(0%) 

0 
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0  
(0%) 

SC
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71 
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0 
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1 
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10 
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9 
(4%) 
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(0.4%) 
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Table A.3. Description of the extracted morphological parameters from Imaris 9.7. 

Morphological 
Parameter 

Description 

Diameter The length of the longest principal axis inside the object (BoundingBoxOO Length C) 

Surface Area The sum of the triangle surfaces 

Volume Quantification of how much a surface object occupies 

S/V Ratio Surface area divided by the volume 

Thickness The length of the shortest principal axis (BoundingBoxOO Length A) 

Sphericity The ratio of the surface area of a sphere to the surface area of the particle 

Mean RI Mean intensity of voxels enclosed within the surface 

 

Table A.4. Composition of RBC membrane lipid bilayer molecular model. CHL = 
Cholesterol, POPC = Palmitoyl Oleoyl PhosphoCholine, POPE = Palmitoyl Oleoyl 
PhosphoEthanolamine, POPS = Palmitoyl Oleoyl PhosphoSerine, and SSM = Stearoyl 
SphingoMyelin. 

 CHL POPC POPE POPS SSM 

Inner leaflet 40 (20%) 22 (11%) 76 (38%) 44 (22%) 18 (9%) 

Outer leaflet 40 (20%) 70 (35%) 20 (10%) 0 (0%) 70 (35%) 

 

Table A.5. Overview of the ibuprofen concentrations and the corresponding ibuprofen 
dosage and ibuprofen plasma concentration. 

 
Ibuprofen concentration 

0.25 mM 0.5 mM 1 mM 1.5 mM 3 mM 

Ibuprofen 
dosage 

200 mg 400 mg 800 mg 1200 mg 2400 mg 

Ibuprofen 
plasma 

concentration 
51 μg/mL 103 μg/mL 205 μg/mL 308 μg/mL 615 μg/mL 

 
  



 
A. Appendix to Chapter 3 

 

 
157 

 
 

Table A.6. Overview of the total number of analyzed RBCs for each ibuprofen 
concentration (0.25 mM, 0.5 mM, 1 mM, 1.5 mM and 3 mM), during a 20-minute 
time-lapse. 

 Field of view 1 Field of view 2 Total 

Ib
up

ro
fe

n 
co

nc
en

tr
at

io
n 

0.25 mM 10 16 26 

0.5 mM 10 13 23 

1 mM 17 14 31 

1.5 mM 12 14 26 

3 mM 11 18 29 
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Movie A.1. Effect of 0.25 mM ibuprofen on RBCs. RI tomograms were acquired at 2 sec 
intervals over a period of 20 min. 3D renderings of extracted frames from the video 
are provided in Figure 3.4(a). Timecode is min:sec. 
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Movie A.2. Effect of 0.5 mM ibuprofen on RBCs. RI tomograms were acquired at 2 sec 
intervals over a period of 20 min. 3D renderings of extracted frames from the video 
are provided in Figure 3.4(b). Timecode is min:sec. 
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Movie A.3. Effect of 1 mM ibuprofen on RBCs. RI tomograms were acquired at 2 sec 
intervals over a period of 20 min. 3D renderings of extracted frames from the video 
are provided in Figure 3.4(c). Timecode is min:sec. 
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Movie A.4. Effect of 1.5 mM ibuprofen on RBCs. RI tomograms were acquired at 2 sec 
intervals over a period of 20 min. 3D renderings of extracted frames from the video 
are provided in Figure 3.4(d). Timecode is min:sec. 
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Movie A.5. Effect of 3 mM ibuprofen on RBCs. RI tomograms were acquired at 2 sec 
intervals over a period of 20 min. 3D renderings of extracted frames from the video 
are provided in Figure 3.4(e). Timecode is min:sec. 
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Movie A.6. 3D segmented rendering of a single RBC exposed to low (0.25 mM) 
ibuprofen concentration and measured with DHTM, showing transient spicule 
formation, movement and dissolution across the RBC membrane. Timecode is 
min:sec. 
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Movie A.7. 3D segmented rendering of a single RBC exposed to high (1.5 mM) 
ibuprofen concentration and measured with DHTM, showing irreversible spicule 
formation and movement across the RBC membrane. Timecode is min:sec. 
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B. Appendix to Chapter 4 

 

Figure B.1. Sample preparation procedure and principle of DHTM for plasma imaging. 
(a) Plasma was obtained after blood collection in K2EDTA vacutainers and 
centrifugation in order to separate each blood component. 50 μL of plasma is diluted 
in Alsever's solution at a final concentration of 1:5. 250 μL of plasma solution is 
transferred to a petri dish for imaging. (b) Digital holotomographic microscopy uses 
a low-power laser beam (λ = 520 nm) that splits into the reference and the sample 
laser beams before rejoining below the objective (60x, NA = 0.8), where the 
interference (hologram) is recorded. A rotational arm, located above the sample 
holder, rotates 360° around the sample at a 45° angle in order to obtain a 3D 
refractive index (RI) map. The presence of microclots and platelet pathology can be 
detected in a label-free manner from the 3D RI tomograms. 
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Figure B.2. Structural analysis of microclots in plasma of a COVID-19 positive patient 
without clinical symptomatology (PLS-CVDP3). (a) Refractive index (RI) tomogram of 
a fibrin-rich microclot in plasma. (b) Corresponding segmented RI tomogram of the 
fibrin-rich microclot from the inset in (a). (c) RI tomogram of a microclot composite 
and platelet aggregates in plasma. (d) Corresponding segmented RI tomogram of the 
microclot composite and platelet aggregates from the inset in (c). (e) RI tomogram 
of a microclot composite in plasma. (f) Corresponding segmented RI tomogram of 
the microclot composite from the inset in (e). (g-h) Size and dry mass of fibrin-rich 
microclots, microclot composite structures and platelet aggregates (<10 platelets) in 
plasma. Error bars represent the standard deviation from the mean. (i) Pie chart 
showing the microclot composition in plasma of donor PLS-CVDP3. 
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Figure B.3. Structural analysis of microclots in plasma of a COVID-19 recovered patient 
with moderate symptomatology (PLS-CVDR1). (a) Refractive index (RI) tomogram of 
a microclot composite and platelet aggregates in plasma. (b) Corresponding 
segmented RI tomogram of the microclot composite and platelet aggregates from 
the inset in (a). (c) RI tomogram of a fibrin-rich microclot and platelet aggregates in 
plasma. (d) Corresponding segmented RI tomogram of the fibrin-rich microclot and 
platelet aggregates from the inset in (c). (e-f) Size and dry mass of fibrin-rich 
microclots and microclot composite structures in plasma. (g-h) Size and dry mass of 
platelet aggregates in plasma. Error bars represent the standard deviation from the 
mean. (i) Pie chart showing the microclot composition in plasma of donor PLS-
CVDR1. 
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Figure B.4. DHTM tomograms of plasma of healthy controls (PLS-HC). (a) Refractive 
index (RI) tomogram of a small fibrin-rich microclot in PLS-HC1. (b) RI tomogram of 
a microclot composite in PLS-HC2. (c) RI tomogram showing individual platelets in 
PLS-HC3. (d) RI tomogram showing individual platelets in PLS-HC4. (e) RI tomogram 
showing individual platelets in PLS-HC5. 
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Figure B.5. Age dependence of microclot prevalence and morphology in healthy and 
COVID-19 positive and recovered patients. (a) Prevalence of microclots detected in 
75 μL of plasma from healthy and COVID-19 positive and recovered patients plotted 
against the patient age and grouped by healthy and COVID-19 subphenotypes. (b) 
Mean microclot size of fibrin-rich microclots and microclot composites plotted 
against the patient age and grouped by healthy and COVID-19 subphenotypes. 
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Figure B.6. IgM and IgG antibodies dependence of microclot prevalence and 
morphology in COVID-19 positive and recovered patients. (a) Prevalence of 
microclots detected in 75 μL of plasma from COVID-19 positive and recovered 
patients plotted against the IgM antibodies level and grouped by COVID-19 
subphenotypes. (b) Prevalence of microclots detected in 75 μL of plasma from 
COVID-19 positive and recovered patients plotted against the IgG antibodies level 
and grouped by COVID-19 subphenotypes. (c) Mean microclot size of fibrin-rich 
microclots and microclot composites plotted against the IgM antibodies level and 
grouped by COVID-19 subphenotypes. (d) Mean microclot size of fibrin-rich 
microclots and microclot composites plotted against the IgG antibodies level and 
grouped by COVID-19 subphenotypes. 
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Table B.1. Summary of the demographics for the samples of the fixed blood clots in 
aqueous solution.  

  

 Fixed blood clots 

 FC-HC FC-CVD 

   

Donor classification Healthy COVID-19 convalescent 

Gender F F 

Age 49 42 

Ethnicity African American African American 

Collection date - 15/09/2021 
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Table B.2. Summary of the demographics, SARS-coV-2 serology test results (IgM and IgG antibodies), symptomatology and sample 
collection details for healthy and COVID-19 plasma samples. 

 

 Plasma 

 PLS- 
HC1 

PLS- 
HC2 

PLS- 
HC3 

PLS- 
HC4 

PLS- 
HC5 

PLS- 
CVDP1 

PLS- 
CVDP2 

PLS- 
CVDP3 

PLS- 
CVDR1 

PLS-CVDR2 

           

Donor classification Healthy Healthy Healthy Healthy Healthy COVID-19 
positive 

COVID-19 
positive 

COVID-19 positive COVID-19 
recovered 

COVID-19 
recovered 

Gender F F F M M F F F F F 

Age 35 33 59 36 35 26 27 21 20 23 

Ethnicity White White Other White Asian 
Hispanic/ 

Latino 
White White White White 

SARS-coV-2 serological 
test 

 
  

IgM antibodies - - - - - 
Positive  

(1.2) 

Negative 

(1) 

Positive 

(1.8) 

Negative 

(1) 

Negative 

(1) 

IgG antibodies - - - - - 
Positive 

(30.9) 

Positive 

(33) 

Positive 

(10.2) 

Positive 

(22.7) 

Negative 

(1) 

Symptomatology - - - - - Moderate Mild Asymptomatic Moderate Mild 

Diagnosis date - - - - - 17/12/2020 07/11/2020 01/10/2020 12/10/2020 16/11/2020 

Collection date 19/12/2022 04/07/2023 04/07/2023 04/07/2023 04/07/2023 13/01/2021 04/12/2020 20/10/2020 13/01/2021 06/01/2021 

Days from diagnosis - - - - - 27 27 19 93 51 
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Table B.3. Description of the quantified morphological parameters extracted from 
Imaris 9.8. 

 

Morphological 
parameter 

Description 

  

Length/Size 
The length of the longest principal axis inside the object (BoundingBoxOO 
Length C) 

Width 
The length of the second longest principal axis inside the object 
(BoundingBoxOO Length B) 

Surface area The sum of the triangle surfaces 

Volume Quantification of how much a surface object occupies 

SA:V Surface area divided by the volume 

Mean RI Mean intensity of voxels enclosed within the surface 
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C. Appendix to Chapter 

Figure C.1. Effect of L-dopa on α-Syn aggregation at 300 μM concentration. (a) Relative ThT emission data points of α-Syn incubated 
without (blue) and with different concentrations (green: 10 μM; purple: 50 μM; red: 100 μM) of L-dopa, over a period of 7 days. The 
symbol indicates each repetition. (b) Relative ThT emission data points of α-Syn incubated without and with L-dopa (100 μM) for each 
repetition, over a period of 7 days. 
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