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Abstract

The optical frequency comb (OFC) is a laser-based technology that has rev-
olutionized metrology, enabling timing and frequency measurements with un-
precedented precision. Beyond their original purpose, OFCs have been adopted
in various fields of fundamental science and emerging technologies such as au-
tonomous driving and wireless communications. However, current challenges in
generating low-noise OFC sources at high repetition rates with sufficient optical
bandwidth hinder their full potential. To address these challenges, superconti-
nuum (SC) generation in nonlinear fiber optics is an attractive approach because
it can provide a large bandwidth at relatively low pump power, but at the cost
of noise amplification. This thesis explores new ways to generate low-noise
SC-based OFC sources to meet the ever-increasing demands of these novel ap-
plications. The first proposed solution is a hybrid fiber that combines the best
qualities of both SC generation regimes. With this fiber, it is possible to gen-
erate an ultra-low noise fiber SC covering the 930–2130 nm range with phase
coherence close to unity, spectrally resolved relative intensity noise (RIN) as low
as 0.05%, and averaging 0.01% over a bandwidth of 750 nm, approaching the
theoretical limits close to the pump laser noise. The second important result of
this work is the development of a new numerical method, capable of simulating
entire trains of ultrafast pulses propagating in nonlinear fibers and studying the
evolution of their noise properties. We use this model to corroborate and explain
measurements of unprecedented low noise observed on a dual-comb SC source,
including shot-noise-limited SC generation and up to 20 dB of RIN suppression.
Finally, hollow-core fibers are introduced as a promising way to reach new SC
regimes, including deep UV pulses and TW peak power.
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Chapter 1

Introduction

Optical frequency combs (OFCs) emit spectra of perfectly spaced, phase-
coherent, and ultra-precise laser lines resembling the teeth of a comb. Their
realization more than two decades ago, enabled by advances in femtosecond
lasers and nonlinear optical fiber technology, was originally motivated by their
groundbreaking impact in metrology. OFCs act as frequency rulers seamlessly
connecting microwave and optical frequencies, leading to timing and frequency
measurements with precision more than five orders of magnitude higher than
the previous standards set by radio frequency atomic clocks (2005 Nobel Prize
[1, 2]). Very rapidly, frequency combs were adopted into other fields of fun-
damental science beyond their original purpose with unforeseen success. For
instance, they became essential in attosecond science (2023 Nobel Prize [3]) for
precise control of the carrier-envelope phase of ultrashort pulses, revolutionized
molecular spectroscopy, enabled the construction of all-optical atomic clocks,
and facilitated coherent quantum system control [4, 5].

While the first generation of frequency comb sources have been predomi-
nantly confined to fundamental research laboratories, there is an accelerating
trend for OFC sources to become key-drivers in consumer applications, includ-
ing many emerging technologies, such as autonomous driving, high capacity
fiber-optic and 6G wireless communications, and artificial intelligence [6–8].
Additionally, they are fundamental to the development of pioneering new tools
for high-speed medical imaging, climate change monitoring, and the exploration
of exoplanets [9, 10].

Historically, advances in OFC technology and nonlinear fiber optics have
been closely linked. Two decades ago, the emergence of self-referenced OFC
sources was dependent on advancements of microstructured photonic crystal
fiber (PCF) technology enabling the coherent, octave-spanning broadening of
narrowband combs emitted by mode-locked lasers at repetition rates in the
100MHz range [11]. Today we face similar challenges: the demand for OFC
sources at tens or even hundreds of GHz repetition rate results in lower pulse
energies for the same average power, making it challenging to use nonlinear
broadening to produce the octave bandwidths required for self-referencing. Ul-
timately, new concepts for increasing nonlinearity and design flexibility will be
required.

Recently, the noise amplification inherent to the supercontinuum genera-
tion (SCG) process has received increasing attention due to its importance for
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high-sensitivity metrology, spectroscopy and imaging applications [12, 13]. The
increase in noise is particularly critical for supercontinuum (SC) sources oper-
ating in the anomalous dispersion regime (negative group velocity dispersion).
This regime enables the generation of ultra-wide bandwidths driven by nonlinear
dynamics based on soliton self-compression and soliton fission effects. However,
this regime is prone to strong noise amplification due to modulation instabilities
and stimulated Raman scattering (SRS) leading to reduced spectral coherence
[14]. Similarly, these SC sources exhibit much higher relative intensity noise
(RIN) than the driving laser [15, 16]: the shot-noise of the pump laser can be
amplified by up to about 90 dB [15–17].

While experimental research has been aware of the importance of noise,
few contributions have been published on the numerical study of such noise
phenomena [18], especially when it comes to how nonlinear spectral broadening
affects the noise power spectral density (PSD) of fluctuations in the pulse train.
These fluctuations occur at frequencies up to half the repetition rate, typically
in the radio frequency (RF) domain. Pulse propagation equations and numerical
integration schemes already abound in the literature, providing all the tools to
simulate single pulses in various nonlinear optical systems. In this context, there
is an opportunity to contribute and provide a new numerical model capable of
simulating entire pulse trains and analyzing their noise evolution during the
SCG process. There is no doubt that such a model is crucial for a better
understanding of the physical mechanisms that affect noise evolution in the
spectral broadening of OFC sources.

This thesis explores new ways of generating low-noise OFCs using SCG.
Chapter 2 begins with a breakdown of some of the phenomena that lead to
the nonlinear spectral broadening observed when short, high-intensity pulses
travel through optical fibers. It introduces the distinction between anomalous,
or conventional, SCG and all-normal dispersion (ANDi) SCG, which is a central
point of this work. It also gives a summary of the numerical integration methods
used throughout this thesis. Finally, this chapter will cover the theory behind
some nonlinear noise dynamics and how they are affected by SCG in different
dispersion regimes.

Chapter 3 addresses the fact that it is challenging to generate a SC spectrum
that is both low-noise and broadband at low peak power in a single fiber. To
resolve this conundrum, a new hybrid fiber design is proposed. It combines the
advantages of both conventional and ANDi SCG. Supported by both experi-
mental measurements and numerical simulations, it is argued that this hybrid
fiber exhibits the lowest RIN known to date for an octave-spanning SC while
using inexpensive, commercially available fibers.

The limits of low noise OFCs are challenged again in Chapter 4. It presents
experimental evidence of up to 20 dB of RIN suppression while generating a
400 nm SC at 1053 nm. With a single-cavity, dual-comb oscillator, it is possible
to generate two identical SC spectra in a single ANDi fiber using polarization
multiplexing. Nonlinear interaction between both comb during the spectral
broadening process are investigated numerically, and experimental results con-
firm that they do not compromise dual-comb interferometry (DCI) measure-
ments. With its exceptional combination of high power, high bandwidth and
low noise, this system is highly attractive for any dual-comb sensing applications
such as broadband spectroscopy, hyperspectral LiDAR and imaging, as well as
multicolor pump-probe measurements.
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In order to verify the RIN suppression mentioned above and study its phys-
ical origin, a new simulation method is developed in Chapter 5. This method is
capable of generating a realistic pulse train from a standard, RF noise measure-
ment. By propagating each pulse with conventional methods and analyzing the
resulting pulse train statistically, accurate reproduction of real noise PSD mea-
surements are achieved. This new numerical framework is both highly flexible
and easy to implement atop an existing numerical tool set, which is expected to
lead researchers in performing more extensive noise analyses when simulating
SCG.

Finally, while much of this work is focused on noise characterization and
control, Chapter 6 explores nonlinear broadening of fs pulses at high power in
hollow-core fibers. With the aim of building a system capable of generating
short, deep ultraviolet (UV) pulses [19] for use in ultrafast spectroscopy, we
present our mechanical design approach as well as initial results of SC spectra
observed in gas-filled capillary tubes and hollow-core photonic crystal fibers.
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Chapter 2

Theory

The physical principles behind the nonlinear broadening of ultrafast pulses in
nonlinear fibers have been studied extensively [14, 20–23]. This chapter gives
an overview of these phenomena, focusing mainly on the elements most relevant
to the rest of this thesis.

SCG processes in optical fibers are based on the interplay between the chro-
matic dispersion of a fiber and its nonlinear refractive index. They can be
classified into two families, depending on the relationship between the pump
wavelength and the group-velocity dispersion (GVD) profile of the fiber used.
Conventional SCG occurs when a fiber is pumped in the anomalous region of its
GVD, close to its zero dispersion wavelength (ZDW). There, if the peak power
is high enough, the anomalous dispersion cannot compensate for the nonlinear
phase induced on the pulse by the Kerr effect. After an initial phase in which
the pulse is compressed, it is perturbed by Raman scattering and higher-order
dispersion until it breaks apart in a process called soliton fission. This results
in a complexly structured spectrum spanning a large bandwidth, where phase
matching between the normal and anomalous dispersion regimes allows energy
transfer from longer wavelength solitons to shorter wavelength dispersive waves
(DWs), thereby redshifting these solitons.

As with conventional SCG, ANDi SCG is based on the interaction between
Kerr-induced self-phase modulation (SPM) and GVD. As the name implies,
ANDi fibers exhibit only positive GVD in the wavelength range of interest.
Since SPM introduces a linear chirp in the center of the pulse, normal disper-
sion works to push the newly created frequencies toward the head and tail of the
pulse, making it nearly rectangular. If phase matching conditions are met, inter-
ferences between the pump frequency and these new frequencies create spectral
sidebands through a mechanism known as optical wave-breaking (OWB).

Recently, the focus has shifted to low-noise SC sources [24–26]. Indeed, the
noise performance of these sources plays a critical role in many applications,
affecting precision, acquisition time and signal-to-noise ratio (SNR). Conse-
quently, a good understanding of the noise evolution during SCG is crucial
for the design of ultra-low noise systems for the most demanding applications.
In terms of noise, conventional and ANDi SCG are not the same. While con-
ventional SC spectra are typically broader than their ANDi counterparts when
pumped with comparable pulses, the underlying physical mechanisms tend to
greatly amplify fluctuations in the pump, especially at longer pulse durations.
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2.1 Nonlinear Spectral Broadening in Optical
Fibers

The complex envelope of an ultrashort pulse traveling through a single-mode
optical fiber is written as A(z, τ), where z stands for the propagation distance
and τ for the delay in a frame of reference traveling at the pump group velocity.
This makes use of the slowly varying envelope approximation, which has been
validated for all realistic pulse durations, down to the single cycle [27, 28]. A is
scaled such that I := |A(z, τ)|2 gives the instantaneous power in W.

2.1.1 Dispersion
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Figure 2.1: Spectrograms of Gaussian pulses after simulated propagation. (a)
Only normal dispersion is affecting the pulse. (b) Only SPM is affecting the
pulse. For each plot, the main area is a spectrogram in logarithmic scale, while
the top and right plot represent the temporal, respectively spectral, intensity in
a normalized, linear scale.

It is a direct consequence of Fourier mathematics that pulses of finite du-
ration necessarily contain a multitude of spectral components. When traveling
through a medium, those components of angular frequency ω propagate at a
speed of c/n(ω), smaller than the speed of light in vacuum c. The refractive
index n(ω) is different for each component, leading to a distortion of the pulse
in time.

To study the different regimes of dispersion, the mode-propagation constant
β is introduced. It is customary to write it as its Taylor expansion around the
pump frequency ω0:

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)

2 + . . . ,

βk =
dkβ(ω)

dωk

∣∣∣∣
ω=ω0

.
(2.1)

The speed at which a pulse envelope travels is the group velocity vg = 1/β1.
Therefore, it is natural to define the rate at which different spectral component
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spread out in time due to different group velocities as the first derivative of
β1, which is the GVD β2. This number is sometimes written as the dispersion
parameter D:

D(λ) = −2πc

λ2
β2, λ =

2πc

ω
, (2.2)

where λ is the wavelength in vacuum. Positive β2 (negative D) is referred to as
normal dispersion and negative β2 (positive D) is called anomalous dispersion.
Fibers that exhibit normal dispersion over their entire design wavelength range
are called all-normal dispersion (ANDi) fibers. All other fibers have at least one
zero dispersion wavelength (ZDW) where β2 = 0.

The length scale over which chromatic dispersion is relevant is the dispersion
length LD:

LD =
T 2
0

|β2|
(2.3)

where, for a Gaussian pulse, τFWHM = T0
√
2 ln 2 is the full width at half max-

imum (FWHM) duration of the pulse. A Gaussian pulse broadens by a factor
of

√
2 over a propagation length of LD.

The result of dispersion is illustrated in Fig. 2.1(a). It shows the spectrogram
of a Gaussian pulse after a propagation distance of 4LD while experiencing only
normal dispersion. As shown by the top and right panels, the positive chirped
imparted by the GVD stretches the pulse in time while maintaining its original
spectral envelope.

2.1.2 Self-Phase Modulation
On its own, chromatic dispersion can affect the temporal envelope of a pulse,
but not its spectral one. On the other hand, SPM will change the spectrum of a
pulse without changing its temporal profile. SPM is a consequence of the Kerr
effect, a nonlinear response of a material to extreme light intensity. The Kerr
effects manifests as an instantaneous change of refractive index ∆n proportional
to the light intensity I:

∆n = n2I. (2.4)
The nonlinear refractive index n2 is a property of the material proportional
to the real part of the third order susceptibility χ(3). It can be wavelength-
dependent [29], although it is considered constant throughout this work.

To understand SPM, let’s have a look at the nonlinear Schrödinger equation
(NLSE):

∂

∂z
A(z, τ) = −iβ2

2

∂2

∂τ2
A(z, τ) + iγA(z, τ)|A(z, τ)|2. (2.5)

This scalar equation describes how the complex pulse envelope A evolves when
under the influence of SPM and second order dispersion. Here, γ ∝ n2 is
the nonlinear parameter [20]. Let’s write the pulse envelope A in terms of its
magnitude |A| and phase ϕ:

A(z, τ) = |A(z, τ)| exp(iϕ(z, τ)). (2.6)

Ignoring GVD (β2 = 0), inserting (2.6) in (2.5) yields:

∂

∂z
|A(z, τ)| = 0,

∂

∂z
ϕ(z, τ) = γ|A(z, τ)|2. (2.7)
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With the definition of the instantaneous frequency ωc = −dϕ/dt, it can be
shown that SPM creates new frequencies by chirping the middle of the pulse
without changing its temporal shape.

The spectral broadening induced by SPM is illustrated on in Fig. 2.1(b). As
with the dispersion example, this example starts with an unchirped Gaussian
pulse. During propagation, the rising edge of the pulse gets redshifted while the
falling edge gets blueshifted. This imparts the characteristic S shape of SPM
on the spectrogram. Notice how the temporal envelope is not affected by SPM.
Interferences of identical spectral component at different times within one pulse
cause an oscillatory pattern on the spectrum. The number of peaks is related to
the nonlinear phase shift ΦNL = γP0z, where P0 is the initial peak power. On
Fig. 2.1(b), ΦNL = 6.5π. This leads to a very natural definition of the nonlinear
length LNL, the propagation distance required for a nonlinear phase shift of 1:

LNL =
1

γP0
(2.8)

2.1.3 Solitons
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Figure 2.2: Propagation of an N = 4 soliton. (a) Spectral evolution in logarith-
mic scale. The top panel shows identical spectra between z = 0 and z = Lsol.
(b) Temporal evolution in linear scale. As with (a), the top panel shows iden-
tical pulses before and after propagation.

When anomalous dispersion and SPM combine, they give rise to soliton
dynamics. Solitons are pulses that preserve their shape as they propagate.
Not only do they constitute fascinating mathematical curiosities, they also find
practical applications, such as in telecommunication [30].

In the context of the NLSE, a fundamental soliton is a solution of Eq. (2.5)
where the positive, nonlinear chirp induced by SPM is perfectly balanced by
the negative chirp induced by anomalous dispersion. To define this solution
mathematically, the soliton number N must first be introduced. It is expressed
in terms of the dispersion length and the nonlinear length:

N2 =
LD

LNL
=
γP0T

2
0

|β2|
. (2.9)
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N reflects the balance between nonlinearities and dispersion. If parametrized
such that both effect balance out each other (N = 1), the following pulse defi-
nition is a solution of Eq. (2.5).

A(z, τ) =
√
P0sech(τ/τ0) exp

(
i
z

2LD

)
. (2.10)

Notice how the temporal and spectral envelopes of this solution do not depend
on z, i.e. the pulse only picks up a constant phase as it propagates. This is only
the case for N = 1. With higher positive values of N , both the temporal and
spectral envelope evolve periodically. Fig. 2.2 shows this phenomenon for an
N = 4 soliton. The cycle starts with a strong spectral broadening induced by
SPM. Because of the anomalous dispersion, the redshifted rising edge is slowed
down and the blueshifted falling edge is sped up, thus leading to a temporal
compression of the pulse. This initial compression stage occurs for every N > 1
and the following periodic evolution of the pulse becomes more intricate with
larger values of N .

2.1.4 Optical Wave-Breaking
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Figure 2.3: Logarithmic scale spectrograms illustrating the OWB process. Top
and right panels on each subfigure show the corresponding temporal envelopes,
respectively spectrum, at 20 dB/div. scale. (a) Before OWB. (b) During OWB.
(c) After OWB.

The SCG mechanism in ANDi fibers can be almost completely explained
with only GVD and SPM. These two phenomena are combined in a process
called optical wave-breaking (OWB). The length scale of this process is [31]:

LOWB ≈ 1.1
LD

N
. (2.11)

In contrast to anomalous dispersion and soliton dynamics, normal dispersion
acts to accelerate the light redshifted by SPM on the rising edge of a pulse and to
slow down the blueshifted light on the falling edge. This results in a completely
different spectral and temporal evolution of the pulse.

Fig. 2.3 shows spectrograms of the evolution of a Gaussian pulse at 3 key
moments of OWB. In Fig. 2.3(a) the arrows highlight the blueshift and redshift
of the spectral components produced by SPM. Around z ≈ LOWB (Fig. 2.3(b)),
these shifted components begin to overlap and interfere with the extreme ends
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of the pulse, as shown by the oscillations in the time domain. There, four-wave
mixing (FWM) creates new spectral components, as indicated by the arrows in
the figure. Fig. 2.3(c) shows the results of the OWB process, where the spectrum
is smooth and normal dispersion stretches it further in time.

2.1.5 Generalized Nonlinear Schrödinger Equation
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Figure 2.4: Generalized nonlinear Schrödinger equation (GNLSE) simula-
tions of 50 fs pulses using the full generalized nonlinear Schrödinger equation
(GNLSE). From left to right: spectral evolution as function of propagation dis-
tance; spectrogram at the end of propagation with projections in time (above)
and wavelength (right); dispersion of the fiber. (a) Conventional SC generated
with N = 10 soliton. (b) ANDi SC generated with 52 kW peak power.

To simulate actual SCG experiments, a common equation to use is the gen-
eralized nonlinear Schrödinger equation (GNLSE), an equation fundamentally
similar to Eq. (2.5), but with a few additions [14]:

∂A(z, τ)

∂z
=− α

2
A(z, τ)−

∞∑
k=2

βk
ik−1

k!

∂k

∂τk
A(z, τ)

+ iγ

(
1 +

i

ω0

∂

∂τ

)
A(z, τ)

∞∫
−∞

R(τ ′) |A(z, τ − τ ′)| dτ ′.
(2.12)

Linear effects are expressed in the first line of the right-hand side (RHS) while
all nonlinear effects are grouped in the second line. On top of GVD already
present in the NLSE, arbitrarily high order dispersion can be included, as well
as linear loss through the attenuation coefficient α.

Because of the Kerr effect, the peak of a pulse will experience a higher ef-
fective refractive index than its edges and will start to lag compared to the rest
of the pulse. The term i

ω0
∂/∂τ accounts for this effect. Finally, the instanta-

neous effect of SPM, represented as the Dirac delta δ(τ), is grouped together
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with delayed Raman scattering, represented as hR(τ), in the response function
R(τ) = (1 − fR)δ(τ) + fRhR(τ). The fractional contribution of each effect is
tuned with the parameter 0 ≤ fR ≤ 1.

In the anomalous dispersion regime, these added effects perturb solitons
when they reach their maximum compression. This leads to soliton fission,
where a high order soliton breaks into a train of fundamental solitons. When
the fiber is pumped close to its ZDW in the anomalous regime, phase matching
in favorable to the creation of DWs in the short wavelength side of the spectrum.
At the same time, Raman scattering is responsible for the redshifting of solitons.
Fig. 2.4(a) shows an example of such SCG. The spectral evolution plot shows
the initial spectral broadening caused by SPM. At the point of maximum com-
pression, soliton fission occurs, from which a highly complex spectrum emerges.
Propagation is prolonged for a few more cm to show Raman scattering redshift-
ing a soliton on the long wavelength side of the spectrum. The spectrogram
gives more insight into the structure of the SC after 6 cm of propagation.

When using an ANDi fiber, the SCG process is dominated by normal GVD
and SPM. Therefore, the other effects mentioned above have little influence,
resulting in the smooth and flat SC shown on Fig. 2.4(b).

In practice, the Fourier transform of Eq. (2.12) is the equation solved by
the simulation program. By working in the frequency domain rather than in
the time domain, computations of time derivatives are trivial and inclusion of a
frequency-dependence in the attenuation coefficient or the nonlinear parameter
is easier [32]. The equation is integrated using a Runge-Kutta method in the
interaction picture. This implies splitting the RHS of Eq. (2.12) into a linear op-
erator (first line) and a nonlinear operator (second line), which can be separately
applied according to the specific integration scheme. Simulations in Chapter 3
are performed using a straightforward 4th order Runge-Kutta scheme [33] with
adaptive step size controlled by photon number conservation [34]. Simulations
in Chapters 4 and 5 are carried out using an embedded Runge-Kutta method of
4th and 3rd order [35]. Simulation code was written in Python for the purpose
of this thesis and makes heavy use of Numpy [36], SciPy [37] and Matplotlib
[38].

2.2 Noise in Supercontinuum Generation
This section is part of a published article [12].

The noise properties of SC sources can be understood in terms of a com-
petition between coherent and incoherent nonlinear processes. Low-noise and
phase-coherent SC can be generated in the normal dispersion regime under a
wide range of conditions when SPM and OWB dominate [39], or in the anoma-
lous dispersion regime when soliton fission dominates, i.e. using pump pulses
with very short durations and low soliton numbers [14]. However, these coherent
dynamics can be disturbed by incoherent nonlinear effects, which can build up
new spectral components from quantum noise and whose influence grows with
longer pump pulse durations [14].

Examples of this noise amplification are illustrated in Fig. 2.5 showing SC
generated by (a) FWM-induced modulation instability (MI) and (b) SRS. Both
nonlinear effects generate gain bands spectrally separated from the input pulse
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Figure 2.5: Origin of SC noise. Simulated spectral evolution of 5 ps, 5 kW
pulses in (a) conventional and (b) ANDi fiber On top, the mean spectrum is
displayed in red, obtained from averaging 20 simulations with random noise
seeds. Gray traces show single shot spectra. Arrows indicate primary gain
bands for amplification of quantum noise.

spectrum, providing enormous exponential gain to any seed signal injected into
these bands. When this gain remains unseeded, as in these examples, then
random quantum fluctuations serve as the seed and are amplified to become
significant and eventually dominate the nonlinear dynamics. The noise-seeded
spectral components contained in the MI and SRS peaks exhibit random fluctu-
ations in amplitude and phase from shot to shot and are thus incoherent with the
pump. With further propagation, cascaded Stokes (redshifted) and anti-Stokes
(blueshifted) gain bands emerge and eventually distribute noise throughout the
SC pulse. Similar noise amplifying nonlinear effects exist when coherent and
incoherent mode coupling between the two principal polarization axes of a fiber
is considered.

2.2.1 Noise Control by Dispersion Engineering
In order to develop strategies for controlling the stability of SC sources, it is
helpful to compare the strength of coherent and incoherent nonlinearities and
their dependence on the fiber dispersion profile. The strength of coherent non-
linear dynamics is only weakly dependent on the dispersion regime, as can be
concluded from the almost identical expressions for the characteristic length
scales of soliton fission and OWB [31, 40]. Therefore, the noise properties of a
particular SC source are mainly determined by the gain of incoherent nonlin-
ear effects dominated by MI and SRS. Traditionally, these incoherent dynamics
have been treated separately, depending on the fiber dispersion regime; MI is
regarded as a dominating mechanism of decoherence in anomalous dispersion
[41]. In normal dispersion, MI is usually suppressed, and SRS is considered the
predominant effect [42]. Here we provide a different, more comprehensive per-
spective on noise amplification in nonlinear fiber optics that allows us to unveil
the significant potential for control and suppression of noise provided by the
well-known concepts of dispersion engineering in specialty optical fibers.
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Since the seminal work of Bloembergen and Shen[43], it is known that a
nonlinear coupling of SRS and FWM occurs in the regime of low dispersion and
high nonlinearity, i.e. exactly in the conditions relevant to SC generation. In a
single-mode fiber, the interaction between these two nonlinear processes can be
described by the mixed parametric Raman (MPR) gain [44], written as:

gMPR = 2γ ℜ
(√

K(2q −K)
)
, (2.13)

where K = −β2Ω2
R/(2γP0) describes the ratio of chromatic dispersion and non-

linearity, peak angular frequency shift of the Raman gain ΩR, and pulse peak
power P0. The factor q = (1 − fR) + fRχ

(3)
R (−ΩR) contains the Raman sus-

ceptibility χ(3)
R and fractional contribution fR (∼ 0.18 for silica) of the Raman

effect to the total nonlinear response of the fiber material. Fig. 2.6 shows gMPR

for a silica fiber as a function of K, normalized to the standard Raman gain
coefficient gR ≃ 0.5γ.

Figure 2.6: MPR gain gMPR, Eq. (2.13), normalized by the standard Ra-
man gain gR. We use the MPR gain to describe the dispersion dependence of
noise-amplifying incoherent nonlinearities in SC generation dynamics. Typical
conditions for octave-spanning SC generation for ANDi and conventional SC
from Fig. 2.4 are indicated.

Eq.(2.13) describes an explicit dependence of the Raman gain on chromatic
dispersion and nonlinearity, and its validity in nonlinear fibers has been exper-
imentally verified [45, 46]. However, so far its implications for the control of
nonlinear noise amplification by engineering the fiber dispersion profile have not
been fully realized. While our recent work has shown the important role of the
MPR gain for the noise properties of ANDi SC [39], we believe that it can in
fact be applied more universally to explain the observed noise properties of SC
generated in both dispersion regimes. In Fig. 2.6 (c), mainly the region |K| < 1
is relevant to SC generation, where we observe a strong suppression of the MPR
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gain in normal dispersion, while MPR noise-amplification is strongly amplified
in the anomalous dispersion region. The peak of the MPR gain is located at
K ≃ 1 − fR/2, where Stokes and anti-Stokes Raman sidebands are effectively
amplified by MI, whose role in the coherence collapse of conventional SC has
been investigated since the early days of fiber-based SC generation [16, 41].
When we consider the typical conditions for octave-spanning SC generation, we
find that the MPR gain and associated noise amplification can be decreased by
over one order of magnitude by changing from the conventional to the ANDi
fiber design. In fact, this order of magnitude difference in noise susceptibility
is a recurrent factor found in many theoretical and experimental studies, as we
detail below, and can be seen as the main reason behind the attraction of ANDi
fibers for low-noise SC source development.

From this fundamental physics perspective, we expect ANDi SC to be signif-
icantly more stable than conventional SC. Detailed numerical and experimental
studies have confirmed this expectation. The competition between the coher-
ent and incoherent dynamics typically leads to a threshold pulse duration Tcrit
or threshold soliton number Ncrit above which the nature of the SC changes
from coherent to incoherent [14, 21]. The ANDi fiber design exhibits about
10x higher Tcrit and 50x higher Ncrit than its conventional counterparts for
octave-spanning bandwidths [39]. The superior coherence and noise properties
of ANDi SCs over conventional SCs were verified, for example, by measurements
of RIN, spectral coherence, dispersive Fourier transformation, and RF beating
with stabilized laser diodes [47–49]. ANDi SC also possess a remarkable resis-
tance against technical pump laser fluctuations [24, 50, 51], while conventional
SCs amplify such fluctuations by up to 20 dB, even in the regime where coherent
dynamics dominate [15]. Describing incoherent nonlinear dynamics in terms of
the MPR gain is therefore a successful concept for explaining the superior stabil-
ity of ANDi SC. It also provides a new perspective on the considerable potential
for noise control in nonlinear fiber optics. A future challenge will therefore lie in
the development of new fiber designs specifically tailored for low-noise operation
in a variety of nonlinear frequency conversion applications.

2.2.2 Noise Control by Designing Fiber Geometry and
Birefringence

Every fiber exhibits a certain amount of birefringence that breaks the degener-
acy of polarization modes. Birefringence might be induced unintentionally by
unavoidable external stresses or bending of the fiber, or it can be engineered,
e.g. by including stress rods or asymmetries into the design of the fiber cross-
sectional geometry. The coherent and incoherent coupling of the fiber’s polar-
ization modes leads to several nonlinear effects that, in addition to the MPR
gain, have the potential to amplify quantum noise and result in unpredictable
fluctuations of the polarization state. In the context of ANDi SC sources es-
pecially relevant are polarization modulation instability (PMI) [55, 56], cross-
phase modulation instability (XMI) [57, 58], and Raman amplification assisted
by cross-phase modulation [59, 60].

In general, the occurrence of noise amplification is a complex function of
fiber birefringence and dispersion, as well as relative orientation of input pulse
polarization and fiber axes. On Fig. 2.7, we present preliminary results of high
resolution polarization-dependent RIN measurements visualizing this complex-
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Figure 2.7: Noise fingerprints of various ANDi SC (a-e) and conventional SC (f)
pumped by an Er:fiber laser (80 fs, 40 MHz) at 1550 nm, generating comparable
bandwidths in the range 1.2-2.2 µm. (a) Microscope image of low-birefringence
all-solid ANDi PCF [52]. (b) Integrated RIN values (in %) of SC generated
in fiber (a) shown in a polar plot in dependence of pump pulse polarization
orientation. Corresponding orientation of the fiber geometry shown in back-
ground. The fiber’s slow axis is aligned to zero degrees. The red-dotted line
shows the RIN of the pump laser (0.05%). (c) Detailed noise spectra in a range
10 Hz–20 MHz for positions 48o and 83o (fast axis) of noise fingerprint in (b),
and position 0o (slow axis) of noise fingerprint in (d). Pump laser noise and de-
tection noise floor shown for comparison. (d) Noise fingerprint of SC generated
in silica polarization-maintaining (PM) air-hole microstructured PCF [53], (e)
nanohole suspended-core ANDi fiber[54], and (f) commercial conventional fiber
NKT PM-1550-01.
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ity. For these measurements, pulses from an ultrafast Er:fiber laser (80 fs, 40
MHz, 0.05% RIN) were coupled into ANDi fibers with similar dispersion profiles,
but very different geometries and birefringence, generating SC with comparable
spectral bandwidths in the range 1.2 – 2.2 µm. A rotating half-wave plate in
front of the fiber and a synchronized analyzer at the fiber exit control the plane
of pump pulse and detection polarization with respect to the fiber geometry.
Polarization-dependent RIN values are measured with an angular resolution of
approximately 0.2o using a photodiode and electronic spectrum analyzer and
visualized in polar plots. These plots were found to be unique for each tested
fiber and are therefore referred to as ”noise fingerprints”.

These measurements reveal a strong correlation between the nonlinear noise
amplification and the cross-sectional geometry of a particular fiber, which we
attribute to the unique stress profile associated with each fiber structure and
its drawing conditions. The ANDi fiber in Fig. 2.7(a, b) is designed as an
all-solid microstructured PCF made from two different soft glasses forming the
photonic lattice and inclusions. The structure causes a complex stress pattern
due to different thermal expansion coefficients of the two glasses. Since there
is no intentional stress axis defined in this design, the resulting birefringence is
random and the polarization axes are not well-defined, evident by the 83o angle
measured between the axes. The complex stress profile is also reflected in the
highly polarization-dependent nonlinear noise amplification pattern, which we
found to be highly susceptible to environmental disturbances, such as bending
the fiber, different clamping conditions, or day-to-day temperature changes.

Since for each angular RIN measurement a full noise spectrum is available,
we can identify the underlying noise amplification process for every feature of
the fingerprint by analyzing its characteristic noise frequencies (Fig. 2.7(c)). For
example, at 49o the noise spectrum of the SC is shifted upward in comparison
to the pump laser due to a significant contribution of excess white noise, which
is a characteristic signature of quantum noise amplification, and can therefore
be attributed to the occurrence of XMI and PMI. Near the fast axis, on the
other hand, we mainly observe low-frequency noise, which indicates polarization
instability caused by the cancellation of the small linear fiber birefringence by
the nonlinear Kerr effect. In general, we observe a complex superposition of
these effects.

Fig. 2.7 also illustrates that birefringence is an effective control parameter to
reduce polarization-dependent noise in ANDi SC generation. With increasing
birefringence the noise fingerprints become more regular and environmentally
stable, as shown for the airhole-microstructured silica PCF with Germanium-
doped core in Fig. 2.7 (d). Near the slow axis (0o) of this fiber the noise
spectrum is virtually identical to the noise of the pump laser (Fig. 2.7(c)),
while we continue to observe a strong correlation of noise features and fiber
geometry for off-axis pumping. Eventually, we observe complete suppression
of noise-amplifying nonlinear processes for extremely birefringent ANDi fiber
designs, such as the nanohole suspended core fiber in Fig. 2.7 (e), even when the
pump polarization is not aligned to one of the principal fiber axes. In contrast,
the noise fingerprint of a comparable polarization-maintaining conventional SC
source (Fig. 2.7(f)) is significantly more complex, and shows noise amplification
up to a factor of 40. In the test conditions the soliton number is N ≃ 6, such
that a stable SC is generated when the polarization of the pump pulses is exactly
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aligned to a principal axis of the fiber. However, even slight misalignment of
the polarization in the order of just 1o causes a significant rise of the SC noise.

These measurements highlight the importance of the cross-sectional fiber
geometry and the homogeneity of the stress profile, in addition to dispersion
engineering, for the realization of high-quality, low-noise SC sources. ANDi SC
sources designed with these considerations in mind are currently emerging also
for other pump wavelengths, providing further experimental evidence for the
excellent quality and stability of these broadband coherent light sources [26].
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Chapter 3

Hybrid Fibers for
Low-Noise Supercontinuum
Generation

Parts of this chapter were published in [61] and [62]. Experimental work was conducted
in close collaboration with Anupamaa Rampur and Pascal Hänzi, and I led the work
on numerical simulations and interpretation of the results

A major challenge in current nonlinear optics research is the development
of ultra-low noise broadband coherent SC light sources. Equipped with the
brightness of a laser and ultra-broad spectral bandwidths, SC sources based on
specialty optical fibers are today an indispensable tool in many scientific and
industrial processes [23, 63]. However, for many applications in advanced spec-
troscopy, microscopy, and ultrafast photonics, the noise of current SC sources
has become the predominating factor limiting acquisition speed, sensitivity, or
resolution [12]. Significant research efforts are also directed towards understand-
ing the fundamental noise limits of the involved nonlinear spectral broadening
dynamics, with continued interest in the development of optical frequency comb
technology not only for metrology and spectroscopy [64, 65], but increasingly
also for emerging applications in coherent optical communications, microwave
photonics, and photonic signal processing [66–68], where ultra-low amplitude-
and phase-noise performance is an essential prerequisite.

The predominating noise source during the nonlinear transformation of a
narrowband input into a broadband SC spectrum in an optical fiber is the
amplification of random quantum fluctuations by incoherent nonlinear effects,
which either have a scalar character, such as MI or SRS [14, 16, 42], or a vectorial
nature emerging from a coupling of the two orthogonal eigenmodes of the fiber,
such as PMI [56, 69]. The occurrence and strength of these processes depend
critically on the dispersion and birefringence engineering of the fiber, as well
as on the characteristics of the input pulse. Therefore, a considerable effort
has been directed towards identifying fiber designs that favor highly coherent
spectral broadening dynamics.

Typically, there is a trade-off to be considered when engineering the disper-
sion landscape of nonlinear fibers. On one hand, recent advances in specialty
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optical fiber design and fabrication have facilitated the emergence of a new
generation of highly birefringent, polarization-maintaining (PM) ANDi fibers,
which are designed to suppress both scalar and vectorial noise-amplifying inco-
herent nonlinear effects under sub-picosecond pumping [12, 63]. As additional
benefit, the nonlinear dynamics are dominated by optical wave-breaking, which
is capable of simultaneously delivering low noise, octave-spanning bandwidth,
superb spectral flatness, high spectral power densities, and single-cycle tem-
poral waveform support [70]. This new class of SC sources has driven recent
advancements of the state-of-the-art in several applications which so far were
either not able to use or were limited by conventional fiber SC sources due to
their noise or complex spectra and pulse shapes, e.g. in hyperspectral and mul-
timodal imaging, near-field optical microscopy, optical coherence tomography
at the shot-noise limit, and ultrafast photonics [13, 71–78].

On the other hand, SC noise is reduced and coherence improved by shorter
input pulse durations in any fiber design [14, 39]. Here, anomalous dispersion
fibers have a clear advantage as they benefit from an initial stage of soliton com-
pression dynamics, which shorten the injected pulse to a fraction of its initial
duration and increase its peak power by up to one order of magnitude before
the actual spectral broadening dynamics set in [40]. Hence, conventional SC
sources require significantly lower input peak power than ANDi SC sources for
the generation of equal spectral bandwidths, and consequently are often the
only choice for the nonlinear spectral broadening of lasers with repetition rates
of hundreds of megahertz or gigahertz, where the peak power per pulse is limited.
Unfortunately, the subsequent soliton-fission dynamics produce rather complex
spectral and temporal profiles, and the anomalous dispersion environment pro-
vides strong amplification for incoherent nonlinear processes [12].

Inspired by early works with dispersion-flattened and dispersion-decreasing
fibers [21, 79], in this article we combine the benefits of nonlinear dynamics
in both dispersion regimes, i.e. soliton compression and optical wave-breaking,
resulting in an ultra-low noise fiber SC source covering the 930 - 2130 nm range
with a spectrally resolved RIN as low as 0.05 % and averaging 0.1 % over a band-
width of 750 nm. The source is based on a standard ultrafast Er:fiber laser seed-
ing cascaded nonlinear dynamics in two discrete, widely available commercial
PM step-index fibers. The individual fibers exhibit anomalous and all-normal
dispersion at the pump wavelength, respectively, and are joined together by a
low-loss fusion splice to form a hybrid fiber. We show that this hybrid approach
not only doubles the generated spectral bandwidth, but also decreases the RIN
by up to one order of magnitude compared to direct pumping of the individual
fibers. Our measurements reveal that PMIs set a lower limit to the RIN of the
directly pumped ANDi SC source, while these dynamics are suppressed in the
hybrid fiber such that the SC noise approaches the theoretical limit determined
by the noise and pulse shape of the pump laser. We also compare SCG via
OWB in this hybrid fiber with two other hybrid fibers that use conventional
SCG and find that adding a pre-compression stage in this latter case provides
little benefits.
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3.1 Methodology
3.1.1 Hybrid Fiber Preparation
The fibers used in this work are two commercial PM step-index fibers produced
by Coherent-Nufern, namely PM1550-XP and PM2000D, which exhibit anoma-
lous and all-normal chromatic dispersion at the pump wavelength of 1560 nm, re-
spectively, as shown in the inset of Fig. 3.1 [80]. PM1550-XP has a core-diameter
of 8.5 µm and numerical aperture of 0.125, resulting in a zero-dispersion wave-
length of 1.34 µm and dispersion parameter D = 18ps/(nmkm) at 1560 nm.
In contrast, the small 2.1 µm diameter core, high NA of 0.37, and highly Ger-
manium (Ge)-doped core material composition of PM2000D were specifically
designed to exhibit flat and normal dispersion over the entire near-IR spectral
region, with D = −46 ps/(nmkm) at 1560 nm. Both fibers are PANDA-type PM
fibers, with birefringence values at the pump wavelength of 3×10−4 given by the
manufacturer for PM1550-XP, and 2× 10−5 measured in-house for PM2000D.

In order to exploit cascaded nonlinear dynamics in both fibers, a low-loss
fusion splice is an essential requirement, but due to the large core diameter
and NA mismatch, losses in the order of 4 dB are to be expected when using
a standard splicing recipe. Better results can be obtained with the thermally
expanding core technique [81]. Owing to the high Ge content of the PM2000D
core material, long arc durations lead to thermal diffusion of Ge from the core
to the cladding region, which gradually increases the mode field diameter in
the hot zone and thus reduces the splice loss. By monitoring the transmission
of a 1550 nm continuous-wave laser in real-time during the splice, we reach a
minimum splice loss of 0.7 dB (85 % transmission) with an arc time of 14 s.
The splice is executed simply by modifying the arc duration of the standard
PM single-mode program of a Fujikura FSM45+ fusion splicer and using auto-
alignment of the polarization axes.

3.1.2 Experimental Setup
The experimental setup used to generate and analyze the SC is shown in Fig. 3.1.
An ultrafast Er:fiber laser (Toptica FemtoFiber pro) centered at 1560 nm deliv-
ers a 90 fs pump pulse train with 40MHz repetition rate, RIN of 0.05% (mea-
sured in the frequency range 100Hz − 20MHz), and polarization extinction
ration (PER) of 30 dB. A half-wave plate is used to align the polarization
state of the input pulses to the fiber’s principal birefringence axes. The pump
pulses are coupled into the fiber under test (FUT) by an aspheric lens with focal
length chosen to match the mode field diameter of the fiber, resulting in a max-
imum coupled average power of 210mW. This corresponds to a peak power of
33 kW, calculated using the real pulse shape emitted by the laser measured by
time-domain ptychography. The generated SC spectra are recorded using two
optical spectrum analyzers (Yokogawa AQ6370 for λ < 1700 nm and AQ6375
for λ > 1700 nm). A polarizer is inserted in the beam path in order to analyze
the PER of the SC, and also serves for converting possible polarization state
fluctuations into amplitude noise that can be detected using the subsequent RIN
measurement system.
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Figure 3.1: Schematic setup for supercontinuum generation and RIN Mea-
surement. HWP: Half wave plate; AL: Aspheric lens; XYZ: Three axis transla-
tion stage; FUT: Fiber under test; POL: Polarizer; ND: Neutral density filter;
FM: Flip mirror; LCF: Large core fiber patch cord; OSA: Optical spectrum ana-
lyzer; FL: Focusing lens; LVF: Linear variable filter 1.3µm - 2.6µm; PD: Photo
diode; LPF: Low pass filter (< 21MHz); ESA: Electronic spectrum analyzer.
The inset shows the measured chromatic dispersion of the fibers used in this
experiment.

3.1.3 RIN Measurement
The spectrally resolved intensity noise is measured by passing the SC through a
linear variable bandpass filter with 20 nm bandwidth covering the range 1300 -
2600 nm (Vortex Optical Coatings, UK) and analyzing the resulting pulse train
with an amplified photodiode (Thorlabs PDA10D2, bandwidth DC - 25MHz,
900 - 2600 nm spectral range, 5 kV/A transimpedence gain) connected to an elec-
tronic spectrum analyzer (ESA) (Signal Hound USB-SA44B, bandwidth 1Hz -
4.4GHz). Additional discrete bandpass filters with similar bandwidths cover
the shorter wavelengths below 1300 nm. The photodiode signal is filtered by a
21MHz low-pass filter to avoid saturation of the ESA at the pulse repetition rate
as well as a DC block capacitor with cut-off frequency < 3Hz. The DC level of
the voltage signal (V0) and the voltage noise PSD SV (f) [V

2/Hz] are measured,
so that the RIN PSD can be obtained by SRIN(f) = SV (f)/V

2
0 [1/Hz] because

the measured voltage V is proportional to the optical power P . The root mean
square (RMS) optical intensity fluctuations in percent are then given by the
square root of SRIN(f) integrated from 100Hz up to the Nyquist frequency of
20MHz. This value is used in this manuscript when integrated RIN values are
referenced.

3.1.4 Simulations
Simulations are carried out using the single mode GNLSE using the integration
scheme presented in [34]. Nonlinear effects such as Kerr-induced SPM, self-
steepening and delayed Raman effect (as modeled in [82]) are included and the
angular frequency dependent nonlinear parameter γ(ω), as formulated in [32],
relies on an approximation of the effective mode-field area [83]. A single mode
scalar equation implies that polarization effects are ignored, but this approxi-
mation is tolerable since only PM fibers are considered. Finally, the shortness
of the fibers in use allows us to neglect any kind of loss in all the simulations.
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Quantum shot noise is simulated by adding one photon of random phase per
frequency bin at the input [84] whereas RIN is simulated by multiplying the
intensity of the measured laser field by 1 + ψ for each simulation, where ψ is
sampled on a normal distribution of mean 0 and standard deviation 0.057%,
which is the measured laser RIN After simulating the propagation of 40 pulses
Ai(λ), i = 1, ..., 40, we compute the RIN as a function of the wavelength λ in a
way similar to that used in the experiment, masking the spectra with a Gaussian
window and working out the coefficient of variation of the remaining energy :

RIN(λ) =

√〈
(Ei(λ)− ⟨Ej(λ)⟩j)2

〉
i

⟨Ei(λ)⟩i

Ei(λ) =

∫ ∞

−∞
|Ai(λ

′)|2 exp

[(
λ′ − λ

λ0

)2
]
dλ′

(3.1)

where ⟨ ⟩i denotes the ensemble average over the 40 simulations and λ0 =
12.02 nm corresponds to a window width of 20 nm at half maximum. As conse-
quences of this method, the input RIN is assumed to be frequency-independent
and is modeled only between 1MHz and 20MHz. This is nevertheless adequate
because the measured RIN spectrum is nearly flat in this frequency range and
accounts for > 90% of the total measured RIN.

After the splice, the hybrid fiber is cleaved such that it consists of a 6.2 cm
length of PM1550-XP at the input followed by 20 cm of PM2000D, where in
the former soliton compression and in the latter optical wave-breaking dynam-
ics are exploited. Hence, the length of PM1550-XP is of particular importance
in our approach and was carefully optimized using the numerical pulse propa-
gation simulations and experimental time-domain ptychography measurements
summarized in Fig. 3.2 [70, 85]. In the fiber, the 110 fs, 32 kW, 40 MHz in-
put pulse supplied by the Er:fiber laser forms a soliton of order N = 4.3 that
temporally compresses until soliton fission around 6.5 cm breaks it up into its
fundamental constituents. The optimized fiber length is chosen such that the
resulting pulse is as short as possible while avoiding soliton fission. Fig. 3.2 (b)
and (d) show the simulated compressed pulse with 15.9 fs FWHM and the cor-
responding spectrum, respectively, using the final fiber length of 6.2 cm. Both
results are in excellent agreement with the experimental TDP measurements
done using a separately prepared PM1550-XP fiber of equal length. The input
pulses are therefore compressed by a factor of 7 while the peak power increases
by a factor of about 5.3 to 170 kW, with the remaining energy distributed in a
low-level pedestal typical of soliton compression. We also note that increasing
the fiber length beyond the point of soliton fission does not significantly increase
the spectral bandwidth in this case, as shown in Fig. 3.2 (c), apart from the
formation of a DW around 1 µm wavelength.

We analyze the stability of the compressed 16 fs pulse train by recording the
amplitude noise frequency spectrum from 100 Hz up to the Nyquist frequency
of 20 MHz with an ESA. It is indistinguishable from the noise spectrum of the
driving Er:fiber laser, as shown in Fig. 3.2 (e), the integrated RIN is 0.06 %
in both cases. Hence, the substantial temporal compression and peak power
amplification is obtained without incurring any noise penalty. We note that
spectrally resolved RIN measurements reveal locally increased RIN up to 0.52 %,

22



100 50 0 50 100
time (fs)

0.0

2.5

5.0

7.5

10.0

pr
op

ag
at

io
n 

di
st

an
ce

 (c
m

)

(a)

6.2cm

1000 1250 1500 1750
wavelength (nm)

0.0

2.5

5.0

7.5

10.0

pr
op

ag
at

io
n 

di
st

an
ce

 (c
m

)

(c)

DW

6.2cm

0.0

0.2

0.4

0.6

0.8

1.0

in
te

ns
ity

 (a
.u

.)

40

30

20

10

0

in
te

ns
ity

 (d
B)

200 100 0 100 200
time (fs)

0.00

0.25

0.50

0.75

1.00

in
te

ns
ity

 (a
.u

.)(b)

15.9 fs

at 6.2 cm
Measured
Simulated

1200 1400 1600 1800
wavelength (nm)

40

20

0

in
te

ns
ity

 (d
B)

(d)
at 6.2 cm

102 103 104 105 106 107

Noise frequency (Hz)

140

130

120

110

dB
c/

Hz

PM1550-XP at 6.2cm
Laser
Electronic noise floor

Figure 3.2: Soliton compression in the PM1550-XP fiber pumped with 110 fs,
32 kW input pulses. (a) Simulated temporal intensity profile as function of prop-
agation distance. (b) Simulated (dashed) and measured (solid) pulse shape at
6.2 cm. The measured pulse is recorded after propagating through dispersive
elements (thin lens and half-wave plate) and therefore slightly longer (20.6 fs).
(c) Simulated spectral evolution; DW: dispersive wave. (d) Simulated (dotted)
and measured (solid) spectra at 6.2 cm. (e) Frequency resolved noise measure-
ments of the injected pump and the compressed soliton pulse trains.

but this is less relevant for our purposes since spectral filtering also modifies the
temporal characteristics of the pulse.

3.2 Supercontinuum Generation and Relative
Intensity Noise

3.2.1 Extension of Spectral Bandwidth
Fig. 3.3 compares the SC spectra generated in the hybrid fiber and the directly
pumped PM2000D ANDi fiber. Both measurements were obtained with a cou-
pled pump peak power of 33 kW supplied by a 110 fs Er:fiber laser at 40 MHz
repetition rate and with similar overall fiber lengths. The hybrid approach in-
creases the generated -30 dB spectral bandwidth from 76 THz to 183 THz by a
factor of 2.4 ≃

√
5.3, which agrees well with the theoretically expected scaling

of the SC spectral bandwidth with the square-root of the peak power [70]. The
hybrid fiber SC covers the range 930 - 2130 nm while maintaining the typical
smooth shape of a SC generated predominantly by optical wave-breaking. The
spectral modulation around the pump wavelength, observed in both fibers, can
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Figure 3.3: Supercontinuum spectra and spectrally resolved RIN in (a) directly-
pumped ANDi fiber and (b) hybrid fiber for equal pumping conditions and
similar fiber lengths. Left scale: measured (solid) and simulated (dotted) spec-
tra; right scale: spectrally resolved measured RIN (dots) with corresponding
electronic noise floor (-) and simulated values using scalar GNLSE simulations
(solid yellow). The RIN of the pump laser is indicated by a red-dashed line.
Detailed noise-frequency spectra of the RIN measurements at 1650 nm, marked
α and β, are shown in Fig. 3.4.

be traced back to low-level temporal sub-structures of the pump pulses emit-
ted by the Er:fiber laser [86]. Both spectra can be reproduced very well with
numerical simulations based on the GNLSE, shown in the same Figure.

3.2.2 Reduction of Relative Intensity Noise
The spectrally resolved RIN of both SC is measured by isolating 20 nm sec-
tions of the respective spectrum with variable bandpass filters and using an
ESA-based detection system sensitive to amplitude and polarization state fluc-
tuations. The results are displayed in Fig. 3.3. We note that both spectral
bandpass and polarization filters are important to fully characterize the SC sta-
bility. As the intensity noise of SC sources is typically anti-correlated across
the spectrum [49, 87], omitting these filters conceals the noise features discussed
below by averaging fluctuations of anti-correlated portions of the spectrum lead-
ing to lower apparent RIN values. For this reason, our measurements are not
directly comparable to studies that did not implement this spectral and polar-
ization selectivity.

For each measured RIN value in Fig. 3.3 the electronic noise floor of the
detection system is also displayed so that it can be easily determined whether
the detected fluctuations truly stem from the SC pulse train or are limited
by the noise of the measurement apparatus. We obtain a typical electronic
noise floor of 0.04 % RIN (or -140 dBc/Hz at high Fourier frequencies). This is
higher than typically used for ultrafast laser characterization, because we tuned
the system not for high sensitivity at the peak wavelength, but for providing a
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similar noise floor over as much spectral bandwidth and signal levels as possible.
Nevertheless, in most cases the electronic noise floor is sufficiently low to fully
resolve the SC noise. We also compare the measured RIN levels to corresponding
values retrieved from the scalar GNLSE simulations including quantum noise
and technical pump laser fluctuations [50].

Surprisingly, the SC generated in the directly pumped PM2000D ANDi fiber
exhibits elevated noise levels especially in the central section of the spectrum
between 1400-1700 nm, where RIN values up to 0.4 % are detected. While this is
in range with the lowest RIN values reported to date for PM-ANDi SC sources
[26], in our case it corresponds to an order-of-magnitude amplification of the
pump laser noise, which is unexpected for this fiber design. Importantly, the
measured noise levels in the spectral center cannot be reproduced using scalar
GNLSE simulations, which predict much lower RIN on the level of the pump
laser noise. However, below 1400 nm and particularly above 1700 nm the simu-
lations model the measured noise evolution more accurately, and also reproduce
well the increasing RIN on the spectral edges due to the effect of laser peak
power fluctuations on the SC bandwidth. This variation in simulation accuracy
over the spectral range points towards the presence of incoherent nonlinearities
with vectorial nature in the central part of the spectrum, since noise amplifica-
tion emerging from the nonlinear coupling of polarization eigenmodes is ignored
in the scalar numerical model. A more detailed analysis of the origin of the
elevated RIN is provided in Section 3.2.3.

In contrast, the intensity noise of the SC generated in the hybrid fiber is
significantly lower and in general exhibits an exceptionally low variation with
wavelength. The RIN follows very closely the values predicted by the scalar
GNLSE simulations and remains mostly confined between 0.05 % and 0.2 % in
the range 1150 - 1900 nm, with an average value of approx. 0.1 %. This is
quite remarkable when compared to SC generated under very similar pumping
conditions in the anomalous dispersion region of a fiber, where the intensity noise
varies over at least two orders of magnitude and reaches several percent [87]. The
RIN measured in our experiments is also up to one order of magnitude lower than
previously reported values obtained from stand-alone ANDi SC sources [26, 51,
88]. Higher noise only occurs at the spectral edges and in the vicinity of sharp
spectral features, where small spectral shifts induced by peak power fluctuations
lead to a relatively large change in SC signal. The exact spectral position of
these features is hard to simulate since they sensitively depend on low-level
temporal sub-structures of the input pulse interfering with spectral components
generated by SPM [86]. Hence, in Fig. 3.3 (b) the simulated RIN is faded
around 1500 nm where the agreement of simulated and measured SC spectrum
is less accurate. The intensity noise around these features is not linked to
quantum noise amplification by incoherent nonlinearities, but simply arises from
the sensitivity of coherent dynamics to the input pulse parameters. Significant
additional noise reduction can therefore only be achieved by improving the noise
characteristics and the pulse shape of the pump laser.

3.2.3 Suppression of Polarization Modulation Instability
A significant advantage of the ESA-based noise detection over the histogram-
based statistical analysis of photodiode traces in recent work [26, 51] is the
availability of a full noise frequency spectrum for every measured RIN value,
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Figure 3.4: (a) Detailed noise-frequency spectra of the RIN measurements at
1650 nm, marked α and β in Fig. 3.3, compared to the pump laser. (b) Analyti-
cally calculated PMI gain in PM2000D fiber assuming a 30 kW peak power pulse
propagating on slow and fast axis, respectively. (c) Simulated fast axis spec-
trogram of a 500 fs, 30 kW pulse after 3 cm propagation in PM2000D injected
into the slow axis. (d) Spectral slice through the spectrogram in (c) at t = 0 for
multiple simulations with random noise seeds (gray) and corresponding mean
(purple).

which can be used to identify the underlying noise amplification mechanisms.
We illustrate this for the RIN measurements recorded at 1650 nm, which are
marked α and β in Fig. 3.3 and result in integrated RIN of 0.38 % and 0.05 %
for stand-alone ANDi and hybrid fiber SC, respectively. The detailed noise
spectra for these two measurements are displayed in Fig. 3.4 (a) and compared
directly to the pump laser. The noise spectrum of the stand-alone ANDi SC is
shifted upward by about 20 dB with respect to the pump due to the dominance
of excess white noise, which is a characteristic signature of quantum noise ampli-
fication [16]. This unambiguously confirms the presence of incoherent nonlinear
dynamics, which have to be of vectorial nature since they cannot be reproduced
by scalar simulations, as discussed above. In contrast, these nonlinearities are
suppressed in the hybrid fiber, which even exhibits slightly lower noise than the
pump laser in the mid-range frequencies between 1 kHz - 1 MHz.

Fig. 3.4 (b) identifies PMI as the origin of this nonlinear noise amplification in
the stand-alone PM2000D ANDi fiber, showing that the analytically calculated
PMI gain bands [20] for our experimental conditions overlap exactly with the
1400 - 1700 nm spectral region where the measurements in Fig. 3.3 (a) detect
elevated RIN values. In order to illustrate how this PMI gain leads to pulse-to-
pulse intensity fluctuations of the generated SC, we conduct vectorial GNLSE
simulations taking into account the coherent coupling of the two polarization
eigenmodes [89]. Additionally, we increase the input pulse duration to 500 fs,
which enhances the visibility of the incoherent PMI dynamics by slowing down
the coherent wave-breaking process. The simulated spectrogram in Fig. 3.4 (c)
shows clear signatures of PMI after only 3 cm of propagation in the form of
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two side bands being generated at spectro-temporal positions outside the main
pulse. As these side-bands remain unseeded, random quantum fluctuations serve
as the seed and are amplified to become significant. Taking a slice through the
spectrogram at t = 0 and repeating the simulations several times clearly shows
the random amplitude fluctuations introduced by PMI at spectral positions
corresponding very well to the analytically calculated PMI gain bands (compare
Figs. 3.4 (b) and (d)). While we consider pure slow-axis pumping in this case,
in reality we expect a blend of fast- and slow-axis dynamics as we observe also
linear coupling of the polarization states in the PM2000D fiber reducing the
PER from >30 dB at the input to about 15 dB at the output, even at low
power.

In order to understand why PMI occurs in the stand-alone ANDi fiber but
is largely suppressed in the hybrid fiber, we consider the characteristic length
scales of both coherent and incoherent dynamics. In the case of the stand-
alone ANDi fiber, the optical wave-breaking length LWB = 1.7 cm is shorter
but comparable to the PMI length LPMI = 5.3 cm, indicating a certain balance
between the two processes. In the hybrid fiber, two factors suppress PMI.
First, the higher birefringence and anomalous dispersion of the PM1550-XP fiber
completely suppress PMI during the soliton pre-compression phase for slow axis
pumping. Second, upon entering the ANDi fiber, the short duration and high
peak power of the pre-compressed pulse reduces LWB to approximately 1 mm,
indicating an extremely fast spectro-temporal reshaping of the pulse followed by
a fast drop in peak power due to dispersive stretching. This leads to a constant
shift of the spectro-temporal positions of the PMI gain bands, such that PMI-
amplified noise is not allowed to accumulate and build up from the shot-noise
level. Instead, it is spread out over a wide region of the spectrogram and does
not become significant. These dynamics are very similar to the suppression of
scalar incoherent nonlinearities at short pulse durations discussed in detail in
[39].

3.3 Phase Coherence
The dominance of the inherently phase-coherent processes of SPM, soliton com-
pression, and optical wave breaking during nonlinear spectral broadening sug-
gests that the SC generated in the hybrid fiber should also exhibit excellent
phase stability. We experimentally quantify the phase fluctuations using a free-
space asymmetric Michelson interferometer [90]. The setup shown in Fig. 3.5.
The SC pulses exiting the hybrid fiber are collimated using reflective optics and
routed into a free-space asymmetric Michelson interferometer. They are split
into two arms by a broadband 50:50 beam splitter. One arm of the device is
set to provide a delay with respect to the other arm corresponding to the pulse
repetition period, such that two subsequent SC pulses interfere at the output of
the interferometer. The signal is collected with a single-mode fiber (SMF) and
directed to an OSA, where spectral interference fringes are created if the SC
pulse train is phase-stable over time intervals exceeding the OSA sweep time.
The measurement was performed in sections of approximately 200 nm with op-
timization of the SMF coupling for each wavelength region. A neutral density
filter is used to approximately match the intensity between the two arms in
order to obtain good fringe visibility. Two different SMF patch cords (SM1060
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Figure 3.5: Experimental setup for the measurement of the phase coherence of
the SC generated in the hybrid fiber with a free-space asymmetric Michelson
interferometer. FUT: Fiber under test; M: mirror; ND: Neutral density filter;
OSA: Optical spectrum analyzer; SMF: single-mode fiber

and SMF28e) and two OSA (Yokogawa AQ6370 and AQ6375) were employed to
cover the full bandwidth of the SC spectrum with adequate signal-to-noise levels
while simultaneously ensuring single-mode guidance for good spatial overlap of
the interfering signals. The fringe spacing is chosen by fine-tuning the delay
time between the interfering pulses using a translation stage located in the long
arm. We experimentally verified that the chosen spacing has negligible effect
on fringe visibility and extracted coherence as long as the fringes can be well
resolved with the OSA.

A single sweep lasts several seconds and thus records the ensemble average
of > 108 interference events, such that the magnitude of the degree of first-order
coherence as a function of wavelength becomes measurable as [91]

|g12(λ)| =
V (λ)[I1(λ) + I2(λ)]

2[I1(λ)I2(λ)]1/2
, (3.2)

where I1(λ) and I2(λ) are the measured light intensities in each arm of the
interferometer, and V (λ) is the fringe visibility given by the maximum and
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minimum fringe intensity, V (λ) = [Imax(λ)−Imin(λ)]/[Imax(λ)+Imin(λ)]. Equa-
tion (3.2) is equal to the expression routinely used in numerical studies |g12| =
⟨E∗

1E2⟩/[⟨|E1|2⟩⟨|E2|2⟩]1/2 with the spectral field envelopes E1(λ), E2(λ) and en-
semble average ⟨.⟩, but expressed in experimentally accessible variables. Note
that the calculation of |g12(λ)| accounts for differences in the interfering inten-
sities, which in practice are difficult to equalize exactly in broadband measure-
ments, and therefore represents a better figure of merit for coherence than the
visibility V (λ) itself. The fringe spacing, and hence the spectral resolution of
the coherence measurement, can be chosen by fine-tuning the temporal delay
between the interfering pulses. It is well known that the value of |g12(λ)| is
primarily sensitive to phase fluctuations and only to a much lesser extend to
intensity noise [14, 92], such that it provides a convenient, broadband, self-
referenced and high resolution measure of phase-stability complementary to the
RIN characterizations performed above.
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Figure 3.6: Experimental phase coherence measurements of the SC generated
in the hybrid fiber using spectral interferometry. (a) Magnitude of first order
coherence determined according to Eq. (3.2). The red dashed line indicates
the spectrally averaged coherence of ⟨|g12|⟩ = 0.96. (b) Spectral interference
measurement showing high extinction fringes over the entire SC bandwidth.
(c), (d) Magnified views of interference fringes and coherence around 1250 nm
and 2000 nm.

Fig. 3.6 confirms the excellent phase stability of the generated SC, evident
from high contrast interference fringes with visibility in the order of 20 dB mea-
sured over the entire bandwidth of the hybrid fiber SC. |g12(λ)| is near unity for
the majority of the bandwidth, as exemplary highlighted in the magnified views
of Fig. 3.6 (c) and (d). The coherence averaged over the full 900 - 2200 nm
bandwidth is calculated to ⟨|g12|⟩ =

∫
|g12(λ)|I(λ)dλ/

∫
I(λ)dλ =0.96. This

ranks among the highest experimentally confirmed magnitude and uniformity
of |g12(λ)| for fiber- and waveguide-based SC sources to date [48, 93–97]. Slightly
degraded coherence is only detected at the spectral edges and around the sharp
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spectral features near the pump wavelength, coinciding with the regions of in-
creased RIN in Fig. 3.3 whose origin was already discussed in Section 3.2.2.
Near 1800 nm the coherence measurement is disturbed by water vapor absorp-
tion lines preventing accurate extraction of visibility and intensities. Using our
experimentally determined value of ⟨|g12|⟩ and the results of previously pub-
lished numerical studies [50], we can assign a median shot-to-shot timing jitter
δt < 0.5 fs to the pulse train emitted by the hybrid SC source, revealing stability
down to a small fraction of an optical cycle.

3.4 Comparison with Conventional SCG in Hy-
brid Fibers

So far, only a single hybrid fiber design was investigated. It is yet unknown
which highly nonlinear fiber (HNLF) dispersion design is the optimal choice for
the hybrid fiber concept for minimizing noise and maximizing spectral band-
width and flatness of the resulting SC. Separating the initial soliton pulse com-
pression from the subsequent spectral broadening in two discrete fibers, both
individually optimized for each task, could also be beneficial for nonlinear fibers
with conventional dispersion design pumped near their ZDW, potentially re-
sulting in even broader spectral bandwidth and lower noise.

In this section, we compare the ANDi PM2000D with two other HNLFs
with conventional dispersion profiles. HNLF-AD and HNLF-ND exhibit a sin-
gle ZDW and provide low anomalous and normal dispersion at the pump wave-
length, respectively. Therefore, these fibers are ideally suited to experimentally
clarify the influence of the fiber dispersion profile on the noise characteristics of
the resulting SC under identical pumping conditions.

A summary of geometric, linear and nonlinear optical parameters of all 3
fibers is given in Table 3.1. HNLF-AD (sold by FORC-Photonics as HNLF
DS) exhibits anomalous dispersion at the pump wavelength, with a ZDW of
1.47 µm and D = 3.3 ps/(nmkm) at 1550 nm. Its mode field diameter (MFD) is
given as 4.2 µm by the manufacturer, and we estimate its nonlinear coefficient
to γ = 10.3 (Wm)−1. Due to a slightly elliptic core the fiber has a group
birefringence of 0.9×10−4 relative index units (RIU). On the other hand, HNLF-
ND (marketed by OFS as HNLF-PM-M2) provides normal dispersion over the
pump spectrum, with a ZDW of 1.62 µm and D = −1.07 ps/(nmkm) at 1550
nm. Birefringence of 2.8×10−4 RIU is introduced by an elliptic core, and MFD
as well as nonlinear coefficient are similar to HNLF-AD.

Fiber MFD
(µm)

ZDW
(nm)

Dispersion
(ps/nm/km)

Group
birefringence

Nonlinearity
(W−1km−1)

PM1550-XP 10.1 1340 18 4.6× 10−4 1.4
HNLF-AD 4.2 1469 3.3 0.9× 10−4 10.3
HNLF-ND 4 1620 -1.07 2.8× 10−4 10.5
PM2000D 3.5 All normal -46.7 0.2× 10−4 13.3

Table 3.1: Geometric, linear, and nonlinear properties of the 3 fibers used. All
values except ZDW are given for a wavelength of 1550 nm.
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The optimal length of PM1550-XP is determined via cut-back measurements
to be 5.7 cm. For a fair comparison, we make a new hybrid PM2000D fiber
alongside the two other HNLF fibers with this length of PM1550-XP. Including
measurements done with direct pumping, this means that 6 fibers are being
compared. The fabrication and measurement techniques are very similar that
those used in the sections above. For more detail, see the published article [62].

Figure 3.7: Measured SC spectra generated in the six investigated nonlinear
fibers and their spectrally resolved RIN under identical pumping conditions.
Pump pulses were injected directly into HNLFs (left column) or in their re-
spective hybrid version (right column). Results for HNLF-AD, HNLF-ND, and
PM2000D are shown in top, middle, and bottom row, respectively. RIN is mea-
sured for spectral slices of 20 nm width (dots) shown with respective noise floor
(-) and compared to the pump laser RIN (0.05%, dashed line).

Figure 3.7 presents the SC spectra generated in the six investigated nonlinear
fibers together with measurements of the respective spectrally resolved RIN All
measurements were obtained with identical pumping conditions with a coupled
pump peak power of 33 kW and 110 fs pulse duration. The pulses were injected
into HNLF-AD, HNLF-ND and PM2000D fibers either directly (left column)
or in their respective hybrid version (right column). We obtained output SC
average powers of 200mW from the directly pumped HNLFs, which is reduced
to about 160mW from the hybrid fibers due to splice loss. The length of each
fiber is adjusted individually in such a way that the full spectral bandwidth
can develop, but short enough to avoid unnecessary spectral modulation and
build-up of noise.

In general, we observe increased RIN levels near sharp spectral features, such
as strong modulations or dips. This is due to the fact that the position of these
features depends on the total nonlinear phase shift linked to the pump peak
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power, such that small pump fluctuations are translated to a relatively large
change in SC signal. Hence, sharp spectral features generally act as amplifier
of input intensity noise, and constitute an important link between flatness and
noise level of SC sources.

For HNLF-AD, Fig. 3.7(a) and (b), the hybrid fiber generates SC spectra
with significantly less fine structure, overall improved spectral flatness, and in-
creased −30 dB spectral bandwidth (176THz vs. 150THz). The spectra feature
a broad and smooth soliton structure around 2 µm and a massive dispersive wave
extending from 1.35µm down to below 1µm wavelength, whose position can be
tuned by controlling input pulse chirp [98]. In contrast, in the SC spectra emit-
ted by the directly pumped fiber these features are narrower and exhibit stronger
spectral modulation. However, the spectrally resolved RIN measurements result
in similar values for both fibers, ranging mostly between 0.25 - 1%. Near the
pump wavelength we observe a noise reduction in the hybrid fiber SC to 0.1 -
0.2%, while the short wavelength dispersive wave peak generally exhibits higher
noise, reaching 2% for the directly pumped fiber and increasing to 4% in the
hybrid fiber, which corresponds to nearly 80 times amplification of the pump
laser noise.

Although HNLF-ND exhibits normal dispersion at the pump wavelength,
nonlinear self-phase modulation dynamics quickly transfer significant energy to
the anomalous dispersion region, where dynamics are very similar to HNLF-AD
discussed above, both for the directly pumped and the hybrid fiber. This is ev-
ident from the measured spectra shown in Fig. 3.7(c) and (d), which generally
resemble the spectra generated in HNLF-AD, but are slightly narrower on the
short wavelength edge and, in the case of the directly pumped fiber, even more
strongly modulated. The effect of the hybrid approach is also very similar to the
previous discussion: we observe a general reduction in spectral fine structure,
improved spectral flatness, and an increase in −30 dB spectral bandwidth from
142THz to 173THz It is interesting to note that pumping on the normal dis-
persion side of the ZDW does not have a notable benefit for the stability of the
SC, except for the absence of the singular very high noise peaks. In fact, for the
conditions investigated in this work there is hardly any significant advantage of
HNLF-ND over HNLF-AD, with the latter producing broader SC bandwidth,
similar spectral shapes, and similar noise levels.

As discussed in the sections above, PM2000D, shown on Fig. 3.7(e) and (f),
clearly benefits the most of all tested fibers from the hybrid approach. While the
benefits for HNLF-AD and HNLF-ND are apparently limited to an improved
spectral flatness and increased bandwidth without significant change in noise
properties, the hybrid PM2000D sees not only a doubling of spectral bandwidth
in comparison to direct pumping, but also a significant reduction of RIN down
to the limit given by the pump laser.

Soliton compression takes place in the hybrid fibers with a nearly ideal soliton
number of N ≃ 4, which leads to a much better quality of the compressed pulse
as compared to the case of directly injecting the pump pulses into HNLF-AD,
where they form a soliton of order N ≃ 17. The high quality compression in the
hybrid fiber produces a cleaner pulse shape concentrating more energy in the
central pulse peak and, therefore, producing higher peak power even after splice
losses are taken into account (120 kW vs 70 kW). This directly explains the
increased SC bandwidth generated with the hybrid fiber approach. The cleaner
pulse shape is also the reason for the reduced spectral modulation observed
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in the hybrid fiber SC, because any form of temporal imperfections directly
translate to strong spectral interference structures in the generated SC [86].

It is interesting to directly compare the noise levels achieved in the three
different hybrid fibers. In all of these cases, the pulse at the point of maximum
compression is identical, namely the compressed ∼ 20 fs soliton delivered at the
end of the SMF section. Under these conditions only the fiber design determines
the noise properties of the generated SC. As is evident from our measurements,
the SC generated in the hybrid ANDi HNLF exhibits on average significantly
lower noise than can be obtained in the other hybrid HNLF with conventional
dispersion design pumped near their ZDW. This experimentally confirms the
theoretical considerations presented in Section 2.2 suggesting that the gain for
noise-amplifying nonlinear effects in ANDi fibers is suppressed by up to one
order magnitude with respect to fibers in which a significant part of the SC
spectrum overlaps with the anomalous dispersion regime.

3.5 Conclusions
We demonstrate that the stability of nonlinear spectral broadening dynamics in
normal dispersion fibers is ultimately limited by the occurrence of modulational
polarization instabilities, even in commercial-grade, PANDA-style polarization-
maintaining step-index designs pumped by 100 fs pulses. This limitation can
be overcome in a hybrid fiber approach that combines soliton compression with
optical wave-breaking dynamics, uniting the most coherent aspects of nonlin-
ear dynamics in anomalous and normal dispersion regions, respectively. This
approach converts a standard ultrafast Er:fiber laser in an octave-spanning SC
source covering the 930 - 2130 nm with up to one order of magnitude lower RIN
over a broader spectral bandwidth than could be previously obtained with any
fiber-based SC source, and requiring less than 1/5th of the injected peak power
that would be necessary to obtain equal spectral bandwidth in the stand-alone
ANDi fiber. The fibers required to reproduce our experiments are commercially
available from an online catalog at a combined cost of $50.

In contrast, for HNLFs with conventional dispersion design pumped near
their ZDW, either in normal or anomalous dispersion regime, the benefit of
the hybrid approach is limited to an improved spectral flatness and increased
bandwidth, while they exhibit on average about an order of magnitude higher
noise with much stronger wavelength dependence than can be obtained with the
hybrid ANDi HNLF.

We note that the hybrid scheme can be scaled for lasers with pulse repetition
rates of hundreds of megahertz or gigahertz with limited peak power per pulse.
The soliton compression factor and pulse quality solely depend on the soliton
number N , and keeping N ≃ 5 typically yields a good compromise between
the two factors [40]. Hence, by choosing a pre-compression fiber with suitable
nonlinearity and dispersion, e.g. from the range of highly nonlinear fibers avail-
able from several manufacturers, a wide range of laser pulse peak powers and
durations can be accommodated [98]. Similarly, choosing an ANDi fiber with
dispersion closer to zero enhances the wave-breaking-dominated spectral broad-
ening [53, 99]. Hence, the low-noise nonlinear spectral broadening dynamics
presented here are readily transferable to various laser platforms.
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We anticipate this work to be particularly relevant for high-precision ap-
plications where intensity noise critically matters, including hyperspectral and
multimodal imaging, dual-comb spectroscopy, seeding of optical amplifiers, ar-
bitrary optical waveform generation, and photonic signal processing such as
analog-to-digital converters, where peak-to-peak power fluctuations of <0.1%
are required for achieving 10-bit resolution [100]. High amplitude stability also
minimizes indirect system performance degradation by noise coupling processes,
such as amplitude-to-phase noise conversion in photodiodes or intensity-to-fceo
noise conversion in optical frequency combs [101, 102]. Since the nonlinear dy-
namics are dominated by self-phase modulation and optical wave-breaking, we
also expect excellent phase-noise performance with relative synchronization be-
tween different spectral components on time scales much shorter than an optical
cycle [103].
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Chapter 4

Shot-Noise-Limited
Dual-Comb
Supercontinuum
Generation

Parts of this chapter are included in an article submitted for publication [104]. Exper-
imental work was led by Sandro Camenzind and Christopher R. Phillips in the group
of Ursula Keller at ETH Zurich, while I led the work on numerical simulations

Dual OFC laser systems combine two OFCs [105–107] with slightly different
repetition rates, enabling dual-comb interferometry (DCI) measurements that
uniquely combine the advantages of fast measurements in the electronic domain
with high temporal and spectral resolution in the optical domain [9, 108–110].
The DCI technique is attractive for a wide variety of applications including ab-
sorption spectroscopy in the mid-infrared [109], laser ranging [111], microscopy
[112], sensing of traces gases across open-air paths [113], and digital holography
[114]. Dual-comb lasers are also well-suited to nonlinear measurement tech-
niques including pump-probe sampling [115, 116], and Raman imaging [117].

To address the many situations when dual-comb applications require or ben-
efit from a broad optical bandwidth, dual-comb lasers can be used to drive
coherent SCG in an optical fiber [63] or waveguide [94, 118], resulting in a dual-
comb SC source with ultra-broad bandwidth. However, as mentioned in the
Chapter 1, many applications are also very sensitive to the noise introduced
by the nonlinear broadening process. While ANDi fibers are preferred for low-
noise SCG, as shown in Section 2.2, they require a substantially higher pump
peak power to achieve comparable bandwidth to that of conventional SCG. A
solution to this problem is offered in Chapter 3. This solution involves fabricat-
ing a hybrid fiber where high peak powers are reached in an anomalous fiber,
but SCG is dominated by coherent OWB to minimize noise-amplifying dynam-
ics. Yet, the 1053 nm laser source used in this work makes conceiving such a
fiber challenging because of the smaller assortment of commercially available
fibers designed for this wavelength. Therefore, a single PM ANDi fiber is used
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here to achieve dual-comb SCG and demonstrate shot-noise limited dual-comb
interferometry from a gigahertz repetition rate SC pumped by a single-cavity
dual-comb laser.

To reach this milestone, a high-power 1-GHz dual-comb oscillator is com-
bined with a PM ANDi PCF. The oscillator is similar to the configuration
presented in [119]: it uses a Yb:CALGO gain medium and achieves dual-comb
operation with low timing jitter by using spatial multiplexing to generate both
combs in the same free-running laser cavity [120]. Since the oscillator delivers up
to 2.6 W average power per comb to the fiber input, it can drive the SC process
directly without an amplification step that would degrade its noise properties,
and without requiring a hybrid fiber approach. 1.6 W average power of each
oscillator comb is coupled into one of the orthogonal polarization axes of a sin-
gle PM ANDi fiber (with > 60% coupling efficiency) to obtain a dual-comb SC
spanning 820 -1280 nm (-20 dB). Its noise properties are investigated by study-
ing several individual spectral bands of the SC, each having a width of ≈ 15 nm
(-10 dB), and confirm shot-noise limited DCI across the entire SC bandwidth.
Each band also reaches a RIN power spectral density below -160.9 dBc/Hz,
which is around 10 dB lower compared to previous results with ANDi fibers [61,
76, 77]. In the central region of the SC spectrum the noise from the pump laser
is suppressed by more than 20 dB, i.e., most of the SC spectrum has less noise
than the pump laser.

Additionally, the DCI measurements are performed at a repetition rate dif-
ference of ∆frep ≈ 3.95 kHz, which supports the resolution of the whole SC
in parallel without spectral aliasing. By phase-tracking one comb line with a
1064-nm CW laser and correcting the relative timing jitter between the two
combs, all spectral bands can be coherently averaged, including field compo-
nents with a large time or frequency offset from the main interferograms. When
filtering the SC to a bandwidth of ≈ 4 THz, the peak spectral SNR reaches
38.7 dB

√
Hz. The corresponding dual-comb spectroscopy figure of merit (FOM)

[121] is > 1.1× 107
√
Hz in all spectral bands [104].

To the best of our knowledge, this work marks several important milestones:
(i) the first shot-noise limited DCI from a SC source, (ii) the broadest SC from
an ANDi fiber driven by a GHz laser, (iii) the lowest RIN from any SC source,
(iv) the largest suppression of input noise by a SC process, and (v) the highest
spectrally-resolved dual-comb FOM from a SC source. This is also achieved
with a simple setup comprised of a single laser cavity and a single PCF.

4.1 Relative Intensity Noise
The two pulse trains are combined in a cross-polarized state using a thin-film
polarizer so that with an aspheric lens they can be coupled simultaneously
into the orthogonal principal birefringence axes of single PM ANDi fiber (NL-
PM-1050-NEG, NKT Photonics) with collapsed air-holes on the input side for
increased coupling efficiency. This ANDi fiber has a length of 26 cm, a specified
mode field diameter of 2.6 ± 0.5 µm and a dispersion parameter of D = −8 ±
6 ps/nm/km at 1050 nm (group velocity dispersion 4.7 ± 3.5 fs2/mm). It has
borosilicate stress rods and a slightly elliptical core to introduce a birefringence
> 1.7 × 10−4 nm. A half-wave plate (HWP) is used to align the polarization

36



state of the input pulses along the fiber’s principal birefringence axes to suppress
depolarization-induced noise.
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Figure 4.1: Supercontinuum generation in the ANDi fiber. (a) Simulated spec-
tral evolution. (b) Simulated temporal evolution. (c) Measured SC spectra of
both combs and simulated spectrum.

The high peak power of the oscillator is sufficient to broaden the optical
spectra to several hundred nanometers of bandwidth (126THz). To understand
this SC process we perform numerical pulse propagation simulations using a
scalar, GNLSE model (see Chapter 2.1.5). For the simulations, we assume
transform-limited sech2 pulses whose width is matched to the measured spectra.
Spectra of the pumps are shown on Fig. 4.1(c) and (d). A simulation of the SC
dynamics at maximum input power is shown in Fig. 4.1(a) (spectral domain) and
4.1(b) (time domain). The resulting broadband and flat-top optical spectrum
the dual-comb SC are shown in Fig. 4.1(e). The simulated SC spectra show
good agreement with the experimental measurements. The spectra are also
remarkably flat, even around the oscillator wavelength of 1053 nm. This flatness
results from the combination of OWB dynamics in the ANDi SC process [99]
and pumping the fiber directly with the output of a bulk solid-state oscillator
operating in the soliton modelocking regime [122], which provides near-ideal
transform-limited pulses.

4.1.1 Impact of RIN on Sensitivity
The noise sources relevant for the sensitivity of DCI measurements are noise
equivalent power (NEP), shot noise, source RIN, and dynamic range of the dig-
itizer as discussed in [123]. The shot noise term dominates that of NEP provided
sufficient optical power is detected, for example a few hundred microwatts for
near-infrared detection. Care must be taken to avoid nonlinearities [124], but
by suitable choice of detector and avoiding excessive gain this can be managed
up to powers well over a milliwatt [121]. Digitizer dynamic range, if it is a lim-
iting factor, can be avoided by chirping one of the interferograms to introduce
a differential optical chirp between the two combs [125]. These considerations
suggest that unless the measurement is shot-noise limited, RIN directly affects
the integration time required to reach a given SNR and hence the sensitivity of
the measurement [123]. Furthermore, the nonlinear broadening process couples
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RIN and pulse timing noise [50], so a high RIN also leads to increased timing
jitter thereby degrading the coherence of the pulse train.

While low-frequency technical RIN components can generally be suppressed,
the broadband RIN due to additive amplified spontaneous emission (ASE) and
noise-amplifying incoherent dynamics is more problematic. Even the use of bal-
anced detection only halves this broadband RIN term rather than canceling it
down to the shot noise limit as would apply for non-interferometric measure-
ments. It is thus a key parameter for assessing the suitability of a laser system
for sensitive measurements.

To analyze the noise of SC sources, it is critical to measure the RIN in a
spectrally-resolved fashion since its intensity noise is typically anti-correlated
across the spectrum [49, 87], meaning that without spectral filtering we cannot
quantify this effect and might thus underestimate the true RIN. For example,
the standard χ(3) modulation instability adds noise but conserves energy in
the pulse, so that the total pulse energy may have similar RIN to the input.
However, the spectrally-resolved RIN of SC sources can exhibit noise that is
many orders of magnitude above that of the input pulses [15, 16].

4.1.2 Measurement and Simulation of RIN
For assessing the RIN, we couple only one pulse train (comb 1) into the ANDi
fiber to prevent distortions of the measurement by periodic interferograms or
intensity modulations. After passing through the monochromator, the spec-
trally filtered light is detected on an InGaAs photodiode (modified DET10N2,
Thorlabs). To enable high sensitivity for a wide range of noise frequencies,
the resulting photocurrent is analyzed in a baseband measurement by an ESA
(E5052B, Keysight Technologies) with two different measurement schemes, one
for low noise frequencies and one for high noise frequencies, which are stitched
together as described in [120].

We record the SC RIN in several ≈ 15 nm wide spectral bands from 850 nm
up to 1250 nm in 50 nm increments. We adjusted the power on the photodetector
with an iris from around 11mW at 850 nm down to 7mW at 1250 nm accord-
ing to the wavelength-dependent photodetector responsivity to ensure that the
shot noise (SN)-limit is similar for all spectral bands and to prevent saturation
effects. The selected filter bandwidth allows for sufficient optical power at the
detector to achieve shot-noise levels below -160 dBc/Hz for all spectral bands,
while still preserving the structure of the spectrally resolved RIN according to
our numerical simulations. The oscillator RIN is recorded as well in order to
determine its relation to the RIN of the spectrally filtered SC The one-sided RIN
PSDs are shown in Fig. 4.2(b). The oscillator has a noise plateau of around
-130 dBc/Hz until about 30 kHz when it begins decreasing until reaching SN
limited performance for sideband frequencies beyond 1 MHz. For the SC the
spectrally-resolved RIN measurements reach the SN limit for all spectral bands,
including the spectral wings of the supercontinuum and remain shot-noise lim-
ited up to the Nyquist frequency. This confirms the ultra-low noise performance
and indicates that there is no degradation of the coherence from the SC process.

In particular, the RIN of each band reaches a noise floor below -160.9 dBc/Hz,
which marks a ≈10 dB improvement compared to previous low-noise results
with ANDi fibers [61, 76, 77]. This also manifests itself in the record-low
integrated RIN achieved with this source. At the lowest-noise spectral band
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Figure 4.2: (a) Spectrally-resolved integrated RIN for around 15-nm-wide spec-
tral bands at different wavelengths and (b) corresponding one-sided RIN PSD.
The measurement noise floor (gray) was determined by blocking the incident
light on the photodetector and scaling the resulting PSD with the typical DC
photocurrent of around 6.2 mA in the unblocked case. (c) Simulation of the
RIN PSD according to the laser parameters and oscillator RIN. To mimic the
expected noise properties of the solid-state oscillator, its high-frequency RIN
is extrapolated down to the shot-noise limit corresponding to the fiber-coupled
average power of 1.6 W, which is approximately 25 dB lower than the pho-
todetector shot-noise limit, as shown in (e). (d) Noise gain transfer function
inferred for the measured and simulated RIN PSD (e) Noise floor of the mea-
sured spectrally-resolved SC RIN (dots) together with the theoretical shot-noise
limit for the corresponding power on the photodetector. This measured SC noise
floor together with the noise gain transfer function gives an upper bound for the
oscillator noise floor (triangles). The theoretical shot-noise limit of the oscillator
for the fiber-coupled average power of 1.6 W is indicated by the dashed black
line.
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Figure 4.3: Detailed RIN PSDs for a slice centered at 1050 nm. Both simulated
and measured PSDs are shown, together with the measured oscillator RIN to
help visualize the noise gain.

(1100 nm ± 8 nm), for example, we obtain an integrated RIN of 2.7× 10−5 for
the integration range [1 kHz, 10 MHz] (Fig. 4.2(b)), which is an unprecedented
level for a SC source.

When integrating the noise down to 100 Hz the RIN increases slightly due
to additional low-frequency features on the noise spectrum. Inspection of Fig.
4.2(b) shows that these features are not on the oscillator spectrum, so their
presence on the SC spectra can be explained by environmental fluctuations that
lead to small amplitude noise when coupling into the small-core ANDi fiber.

Another interesting aspect of the RIN measurements can be seen from the
noise plateau. Remarkably, Fig. 4.2(b) shows that for the spectral bands near
the oscillator wavelength, the spectrally-resolved SC RIN is suppressed by more
than 20 dB compared to the oscillator RIN. Further away from the oscillator
wavelength, the noise suppression decreases and becomes positive towards the
wings of the supercontinuum spectrum due to the influence of laser peak power
fluctuations on the SC bandwidth. To quantify this noise suppression we intro-
duce a noise gain parameter GSCG which the oscillator pulses experience during
the spectral broadening in the ANDi fiber as illustrated in Fig. 4.2(d). This
noise gain transfer function is computed as the average gain factor between
the measured oscillator and supercontinuum RIN PSDs of the various spectral
bands for noise frequencies between 10 kHz and 20 kHz.

To better understand the observed noise gain transfer function, we use the
scalar GNLSE model to simulate the RIN PSD of the supercontinuum. The
overall strategy is to mimic the physical system by constructing a time series of
simulation input pulse energies having statistics that match the experimentally
measured RIN PSD (see Chapter 5). Since the oscillator is a soliton mode-locked
laser the pulse duration τ0 decreases with increasing pulse energy E, and this
needs to be accounted for in the simulations. We observe experimentally that,
for small changes around the nominal laser operating point, the pulse duration
scales as τ0 ∝ E−1/2 (slightly different from the standard E−1 behavior for
soliton modelocking). Therefore, for each input pulse energy Ej in the time
series, we assume a corresponding pulse duration τ0,j = τ0,ref × (Ej/Eref)

−1/2

(where subscript ’ref’ refers to the nominal laser operating point). This yields
a time series of input parameter pairs [(E1, τ0,1), (E2, τ0,2), ..., (EN , τ0,N )] for
N ≳ 5 × 106. We simulate the pulse propagation for each parameter pair,
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calculate the output optical spectrum, and then select the same spectral bands
as we used in the experiments. For each spectral band in the SC, we thereby
obtain a time series of pulse energies from which a RIN PSD can be calculated.

The simulated RIN PSDs (Fig 4.2(c)) agree well with the measured spectra
(Fig 4.2(b)). A detailed plot of the 1050 nm slice is shown on Fig. 4.3 as well,
where it is easy to visualize how the measured noise gain is defined. For a
more detailed version of Fig. 4.3 from a simulation perspective, see Fig. 5.4 in
Section 5.5. To determine the noise gain GSCG for the simulated RIN PSDs
we use the same procedure as for the RIN measured in the experiment, i.e.
comparing the RIN of the (spectrally filtered) SC to that of the oscillator; for this
comparison we use the values of the simulated RIN at 15.7 kHz. The resulting
simulation of the noise gain transfer function in Fig. 4.2(d) is consistent with the
experimentally observed noise suppression around the central wavelength. This
noise suppression can be explained by (i) a redistribution of the oscillator RIN
to the spectral wings of the supercontinuum resulting in a coupling of the pump
pulse intensity fluctuations to the SC bandwidth and (ii) the anti-correlation
between the pulse duration and peak power of the oscillator pump pulses [126].

Our simulation predicts that the SC RIN reaches the SN limit for all spectral
bands, in agreement with our measurement results. This is also illustrated in
Fig. 4.2(e), which shows the noise floor of the measured relative intensity noise
RINSC

NF(λ) together with the theoretical SN limit for the corresponding power
on the photodetector.

In the spectral wings of the supercontinuum, the noise gain transfer function
is positive, implying that the SC has higher noise than the oscillator. Despite
this, we still observe SN-limited performance in these spectral bands (850 nm
and 1250 nm). This indicates that the low RIN of the solid-state oscillator at
high noise frequencies enables the SN-limited SC We can even predict an upper
bound for the oscillator noise floor RINosc

NF that is needed for SN-limited SC
measurements at a spectral band around the wavelength λ:

RINosc
NF ≤ RINSC

NF(λ)−GSCG(λ). (4.1)

The predicted upper bound for RINosc
NF is indicated with a triangle in Fig. 4.2(e)

for spectral bands where it is below the measured oscillator RIN noise floor at
-163 dBc/Hz. This is the case for λ = 850 nm with RINosc

NF ≤ -173 dBc/Hz
and for λ = 1250 nm with RINosc

NF ≤ -175 dBc/Hz. A lower-bound for the fiber-
coupled oscillator RIN is given by its SN-limit of -186 dBc/Hz (for 1.6 W average
power), which suggests that the SC RIN could potentially still be SN-limited
even for a significantly higher noise gain. This analysis highlights the value of
using powerful laser oscillators (with ≫ 100 mW directly from the oscillator) to
drive highly nonlinear processes while maintaining SN-limited performance. It
also demonstrates the potential of using nonlinear processes to infer bounds on
laser noise that would otherwise be inaccessible: while saturation of the photo-
diode limits our RIN measurements to about -165 dBc/Hz, we can infer lower
RIN values by measuring the output of a noise-amplifying nonlinear process
with known noise gain transfer function. This is a step towards experimentally
accessing the true noise floor of the oscillator [18].
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4.2 Shot-Noise-Limited Dual-Comb Interferom-
etry

Both combs are combined, spectrally filtered, and detected on a fast free-space
InGaAs photodiode (DET08CL, Thorlabs) resulting in interferograms (IGMs).
An important aspect for high-sensitivity DCI measurements is sufficiently low
relative timing and phase noise between the combs to allow for coherent av-
eraging without loss of information and over long timescales. For free-running
dual-comb lasers, this can generally be achieved by increasing the repetition rate
difference ∆frep between the combs until the timing and phase fluctuations are
sampled fast enough to correct them unambiguously [119, 127]. There is how-
ever one limitation: to avoid spectral aliasing for a given optical bandwidth
∆νopt, ∆frep cannot be increased beyond the point where the RF bandwidth
occupied by the interferograms is larger than frep/2, i.e.

∆fRF = ∆νopt ×
∆frep
frep

<
frep
2
. (4.2)

For the individual spectral bands, this condition requires ∆frep ≲ 90 kHz, but
using such a large value would require adjusting ∆frep for each individual spec-
tral band to position the IGM spectrum around frep/4. On the other hand,
avoiding aliasing over the full supercontinuum bandwidth of more than 120 THz
requires ∆frep ≲ 4.2 kHz. We therefore set ∆frep ≈ 3.95 kHz so that the sys-
tem is compatible with simultaneous measurement of the whole spectrum on
one or multiple detectors. As a result, we can tune the monochromator across
the entire supercontinuum spectrum resulting in electronic dual-comb signals
between DC and frep/2.

To complement the RIN measurement of the single-comb presented in
Fig. 4.2(b), we compare the noise floor of the dual-comb IGM measurements to
their shot noise limit. To do so, we investigate the RMS voltage noise of the
dual-comb IGMs in the time domain. For this purpose, we record DCI signals
for each spectral band with a zoom-in on the vertical axis of the oscilloscope to
reduce the impact of the oscilloscope noise on the measured voltage noise. We
then coherently average the DCI signals for T = 9.6 ms (i.e. 38 IGM periods)
with an alternating sign for subsequent segments so that the coherent signals
cancel and only the noise remains. More details on the coherent averaging
process can be found in the publication [104]. The RMS voltage noise is then
computed for a 50 µs time window and displayed in Fig. 4.4 relative to the
theoretical shot noise limit.

(a) Oscillator 1

cw laser
(1064 nm)

Oscillator 2

SCG

Beat signal: fbeat(t) = f1,n(t) - f2,n(t)

Interferogram
signal (IGM)

IGM × e-2πi ×  

×  

Adaptive sampling & 
coherent averaging 
(Ncoh = 380) 

Super-
continuum 1

Grating-based
monochromator

Super-
continuum 2

fbeat(t) × t

(b)

(c)

(d)

(e)

(f)

Figure 4.4: RMS voltage noise relative to shot noise of the DCI measurements.
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Figure 4.5: Spectral (a) and temporal (b) envelope of comb 1 after propagation
of both combs in the ANDi fiber as function of input delay. (c) Energy variation
in % of initial energy after propagation for both fast axis (comb 1) and slow
axis (comb 2).

To develop such a system for which shot noise is the dominant noise term, it
is crucial to understand and minimize the contribution of the other relevant noise
sources [128, 129]. Thus, we modeled the influence of shot noise, quantization
noise, Johnson noise, and specified excess noise from the amplifier, photodiode,
and oscilloscope used on the ratio between RMS voltage noise and theoretical
shot noise. This calculation is in close agreement with the measured noise/shot-
noise ratio (see Fig. 4.4), which confirms that our supercontinuum source is
indeed shot noise limited.

4.3 Mitigating the Impact of Cross-Phase Mod-
ulation

In our setup, we use a single, highly birefringent nonlinear fiber to broaden a dual
frequency comb source, whereby the combs have orthogonal linear polarization
states, and one comb is injected into each of the polarization axes of the fiber.
Since the two combs have slightly different repetition rates differing by ∆frep,
the temporal offset between the pulses propagating on each axis changes from
shot-to-shot. Due to the short pulse duration and fiber length, most pulses do
not temporally overlap in the fiber and no nonlinear coupling between the two
combs occurs, leading to the generation of identical SC spectra on both fiber
axes.

However, when temporal overlap occurs in the fiber, nonlinear interaction
between the combs leads to temporal and spectral envelopes that are highly
dependent on the temporal offset, i.e. drastic changes occur from shot to shot
and the spectra generated on slow and fast axis are no longer identical. Using a
vectorial, dual-polarization GNLSE simulation [130], we investigated this inter-
action and found it to be dominated by cross-phase modulation (XPM). Since
XPM is a highly coherent process, it leads to deterministic and periodic inten-
sity and phase modulations of the pulse trains with frequency ∆frep. Hence,
while periodicity is lost on the level of each individual comb for the period of

43



temporal overlap, it is maintained on the level of ∆frep in the sense that two
pulses separated by ∆T = 1/∆frep are identical.

The drastic effect of XPM can bee seen on Fig. 4.5, where we plot spectral
and temporal envelopes of comb 1 at the output of the fiber for a few input
delays. The spectral and temporal modulations are only severe when both
pulses enter the fiber within ∼ 250 fs of each other. Fig. 4.5(c) shows the energy
lost or gained during the interaction of both pulses as function of input delay.
Because total energy is conserved, the plot is symmetric about the y-axis.

To prevent these periodic modulations from compromising the DCI measure-
ments, a temporal delay line is added to one of the combs after the nonlinear
fiber. The resulting DCI signal is shown on Fig. 4.6(a). This ensures that
only undistorted pulses contribute to the formation of the important central
part of the dual-comb interferogram (Fig. 4.6(c)), while the artifacts introduced
by XPM interaction, such as that shown on Fig. 4.6(b), are pushed into the
wings where they can be removed in post-processing. Fig. 4.7 shows another
perspective, where it is clear that modulated optical spectra can be separated
temporally, thus guarantying that only identical SC spectra overlap temporally.

4.4 Conclusions
In this chapter, we report the first shot-noise-limited dual-comb supercontinuum
with >1 W average power. Each spectral band measured in the 820 nm to
1280 nm SC is SN-limited. Moreover, we observe up to 20 dB of RIN suppression
near the pump wavelength, with a record low 1 kHz–10MHz integrated RIN of
2.7 × 10−5 at 1100 nm. These measurements are validated both by measuring
the noise floor of the IGM signal and by numerical simulations. The latter is
made possible by a new simulation method that can generate a realistic, noisy
pulse train based on the measured RIN PSD of the oscillator. By numerically
accessing the true noise floor of the generated SC, we open up new possibilities
for measuring ultra-low noise levels that are otherwise challenging to quantify
experimentally.

Such low noise is achieved by using a high power, dual-comb oscillator with
2.6W per comb, a single cavity and single fiber approach to maximize the mutual
coherence of both combs, and an appropriate ANDi PCF. This eliminates the
need for (i) any amplification stage, thus reducing the impact of additive ASE,
or (ii) fabrication of a suitable hybrid fiber such as that presented in Chapter 3,
which has not yet been tested with polarization-multiplexed, co-propagating
pulses, and would be a technical challenge at this pump wavelength.

Thanks to the > 60% coupling efficiency, > 1W per comb is available at the
fiber output, resulting in a theoretical shot noise limit of −186 dBc/Hz, making
it the ideal platform to drive highly nonlinear processes without incurring noise
penalties. The artifacts caused by the nonlinear interaction of both combs
while co-propagating in the fiber can be easily mitigated by adding a delay line
after the fiber for one of the comb, which has been both experimentally and
numerically verified.

In summary, our GHz system enables high-sensitivity and broadband DCI
measurements and is thus highly attractive for dual-comb sensing applications
such as broadband spectroscopy, hyperspectral LiDAR and imaging, and mul-
ticolor pump-probe measurements. In addition, the low-noise SC is ideal for
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Figure 4.6: (a) IGM trace at 1103 nm. (b) Zoom in on artifact caused by cross-
phase modulation (XPM) modulations. (c) Undisturbed interferogram.

(a) at fiber end

Comb 1
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(b) after comb 2 delay
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Figure 4.7: Schematic illustration of the effect of nonlinear interaction between
two combs propagating in a single nonlinear optical fiber. (a) Pulse trains from
both combs at the output of the fiber. Highlighted spectra in (c) and (d) show
modulated, temporally overlapped pulses. (b) Same pulse trains as in (a) but
comb 2 is delayed. Only undistorted pulses with identical spectra, shown in (e),
overlap in time.
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generating a strong carrier-envelope offset beat signal for frequency comb sta-
bilization, and the bandwidth achieved in this work would already be sufficient
for 2f − 3f interferometry.
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Chapter 5

Accurate Simulations of
Noise Evolution in Optical
Fibers

This chapter will be submitted as a standalone article for publication.

Numerical modeling is essential for understanding the complex nonlinear dy-
namics involved in laser system design. Several models of ultrashort nonlinear
pulse propagation have been developed to analyze a wide range of scenarios
[20, 34]. These models can handle even complex phenomena such as nonlinear
coupling of multiple spatial modes, the interaction of gain and nonlinearity,
or plasma effects due to photoionization in gas-filled hollow-core fibers. In
contrast, and despite its importance, there has been surprisingly little focus
on accurately modeling the evolution of noise during nonlinear pulse propaga-
tion. This assessment, together with the remarkable experimental results of
Chapter 4, prompted us to develop a more complete numerical model of noise
propagation in nonlinear fibers.

Ultrashort pulse trains emitted by lasers and amplifier systems, which drive
nonlinear processes, exhibit various types of noise, such as fluctuations in pulse
energy, duration, center frequency, and timing jitter, which can be coupled to
each other in various ways. This noise can be accurately quantified using PSDs,
which are commonly used in experimental noise measurements. For example,
the RIN PSD, ŜI(f), represents the spectrum of the pulse energy fluctuations
relative to their average value. Here, f denotes the noise frequency rather
than the optical frequency. Fluctuations in the pulse train occur at frequencies
between zero and half the repetition rate, i.e. typically in the RF range. In
real laser systems, the noise power distribution is highly frequency dependent,
resulting in complex and highly nonlinear noise PSDs. Yet, many numerical
studies in literature use oversimplified noise models. These studies typically only
consider shot noise, thus completely ignoring systemic laser noise sources, or
they assume a Gaussian noise distribution, resulting in a frequency-independent
white-noise PSD. Such simplifications fail to capture critical nonlinear dynamic
phenomena, such as amplitude-phase noise coupling, and also fail to differentiate
between low- and high-frequency noise components - the former can often be
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managed with electronic feedback loops, while the latter accumulate and can
lead, for instance, to the described coherence loss in frequency comb systems.
Consequently, an accurate modeling framework for nonlinear noise propagation
is still lacking.

This chapter introduces a set of tools for the realistic numerical simulation
of noise in ultrafast nonlinear optics. An outline of the four steps involved is
illustrated in Fig. 5.1. These are 1. Acquisition of an input noise PSD 2. Gen-
eration of a pulse train whose noise statistics match said PSD 3. Propagation
of each pulse individually 4. frequency-domain analysis of the resulting pulse
train. Presented as general guiding principles rather than a strict recipe, our
approach allows for maximum flexibility. Many noise types can be simulated,
even multiple at once. As discussed below, some decisions involved in the pulse
train generation process must be physically motivated, thereby tailoring the
model to each specific situation. Moreover, this model is not constrained to the
GNLSE; any propagation equation, such as the unidirectional pulse propagation
equation (UPPE) can be used.

In the following sections, the distinction between the single-shot and the
multi-shot domains is first established. This will allow for the exploration of
different types of noise and the frequency scales at which they exist, thus pro-
viding some motivation for a framework capable of simulating realistic, multi-
shot noise evolution. Next comes an overview of the Welch method, a technique
used to estimate PSDs from a temporal signal. Inspired by this technique, it
is possible to develop a procedure to generate a pulse train with realistic noise
properties from an experimental noise PSD measurement and to track the PSD
evolution in numerical pulse propagation simulations, which is the core of the
approach presented here. Once the model is established, it will be compared
with 2 other current approaches seen in the literature. Finally, to demonstrate
the applicability of this model, it will be applied to analyze the strong noise
suppression dynamics during the nonlinear spectral broadening of GHz opti-
cal frequency combs in all-normal dispersion photonic crystal fibers, showing
excellent agreement with experimental data.

1) Noise
measurement

2) Pulse train
generation

3) Nonlinear
propagation

4) Analysis

Figure 5.1: Summary of the simulation pipeline proposed in this work.

5.1 Noise in Numerical Simulations
In a typical nonlinear pulse propagation simulation, the aim is to model the spec-
tral and temporal transformation of an ultrashort pulse in a nonlinear medium.
The initial pulse, delivered by an ultrafast laser system, has measurable pa-
rameters such as pulse duration and energy, which are used as input for the
simulation. The pulse is then numerically propagated through the nonlinear
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medium by solving one of the many available propagation equations, e.g. the
GNLSE or the UPPE. These simulations are typically single-shot, meaning they
track the evolution of a single ultrashort pulse.

To account for noise in a simulation, noise terms can be added to the propa-
gation equation in order to model certain dynamics. For example, the literature
contains various versions of the GNLSE that include noise arising from linear
and nonlinear loss, gain or spontaneous Raman scattering [14, 18, 20].

Noise can also be added as part of the initial conditions. This can be done
either in form of global parameter fluctuations, such as changes in pulse energy,
or the addition of a noisy spectrum to the initial one, as is done when adding
shot noise. As simple as this approach is, it nevertheless allows modeling of
complex noise dynamics such as modulational instabilities or incoherent cloud
formation, even if the propagation equation contains no noise terms. Only noise
at the initial conditions is considered in the rest of this chapter.

Noise is a statistical quantity and cannot be measured on a single pulse.
Therefore, a simulation is repeated N times using different noise seeds. The re-
sult is evaluated statistically and compared with the input pulse ensemble. This
provides the data necessary to evaluate the influence of the nonlinear dynamics
on the noise properties of the pulse train. Although this general approach is
straightforward, defining an input pulse ensemble that realistically reflects the
noise properties of real laser systems is a non-trivial challenge that must be
addressed. Doing so will enable a reliable comparison between simulations and
experimental data. Here, this problem is solved by generating the input pulse
train from experimental noise PSD measurements.

Using this approach requires us to distinguish between two different time /
frequency scales: (i) the single-shot or optical domain, where the temporal and
spectral properties of a single pulse are defined, typically measured on scales of
femto- or picoseconds and tens to hundreds of THz, respectively; and (ii) the
multi-shot or RF domain, defined by the repetition time and frequency of the
pulse train, i.e. typically on time scales of micro- to nanoseconds and frequencies
in the kHz – GHz range. Both domains and their relationships are schematically
illustrated in Fig. 5.2.

Optical domain. Taking the formalism of the GNLSE as an example, a
single pulse in the time domain is represented as the complex envelope A(τ).
The letter τ is used to distinguish the optical delay axis from longer scale pulse-
to-pulse dynamics. With the help a frequency shifted Fourier transform Fopt,
the complex envelope can be turned into a spectral envelope Ã(ω) where |Ã(ω)|2
is the optical PSD of the pulse:

Ã(ω) = Fopt{A(τ)} =

∫ ∞

−∞
A(τ) exp (−i(ω − ω0)τ) dτ,

A(τ) = F−1
opt{Ã(ω)} =

1

2π

∫ ∞

−∞
Ã(ω) exp (i(ω − ω0)τ) dω,

(5.1)

where ω0 is the central angular frequency of the pulse.
Typical examples of noise sources occurring in the optical domain are shot

noise and ASE noise, which manifest as a broadband noise floor and noisy
ripples in both time and frequency domains, as schematically illustrated for a
single Gaussian pulse in Fig. 5.2(a) and (c), respectively.
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Figure 5.2: Clarification of the different domains used in our discussion. (a)
single pulse in the time domain. (b) multiple pulses in the time domain rep-
resented each as a single number x(tj). (c) single pulse in frequency domain.
(d) multiple pulses in the RF domain, represented as the PSD estimation of
x(t0), . . . , x(tN−1).

RF domain. An ensemble of N single-shot simulations and the multi-
shot time axis t are required to model pulse-to-pulse fluctuations of a particular
parameter in a pulse train. In the multi-shot picture, each single-shot simulation
j = 0, . . . , N − 1 is represented as a single data point xj = x(tj) = x (Aj(τ)),
where x is the noisy pulse parameter of interest, e.g. the pulse energy, duration,
arrival time, etc. This is illustrated by the orange arrow in Fig. 5.2(b) relating
the single-shot domain to a single data point in the multi-shot time series x(t).
t is intrinsically discrete and its grid spacing corresponds to ∆t = 1

frep
, where

frep is the repetition rate of the pulse train.
The time series x(t) can be further analyzed in its corresponding frequency

domain f to find the contribution of different noise frequencies to the overall
noise power (Fig. 5.2(d)). Although going from the time domain to the frequency
domain should simply involve a Fourier transform, as is the case in the optical
domain, x(t) is a virtually infinite, aperiodic signal. Because there isn’t a value
of t above/below which x(t) is always 0, the integral in the Fourier transform
doesn’t converge. Therefore, a slight modification is required in order to define
the one-sided noise PSD Sx(f):

Sx(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2

x(t)e−i2πftdt

∣∣∣∣∣
2

, f ≥ 0 (5.2)

where f is the noise frequency axis. Because x is real, Sx is symmetric around
f = 0. Therefore, the factor 2 accounts for the PSD at negative frequencies,
which is ignored by definition in a one-sided PSD. This is a commonly made
arbitrary choice that is kept throughout this work, but it may differ from the for-
malism used elsewhere in the literature. The maximum noise frequency is given
by the Nyquist frequency frep/2, while the lowest resolvable noise frequency is
limited by the size of the multi-shot ensemble to frep/N .
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It is often useful to consider relative noise quantities normalized to their
long-term mean. This is common practice for RIN, and similar normalized
noise quantities can also be used for other pulse parameters of interest, such as
the pulse duration or the optical center frequency. Only for the phase noise,
which is related to timing jitter, such a normalization is not practical because
it does not typically oscillate around a steady mean.

In the literature, noisy parameters are often expressed through their stan-
dard deviation σx. It is very common for RIN, where the RMS RIN σE is the
standard deviation of E(t), a relative measure of pulse energy fluctuations.

σx =

√∫ f1

f0

Sx(f)df. (5.3)

Note that this implies that specifying RIN as a number in percent should always
be accompanied by an integration range. When this is not done, it is often
implied that f0 is low enough that it doesn’t significantly affect σE , and that
f1 =

frep
2 . Since E(t) is a signal sampled at a frequency of frep (one sample per

pulse), the Nyquist-Shannon sampling theorem states that this signal contains
no information beyond frep

2 . Therefore, f1 must never be greater than half the
repetition rate, contrary to what is suggested in [131].

5.2 Decomposition of Noise Measurements
As highlighted above, noise has to be accounted both in the optical and RF
domains. This section presents how these two domains combine into a single
noise PSD. Understanding how noise from one domain manifests in the other
is crucial to generate a realistic input pulse train whose noise statistics match
that of an experimentally measured PSD.

Typically, the following noise contributions can be distinguished:

• Noise in the optical domain, such as SN or ASE, appears as frequency-
independent white noise PSD in the RF domain.

• Pulse-to-pulse fluctuations, such as intensity or timing jitter, appear in
the RF domain and their PSD can vary strongly with noise frequency.
Such fluctuations can be, for example, the result of quantum noise effects
associated with laser gain and cavity losses, or technical excess noise, such
as vibrational, electronic, or pump diode noise.

The relationship between noise in the optical and RF domain is illustrated
in Fig. 5.3 using the relative intensity noise of an ultrafast Erbium-doped fiber
master-oscillator power-amplifier (MOPA) system as example. The system
emits 40 fs pulses with 300mW average power at frep = 40MHz. The real
temporal and spectral pulse shape have no significance for the following discus-
sion, so that an optical spectrum with Gaussian shape is assigned for simplicity.

The RIN PSD of the system was measured with a photodiode detecting the
power of the pulse train connected to a RF spectrum analyzer, and is displayed
as the red curve in Fig. 5.3(a) in logarithmic units of dBc/Hz in the frequency
range from 5 kHz up to the Nyquist frequency of 20MHz. It exhibits a relatively
broad relaxation oscillation peak around 30 kHz, and then drops steadily until
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Figure 5.3: Illustration of the correspondence between noise in the RF domain
and noise in the optical domain. Fig. (a) shows frequency-resolved RIN in the
RF domain. The red line shows the measured RIN PSD of a typical 40MHz fiber
laser. It is the result of adding SN (orange line and shading), additional optical
noise (blue line and shading) and technical noise (green shading). Technical
noise consists of pulse-to-pulse fluctuations, illustrated in (b) as peak intensity
variations. Fig. (c) shows correspondence with the optical domain. The black
line is a normalized optical intensity spectrum of a single, noiseless Gaussian
pulse. The orange line shows the same pulse with SN added to it. Finally,
the blue line shows the effect of amplifying SN to approximate ASE. The inset
shows those same curves around the peak of the spectrum.

it reaches a plateau at high noise frequencies above 3MHz. The integrated RMS
RIN value over the measured RF range (Eq. (5.3)) is 0.06%.

The measured noise PSD can be considered as the sum of several noise contri-
butions. The following discussion decomposes it into its individual components
by examining the possible noise sources and their manifestation in both optical
and RF domains.

Shot noise. To start, it is realistic to include shot noise in the optical do-
main, as it is a fundamental property of light. The following formula can model
SN by adding a random complex number Ã(ωℓ) into each optical frequency bin
ωℓ:

δAsn(ωℓ) =
1√
2
(a+ ib), a, b ∼ N

(
0,

√
ℏωℓ

2∆ω

)
. (5.4)

Note that this model, taken from [18], yields a shot noise spectrum with a
variance of ℏω

2∆ω where ∆ω is the optical frequency bin spacing of the simulation.
Therefore, this model differs by a factor 2 from the “one photon per mode”
model used elsewhere in the literature [84]. The resulting optical spectrum is
plotted in orange on Fig. 5.3(d), where a spectrum of noiseless Gaussian pulses
is plotted in black for comparison. Shot noise adds a broadband noise floor,
located at approx. -75 dB below the peak in this case, which is important
for the accurate simulation of noise-seeded nonlinear effects, such as Raman
scattering or modulational instabilities. The RF RIN PSD of a pulse train with
SN only is estimated empirically and plotted on Fig. 5.3(a) as a yellow line and
shading. It’s level average value of −173 dBc/Hz matches the theoretical value

52



[18]:
Ssn(f, ω0, ⟨P ⟩) =

2ℏω0

⟨P ⟩
, (5.5)

where ℏ is the reduced Planck constant and ⟨P ⟩ is the average power of 300mW.
Note how the theoretical Ssn does not depend on f and is thus a constant line
in the RF domain.

Noise at high frequencies. The RIN PSD of most solid-state mode-locked
laser oscillators is expected to approach the SN-limit at high noise frequencies,
typically above a few MHz. This behavior has its origin in the interplay between
the long upper state lifetime of the gain medium and the long cavity damping
time, which leads to relaxation oscillations at typical frequencies of tens to hun-
dreds of kHz. In this measurement, the relaxation oscillation peak is located
around 30 kHz. Above this cutoff frequency, intensity noise is damped, corre-
sponding to a PSD proportional to f−1, like any driven harmonic oscillator,
until the shot-noise limit is reached.

The measured RIN PSD shown on Fig. 5.3(a) forms indeed a plateau above
approx. 1MHz, but at −139 dBc/Hz, it lies more than 30 dB above the shot-
noise limit. Following the above arguments, it would be unphysical to model
such high-frequency fluctuations simply as pulse-to-pulse peak power variations
in the multi-shot picture. Instead, excess noise at high frequencies is often
associated with additional noise sources in the optical domain degrading the
optical signal-to-noise ratio (OSNR).

In this case, the amplifier of the MOPA system adds ASE noise, modeled in
a first approximation simply by multiplying the shot noise δAsn by a factor η, so
that its PSD matches the high-frequency noise plateau of the measurement, as
indicated by the blue trace in Fig. 5.3(a). η can be determined from the value
of the measured RIN PSD ŜI at the Nyquist frequency frep/2,

η =

√√√√ ŜI

(
frep
2

)
Ssn

. (5.6)

For this example, η = 4.34. In the optical domain, adding this excess ASE
noise corresponds to a noise floor raised by 12.8 dB above the SN limit, thus
decreasing the OSNR. It also leads to a significant noisier optical spectrum, even
at the peak, as shown by the blue trace in Fig. 5.3(d). This higher noise floor
has important consequences, because it lowers the threshold for the onset of
noise-seeded incoherent nonlinear effects and, therefore, generally increases the
noise and degrades the coherence properties of the light exiting the nonlinear
medium.

If required, the treatment of ASE can easily be extended to include a fre-
quency dependence in the optical domain, e.g. based on a measured optical
spectrum with sufficient dynamic range.

Noise at low frequencies. Because the combined effect in the RF domain
of SN and ASE yields a flat PSD that matches the plateau of the measured
one above 1MHz, the remaining noise power, shaded in green in Fig. 5.3(a),
is distributed only at low frequencies below 1MHz. It can be accounted for
by adding pulse-to-pulse variations to the multi-shot simulations. In our RIN
example, this is done by altering the peak power of each pulse (and thus its
energy) with a random variable whose PSD matches the shape of the region
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shaded in green. The details of the procedure and this particular examples are
given in Section 5.4.

5.3 Power Spectral Density Estimation
This section provides a brief summary of numerical PSD estimations, more
precisely the Welch method [132], because they are crucial for understanding our
model and its limitations. A Welch method implementation is already provided
in most numerical libraries, but a better understanding of PSD estimations in
general can be gained by reading chapter 13 in [133].

Given a vector x = (x0, . . . , xN−1) of N equidistant samples of a noise
signal x̂ taken at interval ∆τ = 1/frep, we want to numerically implement
Eq. (5.2) and compute an estimation S of the true PSD Ŝx of the signal. x̂ can
represent any noisy, measurable value that satisfies the wide-sense stationary
(WSS) process definition. Examples of WSS processes in the context of laser
noise include RIN, pulse duration noise, etc. However, extra care must be taken
when making PSD estimations of a signal that is not a WSS process. Phase
noise is a notable example because it is tied to timing jitter, which is not a
quantity that oscillates around a steady mean. The problem is especially severe
close to the zero frequency, as the typical 1/f -like PSD of timing jitter suggests a
singularity around f = 0. Ref. [18] goes into more details about how to mitigate
this when it comes PSD estimations.

A crude way to estimate the PSD of the sequence x is simply to take the
absolute value squared of its discrete Fourier transform (DFT). This is called a
periodogram, and there are two main problems with this simple approach:

1. The periodogram has a variance of 100%. In other words, the value of the
periodogram in each frequency bin has a variance equal to itself.

2. Because x̂ is not periodic, taking the DFT of a finite portion is akin to
masking it with a rectangular window, which creates leakage from one
frequency bin to their neighboring ones due to the frequency response of
a rectangular window.

The second issue is the easier one to deal with. We simply need to choose a
better window than a rectangular one. For our use case, the Hann window is
suitable. A detailed analysis of the properties of many different window families
is available in [133].

With a fixed number N of points (corresponding to N single-shot simulations
as explained in Section 5.2), it is possible to trade frequency resolution for
reduction in variance. A straightforward approach is to take some average,
either across several frequency bins, or across several periodograms. Those two
approaches are mathematically very similar, and for cases where it is not difficult
to repeat the single-shot simulations many times it is then easy to compute the
periodograms to the desired frequency resolution and average them.

However, we can get even more variance reduction for a given number of
points. From a sequence of N = (K + 1)M points, we create K overlapping
segments of 2M points compute their periodogram and average them together.
Each segment consists of the points (xjM , . . . , x(j+2)M−1), j = 0, ...,K−1. The
variance of the final, averaged periodogram is reduced by about 9K/11 compared
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to not segmenting the data at all [132]. However, the smallest measurable
nonzero frequency increases from frep/N to frep/2M .

5.4 Generating a Pulse Train from a Noise Mea-
surement

In a procedure that is loosely equivalent to inverting Eq. (5.2), it is possible to
generate a pulse train from a measured noise PSD. Because PSDs discard any
phase information, this problem is a version of the famous 1D phase retrieval
problem, which has no unique general solution. Indeed, there are infinitely many
time domain signals that share the same PSD. However, as the ultimate goal
is to be able to analyze PSDs of simulated pulses, any one of these signal will
work for our purposes.

To decide the size N of the simulated pulse train, we must bear in mind
that the final PSD estimations will resolve only M +1 frequency points, spread
uniformly between f = 0 and f = frep/2. Therefore, two different grids are
used: a fine grid with a frequency spacing of frep/N , which will be used to
generate the initial pulse train, and a coarse grid with spacing of frep/2M ,
which is the grid of the PSD estimation. Both grids are identical if K = 1, but
we strongly advise using a higher value of K to get smoother PSD estimations.
M must be determined such that all nonzero frequency points of the coarse
grid are covered by the measurement. K can then be freely determined to get
the final number N = (K + 1)M of simulations. Note that this procedure is
written assuming N is even, but it can be adapted for an odd N . We can now
interpolate the measured PSD at N

2 +1 uniformly spaced points from zero to the
Nyquist frequency frep/2. This yields S = (S0, . . . , SN/2). Points interpolated
at 0 ≤ f < frep/2M not cover by the measurement can be set to 0 without loss
of generality.

As explained in Section 5.2, certain noise sources need to be added in the
optical domain rather than in the RF domain. Typically, only the remaining
low-frequency fluctuations are added as pulse-to-pulse variations in the multi-
shot picture.

Hence, we must first find the total contribution Sopt of all optical domain
noise sources in the RF domain and subtract it from the measured noise PSD.
In our example, this applies to SN and ASE noise, such that Sopt = η2Ssn

(Eqs. (5.5) and (5.6)).
Before inverting S into the time domain, we need to add a phase spectrum

to it. This is the stage where we choose one of the infinitely many possible
signals whose PSDs match the measurement. The simplest way to pick a phase
is to consider no correlation between each frequency bin and simply sample
a random phase ϕk on a uniform distribution U [0, 2π). Note the exceptions
ϕ0 = ϕN

2
= 0 because the DFT of a real signal is always real at the zero and

Nyquist frequencies.
Lastly, because most inverse fast Fourier transform routines require a two-

sided spectral amplitude, we must add a factor 1/2. This yields the final spectral
amplitude vector ρ, whose components are

ρk =

√
max(Sk − Sopt, 0)

2
eiϕk , (5.7)
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where we ensure that the argument of the square root is non-negative, as noisy
input data could lead to negative values.

We can now generate the signal x = (x0, . . . , xN−1) by computing the inverse
DFT of the vector ρ.

xj =
√
Nfrep F−1[ρ]j . (5.8)

The normalization factor guarantees that the average power Pavg = Etot

T over
any period T = N/frep is preserved.

Since x is real and ρ is already scaled as if it were a two-sided amplitude,
we can take advantage of functions dedicated to real signals, such as irfft in
Numpy [36], to compute F−1. For numerical tool kits that do not implement
this shortcut version, we can create a complete two-sided version of ρ,

ρ̂k =

{
ρk , k = 0, . . . , N2
ρ∗N−k , k = N

2 + 1, . . . , N − 1,
(5.9)

where ∗ denotes the complex conjugate. The inverse DFT is then computed as

F−1[ρ]j =
1

N

N−1∑
k=0

ρ̂k exp

(
i2πjk

N

)
. (5.10)

This method is very versatile and yields a sequence x whose periodogram
is the original PSD. This means that it inherits its units in the following way:
[Sk] = u2/Hz =⇒ [xj ] = u. In particular, a PSD in dBc/Hz yields a unitless
signal. Although it can be delicate to compute PSD estimations of timing jitter
due to the issue raised in the previous section, the inverse process of finding
a pulse train from a PSD measurement is typically not problematic. This is
because the limited feasible number of simulations imposes a limit on the lowest
simulated frequency. Moreover, in our framework, the value of the PSD at f = 0
can always be set to 0 without loss of generality.

As an example, let us generate a pulse train starting with the RIN measure-
ment of Fig. 5.2(a). First, the measured RIN level at the Nyquist frequency
of 40MHz is −140.29 dBc/Hz. This is Sopt that we subtract from the original
measurement in Eq. (5.7). The SN sits at xxdBc/Hz for our 1550 nm, 300mW
laser system, which yields η = xx that we use to add the appropriate amount
of noise in the optical domain. We choose to write the energy of each pulse
Ej = ⟨E⟩(1 + xj) where ⟨E⟩ is the mean pulse energy. To translate this varia-
tion of energy into the shape of each pulse, we assume a simple model where only
the peak power varies while the pulse width τ0 remains constant. Therefore,
assuming a Gaussian pulse, each initial pulse envelope Aj(τ) is given by

Aj(τ) =

√
⟨E⟩(1 + xj)√

π/2 τ0
exp

(
−
(
τ

τ0

)2
)

+ ηδAsn,j (5.11)

with the pulse duration’s FWHM equal to τ0
√
2 ln 2. δAsn,j is generated accord-

ing to Eq. (5.4) with a different noise seed for each pulse.

5.4.1 Dealing with Measurement Limitations
A common issue in noise measurements is that experimental setups often restrict
the detection of noise to levels significantly higher than those of the laser system
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itself. For instance, when detecting the power of a pulse train with a photodiode
for intensity or phase noise measurements, the power level must be kept suffi-
ciently low to avoid photodiode saturation. If the laser system’s power exceeds
this threshold, attenuation is required, which inherently introduces additional
quantum noise. Consequently, the SN limit of the measurement becomes higher
than the actual SN limit of the light being measured.

If the measured noise PSD is limited by the noise floor of the measurement
system, which may occur especially at high noise frequencies, there is no uni-
versal model to correct for this. However, in certain cases, additional physical
considerations can help mitigate the issue. For example, the noise in many pa-
rameters of mode-locked laser oscillators is expected to reach its fundamental
quantum limit at high noise frequencies [134]. This physical insight provides a
rationale to extrapolate the measured PSD down to the SN limit, such as in the
case of RIN to the level predicted by Eq. (5.5). Section 5.5 provides an example
of this approach. If no corrective model is available, the measurement can still
be used as a worst-case scenario assessment.

5.4.2 Attenuation Adds Noise
In experiments, attenuation may also be used to analyze the noise properties of
the light exiting the nonlinear system. The quantum noise introduced by this
attenuation must be considered in the numerical simulation as well to ensure
accurate comparison with the experiment [18]. This consideration also applies
to situations when the output of the nonlinear system is spectrally filtered. For
example, the RIN of supercontinuum light generated in nonlinear fibers is often
analyzed by dividing it into multiple narrow spectral bands to reveal wavelength-
dependent fluctuations. Consider, for instance, a Gaussian bandpass filter bC(λ)
centered at λC and of FWHM ∆λ,

bC(λ) =
√
T exp

[
−
(
2 ln

(
1 +

√
2
) λ− λC

∆λ

)2
]
, (5.12)

where the wavelength λ = 2πc/ω and the parameter T is the peak transmission
of the filter. The introduction of the filter is accounted for by generating a new
shot noise spectrum δÃsn(ω) according to Eq. (5.4) and combining it with the
output of the filter to produce the filtered spectrum Ãk,C ,

Ãk,C(ω) = bC(λ)Ãk(ω) +
√

1− bC(λ)2 δAsn(ω), x (5.13)

where c is the speed of light.

5.4.3 High Repetition Rate Lasers
A quick back of the envelope calculation yields that for GHz lasers, PSD estima-
tions down to the kHz range with sufficiently low variance necessitate millions
of individual simulations. While this is certainly not impossible to accomplish,
there are a couple of tricks one might use to reduce the amount of simulations
needed to achieve a certain minimum frequency.

The technique used to simulate big frequency ranges consists of propagating
pulses that are too similar. After all initial pulses are created, they can be sorted
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into a histogram. Exactly what metric is used to create the histogram depends
on what kind of noise is simulated. For example, if only RIN is considered, we
make a histogram where pulses are binned according to their total energy. For
each bin, we choose one single pulse to represent the bin and be propagated. We
then perform the PSD estimation on the full sequence xg(k), k = 0, . . . , N − 1
where g maps any pulse onto the representative of its bin. The suitable number
of bins can be determined empirically by considering more and more of them
until all PSD estimations of interest don’t change significantly anymore. When
working with a uniform distribution of bins, the number of pulses to propagate
can be smaller than the number of bin because some bins will contain 0 pulses.

5.5 Supercontinuum Generation from a Single-
Cavity Dual-Comb Laser

The method detailed in this chapter is used to corroborate the noise suppression
dynamics observed in Chapter 4.
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Figure 5.4: Comparison between measured and simulated RIN PSDs for 15 nm
spectral slices. (a) Detailed PSDs for a slice centered at 1050 nm. We show in
solid red the measured oscillator RIN PSD, dashed red the extrapolated curve
used for the 1GHz simulations and in solid, thick blue the measurement of the
SC slice. In light orange is the PSD of the 1GHz simulation at full power
(T = 1 in Eq. (5.12)) while the attenuated one (T = 0.135) is shown in darker
orange. A simulated 20MHz repetition rate version of the experiment is shown
in solid green. Dotted lines show the SN limit of each situation. (b) Measured
and simulated optical spectra after nonlinear broadening in the ANDi fiber.
Markers are placed on the simulated spectrum at the center wavelength of each
slice. (c) Measured and simulated gain coefficients, which is the ratio of the
mean PSD in the [10 kHz, 20 kHz] interval between the oscillator each spectral
slice.

Fig. 5.4 shows a detailed comparison between numerical and experimental
results. The solid red curve in (a) shows the RIN PSD of the laser, measured
after some attenuation. Attenuation raises the SN limit of the measurement,
but is necessary because the 3W of the laser far exceed the power ratings of the
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photodiode. Without it, we would expect the PSD to hit a much lower noise
floor, as projected by the dashed, red curve. As explained in Section 4.1.1, RIN
must be measured in a spectrally resolved way. The measured wavelengths are
highlighted in blue on Fig. 5.4(b), where we see good agreement between the
measured and simulated optical spectra.

Because of the high repetition rate, we make use of the technique intro-
duced in Section 5.4.3. Seeing that the highest measured noise frequency is
only 10MHz, it might be tempting to scale down average power and repetition
rate in order to simulate a 20MHz laser. However, it is clear by looking at
Eq. (5.5) that doing so increases the shot noise limit of the simulation by 50
times. While this may be a viable solution in noisier situations, the initial noise
measurement from the laser is already SN-limited, so increasing the SN limit is
out of the question. We illustrate this by running such a simulation and plotting
the results in green in Fig. 5.4(a). The simulated PSD is clamped by a noise
floor so high that it is not possible to compare it with the measurement.

Instead of scaling down the repetition rate of the simulation, we aim to
cover the range from 7.9 kHz to 1GHz at once. Since the original noise PSD
measurement doesn’t extend past 10MHz, we extrapolate it by extending its
mean slope around 300 kHz down to the predicted noise floor of the laser at full
power. Because of the huge frequency range to cover as well as the high number
of segments (K = 79) necessary to sufficiently reduce the variance of the PSD
estimations, the number of pulses to propagate using the GNLSE would exceed 5
millions. Yet, using the binning technique described above, we aimed to reduce
this number to 16 000. Because of empty energy bins, the actual number of
propagated pulses is 14 222. We also run a similar simulation targeting 10 000
pulses only and notice no difference in the resulting PSD estimations, confirming
that 14 222 is adequate.

Using Eq. (5.12) with T = 1 to simulate a bandpass filter, we process each
simulated pulse, compute their energy and create a signal of which we can
estimate the PSD. An example is shown in Fig. 5.4(a) where the detailed PSDs
of the slice around 1050 nm are shown. As illustrated by the faded orange curve,
the SN limit of the T = 1 simulations is lower than that of the measurement
shown in blue. Consequently, we also process the same set of simulated pulses
with a lower value of T to match the experimental noise floor of each slice,
as shown by the dark orange curve. This SN-matched simulation is in very
good agreement with the experimental curve over the full overlapping frequency
range.

To better summarize the relation between measurements and simulations, we
compute the noise gain coefficient of each slice by dividing the mean RIN PSD
of each slice between 10 kHz and 20 kHz by that of the oscillator in the same
RF range. This coefficient is plotted in Fig. 5.4(c). For all slices except that
at 950 nm, correspondence between measurements and simulations is excellent.
Numerical simulations make it possible to easily estimate the noise gain function
with high resolution. Thanks to the high resolution of the simulated noise gain
function, it is clear that there exists a central section of the optical spectrum
spanning 900 nm to 1200 nm where the noise gain is expected to be 0 or less.

To illustrate the origin of the noise suppression, the numerical model is
used to show how the spectrally resolved noise gain evolves as the SC spectrum
develops in the fiber. Fig. 5.5(a) shows the evolution of the noise gain as function
of wavelength and propagation distance. In the first few centimeters, spectral
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Figure 5.5: Simulated evolution of the noise gain spectrum as function of
propagation distance. In each example, a sech2, noisy pulse train is generated
and propagated in a different fiber. The plot on the left shows the noise gain in
dB as function of wavelength and distance while the plot on the right shows the
normalized optical intensity for reference. (a) Same simulation as in Fig. 5.4.
(b) Dispersion and other nonlinear effects are turned off to keep only SPM. (c)
Same as (b) but with normal, second order dispersion.

peaks created by SPM are still visible. Aligned with those peaks are very
localized regions of RIN suppression. After OWB occurs, the central part of the
optical spectrum gets progressively smoother, which in turn creates a smooth
region of noise suppression. One might presume that the true origin of this
noise suppression is SPM alone, which acts to translate fluctuations in peak
intensity into fluctuations in spectral width. This hypothesis accounts for the
fact the spectral edges see substantial noise gain. However, it is incomplete, as
shown on Fig. 5.5(b). When only SPM is simulated, the small regions of noise
suppression never get smoothed out. When simply adding normal, second order
dispersion (β2 > 0), the entire noise gain evolution plays out in a manner almost
identical to Fig. 5.5(a). This concludes that SPM and normal dispersion are the
key ingredients to achieve substantial RIN suppression in SCG OFC at low RF
frequencies.

5.6 Comparison with Other Models
As illustrated in Section 5.3, it is essential to distinguish between noise occurring
at RF frequencies and noise occurring at optical frequencies. Measuring the RIN
of a system as a single number in % is not a complete enough description of its
noise properties. We would like to develop this idea further by comparing our
model with two RF-agnostic models commonly found in the literature. First,
as a baseline, we run a set of simulations using only shot noise [16, 39]. Then,
we will use a “technical white noise (TWN)” approach where all noise except
SN is considered to be technical [50, 126, 135, 136]. This is the approach used
in Chapter 3. Finally, we will run a set of simulations using our new model by
allocating noise as shown on Fig. 5.3.

For this test, 150 fs pulses are propagated through 18 cm of conventional fiber
by solving Eq. (2.12) which includes arbitrarily high order dispersion, SPM, self-
steepening and delayed Raman scattering using a measured gain spectrum [137].
We consider a 40MHz laser with a center wavelength of 1550 nm, an average
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Figure 5.6: Results of different multi-shot simulation models on the same pulse
and fiber parameters. (a) Optical spectra after propagation using a pulse train
with SN only. We draw individual spectra as think black lines with their em-
pirical mean in thick, colored lines. A longpass filtered soliton is highlighted
with a hatched pattern. (b) and (c): same for inputs with 0.06% technical
white noise (TWN) and our model, respectively. Mean coherence ⟨|g12|⟩ of the
full spectrum is displayed on the upper right of each plot. (d) Faded, dashed
lines show the RIN PSD of each initial pulse train while solid line show that of
the soliton after propagation. A dotted black line indicates the SN limit of the
soliton (Eq. (5.5)). (e) Timing jitter PSD of the soliton.

power of 100mW (15.7 kW peak power) and enough simulations to cover low
frequencies down to 1.5 kHz with a good reduction in variance (K = 70). For
all three models, we used again the approach explained in Section 5.4.3 where
only ∼ 3000 pulses are propagated, instead of all 950 264 of them.

Optical spectra for all three models are shown on Fig. 5.6(a), (b) and (c). As
expected from this combination of pump wavelength and fiber dispersion, the
optical spectrum has a lot of complex structures, including a prominent soliton
centered around 1880 nm. We isolate it using a 1750 nm longpass filter for
further analysis, as shown by the hatched pattern. Notice how the attenuation
does not get rid of the shot noise floor in the optical domain, as explained in
Section 5.4.2. The RMS RIN and timing jitter στ , of the input, the full SC
spectrum and the isolated soliton, for every method, are displayed in Table 5.1.
Together with the mean coherence ⟨|g12|⟩, they are calculated according to:

RINRMS =

√
⟨|E − ⟨E⟩|2⟩

⟨E⟩
, τc =

∫∞
−∞ τ |A(τ)|2dτ∫∞
−∞ |A(τ)|2dτ

, στ =
√
⟨|τc − ⟨τc⟩|2⟩,

|g12(ω)| =

∣∣∣∣∣ ⟨Ã∗
j (ω)Ãk(ω)⟩j ̸=k

⟨|Ã(ω)|2⟩

∣∣∣∣∣ , ⟨|g12|⟩ =
∫∞
0

|g12(ω)| · ⟨|Ã(ω)|2⟩dω∫∞
0

⟨|Ã(ω)|2⟩dω
(5.14)
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RMS RIN
SN only SN + 0.06% RIN Our model

Initial < 0.01% 0.07% 0.07%
Full spectrum < 0.01% 0.07% 0.17%
Soliton 0.02% 0.07% 1.18%

Jitter
SN only SN + 0.06% RIN Our model

Initial < 1 as < 1 as 28.1 as
Full spectrum 34.8 as 269.2 as 2494.4 as
Soliton 42.4 as 371.4 as 3015.7 as

Table 5.1: Summary of RMS RIN and timing jitter figures for all 3 models

where ⟨ ⟩j ̸=k means that the empirical average is computed considering all pos-
sible combinations of 2 distinct pulses.

The input pulses of the SN-limited set of simulations is exactly that of
Eq. (5.11) with η = 1. The corresponding RIN PSD is a straight line at the shot
noise limit given by Eq. (5.5) and is shown on Fig. 5.6(d) as a faded, dashed
orange line. We show the resulting optical spectra as well as the mean spectrum
on Fig. 5.6(a).

For the next model, we target an RMS RIN of 0.06%, which is the total
RMS RIN of the measurement shown in Fig. 5.3(a). Because this is essentially
TWN, the RIN PSD is flat and, with the laser parameters given above, its level
is about −140 dBc/Hz, shown as the dashed, faded green line in Fig. 5.6(d).
This level is reached by multiplying the peak power of each pulse by a number
sampled on a normal distribution of mean 1 and standard deviation of 0.06%.

Finally, we run the same simulations using our model, using η ≈ 18.3 to
amplify noise in the optical domain, and using the procedure of Section 5.4
to create a realistic sequence of peak power variations. The final RIN PSD
of the input pulse train matches the measurement of Fig. 5.3(a), as shown on
Fig. 5.6(d) in faded, dashed blue. The only difference with Fig. 5.3(a) is an
artificial spike added at 20 kHz.

In the optical domain, it is clear that adding only technical noise on top of
SN doesn’t affect the OSNR, while our approximation of ASE does. With our
model, the optical noise floor is about 25 dB higher, matching the η2 ≈ 1025/10

of the input. Accordingly, spectra with ASE appear nosier, with more extreme
excursions from the mean, resulting in a low coherence. While less dramatic, the
TWN also shows slightly stronger fluctuations on the long wavelength side of the
spectrum, but is overall very similar to the results of the SN-only simulations.

As previously mentioned, resolving RIN across the optical spectrum is nec-
essary to get a full picture of the noise dynamics. For this artificial example,
it is natural to do so by isolating the redshifted soliton around 1880 nm with
a longpass filter. The RIN PSD of this soliton is plotted in solid lines for all
3 models on Fig. 5.6(d). The SN limit of this filtered pulse train is indicated
with a dotted, black line. First, we notice a 25 dB gain in the RIN of the SN-
limited simulations. Similar gain is observed in the high frequency end of the
simulations performed with our model. However, no significant noise amplifi-
cation is seen in the TWN simulations. We can conclude that technical noise
is not amplified in this situation. Even though the same SN level is present at
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the input, its amplification, as seen in the pure SN case, is not visible because
of its low level relative to the technical noise. Finally, our model can demon-
strate these two behaviors at the same time, which is where the added spike
at 20 kHz comes in handy. Unlike the strong amplification of incoherent noise
on the high frequency side, the top of the spike, consisting mainly of technical
noise, does not experience significant gain. In other words, the conventional
SCG process is responsible for a strong amplification of quantum noise, which
results in a higher, flattened RIN PSD in the RF domain, especially at high RF
frequencies. Nevertheless, when the majority of the RIN present in a particular
frequency band consists of mainly technical noise, the impact of SCG on this
noise is different, which our model demonstrates.

Although no timing jitter is explicitly introduced into the simulation, we
find that both optical domain noise and pulse-to-pulse fluctuations induce a
significant timing jitter. Therefore, the shape of the RIN PSD is imprinted
on the timing jitter PSD. Although our RF-resolved model makes the coupling
between RIN and timing jitter more visually explicit, it can also be inferred
by looking at Table 5.1. Typically, noisier inputs exhibit higher jitter, in both
the full SC spectrum and in the isolated soliton. This again highlights the
importance of distinguishing between noise in the optical domain and pulse-
to-pulse fluctuations: even though the RMS RIN at the input is identical, our
model predicts about an order of magnitude higher timing jitter after nonlinear
broadening, which can have a large impact on coherence [50].

5.7 Conclusions
We presented a set of numerical tools that allow existing pulse propagation
processes to simulate and analyze the evolution of noise PSDs. Although noise
analysis via PSD estimation and other statistical methods is already a mature
subject and can be used in the context of SCG, we identified a lack of tools
that would allow researchers to simulate an entire pulse train. We contributed
a flexible, physically motivated procedure that turns a measured noise PSD into
a realistic pulse train that can be propagated using any suitable equation. We
provided detailed formulas and explanations of our method, focusing mainly on
RIN due to its relevance in a wide range of applications. Because our framework
is fairly general, it is easy to integrate it in existing pulse propagation software.
Furthermore, we emphasize that the techniques presented here can be applied
to many different types of noise, including several at the same time.

We foresee our method being applied in many ultrafast domains, including
to the study of coupling between RIN and phase noise in the context of electro-
optic and parametric frequency combs. Typical applications of these are very
sensitive to phase noise, which can be induced by RIN, which itself originates
from electronic noise in the modulators. Understanding the interplay between
these two types of noise is critical to achieving octave-spanning combs with
minimal linewidth over a wide spectral range. In addition, our approach allows
researchers to numerically estimate how much noise can be suppressed given its
distribution across RF frequencies.
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Chapter 6

Supercontinuum
Generation in Hollow-Core
Fibers

Experimental work in this chapter was performed in collaboration with Anupamaa
Rampur.

As the name implies, hollow-core (HC) fibers consist of a hollow core, usu-
ally filled with air, surrounded by a more or less complex cladding structure.
While a simple, hollow silica tube can be considered the simplest type of HC
fiber, researchers have developed numerous sophisticated cladding structures in
order to reduce transmission and bend losses and to favor single-mode opera-
tion. Their advantages over conventional, solid-core fibers are numerous. (i) In
telecommunications, their reduced dispersion and nonlinearities as well as their
low refractive index mean that data can be transmitted at higher rates with
lower latency [138]. (ii) In industrial applications, their low material absorp-
tion and high damage threshold make them a practical, flexible alternative to
free-space optics for high power delivery [139, 140]. (iii) In the field of sensing,
their ability to be filled with different gases while guiding light enables new gas
sensing schemes [141, 142].

Moreover, in the field of photonics itself, they enable an attractive new
regime of high power pulse compression and SCG [143, 144]. Of particular
interest are the simple hollow capillary tubes. When held perfectly straight,
their unparalleled broadband transmission window, coupled with their poten-
tially very large core, enables the generation and transmission of high peak
power deep UV pulses [19, 145, 146], which can be used in applications such as
ultrafast spectroscopy.

The aim of this project was to become familiar with working with hollow-
core fibers and capillary tubes. Given the very high power and low repetition
rate of these systems, reproducing some of the recent results in HC SCG would
have opened the door to a new regime of noise analysis. Unfortunately, problems
with laser availability and general technical challenges slowed down this project
considerably and only preliminary results are available.
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6.1 Dispersion and Nonlinearities in Hollow-
Core Fibers

Guiding in hollow capillary tubes is described by the Marcatili model [147]. For
a core radius of a, the effective refractive index and attenuation coefficient of
the HEnm mode are given by:

neff(ω) =

√
n2gas −

(ukmc
ωa

)
α(ω) =

χe + 2
√
χe

(ukmc
ω

)2 1

a3

(6.1)

where ukm is the mth root of the Bessel function of the first kind of order k−1,
and χe = n2clad − 1 is the electric susceptibility of the cladding material. The
refractive index of the gas ngas as well as its nonlinear refractive index can be
pressure and temperature adjusted based on number densities calculated with
an equation of state, such as the ideal gas law [144]. It is then possible to
compute the dispersion parameters with Eq. (2.1).

Fig. 6.1 shows the dispersion of a capillary according to this model for a
selection of core diameters and gas pressures. This illustrates that the ZDW of
HC fibers can be easily tuned by adjusting gas pressure.
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Figure 6.1: Prediction, according to the Marcatili model, of the GVD of an
Argon-filled capillary considering 2 different core diameters and 3 different pres-
sure points.

6.2 Gas Cell Design
Unlike solid-core, Silica fibers, HC fibers don’t benefit from a thriving ecosystem
of fiberized components. Therefore, a robust but flexible system is required to
integrate them into a free-space setup, with the specific requirement that this
system must isolate the interior of the fiber from its external environment. It is
possible to control the type and the pressure of the gas inside the fiber, allowing
fine-tuning of dispersion and nonlinearities.
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Figure 6.2: Schematic side cut of the gas cell design.

Since this work is rather exploratory, our intention is to design a gas cell that
works with HC fibers and capillaries of all sizes and that is affordable. Special
attention will be given to the following requirements:

• Swapping fibers of different length and diameters must be easy and quick.

• Mechanical precision of the alignment of the fiber must be on par with
standard components made for solid-core optical fibers.

• The system must be airtight and must have the capability to maintain a
pressure gradient across the fiber.

• As many parts as possible must be commercially available.

The goal of this system is to be able to work with HC fibers and capillaries
at pressures ranging from rough vacuum to multiple bars. A schematic of the
fiber holding design is shown in Fig. 6.2. The main component is a standard,
steel T-junction (Swagelok SS-6M0-3) designed for gas pipes. Its intended use
is to fit 6mm tubes at each end. This is done with the help of a two-part ferrule
together with a screw-in cap. At the gas inlet, we use this intended design with
a flexible, 6mm PFA tube and the stock compression fittings.

On the other side of the gas cell, a Silica window is sandwiched between an
O-ring and a PTFE ferrule. This ferrule has a hole of 6mm, such that it does
not obstruct the beam. Again, we obtain a tight seal when the cap is screwed
in and compresses the O-ring, window and ferrule against the conical opening.
The choice of windows, especially their thickness, is motivated by the difficult
to find balance between nonlinearities and mechanical robustness. On the one
hand, high peak intensity beams focused on a narrow spot experience a lot of
nonlinearities in the glass, such as spectral broadening and self-focusing. This
is undesirable because it means that in order to achieve a good coupling of the
beam in the fiber, we must always work with the beam at full power, which
is likely to damage the fiber end facet if the alignment is not perfect. On the
other hand, because this work emphasizes the use of standard components, the
fit between the window and the other components is not perfect. As a result, the
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window experiences more stress than would be ideal and is more susceptible to
breakage. For the experiments presented here, mechanical robustness is favored,
and a 0.5mm window is chosen.

To install the fiber in the system, we first glue it into a 2.5mm outer diameter
steel ferrule. A short piece of fiber sticks out of the ferrule to facilitate this
process and can be cleaved later. This steel ferrule then fits snugly into a PTFE
ferrule, which, when the cap is screwed tight, creates an airtight seal between
the gas cell and the steel ferrule. A simpler design would be to fit the fiber
directly into a PTFE ferrule with the appropriately sized hole. However, in our
experience, some HC fibers, especially those with a thin cladding, can deform
when compressed too much. With the help of this steel ferrule and the glue,
direct compression of the fiber is no longer necessary to achieve an airtight seal
while holding the fiber firmly in place. The gas cell can then be fixed onto
a standard mounting plate (Thorlabs MMP1/M and similar) with a simple,
custom-made bracket, to then be installed on a 5-axis stage.

A disadvantage of this system is that we don’t get the best mechanical
stability. The reason is that the fiber is still indirectly resting on a PTFE part.
Since PTFE is easily deformed, tightening the cap to create a good seal will
inevitably move the fiber around. This is particularly relevant for capillaries,
as they must be kept as straight as possible to minimize loss, although the
operating range of the stages we use largely eliminate this problem.

Most parts can be directly bought from a supplier and those that can’t are
fairly easy to manufacture. Please note that PTFE ferrules wear off quickly,
and that steel ferrules are glued to the fiber. Therefore, these parts should be
considered as consumables and having a good stock of them is convenient.

6.3 Experiment
In this work, we use two HC Silica fibers. The first one is an antiresonant,
59 cm revolver-type HC-PCF nicknamed B05. An scanning electron microscope
image of its cross-section is shown in Fig. 6.3(a). Its 75µm core is formed by a
ring of 7 evenly spaced 47µm capillaries. It was produced in the Photonics and
Optoelectronics institute at the University of Southampton. The second one,
CAP250, is a 92 cm polyimide coated 250µm hollow capillary tube. Its 665µm
outer diameter makes it rigid, thus minimizing the typically massive bend from
which hollow capillary tube suffer.

The pump used for SCG consists of a 800 nm, 1 kHz Ti:sapphire laser that we
spectrally broaden by tightly focusing its beam in free space, such that the Kerr
effect broadens its spectrum. We then use a pair of chirped mirror to compress
these pulses down to 10.5 fs (measured with frequency-resolved optical gating
[148]). This compression setup is a simplified version of that used in [149], as
the tight focusing in air is enough and no thin Silica plate is required. The
available pulse energy is 410µJ.

Fig. 6.4 shows a schematic of the experiment. Because of the short pulse du-
ration and high peak intensity, use of transmissive optical components must be
limited. Therefore, we couple the compressed pulses into the FUT with a spher-
ical mirror. We choose a 300mm focal length mirror for the B05 antiresonant
fiber and a 750mm mirror for the hollow capillary tube. Care must be taken
to minimize the angle of incidence on the spherical mirror to avoid aberrations.
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Figure 6.3: End view of both fibers used in this work. (a) scanning electron
microscope image of the B05 hollow-core photonic crystal fiber. (b) Microscope
image of the 250µm capillary.
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Figure 6.4: Schematic of the experiment. FSC: free space compressor; FUT:
fiber under test; GC: gas cell; MMF: multimode fiber; ND: variable neutral
density filter; OSA: optical spectrum analyzer; PG: pressure gauge SM: spherical
mirror; VP: vacuum pump.

Our gas cell design helps here: the compression fitting and the O-ring secure
the window without taking a lot of space laterally. We can adjust the power
coupled into the fiber with a transmissive, variable neutral denstiy filter placed
before the spherical mirror. At the fiber output, we use a spherical mirror to
focus the SC light onto a large core multimode fiber connected to a spectrometer
(ASEQ Instruments LR1).

The gas cell that houses the fiber input is connected to a vacuum pump. To
control the gas pressure in the fiber, two needle valves are placed on the gas
line close to the input and output gas cells. After flushing the fiber with the
desired gas, pressure gradients can be achieved across it by turning on the pump
while gas is flowing in the other gas cell. This system only allows for pressure
gradients in one direction, with lower pressure at the optical input. This allows
the dispersion and nonlinear refractive index of the fiber to be adjusted axially,
similarly to a solid-core fiber taper.
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Figure 6.5: SC spectra generated in B05 at different pump powers. (a) The fiber
is filled with atmospheric pressure air. (b) Argon is flown through the fiber to
achieve a pressure gradient over the interaction length. The input of the fiber
is at 35mbarA and the output at atmospheric pressure.

Fig. 6.5 shows SC spectra generated in the B05 fiber. The spectrum of the
input compressed pulse, with its already fairly complex structure, is shown in
faded gray for comparison. Spectra on Fig. 6.5(a) are generated in atmospheric
pressure air. Unfortunately, we observe no spectral broadening in the long wave-
length side due to the poor sensitivity of the available spectrometer. Compared
to the pump, we see that 5mW of power is already enough to generate fea-
tures around 500 nm. Going from 5mW to 20mW doesn’t expand the spectral
bandwidth by a lot, but power between 600 nm and 750 nm increases. Then,
a small step up in pump power to 25mW results in a substantial increase of
SC bandwidth, which is expanded a bit further going to 30mW. We suspect
that self-focusing close to the fiber input is changing the coupling efficiency with
changing pump power. This would explain the reduction from 62% coupling
efficiency at 5mW down to 41% at 30mW.

For the next set of measurements, we flush the fiber with Argon and establish
a pressure gradient with the help of the vacuum pump. The pressure at the fiber
input is maintained at 35mbarA and increases up to atmospheric pressure at the
output. Although the nonlinear refractive index of Argon is 2 to 4 times lower
than that of air [150], their dispersion profile is very similar [151] and therefore,
we expect to require slightly higher pump power to obtain similar spectra as in
the previous experiment. This is confirmed by Fig. 6.5(b): 40mW are required
to get a spectrum comparable to that achieved with 30mW in atmospheric
pressure air. Surprisingly, the SC bandwidth at 20mW is identical in both
experiments. Because we observe the same decrease in coupling efficiency as
with the previous experiment, we argue that self-focusing is primarily taking
place in the silica window.

We conduct a similar set of experiments with CAP250. Because it is a
capillary with no guiding structure, it must be kept perfectly straight. This is
made easier by choosing a capillary with a thick cladding, resulting in a very
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stiff fiber. By applying a little bit of tension, we avoid the fiber sagging over
its 92 cm length and achieve a 50% coupling efficiency at 5mW pump power.
Like with the B05 fiber, this efficiency drops as we increase power and reaches a
minimum of 25% at 410mW. After flushing this fiber with Argon, we drop the
pressure to 23mbarA. With a constant 256mW pump power, we increase the
pressure up to 1.7 barA. As shown on Fig. 6.6(a), even at the lowest pressure,
we can observe a little bit of spectral broadening. Changing the pressure to
488mbarA increases the nonlinear refractive index by a factor of ∼ 20, which
results in a broader spectrum. However, more than tripling this pressure does
not cause further impact.

We run a final experiment where the pressure is kept at 1707mbarA, and
we vary the pump power from 10mW to 410mW. Spectra are similar to the
previous ones presented above. We also capture an image of the far field at the
output of the fiber blocking the beam with a piece of white paper. The color
pattern shown on Fig. 6.6(c) demonstrates that chromatic aberration and the
highly multimode nature of such a large core fiber play an important role.
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Figure 6.6: SC spectra generated in an Argon-filled CAP250. (a) Pressure ramp
with a constant 256mW pump. (b) Power ramp with a constant 1707mbarA
pressure. (c) Picture of the far field at the fiber output.

6.4 Conclusions
This chapter explored the surface of SCG in HC fibers. It shed light on the fact
that a good gas cell design is essential for conducting HC SCG experiments.
Indeed, at high pulse energies, self-focusing occurring in the input window can
affect coupling efficiencies, which in turns impacts the resulting SC spectra.
In an effort to facilitate easy and cost-effective reproducibility, this work has
taken an approach that favors commercially available parts, even if they are
not necessarily designed for use in optical experiments. Nevertheless, broad
SC spectra were obtained in both a hollow capillary tube and an antiresonant
HC-PCF.
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This system proved difficult to adapt to the high pulse energies required for
such large core fibers. Because of its compactness, its input window must be
placed relatively close to the fiber entrance, which increases the likelihood of
coupling losses due to self-focusing. Therefore, future experiments performed
with this system should use lower pulse energies in conjunction with smaller
core fibers. This approach would mitigate the negative effects of self-focusing
and lead to improved results.
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Chapter 7

Conclusions and Outlook

The primary objective of this thesis was to push the limits of low noise super-
continuum generation. Recently, researchers in ultrafast optics have paid more
attention to the noise performance of these light sources. Applications of SC-
based OFCs, such as ultra-high resolution optical coherence tomography or
multimodal nonlinear imaging, benefit greatly from low noise sources. This the-
sis contributes two significant developments in this area. First, it presents a
hybrid fiber approach as a solution to the trade-off between conventional and
ANDi SCG: it uses anomalous pumping to compress the input pulse and reach
high peak powers, then OWB to obtain a flat and smooth SC spectrum, all of
that while keeping RIN exceptionally low.

Achieving this goal required a thorough numerical understanding of the noise
properties of ultrafast pulses and their evolution as they propagate and broaden
in nonlinear optical fibers. Despite its importance, little research had previously
been done in this area. Consequently, this work placed a strong emphasis on the
development of high-quality numerical simulations, culminating in the creation
of a new framework for simulating realistic, noisy pulse trains. This model is
the second major result of this thesis. Its development was prompted by the
demonstration of SN-limited dual-comb supercontinuum generation with >1 W
average power, which involved a suppression of RIN by up to 20 dB in parts of
the optical spectrum. Numerical simulations using this new model were able to
reproduce these measurements and provide an insight into their physical origin.
Undoubtedly, this numerical framework is poised to become an essential tool for
the advancement of future OFC technologies. As these devices find more and
more applications across various fields, their stability, bandwidth, and power
requirements are also increasing.

Future research in this area will focus on adapting the hybrid fiber concept
of Chapter 3 to other wavelength ranges or pump parameters. For example,
using the numerical model developed in Chapter 5, it may be possible to de-
sign a hybrid fiber for 1µm pumping that results in SN-limited OFCs, like the
results presented in Chapter 4, but with an even broader optical spectrum, or
lower pump power requirements. This may pave the way to more compact, yet
exceptionally fast and performant spectroscopic or ranging devices.
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List of acronyms

ANDi all-normal dispersion

ASE amplified spontaneous emission

DCI dual-comb interferometry

DFT discrete Fourier transform

DW dispersive wave

ESA electronic spectrum analyzer

FOM figure of merit

FUT fiber under test

FWHM full width at half maximum

FWM four-wave mixing

GNLSE generalized nonlinear Schrödinger equation

GVD group-velocity dispersion

HC hollow-core

HNLF highly nonlinear fiber

IGM interferogram

MFD mode field diameter

MI modulation instability

MOPA master-oscillator power-amplifier

MPR mixed parametric Raman

NEP noise equivalent power

NLSE nonlinear Schrödinger equation

OFC optical frequency comb

OSNR optical signal-to-noise ratio

OWB optical wave-breaking
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PCF photonic crystal fiber

PER polarization extinction ration

PM polarization-maintaining

PMI polarization modulation instability

PSD power spectral density

RF radio frequency

RHS right-hand side

RIN relative intensity noise

RIU relative index units

RMS root mean square

SC supercontinuum

SCG supercontinuum generation

SMF single-mode fiber

SN shot noise

SNR signal-to-noise ratio

SPM self-phase modulation

SRS stimulated Raman scattering

TWN technical white noise

UPPE unidirectional pulse propagation equation

UV ultraviolet

WSS wide-sense stationary

XMI cross-phase modulation instability

XPM cross-phase modulation

ZDW zero dispersion wavelength
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