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 4 
Abstract 

Human intelligence and therefore measures of reasoning ability have been state of the 

art for predicting potential success for an individual. Yet much of individual differences in the 

test taking process itself are still unclear. Only when we understand what influences test 

taking behavior and its outcome, can we aim for test fairness across individuals and cultures. 

The three studies presented this dissertation took a closer look at the item-position effect 

under the premise of the learning hypothesis. The item-position effect captures the often 

discovered increasing (true) item variance within a reasoning ability measure with 

homogenous items in addition to a latent variable depicting reasoning. The learning 

hypothesis postulates, that this increase in variance is due to individual differences in the 

ability to learn the underlying rules of items during the test taking process. By conducting 

three empirical studies, cognitive, behavioral, and methodological factors contributing to this 

phenomenon are investigated. Study 1 (von Gugelberg et al., 2021) linked the item-position 

effect to proactive mechanism of control. Study 2 (von Gugelberg & Troche, in preparation) 

found a shift towards more effective strategy use related to a more pronounced item-position 

effect and in study 3 (von Gugelberg et al. 2025) the item-position effect was disrupted by an 

experimental manipulation of the underlying rules within a reasoning test. The presented 

dissertation made the investigation of the item-position effect more accessible by creating 

openly availably tests for reasoning ability and detailed explanations of the fixed-links 

approach based in R, a frequently used freeware for statistical analysis. Further, presented 

results support the learning hypothesis, albeit not unambiguously. Alternative explanations 

and future study designs are provided in detail. Additionally, a broader definition of the item-

position effect is proposed, based on the current state of evidence. Future research should 

investigate whether individual differences in adaptive behavior during test taking describes 

the phenomenon underlying the item-position effect more accurately. 
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Introduction 

Intelligence, or as we nowadays must specify, human intelligence is an imperfect 

(unresolved) puzzle that captivates many researchers. It long has been used as the holy grail 

for predicting the potential success of an individual in school (Deary et al., 2007; Roth et al., 

2015), chances to enter a university (Davey et al., 2007), and later job performance (Schmidt 

& Hunter, 1998). Despite the broad usage of the construct of human intelligence, there are 

still ongoing debates about the underlying structure and what measures are up to the task of 

providing unbiased information. 

A special focus set on fluid intelligence, might provide further insight and help resolve 

at least parts of this giant conundrum. Fluid intelligence shows the strongest relation to a 

general intelligence factor (in models that account for it, Carroll, 2003 / Gustafsson, 1984) 

and can be described as a conglomerate of different reasoning abilities that appear in most 

intelligence models (e.g., Horn 1991; Spearman, 1904). Carroll (1993) who made substantial 

contributions in the field also stated that reasoning abilities are usually at the core of what is 

meant by the term intelligence.  

Reasoning ability can be defined as the ability to solve unfamiliar or novel problems 

(Cattell, 1963; McGrew, 2006; Schneider & McGrew, 2012) but also can refer to a bundle of 

very similar abilities such as, detecting relations or patterns, identifying specific rules, 

drawing inferences, and solving abstract problems (Carroll, 1993). Reasoning ability is 

frequently used as an indicator of general intelligence (Roth & Herzberg, 2008) and a vast 

amount of research points toward the positive relation with scholastic achievement beyond 

for example motivational (e.g., Kriegbaum, et al., 2018) or personality factors (Laidra, et al., 

2007). Consequently, this highlights the importance of truly understanding what is being 

studied with reasoning ability measures and what creates individual differences therein. 

While the construct of human intelligence is still heavily discussed, how to measure 

reasoning ability is often not. Well-established reasoning ability measures are valid measures 

of fluid intelligence (Gustafsson, 1984; Kan et al., 2011; Schweizer et al., 2011) and the 

Raven’s Advanced Progressive Matrices (APM; Raven, 2000) is seen as a state-of-the-art 

reasoning ability measure. Just as most reasoning ability measures, the APM consist of a 

large set of similar abstract problems / items the participant must solve. For each item the 

problem matrix (see Figure 1) shows eight geometrical figures with the ninth entry missing. 

The participant must identify the rules used to manipulate the figures from left to right or top 

to bottom in order to infer what the missing entry should look like. The task is then to select 

the correct figure to complete the set in the problem matrix from the presented response 

alternatives. 
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Figure 1 
Example item for reasoning ability measures 

 
Note. This item was designed to closely resemble the items of the Raven’s Advances Progressive Matrices for 
illustrative purposes only and was not used in any experimental setting. Figure was adapted from Study 2 (von 
Gugelberg & Troche, in preparation). 
 

Design choices and number of items might differ between frequently used reasoning 

ability measures, yet most rely on providing several response alternatives (for an exception 

see DESIGMA, Becker & Spinath, 2014), consequently making the measure adhere with the 

common multiple-choice format.  

Another shared characteristic of reasoning ability measures is that only a small number 

of rules are applied to all items. These rules to manipulate the figures presented in the 

problem matrix are used separately, combined and /or applied to different elements in each 

figure of an item (Carpenter et al., 1990). Therefore, rules are repeatedly used over the course 

of a single testing. 

Despite the highly similar item material, reasoning ability measures have frequently 

been found to be not as homogenous as assumed. A one-factor solution often failed to 

describe the data well (e.g., Dillon et al., 1981; van der Ven & Ellis, 2000; Vigneau & Bors, 

2008). This lack of homogeneity implies that other factors are at play creating individual 

differences not necessarily related to the reasoning ability itself.  
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The item-position effect has been repeatedly named as the potential culprit for this lack 

of homogeneity and is the focus of this dissertation. The item-position effect points towards 

the phenomenon that a bifactor model (see Figure 2 for illustration), where a second latent 

variable capturing the increasing (true) item variance from the first to the last item of a 

reasoning test accompanying the latent variable representing reasoning ability, yields a better 

data description than a one-factor solution (e.g., Zeller, Krampen et al., 2017).  

 

Figure 2  
A one-factor model and a bifactor model for a reasoning ability measure with k items 

 
Note. Panel A depicts a one-factor model, Panel B a bifactor model with two latent variables for a reasoning ability 
measure with a total of k items. Displayed fixations must be weighted by the standard deviation of the respective 
item. Fixations of the item-position effect are additionally divided by k for a linear increase or first squared and 
then divided by k2 for a quadratic increase. Means and covariances of latent variables are set to zero for both 
models. Detailed explanations for model specification are provided in the Statistical Analysis subsection. 
 

Improved model fit when the item-position effect is accounted for was found for 

several different reasoning ability measures, such as the APM (Ren, Schweizer et al., 2017), 

Cattell’s (German adaption of Weiss, 2006) Culture Fair Test (Troche et al., 2016), Formann 

et al.’s (2011) Vienna Matrices Test (von Gugelberg et al., 2021) and Horn’s (1983) 

sequential reasoning test (Ren, Gong, et al., 2017). The approach of implementing bifactor 

models by the means of confirmatory factor analysis was coined as fixed-links modeling 

(e.g., Schweizer et al., 2012) and since the (true) item variance increases from item to item, 

the effect was simply named the item-position effect while its underlying source was still 

unknown. 
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The item-position effect was shown to be of predictive value beyond reasoning ability 

itself as it served as a better predictor for verbal and math grades of secondary school 

students compared to the latent variable representing reasoning ability (Ren et al., 2015). 

These results suggest that the item-position effect adds to the predictive validity of reasoning 

tests for school grades above and beyond reasoning ability. Hence the item-position effect 

does not simply represent a method effect but individual differences that are psychologically 

meaningful and therefore must be better understood.  

This dissertation aims to provide further insight on the item-position effect in reasoning 

ability measures, by taking a closer look at the learning hypothesis and the idiosyncratic test 

taking behavior of individuals.  

 

The Learning Hypothesis 

Currently the most plausible explanation for the item-position effect relies on different 

areas of research and points towards the possibility of individual differences in the ability to 

learn rules during the completion of a common reasoning ability measure. A very detailed 

analysis of rules was made by Carpenter et al., (1990) and that not only learning during test 

taking occurs (e.g., Carlstedt et al., 2000), but also individual differences therein occur was 

observed by Verguts and De Boeck (2000). The latter study also observed that the differences 

in learning rate seemed to be rule specific. Briefly summarized these studies indicate that an 

individual who can grasp the needed rules in the early stages of test completion, has an 

advantage when solving later items requiring the same rules compared to individuals who 

have difficulties learning certain rules. An individual who has difficulties learning certain 

rules will have to start the solving process over and over again with each item, possibly 

straining their resources and facing more opportunities for errors to sneak in.  

Another group of researchers found the learning trajectories in the APM to be 

associated with item position but not item difficulty (Birney et al., 2017). This is especially 

interesting since most reasoning ability measures rely on progressive item difficulty, just as 

the APM, where item difficulty increases from item to item. Another empirical study (Zeller, 

Reiss et al., 2017) and simulation study (Schweizer & Troche, 2018) dissociated the item-

position effect from item difficulty. 

The assumption of learning, most likely as a consequence of repeatedly having to 

apply the same rules led Ren et al. (2014) to the learning hypothesis for the item-position 

effect. The learning hypothesis postulates, that individual differences in the ability to learn 

specific rules during test taking varies between participants, hence making the variance in 

response behavior grow larger throughout a test. And this increase in variance is what is 

captured by the added second latent variable with monotonically increasing factor loadings in 
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the model. The then often found improved model fit (e.g., Schweizer et al., 2012) indicates a 

more comprehensive data description. 

A high correlation between complex-rule learning tasks found by Ren et al. (2014) 

provided first evidence for the learning hypothesis. These results were later conceptually 

replicated by Schweizer et al. (2021). Yet simple correlations are not enough evidence to 

draw final conclusions. Especially since the item-position effect also showed high 

correlations with other factors. One study demonstrated a relation between the item-position 

effect and attentional control (Cowan, Fristoe et al., 2006), another with executive attention 

(Ren, Gong, et al, 2017), another with updating and inhibition (Ren, Schweizer et al., 2017) 

and even with several personality factors (e.g., Birney et al., 2017). 

This highlights the necessity to further the understanding of what exactly elicits an 

item-position effect. In broader terms it also indicates that what truly happens during test 

taking has not yet been fully understood. There is a lack of research investigating individual 

differences during the test taking process and it is finally being noticed. For example, Birney 

and Beckmann (2022) point to the importance of accounting for differences in performance 

not only between participants but also possible changes within an individual during test 

completion (i.e., learning or experience).  

The goal of this dissertation is just that; To provide more information on the item-

position effect regarding the learning hypothesis, all while taking a closer look at the test 

taking process and individual differences therein. 

Research Questions and Hypotheses 

Relevant constructs for each study in relation to the item-position effect and the 

learning hypothesis are briefly explained below. For a more detailed explanation, including 

alternative hypotheses please refer to the cited articles (see Appendix A – C for full text). 

In a first study (Study 1) we assessed whether the item-position effect and therefore 

indirectly the assumed rule learning is related to attentional control processes and individual 

differences therein (von Gugelberg et al., 2021). In a second study (Study 2), we used eye 

tracking measures to take a direct look at what happens during test taking. The goal was to 

see whether a specific strategy fostering rule learning could be identified and whether 

strategies in general are related to the item-position effect (von Gugelberg & Troche, in 

preparation). In a third study (Study 3) we put the learning hypothesis to the test with an 

experiment designed to disrupt the item-position effect during test taking (von Gugelberg et 

al., 2025). 
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Study 1: Attentional Control and the Learning Hypothesis 

The dual mechanisms of cognitive control suggested by Braver (2012) entails two 

dissociable mechanisms of attentional control (Gonthier, Braver, et al., 2016). Proactive 

control refers to the mechanism of early selection and maintenance of goal-relevant 

information during task completion. This mechanism of control guides attention in 

anticipation of a challenging event, preparing the individual to successfully conquer it. 

Reactive control, as the name implies, indicates a late mobilization of attention initialized by 

a stimulus or event. Specific information is not anticipated to prepare processing in advance.  

While Braver (2012) suggested that proactive control demands more resources, other 

studies found direct positive relations to fluid intelligence (e.g., Gray et al., 2003; Burgess & 

Braver 2010; Lu et al., 2016) and other indicators of mental ability (WMC, Redick, 2014; 

Richmond et al., 2015). For example, the study of Gray et al. (2003) manipulated the amount 

of interference in an n-back task. Results indicated that proactive control made individuals 

more resilient against interference since the goal of the task is actively maintained, indicated 

by stronger brain activity related to proactive control. Individuals with lower fluid 

intelligence were outperformed by individuals with higher fluid intelligence in the n-back 

task where the amount of interference was manipulated.  

That higher fluid intelligence facilitates or enables the use of the more resource 

demanding proactive control was one conclusion drawn from the results of Gray et al. (2003) 

and Burgess and Braver (2010). We suggested an alternative explanation, where the opposite 

direction of effects take place.  

Specifically, we proposed that an individual engaging in proactive control has an 

advantage when solving common reasoning ability measures where the same rules and 

similar stimuli are used repeatedly. And this advantage leads (at least to some degree) to 

higher reasoning ability scores. Proactive control allows an individual to select and maintain 

previously learnt information. In reasoning ability measures that maintained information 

would be the rules applied to solve previous items.  

Taking the learning hypothesis into account, we assumed, that individuals engaging in 

proactive control would have the learnt rules readily available when solving the next item. 

This has their attention ideally biased to detect already learnt rules and possibly makes it less 

likely for them to miss an important detail or to lose trace of an already learnt rule. With each 

item solved, their advantage grows unlike individuals engaging in reactive control. 

With reactive control every single item is first processed without prior gained 

knowledge about rules in mind. Only, and only when something akin to a previously used 

rule in the present item is detected, does this individual access the previously learnt 

information. For this process to be successful the rule must be identified accurately, and 
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information retrieval must be correct. This creates several opportunities for things to go 

wrong, and such individuals seem to gain little that could work to their advantage during test 

completion. 

To conclude, we predicted individuals engaging in proactive control to exhibit a larger 

item-position effect, due to their active maintenance of rules learnt compared to individuals 

engaging in proactive control. To test this hypothesis a task (AXCPT) that successfully 

distinguishes between the two mechanism of control was implemented (Gonthier, 

Macnamara, et al., 2016). With a latent profile analysis, groups with different reaction time 

patterns were identified and the relation of each group with the item-position effect was 

discerned. 

 

Study 2: Strategy and the Learning Hypothesis 

In 1978 Snow was able to identify individual differences in the solving process of 

reasoning ability measures and his research is finally generating some traction today. His 

discovery of two distinguishable strategies was conceptually replicated in for example, eye 

tracking data (Vigneau, et al., 2006), verbal protocols (Jarosz, et al., 2019) or short 

questionnaires (Gonthier and Thomassin, 2015). 

The two strategies identified are response elimination and constructive matching. 

With the latter, individuals spend a lot of time inspecting the problem matrix, most likely 

identifying the different rules applied to each entry to then mentally construct the missing 

entry. After mentally constructing the solution, the individual then selects the matching entry 

from the presented response alternatives. Hence its name, constructive matching. With 

response elimination the individual eliminates non-viable response alternatives step by step, 

until a solution is found.  

To investigate the mentioned strategies, collecting eye tracking data is an objective 

method that offers an abundance of information about the solving process of each individual 

for every item. Several studies have taken advantage of these benefits (e.g., Vigneau et al., 

2006; Hayes, et al., 2015; Laurence et al., 2018) and the Toggle Rate has been used as the 

most straightforward and intuitive indicator for strategy use in reasoning ability measures.  

The Toggle Rate directly translates the observations made by Snow (1978) that 

switching frequently from problem matrix to response alternatives to eliminate non-viable 

responses is indicative of response elimination and fewer switches with more time spent on 

the problem matrix is indicative of constructive matching. In terms of eye tracking measures, 

it is the sequence of fixations between interest areas that is being quantified. 

A fixation refers to those times when the eyes stop looking around and stand still to 

take in detailed information. The looking around or scanning occurs between fixations and is 
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referred to as a saccade (SR Research, 2016). A Toggle occurs when a fixation on the 

problem matrix is followed by a fixation on the response alternatives or vice versa. The 

chances of Toggles occurring, increases with item latency. When an individual spends more 

time solving an item, this individual has more time to toggle between problem matrix and 

response alternatives. Therefore, the Toggle Rate takes item latency into account. The Toggle 

Rate quantifies the number of times an individual toggled from looking at the problem matrix 

to the response alternatives (and vice versa) divided by total time spent on the item.  

Hence, a low Toggle Rate is indicative of constructive matching, since the individual 

spends most of the time inspecting the problem matrix and only exhibits few toggles to the 

response alternatives and back (see Figure 3). A high Toggle Rate occurs when an individual 

shows many toggles between response alternatives and the problem matrix, which is in line 

with the strategy of response elimination (see Figure 4). By using the Toggle Rate as an 

indicator of strategy, strategy is operationalized as a continuum, where constructive matching 

makes up one end, and response elimination the other. 
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Figure 3 
Simplified example of fixation pattern of the constructive matching strategy. 

 
Note. A fixation is indicated by a small blue circle. Many fixations on the problem matrix and few 
fixations on the response alternatives is a typical fixation pattern for the constrictive matching  
strategy. Sequence of fixations cannot be derived from this figure but constitutes necessary 
information to determine number of toggles.  
 

 

Figure 4 
Simplified example of fixation pattern of the response elimination strategy. 

 
Note. A fixation is indicated by a small blue circle. Fewer fixations on the problem matrix and many 
fixations on all the response alternatives is a typical fixation pattern for the response elimination 
strategy. Sequence of fixations cannot be derived from this figure but constitutes necessary 
information to determine number of toggles.   
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The reasons why different individuals rely on different strategies is an ongoing 

debate. Some name test properties (e.g., Raden & Jarosz, 2022) and others individual 

differences in mental resources (e.g., Gonthier & Thomassin, 2015; Jarosz et al., 2019; Li et 

al., 2022). Bethell-Fox et al. (1984) and Snow (1978) concluded from their work that strategy 

use is influenced by the interrelationship of mental resources and the item properties 

perceived by the individual. They observed that whenever the capacity to hold rules and 

manipulate objects was exceeded, the individual would switch from constructive matching to 

response elimination. A similar shift in strategy was observed by Gonthier and Roulin (2020). 

Participants progressively shifted from constructive matching towards response elimination. 

Work by Vigneau et al. (2006) found no shift in strategy, but rather an initial difference 

between subjects on what strategy they engage in. Their data and other results (e.g., 

Jastrzebski et al., 2018) report a positive correlation between constructive matching and 

reasoning ability, leaving the conundrum unresolved. 

The question whether a shift in strategy occurs in a similar fashion for all participants 

(Gonthier & Roulin, 2020), whether it is the initial ability of the individual that decides what 

strategy an individual applies (Vigneau et al., 2006) or whether it is actually both, remains 

unanswered. This led to the first objective of this study. By using the same fixed-links 

modeling approach coined by Schweizer (2006) for the item-position effect a bifactor model 

can be fit to the Toggle Rate. Such a model allows to account for an innate difference in 

strategy (as observed in Vigneau et al., 2006) and concurrently a potential shift in strategy (as 

observed in Gonthier & Roulin, 2020). 

The second and relevant objective for this dissertation is concerned with the applied 

strategy and rule learning. From the early descriptions of Snow (1978) and Bethell-Fox et al., 

(1984) I derived constructive matching to be the more expedient strategy to learn the rules 

necessary to solve an item correctly. With this strategy individuals not only spend a lot of 

time inspecting the problem matrix but also seem to engage in a methodical analysis of the 

stimuli (Snow, 1978). Therefore, I assumed constructive matching to foster rule learning, and 

any rule learnt should facilitate solving subsequent items, since rules are repeatedly used in 

common reasoning ability measures. With response elimination on the other hand, it is less 

likely for individuals to learn all the underlying rules to an item correctly. The individuals 

spend less time on the problem matrix and are mainly concerned with eliminating non-viable 

response alternatives. 

This led to the assumption that under the premise of the item-position effect reflecting 

individual differences in the ability to learn rules during test taking, the relation between the 

item-position effect and constructive matching should be a positive one. Individuals applying 

constructive matching during test taking systematically analyze the rules of the problem 
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matrix and then mentally construct the correct solution. Hence, they are more actively 

engaged with the underlying rules of an item compared to individuals relying on response 

elimination who dismiss response alternatives step by step.  

To analyze such idiosyncratic behavior during test completion, we tracked 

participants eye movements during the completion of the APM. For the first objective we ran 

a confirmatory factor analysis with fixed-links to investigate the Toggle Rate. The goal was to 

see whether the previously identified individual differences can be depicted by a bifactor 

model. This approach allows for potential individual differences in the overall strategy 

applied (as in Vigneau et al., 2006) but also for a shift in strategy (as in Gonthier & Roulin, 

2020).  

The same statistical approach was used for the APM score data to discern whether an 

item-position effect occurred. The main objective of the study could only be investigated, if 

an item-position effect was present in the data. Under the premise that rule learning underlies 

the item-positing effect, the latent variable depicting the item-position effect should be 

related to the latent variables depicting innate and / or change in Toggle Rate. Since lower 

Toggle Rate indicates more constructive matching, and it is constructive matching that I 

assumed to foster rule learning, I predicted a negative correlation between the latent variables 

depicting the item-position effect and Toggle Rate. 

 

Study 3: Rule disruption and the Learning Hypothesis 

As the learning hypothesis is to date a plausible theory on what underlies the item-

position effect, the goal of Study 3 was to test this hypothesis as directly as possible with an 

experimental design. We assumed that, if it is ad-hoc rule learning underlying the item-

position effect, a sudden change of the underlying rules within a sequence of items, should 

disrupt the item-position effect. 

Hence, the goal was to create a test that specifically favored the emergence of an 

item-position effect, in order to then disrupt the item-position effect with an experimental 

manipulation. Assuming rule learning as the underlying source of the item-position effect, 

repeated use of only few rules for a larger set of items should create an advantage for the 

assumed underling ability to learn rules during test taking and an item-position effect should 

emerge. When such a sequence of items is followed by a sequence of items with different 

rules, the item-position effect should be disrupted, since the prior learnt rules no longer 

provide any insight about the newly introduced rules.  

With this premise, a reasoning ability test was needed that allowed for hypothesis 

driven item creation, yet in a familiar enough design, that results can be transferrable to 

common tests such as the APM. I assumed this to be possible with items generated in the 



 16 
IMak R package (Blum & Holling, 2018). The figural analogies that can be created with the 

IMak R package seemed to fulfill all requirements. Items can be created according to several 

different rules, distractors and overall item generation and difficulty parameters showed solid 

results (Blum et al., 2016). And as with most common reasoning tests, the implemented rules 

had to be identified it the top area (see Figure 5) relying on the information given in the first 

column or the first row to then extrapolate the missing entry signified by a question mark. 

For the study I created a set of items based on only one rule. This rule entailed the 

movement of an element in the figure (see Figure 5). By applying this rule to different 

elements of the figure simultaneously a variety of items with varying difficulty could be 

created. An additional set of items was created using two different rules, that entailed the 

subtraction of straight lines and mirroring of the figure. After launching a pilot study where 

participants completed all items, two Tests of Figural Analogies (TFA) were created. The 

pilot study provided insight on item difficulty and completion times. This allowed for an 

informed item selection for the two final versions of the TFA. A detailed description of the 

pilot data and item selection for the final test creation is given in the Method section under 

the subsection Implemented Reasoning Ability Measures. 

 

Figure 5 
Item created with the IMak package to illustrate items of the Test of Figural Analogies (TFA) 

 
Note. Figure adapted from Study 3 (von Gugelberg et al., 2025). Things added to the item for 
illustrative purposes are colored green. 
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Briefly reiterated, the TFA in the continuous rule condition consisted of 24 items, 

where only the movement rule was used. Item difficulty increased throughout the test as the 

rule was first applied to only one element, followed by items where the rule was applied to 

two elements and thereafter to all three elements. This continuous use of the same rule we 

assumed would be highly beneficial for rule learning and hence should elicit an item-position 

effect. The second TFA in the discontinuous rule condition was identical to the first, yet upon 

the 18th item the two different rules where a straight line is subtracted, and the figure itself is 

mirrored were applied to the last six items. This sudden change of rules should disrupt an 

item-position effect. 

With the creation of these two TFA the overreaching hypothesis was, that in the 

continuous rule condition a typical item-position effect emerges, while in the discontinuous 

rule condition the effect is disrupted preventing configural invariance between conditions. 

More specifically we assumed that in the continuous rule condition two latent 

variables would be needed to describe the data best. One for reasoning ability and an 

additional one for the item-position effect. Hence a bifactor solution should outperform a 

one-factor solution if indeed an item-position effect emerged. This should also be the case for 

the discontinuous rule condition, yet we assumed a three-factor solution to outperform both 

one-factor and bifactor solutions with two latent variables, since through the disruption of 

rules the initial item-position effect should disperse and a new one (with the presentation of 

new rule) should emerge. Hence the need for a third latent variable to describe the data 

adequately. 

 

Methods 

This section provides an overview of participants, materials and the statistical 

analyses for all three studies. Section headers include parentheses to indicate if a section is 

only relevant for certain studies. Additionally, I took the liberty of omitting details that are 

not central to the overall results and conclusions drawn here. Further details can be found in 

the cited articles (also see Appendix A – C). Where applicable I mentioned what Section or 

Tables in the cited articles the additional information can be found in. 

 

Participants 

University students participated for credit while other participants could enter in a 

raffle to win a prize. Study 1 (N = 210; von Gugelberg et al., 2021) and Study 2 (N = 210; 

von Gugelberg & Troche, in preparation) were conducted in a laboratory whereas the 

experiment for Study 3 took place online (N = 403; von Gugelberg et al., 2025). All three 
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studies were approved by an ethics committee. All participants gave written and informed 

consent.  

 

Implemented Reasoning Ability Measures 

A brief summary is given for the established reasoning ability measures only, and any 

deviations from the manual are mentioned specifically. For the newly created reasoning 

ability measure (developed for Study 3), item generation, rule selection, pilot data and final 

item selection is outlined in detail.  

 

The Vienna Matrices Test (Study 1)  

The Vienna Matrices Test (VMT; Formann et al., 2011) consists of 18 items. Item 

construction is similar to Figure 1 with a question mark in the bottom right entry. Participants 

were instructed to choose one out of eight possible response alternatives. As directed by the 

manual, no time limit was set. Age-stratified IQ scores were calculated, by adding up all 

correct answers for each participant and transforming them according to the representative 

sample given in the manual. 

 

Raven's Advanced Progressive Matrices (Study 2) 

The Raven's Advanced Progressive Matrices (APM) is intended for high aptitude 

population (Raven & Raven 2003). An item for illustration purposes was created (Figure 1). 

The sole adaption of item material for the study was to present all eight response alternatives 

in a single line to facilitate tracking eye movement (as displayed in Figure 1).  

Participants received the instruction given by the manual and as prescribed completed 

two example items followed by the 36 items. A time limit of 30 minutes was set. For the 

analysis every single score (1 = correct answer / 0 = false answer) was used. 

 

Tests of Figural Analogies (Study 3) 

The IMak package in R (Blum & Holling, 2018) was used to create two specific Tests 

of Figural Analogies (TFA). Albeit the small differences between figural analogies and 

typical matrices, studies showed that items created with the IMak package show satisfactory 

convergent validity with other common measures for reasoning ability (Blum & Holling, 

2018). Since new items were created specifically to test our hypothesis, item creation is 

explained in detail. The thereafter described pilot data provided information for the final item 

selection and test creation. 

Item Creation.  
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While the package offers a set of different rules, only three rules were implemented. 

The rules used in the study could be applied to different elements within a figure, i.e. main 

shape, dot and trapezium (see Figure 5). The IMak package allows the figure itself to be 

mirrored (Rule 1), straight lines of the main shape to be removed (Rule 2) or single elements 

to be moved (Rule 3). Rule 3 can be implemented clockwise and counterclockwise to the 

trapezium or the opening of the figure. Additionally, the degree of movement can be 

specified, for example a 45° or 90° movement. The movement of the dot along the edges of 

the opening can be defined and again, direction of said movement and the number of edges 

the dot passes can be specified. Examples for the movement of each element can be found in 

Figure 6. 

The goal was, to apply the movement rule (Rule 3) with increasing difficulty to the 

different elements. Starting with simply moving only one element in an item (as in Figure 6), 

created easy items, and the rule applied is very understandable. An increase in difficulty was 

achieved by implementing two (or three for the most difficult items – example given in 

Figure 7, Panel A) movement rules to an item. For example, the trapezium was moved 

clockwise by 45° and the main shape was moved counterclockwise by 90°. The possibility to 

apply the same rule to multiple elements in an item, I assumed would provide the best 

scenario for rule learning to occur and therefore would be most likely to provoke an item-

position effect.  

If this repeated use of the same rule is followed by items with very different rules, a 

disruption of the item-position effect, if it’s truly based on rule learning should occur. 

Therefore, items with the other two selected rules were created. That is, a line was removed 

(Rule 1) and the main shape (Rule 2) was mirrored. An example for this item is given in 

Figure 7, Panel B. 

To check whether the sudden change of rules truly could disrupt the item-position 

effect a control group was necessary, where the item-position effect was not disturbed by new 

rules. Hence the goal was to create one set of items, where the item-position effect develops 

from beginning to the end of a test, and one set of items, where the item-position effect can 

develop, but is then disrupted with the introduction of new rules. Ideally both item sets would 

be identical in the beginning and only deviate when the new rules are introduced in the 

experimental condition. With this in mind, several items were created, and a first pilot study 

with the newly created items was run. 
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Figure 6 
Example items for each movement rule created with the IMak package 

 
Note. Panel A shows the movement of the main shape, Panel B the movement of the trapezium, Panel C the movement of the dot. 
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Figure 7 
Examples for rules used in the last six items of the continuous and discontinuous rule condition 

 
Note. Panel A shows an item were main shape, trapezium and the dot are moved. A typical example for the continuous rule condition. Panel B shows an item 
from the discontinuous rule condition where a line was removed, and the main shape was mirrored. 
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Pilot Study.  

The pilot study allowed to examine whether item difficulty increased with the simple 

addition of a rule as predicted by the creators of the IMak package (Blum et al., 2016) and 

also allowed to explore whether unintended ceiling or bottom effects emerged. The pilot 

study included instructions and practice items as recommended by Blum and Holling (2018). 

Practice items were only based on the movement rule, and the rule was only applied to one 

element. Practice items were then followed by 6 one-rule items (as in Figure 6), 9 two-rule 

items (movement rule was applied to two elements), 12 three-rule items (as in Figure 7, Panel 

A), and 9 line removal – mirrored items (Figure 7, Panel B). This resulted in a total of 36 

items (see IMak-Full in Figure 8) for the pilot study. Item sequence can also be inferred from 

Figure 8. 

In the pilot study 32 participants completed the 36 items of the IMak-Full. Thereof, 

14 specified themselves as male, 17 as female. Mean age was 31.31 (SD = 10.68) and on 

average 25.19 (SD = 6.93) items were answered correctly, while the lowest score was 11 and 

one participant answered all 36 items correctly. Item difficulty and standard deviation for all 

items are displayed in Figure 8. As intended an increase in item difficulty can be seen in 

Figure 8, with the orange polynomial line depicting a downward trend.  

Nonetheless some items showed a very large difference from the preceding and 

following items regarding their item difficulty. These items are highlighted in Figure 9. A 

closer inspection of the highlighted items revealed, that in some cases the response 

alternatives had especially good lures, which seemed to have increased item difficulty 

unintentionally (e.g., see item 15 in Figure 10). Other items had overall very similar response 

alternatives making the items easier as intended (e.g., see item 13 in Figure 11). Since 

response alternatives are generated by an algorithm of the IMak package, manual inspection 

and pilot data is very important and, in this case, revealed some suboptimal items. The 

highlighted items were substituted with new items created with the exact same rules but 

better response alternatives.  

Experience showed that usually 18 items are enough to elicit an item-position effect. 

This meant, that we wanted the first 18 items to be identical for both conditions and also 

elicit an item-position effect. For the experimental condition the item-position effect should 

be disrupted by the introduction of new rules, hence six items with the two other rules (i.e., 

line removal, mirroring) where selected to follow the first 18 items. With the change in rules, 

this was labelled the discontinuous rule condition.  
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As a control, a continuous rule condition was created using the exact same first 18 

items but continuing with the same rule for the additional six items. Hence all 24 items of the 

continuous rule condition were created with only the movement rule, providing ideal 

conditions for the item-position effect to occur.  

 

Implemented Tests of Figural Analogies.  

Final item selection from the pilot study is depicted in Figure 12. The first 18 items 

were used in both conditions with the noted substitutions for items 7, 13, 15 and 17. From the 

3-rule items an additional six items were selected for the continuous rule condition. For the 

discontinuous rule condition six out of the nine items with the line removal and mirroring 

rule were selected. This resulted in two sets of items, each set containing 24 items, whereof 

the first 18 are identical. 

For the study participants were instructed to choose the corresponding figure among 

the presented response alternatives in the bottom area or select the most accurate verbal 

response (“No response is correct” and “I don’t know”). All instructions were adapted from 

the material provided in Blum and Holling (2018). Verbal feedback from our pilot study 

indicated that the instructions were understood clearly. All participants first received a 

general instruction about an item and its elements (similar to Figure 5), accompanied by a 

generic instruction on how to solve an item. This was followed by the same three practice 

items used in the pilot study, were only Rule 3 (movement of an element) had to be applied. 

These items had to be solved correctly to proceed to the next item. The practice items were 

followed by 18 items all relying on Rule 3. Participants randomly assigned to the continuous 

rule condition were then presented an additional six items also created with Rule 3. 

Participants randomly assigned to the discontinuous rule condition were presented six items 

created with Rule 1 and 2 (i.e., main shape mirrored, and straight line subtracted). Neither 

condition had a time limit nor received feedback on any of their responses after completing 

the practice items. 
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Figure 8 
Item characteristics, their difficulty (Pi) and standard deviation in the pilot study 
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Figure 9 
Item characteristics, their difficulty (Pi) and standard deviation in the pilot study, with suboptimal items pointed out

 
Note. Marked items showed problematic distractors and deviated in item difficulty from their neighboring items. 
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Figure 10 
Example of the original item with suboptimal lures and the new item used as substitute 

 
Note. Correct answer is marked with a green square in both items. In the original item, 16 participants selected the circled answer in red, which in 
this case was not correct. It seems this was a very good lure, making the item more difficult. 
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Figure 11 
Example of the original item with suboptimal lures and the new item used as substitute 

 
Note. Correct answer is marked with a green square in both items. In the original item, the lures in the first row are very similar, making the item easier. 
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Figure 12 
Display of pilot items, their selection and substitution for the final two versions of item sets 

 



Continuous performance task (Study 1) 

 In the AX-Continuous Performance Test (AX-CPT), participants see a cue letter 

followed by a probe letter (see Figure 13). Four different combinations of cue and probe letter 

exist. That is, in the AX-condition, the cue letter “A” is followed by the probe letter “X”. This 

is the target condition, and participants are tasked with pressing a designated key whenever 

this target condition appears. All other letter combinations are non-targets and require 

participants indicating them as such by pushing another designated key. The non-target 

conditions are abbreviated as BX-condition, BY-condition and AY-condition. The letter “B” 

always indicates any letter except “A” as cue, “Y” any letter except “X” as probe, and the 

letters “A” and “X” represent themselves as cue or probe respectively. 

Reaction time (RT) differences between these four conditions have been interpreted as 

indicators for reactive or proactive control (e.g. Paxton et al., 2008; Braver et al., 2001; 

Redick 2014; Gonthier, Macnamara, et al., 2016). 

 

Figure 13 

 
Note. Duplicate of Figure 1 in von Gugelberg et al., (2021) 

 

An individual fully engaging in proactive control keeps the relevant cues in mind, and 

as soon as they appear prepares for the correct response. This means in both conditions where 

the cue is a non-target letter (BX- and BY-condition) individuals prepare for the non-target 

response immediately, resulting in very short RT’s. Additionally, since the probe letter is not 

relevant in these conditions when relying on proactive control, no difference in RT between 

conditions should emerge. With the other two conditions (AX-, AY-condition) the target cue 
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can be followed by a target or non-target probe and the AX-condition is presented four times 

as often as any other condition. Hence, RTs should be notably slower compared to the BX- 

and BY-condition. 

The dual mechanism of control theory indicates that individuals relying on reactive 

control wait for the probe to appear, before forming their response. Looking only at the probe 

would indicate, that the two conditions with non-target probes (AY-, BY-condition) should 

result in similar RTs, since no retrieval of the cue is necessary to form a response. When the 

probe is a target (AX-, BX-condition), RTs should be somewhat slower and more ambiguous, 

since different information (was cue “A” or NOT “A”) must be retrieved. 

This indicates that, several differences in RT mark the use of proactive or reactive 

control. The mentioned differences (i.e., differences in RT pattern, NOT in subtracted values) 

were then used to discern whether the overall RT pattern reflected proactive or reactive 

control. 

 

Toggle Rate (Study 2) 

 Details on calibration / validation process, setup in the laboratory, procedure etc. can 

be found in the method section of von Gugelberg and Troche (in preparation). Only a brief 

explanation for the calculation of the Toggle Rate is given here. 

Monocular eye data of every individual for each item was checked for drift. Drift is a 

systematic shift of all fixations in a certain direction. This can occur when an individual 

moves slightly, despite the used chin-forehead rest. Such movement can result in all fixations 

landing on blank areas on the screen. If drift was detected during the visual inspection of the 

fixations, all fixations for an item were moved in cohesion. After this raw data inspection, all 

fixation sequences for every participant for each item were extracted to calculate the Toggle 

Rate. 

A Toggle is defined as a fixation on the problem matrix followed by a fixation on the 

response alternatives or vice versa. Fixations outside of the mentioned areas were recoded 

with the area of the previous fixation. Meaning, if a participant first fixates on the problem 

matrix, then stares at empty white space on the screen (possibly thinking, see Figure 3, top 

right corner for such an example of a fixation) and then shows the next fixation on the 

response alternatives, it will be counted as a Toggle. Without the recoding, this type of scan 

path would not be counted as a toggle, although it qualifies as an alternation between 

problem matrix and response alternatives. After adding up all Toggles per item, the Toggles 
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were divided by the corresponding item latency. This procedure results in a Toggle Rate for 

each item of every individual. The Toggle Rate was used for further analysis. 

 

Statistical Analysis 

This section provides a brief overview of the different methods used. Detailed 

information can be found in the cited articles. All analyses were run in R (R Core Team, 

2020). 

 

Fixed-links Modelling (all studies) 

Fixed-links modeling was coined by Schweizer (2006) and as the name implies, relies 

on fixed links (factor loadings) when investigating the factorial structure through the means 

of a confirmatory factor analysis (CFA) of a test with homogenous item material. The 

fixation of factor loadings is theory driven and allows one to extract more than one latent 

variable from the same set of observed variables. For the item-position effect, whether it is 

the individual difference in the ability to learn rules during test completion or not, the 

assumption holds, that the contribution to the observed variance of the latent variable 

depicting the item-position effect increases from the first to the last item. Therefore, the 

factor loadings are fixed to increase from the first to the last item. Currently it is unclear 

whether a linear or quadratic increase for the latent variable depicting the item-position effect 

is preferable, and often model selection at this point is no longer theory driven but data 

driven, i.e., the model describing the data best is selected.  

The bifactor structure, where one latent variable depicts reasoning ability and another 

the item-position effect (illustrated in Figure 2 Panel B), must not only outperform a one-

factor solution, but also yield significant variance parameters for both latent variables. If the 

model fit of the one-factor solution outperforms the bifactor model solution, data description 

is inferior in the latter and there is no reason to opt for a less parsimonious model.  

Simplified, the three models described in Table 1 are fit to the data, if a bifactor model 

outperforms the one-factor solution, an item-position effect was successfully detected in the 

data. This was the case for several different reasoning ability measures (e.g., Ren, Gong, et 

al., 2017), and such a consideration of the item-position effect also could be shown to 

improve validity of a reasoning ability measure (Schweizer et al., 2012).  
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Table 1 
Adaption of Table 1 in von Gugelberg et al., (2025) 
Overview of calculated models and details regarding the specifications. 

 

Model Structure Latent Variable(s) 
Fixation of Factor 

Loadings 
Model 1 one-factor model reasoning ability 1 or no fixation 

Model 2 bifactor model reasoning ability 1 or no fixation 

  item-position effect (linear course) 𝑖
𝑘

 

Model 3 bifactor model reasoning ability 1 or no fixation 

  item-position effect (quadratic course) 𝑖2

𝑘2 

Note. All factor loadings were additionally weighted by SDi as link function. Letter i refers to the 
respective items position, k refers to the total number of items (i.e., 24), SD to the standard 
deviation. In Study 1 and 2 no fixation was set for the reasoning ability latent variable, in Study 3 
they were fixed to 1. 

 

While the gist of the approach is simple, a lot of details during model estimation and 

evaluation of fit are important to consider and implement. Regarding model estimation, it 

first must be noted, that the data analyzed is binary. This requires either specific estimators 

and thresholds estimated from tetrachoric correlations, or as suggested by Schweizer (2013) a 

threshold free approach with maximum likelihood estimation can be implemented. The latter 

is preferable, since tetrachoric correlations must not only provide an estimate of the relation 

between two variables, but also bridge the difference between a binomial and normal 

distribution (Schweizer et al., 2015). This leads to disproportionally large distortions on the 

estimated thresholds especially in tail areas (values close to one or zero) which in turn 

disproportionally influence the estimated tetrachoric correlations (Schweizer et al., 2015).  

These difficulties can be circumvented with a probability-based covariance matrix 

(calculation does not use an asymptotic function) and an additional link function to account 

for the switch from binary variables to the normal distribution (Schweizer, 2013). The 

probability-based covariance matrix used for threshold free approach can be directly 

calculated with a function in the bindabox package (von Gugelberg, 2022) or indirectly 

implemented with lavaan (Rosseel, 2012), by adding specific commands. Since no threshold 

is used for the estimation a link to the binary data must be directly included in model 

specifications. Schweizer (2013) recommended using the items standard deviation as said 

link. Therefore, every item in the model specification is fixed with its link (i.e., standard 

deviation), making the name of the approach (fixed-links modelling) of a descriptive nature. 
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For each item, in addition to its standard deviation as a link, the theory driven fixation 

is needed. Reasoning ability can be assumed to be equal across all items (all factor loadings 

fixed to 1 – Study 3) or to vary across items (factor loadings freely estimated – Studies 1 & 

2). For the item-position effect either a linear or quadratic increase is modelled. Here 

fixations should always lead up to the final value of 1, as recommended by Schweizer (2009). 

This can be achieved by implementing the formula in Table 1 or calculated directly with 

functions of the bindabox package (von Gugelberg, 2022). 

Also, from a statistical point of view, it is feasible to assume that the latent variable 

depicting reasoning ability to be independent from the one capturing the item-position effect, 

since it allows to set the correlation between the two to zero. This prevents the variances from 

overlapping, which can lead to difficulties in model estimations. Contrary to latent growth 

models no mean structure is assumed and therefore, no intercepts (means) of the latent 

variables are estimated. 

To evaluate model fit, all common fit indices are considered (for details see von 

Gugelberg et al., 2025). Additionally, the estimated variance parameters are inspected. If the 

estimated variance parameters of a bifactor model do not significantly contribute to the 

model, there is no need for such a latent variable in the model, since it does not explain 

anything. The variance is tested for significance one-tailed, since negative values are in this 

case theoretically impossible and would indicate grave model misspecification.  

The size of the estimated variances parameter (and their standard errors) is influenced 

by the size of the chosen factor loadings. Therefore, comparing these parameters in a model 

can only provide meaningful information after they were scaled according to the eigenvalue 

scaling method (Schweizer & Troche, 2019).  

 

Latent profile Analysis (Study 1) 

 Testing the main hypothesis, that the item-position effect would be more pronounced 

in individuals engaging predominately in proactive control, came with several obstacles. 

Since it is the difference in RT and not the RT itself that provides information about the type 

of cognitive control a simple correlational analysis of RT did not seem feasible. A direct 

subtraction of RTs to obtain the mentioned RT differences is problematic, since it would be 

unclear what kind of individual differences the subtraction points to (for more detailed 

information on this issue see Draheim et al., 2019). Also, RTs are consistently related to 

higher reasoning ability scores (e.g. Der & Deary, 2017), rendering direct correlations 

between RTs of conditions and the item-position effect mute.  
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 We assumed that different differences in RT should lead to clearly distinguishable RT 

patterns. Hence, we needed a method that can identify different patterns in RTs without the 

need for calculating RT differences. To identify possible groups of individuals engaging in 

proactive or reactive cognitive control a Latent Profile Analysis (LPA) seemed to offer what 

we needed. The LPA allowed us to detect different groups without relying on RT differences 

or coercing certain structures (e.g., assuming a certain number of groups) based on prior 

research. 

 In R the package tidyLPA (Rosenberg et al., 2019) applies an expectation–

maximization algorithm to identify latent profiles. In a first step RTs were aggregated for 

each condition of every participant resulting in four mean RTs per participant. Then four 

different types of models with varying number of groups were fit to the data. Each model 

could have either equal or varying variances and zero or varying covariances. With each 

model type a group structure of two up to eight groups were tested. This resulted in 32 

different solutions for the aggregated RT data. Taking several fit indices into account the best 

solution was then identified by an analytic hierarchy process (Akogul & Erisoglu, 2017).  

The resulting groups from the best solution where then used for any further analyses. 

More detailed information about model types and model selection can be found in the 

Methods and Results section and Table 2 in von Gugelberg et al. (2021). 

 

Multilevel Model (Study 1) 

 To statistically test RT differences between multiple groups without relying on RT 

differences or fully aggregated data a Multilevel Model (MLM) seemed the most feasible 

approach. After identifying the ideal number of groups to describe the RT patterns, the 

grouping variable and RTs per condition were analyzed. Different RT patterns between 

groups would be reflected in cross-level interactions, hence we calculated a Slope-as-

Outcome model1. Within this model a cross-level interaction would be reflected in different 

slopes between groups, meaning different RT differences between groups and conditions. 

Models were calculated with lmerTest (Kuznetsova et al., 2017) and Restricted 

Maximum Likelihood estimation (REML) as recommended by McNeish (2017). To compare 

all conditions between (3x3 intercepts, 3x6 slopes) and within groups (3x6) a total of nine 

 
1 Complete equation of the slope-as-outcome model: RTij = 00 + 01GroupB + 02GroupC + 10AY+ 20BX + 
30BY + 11AY:GroupB + 21BX:GroupB + 31BY:GroupB + 12AY:GroupC + 22BX:GroupC + 32BY:GroupC 
+ ij + 0j + 1j. With i indicating the individual within a Group and j the Group, 0j the random effects of the 
intercept, 1j the random effects of the slope, ij the residual variance. 
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Slope-as-Outcome models were calculated, where group and condition was re-leveled to 

provide the necessary information. More detailed information on the analysis can be found in 

the Methods and Results section and Tables 3, 4, and 5 in von Gugelberg et al. (2021) 

 

Results 

Key findings for the overreaching research question will be briefly reiterated from 

each study including the relevant details for the general understanding of results. Additional 

details can be found in the referenced articles. 

 

Study 1: Attentional control and the Learning Hypothesis 

 The LPA identified three groups. Descriptive details on the groups can be found in 

Table 2. Group C, also the smallest group identified had significantly lower IQ scores 

compared to the largest Group A. Group B is somewhat in the middle and IQ scores do not 

differ from the other two groups. 

 

Table 2 
Duplicate of Table 1 in von Gugelberg et al., (2021) 
Mean IQ, standard deviation (in parentheses) and reaction times (RT in milliseconds) in the four  
AX-CPT conditions for the full sample and subsamples identified by the latent profile analysis. 
 

   VMT raw 
scores 

IQ scores 1 RTAX RTAY RTBX RTBY 

Full Sample 
(N = 210)  13.69 (3.06) 98.40 (14.34) 408 (99) 507 (100) 393 (139) 384 (129) 

Group A  
(n = 114) 

 14.19 (2.92) 100.75 (13.62) 357 (30) 445 (40) 305 (34) 307 (31) 

Group B  
(n = 67)  13.61 (2.93) 97.98 (13.70) 416 (48) 532 (55) 418 (56) 400 (53) 

Group C  
(n = 29) 

 11.90 (3.30) 90.07 (15.77) 594 (130) 693 (88) 683 (110) 654 (115) 

1 Information about age for one participant is missing in the full sample and Group B, since IQ 
calculations were based on age-based norms, and no age was provided by one participant.  

 

Specific details about group characteristics, noteworthy elements in their RT patterns 

and the analysed Slope-as-Outcome model are described in the section 7.2. Group 

characteristics and Tables 3-5 in von Gugelberg et al. (2021).  
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Briefly summarized, Group A showed the most stereotypical pattern of proactive 

control. The RT pattern of Group C was most consistent with reactive control. Group B 

seemed to be somewhere in between, exhibiting behaviour consistent with either mechanism 

of control. Additionally, all RTs of Group C were significantly slower compared to all other 

RTs, and RTs of Group B were significantly slower than those of Group A. The observed RT 

pattern is illustrated for each group in Figure 14.  

 

Figure 14 

 
Note. Duplicate of Figure 2 in von Gugelberg et al., (2021). 

 

 After successfully identifying an item-position effect in the VMT (for details on model 

fit etc. see Table 6 in von Gugelberg et al., 2021), factor scores of said model were extracted 

for each participant. With two-tailed t-tests, factor scores for the latent variables reflecting the 

item-position effect and reasoning ability between the three groups were compared (Table 7 

in von Gugelberg et al., 2021). No difference in reasoning scores between the three groups 

emerged. The item-position effect was only significantly different between Group A and C 

(see Figure 15).  

 This indicates that the item-position effect was more pronounced in Group A compared 

to Group C and that Group A engaged strongly in proactive control and Group C rather in 
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reactive control. Also, when the item-position effect was accounted for in a model, no 

difference in reasoning ability emerged between groups. 

 

Figure 15 

 
Note. Duplicate of Figure 3 in von Gugelberg et al., (2021). 

 

Study 2: Strategy and the Learning Hypothesis 

Since not all participants completed all items (see Table 3) within the given time limit 

of 30 minutes only the first 27 items were used for the analysis. This excluded 3 participants 

from the full sample. Detailed reasoning behind this decision can be found in the results 

section of von Gugelberg and Troche (in preparation).  

 

Table 3 
Number of participants completing items at the indicated positions in the APM 

Item Position 26 27 28 29 30 31 32 33 34 35 36 

N 210 207 206 204 199 194 190 186 177 169 164 
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Summarized, I decided this cutoff would allow to detect any shift in strategy and 

provide enough items to identify an item-position effect. Additionally, the bias of speediness, 

or potential time management skills would be minimal since participants within this sample 

took on average of 15 minutes to solve the 27 items. All participants (n =12) that took 25 or 

more minutes to solve the 27 items answered 16 to 25 items correctly, placing them nicely 

within the average of the sample. Participants (n = 9) with completion times just below 7 

minutes to complete the 27 items, scored between 3 and 21. While the range of scores is quite 

large, these participants completed all 36 items. Indicating that they were not influenced by 

the time limit, but rather worked through the APM quickly. 

For the analyzed sample the absolute numbers of Toggles increased throughout test 

completion (Figure 16). Item latencies also increased (Figure 17). With the increase in item 

latencies being steeper than the increase in absolute number of Toggles, the resulting Toggle 

Rate decreases from item to item (Figure 18). 

 

Figure 16 
Number of Toggles for all 36 items  

 
Note. Local polynomial (green) and linear (purple) regression line for the analyzed sample and 
colored lines for each participant. 
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Figure 17 
Item latencies for all 36 items 

 
Note. Local polynomial (green) and linear (purple) regression line for the analyzed sample and 
colored lines for each participant. 
 

Figure 18 
Toggle Rate for all 36 items  

 
Note. Local polynomial (green) and linear (purple) regression line for the analyzed sample and 
colored lines for each participant. 
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For both the Toggle Rate and the APM scores a bifactor solution with a linear increase 

provided the best data description for the first 27 items (see Table 1 in von Gugelberg & 

Troche, in preparation). To test the hypotheses a final model with the two bifactor models of 

Toggle Rate and APM scores was calculated. With the correlations in Figure 19 being 

somewhat difficult to interpret, an additional Figure was created to aid interpretation (Figure 

20). 

 

Figure 19 
Correlations of the two bifactor models of Toggle Rate and APM scores. 

 
 

Figure 20 
Plots of the 50 highest (red) and 50 lowest (green) factor scores on the respective latent variable 
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For Figure 20, the factor scores of the model illustrated in Figure 19 were extracted 

and the trend lines for the 50 highest and the 50 lowest factor scores of Toggle Rate 

throughout the test were depicted separately for the respective latent variables. Figure 20 is 

an adaption of Figure 9 in von Gugelberg and Troche (in preparation) given on page 57 in the 

appendix. 

The top left corner of Figure 20 displays the Toggle Rate for participants with high 

(red) and low (green) factor scores on the latent variable for reasoning ability. Hence 

participants with high factor scores in reasoning ability exhibit lower Toggle Rate throughout 

the test compared to participants with low factor scores in reasoning ability. This indicates 

that low reasoning ability coincides with response elimination and higher reasoning ability 

with constructive matching, which would be in line with results of Vigneau et al. (2006).  

 The top right corner in Figure 20 shows that participants with high (red) factor scores 

in basic Toggle Rate also exhibit an overall higher Toggle Rate. Hence the latent variable for 

innate Toggle Rate reflects overall Toggle Rate and participants with low (green) factor 

scores in innate Toggle Rate most likely engage in constructive matching, and participants 

with high values (red) in response elimination. 

Low (green) factor scores on the item-position effect (bottom left) seems to coincide 

with a steady Toggle Rate, not noticeably changing throughout the test. This could indicate 

that participants do not change their strategy but remain with the strategy applied during the 

first few items. Participants exhibiting high factor scores (red) on the latent variable depicting 

the item-position effect, seem to reduce their Toggle Rate. This means, that these participants 

adapt their strategy throughout the test, and gradually move towards more constructive 

matching (i.e., lower Toggle Rate). 

For the latent variable depicting the change in Toggle Rate (bottom right) high factor 

scores (red) coincide with a stable Toggle Rate. Low values (green) on the other hand, depict 

a decrease in Toggle Rate. This indicates that the latent variable depicting change in Toggle 

Rate, captures the negative (downward) change in Toggle Rate, i.e., a gradual shift towards 

more constructive matching and less response elimination for participants with low factor 

scores. 

Theses descriptive results also translate nicely to the correlations depicted in Figure 

19. A high value on the latent variable depicting the item-position effect (bottom left, red 

line) is related to a low value in change of Toggle Rate (bottom right, green line). Also, a high 

value on the latent variable depicting innate Toggle Rate (top right, red line) coincides with a 

low value in reasoning ability (top right, green line). Hence, the latent variable for reasoning 
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ability showed a large negative correlation with innate Toggle Rate, but not the change of 

Toggle Rate. And the item-position effect showed a large negative correlation with the 

change in Toggle Rate, but not innate Toggle Rate.  

 

Study 3: Rule disruption and the Learning Hypothesis 

Participants in both conditions achieved similar scores in the first 18 items. Details 

can be taken from Table 4 and Figure 21. For both conditions three initial models were fit to 

the data. Model descriptions and fixations can be taken from Table 1. Model fit for all 

calculated models can be taken from Tables 3 and 4 in von Gugelberg et al. (2025) 

 

Note. For each condition the first 18 items (1-18) and the full set of 24 items (1-24) with their 
respective descriptive statistics are presented. 
 

For the continuous rule condition, the bifactor model with factor loadings increasing 

linearly for the latent variable depicting the item-position effect showed the best fit (see 

Figure 22 Panel A for illustration). Hence the TFA created, successfully elicited an item-

position effect. For the discontinuous rule condition none of the three described models in 

Table 1 yielded an acceptable fit. Therefore, the manipulation of rules did not allow for 

configural invariance, which lets us conclude that the manipulation of rules was successful in 

disrupting test taking behavior.  

  

Table 4 
Duplicate of Table 2 in von Gugelberg et al., (2025) 
Descriptive test statistics for the figural analogies test (TFA) 

 

    Condition Items Mean SD Min Max Skewness Kurtosis Cronbach’s α 

continuous rule 

(n = 203) 1-18 13.46 3.58 3 18 -0.81 0.04 .81 

 
1-24 17.43 5.05 3 24 -0.75 -0.29 .86 

discontinuous rule 

(n = 200) 1-18 13.15 3.56 2 18 -0.90 0.42 .80 

 
1-24 15.81 4.73 2 24 -0.51 -0.08 .83 
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Figure 21 
Standard deviation and accuracy for every item in both conditions. 

 
Note. Values of the discontinuous rule condition are depicted with solid lines, for the continuous rule 
condition with dashed lines. Item accuracy is depicted with squares, the standard deviation with filled 
and empty circles in the continuous and in the discontinuous rule condition, respectively. Smooth lines 
indicate trend lines for the standard deviations of the two conditions. 
 

To describe the data of the discontinuous rule condition well, a third latent variable 

was needed (see Figure 22, Panel B for illustration). When the model included one latent 

variable depicting reasoning, one for the item-position effect in the first 18 items, and one for 

an additional item-position effect for the last six items, data description improved. Whether 

the correlation between the two latent variables depicting the item-position effects was 

estimated or set to zero hardly changed model fit. This makes sense, since the estimated 

correlation was small and insignificant (see solid green line in Figure 22).  

When the same model was fit to the continuous rule condition, the estimated 

correlation between the two latent variables depicting the item-position effects was large and 

significant (see dashed red line in Figure 22). Fit of said model was just a tad better than the 

bifactor solution with two latent variables. The large correlation between the two item-

position effects indicates substantial overlap between the two latent variables. Hence the 

more parsimonious solution with one latent variable depicting the item-position effect across 

all 24 items most likely provides the best data description. 
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Figure 22 
Bifactor models with two or three latent variables 

 
Note. Panel A is a simplified illustration of a bifactor model with two latent variables. Panel B displays 
a bifactor model with three latent variables. Connecting lines between the two latent variables inform 
about the correlation between the two latent variables if estimated freely and not set to zero. 
Correlation of the discontinuous rule condition is depicted with a solid line, for the continuous rule 
condition with a dashed line. 
 

Several alternative explanations for the different response behavior between 

conditions were explored. This includes, but is not limited to item difficulty, mean response 

latencies, and number of rules per item. More detailed descriptions about these alternative 

models can be found in the Supplementary Materials of von Gugelberg et al., (2025) and a 

short description in the article itself under 3.1 Supplementary Analyses.  

One alternative explanation could not be ruled out to a satisfying degree. An 

anonymous reviewer pointed out the work of Nagy et al. (2023) and the possibility of rapid 

guessing or disengagement during test taking. The reviewer highlighted the possibility, that 

the introduction of new rules could have influenced the number of participants applying rapid 

guessing or disengaging while completing the last six items. While there was no difference 

between conditions in self-reported test taking diligence (on average the answer was around 

7.5 on a 9-point Likert scale for both conditions), self-reports are far from objective and are 

not enough to rule out rapid guessing or disengagement. A simple analysis of RT is also 

moot, since according to Nagy et al. (2023) rapid guessing would entail very short RTs and 

disengagement rather long RTs, possibly canceling each other out. While Nagy et al. (2023) 

propose to include measures of test taking persistence, with randomized item order to account 
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for both rapid guessing and disengagement, this is something we cannot do in hindsight, 

leaving these questions unanswered for the moment. 

 

Discussion 

First, I will briefly reiterate the discussed points for each study with a focus on the 

relevant findings for this dissertation. This is followed by the Integrative Discussion, where 

beyond what was discussed prior in the studies I will highlight the specific contributions to 

the field, address what questions remain unanswered and propose future avenues for research. 

 

Study 1: Attentional control and the Learning Hypothesis 

The dual mechanism of control theory distinguishes between proactive and reactive 

attentional control. Gray et al. (2003) and Burgess and Braver (2010) concluded from their 

results that higher fluid intelligence enables or facilitates the use of proactive control. We 

proposed the opposite, where the use of proactive control results in higher scores on a 

reasoning ability measure possibly due to a more pronounced item-position effect.  

Within the RT pattern of the AXCPT one group with typical pattern for proactive 

control (Group A), one for reactive control (Group C) and another somewhere in between 

(Group B) were identified. While the three groups did differ in their reasoning ability scores, 

these differences were no longer significant when the item-position effect was accounted for. 

Instead, as displayed in Figure 15 (or Table 7 in von Gugelberg et al., 2021), Group A and C 

had significantly different factor scores in the latent variable depicting the item-position 

effect.  

This difference in factors scores indicates that Group A had a more pronounced item-

position effect compared to Group C. It therefore seems that individuals engaging in 

proactive control (Group A) benefit more from solving previous items when they solve later 

items in a reasoning test compared to individuals engaging in reactive control (Group C). 

Hence, proactive control has individuals use context information, and knowledge gained from 

solving previous items (i.e., rules), to solve later items. This supports the idea that rule 

learning underlies the item-position effect. As Braver (2012) states, proactive control allows 

for the maintenance of context information and guides attention ideally for the task at hand. 

In a reasoning ability measure, the task at hand is identifying and solving rules. Since rules 

are repeatedly used, a focus on the rules applied, maintaining their relevant indicators to 

guide attention, is very beneficial for the task of solving the next item. This benefit, we 

assume would also grow with each item solved, since rule knowledge can be accumulated. 
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While the conclusion seems plausible from the current results, the study design does 

not allow for casual interpretation of effects. Our results do provide an alternative explanation 

for the relation between fluid intelligence and cognitive control suggested by Burgess and 

Braver (2010). Yet further research is needed to determine direction of effect in a satisfactory 

manner.  

Future research should aim for a more balanced distribution between groups engaging 

in different mechanism of cognitive control. Group C in our sample was rather small, and 

large effect sizes were not significant. Also, with the AXCPT we were successful in 

distinguishing different mechanisms of control, but data indicated three groups and not the 

presumed two groups in the dual mechanism of cognitive control theory. This calls for further 

exploration of the proposed dualism of cognitive control and its best practices of 

measurement.  

 

Study 2: Strategy and the Learning Hypothesis 

It has been frequently observed that individuals rely on two distinct strategies when 

solving common reasoning ability measures (e.g., Bethel-Fox et al., 1984). It is unclear what 

influences strategy selection. Several studies found a positive correlation between 

constructive matching and fluid intelligence (e.g., Jastrzebski et al., 2018), others detected a 

shift in strategy throughout test completion (e.g., Gonthier & Roulin 2020). Using a fixed-

link model to analyze the Toggle Rate, we found both. A bifactor model with one latent 

variable depicting an innate difference in Toggle Rate accompanied by a second latent 

variable depicting a change in Toggle Rate outperformed a one factor solution. For the APM 

score data a bifactor solution also outperformed a one factor solution, enabling us to test the 

main hypothesis.  

Under the premise that rule learning underlies the item-position effect I assumed that 

constructive matching would foster rule learning and hence would be associated with the 

item-position effect. Results indicated no relation between the latent variable of the item-

position effect and innate Toggle Rate, but a large negative correlation with the change in 

Toggle Rate. This relation indicates that individuals with a pronounced item-position effect 

were more likely to gradually engage in more constructive matching (i.e., lower Toggle Rate) 

as the test progressed. This does support the assumption of rule learning underlying the item-

position effect. When completing a reasoning ability measure, more opportunities arise to 

learn the given rules since rules are used repeatedly. Hence, the individual gradually 

accumulates rule knowledge making constructive matching a more expedient strategy with 
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every rule repetition. Individuals with a very faint item-position effect, do not seem to exhibit 

a change in strategy. This indicates that these individuals stick with the strategy applied 

during the very first items, without adapting their strategy as the test progresses. This could 

be due to them not applying the knowledge gained from prior items to solve later items. In 

terms of the learning hypothesis, this would mean, that they do not accumulate knowledge 

about the rules used, or at the very least, they do not seem to apply any of the gained 

knowledge to subsequent items. 

While current results seem to support the learning hypothesis, the detected change in 

Toggle Rate towards more constructive matching is somewhat the opposite of what Gonthier 

and Roulin (2020) found in their data with questionnaires. Their data indicated a shift 

towards response elimination around the 25th item and a decrease in item latencies around the 

30th item. Authors believe this decrease most likely to be due to participants disengaging as 

items became to taxing. While item latencies also increased upon the 30th item in the current 

sample, there was no noticeable drop of item latencies thereafter. Item latencies remained 

rather constant after the 30th item, but it must be mentioned, that due to the implemented time 

limit in the current study, these item latencies are biased, since they lack individuals working 

through the APM at a slower pace. 

These qualitative differences between samples, the operationalization of strategy with 

questionnaires not accounting for item latencies, and the different analysis approach may 

explain the difference in results, but additional studies are necessary. 

For example, studies of an explorative nature could provide more insight, since recent 

research has identified a third strategy (Jarosz, et al., 2019). Using think-out-loud protocols 

the isolate-eliminate strategy was discovered. With this strategy participants eliminate bad 

lures, to increase their likelihood of selecting the correct answer from the remaining response 

alternatives. Li et al. (2022) ran an LPA on their questionnaire data and also found a third 

strategy. These individuals showed high scores for constructive matching AND response 

elimination. The three groups identified differed in reasoning ability scores but not in Toggle 

Rate. Their results imply that Toggle Rate might not be able to detect the third strategy 

identified. 

The number of strategies, and what properties initiate a shift in strategy throughout a 

test is still unclear. Further research on the topic is not only relevant under the premise of the 

learning hypothesis but also since, in line with other research (e.g., Jastrzebski et al., 2018) 

the innate difference in Toggle Rate was strongly related to reasoning ability. A lower Toggle 

Rate indicating more constructive matching, was related to higher values on the latent 
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variable depicting reasoning ability. Constructive matching seems to coincide with higher 

performance on reasoning ability measures. Interestingly Gonthier and Thomassin (2015) 

found that participants can be manipulated to use more constructive matching. Hayes et al. 

(2015) showed that in a test – retest setting one third of the explained variance in score gains 

were due to strategy. This information is especially interesting since differences in strategy 

use can already be observed in young children (Starr et al., 2018). Further underlining the 

importance of fully understanding the impact of strategy use during test taking and what can 

influence strategy selection. 

 

Study 3: Rule disruption and the Learning Hypothesis 

To directly test, whether rule learning underlies the item-potion effect two reasoning 

ability measures were created. In the continuous rule condition, the same rule was used for all 

24 items and a typical item-position effect was observed (see Figure 22, Panel A). In the 

discontinuous rule condition, the first 18 items were identical to the continuous rule 

condition, followed by six items with different rules. The item-position effect was disrupted 

in the discontinuous rule condition since a three factor solution (see Figure 22, Panel B) was 

necessary to describe the factorial structure adequately. 

While the experiment allowed us to rule out several alternative explanations (e.g., 

item difficulty, response times, etc.,) one alternative explanation remains. Future study 

designs must account for the possibly of rapid guessing and disengagement as in Nagy et al. 

(2023) and implement the adequate controls. 

Additionally, studies should investigate whether the possible rule learning during test 

taking is of an explicit or implicit nature. On the one hand, two previous studies (Ren et al., 

2014; Schweizer et al., 2021) where complex rule learning was strongly correlated with the 

item-position effect, participants were explicitly instructed in the complex rule learning task. 

This suggests explicit rule learning to be depicted by the item-position effect. On the other 

hand, the item-position effect is often unrelated to the reasoning ability in measurement 

models when the correlation is freely estimated (Schweizer et al., 2021). This was also the 

case in the continuous rule condition and has also been reported for measures of implicit 

learning (e.g., Danner et al., 2017; Kalra et al., 2019), not allowing for a definitive conclusion 

on the matter.  

With the current results it is also unclear how many rule repetitions are needed to 

elicit an item-position effect. Since the factor loadings for the second item-position effect in 

the discontinuous rule conditions did not show an obvious increase when estimated freely, six 
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items most likely were not enough. Future research should investigate this and include 

external variables to better determine the nature of the item-position effect and the possibly 

underling rule learning. 

With the theory driven creation of items for the two version of the TFA, new avenues 

to explore the item-position effect have been made accessible. We successfully created an 

experimental design that can elicit and disrupt an item-position effect enabling future 

research to combine this experimental approach with correlational analyses. 

 

Integrative Discussion 

First, I will elaborate on the presented studies in this dissertation and propose several 

directions for worthwhile future research on the item-position effect and the learning 

hypothesis by including available information on the item-position effect reliant on the fixed-

links approach. Then, considering a somewhat broader definition of the item-position effect 

follows a section on culture and the item-position effect. To understand a psychological 

phenomenon in a comprehensive manner, it is my opinion, that the proposed theories and 

explanations must be evaluated in different cultural contexts. Only then can conclusions be 

drawn whether a phenomenon is universal to all humankind. Thereafter, I will elaborate on 

intelligence models and the item-position effect. Here the goal is to open a discussion on what 

role the underlying factors of the item-position effect could play in the construct of human 

intelligence and to discover new and important directions for research concerning the item-

position effect and the possibly related rule learning. The Integrative Discussion is concluded 

by a brief discussion on methods and the item-position effect, presenting additional 

methodological approaches to advance the field. 

 

On the Item-Position Effect and the Learning Hypothesis 

I took a closer look at the learning hypothesis proposed by Ren et al. (2014). During 

this undertaking we discovered a possible alternative direction of effects in regard to 

reasoning ability and attentional control due to a possible bias in favor of the underlying rules 

in an item (von Gugelberg et al., 2021). We were able to reveal a strong negative relation 

between the item-position effect and the change in Toggle Rate, pointing towards a shift in 

strategy that possibly fosters rule learning (von Gugelberg & Troche, in preparation). And we 

successfully created a reasoning ability measure, wherein the simple manipulation of rules 

disrupted the item-position effect (von Gugelberg et al., 2025). 
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 Revisiting the latter results, it is still unclear, why the two item-position effects in the 

discontinuous rule condition were not related. It is possible, that six items with rule 

repetitions were simply not enough to elicit an item-position effect, since six items did not 

provide enough learning opportunities. It would be interesting to see, whether the same 

experimental design of the discontinuous rule condition but with additional items based on 

the two new rules would elicit an item-position effect. Such a study design could address how 

many items are truly necessary to elicit an item-position effect. From the discontinuous rule 

condition, one can conclude that 18 items seem to be enough, but six items were not, since 

factor loadings did not really depict an increase.  

Consulting other work on the item-position effect the inexistent correlation between 

the two item-position effects in the discontinuous rule condition might not have been due just 

to a lack of items for the second item-position effect. In Schweizer, Reiss et al. (2012) no 

correlation was found between the item-position effects of a version of the APM (Raven et 

al., 1998) and the Horn reasoning scale (1983). Neither was one detected between another 

Figural Matrices Test (Kyllonen et al., 2019) and the first 18 items of the TFA (von 

Gugelberg & Troche, 2022a). Similarly, the item-position effects did not correlate across 

different time points (Wang et al., 2020), yet the item-position effects between the different 

subtest of the CFT did (Troche et al., 2016). This raises the general question whether the 

item-position effect truly captures something as essential as a rule learning ability, when it 

does not share any variance across different measurements of reasoning ability. The item-

position effect might be strongly biased by yet unknown entities, making any amount of 

shared variance vanish. 

To further investigate this, one could set up a somewhat more elaborate experimental 

design using the figural analogies of von Gugelberg et al. (2025). It would allow for identical 

test setting and stimulus material giving little wiggle room for unknown confounding 

variables. For the new experiment again two sets of TFA’s could be created. One set would 

contain the first 18 items used in both conditions of von Gugelberg et al. (2025) and the 18 

items for the second set would be created with the two other rules (line removal, mirroring). 

One group of participants would then start with the original set of 18 items followed by the 

new set, the other group vice versa. Theoretically the item-position effect should be disrupted 

in both groups, and if it is some sort of rule learning ability, the item-position effects within 

both groups should correlate with one another at least to some degree. 

Without having more specific experiments on the topic, drawing further conclusion is 

difficult and maybe a broader look at all the conducted research on the item-position effect 
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relying on fixed-links modelling (Schweizer, 2006) might provide some insights or different 

angles to approach the questions: What is the item-position effect? What effect can be 

disrupted by a simple change of rules in a reasoning ability measure (von Gugelberg et al., 

2025)? Is it truly rule learning that hides behind the item-position effect? 

Under the premise of the learning hypothesis, two studies could show, that the item-

position effect is correlated with complex learning tasks (Ren et al., 2014; Schweizer et al., 

2021). The item-position effect also served as a better predictor for students’ academic 

performance presumably due the item-position effect depicting a type of learning ability (Ren 

et al., 2015). Schweizer et al. (2020) found a relation of the item-position effect to rule 

acquisition and sustained attention. Additionally, studies presented in this dissertation under 

the premise of the learning hypothesis could link the item-position effect to proactive control 

(von Gugelberg et al., 2021), a shift in strategy towards more constructive matching (von 

Gugelberg & Troche, in preparation) and its need for continuous rule presentation (von 

Gugelberg et al., 2025).  

Outside the premise of the learning hypothesis findings on the item-position effect 

with fixed-links modeling include but are not limited to an early study by Lozano (2015) 

exhibiting a correlation between the item-position effect and impulsivity, while Ren, Gong et 

al. (2017) found no such correlation (neither did Krampen et al., 2020) but rather a strong 

positive correlation with executive attention. Considering further executive functions, the 

item-position effect was associated with updating and shifting, but not inhibition, when 

analyzing APM scores (Ren, Schweizer et al., 2017).  

In a somewhat different line of research Sun et al. (2019) found no item-position 

effect in 7-8 year olds, but for 12-13 year olds an effect emerged in the data, and the 

correlation of reasoning ability and working memory considerably increased when the item-

position effect was accounted for in the model. Another study found an item-position effect in 

children as young as 10 years old (Wang et al., 2020).  

This research on the item-position effect in young children could provide a link to the 

explored connection of strategy use and the item-position effect in von Gugelberg and Troche 

(in preparation). For example, results of Thibaut and French (2016) indicate that 5- and 8-

year-olds alternate more often between the figures in the given analogy and possible response 

alternatives than adolescents. While the authors do not directly analyze this, children’s 

behavior is more in line with the response elimination strategy and the tested adolescents and 

adults spend noticeably more time observing the initially given figures in the analogy, 

mimicking the constructive matching strategy. Authors point towards the possibility of 
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children having difficulties in inhibiting the main goal of the task (i.e., finding a solution 

among the response alternatives). 

Starr et al. (2018) found the same pattern of results in 6-year-olds, but also identified 

large individual differences. Their results indicated that children spending more time 

analyzing the given analogy before consulting the response alternatives (just as is 

characteristic for constructive matching) outperformed the children spending most of their 

time switching between the given analogy and the response alternatives. This indicates, that 

similarly as for example Jarosz et al. (2019) found a positive correlation between constructive 

matching and reasoning ability in adults, Starr et al. (2018) described the same phenomenon 

in children as young as 6 years old. 

While children must at least have reached the age of 10 for an item-position effect to 

emerge (Wang et al., 2020), the established difference in strategy use found in adults (e.g., 

Jarosz et al., 2019), seems to already be present in younger children (e.g., Starr et al., 2018). 

If one assumes from the results of von Gugelberg and Troche (in preparation) that the item-

position effect is related to a change in strategy towards more constructive matching during 

test completion, such a change should emerge in children above the age of 10 (Wang et al., 

2020), but not any younger (Sun et al., 2019). This could provide another interesting avenue 

to explore. 

Consulting literature a further similarity between children and adults concerning 

strategy use in reasoning ability measures can be found. For example, Glady et al. (2017) 

found, that young children (4;7 -6;4 years old) can be successfully manipulated to focus more 

on the given analogy (as is common for the constructive matching strategy), which lead to 

improved task performance. Gonthier and Thomassin (2015) found this to be true for adults 

also. Interestingly Glady et al. (2017) also found if there was a very salient, but irrelevant 

distractor present in the analogy, the strategy manipulation did not work in favor of task 

performance. Authors conclude that possibly children had more difficulties dealing with the 

interference caused by the salient distractor. 

It would be interesting to investigate whether there are individual differences in the 

ability to deal with such interference in young children but also adults. This would be an 

especially interesting undertaking since the proactive mechanism of cognitive control, coined 

by Braver (2012) in the dual mechanism of attentional control theory seems to be related with 

the ability to deal with interferences. Results of Gray et al. (2003) suggest that the stronger 

engagement in proactive control, by individuals with high reasoning abilities lead to a better 
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performance when interference was high, compared to individuals with lower reasoning 

abilities engaging in reactive control.  

Individuals engaging in proactive control also showed the most pronounced item-

position effect (von Gugelberg et al., 2021). Regarding the disruption of the item-position 

effect in von Gugelberg et al., (2025), the sudden change in rules, created salient but 

irrelevant distractors. Both the dot and the trapezium (see Figure 6) were essential in the first 

18 items to solve an item correctly, since they were manipulated with the movement rule 

(Figure 7, Panel A). When the rules suddenly changed in the discontinuous rule condition, 

they were no longer relevant, since straight lines were subtracted, and the figure was mirrored 

(Figure 7, Panel B). Nonetheless, if an individual successfully learned the movement rule 

while completing the first 18 items, their attention now is biased towards the dot and the 

trapezium, making them very salient distractors.  

From Grey et al. (2003) one would assume that individuals predominantly engaging 

in proactive control would be better at dealing with this interference caused by the salient 

distractors. Additionally, from the results in von Gugelberg et al. (2021) one would assume, 

that individuals predominantly engaging in proactive control, would also exhibit the most 

pronounced item-position effect. This would indicate, that in the study of von Gugelberg et 

al. (2025), the participants with the most pronounced item-position effect in the first 18 items 

of the discontinuous rule condition, should be able to handle the distractors (dot & trapezium) 

very well and experience the overall smallest decline in performance for the last six items 

were the new rules were implemented. Of course this is highly speculative, and in dire need 

of specific studies addressing the topic.  

One possibility to investigate this could include measuring eye movements while 

participants solve the TFA version used for the discontinuous rule condition (von Gugelberg 

et al., 2025). By setting the interest areas directly on the dot and trapezium of each item, it is 

possible to analyze the frequency of fixations on them. While within the first 18 items the dot 

and trapezium provide necessary information, they no longer do so after the rules behind item 

creation have changed. Thus, making them very salient distractors. If the item-position effect 

depicts some sort of rule learning, participants with a very pronounced item-position effect 

should in theory show more fixations on the rule relevant elements in an item than 

participants with a very faint item-position effect. Within the first 18 items that would be of 

course the dot and trapezium, after the rules were changed and the dot and trapezium are no 

longer relevant, individuals with a pronounced item-position effect should be able to deal 

well with the salient distractors. This would translate to fewer fixations on the salient 
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distractors. Individuals with a mediocre or faint item-position effect would overall show 

fewer fixations on the rule relevant elements within the first 18 items, but also would be less 

effective in handling the interference the dot and trapezium create, after the rules underlying 

the items have changed. 

Such a study design could also provide further detail on strategy use, interference and 

rule learning. Taking a closer look at the results of von Gugelberg and Troche (in 

preparation), it is not the initial strategy applied by the individual that is related to the item-

position effect. It is the adaptive behavior during test taking. In the case of the APM it was an 

adaptive behavior towards more constructive matching. Possibly the proactive mechanism of 

control allowed the individuals to bias their attention towards identifying rules already learnt 

in prior items for the current item. Similarly, they could handle interference through 

irrelevant information in a given item well. And with the rule repetitions in the APM and 

increasing item difficulty, the best way to adapt their response behavior was a shift towards 

more constructive matching. It might be possible, that with different test properties the 

adaptive behavior during test taking could take on a different form. 

Raden and Jarosz (2020) found that test properties such as for example the ambiguity 

of an item can influence participants strategy behavior during test completion. An ambiguous 

item theoretically has more than one correct answer, and the participant must thus consult the 

presented response alternatives to decide on the correct solution. If ambiguous items are 

presented more frequently, participants shifted towards a strategy with more focus on the 

response alternatives.  

Taking the results from Raden and Jarosz (2020) into account, it would be interesting 

to see whether similarly to von Gugelberg and Troche (in preparation) a change in strategy 

can be detected in a test with more ambiguous items, whether this change would be towards 

more response elimination, and whether this change would be related to the item-position 

effect. If results would support this assumption, it might be reasonable to assume a new 

theory behind the item-position effect. It is not the ad hoc rule learning, but the adaptive 

behavior during test taking that is captured by the item-position effect. Yes, adaptive behavior 

during test taking would be related to ad hoc rule learning, but it also would include the 

ability to deal with interferences, goal maintenance, rule retrieval, and it would vary a lot 

between different tasks to what degree the different abilities are needed for the ideal adaptive 

behavior.  

If it were the adaptive behavior during test taking that underlies the item-position 

effect it could explain why the different item-position effects are most often not related to 
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each other. Different tests use different abilities, and just because some individuals are very 

good at one thing, it does not mean they are all equally good at other things necessary for 

adaptive behavior during test taking. This does not contradict the leaning hypothesis, but 

rather is the use of a broader terminology to describe a phenomenon that possibly underlies 

the item-position effect. 

 

On Culture and the Item-Position Effect 

In my opinion, it is important to evaluate whether a psychological phenomenon is 

universally applicable in order to understand it to a satisfying degree. Hence it is paramount 

to investigate whether the individual differences in test taking behaviour occur to a similar 

degree in different cultural settings. Unfortunately, there is a cultural bias in psychological 

research since a vast number of psychological measures were developed and validated in 

WEIRD2 cultures (e.g., Nielsen et al., 2017) and still many cultural groups are 

underrepresented (Krys et al., 2024). Nonetheless, a short excursion into Sternberg’s (2019) 

theory of adaptive intelligence seems a fruitful endeavour as a first step in addressing this 

topic. Especially if one uses the somewhat broader definition of adaptive test taking 

behaviour possibly underling the item-position effect. 

Sternberg (2019) defines intelligence as an “adaption to the environment” which in 

broad terms also translates to the definitions of general intelligence. Yet he draws a clear 

distinction between the two. He postulates, that what today is being measured with common 

intelligence tests, including reasoning ability measures, is simply one specific instance of 

how adaptive intelligence can manifest itself. He states: “General intelligence, as measured 

by Western psychometric tests and cognitive tasks, is not a necessary condition for adaptive 

intelligence across cultures” (p.3, Sternberg, 2019). Thus, what is commonly measured 

relates to successful adaptive behaviour found in Western or also WEIRD cultures, but by no 

means also adequately measures successful adaptive behaviour in other cultures. Sternberg 

(2007) explains in detail, what intelligence can mean in different cultures, and how different 

skills or abilities to adapt can predict a prosperous life in different cultures3. One form of 

adaptive behaviour in the theory of adaptive intelligence refers to the ability to adapt one’s 

 
2 WEIRD, is an acronym for people from a Western, Educated, Industrialized, Rich and Democratic 
populations.  
3 Sternberg (2019) calls for a definition of adaptive intelligence where the term “adaption” is used in a 
broad manner. That is, not only adapting oneself (and the behaviour) to deal with the environment, but 
also the ability to adapt the environment to fit oneself and finding or creating new environments as 
needed. 
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own behaviour to the environment. When solving a reasoning ability measure, its test 

properties would represent the environment, and ideally adapting one’s own solving 

behaviour to give a correct answer, could be seen as the adaptive intelligent behaviour. 

 Applying Sternberg’s (2021) theory to the item-position effect in common Western 

reasoning ability measures, in a simplified manner could indicate, that the latent variable 

representing reasoning ability would refer to a culture specific intelligence. With such 

measures created and validated in WEIRD cultures, they measure a problem-solving 

behaviour that is very relevant in WEIRD cultures, but possibly not in other cultures. The 

item-position effect on the other hand, could either represent culture specific adaptive 

behaviour, or a culture independent adaptive behaviour.  

 As a follow-up to Study 2 (von Gugelberg & Troche, in preparation) it would be 

worthwhile to investigate whether the item-position effect shows similar relations to strategy 

use and change in strategy in non-WEIRD cultures. Since a simple task such as finding 

Waldo in a “Where is Waldo?” book indicated different search patterns / scan paths between 

two cultures when analysing eye movements (Lüthold et al., 2018), scan paths (i.e., strategy) 

could also differ between cultures when solving reasoning ability measures. Further it seems 

important to investigate whether the additional strategy found in Chinese participants when 

solving reasoning ability measures in Liu et al. (2023) and Li et al. (2022) truly translate to 

findings from for example Jarosz et al. (2019) in a sample of US students with think-out-loud 

protocols. 

The question whether the item-position effect captures culture specific adaptive 

behaviour, or culture independent adaptive behaviour also shines a new light on the findings 

of Ren et al. (2015) in a sample of Chinese children. Their results indicated that the item-

position effect was a better predictor for academic achievement than reasoning ability itself. 

Therefore, future studies should investigate whether a reasoning ability measure is an inferior 

predictor for school performance also in non-WEIRD / Western cultures when the item-

position effect is accounted for.  

Additionally, it is still unclear, whether it is the same adaptive behaviour during test 

taking captured by the item-position effect even with it emerging in European (e.g., Ren, 

Wang et al., 2014) and Chinese (e.g., Sun et al., 2019) samples. Since the experimental 

design of Study 3 (von Gugelberg et al., 2025) was implemented online, a direct replication 

in for example a Chinese sample seems highly feasible. If the same results emerge, one could 

at least conclude that the item-position effect can be disrupted by a sudden change of rules, 
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independent of culture. Alas it would still be unknown, whether the idiosyncratic behaviour 

of individuals is similar across cultures. 

 

On Intelligence Models and the Item-Position Effect 

For a thorough investigation of the item-position effect, attempts to imbed it in 

common intelligence models also must be made. It allows to address, whether the ad hoc rule 

learning or adaptive test taking behaviour possibly captured by the item-position effect is a 

part of common intelligence models or must be seen as an entity separate from intelligence in 

common models of intelligence today.  

When relying on the assumption that the variance in test taking behavior captured by 

the latent variable depicting the item-position effect is the ability to ideally adapt one’s test 

taking behavior according to the given circumstances, different measures likely require 

different abilities to a different degree. Therefore, it seems that some abilities would be very 

test specific, and others could be more general, required by more than one task. The 

knowledgeable reader familiar with intelligence theories would immediately be reminded of 

Spearman’s two-factor theory of intelligence postulated in 1927.  

 Spearman assumed one general factor for intelligence (g) that was to be correlated 

with specific abilities (s) measured with different tests. His theory stemmed from 

observations of correlation matrices and later from his pioneering work on factor analyses 

(1927). From performances of participants in various cognitive tasks Spearman concluded 

that some abilities could be clustered together and measured specific abilities (s), but “all 

branches of intellectual activity have in common one fundamental function” that he named g 

(Spearman, 1904, p. 284).  

 Alas, the structure of the two-factor theory does not translate to the observations made 

about the item-position effect. The fact that different item-position effects often do not share 

any variance (e.g., von Gugelberg & Troche, 2022a), means that they cannot co-vary, and 

thus not be captured by one common factor. Every item-position effect captures unique test 

specific variance, which to my knowledge was only found to correlate with each other in one 

instance (i.e., Troche et al., 2016). It seems more feasible to place the item-position effect 

within the two-factor theory of Spearman rather than applying the structure to the occurrence 

of the item-position effect itself. Meaning, that the item-position effect, could, in theory, be 

capturing a test specific ability (s) that cannot be explained by the common g factor. This 

could also explain the non-significant correlation between the item-position effect and 
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reasoning (von Gugelberg et al., 2025), since reasoning would mainly be explained by the 

common g factor (Spearman, 1927).  

 Next to Sternberg’s idea of adaptive intelligence (2021) and Spearman’s common g 

factor (1927), the Cattell-Horn-Carroll (CHC) theory is a widely recognized theory on the 

underlying cognitive abilities of intelligence (e.g., Ortiz, 2015) and it would seem negligent 

not to mention it here. To allow for an adequate description of the CHC theory one must 

revisit some of the history of intelligence research. Things most likely started when Cattell 

(1941) despite having Spearman as his mentor, assumed intelligence not to be a single 

constant factor, but more likely to consists of multiple abilities. He paid attention to the 

possibility that abilities could develop, peak, or decline across the life span, which ultimately 

led Cattell (1943) to the Gf-Gc theory. The Gf-Gc theory depicts the distinction of fluid (Gf) 

and crystalline intelligence (Gc). Where crystalline intelligence broadly refers to knowledge 

attained throughout life and fluid intelligence (Gf) the ability to solve new problems (Cattell, 

1963) which peaks during young adulthood. A model still frequently relied on today (e.g., 

Flanagan et al., 2000, Kyllonen & Kell, 2017). 

Horn (1965) later added more abilities to the theory, all the while opposing the idea of 

general intelligence factor (g). In 1966 the theory included nine secondary abilities identified 

through a factor analysis (Horn & Cattell, 1966). By 1991 the theory was referred to as the 

extended Gf-Gc theory and Horn described a total of 42 primary (or narrow) abilities relevant 

for the 9 secondary (or broad) abilities in the Gf-Gc theory. Among the 42 primary abilities 

listed, summarized by the nine secondary abilities, none directly referred to rule learning 

abilities or adaptive behavior. Hence not providing a direct home for adaptive (or rule 

learning) behavior during test taking possibly captured by the item-position effect.  

The extended Gf-Gc theory was later endorsed by Carroll in his groundbreaking book 

on Human Cognitive Abilities (1993) and the story of the CHC theory continues. The book 

(Carroll, 1993) is not remarkable due to the mentioned endorsement, but rather due to its 

comprehensive review of intelligence research and the large-scale reanalysis of multiple 

datasets (approx. 460) relying on explorative (rather than confirmatory) factor analyses. From 

the analyzed data he came to postulate the Three-Stratum-Theory (3S). The first Stratum 

referred to about 65 primary abilities, the second to 8 secondary abilities, and the third to one 

general ability. While the first and second stratum are akin to the narrow and board abilities 

mentioned in the extended Gf-Gc theory, the assumption of a general factor in the third 

stratum is the most distinctive difference to the Gf-Gc theory.  
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In all the selected tests and listed primary abilities in Carroll’s 3S theory (1993) I 

could not find any direct reference to the ability to adapt one’s behavior during test taking, 

yet rule discovery is listed (p.211, 1993) as a subtype of the reasoning domain. Further, 

Carroll (1993) defines memory and learning processes as a second order (second stratum) 

cognitive ability (p. 634, see p. 302 for an overview of the domain). He states that ”Learning 

and memory are related because memory has to do with how the outcomes of learning are 

retained or forgotten” (p. 248, 1993). He highlights difficulties of separating the two (pp. 

674-677) and simultaneously describes learning as a core ability of intelligence, citing the 

relevant work. While there is no specific mention of rule learning, this would possibly be 

where the variance captured by the item-position effect would co-vary most with other latent 

variables and would in itself warrant a dissertation on the topic of the item-position effect, 

learning and memory.  

Moving on from Carroll’s 3S theory (1993) to the CHC theory, McGrew (2023) a 

mentee of Carroll, states that the CHC theory is the results of an arranged marriage of 

convenience between the extended Gf-Gc model and the 3S theory. With Carroll (1993) 

endorsing the work of Cattell and Horn, his 3S theory was seen as an extension of the 

extended Gf-Gc model and thus was born the CHC-theory. The CHC-theory was further 

imbedded in intelligence research by McGrew’s (2009) editorial in the journal of Intelligence 

and book chapters on the theory (e.g., Schneider & McGrew, 2012). To the introduction of 

the CHC theory Carroll writes “I am still not quite sure what caused or motivated it” (p.16, 

2003). Where it refers to the name change from the Gf-Gc theory to the CHC theory in the 

technical manual of the revised Woodcock-Johnson cognitive test battery (Woodcock et al., 

2001). McGrew (2023) writes that Carroll “was vexed that the term CHC theory had been so 

rapidly infused into the literature and, more importantly, incorrectly implied that he [Carroll], 

Cattel and Horn had agreed to a formal union of theories” (p. 29).  

The most salient issue might be that Horn (e.g., 1991) was vehemently against the 

concept of a general factor, while Carroll (1993) clearly endorsed the idea. And this is a 

discussion still held today. A general factor postulated by Spearman (1904) and empirically 

evidence by for example, Thurstone’s (1947) further implementations of rotations in the 

factor analytic approach point towards the phenomenon of the positive manifold. The positive 

manifold describes the fact, that different ability tests are positively correlated. Spearman 

(1927) provided the simple explanation, that a common factor (i.e., g), plays a crucial role in 

the performance of cognitive ability measures.  



 

 

32 

 

The Process Overlap Theory (POT) postulates an alternative explanation. The POT 

sees the positive manifold as an epiphenomenon of a variation of cognitive abilities sharing 

variance (Kovacs & Conway, 2016) and not one underlying general ability. It is an ongoing 

debate and for example, network analyses on the functional relationship of the positive 

manifold and different aspects of execute attention did not provide support for the POT 

(Troche et al., 2021).  

It would be interesting to investigate the source of the positive manifold with the 

item-position effect accounted for in every subtest. A comprehensive investigation including 

a very large sample completing an exhaustive test battery (e.g., WISC-V, Wechsler, 2017), 

could reveal new information about the item-position effect itself and possibly provide 

worthwhile contributions to the discussion on the positive manifold.  

 

On Methods and the Item-Position Effect 

Network analyses are seen as a promising tool by van der Maas et al. (2017) to 

integrate processes of cognitive abilities and possibly allow for a unified theory of 

intelligence. I also believe that network models could provide interesting results on the item-

position effect. Through the extraction of factor scores (as in Troche et al., 2021; von 

Gugelberg et al., 2021) from models including the item-position effect further information 

can be gained as to why item-position effects from different measures (von Gugelberg & 

Troche, 2022a) or different time points (Wang et al., 2020) are not associated, but in the one 

instance of the CFT are (Troche et al., 2016).  

Latent Profile Analysis (LPA, as in von Gugelberg et al., 2021) also provides a unique 

opportunity to circumvent problems related to the analysis of individual differences based on 

reaction time data (see Draheim et al., 2024 for additional alternatives). Thus, allowing for 

more elaborate analyses on the item-position effect and what could possibly create individual 

differences therein. The two main problems with reaction time analysis regarding difference 

scores often leading to low reliability and an improper account of speed-accuracy interactions 

(e.g., Draheim et al., 2019) no longer overcomplicates interpretation of results. The LPA 

allows for a data driven exploration of patterns specific to certain groups of individuals in 

continuous data. The grouping variable can then be included in any further analysis without 

ever having to rely on score differences.  

Similarly, the fixed-links approach used to depict the item-position effect (e.g., von 

Gugelberg & Troche, in preparation) can be used to account for different factors in 

experimental tasks, as demonstrated in Pahud et al. (2018) or by von Gugelberg and Troche 
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(2022b). This approach also can circumvent the difficulties presented by reaction time 

difference scores. 

Looking beyond the fixed-links approach, a Multilevel Modelling (MLM) was 

demonstrated by Birney et al. (2017) to be a feasible approach to account for an item-position 

effect in the data, while exploring personality factors. Their results on the APM indicated 

that, with each progressing item (the next item in the sequence) the odds of solving the item 

correctly decreased for participants with high Neuroticism scores and increased for 

participants with low Neuroticisms scores. Birney et al. (2022) describe in detail how MLM 

can further our understanding of individual differences in the test taking process. 

I believe research on the item-position effect and the possible underlying rule learning 

or adaptive test taking behavior will benefit from combining different methodological 

approaches included (but not limited to) and briefly introduced here. The successful 

implementation of the TFA in von Gugelberg et al., (2025) makes the combination of 

experimental and correlational analyses more accessible and is a further step in the direction 

of the much-needed reconnection of correlational and experimental approaches (Cronbach, 

1957; Wilhelm & Kyllonen, 2021) 

 

Conclusion 

Overall, results are in favor of the learning hypothesis, albeit not unambiguously. 

Taking further studies on the item-position effect into account, we might have to accept the 

boarder definition of adaptive behavior during test taking for the item-position effect. This 

definition would include rule learning, but adaptive test taking behavior would also rely on 

other factors. Such adaptive behavior could be influenced by personality factors (e.g., 

Neuroticism in Birney et a., 2017), information retention (due to the interplay of learning and 

memory highlighted Carroll, 1993), goal maintenance (e.g., proactive mechanism of control 

in von Gugelberg et al., 2021), different scan path behavior (e.g., Lüthold et al., 2018), test 

properties (von Gugelberg et al., 2025), disengagement or rapid guessing (e.g., Nagy et al., 

2023) and differences in adapting ones solving strategy during test taking (von Gugelberg & 

Troche, in preparation).  

 Future research on the item-position effect and rule learning or adaptive behavior 

during test taking can benefit from the successfully implemented TFA in von Gugelberg et 

al., (2025), by combining the experimental set up in the study with additional correlational 

analyses with external variables (e.g., pure information retention measures). The fixed-links 

method has also been made more accessible with the open-source software R (R Core Team, 
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2020) and the provided bindabox package (von Gugelberg, 2022). This will hopefully entice 

others to apply and explore the fixed-links approach also beyond the item-position effect. For 

example, in von Gugelberg and Troche (in preparation) we were able to successfully capture 

a change in the applied strategy occurring throughout a test, directly based on the 

observations made on eye movements. Thus, allowing to capture individual differences in test 

taking behavior.  

With the undertaking of this dissertation and the three studies investigating the item-

position effect regarding the learning hypothesis, new and relevant factors contributing to the 

item-position effect were identified. By consulting models of intelligence further relevant 

questions regarding the learning hypothesis and the item-position effect were discovered. 

Only with a more comprehensive understanding of what influences test taking behavior and 

its outcome, can one truly aim for complete test fairness across individuals and cultures. 

Therefore, this line of research is a cornerstone of psychological research, and further 

investigation is essential. 
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Neither a lofty degree of intelligence nor imagination nor both together 

go to the making of genius. Love, love, love, that is the soul of genius. 

 

Wolfgang Amadeus Mozart 
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A B S T R A C T   

Braver's (2012) dual mechanisms of cognitive control differentiate between proactive control (PMC; i.e. early se-
lection and maintenance of goal-relevant information) and reactive control (RMC; i.e. a late mobilization of 
attention when required). It has been suggested that higher cognitive capacities (as indicated by reasoning ability 
as a major characteristic of fluid intelligence) facilitate using the more resource-demanding PMC. We propose the 
following alternative explanation: engagement in PMC during the completion of reasoning tests leads to better 
test performance because gained knowledge (i.e. rules learned) during completion of early items is better 
maintained and transferred to later items. This learning of rules during the completion of a reasoning test results 
in an item-position effect (IPE) as an additional source of individual differences besides reasoning ability. We 
investigated this idea in a sample of 210 young adults who completed the AX-Continuous Performance Task (AX- 
CPT) and the Vienna Matrices Test (VMT). Using fixed-links modeling, we separated an IPE from reasoning 
ability in the VMT. Based on reaction time (RT) patterns across AX-CPT conditions, we identified three different 
groups by means of latent-profile analysis. RT patterns indicated engagement in PMC for Group A, mixed PMC 
and RMC for Group B, and RMC for Group C. With the consideration of the IPE, groups did not differ in their 
reasoning abilities. However, Group A (engaging in PMC) had a more pronounced IPE than Group C (engaging in 
RMC). Therefore, we conclude that PMC contributes to a stronger IPE, which in turn leads to higher scores in 
reasoning tests as measures of fluid intelligence.   

1. Dual mechanisms of cognitive control 

The ability to control our behaviour in order to achieve our goals is 
an important ability to master everyday life. We can plan into the future 
and suppress actions when anticipating future consequences (e.g. Sodian 
& Frith, 2008). The ability to register and maintain context information 
is assumed to play a crucial role and is also often referred to as cognitive 
control or attention control (Paxton et al., 2008). 

Within the framework of the dual mechanisms of cognitive control 
(DMC), Braver (2012) put forward the idea that context representation 
and maintenance during information processing are the key components 
of cognitive control. As the name implies, there are two distinguishable 
mechanisms of cognitive control (Braver, 2012). Maintaining goal- 
relevant information in anticipation of a certain event or stimulus is 
referred to as a Proactive Mechanism of Control (PMC). This mechanism of 

control means early selection and maintenance of goal relevant infor-
mation in anticipation of a challenging event in order to ideally guide 
attention. A Reactive Mechanism of Control (RMC), on the other hand, 
describes stimulus or event driven activation of goal-relevant informa-
tion. With this mechanism of control, specific information is processed 
when it appears, but not anticipated to prepare processing in advance. 
This can be seen as late correction of past occurrences, as this mecha-
nism depends on the occurrence of a specific event rather than its 
anticipation. It was suggested that RMC places less demands on cogni-
tive resources than PMC, which is rather cognitively demanding (Braver, 
2012). 

Evidence in favour of two dissociable mechanisms of cognitive 
control stems from different areas of research. For example, neuro-
physiological studies provided evidence for different brain areas asso-
ciated with PMC and RMC (Braver et al., 2009; Paxton et al., 2008). On 
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the behavioural level, Gonthier, Braver, and Bugg (2016) analysed re-
action times (RTs) of different variations of the Stroop task and showed 
that the effects of the two mechanisms of control could be dissociated by 
experimental manipulation. Furthermore, Braver et al. (2001) reported 
that young adults showed more PMC than RMC while the opposite was 
found in older adults. It should be noted, however, that – although using 
PMC seems to be more advantageous than RMC – successful cognition is 
assumed to depend on a mixture of both mechanisms (Braver, 2012). 

2. Dual mechanisms of cognitive control and intelligence 

Burgess and Braver (2010) observed RMC-related brain activity 
when interference expectancy was low but an increase in PMC-related 
brain activity when interference expectancy was high in a recent- 
probes task. These results indicated that individuals shifted from one 
mechanism of cognitive control to the other when the situation required 
such a shift and cognitive capacities were available. In their behavioural 
data, Burgess and Braver (2010) also compared individuals with high 
and low fluid intelligence with fluid intelligence (Gf) defined as the 
ability to solve novel problems (Jensen, 1998). Overall high Gf in-
dividuals outperformed low Gf individuals in the recent-probes task 
(Burgess & Braver, 2010). 

Gray et al.'s (2003) investigation of neural mechanisms of Gf lead to a 
similar observation. These authors applied an n-back task and system-
atically varied the amount of interference between conditions. Results 
showed stronger event-related neural activity in brain areas associated 
with PMC in the high interference condition. Most importantly for the 
present purpose, individuals with higher Gf did not only outperform 
individuals with lower Gf in the high interference condition but also 
showed stronger PMC-related brain activity. These results suggested 
that high Gf individuals engaged more strongly in PMC than low Gf 
individuals, which might be the reason for their better performance 
when being confronted with high interference (Gray et al., 2003). 

The Gf-related differences reported by Burgess and Braver (2010) 
were not larger in the high than in the low interference condition, which 
was the case in the study of Gray et al. (2003). However, Burgess and 
Braver (2010) reported that, in a pilot study, high Gf individuals were 
indeed less affected by interference than low Gf individuals, especially 
when the inference expectancy was high. 

These previous results on the relationship between Gf and the dual 
mechanisms of cognitive control (Burgess & Braver, 2010; Gray et al., 
2003) have been taken as evidence that the higher cognitive capacities 
of individuals with high Gf facilitate or enable the use of PMC. In-
dividuals with lower Gf, on the other hand, are more likely to engage in 
the less capacity-demanding RMC (Braver, 2012). The aim of the present 
study was to investigate an alternative explanation of the link between 
Gf and the dual mechanisms of cognitive control, which assumes a 
reversed direction of the effect. More specifically, we assumed that the 
engagement in PMC in contrast to RMC during the completion of a 
reasoning test leads to better performance on a reasoning test (and 
thereby to a higher estimation of Gf). To substantiate this assumption, 
we will outline in the following paragraphs how performance on 
reasoning tests is not only influenced by reasoning ability but also by an 
item-position effect (IPE) and how this IPE might be influenced by the 
use of PMC/RMC. 

3. The item-position effect 

Both previous studies on Gf and the dual mechanisms of cognitive 
control (Burgess & Braver, 2010; Gray et al., 2003) assessed Gf with 
Raven's Advanced Progressive Matrices (APM; Raven & Raven, 2003). 
With this type of test, participants have to identify a rule within a pre-
sented matrix per item and use this rule to choose one out of eight al-
ternatives to fill the empty cell in the matrix correctly. Such 
psychometric reasoning tests are well-established and valid measures of 
Gf (Gustafsson, 1984; Kan et al., 2011; Schweizer et al., 2011) since 

reasoning ability is the main component of Gf (Carroll, 1993). However, 
there is also growing evidence that these reasoning tests are not ho-
mogeneous and therefore are no pure measures of Gf or reasoning 
ability. Confirmatory factor analyses (CFA) on the items of reasoning 
tests and primarily on the APM (e.g. Sun et al., 2019; Zeller et al., 2017) 
pointed to an IPE. This IPE could be dissociated from reasoning ability 
by means of bifactor measurement models, in which the factor loadings 
of the latent variable representing the IPE were fixed to increase 
monotonically from the first to the last item. The IPE explained a sub-
stantial portion of individual differences in test performance in addition 
to the latent variable reflecting reasoning ability and also improved the 
measurement model substantially (Schweizer, 2013; Troche et al., 
2016). The IPE indicates that the processing of earlier items influences 
the processing of later items and the strength of this influence varies 
strongly between individuals, which is depicted by the amount of vari-
ance of the latent variable representing the IPE. At first sight, it might be 
assumed that the IPE just reflects the increasing item difficulty in a 
reasoning scale. This explanation could be ruled out with simulation 
studies (Schweizer & Troche, 2018) and empirical studies (Zeller et al., 
2017). For example, in the study by Zeller et al. (2017) items were 
presented in random order. This manipulation of item order led to a 
dissociation of item position and item difficulty, and the IPE could still 
be clearly observed but not anymore explained by item difficulty. 
Importantly, the two components of the APM (i.e. reasoning ability and 
IPE) were not only separable on a statistical level, but also showed 
different correlations with several psychological constructs. Ren et al. 
(2017), for example, highlighted that when IPE and reasoning ability 
were both being considered, reasoning ability was moderately related to 
updating and inhibition, while the IPE was associated with updating and 
shifting abilities but not with inhibition. 

To date, the most plausible explanation for the IPE is, that it reflects 
the learning of rules underlying the matrices during the processing of an 
item series (Ren et al., 2014; Ren et al., 2015; Sun et al., 2019; Zeller 
et al., 2017). This explanation is based on the finding that the IPE but not 
reasoning ability was strongly related to complex learning (Ren et al., 
2014). According to the learning hypothesis, the underlying rules have 
to be identified and correctly applied to correctly solve a reasoning test 
item. If an individual can successfully carry over this newly gained 
knowledge to the next items, solving the next items can benefit 
increasingly from the processing of previous items. It is reasonable that 
individuals do not only differ in their ability to detect the rules under-
lying the matrices but also in their ability to use knowledge gained 
during the solving of earlier items or, stated differently, in their ability to 
use context information when an item is seen as an element of an item 
series. It is this ability, which is assumed to underlie individual differ-
ences in the IPE. 

4. Item-position effect and cognitive control 

The insights into the meaning of the IPE also provide a functional 
link with the dual mechanisms of cognitive control since the core of PMC 
is the use of context information to ideally guide attention during cur-
rent information processing. Individuals engaging in PMC would already 
have previously learned rules on hand. Their first inspection of an item 
would already include the direct comparison of a new item with the 
experience from previous items. Since they show a disposition that 
supports maintenance of information, they are less likely to miss a 
connection or loose trace of a rule already learned. This should lead to a 
clear and increasing advantage when solving a series of similar items. 

On the contrary, an individual engaging primarily in RMC might be 
expected to first process each reasoning item separately without taking 
previous experience into consideration, and only then accesses prior 
experience during previously solved items. These individuals would 
only benefit from prior knowledge, if a rule is correctly detected during 
the first inspection and the connection between this rule and an earlier 
rule can be made. This approach is less likely to be successful, since it 
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depends on the successful retrieval and connection of previously applied 
rules. 

In other words, individuals using PMC might benefit from this 
mechanism of cognitive control during experimental tasks as well as 
during the completion of a reasoning test, while individuals using RMC 
do not. This would lead to a positive correlation between performance 
on the experimental task assessing PMC/RMC and the reasoning task 
that is not due to reasoning ability but the IPE in the reasoning task. This 
would suggest, the previously observed relation between higher Gf as 
measured by a reasoning test and engagement in PMC by Braver and his 
colleagues (Burgess & Braver, 2010; Gray et al., 2003) can be inter-
preted in different ways. One interpretation refers to the original 
explanation that high compared to low Gf individuals possess higher 
cognitive capacities, which facilitate engagement in PMC during 
cognitively challenging situations (Burgess & Braver, 2010; Gray et al., 
2003). Alternatively, it might be possible that individuals differ in their 
extent of engagement in PMC and that stronger engagement in PMC has 
a positive influence on the learning of rules and their later application 
when completing a reasoning test. This should become evident in a 
stronger IPE (rather than higher reasoning ability) resulting in better 
performance on the reasoning test. 

5. Current research 

The goal of the present study was to investigate this alternative 
explanation. More specifically, the goal was to examine, whether in-
dividuals that have a predisposition to engage in PMC differ from in-
dividuals that have a predisposition to engage in RMC during their 
performance on a reasoning test, due to higher reasoning abilities (as an 
indicator of Gf and, thus, of cognitive capacities) or due to a more 
pronounced IPE. 

For this purpose and to identify individuals using PMC and or RMC, 
we used the AX-Continuous Performance Task (AX-CPT) paradigm (e.g., 
Gonthier, Macnamara, et al., 2016). In each trial of the AX-CPT, par-
ticipants are presented with a cue letter followed by a probe letter (see 
Fig. 1). The task has four conditions, which differ in the combination of 
cue and probe letters. If the cue letter “A” is followed by the probe letter 
“X” (AX condition), participants are supposed to give a target response, 
by pressing a designated button with the right index finger. For all other 
cue-probe combinations, a non-target response is required, and partic-
ipants are instructed to press another button with the left index finger. 
These conditions are often abbreviated as BX condition, BY condition 
and AY condition. Whereas “B” always indicates any letter but “A” as 
cue, “Y” any letter but “X” as probe, and the letters “X” and “A” represent 
themselves as probe or cue respectively. 

Several studies mentioned RT differences between single conditions 
of the AX-CPT (e.g. Braver et al., 2001; Gonthier, Macnamara, et al., 
2016; Paxton et al., 2008; Redick, 2014) which were interpreted as 
markers or identifiers of a certain mechanism of control. Overall, in-
dividuals strongly engaging in PMC should give a nearly immediate 
response upon appearance of the probe in the BX and BY condition as the 
cue letter holds sufficient information to prepare a correct non-target 
response. Also, when only applying PMC no significant RT difference 

between the BX and BY condition should arise. The target response for 
the AX condition should be somewhat slower, as the individual has to 
wait for the probe to appear, since it is relevant for the response. RTs in 
the AY condition should also be notably slower when compared to the 
BX and BY condition, since the appearance of the probe letter has to be 
awaited before giving a correct response. 

For individuals applying predominantly RMC, a different RT pattern 
should emerge, since responses are only formed after the probe has been 
presented. These individuals would give their fastest response in the BY 
and AY conditions, since the probe letter Y contains all information 
necessary to respond and no further processing of the cue letter is 
necessary. Additionally, there is no reason for a difference in RT be-
tween these two conditions. In the AX and BX conditions, RTs should be 
longer because the cue letter has to be retrieved after the probe letter X 
has been presented. Only then a response can be prepared. Since AX 
trials are presented more frequently, a target response could have a 
small advantage when compared to a non-target response. This advan-
tage would be noticeable in faster RTs in the AX condition when 
compared to RTs in the BX condition. 

For the present study, we expected that, in line with Burgess and 
Braver (2010), individuals showing an RT pattern with all the markers 
described above for PMC would achieve higher test scores on a 
reasoning test than individuals with an RT pattern coinciding with the 
markers described for RMC. However, when dissociating the IPE from 
reasoning ability, we expected that this PMC-related advantage would 
be obvious in a more pronounced IPE rather than in higher reasoning 
ability. There were several obstacles to investigating this idea. We had to 
first identify individuals who show a disposition to engage in PMC or 
RMC according to their RT pattern in the AX-CPT. Additionally, corre-
lational analyses between RTs in specific conditions of the AX-CPT and 
reasoning test scores would be difficult to interpret since shorter RTs are 
consistently related to higher reasoning test scores regardless of the 
specific processes for which RTs are obtained (e.g. Der & Deary, 2017). 
Engaging in PMC or RMC, however, should lead to different variations of 
RTs across the four AX-CPT conditions (i.e. different RT patterns) and 
not only in faster RTs per se. Therefore, to identify possible underling 
groups of individuals that show similar dispositions in their use of 
cognitive control when completing the AX-CPT, we applied latent profile 
analyses (LPA). This approach enabled us to detect different groups 
without coercing certain structures (e.g., assuming exactly two groups) 
based on theoretical assumptions. Grouping individuals by means of LPA 
ensured that the groups were allowed to vary in their RT pattern. The 
LPA proved to be an objective approach to identifying unique groups of 
individuals showing different RTs during the completion of the AX-CPT, 
which also facilitates the replication in future studies. To characterize 
the identified groups in terms of PMC/RMC, multilevel modeling (MLM) 
was applied to analyse RT differences within the groups (between the 
AX-CPT conditions) and compare these RT differences between groups 
(i.e. cross-level interactions). In a last step, we investigated whether an 
IPE could be extracted in addition to reasoning ability from a reasoning 
test and whether the groups differed in their factor scores on reasoning 
ability and/or IPE. With this procedure the overarching objective could 
be specified by the following research questions:  

1. Do the groups identified by means of LPA show RT patterns across 
the four conditions of AX-CPT that coincide with the markers 
assumed for PMC or RMC?  

2. Can the IPE be detected in the reasoning test scores of the present 
sample in addition to a latent variable representing reasoning 
ability?  

3. Do individuals that show the most PMC-consistent RT patterns have 
higher reasoning abilities and/or a more pronounced IPE than in-
dividuals with RMC-consistent RT patterns? 

Fig. 1. Simplified display of one trial of the AY condition of the AX-CPT.  
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6. Method 

6.1. Participants 

A total of 210 individuals participated in the present study. While 
161 participants described themselves as female, and 48 as male, one 
participant did not declare gender, age nor highest level of education. 
Mean age of the sample was 22.4 years (SD = 4.6 years). One hundred 
sixty-nine participants reported having university entrance qualification 
as their highest level of education, 21 a Bachelor's degree or higher, and 
19 participants had neither. All participants reported normal or 
corrected-to-normal vision and gave written informed consent. The 
study protocol was approved by the local ethic committee of the Uni-
versity of Witten/Herdecke (No. 175/2017). 

6.2. Vienna matrices test 

The Vienna Matrices Test (VMT; Formann et al., 2011) is a measure 
of Gf, similar to Raven's APM, and consists of 18 items. Each item con-
tains a 3 × 3 matrix, with each cell containing a geometric figure. The 
right cell on the bottom right is filled with a question mark. Participants 
are instructed to choose one out of eight possible response alternatives, 
which completes the matrix according to the underlying rule when 
substituting the question mark. In line with the manual, no time limi-
tation was used and each participant gave a response to each item. 

According to the manual, Cronbach's Alpha is approximately α =
0.80. Each item was coded with 1 or 0 when a correct or an incorrect 
response was given, respectively. To obtain information on the repre-
sentativeness of the sample regarding fluid intelligence, correct re-
sponses were summed up and transformed into age-stratified IQ scores 
as suggested by the manual. 

6.3. AX continuous performance task 

6.3.1. Apparatus and stimuli 
The AX-CPT was adapted from Gonthier, Macnamara, et al. (2016) 

and programmed with E-Prime 2.0 Software. Participants completed the 
task on a Lenovo Thinkpad T510 with a 15.5′′ monitor, which was 
positioned approximately 50 cm from participants' eyes. Responses were 
given via an external Cedrus response pad (Model RB-830; Cedrus 
Coporation; n.d.) with a registration accuracy of ±1 ms. Stimuli were 
black letters presented in the centre of the white monitor. Each letter 
had a height of 1 cm and a width of 0.8 cm. 

6.3.2. Procedure 
The task consisted of four conditions (AX-, AY-, BX-, and BY condi-

tion). In the 80 trials of the AX condition, the cue letter A was followed 
by the probe letter X. The AY condition contained 20 trials with the 
letter A as cue and any letter but X as probe. In the 80 trials of the BY 
condition, cue and probe letters were neither A nor X. In the 20 trials of 
the BX condition, the cue was any letter but A and the probe letter was X. 
The trials of the four conditions were presented in random order. 

Each trial started with the cue letter presented for 1000 ms, followed 
by a blanc screen lasting 4000 ms and then the probe letter was pre-
sented for 1000 ms (see Fig. 1). Afterwards, three black asterisks were 
presented in the centre of the screen for 1000 ms before the next trial 
started. Participants were instructed to press a designated key with the 
right forefinger in response to trials from the AX condition and to press 
another designated key with the left forefinger in response to trials from 
the three other conditions. The instructions emphasized speed but to 
avoid errors. As dependent variable, mean RT of correct responses given 
within 150 to 1500 ms after the onset of the probe was recorded for each 
of the four conditions. 

The task was preceded by written instructions and 10 practice trials 
to ensure that participants had understood the instructions. The dura-
tion of the task was approximately 20 min. 

6.4. Time course of the study 

In a first session, the VMT was completed as paper-pencil test in 
groups of two to five participants. In this session, further tests were 
administered, which are irrelevant for the present purpose. The second 
(individual) session took place within four to seven days after the first 
session, where each participant completed the AX-CPT followed by two 
other experimental tasks. 

6.5. Statistical analysis 

All analyses were run with R software using the packages tidyLPA 
(Rosenberg et al., 2019), lmerTest (Kuznetsova et al., 2017), lavaan 
(Rosseel, 2012), and MBESS (Kelley, 2007). 

6.5.1. Identification of groups 
In order to identify different groups according to the RT patterns 

across the four conditions of the AX-CPT, the mean RT for each partic-
ipant in each condition was calculated and submitted to a latent profile 
analysis that used an expectation–maximization algorithm. Four types of 
models were computed. The four LPAs differed from each other by the 
assumption of equal (Model 1 and 3) or varying variances (Model 2 and 
4) and by the assumption of zero covariances (Model 1 and 2) or varying 
covariances (Model 3 and 4). For each model, solutions for two up to 
eight possible groups were calculated resulting in 32 solutions. The best 
solution was identified by an analytic hierarchy process (AHP, Akogul & 
Erisoglu, 2017). The AHP took the information of various fit indices 
(AIC, AWE, BIC, CLC, KIC, see Table 1) into account and inverted their 
values to create a decision matrix, whereof it computed a composite 
relative importance vector (C-RIV) for each solution. According to 
Akogul and Erisoglu (2017), the solution with the highest C-RIV should 
be regarded as the best solution. 

6.5.2. Group characteristics 
In order to examine whether the response patterns of the identified 

groups could be distinguished, we applied multilevel modeling (MLM) 
to analyse RT differences between and within the identified groups for 
all four conditions of the AX-CPT. As our hypothesis would be reflected 
in cross-level interactions (different slopes between groups, meaning 
different RT differences between groups and conditions) a Slope-as- 
Outcome model1 with group affiliation (Level 2) and condition (Level 

Table 1 
Mean and standard deviation (in parentheses) of IQ and reaction times (RT in 
milliseconds) in the four AX-CPT conditions for the full sample as well as the 
subsamples identified by the latent profile analysis.   

VMT raw 
scores 

IQ scoresa RTAX RTAY RTBX RTBY 

Full sample 
(N = 210) 

13.69 
(3.06) 

98.40 
(14.34) 

408 
(99) 

507 
(100) 

393 
(139) 

384 
(129) 

Group A (n 
= 114) 

14.19 
(2.92) 

100.75 
(13.62) 

357 
(30) 

445 
(40) 

305 
(34) 

307 
(31) 

Group B (n 
= 67) 

13.61 
(2.93) 

97.98 
(13.70) 

416 
(48) 

532 
(55) 

418 
(56) 

400 
(53) 

Group C (n 
= 29) 

11.90 
(3.30) 

90.07 
(15.77) 

594 
(130) 

693 
(88) 

683 
(110) 

654 
(115)  

a IQ calculations were based on age-based norms, therefore the information of 
one participant in the full sample as well as Group B is missing. 

1 Complete equation of the slope-as-outcome model Aa in Table 3: RTij = γ00 
+ γ01GroupB + γ02GroupC + γ10AY+ γ20BX + γ30BY + γ11AY:GroupB + γ21BX: 
GroupB + γ31BY:GroupB + γ12AY:GroupC + γ22BX:GroupC + γ32BY:GroupC +
εij + υ0j + υ1j. With i indicating the individual within a Group and j the Group, 
υ0j the random effects of the intercept, υ1j the random effects of the slope, εij the 
residual variance. 
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1) as a predictor of RT was calculated. Here, cross-level interactions can 
be seen as an indicator of different engagement in cognitive control. 
Models were calculated with Restricted Maximum Likelihood estimation 
(REML). This is preferable, as it is less prone to Type I errors compared to 
Maximum Likelihood estimation and well suited for small groups (n <
50; McNeish, 2017). 

6.5.3. Identification of an item-position effect 
For the separation of the IPE from reasoning ability, the 18 items of 

the VMT were analysed by a CFA using the robust maximum likelihood 
estimation. In a first (congeneric) model, one latent variable was derived 
from the 18 items with all factor loadings being freely estimated. This 
latent variable is assumed to reflect reasoning ability as an indicator of 
Gf. In a next step, the IPE was added to this model as a second latent 
variable. The correlation between the two latent variables (reasoning 
ability and item-position effect) was set to zero in order to avoid overlap 
of the variances. The factor loadings of the second latent variable were 
fixed to describe a quadratic increase from the first to the last item ac-
cording to the following equation (cf. Troche et al., 2016): 

f(i) = i2

k2 

In this equation i represents the position of a given item, k the total 
number of items in the test, and f (i) the factor loading calculated for 
item i. This enables to account for the increasing variance appearing 
within the items throughout test completion. The gap between the dis-
tribution of binary manifest data and normal distribution of the latent 
variables was bridged by weighting each factor loading with the stan-
dard deviation of the respective item (Schweizer, 2013). The statistical 
significance of the variance of the latent variable representing the IPE 
was tested to investigate whether the IPE indeed represented a sub-
stantial amount of variance in the VMT items. The congeneric and the 
bifactor model were evaluated by means of model fit indices (χ2, SRMR, 
RMSEA, CFI). As recommended by DiStefano (2016), values below 0.06 
and 0.08 for the Root Mean Squared Error of Approximation (RMSEA) 
and for the Standardized Root Mean Square Residual (SRMR), respec-
tively, indicated a good model/data fit. Further, a χ2/df ratio of less than 
2 (Wang & Wang, 2020) and a Comparative Fit Index (CFI) larger than 
0.95 were regarded as evidence for a good fit. Models were compared by 
means of the Akaike Information Criterion (AIC) and the Bayesian In-
formation Criterion (BIC) where lower values indicate better fit. 

6.5.4. Relation of item position effect, reasoning and cognitive control 
In a final step, the groups identified by the LPA were compared 

regarding differences in reasoning ability and the IPE. For this purpose, 
factor scores for the reasoning ability and the IPE were extracted. Factor 
scores depict for each individual the standing on the latent variable in 
relation to the whole sample. Factor scores are z standardized, therefore 
interpretation of values are always in relation to the mean of the whole 
sample. Afterwards, the factor scores were compared between the 
groups by means of pairwise independent t-tests. Data used for this 
analysis can be requested from the corresponding author. 

7. Results 

For the analysis of RTs, observations below 150 ms and above 1000 
ms were excluded (1.39% of all observations). As in Gonthier, Macna-
mara, et al. (2016), only correct answers were included, this reduced the 
total of observations by another 2.17%. Table 1 gives descriptive sta-
tistics of RTs in the four conditions of the AX-CPT for the full sample 
(first row). Also reported in Table 1 are means and standard deviations 
of VMT raw scores and IQ scores. The IQ scores were close to the mean of 
100 and the standard deviation of 15 in the representative norm sample 
reported in the manual of the VMT. Cronbach's alpha was α = 0.75, 
which was close to α = 0.80 as reported in the manual. 

7.1. Identification of groups 

To identify whether different groups of individuals can be found 
within the RT data, LPAs for the four types of models were run. For each 
model, the fit indices for solutions with two up to eight groups were 
computed (see Table 2). The above mentioned AHP (Akogul & Erisoglu, 
2017) was used to determine the best solution. According to this process, 
a model with three groups with variances and covariances allowed to 
vary between groups and conditions yielded the best description of the 
data. 

This solution assigned 114 participants to Group A, 67 participants to 
Group B, and 29 participants to Group C. The RT patterns across the four 
AX-CPT conditions of the three groups are given in Table 1 and are 
illustrated in Fig. 2. This solution also made sense from a theoretical 
point of view, as the additional groups in solutions with more than three 
groups showed response patterns, which were similar to and over-
lapping with the response patterns of the groups identified in the solu-
tion with three groups. 

To describe the three groups according to their RT patterns across the 
four AX-CPT conditions (see Fig. 2), a MLM analysis was conducted. The 
fully unconditional intercept-only model revealed that participant ef-
fects explained 71% of the variance in the RTs as indicated by the 
intraclass correlation coefficient (ICC2 = 0.714). 

7.2. Group characteristics 

To compare all conditions between (3 × 3 intercepts, 3 × 6 slopes) 
and within groups (3 × 6), a total of nine Slope-as-Outcome models had 
to be calculated, releveling the group or condition variable for each 
model. Detailed information about the calculated models is presented in 
Tables 3, 4, and 5. With releveling we were interested in a total of 45 
comparisons. To avoid alpha inflation, we used the conservative Bon-
ferroni correction and adjusted alpha to α = 0.0011. 

In Models Aa, Ab, and Ac (Table 3) Group A and the AX, AY and BX 
condition represent the intercept, respectively. In Models Ba, Bb and Bc, 
intercepts were again the AX, AY, and BX conditions, respectively, but 
for Group B (see Table 4). Finally, the intercept was releveled to Group C 
and the AX, AY, and BX condition, respectively (Models Ca to Cc in 
Table 5). Most relevant results are highlighted below while the full in-
formation can be taken from the tables. 

When comparing the RT differences between conditions, Group A 
showed the strongest similarity to the RT pattern expected for in-
dividuals using PMC. Group A had significantly faster RTs in the BX and 
BY conditions compared to the AY and, most importantly, to the AX 
condition. Noteworthy is also, that the difference between RTs in the BX 
and in the AY condition, which has been interpreted as a strong indicator 
for PMC by Braver et al. (2001), was significantly larger in Group A than 
in the other two groups. RTs in the BX and BY conditions did not differ 
from each other in Group A, which was another marker for PMC. 

In Group B, RTs in the AY condition were significantly longer than 
RTs in the other three conditions. RTs being longer in the AY condition 
when compared to the BX and the BY condition, fit the predicted 
outcome for individuals engaging in PMC. Group B showed similar RTs 
in the AX condition as in the BX and BY conditions. This did neither fit 
the assumptions made for PMC nor RMC, since with PMC responses in 
the BX and BY condition should be the fastest, and with RMC the RT of 
the BY and AX condition should be significantly different. Interestingly, 
in Group B (and in contrast to Group A), RTs in the BX condition were 
significantly longer than in the BY condition, which was consistent with 
the assumptions made for RMC. While the difference between the BX 
and BY condition was significant, it did not significantly differ from the 

2 Intraclass Correlation Coefficient (ICC) is defined as the Level-2 variance 
(participant effects) in proportion to the overall variance of the dependent 
variable (reaction time) in the intercept-only model: ICC = συ0

2/(συ0
2 + σε

2) 
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difference that emerged for participants in Group A. This led to the 
conclusion that the difference for Group B between the BX and BY 
conditions, albeit significant, was so small that it could not be properly 
distinguished from the non-significant one that emerged for Group A. 
Summarized, Group B showed two RT differences that fit PMC, one that 
was RMC-consistent and some that did not comply with either. This 
implied that Group B engaged in a mix of PMC and RMC. 

Group C participants had longer RTs in the BX condition than in the 
AX condition. Additionally, RTs in the BX condition were significantly 
longer than in the BY condition. These were both defined as markers for 
the engagement in RMC. For Group C the difference between the BX and 

BY condition was also significantly larger as the one that emerged in 
Group A, clearly distinguishing the two Groups. 

Summarized, the RT pattern of Group A portrayed the expected PMC- 
consistent RT pattern while the RT pattern of Group C coincided with the 
RMC- consistent RT pattern. Although the interpretation of the RT 
pattern of Group B was less clear it seemed to have some similarities 
with PMC- and RMC-consistent patterns. It should also be mentioned 
that Group C was significantly slower in all AX-CPT conditions 
compared to the other two groups, and Group B was significantly slower 
than Group A. 

7.3. Identification of an item-position effect 

To analyse whether an IPE could be identified in the responses across 
the 18 items of the VMT, fixed-links modeling was applied. A congeneric 
model with the assumption of one underlying latent variable was 
compared to a bifactor model with a first latent variable representing 
reasoning ability and a second latent variable representing the IPE. 
Factor loadings on the latter were fixed with a quadratic increase to 
describe the increasing influence of the IPE from the first to the last item. 
The model fit statistics of the two models are given in Table 6. 

According to Kenny (2015), the Comparative Fit Index (CFI) is seen 
as non-informative, when the RMSEA in the baseline model is lower than 
0.158. The RMSEA of the baseline model was 0.112, therefore the CFI is 
listed in Table 6 but not used for model evaluation. The χ2/df ratio was 
smaller than two for both models indicating good model fit (Wang & 
Wang, 2020). Also, according to SRMR and RMSEA, both models 
described the data well. However, the bifactor model had a lower AIC 
and BIC than the congeneric model indicating that it described the data 
better than the congeneric model. Additionally, in the bifactor model 

Table 2 
Fit indices for all the estimated models by the latent profile analysis. Model number indicates model type and Groups the number of groups set for the estimation.  

Model Groups AIC AWE BIC CLC KIC C-RIV  

1  1  10,371.05  10,462.61  10,397.83  10,357.05  10,382.05  0.02721  
1  2  9617.78  9767.83  9661.29  9593.75  9633.78  0.02930  
1  3  9276.20  9484.76  9336.44  9242.13  9297.20  0.03034  
1  4  9075.63  9342.74  9152.62  9031.50  9101.63  0.03097  
1  5  8969.77  9295.38  9063.49  8915.60  9000.77  0.03129  
1  6  8978.42  9362.70  9088.88  8914.05  9014.42  0.03122  
1  7  8988.38  9431.30  9115.57  8913.85  9029.38  0.03115  
1  8  8998.08  9499.61  9142.00  8913.40  9044.08  0.03108  
2  1  10,371.05  10,462.61  10,397.83  10,357.05  10,382.05  0.02721  
2  2  9424.59  9621.50  9481.49  9392.47  9444.59  0.02987  
2  3  9058.05  9360.24  9145.08  9007.92  9087.05  0.03100  
2  4  8876.24  9283.64  8993.39  8808.14  8914.24  0.03156  
2  5  8776.47  9289.10  8923.74  8690.38  8823.47  0.03185  
2  6  8751.00  9368.94  8928.39  8646.85  8807.00  0.03187  
2  7  8741.91  9465.18  8949.43  8619.69  8806.91  0.03183  
2  8  8742.14  9570.62  8979.78  8601.94  8816.14  0.03176  
3  1  8982.36  9144.08  9029.22  8956.36  8999.36  0.03136  
3  2  8831.93  9052.14  8895.53  8795.91  8853.93  0.03185  
3  3  8799.38  9078.23  8879.71  8753.19  8826.38  0.03193  
3  4  8809.78  9147.71  8906.85  8752.99  8841.78  0.03185  
3  5  8783.56  9179.60  8897.36  8717.12  8820.56  0.03190  
3  6  8793.47  9248.22  8924.01  8716.79  8835.47  0.03182  
3  7  8803.45  9316.85  8950.72  8716.59  8850.45  0.03175  
3  8  8763.15  9334.87  8927.16  8666.45  8815.15  0.03185  
4  1  8982.36  9144.08  9029.22  8956.36  8999.36  0.03136  
4  2  8706.76  9044.31  8803.83  8650.34  8738.76  0.03222  
4  3  8651.97  9164.86  8799.25  8565.63  8698.97  0.03230  
4  4  8651.98  9340.42  8849.46  8535.51  8713.98  0.03218  
4  5  8629.96  9493.74  8877.65  8483.55  8706.96  0.03214  
4  6  8601.54  9640.53  8899.44  8425.34  8693.54  0.03213  
4  7  8618.66  9833.11  8966.76  8412.40  8725.66  0.03195  
4  8  8598.55  9988.32  8996.85  8362.38  8720.55  0.03191 

Note. Model 1: Equal variances and covariances fixed to 0; Model 2: Varying variances and covariances fixed to 0; Model 3: Equal variances and equal covariances; 
Model 4: Varying variances and varying covariances; “Groups” indicates the number of Groups considered in the model; AIC = Akaike's Information Criterion; AWE =
Approximate Weight of Evidence; BIC = Bayesian Information Criterion; CLC = Classification Likelihood Criterion; KIC = Kullback Information Criterion, C-RIV =
Composite Relative Importance Vector. Based on an Analytic Hierarchy Process (AHP, see Akogul & Erisoglu, 2017) taking the mentioned fit indices into account, 
Model 4 with 3 groups (given in bold) showed overall the best fit (highest C-RIV). 

Fig. 2. Observed reaction time pattern and standard errors in the four condi-
tions of the AX-CPT for the three groups identified by latent profile analysis. 
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both the reasoning latent variable (φ = 0.211, z = 7.034, p < .001) as 
well as the latent variable representing the IPE explained a significant 
portion of variance (φ = 0.210, z = 4.856, p < .001). The reported 
variances were scaled as suggested by Schweizer and Troche (2019). The 
scaled variances clearly showed that the IPE and reasoning ability both 
explained an equal amount of variance in the bifactorial model, further 
emphasizing the relevance of considering the IPE as a latent variable in 
the measurement model. 

7.4. Relation of item position effect, reasoning and cognitive control 

In a next step, factor scores for each participant were extracted from 
the bifactor model (see Fig. 3). To examine whether the three groups 
differed in their reasoning ability and/or in the extent of the IPE, six 
pairwise t-tests were calculated (see Table 7). To account for the mul-
tiple comparisons, alpha was adjusted to α = 0.0083. The reasoning 
factor scores did not differ between the three groups (see Table 7). Also, 
the IPE did not differ significantly between Group B and C nor between 
Group B and A. However, in Group A, the IPE was significantly more 

Table 3 
Estimates, t-values and p-values displayed for each Slope-as-Outcome model 
estimated with Group A as intercept and reaction time as dependent variable.  

Model Aa  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  356.87  67.14  <0.001 
AY (γ10)  88.2  22.26  <0.001 
BX (γ20)  −51.92  −13.11  <0.001 
BY (γ30)  −50.11  −12.65  <0.001  

Level 2 
Group B (γ01)  59.08  6.76  <0.001 
Group C (γ02)  237.11  20.09  <0.001 
AY:Group B (γ11)  27.67  4.25  <0.001 
BX:Group B (γ21)  54.38  8.35  <0.001 
BY:Group B (γ31)  34.22  5.26  <0.001 
AY:Group C (γ12)  11.12  1.26  0.206 
BX:Group C (γ22)  140.58  15.98  <0.001 
BY:Group C (γ32)  110.08  12.51  <0.001   

Model Ab  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  445.07  83.73  <0.001 
AX (γ10)  −88.2  −22.26  <0.001 
BX (γ20)  −140.12  −35.37  <0.001 
BY (γ30)  −138.31  −34.91  <0.001  

Level 2 
Group B (γ01)  86.75  9.93  <0.001 
Group C (γ02)  248.23  21.03  <0.001 
AX:Group B (γ11)  −27.67  −4.25  <0.001 
BX:Group B (γ21)  26.72  4.1  <0.001 
BY:Group B (γ31)  6.56  1.01  0.314 
AX:Group C (γ12)  −11.12  −1.26  0.206 
BX:Group C (γ22)  129.46  14.72  <0.001 
BY:Group C (γ32)  98.95  11.25  <0.001   

Model Ac  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  304.95  57.37  <0.001 
AX (γ10)  51.92  13.11  <0.001 
AY (γ20)  140.12  35.37  <0.001 
BY (γ30)  1.81  0.46  0.648  

Level 2 
Group B (γ01)  113.46  12.99  <0.001 
Group C (γ02)  377.69  32  <0.001 
AX:Group B (γ11)  −54.38  −8.35  <0.001 
AY:Group B (γ21)  −26.72  −4.1  <0.001 
BY:Group B (γ31)  −20.16  −3.1  0.002 
AX:Group C (γ12)  −140.58  −15.98  <0.001 
AY:Group C (γ22)  −129.46  −14.72  <0.001 
BY:Group C (γ32)  −30.5  −3.47  <0.001 

Note. Model Aa: Group A and condition AX as Intercept. 
Model Ab: Group A and condition AY as Intercept. 
Model Ac: Group A and condition BX as Intercept. 
Bonferroni adjusted alpha value: 0.0011. 

Table 4 
Estimates, t-values and p-values displayed for each Slope-as-Outcome model 
estimated with Group B as intercept and reaction time as dependent variable.  

Model Ba  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  415.95  59.99  <0.001 
AY (γ10)  115.87  22.42  <0.001 
BX (γ20)  2.46  0.48  0.633 
BY (γ30)  −15.89  −3.07  0.002  

Level 2 
Group C (γ01)  178.03  14.11  <0.001 
Group A (γ02)  −59.08  −6.76  <0.001 
AY:Group C (γ11)  −16.55  −1.76  0.078 
BX:Group C (γ21)  86.19  9.17  <0.001 
BY:Group C (γ31)  75.85  8.07  <0.001 
AY:Group A (γ12)  −27.67  −4.25  <0.001 
BX:Group A (γ22)  −54.38  −8.35  <0.001 
BY:Group A (γ32)  −34.22  −5.26  <0.001   

Model Bb  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  531.82  76.7  <0.001 
AX (γ10)  −115.87  −22.42  <0.001 
BX (γ20)  −113.4  −21.95  <0.001 
BY (γ30)  −131.75  −25.5  <0.001  

Level 2 
Group C (γ01)  161.48  12.8  <0.001 
Group A (γ02)  −86.75  −9.93  <0.001 
AX:Group C (γ11)  16.55  1.76  0.078 
BX:Group C (γ21)  102.74  10.93  <0.001 
BY:Group C (γ31)  92.4  9.83  <0.001 
AX:Group A (γ12)  27.67  4.25  <0.001 
BX:Group A (γ22)  −26.72  −4.1  <0.001 
BY:Group A (γ32)  −6.56  −1.01  0.314   

Model Bc  

Fixed Effects Estimate t p 

Level 1 
Intercept (γ00)  418.41  60.35  <0.001 
AX (γ10)  −2.46  −0.48  0.633 
AY (γ20)  113.4  21.95  <0.001 
BY (γ30)  −18.35  −3.55  <0.001  

Level 2 
Group C (γ01)  264.22  20.95  <0.001 
Group A (γ02)  −113.46  −12.99  <0.001 
AX:Group C (γ11)  −86.19  −9.17  <0.001 
AY:Group C (γ21)  −102.74  −10.93  <0.001 
BY:Group C (γ31)  −10.34  −1.1  0.271 
AX:Group A (γ12)  54.38  8.35  <0.001 
AY:Group A (γ22)  26.72  4.1  <0.001 
BY:Group A (γ32)  20.16  3.1  0.002 

Note. Model Ba: Group B and condition AX as Intercept. 
Model Bb: Group B and condition AY as Intercept. 
Model Bc: Group B and condition BX as Intercept. 
Bonferroni adjusted alpha value: 0.0011. 
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pronounced than in Group C. This difference was statistically significant 
even after alpha adjustment. 

To be able to compare our results with previous research (e.g., 
Burgess & Braver, 2010; Gray et al., 2003), we also calculated pairwise t- 
tests for the VMT raw scores between the groups. Group A had signifi-
cantly higher VMT scores when compared to Group C, t(40) = −3.65, p 
< .002, d = −0.71, while the VMT scores of Group B did not differ 
significantly from Group A, t(138) = −1.295, p = .199, d = −0.19, nor 
from Group C, t(48) = 2.42, p = .019, d = 0.53, when adjusting the alpha 
value for the three comparisons (α = 0.017). 

8. Discussion 

In the present study, we found three clearly distinguishable groups of 
individuals by analysing RTs across the four conditions of the AX-CPT. 
Group A and Group B showed similar RT patterns, yet only the RT 
pattern of Group A directly coincided unambiguously with the one 
assumed for PMC indicating strong engagement in PMC. Group B 
exhibited mixed engagement in PMC and RMC. Group C had an RT 
pattern that resembled the one expected for RMC. Across all 

Table 5 
Estimates, t-values and p-values displayed for each Slope-as-Outcome model 
estimated with Group C as intercept and reaction time as dependent variable.  

Model Ca  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  593.98  56.36  <0.001 
AY (γ10)  99.32  12.64  <0.001 
BX (γ20)  88.66  11.29  <0.001 
BY (γ30)  59.97  7.63  <0.001  

Level 2 
Group B (γ01)  −178.03  −14.11  <0.001 
Group A (γ02)  −237.11  −20.09  <0.001 
AY:Group B (γ11)  16.55  1.76  0.078 
BX:Group B (γ21)  −86.19  −9.17  <0.001 
BY:Group B (γ31)  −75.85  −8.07  <0.001 
AY:Group A (γ12)  −11.12  −1.26  0.206 
BX:Group A (γ22)  −140.58  −15.98  <0.001 
BY:Group A (γ32)  −110.08  −12.51  <0.001   

Model Cb  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  693.3  65.79  <0.001 
AX (γ10)  −99.32  −12.64  <0.001 
BX (γ20)  −10.66  −1.36  0.175 
BY (γ30)  −39.35  −5.01  <0.001  

Level 2 
Group B (γ01)  −161.48  −12.8  <0.001 
Group A (γ02)  −248.23  −21.03  <0.001 
AX:Group B (γ11)  −16.55  −1.76  0.078 
BX:Group B (γ21)  −102.74  −10.93  <0.001 
BY:Group B (γ31)  −92.4  −9.83  <0.001 
AX:Group A (γ12)  11.12  1.26  0.206 
BX:Group A (γ22)  −129.46  −14.72  <0.001 
BY:Group A (γ32)  −98.95  −11.25  <0.001   

Model Cc  

Fixed effects Estimate t p 

Level 1 
Intercept (γ00)  682.63  64.77  <0.001 
AX (γ10)  −88.66  −11.29  <0.001 
AY (γ20)  10.66  1.36  0.175 
BY (γ30)  −28.69  −3.65  <0.001  

Level 2 
Group B (γ01)  −264.22  −20.95  <0.001 
Group A (γ02)  −377.69  −32  <0.001 
AX:Group B (γ11)  86.19  9.17  <0.001 
AY:Group B (γ21)  102.74  10.93  <0.001 
BY:Group B (γ31)  10.34  1.1  0.271 
AX:Group A (γ12)  140.58  15.98  <0.001 
AY:Group A (γ22)  129.46  14.72  <0.001 
BY:Group A (γ32)  30.5  3.47  <0.001 

Note. Model Ca: Group C and condition AX as Intercept. 
Model Cb: Group C and condition AY as Intercept. 
Model Cc: Group C and condition BX as Intercept. 
Bonferroni adjusted alpha value: 0.0011. 

Table 6 
Chi-square (degrees of freedom), p-value, and various fit indices to compare the congeneric model and the bifactorial model which includes latent variables repre-
senting reasoning ability and item-position effect.  

Model χ2 (df) p RMSEA SRMR CFI AIC BIC 

Congeneric 217.28 (135)  <.001  0.054  0.064  0.794  2999.44  3119.93 
Bifactorial 208.99 (134)  <.001  0.052  0.063  0.812  2993.15  3116.99 

Note. Root Mean Squared Error Approximation (RMSEA); Standardized Root Mean Square Residual (SRMR); Akaike Information Criterion (AIC); Bayesian Information 
Criterion (BIC); Comparative Fit Index (CFI) is non-informative as the RMSEA of the baseline model is lower than 0.158. 

Fig. 3. Factor scores on the latent variables representing the item-position- 
effect (IPE) and reasoning ability in the Vienna Matrices Test for the three 
groups identified. Error bars represent standard errors. 

Table 7 
Results for two-tailed t tests to compare factor scores for the latent variables 
reflecting the item-position effect (IPE) and reasoning ability between the three 
groups with different engagement in PMC and RMC.   

t df p Cohen's d 

IPE 
Group B – C  2.55  51.23  .014  0.57 
Group B – A  −1.44  148.55  .151  0.22 
Group C – A  3.72  44.94  .00056  0.76  

Reasoning 
Group B – C  1.84  51.76  .071  0.41 
Group B – A  −0.73  129.62  .471  0.11 
Group C – A  2.51  40.14  .016  0.54 

Note. Bonferroni adjusted alpha value: 0.0083. 

H.M. von Gugelberg et al.                                                                                                                                                                                                                     



$FWD 3V\FKRORJLFD ��� ������ ������

�

participants, we identified an IPE in the VMT data indicating that in-
dividuals differed in the extent they could benefit from the completion of 
previous items during the completion of later items. Although the effects 
were partly of medium size, the three groups did not differ significantly 
in their reasoning ability. The IPE, however, was more pronounced in 
Group A compared to Group C, which is in line with the assumption, that 
engagement in PMC is associated with a larger IPE. 

8.1. Classification of groups 

The LPA on RTs in the four conditions of the AX-CPT identified three 
groups of individuals. Results of the MLM led to the following charac-
terization of the groups: Participants in Group A had shorter RTs than 
the other two groups and the RT pattern was a straightforward match 
with the expected pattern for individuals applying PMC. Participants in 
Group B had somewhat slower RTs than Group A. Unlike Group A, their 
fastest RTs were in the AX, BX and the BY condition and there was a 
significant, albeit very small difference between the BX and BY condi-
tion. The RT pattern of Group B showed features typical for PMC as well 
as features typical for RMC. Therefore, we interpreted the RT pattern of 
Group A as engagement in PMC, and the RT pattern of Group B as a 
mixture of engagement in PMC and RMC. 

Group C had not only slower RTs compared to the other two groups 
but also a very different RT pattern. The difference between RTs in the 
AY and in the BX condition, which has been previously emphasized as an 
indicator for using PMC (Braver et al., 2001), was significantly smaller 
in Group C than in the other groups, indicating that Group C engaged 
less in PMC than the other two groups. Also, the expected difference 
between RTs in the BX and BY condition was significantly larger in 
Group C compared to Group A. The emergence of a difference between 
the BX and BY condition is a clear marker for engagement in RMC. A 
further marker would have been similar RTs in the AY and BY condi-
tions. This was not the case for any group. Yet the differences between 
the conditions were notably larger for Groups A and B, and significantly 
smaller for Group C. This difference between the AY and BY conditions, 
albeit significant, is very small for Group C. Further support for the 
assumption that Group C most likely engaged in RMC can be taken from 
the findings reported by Gonthier, Macnamara, et al. (2016). The au-
thors explicitly manipulated the AX-CPT to make individuals engage 
more strongly in RMC. The RT pattern which resulted from this 
manipulation was similar to the RT pattern observed in the present study 
for Group C with longer RTs in the AY condition than in the other three 
conditions. The above-mentioned difference between RTs in the AY 
condition compared to the BX and BY conditions was even more pro-
nounced in the study by Gonthier, Macnamara, et al. (2016) than in our 
Group C. 

In sum, three clearly distinguishable groups could be identified in the 
present study, which did not only differ in overall RT or their RTs in 
single conditions, but in their RT patterns across the four AX-CPT con-
ditions. The RT pattern of Group A clearly matched the assumed pattern 
for PMC, the RT pattern of Group B indicated mixed engagement in PMC 
and RMC while the RT pattern of Group C indicated engagement in 
RMC. 

8.2. Relation of item position effect, reasoning and cognitive control 

When examining the association between reasoning ability and the 
two mechanisms of cognitive control, previous studies (Burgess & 
Braver, 2010; Gray et al., 2003) split the sample of participants into 
subgroups according to their reasoning ability score and declared the 
groups as high and low Gf individuals. Then behavioural data and/or 
neural activity between these subgroups were compared regarding their 
engagement in PMC/RMC. The results of these previous studies sug-
gested that high Gf individuals engaged more strongly in PMC than low 
Gf individuals. Results were seen as evidence for the idea that the larger 
cognitive resources of individuals with high Gf facilitated the use of the 

resource-demanding PMC (Braver, 2012). When we directly compared 
the VMT raw scores between the three groups identified in the present 
study, we obtained similar results: Group A, which most strongly 
engaged in PMC, had significantly higher reasoning scores (as indicator 
of Gf) compared to Group C which had the weakest or no engagement in 
PMC and showed strong evidence for using RMC. This is worth to 
mention since we used the VMT in the present study to measure 
reasoning ability while Burgess and Braver (2010) as well as Gray et al. 
(2003) used Raven's APM. Thus, the outcome of a functional relation-
ship between reasoning ability as a measure of Gf and the dual mecha-
nisms of cognitive control seems not to depend on the instrument with 
which reasoning ability is assessed. 

In contrast to previous studies, however, we extracted an IPE from 
the present reasoning test. The existence of an IPE in reasoning test data 
in addition to a latent variable representing reasoning ability was in line 
with an increasing body of research on the IPE in reasoning measures 
(Ren et al., 2014; Ren et al., 2015; Sun et al., 2019; Troche et al., 2016; 
Zeller et al., 2017). Both latent variables explained an equal proportion 
of variance in the measurement model indicating that the IPE cannot be 
neglected when reasoning ability is correlated with other variables. To 
date, the most plausible explanation for the IPE states that some in-
dividuals strongly benefit from already completed items, while others do 
not (Ren et al., 2014). Therefore, some individuals are better at using 
knowledge gained during the completion of earlier items to ideally bias 
their information processing for the completion of later items. Pro-
ceeding from this interpretation of the IPE, we assumed that individuals 
using PMC showed a larger IPE than individuals using RMC due to their 
early selection and maintenance of (context) information to bias atten-
tion in an ideal manner during the completion of the task at hand (cf. 
Braver, 2012). This idea was supported by our empirical results as in-
dividuals who strongly engage in PMC (Group A) exhibited a more 
pronounced IPE compared to individuals who engage in RMC (Group C), 
while the groups did not statistically differ in their reasoning ability. 
This result is remarkable as it suggests that the direction of the rela-
tionship between the engagement in RMC/PMC and fluid intelligence 
might be interpreted differently than previously proposed by Braver and 
his colleagues (Burgess & Braver, 2010; Gray et al., 2003). These authors 
argued that higher Gf as a reflection of higher cognitive capacities fa-
cilitates applying the resource demanding PMC. On the contrary, our 
results suggest that using PMC rather than RMC leads to higher 
reasoning test scores because of a more adaptive behaviour during test 
completion. Individuals engaging in PMC seem to use context informa-
tion, knowledge gained from solving previous items, to solve later items. 
This leads to a stronger IPE, while individuals engaging in RMC seem to 
benefit less from previously solved items and therefor have a smaller 
IPE. It is important to mention that, although Group A and Group C did 
not differ significantly in their reasoning ability, the effect size was quite 
large with Cohen's d = 0.54 so that the size of Group C was perhaps not 
large enough to reveal a significant difference in reasoning ability when 
compared to the other groups. A more tentative interpretation, therefore 
holds, that Group A and C differed primarily in their IPE and only sub-
ordinately in their reasoning ability. The differences between Group B 
and Group C in the IPE and reasoning ability might be similarly inter-
preted against the obtained effect sizes presented in Table 7. 

8.3. Limitations 

From this point of view, the rather small size of Group C might be 
considered a limitation of the present study since it resulted in larger 
standard errors when compared to the other two groups. In contrast, 
more than half of the sample belonged to Group A showing a typical 
PMC pattern. This was surprising as we composed the sample not only 
from university students but also from individuals without university 
entrance certification to spread the range of intelligence. As a result, the 
IQ distribution in our sample was highly similar to the distribution in the 
norm sample. Nevertheless, the portion of individuals identified as 
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applying RMC was rather small. Therefore, it could be interesting to see 
whether a similar group classification would be obtained in a sample 
with a larger age range or in a sample of older adults for whom Braver 
et al. (2001) reported more engagement in RMC compared to younger 
individuals. Additionally, a combination of a classification approach as 
introduced in the present study based on behavioural data and a 
neurophysiological approach using fMRI might illuminate whether the 
groups would show brain activation patterns reported to be PMC- or 
RMC-specific (Braver et al., 2009; Paxton et al., 2008). 

Since the experimental approach as well as the statistical methods of 
our study do not allow for a strong causal interpretation of the rela-
tionship between PMC and IPE, a more straightforward hypothesis test is 
called for to further confirm our interpretation. Nevertheless, our results 
suggest that another causal relationship might be conceivable between 
measures of Gf and the dual mechanisms of cognitive control than 
suggested by Burgess and Braver (2010). 

9. Conclusion 

To summarize, three clearly distinguishable groups could be identi-
fied, which differed in their engagement in PMC and RMC and in their 
VMT test scores. Albeit, under the consideration of the IPE in the VMT 
data, the identified groups did not differ in their reasoning ability. 
Instead, the difference in the test scores could be explained by a more 
pronounced IPE in the group with strong engagement in PMC compared 
to the group that engaged in RMC. These results present first evidence 
for the notion that using PMC rather than RMC can lead to better 
reasoning test scores due to a stronger IPE. In other words, compared to 
individuals who engage in RMC, individuals engaging strongly in PMC 
benefit more from solving previous items when they solve later items in 
a reasoning test. 
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Abstract 

Despite the high similarity of reasoning ability items, research indicates that 

individuals apply different strategies when solving them (Bethell-Fox et al., 1984). The two 

distinct strategies are response elimination and constructive matching. The latter frequently 

showing a positive correlation with reasoning ability (e.g., Vigneau et al., 2006) entails the 

individual systematically scanning the presented problem matrix of an item, before scanning 

the response alternatives. To further the investigation of what lies at the source of individuals 

applying different strategies during test taking, a study tracking eye movement during the 

solving process of the Advanced Progressive Raven Matrices (APM) was conducted. Results 

showed in line with other research (e.g., Vigneau et al., 2006) a positive correlation of 

reasoning ability and constructive matching. Results further indicated that participants used 

more constructive matching towards the end of the APM. This is the opposite of what Bethel-

Fox et al. (1984) or Gonthier and Roulin (2020) observed in their work. This change in 

strategy was correlated with the item-position effect detected in the APM scores. The item-

position effect captures the increasing score variance in a test with homogenous item 

materials such as the APM and is assumed to relate to rule learning (Ren et al., 2015). 

Possible reasons for the diverging results and the newfound relation to the item-position 

effect are discussed. 
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Fluid intelligence as defined by Carroll (1993) includes the abilities to solve logical 

puzzles, abstract problems or to infer rules in a set of figures. These abilities are often 

referred to as reasoning abilities and are strong predictors for an abundance of outcomes (e.g., 

Gottfredson & Deary, 2004). The Advanced Raven Progressive Matrices (APM, Raven, 

Raven, & Court 1998) are a well-known reasoning ability measure with homogenous items. 

Each problem or item the individual has to solve, is a 3 3 matrix that depicts a certain 

pattern of geometrical shapes with the bottom right entry missing. For each item, the 

individual selects one out of eight response alternatives to complete the pattern in the matrix 

(see Figure 1). 

Despite the high similarity of items, people have different ways of going about 

solving such items measuring reasoning ability (Bethell-Fox et al., 1984). Just because two 

individuals achieved the same score on a test, it does not necessarily mean, that they used the 

same abilities or strategies to get there. What abilities are truly at play when solving tests 

such as the APM is crucial knowledge to further understand human intelligence and 

apparently, “individuals not only do things differently when asked to solve intelligence test 

items: they also do different things” (p. 271, Vigneau et al., 2006), since individuals seem to 

vary in the strategy applied during test taking. 

Two distinct strategies were detected through verbal protocols and observation of eye 

movements (Snow, 1978), while individuals were solving reasoning ability measures that 

relied on the common multiple-choice format such as the APM. The constructive matching 

strategy describes the fact that individuals spend a lot of time on the matrix, identifying the 

different rules corresponding to the pattern. From the identified rules the individual then 

mentally constructs the missing entry and selects the matching entry from the response 

alternatives. Hence the name, constructive matching. The other dominant strategy is response 

elimination. Here the individual eliminates step by step non-viable solutions from the 

response alternatives that are presented, therefore eliminating unsuitable responses until a 

solution is found.  

These early findings of Snow (1978) were replicated in eye tracking data (Vigneau et 

al., 2006) and verbal protocols (Jarosz et al., 2019) but also with questionnaires (Gonthier & 

Thomassin, 2015). Regardless of the way strategy was assessed the majority of studies 

confirmed (e.g., Gonthier & Roulin, 2020; Jastrzebski et al., 2018) that constructive matching 

was associated with higher test scores compared to response elimination. 
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From the mentioned strategy measures, eye tracking data is an objective measure used 

in several studies (Vigneau et al., 2006; Hayes et al., 2015; Laurence et al., 2018) and offers 

information on every item for every individual. Within eye racking data, the toggle rate is by 

far the most intuitive and straightforward indicator of strategy use. The toggle rate is based 

on fixations an individual makes while solving an item, i.e. the time intervals when the eyes 

are fixed to a given area. A toggle occurs when an individual first shows a fixation on the 

matrix, followed by a fixation on the response alternatives, or vice versa.  

Constructive matching leads to very few toggles since most of the time is spent on the 

matrix to analyze the rules and then construct the solution. Individuals would only alternate a 

few times from looking at the matrix to the response alternatives before selecting an answer. 

With response elimination it is necessary to alternate very often since the solution is found 

through the process of elimination. This results in a lot of toggles. Thus, constructive 

matching and response elimination differ in the frequency of toggles during the processing of 

a test item. Laurence et al. (2018) reported that individual differences in the toggle rate 

explained up to 45% of the variance in reasoning ability. 

Yet the reasons why different strategies are used and why they lead to different results 

is an ongoing debate. Contemporary research indicates that on the one hand, test properties 

(e.g., Raden & Jarosz, 2022) and on the other hand, individual differences in mental 

resources (Gonthier & Thomassin, 2015; Jarosz et al., 2019; Li et al., 2022) influence what 

strategy an individual applies to an item. Summarized, strategy use is influenced by the 

interrelationship of mental resources of an individual and perceived item properties. Bethell-

Fox et al. (1984) and Snow (1980) came to the same conclusions in their pioneering work. 

They found when the capacity of an individual to hold rules and manipulate objects in the 

mind is exceeded, they switch from constructive matching to response elimination as a 

fallback strategy.  

Such a shift in strategy was observed in the original version of the APM by Gonthier 

and Roulin (2020). Their data showed that all participants progressively shifted from 

constructive matching towards response elimination. Therefore, the current state of research 

suggests that individuals not only “do different things” in terms of strategy use as suggested 

by Vigneau et al. (2006), but also adapt their strategy use individually to perceived item 

properties throughout a test. These individual differences, in how people engage in strategy 

throughout a test, could lead to an increase of variance throughout a test.  

These individual differences can create a systematic change from the first to the last 

item in a reasoning test and has also been described in studies on the structure of reasoning 
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tests (Schweizer, 2006). More specifically, a series of studies used confirmatory factor 

analysis with a fixed-links modeling approach where two latent variables are extracted from 

the items of reasoning tests (e.g., Ren et al., 2015). In such a model one latent variable 

describes reasoning ability and an additional latent variable from the same series of items 

describes increasing individual differences across the test. To account for the increasing 

individual differences the factor loadings of said latent variable are fixed to monotonically 

increase from the first to the last item. Due to the close relationship between the items 

position within the test and the corresponding factor loading, this latent variable is referred to 

as the item-position effect.  

Including the item-position effect in measurement models on reasoning tests has 

repeatedly shown to improve their structural description. Therefore, indicating a source of 

variance in the data that increases from the first to the last item (e.g., Schweizer et al., 2012; 

Troche et al., 2016). Yet, the very nature of this source of variance is still unclear.  

Previous research ruled out item difficulty since the item-position effect also occurred 

when items were not ordered according to their difficulty (Schweizer et al., 2021; Zeller et 

al., 2017) or when item difficulty was statistically controlled for (Schweizer & Troche, 2018). 

Other studies showed that the item-position effect was related to working memory updating 

and shifting (Ren et al., 2017) as well as to proactive control (von Gugelberg et al., 2021) and 

rule learning (Ren et al., 2014; Schweizer et al., 2021).  

Even with the ongoing debate about the origin of the item-position effect, it should 

not be neglected. The mere fact, that it consistently can be detected in measurement models 

of reasoning ability measures speaks for its existence and underlines the necessity to account 

for it. If simply not to draw false conclusions due to subpar data description. This leads to the 

objectives of the current study. 

 

Current Study 

From the current state of research, it can be concluded that constructive matching is 

clearly positively related to performance in the APM (e.g., Jarosz et al., 2019; Jastrzebski et 

al., 2018). Additionally, Gonthier & Roulin (2020) found in their data based on 

questionnaires, that participants changed their strategy throughout test completion while 

Vigneau et al., (2006) found no shift in strategy, but rather an initial difference between 

subjects on what strategy they engage in.  

Both studies point toward individual differences in the applied strategy during test 

completion. To account for this idiosyncratic behavior during test completion, a confirmatory 
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factor analysis with the fixed-links approach is tested on the eye tracking data (i.e., toggle 

rate). This statistical approach allows for potential individual differences in the overall 

strategy applied (as in Vigneau et al., 2006) but also for a shift in strategy (as in Gonthier & 

Roulin, 2020). Therefore, the first objective of the current study is to analyze whether these 

individual differences occur and can be depicted in a bifactor model based on the toggle rate.  

The second objective of the current study is to analyze whether an item-position effect 

can be identified in the APM scores. If a more adequate data description includes the item-

position effect, it should be included in any further analysis.  

The third objective of the current study is to analyze whether reasoning ability is 

related to the toggle rate, and if individual differences in toggle rate throughout test 

completion can be identified, whether it is related to reasoning ability and / or the item-

position effect.  

 

Method 

Participants 

Participants were recruited through the university, other local institutions, online or 

directly by the contributors of the project. Psychology undergraduates received course credit 

and participants without a university entrance qualification received 20 CHF for 

participating. A total of 217 individuals participated. One participant did not declare gender, 

age nor highest level of education. The rest of the sample had a mean age of 27.53 years (SD 

= 11.91 years). Thereof 136 participants described themselves as female, 79 as male and one 

person chose “other”. 136 participants reported having university entrance qualification as 

their highest level of education, 53 a bachelor’s degree or higher, and 27 participants had 

neither. All participants reported normal or corrected-to-normal vision and gave written 

informed consent. The study protocol was approved by the local ethics committee of the 

University of Bern (No. 2020-07-00001). 

 

Raven’s Advanced Progressive Matrices 

The APM is aimed at an high aptitude population (Raven et al., 1998). The black and 

white stimuli of the APM each consist of 3  3 problem matrix with eight geometrical figures 

and the bottom right entry missing. Underneath the problem matrix eight response 

alternatives are presented. As instructed by the manual, participants completed two example 

items followed by the 36 items given in the predetermined order. Contrary to the manual, a 
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time limit was set at 30 minutes for the completion of the 36 items. Additionally, for the ease 

of gathering eye tracking data, all response alternatives were placed in a line (see Figure 1). 

The APM score (1 = correct / 0 = false) for each item was used for the analysis. 

 

Figure 1 

Fictious example item of the APM 

 
 

Toggle Rate 

For the analysis of eye movement data, monocular eye data as used, whereby the eye 

with smaller measurement error was automatically selected by the EyeLink (SR Research, 

2016) system after the calibration and validation procedure. Fixation duration threshold was 

set at 100 ms (e.g., Martarelli & Mast, 2013). For the area of response alternatives and also 

the matrix, an interest area was created. The interest area for the response alternatives had 

additional padding (Bojko, 2013). No padding was added to the interest area of the problem 

matrix, since it already contains blank space around the matrix entries (see Figure 1).  

Data of each individual was checked for drift. Drift occurs when a participant moves 

their head after the calibration and validation process. This leads to a systematic drift in a 

certain direction, leaving many or even all fixations on blank areas of the screen. Whenever 

such a systematic drift was detected, all fixations were moved in cohesion to have them 
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located on reasonable areas of the stimuli. After the raw data inspection, a fixation report for 

each participant was created and the number of toggles was calculated. A toggle was defined 

as a fixation on the matrix followed by a fixation on the response alternatives or vice versa. 

All fixations outside of the defined interest areas were recoded with the value of the interest 

area the previous fixation was in. Therefore, if a participant first fixates on the matrix, then 

stares at empty white space outside of the interest areas (possibly thinking) and then shows 

the next fixation on the response alternatives, this would be counted as a toggle. Without the 

recoding, this type of scan path would not be counted as a toggle, although it qualifies as an 

alternation between matrix and response alternatives during the solving process. For each 

item then the number of toggles was divided though time spent on the corresponding item 

(item latency). Toggle rate of each item was used for the analysis. 

 

Apparatus 

The APM was implemented with the Psychopy v2020.1.2 (Peirce et al., 2019) 

software. Participants used a wired computer mouse to select their answers. Eye data 

collection was made with the the Eyelink 1000 Plus system (SR Research, 2016). Our 

Eyelink setup, had participants use a chin-forehead rest and tracked eye movements with an 

infrared video camera with a 500hz sampling rate. Participants solved the APM on an 18-inch 

Dell computer screen with a resolution of 1280 x 1024 pixels seated 850 mm in front of it. 

Eye movement data as processed using Eyelink’s Data Viewer Software (SR Research, 

2016).  

 

Procedure 

Data was collected as part of a larger two-part study. During the first session, 

participants completed several tasks not relevant for the present study and also answered a 

socio-demographic questionnaire. The second session took place at least 24 hours after the 

first session. During the second session eye movement data and other physiological data was 

collected during the completion of several tasks. After attaching all electrodes and instructing 

participants about the chin-forehead rest, the data collection of the second session started 

with participants completing the APM. 

The start of the APM initialized the Eyelink 1000 Plus system (SR Research, 2016), 

and prompted the experimenter to calibrate the eye tracking measurements. After successful 

calibration, a validation was completed. Standard 9-point calibration and validation 

procedure was applied until an eye-tracking error below 0.8° was obtained. After reading the 
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instructions of the APM and solving two example items, participants had 30 minutes to solve 

all the APM items. The remaining time was displayed in the top left corner of the screen. 

Each item was separated by a stimulus interval of 2 seconds. During this interval a fixation 

cross was presented in the middle of the screen. When the time limit was exceeded or all 36 

items were answered, participants completed other tasks, not relevant to the present study.  

 

Statistical Analysis 

For the Analyses the R packages lavaan (Rosseel, 2012) and psych (Revelle, 2011) 

were used. All confirmatory factor analyses were run with robust maximum likelihood 

estimation. 

For the first objective of this study, two different models were fit to the toggle rate 

data. The goal was to analyse whether a bifactor model (Figure 2, Panel B) indeed can 

describe the toggle rate and its proposed variability more accurately than a one-factor model 

(Figure 2, Panel A). For the bifactor model, a second latent variable was introduced. For this 

second latent variable, the factor loadings were set to linearly increase from the first to the 

last item (Schweizer & Troche, 2018). This second latent variable would depict a change in 

toggle rate throughout the test and possibly reflects a change in strategy, that occurs 

throughout test taking (Gonthier & Roulin, 2020). The correlation between the two latent 

variables of the bifactor model was set to zero. For such bifactor models, both latent variables 

should explain a significant portion of variance (e.g., Lozano 2015; Ren, Gong et al., 2017) 

adding additional relevance beyond increased model fit.  
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Figure 2 

Illustrates the one factor and bifactor model 

 
Note. Model A illustrates a one-factor model with one factor for reasoning ability or 
basic toggle rate. Model B shows a bifactor model where an item-position effect or 
the change in toggle rate is included in the analysis respectively. 

 

For the second objective of the current study, we analysed whether an item-position 

effect emerged in the APM score data. To do so, we fit the same two models to the APM 

score data as to the toggle rate. In the bifactor model one latent variable depicts reasoning 

ability and the second the item-position effect (Figure 2, Panel B). The modelled increase for 

the latent variable of the item-position effect describes the growing relation between 

observed item responses and the item-position effect. For these two models fit to the APM 

scores we used the threshold free approach introduced by Schweizer (2013) with probability-

based covariance matrices, and factor loadings weighed by the item’s standard deviation to 

account for the difference between binary data distribution and normal distribution 

(Schweizer et al., 2015). For the reasoning ability latent variable this link was creating by 

setting the starting value of the factor loading estimation equal to the respective items 

standard deviation (this works just like pre-multiplication, see Rosseel, 2012). For the latent 

variable depicting the item-position effect this link was created by multiplying the value for 

the linear increase with the respective item standard deviation. 
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For the third objective of the current study, the best measurement model for the APM 

scores and the toggle rate, was selected to fit a final model. In the final model the relation 

between reasoning ability and basic toggle rate was examined and their relation with a 

possible change in toggle rate and / or the item-position effect. 

Each measurement model was evaluated with descriptive fit indicines. As a 

Goodness-of-Fit measure the Comparative Fit Index (CFI) is frequently used, higher value 

indicating a better fit relative to the independence model. For the CFI a value above 0.90 

indicates an acceptable fit, and values above 0.95 a good fit. For the overall model fit the 

Root Mean Squared Approximation (RMSEA) should be below 0.08 for an acceptable fit and 

below 0.06 for a good fit. The RMSEA, as its name implies focuses on the error of 

approximation. The error of approximation is indicative of the lack of fit of the calculated 

model compared to the model based on the population covariance matrix. The RMSEA is 

assumed to be relatively independent of sample size and favours parsimonious models, which 

is of special interest for the current study (Schermelleh-Engel et al., 2003).  

Models were compared with the Akaike Information Criterion (AIC). The AIC 

adjusts for parsimony, making it an important criterion when comparing competing one-

factor and bifactor models. Lower values indicate better fit (Schweizer 2010). In addition to 

the AIC the Chi-square difference test to compare models. Variances of latent variables were 

scaled according to Schweizer, Troche, et al. (2019). Data and R-script with the exact factor 

loadings for the analysis can be accessed on XXX. 

 

Results 

Due to technical difficulties only 210 participants had complete data. One participant 

was excluded from further analysis because of missing information about their age. Six 

participants had faulty eye tracking data, caused by a recording failure. With the strict time 

limit implemented in the study, not all participants managed to complete all 36 items. Only 

163 participants completed all items, indicating that results toward the end are clearly 

influenced by the implemented time limit (see Figure 3). Yet all 210 participants completed 

the first 22 items. 
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Figure 3 
Number of participants that did not solve an item due to implemented time limit 

 
Note. Given are the number of missing values per item due to the implemented time limit. 

 

To only include 22 items in the analysis would increase the risk of not detecting a 

shift in strategy observed by Gontheir and Roulin (2020). This is also true for the item-

position effect, as theory suggests it develops over the course of a test. Deciding on a too late 

cut off (e.g., item 30), would come at a cost of power if we would want to exclude all 

participants that did not complete all items used for the analysis (n = 199). Also, a sample 

with a too late cut off, would include a disproportionate number of participants that worked 

through the APM items at a faster pace. Therefore, we decided the best trade-off would be to 

include the first 27 items for the analysis. This included a total of 207 participants in the final 

analysis (different cut offs reveal the same pattern of results, see supplementary for more 

details).  

The scores in the APM of the remaining 207 participants show that for the selected 

sample item difficulty increased (lower value in Pi) and the standard deviation also increased 

throughout the test (see Figure 4). The mean accuracy across all 27 items of the sample was 

18.34 with a standard deviation of 5.63. Internal consistency for the APM in the analyzed 

sample was good (Cronbach’s alpha = 0.87).  
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Figure 4  
Difficulty (Pi) and standard deviation for all items  

 
Note. Difficulty is depicted by the dashed line and little squares. Little circles and the solid polynomial 

regression depict standard deviation. 

 

Figure 5  
Mean item latency for all items 

 
Note. Linear and local polynomial regression fitted line for analyzed sample and colored for each 

participant. 
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Figure 6 
Absolute numbers of Toggles for the 27 analyzed items and participants 

 
Note. Linear (black) and local polynomial (green) regression fitted line for analyzed sample and 

colored for each participant. 

 

Figure 7 

Toggle rate for 27 analyzed items and each participant 

 
Note. Linear (black) and local polynomial (green) regression fitted line for analyzed sample and 

colored for each participant. 
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Item latency for each item increased (Figure 5) throughout the test. On average 

participants had 14.7 minutes to complete all 27 items with a standard deviation of 5.53 

minutes, indicating that most participants finished the 27 items clearly below the set time 

limits of 30 minutes. Within the full sample a linear increase of item latencies throughout the 

APM can be detected (black line in Figure 5). Fitting a local polynomial regression, we can 

see that for the first items, latencies seem stable, then increase around approximately item 12, 

then somewhat flatten out around item 30 and decrease for the last few items.  

The absolute number of Toggles divided by the respective item latency equals the 

analyzed Toggle Rate. The absolute number of Toggle increased from item to item as 

depicted by the linear regression (in black) in Figure 6. The local polynomial regression (in 

green) did show a slight drop in absolute numbers of Toggles for the last few items. 

The Toggle Rate had high reliability (Cronbach’s alpha = 0.95) and interestingly a 

slight decrease during test completion was observed (see Figure 7). A decrease in Toggle 

Rate would suggest less response elimination and more constructive matching. We did not 

observe an increase in standard deviation for the toggle rate.  

All the models calculated to determine the best measurement model are summarized 

in Table 1 and illustrated in Figure 2. The Toggle Rate showed the best fit for the bifactor 

model where a linear increase for the additional latent variable captures a change in toggle 

rate (Model B). Fit indices indicate acceptable (CFI) and good fit (RMSEA). Both latent 

variables explain a significant portion of variance (basic toggle rate:  = 0.012, z = 2.936, p < 

.003; change in toggle rate:  = 0.0634, z = 4.186, p < .001), and the model shows the lowest 

AIC.  

The bifactor model for the APM scores shows a better fit compared to the one-factor 

model (smaller AIC). Fit indices for Model B on the APM scores indicate acceptable (CFI) 

and good fit (RMSEA, SRMR). Both latent variables explain a significant portion of variance 

(reasoning:  = 0.0287, z = 3.228, p = .001; item-position effect:  = 0.142, z = 3.899, p < 

.001). 
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Table 1 
 χ2 (df) p CFI RMSEA SRMR AIC 

APM scores       

one-factor model / Model A 413.48 (324) .0006 0.907 0.038 0.059 5628 

bifactor model / Model B 394.99 (323) 0.004 0.925 0.034 0.059 5610 

Toggle rate       

one-factor model / Model A 460.39 (324) <.001 0.928 0.047 0.047 -5548 

bifactor model / Model B 430.57 (323) <.001 0.943 0.042 0.047 -5577 

Model with toggle rate and APM scores       

Final model 1672.25 (1371) <.001 0.898 0.034 0.060 -75 

Note. Model A is the respective one-factor model. Model B includes a second latent variable with a 

linear increase and Modell C with a quadratic increase.  

 

For both the Toggle Rate and the APM scores, the bifactor model improved data 

description. Even the AIC specifically penalizing less parsimonious models, preferred both 

bifactor models. Additionally, the added latent variable for the bifactor model described a 

significant amount of variance in the observed variables in addition to the initially assumed 

latent variable, further highlighting its relevance. Hence the final model was calculated 

combining the two best fitting models (Figure 8). The model had acceptable to good fit and 

all latent variables explained a significant portion of variance. The basic toggle rate:  = 

0.012, z = 2.967, p < .003; toggle rate variability:  = 0.034, z = 4.173, p < .001, reasoning:  

= 0.302, z = 3.366, p = .001; item-position effect:  = 0.142, z = 3.907, p < .001 all explained 

a significant portion of variance, therefore contributing to describing the data in the model. 

Exploring modification indices, to possibly increase model fit, 13 modifications with a 

suggested change of 10 – 18 in χ2 value were indicated. Several APM scores and Toggle 

Rates showed correlations among themselves and between each other. The only regression 

indicated was between the observed score variance of item 6 and the latent variable depicting 

innate Toggle Rate. Hence, we decided to leave the final model as is. 

As can be seen in Figure 8, the latent variable for reasoning ability was strongly 

correlated with basic toggle rate, but not the change of toggle rate. The item-position effect 

was strongly correlated with the change in toggle rate, but not the basic toggle rate. To 

illustrate and better understand these relations, descriptive graphics were created. For the 

graphs, the factor scores of the final model were extracted. Then, for the participants with the 

50 highest and the 50 lowest factor scores the toggle rate throughout the test was illustrated 

separately for the respective latent variables. 
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Figure CC 

Correlations between latent variables of the final model 

 

We can see in Figure 9 in the top left corner the toggle rate for participants with high 

factor scores on the latent variable of reasoning ability (red line) and participants with low 

factor scores on reasoning ability (blue line). Participants with higher factor scores on the 

reasoning ability variable show a lower toggle rate for each item compared to participants 

with low reasoning ability factor scores. This means participants rather engaged in response 

elimination when their reasoning ability was low. This is in line with the conclusion of 

Vigneau et al., (2006)  

If we look at the latent variable of the basic toggle rate (top right), participants with a 

higher factor score (red line) also showed an overall higher toggle rate. This indicates that the 

latent variable for the basic toggle rate reflects general toggle rate and individuals with a high 

toggle rate, that most likely engage in response elimination have higher factor scores 

compared to individuals that rather engage in constructive matching. 

Participants with low factor scores (blue line) on the item-position effect (bottom 

left), show no change in their overall toggle rate, meaning there is most likely no change in 

strategy throughout the APM. Participants with high factor scores (red line), reduce their 

toggle rate throughout the APM, reflecting a change in strategy. This indicates that 

participants with high factor scores on the latent variable depicting the item-position effect, 

adapt their strategy during test taking, and shift to making fewer toggles, that is, less response 

elimination or more constructive matching.  

Participants with high factors scores (red line) on change in toggle rate (bottom right) 

show no explicit change in their overall toggle rate. Participants with low values on the other 

hand, show a decrease in their overall toggle rate.  
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Figure 9 
Toggle rate for participants with high or low values on the latent variables 

 
Note. Blue lines represent participants with low factor scores on the latent variable. Red lines represent participants with high factor scores on the depicted latent variable. 
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These results are also reflected in the correlations of the final model, if less 

descriptive. A low value in change of toggle rate is related to a high value on the item-

position effect. And a low value in reasoning ability is related to a high value in innate 

Toggle Rate. Hence the large negative correlations between these latent variables. 

 

Discussion 

Results of the current study provide new information about strategy use during the 

completion of the APM. The first objective was to assess whether individual differences in 

strategy, operationalized trough toggle rate, can be identified and modelled with a 

confirmatory factor analysis using a fixed-links approach. Data description indeed improved, 

after adding a second latent variable to the model. This indicates that accounting for changes 

in toggle rate in addition to innate differences in toggle rate further explain a unique amount 

of variance in the data. It is therefore fair to assume, that there is as Vigneau et al., (2006) 

described a general difference between individuals as to what strategy they mostly use, but 

also as Gonthier and Roulin (2020) found (albeit with a somewhat different trajectory), a shift 

or change occurring of said strategy use during test completion. 

The second objective simply aimed to examine whether an item-position effect indeed 

was present in the APM score data, since this seemed to be a common occurrence within 

reasoning ability measures such as the APM (e.g., Schweizer et al., 2012; Zeller et al., 2017). 

Present results do suggest the presence of an item-position effect in the APM score data. An 

improved model fit was found for the bifactor model and importantly both latent variables, 

reasoning ability and the item-position effect explained a significant amount of variance in 

the data. 

The third objective of the current study was to analyze whether the toggle rate was 

related to reasoning ability, and if a change in toggle rate throughout test completion 

occurred, whether this change is related to reasoning ability and / or the item-position effect. 

The final model to investigate this objective showed a strong negative correlation between 

reasoning ability and innate toggle rate underlining the findings of Vigneau et al., (2006). Our 

data supports that higher reasoning ability scores coincide with a lower toggle rate. Meaning, 

with higher reasoning ability more constructive matching is used. 

Additionally, the final model showed a similarly large negative correlation between 

the item-position effect and the change in toggle rate. This indicates that individuals with a 

pronounced item-position effect, reduce their toggle rate through the test (have a larger 
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negative change – since less pronounced item-position effect seems to elicit no change in 

toggle rate), changing their strategy use (at least to some degree). Taking a closer look at 

common reasoning ability measures the strong relation between the item-position effect and 

the change strategy use becomes inherently logical.  

Most reasoning tests rely on a limited set of different rules, that are combined to 

create different items (e.g., Carpenter et al., 1990). It is therefore safe to assume that when 

the same rule is used repeatedly in a test, some sort of learning takes place. Several studies 

support this assumption (Bui & Birney, 2014; Carlstedt et al., 2000; Verguts & De Boeck, 

2000). In a follow-up study Verguts and De Boeck (2002) even observed that the learning 

effects seem to be rule specific.  

Regarding the item-position effect studies support the premise that continuous 

learning underlies the item-position effect. Results of Ren et al. (2014) and Schweizer et al. 

(2021) showed modest to strong correlational relationships between the item-position effect 

and the performance on complex learning tasks. Therefore, individuals with a pronounced 

item-position effect most likely are effective at rule learning during test completion.  

To learn rules during test taking, constructive matching seems the most expedient 

strategy. When individuals spend time on the problem matrix, they engage in a systematic 

analysis of the stimulus (Snow, 1978) and therefore are able analyze the rules necessary to 

solve the item. Subsequently they then can create an answer in their mind. Hence, individuals 

are more mentally engaged with the rules when they use constructive matching rather than 

response elimination.  

Constructive matching fosters rule learning whereas response elimination does not. 

Constructive matching should facilitate solving subsequent items. This leads us to conclude, 

that individuals who engage in constructive matching and learn the underlying rules of items 

during test taking, are more likely to continue applying constructive matching throughout the 

test. Proceeding from this line of thought, individuals engaging in constructive matching can 

be expected to show a more pronounced item-position. This is reflected in the strong negative 

correlation between the item-position effect and the change in strategy use. 

Pointing to the established positive relation of constructive matching and the 

performance on the APM (e.g., Jastrzebski et al., 2018), it is important to note, that with 

simple training Hayes et al., (2015) found that in a test – retest setting a third of the variance 

in score gains was due to strategy use. Also, when participants were given the rules necessary 

to solve the items beforehand, rendering the learning of rules mute, participants used more 

constructive matching during test completion (Loesche et al., 2015). Gonthier and Thomassin 
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(2015) found that the use of the more expedient strategy, constructive matching, can be 

successfully manipulated, albeit Mitchum and Kelley (2010) did not find enhanced 

performance through strategy training in their data.  

Research therefore suggests that under certain circumstances individuals can be 

supported in selecting the more successful strategy of constructive matching. This 

information is prudent, since differences in strategy use are already observed in young 

children (Starr et al., 2018). The common use of reasoning ability measures to determine 

what level of education seems suitable for young adults (e.g., Sonnleitner et al., 2013; 

Gomez-Veiga et al., 2018), or what outlook a person has in future job performance (e.g., 

Salgado et al., 2003), underlines the necessity for this line of research.  

It seems that simple training in strategy use could enhance performance in reasoning 

ability measures which in turn could impact one’s future. Of course, additional studies on the 

topic are necessary to determine whether score gains through strategy use training would be 

substantial enough to impact live outcomes. Nevertheless, the thought is enticing. 

 

Strategy and Toggle Rate 

For further understanding of the results, a closer inspection of the toggle rate in 

general is warranted. Overall, a decrease in toggle rate was observed, indicating that 

participants used more constructive matching towards the end of the APM. This is the 

opposite of what Snow (1980), or Bethel-Fox et al. (1984) concluded from their results. They 

reported a decrease of constructive matching on difficult items. With the nature of the APM 

later items are more difficult than earlier items. Therefore, we would have expected an 

increase in toggle rate, created by more response elimination and less constructive matching.  

Such an increase in response elimination was found by Gonthier and Roulin (2020). 

In their study individuals either solved the odd or even items of the APM in progressive order 

and answered two questions about their strategy after each item. With 100 participants for 

each version (odd/even) of the APM administered, results are supported by enough statistical 

power and are reliable. Nevertheless, implementing the same measure for reasoning ability, 

having a similar overall sample size, different results emerge. The only difference in 

administration was the set time limit and the means of measuring strategy (eye-tracking vs 

questionnaire). 

The set time limit to complete the APM, requires a closer look at item latencies. Item 

latencies in Gonthier and Roulin (2020) increased during APM completion upon item 30, and 

then decreased. Authors believe this to be a sign of disengagement of participants as items 
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became too taxing. This pattern was not replicated within our data. Item latencies for the full 

sample also increased upon item 30, but then seem to flatten out (see Figure 5). Of course, it 

must be mentioned, that with the time limit of 30 minutes, not all participants have worked 

on the later items. Therefore, item latencies for the last items are somewhat biased, since only 

individuals are included that worked through the items with a faster pace. Nonetheless, this 

points towards a qualitative difference between samples, which could be a source for the 

differences in results.  

A further visual inspection of item latencies supports the idea of qualitative 

differences between presented results. Our data shows a different change in item latencies 

throughout test taking between high and low reasoning ability individuals (see Figure 10). 

While all participants show an increase in item latencies, these increases start to deviate from 

each other around item 15. Participants with high reasoning ability factor scores show a 

larger increase in item latency and this difference between participants with high and low 

reasoning ability factor scores grows, up until approximately item 30 and then seems to 

shrink for the last few items. This makes sense, since as displayed in Figure 9, participants 

with higher reasoning ability progressively used more constructive matching, which requires 

a more detailed analysis of the problem matrix, possibly requiring more time to solve more 

difficult items. Nevertheless, further investigations as to what circumstances led to the 

difference between the present results and findings of Gonthier and Roulin (2020) are 

paramount.   
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Figure 10 
Item Latencies for participants with high or low reasoning ability factor scores 

 
Note. Given are item latencies in seconds for the participants with the 50 highest (in red) and 50 

lowest (in blue) reasoning ability factor scores of the final model. 

 

Our results also diverge from other work. Consulting work based on eye-tracking 

data, Vigneau et al. (2006) found a positive relation between strategy use and reasoning 

ability but not any shift or change in strategy use. This does not coincide with our 

observations. Possibly the study design, using a subset of APM items without easy items, and 

a sample size of 55 participants did not allow for the detection of an adaption in strategy. 

With their sophisticated analysis of eye tracking data, authors concluded, that an inherit 

difference in reasoning ability influences the outcome of what strategy an individual engages 

in. When consulting the results from the full model of the current study, we can see in Figure 

9 (top left), that if we differentiate between basic toggle rate and change in toggle rate, that 

indeed individuals with low reasoning ability have a higher toggle rate compared to high 

ability individuals. These results are therefor in line with the conclusions of Vigneau et al. 

(2006). But in addition, we observed individual differences of change in toggle rate.  

Some individuals did not change their strategy throughout the test, while others 

showed a decrease in toggle rate, indicating more constructive matching. Interestingly, this 

change in toggle rate was not associated with reasoning ability when the item-position effect 
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was accounted for (Figure 8). If we disregard the existence of the item-position effect, a small 

correlation (r =-.28) between change in toggle rate and reasoning ability can be detected.  

This would be in line with the findings of Liu et al. (2023) where an increase in 

constructive matching was found for high ability group, whereas no change for medium and 

slight decrease for low ability groups occurred. Their regression analysis also revealed that 

the main effect of item-difficulty was not significant in predicting the usage of constructive 

matching. The interaction term of intelligence and item-difficulty on the other hand was 

significant, indicating that ability effects the relation between constructive matching and 

item-difficulty. 

Unfortunately, item-difficulty and item-position are strongly confounded in the APM, 

making a clear separation of the two somewhat impossible. Alas, the current results cannot 

provide further evidence along this line of research. Also, the direct comparison of the 

present results with the conclusions from Liu et al. (2023), albeit interesting are to be 

overinterpreted, since our analysis clearly showed an item-positing effect in the data and 

theirs did not. Therefore, present data does not support the assumption that, reasoning ability 

coincides with a change in strategy (i.e., toggle rate).  

Current results show that the change in strategy is strongly related to the item-position 

effect. Individuals with a high manifestation of the item-position effect show low values in 

the latent variable depicting change in toggle rate. The analysis of Vigneau et al. (2006) or 

Liu et al. (2023) did not include an item-position effect, which could be a reason for the 

diverging results.  

As we can see in Figure 9 low values on said latent variable indicate a change to more 

constructive matching throughout test completion. Therefore, individuals with a strong 

influence of item-position start using more constructive matching while solving the APM. 

These results are in line with the learning hypothesis brought forward by Ren et al. (2014) 

and support the presented conclusion, that constructive matching fosters rule learning.  

Looking outside the realm of eye-tracking studies regarding strategy more recent 

work has identified a third strategy. Namely the isolate-eliminate strategy was identified by 

Jarosz et al. (2019) using think out loud protocols. Here individuals isolate a group of 

response alternatives based on one characteristic that is easy to identify by the individual to 

be a wrong answer. Basically, bad lures, that are easy to discern are isolated in groups and 

eliminated, leaving fewer and fewer options to choose from, increasing the likelihood for a 

correct answer.  
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Li et al. (2022) also found a third strategy running a latent profile analysis on in their 

questionnaire data. Interestingly the questionnaire aimed to identify to what extent an 

individual uses constructive matching or response elimination. Questions were translated 

from the set used by Jasterzebski et al., (2018). The additionally identified strategy had 

individuals scoring high on questions regarding constructive matching as well as response 

elimination. While the authors found differences in APM performance for the three groups, 

there was no difference regarding the toggle rate between the response elimination and the 

third group. 

It seems that toggle rate does not distinguish between the response elimination 

strategy and the possible third strategy, isolate-eliminate. Also, from the current state of 

research it is not yet clear, whether the third strategy found by Jarosz et al., (2019) within 

their think out loud protocols is the same additional strategy found by Li et al., (2022). 

Further research, maybe of a more explorative nature regarding strategy might shed light on 

this conundrum. 
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A B S T R A C T

For adequate description of reasoning test data, the consideration of the item-position effect (IPE) as a second 
latent variable in addition to reasoning ability is often required. The present study investigated the assumption 
that the learning of rules underlies the IPE. The factorial structure of two figural analogies tests was compared. 
429 participants (age: 18–56 years) were randomly assigned to two conditions. In the continuous rule condition, 
the same rule had to be applied to all items and a typical IPE emerged. In the discontinuous rule condition, rules 
suddenly changed for the last items. This change led to the disruption of the IPE. A third latent variable was 
required to describe variance in the last items. Thus, the repetition of rules seems to be a precondition for a 
continuous IPE across test items. This is first evidence beyond correlations that individual differences in rule 
learning underlie the IPE.
Educational relevance: Reasoning tests are frequently used as an indicator of (general) intelligence and are 
valuable predictors of academic achievement. Our online experiment provides evidence for the notion that in-
dividual differences in reasoning tests are influenced by ad hoc rule learning during test taking that can be 
described as a latent variable and separated from the innate reasoning ability. These findings highlight the 
importance of not only looking at the overall performance but paying more attention to the dynamics of the test 
taking process itself.

1. Introduction

In structural models of intelligence (e.g., Carroll, 1993; McGrew, 
2009), reasoning abilities (at a first stratum) entail the abilities to draw 
inferences from predetermined premises, to detect relations, to identify 
rules in a set of figures and to solve logical puzzles or abstract problems 
(Carroll, 1993). These abilities form the components of fluid intelligence 
at a second, broader and more abstract stratum defined as the ability to 
solve novel problems by controlled cognitive processing (McGrew, 
2009). This broad ability is closely related to general intelligence at the 
third (and highest) stratum of hierarchical intelligence models 
(Johnson, te Nijenhuis, & Bouchard Jr, 2008; Kan, Kievit, Dolan, & van 
der Maas, 2011; Kvist & Gustafsson, 2008). This close relation between 
fluid and general intelligence might be the reason why reasoning tests 
are not only an integral element of the most established test batteries 
such as the Wechsler tests (Wechsler, 2017) but also the most used in-
struments when intelligence is measured by a single scale instead of a 
test battery (Roth & Herzberg, 2008).

Although most reasoning tests use a series of very similar items, they 
have frequently found to be less homogenous than one might expect. 
Often a one-factor solution failed to describe the responses to items of a 
reasoning test well (e.g., Dillon, Pohlmann, & Lohman, 1981; Van der 
Ven & Ellis, 2000; Vigneau & Bors, 2008). Several reasons for this lack of 
homogeneity have been proposed primarily for Raven's Advanced Pro-
gressive Matrices (RAPM; Raven & Raven, 2003), which are used 
frequently to measure reasoning in psychological research. Like many 
measures of reasoning ability, the RAPM consist of a series of similar 
problems/items.

Possible reasons for the lack of homogeneity of the RAPM were 
described by Carpenter, Just, and Shell (1990). They highlighted that 
the number and type of rules differ between items. DeShon, Chan, and 
Weissbein (1995) emphasized that some RAPM items required visuo-
spatial and other items verbal-analytic processes. Embretson (1995)
found that modeling two abilities underlying the responses of RAPM 
items described her data well. One of these abilities was required by all 
items in a similar way, and the other ability was more relevant for later 
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than earlier items.
Embretson's (1995) idea of two latent variables underlying the per-

formance on reasoning test items has been revived in the last years by 
applying confirmatory factor analysis (CFA; e.g., Schweizer, Reiss, 
Schreiner, & Altmeyer, 2012). With this approach, a bifactor model is fit 
to the data, where a first latent variable representing reasoning ability is 
complemented by a second latent variable capturing the increasing 
(true) item variance from the first to the last item of a reasoning test. In 
this bifactor model, the second latent variable can be extracted from the 
same set of items as the first latent variable because its factor loadings 
are fixed to monotonically increase from the first to the last item (e.g., 
Zeller, Krampen, Reiss, & Schweizer, 2017). Since the factor loadings of 
the second latent variable increase with the items' position, this latent 
variable is referred to as item-position effect (Schweizer, Schreiner, & 
Gold, 2009). This approach focuses on the systematic variation of data. 
Different sources of response behavior lead to different patterns of sys-
tematic variation that need to be captured by different latent variables 
reflecting interindividual differences.1

A common finding of such studies is that both reasoning ability and 
the item-position effect explain substantial and unique portions of in-
dividual differences in test performance and their concurrent consider-
ation does not only improve the model/data fit but leads to an improved 
data description (Schweizer et al., 2012; Troche, Wagner, Schweizer, & 
Rammsayer, 2016). This has been shown for the RAPM (Ren, Schweizer, 
Wang, Chu, & Gong, 2017) but also for Horn's (1983) sequential 
reasoning test (Ren, Gong, Chu, & Wang, 2017), Cattell's Culture Fair 
Test (Troche et al., 2016) and Formann, Piswanger, and Waldherr's 
(2011) Vienna Matrices Test (von Gugelberg, Schweizer, & Troche, 
2021).

The relevance of the item-position effect can not only be seen in its 
contribution to better data description but also in its predictive value for 
performance in everyday life. Ren, Schweizer, Wang, and Xu (2015)
demonstrated that the item-position effect served as a better predictor 
for verbal and math grades for secondary school students compared to 
the latent variable representing reasoning ability. These results suggest 
that the item-position effect adds to the predictive validity of reasoning 
tests for school grades above and beyond reasoning ability. It does not 
simply represent a method effect but individual differences that are 
psychologically meaningful. Unfortunately, it is still unclear what ability 
is reflected in the item-position effect.

The items of reasoning tests are often arranged with increasing dif-
ficulty. This led to the assumption that the item-position effect reflects 
item difficulty. This explanation was ruled out by simulation (Schweizer 
& Troche, 2018) as well as empirical studies (Zeller, Reiss, & Schweizer, 
2017). Zeller, Reiss, and Schweizer (2017) presented items of the RAPM 
in random order. With this random order, item difficulty was indepen-
dent of item position and the item-position effect still occurred. Addi-
tionally, Schweizer, Troche, Rammsayer, and Zeller (2021) found that 
the difficulty effect was strongly related to the reasoning latent variable 
while the item-position effect could easily be dissociated from it. These 
results show that the item-position effect does not reflect increasing item 
difficulty in reasoning tests.

A more sensible explanation as to why the item-position effect occurs 
could be that most reasoning tests use a limited number of rules and 
their variations and combinations (e.g., Carpenter et al., 1990). It is 
plausible to assume that when a rule is used repeatedly a learning pro-
cess takes place during test completion. This premise is consistent with 
for example, Carlstedt, Gustafsson, and Ullstadius (2000). In their study, 

items of three reasoning tests were presented in two different conditions. 
In one condition, items of the three tests were sorted according to the 
test they belonged to. In the other condition, items of the three tests were 
mixed. In the sorted condition, the later items were more frequently 
solved correctly compared to the mixed condition. Carlstedt et al. (2000)
explained these differences through learning effects from solving earlier 
items transferring to later items.

Also, Verguts and De Boeck (2000) observed learning effects during 
the completion of a reasoning test and individual differences therein. In 
a subsequent study, the same authors found the learning effects in the 
RAPM to be rule specific (Verguts & De Boeck, 2002). Similarly, Birney, 
Beckmann, Beckmann, and Double (2017) identified learning trajec-
tories in the RAPM, that were associated with item position but not with 
item difficulty.

In two previous studies, the RAPM items were divided in two distinct 
sets (Harrison, Shipstead, & Engle, 2015; Wiley, Jarosz, Cushen, & 
Colflesh, 2011). One set consisted of items, where the underlying rules 
were used for the first time (new-rule items), while the other set con-
tained items, where the rules were not new but used a second time 
(repeated-rule items). In both studies, the mean scores indicated that the 
repeated-rule items were easier compared to new-rule items (this was 
not tested for significance) possibly pointing to a learning effect. Har-
rison et al. (2015) additionally found that the repeated-rule items 
correlated stronger with working memory capacity than the new-rule 
items and interpreted their results in terms of learning efficiency.

Proceeding from the evidence for learning during test completion 
enabled by rule repetition, Ren, Wang, Altmeyer, and Schweizer (2014)
put forward the learning hypothesis for the item-position effect. This 
hypothesis states that the learning of rules from item to item leads to 
increasing individual differences across a series of similar items. This 
increase is then reflected in the latent variable representing the item- 
position effect. Ren et al. (2014) also provided empirical support for 
the learning hypothesis. They found a high correlational relationship 
between the item-position effect in the RAPM and the performance in a 
complex-rule learning task. This correlation was conceptually replicated 
by Schweizer et al. (2021).

However, correlational relationships cannot be interpreted in a 
causal manner. The detected correlations between the item-position 
effect and complex learning could also be driven by other common 
cognitive processes involved in both the item-position effect and com-
plex rule learning. Working memory updating, for example, has been 
shown to be related to the item-position effect (Ren, Schweizer, et al., 
2017) as well as learning ability (Gijselaers, Meijs, Neroni, Kirschner, & 
de Groot, 2017; Ropovik, 2014). Therefore, from the observed correla-
tion between the item-position effect and complex rule learning (Ren 
et al., 2014; Schweizer et al., 2021) it cannot be concluded that it is 
indeed learning that creates this connection. From this point of view, the 
learning hypothesis is theoretically reasonable, but there is no evidence 
beyond such of correlational analyses to support it.

The aim of the current study was to provide more direct evidence for 
the learning hypothesis by using an experimental design with two con-
ditions. For the continuous rule condition, we created a set of 24 figural 
analogies where the same rule was applied throughout the whole test. 
Since the rule could be applied to different elements, item difficulty 
increased by applying the rule to multiple elements in a single item. If 
the learning of rules during test completion underlies the item-position 
effect, the item-position effect should emerge across the items of this set 
of figural analogies.

In a second condition, the discontinuous rule condition, the first 18 
items were identical to the continuous rule condition and should also 
elicit an item-position effect. However, for the last six items, new rules 
had to be applied to solve the items correctly. This introduction of new 
rules, rules which could not have been learned through earlier items, 
should disrupt the item-position effect, if it is truly caused by the 
learning of rules during test taking. We assume another item-position 
effect to emerge from the last six items that would be clearly 

1 In contrast to latent-growth models, the mean structure that is expected to reflect the individuals' 

trajectories (i.e., individual differences) is not part of these models. The fixed-links modeling approach 

differs from item-response models on the item-position effect, which focus on the dependence of item 

difficulty parameters on the item position (Debeer & Janssen, 2013; Lozano & Revuelta, 2020), while 

the dependence of item discrimination parameters on item position has rarely been investigated (but see 

Nagy, Nagengast, Becker, Rose, & Frey, 2018).
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dissociable from the item-position effect across the first 18 items.
More specifically, in both conditions, we assumed a latent variable 

representing reasoning ability. In the continuous rule condition, an item- 
position effect from the first to the 24th item was expected. Therefore, a 
bifactor model with two latent variables should describe the data well. 
In the discontinuous rule condition, the sudden change of rules should 
disrupt the item-position effect after the 18th item, requiring a third 
latent variable to appropriately describe the data. In other words, we 
expected a latent variable representing reasoning ability, a latent vari-
able representing the item-position effect from the first to the 18th item 
and a third latent variable reflecting a new item-position effect across 
the last six items in the discontinuous rule condition.

2. Method

2.1. Participants

The experiment was conducted online using the QuestBack survey 
tool (EFS Survey, 2019). Undergraduates in psychology received course 
credit for their participation and all other participants could take part in 
a raffle for ten vouchers worth 20 CHF. The link to the study was 
accessed 1889 times, but 1264 individuals abandoned the experiment 
after accessing the welcome page. An automatic randomizer was pro-
grammed to randomly assign participants to the continuous rule (n =
216) or to the discontinuous rule condition (n = 213) after reaching the 
18th item. Data of 429 individuals, who completed all items, were 
included in further analyses. Their mean age was 23.9 years (SD = 6.6). 
One person chose not to declare gender, while 149 reported to be male 
and 279 to be female. Fifty-nine participants reported a Bachelor's de-
gree or higher as their highest level of education, 320 a university 
entrance qualification, and 48 participants had neither. All participants 
gave written informed consent prior to their participation by ticking a 
box on the welcome page of the survey. The study protocol was 
approved by the ethics committee of the Faculty of Human Sciences of 
the University of Bern (No. 2021–02-00003).

2.2. Test of figural analogies

Two Tests of Figural Analogies (TFA) were created using the IMak 
package in R developed by Blum and Holling (2018). Previous studies 
have demonstrated that figural analogy items generated with the IMak 
package can have satisfactory reliability and convergent validity with 
other analogy tests (Blum & Holling, 2018) although, these indicators 
cannot be transferred to newly created test items.

In this study, IMak items can follow one to three rules and are 

composed of a top and a bottom area (see Fig. 1). The top area consists of 
a 2 × 2 matrix with three figures and a question mark as the lower right 
entry. The bottom area of each item contains eight figures and two 
verbal responses (“No response is correct” and “I don't know”) as 
response alternatives.

To solve an item correctly a rule in the figures of the top area must be 
identified and applied to select the correct figure from the bottom area 
to substitute the question mark in the top area. The rule can either be 
deduced using the information provided by the two figures in the first 
row or column.

Each figure was composed of the elements “main shape”, “dot” and 
“trapezium”. The IMak package provides three main rules for item cre-
ation. The figure itself can be mirrored (Rule 1), straight lines of the 
main shape can be removed (Rule 2) or single elements can be moved 
(Rule 3). Within Rule 3, it is possible to move the trapezium or the 
opening of the figure clockwise and counterclockwise. It is also possible 
to choose the degree of movement, for example a 45◦ movement. The 
dot can be moved along the edges of the opening. Again, direction of 
movement and the number of edges the dot passes can be defined.

Instructions were translated and adapted from the supplementary 
material provided in Blum and Holling (2018). Participants first 
received a general instruction about the elements in an item (similar to 
Fig. 1), and a generic instruction on how to solve an item. The generic 
instruction emphasized, that the relation between the two figures in the 
first row (or the first column) should be identified and transferred to the 
second row (or column) to infer what the missing figure (represented by 
the question mark) should look like. The task was then to choose the 
corresponding figure from the bottom area. In this generic instruction no 
reference was made to any specific rule. The generic instruction also 
stated that, if participants could not find the corresponding solution in 
the figures of the bottom area, they should select the option “No 
response is correct” and if the item was too difficult for them to solve, to 
select the option “I don't know”. This was followed by the same three 
practice items in both conditions. The three practice items only included 
Rule 3, moving the elements. For the practice items, the generic in-
struction was augmented with specific information about Rule 3 (e.g., 
direction of movement, what element was moved). Rule 3 was first 
applied to the main shape, then the trapezium, followed by the dot. 
Practice items had to be solved correctly to proceed with the test and 
were not included in any analyses reported below.

All items of the TFA version presented in the continuous rule con-
dition were created using only Rule 3, where main shape, dot, or tra-
pezium were moved (see Supplementary Material for example items). 
For the first six items, participants had to apply the rule only for one of 
the elements to solve it correctly. In the following nine items, two ele-
ments moved concurrently. The movements of the two elements were 
independent from each other. For example, the trapezium would move 
45◦ clockwise while the main shape moved 90◦ counterclockwise. 
Finally, all three elements (i.e., main shape, dot, and trapezium) moved 
simultaneously in the last nine items. Again, the degree and direction of 
the movement was different for each element. This ensured that the 
rules applied did not accidentally cancel each other out.

In the TFA version used for the discontinuous rule condition, the first 
18 items were identical to the TFA version in the continuous rule con-
dition. Thereafter, six items were created with the remaining two rules. 
For each item, the figure itself had to be mirrored (Rule 1) and the 
correct line of the main shape had to be removed (Rule 2) to identify the 
correct answer (see Supplementary Material for example items - contact 
corresponding author for full TFA item sets). No time limit was set in 
either condition. Participants only received feedback for practice items.

2.3. Procedure

Participants were informed prior to their participation that mobile 
devices would not work. If a participant accessed the study with a mo-
bile device, the study was automatically terminated after the welcome 

Fig. 1. Example item from the Test of Figural Analogies (TFA). 
Note. Item created with the IMak package in R. Top left item in the bottom area 
is correct. “Keine Antwort ist richtig” means “No response is correct”; “Ich weiss 
nicht” means “I don't know”.
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page. This ensured a reasonable screen size and similar handling for 
giving responses across all participants. After the welcome page with 
information about the study and the request to confirm their informed 
consent participants responded to several demographic questions (par-
ticipants indicating a diagnosed learning disability were excluded from 
the sample), followed by the TFA. The TFA version was randomly 
assigned upon completion of the 18th item. Thereafter, participants 
completed further tasks irrelevant for the current study.2 On the final 
page all participants were given contact information for potential 
questions and were informed about the purpose of the study.

2.4. Statistical analysis

Analyses were run with R software using the lavaan (Rosseel, 2012) 
and psych (Revelle, 2011) packages. To compare participants' test scores 
between conditions, two sample Welch tests were calculated. To test the 
main hypotheses different one- and bifactor models were fit to the data.

All CFAs were based on probability-based covariance matrices3 as 
suggested by Schweizer (2013) for binary data and robust maximum 
likelihood estimation. To account for the difference between binary data 
distribution and normal distribution assumed for the latent constructs, 
the factor loadings were weighted by the standard deviation of the 
respective item (Schweizer, 2013).

For the investigation of the item-position effect, the continuous rule 
condition served as the control or reference condition as we expected the 
item-position effect to develop across all 24 items. Therefore, we first 
analyzed the continuous rule condition data for it's fit regarding three 
different models (see Table 1). The one-factor model (Model 1) was 
compared with two bifactor models (illustrated in Fig. 2, Panel A) to 
examine whether the consideration of an item-position effect as a second 
latent variable improved data description.

The factor loadings in the bifactor models of the latent variable 
reflecting the item-position effect were either fixed to linearly (Model 2) 
or quadratically increase (Model 3) from the first to the last item. These 
two different courses are most often investigated (e.g., Schweizer & 
Troche, 2018; Schweizer, Troche, & Rammsayer, 2011). The correlation 
between the latent variables representing reasoning ability and the item- 
position effect was set to zero. All variances of latent variables with fixed 
factor loadings were estimated freely. Since the size of these variances 
(and their standard errors) depends on the height of the chosen factor 
loadings, the variances of the final model were scaled according to the 

eigenvalue scaling method (Schweizer & Troche, 2018). Comparing the 
scaled variances provides information about the relative strength of the 
latent variables within the model.

The same three models (Table 1) were fit to the 24 TFA items in the 
discontinuous rule condition. A bifactor model was expected to result in 
a good fit for the continuous rule condition but an inadequate fit for the 
discontinuous rule condition due to the experimental manipulation of 
rules.

Therefore, in a final step, additional bifactor models with three latent 
variables (see Fig. 2, Panel B) were fit to the data of each condition. In 
these models, the latent variable representing the item-position effect 
was modeled with increasing factor loadings from the first to the 18th 
item. For the last six items (19 to 24) a third latent variable was defined. 
The factor loadings continued the course set for the latent variable 
representing the item-position effect. Again, the correlations between 
the latent variables were set to zero. Further models where, for example, 
factor loadings started anew for the third latent variable were also 
calculated to examine alternative explanations (see Supplementary 
Analyses).

All models were evaluated regarding their fit indices as recom-
mended by DiStefano (2016). For the Root Mean Squared Error of 
Approximation (RMSEA), values below 0.08 indicate an acceptable and 
below 0.06 a good fit; Standardized Root Mean Square Residual (SRMR) 
indicates an acceptable fit below 0.10 and a good fit below 0.08; 
Comparative Fit Index (CFI) and Tucker Lewis index (TLI) are evaluated 
as acceptable with values above 0.90 and as good with values above 
0.95. Model comparisons were based on comparisons of CFI, the Akaike 
Information Criterion (AIC), and Bayesian Information Criterion (BIC). 
Lower values for AIC and BIC indicate better fit and higher values of at 
least 0.010 in the CFI indicate better fit, respectively (Chen, 2007).

Additionally, all latent variables in the model should have a positive 
and statistically significant variance. If a variance parameter is not sta-
tistically significant, there is no added value by that latent variable, and 
there is no reason to keep it in a model. The variance is tested for sig-
nificance one-tailed, since negative values are theoretically impossible 
for variance parameters and indicate grave misspecification of a model.

For the final models, the omega coefficients of the latent variables 
were computed according to Bollen (1980). Data and code for the 
analysis can be found in the Supplementary Materials.

3. Results

Since the TFA was completed online and no supervision as in a lab-
oratory setting was possible, two quality checks were put in place. We 
excluded all participants that took <6 min to complete the TFA to ensure 
that only data of participants was included who completed the test with 
enough diligence. From the total of 429 participants who completed all 
TFA items, 16 participants were excluded. We also excluded another 10 
participants since they took longer than an hour to complete all items.

Overall, 403 individuals passed the quality checks retaining a 
balanced allocation between the continuous rule (n = 203) and 
discontinuous rule (n = 200) condition. In the continuous rule condition, 
the mean age of participants was 25.9 years (SD = 6.6), and 68 reported 
their sex as male and 135 as female. Twenty-eight participants reported 
a Bachelor's degree or higher as their highest level of education, 151 had 
a university entrance qualification, and 24 participants had neither. In 
the discontinuous rule condition, the mean age of participants was 25.1 
years (SD = 5.6), and 63 reported their sex as male, 136 as female, and 
one person chose not to declare. Twenty-nine participants reported a 
Bachelor's degree or higher as their highest level of education, 156 had a 
university entrance qualification, and 15 participants had neither.

Descriptive statistics for test scores in the two TFA versions for the 
continuous and the discontinuous rule condition are presented in 
Table 2. Mean accuracy and standard deviations for the 24 items of each 
TFA version are presented in Fig. 3. Test scores of the first 18 items were 
very similar across conditions, t(400.96) = 0.881, p = .379, d = 0.088. 

Table 1 
Overview of calculated models and details regarding the specifications.

Model Structure Latent variable(s) Fixation of factor 
loadings

Model 
1

One-factor 
model

Reasoning ability 1

Model 
2

Bifactor model Reasoning ability 1
Item-position effect (linear 
course)

i
k

Model 
3

Bifactor model Reasoning ability 1
Item-position effect 
(quadratic course)

i2
k2

Note. All factor loadings were additionally weighted by SDi as link function. 
Letter i refers to the respective items position, k refers to the total number of 
items (i.e., 24), SD to the standard deviation.

2 Solving-strategy questionnaire (8 items), Framed-Line Test (20 Items), Figural Matrices (30 Items), 

Solving-strategy questionnaire (8 items), 5 items regarding the online experience while completing the 

study, short written debriefing and contact information of responsible investigator.
3 Models based on tetrachoric correlations, with weighted least squares estimator yield similar 

results and are reported in the Supplementary Materials (Table E).
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This is also visible in the mean accuracies displayed in Fig. 3. When all 
24 items were compared, the performance in the continuous rule con-
dition was significantly better than in the discontinuous rule condition, t 
(400.02) = 3.342, p < .001, d = 0.333. As visible in Fig. 3, the intro-
duction of a new rule in the discontinuous rule condition increased item- 
difficulty. This could explain the difference in performance between 
conditions. The comparison of all 24 items is informative but needs 
cautious interpretation since it is based on different items. Participants 
in both conditions indicated similar diligence for completing the TFA, t 
(380.32) = 0.631, p = .529, d = 0.063. Participants strongly agreed 
when asked whether they took their time to inspect each item to think of 
the correct solution, continuous rule condition = 7.47 (SD = 1.99), 
discontinuous rule condition = 7.58 (SD = 1.55) on a 9-point rating 
scale. In both conditions, the TFA showed good internal consistency in 
terms of Cronbach's alpha (see Table 2). This was true regardless of 
whether the first 18 items were examined, or all 24 items.

In the first step of investigating the item-position effect, the focus was 
on the continuous rule condition, where the movement rule was used 
across all 24 items. As can be taken from the upper part of Table 3, the 
one-factor model (Model 1) led to an adequate data description ac-
cording to CFI, TLI, and SRMR (see Table 3). However, when a latent 
variable reflecting the item-position effect was added (Model 2 & 3), 
model fit improved. Specifically, both bifactor models clearly had 
smaller AIC and BIC values, higher CFI and TLI values and smaller 
RMSEA and SRMR values compared to Model 1. The CFI difference 
exceeded the threshold of 0.010, which is considered to reflect a sub-
stantial difference (Chen, 2007). In both bifactor models, the variance 
parameters of the latent variables yielded statistical significance indi-
cating that there was a substantial portion of variance being explained 
by both latent variables. The overall fit of Model 2 and Model 3 was very 
similar. Nevertheless, Model 2 described the data somewhat better ac-
cording to AIC and BIC. Regarding CFI, TLI, RMSEA, and SRMR the 

differences were rather small but always preferential for Model 2.
Summarized, a linear item-position effect across the 24 items in the 

continuous rule condition could be identified since Model 2 provided the 
best data description with a latent variable reflecting reasoning ability 
and a second latent variable describing a linearly increasing item- 
position effect. The scaled variance parameters were φ = 0.699 (z =
5.960, p < .001) for latent reasoning ability and φ = 0.342 (z = 4.542, p 
< .001) for the item-position effect indicating that about a third of the 
latent variance could be attributed to the item-position effect. Omega 
coefficients were Ω = 0.83 and Ω = 0.64, respectively.

In the next step, we investigated the same three models in the 
discontinuous rule condition (see Table 3). The overall pattern of results 
was somewhat similar to the continuous rule condition: The bifactor 
models (Models 2 & 3) described the data better than the one-factor 
model (Model 1) according to all fit indices except for SRMR. The 
variance parameters of the second latent variable reflecting the item- 
position effect in the bifactor models were statistically significant. 
However, while Model 2 and 3 provided a better data description than 
Model 1, the fit indices (and primarily CFI and TLI) indicated that the 
description was inadequate.

It is plausible to assume that the experimental manipulation of the 
rules caused the different results between conditions. Upon the 18th 
item, scores and completion time were almost identical. With the 
experimental manipulation, the response behavior for the last six items 
in the discontinuous rule condition was expected to differ hence a third 
latent variable might be required in the discontinuous rule condition.

Therefore, two additional bifactor models with three latent variables 
were calculated for the discontinuous rule condition (see Panel B of 
Fig. 2). Proceeding from the results in the continuous rule condition, the 
factor loadings of the latent variable reflecting the item-position effects 
were modeled to increase linearly (as in Model 2). In the first model 
(Model 2a), the correlations between all latent variables were set to zero. 

Fig. 2. Bifactor models with two or three latent variables. 
Note. Fixations of the factor loadings of the item-position effect are either directly divided by k (total number of items, 24) for a linear increase or first squared and 
then divided by k2 (total number of items squared, 242) for a quadratic increase. Panel A shows a bifactor model with two latent variables. Panel B a bifactor model 
with three latent variables. For both models covariances and means of latent variables were set to zero.

Table 2 
Descriptive test statistics for the figural analogies test (TFA).

Condition Items Mean SD Min Max Skewness Kurtosis Cronbach's α
Continuous rule (n = 203) 1–18 13.46 3.58 3 18 −0.81 0.04 0.81

1–24 17.43 5.05 3 24 −0.75 −0.29 0.86
Discontinuous rule (n = 200) 1–18 13.15 3.56 2 18 −0.90 0.42 0.80

1–24 15.81 4.73 2 24 −0.51 −0.08 0.83

Note. For each condition the first 18 items (1–18) and the full set of 24 items (1–24) with their respective descriptive statistics are presented.
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In the second model (Model 2b) the correlation between the two vari-
ables reflecting the item-position effects across the first eighteen and the 
last six items was estimated (see Table 4). For the discontinuous rule 
condition, both models (Model 2a and 2b) led to an adequate data 
description according to CFI and TLI as well as a good data description 
according to RMSEA and SRMR. Additionally, variance parameters of all 
three latent variables were statistically significant. Therefore, in contrast 
to the continuous rule condition, three instead of two latent variables 
were necessary to explain individual differences of response behavior in 

the discontinuous rule condition. This becomes most evident when 
comparing the model fit for the discontinuous rule condition in Table 3
and Table 4.

Model 2a and 2b described the data similarly well according to CFI, 
TLI, RMSEA, and SRMR. This was due to the correlation between the two 
item-position effects not being statistically significant when estimated 
freely, r = 0.173, p = .378. This supported the idea that the item-position 
effect extracted from the last six items with new rules was independent 
from the item-position effect across the first 18 items. Consequently, the 

Fig. 3. Accuracy and standard deviation for each item in both conditions. 
Note. Dashed lines depict values in the continuous rule condition, solid lines in the discontinuous rule condition. Squares refer to item accuracy, empty and filled 
circles to the standard deviation in the continuous and in the discontinuous rule condition, respectively. Smooth lines depict the trend lines of the standard deviations 
in the two conditions.

Table 3 
Measurement models with one or two latent variables calculated for both TFA versions (continuous rule and the discontinuous rule condition).

Condition χ2 (df) p AIC BIC CFI TLI RMSEA SRMR p (φ reasoning) p (φ IPE 1)

Continuous rule
Model 1: one-factor model 314.81 

(275)
0.049 4636 4718 0.940 0.940 0.029 0.089 <0.001

Model 2: bifactor model: IPE fixed to linearly increase 286.79 
(274)

0.286 4605 4691 0.981 0.981 0.017 0.076 <0.001 <0.001

Model 3: bifactor model: IPE fixed to quadratically 
increase

289.65 
(274)

0.247 4608 4694 0.977 0.976 0.018 0.078 <0.001 <0.001

Discontinuous rule
Model 1: one-factor model 458.61 

(275)
<0.001 4981 5063 0.731 0.730 0.060 0.096 <0.001

Model 2: bifactor model: IPE fixed to linearly increase 412.09 
(274)

<0.001 4937 5023 0.796 0.794 0.052 0.094 <0.001 <0.001

Model 3: bifactor model: IPE fixed to quadratically 
increase

382.26 
(274)

<0.001 4907 4993 0.839 0.838 0.046 0.096 <0.001 <0.001
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fit of Model 2a and 2b was similar but Model 2a provided a slightly more 
parsimonious data description and therefore should be preferred. In 
Model 2a, the scaled variance parameters of the latent variables were φ 
= 0.633 (z = 5.561, p < .001) for reasoning ability, φ = 0.144 (z =
3.026, p = .002) for the item-position effect across the first 18 items, and 
φ = 0.370 (z = 7.153, p < .001) for the item-position effect across the 
last six items. Omega coefficient of the reasoning latent variable was Ω 
= 0.81, while the omega coefficients for the first and the second item- 
position effect latent variable were Ω = 0.43 and Ω = 0.70, respectively.

We also tested whether these bifactor models with three latent vari-
ables would better fit the data in the continuous rule condition (see 
Table 4). With the first latent variable depicting the item-position effect 
in Model 2a not explaining a significant amount of variance, the model 
must be rejected despite acceptable fit. In Model 2b, where the corre-
lation between the two item-position effects was freely estimated, all 
three latent variables explained a significant amount of variance 
(reasoning ability: φ = 0.680, z = 5.619, p < .001; first item-position 
effect: within the first 18 items: φ = 0.185 z = 3.137, p = .002; sec-
ond item-position effect: φ = 0.223, z = 4.624, p < .001). Interestingly, 
the model fit was similar to the bifactor model with only two factors 
(Model 2). This can be explained by the large correlation between the 
two latent variables representing item-position effects, r = 0.720, p =
.001. Such a high correlational relationship points to a substantial 
overlap between the first and the second item-position effect and casts 
doubt on the need for an additional item-position effect for the last six 
items.

Summarized, the bifactor model with two latent variables (Model 2) 
provided a good data description in the continuous, but not in the 
discontinuous rule condition. In the discontinuous rule condition, the 
bifactor model with three latent variables (Model 2a) provided a sub-
stantially better data description. Hence, due to the experimental 
manipulation no configural invariance could be obtained between the 
two TFA versions of the continuous and discontinuous rule condition. 
When the factorial structure of a test does not show configural invari-
ance between groups, stricter comparisons (e.g., for metric or scalar 
invariance) are not appropriate.

3.1. Supplementary analyses

For a comprehensive analysis and a closer look at possible alternative 
explanations, additional models were calculated. Here, we give a brief 
overview; detailed information on the models can be found in the Sup-
plementary Material.

A frequent assumption is that the item-position effect reflects 
increasing item difficulty of items in reasoning tests, although several 
studies ruled this out (e.g., Schweizer & Troche, 2018; Zeller, Reiss, & 
Schweizer, 2017). Nonetheless, additional models where item difficulty 

was used to fix the factor loadings of the latent variable depicting the 
item-position effect were calculated. Results are presented in the Sup-
plementary Material (Table A). Data description was worse for the 
continuous rule condition. For the discontinuous rule condition, the 
bifactor model with three latent variables in Table 4 outperformed the 
bifactor model considering item difficulty. Therefore, we conclude that 
the item-position effect is not a reflection of item difficulty (for similar 
results, see Schweizer & Troche, 2018; Zeller, Reiss, & Schweizer, 2017).

An alternative idea is that the number of rules underlie the item- 
position effect rather than item position. This can be addressed with 
the current experimental design since the number of rules differs be-
tween conditions for the last six items. The bifactor models with two 
latent variables were calculated again but the factor loadings of the 
latent variable representing the item-position effect were fixed accord-
ing to the number of rules underlying the respective item. Results are 
reported in the Supplementary Material (Table B) and indicated no 
noteworthy change in model fit for the continuous rule condition. Given 
the linear increase of rules in this condition, this result is not surprising. 
In the discontinuous rule condition, this approach described the data 
worse than the bifactor model with a linear or quadratic increase of 
factor loadings for the item-position effect. Although our study was not 
designed to specifically test this assumption, our results suggest that it is 
unlikely that the item-position effect reflects the increasing number of 
rules used in the items.

An anonymous reviewer raised the concern, that some sort of speed 
component could underly the item-position effect. To test this hypoth-
esis, we ran additional models with median response latencies as con-
straints. From the results (Table C in Supplementary Material), we 
conclude that the consideration of response latencies leads to similar 
(but somewhat worse) model descriptions in both conditions. Impor-
tantly, the qualitative differences between the first 18 and the last six 
items in the discontinuous rule condition regarding the systematic 
change of rules are nonetheless visible. If a change in processing speed 
(and individual differences therein) accounted for the break in the item- 
position effect, the consideration of this change should lead to a com-
mon factor (or at least to correlated factors). This was not the case.

For the bifactor models with three latent variables, the pattern of 
results did not depend on a specific way of fixing the factor loadings of 
the third latent variable. Here, we used the course of 19 to 24 as con-
straints of factor loadings for the last six items, to keep the models as 
comparable as possible. Model fit and correlations somewhat changed 
when these constraints were set to increase from 1to 6 in order to depict 
a new start of the additional item-position effect (for details see Table D 
in the Supplementary Materials). However, the overall pattern of results 
remained the same.

Additionally, an anonymous reviewer raised the question what the 
model fit would be, if the factor loadings for the additional third latent 

Table 4 
Bifactor models with three latent variables where the correlation between the two item-position effect latent variables was set to zero or estimated freely.

Condition χ2 (df) p AIC BIC CFI TLI RMSEA SRMR p 
(φ 
reasoning)

p 
(φ IPE 

1)

p 
(φ IPE 2)

Continuous rule
Model 2a / three latent variables, all correlations set to zero 293.56 

(273)
0.188 4613 4703 0.969 0.969 0.021 0.083 <0.001 0.072 <0.001

Model 2b / three latent variables, freely estimated 
correlation between the two IPEs

280.23 
(272)

0.353 4600 4693 0.988 0.987 0.013 0.076 <0.001 0.001 <0.001

Discontinuous rule
Model 2a / three latent variables, all correlations set to zero 321.85 

(273)
0.022 4845 4934 0.927 0.927 0.031 0.078 <0.001 0.001 <0.001

Model 2b / three latent variables, freely estimated 
correlation between the two IPEs

320.80 
(272)

0.022 4846 4938 0.927 0.926 0.031 0.078 <0.001 0.002 <0.001

Note. Given are chi-square (χ2) values with degrees of freedom (df), the respective p-value and the fit indices, RMSEA, SRMR, CFI, and AIC. IPE = item-position effect. 
Last three columns show the p-value for the respective latent variable, indicating whether it described a significant portion of variance.
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variable were estimated freely. This led to a slightly better model fit, 
χ2(272) = 317.824, AIC = 4842.829, BIC = 4935.182, CFI = 0.931, TLI 
= 0.930, RMSEA = 0.029, SRMR = 0.078, compared to the model fit 
reported in Table 4. Interestingly, the factor loadings of items 19 to 24 
were very similar, varying between 0.472 and 0.500. The correlation of 
these factor loadings with the factor loadings depicting a linear increase 
is very high (r = 0.74), albeit questionable due to the small number of 
data points correlated.

4. Discussion

Although reasoning ability tests use very homogenous item material, 
the demonstration of unidimensionality has been frequently challenged. 
Bifactor models, considering a second latent variable in addition to 
reasoning ability to capture increasing (true) variance from the first to 
the last item often led to a substantially better data description. Since the 
factor loadings of this second latent variable reflect the position of the 
respective item in a test, this latent variable is a representation of the 
item-position effect. The origin of the increase in variance is an ongoing 
debate (e.g., Birney et al., 2017; Embretson, 1995; Lozano & Revuelta, 
2020; Ren et al., 2014). The aim of this experiment was to test the 
learning hypothesis (Ren et al., 2014) stating that the item-position ef-
fect can be explained by the learning of rules during test taking.

Consistent with our expectations and as reported in several other 
studies (e.g., Ren, Gong, et al., 2017), a typical item-position effect could 
be identified in the continuous rule condition, since a bifactor model 
with two latent variables yielded the best model/data fit. For the 
discontinuous rule condition, the analog bifactor model did not lead to 
an acceptable data description. Fitting a quadratic instead of a linear 
course of factor loadings for the latent item-position variable, provided 
only a marginally better model fit. Thus, an acceleration of the item- 
position effect in the discontinuous compared to the continuous rule 
condition can be ruled out. A model with three latent variables (Model 
2a/b) resulted in an overall better data description in the discontinuous 
rule condition.

In the bifactor models with three latent variables, the two latent 
variables depicting item-position effects were independent of each other 
in the discontinuous rule condition but closely related in the continuous 
rule condition. Thus, when the rules underlying the test items were the 
same (as in the continuous rule condition), the two latent variables 
correlated highly, and a single latent variable for the item-position effect 
described the data just as adequately as two highly correlated latent 
variables. However, the correlation between the two item-position ef-
fects fell to a non-significant level when the rules were changed in the 
discontinuous rule condition. Hence only in the continuous rule condi-
tion, the item-position effect continued across the last six items where 
the rules remained unchanged, contrary to the discontinuous condition 
where new rules were used. This indicates that the item-position effect 
depended on repeating the same rule rather than simple (increasing) 
familiarity with the stimulus material (which was the same across all 24 
items in both conditions) or the length of the test and possible fatigue 
effects.

Summarized, results suggest that repeatedly being confronted with 
the same rule led to individual differences in the response behavior as 
represented by the latent item-position variable. This means that some 
individuals gained a larger advantage from rule repetition than others. 
In combination with previous results on the functional correlational 
relationship between the item-position effect and rule learning in an 
external task (Ren et al., 2014; Schweizer et al., 2021), the present 
findings provide further evidence for the learning hypothesis (Ren et al., 
2014).

Certainly, there are other explanations for the present findings. We 
tried to rule out some in the analyses reported in the supplementary 
material. It is common practice to arrange items of a reasoning test ac-
cording to their difficulty to avoid discouraging participants at the 
beginning. We chose the same procedure, and later items were more 

difficult than earlier items (see Fig. 2). Alas, item position cannot be 
clearly dissociated from item difficulty in either condition of the current 
experiment. Yet, if the item-position effect was due to item difficulty, the 
data description should be best when the factor loadings were fixed 
according to item difficulty. This was not the case for the continuous rule 
condition (see Table A in supplementary materials). For the discontin-
uous rule condition, there was a slight improvement in fit, but the 
bifactor model with three independent latent variables (in Table 4) still 
outperformed the bifactor model considering item difficulty. Therefore, 
we conclude that there is a qualitative difference between the first 
eighteen and the last six items in the discontinuous rule condition and 
not a quantitative graduation (as one would expect for item difficulty). 
Based on these results, it is unlikely that item difficulty is the source of 
the item-position effect, which is consistent with previous studies 
(Birney et al., 2017; Schweizer & Troche, 2018; Zeller, Reiss, & 
Schweizer, 2017).

It is important to distinguish between item difficulty and item 
complexity. For example, Spilsbury, Stankov, and Roberts (1990)
showed that the number of rules refer to item complexity but not 
necessarily to item difficulty. Carpenter et al. (1990) argued that items 
with more rules are more complex and that an increase in complexity 
leads to an increase in working memory load. This phenomenon should 
lead to an increase in variance throughout the test since individual 
differences in working memory capacity would have a greater impact on 
the later items with more rules than on the earlier items with fewer rules 
(see also Embretson, 1995).

Assuming that item complexity is reflected in the number of rules 
underlying an item, the design of the current experiment allows for 
further exploration of this idea. While in the continuous rule condition 
the number of rules and item position increase (more or less) simulta-
neously, this is not the case in the discontinuous rule condition. Here 
only two rules had to be applied in the last six items but three rules in the 
six items before, allowing for a separation of item position and item 
complexity. Constraining the factor loadings of the second latent vari-
able according to the number of rules did not lead to a better data 
description than the bifactor models with three latent variables in the 
discontinuous rule condition (see Table B in supplement). Therefore, it 
seems unlikely that item complexity (i.e., number of rules) accounts for 
the item-position effect.

These conclusions were further corroborated by the additional ana-
lyses using median response latencies to fix the factor loadings of the 
latent variable reflecting the item-position effect. Response latencies in 
reasoning tests often increase with increasing item difficulty and/or 
complexity (e.g., Neubauer, 1990; Vigneau, Caissie, & Bors, 2006). 
Hence, if the item-position effect reflects task difficulty or complexity, 
the fixation of factor loadings according to median response latencies 
should have provided a good model fit for both conditions regardless of 
the experimental manipulation. This could not be confirmed by our 
analyses making item difficulty and complexity unlikely candidates for 
the underlying source of the item-position effect.

Nagy, Ulitzsch, and Lindner (2023) emphasized the importance of 
rapid guessing or disengagement for understanding changes in response 
behavior during test taking. We asked participants about their test- 
taking experience since the experiment was conducted online. When 
asked if they took their time to inspect the item material and to think 
about the correct solution, 75% of the participants' self-reports indicated 
a value of 7 or higher (on 9-point rating scale). These self-reports did not 
differ between condition. Therefore, it seems unlikely that the different 
factor structure of the TFA between the two conditions (configural 
variance) would be due to careless test-taking behavior. Nevertheless, 
self-reports are far from objective. Individual response latencies (and 
possible interactions with self-reports; see Nagy et al., 2023) might 
provide more objective information about rapid guessing. With the 
current data we cannot confidently rule out that the sudden change of 
rules led to individuals guessing the answers or disengaging. Such 
behavior could indeed explain the drop in accuracy in the discontinuous 
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rule condition and hence present an alternative explanation for the 
current results.

Future research should implement useful controls regarding disen-
gagement and rapid guessing. For example, tracking participants' eye- 
movements could provide more detailed and objective information 
about response behavior and possibly reveal participants disengaging or 
guessing. Furthermore, previous investigations of eye-movements dur-
ing test taking uncovered that participants apply different strategies to 
solve items (e.g., Laurence, Mecca, Serpa, Martin, & Macedo, 2018). A 
possible relationship between individual differences, the applied strat-
egiy and the item-position effect has not yet been investigated. A sudden 
change in rules might elicit a change in strategy. This could serve as an 
alternative explanation for the present results and should be addressed 
in future research.

Nonetheless, if we cautiously maintain that current results support 
the learning hypothesis on the item-position effect, follow-up questions 
arise. For example, it would be important to learn more about the type of 
learning reflected in the item-position effect. In experimental tasks of 
two previous studies, participants were explicitly instructed to learn 
given rules (Ren et al., 2014; Schweizer et al., 2021). Individuals who 
learned these rules more successfully also had a more pronounced item- 
position effect. These findings suggest that the item-position effect most 
likely reflects some sort of explicit learning. The influence of the explicit 
learning of rules prior to the test (e.g., Loesche, Wiley, & Hasselhorn, 
2015) or feedback about the relevant rules after each item (e.g., Guthke 
& Stein, 1996) on the item-position effect might provide further infor-
mation about its characteristics and nature. It would also be interesting 
to examine whether the disruption of the item-position effect due to the 
sudden rule change would still emerge if the new rules were explained at 
the beginning and were part of the practice items.

To date, no study has addressed the relation of the item-position 
effect to other types of learning such as implicit learning. The item- 
position effect is usually unrelated to reasoning ability even when this 
correlation is freely estimated (Schweizer et al., 2021). This was also 
true in the present study, where the correlation between reasoning 
ability and the item-position effect in the continuous rule condition was 
r = 0.055, p = .806, when freely estimated. Such an independence from 
reasoning ability was also reported for measures of implicit learning (e. 
g., Danner, Hagemann, & Funke, 2017; Kalra, Gabrieli, & Finn, 2019). 
Therefore, it might be an interesting avenue for future studies to better 
understand whether the item-position effect relates to implicit learning. 
Such investigations would also help improve the largely unexplored 
understanding of where in structural models of intelligence the ability 
underlying the item-position effect could be located.

The counterintuitive finding that reasoning ability and learning (if it 
is the construct underlying the item-position effect) are unrelated points 
to a complex interaction. From a conceptual perspective, it seems 
plausible that individuals with higher reasoning ability gain more from 
(successfully) solving earlier items to solve later items compared to in-
dividuals with lower reasoning abilities. This would imply a positive and 
linear relation between reasoning and the item-position effect. Yet, for 
individuals with very high reasoning ability, the learning of rules might 
become redundant after the first few items and hence would result in a 
very faint item-position effect. Similarly, individuals with very low 
reasoning abilities will probably have difficulties understanding the 
rules and will not be able learn them by (unsuccessfully) solving items. 
Hence, a faint item-position effect can be associated with very high or 
very low reasoning abilities. Thus, the relationship between reasoning 
ability and the item-position effect might not be linear. These assump-
tions are highly speculative in nature and definitely require further 
investigation with large subsamples of individuals with varying 
reasoning abilities.

Proactive interference might also be at play when analyzing indi-
vidual differences in the item-position effect and rule learning behavior. 
Proactive interference describes the phenomenon that information that 
was previously encoded competes with current information while it is no 

longer relevant (Hamilton, Ross, Blaser, & Kaldy, 2022). The ability to 
disengage from no longer relevant information has been identified as a 
major limitation on working memory capacity (Oberauer, Farrell, Jar-
rold, & Lewandowsky, 2016). This kind of disengagement has been 
proposed to be especially beneficial in reasoning ability tests to block the 
retrieval of faulty hypotheses about the underlying rules of an item 
(Burgoyne & Engle, 2020; Shipstead, Harrison, & Engle, 2016). That 
such mechanisms of attention control can add to the understanding of 
the item-position effect has been demonstrated by von Gugelberg et al. 
(2021). Their results indicate that individuals who predominately 
engaged in proactive cognitive control showed a stronger item-position 
effect than individuals using reactive cognitive control.

A major limitation of the present study is the lack of external vari-
ables such as indicators of working memory capacity or proactive 
interference. They could have provided valuable information about the 
nature of the item-position effect and shed some light on the differences 
between the first and second item-position effect in the discontinuous 
rule condition (Model 2b).

Moreover, for the second item-position effect in the discontinuous 
rule condition, no clear increase of the factor loadings could be detected 
when factor loadings were estimated freely casting doubt on the 
assumption of a second item-position effect. It is possible that there were 
simply too few items for a new learning effect to develop and future 
research should address how many rule repetitions are necessary to 
elicit an item-position effect.

The goal of the present experiment was to better understand the 
item-position effect as it has been commonly investigated by means of 
fixed-links modeling. However, there are other methodological ap-
proaches to the item-position effect, namely item-response theoretical 
(Lozano & Revuelta, 2020) and multilevel-modeling approaches (Birney 
et al., 2017). Future research on the item-position effect could benefit 
from a better understanding of how these approaches differ and where 
they converge.

In sum, as recommended by Cronbach (1957), we introduced an 
experimental design (i.e., the comparison of the continuous and the 
discontinuous rule condition) allowing to test differences between 
correlation-based latent variable models in two experimental condi-
tions. The current experiment delivered new tentative evidence for the 
learning hypothesis on the item-position effect. Due to the experimental 
manipulation of rules, configural invariance between the continuous 
rule and the discontinuous rule condition could not be obtained indi-
cating that the repetition of rules seems to be a necessary precondition of 
the item-position effect. While the learning of rules seems a plausible 
explanation for the item-position effect, other explanations cannot be 
ruled out completely (e.g., rapid guessing, disengagement, item-solving 
strategy). Additional research is needed to provide more clarity on the 
subject and further determine how task properties (familiarity, rule 
novelty, etc.) influence the item-position effect.
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