
Graduate School for Cellular and Biomedical Sciences

University of Bern

Multiparametric MR Spectroscopy:
evaluation of quantitative frameworks based on

modeling and deep learning

Ph.D. Thesis submitted by

Rudy Rizzo

for the degree of

Ph.D. in Biomedical Engineering

Supervisor
Prof. Dr. sc. nat. Roland Kreis

Magnetic Resonance Methodology
Institute of Diagnostic and Interventional Neuroradiology

University of Bern

Co-advisor
PD Dr. Johannes Slotboom

Support Center for Advanced Neuroimaging
Institute of Diagnostic and Interventional Neuroradiology

University of Bern





i

Date of dissertation: 22 May 2023
Date of publication: 1 February 2025

License Statement

This thesis, titled Multiparametric MR Spectroscopy: evaluation of quantitative frame-
works based on modeling and deep learning, is submitted in partial fulfillment of the re-
quirements for the degree of Ph.D. in Biomedical Engineering at the University of Bern, 
Bern, Switzerland. This work is licensed under Creative Commons Attribution
−NonCommercial 4.0 International License CC BY-NC 4.0 except:

pages 147-156 reproduced with permission from Springer Nature; 
pages 157-236 modified with permission from John Wiley and Sons;
Figures 1.1-1.10, 2.2 (B,C), 2.3, 4.2, 4.3, and 4.5 reproduced with permission from John Wiley 
and Sons  under License Agreement 5924810669017
Figures 2.5-2.8, 3.2 and 3.3 reproduced with permission from John Wiley and Sons and 
Figure 3.5 reproduced with permission from W.B./Saunders Co. under License Agreement 
1554261

Terms of Use

• This thesis is made freely available for research and educational purposes.

• This thesis may be shared with attribution to the original author, but you may not
use it for commercial purposes.

• Any reproduction, dissemination, or use beyond these terms requires explicit per-
mission from the author.

For more information about the license, visit
https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/


Accepted by the Faculty of Medicine, the Faculty of Science and the Vetsuisse Faculty of
the University of Bern at the request of the Graduate School for Cellular and Biomedical
Sciences

Bern, Dean of the Faculty of Medicine

Bern, Dean of the Faculty of Science

Bern, Dean of the Vetsuisse Faculty Bern





iii

Abstract

Magnetic Resonance Spectroscopy (MRS) is a superb technique for the diagnosis and
treatment monitoring of many diseases. It relies on the non-invasive acquisition and
evaluation of the metabolic content in a selected body area. In fact, levels of metabolites’
concentration can provide cell-type-specific insights into the function and pathophysiology
of various organs.

Furthermore, the chemistry of the human body can be explored through sensitization of
the Nuclear Magnetic Resonance (NMR) signal to a variety of properties beyond plain
metabolite concentrations. This is the realm of multiparametric MRS. T2 relaxation
rates contain essential information on the cellular microenvironment, acting as potential
biomarkers for abnormalities and carrying a crucial role in absolute quantification. In con-
trast, metabolic diffusion is driven by particle features and the geometry of intracellular
compartments. It may provide inference on the chemical exchange and bonding, untan-
gle interactions between metabolites and other compounds, or discern behaviors across
different tissue compartments. Conventional techniques for measuring these quantities,
such as Diffusion-Weighted MRS (DW-MRS) or Multiple Echo Times (MTE) acquisitions,
are time-consuming, inefficient, and rarely used within clinical timeframes. Instead, to
solve the issues for absolute quantification, clinical MRS relies on regionally T2 tabulated
values, which do not account for inter-subject variability and are often lacking, particu-
larly in pathology. Besides ignoring a relevant MR quantity, such assumptions introduce
quantification errors and biases.

To speed up the quantification tasks, recent developments in machine learning algorithms,
explicitly concerning deep learning (DL) architectures, have found an increasing interest
within the scientific community. DL toolboxes come as pre-trained models where run-time
metabolic concentrations are provided on-the-fly. However, despite the uprising research
throughput, a low acceptance rate for such tools is currently found in the clinics. On the
one hand, that is due to the high complexity of such architectures, which translates into
a low level of interpretability still conveyed to black-box assumptions. But on the other
hand, DL does not yet provide reliable and well-established uncertainty measures of its
predictions, which leaves the average user unaware of potential intrinsic errors.



The current work starts with an introduction given in Chapter 1, where a brief overview of
the relevant properties of NMR, from classic and quantum physic perspectives, is treated.
It follows, in Chapter 2, a quick dive into a practical MRS experiment where the fun-
damentals of signal excitation and recording, as well as the crucial properties of MRS
signals, are discussed in a synthetic yet realistic context. Chapter 3 wants to disclose the
MR properties and challenges of two human organs (brain and prostate) that drove the
focus of the various investigations encountered during this work. It follows an overview
of the methods, clinical interests, and potentials in the context of multiparametric MRS,
mainly focusing on estimating metabolite-specific T2 rates and diffusion properties, which
is disclosed in Chapter 4. The background part is concluded in Chapter 5 with an overview
of the principles of DL, exploring in more detail the current challenges on interpretabil-
ity and uncertainty measures as well as the state-of-the-art designs deployed for MRS
quantification.

The first part of the main contribution of this work is given in Chapter 6. DL is deployed
across many architectural designs and is twinned to tailored MRS processing aiming to
enhance features in the data that are more or less prone to DL computation. Results are
further analyzed concerning dataset biases and possible training strategies to overcome
such limitations, namely, ensemble of models and data augmentation. A window into
interpretability and uncertainty measures is also explored, offering a first method to inte-
grate MRS predictions of concentrations with their reliability. An analysis that compares
these measures to traditional Cramer Rao Lower Bounds (CRLBs) in fitting follows.

The second part of the main contributions of this work is explored in Chapter 7 with a
focus on different aspects of multiparametric MRS. First, the urge of speed in multipara-
metric MRS to simultaneously and accurately produce metabolite concentrations and T2

rates is explored, introducing a novel acquisition method that combines bi-dimensional
fitting and truncated multi-echo acquisitions. The benefits and limitations of the method-
ology are disclosed both in a single-voxel experimental fashion and in a 2D MRSI setup
targeting the human brain. Second, diffusion-weighted MRS is deployed for the first time
in the human prostate to untangle and explore MRS properties. The results offer an
alternative viewpoint to the complex chemical bonding of proteins with some of the main
prostatic metabolites. Eventually, an initial investigation of DW-MRS for pathological
cases is outlined. Although severely limited by a small cohort of patients, it promises
exciting potential currently interpreted based solely on the prostate microstructure.
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Introduction & Background
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1| Principles of NMR

The beauty of in-vivo Nuclear Magnetic Resonance (NMR) lies in mimicking the fundamental
behavior that features human beings over other living species: articulated dialogues. In fact, from
the wide pool of medical imaging technologies available to a radiologist, NMR represents the safer
and most complex dialogue between the operator, or the developer, and the tissue in hand, at
a (sub-) millimeter scale. The level of interaction with the physics is indeed such complex that
any limited manipulation of a delivered message, upon excitation, twinned to any fiddling with
the communication channel, upon recording, can end up in an entirely different reply from the
inquired tissue, generally called MR contrast. What a beauty.

The study of the interaction between matter and electromagnetic radiation is known as spec-
troscopy. Atoms and molecules contain distinct energy levels corresponding to different quanti-
fied electronic, vibrational, or rotational states. The absorption and emission of photons with an
energy that perfectly matches the energy level difference between two states describe the interac-
tion between atoms and electromagnetic radiation. Since the energy of a photon is proportional
to its frequency, different forms of spectroscopy are typically identified by the frequencies in-
volved. NMR spectroscopy, or MR Spectroscopy (MRS) employs radio-frequency (RF) in the
10-1000 MHz range.

NMR is the study of nuclei’s magnetic properties and associated energy. Radio-frequency energy
is absorbed when the nuclei are put in a (strong) external magnetic field. The induced energy
level difference of nuclei in an external magnetic field is relatively modest compared to thermal
energy at ambient temperature, resulting in almost equally populated energy levels. As a result,
photon absorption is relatively low, making NMR a relatively insensitive technique in comparison
to other types of spectroscopy. However, because of the low energy absorption, NMR is a
noninvasive and nondestructive technology well suited for in-vivo studies.

This chapter is strongly inspired by [1]
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1.1. Nuclear spin and magnetization
The birth of Magnetic Resonance (MR) is the consequence of the definition of the concept of
spin. Any rotating object is characterized by angular momentum, which describes the object’s
tendency to continue spinning. Subatomic particles like electrons, neutrons, and protons have an
intrinsic angular moment, or spin, which exists even when the particle is not spinning. Electron
spin is a product of relativistic quantum physics and has no classical equivalent explanation.
However, this can be conceptualized as a magnetic field formed by rotating currents within a
spinning particle. It is typically well represented as a nucleus (or ball) rotating around its axis.

1.1.1. Classical description

A spin-bearing particle is depicted as a ball with a given charge rotating around an axis. The
angular momentum L featuring a rotating object with mass m and distance from the rotational
axis r is described by L = mrv, where v indicates the spinning velocity. The rotation (or
variation) of the charged particle generates a current that induces a magnetic moment, which
features the particle and is referred to as microscopic magnetization: µ = γL where γ is the
gyromagnetic ratio that characterizes the particle (i.e., γ = e/2m where e is the charge of
the particle). As suggested by the headlight Nuclear MR, the particles of interest are nuclei.
Even though various nuclei can be targeted and are of interest for in-vivo NMR, the purpose
of the current work will focus on proton NMR (or 1H-NMR), which refers to the isotope 1H,
which is typically observed in water and other compounds, such as metabolites, lipids, and
different macromolecules. Moreover, (1) protons are present with high intrinsic abundance in
all mammalian tissues in the form of water or lipids (e.g., the human brain contains around
6 × 1019 spins/mm3 ) and (2) protons feature the highest γ among the commonly encountered
MR-visible isotopes.

Molecules are present in solution and experience molecular tumbling with various rotations,
translations, and collisions. As a result, the amplitude and direction of one proton’s magnetic
field at the site of another proton vary with time. The spin orientation has no preference in the
absence of an external magnetic field, and the spins are oriented randomly across the sample,
Fig.1.1(A). Summation over all orientations results in (near) complete cancellation of magnetic
moments, and consequently, a macroscopic magnetization vector is absent. When the protons
are exposed to an external magnetic field B0 will experience a torque T which is depicted by
T = µ × B0. A torque is mathematically described as a change of angular momentum over
time, T = ∂L/∂t, which features the precession of the spin’s magnetic moment, described as
∂µ/∂t = µ × γB0. This effect is referred to as Larmor precession, where all the spins will
begin to precess around the external magnetic field at the same Larmor frequency ω0 = γB0,
Fig.1.1(B).

The spin orientation is further perturbed by local field fluctuations caused by molecular tum-
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Figure 1.1: (A) Concept of spin and depiction
of water proton as a rotating particle. In the
absence of a magnetic field, the proton spins
have no orientational preference. (B) Nuclear
magnetic moments have intrinsic angular mo-
mentum or spin that leads to (E) a precessional
motion when placed in an external magnetic
field, here displayed by background dashed lines.
Modified from [1].

bling. These disturbances are mostly but not entirely random. A strong external magnetic
field promotes parallel spin orientation according to the concept of minimal energy. The corre-
sponding magnetic energy can be computed by E = µ · B0 = −µB0cosθ where θ is the angle
between the magnetic moment and the external magnetic field. Therefore, the magnetic energy
can be maximized (µB0) when spins are aligned anti-parallel with B0 (θ = π) and minimized
(−µB0) when spins are aligned parallel with B0 (θ = 0). As a result, the entirely random spin
orientation distribution evolves over time into one that is somewhat biased toward parallel spin
orientation. However, the net number of spins biased towards parallel orientation is minuscule
(on the order of one in a million) but adding the magnetic moments, on the other hand, results
in a macroscopic magnetization vector parallel to the external magnetic field. The magnitude of
the longitudinal equilibrium magnetization, and hence the strength of the induced NMR signal,
is proportional to the number of spins biased parallel to the main magnetic field. The longi-
tudinal equilibrium magnetization M0 can be calculated from the Boltzmann distribution, and
results proportional to

M0 ∝
Nγ2B0

T
(1.1)

Which reveals several important features of the signals detected by NMR.

• the thermal equilibrium magnetization M0 is directly proportional to the number of spins
N in the sample. This feature makes NMR a quantitative method in which the detected
signals are, in principle, proportional to the concentration.

• The quadratic dependence of M0 on the gyromagnetic ratio γ implies that nuclei resonating
at high frequency generate the strongest NMR signals. The linear dependence of M0 on
the magnetic field strength B0 implies that higher magnetic fields improve the sensitivity.

• the inverse proportionality of M0 to the temperature T indicates that sensitivity can be
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enhanced at lower sample temperatures. However unrealistic for in-vivo applications.

It needs to be noted that the actual experimental sensitivity is determined by many additional
factors, like RF coil characteristics, pulse sequence details, sample volume, natural abundance
of the studied nucleus, sample noise, relaxation parameters, and spectral resolution.

The current thesis project considered standard clinical magnetic field strength at 3T and hydro-
gen as nuclei (1H-NMR or proton NMR). Hydrogen has the highest NMR relative sensitivity,
given the already discussed intrinsic properties.

1.1.2. Quantum physics description

One of the fundamentals of quantum mechanics is that energy, momentum, and other properties
are quantified: restricted to specific, discrete values. Different vibrational modes are charac-
terized by quantified energy levels given by E = (n + 1/2)hv, where n is an integer quantum
number (n = 0, 1, 2, . . . ) corresponding to the separate levels, h is the Plank constant, and v is
the frequency of vibration.

Energy sampling between quantified levels can happen by absorption or by emission. Molecules
that vibrate at a lower energy level with quantum number n can move to a higher energy level
with a quantum number n+ 1 by absorption of electromagnetic energy with a frequency v that
exactly matches the energy-level difference ∆E, according to ∆E = hv. Conversely, a molecule
with high vibrational energy can drop down to a lower vibrational energy level through the
emission of electromagnetic waves of specific frequency v, Fig.1.2(A).

Intrinsic angular momentum, or spin, is also quantified both in amplitude and orientation. In
the quantum mechanical picture of NMR, spins are either in the parallel (α) or anti-parallel (β)
orientation concerning the external magnetic field. The spin states are characterized by energy
E = −mhv with m representing the spin quantum number associated with α (m = 1/2) and
β (m = −1/2) spin orientations. NMR transitions are only allowed between energy levels for
which the spin quantum number m changes by ±1, Fig.1.2(B).

It may appear that all spins are either in the α or β spin state and that no other orientations
are allowed. The quantum mechanical view and the classical view can be reconciled to a certain
degree by knowing that spins can also be in so-called superposition states besides the pure α

and β quantum states. However, since NMR does not observe single spins, the collapse into
pure spin states never happens, and the spins within the sample remain in a superposition state
throughout the experiment.
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Figure 1.2: Quantum energy levels. (A) Absorption and emission of electromagnetic radiation
with a frequency that matches the energy-level difference between two vibrational states allow
the transition from one to the other for a given vibrating molecule. (B) Split of NMR transition
between α and β states upon external magnetic field B > 0. Figure from [1].

Density matrix formalism

While the classical description helps to gain a general understanding of the NMR physics and can
be deployed to fully describe isolated (i.e., non-interacting) spin systems (e.g., like a first-level
approximation of water spins in conventional MRI, where despite j-coupling interaction present
for water protons, its effect is not seen), quantum mechanics (QM) is fundamental to under-
standing interacting spin systems and phenomenon like line splitting due to spin-spin coupling
(details in Section 1.3). The QM formal description, known as density matrix (or operator)
formalism, covers a fundamental role in the simulation of spin-system evolution upon delivery of
NMR manipulation (RF pulses, gradients, etc.), particularly crucial for the description of MR
spectra and fundamental for quantification purposes, see Section 2.6.2.

The density matrix formalism is not directly concerned with magnetization but rather deals
with the energy states of the spin system under investigation. A density matrix calculation
typically starts with the creation of a 2N × 2N thermal equilibrium density matrix σ(0), where
N represents the number of different spins in a spin system. The effects of RF pulses, delays, and
magnetic field gradients are described by time-dependent operators σ(t) created by Hamiltonians
H. They describe the total energy of the spin system and can be seen as a generalization of
rotation matrices for larger spin systems. The evolution of the density matrix under the influence
of RF pulses and delays is governed by the Liouville–von Neumann equation, operating on the
initial spin state σ(0) at time t = 0 and transforming it into a new density matrix σ(t) at time
t:

σ(t) = e−iHtσ(0)e+iHt (1.2)
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The propagation of the spin system throughout multiple steps of the NMR manipulation is
followed by the time of signal acquisition. An NMR spectrum can be extracted from the final
density matrix and displayed following Fourier transform by extraction of the quadrature ele-
ments (i.e., trace) of the density matrix. An in-depth description of the quantum state function
and the derivation of the solution that characterizes a quantum measurement can be found in
[2]. Visual aid is supported in Fig.1.3, where a two-spin system with four energy levels and
their respective spin population yields a 4 × 4 thermal equilibrium density matrix σ(0). The
energy-level populations are contained in the non-zero element (gray) on the matrix diagonal.
The Lioville-von Neumann equation manipulates the density matrix according to the desired
NMR experiment. At the time of signal recording, the off-diagonal element of the matrix can
be nonzero and correspond to the various coherences allowed in the two-spin system.

Figure 1.3: Quantum-mechanical NMR description using density matrix. The description of
(A) two-spin system energy levels and the associated nuclear spin population is provided by (B)
the initial density matrix. (C) Evolution of the density matrix under NMR manipulation. Gray
areas correspond to nonzero elements, while white areas correspond to nulled elements. (D) At
signal recording, the observable populations (or coherences) are extracted as a spectrum. Figure
from [1].

For a weakly-coupled two-spin system, the general density matrix can be decomposed into a
linear sum of matrixes in which each matrix corresponds to a particular spin coherence (or
population). For example, the diagonal elements correspond to spin populations which give
rise to longitudinal magnetization, whereas off-diagonal elements give rise to single-quantum
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coherences or transverse magnetization, Fig.1.4. Different combinations of matrix elements
give rise to different and mixed contributions of longitudinal, transversal, or multi-quantum
coherences.

Figure 1.4: Density matrix decomposition: a visual aid. Sub-elements of a two-spin density
matrix are selected in red: real (solid) and imaginary (dotted) components. A correspondent
visualization of the macroscopic components inspired by the correlated vector model [1] is added.
(A) The diagonal elements correspond to spin populations which give rise to longitudinal magne-
tization. (B) Off-diagonal elements give rise to single-quantum coherences, detectable by signal
quadrature. Modified from [1].

1.2. RF excitation and NMR signal recording
The longitudinal magnetization vector gives the signal detected in an NMR experiment. On the
other hand, the static, longitudinal magnetization is never directly observed because its minor
contribution would be dominated by much larger contributions from magnetic properties associ-
ated with electron currents within atoms and molecules. Instead, the longitudinal magnetization
is moved into the transverse plane, where the precessing magnetization may trigger a signal in
a receiver coil at a precise Larmor frequency. To alter the orientation of the longitudinal mag-
netization, M0, an additional time-varying (i.e., frequency- or phase-modulated) magnetic field
B1, with frequency matching the Larmor frequency and perpendicular to the magnetic moment
B0, is deployed. See Fig.1.5(A). The intensity of B1 is much smaller than B0, but is capable
of influencing M0 given its matching resonance frequency. The modulation of nuclear spin and
their macroscopic magnetization exploiting the concept of resonance explains the letter R in
NMR.

The net macroscopic magnetization, also referred to as longitudinal magnetization and indicated
by Mz, experiences a coherent rotation (i.e., a torque) towards the transverse plane since the
angle between the single spin magnetic moments and the magnetic field B1 is constant. As a
result, the spins have been excited. The B1 field is referred to as an excitation pulse when the
amplitude and duration of the B1 field are modulated to produce a 90° (or π/2) rotation of the
magnetization from the longitudinal axis into the transverse plane, Fig.1.5(B). This is referred
to as transverse magnetization and indicated by Mxy. When the amplitude or duration of the
B1 field is doubled, the initial thermal equilibrium magnetization rotates 180° (or π), which is
accomplished by an inversion pulse. Following excitation, the B1 field is removed, leaving the
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magnetization in the transverse plane to be detected through electromagnetic induction in a
nearby receiver coil. As a result, the free magnetization in the transverse plane evolves into a
signal that is called Free-Induction-Decay (FID), Fig.1.5(C).

Figure 1.5: Excitation and recording. (A) Rotation of the macroscopic magnetization vector
(red) in a non-rotating coordinate system under the influence of B0 along the z axis and the
oscillating magnetic field B1 in the xy plane. (B) The macroscopic magnetization has been
flipped about 90° and fully on the xy plane, which oscillation induces a current on the indicated
coil generating the (C) FID signal with components Mx and My. Modified from [1].

1.2.1. Relaxometry

Relaxation can be qualitatively described as the process by which the macroscopic magnetization
vector returns to the thermal equilibrium M0 state following a perturbation. In other words,
random local field fluctuations lead the Larmor frequencies of different spins to run out of sync
over time. For spins in solution, the randomly fluctuating magnetic fields are predominantly
caused by the magnetic moment of other nearby spins. The magnetic moment of one spin affects
the local field of another spin randomly (both in amplitude and orientation) due to Brownian
motion and molecular tumbling. Fig.1.6 shows a typical distribution of the local magnetic field
at a nucleus as a function of time.

The restoration of the longitudinal equilibrium magnetization M0 is characterized by the lon-
gitudinal or spin–lattice relaxation time constant T1, while the disappearance of transverse
magnetization is described by the transverse or spin–spin relaxation time constant T2. Both
relaxation times are time constants used to characterize what are assumed to be first-order rate
processes. Relaxation rates R1(2) = 1/T1(2) can alternatively be used instead of relaxation times.
For 1H-NMR in biological tissues, the T2 relaxation time constants (10–500 ms) are typically
much shorter than the T1 relaxation time constants (500–3000 ms). Furthermore, the relaxation
mechanism depends on the rate of molecular motion. Thus, it is temperature and B0 dependent.



1| Principles of NMR 11

Figure 1.6: Interaction of local magnetic fields within a water molecule. (A) In gray is depicted
the magnetic moment of one proton in an external magnetic field that perturbs the magnetic field
at the position of another proton. (B) As the water molecule rotates and translates randomly,
the direction and magnitude of the perceived local magnetic field change over time, giving rise
to time-varying magnetic fields required for relaxation. Figure from [1].

T1 relaxation
The spin-lattice (or longitudinal) relaxation time T1 quantifies the rate of energy transfer from
the nuclear spin system to the neighboring system of molecules (the lattice). For any given NMR
energy transition ∆E experienced by an excited nuclear spin, there will be some possible change
within the lattice involving the same quantity of energy, inducing translations, rotations, and
internal motions of molecules. For instance, a downward flip of a nuclear spin will cause an accel-
eration of some motion of the molecule in which the flip occurred. Such energy transfer requires
a fluctuating magnetic field at the site of the nuclear spin involved, which must have a compo-
nent at the Larmor frequency of the nucleus under consideration. Only x and y components
of the local field can cause T1-relaxation (i.e., the motion in the lattice). The most common
source of the such local fluctuating field is direct dipolar interaction. Other mechanisms for
spin-lattice relaxation are interaction with unpaired electrons (e.g., paramagnetic substances)
or interactions with electric field gradients for quadrupolar nuclei. The spin-lattice relaxation
time determines what recycle delay between pulses should be used. The effects of T1 relaxation
on MR signal detection can be minimized or eliminated by choosing a sufficiently long repetition
time. This relaxation in the z-direction leads to the restoration of Boltzmann equilibrium. The
recovery of longitudinal magnetization is described by

∂MZ

∂t
=

M0 −MZ

T1
(1.3)

The standard method for measuring T1 is known as inversion-recovery. First, a 180° pulse
inverts the magnetization along the z-axis. A time period TI (inversion time) is allowed, during
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which spin-lattice relaxation occurs, causing Mz to go from the value of −M0 through zero
to its equilibrium value of M0. A 90° pulse is then applied, and the FID is recorded. The
experiment is repeated with different TI delays, allowing the determination of the T1 value,
Fig.1.7. Quantitatively, the decay of Mz is given by the Bloch equation Eq.1.3. Integration of
Eq.1.3 with Mz = −M0 at t = 0 gives: Mz = M0(1− 2e−t/T1).

Figure 1.7: Measurement of T1 relaxation via inversion-recovery. (A) pulse sequence diagram.
(B) The intensity of two compounds upon different inversion times and (C) signal recovery over
time. Modified from [1].

T2 relaxation
Spin-spin (or transverse) relaxation time T2 is used to quantify the rate of magnetization decay
within the xy plane. In a perfectly homogeneous magnetic field, after a 90° pulse, the nuclear
spins are aligned in one direction (and said to be phase coherent). Still, this arrangement is
gradually lost due to intrinsic direct interaction between the spins, without energy transfer to
the lattice. The disappearance of macroscopic magnetization (i.e., MXY assumed as the module
of the signal) from the transverse plane is described by

∂MXY

∂t
= −MXY

T2
(1.4)

T2 relaxation does not affect the total amount of z-magnetization, but the degree of synchroniza-
tion of the transverse magnetization components. However, a microscopic and macroscopic in-
homogeneity combination leads to additional signal dephasing and a more rapid signal decrease,
characterized by T ∗

2 relaxation. Under most in-vivo conditions, the inhomogeneity contribution
to T ∗

2 relaxation dominates. The causes of macroscopic inhomogeneities are caused by B0 inho-
mogeneity and local field variations, whereas microscopic inhomogeneities can be related to the
unwanted diffusion of molecules.

The measurement of T2 refers to spin-echo or stimulated echo experiments, where the con-
tribution of macroscopic magnetic field inhomogeneity to the observed T ∗

2 relaxation can be
eliminated. In such a design, the phase variation acquired by individual spins before the 180°
pulse due to magnetic field inhomogeneity is inverted after the refocusing pulse. During the sec-
ond TE/2 period, the spins continue to accumulate phase due to the macroscopic magnetic field
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inhomogeneity that is part of T ∗
2 relaxation. However, since the acquired phase was inverted,

the phase accumulation during the second TE/2 period leads to signal rephasing and spin echo
formation at the echo-time TE. As a result, the random magnetic field variations underlying
T2 relaxation cannot be refocused by a spin-echo, leading to a reduced signal intensity at the
echo-time TE. Visual aid is provided in Fig.1.8.

Figure 1.8: T2 and T ∗
2 relaxation in a spin-echo experiment. (Top) A spin-echo pulse sequence

shows the rapid signal decay due to T ∗
2 relaxation immediately following excitation (tA). Echo

formation is displayed at echo time TE (tD), upon deployment of a refocusing pulse (tB −
tC) whereby the echo intensity is reduced by T2 relaxation. (Bottom) Evolution of transverse
magnetization of two compounds (red and blue) with different chemical shifts and magnetic field
inhomogeneity yields phase dispersion across the sample. The 180° pulse allows inversion of the
acquired phases during the first TE/2 period. Modified from [1].

1.3. Chemical shift and scalar coupling
The Larmor frequency of a given nucleus does not only depend on the external magnetic field
strength, but it deviates from its expected value given the shielding of the magnetic field at
the nucleus by the surrounding electron cloud (i.e., the chemical environment surrounding the
nucleus given the electronic configuration) which alters the nucleus’ perceived external field
leading to a lower Larmor resonance frequency. Such a phenomenon is known as chemical shift.
In Fig.1.9, a visual example is given. The electron cloud can be seen as a current rotating around
the nucleus, generating a local magnetic field opposite the external magnetic field B0. As the
electron cloud density surrounding the proton decreases, so does the electron-induced magnetic
field Be. The total magnetic field at the nucleus Bn will therefore be larger. The Larmor
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resonance frequency can become independent of the magnetic field strength when expressed in
parts-per-million (ppm) relative to a reference compound. Thus, the NMR resonance frequencies,
or chemical shifts, give direct information about the chemical environment of nuclei, thereby
yielding the unambiguous detection and assignment of compounds.

Figure 1.9: Chemical shift. (A) The magnetic field Bn at the nucleus of a single proton is
equal to the external magnetic field B0 leading to a spectrum with a signal at Larmor frequency
ωn = γ

2πBn. (B) The electron cloud in a given atom can be modeled as small currents that
generate a magnetic field Be that opposes B0. The magnetic field at the nucleus is reduced,
leading to a lower Larmor frequency. Modified from [1].

Scalar coupling, also known as J-coupling, is a type of spin-spin coupling that occurs as a result
of the coupling of the magnetic moments of two or more nuclei within a molecule. In other
words, the magnetic fields of the nuclei interact with each other, causing the energy levels of the
nuclei to split into different energy states. Such splits into multiple energy levels are observed
in NMR spectra by splitting resonances into several smaller lines. Scalar coupling is a quantum
effect that originates from the fact that nuclei with magnetic moments can influence each other
directly through electrons in chemical bonds.

Considering the two isolated nuclei in Fig.1.10(A): the blue one (spin H) resonates at a higher
frequency vH , whereas the red one (spin C) resonates at a lower vC frequency. They display
in frequency via two singlets at different energy levels and thus different resonating frequencies,
Fig.1.10(D-top). The Fermi contact governs the interaction between the nuclear and electron
spins within the nucleus and energetically favors an antiparallel over a parallel arrangement.
As soon as the two nuclei are combined, see Fig.1.10(B), but chemically isolated, the resulting
interaction affects the energy levels, which now represent the sum of the single energy levels.
However, if these two nuclei are now supposed to be covalently bound, see Fig.1.10(C), the
interaction between the two electrons spins inside the chemical bond must follow an antiparallel
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orientation, as demanded by the Pauli exclusion principle. When both nuclear spins are parallel
or antiparallel to the external magnetic field B0, respectively αα or ββ state, the two bond-
ing electrons cannot both be antiparallel to the nuclear spins, leading to an energetically less
favorable state. However, for the αβ or βα conditions, both electron spins can be antiparallel
to the nuclear spins leading to an energetically more favorable situation. The equivalent gain
or drop in energy is proportional to the J-coupling constant, which measures the strength of
the chemical bond between the two nuclei and therefore defines the energy level transition and
the correspondent resonating frequencies. J-coupling yields unique spectral and temporal fin-
gerprints for chemically coupled compounds, Fig.1.10(D-bottom). Such unique time evolutions
can provide information about the structure and dynamics of a molecule.
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Figure 1.10: The effect of scalar coupling on the energy level of a two-spin system. Energy
levels for (A) isolated or (B) combined spins H and C. In the combined mode, the energy
levels represent the sum of the isolated energy levels. Transition frequencies vH (blue) and
vC (red) yield the NMR resonating frequency (D, top). (C) Shows energy levels for spins H
and C when chemically bonded. Spin states follow less or more energetically favorable states
yielding splitting of the energy levels and consequence splitting of the NMR visible frequencies
(D, bottom). Modified from [1].
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experiment

Alike grammar in any natural language, NMR follows a set of complex rules, which defines the
meaning of the message at the end of this intriguing communication channel, and that is carried
out between the two operators: the user, or radiologist, and the tissue of interest, or patient.
Such rules are rather well defined by physics, as explored in Chapter 1, but need engineering to
be applied in the real world.

An ideal phantom containing three compounds in three different partitions is placed at the
isocenter of an MR scanner. The MR scanner generates a strong external magnetic field B0,
which homogeneity is perfect only in a given surrounding space around the magnet’s isocenter.
The three compounds feature (1) a different chemical structure that results in different Larmor
frequencies (ω1, ω2 and ω3), and (2) different concentrations in solution (C3 > C2 > C1).

2.1. Signal localization
An NMR measurement assumes spatial localization to restrict the signal detection to a well-
defined region of interest (ROI), isolating the acquired spectra from unwanted signals coming
from outside the ROI (e.g., lipids). Moreover, it helps manage tissue heterogeneity, minimizing
partial volume effects and giving a handler to B0 and B1 variations. MRS localization takes
care of excitation and selection of spin pools of interest and is followed by the recording phase,
where the receiver coils will detect the relaxation phenomenon. Overall, such a system results
in an ordered set of RF pulses, gradients, and switches that are actioned according to a tailored
design, which aims to control the spin pool of interest to encode any desired feature. This system
is known as the MR pulse sequence.

For the purpose of the thesis, we will introduce the reader to the semi-LASER localization tech-
nique in both single-volume (Single-Voxel MRS), and multi-volume (MR Spectroscopic Imaging,
MRSI) approaches. A semi-LASER localization consists of a single-scan 3D localization method

This chapter is partly inspired by [1]
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that combines a frequency selective excitation pulse with four adiabatic refocusing pulses. In
Fig.2.1, the MR sequence diagram is reported. First, a frequency-selective pulse is made slice se-
lective by twinning to a selective gradient along the x direction, which yields a 3D slice selection
(i.e., a slab).

Figure 2.1: Display of a semi-LASER acquisition scheme.

Slice selective pulses
The logic behind slice selective pulses is the twinning of a frequency-modulated wave (i.e., the RF
pulse) to a magnetic field gradient. Magnetic field gradients G(r) describe a linearly dependent
magnetic field B(r) that vary according to r, the position along a given axis

G(r) =
∂B(r)

∂r
= G (2.1)

They are created by two looping currents with opposite directions across two coils orthogonally
arranged to the desired gradient direction. The static magnetic field B0 upon application of
a gradient displays a linear position-dependent intensity B(r) = B0 + G · r which results in
a position-dependent Larmor frequency: ω(r) = ω0 + γG · r. A selective RF pulse with a
specific transmitter frequency offset ωRF from ω0, and a given frequency bandwidth ∆ω is
applied simultaneously with such magnetic field gradient, thus only the selected frequencies,
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or inversely, a selected spatial position can be excited. The RF pulse amplitude and duration
determine the resulting nutation angle in the net magnetization. The position of the slice is
defined by the transmitter frequency of the RF pulse, and the RF pulse bandwidth adjusts the
slice thickness and the gradient field amplitude G according to the following equation

∆L =
∆ω

γG
(2.2)

An example of different slice selections and locations is given in Fig.2.2(A). A head 3D model
reports the variation of the magnetic field along z directions, Fig.2.2(B), and a corresponding
possible slab selection, Fig.2.2(C).

Figure 2.2: Slice selection via frequency-modulated RF and gradient strength modulation. (A)
configuration of gradients and RF pulses, (B) frequency encoding, and (C) slice selection of spin
visualized for a head 3D model. Extended from [1].

Adiabatic pulses
The second part of the ROI selection follows the principle of frequency-selective refocusing pairs
of Adiabatic Full Passage (AFP) pulses. In short, AFP pulses are an exclusive class of RF
pulses that allow uniform inversion (or refocusing) of magnetization, by employing frequency
(or phase) and amplitude modulations. Adjusting frequency from off-resonance to on-resonance
makes adiabatic pulses insensitive to the nonuniformity of the B1 field and variation in frequency
offset. However, the frequency modulation of a single adiabatic pulse induces a nonlinear B1

and position-dependent phase across the slice, leading to severe signal cancellation. A second,
identical AFP pulse can refocus the nonlinear phase such that perfect refocusing can be achieved.
Two pairs of AFP pulses allow a 2D slice selection that intersects with the already selected
slab, yielding the selection of a 3D volume of interest (or voxel), Fig.2.3. The advantages of
the LASER technique over alternative short echo-time techniques, like STEAM and PRESS, are
twofold. Namely (1) the method is entirely adiabatic and (2) by employing high-bandwidth AFP
pulses, the localization can be exceptionally well defined, both in terms of minimal chemical shift
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displacement, as well as sharpness of the localization edges.

Figure 2.3: Principle of 3D voxel selection. Single voxel selection based on magnetic field
gradients on consecutive directions: (A) 1D plane (or slab), (B) 2D column (or beam), and
finally, (C) 3D voxel. Figure from [1].

2.2. Time and frequency domain
The result of localization is the spatial identification of a rotating transverse magnetization, as
introduced in Section 1.2. Such a rotating magnetic field induces an oscillating electric current
into a nearby receiving coil, formally known as FID. In short, by solving the Bloch equations
describing the motion of the macroscopic magnetization, the resulting FID signal within the
selected sample containing three compounds with different Larmor frequencies can be described
with a complex function s(t) = R(t)+j ·I(t) where the real R(t) and imaginary I(t) components
are given by

R(t) = Mx(t) =
3∑

i=1

M0,icos(ωit+ ϕ)e−t/T ∗
2,i

I(t) = My(t) = −
3∑

i=1

M0,i sin(ωit+ ϕ) e−t/T ∗
2,i

(2.3)

The FID is represented by the summation of the contribution of single compounds, each one
described by four independent parameters:

• M0,i: contribution of compound i to overall magnetization at thermal equilibrium;

• ωi: Larmor frequency of compound i;

• ϕ: phase of the transverse magnetization relative to the x axis immediately after excitation
and assumed common to all substances;

• T ∗
2,i: transverse relaxation rate characteristic of compound i.
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All four parameters describing the FID can be easily recognized in the case of a single Lar-
mor frequency (single compound), Fig.2.4(A-C). The M0 parameter is critical in many NMR
applications as it is directly related to the concentration. For a single-frequency signal, M0 is
proportional to the intensity of the FID immediately after excitation, Fig.2.4(A-C, FID side).

The Fourier transform of the FID comes in aid, allowing visual distinction of the three different
resonating frequencies, otherwise overlapping and proving hard or even impossible to untangle
and identify observing the time domain FID, Fig.2.4(D). The correspondent Fourier transform
can also be evaluated in its real and imaginary components, respectively, known as the absorp-
tion and dispersion part of the spectrum, Fig.2.4(A-D, spectrum side). The four parameters
describing the time domain single compound FID can also be recognized in the absorption
spectrum. The first point of the FID, M0, equals the area under the curve of the absorption
spectrum. The frequency ωi of the signal can be recognized as the position on the frequency
axis. T ∗

2,i relaxation time can be obtained from the frequency width at half maximum (FWHM)
according to FWHM = 1

πT ∗
2,i

.

The assumption on T ∗
2,i characterizes the nature of the line depicted in Fig.2.4. Typically, the

contribution to T ∗
2,i is represented by Voigt line shapes. The summation of a Lorentzian and a

Gaussian contribution gives a Voigt line. Variations of field inhomogeneities that are expected
not to change over time are supposed to be symmetric to the echo-time TE. Thus, following a
Gaussian distribution and modeled by the Gaussian term. The Lorentzian contribution can be
further displayed as the sum of relaxation rates 1/T ∗

2,i = 1/T ′
2+1/T2,i, where 1/T ′

2 =
∫
r ∆B(r) is

the relaxation rate contribution attributable to field inhomogeneities ∆B across the voxel, here
described as integral in a spherical volume of radius r. On the other hand, 1/T2,i is the effective
T2 as the spin-spin relaxation property of the molecule i, see Section 1.2.1. The Lorentzian
assumption for effective T2 comes from the solution of the Bloch equation Eq.1.4. Under most
in-vivo conditions, the inhomogeneity contribution to T ∗

2 relaxation is dominant, such that
resonance line widths are approximately equal despite minor differences in T2 relaxation.
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Figure 2.4: Acquisition of MR Spectra. A phantom with three distinct compartments is acquired
with SVS selecting either single compartments (A,B,C) or all compartments (D). Free Induction
Decay and correspondent spectrum are reported for each selection. (E) Shows a correspondent
MRSI acquisition where the location of each compartment is encoded in the spatial coordinates
x, y. Perfect water suppression is assumed.
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Averaging
It must be mentioned that such acquisition of good quality spectra in Fig.2.4 may be feasible in
a phantom, where the nuisance contributors are reduced. However, in an in-vivo setup, signal
averaging is required to overcome the higher noise contribution, which hinders the detection
of the metabolite fingerprint [3]. In signal averaging, the FID’s signal-to-noise ratio (SNR) is
improved by adding or averaging the FID signals of several consecutive, identical experiments
(called signal transients or shots). Averaging N FID signals leads to an improvement in SNR
of a factor

√
N . Consequently, an in-vivo NMR experiment is a compromise between sufficient

SNR and the allowable duration of the experiment [1].

Figure 2.5: Effect of averaging for in-vivo MRS (3 T human brain MRS data, TE=68 ms).
Improved SNR is observed after averaging single transients. Single transients are affected by
minor spurious echoes around 1.8 ppm and 4.3 ppm. However, following averaging of the phase
cycled scans, these are effectively removed so that this spectrum can be safely analyzed. Modified
from [3].

2.3. Water and lipid suppression
Fig.2.4 may fool the reader if one assumes the synthetic phantom, where the compounds differ
from water but are in solution, assuming water as a solvent (typically the case). In general, one
should consider that the water content in mammals amounts to 60% circa, making it the most
abundant compound in mammalian tissues. Thus, the water concentration level in tissue is more
than 104 higher than the metabolite concentrations. Therefore, care in treating the water signal
must limit unwanted contributions to the acquired spectra that could make metabolites indistin-
guishable. The water signal in a 1H-MR spectrum resides at 4.65 ppm and is typically affected by
shorter T2 relaxation; hence it appears broader than typically well-acquired metabolite spectra.
The presence of a vast water signal leads to baseline distortions in the MR spectrum, hampering
metabolite signal investigations, Fig.2.6(A). Suppression of the water signal or clever handling
of its contribution is required to eliminate baseline distortions, yielding a reliable and consistent
detection of metabolite resonances in tissues [3]. Conventional approaches to removing the water
contribution rely on water pre-saturation, deploying pulse trains before signal localization [4].
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In Fig.2.1, a metabolite-cycling pulse (i.e., MC block) is played out before the semi-LASER
localization. This non-water suppression method relies on the interleaved acquisition of isolated
water and metabolite spectrum. An MC pulse is a frequency-selective pulse that, in two consec-
utive scans, generates alternating signal polarization of metabolite resonances. Either upfield
(chemical shift < 4.4 ppm) or downfield (chemical shift > 5.0 ppm) are inverted. Thus, the
summation of two consecutive shots yields the water signal only, whereas subtraction results in
the metabolite spectrum. This method yields interleaved water signals that can be exploited for
robust post-processing steps, like phase/frequency alignment and eddy current correction.

Moreover, lipid resonances within 1-2 ppm may become dominant in the proton MR spectrum
and contribute to baseline distortion in organs like the prostate, which are embedded in fatty
tissues. The spectral region of Citrate is regularly contaminated with lipid signals, especially
because periprostatic lipids are often inside the ROI [5]. In such cases, signal suppression (for
both water and lipids) can be well achieved by exploiting frequency-selective suppression pulses,
like MEGA pulses, Fig.2.6(B). MEGA suppression relies on a pair of inversion pulses placed
within the localization block in an element whose function is to refocus transverse magnetization.
The advantages of MEGA suppression over other suppression techniques are minimizing T1

recovery of the suppressed signals, adding minimal spectral distortion, and its robustness to field
inhomogeneities or incorrect RF calibration [6]. On the other hand, care on signal interpretation
must follow since the MEGA pulses also influence all other signals resonating within their selected
bandwidth. This may also impact the signal intensity and shape of other protons in these
molecules (i.e., signal editing).
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Figure 2.6: (A) effect of water sup-
pression and brain metabolite spec-
tra visibility. (B) Effect of lipid sup-
pression on prostate spectra. (left)
poor lipid suppression and substan-
tial contamination, (right) good lipid
handling, and good spectral qual-
ity. Metabolite of interests: Cho -
Choline, Cit - Citrate. Figure modi-
fied from [3, 5].
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2.4. MR Spectroscopic Imaging
The advantages of single-voxel MRS are

• the volume is typically well-defined with minimal contamination (e.g., extracranial lipids
in brain MRS);

• the magnetic field homogeneity across the volume can be readily optimized, leading to

• improved water suppression and spectral resolution.

However, the main disadvantage is seen in Fig.2.4(A-C): if the single volume focuses on a small
part of the object (like compartment A), the signal coming from other parts (like compart-
ments B and C) will be missed. On the other hand, multi-volume or multi-voxel localization,
known as magnetic resonance spectroscopic imaging (MRSI), allows the encoding and detection
of metabolic profiles from multiple spatial positions, thereby offering a complete characteriza-
tion of the entire object under investigation, Fig.2.4(E). On certain aspects, however, MRSI is
technically more challenging due to

• significant magnetic field inhomogeneity across the entire object,

• spectral degradation due to intervoxel contamination,

• typically longer data acquisition times, and

• the processing of large multidimensional datasets.

The single voxel semi-LASER described will now be extended to process MRSI data and will
also provide an illustrative example of MRSI concepts. However, advanced sequence design and
optimization will not be discussed since they are outside the purpose of the current work. In
short, MRSI requires the extension of phase and frequency encoding from MR Imaging (MRI) to
display spatial information through k-space encoding. However, in traditional MRSI, frequency
encoding is avoided since adding time-varying carrier frequency will strongly alter the intrinsic
Larmor frequency of the single compounds of interest, yielding unreadable spectra. However,
advanced reconstruction techniques based on fast MRI can nowadays rely on frequency encoding
as well for MRSI.

The concept of k-space can be quickly introduced considering the overall description of the signal
S(t) coming from an ROI selecting all the phantom’s compartments A, B, and C in Fig.2.4. S(t)
represents, as depicted in Fig.2.4(D), the sum of signals from the elementary volumes s(r, t),
from each point r in the sample (each compartment can be assumed to have x, y coordinates as
indicated in fig Fig.2.4(E)). Mathematically, it can be described as
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S(t) =

∫ ∞

−∞
s(r, t)dr (2.4)

The overall spectrum F (ω) is calculated via Fourier transform of S(t) and equals the sum of
spectra from elementary volume elements f(ω, r):

F (ω) =

∫ ∞

−∞
S(t)e−jωtdt =

∫ ∞

−∞
f(ω, r)dr (2.5)

The application of phase encoding gradient will induce a phase shift on each elementary volume
according to

f(ω, r) = f(ω, r)e−jγrGt (2.6)

And such that the whole spectrum can now be described as a function of ω and G:

F (ω,G) =

∫ ∞

−∞
f(ω, r)e−jγrGtdr (2.7)

With the introduction of k = γGt (valid for rectangular gradient waveforms G), the k-formalism
is in place.

F (ω, k) =

∫ ∞

−∞
f(ω, r)e−jkrdr (2.8)

The phase-modulated spectra of the entire sample F (k, ω) represent the inverse Fourier trans-
formation of the spectra f(r, ω) from the individual volume elements.

f(ω, r) =

∫ ∞

−∞
F (ω, k)e−jkrdr (2.9)

Where r represents any direction in a 3D volume and can be extended to Cartesian directions
by applying orthogonal gradients Gx, Gy, and Gz. For a 2D MRSI readout, one would need two
phase-encoding gradients Gx and Gy to yield spectra f(ω, x, y). Such gradients are indicated
in Fig.2.1 and predisposed right before readout acquisition. It is noted that a more general
definition of k(t) = γ

∫ t
0 G(t) dt applies when time-varying gradient waveforms are deployed.

Although SVS is appropriate for the investigation of a focal lesion, a specific anatomical region,
or diffuse brain disease, MRSI is preferred when the location of interest is uncertain or multiple
areas need to be evaluated simultaneously, such as when investigating metabolite distributions
across heterogeneous lesions due to a tumor [7].
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2.5. Digitalization
All the equations that have introduced the concepts of FID and spectra assume continuous
sampling of signal either in time or k-space domain. However, in reality, signals are digitally
sampled at discrete n-time or k-space positions. Therefore, their definition impacts the quality
of acquired data through different definitions of resolution.

Spectral resolution
The minimum sampling rate to untangle and correctly digitize oscillating frequency (and avoid
aliasing) in the interval [−FN , FN ] is defined by Nyquist theory, for which the spectral bandwidth
SW must be equal to 2FN . Such sampling is run over a given number of N data points spaced
by dwell time ∆t = 1/SW . Following the Fourier transformation of the FID, the spectrum will
also contain N points spread out over the spectral width SW . Therefore, the digital spectral
resolution is SW/N , which is equivalent to the reciprocal of the total acquisition time, i.e.,
1/Tacq. The digital resolution can be improved by increasing the total acquisition time Tacq. A
smaller SW limits the minimum width required to avoid aliasing, whereas increasing the number
of acquisition points N comes at the cost of a decreased SNR as more noise and less signal is
acquired. Zero-filling is the post-processing step that simulates the extension of the acquisition
time by adding a string of points with zero amplitude to the FID. While it can significantly
improve the visual appearance of spectra, it does not increase the information content of data.
Still, it impacts signal modeling and the following quantification approaches, especially regarding
assumptions on noise distribution.

Field-Of-View (FOV) resolution
The increments in gradient area ∆G to encode k−locations determine the digitization rate in
the spatial frequency or k−space domain. Nyquist sampling yields the maximal phase shift
difference between two increments over the entire FOV to avoid aliasing:

FOV =
2π

γ∆Gt
(2.10)

The nominal voxel size is directly related to the FOV and the number of phase encoding incre-
ments N (number of acquired k−point along a given direction): ∆V = FOV/N . In practice, the
minimum voxel size is, besides the FOV, determined by the allowable measurement time and sen-
sitivity. For conventional MRSI, which is approached in this work, the encoding of Nx×Ny×Nz

volume elements (voxels) requires Nx × Ny × Nz separate acquisitions, each with a repetition
time TR. Temporal resolution can be increased conventionally, combining (1) elliptical (or
spherical) acquisition and (2) k−space apodization during acquisition. The elliptical acquisition
consists of the acquisition of k−space low-spatial-frequency coordinates only. The high-spatial
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coordinates, which contribute less to the bulk of the observed signal, are ignored, reducing the
total measurement time by about 21.5% for 2D MRSI. K−space apodization during acquisition
can be performed by running fewer signal averages at high k−space coordinates. This optimizes
the acquisition time and yields a gaussian-weighting on the Point-Spread-Function (PSF), which
significantly minimizes inter-voxel signal contamination.

2.6. Analysis of MR spectra
An in-vivo MRS experiment aims to estimate the relative or absolute concentrations of tissue
metabolites within a specific anatomical region of interest. Once the time domain MRS data
have been acquired, several steps are needed to obtain meaningful and reliable concentration
estimates. First, a series of preprocessing steps should be applied to prepare the spectrum for
analysis. Next, analysis of the processed dataset is performed, often by peak fitting, to estimate
the metabolite signal intensities. Finally, the unitless signal intensity measures are converted
into scaled concentration estimates to enable meaningful interpretation and comparisons of tis-
sue metabolite levels between subjects and groups, regardless of the acquisition site or other
measurement conditions.

2.6.1. Preprocessing

Preprocessing describes any series of operations applied to the acquired raw MRS data to prepare
them for analysis. There are three main reasons for preprocessing in MRS.

• Remove/correct spectral imperfections: MRS data are unavoidably degraded by experi-
mental imperfections (e.g., eddy currents, scanner drift, subject motion) [8]. Since spectral
fitting models generally do not consider all of these imperfections, some preprocessing op-
erations are needed to remove the imperfections, to the extent possible, in advance.

• Reduce data dimensionality: raw data are almost always multi-dimensional, with multiple
signal averages acquired by multiple coil channels from parallel receive array coils. Thus,
some preprocessing is needed to combine these signals and reduce the data dimensionality.

• Other preprocessing operations: such as Fourier transformation, phasing, apodization,
and zero-filling, are not strictly related to data quality but can be used to aid in visual
interpretation or peak fitting performance.

This work will only briefly describe techniques for removing or correcting spectral imperfections.
A glimpse at some of the other possible preprocessing steps has already been introduced. Fur-
thermore, it is noted that only traditional processing strategies will be mentioned in this section.
As in many different fields, novel preprocessing methods relying on Machine Learning (ML) are
being implemented and introduced to the MRS community. However, these methods are still
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relatively new and may require further development before being deployed widely. Therefore
they are not yet acknowledged in routines despite their State of the Art (SOTA) performances.
These strategies will be mentioned in Section 5.3.

Eddy currents
Rapid gradient switching gives rise to unwanted short-lived (i.e., up to hundreds of milliseconds)
fluctuations of the B0 field, called eddy currents. For example, suppose the acquisition window
occurs close to the end of a gradient pulse. In that case, a multi-exponential decaying B0-field
component may exist during the early part of the acquisition window, giving rise to a time
dependence in the resonance frequencies of the acquired FID. This unwanted effect severely
distorts spectral line shapes, Fig.2.7. The acquisition of an unsuppressed water spectrum using
identical gradient strength and timing configuration aids the identification of such an effect.
Any time dependence in the frequency of the water signal is monitored by non-linearity in
phase. Subtracting such phase variation from water and metabolite signals yields eddy current
correction [9].

Figure 2.7: Display of eddy current artifacts in water-unsuppressed and metabolite spectra.
Modified from [3].

Motion
Despite all efforts to control subject motion, a small amount of motion is practically inevitable
in the timeframe of an MRS scan. Tiny amounts of motion, for example, due to normal physio-
logical motion (breathing, cardiac pulsation, swallowing) or small bulk movements of less than a
few millimeters, result in small changes in the frequency and phase of the individual transients.
A retrospective processing algorithm can easily correct for such drifts. However, in the case of
large amounts of motion, such as the gross motion of the head or limbs, much larger spectral
distortions are observed. In addition, severe gross motion can lead to unwanted tissue sampling
outside the region of interest. In this case, it may be necessary to remove the transients that
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are most severely affected by motion or discard the dataset altogether. Although highly promis-
ing, different prospective motion correction strategies for 1H-MRS (e.g., navigator images or
optical tracking) are not yet in mainstream use, and thus retrospective correction methods are
commonly employed [10].

Frequency and phase drifts
The main magnetic field of an MRI scanner, B0, is subject to subtle temporal drift due to the
heating and cooling of the ferromagnetic passive shim elements, which are in thermal contact
with the gradient coils. As a result, frequency drifts are observed during most MRS experiments.
The magnitude of these drifts can vary significantly from scanner to scanner, day time, and is
also affected by the use of gradient-intensive pulse sequences before the MRS scan, but ranges
typically between 1 and 10 Hz of total drift during a typical MRS acquisition. Moreover, as
mentioned above, physiological or small bulk motion during the MRS scan leads to additional
frequency and phase offsets, independent of scanner drift. If not corrected, these frequency
and phase drifts will lead to broader spectral peaks, signal-to-noise ratio (SNR) reduction, and
line shape distortion. Several methods exist for retrospective correction of frequency and phase
drifts. The one used during the developments of the current work involved either (1) tracking the
frequency and phase of the residual water peak to estimate and correct the frequency and phase
drifts or (2) relying on the water-unsuppressed signal deploying metabolite-cycling schemes.

Nuisance peak removal
In-vivo 1H-MRS acquisitions are specifically designed to suppress nuisance signals such as water
and outer volume signals, as briefly mentioned in Section 2.3. However, perfect suppression
is challenging, as the signals to be suppressed are usually orders of magnitude larger than the
signals of interest. As a result, noticeable contamination of spectra is relatively common. It
varies with the region of interest, and minimizing signal contamination is an essential aspect of
data preprocessing.

Poor water suppression can be handled in two ways:

• residual water signal can be removed before spectral analysis by fitting the peak to a series
of line shape components via singular value decomposition (SVD) and then subtracting
the resulting fit from the spectrum (i.e., the state-of-the-art algorithm is known as Hankel-
Lanczos SVD, HLSVD [11]);

• residual water is not removed, but the analysis is performed using a fitting model incor-
porating water peak modeling.

Lipid contamination, like poor water suppression, can impact spectral quantification and be
dealt with similarly. The main difference is that contaminating lipid peaks are generally much
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broader than residual water peaks and often overlap with metabolites of interest, making lipid
contamination more challenging to correct in preprocessing. Suppression during signal recording
or inclusion of lipid basis set in modeling are currently the best practices. See Section 2.3.

Spurious echoes (also referred to as ghosts) are another commonly observed nuisance signal in
in-vivo 1H-MRS, Fig.2.8. These are typically caused by unwanted coherence pathways and often
originate from tissues outside the region of interest. The issue of unspoiled coherences is best
dealt with by modifications to the acquisition, such as changing the timing or amplitudes of the
spoiler gradients, improving B0 homogeneity, or improving the phase cycling scheme. If spurious
echoes occur near the end of an FID, apodization can significantly reduce their appearance, but
requires care in the follow-up analysis routines.

Figure 2.8: Visualization of spurious echoes and signal contamination. Modified from [3].

2.6.2. Quantification

After preprocessing, the spectrum is ready for quantification. The goal of quantification is,
first, to estimate the spectral peak areas (or equivalently, time-domain signal amplitudes) of the
various metabolites of interest in the spectrum, as well as that of some reference signals. Second,
these quantities will then be converted to meaningful concentration units.

Linear Combination Model (LCM) fitting
In linear combination model fitting, each metabolite’s contribution to the overall spectrum is
modeled as a single response function called basis spectrum. The basis spectrum describes an
individual metabolite’s full spectral contribution and can be obtained either by phantom exper-
iment or by numerical simulation. For this work, numerical quantum mechanical simulations
for each metabolite k were used to generate the basis spectrum ξnumk (t) [12, 13]. The input
for such calculations is the spin system (i.e., chemical shift and j-coupling between all spins of
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the k−compound), the pulse sequence, and the strength of the external magnetic field. The
simulation of complex interacting spin systems follows the quantum mechanics density matrix
formalism, introduced in Section 1.1.2 and is currently implemented in various publicly available
NMR/MRS software packages. Sometimes, ideal pulses are used for simulations to the extent
that the real pulse profile is superfluous (i.e., yielding minor inaccuracies)[14]. When simulations
are used as a basis set, signal relaxation is typically excluded and fully modeled as parameters
in the fit [15, 16].

Once the full set of metabolite basis spectra (the basis set) is produced, a constrained non-
linear least-squares analysis can be used to fit a linear combination of the basis spectra to
the acquired MR spectrum, by adjusting their individual parameters: typically amplitudes Ak

and frequencies ωk. Additional metabolite-specific or global terms, such as spectral phase ϕ

and linewidth (either modeled as Gaussian broadening β and/or Lorentzian broadening α),
are normally included to improve the fit. The relative amplitudes (or weights) of the various
metabolite basis spectra in the best fit correspond to the estimated relative signal intensities.
The time-domain mathematical expression of LCM for a given metabolite spectrum ξmet(t)

follows

ξmet(t) =
∑
k

Ak · ej(ωkt+ϕ) · e−αkt−β2t2 · ξnumk (t) (2.11)

where line broadening is characterized by Voigt line shape (i.e., the contribution of both Gaussian
and Lorentzian decay).

The formalism of LCM models the acquired signal s(t) by

s(t) = ξ(t,θ) + w(t) (2.12)

where ξ is intentionally used instead of ξmet alluding to a more general model, for example,
including baseline contributions, and is parameterized by θ, the parameter vector space. w(t)

represents the measurement noise, typically assumed white Gaussian distributed. A constrained
non-linear least-squares approach yields the estimated parameter in the following minimization
process called χ2 minimization:

θ̂ = argminθ

(
ξ(t,θ − s(t)

)2
(2.13)

The fit residual (i.e., the difference between the fit and the data) indicates the goodness of the
fit or the presence of unmodeled peaks in the spectrum. Visually, suppose the model sufficiently
explains the data. In that case, residues should distribute as the measurement noise, yielding
a white Gaussian process (i.e., no bias, and residue variance equal to the measurement noise
power). Quantitatively, this can be expressed using the fit quality number (FQN), which is the
ratio of the variance in the fit residual divided by the variance in the pure spectral noise. The
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FQN should be close to 1 for an ideal fit.

To reduce the grade of the complexity of such models, prior-knowledge is applied. That consists
of enforcing fixed relationships between the model parameters, reducing their degree of freedom.
Linear combination model fitting allows for the inclusion of broad macromolecular components
(characteristic of brain spectra, see Chapter 3.1, as well as baseline components (often either
model-free spline functions or Voigt-lines) to account for any remaining broad, unmodeled back-
ground signal contributions. However, since the unmodeled baseline components are poorly
characterized by definition, these estimates often represent the most significant source of un-
certainty in fitting models. An example of a fitted spectrum with insights through single fitted
basis set components is displayed in Fig.2.9.

Converting 1H-MRS signal amplitudes Ak into metabolite concentrations Ck entails comparing
the metabolite signals with a chemical concentration reference. For this work, only the internal
water signal is used as the reference, but alternatives are available [3]. Metabolite levels can be
reported simply as a ratio to the reference metabolite and not corrected for relaxation or partial
volume effects. When referenced to a known concentration standard and corrected for partial
volume and relaxation effects, concentrations are reported in terms of absolute concentrations,
using either molar (moles per L of solution) or molal units (moles per kg of tissue).

Partial volume correction accounts for the sources of the estimated signal. For instance, when
using water referencing in the brain, one should consider from which compartment water is
coming: gray matter - GM , white matter- WM , or cerebrospinal fluid - CSF . In fact, each
compartment is characterized by different tissue water densities. If the volume fraction of CSF
is minimal, metabolite contribution coming from this tissue is typically negligible. Likewise,
correction for relaxation must include the fact that water proton signals relax at different rates
in different tissue types, as do metabolite protons. Accounting for both partial volume and
tissue-specific water relaxation leads to the following expression for molal concentrations [Ck]:

[Ck] =
Ak

AH2O

fH2O
GM RH2O

GM + fH2O
WMRH2O

WM + fH2O
CSFR

H2O
CSF

1− fH2O
CSFRk

2

Nk
[H2O] (2.14)

where [H2O] is the molal concentration of pure water; fH2O
x and RH2O

x model the water volume
fraction or water relaxation rate of tissue type x, respectively, while Rk is the metabolite-
specific relaxation rate. Such rates depend on the acquisition protocol. For a typical spin echo
experiment (like semi-LASER or STEAM), they are approximated by R = e−TE/T2(1−e−TR/T1)

when TR >> TE. The conversion to molar units needs the inclusion of water tissue densities
in Eq.2.14, which allows conversion from tissue volume to water mole fractions.
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Figure 2.9: LCM fitting on an OCC brain spectrum (3T, semi-LASER). Spectrum (black) and
fitted model (blue). The fitted model results from the superimposition of the single metabolite
basis set fitted to the data. The macromolecular background (MMBG) is modeled separately
(green), and residues display like white noise (red). Metabolite nomenclature and detail on
MMBG are reported in Chapter 3.1.
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Cramér-Rao Lower Bounds
To estimate its expected spread, every quantified value should be presented alongside a mean-
ingful error metric, such as its standard deviation (indicated as STD, SD, or σ) [17]. However,
as MRS is a time-limited modality, it is not typically feasible to perform multiple repetitions
of the same experiment to calculate the standard errors. As such, the field has adopted the
theoretical Cramér-Rao lower bound (CRLB) as the alternative to circumvent this limitation
[18].

CRLBs are lower bounds for the standard deviation of an estimated parameter. For example,
from information theory, given a maximum likelihood estimator, like the one in Eq.2.13, exists a
lower bound on the statistical errors σθ =

√
E[(θ̂ − θ)2] that, irrespectively of the model used to

estimate the values of the parameters, can not be superseded [19]. E[·] indicates the statistical
expected value.

The CRLB of the parameter θi ∈ θ is defined as

CRLBθi =
√
(Fii)−1, (2.15)

where F is the Fisher information matrix F = ℜ(DHD) where ℜ indicates the real part of
a complex number, H denotes the Hermitian conjugation, and D the partial derivatives of
the model function ξ, with closed formula calculation provided in Eq.2.12 upon assumption of
gaussian noise:

D =
1

σi

∂ξ(t, θi)

∂θi
. (2.16)

It can be show that the inequality σθi ≥ CRLBθi holds [20]. A visual aid to the definition of
CRLBs is given in Fig.2.10 where the calculation is simplified on a scalar parameter space θ and
displays the likelihood function L for the whole set of continuous estimated parameters [21].
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Figure 2.10: Two sets of data x (blu and red) are provided as input to an unbiased estimator with
likelihood function L. The model describes the data and is parameterized on θ. The calculation
of the likelihood L, first ∂L and second ∂2L order derivative, is shown over the whole set of
possible θ. The estimated parameter θ̂ML is the best estimate for both datasets but suits better
the blue data sets (i.e., maximum likelihood). Visually, its likelihood spread less, and the CRLB
evaluation as the second ∂2L order derivative calculated for θ̂ML gives the measure of it. The
inequality equation is reported at the bottom.
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However, there are practical limitations to the theory and conditions that ensure or limit its
validity.

• CRLBs require the knowledge of the true parameter values θ as well as the true noise power
(or standard deviation, σ), which are experimentally not known but only estimated: θ̂

and σ̂. Thus, conveying estimated to true parameter space requires the assumption the
model function is an unbiased estimator: E[θ̂] = θ. It is noted that this proves evidence
that the CRLBs upon which the MRS community rely on are to be defined as estimated
CRLBs and not true CRLBs [17].

• true CRLBs for a model defined as in Eq.2.12 do not equal the standard deviation of its
parameter. In fact, given the exponential terms in Eq.2.11, such an estimator cannot be
considered an efficient estimator. Therefore CRLBs in the case of MRS must be regarded
as strict lower bound [17].

• The solution of Eq.2.13 cannot be cast in a closed formula. Implementing the minimiza-
tion algorithm that iteratively searches for such a solution (e.g., Levenberg-Marquardt)
typically introduces a regularization term (or, in other words, a bias) that would help de-
crease the variance of the fitted parameters to avoid inflation of the parameter estimates.
This prevents the condition of unbiased estimators even when full knowledge of true θ is
supposed [22].

The reader may then deduce that CRLB theory does not formally apply to the MRS case.
However, it is current practice to compute and provide CRLBs as a rough estimate of the
STD of the fitted parameters because its calculation is straightforward and can be cast in an
analytical formula. Nevertheless, from the viewpoint of the underlying statistics of the problem,
such estimates are incorrect.

Advanced modeling: a 2D frame
Many advanced MRS paradigms, such as dynamic, functional, or multiparametric MRS, pro-
duce 2D spectral-π datasets. This refers to a series of 1D spectra acquired sequentially, often
while varying a sequence parameter or administering an external time-dependent stimulus or
manipulation. Such designs include diffusion-weighted (DW-MRS), T1 or T2 subject-specific and
metabolite-specific estimation, or functional experiments. Thus, such a dataset can be visualized
in a 2D space where one dimension is either the spectral or temporal domain. In contrast, the
second dimension is the π dimension, which explores the π-parameter of interest in the given
paradigm (e.g., b − values for a DW-MRS study or TEs in an MRS study with assessment of
specific T2s).

The analysis of the 2D spectral-π datasets produced by dynamic MRS experiments is conven-
tionally done piecewise in two stages. First, each spectrum is fit using a linear combination of
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basis functions to extract the temporal dependence of each metabolite’s amplitudes, shown in
Fig.2.9. Then, the π-series for each metabolite’s amplitude fits the dynamic model, which de-
scribes the π behavior to extract the relevant parameters (e.g., T2 rates in a multi-TE dataset).
This is referred to as 1D-fitting, sequential, or piecewise fitting, Fig.2.11(top). Nevertheless,
it has been suggested that multiple spectra comprising a dynamic dataset should be analyzed
and fitted in tandem rather than sequentially using a model that combines the spectral and π

degrees of freedom [16, 23, 24]. Such an approach utilizes the π-correlations inherent in the
data to benefit the spectral estimations of metabolite amplitudes and provide more precise and
accurate estimates of the π-parameters and concentrations altogether. This is referred to as
2D-fitting, dynamic, or simultaneous fitting, Fig.2.11(bottom).

Figure 2.11: A schematic overview of 1D (piecewise) versus 2D (dynamic) fitting schemes for
a fictitious multi-echo MRS experiment designed to estimate T2 rates. 1D-fitting deploys two
sequential models. First, lineshapes are fitted in the frequency domain (ν) independently for
each response. Second, their amplitude values (visually depicted in blue dots) are cast into a
second model describing the π-parameter space (TE). 2D-fitting deploys a model exploiting both
domains at once (ν and TE). Figure from [24].
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In the process of untangling the mysteries of such dialogue, I was introduced to the brain first.
Despite its exciting tissue conformation and plenty of contrasts, I discovered it to be a relatively
easy organ to access: quite stable and reliable. I dare to say, an almost passive interlocutor. In
our "dialogue" figure of speech, I could relate the brain to a highly fascinating but shy person.
Nevertheless, neurologists would say it is the most exciting and challenging organ because you
can neither take it out to look at it better, solve any health issue, nor replace it. What I happily
discovered during this journey is the prostate. Rather more attractive and active organ, which
talks and lively delivers the most unpredictable messages. That dialogue was a real challenge,
but a partly won one!

3.1. Brain
The brain is the central organ of the human nervous system, and with the spinal cord makes
up the central nervous system. The brain consists of the cerebrum, the brainstem, and the
cerebellum. It controls most of the body’s activities, processing, integrating, and coordinating
the information it receives from the sense organs and making decisions about the instructions
sent to the rest of the body. The brain is contained in and protected by the skull bones of the
head.

MRS of the human brain, first reported more than 30 years ago, is a mature methodology used
clinically in many medical centers worldwide to evaluate brain metabolism. Its maturity is
driven by the many anatomical advantages, such as the relatively close location to the body
surface and the intrinsic anatomical stiffness and staticity, that make brain MRS relatively easy
to perform, robust and reliable. In addition, its complementary use with MR imaging sequences
provides valuable insights into several common neurologic diseases, including brain neoplasms,
inherited metabolic disorders, demyelinating disorders, and infective focal lesions.

The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms (i.e.,
brain tumor characteristics, progression and response to treatment [25]), neonatal and pediatric
disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyeli-
nating disorders, and infectious brain lesions. The growing list of conditions for which 1H MR
spectroscopy may contribute to patient management, for its sensitivity to brain dysfunction
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in the presence of apparently normal structural imaging, extends to its use as a biomarker of
neurodegenerative disorders such as Alzheimer’s disease, neurodegenerative diseases, epilepsy,
and stroke [26]. However, despite its widespread usage in medical practice and although most
modern clinical MR scanners support MRS capabilities, its ultimate clinical value continues to
be a source of discussion, especially considering its routine deployment is primarily restricted to
specialized centers with good access to MR research support [27, 7]. To facilitate expanded clin-
ical acceptance and standardization of MR spectroscopy methodology, guidelines are provided
for data acquisition and analysis, quality assessment, and interpretation [7]. Two examples of
MRS clinical value are shown in Fig.3.1 for non- and neoplastic lesions.

Figure 3.1: Examples of the clinical value of MRS twinned to conventional MRI. (A) Cerebral
abscess. (B) Non-enhancing cerebral tumor. T2W and T1W: T2- or T1-weighted images, DWI
and ADC: diffusion-weighted and Apparent Diffusion Coefficient mages, rCBV: relative Cerebral
Blood Volume measured by perfusion imaging. Modified from [28].

In Fig.3.1(A), a patient with cerebral abscess has undergone a multi-parametric MR examina-
tion. Conventional MRI fully describes the morphology of the lesion. It is interesting to see
how the ADC and calculated high b-value map complements the insufficient morphological in-
formation supplied by T1w and T2w imaging, yielding proper differentiation between tissues
within the lesion boundaries (i.e., due to the higher viscosity of fluid) and bleeding brain tissue
surrounding the lesion. MRS comes into play with localization within the lesion. MRS fea-
tures of abscess show predominantly protein breakdown products on the right side of the ppm
scale, including amino acid, acetate, and succinate peaks, as well as the presence of a lactate
peak. In Fig.3.1(B), a case of multi-parametric MRI-guided biopsy for a non-enhancing tumor is
displayed. To optimize biopsies and avoid tissue sampling error for non-enhancing tumors, the
biopsy target can be selected from high choline, high rCBV (relative Cerebral Blood Volume), or
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low ADC location. The case demonstrates homogeneous ADC and rCBV maps, and the strick-
ing utility of a choline mapping produced by multiple single-voxel spectroscopy measurements
to choose the highest choline peak and target the location for biopsy.

3.1.1. Metabolites of interest

Because of its relatively low sensitivity, only small, mobile molecules in millimolar quantities are
generally detectable in an in vivo 1H MR spectrum. At commonly used field strengths such as
1.5 or 3.0 T, only signals from choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) are
observed in the normal brain at long echo times (e.g., 140 or 280ms). In contrast, compounds
such as lactate, alanine, or others may be detectable in pathological conditions, which increases
their concentration. At short echo times (e.g., 35 ms or less), other compounds such as glutamate,
glutamine, myo-inositol, lipids, and macromolecular resonances are detectable [27]. Healthy and
pathological spectra with the variation of metabolic content are reported in Fig.3.2. A healthy
spectrum and detailed insight on the basis set of fitted metabolites for quantification is displayed
in Fig.2.9. The biological significance of the major detectable compounds follows.

Figure 3.2: Group average spectra from normal and neoplastic pathological parietal white mat-
ter, recorded at 1.5T using single voxel spectroscopy (STEAM, TE = 30 ms, 4–8 cm3 voxel size).
All lesions have reduced NAA and also lower Cr than normal white matter. Spectra from the
necrotic core of metastases and GBM show reduced levels of all metabolites and elevated lipids.
Grade II and III astrocytomas show elevated Cho and lactate signals; grade II astrocytomas
also have a prominent myo-inositol (mI) signal. Figure from [29].
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N-Acetylaspartate (NAA) is the largest signal in the normal adult brain spectrum, which the most
prominent resonance originating at 2.01 ppm, with a small and usually unresolved contribution
from N-acetylaspartylglutamate (NAAG) at 2.04 ppm. NAA is one of the most abundant amino
acids in the central nervous system. NAA is often referred to as a neuronal marker since studies
have suggested that it is predominantly restricted to neurons, axons, and dendrites within the
central nervous system. Overall, NAA does appear to be an excellent surrogate marker of
neuronal health, but (as with all surrogate markers), it may sometimes change independent of
neuron cell density or function. Nonuniform concentrations for NAA over the entire brain are
reported with higher concentrations in gray matter ( 8-11 mM) compared to white matter ( 6-9
mM). Unlike NAA, NAAG is suggested to be involved in excitatory neurotransmission as well
as a source of glutamate [27, 1].

The total-Choline (tCho) is a composite signal consisting of contributions from the trimethy-
lamine groups of glycerophosphocholine (GPC), phosphocholine (PC), and a small amount of
free choline itself, with the most prominent resonating peak at 3.20 ppm. A healthy human
brain’s concentration is approximately 1-2 mM with a nonuniform distribution. These com-
pounds are involved in membrane synthesis and degradation and are often elevated in disease
states where increased membrane turnover is involved (e.g., tumors). Glial cells have also been
reported to have high levels of tCho [27, 1]. Sometimes tCho is wrongly referenced as Choline
(Cho) only.

The total-Creatine (tCr) is a composite signal consisting of both creatine and phosphocreatine
(typically assumed to contribute 50%-50% to the overall intensity). Two resonances are visible:
the biggest methyl-ammonium (CH3) resonance at 3.03 ppm and the methylene (CH2) group
at 3.93 ppm. This compound is involved in energy metabolism via the creatine kinase reaction,
generating ATP. In vitro, glial cells contain a two-to four-fold higher concentration of creatine
than neurons. tCr also shows quite significant regional variations, with lower levels in white
matter (5.2-5.7 mM) than gray matter (6.4-9.7 mM) in normal brains [27, 1]. Sometimes tCr is
wrongly referenced as Creatine (Cr) only.

One of the larger signals in short echo time spectra occurs from myo-inositol (mI) at 3.5–3.6
ppm. mI is a sugar with a suggested role as part of the inositol triphosphate intracellular
second messenger system. Glial cells in vitro have been shown to contain higher levels of mI
than neurons. mI has been reported to be reduced in hepatic encephalopathy and increased in
Alzheimer’s dementia and demyelinating diseases.

Glutamate (Glu) is the most abundant amino acid in the brain and is the dominant neuro-
transmitter. At 1.5 T, there is an almost complete overlap of Glu and glutamine (Gln), and
they are detected as a composite “Glx” peak. At higher fields (3.0 T and above), Glu and Gln
become better resolved and can be quantified individually with good accuracy using appropriate
spectral analysis techniques. Glu presents an average concentration of 8-12 mM with significant
differences between gray and white matter [27, 1].
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3.1.2. Challenges

A large body of research demonstrates that (1) robust, high-quality MRS data may be acquired
with the hardware available on current clinical MR systems; and (2) many technical challenges
of performing clinically useful SVS and MRSI can be overcome with software improvements
applied to current scanner hardware [7]. General improvements require (1) the implementa-
tion of a robust semi-LASER protocol to improve localization of MRS measurements, (2) the
incorporation of simulated metabolite basis sets in spectral analysis, and (3) the deployment
of time-efficient, robust, and high-quality automated shimming routines [7]. Trickier pitfalls in
brain MRS are reported in the following sections.

Macromolecule Background
1H-MR spectra obtained at short TEs provide the best SNR for quantifying brain metabolites.
However, broad peak-like signals from mobile macromolecules (MMs or MMBG) that over-
lap with the narrower peak-like small molecular metabolite signals and are not predefined by
knowledge about their composition and concentrations complicate quantification at short TE.
Therefore, MMs presence complicates metabolite quantification. Thus, separating broad MM
signals from low molecular weight metabolites enables accurate determination of metabolite con-
centrations and is of primary interest in many studies [30, 31]. In Fig.2.9, an example of MM
inclusion in the basis set is displayed. In Fig.3.3, measured and fitted MM spectra at different
echo times are shown.

MM spectra are composite signals composed of multiple overlapping and closely spaced mul-
tiplets (due to scalar couplings) that originate from different amino acids. Moreover, spectral
patterns of the same amino acids also differ slightly concerning their chemical shifts across
different proteins. Thus, based on current knowledge, MM spectra in vivo are addressed to rep-
resent distributions of overlapping multiplets from different amino acids within other proteins,
contributing to the apparent broad linewidths of the various peaks [30, 31].

For the most accurate and robust quantification of metabolite tissue contents, it is, thus, rec-
ommended to use an experimental MM spectrum as part of the basis set for linear combi-
nation model fitting. Such MM spectrum can be patient-specifically measured via T1- or T2-
weighting sequences (hence exploiting MMs’ considerably shorter T1 and T2 relaxation times) or
via diffusion-weighting approaches (exploiting MMs’ significantly shorter ADCs). Alternatively,
simulated MM shapes can be modeled and precisely tuned to a study cohort [30, 31, 23].
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Figure 3.3: Illustration of the spectrum (top) and MM measured spectrum (bottom) at different
TE: 20 and 60 ms. The MM spectrum is obtained via metabolite nulling with an inversion
recovery measurement (TI=900ms). Measured data are displayed in black, fit in dotted blue
lines, and residues in red. Acquisition-centered midline in the occipito-parietal cortex in gray
matter. Modified from [23].

Signal contamination
One particular type of artifact is the ghost or spurious echo. In spectroscopy, spurious echoes re-
sult from insufficient spoiling gradient power in combination with local susceptibility variations.
In-vivo susceptibility-induced magnetic field distortions arise from the presence of air/tissue and
tissue/bone interfaces. In the brain, field distortions are most apparent in regions close to si-
nuses, such as the prefrontal cortex and temporal lobes. Because susceptibility differences scale
with the static field strength, these distortions are stronger at higher fields. Ghosting artifacts
are problematic because they superimpose with metabolite peaks at varying frequencies and
may thus preclude reliable area estimation. Less troublesome are ghosts that appeared after
complete FID relaxation in the time domain (e.g., somewhat after 400 ms at 3T) since post-
processing pipelines (truncation or apodization of the FID) can overcome such contamination
(but with appropriate considerations and potential drawbacks that must be accounted for in
follow up spectral analysis). Ghosting artifacts should be monitored in the acquisition phase
and can be limited by applying OVS bands over nasal cavities, Fig.3.4. Automatic detection of
spurious echoes in spectra — and even more so the restoration of the affected spectra — has
proven to be possible with modern deep learning strategies [32].
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Figure 3.4: VOI and OVS bands placement on (A) MRSI in the supraventricular region and (B)
SVS in the occipital lobe. OVS over lipid areas surrounding the brain are twinned to a thick
OVS suppressing spurious echo that could possibly generate through the nasal cavity.

From Fig.3.4, it can be seen that the acquired VOI is placed in preferential areas far away from
air/tissue interfaces to prevent shimming difficulties and away from the scalp to avoid spurious
out-of-volume lipid signals. The subcutaneous lipid contamination should be constantly checked
in the acquisition phase by monitoring the 0-2 ppm interval. As for macromolecules, when lipid
contamination is unavoidable, a proper modeling integration via basis set is recommended for a
reliable spectral analysis [7].

3.2. Prostate
The prostate is an accessory gland of the male reproductive system and a muscle-driven me-
chanical switch between urination and ejaculation. In adults, it is about the size of a walnut.
Anatomically, the prostate is found in the pelvis. It sits below the urinary bladder, with the
urethra passing through it and the rectum closing in from behind. It is surrounded by an elastic,
fibromuscular capsule and contains glandular and connective tissue. The internal structure of
the prostate is predominantly described by zones. Specifically, the prostate features three zones:

• Peripheral zone: the back of the gland that surrounds the distal urethra and lies beneath
the capsule. It covers an average 70% fraction volume of an adult gland.

• Central zone: the zone that surrounds the ejaculatory ducts. It amounts to 20% of an
adult gland fraction volume.

• Transition zone: it surrounds the proximal urethra and measures about 10% of an adult
gland fraction volume.

Visualization of the prostate and its surrounding structures is reported in Fig.3.5 as in anatomy
books and as MRI display in Fig.3.6.
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Figure 3.5: (A) Prostate anatomy and surrounding structures. (B) Prostate zones. Figure from
[33]

Figure 3.6: Prostate anatomy and surrounding structures depicted by MR Imaging. T2-weighted
(A) sagittal, (B) transversal, and (C) coronal slices through a healthy prostate volunteer. (Top)
General localization with surrounding structures. (Bottom) Zoom-in on the prostate with labeled
prostate zones.

The clinical relevance of the prostate is given mostly by three pathologies:

• Enlarged prostate: the most common cause is benign prostatic hyperplasia (BPH) due to
an increase in the number of cells that make up the prostate from a non-malignant reason.
It is widespread in older men.
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• Inflammation: called prostatitis, it can be caused by bacteria or other noninfective causes.
It causes an enlargement of the prostate and related urination pain.

• Cancer: prostate cancer (PCa) is the second most commonly occurring cancer in men
and the fifth leading cause of cancer death, with an estimated 1.4 million new cases and
375,000 deaths worldwide in 2020 [34].

The latter represents the most relevant clinical situation. For example, prostate cancer that
is only present in the prostate is often treated with either surgical removal of the prostate
or radiotherapy. Sometimes, the decision may be made not to treat prostate cancer. For
example, suppose a tumor is small and localized, or the patient’s life expectancy is less than ten
years. In that case, the decision may be made to monitor for cancer activity at intervals (active
surveillance) and defer treatment.

Autopsy studies of men not diagnosed with PCa have shown a PCa incidence of 60% in men
over 80 years old, so screening for the disease with PSA testing also finds many cancers that
would probably never need any treatment. Therefore, a significant issue in PCa management
is to distinguish between potentially aggressive cancers that are clinically significant requiring
treatment and those that will not need immediate treatment. In histopathology of biopsies,
the aggressiveness of tumor lesions is characterized by Gleason grades on a scale from 1 to 5,
determined at two locations, combined in a Gleason score (GS). Often lesions with a GS ≤ 3+3

are defined as low risk, with 3 + 4 as intermediate and ≥ 4 + 3 as high risk [34].

Recently, multi-parametric MRI (mpMRI) and MRI-guided targeted biopsy have emerged as
essential tools in detecting, grading, and staging PCa. Specifically, diffusion-weighted imaging
(DTI) and the calculation of the water Apparent Diffusion Coefficient (ADC) are the game
changers in such protocols, which visual power is reported in two examples in Fig.3.7. While
MRI parameters can assess anatomical, morphological, and some physiological abnormalities
associated with cancer development, complementary information on molecular aspects of this
development can be derived from metabolic readouts, some of which may underlie earlier or more
specific phases of disease progression. Tissue metabolites can be assessed non-invasively by 1H
Magnetic Resonance Spectroscopic Imaging (MRSI). As 1H MRSI can be added seamlessly to
MRI procedures, it may reinforce mpMRI in the non-invasive diagnosis of PCa. In particular,
mpMRI currently suffers from a low pooled specificity, and low inter-reader reproducibility [34].
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Figure 3.7: Display of mpMRI and PCa morphological heterogeneity. Transversal view of (Left)
T2-weighted (T2W) imaging, (Middle) diffusion-weighted imaging (DWI), and (Right) appar-
ent diffusion coefficient (ADC) maps constituting the prostate mpMRI scans for two different
patients. Yellow contours indicate PCa lesions. Modified from [35].

Microstructure
The human prostate is composed of epithelial acini (i.e., a round cluster of cells) arranged in
a fibromuscular stromal network, Fig.3.8(A). The epithelia are highly organized into a contigu-
ous basal layer containing four major cell sub-types: stem cells, transit amplifying (TA) cells,
committed basal (CB) cells, and a layer of columnar secretory luminal cells that make up the
rest of the epithelium. The relative content of different epithelial cells in the normal prostate
are luminal (60%) and basal (40%), with the stem cells constituting ∼ 1% of total epithelia.
The cellular composition of a cancerous acinus is characterized by luminal hyperproliferation,
loss of the basal layer, basement membrane breakdown, immune cell infiltration, and stromal
reactivity. In addition, cancer skews the epithelial cell percentages; the luminal cells make up
> 99% of tumors, and basal CSCs are estimated to constitute < 0.1% of tumor epithelial cells.
Visually, a consequent squeezing of the lumen is shown, Fig.3.8(B) [36].
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Figure 3.8: Epithelial cell constitution of (A) healthy prostate and (B) prostate cancer. Modified
from [36].

3.2.1. Metabolites of interest

The dominant metabolite peaks observed in MR spectra acquired from the prostate include pro-
tons from citrate (Cit), Choline compounds (tCho), (phospho-)creatine compounds (tCr), and
signals of polyamines, mostly spermine (Spe). Due to recent development in MRS acquisition,
protons of myo-inositol (mI) and taurine (Tau) may be less often but visible. Cit, mI, and Spe
are considered dominant compounds in luminal space, whereas tCho and tCr are those prevalent
in prostate cells. Fig.3.9 shows two spectra from a 1H-MRSI acquisition of a PCa patient with
correspondent histopathology [34].
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Figure 3.9: Spectra of healthy (right) and prostate cancer (left) tissues measured at 3T with
a 3D 1H-MRSI protocol. Region of interest and FOV sampling reported overlayed the MRI
image. The tumor lesion reports decreased Cit and Spe and increased tCho levels. Under the
panels, histopathology slides are shown, illustrating the reduced luminal space in the cancer
lesion compared to healthy tissue (purple arrows). Modified from [35].

Citrate is the most intriguing and observable metabolite for 1H-MRS of the prostate. Its spectral
appearance varies substantially at different magnetic field strengths, pulse sequence timing, pH,
and cation concentration. Such variability can be observed comparing the example spectra in the
healthy case from Fig.3.9 and Fig.3.10. At the lower field, the two middle peaks of the quartet
dominate and resonate close together at about 2.6 ppm. The healthy prostate accumulates high
levels of Cit, in particular in the peripheral zone. The excess Cit is secreted in the prostatic
fluid of the lumen and contributes to favorable conditions for sperm maturation and motility in
seminal fluid. In vivo MRS assessments estimate average prostate tissue Cit concentrations to
vary considerably between 30 and 70 mM. Citrate levels are decreased in prostate cancer tissue
due to reduced production and secretion as modulated by the TCA cycle and reduced luminal
space given cancer growth [34].

In healthy prostate tissues, high concentrations of polyamines mainly represent spermine. Like
citrate, they are secreted by specialized ductal cells in the prostate and accumulate in the luminal
space. In in-vivo MRS studies, the tissue concentration of spermine is estimated to be 7–18 mM.
A linear relationship between the concentration of polyamines (spermine) and citrate has been
observed, and a transient association between citrate, spermine, and zinc and the binding of
this complex to proteins has been deduced from in vitro T2 relaxation studies. Less spermine
synthesis and decreased luminal space explain lower signal detection for spermine in prostate
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cancer as well [34]. Precise and reliable quantification of Spe is nevertheless challenging, given a
substantial overlap with the frequencies of tCr and tCho in the 3.12-3.18 ppm area. Resonating
groups below 2.11 ppm area are typically suppressed or highly contaminated by lipid presence,
Fig.3.10.

Choline and creatine compounds are present at relatively high concentrations in prostate cells,
either epithelial or stromal cells. tCho tissue levels estimated via in-vivo MRS experiment were
between 2 and 5 mM, and those of tCr between 4 and 9 mM. In PCa tissues, the levels of tCho
are increased, mainly due to a higher phosphocholine and glycerophosphocholine content. This
involves increased choline transport into tumor cells, increased choline kinase α and phospholi-
pase A2 expression and activity in tumors. Rising choline levels in tumors are often associated
with increased cell density and tumor hypoxia, although the latter is limited for the prostate.
Many MRS studies have observed a correlation between tCho levels or tCho signal ratios such
as tCho/Cit or (tCho+Spm+tCr)/Cit and Gleason score [34].
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Figure 3.10: Spectrum of Single-Voxel MRS
which VOI covered the whole prostate (black).
Acquisition with a STEAM protocol with low
diffusion weighting (b-value 124 s/mm2). The
fitted model (blue) and residues (red) are re-
ported together with the fitted basis set (green).
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3.2.2. Challenges

Common challenges for prostate MRS and MRSI measurements are introduced in the following
chapter.

Shimming
Optimizing B0 field homogeneity (shimming) enormously improves spectral quality, reducing
the decay of the apparent transverse magnetization in a voxel and giving a handle on lineshape
broadening. That can significantly reduce possible severe spectral overlap between tCho, Spe,
and tCr, which resonate relatively close to each other, Fig.3.10. Good B0 homogeneity is also
crucial for adequate water and lipid signal suppression since they may escape the frequency-
selective pulses needed for their suppression when severely broadened or shifted. Aside from
optimization via (1) dedicated acquisition or (2) post-processing pipelines to restore or reduce
signal broadening [37, 34], a practical step to improve B0 homogeneity is the preparation of the
rectum with a cleansing enema and an endorectal gel filling or the prescription of light dietary
and fasting six hours prior the MR examination.

Pulse sequence design
Because of prostate cancer’s multi-focal and heterogeneous nature, volume selection methods are
primarily employed with 3D MR spectroscopic imaging readouts to cover the whole prostate.

Gradient-modulated adiabatic pulses are considered the gold standard for volume localization.
Adiabatic pulses have better slice profiles, reduce outer volume signal contamination, and are
less sensitive to RF transmit field inhomogeneities. To lower RF power deposition, gradient-
modulated offset independent adiabaticity (GOIA) pulses have been implemented for prostate
MRSI. The application of GOIA-sLASER to prostate MRSI considerably reduces the contami-
nation of spectra with lipid signals of fat surrounding the prostate. It hence improves the quality
of the spectra and robustness of the measurement. That positively impacts the choice of shorter
TR, with the consequence of (1) mitigating the relatively shorter (compared to the brain) T1

relaxation effect of proton spins and (2) shortening the experiment time [34].

Echo timing covers a crucial role in the MRS of the prostate. On the one hand, for spin-echo
type localization sequences, the shortest possible echo time TE is commonly used to minimize
T2 relaxation losses. On the other hand, longer TEs in most prostate MRS(I) experiments are
chosen to decrease lipid nuisance. Moreover, the signal of the strongly coupled spin system of
citrate dominates in prostate MR spectra and shows considerable variations as a function of
interpulse timing (including TE). Therefore, for each pulse sequence timing and field strength,
a TE is selected with a high citrate absorption signal intensity (TE =88ms is the choice for the
State of the Art optimized semi-LASER 3D MRSI setup at 3T [5]).
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Movement artifacts
Prostate MR measurements may suffer from movement artifacts due to the location of the
prostate near the bladder and the bowels and relatively long acquisition times. Preparation
techniques can be used to limit bowel movement, including anti-peristaltic drugs and the ap-
plication of microenema to evacuate the rectum if necessary. Dietary restrictions, where the
patients are instructed to fast six hours before the exam and consume water solely, are also ap-
plied. Potential acquisition techniques to reduce motion artifacts include applying a navigator
or using rapid acquisition methods. Finally, in water signal unsuppressed MRS(I), the water
signal can mitigate movement artifacts.

Lipid contamination
As the prostate is embedded in lipid tissue, substantial contamination by lipid signals may oc-
cur in MR spectra of prostate voxels. It is common to apply outer volume saturation (OVS)
bands positioned around the prostate to reduce extraprostatic lipid signals. All spins in these
bands are excited and then dephased by crusher gradients. OVS pulses were developed to com-
pensate for poor edge profiles, B1 field inhomogeneity, and chemical shift errors. A widely
applied approach is spectroscopic signal suppression with double band-selective inversion with
Mescher–Garwood (MEGA) pulses, in which dual-frequency pulses surrounded by crusher gradi-
ents selectively invert and dephase both the lipid and water signals. Due to the side-lobes of the
spatial response function (SRF), signal contamination between neighboring voxels can be sig-
nificant when peri-prostatic areas with high lipids are included in the VOI. These sidebands are
commonly attenuated with a Hamming apodization filter in k-space. Another effective method
to prevent lipid contamination is the application of more accurate localization sequences (i.e.,
semi-LASER).
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The beauty of a dialogue goes through the interplay between the two interlocutors. An interesting
dialogue may require a good topic, but its true beauty resides in the articulation of motives,
justifications, and arguments. Such dynamics, when proper, may trigger or draw any attention
even to the drowsiest listener. This I relate to multiparametric NMR measurement: the capacity
of arranging such a dialogue with the MR partner, capable of going beyond any static topic,
but extending it further, into side argumentations that may complement the overall picture or
substantially strengthen whatever theme carried out in the conversation.

The detection and quantification of a wide range of metabolite concentrations has led to the
characterization of disease progression, allows the study of intervention by medication or surgery,
and allows the identification or categorization of diseases by observing specific metabolic markers.
However, despite its great importance, detecting static metabolite concentrations alone provides
only a partial description of metabolism. In vivo metabolism is largely characterized by dynamic
processes, like an enzyme-catalyzed chemical exchange, transfer of chemical groups through
metabolic pathways, and, specifically for NMR, relaxation processes.

Multiparametric MR spectroscopy deploys appropriate experimental techniques that sensitize
the NMR physics to various dynamic processes, yielding simultaneous and efficient quantification
of multiple NMR parameters. For the purpose of this work, T2 relaxation and diffusion weighting
will be introduced.

4.1. Metabolite-specific T2 relaxation
In Chapter 1.2, the overall NMR relaxation phenomenon was described as the process by which
the macroscopic magnetization vector returns to the thermal equilibrium state following a pertur-
bation. Specifically, the disappearance of transverse magnetization is described by the transverse
or spin–spin relaxation time constant T2. The orientation of nuclear spins can be changed by
applying an oscillating magnetic field in the transverse plane near the Larmor frequency of the
spins. A coherent perturbation of the spins can be achieved with an external coherent magnetic
field B1+. In contrast, incoherent, random magnetic fields internal to the sample lead to inco-
herent, random perturbations of the nuclear spin orientation. For spins in solution, the randomly
fluctuating magnetic fields are predominantly caused by the magnetic moment of other nearby
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spins. The magnetic moment of one spin affects the local field of another spin randomly (both in
amplitude and orientation), due to Brownian motion and molecular tumbling. Therefore, since
relaxation will be induced when the frequency of the local magnetic field is close to the Larmor
frequency, a quantitative description of relaxation will characterize the frequency components
variation of such local magnetic field over time. In other words, changes in T2 relate well with
changes in the spin surrounding environment. It must be noted that, in principle, any interac-
tion that causes fluctuating magnetic fields can induce relaxation. The interactions which can
generate the appropriate conditions for relaxation are (1) magnetic dipole–dipole interactions,
(2) electric quadrupole interactions, (3) chemical shift anisotropy, (4) spin rotation interactions,
(5) scalar coupling interactions and (6) interactions with unpaired electrons.

Relaxation in biological tissues is complicated even further due to compartmentalization and
the exchange of molecules between different molecular environments. For example, assuming
isotropic molecular motion for water in tissue is generally wrong. In fact, with a first degree
of approximation, tissue water can be divided into bulk or free water and protein-associated
water. Free water is assumed rotationally mobile, indicating long T2 relaxation time constants.
When water forms a hydration layer around proteins or other hydrophilic structures, it is called
structured protein-associated water. Such water is characterized by restricted mobility and con-
sequently hints at significantly reduced T2 relaxation times. The structured and bulk water
pools are in fast exchange such that the relaxation characteristics of the immobile pools can sig-
nificantly shorten the observed relaxation times. The two-compartment model can be extended
to more compartments, which could also extend to metabolites. As a matter of fact, this inter-
play of water with proteins relates well with the spermine compound in the prostate, where the
characterization of spermine interactions with protein bonding is still yet under investigation,
through T2 measurements or analysis of its diffusivity (see Section 7.2).

4.1.1. Measurement of metabolite-specific T2 times

The conventional technique to measure T2 times is via a series of repeated spin-echo experiments
at different TEs. Such an approach is sometimes referred to as Multiple Echo Times (MTE)
experiment or, in this work, as Multi-Echo Multi-Shot (MEMS) approach, Fig.4.1.

Spin-echo experiments intrinsically reduce the T ∗
2 artifactual component in the measure, as

discussed in Sections 1.2 and 2.2. The signal intensity acquired at different echo times decay
exponentially, according to Eq.1.3. Deviations from the simple, exponential decay curve can be
seen for water, as is the case of the separation between brain water (T2 < 200 ms) and CSF
water (T2 > 200 ms). Larger or strongly-coupled spin systems are characterized by complicated
modulation functions that can only be obtained through quantum-mechanical simulations. Such
modulation due to scalar coupling needs to be quantitatively known to extract the metabolite-
specific T2 relaxation time constant. Current practice relies on simulating the metabolite basis
sets for each different TEi in the investigated batch TEn

i=1. Subsequently, a sequential or bidi-



4| Multiparametric MRS 59

mensional fit extracts T2 metabolite-specific times and concentrations. In Fig.4.1 an exemplary
batch of brain spectra acquired for six TEs is arranged in a 2D frame. Along the 1st dimension
is displayed the spectral contribution in frequency (chemical shift), and along the 2nd dimension
is displayed the spectral variation upon increments of TE (i.e., T2-weighting). The model that
describes the pool of spectra can be written in the time domain as follow:

s(t, TE) =

N∑
n=1

Anξ
TE
n (t)ej(ωTEt+ϕTE)e−αTEt2e−TE/T2,m (4.1)

where a bidimensional inter-dependency on time t and echo time TE is evident. The overall
contribution result is the sum of the simulated basis set ξTE

n for a specific metabolite n and a given
sequence timing TE. Overall frequency and phase distortion, as well as field inhomogeneities
α (i.e., the T ∗

2 modeled contribution), are assumed independent and free for each TE. Such
flexibility can be discussed and limited according to the specific experimental design and/or
necessity. The metabolite-specific relaxation rate T2,m is estimated as a parameter varying over
the 2nd dimension and is assumed linked throughout different TEs for any given metabolite
m ∈ [1,M ]. Given limitations such as SNR and degree of freedom of the model, the range of
independent fitted T2 is typically smaller than the overall number of metabolites (i.e., M < N).
Therefore T2 may be assumed equal for a given pool of weakly represented metabolites. Such
pool may vary according to the intensity of the external magnetic field B0 [38].

Figure 4.1: Multi-Echo Multi-Shot dataset of brain spectra acquired at 3T with a semi-LASER
protocol and exploring a batch of six echo times. T2-weighting is evident along the TE dimension.

A sequential fit approach would untangle the term e−TE/T2,m from Eq.4.1 and enforce freedom
onto estimating metabolite contribution (or intensity) ATE

n for each different TE and therefore
generating six independent fits modeled by sTE(t) instead of the bi-dimensional model s(t, TE).
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After sequential χ2 minimization for each TE, the six estimated ATE
n are fitted with the mono-

exponential decay function x(TE) = ATE=0
m e−TE/T2,m to determine the specific T2 for each

metabolite m. A bidimensional (or simultaneous) fitting approach would take the whole Eq.4.1
and fit both areas An and T2,m simultaneously in one-step χ2 minimization, where metabolite
areas An do not vary between TEs but are constant and corrected by simultaneous T2 weighting.
It must be mentioned that such correction is only partial, and T1 correction will still be needed
when calculating absolute concentration level deploying Eq.2.14. The last observation suggests
how profitable the estimate of measurement-specific (or, in other words, subject-specific) relax-
ation times is for in-line calculation of metabolic content.

4.1.2. Impact of T2 for quantification

Absolute quantification in MRS requires knowledge of sequence properties, such as echo time
TE, repetition time TR, and pulse inter-timings, as well as metabolites’ relaxation times (T1,
T2) and transmit inhomogeneity (B1+). Conventional techniques for measuring these quantities,
such as Inversion Recovery (IR) or Multiple Echo Times (MTE), are time-consuming, inefficient,
and rarely used within clinical timeframes. Instead, clinical MRS relies on regionally tabulated
values, which do not account for inter-subject variability and are often lacking, particularly in
pathology. Such assumptions introduce quantification errors, and biases [1].

Moreover, under pathological conditions such as stroke or tumors, various metabolites may be
present in different cellular micro-environments with different relaxation characteristics. In these
cases, the measurement of T2s is first meant to be embedded into the appropriate calculation of
concentration levels and, second, could hold additional valuable information as biomarkers per
se. For example, the relaxation times of the neuronal marker NAA reflect the neuronal microen-
vironment and may operate as an independent marker of neurodegeneration or inflammation
[39]. So far, there is clear evidence for age-dependence of metabolite relaxation times [40] but
also altered values in pathologies such as multiple sclerosis [41], Alzheimer’s disease [42], and
cancer [43, 44].

4.2. Diffusion-Weighted MRS (DW-MRS)
Diffusion is the random translational (or Brownian) motion of molecules or ions that is driven
by internal thermal energy. Diffusion in the absence of internal concentration gradients, like
diffusion in pure water, is intuitively described by a probability function that gives the probability
of a particle having moved over a certain distance and time, Fig.4.2(A). For isotropic diffusion,
such probability function predicts a Gaussian dependence on the displacement. As a random
Brownian motion, the average displacement is zero. However, the average square displacement λ2

associated with 3D diffusion can be calculated as λ2 = 6∆t, where D is the diffusion coefficient
(in µm2/ms) and t is the diffusion time (ms), Fig.4.2(B). For freely diffusing water at room
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temperature D ∼ 2.2µm2/ms, which means that the water molecules travel an average or root
mean square distance of circa 25 µm in 50 ms. Deviations from the Gaussian distribution function
will arise when geometrical constraints restrict the translational, Brownian displacements.

Diffusion of particles or molecules in biological tissues is driven by the molecule or particle size
and any spatial or chemical constrain on molecules’ motility. Therefore, diffusion may reflect
insights on tissue micro-structures and compartmentalization (e.g., intra- or extra- cellular envi-
ronment), chemical interactions across molecules and metabolic pathways (e.g., protein bonding
and complexation) as well as description of the nature of molecule themselves (e.g., size of a
molecule).

Figure 4.2: Diffusion and spatial displacement. (A) Almost free diffusion of blue ink in water.
(B) Starting from a single point in space, the mean square displacement of diffusing particles
mimicking ink molecules increases linearly with time. Extended from [1].

4.2.1. Introduction to Diffusion in NMR

Diffusion-weighted MR measurements rely on the signal attenuation arising from phase disper-
sal. To quantify translational motion, magnetic field gradients are employed such that spins at
different spatial positions r will acquire spatially dependent phase shifts ϕ as a consequence of
gradient-driven Larmor frequency ω(r): concept similar to the position-dependent Larmor fre-
quency ω(r) = ω0+γGr, where ω0 indicates the Larmor frequency induced by B0, as illustrated
in Chapter 2.1 for the definition of slice selective pulses. A visual example is given in Fig.4.3.
The phase exerted on the spins by the magnetic field gradients is provided by ϕ = γδGr, where
r is the position of the spin along the axis where the gradient with intensity G is played out
for a duration δ (transition from time steps t1 to t2 in Fig.4.3). For stationary spins, the gener-
ated phase dispersal is refocused by a secondary magnetic field gradient applied with inverted
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magnitude, and after the diffusion time ∆ (i.e., the inter-time played out between two diffusion
encoding gradients, see the transition from t = 3 to t = 4 in Fig.4.3-first line). Contrarily,
suppose there is a macroscopic motion (e.g., flow) along the diffusion encoding gradient. In
that case, all spins will undergo a displacement ∆r that will produce a net phase shift over all
spins ∆ϕ ∝ γδG∆r (transition from t3 to t4 in Fig.4.3-second line, phase distortion represented
at t5). In the presence of diffusion (without macroscopic motion), the spins randomly move to
different spatial positions. Since the translational motion has perturbed the linear dependence
of phase on spatial position, the application of the second magnetic field gradient can no longer
lead to a complete reversal of the phase acquired by the first magnetic field gradient. Therefore,
the presence of diffusion leads to phase dispersal across the sample, which in turn will lead to
phase cancellation and hence signal loss (transition from t3 to t4 in Fig.4.3-third line, signal
loss represented at t5). Signal attenuation depends on the diffusion coefficient, the area of the
magnetic field gradient (i.e., amplitude and duration), and the separation between the magnetic
field gradients.

Figure 4.3: Diffusion, motion, and flow in the presence of magnetic field gradients. (box) A
3D localization experiment is completed by bipolar gradients of duration δ, intensity G and
separation ∆. Spins’ phases are reported for different time steps (1-5) following excitation, refo-
cusing, and application of diffusion gradients. (right) Over three different lines, three scenarios
are reported with consequent phase nulling, phase gain, and signal cancellation. Extended from
[1].
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Diffusion in the presence of time-varying magnetic field gradients is quantitatively described by
the solution of the Torrey-Bloch equations, given by

Mxy(b) = Mxy(0)e
−bD with b = γ2

∫ t

0

[∫ t′

0
G(t′′)dt′′

]2

dt′ (4.2)

Which predicts a simple, exponential decay of the detected signal due to diffusion-related signal
loss. The diffusion coefficient D can be quantitatively measured from the detected signal Mxy(b)

as long as the b-value is quantitatively known. The b-value represents the amount of gradient-
induced dephasing and can be quantitatively calculated for any MR sequence with any magnetic
field gradient combination. Usually, the diffusion experiment is repeated with different b-values
(either by changing G, ϵ, or ∆) to achieve a reasonable span of signal intensities. In Fig.4.4, a
visualization of such an effect is given.

Figure 4.4: (left) Scheme of a 3D spin-echo MRS localization with the addition of bipolar trape-
zoidal diffusion gradients: ∆ diffusion time, G gradient amplitude, ϵ gradient ramp-up time
and δ gradient duration. (right) Acquisition of transversal magnetization Mxy as a function of
different b-values. Four different gradient intensities encode four b-values. Signal loss is expo-
nentially proportional to the diffusion gradient strength. D, the diffusion coefficient, describes
the logarithmic slope.

For trapezoidal gradients, G, ϵ, and ∆ yield closed formula calculation of the b-value. However,
different gradient forms (e.g., half-sine, oscillating gradients, etc.) can be deployed alternatively,
with respective pros and cons.
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4.2.2. The value of DW-MRS

Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) generates images with en-
coded diffusion weighting on water protons. Molecular diffusion in tissues is not random but
reflects interactions with many obstacles, such as macromolecules, fibers, and membranes. Wa-
ter molecule diffusion patterns can reveal microscopic details about tissue architecture, either
normal or diseased. The uniquity of DW-MR Spectroscopy (DW-MRS), which, contrarily to
DWI, focuses on metabolite protons, resides in its cellular specificity. The intrinsic location of
the metabolites, which are in-vivo typically present in higher concentrations within the cellular
environment, contrasted to the unspecificity of water, found in mammalian tissue both in intra-
and extra-cellular compartments. For example, DW-MRS of the brain may return insights on
neuronal microstructure investigating diffusion for N-Acetylaspartate and glutamate, which are
both considered neuronal biomarkers. Vice versa, it may provide insights into the microstruc-
ture of astrocytes via investigation of the diffusivity of myo-inositol and choline compounds, if
acknowledged as glial biomarkers. In Fig.4.5, an example of an MRS experiment focused on
brain spectra is reported. Six b-values are acquired. Diffusion weighting is visually evident from
signal loss while increasing b-values. To be noted is the higher velocity of the water disappear-
ance compared to metabolites. The intuition that water could be diffusing faster is confirmed
by the signal intensity Mxy reported on the right either in absolute scale Fig.4.5(B) or logarith-
mic scale Fig.4.5(C). Water is characterized by bi-exponential decay whereas, in this context,
metabolites are well explained by mono-exponential decay and distinct by different decay ve-
locities. When the diffusion coefficient D is estimated using such an experiment, its measure is
referred to as Apparent Diffusion Coefficient (ADC) to reflect (1) methodological uncertainties
that are intrinsic in the MR experiment (e.g., artifactual signal loss from cytoplasmic streaming,
blood and lymphatic flow in the microcirculation, bulk tissue motion from cardiac pulsations
or respiration, and using dispersion due to susceptibility effects) and (2) the heterogeneity of
human tissues.
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Figure 4.5: Diffusion-weighted 1H MRS experiment. (A) 1H MR spectra of rat brain acquired
at 4.7T (PRESS, TR/TE = 3000/144 ms, CHESS water suppression). Different b-values are
indicated with diffusion-weighting increasing from bottom to top. Observed metabolites are
labeled. (B) The signal intensity of the major resonances and exponential fitting. (C) Natural
logarithmic of the signal intensity and linear fitting. The diffusion coefficient equals the slope.
Figure from [1].

Given a diffusion-weighted MR design, the access to micro-structure estimation is driven by
the size of the compartment’s explorable distances. ∆ defines the extension of the micro-
structural explainability of a diffusion experiment. It encodes the maximum diffusion time for
which particles experiencing the diffusion encoding gradients are left to travel in the medium.
That consequently gives information about the maximum allowed travel distance. For exam-
ple, Fig.4.6 display different possible explorable travel distance for a neuronal molecule under
diffusion weighting. The conformation of such explored space can be monitored by non-linear
changes of the particle’s diffusivity (i.e., ADC) over increments on diffusion time ∆.
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Figure 4.6: (right) Spin-echo localization with diffusion-weighting explored under variation of
diffusion inter-time ∆. (left) Explorable volume or diffusion distance is indicated in pink, as-
suming the diffusing compound is located within a neuronal membrane. The diffusion encoding
direction r is here assumed to be along the axon, left-to-right.

For this work, DW-MRS of the prostate investigated creatine, phosphocreatine, and choline as
cellular biomarkers. In contrast, citrate and spermine as luminal biomarkers, where the lumen
defines the space of a tubular structure characteristic of the prostate tissue arrangement and
where such metabolites, when in excess, are secreted, see Chapter 3.2.

4.2.3. Challenges

DW-MRS measurements are sensitive to errors leading to non-negligible artifacts, such as eddy
currents, b-value calculation inaccuracies, and motion-related artifacts.

Eddy currents
Significant errors in diffusivity estimations may result from distorted phase and shape of the
spectral pattern as a consequence of eddy currents (see Chapter 2.6.1), which artefactual con-
tribution is enhanced by the strong gradients required in a DW-MRS experiment. Bipolar
diffusion gradient waveforms can eliminate spectral pattern distortions caused by eddy currents
compared to single polarity gradient profiles. Furthermore, additional non-water suppressed or
metabolite-cycled acquisitions for each diffusion-weighted scan can be employed.
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Motion
It should be noted that linear non-accelerated motion does not lead to signal loss per se but does
lead to a global phase offset. When the motion changes from scan to scan (e.g., macroscopic
motion like patient motion, accelerated, decelerated, or pulsating blood flow, etc.), the net phase
∆ϕ will also change. This scan-to-scan phase variation during signal averaging in MRS can lead
to signal loss. This effect can be eliminated by storing and phase-correcting each transient
separately before summation for MRS. Physiological motions can be minimized by employing
triggering or motion tracking while measuring. For this work, a compensation scheme in post-
processing based on water signals has been used to correct motion-related artifactual losses
[45].

Dimensionality
DW-MRS relies on signal weighting, which worsens the already low intrinsic SNR of MR Spec-
troscopy. For the time being, the current more significant limitation is the display of such high
cellular specificity in only rather extensive single-voxel experiments. Therefore, advancements
toward encoding DW-MRS Imaging yielding micro-structural specificity and its spatial variation
will be of absolute value.
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MR spectroscopy, a technique so fine,
for studying the chemical make-up, so divine.

it is a type of medical scan,
a way to look inside the body of a man.

Magnetic fields and radio waves,
make it so we can see what’s inside our caves.

From metabolism to disease,
MR spectroscopy makes it a breeze.
A non-invasive way to diagnose,

a powerful tool in the physician’s notes.
With its high resolution and sensitivity,

MR spectroscopy is a technology of great versatility.
It’s the future of medicine, that’s for sure,

a powerful tool for finding the cure.
So let’s give a cheer for MR spectroscopy,

it’s like a magic trick, you’ll see,
a technique that’s revolutionizing the field,

making diagnoses more accurate, and more reveal.
It’s like a detective solving a crime,
MR spectroscopy is the ultimate find!

"poem on MR Spectroscopy" by ChatGPT-3

This chapter is partly inspired by [46] and [47]

https://chat.openai.com/auth/login
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5.1. The charm of Artificial Intelligence
Artificial Intelligence (AI) is nowadays striking society with the charm of generative models. A
well-known example is Deepfake, capable of generating synthetic yet realistic portrait images or
videos of famous faces adapted to reproduce any short talk with any text of your liking. Worth
mentioning are as well Vista simulator, a synthetic photo-realistic generator of environments
for training autonomous vehicles or OpenAI ’s works on natural language processing like image
(DALL-E-2) or code/language (ChatGPT-3) generators.

AI starts pushing the limit of any Turing’s test and lets the average user be unaware of small
details and uncertainty, which are clear examples of AI’s pitfalls and where human capabilities
are yet fundamental and needed. We are definitely diving into a world where most likely, AI will
not replace human beings, but a person using AI may do. I guess we all agree, for example, that
the marvelous "poem on MR Spectroscopy" by ChatGPT-3 is affected by at least one striking
ambiguous statement: with its high [...] sensitivity. Isn’t it quite the opposite?

The recent (November 2022) performances of AI in its ability to generate fluent language have
hit hard the scientific community worldwide, reflecting dark shadows and threatening the trans-
parency of science itself. From its earliest times, science has operated by being open and
transparent about methods and evidence, regardless of which technology has been in vogue.
Researchers should ask themselves how the transparency and trustworthiness that the process
of generating knowledge relies on can be maintained if they or their colleagues use software
that works in a fundamentally opaque manner. Interestingly and tempestively, I must say, both
Science and Nature have already commented with the utmost intent of laying down ground
rules and principles on ethical AI usage in regards to authorship of AI-related bots or proper
documentation of the usage of such tools as a research assistant in the process of doing science
[48, 49].

5.2. Deep Learning (DL)
The term AI defines whatever system is capable, to a certain extent, of imitating an intelligent
human behavior. Therefore, it generally carries a sheer broad and philosophically oriented
meaning. On the other hand, Machine Learning (ML) is tuned on a more practical view: it
defines any set of algorithms capable of automatically learning and improving from experience.
ML deploys math and statistics twinned to hand-engineered features that help to tailor the
processing of any raw input to a desired output. Sometimes, the feature engineering process
can be time-consuming, brittle, and practically not scalable. As soon as underlying features
are assumed to be intrinsically represented within a vast amount of raw data and therefore
automatically learnable, it comes to the definition of Deep Learning (DL). The surge of DL since
2010 is a direct consequence of (1) Big Data science (i.e., availability of big datasets and their

https://deepfakesweb.com/
https://vista.csail.mit.edu/
https://openai.com/dall-e-2/
https://chat.openai.com/auth/login
https://chat.openai.com/auth/login
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easy collection and storage), advancements in (2) hardware (i.e., among all, graphics processing
units - GPUs - were the game changer) and (3) software, especially plug&play toolboxes. All of
this just brought back fundamentals of statistics (in fact, I dare to say, just modernly renamed
into ML) known from the late ’50s.

5.2.1. Supervised DL

Supervised deep learning is a class of DL algorithms that uses multiple layers to progressively
extract higher-level features by matching raw input to the desired output. Therefore, it relies
on the availability of labeled datasets: a vast amount of data in which solutions for a desired
task (i.e., the output) are known and given. It assumes that a deep architecture can learn
features by matching input-output in multiple iterations via a network-update training called
back-propagation. After training, the algorithm should be capable of handling any reasonable un-
labeled input predicting its most likely output according to the rules it has learned in training.
This is also known as learning by examples.

Neural Networks
The fundamental ingredient of DL is a Neural Network (NN). NNs are computing systems
inspired by the biological neural networks that constitute animal brains. NNs are based on a
collection of connected units or nodes called artificial neurons, which loosely model the neurons
in a biological brain, Fig.5.1.

Figure 5.1: (A) Representation of perceptron network: the structural building block of deep
learning. A central node y1 receives input signaling from four nodes xi. Each node xi transmits
on a channel modulated by the weight wi. The node y1 will transmit further (i.e., it will fire) if
and only if enough input power, given by the sum of all modulated input connection, overshoot
a null threshold. The output power is modulated by non-linearity σ that gives plasticity to both
reactivity and processing of y1. (B) The analogy to human brain neurons.

Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
A neuron (or node) receives signals then, processes them, and can signal neurons connected to
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it. The signal at a connection is a real number (typically), and the output of each neuron is
computed by deploying a non-linear function of the sum of its inputs. The connections’ firing
capability, or in other words, the strength of a connection, is modulated by a weight that adjusts
as learning proceeds.

Typically, neurons are aggregated into layers. Different layers may perform different transforma-
tions on their inputs and aggregate information on a different level of complexity. An example
is given in Fig.5.2, where digitalized images represent handwritten numbers. Each pixel of the
image encodes a value from 0 to 1 (i.e., pixel brightness), Fig.5.2(A). Pixels assemble into edges,
and carefully selected combinations of edges will constitute shapes or patterns. Such patterns
can be organized in images, like digits in this case.

Figure 5.2: Interpretation of DL learnable features for images of handwritten digits. (A) A
digitalized handwritten 9 is visualized as a set of pixels whose intensity reflects brightness.
(B) The image can be decomposed into a superimposition of simpler images depicting high level
patterns such as circles and lines. Such patterns can be further decomposed into simpler features
like straight edges. (C) Different handwritten digit share common patterns, detectable by the
same combination of edges.

Such logic directly translates into a deep architecture of fully connected nodes, Fig.5.3. Signals
travel from left to right, from the first layer (the input layer) to the last layer (the output layer),
traversing the layers multiple times (i.e., forward propagation). In image processing, lower layers
typically identify low-level features, such as edges, while higher layers may identify the concepts
relevant to a human, such as patterns and shapes.

The correct mocked state in Fig.5.3 assumed the network properly trained. Neural networks learn
(or are trained) by processing examples, each of which contains a known input and output (i.e.,
the label or ground truth) forming probability-weighted associations between the two, which
are stored within the data structure of the network itself. The training of a neural network
from a given example is usually conducted by determining the difference between the processed
output of the network (i.e., the prediction) and the target output. This difference is formally
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known as the cost function (or error function) and can be propagated from the output layer
back to the single weight of each connection in the network. The network then adjusts these
weights according to a learning rule using this propagated error value. The overall philosophy of
propagating error back through the network’s connection is known as back-propagation whereas
its implementation is known as gradient descent algorithm. Successive adjustments will cause
the neural network to produce output that is increasingly similar to the target output. After
a sufficient number of adjustments, the training can be terminated based upon convergence
criteria driven by sheer minimization loss, regularization, early-stopping or patience.

Figure 5.3: A deep fully-connected neural network is composed of four fully connected layers
with a different number of nodes. The network mocks an activation state (in red) upon network
feeding with the handwritten 9 as the input image. The matrix of pixels is re-arranged into
a vector, and nodes in the 1st layer are activated with an activation level proportional to the
correspondent pixel’s brightness. On the 2nd layer, five nodes yielding edges that define a circular
shape are activated. Their activation is propagated to the 3rd layer, where a circular shape is
properly detected and activated. At the 3rd layer, a vertical pattern is as well activated from an
independent pathway through the 1st and 2nd layers (here not mocked). The two nodes fire at
last, with consequent activation for the 9th node in the output layer, which the user interprets
as digit 9.
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5.2.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a class of widely used deep learning models designed
to automatically and adaptively learn spatial hierarchies of features from input data. Their
architectures cleverly and drastically reduce the number of parameters when compared to dense,
fully connected counterparts.

A CNN architecture, depicted as an example in Fig.5.4, typically consists of an input layer, sev-
eral hidden layers, and an output layer. The hidden layers include multiple convolutional layers,
which use a small kernel (or filter) to scan over the input data and learn local patterns. They are
typically followed by pooling layers, which down-sample the data to reduce its dimensionality
and increase the network’s invariance to small changes in the input. The output layer is usually
a fully connected layer, which combines the features learned by the convolutional and pooling
layers to make a final prediction.

Figure 5.4: Convolutional Neural Network: architecture. A grayscale image is provided as input
to a 4-layer CNN network. The 1st layer has 4 features fi. Each feature fi is calculated via
convolution operation over the whole input image. The convolution operation is modulated by
a filter (or kernel) ki that explores the input image like a sliding window. If a Sobel y-axis filter
is assumed as kernel k1, the resulting feature f1 will display vertical edges (i.e., rapid changes
of pixel intensity) of the input image. Width: defines the number of features explored in each
layer. Depth: defines the number of layers.

CNNs have been applied to various computer vision tasks such as image classification, object
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detection, and semantic segmentation. They are also used in natural language processing tasks
such as machine translation and speech recognition or for other applications such as drug dis-
covery, protein folding, and audio processing.

Architectures
In recent years, the architecture of CNNs has been continuously evolving and improving, with
new architectures being proposed that have achieved state-of-the-art performance on various
benchmarks. Depending on the specific task, different CNN architectures can be used, including
those for classification, regression, and processing, Fig.5.5.

Figure 5.5: Task-oriented CNN architectures. (A) Classification or regression vanilla architec-
ture: data are passed through a funnel-like structure where the output answer to a specific task
and is fully unrelated to the input domain. (B) Segmentation or processing vanilla architec-
ture: the encoder-decoder architecture aims to compress and extend the feature space to ensure
input-output domain match.

Classification CNNs are used to predict a class or category for a given input. The output
layer is usually a fully connected layer, which combines the features learned by the convolutional
and pooling layers to make a final class prediction. One of the most popular classification CNNs
architectures is AlexNet proposed in 2012 [50], which achieved state-of-the-art performance on
the ImageNet dataset and set a new benchmark for image classification tasks.

Regression CNNs are used to predict a continuous value for a given input. These architectures
typically consist of a similar structure as the classification CNNs, with the key difference being
that the output layer is a fully connected layer where neurons produce a single continuous
function as output. A popular regression CNN architecture is C3D proposed in 2015 [51], which
is designed for video analysis and can be used for tasks such as action recognition and video
captioning.
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Processing CNNs are used to process the input data. These architectures typically consist
of an encoder-decoder structure, where the encoder is used to extract features from the input
(and encode them in a smaller subspace, usually known as latent space), and the decoder is
used to produce the final processing, by decoding the encoded features and mapping them in the
original input space. Among processing CNNs, specific fields have risen, such as segmentation,
to extract spatial features from images or videos and segment them into different regions or
segments, denoising, to alleviate nuisance component or remove artifacts, and generative
CNNs, used for data synthesis, image-to-image or text-to-image translation [52]. One of the
most popular processing CNN architectures is U-Net proposed in 2015 [53], which is designed
for biomedical image segmentation and has been extended to various other applications such
as object detection and scene segmentation, representing still, after almost 10 years, one of the
main building blocks for current state-of-the-art DL solutions.

Architectures are not just task-oriented. The continuous evolution and improvement of CNN
architectures are based as well on overcoming limitations or state-of-the-art performances and
are based on a variety of benchmarks. Some of the most popular architectures that are worth
mentioning for the purpose of this work follow.

Residual Networks (ResNets) are designed to address the problem of vanishing gradients,
which can occur in deep networks, by introducing residual connections (also known as skip con-
nections) between layers, Fig.5.6(A). These connections allow the network to learn the residual
mapping between the input and output rather than the entire mapping, making possible the
deployment of very deep architecture in the current practice [54].

Inception Networks (InceptionNet) are designed to address the problem of computational
efficiency by introducing the idea of inception modules that use multiple filters of different sizes
in parallel, rather than using one filter of a single size, Fig.5.6(B). This allows the network to
learn a variety of features at different scales, which improves its performance and reduces the
number of parameters that it needs to learn [55].

DenseNet is an architecture that uses dense connections between layers. Each layer is connected
to all the previous layers, which allows the network to reuse features from previous layers and
reduce the number of parameters it needs to learn. This also helps to mitigate the vanishing
gradients problem. It allows the training of much deeper networks [56].

The most recent EfficientNet is designed to be both efficient and effective. EfficientNet uses
a compound scaling method to scale the depth, width, and resolution of the network, which
improves the performance of the network while keeping the number of parameters low. This
architecture also uses a novel architecture search method to find the optimal architecture for a
given dataset, which made it possible to achieve state-of-the-art performance on a wide range
of benchmarks [57].
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Figure 5.6: Visualization of the main building blocks for (A) ResNet and (B) InceptionNet. (A)
Residual connections (also known as skip connections) are designed to skip three convolutions
linking two separated feature spaces. (B) Different filters are applied throughout the three
branches of a layer. Each filter runs a different level of feature extraction and down-sampling.

5.2.3. The issue of interpretability

Despite DL potential, which is well explained by sometimes vague or ill-defined ranking perfor-
mances but still outperforms humans in many meaningful tasks, performances and applications
have been questioned due to the lack of interpretability. A model is typically considered in-
terpretable because it is small and basic enough to be completely comprehended. Ideally, the
user should understand the learning process well enough to realize how it forms the decision
limits from the training data and why the model has these rules. For ordinary users, DL models
have been treated as black-box universal function approximators, where prediction explanations
are no longer available as their traditional counterparts (e.g., machine learning tools such as
logistic regression and random forests). Lack of interpretability hinders the wide application
of DL models in critical domains like healthcare. In addition, due to bias in datasets or mod-
els, decisions made by DL algorithms are prone to be unfair, where an individual or a group
is favored compared with the others owing to their inherent traits (e.g., in a modern society,
pathological cases may be represented as a minority class in a dataset which models the overall
population). As a result, more and more concerns about interpretability, fairness, and biases
have been raised recently in the healthcare domain, where human lives are at stake. Compre-
hensive analyses of model interpretability, dataset bias, algorithmic fairness, and the interaction
between interpretability, fairness, and robustness should come as a prerequisite to lift concerns
to the development and usage of any DL-based algorithm [58, 59].

An example of a rich and explorable user interface that unifies many interpretability methods
individually developed by the DL community is summarized in Fig.5.7. It shows what a network
detects and explains how it develops its understanding while keeping the amount of information
on a human scale [60]. Nevertheless, despite the overall grasp that it gives on the undergoing
process, it remains very complex to process and fully explain. A lot of work is left ahead to build
powerful and trustworthy interfaces for interpretability, especially because (1) the stakes can be
high (as in safety and fairness) and (2) because ideas like training models with interpretability
feedback put interpretability techniques in the middle of an adversarial setting [60].
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Figure 5.7: Prediction and interpretability of an InceptionNet-like architecture for classification
of images. (Top) Input image and activation map. The activation map shows the image-domain
contribution of the four most likely classes that were pointed out by the classification network
[61]. (Middle) Neurons are grouped in four color-coded collections of pixels that partition the
input image (i.e., orange is viewed as the background dark-ish orange in the activation map).
The feature visualization of each group gives a visual understanding of the network activations
upon feeding the network with the color-coded portion of the input image (i.e., a view of what
the network sees). (Bottom) The effect in prediction for the four groups reflects the likelihood
of pinpointing a certain class based on the pixel selection. Interesting the ambiguity among dog
breeds while considering either head (green) or muzzle (blue). Figure from [60].
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5.2.4. Reliability and robustness

Despite the recent improvements in overall accuracy, deep learning systems still exhibit low
levels of robustness. Robustness is defined as the ability of a system to withstand (keep regular
and anticipated function) in spite of exceptional, unforeseen events, stressful conditions such
as component failures, and extreme conditions beyond the expected operating environment [62].
From its definition it is straightforward to guess that detecting possible failures is critical for a
successful clinical integration of these systems, where each data point corresponds to an individ-
ual patient [63]. Reliability, the extent to which the algorithm performances can be reproduced
upon repetition under the same conditions, comes along when failure is to be monitored. A
visualization of robustness and reliability issues is given in Fig.5.8.

Figure 5.8: Visualization of reliability and robustness issues in a DL lifecycle. Questions of
robustness come up at different level of a DL lifecycle and should be accounted for when devel-
oping distributed algorithm, especially when they aim to constitute black-box tools in the hands
of average/naive users.

The current challenges for robust deep learning can be wrapped up in two categories: bias
handling and uncertainty estimation. Bias handling refers to understanding, monitoring, and
preventing model skewness by sensitive input features. A clamorous exemption in a real-world
application was the race and gender bias detected by DL algorithms in facial recognition tasks,
which came into play as the natural consequence of class imbalance in the training set, where
the incidence of male and white people was higher than female or other ethnicities. The impact
of training distribution has also been witnessed in the MR field, influencing the estimation of
either tissue microstructure [64] or metabolite concentrations [65]. Approaches to mitigate class
imbalance act either on the dataset, if possible by appropriately weighting the distribution of
classes and features evenly, or on the network’s feature handling, by debiasing the latent feature
space to generate a fairer distribution where to learn from. Sometimes debiasing is also referred
to as model calibration [66, 67, 68].
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Uncertainty
Measures of uncertainty are a promising direction to improve failure detection since they measure
the system’s confidence [69]. This information, in turn, can be used to leverage the decision-
making process for a user (e.g., how much to trust a given prediction) or to enable optimization
of the deployed algorithm (e.g., adversarial training). Although many uncertainty estimation
methods have been proposed for deep learning, (1) little is still known about their benefits and
challenges for various medical applications [63], (2) general acceptance and agreement upon
methodology is far from established [70] and (3) human-level readability and interpretability are
yet open issues.

There is widespread agreement on classifying two main types of uncertainty: aleatoric and
epistemic uncertainties [71]. The irreducible uncertainty in data that gives rise to uncertainty
in predictions is named aleatoric uncertainty (also known as data uncertainty). This type of
uncertainty is not a property of the model but rather an inherent property of the data distri-
bution. Hence, it is irreducible. In contrast, epistemic uncertainty (also known as knowledge
uncertainty) occurs due to inadequate knowledge. In other words, let’s assume one can define
models to answer different questions in model-based prediction. On the one hand, for data-
rich problems, there may be massive data collection that is information poor (i.e., pointing to
higher data-driven uncertainties). On the other hand, a given DL-based method may be found
to be an inefficient estimator for characterizing the emergent task-oriented features of the data
(i.e., pointing to model-driven higher uncertainties). A toy example of visualizing the effect of
uncertainty is given in Fig.5.9.
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Figure 5.9: (Top) A toy example of a data set (training set, blue) is distributed in a 1D domain
D = [−4,+4] following a mostly sinusoidal pattern that matches ground truth. A DL model
(not displayed) decently predicts the sinusoidal wave (red) within the training data domain D.
Visualization of aleatoric (bottom-left) and epistemic (bottom-right) uncertainties. Despite good
predictions, a measure of uncertainty relates to the interval [1, 3] where training data suffered
a bigger variance (aleatoric). A second measure of uncertainty relates to training distribution,
displaying higher uncertainty when predictions are asked for data outside the training domain
D (epistemic). Modified from [72].

To teach a model to recognize when it doesn’t know the answer, different uncertainty estimation
approaches have been introduced [70]. Among all, for this work, the reader will be introduced
to Monte Carlo dropout and Bootstrapping : two computationally friendly strategies to model
epistemic and aleatoric uncertainty, respectively. Monte Carlo dropout relies on NNs deploying
dropout layers. During the training process, these layers randomly drop some units of the NN
to prevent excessive co-tuning. Therefore, in the training phase, it works as a regularization
term to solve overfitting problems. Dropout layers are typically switched off in the testing
phase (i.e., all the units of the NN are exploited to predict the output). However, the idea
of predicting multiple outputs from multiple identical networks where a portion of units is
every time randomly switched off (i.e., Monte Carlo dropout) may suggest insights into the
robustness of the network model itself (epistemic). Bootstrapping is, by definition, a statistical
procedure that resamples a single dataset to create many simulated samples. This process allows
for calculating standard errors, constructing confidence intervals, and performing hypothesis
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testing. Thus, bootstrapping will allow the resampling of the testing set to evaluate measures
of uncertainty, such as the expected estimated value and coefficient of variance for a subset of
predictions, mirroring mainly the property of the dataset itself and therefore addressing the
aleatoric component of uncertainties [69]. The two methodologies are visualized in Fig.5.10.

Figure 5.10: Visualization of (A) Monte Carlo dropout and (B) input bootstrapping as uncertainty
estimators. Monte Carlo dropout estimates output predictions multiple times for the same input
set across different networks. The ensemble of the networks’ predictions yields a distribution
which statistics give insights into epistemic uncertainty. Bootstrapping splits the input sets
into subsets. Each subset’s prediction gives a distribution of predictions suggesting insights into
aleatoric uncertainties.

Need to be stressed that the mathematical definition of uncertainties for DL is currently under
debate and far from general acceptance [69]. Across different options, the bridge between the-
oretical assumption and practical implementation often relies on trade-offs and approximations
that may compromise or limit the usability of such tools according to either specific task-oriented
networks or architectures. Despite flourishing literature addressing uncertainty estimation as a
complementary tool for DL interpretability, a full-scale analysis of such models’ robustness,
reliability, and readability is still challenging [63].

5.3. Application of DL in in-vivo MRS
The application of DL in the in-vivo MRS field is dated back to 1997 when automatic tumor
grading was first explored by deploying MRI and MRS data twinned to NNs. DL in in-vivo MRS
remains a pretty small research niche, with few published papers compared to other fields (i.e.,
one paper per year from 1997 to 2017), such as computer vision or medical imaging analysis.
Nevertheless, exponential growth in the reporting of DL tools deployed for in-vivo purposes came
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into play in 2018, a year with four published papers. It ended with thirteen articles published in
20221. To date, most of the approaches rely on supervised DL, with very few recent exceptions
[74, 75].

Besides pathology classification, three common practical problems are appealing for DL methods
and applications in in-vivo MRS:

• the lack of time for acquisition

• the urge for speed and model-free postprocessing

• real-time and model-free quantification

The lack of time fo acquisition is a well-known limitation for MRS, where prolonged acquisitions
are needed to enforce sufficient spectral resolution and SNR. Such an issue extends naively
to MRSI, where in the first place, a new spatial dimension is wanted, and its encoding shall
be introduced. Secondly, intrinsic chemical shifts do not wish to get scrambled by frequency
encoding gradient, prolonging the acquisition time for conventional scans even further. DL
stands as a powerful alternative to other conventional methods providing efficient reconstruction
techniques to repair information loss when any of these limitations is overtaken by either signal
truncation [76], data undersampling [77, 78] or data generation [79]. DL applications for signal
denoising and consequent enhancement of apparent SNR are also recently investigated as a trade-
off between signal quality and acquisition time [80, 81, 82]. However, their acknowledgment
by the community has yet to come (they are mostly either pre-prints or found in conference
proceedings) compared to conventional possibilities [83, 84, 85, 86].

Computational time relates to speed when it comes to postprocessing and quantifying MRS data.
For the time being, MRS suffers from weak clinical integration due to a lack of standardization
of postprocessing and quantification routines, in the first place due to the intrinsic complexity
of the technology that hampers a community consensus, but in the second place, directly due
to the matter of haste that hinders real-time complete quantitative evaluation. For example,
intuitively, the vast amount of data generated by advanced fast MRSI acquisition currently
challenges any conventional postprocessing pipeline. Here DL has already shown its potential
in time-and-data compression [87].

Likewise, the complexity of modeling and setting prior knowledge to assess a single MR spec-
trum quantitatively challenges any average user at the scanner. DL power as a representative
technique capable of discovering essential features embedded in large datasets and therefore
determining complex nonlinear mappings between inputs and outputs suggested its early stage

1Results analyzed on Web of Science: keyword (TI=(deep learning OR neural network OR
network OR artificial intelligence) AND AB=(MR Spectroscopy OR Magnetic Resonance
Spectroscopy OR Magnetic Resonance spectroscopic)) and filtering based on in-vivo MRS
applications [73]
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deployment in model-free contexts, where prior knowledge was absent or formal assumptions
were complex, unsure, or untrue. As a matter of fact, model-free artifacts are common in the
MRS field (e.g., spurious echoes, some cases of lipid contamination, motion). Despite the possi-
bility of minimizing their impact in the acquisition phase, it can either be hard to eliminate their
presence entirely, model it with appropriate prior knowledge or even discern their source of ori-
gin. Postprocessing by DL is currently investigated and does not simply stop to anomaly/artifact
detection or spectral quality assessment [88, 75], but challenges the nature itself of MR signals by
introducing postprocessing correction and reconstruction pipelines to eliminate various artifact
sources restoring value to the acquired data [32, 89, 74].

5.3.1. Quantification of MR spectra

DL for quantification of MR spectra has boosted feature extraction to perform time-efficient and
accurate quantification of MR spectra by peak picking routines. It has been reported that, on
the one hand, these routines may lift, limit or change the paradigm to which prior knowledge
is supplied to the algorithm while simultaneously reporting equivalence in quantitation perfor-
mance compared to traditional model fitting-based quantification approaches [90, 91, 76, 92].
On the other hand, they introduce a substantial gain in speed (i.e., time is spent in training, and
at run-time, the algorithm is much faster than a minimization problem in the least square fitting
approach) and usability for the average user (i.e., black box, ready-to-use and user-friendly tools
which do not require fine parameter tuning at run-time).

Nevertheless, questions arise concerning the robustness of DL algorithms. In fact, DL has shown
excellent performance for classification or segmentation tasks but may suffer from inherent weak-
nesses in subsets of representative outlier samples. DL architectures for MRS quantitation have
mostly been investigated for sample distributions of near-healthy spectral metabolite content.
Hence, it can be suspected that high accuracy and precision are mainly found when DL is de-
ployed for new entries of similar near-normal types. However, inaccurate estimates may result
in tests with atypical datasets [64].

Estimates of uncertainty from DL predictions are crucial in the MRS context, where mea-
surement repeatability is hindered by compliance with clinical time frame restrictions. It is
fundamental to access a CRLB-comparable measure. Related work has barely explored the tip
of this research field [93].

The complex nature of the data
DL, especially regarding convolutional neural networks, was initially driven by computer vision
tasks, which dealt with data structures in 2D frames (i.e., images) in either one or three color
channels (red, green, and blue - RGB). In MRS, we are familiar with complex domain 1D data,
either FIDs in the time domain or spectra in the frequency domain. Given their definition as
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temporal signals, they are prone and suited to explore time-domain processing/conversion to
2D frames such as spectrograms or scalograms. On the one hand, if DL is considered a feature-
agnostic tool, where features should not be provided or engineered, one would question why such
processing is added to the intrinsic nature of the data. On the other hand, such processing steps
shift, enhance or suppress inherent features in the data (in fact, they behave as data scaling
and normalization, which are routine procedures to prepare a dataset for DL purposes). A clear
example of clever feature extraction by spectrograms was the time-frequency separability of
ghost artifacts, otherwise overlapping in spectral relevant areas, as shown by [32]. Interestingly,
the current literature explores various approaches to deal with MRS data, its interpretation of
channels as well as the exploration of either 1D frames [91, 95, 92, 76, 96, 93, 90, 65, 97, 94] or
2D frames [98, 32, 65]. Insights and visualization of possible preprocessing pipelines to arrange
MRS data for DL purposes are introduced in Fig.5.11.
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Figure 5.11: A simulated pathological MRS signal represented for deep learning applications:
(A) 1D frame and (B) 2D frame. A 1D MRS signal can be represented in a 2-channel fashion
(real and imaginary) in either time (A-left) or frequency (A-middle) domain or in a 1-channel
fashion (A-right, a concatenated version of real and imaginary parts). 2D frames are shown
as spectrograms (B-top) or scalograms (B-bottom). On the left side is reported the processing
procedure, whereas on the right side is displayed either a 2-channel spectrogram (real and
imaginary parts) or a 1-channel scalogram (only real part, inspired by [82]). Spectrograms model
frequency variability over time and are calculated by Fourier transform (FFT) over a series of
truncated sliding windows that chop the original FID in time-varying portions. Scalograms
model the frequency content of the FID by wavelet modulation.
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The philosophy of learning
The interpretability of MR spectra given the chemical structure of the metabolites of interest
and the physics of the NMR experiment is shown in section 2.2. From there, any prior knowledge
deployed in model fitting approaches naturally follows, and it sums up to (1) a series of model
parameters and (2) the metabolite basis set, as discussed in section 2.6.2. Mimicking model
fitting approaches, many different philosophies of how to distill knowledge in DL algorithms
arose over the past years.

A first distinction can be drawn by considering the network’s output. The straightforward
approach of DL for MRS quantification concerns learning concentrations. These approaches
refer to supervised or unsupervised algorithms where the network’s output consists of a set of
numbers directly representing either the relative or absolute content of any metabolite in a given
supplied input spectrum, Fig.5.12(A) [90, 96, 65, 97]. Contrarily, perhaps a more interpretable
output is provided by learning patterns. These algorithms are typically metabolite-specific
(i.e., a set of networks is developed where each network is tailored to quantify a specific target
metabolite) and aim to learn the metabolite basis set pattern by means of its chemical fingerprint,
Fig.5.12(B) [91, 92, 95, 65, 94, 97].

Figure 5.12: Learning strategies based on architecture’s output. In all cases, a fully connected
NN, either in the decoder (A) or encode-decoder (B) configuration, is assumed. The input data
is assumed as a 1D channel real part only. (A) The output layer θ extracts the direct metabolite
concentration θmet for each node. (B) The output layer produces a filtered version of the input
projected onto the identical domain (i.e., chemical shift). The filtering may aim to produce the
full metabolic basis set (left, blue) or a selected target metabolite (right, green) where output
integration yields the concentration.

A second distinction follows the concepts that drive the algorithms’ design and is typically
found independent on the networks’ output. In contrast to traditional deep learning, where the
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network’s parameters are designed and optimized simply by referring to input and output rela-
tionships, model-aware learning enforces nodes or, more in general, portions of the network to
learn specific parameters that typically straightly relate to the physics of the NMR experiment
(e.g., phase shifts, frequency drifts, shim, etc.). These cases dive in-between machine learning
and deep learning strategies, where feature tuning and engineering are embedded in deep archi-
tectures. Furthermore, feature engineering is usually found to help the overall interpretability of
the deep model [92, 94]. Fig.5.13(A) reports an example where a latent space of an auto-encoder
architecture is exploited to map specific spectral parameters.

Lastly, and most importantly, risk-aware learning converts existing models into risk-aware
variants capable of efficiently identifying risk during training and deployment. It consists of
unifying state-of-the-art algorithms for quantifying neural network risks ranging from under-
representation bias, epistemic uncertainty, and aleatoric uncertainty to any learning philosophy
or algorithm mentioned here [95, 93, 99]. An example is given in Fig.5.13(B), where output
prediction is twinned to a set of scores that gives right away a grasp on the reliability of the
results.
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Figure 5.13: (A) Model-aware learning. A fully connected auto-encoder produces the full
metabolite basis set from input provided as real domain spectra. The cost function (and its
χ2 minimization) includes specific modeling of the latent space (i.e., the bottleneck of the ar-
chitecture) by which each node learns specific physical properties of the NMR experiment. (B)
Risk-aware learning. A fully connected auto-encoder produces NAA basis set from real domain
spectra. The cost function includes specific modeling of epistemic and aleatoric uncertainty.
Moreover, it accounts for any representation bias given by a training set with favorable subsets
of NAA concentrations (i.e., over-representation for average-healthy concentration levels and
under-representation for pathological cases).
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Purpose: The aims of this work are (1) to explore deep learning (DL) archi-
tectures, spectroscopic input types, and learning designs toward optimal quan-
tification in MR spectroscopy of simulated pathological spectra; and (2) to
demonstrate accuracy and precision of DL predictions in view of inherent bias
toward the training distribution.
Methods: Simulated 1D spectra and 2D spectrograms that mimic an extensive
range of pathological in vivo conditions are used to train and test 24 different DL
architectures. Active learning through altered training and testing data distribu-
tions is probed to optimize quantification performance. Ensembles of networks
are explored to improve DL robustness and reduce the variance of estimates. A
set of scores compares performances of DL predictions and traditional model
fitting (MF).
Results: Ensembles of heterogeneous networks that combine 1D
frequency-domain and 2D time-frequency domain spectrograms as input per-
form best. Dataset augmentation with active learning can improve performance,
but gains are limited. MF is more accurate, although DL appears to be more
precise at low SNR. However, this overall improved precision originates from a
strong bias for cases with high uncertainty toward the dataset the network has
been trained with, tending toward its average value.
Conclusion: MF mostly performs better compared to the faster DL approach.
Potential intrinsic biases on training sets are dangerous in a clinical context that
requires the algorithm to be unbiased to outliers (i.e., pathological data). Active
learning and ensemble of networks are good strategies to improve prediction
performances. However, data quality (sufficient SNR) has proven as a bottleneck
for adequate unbiased performance—like in the case of MF.
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2 RIZZO et al.

1 INTRODUCTION

MR Spectroscopy (MRS) provides a noninvasive means
for extracting biochemical profiles from in vivo tis-
sues. Metabolites are encoded with different resonance
frequency patterns, and their concentrations are directly
proportional to the signal amplitude.1,2 Metabolite quan-
tification is traditionally based on model fitting (MF),
where a parameterized model function is optimized to
explain the data via a minimization algorithm. Metabo-
lite parameters are usually estimated by a nonlinear
least-squares fit (either in time or frequency domain)
using a known basis set of the metabolite signals.3 How-
ever, despite various proposed fitting methods,3–7 robust,
reliable, and accurate quantification of metabolite con-
centrations remains challenging.8 The major problems
influencing the quantitative outcome are: (1) overlapping
spectral patterns of metabolites, (2) low SNR, and (3)
unknown background signals and line shape (no exact
prior knowledge). Therefore, the problem is ill-posed, and
current methods address it with different regularizations
and constraint strategies (e.g., parameter bounds, penal-
izations, choice of the algorithm), with discrepancies in
the results from one method to another.9

Supervised deep learning (DL) utilizes neural net-
works to discover essential features embedded in large
data sets and to determine complex nonlinear mappings
between inputs and outputs.10 Thus, DL does not require
any prior knowledge or traditional assumptions. Given the
success of the method in different areas,10–14 DL has been
introduced into MRS as an alternative to conventional
methods.15–22 Quantification of MRS datasets has been
explored as follows: (1) DL algorithms identify datasets’
features and either help reduce the parameter space
dimension or set reliable starting conditions for the fit (i.e.,
combining knowledge on the physics with DL). It showed
rapid spectral fitting of a whole-brain MRSI datasets.23

(2) Convolutional neural networks (CNNs) have been
deployed to investigate combinations of spectral input of
edited human brain MRS, which showed improved accu-
racy of straight metabolite quantitation when compared
to traditional MF techniques.24 (3) Regression CNNs have
been used to mine the real part of rat brain spectra to
predict highly resolved metabolite basis set spectra with
intensities proportional to the concentrations of the con-
tributions,17 with results comparable to traditional MF
approaches and showing readiness for (pre)clinical appli-
cations.22 (4) Targeting localized correlated spectroscopy
(L-COSY) datasets, DL algorithms have reported faster
data reconstruction and quantification compared to alter-
native acceleration techniques.16

Nevertheless, despite the reported equivalence in
quantitation performance compared to traditional
MF,14,17,22,23 questions arise concerning the robustness of

DL algorithms. A robust use within a clinical MRS context
requires the algorithm to be unbiased also for pathological
spectra. In imaging, DL has shown excellent performance
for classification or segmentation tasks but may suffer
from inherent weaknesses in subsets of representative out-
lier samples.11,25 DL architectures for MRS quantitation
have mostly been investigated for sample distributions of
near-healthy spectral metabolite content. Hence, it can
be suspected that high accuracy and precision are mainly
found when DL is deployed for new entries of similar
near-normal types. However, inaccurate estimates may
result for tests with atypical datasets.26 Here, strongly vari-
able metabolite concentrations that vary uniformly and
independently over the entire plausible parameter space
are used in the training set. This mimics the full range
from healthy to strongly pathological spectra, that is, the
full complexity of a clinical setup.

MRS signals are acquired in time domain but viewed in
frequency domain. Traditional MF works in either of the
two equivalent domains, and fit packages may allow the
user to switch from one to the other for fitting and viewing.
However, DL architectures for MRS quantification have
mainly explored the frequency domain, mostly motivated
by the reduced overlap between the constituting metabo-
lite signals. Spectrograms18 present an extension into a
simultaneous time/frequency domain representation and
offer a 2D signal support that matches the input format for
the original usage of CNN algorithms in computer vision.
This work introduces a dedicated high-resolution spec-
trogram calculation focusing on signal-rich areas in both
domains to be used as input for different CNN architec-
tures. They are compared to other inputs and networks,
inspired by previous MRS publications. Specifically, 24 net-
work designs are investigated with differing input–output
dataset types with a combined focus on depth (i.e., num-
ber of layers) and width (i.e., number of nodes/kernels)
of the networks. This focus was motivated by the fact
that the exploitation of spectrograms in deep learning
has shown top-notch performance for speech and audio
processing when deploying architectures with few lay-
ers and large convolutional kernels.27–29 Moreover, wide
and shallow networks are more suitable to detect simple
and small but fine-grained features. In addition, they are
easier and faster to train.30 Network linearity (i.e., acti-
vation function) and locality (i.e., kernel size) are also
investigated.

Besides investigating multiple architectures and input
formats, two established main strategies for improving the
outcome of predictions are also explored: active learning31

(data augmentation for critical types of spectra) and ensem-
ble learning32,33 (combination of outputs from multiple
architectures).

Active learning can improve labeling efficiency,31,34,35

where the learning algorithm can interactively select a
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RIZZO et al. 3

subset of examples that needs to be labeled. This is an
iterative process where (1) the algorithm selects a sub-
set of examples; (2) the subset is provided with labels;
and (3) the learning method is updated with the new
data.36 Uncertainty sampling37 is a specific strategy used in
active learning that prioritizes selecting examples whose
predictions are more uncertain (i.e., targeted data aug-
mentation). Because these cases are usually close to the
class separation boundaries, they contain most of the infor-
mation needed to separate different classes.38,39 In differ-
ent applications, uncertainty sampling has been shown to
improve the effectiveness of the labeling procedure signif-
icantly.34,35,37,40

DL algorithms are sensitive to the specifics of the train-
ing.41 Hence, they usually find a different set of weights
each time they are trained, producing different predic-
tions.10 A successful approach for reducing the variance
is to train multiple networks instead of one and combine
their predictions.41 This is called ensemble learning, where
the model generalization is maintained, but predictions
improve compared to any of the single models.33 From a
range of different techniques,42–44 here, stacking of models
is implemented.32

To evaluate pros and cons of all these approaches, in
silico ground truth (GT) knowledge is used (and hence no
in vivo data was included in this evaluation) to assess per-
formances via a dedicated set of metrics based on bias and
SD. The CNN-predicted distributions of concentration are
then compared to those from traditional MF. Furthermore,
to emphasize the analysis at the core of the quantifica-
tion task, the focus is placed on an idealized simulated
setting with typical single-voxel spectra that have been pre-
processed to eliminate phase as well as frequency drifts.3
This assumption aims at (1) freeing the MF algorithm
from problems with local 𝜒2 minima and (2) designing DL
models optimized for the quantification task only.

2 METHODS

2.1 Simulations

This work is based on in silico simulations. A dataset of
22,500 entries was randomly split into 18,000 for training,
2000 for validation, and 2500 for testing. Larger dataset
sizes are also explored, see section 2.4.

2.1.1 MR spectra

Brain spectra were simulated using actual RF pulse shapes
for 16 metabolites at 3 T using Vespa45 for a semi-LASER46

protocol with TE = 35 ms, a sampling frequency of 4 kHz,
and 4096 datapoints.

Further specifics of the simulations include: (1) Voigt
line shapes, (2) metabolite concentration range, (3) addi-
tion of macromolecular background signal (MMBG),
(4) noise generation, and (5) spectrum or spectrogram
calculation.47 Metabolite concentrations vary indepen-
dently and uniformly between 0 and twice a normal
reference concentration for healthy human brain.1,48–50

Maximal concentrations in mM units—NAA 25.8, tCr
(1:1 sum of creatine+ phosphocreatine spectra): 18.5,
mI (myo-inositol): 14.7, Glu (glutamate): 20, Glc (glu-
cose): 2, NAAG (N-acetylaspartylglutamate): 2.8, Gln (glu-
tamine): 5.8, GSH (glutathione): 2, sI (syllo-inositol):
0.6, Gly (glycine): 2, Asp (aspartate): 3.5, PE (phos-
phoethanolamine): 3.3, Tau (taurine): 2, Lac (lactate):
1, and GABA (γ-aminobutyric acid): 1.8. The con-
centration for tCho (1:1 sum of glycerophosphoryl-
choline+ phosphorylcholine spectra) ranges from 0 to
5 mM to mimic tumor conditions.51 A constant down-
scaled water reference (64.5 mM) is added at 0.5 ppm
to ease quantitation. Metabolite T2s in ms (and hence
Lorentzian broadening) are fixed to reference values from
literature—tCr (CH2): 111, tCr (CH3): 169, NAA (CH3):
289, and all other protons: 185.49,52,53,54 MMBG content,
shim, and SNR mimicked in vivo acquisitions and varied
independently and uniformly (time-domain water refer-
enced SNR 5–40, Gaussian shim 2–5 Hz, MMBG ampli-
tude ±33%). The MMBG pattern was simulated as a sum
of overlapping Voigt lines as reported in Refs. 49 and 55
(Figure 1A).

2.1.2 Spectrograms

A spectrogram is a complex 2D representation of a spec-
trum, where frequencies vary with time: Every image
column represents the frequency content of a particular
time portion of the FID. Time information is binned along
every row of the image. It is calculated via application of a
short-time Fourier transform,18 where, depending on the
size of the Fourier analysis window, different levels of fre-
quency and time resolution can be achieved. A long win-
dow size modulated via zero-filling combined with a small
overlap interval is chosen to increase frequency resolution
and minimize the expense of time resolution (Figure 1B).
Diagonal downsampling is designed to reduce the spec-
trogram size, keeping the original resolution grid at least
as part of the time-frequency information on consecutive
bins and reducing the spectrogram size (Figure 1C) to
allow reasonable computation time for a CNN architecture
(i.e., 128 frequency bins× 32 time bins) (Figure 1D).
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4 RIZZO et al.

F I G U R E 1 Illustration of input formats. (A) Samples of spectra, real part, view of the central 1024 points. (B) Spectrogram
computation via short-time Fourier transform. Specifically, in datapoints units (corresponding to time and frequency resolution of 0.25 ms
and 1 Hz, respectively): S = 4096, Z = 6000, W = 1024, Ov = 1000, ZW = 1024. Zero-filling is tuned to select the relevant part of the spectrum
with W = 1024 datapoints. (C) (Left) Arrangement on a 2D frame of short-time Fourier transforms over time bins. Color code reference to
windows in part (B). A truncation at 32 bins (200 ms) in time domain is used to limit the matrix space, given an almost complete T∗2 relaxation
of the FID at that point. (C) (Middle) Diagonal undersampling reduces the vertical (frequency domain) matrix size. Size reduction is about a
factor N = 8. (C) (Right) Undersampled spectrogram: 128× 32 datapoints. (D) Example of constructed spectrogram matrix. FFT, fast Fourier
transform; S, support of the signal; Ov, window overlap; W, Hamming window size; Z, zero filling; ZW, truncated support of zero-filled FFT.

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29561 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [27/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

98



RIZZO et al. 5

2.2 Design and training of CNN
architectures

A total of 24 different CNN architectures combined
with different spectroscopic input representations are
compared for MRS metabolite quantification. Current
state-of-the art networks have been taken as reference
models and adapted to the purpose and datasets used.

Scripts were written in Python56 using Keras library57

on a Tensorflow58 backend. Code ran on either of three
graphic-processing units (GPUs; NVIDIA [Santa Clara,
USA] Titan Xp, Titan RTX, or GeForce RTX 2080 Ti) or
Google [Mountain View, USA] Colaboratory.59 Samples
of the design are reported in Figure 2. Overall network
designs are given in Table S1; Figures S1, S2, S3, S4, S5;
and Text S1.

2.2.1 Architectures for straight numeric
quantification of concentrations

A total of 22 architectures were fed with 1D (spectra) or
2D (spectrograms) input and mapped as output a vector
of 17 normalized concentrations (i.e., in [0–1] interval)
of 16 metabolites and the water reference, as listed in
Table S1. Networks fed with 1D input exploit one chan-
nel with truncated spectra of 1024 datapoints from −0.5
to +6 ppm with concatenated real and imaginary parts
(i.e., 2048× 1× 1 datapoints, Figure 2A). Networks fed
with 2D input can either be configured in two chan-
nels (real and imaginary components of the spectrogram,
32× 128× 2 datapoints) or one channel (real and imag-
inary components concatenated, 64× 128× 1 datapoints,
Figure 2B).

Five networks receive 1D input: two deep convolu-
tional neural networks (DeepNet),60 two residual networks
(ResNet)61 and one inception network (InceptionNet).62–64

This work investigates deep and shallow architectures
either exploiting large or small convolutional kernel sizes.
A total of 10 networks receive two-channel spectrograms
as input. Given the limited size of the input FOV, the archi-
tecture is limited to be shallow (i.e., pooling operations to
downsampling features directly following a convolutional
layer are limited). However, a deeper architecture with
multiple convolutional operations with sparse pooling is
also compared. A further comparison is performed regard-
ing the optimal activation function, comparing batch
normalization+ rectified linear unit (ReLU) versus expo-
nential linear unit (ELU).65,66 Seven networks receive
one-channel spectrograms as input. With this configura-
tion, deeper architectures are explored: two DeepNets, four
ResNets, and one InceptionNet.

Architectures are analyzed either in a preconfig-
ured parameter state or in a parameter space that had been
optimized via Bayesian hyperparameterization.67 The opti-
mization procedure is given in Text S1. In addition, to limit
biases around zero for small concentrations,68 all network
designs are characterized by a final layer with linear acti-
vation, allowing the prediction of negative concentrations.

2.2.2 Architectures for estimation
of metabolite base spectra

1D input (real part only, 0–4.7 ppm, 1406× 1× 1 data-
points after zero-filling of original FID) was used to input
and output to/from the CNNs. U-Net architectures69 anal-
ogous to those of Ref. 22 are implemented here to map
the ideal high-resolved noiseless base spectrum of a tar-
get metabolite as output. CNNs are trained one by one
for each metabolite such that each CNN filters out signals
only from the designated target metabolite. A base U-Net
design (Figure 2C) is optimized for individual metabolites
as follows:

1. UNet-1DR-hp : A total of 17 different networks with the
same base architecture but adapted weights for each
metabolite;

2. Unet-1DR-hp-met: A total of 17 different networks with
adapted Bayesian-optimized architecture and weights
for each metabolite.

Configurations are reported in Figure S5. First,
metabolite concentrations are evaluated by feeding an
input spectrum to the 17 metabolite-specific CNNs. Inte-
gration of the predicted metabolite base spectrum is
then referenced to the integrated water reference to pro-
duce concentrations for a fully automated quantification
pipeline.22

2.2.3 Training

Training and validation sets were randomly assigned for
training the CNN on a maximum of 200 epochs with
batch normalization of 50. The adaptive moment estima-
tion algorithm (ADAM)70 was used with dedicated starting
learning rates for each network.71,72 The loss function was
the mean-squared error (MSE). Visualization of training
and validation loss over epochs combined with imple-
menting an early-stopping criterion monitoring minimiza-
tion of validation loss with patience= 10 has been used for
tuning the network parameter space.57 Training time and
test loss function are listed in Table S1.
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6 RIZZO et al.

F I G U R E 2 Examples of three CNN structures and schematic input–output relationships. (A) and (B) depict architectures for straight
quantification, with metabolites relative concentrations as output. (C) depicts a U-Net architecture similar to what was proposed in Ref. 22
for NAA basis set prediction. Input details: (A) Deep neural network with 1D-spectral input from concatenated real and imaginary parts (-1D).
(B) Shallow neural network with 2D-spectral input from two-channel spectrograms (-2D2c). (C) U-Net architecture fed with only the real part
of a spectroscopic input (-1DR). CNN, convolutional neural network.
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RIZZO et al. 7

2.2.4 Evaluation

Regression plots mapping GT concentrations versus CNN
predicted concentrations from the whole test set are taken
as indicators of the network’s prediction performance.
Four scores are defined:

• a (slope of the regression line): must be close to 1 for
ideal mapping of concentrations over the whole range
of simulated metabolite content;

• q (intercept of the regression line, mM): must be close
to 0 to minimize prediction offsets/biases;

• R2 (coefficient of determination): must be close to 1 to
assess full model explanation of the variability of the
data;

• 𝜎 (RMS error [RMSE] of prediction vs. GT, mM): as
low as possible. However, expected to be comparable to
Cramer Rao Lower Bounds (CRLBs) from MF.73

To easily compare different networks and input setups
quantitatively in the Results section, these scores or com-
binations thereof have been used. The combinations are
referred to as concise scores: a ⋅ R2 as measure of linearity,
𝜎 to compare with CRLBs. q was excluded because it is
mostly negligible.

2.3 Influence of inclusion of water
reference peak

For the evaluation of the potential benefit of includ-
ing a water reference peak, two slightly different
ShallowNet-2D2c-hp networks are compared. Network A
outputs 17 neurons (16 metabolites and water), whereas
network B outputs 16 neurons only (no water output).
Two adapted datasets are used for the investigation, one
with (dataset A), and one without (dataset B) downscaled
water reference at 0.5 ppm. Metabolite concentrations are
calculated for both cases (assuming known water content
in case A). Networks have been independently trained

five times to monitor network variability over multiple
trainings.

2.4 Active learning and dataset size

In this part, data augmentation techniques to smartly gen-
erate training sets are investigated. Subsets with 5000 new
entries of the dataset where predictions scored worst are
defined: specific subsets of spectrally weakly represented
metabolites in either very low or very high concentra-
tions and spectra with low SNR. New weighted datasets
of 25,000 entries (20,000 training – 5000 validation set)
or 40,000 entries (35,000 training – 5000 validation set)
are generated (example in Figure 3, full description in
Figure S6). Datasets with matching size and the testing
set are kept unchanged from the previous simulation,
thus with uniformly distributed concentrations and SNR.
ShallowNet-2D2c-hp is selected as architecture and trained
10 times with a given augmented training set to minimize
training variance.

Complementarily, given the network trained on a uni-
form span of concentrations, active learning is inves-
tigated in the testing phase on three different test
sets where concentrations are clipped to a progres-
sively smaller range of 20%–80%, 20%–80% with SNR
>20, and 40%–60% concentration range relative to the
training set.

2.5 Ensemble of networks

In this section, ensembles of networks are implemented
via stacking of models.32 This consists of designing a DL
architecture called stacking model (a multilayer percep-
tron (MLP) with two hidden layers is selected for this
case) that will take as input the combination of a given
number of independently pretrained models. The stacking
model aims at weighting predictions from single models.
It is trained using the same training and validation sets

F I G U R E 3 Examples of dataset
augmentation techniques representing
sample distributions for two metabolites
(NAA and GABA). (A) Dataset size
increment with uniformly distributed
concentrations. (B) Active learning weighted
on higher occurrences of low and high
concentrations for all metabolites. GABA,
γ-aminobutyric acid.
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8 RIZZO et al.

F I G U R E 4 Illustration of ensemble
learning. (A) Stacking model concept. (B)
Examples of considered models: the
stacking model consists of the two-layer
MLPs (i.e., first layer with 1000 neurons,
second layer with 500 neurons). HybridEns:
an ensemble of two different networks (-2n).
In this study, ShallowNet-2D2c and
ResNet-1D are combined with two or 10
networks. ShallowEns: an ensemble of five
different networks (-5n) of the same type,
specifically ShallowNet-2D2c. HybridEns,
hybrid ensemble; MLP, multi-layer
perceptron; ResNet, residual network;
ShallowNet, shallow network.

used to train single models while keeping the weights of
the pretrained input models fixed. Three different ensem-
bles are investigated: ShallowEns-5n groups five identi-
cal ShallowNet-2D2c-hp architectures, whereas HybridEns
tests heterogeneous inputs grouping either two or 10 dif-
ferent networks (ShallowNet-2D2c-hp and ResNet-1D-hp)
(Figure 4).

2.6 Model fitting

Spectra are fitted using FiTAID7 given its top performance
in the ISMRM fitting challenge9 and to be expected for the
spectra as used in the current setup (in particular, with-
out undefined spurious baseline). The model consists of
a linear combination of the metabolite base spectra with
Voigt lineshape, where the Lorentzian component was
kept fixed at the known GT value. The areas of the metabo-
lites are restricted in a range corresponding to [−0.5 +
2.5 𝜇], where 𝜇 is the average concentration in the test-
ing set distribution (i.e., the normal tissue content). These
bounds mimic the effective boundaries of the DL algo-
rithms. CRLBs are used as a precision measure74 and are
considered for three subgroups of the testing set (high
[SNR > 28.4], medium [16.7< SNR< 28.4], and low [SNR
< 16.7] relative SNR, respectively).

3 RESULTS

3.1 S1Metabolite quantification
referenced to the downscaled water peak

As illustrated for three different networks, Figure 5 shows
that CNN predictions perform better if the spectra are

referenced to a downscaled water peak: Regression slope
a and R2 are closer to 1; 𝜎 is appreciably lower. Moreover,
the spread of the scores is on average reduced, display-
ing improved stability over multiple trainings. Extended
results are presented in Figures S7 and S8.

3.2 Network design

Figure 6 reports CNN predictions versus GT values of
a ResNet-1D-hp architecture for nine metabolites (see
Figures S9 and S10 for extended results on 16 metabo-
lites or different CNN architecture). Distributions of GT
and predicted values are displayed for the test set (as
for all results). Predictions relate very well to the GT
for well-represented metabolites (top row). However, for
metabolites with lower relative SNR, predicted distribu-
tions of concentrations tend to be less uniform and are
biased toward average values of the GT distributions.
Thus, concentrations at distribution boundaries are sys-
tematically mispredicted, particularly for low SNR. This is
reflected in lower a and R2 values and higher𝜎. Figures S11
and S12 include a comparison of multiple networks via bar
graphs (which are ill-suited to express the systematic bias)
and a plot of distributions of predictions.

The performance of all networks and fitting models for
nine metabolites is reported in Figure 7 via a 2D plot of
the concise scores a ⋅ R2 and 𝜎 (see Figure S13 for extended
results on 16 metabolites). Top performance corresponds
to the top-left corner where a ⋅ R2 approaches 1 and 𝜎 is
low. Metabolites can roughly be divided into three groups:

1. Well-represented metabolites: NAA, tCho, tCr, mI, Glu
with averaged DL scores a ⋅ R2 > 0.80 and 𝜎 < 15%, as
well as MF scores a ⋅ R2 > 0.95 and 𝜎 < 10%;
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RIZZO et al. 9

F I G U R E 5 Boxplot statistics of the
prediction scores for four metabolites
showing the effect of water referencing.
Results reported for ShallowNET-2D2c-hp,
ResNet-1D-hp, and U-Net-hp trained and
tested on datasets with (red, black, or blue)
and without (yellow, gray, or green) water
reference (mean values plotted in orange).
On average, water referencing yields better
performance with higher coefficients a and
R2 as well as lower offset q and lower RMSE
𝜎. RMSE, RMS error.

2. Medium-represented metabolites: Glc, NAAG, Gln,
GSH with averaged DL scores 0.50 < a ⋅ R2 < 0.75 and
20% < 𝜎 < 35%, as well as MF scores 0.75 < a ⋅ R2 <
0.90 and 15% < 𝜎 < 35%;

3. Weakly represented metabolites: sI, Gly, Asp, PE, Tau,
Lac, GABA with averaged DL scores a ⋅ R2 < 0.40 and
average 𝜎 > 35%, as well as MF scores a ⋅ R2 < 0.65 and
𝜎 > 35%.

Overall, multiple DL networks perform similarly, but
some general differences are noteworthy. Optimized spec-
trogram representation via two channels combined with
a shallow architecture (i.e., dark blue squares) is found to
be well suited for MRS quantification, showing mostly bet-
ter performances than alternative deeper designs (i.e., light
blue, pink, and gray squares), with one-channel designs
(diamonds) or 1D spectra as signal representation (cir-
cles). Benefits are evident for medium and weakly rep-
resented metabolites. Performances of direct quantifica-
tion and two-step quantification via base spectrum pre-
diction followed by integration (stars) are similar. MF is
found superior to DL for all medium- and weakly repre-
sented metabolites with significant average improvements
for a ⋅ R2. However, 𝜎 tends to be higher for many cases.
A more detailed presentation of performance is given in
Figures S14 and Text S2.

Figure 8 displays plots of prediction errors (i.e.,
𝛥 = prediction−GT) and their spread 𝜎 as a function

of SNR and shim for tCho, NAAG, and sI. Prediction
uncertainties increase with noise level approxi-
mately linearly with 1/SNR and reach a plateau for
weakly represented metabolites when the spread
represents essentially the whole training range. No
dependence on shim is apparent for the investigated
range.

3.3 Dataset size, active learning,
and ensembles of networks

Figure 9 reports on performance improvements by active
learning in training phase and dataset sizing (part 9A) as
well as by using an ensemble of networks (part 9B) for
four metabolites as reflected by concise scores. Outcomes of
emulated active learning approaches in limiting the test-
ing sets are illustrated through regression plots for Gln in
Figure 9C. Detailed comparisons for 16 metabolites are
given in Figure S15, Table S2, Table S3, Figure S16, and
Table S4.

3.3.1 Dataset size

The performance showed moderate improvements for
most metabolites when dataset size was increased from
25,000 to 40,000 samples (Figure S9).
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10 RIZZO et al.

F I G U R E 6 Maps and marginal distributions of predictions versus GT for a ResNet_1D_hp network. Results for nine metabolites are
arranged in approximate decreasing order of relative SNR from top left to bottom right. RMSE (𝜎) is reported as an overall measure of
variability. A regression model (y = ax+ q) is also provided to judge prediction quality. R2 measures how well a linear model explains the
overall data. Mispredictions can be monitored either by a decrease in a and R2 or by visual biases in distributions of predictions (bell shape).
The prediction bias toward the mean value of the training distribution is evident for medium- to weakly represented metabolites (e.g., sI, Asp,
PE, Tau, Lac). On average, metabolites with lower SNR yield higher errors (q and 𝜎 in mM units). Further metabolite results are shown in
Figure S11 and results for ShallowNet-2D2c-hp in Figure S15. GT, ground truth; Asp, aspartate; Lac, lactate; PE, phosphoethanolamine; sI,
syllo-inositol; Tau, taurine.
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RIZZO et al. 11

F I G U R E 7 Concise scores presented to compare quantification quality for different networks and input setups (all with water
reference). Network identification is chosen as follows: NetworkType-InputType-properties. 1c, 1 channel; 1D, spectra; 2D, spectrograms;
f, factorized convolution; hp, Bayesian hyperparameterized architecture; ks3, convolutional kernel size = 3; R, exploiting ReLU activations;
rb, downsampling via reduction blocks; x2, double convolution before MaxPooling.

3.3.2 Active learning

Dataset augmentation to favor training with combina-
tions of low or high concentrations of weakly repre-
sented metabolites (see Figure S6B–S6D) does not sub-
stantially improve performance (Figure 9A, Figure S15,

Table S2). Mild improvements (<6% for a, q, R2 and 𝜎)
are seen for GABA and sI, respectively, when exploit-
ing metabolite-specifically augmented datasets (GABA-w,
sI-w). Increased dataset size combined with data augmen-
tation to favor high and low concentrations of different
metabolites (GSPT-w) moderately improves performances
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12 RIZZO et al.

F I G U R E 8 Illustration of the SNR and shim dependence of prediction quality. The CNN’s prediction error Δ (prediction – GT) and the
RMSE (𝜎) are plotted as a function of SNR (top row) and shim (bottom row) for four metabolites. Results reported for network type
ShallowNet-2D2c-hp with water reference. RMSE is averaged over bins with an equal number of samples. Bins’ width increases for low SNR
values. Errors scale approximately linearly with 1/SNR and are insensitive to different shim setups.

for the augmented metabolites (GABA, sI, PE, Tau). It
also extends mild improvements to medium- to weakly
represented metabolites that have not undergone data aug-
mentation (e.g., Lac, Gly, Gln). A dataset that is strongly
weighted toward extreme combinations of low or high
concentration for all metabolites (fully-w) or a dataset
weighted toward low SNR (SNR-w) deteriorated perfor-
mances.

Clipping the test set to 20%–80% or 40%–60% of the
concentration range in training renders improved per-
formances (on average a+ 4.5%, q−10.2%, 𝜎 −23.9% and
a+ 4%, q−37.5%, 𝜎 −36.2%, respectively), which is even
enhanced further when the testing set includes sam-
ples with higher SNR (on average a+ 15.4%, q−45.4%,

𝜎 −36.2%). Given the limited range on the y-axis, R2 is less
representative (Figure 9C, Table S3).

3.3.3 Ensemble of networks

Ensembles of Bayesian-optimized networks show consis-
tent and relevant a ⋅ R2 improvements for medium- to
weakly represented metabolites without deteriorating per-
formance for well-defined metabolites. A hybrid ensem-
ble outperforms the ensemble of networks of the same
type. The performance of the ensemble increases with
the number of combined networks (Figures 9B, S16)
(Table S4).
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RIZZO et al. 13

F I G U R E 9 Outcome comparison for the influence of dataset size, active learning approaches, and ensemble of networks (all with
water reference). Concise scores evaluated on the same testing set for tCr, Glu, sI, and GABA in different setups: (A) Dataset size and active
learning on the training set (for abbreviations alluding to types of active learning extensions, see Results 3.3.2). (B) Ensemble of networks (for
naming, see Figures 3 and 4). Ensemble models improve predictions for weakly to medium-represented metabolites without worsening the
already good single-network performances for well-represented metabolites (higher a ⋅ R2 and lower 𝜎). (C) Active learning on the testing set
monitored via maps and marginal distribution of predictions versus GT for glutamine. Improvements for clipped concentration ranges can be
monitored via scores. However, the 40%–60% interval shows a significant number of outliers. Prediction distributions are still far from being
uniform. GABA, γ-aminobutyric acid; Glu, glutamate; sI, syllo-inositol; tCr, total creatine.

3.4 CNN predictions versus model
fitting estimates

A general juxtaposition of CNN and MF performance is
contained in Figure 7. In Figure 10, detailed results are pre-
sented for two metabolites in the form of regression plots
for ShallowNet-2D2c-hp and MF with FiTAID. In addition,

the estimated CRLBs from MF are displayed and then com-
pared in subgroups of SNR with the variance found in MF
estimates and CNN predictions.

Area-constrained MF shows biases at the parameter
boundaries for weakly represented metabolites (e.g., Asp).
However, traditional MF outperforms quantification via
DL: regression lines show less bias (a and q), and the

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29561 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [27/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

107



14 RIZZO et al.

F I G U R E 10 Comparison of performance for deep learning and model fitting reported for two illustrative metabolites. (Left) DL
prediction versus GT mapped via ShallowNet-2D2c-hp with water reference. (Middle) Estimates versus GT for the MF approach. (Right)
CRLBs evaluated on the fitted estimates. Histograms on the right group three subsets of an equal number of samples with different levels of
SNR—group 1: SNR< 16.7, group 2: 16.7< SNR< 28.4, and group 3: SNR> 28.4 displaying the distribution of estimated CRLBs. For group 1,
given the skewness of distribution, mode (Mo) and mean (𝜇) values are reported. For comparison, RMSEs (𝜎s) are reported as estimated for
each SNR group for both DL and MF. DL’s RMSEs (𝜎s) underestimate CRLBs for low relative SNR metabolites.

distribution shape of estimates is closer to a uniform pat-
tern within the GT range. RMSEs (𝜎s) are higher in the
case of MF for medium- to weakly represented metabo-
lites (e.g., Asp) but lower for well-defined metabolites
(e.g., Glu) (as formerly noted in Figure 7). Consequently,
although 𝜎s of MF are bigger than the CRLBs estimated for
their SNR reference group, 𝜎s of DL overestimate CRLBs
for well-defined metabolites and underestimate CRLBs for
weakly represented metabolites.

4 DISCUSSION

Quantitation of brain metabolites using deep learning
methods with spectroscopy data in 1D, 2D, and a com-
bined input format was implemented in multiple network
architectures. The main aim of the investigation was to
compare the core performance of quantification in an ide-
alized setting of simulated spectra. In fact, the analysis of
the optimal performance of both, MF and DL, may other-
wise be blurred by additional experimental inaccuracies or

artifacts from actual in vitro or in vivo spectra. Moreover,
these nuisance contributors may be tackled in separate
traditional or DL preprocessing steps that are beyond the
current analysis. Many of the methods proved successful in
providing absolute concentration values even when using
a very large concentration range for the tested metabolites
that goes way beyond the near-normal range that has often
been used in the past. In addition, different forms of net-
work input were tested, including a specifically tailored
time-frequency domain representation and a downscaled
water peak for easing of quantification. Whereas data aug-
mentation by active learning schemes showed only modest
improvements, ensembles of heterogeneous networks that
combine both input representation domains improve the
quantitation tasks substantially.

Results from DL predictions were compared to esti-
mates from traditional MF, where it was found that
MF is more accurate than DL at high and modest rela-
tive noise levels. MF yields higher variance at low SNR,
with estimated concentrations artificially aggregated at
the boundaries of the fitting parameter range. Predictions
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RIZZO et al. 15

obtained with DL algorithms delusively appear more
precise (lower RMSE) in the low SNR regime, which
may misguide nonexperts to believe that the DL predic-
tions are reliable even at low SNR. However, these pre-
dicted concentrations are strongly biased by the dataset
the network has been trained with. Hence, in case of
high uncertainty (e.g., metabolites with low relative SNR
or present in concentrations at the edge of the param-
eter/training space), the predicted concentration tends
toward the most likely value: the average value from the
training set.

4.1 Forms of input to networks

Previously, 1D spectra have mostly been used as input
for DL algorithms. Here, they have been compared and
combined with 2D time-frequency domain spectrograms
that had explicitly been designed to be of manageable
size while retaining those areas of the high-resolved stan-
dard spectrogram that contain the most relevant informa-
tion, that is, rich in detail in frequency domain to dis-
tinguish overlapping spectral features but also maintain-
ing enough temporal structure to characterize T∗2 signal
decay. This comes at the cost that the spectrogram cre-
ation cannot be reversed mathematically. However, this
is irrelevant when serving as input to a DL network. It
was found that this tailored time-frequency representation
as input in combination with a shallow CNN architec-
ture performs best and outperforms the use of traditional
1D frequency-domain input for straight quantification or
for metabolite basis spectrum isolation with subsequent
integration. Furthermore, DL quantitation performance
improved upon the inclusion of a downscaled water peak
for reference, likely solving scaling issues if no reference is
provided.

4.2 Active learning

Active learning has been explored by extending the train-
ing dataset with cases that appeared challenging to pre-
dict in the original setup. In particular, new training data
with nonequal distribution of metabolite concentrations
have been used with a predominance of single or mul-
tiple metabolites at low or high concentrations. None of
these trials led to substantial improvements, although it
might be helpful if specific metabolites are targeted pri-
marily. Such data augmentation for all metabolites simul-
taneously even deteriorated the overall network perfor-
mance. This can be understood given that augmentation at
the border of the concentration range inherently leads to
an underrepresentation of intermediate cases, which are

equally relevant for the overall performance. Extending
the size of the training set even further in an unspecific
manner appears to still yield modest improvements.75 In
addition, an unconventional way of active learning was
probed by using unequal dataset ranges in training and
testing by limiting testing on the central portion of the
training range. This setup clearly ameliorated some of the
issues at the edges of the testing range found in the typical
setup. This approach was only implemented by reducing
the test range rather than expanding the training range,
which would yield better comparable outcome scores (e.g.,
R2). However, expanding the training range to negative
concentrations may be questionable.

While data augmentation with a bigger proportion of
low SNR spectra leads to worse performance, the theo-
retical prediction limits for good SNR data are probed in
the noiseless scenario in which training and testing are
run with GT data. Example results for a ShallowNet archi-
tecture are reported in Figure S17 for NAA, GSH, and
Lac. This, combined with the results discussed, suggests
that the bottleneck that limits higher prediction perfor-
mances is SNR, just like in traditional MF, regardless of
the implementation of state-of-the-art networks, network
optimization, or dataset augmentation. It thus reflects lim-
itations in clinical applications where high enough SNR
is just not available. According to this study, DL cannot
do miracles unless one accepts the bias toward training
conditions.73

4.3 Ensemble of networks

An ensemble of networks has been implemented, and it
shows improvements for quantifying metabolites. A com-
bination of networks is less sensitive to the specifics of
the training and helps reduce the variance in the predic-
tions. Furthermore, ensembles of networks where mul-
tiple noise-sensitive predictions are weighted are more
robust to noise. However, even the thus optimized net-
works underperform in comparison to MF. For MF, CRLBs
clearly indicate limits for the confidence in the fit results.
For DL, including the optimized ensemble of networks,
such limits can only vaguely be deduced from the distri-
butions of predicted values with the major danger of bias
toward training data norms.76,77 The CRLB would pro-
vide good guidance for the valid range of DL predictions
as well—although of course they are not readily available
without the model. New tools to estimate precision and
replace CRLB in the case of DL76,77 still have to prove their
value in practice. The situation will be different again if the
DL quantification is trained to include cleaning of spectra
from artifacts (ghosts, baseline interference) where CRLBs
are not available.
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16 RIZZO et al.

4.4 Low SNR regime

Both MF and DL show lower reliability in quantifying
metabolites in the low SNR regime. Clear-cut SNR lim-
its for validity of concentration estimates are not avail-
able, neither for MF nor for DL, although SNR values
are often indicated as measure of spectral quality. While
CRLBs provide a widely used and easy-to-interpret relia-
bility measure that includes the influence of SNR, a sim-
ilar widely accepted concept does currently not extend
to DL approaches.77 Obviously, a SNR threshold for DL
reliability would have to be metabolite-SNR specific, but
already the definition of a meaningful metabolite-specific
SNR would be cumbersome given that peak-splitting pat-
terns and number of contributing protons as well as
lineshape introduce ambiguity. On top, such a metabo-
lite SNR would depend on the estimated metabolite con-
tent, whose reliability is at stake. Therefore, just like for
MF, global or metabolite-specific SNR will not be infor-
mative enough. An uncertainty measure is needed that
is based on the predictions and noise distribution but
also integrating the uncertainty propagation of the DL
model prediction78,79 (like the inverse of the Fisher infor-
mation matrix used in the CRLB definition74). Despite
flourishing literature,80,81 addressing uncertainty estima-
tion as a complementary tool for DL interpretability, a
full-scale analysis of the robustness and reliability of such
models is still challenging.82–84 First attempts to extend
these concepts in DL for MRS quantification are just
subject of recent investigations76,77 but far from general
acceptance.

4.5 Limitations

The current investigation focused on probing multiple DL
techniques and input forms for a full range of metabo-
lite concentrations but a limited range of spectral quality.
In particular, the shim remained in a broadly acceptable
range, no phase or frequency jitter was considered, and
no artifactual data was included. Such features could have
been integrated in the current setup to arrive at a more
realistic framework. However, the core of the findings (per-
formance of the actual quantification step) is expected to
remain in place. In addition, it is recommended to add
separate preprocessing steps to prepare the data for the
presented algorithms rather than to combine processing
and quantification in a single process.3 They could be real-
ized in the form of dedicated DL networks, such as those
proposed for phase and frequency drift corrections,20,85,86

and stacked before the quantification model. This would
also ensure the essential gain in speed expected from DL
quantification models.

Direct comparison with previously proposed suc-
cessful DL quantification implementations like Ref.
22 was not possible or meaningful for lack of open
access network details and differences in the considered
spectra.

Our particular implementation used to create spectro-
grams was optimized to maintain relevant resolution but
downweights the initial part of the FID (initialization of
Hamming window). CNN inputs may thus not be fully sus-
ceptible to changes in broad signals. Alternative recipes
with, for example, prefilled filters or circular datasets, were
not explored.

Furthermore, active learning has been explored for a
single network type and could in principle be more bene-
ficial for other networks or types of input than what has
been found here.

5 CONCLUSIONS

Quantification of MR spectra via diverse and optimized DL
algorithms and using 1D and 2D input formats have been
explored and have shown adequate performance as long as
the metabolite-specific SNR is sufficient. However, as soon
as SNR becomes critical, CNN predictions are strongly
biased to the training dataset structure.

Traditional MF requires parameter tuning and
algorithm convergence, making it more time consuming
than DL-based estimates. On the other hand, we have
shown that ideally (i.e., with simulated cases) and sta-
tistically (i.e., within a variable cohort of cases), it can
achieve higher performances when compared to a faster
DL approach. DL does not require feature selection by
the user, but the potential intrinsic biases at training set
boundaries act like soft constraints in traditional mod-
eling,9 leading estimated values to the average expected
concentration range, which is dangerous in a clinical con-
text that requires the algorithm to be unbiased to outliers
(i.e., pathological data).

Active learning and ensemble of networks are attrac-
tive strategies to improve prediction performances. How-
ever, data quality (i.e., high SNR) has proven as bottleneck
for adequate unbiased performance.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Table S1. List of probed networks for straight quan-
tification of metabolites and some of their charac-
teristics. The listed characteristics includes the com-
plexity (defined as number of trainable parameters),
test loss performance, and training time in sec/epoch.
The network identifications were chosen as follows:
NetworkType-InputType-properties. 1D: spectra, 2D: spec-
trograms, 1c: 1 channel, ks3: convolutional kernel size= 3,
hp: Bayesian hyper-parameterized architecture, R: exploit-
ing ReLU activations, x2: double convolution before Max-
Pooling, f: factorized convolution, rb: down-sampling via
Reduction-Blocks
Figure S1. Schemes of Residual Network configurations
with 1D (a) and 2D (b) inputs, as well as a deep resid-
ual network (c). The basic network structure is sketched
on the left, the architectures of Residual, Identity, and
Convolutional Blocks are reported on the right, while spec-
ifications are detailed in the tables in the middle, and
symbols are explained near the bottom. The deeper Resid-
ual Network configuration has two convolutional layers at
the beginning without pooling.
Figure S2. Schemes of Deep CNN configurations with 2D
(a) and 1D (b) inputs, as well as an InceptionNet with
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1D inputs (c). Network specifications are detailed in the
tables, while the architectures of Reduction Blocks are
reported on the bottom right. Symbols are explained near
the bottom.
Figure S3. Schemes of InceptionNet configurations with
2D inputs on 2 channels. Networks (a) and (b) share the
same configuration but (b) exploits convolutional factor-
ization to speed-up training time. (c) Simple concatena-
tion in architectures (a) and (b) are replaced by Reduc-
tion Blocks. The architectures of the Reduction Blocks are
reported in Figure-S6. Symbols are explained on the right.
Figure S4. Schemes of (a) InceptionNet with 2D inputs
and 1 channel, (b) EfficientNetB7, (c) ResNet50 and (d–f)
Shallow Network configurations. Networks (a), (b) and (c)
are modified from [1–3], respectively. (d) Implements ELU
activations, (e) implements RELU activations, whereas (f)
implements a deeper configuration with consecutive con-
volutional layers with sparse pooling. Network specifica-
tions are detailed in the tables. Symbols are explained near
the bottom.
Figure S5. Scheme and detail of U-Net-1DR-hp
configurations for metabolite basis-set prediction.
Metabolite-specific network specifications are detailed in
the tables. Symbols are explained at the bottom left.
Text S1. Details of Bayesian hyper-parameterization
Figure S6. Examples of dataset augmentation techniques
representing sample distributions for two metabolites
(NAA and GABA). (a) Dataset size increment with uni-
form distributed concentrations. (b) and (c) Active Learn-
ing weighted on higher occurrences of small and high
concentrations for all metabolites in (b) and for selected
metabolites in (c). (d) Active Learning weighted on more
occurrences of low SNR entries whereas concentration
distributions are kept uniform.
Figure S7. Comparison of prediction scores for
well-represented and medium-represented metabolites for
three CNN architectures with datasets with (red, black, or
blue) and without (yellow, gray, or green) water reference.
Mean values in orange. On average, water referencing
yields higher coefficients a and R2 and lower offset q and
RMSE 𝜎.
Figure S8. Comparison of prediction scores for
medium-represented and weakly-represented metabolites
for three CNN architectures with datasets with (red,
black, or blue) and without (yellow, gray, or green) water
reference. Mean values in orange. On average, water refer-
encing yields higher coefficients a and R2 and lower offset
q and RMSE 𝜎.
Figure S9. Maps and marginal distributions of predic-
tions vs. GT for a ResNet_1D_hp network. Results for 16
metabolites are arranged in approximate decreasing order
of relative SNR from top left to bottom right. RMSE (𝜎) is
reported as an overall measure of variability. A regression

model (y = ax+ q) is also provided to judge prediction
quality. R2 measures how well a linear model explains the
overall data. Mis-predictions can be monitored either by
a decrease in a and R2 or by visual biases in distributions
of predictions (bell-shape). The prediction bias towards
the mean value of the training distribution is evident for
medium- to weakly-represented metabolites (e.g., sI, Gly,
Asp, PE, Tau, Lac, GABA). On average, metabolites with
lower SNR yield higher errors. (q and 𝜎 in mM units.).
Figure S10. Maps and marginal distributions of predic-
tions vs. GT for a ShallowNet-2D2c-hp network. Results
for 16 metabolites are arranged in approximate decreas-
ing order of relative SNR from top left to bottom right.
RMSE (𝜎) is reported as an overall measure of variability.
A regression model (y = ax+ q) is also provided to judge
prediction quality. R2 measures how well a linear model
explains the overall data. Mis-predictions can be moni-
tored either by a decrease in a and R2 or by visual biases
in distributions of predictions (bell-shape). The prediction
bias towards the mean value of the training distribution
is evident for medium- to weakly-represented metabo-
lites (e.g., sI, Gly, Asp, PE, Tau, Lac, GABA). On average,
metabolites with lower SNR yield higher errors. (q and 𝜎
in mM units.)
Figure S11. Boxplots comparing the distributions of pre-
dictions for 8 metabolites via 7 different CNN architec-
tures vs. Model Fitting estimate distributions (MF) and
uniform Ground Truth (GT) distributions. Mis-prediction
is evident for medium- to weakly-represented metabolites
(e.g., sI, Asp, Tau, Lac) and can be monitored by different
degrees of skewness of the boxplot. However, the bias to
training distribution is not evident given the visual limita-
tion of boxplots. For better visibility of this outcome, see
Figure S14.
Figure S12. Comparison of distributions of predictions
for 8 metabolites via 7 different CNN architectures vs.
Model Fitting’s estimate distributions (MF) and Ground
Truth (GT) uniform distributions. Mis-prediction is evi-
dent for medium- to weakly-represented metabolites (e.g.,
sI, Asp, Tau, Lac) and can be monitored by visual biases
(bell-shape) towardstoward the mean value of the train-
ing distribution (i.e., regression to the mean). Note: y-axes
scale inhomogeneously between different networks. How-
ever, all distributions integrate to 1.
Figure S13. Concise scores presented to compare quan-
tification quality for different networks and input setups
for 16 metabolites. Results reported using the proposed
artificial water signal reference. Network identification
is chosen as follows: NetworkType-InputType-properties.
Keywords: 1D: spectra, 2D: spectrograms, 1c: 1 chan-
nel, ks3: convolutional kernel size = 3, hp: Bayesian
hyper-parameterized architecture, R: exploiting ReLU
activations, x2: double convolution before MaxPooling, f:
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factorized convolution, rb: down-sampling via
Reduction-Blocks.
Figure S14. Comparison of performance scores from
different networks for 16 metabolites. Model fitting is
included in the comparison.
Text S2. Comparison of predictions from different CNNs.
Figure S15. Comparison of outcomes of Active Learning
approaches using concise scores.
Figure S16. Quantification outcome as reflected by con-
cise scores for differently trained single networks and
three ensembles of networks (identical training set for 16
metabolites).
Figure S17. Maps and marginal distributions of pre-
dictions vs. GT obtained for three metabolites using
ShallowNet-2D2c-hp as contrasted for a realistic and noise-
less dataset.
Table S2. Results of Active Learning on training set: scores
of 16 metabolites for every augmented training set.

Table S3. Results of emulated Active Learning on test
set: scores of 16 metabolites for every concentration range
considered.
Table S4. Outcome for ensemble learning: scores for 16
metabolites for average network or ensemble of network
considered.
Table S5. MRSinMRS checklist.87
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Supporting Information  
 

Table S1: List of probed networks for straight quantification of metabolites and some of their 
characteristics. 

 

Figure S1: Schemes of Residual Network configurations with 1D (a) and 2D (b) inputs, as well as a 
deep residual network (c). 

 

Figure S2: Schemes of Deep CNN configurations with 2D (a) and 1D (b) inputs, as well as an 
Inception Network with 1D inputs (c). 

 

Figure S3: Schemes of Inception Network configurations with 2D inputs on 2 channels. 

 

Figure S4: Schemes of (a) Inception Network with 2D inputs and 1 channel, (b) EfficientNetB7, (c) 
ResNet50 and (d-f) Shallow Network configurations. 

 

Figure S5: Scheme and detail of U-Net-1DR-hp configurations for metabolite basis-set prediction. 

 

Text S1: Details of Bayesian hyper-parameterization. 

 

Figure S6: Examples of dataset augmentation techniques representing sample distributions for two 
metabolites (NAA and GABA). 

 

Figure S7: Comparison of prediction scores for well-represented and medium-represented 
metabolites for three CNN architectures with datasets with and without water reference. 

 

Figure S8: Comparison of prediction scores for medium-represented and weakly-represented 
metabolites for three CNN architectures with datasets with and without water reference. 

 

Figure S9: Maps and marginal distributions of predictions vs. GT for a ResNet_1D_hp network. 

 

Figure S10: Maps and marginal distributions of predictions vs. GT for a ShallowNet-2D2c-hp 
network. 
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Figure S11: Boxplots comparing the distributions of predictions for 8 metabolites via 7 different 
CNN architectures vs. Model Fitting’s estimate distributions (MF) and Ground Truth (GT) uniform 
distributions. 

 

Figure S12: Comparison of distributions of predictions for 8 metabolites via 7 different CNN 
architectures vs. Model Fitting’s estimate distributions (MF) and Ground Truth (GT) uniform 
distributions. 

 

Figure S13: Concise scores presented to compare quantification quality for different networks and 
input setups for 16 metabolites. 

 

Figure S14: Comparison of performance scores from different networks for 16 metabolites.  

 

Text S2: Comparison of predictions from different CNNs. 

 

Figure S15: Comparison of outcomes of Active Learning approaches using concise scores.  

 

Table S2: Results of Active Learning on training set: scores of 16 metabolites for every augmented 
training set. 

 

Table S3: Results of emulated Active Learning on test set: scores of 16 metabolites for every 
concentration range considered. 

 

Figure S16: Quantification outcome as reflected by concise scores for differently trained single 
networks and three ensembles of networks (identical training set for 16 metabolites).  

 

Table S4: Outcome for ensemble learning: scores for 16 metabolites for average network or ensemble 
of network considered.  

 

Figure S17: Maps and marginal distributions of predictions vs. GT obtained for three metabolites 
using ShallowNet-2D2c-hp are contrasted for a realistic and noiseless dataset.  

 

Table S5: MRSinMRS checklist. 
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Table S1: List of probed networks for straight quantification of metabolites and some of their 
characteristics. The listed characteristics include the complexity (defined as number of trainable 
parameters), test loss performance, and training time in sec/epoch. The network identifications were 
chosen as follows: NetworkType-InputType-properties. 1D: spectra, 2D: spectrograms, 1c: 1 channel, 
ks3: convolutional kernel size = 3, hp: Bayesian hyper-parameterized architecture, R: exploiting 
ReLU activations, x2: double convolution before MaxPooling, f: factorized convolution, rb: down-
sampling via Reduction-Blocks 

  

6| Published material 119



 

Figure S1: Schemes of Residual Network configurations with 1D (a) and 2D (b) inputs, as well as a 
deep residual network (c). The basic network structure is sketched on the left, the architectures of 
Residual, Identity, and Convolutional Blocks are reported on the right, while specifications are 
detailed in the tables in the middle, and symbols are explained near the bottom. The deeper Residual 
Network configuration has two convolutional layers at the beginning without pooling.  
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Figure S2: Schemes of Deep CNN configurations with 2D (a) and 1D (b) inputs, as well as an 
Inception Network with 1D inputs (c). Network specifications are detailed in the tables, while the 
architectures of Reduction Blocks are reported on the bottom right. Symbols are explained near the 
bottom.  
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Figure S3: Schemes of Inception Network configurations with 2D inputs on 2 channels. Networks (a) 
and (b) share the same configuration but (b) exploits convolutional factorization to speed-up training 
time. (c) Simple concatenation in architectures (a) and (b) are replaced by Reduction Blocks. The 
architectures of the Reduction Blocks are reported in Figure-S6. Symbols are explained on the right. 
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Figure S4: Schemes of (a) Inception Network with 2D inputs and 1 channel, (b) EfficientNetB7, (c) 
ResNet50 and (d-f) Shallow Network configurations. Networks (a), (b) and (c) are modified from [1], 
[2] and [3], respectively. (d) Implements ELU activations, (e) implements RELU activations, whereas 
(f) implements a deeper configuration with consecutive convolutional layers with sparse pooling. 
Network specifications are detailed in the tables. Symbols are explained near the bottom.  
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Figure S5: Scheme and detail of U-Net-1DR-hp configurations for metabolite basis-set prediction. 
Metabolite-specific network specifications are detailed in the tables.  Symbols are explained at the 
bottom left.   
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Text S1: Details of Bayesian hyper-parameterization 

The Bayesian hyper-parameterization library from Keras tuner [50] was used. A total amount of 50 
model trials was checked, with one execution per trial. Training was run for 200 epochs with batch 
size of 50, monitoring validation loss with an early stopping criterion with patience equal to 10. 
Finally, the best-tuned model with minimized validation loss was selected. Parameter space 
exploration started from a hard-coded version of the investigated networks and followed as reported 
below for each architecture: 

ShallowNet-2D1c-hp and ShallowNet-2D1c-2x-hp: 
1st layer: from 20 to 400 units, step of 10; kernel size from 3 to 11, step 2. 
2nd layer: from 40 to 400 units, step of 10; kernel size from 3 to 11, step 2. 
3rd layer: from 80 to 400 units, step of 10; kernel size from 3 to 11, step 2. 
1st dropout: from 0.05 to 0.5, step of 0.05. 
2nd dropout: from 0.05 to 0.5, step of 0.05. 
Learning rate: from 2e-6 to 2e-2. 

DeepNet-1D-hp: 
1st layer: from 5 to 35 units, step 10. 
2nd layer: from 10 to 60 units, step 10. 
3rd layer: from 20 to 100 units, step 10. 
4th layer: from 40 to 150 units, step 10. 
5th layer: from 70 to 200 units, step 10. 
6th layer: from 150 to 300 units, step 10. 
Dense layer: from 100 to 1 000 units, step 10 
Droput: from 0.05 to 0.8, step of 0.05. 
Learning rate: from 2e-6 to 2e-2. 

ResNet-1D-hp: 
1st layer: from 5 to 40 units, step 10. 
2nd layer: from 10 to 60 units, step 10. 
1st residual block input: from 20 to 100 units, step 10. 
1st residual block output: from 70 to 200 units, step 10. 
2nd residual block input: from 50 to 150 units, step 10. 
2nd residual block output: from 170 to 330 units, step 10. 
3rd residual block input: from 100 to 200 units, step 10. 
3rd residual block output: from 400 to 600 units, step 10. 
Dense layer: from 100 to 1 000 units, step 10 
Droput: from 0.1 to 0.8, step of 0.05. 
Learning rate: from 2e-6 to 2e-2.  
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UNet-1DR-hp: 
Layer 10 and 92: from 10 to 50 units, step 10. Layer 11 and 91 have doubled units of Layer 10. 
Layer 20 and 90: from 10 to 50 units, step 10.  
Layer 21 and 82: from 20 to 100 units, step 10. Layer 22 and 81 have doubled units of Layer 21. 
Layer 30 and 80: from 20 to 100 units, step 10. 
Layer 31 and 72: from 40 to 200 units, step 10. Layer 32 and 71 have doubled units of Layer 31. 
Layer 40 and 70: from 40 to 200 units, step 10. 
Layer 41 and 62: from 80 to 400 units, step 10. Layer 42 and 61 have doubled units of Layer 41. 
Layer 50 and 60: from 80 to 400 units, step 10.  
Layer 51: from 160 to 800 units, step 10. Layer 52 has doubled units of Layer 51. 
Learning rate: from 2e-6 to 2e-2. 

 

Note: Since exploitation of spectrograms in deep learning for speech and audio processing has shown 
best performances deploying network architectures with large convolutional kernels [48] [55] [56], 
kernel size was optimized only for these cases, whereas kept fixed to size 3 for networks fed with 1D 
spectra.  

126 6| Published material



 

Figure S6: Examples of dataset augmentation techniques representing sample distributions for two 
metabolites (NAA and GABA). a) Dataset size increment with uniform distributed concentrations.  
b) and c) Active Learning weighted on higher occurrences of small and high concentrations for all 
metabolites in (b) and for selected metabolites in (c). d) Active Learning weighted on more 
occurrences of low SNR entries whereas concentration distributions are kept uniform.  
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Figure S7: Comparison of prediction scores for well-represented and medium-represented 
metabolites for three CNN architectures with datasets with (red, black, or blue) and without (yellow, 
gray, or green) water reference. Mean values in orange. On average, water referencing yields higher 
coefficients a and R2 and lower offset q and RMSE σ. 
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Figure S8: Comparison of prediction scores for medium-represented and weakly-represented 
metabolites for three CNN architectures with datasets with (red, black, or blue) and without (yellow, 
gray, or green) water reference. Mean values in orange. On average, water referencing yields higher 
coefficients a and R2 and lower offset q and RMSE σ.  
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Figure S9: Maps and marginal distributions of predictions vs. GT for a ResNet_1D_hp network. 
Results for 16 metabolites are arranged in approximate decreasing order of relative SNR from top left 
to bottom right. RMSE (σ) is reported as an overall measure of variability. A regression model (y = ax 
+ q) is also provided to judge prediction quality. 𝑅ଶ measures how well a linear model explains the 
overall data. Mis-predictions can be monitored either by a decrease in 𝑎 and 𝑅ଶ or by visual biases in 
distributions of predictions (bell-shape). The prediction bias toward the mean value of the training 
distribution is evident for medium- to weakly-represented metabolites (e.g., sI, Gly, Asp, PE, Tau, 
Lac, GABA). On average, metabolites with lower SNR yield higher errors. (q and σ in mM units.) 
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Figure S10: Maps and marginal distributions of predictions vs. GT for a ShallowNet-2D2c-hp 
network. Results for 16 metabolites are arranged in approximate decreasing order of relative SNR 
from top left to bottom right. RMSE (σ) is reported as an overall measure of variability. A regression 
model (y = ax + q) is also provided to judge prediction quality. 𝑅ଶ measures how well a linear model 
explains the overall data. Mis-predictions can be monitored either by a decrease in 𝑎 and 𝑅ଶ or by 
visual biases in distributions of predictions (bell-shape). The prediction bias toward the mean value of 
the training distribution is evident for medium- to weakly-represented metabolites (e.g., sI, Gly, Asp, 
PE, Tau, Lac, GABA). On average, metabolites with lower SNR yield higher errors. (q and σ in mM 
units.)  
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Figure S11: Boxplots comparing the distributions of predictions for 8 metabolites via 7 different 
CNN architectures vs. Model Fitting’s estimate distributions (MF) and uniform Ground Truth (GT) 
distributions. Mis-prediction is evident for medium- to weakly-represented metabolites (e.g., sI, Asp, 
Tau, Lac) and can be monitored by different degrees of skewness of the boxplot. However, the bias to 
training distribution is not evident given the visual limitation of boxplots. For better visibility of this 
outcome, see Figure S14. 
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Figure S12: Comparison of distributions of predictions for 8 metabolites via 7 different CNN 
architectures vs. Model Fitting’s estimate distributions (MF) and Ground Truth (GT) uniform 
distributions. Mis-prediction is evident for medium- to weakly-represented metabolites (e.g., sI, Asp, 
Tau, Lac) and can be monitored by visual biases (bell-shape) toward the mean value of the training 
distribution (i.e., regression to the mean). Note: y-axes scale inhomogeneously between different 
networks. However, all distributions integrate to 1.   
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Figure S13: Concise scores presented to compare quantification quality for different networks and 
input setups for 16 metabolites. Results reported using the proposed artificial water signal reference. 
Network identification is chosen as follows: NetworkType-InputType-properties. Keywords: 1D: 
spectra, 2D: spectrograms, 1c: 1 channel, ks3: convolutional kernel size = 3, hp: Bayesian hyper-
parameterized architecture, R: exploiting ReLU activations, x2: double convolution before 
MaxPooling, f: factorized convolution, rb: down-sampling via Reduction-Blocks   
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Figure S14: Comparison of performance scores from different networks for 16 metabolites. Model 
fitting is included in the comparison. 
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Text S2: Comparison of predictions from different CNNs 

Figure-S16 reports the measured scores of all 16 metabolites for each investigated network. A 
comparison with Fig.7 follows: 

1D-input architectures (circles):  
- ResNets yield slightly better performances than DeepNets, especially for weekly represented 

metabolites. 
- InceptionNet shows performances comparable to ResNet. 

2D-input 1-channel architectures (diamonds): 
- Spectrogram information as 1-Channel mined via DeepNets or ResNets show worse 

performances than 2-Channels representation or 1D-input networks.  
- ResNet architectures outperform DeepNets. 
- Processing spectrogram inputs exploiting convolution operations with large kernels outperform 

convolutions with small kernels. 
- State-of-Art ResNet-50 outperforms all the other attempted ResNet architectures. However, 

deeper ResNet architectures (i.e., double convolution and sparse pooling) do not perform better. 
- InceptionNet-v4 shows comparable performances to ResNet architectures but slightly worse than 

ResNet50.  

2D-input 2-channels architectures (squares): 
- Shallow or Inception architectures exploiting signal representation as 2-channels show overall 

top performances.  
- ReLU activation on shallow networks highlights comparable performances to ELU activation. 

However, ELU activation converges faster, TableS1. Usage of smaller kernels, on the contrary, 
entails worse performances, as confirmed for spectrogram 1-Channel representation. Deeper 
architectures slightly underperform on weakly defined metabolites.  

- Inception networks stress top performances comparable to shallow networks although involving 
longer computational time given their higher complexity, Table.S1. Their highly engineered 
structures are open to further optimizations. Factorization does speed up computational time 
without strongly afflicting performance. 

- EfficientNet strongly underperforms compared to the top scorers.  

U-Net (stars):  
- Performances are comparable on average with 1D-input architectures designed for straight 

quantification. Although their performances are below top scorers, specifically with lower a and 
higher q and σ, whereas 𝑅ଶ model representability is comparable. Higher biases (q) are explained 
by integrating the isolated basis set: likewise, concentrations are biased to 0+ space in modeling. 

- Optimization of U-Net mildly reduces, on average, the estimated bias q and standard deviation σ 
compared to its hardcoded version.  
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Figure S15: Comparison of outcomes of Active Learning approaches using concise scores. Concise 
scores on the same testing set of 16 metabolites for ShallowNet-2D2c-hp trained with different 
augmented datasets. Description of data augmentation can be found in Fig.3 of main text.  

  

6| Published material 137



 

Table S2: Results of 
Active Learning on 
training set: scores of 
16 metabolites for 
every augmented 
training set. The 
testing set is identical 
for every case. 
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Table S3: Results of emulated Active Learning on test set: scores of 16 metabolites for every 
concentration range considered. The training set is identical for every case. 
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Figure S16: Quantification outcome as reflected by concise scores for differently trained single 
networks and three ensembles of networks (identical training set for 16 metabolites). Description of 
ensemble types to be found in Fig.4 of the main text.  
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Table S4: Outcome for 
ensemble learning: scores 
for 16 metabolites for 
average network or 
ensemble of network 
considered. 
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Figure S17: Maps and marginal distributions of predictions vs. GT obtained for three metabolites 
using ShallowNet-2D2c-hp as contrasted for a realistic and noiseless dataset. Predictions for the 
noiseless configuration in training and testing clearly show much higher accuracy and precision and 
sample the performance limits of the network. RMSE (σ) is reported as an overall measure of 
variability. A regression model (y = ax + q) is also provided to judge prediction quality. 𝑅ଶ measures 
how well a linear model explains the overall data. Mis-predictions can be monitored either by a 
decrease in 𝑎 and 𝑅ଶ or by visual biases in distributions of predictions (bell-shape).   
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1. Hardware  

a. Field strength [T] 3 T 

b. Manufacturer  N/A 

c. Model (software version if available) N/A 

d. RF coils: nuclei (transmit/receive), number of 
channels, type, body part 

N/A 

e. Additional hardware N/A 

2. Acquisition   

a. Pulse sequence  Simulated Single-Voxel semi-LASER  

b. Volume of Interest (VOI) locations  Brain mimicking various locations and conditions 
(including healthy to pathological cases) via 
variation in line broadening, SNR and metabolite 
concentrations. 

c. Nominal VOI size [cm3, mm3] N/A 

d. Repetition Time (TR), Echo Time (TE) [ms, s] TE 35ms 

TR assumed long enough to ensure full T1 recovery 

e. Total number of Excitations or acquisitions per 
spectrum 

In time series for kinetic studies  

i. Number of Averaged spectra (NA) per time-point 
ii. Averaging method (e.g. block-wise or moving 

average) 
iii. Total number of spectra (acquired / in time-series) 

N/A 

f. Additional sequence parameters (spectral width in 
Hz, number of spectral points, frequency offsets) 

If STEAM:, Mixing Time (TM) 

If MRSI: 2D or 3D, FOV in all directions, matrix size, 
acceleration factors, sampling method 

Spectral width: 4 kHz 

Number of spectral points: 4096 

Frequency offset in simulation: -2.2ppm 

g. Water Suppression Method N/A 

h. Shimming Method, reference peak, and thresholds 
for “acceptance of shim” chosen 

N/A 

i. Triggering or motion correction method 

(respiratory, peripheral, cardiac triggering, incl. device 
used and delays) 

N/A 

3. Data analysis methods and outputs  

a. Analysis software Matlab: data pre-processing and analysis 

FitAID: fitting 

Python: statistics and plotting 
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b. Processing steps deviating from quoted reference or 
product 

Spectra and spectrogram preparation (i.e., zero-
filling, windowing, etc.) 

c. Output measure 

(e.g., absolute concentration, institutional units, ratio) 

Absolute concentration 

d. Quantification references and assumptions, fitting 
model assumptions 

 

Downscaled water referencing added to ease 
quantification by Deep Learning. No 0th or 1st order 
phase or frequency drifts were assumed. 

4. Data Quality   

a. Reported variables  

(SNR, Linewidth (with reference peaks)) 

SNR 5-40 (time domain water referenced) 
Linewidth (Gaussian) 2-5Hz 
Simulated MMBG amplitude varying ±33% 

b. Data exclusion criteria N/A 

c. Quality measures of postprocessing Model fitting 
(e.g. CRLB, goodness of fit, SD of residual) 

CRLBs from fitting and SD or RMSE reported for both 
fitting and deep learning algorithms.  
In depth analysis of performances via custom scores. 

d. Sample Spectrum Figure 1 

 

Table S5: MRSinMRS checklist [4].  
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Abstract. Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging
(MRSI) are non-invasive techniques to map tissue contents of many metabolites
in situ in humans. Quantification is traditionally done via model fitting (MF), and
Cramer Rao Lower Bounds (CRLBs) are used as a measure of fitting uncertain-
ties. Signal-to-noise is limited due to clinical time constraints and MF can be very
time-consuming in MRSI with thousands of spectra. Deep Learning (DL) has
introduced the possibility to speed up quantitation while reportedly preserving
accuracy and precision. However, questions arise about how to access quantifi-
cation uncertainties in the case of DL. In this work, an optimal-performance DL
architecture that uses spectrograms as input and maps absolute concentrations of
metabolites referenced to water content as output was taken to investigate this in
detail. Distributions of predictions and Monte-Carlo dropout were used to inves-
tigate data and model-related uncertainties, exploiting ground truth knowledge in
a synthetic setup mimicking realistic brain spectra with metabolic composition
that uniformly varies from healthy to pathological cases. Bias and CRLBs from
MF are then compared to DL-related uncertainties. It is confirmed that DL is a
dataset-biased technique where accuracy and precision of predictions scale with
metabolite SNR but hint towards bias and increased uncertainty at the edges of the
explored parameter space (i.e., for very high and very low concentrations), even
at infinite SNR (noiseless training and testing). Moreover, training with uniform
datasets or if augmented with critical cases showed to be insufficient to prevent
biases. This is dangerous in a clinical context that requires the algorithm to be
unbiased also for concentrations far from the norm, which may well be the focus
of the investigation since these correspond to pathology, the target of the diagnostic
investigation.

Keywords: Magnetic Resonance Spectroscopy · Convolutional neural
networks · Model fitting · Quantification · Reliability · Uncertainties
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1 Introduction

Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) are non-
invasive methods for determining in-situ metabolic profile maps in humans or animals.
A chemical-composition-specific response is evoked from localized tissue regions using
an MRI scanner and allows the acquisition of a Voigt-damped time-domain signal,
which results from a superposition of multiple metabolite signals. The resonance line
patterns are metabolite-specific, reflecting the spin-systems, while their concentrations
are proportional to the signal amplitude [1] (Fig. 1).

Fig. 1. MRSI acquisition with zoom-in to a sketch of a noiseless MR spectrum (real part) and
relative spectral basis set outlined for five metabolites: N-Acetylaspartate (NAA), total-Creatine
(tCr), total-Choline (tCho), Lactate (Lac), and Glutathione (GSH).

Quantification is traditionally based on parameter estimation with Model Fitting
(MF), minimizing the difference between the data and a parameterized model function.
Despite many fitting approaches [2–5], robust and accurate measurement of metabo-
lite concentrations remains challenging [6, 7], mainly due to: (i) severely overlapping
metabolite patterns, (ii) poor signal-to-noise ratio (SNR), and (iii) unknown background
signals and peak lineshape (incomplete prior knowledge). As a result, the problem is
ill-posed, and current techniques still hamper translation to clinical routine.

Supervised Deep Learning (DL) exploits neural networks to find key properties con-
tained in large data sets and to generate complicated nonlinear mappings between inputs
and outputs [8]. It thus requires no prior knowledge or formal assumptions. However, it
is shown to be frequently biased towards the conditions prevalent in the datasets used in
training [9]. DL in MRS quantification is increasingly explored [10–12] and has shown
to speed up quantitation while reportedly preserving accurate estimates if compared to
MF. Still, questions regarding the reliability of DL quantification have arisen.

Uncertainty measures provide information about how reliably or accurately a given
algorithm performs a given task. This information in turn can be used to leverage the
decision-making process for a user (e.g., how much to trust the estimated concentration
of a metabolite) or to enable optimization of the acquisition technique or the algorithm
employed to estimate results (e.g., focusing on areas of high uncertainty [13]). Given
MRS restrictions to comply with clinical time frames, the repetition of multiple MRS
measurements to determine repeatability is forbidding. Thus, estimates of uncertainty
obtained from MRS model fitting of a single measurement are often taken as proxy:
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the Cramer Rao Lower Bounds (CRLBs) [14] estimate uncertainties as function of the
model (presumed to be true) and SNR; they represent the uncertainty limit for unbiased
estimators. It is fundamental to access a CRLB-comparable uncertainty measure for
MRSmetabolite quantification by DL [15]. Neural network uncertainties originate from
noise inherent in the data (aleatoric uncertainty) and uncertainty in the model parameters
(epistemic uncertainty) [16, 17]. In the current work, an optimal-performance Convo-
lutional Neural Network (CNN) architecture is designed to quantify metabolites, and
metrics based on bias and spread of predicted distribution of concentrations are used
to explain aleatoric uncertainties. Epistemic uncertainties are explored via Monte-Carlo
dropout [18]. The reliability of MRS quantification is then compared between the two
approaches. In-silico simulations guarantee knowledge of Ground Truth (GT).

2 Methods

2.1 Simulations

Spectral patterns were simulated for 16 metabolites recorded at 3T with a semi-LASER
protocol [19, 20; TE= 35 ms, 4 kHz spectral width, 4096 points. To mimic pathological
conditions, metabolite concentrations are varied independently and uniformly between
0 and twice a normal reference concentration for healthy human brain [1, 21–23]. A
constant downscaled water reference (64.5 mM) is added at 0.5 ppm to ease quanti-
tation. Macromolecular background (MMBG) signals and Gaussian broadening mimic
in vivo conditions and were independently and uniformly varied (shim 2–5 Hz, MMBG
amplitude ± 33%). Two datasets with 20’000 entries randomly split in training (80%),
validation (10%), and testing sets (10%) are generated: one with independent, realistic
white Gaussian noise realizations (time-domain water-referenced SNR 5–40), the other
noiseless (Fig. 2).

Fig. 2. Samples of realistic simulated spectra. SNR, shim, and MMBG intensity are indicated.
Concentrations reported for 3 major metabolites in mM. Downscaled reference peak indicated.

High-frequency-resolved spectrograms [24] were used as input for the CNNs. A
spectrogram is a complex, 2D time-frequencydomain representation of a spectrumwhere
each row reflects the frequency content of a specific time segment of the MRS signal.
It is calculated using the Short-Temporal Fourier Transform (STFT), which allows for
varying degrees of frequency and time resolution depending on the size of the Fourier
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analysis window. A large window size established through zero-filling is paired with a
tiny overlap interval to maximize frequency resolution while compromising temporal
resolution (Fig. 3).

2.2 Quantification via Deep Learning

Two Bayesian hyper-parameterized [25] shallow CNNs [26] were trained and tested
with the two datasets. They had emerged as optimal DL quantification methods from 24
tested scenarios with different architectures, input forms, and active learning data aug-
mentation. Relative concentrations are provided as output but referencing to the water
signal yields absolute concentrations (Fig. 3). Training and validation sets were ran-
domly assigned to train the CNN on a maximum number of 100 epochs and with batch
normalization of 50. The learning rate was modulated via the adaptive moment (ADAM)
estimation algorithm [27]. Mean-squared error (MSE) served as loss function. Visual-
ization of training and validation loss over epochs combined with the implementation
of early-stopping criterion monitoring minimization of validation loss with patience ten
was used as a reference for tuning the network parameter space.

Fig. 3. Shallow CNN architecture, sample of input spectrogram, and output vector description.

Aleatoric uncertainties were evaluated via bias of the DL predictions from GT and
spreadof these predictions, both as estimated for 20different bins that cover thewholeGT
concentration range of each metabolite (called Bin-Spread-Function in Fig. 4). Monte-
Carlo dropout consisted of testing the trained model 100 times with activated dropout
layers. Thus, the network structure slightly changed for each prediction (i.e., a different
set of neurons was switched off) although preserving its weights. The 100 predictions
yielded a distribution (called Point-Spread-Function in Fig. 4) for any sample in the test
set. The bias and spread of these distributions were then calculated for every test sample,
averaged for every GT value, and used as epistemic uncertainties. They highlight the
susceptibility of predictions to model variation.

2.3 Quantification via Model Fitting

The test set spectra were fitted using fitAID [5]. The model consisted of a weighted
sum of Voigt lines with fixed Lorentzian (GT value) and estimated Gaussian widths.
Areas of the metabolites were restricted in [−0.5 · μ,+ 2.5 · μ], where μ is the average
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concentration in the testing and training set distribution for each metabolite, aiming to
bound the fitting condition to knownprior knowledge,mimicking the implicit restrictions
of DL algorithms. Bias from GT and CRLB are used as uncertainty measures.

Fig. 4. Distribution of uncertainties: bias (�) represents a deviation from ground truth, and spread
(�) represents variability of predictions around their center: the expected value (E[·]).

Fig. 5. Training and validation curves. Reliability diagrams and expected calibration error.

3 Results

Results are reported for four metabolites with progressively lower relative SNR: NAA,
GSH, Asp, and Lac (c.f. Fig. 1). Figure 5 shows training and validation curves for both
networks.Network calibration is investigated for regression,where the design is assumed
to predict the Cumulative Distribution Function of relative metabolite concentrations
[28, 29]. Reliability diagrams are reported for realistic simulations. Quantification of
Lac and Asp is mildly overconfident for low concentrations and underconfident for high
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Fig. 6. Maps and marginal distribution of CNN predictions vs. GT for four metabolites and two
datasets (realistic, noiseless) and model estimates vs. GT for the realistic case.

concentrations. However, the network can be considered well-calibrated for every target
metabolite [13].

Figure 6 reports CNN predictions and MF estimates vs. GT values. A linear regres-
sion model is fit to estimate the quality of the prediction. Marginal distributions of GT
and predicted values are displayed. Ideal predictions would display as a diagonal line (y
= ax + q) with minimal spread (RMSE, σ). In line, distributions of predictions would
mirror the uniformGT distributions. Considering the realistic case in DL and going from
left to right, predicted distributions become less uniform and get more biased towards a
mean expected value of the training range. This phenomenon is reflected in lower a and
R2 values and is emphasized for metabolites with low relative SNR (e.g., GSH, Asp,
and Lac). Noiseless simulations show a significantly reduced bias. MF estimates show
a better spread over the concentration range with a → 1 and q → 0 even for metabolites
with low relative SNR. RMSE (σ) is lower in MF than DL for NAA but higher in the
case of GSH, Asp, and Lac.

Figure 7 maps aleatoric and epistemic uncertainties as function of GT values for DL.
Epistemic uncertainties indicate higher variability of predictions at the boundaries of the
concentration ranges, which is paired with higher biases for aleatoric uncertainties. In
the noiseless scenario, it is evident how the point-spread function is affected by a larger
spread at the edges (i.e., U-shape). Training and testing with noise show the same trend
if relative SNR is high enough. Model fitting appears unbiased (average bias as orange
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line) except for a small effect at the parameter boundaries and biased larger outliers
(blue line) for metabolites with low SNR. CRLB are concentration-independent (linear
fit parameter). Moreover, average CRLBs are confirmed to represent a lower bound to
standard deviation (σ) of the fit error.

Fig. 7. CNNs’ bias and spread of epistemic (green) and aleatoric (blue) uncertainties vs. GT
values. MF bias and CRLBs vs. GT: single values (blue) and interpolated (orange). Estimated
standard deviation (σ) of the bias can be compared to the estimated average (μ) CRLB. (Color
figure online)

4 Discussion

Predicted concentrations should be unbiased, thus returning uniform distributions for
uniform training and test data. However, our CNN predictions for real-world simulations
tend towards the mean of the test data. Predictions at the boundaries of the testing range
are folded back towards the mean value in case of strong uncertainty (i.e., lowmetabolite
SNR), given the lack of knowledge outside the boundaries. Indeed, it is found that
the prediction bias is influenced by the limited concentration ranges used in training:
epistemic uncertainties indicate higher variability of predictions at the boundaries of
the concentration ranges, which is paired with higher biases for aleatoric uncertainties.
Though not exploring the exact same architecture, it is suspected that previous DLMRS
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approaches may show similar deficiencies [10–12]. An ideal noiseless scenario also
shows similar findings: uncertainty is lower in absolute values compared to the realistic
case, but a similar dependency on the concentration range is found (U-shape), confirming
that the DL prediction constitutes a biased estimator with uncertainties that depend on
the placement of the test case in the training range. Training and testing with noise show
the same trend if relative SNR is high enough. Metabolites in high concentrations suffer
from comparable epistemic spread as those in low concentrations.

MF is confirmed to be unbiased on average. Individual estimates are mildly influ-
enced by restrained concentration ranges (i.e., prior knowledge). CRLBs are confirmed
to be a measure of variance that is independent of the estimated concentration.

The current study considers a limited synthetic dataset that does not cover the whole
range of possible in-vivo sources of variability despite its aim to mimic realistic per-
formances. Furthermore, a single CNN design tuned for metabolite’s quantification is
investigated, even if optimized via multiple iterations and with the best combination of
input/output spectroscopic information (i.e., spectrograms and relative concentrations),
it is not possible to draw general conclusion for MRS quantification via DL algorithms.
Uncertainty investigation is limited to two uncertainty measures, which must be taken
with their benefits, reliability, and limitations compared to other measures [13].

5 Conclusions

Four measures for aleatoric and epistemic uncertainties are provided, partly representing
accuracy and precision of predictions. They scale with metabolite SNR but hint towards
bias and increased uncertainty at the edges of the explored parameter space for (these)
DL methods in many cases, even at infinite SNR.

DeepLearningdoes not require feature selection by the user, but the potential intrinsic
biases at training set boundaries act like soft constraints in traditional modeling, leading
estimated values to an apparently precise (low mean deviation) estimate reflecting an
expectation value over the normal concentration range used in training. This is dangerous
in a clinical context that requires the algorithm to be unbiased to outliers, which may
well be the focus of the investigation corresponding to pathological data.

Further investigation to access more stable predictions is needed: (i) training with
even larger concentration ranges, such that the region of interest is well inside the training
range where uncertainties are limited, (ii) consider ensemble of networks to strengthen
network performances for outliers or (iii) implementation of Batch Nuclear-norm
Maximization to improve discriminability and diversity of the predictions [30].

6 Data Availability Statement

The simulated datasets and network architecture that support the findings of this study
are available at https://github.com/bellarude.
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Abstract (262/300) 

Purpose 
To develop a novel single-voxel MR spectroscopy acquisition scheme to simultaneously 
determine metabolite-specific concentrations and transverse relaxation times within 
realistic clinical scan times. 
  
Methods 
Partly truncated multi-TE data are acquired as echo train in a single acquisition (Multi-Echo 
Single-Shot – MESS). A 2D multiparametric model fitting approach combines truncated, low-
resolved short TE data with fully sampled, highly-resolved, longer TE data to yield 
concentration and T2 estimates for major brain metabolites simultaneously. Cramer-Rao 
Lower Bounds (CRLBs) are used as a measure of performance. The novel scheme was 
compared with traditional Multi-Echo Multi-Shot (MEMS) methods. In-silico, in-vitro, and in-
vivo experiments support the findings. 
  
Results 
MESS schemes requiring only 2:12 minutes for the acquisition of three echo times provide 
valid concentration and relaxation estimates for multiple metabolites and outperform 
traditional methods for simultaneous determinations of metabolite-specific T2s and 
concentrations, with improvements ranging from 5-30% for T2s and 10-50% for 
concentrations. However, substantial unsuppressed residual water signals may hamper the 
method's reproducibility, as observed in an initial experiment setup that prioritizes short TEs 
with severely truncated acquisition for the benefit of SNR. Nevertheless, CRLBs have been 
confirmed to be well-suited as  design criteria, and within-session repeatability approaches 
CRLBs when residual water is removed in postprocessing by exploiting longer and less 
truncated data recordings. 
  
Conclusions 
Multi-Echo Single-Shot MRS combined with 2D model fitting promises comparable accuracy, 
increased precision, or inversely shorter experimental times when compared to traditional 
approaches. However, the optimal design must be investigated as a trade-off between SNR, 
the truncation factor, and TE batch selections, all influencing the robustness of estimations. 
 
Keywords (8/8) 
Spectroscopy, CPMG, in-vivo, brain, metabolite concentrations, transverse (T2) relaxation 
times, estimation, modeling 
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1. INTRODUCTION  

Clinical magnetic resonance spectroscopy (MRS)1 usually lacks subject-specific relaxation 
times needed for full quantification of spectra from single subjects.2–4 In fact, to derive 
absolute concentrations of metabolites, two primary ingredients are needed: (i)  reference 
data for absolute scaling (e.g., typically, the unsuppressed internal water signal is used as 
reference5 together with segmentation results to define tissue composition) and (ii) 
relaxation correction factors for the metabolites of interest.6,7 Furthermore, individually 
determined metabolite T2 times may be of interest as such, potentially reflecting the cellular 
and sub-cellular microenvironment and thus providing insights into evolving pathological or 
physiological processes.8  

Methods for a comprehensive evaluation of concentrations and relaxation times (and 
macromolecular background - MMBG) have been proposed that are based on combined 
evaluations of multiple different acquisitions (e.g., different TE, TR, or inversion times),9–13 
but given the additional scan time needed, are not in widespread use. Instead, clinical MRS 
relies on tabulated values that are listed for a few brain tissue types or cerebral locations, 
which do not account for inter-subject variability and are often lacking for specific 
pathologies. Such assumptions, therefore, introduce quantification errors and biases.14 

Multi-echo data from a single acquisition – where a CPMG sequence may be deployed to 
prolong the range of high SNR to longer acquisition times – can be used as an alternative 
with the benefit of speed, though at the expense of spectral resolution. Furthermore, it 
introduces gaps in the acquired data where RF pulses and gradient crushers are applied,15,16 
which can partly be recovered by use of prior knowledge gained from a full resolution short 
TE spectrum.16 

Similarly, multi-TE data is widely used in spectroscopic imaging. Like in RARE17, multiple 
echo acquisitions can be used to cover k-space in different echo periods and speed the 
coverage of the full range.18,19 Echo-planar spectroscopic imaging has proven similar speed 
gains with the acquisition of five echoes enabling T2 quantification of three primary brain 
metabolites.20 Alternatively, sparse multi-TE sampling with spatio-spectral encoding and 
subspace modeling has been suggested for mapping TE-dependent molecular changes 
within a clinical time frame.21  

In this work, we propose a novel acquisition scheme of acquiring multi-TE data in a single 
acquisition to be used in a combined fitting process, where the half echo of the shortest TE 
is fitted with the full echoes recorded for later TEs, including the extended tail of the last 
echo that provides resolution information for the whole echo train.22 The multi-TE 
combined fit enables the simultaneous estimation of concentrations and T2s, deploying one 
single model equation. The primary goal of this study was to prove the feasibility of 
simultaneous quantification of metabolite concentrations and metabolite-specific T2s by 
multi-echo single-shot (MESS) spectroscopy in a clinically compatible time frame and to 
evaluate its performance against the traditional acquisition approach with separately 
recorded multiple echo spectra.23 
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2. METHODS 
 

2.1    Measurement setup 
 

2.1.1 MESS acquisition scheme  
 

A semi-LASER localization scheme24,25 is complemented with a multi-echo single-shot design 
to increase sensitivity to T2 relaxation, Fig. 1. Three subsequent spin-echo readouts are 
realized by adding two slice-selective Mao π pulses26, which create the 2nd and 3rd recorded 
spin-echo after the 1st recorded spin-echo resulting from the semi-LASER adiabatic 
localization (as usual in semi-LASER, the first three spin-echoes cannot be used and are not 
recorded). The time between the additional RF pulses is used for signal acquisition 
characterized by a user-defined parameter Δ that (i) determines the echo timings and (ii) 
defines the truncation factor (i.e., the duration of the readouts for the 1st (TE1) and 2nd (TE2) 
recorded echo vs. the time needed for a complete echo sampling). Data for TE1 is acquired 
as FID (free induction decay), while TE2 and TE3 are acquired as partially sampled full 
echoes (partial-echo sampling - PES), where the last recording window extends to achieve 
an overall one second of total acquisition time (sum of all three readouts).27 

The Mao pulses are optimized such that the slice thickness (ST) is large enough to ensure full 
refocusing of the adiabatically pre-selected volume of interest of the semi-LASER block 
(specifically, STMAO = 1.5x STsemi-LASER). Moreover, a dedicated crusher scheme was optimized 
with phase cycling to minimize unwanted coherence pathways.28 In addition, 16-step 
EXORCYCLE phase cycling is implemented to minimize spurious contributions of unwanted 
coherence pathways, though, of course, full phase-cycling considering all seven RF pulses is 
not possible.  

Metabolite cycling (MC) is applied to simultaneously acquire water and metabolite data.29  
 

2.1.2 Comparison to conventional acquisitions 

Conventional acquisitions to assess the performance of the novel methodology were 
considered in different setups, Fig. 2. 

 Multi-Echo Multi-Shot (MEMS) acquisitions consisted of separate fully sampled 
acquisitions of the three spin-echo experiments realized with multiple refocusing as 
with the MESS technique. This acquisition is evaluated with either (i) half-echo 
sampling (HES) or (ii) PES for TE2 and TE3. 

 A single echo (SE) measurement is recorded at the shortest TE. 
 A multi-TE measurement of standard semi-LASER (i.e., without additional refocusing 

pulses) at the corresponding TEs of MESS and MEMS. 
 

2.1.3 In-silico data 

MESS spectroscopy was investigated compared to short TE SE and MEMS schemes (HES and 
PES). Spectra of a metabolite mixture2 specified in Table 1 were simulated at 3T with 
VeSPA30 assuming 5 Hz Gaussian linewidth, 4 kHz spectral width, and 4096 data points. In 
addition, T2s were set independently for the following molecules and molecule moieties: 
choline, split into ChoCH3 (trimethylammonium protons) and ChoREST; creatine, split into CrCH3 
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(methyl singlet) and CrCH2 (methylene singlet); glutamate (Glu); lactate (Lac); myo-inositol 
(mI) and N-acetylaspartate, split into NAACH3 (acetyl group) and NAAREST (aspartate group). A 
PRESS block implemented with ideal pulse rotations and crusher gradients replaced the 
semi-LASER block in Fig. 1. Three acquisition schedules with different Δ and TEs were 
investigated, Table 1. Ten spectra per schedule were simulated in a Monte-Carlo setup 
implementing random white Gaussian noise with fixed SNR (SNR=210, defined in time 
domain and referenced to the first point of the FID). 

2.1.4 In-vitro measurements 

MESS spectroscopy was investigated compared to MEMS schemes (PES) and traditional 
semi-LASER acquisitions recorded for different echo times. The multi-echo MESS and MEMS 
experiment consisted of two separate measurements with short and long TE batches:  

 TE batch #1: TEs = 35/60.6/86.2 ms, with Δ = 8 ms (32 datapoints);  
 TE batch #2: TEs = 140/213.6/287.2 ms, with Δ = 32 ms (128 datapoints); 

Other parameters included TR: 2000 ms, spectral width: 4 kHz, 64 acquisitions, 2:12 min 
duration to acquire one TE in MEMS configuration or the whole 3 TE batch in MESS 
configuration. Spectra were acquired on a 3T MR scanner (Prisma, Siemens) with a 64-
channel receive head coil for a “Braino” phantom (GE Medical Systems) containing an 
aqueous solution of the characteristic brain metabolites: mI (5.0 mM), NAA (12.5 mM), Glu 
(12.5 mM), Cr and creatinine (Cn, total of 10.0 mM), Lac (5.0 mM), and Cho (3.0 mM).  

MESS, MEMS, and multi-TE approaches were investigated and compared for the three TEs 
batch #1 by itself (maximizing SNR for TE3) and for a six TEs setup, which combines TE 
batches #1 and #2 (balancing short TEs with high SNR and long TEs but higher resolution 
together with a better definition of the T2 fit based on six data points rather than three). 
 

2.1.5 In-vivo measurements 

As detailed in Fig. 1, MESS spectroscopy was investigated compared to the MEMS scheme 
(PES). The multi-echo experiment consisted of two measurements with short and long TE 
batches with identical acquisition and investigation setup as in the in-vitro case. Ten healthy 
subjects (age 34 ± 12 years, 2 males, 8 females) were examined with the single voxel placed 
in the occipital cingulate cortex (OCC) with a size of 20x31x17mm3. Identical hardware and 
parameter setup was used as described above. In addition, five outer-volume suppression 

Table 1: Parameters for Monte-
Carlo simulations. (top) Mixture of 
metabolites: concentrations and T2 

relaxation times. (bottom) 
Sequence timings: acquisition 
window (Δ) and echo times.  
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bands were added for lipid and nasal cavity artifact suppression.29 . The TE batch #2 was 
acquired only in five of the ten subjects. All scans were performed in accordance with the 
competent ethical review boards. Statistical evaluations were run with GraphPad Prism 9.4. 
Distributions of estimates were compared assuming unpaired Welch t-test with Holm-Sidak 
correction.  

Figure 1: Acquisition scheme: standard semi-LASER localization (white background) and Multi-Echo 
Single-Shot (MESS) acquisition (gray background). (bottom) Zoom-in for dedicated echo timing: the 
parameter Δ (acquisition window) determines the overall sequence timing once TE1 is selected with 
semi-LASER localization. Maximized inter-pulse sampling is deployed: when TE1 is the shortest 
possible, MESS acquisitions are sampled as FID for TE1 (1st recorded echo) and as a partial echo for 
TE2 and TE3 (2nd and 3rd recorded echo, respectively).  
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Figure 2: Schematic of the various acquisition schemes that are compared in the study. (Top, blue) 
Multi-Echo Single-Shot: three subsequent acquisitions at three different TEs with partly truncated 
sampling range, as reported in Fig.1. (Bottom) Multi-Echo Multi-Shot: three sequential fully sampled 
acquisitions at three different TEs. The spin-echo experiment is recorded as FID for TE1 and either as 
partial-echo (PES: Partial Echo Sampling, green) or FID (HES, Half Echo Sampling, orange). In-silico 
measurements exploit a PRESS module as the basis, instead of a semi-LASER module, and include a 
single short-TE PRESS experiment compared to the multi-echo acquisitions. In-vitro measurements 
compare MESS and MEMS with traditional multi-TE semi-LASER acquisitions (without Mao pulses for 
multiple refocusing), which are not displayed.  
 

1.1.1 Repeatability  

MESS acquisitions were repeated three times within the same session with the same 3-TE 
and 6-TE configurations for a cohort of five healthy subjects. For further exploratory 
measurements, see Texts S2 and S3. 

1.2    Postprocessing 

1.2.1 MESS  
 

A dedicated postprocessing pipeline was developed in MATLAB and combined with the FID-
A library31 to treat raw measurement data (Siemens twix). Single coil channels from the 
three readouts were concatenated and optimally combined (weighting with the ratio of 
signal to noise squared).32 Concatenating the three readouts implied using the same noise 
for all three readouts as determined from the signal-free end of the 3rd readout. Spectra 
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were automatically aligned and phase-corrected, then metabolite and water signals were 
separated, followed by eddy current-correction. Residual water removal using Hankel-
Lanczos Singular Value Decomposition (HLSVD) filtering was possible only for the 3rd 
readout, where the number of data points is sufficient for the algorithm to untangle 
Lorentzian lines. However, TE1 and TE2 readouts were not amenable for HLSVD filtering, 
partly because difference signals from MC cannot be well decomposed into Lorentzian lines. 
1st and 2nd readouts were zero-filled to match the number of data points acquired for the 3rd 
readout – needed for the input to the fit software, but only relevant for data displays, not 
for fitting or CRLB calculation, because the fit model base spectra had been treated 
identically (verified in simulations). 

1.2.2 Traditional acquisitions 

Processing was analogous to the MESS case, except that noise was estimated in each 
spectrum separately, and HLSVD filtering was performed for all TEs. Subsequent processing 
was done in JMRUI33 in both cases. 

1.3    Simultaneous 2D model fitting 

Simultaneous 2D fitting was run in FitAID34 with a time-domain model and χ2 minimization in 
the frequency domain of the 1st dimension with simultaneous T2 fit via mono-exponential 
damping in the 2nd dimension. Lineshape modeling was based on Voigt lines where the 
Lorentzian component is determined by T2 times, and the Gaussian component represents 
any other peak broadening. Gaussian broadening is assumed to be identical for all 
metabolites. Further details on the fitting procedure are given in Text-S1. Estimated Cramer 
Rao Lower Bounds (CRLBs) were taken as the measure for achievable precision. The MESS 
was compared to the MEMS scheme for equivalent total experimental time. Therefore 
CRLBs of MEMS were adjusted by multiplication with √3, since a MEMS acquisition takes 
three times longer than MESS. Likewise, CRLBs for 6-TE experiments were adjusted by 
multiplication with √2. 

1.3.1 In-silico experiments 

One 2D model with three TEs was evaluated for MESS, MEMS/HES as well as MEMS/PES. 
Distinct T2s were fitted for all metabolites.  

1.3.2 In-vitro experiments 

The basis set was simulated in VeSPA using the actual RF pulses but ignoring the slice 
selection gradients. T2s were fitted and estimated independently for all metabolites 
considering three 2D models with three or six TEs each: (i) MESS, (ii) MEMS/PES, and (iii) 
semi-LASER multi-TE. 

1.3.3 In-vivo experiments 

The basis set was simulated for sixteen metabolites: Asp: aspartate, GABA: γ-aminobutyric 
acid, Glc: glucose, Gln: glutamine, Glu: glutamate, Gly: glycine, GSH: glutathione, Lac: 
lactate, mI: myo-inositol, NAA: N-acetylaspartate, NAAG: N-acetylaspartylglutamate, PE: 
phosphoethanolamine, sI: syllo-inositol, Tau: taurine, tCho: total choline (1:1 sum of 
glycerophosphorylcholine + phosphorylcholine), tCr: total creatine (1:1 sum of creatine + 
phosphocreatine), . 
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The macromolecular background (MMBG)35 
pattern was simulated as the sum of 
overlapping densely and equally spaced 
Voigt lines36 and tailored to the acquired 
signal via fitting of a sub-cohort average of 
three subjects where the eleven groups 
modeling the prominent resonance peaks 
were fitted for single amplitude and 
Lorentzian broadening (i.e., Gaussian 
broadening kept fixed).  

The fit model included metabolite-specific 
T2s for five major moieties (CrCH3, CrCH2, 
ChoCH3, NAACH3 and mI).37 A global T2 was 
fitted for all other moieties. The residual 
water signal that could not be eliminated 
with HLSVD filtering was modeled as a 
singlet for TE1 and TE2 in the three TEs 
model and TE1, TE2, TE4, and TE5 in the six 
TEs model.  

Two 2D models were evaluated with either 
three TEs (10 subjects) or six TEs (5 
subjects). Absolute tissue concentrations 
were estimated referencing to water, 
including tissue-specific water relaxation 
and CSF partial volume correction. 
Metabolite concentrations were T2 
corrected within the FiTAID model, whereas 
T1 corrections used values reported in the 
literature.36 

 

2. RESULTS 

2.1    In-silico evaluations 
Fig. 3 illustrates instances of the simulated 
spectra according to the three different 
methodologies (MESS, MEMS with HES, and 
MEMS with PES) for Δ=20 ms. As expected, 
the short TE spectra in MESS (Fig. 3A) show minimal resolution, with data acquisitions 
lasting only 20 ms (80 data points) and 40 ms (160 data points) for TE1 and TE2, 
respectively. In addition, MESS and PES spectra feature a linear phase shift according to the 
early start of data acquisition. However, all these frequency-domain issues are adequately 
represented in the time-domain model.   

Fig. 4A shows fit uncertainties in the form of CRLBs, and standard deviations (SDs) over 
different noise realizations for the determined T2s and concentrations as a function of the 
acquisition scheme averaged over different sequence timings (i.e., Δ settings according to 

Figure 3: Simulated spectra (real part) with Δ = 20 
ms for three acquisition schemes. (A) MESS 
scheme (with TE1 and TE2 zero-filled for display 
purposes), (B) MEMS scheme sampled as HES, (C) 
MEMS scheme sampled as PES. The difference 
between HES with PES is evident in the 1st order 
phase feature introduced by sampling before the 
echo maximum in PES. MESS’s truncated 
sampling for TE1 and TE2 is reflected in a low 
frequency resolution. However, MESS TE3 is 
comparable to PES TE3. 
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Table 1). A clear trend is evident: CRLBMESS  < CRLBMEMS (PES) < CRLBMESS (HES), and this is 
confirmed by the SDs . However, a single short TE measurement (SE) yields the lowest CRLBs 
when only concentrations are investigated (i.e., prior knowledge on T2 is kept fixed to 
assumed ground truth values). 

Fig. 4B reports uncertainties for T2s and concentrations as averaged over the metabolite set 
but varying as a function of measurement schemes and sequence timings. The precision for 
T2 is best for a sequence timing with Δ=20 ms. The ranking for concentrations is less clearly 
influenced by the timings. Single short-TE measurements are confirmed to outperform 
MESS in terms of precision to estimate concentrations only.  

Figure 4: Uncertainties for in-silico experiment. (A) Standard deviation (SD) and CRLB for metabolite 
T2s and concentrations as a function of the acquisition scheme averaged over different sequence 
timings (i.e., Δ settings in Table 1). (B) Standard deviation (SD) and CRLB for T2s and concentrations 
as a function of measurement schemes and sequence timings (i.e., Δ settings in Table 1, Δ10 stands 
for Δ = 10 ms). The precision of T2 determination is best for MESS, followed by PES and HES for all 
metabolites. The settings Δ20 and Δ30 are preferable for all methods. For concentrations, the 
ranking is similar, except that the choice of TE has limited influence. Single short-TE measurement 
(SE) outperforms MESS in terms of precision to estimate concentrations only. 
 

2.2    In-vitro evaluations 

Fig. 5 reports that estimated amplitudes and T2s across the three acquisition techniques are 
not systematically distinct and confirms the in-silico expectation that CRLBs are best for 
MESS. MEMS/PES displays smaller CRLBs for amplitudes and T2s compared to traditional 
semi-LASER mTE, which correspond in terms of precision essentially to MEMS/HES. The 
acquisition of six TEs shows the tendency to estimate slightly longer T2s compared to models 
based on only three TEs (particularly evident for MEMS/PES and semi-LASER mTE for Lac 
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and NAACH3). The precision of T2 estimation, as judged by CRLBs, is better for the 6-TE 
scheme for most metabolites (notably NAA, Glu, and Cn).  

 
2.3    In-vivo evaluations 

Fig. 6 depicts the voxel selection in OCC and illustrates MESS and MEMS/PES acquired data, 
fits, and residues for a single subject. The “short” TE spectra in MESS (35, 60.6, 140, and 
213.6 ms) show limited resolution, as expected. Zero-filling effects mostly of residual water 
from matching the duration of the 3rd readout (i.e., TEs 86.2 and 287.2 ms) are manifest. In 
addition, MESS spectra feature a linear phase shift and residual water components for TE1, 
TE2, TE4, and TE5 (see Methods 2.2.1).  
 
Distributions of estimated concentrations (Fig. 7A, Table S1) and T2s (Fig. 7B, Table S2) are 
reported together with CRLBs (Fig. 7) for the four acquisition schemes. Estimated 
concentrations and T2s do not show systematic divergence across methods. Their CRLBs are 
smaller for MESS methods than corresponding MEMS acquisition, with significant 
improvements for concentrations with the MESS 3-TE compared to the MEMS 3-TE scheme 
(Fig. 7A). No difference in precision for concentrations is evident in terms of the choice of TE 
schedule. The precision of T2 estimation as judged by CRLBs is better for the 6-TE scheme.  
Fig. 8 illustrates the spectra and their variability within a cohort by displaying the cohort 
average ± the cohort SD range for the 5 subjects with the 6 TE scheme for MESS and MEMS. 
An apparently very large cohort variability for FIDs and spectra is entirely due to the large 
variability of the residual water signal. 

  

Figure 5: In-vitro estimated 
amplitudes - area under the 
curve - (top left) and T2s (top 
right) together with 
corresponding CRLBs (bottom). 
Three acquisition techniques are 
reported:  MESS (yellow), 
MEMS(PES) (blue), and multi-TE 
semi-LASER (red) considering 
protocols with 3-TE (circles) and 
6-TE (squares). Estimated 
amplitudes and T2s do not 
display systematic differences 
across methods. CRLBs are found 
superior for MESS. Partial echo 
sampling and multiple refocusing 
– MEMS - is found to report 
similar CRLBs for amplitudes and 
T2s compared to traditional 
semi-LASER multi-TE.  
 

7| Preliminary published material 169



 
 

Figure 6 : Acquired data from MESS and MEMS 6-TE protocols in the occipital lobe from a single 
volunteer (black), fitted model (blue), and residues (red). For visual purposes, MESS TE1, TE2, TE3, 
and TE4 are zero-filled in the time domain. Residual water is visible by offsets in time-domain or 
partly cut-out resonance peaks around 4.2 ppm. Partial-echo sampling for 2nd and 3rd readouts 
displays a 1st order phase offset for MEMS acquisition at TE2 and TE3. 
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Figure 7: In-vivo results for four acquisition 
schemes: MEMS 3-TE (blue) and 6-TE (green) and 
MESS 3-TE (yellow) and 6-TE (red). (A) 
Concentrations and (B) T2s. (top) Estimated 
values and (bottom) relative CRLBs. Estimated 
concentrations do not significantly vary across 
methods and are in substantial agreement with 
reported values in the literature 3,36,48–52,56 see 
Table S1. Estimated T2s do not differ between 
MESS and MEMS methods, but 6-TE acquisitions 
hint towards longer T2s. However, T2s only partly 
agree with reported values in the literature2,36,41–

43 see Table S2. CRLBs are superior for MESS 
methods compared to correspondent MEMS 
acquisition.  
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Figure 8: Measured in-vivo spectra (real part) for MESS and MEMS 6-TE scheme. (black) Average 
spectra from a cohort of five healthy volunteers, (red) signal variation (±1 SD). MESS acquisitions are 
displayed in time- (left) and frequency-domain (middle). MESS spectra for TE1, TE2, TE3, and TE4 are 
zero-filled for visual purposes. Truncation of readout and echo formation at 8 and 32 ms are visible 
(respectively for Δ=8ms in TE1 and TE2 and Δ=32ms in TE4 and TE5). The most apparent variability is 
driven by unsuppressed residual water. Partial-echo sampling for 2nd and 3rd readouts leads to a 1st 
order phase offset for both MEMS and MESS acquisitions  
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2.4    Repeatability  

Subject-specific estimates and a measure of within-session repeatability (for MESS only) are 
reported for all metabolites across the cohort of five healthy subjects in Figures S1-S4. In 
Fig. 9, within-session repeatability of the MESS schemes (SD estimate from 3 spectra) is 
portrayed and contrasted with their minimal expected values derived from the CRLBs for 
both, concentrations and T2s. This is plotted for each volunteer, as well as for the cohort 
medians. SDs are considerably larger than CRLBs for most subjects (average ratios of 5.9 and 
8.0 for concentrations and 3.4 and 5.2 for T2s in the 3-TE and 6-TE schemes, respectively).  

Figure 9: Repeatability of MESS: SD and CRLB estimates for concentrations and T2s. SD is measured 
from estimates in three repetitions of MESS with 3-TE and 6-TE schemes in single volunteers and 
averaged over a cohort of five volunteers. Dashed lines: single volunteer data; bold lines: median 
values for the cohort. It is evident that SD overshoots the estimated CRLB consistently for all 
metabolites. The average ratio between the two values (5.9 and 8.0 for concentration and 3.4 and 
5.2 for T2s for the 3-TE and 6-TE schemes, respectively) is large. It is assumed driven by intra-subject 
inter-scan variability of residual water – acclaim that is substantiated in Figures S5, S6, S9. 

 

3. DISCUSSION 

The proposed acquisition and processing schemes aim at evaluating the feasibility of 
simultaneously quantifying metabolite concentrations and metabolite-specific T2s in a 
clinically feasible time frame. The study compared a novel and faster method (MESS) with 
its gold standard counterpart (MEMS), which targets the same multiple echo-train 
acquisitions but acquires the fully sampled spectra in separate acquisitions requiring a three 
times longer scan time. Furthermore, the proposed scheme was compared to single short TE 
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spectra (SE), the clinical standard to estimate concentrations alone, and to a multi-TE 
experiment that represents the clinical reference for estimating concentrations and T2s.  

It turned out that using an echo train and subsequent simultaneous modeling to arrive at 
concentrations and relaxation times makes such investigations possible in a clinically 
compatible time frame. Essentially, the relaxation information can almost be recorded for 
free at a time similar to the one previously used for measuring concentrations alone. CRLBs 
were used as a reference to judge the relative performance of the investigated sequences. 
They measure the minimum precision error and have previously proven to be a well-suited 
criterion for selecting optimal sampling strategies for many applications and fields.38–40 Still, 
the CRLB-derived conclusions have been confirmed with Monte-Carlo evaluations in this 
work.  

In-vivo, the performances of MESS compared to MEMS yielded CRLB improvements ranging 
from 5% to 20% for T2s and from 10% to 20% for concentrations.  

The MESS design implemented partial echo sampling to maximize the number of acquired 
data points with high SNR. The benefit of PES was investigated in-silico also for multi-shot 
approaches, where CRLB improvements ranged from 8% to 22% for T2s and 16% to 37% for 
concentrations and MC-derived SDs confirmed these numbers (Fig. 4). These results are also 
in agreement with former studies on optimal MRS sampling strategies.38 Moreover, 
evaluation of PES with multiple refocusing compared to traditional multi-TE spectra 
(sampled as half-echo FIDs) was investigated in-vitro (MEMS vs. semi-LASER mTE in Fig. 5). 
Average CRLB improvements around 17% for concentrations and 22% for T2s were found 
when MEMS (PES) is used. Multiple vs. single refocusing would also be a difference between 
these two schemes, but this is unlikely to be a relevant factor for this overall performance 
gain. If anything, one would expect to find systematically different T2s rather than improved 
precision with multiple refocusing, but this was not consistently seen in the in vitro study.  

The efficacy of acquiring truncated multi-echo data to estimate metabolite-specific T2s has 
also been demonstrated in a similar experiment at 7T.16 There, a CPMG spectroscopic 
sequence was used, acquiring eight echoes, and was combined with a fully sampled short TE 
spectrum, acquired in a separate scan, that was used as prior to extrapolating the full 
resolution of the truncated CPMG spectra. The reconstruction was based on a short-TE data-
driven singular value decomposition approach which integrated T2* relaxation. Its limitation 
lies in that a reliable estimation is limited to singlets. Our method does not aim to 
reconstruct the truncated spectra in the echo train. It exploits the resolution at the longest 
TE to regularize the fit over low-resolved spectra within a 2D frame in which priors are 
modeled for different TEs according to the known evolution based on simulated model 
spectra.38 Therefore, it produces more reliable estimates for J-coupled spin systems than 
the previously proposed multi-echo approaches, which relied either on priors from only 
single short TE16 or limited simulations for spectral singlets.13 Furthermore, the single-shot 
echo-train approach used here and in Ref 16 promises to be more robust to patient motion 
than independent multi-shot acquisitions.13 Of course, a separately acquired short TE 
spectrum with full-resolution could also be included in the simultaneous modeling of the 
current method, which would then combine our method with the approach from Ref 16, 
probably enhancing precision, but at the expense of additional scan time. 
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Multiparametric MRS in the form of MRS fingerprinting (MRSF) is an alternative to the 
currently proposed way of simultaneously extracting metabolite-specific concentrations and 
T2s. It has shown the potential to improve precision and accuracy for T2 by a factor of 2.5.13 
However, the complex modeling required to generate appropriate dictionary entries 
currently hampers the extension to J-coupled metabolites or the full range of detectable 
metabolites. Nevertheless, it appears promising to combine MESS with features of MRSF. In 
particular: (i) extending MESS with scans that are sensitive to T1 and may thus also be more 
scan-time efficient or inversely (ii) enhancing the current MRSF acquisition schemes with 
MESS elements rather than separately recorded scans with differing TEs. Whether 
simultaneous traditional modeling or dictionary searches would be more successful in the 
evaluation of such extended schemes is open for investigation.  
 

3.1    Quantification of T2s 

The proposed method leads to recording of subject-specific T2 relaxation times from five 
prominent spectral peaks and one overall T2 for all minor contributors to the OCC brain 
spectrum within clinical time frames.  

The method has clear restrictions regarding which echo times can be recorded in a single 
shot and asks for compromises between resolution and increments of echo times. However, 
as shown for the 6-TE setup, multiple single-shot echo trains with different timings can be 
combined to adapt to specific needs for echo times to be covered.  

The in-silico study did not reveal significant differences in precision for the explored TE 
batches but hinted that relatively large TE spacings (Δ=20 or Δ=30 ms) are favorable. 
However, this evaluation was limited to a few settings and the average result from the 
whole metabolite set was used as a measure. Furthermore, the schemes did not include 
very long TEs. According to a dedicated earlier study38, such improvements can be achieved, 
mainly if focusing on specific target metabolites.  

The real-world implementations based on semi-LASER rather than PRESS were restricted to 
longer minimal TE compared to the in-silico setup. To test basic feasibility and probe 
compromises with regard to SNR and resolution, both small and relatively large TE spacings 
were investigated (Δ = 8 or Δ = 32 ms). The multi-echo methods with 3 TEs considered a 
minimal TE spacing with TE3 shorter than 100 ms to maximize SNR in this last TE. MESS 
yielded higher precision than MEMS for this setup, but we also found that for T2s, an 
optimal design combines these short with longer TEs, hence also small and larger TE 
spacing, confirming expectations from the in-silico evaluation and a former study.38 

The differences in relaxation times found in vivo between metabolites or metabolite sub-
moieties are broadly consistent with previous results,2,36,41–43 with relaxation times for 
singlets decreasing in magnitude as follows: NAACH3> tCho >  tCrCH3 > tCrCH2.16 However, the 
actual T2 values found with the proposed multi-echo measurements are only partly 
consistent with the previous literature (Table S2) and overall yield somewhat shorter T2 

times (~ 20 to 40ms shorter).43 In fact, due to the two pairs of adiabatic π pulses employed 
in the semi-LASER block combined with the added pair of Mao pulses, one would expect to 
find longer rather than shorter T2 times here in comparison to traditional acquisitions, in 
particular those from PRESS. This is expected because of the quasi continuous refocusing, 
similar to the CPMG condition, and T1ρ rather than T2 decay during the RF pulses.44 Such a 
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finding could be caused by incomplete refocusing by the Mao pulses, but that is not verified 
in the in-vitro scans. Or it could be linked to a suboptimal choice of the TE batches. Indeed, 
it had been shown that a reliable and accurate T2 estimation  should include longer TEs ( 
~1.3-1.5 times T2;45 e.g., for an assumed T2

NAA = 350ms,a maximum TE = 490 ms is 
recommended) and larger TE spacing.38 However, the currently mainly investigated design 
aimed to record the shortest TEs possible to maximize SNR in TE3 with best resolution. The 
effect of including longer TEs is confirmed by the in-vitro results, where estimates based on 
models with six TEs showed consistently longer T2s. A benefit from longer TEs is clearly 
found in vivo based on the CRLBs for the T2 estimates, in particular for NAACH3, with the 
longest T2, where the improvement is statistically significant.  

On the other hand, T2 values from literature are scarce and inhomogeneous due to the 
intrinsic sensitivity of the measure to the chosen protocol 46,47 and thus difficult to use as 
gold standard. On top, when comparing to literature one should keep in mind that the 
values from this study resulted from 2:12 - 4:24 (MESS) or 6:36 - 13:12 (MEMS) minutes of 
acquisition time only, while literature values often originate from much longer scans. 
Moreover, it is paramount to stress that, for clinical use, precision (CRLBs) and variance 
within cohorts of equivalent subjects are more relevant than comparisons with literature 
values. 
 

3.2    Quantification of Concentrations 

For the purpose of estimating concentrations alone, a single SE experiment has provided the 
best performances in the simulated cases (Fig. 4). Of course, the main reason for this may 
be that in this case the fit model assumes fixed T2 values, which simplifies the parameter 
space of the model and its corresponding partial derivatives in the Fisher matrix. Such an 
assumption translates to the traditional clinical approach when single SE experiments are 
used given that subject-specific T2 values are unavailable.  

The proposed MESS scheme clearly yields higher precision in identical scan time or promises 
shorter scan times for equal precisions as the standard MEMS approach when judgment is 
based on the CRLBs that resulted in silico, in-vitro and in-vivo. The increased precision is 
particularly striking for the in-vivo estimated concentrations of tCr, Glu, mI, and NAA. In 
spite of the benefit for T2 estimation, the 6-TE scheme does not outperform the 3-TE 
scheme for concentration. The two yield similar performance.  

Metabolite concentrations from this study include subject-specific T2 corrections, which has 
not been performed often in the literature. Still, the obtained overall distribution of 
concentrations agrees well with the literature for occipital GM (see Table S1). 3,14,36,48–52.  

When comparing the normal confidence range spanned by the mean and the cohort 
standard deviation, it is noted that the ranges are very similar or even narrower compared 
to literature, even though the scan times per spectrum are mostly much shorter than those 
in the quoted literature (Table S1) and are based on 3T data compared to some of the 
studies that used 7T spectra. This limited spread is surprising also because the simultaneous 
determination of T2 increases the concentration uncertainty and some of the literature 
studies made use of outlier rejection based on relative CRLB or soft constraints stabilizing 
their estimation.  
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3.3    Repeatability  

Based on the substantial difference between CRLB estimates from single in vivo 
measurements and SDs from within-session repeats (Fig. 9, and supplemental illustrations in 
Figures, S1-S4), CRLBs appear to be an ill-suited approximation for repeatability or precision 
of estimation for in-vivo MESS. And this might question the use of the CRLB as criterion of 
merit to judge between MESS and MEMS and the different acquisition schemes within MESS 
in spite of the wide use of CRLBs for such a purpose.38–40 However, since the Monte-Carlo 
evaluations did not show such a divergence, the problem does not lie with the CRLBs per se, 
but rather with experimental issues for the investigated in-vivo implementations with 
minimal TEs. Considering the cohort average spectra in Fig. 8, it is highly likely that the large 
variability of the residual water signal in the spectra with limited resolution is the cause for 
unexpected scan-to-scan variability, a feature that was not built into the original in vitro 
setup. The residual water signal cannot readily be removed in postprocessing by HLSVD in 
those spectra (TE1, TE2, TE4, TE5) and it carries more complexity than what can be 
incorporated into the fit model (for MC, difference of large signals with effects of eddy 
currents and potential motion accentuating the difficulty for a proper lineshape model).  

To prove that indeed the limited repeatability is an implementation issue rather than a basic 
flaw in the method, extended repeatability exams were performed in three subjects and 
two further tests were performed in hindsight. Figure S7(top) shows the variability from five 
repeated scans in one volunteer and displays clearly that intra-session fluctuations of the 
water signal plague in particular the TE1 and TE2 acquisitions with the lowest resolution. To 
test for the influence of the residual water signal on quantification results, a second Monte-
Carlo study was performed where residual water fluctuations from in vivo scans were 
included in the setup as described in supporting information Text S2. The results from this in 
silico comparison of scans with and without residual water signals, as presented in Figures 
S5 and S6, clearly show that CRLBs are a valid correlate of repeatability unless residual water 
signals are not properly incorporated in the fit. Thus, to render the proposed MESS method 
robust and valid as a clinical tool, the influence of residual water has to be eliminated or 
substantially reduced. Four solutions are proposed and one of them has been initially 
tested: (i) improved elimination of the water signal in MC based on e.g. prospective motion 
correction or adapted inversion pulses; (ii) novel postprocessing techniques for optimal 
water signal removal for spectra with low spectral resolution, possibly based on deep 
learning for signal removal or for resolution restoration;53 (iii) use of advanced WS 
techniques like VAPOR instead of MC29; (iv) alternative TE-batch designs with longer 
sampling windows where enough data points for TE1 and TE2 are acquired to enable HLSVD 
water removal. As a proof-of-concept, such a 3-TE MESS design with longer acquisition 
windows has been implemented and explored for the ratio between CRLB and repeatability 
in 5-fold repeated scans in three subjects, as detailed in Text S3. Figures S7(bottom) and S8-
S9 document that this setup is only marginally plagued by residual water signals and would 
offer a robust implementation of MESS where the presumed reliability or acquisition speed 
derived from CRLB calculations is paralleled in measurement precision as determined by 
repeatability evaluations.  
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3.4    Limitations 

The calculated CRLBs are only valid for the specifically addressed contexts (e.g., metabolite 
set, line width, optimal RF pulses, field strength) and in the case of complete knowledge of 
the model, where the handling of the baseline is critical as discussed in detail in the previous 
section. This limits the experiment design but allows fine-tuning of the acquisition strategy, 
given the exact experimental situation.38 

The T2 relaxation times of metabolites reported in this work are specific to the GM-rich 
occipital lobe region. The aim of the current study does not address T2 differentiation 
between white and gray matter or different brain regions.2,54  

The hypothesis of different T2 for the tCr resonances at 3.0 ppm (or 3.9 ppm) to be modeled 
via a biexponential decay has not been investigated.55 Similarly, extension to more 
individual metabolite-specific relaxation times should be addressed in further investigations, 
potentially using MESS schemes with more than three acquisition windows or multiple TE 
batches as used here. 
 

4. CONCLUSIONS 

A novel experimental scheme for simultaneous determination of metabolite and subject-
specific T2s and T2-corrected concentrations for complex spectral patterns that combines 
short and long TE recordings from single acquisitions with 2D model fitting has been tested. 
The novel approach promises comparable accuracy, increased precision, or inversely shorter 
experiment times compared to traditional approaches. Therefore, it has proven to be a 
suitable alternative to conventional multi-echo multi-shot acquisitions. 

Future work should explore optimal MESS design as a trade-off between TE spacing, TE 
batch and batch size, and data truncation/resolution to monitor the methods’ robustness, 
stability, reliability, and error minimization. The experimental design may be optimized for 
target metabolites, with a potential focus on dynamic measurements of metabolite T2 
variations, particularly in time-resolved experiments where changes in metabolite T2s over 
time may reflect physiological changes caused by activation, pathology or other modulating 
effects.16 

Extensions to higher magnetic fields37 that allow better separation of some of the 
metabolite patterns to explore individual relaxation times of more metabolites should be 
straight-forward. 
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TEXT-S1: Details of simultaneous model fitting for MESS. 

Basis sets: The MESS basis sets are equal to those for MEMS (simulations include the two Mao 
refocusing pulses in both cases) except that they are truncated for the 1st and 2nd readouts, 
respectively, at Δ ms and 2Δ ms, for both TE batches. The truncated basis sets are zero-filled to 
conform to the input format of FiTAID and to match the layout of the acquired data with equal 
number of datapoints for all interconnected datasets and zero-filling to accommodate that. In 
particular, not only the vespa-simulated basis sets, but also simple Voigt lines were prepared to 
match between model and experimental data 

Fitting strategy: The starting conditions of any fit were derived from the MEMS fit of a cohort 
average from three of the ten datasets of the examined subjects. The MESS fit for a single subject is 
run with the following two-step fit strategy to ensure fitting stability. 

1. Fit of the third TE acquisition only (or 3rd plus 6th readout for 6-TE acquisitions) with 
individual metabolite areas, overall 0th order phase, overall frequency offset, and overall 
Gaussian broadening fitted, while keeping T2s fixed at starting values. (i.e. 2 minimization 
in frequency domain for complex data of 3rd dataset) 

2. Fit of all responses with all parameters (i.e., incl. T2s) free to fit. (i.e. 2 minimization in 
frequency domain for complex data of all datasets) 
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Table S1: Estimated metabolite concentrations for GM from occipital cortex, obtained for four 
setups: MESS and MEMS, each for the 3-TE and 6-TE schemes.  Values are given in mM units. They 
are listed in comparison to values from the literature. Estimated values do not significantly vary 
between methods and compare well with the literature, including the cohort standard deviations, 
even though in the current study the acquisition times were minimal and data were obtained at 3T 
compared to 7T for some of the literature studies. Uncertainties converted from standard error to 
standard deviation for Ref [1] where needed. 1–7 
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Table S2: Estimated transverse metabolite 
relaxation times (T2s) for GM from occipital 
cortex, obtained for four setups: MESS and MEMS, 
each for the 3-TE and 6-TE schemes.  
The 6-TE schemes yield somewhat longer T2s, 
especially for tCho and NAACH3. Values are given in 
ms. They are listed in comparison to values from 
literature. Uncertainties converted from standard 
error to standard deviation for Ref [5].2,8–11 
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Figure S1: In-vivo estimated concentrations and CRLBs separately reported for five subjects and 
measured with MESS and MEMS methods with either three or six TEs: part 1. As proof of concept, 
acquisitions with MESS were repeated three times to match the scan time of MEMS. Estimated 
concentrations for the same subject do not significantly differ across the acquisition methods. CRLBs 
are confirmed to be superior for MESS. Variations across multiple acquisitions of MESS can be 
explained by variability of residual water signals. Six metabolites: NAA, tCr, tCho, Glu, mI, and NAAG. 
Different techniques are symbol-coded. Different subjects are color-coded.  
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Figure S2: In-vivo estimated concentrations and CRLBs separately reported for five subjects and 
measured with MESS and MEMS methods with either three or six TEs: part 2. As proof of concept, 
acquisitions with MESS were repeated three times to match the scan time of MEMS. Estimated 
concentrations for the same subject do not significantly differ across the acquisition methods. CRLBs 
are confirmed to be superior for MESS. Variations across multiple acquisitions of MESS can be 
explained by variability of residual water signals. Six metabolites: Asp, GSH, Lac, sI, Tau, and Glc. 
Different techniques are symbol-coded. Different subjects are color-coded.  
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Figure S3: In-vivo estimated concentrations and CRLBs separately reported for five subjects and 
measured with MESS and MEMS methods with either three or six TEs: part 3. As proof of concept, 
acquisitions with MESS were repeated three times to match the scan time of MEMS. Estimated 
concentrations for the same subject do not significantly differ across the acquisition methods. CRLBs 
are confirmed to be superior for MESS. Variations across multiple acquisitions of MESS can be 
explained by variability of residual water signals. Four metabolites: PE, Gln, Gly, and GABA. Different 
techniques are symbol-coded. Different subjects are color-coded.  
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Figure S4: In-vivo estimated T2s and CRLBs separately reported for five subjects and measured with 
MESS and MEMS methods with either three or six TEs. As proof of concept, acquisitions with MESS 
are repeated three times to match the scan time of MEMS. Estimated T2s for the same subject do 
not significantly differ across the acquisition methods. CRLBs are confirmed to be superior for MESS. 
Variations across multiple acquisitions of MESS can be explained by increased sensitivity to motion 
and variability of residual water signals. Six moieties: NAACH3, tCrCH3, tCrCH2, Glu, mI, and tCho. 
Different techniques are symbol-coded. Different subjects are color-coded.  
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Text S2: Influence of the residual water signal on the repeatability of MESS 

The effect of ill-modeled residual water that could not be removed in postprocessing by HLSVD 
filtering for MESS TE1 and TE2 was investigated with in-silico Monte-Carlo simulations for the MESS 
3-TE protocol. 
 
Methods: Simulations were run in the same setup as described in Methods 2.3.2 for a metabolite 
mixture in Table 1. 100-entries were generated with different noise realization but constant SNR, 
similarly as illustrated in Fig 3. The 100 entries generated for MESS were modified for TE1 and TE2 by 
the addition of a truncated residual water signal that had been isolated by HLSVD filtering from the 
measured MEMS datasets for the 10-volunteer in-vivo cohort. Thus, ten different residual water 
signals were distributed across ten Monte-Carlo entries. Bi-dimensional fitting was run as illustrated 
in Methods 2.3.3 when residual water was added to the data. 
 
Results: Figs S5 and S6 display standard deviation (SD) and estimated CRLB for concentrations and 
T2s, respectively. MEMS and water-free MESS show good convergence of SD to CRLBs, which 
supports the reliability of estimated CRLBs as a measure of precision in the absence of residual 
water. CRLBs systematically ill-represent measurement-SD when residual water is included in MESS 
schemes at TE1 and TE2. The effect varies across the ten realistic residual water lineshapes, given 
the different capabilities of the model (based on Voigt-line) to reproduce and fit the diverse residual 
water lineshapes. 
 
 
 
 

Text S3: Alternative TE-batch design for MESS, enabling residual water signal 
removal by HLSVD 

Alternative TE-batch designs for the MESS scheme are suggested to reduce the influence of residual 
water signal on quantitative results substantially. They feature longer minimal sampling windows, 
where enough data points are acquired for TE1 and TE2 such that HLSVD water removal is feasible. 
 
Methods: A MESS 3-TE design with a longer acquisition window (Δ=56ms, 224 datapoints) and a TE 
batch of TE = 35, 156, and 278 ms was investigated and compared to the current MESS 3-TE TE/Δ 
setup. Measurement setup remains as described in Methods 2.1.1 and 2.1.5. Acquisitions were 
repeated 5-fold within the same session for both TE/Δ setups in a cohort of 3 healthy volunteers 
(age 28 ± 1 years, 1 male, 2 females).  
 
Results: Time- and frequency-domain properties of both MESS 3-TE TE/Δ schemes are visualized in 
Figure S7. Residual water filtering can be deployed in postprocessing when a longer acquisition 
window is used, and significantly reduced variability is found for spectra of TE1 and TE2, Figure 
S7(bottom). A visualization of MEMS 3-TE is given in Figure S8 where fully resolved spectral features 
can be compared across different choices of TE batches. Figure S9 displays SD and CRLB on 
concentrations and T2s for both MESS 3-TE TE/Δ setups. The divergence between CRLB and intra-
session SD for Δ=8 ms (ratios of 4.4 and 2.6, respectively, for concentrations and T2s) consistently 
reproduces the original data for the 10-volunteer cohort (Figure 9). However, a better water 
handling by HLSVD filtering at all TEs for Δ=56 ms yields closer agreement between CRLB and SD for 
both, concentrations and T2s.  
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Figure S5: Uncertainty of estimated concentrations from in-silico Monte-Carlo experiments with and 
without realistic residual water with estimated SD in blue and estimated CRLB in red.  MEMS/PES 
estimates with (cross) and without (square) √3-correction to equalize scantime. The MESS 3-TE 
scheme without residual water is plotted as triangle and with different residual water signals as 
circles. 10 Monte-Carlo entries (x-axis from 3 to 12) display the 10 different residual water 
lineshapes. Good convergence of SD to the estimated CRLB is reported for MEMS and water-free 
MESS. CRLBs systematically ill-represent measurement-SD when residual water is included in MESS 
schemes at TE1 and TE2.  
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Figure S6: Uncertainty on T2s from in-silico Monte-Carlo experiments with and without realistic 
residual water with estimated SD in blue and estimated CRLB in red.  MEMS/PES estimates with 
(cross) and without (square) √3-correction to equalize scantime. The MESS 3-TE scheme without 
residual water is plotted as triangle and with different residual water signals as circles. 10 Monte-
Carlo entries (x-axis from 3 to 12) display the 10 different residual water lineshapes. Good 
convergence of SD to the estimated CRLB is reported for MEMS and water-free MESS. CRLBs 
systematically ill-represent measurement-SD when residual water is included in MESS schemes at 
TE1 and TE2. 
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Figure S7: Cohort average datasets for MESS 3-TE schemes with different TE/Δ setups. Short Δ=8ms 
(top, short TE batch) and long Δ=56ms (bottom, long TE batch) are reported in the time domain (real 
part, left) and frequency domain (absorption part, right). The measurements were repeated five 
times for each volunteer and setup: average spectra are portrayed in black, the variability (±1 SD) in 
red. Substantial variance throughout the fids and a large frequency range is visible for TE1 and TE2 in 
the upper panel with very short acquisition periods. (water signal effect spread out in frequency by 
zero-filling). For the long Δ scheme this effect is substantially reduced. 
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Figure S8: Exemplary MEMS datasets for the 3-TE schemes with the same TE/Δ setups as in Figure 
S7. Short Δ=8 ms (left, healthy subject #2) and long Δ=56 ms (right, healthy subject #2).  
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Figure S9: Repeatability of MESS upon different TE/Δ setups. (Top) short TE batch (Δ=8 ms), 
(bottom) long TE batch (Δ=56 ms). Within-session metabolite SDs (blue) and CRLB (red) are plotted 
for concentrations on the left and for T2s on the right. The long TE batch (bottom) allows the 
removal of residual water via HLSVD filtering (Figure S5). Dashed lines: individual volunteer data, 
bold lines: median trace for the cohort. It is evident that CRLBs underestimate SDs consistently for all 
metabolites for Δ=8 ms (upper panel), as already shown in Figure 10. However, better water signal 
handling in the Δ=56 ms case (bottom panel) yields less divergence between CRLB and SD for both, 
concentrations and T2s. 
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1. Hardware  

a. Field strength [T] 3 T 

b. Manufacturer  Siemens (Erlangen, GE) 

c. Model (software version if available) Prisma (VE 11) 

d. RF coils: nuclei (transmit/receive), number of 
channels, type, body part 

Siemens receiver head coil, 64 channel 

e. Additional hardware N/A 

2. Acquisition   

a. Pulse sequence  Modified semi-LASER sequence with addition of 2 
Mao π pulses for multiple refocusing. Recordings as 
echo-train in single short (MESS) or repeated 
independent measures. A traditional semi-LASER 
sequence is used for comparison.  

b. Volume of Interest (VOI) locations  Occipital Cyngulate Cortex (OCC) 

c. Nominal VOI size [cm3, mm3] 20x31x17mm3 

d. Repetition Time (TR), Echo Time (TE) [ms, s] TE batch #1: 35/60.6/86.2 ms 

TE batch #2: 140/213.6/287.2 ms 

TR = 2000 ms 

e. Total number of excitations or acquisitions per 
spectrum 

In time series for kinetic studies  

i. Number of Averaged spectra (NA) per time-point 
ii. Averaging method (e.g. block-wise or moving 

average) 
iii. Total number of spectra (acquired / in time-series) 

64 averages. Simple averaging after MC difference 
to untangle water and metabolite signal. 

f. Additional sequence parameters (spectral width in 
Hz, number of spectral points, frequency offsets) 

If STEAM:, Mixing Time (TM) 

If MRSI: 2D or 3D, FOV in all directions, matrix size, 
acceleration factors, sampling method 

Spectral width: 4 kHz, Number of spectral points: 
4096. TE batch #1: 35/60.6/86.2 ms, with Δ = 8 ms 
sampled with 32 datapoints. TE batch #2: 
140/213.6/287.2 ms, with Δ = 32 ms sampled with 
128 datapoints.  

g. Water Suppression Method Metabolite Cycling (MC)  

h. Shimming Method, reference peak, and thresholds 
for "acceptance of shim" chosen 

Brain shimming routine. Acceptance of shim if < 5 Hz 

i. Triggering or motion correction method 

(respiratory, peripheral, cardiac triggering, incl. device 
used and delays) 

N/A 

3. Data analysis methods and outputs  

a. Analysis software Matlab: data pre-processing and analysis 

jMRUI: preprocessing 
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FitAID: fitting 

Python: statistics and plotting 

b. Processing steps deviating from quoted reference or 
product 

N/A 

c. Output measure 

(e.g., absolute concentration, institutional units, ratio) 

Absolute concentration in millimolar and T2s in 
millisecond 

d. Quantification references and assumptions, fitting 
model assumptions 

 

Reference: water signal simultaneously acquired via 
MC. 

Model Assumptions: simultaneous 2D fitting with 
time-domain modeling and frequency domain χ2 
minimization. 

1st dimension: chemical shift 

2nd dimension: simultaneous T2 fit via mono-
exponential signal decay.  

The fit along the 2nd dimension is run on a number 
of data points equal to the number of TEs (i.e., three 
or six). 

Model broadening assumed Voigt-line shapes: 
Lorentzian component models metabolic T2 times, 
Gaussian component primarily represents non-
refocusable line broadening and is assumed to be 
identical for all metabolites.  

 

4. Data Quality   

a. Reported variables  

(SNR, Linewidth (with reference peaks)) 

Water linewidth (Gaussian) < 5Hz 

b. Data exclusion criteria N/A 

c. Quality measures of postprocessing Model fitting 
(e.g. CRLB, goodness of fit, SD of residual) 

Cramer Rao Lower Bounds (CRLBs) were taken as 
the measure for achievable precision. Goodness of 
the fit reported via residue display and monitored in 
fitting phase. 

d. Sample Spectrum Figure 3 and Figure 7 

 
Table-S3: MRSinMRS checklist12. 
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Synopsis

A multi-parametric MR Spectroscopic Imaging (MRSI) experiment named Multi-Echo Single-
Shot MRSI (MESS-MRSI) deploys partially sampled multi-echo trains from single readouts
combined with simultaneous multi-parametric model fitting to produce 2D metabolite-specific
T2 and concentration maps on a 6x6 frame and with 1.34 cm3 resolution in only 7 minutes. It was
tested in-vivo on a cohort of 5 subjects. Cramer-Rao Lower-Bounds (CRLBs) are used as the
measure of performance. The novel scheme was compared with the (1) traditional Multi-Echo
Multi-Shot (MEMS) method and (2) a truncated version of MEMS, which mimics the MESS
acquisition (MESS-mocked). Results extended former findings for single voxel measurements
with average improvements in CRLB ranging from 17-45% for concentrations and 12-23% for
T2s.

Summary of the main findings

Multi-Echo Single-Shot MRSI of the brain combined with 2D model fitting provides simultaneous
concentration and T2 maps in a 7-minute scan time, with average CRLB improvements between
12 and 45% compared to traditional Multi-Echo Multi-Shot MRSI.

1. Introduction

MR Spectroscopic Imaging (MRSI) aims to map spatial distributions of metabolite concentra-
tions, which reflect tissues’ biochemistry and provide insight into functionality and pathophysiol-
ogy [100]. Metabolite relaxation rates, which mirror cellular and sub-cellular microenvironments,
could hold additional valuable information but are rarely acquired within clinical scan times
[101, 102, 103]. For example, the relaxation times of the neuronal marker N-Acetylaspartate
(NAA) reflect the neuronal microenvironment and may operate as an independent marker of
neurodegeneration or inflammation [39]. So far, there is clear evidence for age-dependence of
metabolite relaxation times [40] but also altered values in pathologies such as multiple sclerosis
[41], Alzheimer’s disease [42], and cancer [43, 44].
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Here, we extend a novel single-voxel acquisition scheme that acquires multi-TE data from single
readouts twinned to a bi-dimensional fitting process [104] to produce metabolite-specific T2 and
concentration maps and the related CRLBs within clinical scan time.

2. Methods

A metabolite-cycled 2D-MRSI-sLASER scheme with weighted Cartesian k-space encoding was
optimized to acquire three consecutive spin-echoes in one scan (multi-echo single-shot, MESS
[104]). The 1st spin-echo was acquired at the shortest TE possible and was recorded as FID.
The 2nd and 3rd spin-echoes were instead recorded as partially sampled full echoes, where the
last recording window lasts to achieve an overall 1-second acquisition length (i.e., the sum of the
3 readouts). The echo train was generated by extending the sLASER block with two optimized
slice-selective Mao π pulses with 1.5-fold slice thickness. The acquisition setup explored a 16x16
FOV grid with 200x160 mm2 resolution. The resolution of the MRSI-VOI was 80x60x15 mm3.
Sequence timings were set at TR/(TEs) 1600/(35,156,278) ms. Spectra were recorded with
spectral width (SW) of 4 kHz, and acquired with datapoints total/(TEs) 4096/(224/448/3424)
for a total of 4 weighted acquisitions in an overall 7-minute scan time. Measurements were
performed on a 3T MR system (Siemens) with a 64-channel head coil.

Five healthy volunteers were examined with supraventricular VOI positioning. Next to MESS,
we acquired (1) traditional multi-echo multi-shot MRSI sampling of three fully sampled spin-
echoes (MEMS, 21 minutes scan time), and (2) a truncated version of the MEMS acquisition,
which mimics the MESS setup (MESS-mocked). All scans were performed in accordance with
the competent ethical review boards.

Simultaneous 2D fit ran in FitAID [16] with time-domain model and frequency domain χ2-
minimization. The half-echo of the shortest TE was fitted with the full-echo recorded for later
TEs, including the extended tail of the last echo that provides resolution information for the
whole echo train. FID and 2nd echo of MESS were zero-filled to match the duration of the 3rd

echo for visual purposes.

The fitting model assumed Gaussian line-broadening with resulting Voigt-line shape where the
Lorentzian component represents T2 contribution. A 16-metabolite basis set was simulated in
VeSPA [13] accounting for: Asp: aspartate, GABA: γ-aminobutyric acid, Glc: glucose, Gln:
glutamine, GSH: glutathione, Gly: glycine, tCho: total choline (1:1 sum of glycerophospho-
rylcholine + phosphorylcholine), Lac: lactate, NAAG: N-acetylaspartylglutamate, PE: phos-
phoethanolamine, sI: syllo-inositol, Tau: taurine, tCr: total creatine (1:1 sum of creatine +
phosphocreatine), Glu: glutamate, mI: myo-inositol, and NAA: N-acetylaspartate. Prior knowl-
edge modeling of the macromolecular background (MMBG) pattern was simulated as a sum of
overlapping densely, and equally spaced Voigt lines [23]. T2s were fitted freely for five major
metabolites (tCr, respectively for CH2 and CH3 moieties, singlets of tCho and NAA resonating
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at about 3.2 ppm and 2.008 ppm, respectively, and mI) and MMBG, while T2s were linked for
all other metabolites (global T2). Tissue concentrations were calculated referencing to the co-
measured water signal, with T1 corrections from the literature [23] and white (WM), gray (GM)
matter, and CSF segmentation [105] to account for tissue-specific water relaxation, and tissue
fraction corrections [3]. CRLBs were taken as the measure for achievable precision. To compare
equivalent total experimental time, CRLBs of MEMS and MESS-mocked were corrected by

√
3.

The precision gain (CRLBs) of MESS was tested with statistical inference considering distribu-
tions of concentrations and T2s on the cohort of 5 volunteers. Two subsets of either prevalent
WM or GM voxels from the acquired 6x6 VOI grid were selected according to tissue segmentation
(fractional volume of parenchymal water of WM or GM > 70%) and grouped across subjects to
be used as the cohort population. Statistical evaluations were run on GraphPad Prism 9.4. Dis-
tributions of estimates and prediction errors (CRLBs) were compared across methods assuming
unpaired Welch t-test with Holm-Sidak correction. No statistical inference regarding WM/GM
differences was investigated.

3. Results & Discussion

Fig.7.1 illustrates the acquisition setup, MEMS and MESS data, fit, and residues for voxels
in prevalently WM and GM. Short-TE MESS spectra show limited spectral resolution. TE2

and TE3 spectra are automatically phased to display positive absorption component for NAA
and feature linear phase offsets (evident for tCho singlet at 3.185 ppm) due to partial-echo
acquisitions. The overall quality of the fits is good. Residues are limited and follow a white-
noise distribution for MEMS and MESS at TE3. Signal truncation and zero-filling for TE1 and
TE2 create visual ripples but acceptable residues.

Fig.7.2 and Fig.7.3 display estimated concentrations and T2 values, respectively, for a subset
of metabolites, reported spectrum-by-spectrum throughout the VOI. The evaluation considers
fitting on a zero-filled k-space grid (i.e., 13x13 voxels) with cropped voxels at the edges (2 voxels
per edge: 9x9 voxels) to minimize partial volume effects. Values and trends are comparable.
The figure includes fit uncertainties (CRLBs). Precision for concentrations and T2 estimates is
equivalent or better for MESS (red). As expected, precision for MESS-mocked (yellow) scores
the worst for most cases since it considers both a longer acquisition time (like MEMS) and signal
truncation (i.e., reduced frequency resolution for TE1 and TE2). Results for a second healthy
volunteer are reported in Supporting Figure 7.7 and 7.8.
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Figure 7.1: (Top) Display of MRSI FOV (green) and VOI (white) overlapped to a T1w-MPRAGE
anatomical reference from one acquisition. (Bottom) Acquired data (black), fitted model (green),
and residues (red). MEMS and MESS acquisition are reported for two voxels, one in prevalent
WM tissue (blue) and the other in prevalent GM tissue (orange).
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Figure 7.2: Estimates and uncertainties (CRLBs) for metabolite concentrations. (Top) T1w and
T2w anatomical images display the MRSI FOV (green) with the voxel numbering referenced
to the VOI (white). (Bottom-left) Estimated concentrations via MEMS (blue), MESS-mocked
(orange), and MESS (red) overlap nicely, and their oscillation throughout the VOI reflects WM
and GM variation. (Bottom-right) CRLBs report higher precision for MESS vs. MEMS.
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Figure 7.3: Estimates and uncertainties (CRLBs) for metabolite T2s. (Top) T1w and T2w
anatomical images display the MRSI FOV (green) with the voxel numbering referenced to the
VOI (white). (Bottom-left) Estimated concentrations via MEMS (blue), MESS-mocked (or-
ange), and MESS (red) overlap nicely, and their oscillation throughout the VOI reflects WM
and GM variation. (Bottom-right) CRLBs report higher or comparable precision for MESS vs.
MEMS.
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A comparison of concentration and T2 maps across two volunteers is reported in Fig.7.4 and
Fig.7.5 for a subset of metabolites. MESS-mocked replicates MEMS adequately; thus, signal
truncation is found suitable for concentration and T2 mapping. MESS yields maps that overall
agree with the 3-fold longer MEMS technique here considered the gold standard for comparison.

The distribution of concentrations and T2s between GM and WM is reported in general agree-
ment with other published studies which reported GM/WM differences [23, 1, 106, 107, 108,
109, 110]. Supporting Fig.7.9 displays the variation of concentration levels and T2 rates across
the three methodologies via boxplots representing the distributions for WM and GM cohorts.
Neither regional differences nor statistical comparisons between levels of metabolite content or
T2s in GM vs. WM were considered. Supporting Tab.7.10 and 7.11 report cohort average and
standard deviation compared to reported values in the literature for metabolite concentrations
and T2 rates, respectively.

Overall tCr levels are confirmed to be higher in GM than in WM since, biochemically, GM
is expected to contain more neuronal cell bodies (i.e., WM features myelin layers) with more
prevalence of mitochondria [111]. NAA presence is not limited to neuronal somata but is also
found in synapto-soma subfractions that may account for the higher NAA levels found in GM
[111]. Despite NAAG, like NAA, being considered a neuronal compound, the literature and
the current study report higher concentration levels in WM given its abundance throughout the
myelinated axons [107]. Glutamate is expected to be higher in GM since this neurochemical is
highly concentrated within the neuronal body cell [106], as confirmed by our results. Further
considerations are needed to account for other structural changes characteristic of WM/GM
differences that go beyond cellular argumentation.

Relaxation rates for water align with the WM/GM contrast reported in the MRI literature
where gold-standard techniques are used as estimators [112]. Longer T2 rates for NAA are
found for prevalent WM areas, whereas tCho and mI display longer T2 rates in GM. These
findings are supported by former studies [108, 110], confirming and highlighting that the local
tissue composition and functional organization in the region of interest plays a major role in T2

relaxation. Therefore, tissue composition correction with region-specific T2 is advised.
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Figure 7.4: Concentration maps in milli-molar units [mM] for a subset of metabolites dis-
played for two subjects and the three methods (MEMS, MESS-mocked, and MESS). NAA:
N-acetylaspartate, NAAG: N-acetylaspartylglutamate, tCho: total choline, Glu: glutamate,
tCr: total creatine, and mI: myo-inositol. Maps are displayed with zero-filling in the spatial
domain with cropped voxels at the edges (18x18 pixels).
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Figure 7.5: T2 time maps in millisecond units [ms] of parenchymal water and a subset of metabo-
lites, reported for two subjects and the three methodologies. H2O: parenchymal water, tChoCH3:
total choline singlet at 3.2ppm, NAA: N-acetylaspartate singlet at 2ppm, mI: myo-Inositol,
tCrCH2: total creatine methylene resonance at 3.9ppm and tCrCH3: tCr methyl resonance at
3ppm. Maps are displayed with zero-filling in spatial domain with cropped voxels at the edges
(18x18 pixels).
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Supporting Fig.7.9 reports the distribution of estimates considering WM/GM segmentation
across the cohort of healthy subjects. Statistical deviations between methodologies are not sys-
tematically observed. Values are in line with estimates from former studies, which are included
for overall comparison in Supporting Tab.7.10 and7.11, for concentrations and T2s, respectively.
Relevant WM/GM differences can be visually depicted for concentrations of Glu, NAA, GSH,
Gln, Tau, and GABA, as well as for global T2 and T2s of tChoCH3, mI and, as expected, water.
However, no statistical analysis across WM/GM differences was investigated since out of the
scope of the methodology investigation.

Fig.7.6 reports the cohort analysis of the methods’ precision. MESS yields, on average, precision
increments for concentrations ranging from 17% to 45% with significant differences across MESS
vs. MEMS, especially evident for concentrations. An average improvement for T2s between 12%
to 23% is visible and compares to former single-voxel similar experiments [104]. As expected,
MESS-mocked shows the lowest precision given signal truncation and 3-fold longer acquisition.

4. Conclusions

The novel MESS-MRSI approach yields metabolite-specific T2 maps. It provides increased pre-
cision or inversely shorter experimental time (3-fold) compared to traditional approaches while
achieving comparable accuracy of estimates, extending results from single-voxel experiments.
This promises to be useful in functional or multi-parametric MRS, where concentrations provide
insight into functionality and pathophysiology, and relaxation rates act as additional potential
biomarkers of abnormality, mirroring information on cellular microenvironment.
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Figure 7.6: Comparison of methods’ precision across the cohort of volunteers/voxels. Boxplots
display the distributions for white (WM) and gray (GM) matter voxels for CRLBs of (A) con-
centrations and (B) T2s. Results are reported for metabolite subsets, such as in Fig.7.4 and
Fig.7.5. Methodologies are compared for each metabolite in three candles: MEMS, MESS, and
MESS-mocked from left to right. The gain in precision of MESS vs. MEMS as averaged across
the cohorts and tissue type is reported numerically on top. Statistical relevance is reported for
MESS vs. MEMS comparison only (*, red).
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5. Supporting Figures

Supporting Figure 7.7: Estimates and uncertainties (CRLBs) for metabolite concentrations.
(Top) T1w anatomical images display the MRSI FOV (green) with the voxel numbering refer-
enced to the VOI (white). (Bottom-left) Estimated concentrations via MEMS (blue), MESS-
mocked (orange), and MESS (red) overlap nicely, and their oscillation throughout the VOI
reflects WM and GM variation. (Bottom-right) CRLBs report higher or comparable precision
for MESS vs. MEMS.
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Supporting Figure 7.8: Estimates and uncertainties (CRLBs) for metabolite T2s. (Top) T1w
anatomical images display the MRSI FOV (green) with the voxel numbering referenced to the
VOI (white). (Bottom-left) Estimated concentrations via MEMS (blue), MESS-mocked (or-
ange), and MESS (red) overlap nicely, and their oscillation throughout the VOI reflects WM
and GM variation. (Bottom-right) CRLBs report higher or comparable precision for MESS vs.
MEMS.
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Supporting Figure 7.9: Distributions of estimated concentrations (A) and T2 rates (B) grouped
for WM and GM. Distributions do not show significant differences in spread or biases across
methods and are well aligned with GM/WM values in the literature [23, 1, 106, 107, 108, 109,
110]. Statistical relevance is reported for MESS vs. MEMS comparison only (*, red).
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Supporting Table 7.10: Estimated concentrations grouped for WM and GM (average value ±
standard deviation) compared to the literature.
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Supporting Table 7.11: Estimated T2 rates grouped for WM and GM (average value ± standard
deviation) compared to the literature.
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7.2. Diffusion weighted single-voxel MR Spectroscopy

of the prostate

References2:

Stamatelatou* A, Rizzo* R, Simsek K, Van Asten S, Heerschap A, Scheenen T, Kreis R.

Diffusion-weighted MR spectroscopy of the prostate

Proceedings of 32nd Annual Meeting of the International Society of Magnetic Resonance in
Medicine - ISMRM, 2023: 03-08 June, Toronto, CA

Rizzo* R, Stamatelatou* A, Simsek K, Van Asten S, Kreis R, Heerschap A, Scheenen T.

Initial exploration of the potential of diffusion-weighted MRS for the evaluation of
prostate pathology

Proceedings of 32nd Annual Meeting of the International Society of Magnetic Resonance in
Medicine - ISMRM, 2023: 03-08 June, Toronto, CA
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abstracts.
*Shared first authorship
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Synopsis

Diffusion-weighted Magnetic Resonance Spectroscopy (DW-MRS) is ideally suited to explore
complex microstructures with metabolites selectively distributed in different subspaces. So far,
this technique has only been applied to the brain and muscles. In this work, we explored DW-
MRS for the first time in the prostate, an organ with potentially more motion problems. Thus,
dedicated acquisition and post-processing techniques were used, including the measurement of
water next to that of metabolites for corrections. ADC values of citrate (Cit), total-choline
(tCho), total-creatine (tCr), myo-Inositol (mI), and spermine (Spe) were estimated and evalu-
ated according to the compartmental structure of the prostate, indicating hindered metabolite
diffusion in the luminal space.

Summary of the main findings

In this work, we applied single-voxel DW-MRS on the prostate in nine volunteers. The ADC
values of the metabolites Cit, tCho, Spe, tCr, and mI were evaluated and related to their
respective compartmentation in prostate tissue suggesting new insights for microenvironments.

1. Introduction

Prostate tissue has a complex microstructure composed of three major components: epithelial
cells, stromal cells, and large extracellular (luminal) spaces. MRI has been used to elucidate
these spaces in prostate tissue by relaxometry and diffusion-weighted MRI [113, 114]. Diffusion-
weighted MR Spectroscopy (DW-MRS) [45] is ideally suited to explore complex microstructure
in vivo with metabolites selectively distributed in different subspaces. So far, this technique
has been applied in the brain and muscle only, which are relatively stationary organs. In this
work, we explore DW-MRS for the first time in the prostate, an abdominal organ prone to
motion artifacts. We tackled motion by concurrently acquiring a water signal for corrections
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and dealt with limited SNR by the simultaneous bidimensional fitting of spectral shape and
signal attenuation at multiple b-values (i.e., leveraging high b-values, where diffusion weighting
severely worsens the already intrinsically low SNR of MRS, by simultaneously including low
b-values with better SNR).

2. Methods

Single-voxel DW-MRS was performed with a non–water-suppressed STEAM sequence with
metabolite-cycling to measure metabolite and water signals concurrently [45]. Acquisition pa-
rameters were: TE/TM/TR 33/35/2500 ms. Interleaved b-values were acquired with 16 averages
repeated four times while visually monitoring frequency drifts and subject motion via the spec-
troscopic interactive window at the scanner console. Severely motion-corrupted batches were
discarded. To maximize the achievable b-value, identical diffusion gradient amplitude was ap-
plied in all three directions (G = Gx = Gy = Gz), yielding an effective gradient amplitude
GEFF =

√
3G. In-vivo acquired b-values: 124, 359, 776, 1353, 1988, 2516 s/mm2. Due to

low SNR, higher b-values were not acquired whereas in-vitro b-values 3106 and 3759 s/mm2

were included. The in-vitro setup consisted of an 8 cm3 voxel placed in a prostatic fluid mimic
phantom containing citrate (Cit), spermine (Spe), and myo-Inositol (mI) in the presence of ions
and 15 g/l BSA [115]. We examined the prostate of nine healthy volunteers (mean age 56 years,
range 31-66 years) with a mean VOI of ∼13.9 cm3, covering ∼60% central gland and ∼40%
peripheral zone tissue. Measurements were performed on 3T MR systems (Siemens, Germany)
with an external phased-array coil for signal reception.

In post-processing, a motion-compensation scheme for inter-acquisition distortions was applied,
using the co-acquired water signal as the reference to correct phase and frequency fluctuations,
eddy-current distortions, and to compensate for non-linear motion, restoring potential signal
loss in individual acquisitions [45]. The processed MR spectra were fitted for signals of Cit,
tCho (sum of glycerophosphorylcholine, phosphorylcholine, and choline), Spe, tCr (1:1 sum of
creatine and phosphocreatine), and mI, and separately for water. Resonances of glutamate
(Glu), syllo-Inositol (sI) and taurine (Tau) were visible only for setups with good shim and
at low b-values; see Supporting Fig.7.15. Therefore, despite their respective basis sets being
included in the model, as expected and indicated by ex-vivo metabolic fingerprints [116], neither
their estimated concentration nor ADCs were evaluated and included in the findings. A Voigt-
line modulated baseline with three components is added to regularize the fit given the lack of
prior knowledge in the lipid area between [0− 2.5] ppm and the [3.5− 4] ppm area.

For the simultaneous 2D spectrum-ADC fitting, FiTAID [16] was used, employing metabolite
spectra simulated in VeSPA[13] assuming ideal RF pulse shapes and modeling Voigt-lineshapes.
The ADCs of the metabolites were modeled by a mono-exponential decay function, while water
was represented bi-exponentially. A cohort-average spectrum with high SNR was also con-
structed to verify the model. In-vivo ADC values in Tab.7.1 were calculated as weighted cohort
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averages using the inverse of the CRLBs as weights. Absolute quantification for concentra-
tions was performed referencing to the total water signal [117], with corrections for T1 and T2

relaxation [118].

3. Results and Discussion

The ADC values derived from the decaying signals of the compounds in the phantom (Fig.7.12)
show that those for Cit and Spe are lower than that of mI (Tab.7.1), which would agree with their
lower T2 values relative to mI measured in studies of similar phantoms, indicating (transient)
complexation of these compounds [115].

Compound ADC ± CRLB ADC ADC ± STD ADC ± CRLB
x10−4 mm2/s in-vitro (20◦) in-vitro (37◦) in-vivo cohort in-vivo average

tCho - - 1.47 ± 0.45 1.64 ± 0.13
Cit 4.28 ± 0.02 6.4 2.86 ± 0.51 2.48 ± 0.07
tCr - - 1.19 ± 0.56 1.34 ± 0.09
mI 5.98 ± 0.12 9.0 1.52 ± 0.22 1.41 ± 0.09
Spe 4.01 ± 0.02 6.0 1.59 ± 0.54 1.80 ± 0.06
H2O 19.15 ± 0.01 29.0 (i) 4.80 ± 1.13 (i) 5.51 ± 0.00

(e) 22.89 ± 5.25 (e) 30.00 ± 0.00

Table 7.1: Estimated ADC values for metabolites and water [x10−4 mm2/s]. In-vitro ADC
values are listed as obtained from in vitro measurements in a prostatic fluid mimic solution
at 20◦ and approximately temperature-corrected for 37◦. In-vivo ADC values are reported as
a weighted cohort average from the individual subject results and the estimated value from
the cohort average spectra. Two ADCs are reported for water (H2O) given bi-exponential fit
assumption: (i) intracellular compartment, (e) extracellular compartment.

The MR spectra of healthy volunteers obtained at increasing b-values show good to moderate
quality with average water FWHM3 = 5.96 ± 3.28 Hz and SNR4 = 2.72 ± 0.95 x103. Fig.7.13
compares the acquisition setup, spectral, and fit quality for two healthy volunteers. Fig.7.14
display spectra and fit quality on cohort average spectra. Excellent spectroscopic fits of the
metabolites were achieved, as demonstrated by the residuals in Fig.7.13 and 7.14. Overall re-
sults integrating concentrations and ADCs for minor (and originally excluded) metabolites are
reported in Supporting Fig.7.16. The in-vivo results of the metabolites ADCs showed consid-
erable variance within the cohort. However, this was expected due to various reasons: different
sizes and types of prostate tissues included and limited by one selected VOI, the broad age range

3FWHM: Full Width Half Maximum as estimated by water Gaussian broadening.
4SNR: time-domain water SNR
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of the subjects included in the study, motion, SNR differences between the subjects and between
b-values, and different conditions with induced variance in complexation mechanisms [115].

Figure 7.12: In-vitro single-voxel DW-MRS. Acquired and post-processed MR spectra for eight
b-values (black), fit (blue), and residues (red). Residues display little but negligible signal
contribution due to prior knowledge-related challenges on the spin system definition of both Spe
and Cit. For details see section 3.2.1.
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Figure 7.13: In-vivo single-voxel DW-MRS of good (A; water FWHM: 3.2Hz, water time-domain
SNR: 4.5x103) and moderately good (B; water FWHM: 4.8Hz, water time-domain SNR: 2.5x103)
quality. (Top) T2w images showing the voxel positioning. (Bottom) acquired and corrected MR
spectra for six b-values (black), fit (blue), and residues (red). Cit diffuses the fastest, while the
other metabolites diffuse slower with Spe and mI unexpectedly slow (similarly to tCho and tCr)
even though prevalently present in the luminal space.
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Figure 7.14: In-vivo cohort averaged spectra from nine volunteers (black), cohort average fit of
metabolite signals (blue), and residues (red). The metabolite patterns are indicated as fitted for
b124 s/mm2 (green). Tissue concentrations and ADCs with their estimates’ precision (Cramer
Rao Lower Bound, CRLB) are reported for water and tCho, Cit, tCr, mI, and Spe.
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Since no literature is available regarding the ADC values of the metabolites of interest for the
prostate tissue, the results were interpreted according to the existing knowledge of the cellular
structure in prostatic tissues. The ADC values derived from these experiments reveal that tCho
and tCr have low weighted-average values (Tab.7.1), in agreement with their intracellular origin.
In contrast, the higher values for Cit and Spe would agree to confirm that these compounds
dominantly originate from the luminal space [119, 120] with fewer diffusion restrictions. However,
the ADC of Cit is substantially higher than that of Spe (p<0.05), and inspection of the cohort-
averaged spectra (Fig.7.14) confirms the relatively slow Spe signal decay visually. Furthermore,
as shown by MRS studies of prostate tissue and prostatic fluid [119], there is a strong correlation
between Cit and Spe levels suggesting transient complex-formation of these compounds as was
demonstrated in-vitro by T2 measurements [115]. Moreover, this and other studies indicated
that this complex and its components transiently bind to proteins within the luminal space. As
the luminal concentration of Cit is much higher than that of Spe and assuming a 1:1 complex,
it follows that the fraction of free compound is much more significant for Cit than Spe, which
could explain the higher ADC for Cit compared to Spe because of its larger free fraction in
solution.

As the average luminal diameter is about 200 µM [36], one would expect nearly unrestricted
diffusion for Cit, Spe, and mI with much higher ADCs for such small molecules than what
we measured in this study (around 6-9 rather than 2-3 x10−4 mm2/s), which further supports
that protein-binding, as described above, occurs in luminal space. Nevertheless, this hypothesis
needs further investigation through in-vitro setups with phantom solutions enriched with various
prostate-specific proteins.

It needs to be noted that the estimated ADC value of mI is aligned with the one of Spe in the
cohort distribution. However, its value reported by a more trustworthy fit of the cohort average
is much lower than expected for a free small uncharged molecule that is commonly assumed
prevalent in luminal space (Tab.7.1). The latter value seems aligned with the ADC value of
tCr (i.e., a principal intracellular metabolite), yielding less obvious deductions. NMR spectra of
prostatic fluid are dominated by signals of Cit, Spe, and mI [119, 120] of which the concentrations
roughly agree with their prostate in-vivo concentrations taking the luminal fraction into account
[113, 34]. However, some mI may still be located intracellularly.

Finally, we obtained two ADC values for water from a bi-exponential fit of its signal decay,
Tab.7.1. The higher ADC component would represent water in the luminal space, and the other
that of cellular water. In our findings, we report an average intra-cellular volume fraction of 62
± 8%, which is aligned with some of the in-vivo MRI available literature based on T2-defined
water compartments [121, 122]. This, in turn, could be used to calculate compartment-specific
concentrations.
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4. Conclusions

We successfully demonstrate that DW-MRS of the prostate is feasible and provides a window into
the microenvironment of prostatic compartments. The preliminary results indicate restricted or
hindered diffusion of Cit and Spe in the luminal space despite its average large size, indicating
complexation with macromolecules in this compartment.

The intra-extra cellular concentration ratio of metabolites with a contribution in both luminal
and intracellular space, like mI, Cit, and Spe, could be investigated by diffusion-weighted bi-
exponential modeling like it was done here for water. However, further experimental design
challenges need to be tackled, such as acquiring more and higher b-values needed to ensure
reliable bi-exponential fitting.

Given the substantial heterogeneity of prostate tissue, fast DW-MRSI technologies would be
valuable approaches for exploring selective tissue types with the potential of monitoring the
luminal space size variation across the prostate.
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5. Supporting Figures

Supporting Figure 7.15: Acquired and post-processed good quality spectrum at b-value 124
s/mm2 (black, same as Fig.7.13.A). Overall fitted metabolite signal (blue) and residues (red).
Single metabolite fitted basis set (green). Weakly defined metabolites (sI, Glu, and Tau) can be
easily pinpointed.
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Supporting Figure 7.16: Boxplots reporting in-vivo estimated value (top) and CRLB (bottom)
of concentrations (left, red) and ADCs (blue, right). ADCs of sI are assumed equal to the ADCs
of mI, given their molecular similarity. ADCs for Glu ad Tau are distributed with a large spread.
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Synopsis

Prostate pathologies like cancer and prostatitis cause alterations in tissue microstructure that
are reflected in signal variations on diffusion-weighted MRI or MR relaxometry. Diffusion-
weighted MR Spectroscopy (DW-MRS) allows specific characterization of tissue microstructure
by quantifying both concentration and diffusion properties of MR-observable metabolites. In this
work, an optimized DW-MRS protocol tailored to overcome the inherent challenges of prostate
measurements is deployed. Initial results on potential alterations of metabolite concentrations
and diffusivities (ADCs) are reported for prostate cancer and prostatitis. The preliminary
findings are tentatively explained by microstructure alterations of the prostate tissue.

Summary of the main findings

A first preliminary exploration of potential alterations of concentrations and diffusion coefficients
(ADCs) of water and metabolites in prostate cancer and prostatitis is performed using diffusion-
weighted MR Spectroscopy (DW-MRS).

1. Introduction

Diffusion-weighted Magnetic Resonance Spectroscopy (DW-MRS) [123] allows the characteriza-
tion of tissue microstructure by quantifying the diffusion properties of MR-observable metabo-
lites [124, 125]. Prostate pathologies like cancer and prostatitis cause tissue microstructure
alterations reflected in diffusion-weighted MRI or MR relaxometry. While MRS detects abnor-
mal tissue content of metabolites, DW-MRS may pinpoint metabolic tissue content alterations
and changes in the tissue microenvironment. In the prostate, DW-MRS is challenging, not only
because of the organ size and location close to the bladder and rectum but also due to the
sensitivity of DW-MRS to any motion, including peristaltic motion. The latter section (Section
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7.2, abstract 1) outlined the optimization of DW-MRS for this organ in healthy subjects. Here,
we explored apparent diffusion coefficients (ADCs) of water and metabolites in prostate cancer
(PCa) and prostatitis (CPPS).

2. Method

Ten subjects with elevated PSA levels (≥9 ng/mL, mean age 72 years), suspicious for PCa,
underwent a clinical multi-parametric MRI protocol followed by biopsy. Single-voxel DW-MRS
was added as a 15-minute prolongation of the examination. In addition, MRS voxel positioning
was performed to maximize the targeted tumor tissue content by inspection of T2w and ADC
images. We report on two patients eventually diagnosed with PCa and two with CPPS. Nine
healthy subjects served as controls. Measurements were performed on a 3T MR system (Siemens)
with external phased-array coils.

A metabolite-cycled DW-MRS STEAM sequence allowed simultaneous measurement of metabo-
lite and water signals [31, 45]. The acquisition parameters were: TE/TM/TR 33/35/2500 ms;
b-values: 124, 776, 1988 s/mm2. Post-processing featured artifact correction and motion com-
pensation using the co-acquired water signal as inherent reference as described for brain [45].
A 2D-fit with simultaneous χ2-minimization in the spectral domain and the mono-exponential
diffusion–decay dimension was run in FitAID [16] for both water and metabolites. Metabolites
of interest include citrate (Cit), total-choline (tCho), spermine (Spe), myo-inositol (mI), and
total-creatine (tCr). Absolute quantification was performed referencing to the total water sig-
nal [117], with corrections for T1 and T2 relaxation [118]. Details of the specifically optimized
DW-MRS methodology and results from healthy subjects are reported in Section 7.2 (abstract
1), where 6 b-values were recorded, leading to better precision and relatively lower ADC values,
and the potential to distinguish luminal and cellular space. Here, we investigate a minimal setup
with 3 b-values respecting clinical time constraints. The fractional volume of tumor tissue was
qualitatively estimated with SpectrIm [126] using ADC maps.

3. Results and Discussion

Fig.7.17(top) presents results for PCa. Good fit results can be monitored from white Gaussian-
distributed residues. Given the hardly visible peaks for Cit and tCr, tissue concentrations
and ADC values are only reported for tCho and water. CPPS patients are portrayed in
Fig.7.17(bottom) with fit results for all metabolites (CPPS #1: acute prostatitis, CPPS #2:
chronic inflammation). Fig.7.18 depicts average spectra and results from the healthy cohort.
The metabolite tissue contents are in line with those published previously [118, 127] with Cit
levels typical for the transition zone, in agreement that this area covered most of the VOI.
Separated metabolite patterns are included to demonstrate spectral overlap.



7| Preliminary published material 233

Figure 7.17: (Top) PCa and (bottom) prostatitis patients. (a) T2w, (b) ADC axial images with
(c) voxel segmentation. Measured spectra (black), fitted model (blue), and residues (red) for the
3 b-values. Assessment of spectral quality via water-referenced time domain SNR and Full-Width
Half-Maximum (FWHM) averaged over b-values. Volume of Interest (VOI), Gleason Score (GS),
and tumor fraction from the segmentation map are also reported. Tissue concentrations, ADCs,
and estimates’ precision (Cramer Rao Lower Bound, CRLB) are reported for water, tCho, Cit,
tCr, mI, and Spe.
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Figure 7.18: Healthy subjects. Averaged spectra obtained from nine volunteers, measured spec-
tra (black), fitted model (blue), and residues (red). In green, the fitted metabolite patterns for
the metabolites of interest at the lowest b-value. Tissue concentrations, ADCs, and estimates’
precision (Cramer Rao Lower Bound, CRLB) are reported for water, tCho, Cit, tCr, mI, and
Spe.
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Fig.7.19 compares tissue concentrations and ADC values between the average healthy cohort and
the pathologic cases. For metabolite ADCs, there are no values from the literature to compare
to. They are instead critically reviewed with respect to plausibility given the knowledge on
prostate cellular microstructure:

• PCa vs. healthy cohort:

– The ADC for tCho is found to be substantially lower in both patients. Given that
tCho resides intracellularly [34] and cells are denser in tumorous tissue, the reduction
in ADC may be well explained given a diffusion time ensuring metabolite diffusion
to be restricted by cell size. Surprisingly, there is hardly any and even inconsistent
literature on this also from other organs [128, 129].

– As expected, [117, 34] tCho concentration is higher in tumor tissue.

• CPPS vs. healthy cohort:

– Based on only two cases, one could speculate that the ADCs of mI and tCr are
lowered in CPPS.

– Similarly, for metabolite contents, no certain trend is seen. Potentially, tCr and Cit
may turn out to range consistently lower. Reduced Cit levels would reflect a smaller
LS, expected in such pathology [130].

– The chronic inflammation case (CPPS #2) shows comparable tCho and lower mI
content, whereas the acute prostatitis case (CPPS #1) shows higher tCho and mI
content.

Water ADCs are aligned with literature values [131, 132, 133]. Both PCa and CPPS report
lower water ADCs compared to healthy tissue, as expected for reduced luminal space. ADCs
are lower in PCa than CPPS with values within reported distributions [131].

4. Conclusions

Initial results for prostate cancer and prostatitis show the potential of DW-MRS for the charac-
terization of microstructural changes in prostate pathology, even in a clinical time frame. Longer
dedicated exams with more and higher b-values would no doubt provide more precise informa-
tion, which may also include quantifying loss of luminal space from water data [133, 113]. The
latter would also allow partial volume correction of metabolite concentrations, which might lead
to enhanced specificity of MRS findings. Statistical investigations on a more significant patient
cohort are obviously required to consolidate the initial findings – particularly for reduced ADCs
of tCho in PCa.
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Figure 7.19: Comparison of findings for metabolite concentrations and ADCs for metabolite
and water for the initial four patients with PCa (circles) and prostatitis (squares) related to the
norm from 9 healthy subjects (red triangle). CRLBs are reported as error bars.
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Conclusions & Outlook
The current work explored the development and the deployment of new methodologies for ac-
quiring MR Spectroscopic data with the idea of enhancing the sensitivity of the NMR signal to
the chemistry and the physical properties of human tissues to either yield a patient-specific more
complete viewpoint or to untangle open questions of human biology. Secondly, a new window
on applying deep learning methods for MRS quantification is explored, with care on providing
prediction uncertainty and investigating potential biases inherited from the training phase.

Simultaneous quantification of metabolite-specific con-

centrations and T2 relaxation times
Multiparametric MR spectroscopy has been deployed at first for the purpose of speed, aiming
at a complete patient-specific description of the metabolic profile at a given location, in regards
not just to metabolite concentration levels but introducing information on metabolite-specific
T2 rates as well. A faster acquisition protocol twinned to bi-dimensional data fitting has been
proposed and tested in both single-voxel and MRSI experiments. It features compatible clinical
time duration of the measurement and comparable accuracy without systematic biases. Fur-
thermore, gains in precision by the measure of CRLBs go beyond the mere compression of the
experiment duration.

The method comes with limitations such as (1) T2 rates that are produced for a handful of
metabolites and (2) the hindered readability of the spectral profile for short TEs. Furthermore,
the handling of residual water guides the optimization of the experiment schedule towards longer
TE batches with reduced SNR for the longest and better-resolved acquired readout. These effects
impact the modeling of such a compact dataset for any application to a new volume of interest,
which must refer to a small initial batch of multi-echo multi-shot complete acquisitions where
each spectrum in the TE batch is available in full resolution and can be used for the model
tune-up as well as debugging and monitoring phases of the fitting algorithm. Only once the
model is set up, it can be translated to the multi-echo single-shot compact dataset and can be
reliably run over any study cohort.

To further optimize the reconstruction algorithm, it is of interest the development and optimiza-
tion of weighted summation strategies to treat metabolite-cycled (MC) responses beyond plain
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averaging. Such concepts have already been tailored to the DW-MRS motion compensation al-
gorithm with consequent promising results [45]. The rationale behind such an algorithm would
aim to maximize the level of water suppression by MC, account for water lineshape (i.e., partial
echoes instead of FID), and deploy concepts of local and global water suppression efficiency (i.e.,
locality of water suppression looks at the amplitude ratio in the range 4.6-4.7 ppm [134] whereas
a global water suppression index would explore the power of the signal throughout chemical
shift range, including water tails contaminating spectral ranges of interest).

Furthermore, future directions for the investigation of the methodology account for its deploy-
ment for MRSI acquisition of the prostate. A semi-LASER multi-echo acquisition protocol has
been tailored to acquire prostate metabolic profiles. It deploys GOIA adiabatic modulation
and water suppression with MEGA editing. Data has already been acquired for three healthy
volunteers and a prostate-mimic phantom. The postprocessing pipeline and the simulation of
the basis set are ready, while the model tuning phase will soon begin with a first approach to
multi-echo multi-shot acquisitions.

A further exciting evolution of the methodology could be integrating T1 and diffusion-weighting
encoding in a single 15-min long single-voxel multiparametric MRS experiment. Sensitivity to
T1 could be integrated into the multi-echo experiment by embedding an inversion recovery pulse
before the semi-LASER block. Diffusion-weighting will require the implementation of diffusion-
encoding gradients within the semi-LASER block. Such a multiparametric schedule may be
twinned to a 4D model where concentrations, T1, T2, and ADC are fitted together simultaneously.
This method would offer an alternative approach to MR spectroscopy fingerprinting (MRSF)
[135], where the modeling part would be more accessible and could provide better interpretability.
However, integration of MRSF with multi-echo single-shot acquisition may also be of interest.

Diffusion weighted single-voxel MR Spectroscopy of

the prostate
Diffusion-weighted Magnetic Resonance Spectroscopy (DW-MRS) featuring a dedicated acqui-
sition setup and postprocessing technique was deployed to investigate the prostate, an organ
intrinsically more prone to motion issues, for the first time. The prostate complex microstruc-
ture was investigated and disclosed according to (1) the selective distribution of metabolites
in different subspaces and (2) the complex interaction between metabolites and proteins in the
luminal space.

The current results are hindered by the single voxel approach, which considers a relatively large
volume of interest to benefit SNR but does not account for the substantial prostate tissue het-
erogeneity, which would specify the different cellular distribution of shape, size, and morphology.
Furthermore, on the one hand, the current disclosure of the complex bonding between proteins



| Conclusions & Outlook 239

and compounds, like spermine and citrate, does not find answers regarding the nature of the
proteins interacting in such chemical bonds and the intensity to which these interactions take
place. Therefore, further analysis of in vitro solutions doped with different protein substrates
and various metabolite concentration levels is needed. On the other hand, the clinical potential
of the method stressed by the differences between healthy cases and patients was supported by
a very limited cohort. Therefore, the study will need the integration of a more significant cohort
of patients.

The twinning of metabolic apparent diffusion coefficient to metabolite-specific T2 rates can offer
a complementary view of the tissue microenvironment. Therefore, the integration of diffusion-
weighted MRS to multi-echo measurement by extending the multi-echo technology with the
embedding of diffusion encoding gradients or by the meaning of integrating the current dataset
with a standard multi-echo multi-shot measurement could offer a better understanding of the
whole biological picture.

At last, overcoming the limitation of single-voxel DW-MRS towards a DW-MRSI experiment
finds the perfect candidate organ for investigation in the prostate, where its tissue heterogeneity
would find a more suitable description and assist even further its potential clinical value.

Quantification of MR spectra by DL: optimizations

and pitfalls
Various approaches utilizing (1) different preprocessing techniques to highlight spectroscopic
features and (2) different convolutional neural network architectures have been investigated to
quantify metabolic profiles. Performances hint toward systematic biases of predictions linked
to the training set’s structure. Strategies to overcome such limitations are found to mitigate
the issue. Nevertheless, care for the measures used to evaluate DL performances is pointed out,
recommending the evaluation of a broader and complementary set of scores and suggesting an
initial attempt to describe predictions’ uncertainty.

Further challenges toward better model interpretability may account for integrating model-
aware designs, where DL architectures are embedded with MRS prior knowledge inspired by
MR physics in traditional modeling [70]. Moreover, upon the uprising of new trends in the
fast-moving DL community, newer State of the Art models such as diffusion models [136] or
transformers [137] won’t take long before their adaptation meet the MRS domain.

The robustness and reliability of DL models should further be enhanced within clinical routines
by the development of unified frameworks that not simply predict a target output but are aware
of and quantify the risks related to performing such a task. In other words, the modern per-
vasiveness of large-scale deep neural networks is solely and unfortunately currently driven by
the fulfillment of extraordinary performance on complex problems. Therefore, it is plagued by
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their sudden, unexpected, and often catastrophic failures, particularly in challenging scenarios
[138]. The community effort of developing DL tools should, therefore, not limit itself to perfor-
mance but directly plug into existing training pipelines insight into bias (dataset distributions
and imbalance) as well as aleatoric (data) and epistemic (model) uncertainty [70].

Nevertheless, open questions remain about the contribution of explainability to trust in AI [139].
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