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Summary

Sustainable agriculture strongly depends on fertile soils. Yet keeping soils in crop production

while maintaining their fertility is highly challenging and most long-term studies indicatea

decrease in soil fertility on arable land under continuous cropping. During the growing period

of the cash crop, only limited options to improve soil fertility exist because there are normally

very specific cultivation requirements. Therefore, the break periods between main crops have

a high potential for soil fertility improvement because no harvest output is expected. Many

studies have shown that long periods of bare soil should be avoided and during long fallow

times the soil should be covered. For that purpose, different options of cover cropping have

been developed. They differ in terms of plant species, frost tolerance, biomass input and

termination methods. So far, in the scientific literature cover crops were mainly compared to

bare soil treatments but different cover cropping strategies are only rarely compared, hence

limiting knowledge on their performance relative to one another. In organic reduced tillage

systems cover cropping hasa high priority and since neither herbicides nor intense tillage can

be used, frost-tolerant cover crops can only be terminated with shallow tillage methods that

brings the cover crop biomass into the very topsoil layer. The challenge thereby is that within

a reasonable time (around2 weeks) the mixture of cover crop pieces and soil must result in

proper seedbed forthe next crop. One way to make this process easier is to reduce the

amount ofcover crop biomass by mowing and removing the aboveground biomass. Another

approach is to use a microbial inoculant called “Effective Microorganisms” that is promised to

facilitate the decomposition process and make seedbed preparation easier.

In the context of Switzerland, crop rotations are very diverse and accordingly also the fallow

periods differ widely in length and seasonal growing condition. Thus, it is difficult to evaluate

different cover cropping strategies in long-term experiments because the same fallow period

only occurs once in several years. On the other hand, short-term experiments face the

challenge that most soil properties showa high variability in space and changes are normally

rather small which makes it very difficult to statistically detect management effects. The

statistical power could be improved by increasing the sample size but due to the high costs of

conventional soil analyses, the number of soil samples is normally limited. Infrared

spectroscopy isa method that provides fast and cheap soil analyses and can therefore

potentially be very useful in short-term soil experiments because the number ofsamples can

be increased at little additional costs. Yet, spectral soil data need to be calibrated with

measurements from conventional lab data and still little is known about the performance of

spectral models atthe local scale.

The goal of this thesis is to increase scientific knowledge about cover cropping effects on soil

properties in organic reduced tillage systems. TherebyI formulated three major objectives: 1)
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to compare the effects of two frequently used cover cropping strategies on soil fertility

parameters, 2) to evaluate the suitability of infrared spectroscopy in soil sampling projects of

local extent and 3) to investigate the effects of Effective Microorganisms (EM) on cover crop

decomposition.

I thus investigated the effects of two cover cropping methods on soil properties at six fields in

eastern Switzerland (Paper 1).A sampling design in very high temporal and spatial resolution

was implemented and the high number ofsoil samples (n = 2574) was analyzed ina combined

approach of conventional soil analysis and soil spectroscopy in the visible and near-infrared

range (vis—NIR). Thereby the reasons forthe varying performance ofspectral models between

different fields were analyzed and summarized in Paper 2.A very similar spectral approach

was used ina soil survey in northern Spain (Paper 5) and results are presented to complement

theinsights from Paper 2. The effects of EM on cover crop decomposition were tested ina lab

incubation study and published in paper3 and 4.

Regarding objective 1, the two cover cropping strategies that either maximized plant biomass

input or soil cover were evaluated in the long fallow period between wheat harvest (End of

July) and sowing ofa next spring crop (Paper 1). In the double cover cropping (DCC) strategy

two cover crops were sown subsequently and shallowly (3 cm) incorporated into the soil with

the idea that the biomass input provides an energy source forthe soil microorganisms. In the

permanent soil cover (PSC) strategy, the soil was covered forthe whole period with one cover

crop, that was mowed, and the plant biomass was removed. In contrast to DCC, the PSC

strategy had no aboveground plant biomass input into the soil but also no tillage throughout

the period. The analysis of the two cover cropping strategies in high spatial and temporal

resolution showed that the effects of differences between different sampling times were far

more pronounced than differences between treatments. Nevertheless, in both treatments the

increase in soil organic carbon was highest in 5-10 cm soil depth and significantly higher in the

PSC compared to the DCC approach. The plant biomass input in the DCC treatment led to

higher microbial biomass and mineralN compared tothePSC treatment.I conclude that the

aboveground biomass input in the DCC strategy was beneficial for biological activity but the

better soil cover and probably higher root biomass input in the PSC strategy was slightly more

beneficial for soil organic carbon.

Addressing objective 2, the spectral models showed over alla good performance, but the

model performance was lower on the two fields with high carbonate content (Paper 2). The

prediction accuracy forfields with high carbonate content could not be improved when data

of all fields were combined to build general models.I therefore conclude that especially in

soils with low carbonate contents, soil spectroscopy is very suitable, and the prediction errors

can be expected to be comparable tothe labmeasurement error. The application of the same
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spectral approach ata study side in Spain showed clearly that much more detailed information

can be obtained when conventionally analyzed samples are accompanied by additional

spectral measurements (Paper 5).

Concerning objective 3, EM application did not show significant effects on cover crop

decomposition dynamics, under the spring-like conditions mimicked in the incubation study

(12° C) (Paper3 and 4). Thanks toa sterilized control,I could distinguish effects caused by

living microorganisms and effects caused from substrate (energy and nutrients) addition.

Seven days after the start of the incubation, microbial taxa from EM solution could only be

found when EM were applied in 100 times higher amounts than recommended in agricultural

praxis.

This thesis shows thata high-resolution sampling design and the use of spectral methods

allowed to evaluate different cover cropping strategies ina short-term experiment.I therefore

consider the methodological approach to be very useful for evaluating innovative soil

management strategies as soonest possible after their invention. This thesis is one piece of

knowledge that aims to support decision making about cover cropping in organic reduced

tillage systems and provides results about effects on soil fertility properties. More research is

needed to evaluate effects of cover cropping on other agronomic variables like yields, weed

pressure and profitability.
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Part I: Background and overview

Part I: Background and overview

1. Introduction

1.1. Role of cover crops in soil fertility management

Theconcept of soil fertility captures the ability ofa soil to sustain plant growth by providing

essential plant nutrients and the physical, biological and chemical conditions enabling it to

serve as habitat for plant growth (FAO, 2022). Soil fertility isa relatively narrow term that

focuses on the suitability of soils for agricultural production (Patzel et al., 2000). lt has been

expanded totheterms of soil quality or soil health to account forfurther ecosystem services

like water quality, biodiversity conservation, and climate regulation (Bünemann etal., 2018).

Since in this thesis the focus lies on the question how different cover cropping management

influences the soil conditions for the next crop,I consider soil fertility as the most adequate

and most intuitive term. Soil fertility isa term that does not havea direct corresponding

quantitative measurement and besides the application of visual methods in the field

(Johannes et al., 2017) and some attempts to combine different measurements toa soil

fertility index (Munnaf and Mouazen, 2021), most studies use measurements ofsoil organic

matter stocks asa proxy forsoil fertility (Tittonell et al., 2008). Soil organic matter improves

the functioning of the soil in many different aspects through improved soil structure

(aggregation, aeration, water retention) and improved elemental cycles (nutrient

mineralization, carbon sequestration, compound retention) or just to serve asa biological

habitat by itself (Hoffland et al., 2020). lt is difficult to draw conclusion about soil fertility from
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characterized by erosion, increasing nutrient losses, decreasing soil organic matter stocks and

low microbial activity (Daryanto et al., 2018; Thorup-Kristensen et al., 2003).

The use of cover crops does not only bridge the time between two main crops to avoid bare

soil periods but also offers the opportunity to push the agroecosystem intoa more biodiverse

and resilient direction. Main crops normally must fulfill clear requirements in terms ofproduct

quality and efficient machinery use atharvesting which limits the flexibility in the cultivation.

Cover crops, on the other hand, can be handled more flexible and allowa direct focus on the

improvement ofsoil conditions.

The major cover crop effect is its considerable organic matter input having the potential to

increase soil organic matter stocks which is highly beneficial for soil fertility and relevant for

carbon sequestration for climate change mitigation. Additionally, cover crops allow to

increase the biodiversity in the agroecosystem with benefits for soil microbiology (McDaniel

et al., 2014; Tiemann, 2015) whereby higher carbon uptake and microbial biomass has been

measured in cover crop mixtures than in single species cover crops (Gentsch et al., 2020).

Besides total microbial biomass, cover cropping increases also the functional diversity in the

soil microbiome (Kim et al., 2020) which might then affect the resilience of an agroecosystem.

Cover crops have furthermorea crucial role in nutrient cycling, especially nitrogen (N)

retention (Thorup-Kristensen et al., 2003; Zhou et al., 2020), which reduces nutrient losses

and potentially increases fertilizer efficiency. Especially,N losses from farmyard manure can

be reduced if the manure is applied on growing plants whereby cover crops are very suitable

because crop damage due to machine use is almost irrelevant (Cambardella et al., 2010;

Everett et al., 2019).

However, in the agricultural practice, cover cropping must be well coordinated with the

rotation of the main crops which makes the optimal cover cropping strategy strongly

dependent on environmental conditions and the agricultural policy framework and therefore

site-specific.

1.2. Agricultural policy frameworks regarding cover cropping and

crop rotations in Switzerland

Both the public and organized civil society and private actors influence soil management

strategies in Switzerland. In the public domain, Swiss farmers must fulfill the proof of

ecological performance (Ökologischer Leistungsnachweis) which also contains regulations

about the bare soil periods (Swiss Ordinance 910.13, 2013) to receive direct payments. Ifa

crop is harvested before August 31,a next crop or cover crop must be sown in the same year
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(Swiss Ordinance 910.13: Article 17) with the effect that after cereal harvest anda next spring

cropa cover crop or temporary ley must be sown. Additionally, there is an incentive payment

perhectare if the bare soil period between crops or cover crops is shorter than seven weeks

(Swiss Ordinance 910.13: Article 71).

In organic farming, additional requirements must be fulfilled. According to the regulations of

BioSuisse (2022),a national membership organization of Swiss organic farmers, 20% of the

arable land must be covered with temporary grassland. Cover crops can also be counted (up

to 10 %) according to their area and period if they stand longer than five months. Additionally,

onlya maximum of50% ofthearable land is allowed to be bare over winter (15 Nov. — 15

Feb.; BioSuisse, 2022). Especially organic farms with little or no livestock are interested in

cover cropping because they do not need grassland but must fulfill the label requirements.

These regulations show that in Switzerland cover cropping is widespread and that there are

strong incentives to avoid periods of bare soil.

However, the question of cover cropping is strongly related to crop rotation because the main

crops determine the agronomic requirements and periods for cover cropping. Switzerland is

one of the few countries that has strict regulations on crop rotations. On a farm with more

than three hectares arabie land, at least four different crops must be grown peryear, and for

each crop,a clear pausing length in the crop rotation is specified (Swiss Ordinance 910.13

(2013), Article 16). Thèse regulations along with the dynamic market situation (Bundesamt für

Landwirtschaft, 2022) lead to highly diverse crop rotations that are constantly adjusted.

Hence, they influence the durations of cover cropping and its contributions to soil organic

matter.

1.3. Short-term versus long-term changes in soil organic matter

There are two different views on soil organic matter. Froma perspective of climate change

mitigation mainly long-term increases in soil organic matter stocks are of interest because of

their potential for carbon sequestration (Blanco-Canqui, 2022; Chahal etal., 2020). Short-term

increases in soil organic matter stocks can be seen as short-lived carbon sinks and can

accordingly also be quantified in carbon sequestration calculations (Leifeld, 2023) but their

effect is of much lower importance compared tothe long-term changes. Froma soil fertility

perspective long-term increases in soil organic matter are also very desired because of their

positive effects on soil structure, and storage capacity, but also short-term changes are of

interest, because the dynamic nature of soil organic matter is very beneficial for crop

production (Janzen, 2006). The highest value of soil organic matter lies in its decay (Janzen,

2006) because nutrients are mineralized and become available for the crop (Hacker et al.,

9
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2015).A sustainable cropping system is therefore mainly interested ina high turn-over of soil

organic matter and needs periods of high organic matter formation (orinputs) that can then

serve asa source for organic matter mineralization.A high increase in soil organic matter

stocks in one year and an equal decrease in the next year is irrelevant froma climate

perspective, but relevant in crop production because it might have been very beneficial for

soil microbiology or nutrient supply. Cover crops are seen asa major element ina crop rotation

to introduce periods of soil organic matter formation (McClelland et al., 2021), but the

immediate effects of different cover cropping strategies on soil fertility parameters remain

understudied. Given the diverse and flexible crop rotations in Switzerland, it is very difficult to

evaluatea specific cover cropping approach in the long-term because it is probably applied

only once in several years.

Froma farmer's perspective, any measure without direct monetary benefit must pay offina

relevant time scale (Perez et al., 2007), which is probably mainly the performance ofthe crop

in the following year or ina maximum ofa fewyears. Long-term field trials are of very high

scientific value but they cannot cover the whole range of management options in agricultural

praxis as Chenu etal. (2019) argued.A participatory approach is thus needed that evaluates

the short-term effects of different management (i.e. cover cropping) options on soil organic

matter and soil fertility.

1.4. Challenges in measuring changes in soil organic matter related

soil properties

Soil organic matter has three characteristics that make the detection of changea major

challenge. According to Hoffmann et al. (2017), these are: a) its small scale spatial

heterogeneity, b) its pronounced short-term temporal dynamics and c) the rather small

magnitude ofchanges compared tothetotal stocks. In agricultural research the main strategy

to deal with these challenges is to design long-term field trials, with the disadvantage that the

short-term effects remain concealed and changes in soil organic matter are completely

attributed to the long-term treatment effects (Schrumpf et al., 2011). Recently, Mayer etal.

(2022) showed with data froma long-term field trial that the short-term dynamics of the

occluded particulate organic matter, as part of total soil organic matter, can be substantial

within days to weeks. Similar studies of total soil organic carbon (SOC) showeda very high

temporal variability attributable to the combination of management activity (i.e. tillage,

fertilization) and seasonal patterns (i.e. temperature, moisture; Wuest (2014)). The seasonal

pattern during the growing season can be quite distinct from year to year and especially in

diverse crop rotations, the management is highly variable making soil organic matter dynamics
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on crop land very complex and unpredictable (Wuest, 2014). Thereby, the unpredictable

speed ofdecomposition processes of crop residues, plant roots, cover crop biomass ororganic

fertilizers, playsa major role.A crucial factor is the time point when these organic substances

reacha size of< 2 mm because only then they become part of the soil fine earth that is

normally analyzed (Blume etal., 2016) and classified as soil organic matter. Froma soil fertility

perspective, the whole continuum of the decomposition processes from plant residues

(organic matter> 2mm) aswell as decomposition processes within the soil organic matter

(organic matter< 2mm) areofrelevance because all product of the decomposition processes

interact with the soil mineral phase and the plant roots. This contentious nature of soil organic

matter (Lehmann and Kleber, 2015) where organic matter is gradually more and more

decomposed makes it recommendable tonotonly measure total soil organic matter but also

associated soil properties like microbial parameters and nutrients as well as different fraction

of soil organic matter (as e.g. particulate organic matter, mineral associated matter or

permanganate oxidizable carbon). To tackle the high spatial and temporal resolution of soil

organic matter related soil properties, the ideal solution would be to havea high spatial and

temporal resolution in soil analysis which is constrained by the analysis costs per soil sample.

Currently mostly applied in soil science is dry combustion, where theground soil is burnt at

1150°C and produced CO2 is quantified (Harris et al., 2014). In acidic soils the measured total

carbon ina soil sample equals SOC but in soils containing carbonatea second measurement is

necessary to determine the carbonate content, which makes theanalytical costs per sample

relatively high. Therefore, complementary measurement methods such as visible and near-

infrared (vis—NIR) spectroscopy have the potential to make theanalysis cheaper.

1.5. Soil visible and near infrared spectroscopy forcost-efficient soil

sample analysis

Diffuse reflectance spectroscopy has gained increasing attention in soil science because of its

potential to provide fast, non-destructive, and cost-effective measurements (Nocita et al.,

2015). Most spectrometers work either in the visible and near infrared range (vis—NIR, 350-

2500 nm) or in the midinfrared (MIR, 2500-25’000 nm) range (Soriano-Disla et al., 2014).

Comparisons between MIR and vis—NIR spectroscopy normally attribute a higher

measurement accuracy to MIR spectrometers while vis—NIR spectroscopy is much cheaper

and requires less soil sample preparation (no grinding) (Breure et al., 2022; Clairotte et al.,

2016; Knox etal., 2015).

In general, spectral data need tobe calibrated with reference values from standard laboratory

measurements whereby different model approaches that can deal with multicollinearity in
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the predictor variables (the reflectance value at each wavelength) such as partial least square

regression or machine learning tools can be used (Viscarra Rossel et al., 2022). The vision is

that one day the spectral analysis could potentially replace expensive lab measurements. In

other disciplines this vision has become reality and spectral measurements arestandard to

measure forexample the quality of agricultural products (cereals, forage,...), while in soil

science, spectroscopy is still ina research status (Bellon-Maurel et al., 2010). The reason

therefore is that biological products are clearly constrained by the plants genome which

makes all grains or fruits of one plant species highly comparable, while soils normally showa

high heterogeneity resulting in often highly skewed distribution of soil properties (Bellon-

Maurel et al., 2010; Brown etal., 2006). The application of spectral models to soil samples

from areas that have not been part of the calibration dataset is very challenging and one of

the big topics in soil spectroscopy research (McBride, 2022; Ng et al., 2022; Tziolas et al.,

2019).

However, even though thefirst vision of replacing standard labmeasurements seems unlikely,

soil spectroscopy hasa high potential in combination with conventional lab measurements

(Viscarra Rossel et al., 2022). Especially, regionally and locally calibrated spectral models

predicting soil properties related to soil organic matter have shown good performance

(Angelopoulou et al., 2020; Breure et al., 2022). Therefore, soil spectroscopy hasa high

potential to increase the number ofsamples at little additional costs which is crucial to tackle

the high spatial and temporal variability of soil organic matter. However, in conventional lab

methods, the measurement error can be very well estimated beforehand, which is not the

case for spectral models. Each local spectral model has its own performance and the

prediction error (corresponding to measurement error in conventional methods) cannot be

estimated beforehand. Therefore, the application of soil spectroscopy bears the risk that the

model performance might not match the measurement accuracy that is required by the

research question.

1.6. Cover crops in organic reduced tillage systems: decomposition

is crucial

In reduced tillage systems cover crops decompose on the soil surface either as mulch or

slightly mixed with topsoil. The optimal decomposition dynamics depend on themanagement

objective and the following crop and influences the cover crop selection: A slow

decomposition is desired if the cover crop mulch should suppress weeds (Brito et al., 2019),a

decomposition in balance with main crop growths is desired if the cover crop mainly serves as

nutrient source (Dhakal et al., 2020) anda fast decomposition is desired if the following crop
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has strict requirements about seedbed preparation and mulch sowing is not possible. The

decomposition of cover crops depends highly on diurnal variations of moisture and

temperature (Thapa et al., 2021) and therefore the cover crop decomposition in reduced

tillage systems can be slower than desired (Varela et al., 2017), with negative consequences

forseedbed preparation for the next crop. In Switzerland, weather in spring can be cold and

wet which preventsa fast cover crop decomposition and the moist and potentially slimy cover

crop material on the soil surface can cause seedbed preparation and sowing problems (Thapa

et al., 2021).

1.7. A microbial inoculant to accelerate the decomposition of cover

crops

With the promise to enhance cover crop decomposition and boost soil microbiology,a

microbial inoculation product based on the effective microorganism (EM) technology (Higa,

1991) was introduced into the Swiss market (EM Schweiz, 2023). Many Swiss farmers

practicing the shallow incorporation of cover crops apply EM. The general idea of microbial

inoculants, often summarized under the term plant growth promoting rhizobacteria, is to

influence the plant-microbial associations in the soil thereby aiming at better crop

performance (Backer et al., 2018; Gouda etal., 2018). Effective microorganisms areadvertised

to havea wide application range that goes farbeyond agriculture which makes their scientific

evaluation very difficult. The existing peer-reviewed literature about the application of EM in

agriculture is highly controversial whereby beneficial effects of EM were most times observed

in tropical or subtropical regions in Asia (Hu, 2018; Khaliq et al., 2006), while studies in Europe

did not detect statistically significant effects of EM (Mayer etal., 2010; Pranagal et al., 2020;

Schenck zu Schweinsberg-Mickan and Müller, 2009). So far, the main conclusion about EM

application is, that it has to be applied in combination with organic matter, which is the

recommendation ofthedeveloper (Higa, 2003) as well as the conclusion of research studies

that found significant effects (Hu and Qi, 2013; Javaid, 2011; OIIe, 2021; Van Fan et al., 2018).

The combined application of EM with cover crop termination fulfills this criterium but the

promised effects of faster decomposition, higher nutrient efficiency and formation of soil

organic matter (EM Schweiz, 2023) has not yet been evaluated.

1.8. Summarizing the identified scientific gaps

Much empirical research has been conducted to compare cover cropping and bare soil

treatments and results have been summarized in meta-analyses (Jian et al., 2020; McClelland

et al., 2021). These two meta-analyses summarize various data from long-term cover cropping
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field trials, but 68 % respectively 54 % of the considered field experiments were in

monoculture system and most oftherest in systems with two or three crops (Jian et al., 2020;

McClelland et al., 2021). The evaluation of cover cropping in diverse (more than three crops)

crop rotation is highly understudied because time windows forcover cropping keep changing

and do not occur every year. In Switzerland, diverse crop rotations are general praxis and due

to the federal regulations (see section 1.2) bare soil treatments in long fallow periods are not

of practical relevance. Therefore, there isa clear need to evaluate different cover cropping

strategies in agricultural systems with diverse crop rotations. Since the same cover cropping

time window only occurs once in several years, long-term field trials would only be of limited

use, respectively their cost-benefit ratio would be questionable. Yet, measurement ofshort-

term changes in soil properties related to organic matter is challenging (see section 1.3) and

requiresa high spatial and temporal resolution of soil sampling and thereforea large sample

size. Soil vis—NIR spectroscopy has the potential to analyze large number ofsamples but its

suitability in field experiments is understudied. Local spectral models atfield or on-farm level

have been developed (e.g. Kuang and Mouazen (2011) or Singh et al. (2022)) but their

accuracies are highly varying for unknown reasons. This uncertainty hampers theapplication

of vis—NIR spectroscopy at the local scale and therefore there isa strong need to analyze the

factors that influence the performance of local spectral models.

Furthermore, the rate of cover crop decomposition is crucial in organic reduced tillage systems

and so far, it is not clear if the application of EM can alter the cover crop decomposition

process. There is no systematic analysis of the effects of cover crop incorporation with EM

application regarding soil microbial activity and community composition as well as released

elements during the cover crop decomposition.

1.9. Research objectives

The goal of this thesis is to enhance knowledge on cover crop management, elucidate short-

term changes in soil fertility and elaborate suitable methods for such assessments. Its

objectives can be divided into three major topics that have been published as individual

papers: 1) analyze the effects of different cover cropping strategies on soil fertility parameters,

2) to explore the suitability of vis—NIR spectroscopy for soil sampling projects of local extent,

3) to examine the effects of EM on cover crop decomposition. These topics were structured

by the following research questions:
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Part I: Background and overview

1) Effect of different cover cropping strategies on soil fertility (Paper 1):

A) Do cover cropping strategies that differ in terms of species composition, growing

period and aboveground biomass input show different effects on soilC and N

fractions?

B) Which of the analyzed soil properties and which soil depth segment is most

sensitive to implemented cover cropping strategies?

2) Suitability of vis—NIR spectroscopy for soil sampling projects of local extent (Paper2

and 5):

A) To what extent do the prediction errors of local spectral models differ from the lab

measurement error?

B) Can spectral data of several target sites be combined toa general model without

substantial decrease in model performance?

C) How do field and soil characteristics (e.g., field size, soil texture, carbonate content,

correlations of soil properties) of the target site relate to the performance of

spectral models?

D) Does an increased sample size analyzed with vis—NIR spectroscopy ina local

experiment improve the statistical power compared toa lower sample size with

conventional analysis?

3) Effect of EM on cover crop decomposition: (Paper3 and 4):

A) Do EM alter the dynamics ofcover crop decomposition?

B) Do EM alter the concentration of water-soluble ions or elements?

C) Can microbial taxa from the EM solution establish themselves in the soil?

2. Methodology

2.1. Initiatinga participatory on-farm experiment

The starting point for this thesis was a privately organized soil course (Bodenkurs im Grünen,

Konzepte der regenerativen Landwirtschaft), held by the practitioners Dietmar Näser (Grüne

Brücke, 2022) and Friedrich Wenz (Humusfarming, 2022), thatI participated with around 20

farmers in 2017. This course is not offered anymore butfollow-up programs still exist, and

their content can be checked on the websites of Grüne Brücke and Humusfarming.A bigtopic

of the course was cover cropping with shallow incorporation and EM application, which was

assured to show beneficial effects on soil fertility parameters (Näser, 2021). Together with five

interested farmers, we decided to scientifically evaluate two contrasting cover cropping

approaches in short-term field experiments on their farms (Objective 1, Paper 1). The

experiment took place on six fields in eastern Switzerland that werea maximum of12.8 km

apart from one another (Figure 1). The field experiment in this PhD theses took place from
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end ofJuly (cereal harvest) to end of April or beginning of May (sowing of spring crop) and in

this long fallow perioda bare soil treatment is not an option and was therefore also not

considered in the study design.

Figure 1: Location of the sixfields (A-F) in the canton ofThurgau in eastern Switzerland.

2.2. Application of vis-NIR spectroscopy

The need formore studies to contribute to the emerging evidence about the potential of vis—

NIR spectroscopy to complement laboratory soil analysis and thus enablea cost-effective

analysis of larger soil samples was another motivation (Metzger et al., 2024). The availability

of portable vis—NIR spectrometers allows to collect data through direct in situ measurements.

However,I took soil samples in the field and conducted the spectroscopy measurements on

dried and sieved samples in the lab. There are three reasons why I did not conduct in situ

measurements on thefield. First,I would nothave had enough time in the field to do proper

measurements and the time window was limited due to the cover cropping management

schedule. Second, the highly variable water content under field conditions at different time

points would probably have resulted in lower model performance compared to lab

measurements (Hutengs et al., 2019). Thirdly, it isa big advantage to have all soil samples

available in the lab, because the spectra can be analyzed anda representative subset forwet

chemistry analysis can be chosen. With field measurements, the reference samples must be

determined beforehand without knowing if they are representative forthe whole dataset. The

suitability of vis—NIR spectroscopy application in field experiments (objective 2) was evaluated

in Paper2 and Paper 5.

1616 
 

end of July (cereal harvest) to end of April or beginning of May (sowing of spring crop) and in 

this long fallow period a bare soil treatment is not an option and was therefore also not 

considered in the study design.  

 
Figure 1: Location of the six fields (A-F) in the canton of Thurgau in eastern Switzerland. 

 

2.2. Application of vis–NIR spectroscopy 

The need for more studies to contribute to the emerging evidence about the potential of vis–

NIR spectroscopy to complement laboratory soil analysis and thus enable a cost-effective 

analysis of larger soil samples was another motivation (Metzger et al., 2024). The availability 

of portable vis–NIR spectrometers allows to collect data through direct in situ measurements. 

However, I took soil samples in the field and conducted the spectroscopy measurements on 

dried and sieved samples in the lab. There are three reasons why I did not conduct in situ 

measurements on the field. First, I would not have had enough time in the field to do proper 

measurements and the time window was limited due to the cover cropping management 

schedule. Second, the highly variable water content under field conditions at different time 

points would probably have resulted in lower model performance compared to lab 

measurements (Hutengs et al., 2019). Thirdly, it is a big advantage to have all soil samples 

available in the lab, because the spectra can be analyzed and a representative subset for wet 

chemistry analysis can be chosen. With field measurements, the reference samples must be 

determined beforehand without knowing if they are representative for the whole dataset. The 

suitability of vis–NIR spectroscopy application in field experiments (objective 2) was evaluated 

in Paper 2 and Paper 5. 



Part I: Background and overview

2.3. Effects of EM tested ina lab incubation experiment

The scientific literature about the effects of EM on organic matter decomposition (see section

1.7) indicated thata potential effect of EM on cover crop decomposition might, if at all, only

be minor. Therefore,I did not include EM as an experimental factor in the field trial but ran a

lab incubation experiment with different EM levels and a sterilized control (Objective 3, Paper

3 and 4). The lab experiment allowed to keep the environmental conditions stable and work

witha high temporal resolution.

2.4. Overview ofresearch papers

This thesis contains three first author papers, one policy brief and one co-authored paper.

Figure2 shows which of the collected datasets were used in which paper and how these

different papers contribute to the three objectives of this thesis. Table1 provides an overview

about the different research outputs and in which journal they were published or have been

accepted.

Collected dataset Research Papers

Field experiment

in eastern

Switzerland

Lab incubation

study

Soil survey in

northern Spain

Paper1: cover eraopingn organic reduced

ti Image systems: Maximizing soil cDver or plant

aboveground b+omass Input?

Pa per 2: Best performances of visible-near-

infrared models insoils with little carbonate -a

field study in Switzerland

soil properties when amended with effective

microorganisms torimproved cover crop

decomposition

Paper•Q' Can Effective Microorganisms

influenceG reen-ManureDecomposition?

Paper fi* Revegetation is key far soI Organic

carbon sequestration ona oandoned and

degraded land in northern Spain

Objectives

Objective1: Effect of different

cover cropping strategies on sail

fertility

Objective 2:Suitability of vis—

NIR spectroscopy for soil sampling

projects of local extent

Objective3: Effect of EM on

cover crop decomposition

Figure 2: Overview of theconnections between collected datasets, research papers and objectives of this PhD thesis.
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Part I: Background and overview

3. Key insights and discussion

Paper 1: Cover cropping inorganic reduced tillage systems: Maximizing soil cover or plant

aboveground biomass input?

• Comparison of permanent soil cover (PSC) that maximizes soil cover and minimizes tillage

and double cover cropping (DCC) that maximizes cover crop aboveground biomass input.

• Measurement ofC andN fractions in high spatio-temporal resolution ina field experiment.

• Aboveground biomass input led generally to higher microbial biomass, mineralN and POXC

(0-5 cm) in the DCC treatment.

• The PSC treatment showed significantly higher increase in SOC in 5-10 cm compared tothe

DCC treatment which was probably caused by the higher belowgroundC inputs.

Box 1: Short summary oftheCover crop paper (Paper 1, objective 1)

The evaluation of the two cover cropping strategies revealed that the temporal variability of

soil properties was very high, which poseda challenge to the identification of management

effects. As the pronounced short-term variability was expected beforehand, I chosea

methodological approach that allowed to collect soil samples in high temporal and spatial

resolution. Despite the high measurement resolution using vis—NIR spectroscopy, only small

differences for the soil properties SOC, totalN and POXC between thetreatments could be

detected. For the whole analyzed soil depth (0-20 cm) we did not find differences between

treatments. Onlywhen sub-setting per depth segment, we found significantly higher increases

for SOC in 5-10 cm in the PSC treatment but significantly higher increases for POXC in 0-5 cm

in the DCC treatment. The cover crop in the PSC system had much more time to develop its

root system andI hypothesize that therefore the belowgroundC inputs were probably higher

in the PSC treatment, and which would explain the significantly higher SOC in 5-10 cm soil

depth compared to the DCC treatment. The significantly higher POXC in 0-5 cm in the DCC

treatment was most probable caused by the aboveground biomass input that took place in

that soil depth. The spectral data were accompanied by conventional lab measurements with

a lower spatial sampling resolution. Also, for these soil properties (Cmic, Nmic and Nmin) we

founda pronounced variability over time, but they were, as expected more sensitive to

treatment effects than SOC, total N and POXC. At the end of the field trial, I measured

generally higher Cmic, Nmic and Nmin in the DCC treatment compared tothePSC treatment.

I concluded therefore that the aboveground biomass input in the DCC strategy was beneficial

for soil microbiology and nitrogen availability, but the constant soil cover and minimum tillage

of PSC tended to be more beneficial for SOC.
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Paper 2:Best performances ofvisible—near-infrared models insoils with little carbonate —

a field study in Switzerland

• Out of 30 local spectral models, 24 showed an accurate performance (RPD> 2) and six

modelsa low model performance (RPD< 2).

• The low performing models were from thetwo fields with highest carbonate content.

• Analysis of variable importance in projection (VIP), and correlations between spectral

variables and target soil properties, confirmed that high carbonate content masked

absorption features for SOC.

• When combining data of different fields to build one general model, fields with high

carbonate content showeda strong decrease in model performance compared tothe local

model.

Box 2: Short summary ofthespectroscopy paper (Paper 2, objective 2)

The spectroscopy paper (see Box 2) showed that most local models had an accurate

performance and the highest prediction error for SOC (2.43+ 0.55g kg-*) was not much higher

than the labmeasurement error of the conventional lab analysis usinga CNS analyzer (1.011

0.40g kg-1). Additionally, all local models showeda very low bias (see Table2 in Paper 2),

which means that the spectral models did not systematically over- or underestimate the

measured values. However, soils with high carbonate content (FieldsA and F) showed in

generala lower model performance than the other four fields (A, B, C, D) and the utilization

of vis—NIR spectroscopy on fields with high carbonate content remains challenging and should

be addressed by further research.A very similar methodological approach as in Paper2 was

applied in Paper5 where in an area of 300 ha soil samples were taken in high spatial resolution

to investigate the effect of contrasting land management (tilled fields, fallow fields and forest).

In this study, the sampling design could also be statistically evaluated by only using the soil

samples where wet chemistry data were available and without using any spectral data. The

comparison between evaluation with wet chemistry data only (57 samples) and with spectral

data (487 samples), showed that the number of statistically significant relations between

treatments could be drastically increased (see Figure8 in Paper 5). We conclude therefore

that the application of soil spectroscopy in soil survey projects of local extent allows to

increase the number ofsamples atvery little additional costs which can provide more detailed

information than when less samples with only wet chemistry data are used.
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In this study, the sampling design could also be statistically evaluated by only using the soil 

samples where wet chemistry data were available and without using any spectral data. The 

comparison between evaluation with wet chemistry data only (57 samples) and with spectral 

data (487 samples), showed that the number of statistically significant relations between 

treatments could be drastically increased (see Figure 8 in Paper 5). We conclude therefore 

that the application of soil spectroscopy in soil survey projects of local extent allows to 

increase the number of samples at very little additional costs which can provide more detailed 

information than when less samples with only wet chemistry data are used.  

Paper 2: Best performances of visible–near-infrared models in soils with little carbonate – 

a field study in Switzerland 

• Out of 30 local spectral models, 24 showed an accurate performance (RPD > 2) and six 
models a low model performance (RPD < 2). 

• The low performing models were from the two fields with highest carbonate content. 

• Analysis of variable importance in projection (VIP), and correlations between spectral 
variables and target soil properties, confirmed that high carbonate content masked 
absorption features for SOC. 

• When combining data of different fields to build one general model, fields with high 
carbonate content showed a strong decrease in model performance compared to the local 
model.  



Part I: Background and overview

Paper 3:No effect on biological or chemical soil properties when amended with effective

microorganisms forimproved cover crop decomposition

• EM at recommended dose didnot change the soil respiration, nor microbialC and N.

• EM at 100 times of recommended dose showed effects due to added substrate and not due

to the added living microorganisms.

• Seven days after the start of the incubation, EM taxa were only detected in the samples that

were treated witha 100 times higher EM dose than recommended.

• EM didnotcoherently change the concentration of water-soluble ions and elements.

Box 3: Short summary oftheEM paper (Paper 3, objective 3)

Effective microorganisms did not change soil respiration nor any of the measured biological

or biochemical soil property (see Box 3).I therefore conclude that the decomposition was not

influenced by the addition of EM in the study setting (laboratory experiment). With the

specific experimental set up, it cannot be excluded that under certain environmental

conditions EM might influence cover crop decomposition but sincea general effect was

lacking,I expect sucha potentially occurring effect to be minor.

4. Synthesis and outlook

Different cover cropping options have different short-term effects as could be shown byPaper

1. Though,a cover cropping strategy must be integrated intoa farming system and therefore

one cover cropping approach cannot be qualified as superior per se compared toanother one.

Taking the main results of the two compared approaches in Paper 1, we found that PSC hada

stronger effect on SOC whereas the DCC approach had a stronger effect on soil

microorganisms. For crop rotations that include crops requiringa lot of “soil movement” like

ridge crops (potatoes, carrots, etc.) or multiple sets during the vegetation season (vegetables)

the effects of the PSC approach would probably not be sustainable because it would be

counteracted very soon by the following crop. Since in these crop rotations (independent of

the farming system)a lot of physical soil management takes place, the recovery of soil

structure (aggregates) is probably most important which can only be achieved througha high

microbial activity. Therefore, in such systemsI would rather recommend cover cropping

options with biomass input that foster soil microbiology like the DCC approach. On the other

hand, in reduced tillage systems with little soil movement and crop rotations with mainly

threshing crops (cereals, rapeseed, etc.), low tillage intensity and high soil cover strategy like

in the PSC approach is suitable because soil organic matter mineralization is probably

relatively low and soil structure relatively good and therefore plant biomass input is not a

priority. However, there are many more cover cropping options than the ones tested in Paper

1 but only limited or no knowledge about them is available and more research needs to be

21

 Part I: Background and overview  

21 
 

 

Box 3: Short summary of the EM paper (Paper 3, objective 3) 

Effective microorganisms did not change soil respiration nor any of the measured biological 

or biochemical soil property (see Box 3). I therefore conclude that the decomposition was not 

influenced by the addition of EM in the study setting (laboratory experiment). With the 

specific experimental set up, it cannot be excluded that under certain environmental 

conditions EM might influence cover crop decomposition but since a general effect was 

lacking, I expect such a potentially occurring effect to be minor. 

 

4. Synthesis and outlook 

Different cover cropping options have different short-term effects as could be shown by Paper 

1. Though, a cover cropping strategy must be integrated into a farming system and therefore 

one cover cropping approach cannot be qualified as superior per se compared to another one. 

Taking the main results of the two compared approaches in Paper 1, we found that PSC had a 

stronger effect on SOC whereas the DCC approach had a stronger effect on soil 

microorganisms. For crop rotations that include crops requiring a lot of “soil movement” like 

ridge crops (potatoes, carrots, etc.) or multiple sets during the vegetation season (vegetables) 

the effects of the PSC approach would probably not be sustainable because it would be 

counteracted very soon by the following crop. Since in these crop rotations (independent of 

the farming system) a lot of physical soil management takes place, the recovery of soil 

structure (aggregates) is probably most important which can only be achieved through a high 

microbial activity. Therefore, in such systems I would rather recommend cover cropping 

options with biomass input that foster soil microbiology like the DCC approach. On the other 

hand, in reduced tillage systems with little soil movement and crop rotations with mainly 

threshing crops (cereals, rapeseed, etc.), low tillage intensity and high soil cover strategy like 

in the PSC approach is suitable because soil organic matter mineralization is probably 

relatively low and soil structure relatively good and therefore plant biomass input is not a 

priority. However, there are many more cover cropping options than the ones tested in Paper 

1 but only limited or no knowledge about them is available and more research needs to be 

Paper 3: No effect on biological or chemical soil properties when amended with effective 

microorganisms for improved cover crop decomposition 

• EM at recommended dose did not change the soil respiration, nor microbial C and N. 

• EM at 100 times of recommended dose showed effects due to added substrate and not due 
to the added living microorganisms. 

• Seven days after the start of the incubation, EM taxa were only detected in the samples that 
were treated with a 100 times higher EM dose than recommended.  

• EM did not coherently change the concentration of water-soluble ions and elements. 



done. The main question thereby should not be “what is the best cover cropping strategy?”

but rather “Which cover cropping strategy can best compensate the negative impacts ofa

specific crop rotation on soil fertility?”.

For this type of research at the local extent, soil vis—NIR spectroscopy can be very helpful to

cope witha high number ofsamples. However, asalso shown bythis study, soil organic matter

related parameters (SOC, total N, POXC) can be well predicted with vis—NIR spectroscopy but

additional measurements like nutrients or microbial properties might also be necessary for

the evaluation of cover cropping strategies but are normally less accurately predicted by vis—

NIR spectroscopy. These latter properties are quite sensitive to management andeven witha

small sample size, effects can be identified, hence no added value or additional insights from

spectral assessment. The performance of vis—NIR spectroscopy was lower on soils with low

carbonate contents and therefore more research is needed to improve the prediction

accuracy forthese soils. This issue is probably even more important for larger scale spectral

libraries with highly varying carbonate contents.I can imagine three possible ways toaddress

this problem but all of them must be first evaluated. First, samples could be pre-treated with

acid to remove carbonates before conducting the measurements.A comparison in model

performance with acid-treated samples and untreated samples could bea first step in that

direction. Second, there might bea possibility to “correct”a reflectance spectrum for its

carbonate content as it was e.g. successfully done forthewater content by Ji et al. (2015).

However, since the important areas for organic carbon and carbonate are overlapping, such

correction approach might be challenging. Thirdly, there is still the option to rely on MIR

spectroscopy in soils with high carbonate where theprediction of carbonate is much better.

Even though measuring immediate effects of land management on soil properties is very

challenging, a big motivation to improve the methodology is the farmer's perspective.

Independent of the management approach that is evaluated, it is more motivating and

relevant for farmers, if immediate effects can be measured and communicated. Due to the

high sample number, soil vis—NIR spectroscopy might be one piece to improve the

methodology totackle the challenge of short-term effects on soil fertility. If short-term effects

can be made better visible, it is easier to set up research projects witha high participation of

people working in the agricultural praxis. The participation of practitioners in research projects

has been identified asa crucial factor to improve soil fertility (Cheik and Jouquet, 2020) and

could potentially be fostered by the implementation of local soil spectroscopy projects. Like

farmers, also other stakeholders like the agricultural ministry, food retailers and label

organization have an interest in fast evaluation of new measures for sustainable soil

management and might therefore be more interested to participate in research projects.
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Part I: Background and overview

Besides its unquestionable positive effects on soil fertility, cover crops also bring challenges

for soil management in the agricultural praxis. Plant or litter material on the soil surface may

hinder efficient machine operation. In Paper3 we didnot find any effect of EM on cover crop

decomposition and therefore conclude that the decomposition process is probably mainly

governed by temperature, soil moisture and the microbial community present in the soil.

Especially, the cover crop moisture content (which is determined by prevailing weather

conditions) has been shown to be the most crucial factor that determines cover crop

decomposition (Thapa et al., 2021). It may be that other microbial inoculants or EM under

different experimental conditions might show aneffect on cover crop decomposition but, this

effect is probably very small. Therefore,I conclude that the method toincorporate cover crops

should be chosen according to the crop rotation planning and the prevailing environmental

conditions.
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Abstract

Cover crops are grown between two main crops to reduce periods of bare

fallow. In highly diverse crop rotations, the lengths of break periods between

two main crops vary highly over time and consequently the cover cropping

management differs from year toyear. Long-term field trials are thus oflimited

use because the same cover cropping approach only appears once in several

years. This increases the need tobetter determine the immediate effects of dif-

ferent cover cropping strategies on soil properties. This study evaluated two

cover cropping strategies and monitored the temporal development of several

soil properties on six fields in Eastern Switzerland in the9 months period

between harvest of winter wheat and sowing of spring crops. The two tested

strategies were (a) double cover cropping (DCC) where two cover crops

mixtures were grown subsequently and shallowly (3 cm) incorporated into the

topsoil and (b) permanent soil cover (PSC) with one grass-clover mixture,

which was harvested and thus not incorporated into the soil. Soil samples at

three different soil depths (0-5, 5-10 and lm20 cm)were sampled four times

in high spatial resolution and analysed usinga combined approach of visible

near infrared spectroscopy and conventional lab methods. Differences between

the sampling times and field sites were stronger than effects of different treat-

ments. For soil organic carbon (SOC), no significant difference was measured

between treatments in 0—20 cm soil depth. Only when analysed per depth seg-

ment, the PSC treatment showed significantly higher SOC increase in 5—10 cm

soil depth than the DCC treatment. This could be due to the longer soil cover

and thereby associated longer root growth period in the PSC treatment, leading

to higher below groundC inputs than in theDCC treatment. On the other hand,

the DCC treatment showed generally higher increases in permanganate oxidiz-

able carbon stocks (0—5 cm), microbialC (0—10 cm), microbial N (0—10 cm) and

mineral N (0—10 cm) than the PSC treatment. We conclude that maximizing
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1 I I NT RO D UC T I ON

cover crop above ground biomass input by planting two cover crops (DC C)

benefitted soil microorganisms on most fields but was less beneficial on SOC

than permanent soil cover (PSC) in 5—10 cm soil depth.

KEYWORDS

microbial biomass, regenerative agnculture, shallow incorporation, soil fertility, soil organic

matter, soil spectroscopy, temperate climate

Soil fertility is crucial for sustainable crop production but

is decreasing in arable soils across the world (Lal, 2015).

Depletion in soil organic carbon (SOC) is an important

driver of this process which has also been observed in

Europe (Gubler et at., 2019). The beneficial effects of soil

organic matter (SOM) lie in its d amic nature where

short-term formation and mineralization of organic matter

influence nutrient availability and crop performance

(Hacker et al., 2015; Janzen, 2006). Cover crops are an

important element to promote SOM formation ina crop

rotation (Jian et a1., 2020; Kaye & Quemada, 2017;

McClelland etal., 2021; Poeplau& Don, 2015), but region-

specific limitations hamper their adoption in Europe

(Heller et al., 2U24). Cover crops, also referred to as catch

crops or intercrops, are sown intheperiod between two

main crops to avoid periods with bare soil. Additionally,

cover crops can also be undersowri ina main crop to

increase the species richness on the field. The major goal

of cover cropping is to improve nutrient cycling, avoid

nutrient losses, increase SOC stocks, enhance microbial

activity, increase soil cover and reduce erosion (Daryanto

eta1., 2018; Thorup-Kristensen etal., 2003).

While theoverall benefits of cover crops are well docu-

mented, very little information is available on the effects

of different cover cropping strategies on soil properties.

Cover cropping strategies differ in terms of species diver-

sity, incorporation method, biomass input and the fre-

quency they are applied ina crop rotation. All these

factors are relevant for both the decomposition and the

accumulation of organic matter in soil. For example, SOM

formation is more efficient when above ground residues

were mixed with topsoil than just put on the soil surface

(Mitchell et al., 2016, 20 l8; Sokol et al., 2019).

Several parameters have been suggested to evaluate the

performance of cover crops. Since total SOC is a slowly

reactingC pool, the analysis of labileC fractions to evaluate

the effect of different agricultural management techniques

has been recommended (Bongiorno et al., 2019; Wang

etal., 2014). Among them, permanganate oxidizable carbon

(POXC), also referred as active C, has been shown tobe

influenced by cover cropping (Jagadammu ct a1., 2019;

Highlights

Monitoring of two cover cropping strategies in

high spatial and temporal resolution

Permanent soil cover (PSC) strategy increased

soil organic carbon in 5—10 cm depth

Double cover cropping (DCC) increased soil

microbial biomass on most fields

Above ground biomass input in DCC strategy

increased mineral N on most fields

Lucas& Weil, 2021). Another fast reacting and manage-

ment sensitive C pool is soil microbial biomass carbon

(Cmic), of which some studies have measured an increase

due to cover cropping (Kim ct al., 2020). This effect was

more pronounced with species mixtures than with single

species cover crops (Gentsch ct al., 2020). Other studies

showed that POXC and Cmic correlate with SOC and

therefore suggested them as indicators for SOC develop-

ment (Bongiorno et a1., 2019; Lange, 2015). Besides soilC

fractions, cover crops also influence the soil nitrogen

(N) cycle, whereby someN fractions are more sensitive to

cover cropping than others (Mohammed ct al., 2U2U; Wang

eta1., 2007). Similar to SOC, total soilN isa slowly reacting

N pool and cover crop research focuses mainly on thelabile

N pools such as mineral N (Nmin) and microbial N

(Nmic). Cover crops use Nmin fortheir growth and can

thereby prevent the leaching of some Nmin into deeper

soil layers or into ground water (Tonitto et a1., 2006). On

the other hand, cover crops enhance theuptake ofNmin

into the microbial biomass (immobilization) because

microbial growth benefits from cover crops labile C

inputs (in't Zandt etal., 2018).

Two main mechanisms explain the beneficial effects

of cover crops on soilC and N fractions. First, cover crops

increase the organic matter input into the soil. Second,

cover crops are used to suppress weed growth, which

reduces the need for mechanical weed control and

thereby prevents SOC mineralization (Singh et al., 2023).

Traditionally, organic farming systems mainly rely on

cover crops for increasing organic matter inputs whereas
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conservation agriculture systems see the main benefit in

the reduction of soil tillage. In both systems, cover crops

are well established (Büchi et al., 2017; Hubbard, 2013;

Welch etal., 2016). However, the combination of conserva-

tion village with organic farming remains challenging

mainly because of increased weed pressure and reduced

yields (Leifeld et al., 2009; Zikeli& Gruber, 2017). ln conser-

vation tillage systems, cover crops are often killed with her-

bicides, roller crimper or by frost periods whereas inorganic

systems cover crops are normally incorporated by inversion

tillage (Alonso-Ayuso etal., 2U2U; Wayman et al„ 2015).

New cover cropping approaches try to combine

methods from both organic farming and reduced tillage by

shallowly (3 cm) incorporating cover crop mixtures witha

rotary tiller. The resulting plant-soil mixture serves as an

energy source for the soil microbiome. LabileC inputs

enhancing the soil microbiology area key element forthe

stabilization of SOM (Cotrufo et a1., 2t)l3). Thereby, the

microbial by-products and the microbial necromass can

playa major role in SOM formation (Kallenbach, 2016;

Miltner et al., 2012; Vidal etal., 2021). This shallow incor-

poration of cover crop mixtures is often used in ‘regenera-

tive agriculture’ that has gained popularity in agricultural

practice in recent years (Giller et al., 2tJ2l; Rhodes, 2017),

yet, is still not clearly defined.

Most research on the e&ects of cover crops focuses on

the comparison betweena cover crop treatment anda bare

soil control. However, in SNtzerland long-term bare soil

periods are not allowed (Swiss Ordinance 910.13, 2013)

and cover cropping is widely applied (Heller et al., 2024).

Also other European countries try to foster the adoption of

cover crops (Kathage et al., 2022). The question on the

type of cover cropping strategy and their effects on soil

properties will thus become in future more important

than whether or not to implement cover crops at all. In

Swiss organic reduced tillage systems, two different types

of cover cropping are commonly applied in the up to

9 months period between cereal harvest (end of July) and

sowing ofa next spring crop (April-May). The so-called

‘double cover cropping’ (DCC) arms to maximize fresh

organic matter into the soil by sowing, growing and

shallowly incorporatinga summer cover crop mixture and

a winter cover crop mixture subsequently. The DCC

approach is expected to show beneficial effects on soil

fertility parameters because it has a high above ground

biomass input into the soil that is decomposing in interac-

tion Sth the soil mineral phase. However, the double

shallow incorporation requires shallow but intensive till-

age that might increase SOM mineralization in the topsoil.

Altematively, the ‘permanent soil cover’ (PSC) aims for

maximized soil cover and reduced soil tillage. This is

achieved bya temporary leywhere theabove ground bio-

mass can be harvested and used as forage. The same effect

can also be achieved by undersowinga cover crop with

grasses and clover in the cereal stand and use it as a tem-

porary leyafter the cereal harvest. In contrast to DCC, the

PSC approach does not have any above ground biomass

input into the soil but also no disturbance,

Given the increasing implementation ofcover cropping,

it becomes more and more relevant to evaluate the effects

of these different strategies as management options on soil

fertility. We thus monitored the immediate elects of the

DCC and the PSC approach or soilC and N fractions at

three different soil depths (0—5, 5—10 and 10—20 cm) overa

period of9 months in six fields in Switzerland. In highly

diversified crop rotations,a long fallow period that is suit-

able for either the DCC or PSC cover cropping approach

appears only once within several years. For this reason, the

effects of these cover cropping approaches cannot be evalu-

ated in experiments that span over several cropping sea-

sons, as their immediate effects would be covered by any

other crop or management effect. We thus took soil samples

in high spatial and temporal resolution usinga combination

ofnear infrared spectroscopy and conventional lab methods

toenable detection of small changes in the analysed param-

eters. This was done to achievea better understanding of

the effects of either maximizing cover crop biomass input

(DCC) orsoil cover (PSC) on soil fertility using cover crops.

We formulated three hypotheses:

Given the short time period of the experiment, SOC

and total N will not significantly differ between the

two treatments.

2. The DCC treatment with above ground biomass input

will show higher labileC and N (POXC and Nmin),

compared to the PSC treatment with no such above

ground biomass input.

3 The DCC treatment with above ground biomass input

will promote the soil microbial biomass (Cmic and

Nmic), compared to the PSC treatment with no such

above ground biomass input.

2 M ET HO DS

2.1 Study sites and experimental set-up

The trial was conducted on six agricultural fields in the

canton ofThurgau, Switzerland (Table 1). All fields were at

maximum 12km apart from each other. In 2019, the mean

temperature in the region was 10.5‘C and total annual pre-

cipitation summed up to515mm, which wasa bit warmer

and drier than the long-term average (1991—2020) of 8.7°C

and 853 mm. The trial comprised the period of9 months

between cereal harvest at the end of July and sowing ofa

cash crop in late spring (Figure 1). Before the onset of the
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T A l3L E 4 Description of the trial sites.

Elevation Trial Soil class (world Soil texture (m of pH

Field (m a.a. 1.) area (ha) reference base) sand/siltfclay) (CaClz)

A 420 0.84 Eutric Cambisol 50/29/21 7. l8

Sandy loam

B 420

D 46O

E 460

F 380

0.67 Eutric Cambisol

600 0.44 Eutric Cambisol

0.64 Eutric Cambisol

1.05 Eutric Cambisol

44/35/20

Sandy loam

27/35/38

Clayloam

28/44/28

Clay loam

30/48/23

Sandy loam

0.3 Eutric Cambisol 39/43/J8

Sandy loam

Crop rotation (4years

before trial)

2015: Temporary ley

2016: Celeriac

2017: Rye

2018: Potato

2019: Winter wheat

6.56 2015: Potato

2Dl6: Dwarfbeans

2017: lemporaiy ley

2018: Corn

2049: Rye

7.19 2015: Sugar beet

2016: Winter wheat

2047: Temporary ley

2018: Temporary ley

2fll 9: Winter wheat

6.88 2DI5: Oat

2016: Spelt

2017: Field beans

2048: Red clover

2019: Winter wheat

6.6 2015: Spelt

2016: Dwarfbean and pcas

2047: Winter wheat

2018: Unen

2fll 9: Winter wheat

7.49 2015: Winter wheat

2016: Sugar beet

20t7: Com

2048: Potato

2019: Winter wheat

Last

ploughüng

#eu)

2012

2015

2018

20T7

Fertilization

None

2016 Processed organic fertilizer

(Bio-Enne, Timac Agro,

Switzerland)

N: 72 kg ha '

C: 210 kg ha°'

Applied: 27.04.2020

None

20T8 Chicken manure

N: 112kg ha ‘

C:740kg ha ’

Applied: 01,04,2020

None

None

2
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Double cover

cropping (DCC)
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FI GU RE 1 Timeline forthe two treatments double cover cropping (DCC) and permanent soil cover (PSC). for every month theaverage

temperature and total precipitation are indicated.

trial, every field was planted with winter cereal and an

undersown cover crop called GreenCarbonFix that was

purchased at Camena Samen (Germany) and contained six

species: 55% perennial ryegrass {Loliuor perenne L.), 25%

crimson clover ‹Tri%liurn incamatum L.), 59 white clover

[Tri%lium repens L,), 5h hop clover [Medicago lupulina L,),

5‹â bird's-foot trefoil {Lotus corniculotus L.) and 57‹ came-

lina [Comelina sativa L.). After the cereal harvest in July

each field was divided intoa PSC plot in the middle and

two DCC plots on both sides. Plot sizes were between 1fD0

and 3500 m
2
. Each plot comprised 13 GPS-referenced sam-

pling points (circles witha radius of1 m) that were homo-

geneously distributed across the plot in an unaligned

design (Webster& Lark, 2013). The results of the two DCC

plots (26 subplots) were combined and referred here as

DCC plot. The unequal sample number foreach treatment

was accounted forinall statistical analyses (see Section 2.7).

The management was conducted by the farmers and there-

fore we useda strip design and nota randomized block

design which would have made themachine handling very

complicated. In the DCC plots, two commercial cover crop

mixtures were sown subsequently (Figure 1). The summer

cover crop mixture (Dominanzgemenge; Camena Samen)

was sown after cereal harvest (end of July) and comprised

12 species: 209a buck wheat ‹Fagopymm esculentum

MOENCH), 20% flax {Linum usitatissimum L.), 20% serra-

della (Ornifhopus sotivus BROT.), 89 corn (Zca mays L.),

7m sunflower (HeJianihus an nuns L.), 59 bristle oat (Avena

strigose SCHREB.), 57c camlina {camelina sativa L.), 4”/r

winter oilseed rape {Brassica napus L.), 4% white mustard

‹sinapsis alba L.), 39 deeptill radish ‹RaphonuS sotivus var.

oleiformis), 2% sudan grass {Sorghum sudanense STEUD.),

29 lacy phacelia {Phacelia tanocetifolia BENTH.). After the

Shallow incorporation of the fall cover crop in September,a

frost tolerant winter cover crop mixture (Wintergriin,

Camena Samen) was sown that contained five species: 62%

winter rye tsecale cereals L.), 2h7 Hungarian vetch (Uitin

pannonica CRANTZ.), 107a crimson clover Trifoliu or incar-

notum L.),l to winter oilseed rape (Brassica napus L.),l to

winter turnip rape {Brassica mps L.). The winter cover crop

was shallowly incorporated at the end ofApril or beginning

of May. The shallow incorporation was done each time

witha rotary tiller with right-angled knives that cut the

plants3 cm below the soil surface. The result was a plant

soil mixture on the surface that was left on the soil for

l0 days. After that the soil surface was again treated

witha rotary tiller and the winter cover crop, respec-

tively the spring cash crop, was sown. In the PSC plot

the GreenCarbonFix mixture undersown in the cereal

was kept and further on managed equal toa temporary

ley. In fall, when thecover crop in the DCC plot was

incorporated, the PSC plot was mowed andtheabove

ground biomass was removed from thefield. In spring,

when thewinter cover crop on the DCC plot was incor-

porated, the PSC plot was mowed again, and the stub-

bles were incorporated the same way asintheDCC plot

usinga rotary tiller. The exact dates and management

details of the four sampling times are provided in

Table S.1 and an overview about the used cover crop

mixtures is provided in Table S.2. For the fieldsE and F,

soil sampling had to be reduced to three time points

because of management issues with the seedbed prepa-

ration in these two fields. Consequently, those two fields

were ploughed in spring and therefore the soil sampling

before the incorporation of spring cover crop (to)

the last sampling time on these two fields. All cover

crops were grown without any fertilizer and under

organic farming conditions. Yet, on fieldsB and D for

the spring cash crop, an organic fertilizer was applied

after cover crop incorporation between ›2 and ti. Same

amounts of fertilizers were applied or both treatment

plots. The C and N inputs from fertilization can be seen

in Table 1. Right before the cover crops were incorpo-

rated witha rotary tiller (DCC infall, DCC and PSC in
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spring) 100L ha° commercially purchased effective

microorganisms (EM; Rottelenker, EM Schweiz AG,

Switzerland) were sprayed on the cover crops. The

objective of this measure is to improve the decomposi-

tion process and reduceC and N losses (Oberholzer,

Herrmann, etal., 2tl24). This practice is commonly used

by farmers in the region when they shallowly incorpo-

ratea cover crop and was therefore part of both cover

cropping SyStems.

2.2 Plant biomass sampling

In theDCC plots cover crop biomass was cut right before

cover crop incorporation ina square of 50x 50 cm with

seven replications per field and subsequently dried at

65“C for48h todetermine the dry weight. The sampling

replication with the median weight was ground and ana-

lysed forC and N content by dry combustion (vario

MICRO tube, Elementar, Germany), separately for each

field. The concentrations of plantC and N were multi-

plied by the dry matter weight to obtain the cover cropC

andN input.

2.3 I Soil sampling and sample

treatment

Soil sampling was done before incorporation of the fall

cover crop (t„, September), about4 weeks after the shallow

incorporation (t„ October), in early spring (t„ March) and

about4 weeks after the incorporation of the spring cover

crop (t„ May; Table S.1 in the Supplementary Material).

At every sampling time, three batches of soil samples were

obtained for different analyses. Batch one to determine

SOC, POXC andtotal N was sampled by taking five sam-

ples per sampling point using an auger (0—20 cm, 2 cm

diameter) and subsequently separated per depth segment

of 0—5, 5—10 and 10—20 cm. The GPS reference for each

sampling point was done usinga dGPS device (Geo7X,

Trimble, USA) with an approximate measurement accu-

racy of 10 cm, allowing for point specific monitoring of

soil properties over time. In total, six fields with each three

plots (two DCC, one PSC), each with 13 sampling points,

were sampled in three depths at four (field A, B,C and D)

respectively three (fieldE and F) sampling times which

resulted ina total number of 2574 soil samples. These

samples were dried for 72h or constant weight at 40“C

and sieved to2 mm. Batch two to determine Cmic, Nmic

andNmin wasobtained by randomly sampling 15 subsam-

pies in 0—10 cm depth in four replicates per plot and sam-

pling time (n = 264). Samples were stored at 4"C and

sieved to2 mm before the analysis of Cmic and Nmic.

Thereofa part of sieved soil was frozen at —20*C forthe

analysis of Nmin. Batch three to determine soil bulk den-

sity and soil water content was obtained by sampling three

undisturbed soil cores per plot and sampling time from

0 to 20 cm with5 cm diameter that were taken with an

impact probe (HumaxTube^, Switzerland). These cores

were cutinto5 cm segments, weighed and dried at 105°C

forat least 48h to assess soil bulk density and water con-

tent for each5 cm layer (n = 792),

2.4 I Spectral measurement and

modelling

All 2574 samples ofbatch one were measured witha vis—

NIR spectrometer (350—2500 nm, ASD FieldSpec4 Hi-

Res, Malvern Panalytical, USA) infive replicates usinga

contact probe ina dark room. We treated the samples

from each field as one individual dataset (n = 468 for

fields A, B, C and D and n = 351 for fieldsE and F)

for the spectral modelling. For ever:y field 15% of the sam-

ples were selected as reference samples forwet chemistry

analysis based ona Kennard-Stones algorithm that uses

the principal component scores to selecta representative

subset ofa given dataset (Wadoux, 2021). Therein, sam-

pling times and soil depth were similarly represented.

For each parameter (SOC, POXC andtotal N) and for eveiy

field a spectral model was calibrated with the reference

samples to predict the values for the other samples. For

every spectral model we selected the optimal preprocessing

technique and applied a partial least square regression

(PSLR; Wold etal., 1953).A five times repeated fivefold

cross-validation approach was used to calibrate fora spec-

tral model foreach field and soil property. We evaluated

the model performance using the three model performance

parameters, coefficient of determination (R’), root mean

standard error (RMSE) and theratio of performance to

deviation (RPD) which is the ratio of standard deviation of

the measured reference values to RMSE. According to

Chang et al. (2001) and Zhang etal. (2018) we considered

an RPD above3 as excellent, above2 as accurate, above 1.4

as approximate and below 1.4as poor model performance.

The RMSE hasalways the unit of the measured parameter

and therefore does not allow a generalized evaluation

scheme. The executed preprocessing steps and the accuracy

of the final chosen model forSOC, POXC andtotalN can

be found in Table S.3 in the Supplementary Material. Spec-

tral models forSOC and POXC on fields A and F showed

an approximative performance while all other models

showed an accurate or even excellent performance. The

slightly lower model performance of fieldsA and F can

probably be explained by their higher carbonate content

(see Oberholzer, Summerauer, et a1. (2024)). The RMSE
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ranged between 1.07 and 2.43g kg°' for SOC, 0.03 and

0.05g kg°’ forPOXC andbetween 0.09 and 0.14 for total

N. These achieved RMSE from spectral models were

relatively close to the lab measurement errors that were

1.01 + 0.40g kg°' forSOC, 0.02 0.01g kg°' forPOXC

and 0.07 + 0.02g kg°' for total N (Oberholzer,

Summerauer, eta1., 2024).

2.5 Chemical soil analyses

For the reference samples ofbatch one (n = 356 =l sh of

all samples) concentrations of totalC and totalN were

determined by dry combustion (vario MICRO tube, Ele-

mentar, Germany). InorganicC was determined through

dissolution of carbonate in 109a HCl-solution and mea-

surement of thevolume of the evolvedC 2.and SOC as

the difference between totalC and inorganic C. POXC

wasmeasured based on the protocol of Wei1 et a1. (2003)

with the modifications of Lucas and Wei1 (2012), where

2.5g instead of5 g soil were used to make sure that

enough reactant (0.2 M KMn 4) is available (Culman

eta1., 2012; Lucas& Weil, 2021).

Cmic and Nmic were measured based on the protocol

of Vance cta1. (1987) with some adaptations: We weighed

moist soil equal to 10g dry matter and used 40 mL of0.5M

K SO,. After the extraction, dissolvedC and N were mea-

sured witha TOC-analyser (DIMATOC" 2100, DIMATEC

Analysetechnik GmbH, Germany). We didnot use any con-

version factor and report Cmic and Nmic aschloroform

labileC and N. For the measurement ofNmin asthesum

ofnitrate and ammonium,4 g ofsoil were extracted with

40 mL 1 M KC1. Nitrate was determined by using vanadium

(III) as a reductant according to the Protocol of Garcia-

Robledo et a1. (2014). Nitrate content in the solution was

colorimetrically determined by measuring the absorbance

at 540 nm witha Spectrophotometer (UV-1800, Shimadzu

Corporation, Japan). Ammonium was determined as

described in Rhine etal. (1998) with salicylate asa reactant.

The ammonium absorbance was measured at650 nm with

thesame spectrophotometer.

2.6 Calculation of soil organic carbon,

permanganate oxidizable carbon and total

N stocks

Due to seasonal and management induced changes insoil

bulk density over the nine-month period of the trial, we

used an equivalent soil mass (ESM) approach to calculate

stocks and stock changes of SOC, POXC andtotal N. The

concept of ESM was introduced by Ellert and Bettany

(1995) and evaluated by Lee et al. (2009). When thesoil

bulk density varies over time and between treatments,

stocks ofa fixed depth (FD) contain different soil masses,

which makesa comparison between them uneven. The

ESM approach usesa reference soil mass that is used fora

correction to obtain stocks of same soil masses among

all treatments and sampling times. We used here the

minimum ESM approach (Lee et al., 2009) and used the

sampling time with thelowest bulk density to setthe mini-

mum reference soil mass. The SOC, POXC andtotalN

stocks of the other sampling times were accordingly

adjusted to an equivalent soil mass. For every soil layer

(i) the FD stock was calculated as:

where conc¡ is the concentration and M, the dry soil mass

ofthecorresponding layer. Then forevery soil layer the

surplus soil mass (M,q#d) was calculated:

where M,, „, is the equivalent or reference soil mass of

thecorresponding layer. The stocks of the first soil layer

(0—5 cm) were obtained by subtracting the surplus soil

mass times the concentration in 0—5 cm:

For the 5—10 cm layer ESM stocks were obtained by

adding the surplus stock of the 0—5 cm layer and deduct-

ing the surplus soil masses from 0-5 and 5-10 cm times

the concentration of the 5-10 cm layer:

Accordingly, the calculation was also done forthe10—

20 cm layer. At the end there remainsa soil mass that is

unaccounted and must bedropped to obtain an ESM.

We calculated stocks based on the ESM approach for

SOC, POXC and total N. We did not calculate stocks

for Cmic, Nmin and Nmic because we measured them

only inone depth (0—10 cm).

2.7 1 Data evaluation and statistics

2.7.1 I Field specific evaluation

The objective of this study was to assess the influence of

two cover cropping strategies on soil parameters. We thus

do not focus much on absolute values but rather on the

changes of these values over time. For SOC, POXC and
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total N, we subtracted the measured values of samplingto

from the values of sampling tt, t, and t, to obtaina

stock change forevery GPS-referenced sampling point

and sampling time t„to and t,. Since samples forCmic,

Nmin and Nmic were notG PS referenced, we sub-

tracted the mean ofsampling t„ from concentration

values of samplings t„t2 andt. These changes relative

to samplingto showed forall dataa normal distribution

or could be transformed to fulfil the requirement of

normality with log(x), sqrt(x) or 1/x. Since we had an

unequal sample size, we used the Levene's-test to

check forequal variances. To detect significant differ-

ences in changes between treatments a Welch two-

sample r-test was applied for every field and sampling

time separately.

To test the changes over time within one treatment

we applieda multiple pairwise comparison usinga paired

i-test for the GPS referenced samples (SOC, POXC, total

N). When thedifferent sampling times of the samples of

batch two (Cmic, Nmin andNmic) were combined per

field, the data often could not be transformed toa normal

distribution. For these samples we therefore used the

non-parametric Kruskal—Wallis test followed bya Dunn's

post hoc test to detect significant changes over time

within one treatment. For both, the multiple I-test as well

as the Dunn's test, we used the Holm method tocorrect

for multiple pairwise comparisons.

2.7.2 Statistics across fields

To test the treatment influence in different soil depths,

we took the changes in SOC, POXC andtotal N between

th and t3 forfield A, B, C and D and applieda general

mixed model with treatment and soil depth as fixed fac-

tors and field as random factor.

We related the changes between› and I, to the fall

cover crop input and the changes between t, and t, to

the spring cover crop input to analyse the relationship

between C inputs and changes in SOC, POXC and

Cmic aswell asN inputs and changes in total N, Nmin

and Nmic. For this analysis we only considered the

data from the DCC plots since the PSC plots did not

have any above ground input. For fieldC and D, we

added the fertilizerC and N input to the spring cover

crop input.

All analyses were performed inR version 4.0.3

(R Core Team, 2020). The spectral datasets were ana-

lysed using the R-package simplerspec (Baumann, 2019)

in combination with the packages prospectr (Stevens&

Ramirez-Lopez, 2tJ2(I) and caret (Kuhn, 2tJ2(I). In the

figures and in the text means and standard errors are

presented.

3 1 RESULTS

3.1 Cover crop performance

Cover crop above ground biomass showed large differences

between the six fields in the DCC treatment In Figures2

and 3, fields are therefore ordered according to total cover

crop biomass in the DCC treatment (fall and spring)

whereby field A had the highest (716g m°
2
) andfieldF the

lowest (102g m°
2
) cover crop biomass produced in the

entire duration of the trial. The cover cropC content ranged

between 387a and 427a and theN content between 1.87 and

3.1*i. All figures that show changes in the selected parame-

ters also indicate the cover cropC orN inputs foreach field.

3.2 I Changes in soilC fractions (SOC,

POXC, Cmic)

Soi1 organic carbon stocks ranged ftorn 4,2 + 0.1 (Field E)

to 8.2 + 0.2 kg m
2

(Field F) at th and on each field, the

changes over time in 0—20 cm soil depth were quite similar

between theDCC and PSC treatment (Figure 2a). The only

significant difference between treatments was observed on

fieldF for t, where thePSC treatment showed significantly

higher increases in SOC stocks than the DCC treatment.

On every field we determined significant differences in

SOC stocks over time in at least one treatment. At the end

of the nine-month trial, the maximum increase in SOC

stocks over time in 0-20 cm soil depth was measured on

the PSC plot of field A with +0.46 * 0.06 kg m* The

maximum decrease in SOC stocks was measured on the

DCC plot on fieldE at t, (—0.35 * 0.05g m*
2
).Tn relative

terms, SOC stocks changed between —8.5 + 1.17 (DCC

field E, t ) and 8.3 + 1.0°/ (PSC field A, ) over the

monitoring period of9 months in0—20 cm soil depth.

At the start of the experiment (to). POXC stocks ran-

ged between lBl +8 g m°
2

(Field E) and 225 + 8 g m

(Field C) and onlya few differences between PSC and

DCC treatment were measured over time (Figure 2b).

The DCC treatment exceeded the PSC treatment signifi-

cantly on fieldC atto and on fieldD at t, (Figure 2b). On

the other hand, the PSC treatment on fieldF showed sig-

nificantly higher changes in POXC stocks than the DCC

treatment at tt. On all fields, the POXC stocks in the

DCC treatment were significantly higher at the last sam-

pling time than at th. For the PSC treatment, only on

field B, the POXC didnotsignificantly increase during

the trial while all other fields showed significantly higher

POXC stocks at the last sampling time compared to tp.

The maximum significant increase in POXC stocks over

time was + 18.9 + 2.1g m*’ (PSC field F, ). which cor-

responds toa relative increase of +10.4 * 1.27r.
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MicrobialC ranged from 184 +3 mg kg* (Field B) to

502 7 mg kg*’ atg and increased over time reaching

highest values in all treatments at the last sampling time

(Figure 2c). On fields C, D and F, microbialC was at least at

one sampling time significantly higher in the DCC than in

PSC treatment. At the end of the trial on field C, D and F

the changes in Cmic in theDCC plots exceeded the PSC

plots significantly by 85 + 23, 97 27 and 123 + 29 mg kg°’

which corresponds to a relative increase of +l7.8 + 4.5,

+33.6 + 9.3and+ 49.f› * 11.57 compared top,.

3.3 I Changes in soil N fractions (total N,

NminandNmic)

SoilN stocks ranged from 496 z i9g m°
2

(Field E) to

734 + 6 g m°
2

(Field C) at t„ and the development of

total N stocks over time was very distinct on the differ-

ent fields and did not showa clear pattern. Only attwo

time points significant differences in changes of totalN

stocks (0-20 cm) between the two treatments were

observed (tt on fieldD and F; Figure 3a). Compared

to t„, totalN stocks varied between—7.6 + 1.17 (PSC

field E,to) and 7.3* 1.09 (PSC field F, tt).

Mineral N ranged from 55 *7 mg kg ' to

112 +5 mg kg°’ at tt and showed on most fields a

higher increase in the DCC treatment. On fields A, B,D

and F we observed at least at one sampling time signifi-

cantly higher Nmin changes in the DCC treatment with

highest differences in spring (t,) where the Nmin

changes in the DCC plots of fields A,B and D exceeded the

changes in the PSC plots by+ 19 + 10, +11 + 9 and + lfl +

6 mg kg°' (Figure 3b). On all fields Nmin decreased from 5,

› ‹ after winter between —21 + 179a (PSC plot field C)

and — 77 ñ 109a (DCC plot field E) compared to . The

ratio between nitrate-N and ammonium-N didnotshowa

treatment effect but varied substantially over time and was

forall fields highest in fall at¢ or ti (between9 and 15)and

lowest in spring atto•r t, (between 0.5 and 6; Figure S.1 in

the Supplementary Material).

Similar to Nmin, Nmic showed similarly large differ-

ences between treatments at several time points on all

fields except fieldE (Figure 3c). Highest differences were

measureda‹ ‹3 where changes in the DCC plots signifi-

cantly exceeded the changes in the PSC plot on field B,C

and D by +25 + 15, +29 + 7 and + 25 + 8 mg kg* . This

corresponds to percental increases of +63 * 29, +l02 * 12

and+ 97+ Bit in Nmic compared to tp for fields B, C

and D, respectively.

3.4 I Changes inSOC, POXC andtotal N

in diRerent soil depths

During theexperimental periml of9 months, SOC, POXC

and total N generally showed an increasing trend, yet

depth-specific differences (Figure 4, fields A-D only). In

particular, the 5—10 cm depth segment always showed the

highest increases, compared tothe0—5 cm and the10—20 cm

depth segments (Figure 4). In 5—10 cm soil depth, the PSC

treatment showed significantly higher increases in SOC

(but not POXC or total N) than the DCC treatment

‹p —— 0.026). On the other hand, in depth 0—5 cm the DCC

treatment showed significantly higher increases in POXC

stockstp —— 0.037) compared to the PSC treatment. The

absolute stocks for SOC, POXC andtotalN per depth seg-

ment and sampling time can be seen in Table S4 in the

Supplementary Material. The same analysis applied on

concentrations instead of stocks obtained the same results

(see Figure S.2 in the Supplementary Material).

3.5 1 Relationship betweenC and N

input by double cover cropping and soil

C and N fractions

There was a significant linear relationship between above

ground cover crop plus fertilizerC or N input by the two

cover crop incorporations in the DCC treatment and

changes in Cmic or Nmic (Figure 5). Parameters SOC,

POXC, total N and Nmin didnotshowa significant relation-

ship with above groundC orN inputs (data not shown).

4 DIS CUSSIO N

Cover crop growth on the six fields showeda high vari-

ability and reflects the difficulties to predict nitrogen

dynamics under organic farming conditions with no min-

eralN fertilization. All cover crops were grown without

F I fiU R E 2 Changes insoil organicC stocks (SOC, 0—20 cm, a), permanganate oxidizableC stocks(POXC, 0—20 cm, b)and microbial

biomassC (Cmic. 0-10 cm. c)over time relative to sampling p„which is listed for each field in the subplots. For every field A—F. theabove

ground cover cropC input in the double cover cropping (DCC) treatment is given in the title. W ithin each field, significant dit'ferences

between treatments were tested witha t-test and are indicated with thecodes: *** < 0.001, ** <0.01,* < 0.05. Significant changes over time

within each treatment are indicated with letters for both treatments separately and were tested witha paired r-test for SOC and POXC and

witha Kruskal—Wallis test for Cmic. Error bars represent standard errors,
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F I G U RE 3 Changes intotal N stocks (0-2D cm, a), mineralN (Ninin, ß—10 cm, b) and microbial biomassN (Nmic, 0—10 cm, c)over

time relative to sampling tt, which is listed for each field in the subplots. For every field A—F, theabove ground cover crop N input in the

double cover cropping (DCC) plot is given in the title. Within each field, significant differences between treatments were tested witha f-test

and are indicated with thecodes: ••• < 0.001, ** <0.01,• < 0.05. Significant changes over time within each treatment are indicated with

letters for both treatments separately and were tested witha paired i-test for totalN and witha Kruskal—Wallis-test forNmin andNmic.

Error bars represent standard errors.
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F I I›U R E .> Correlation of organicC andN inputs (cover crop+ fertilization) with changes in microbial biomassC (Cmic, a)andN

(Nmic, b) in thedouble cover cropping treatment. Changes arccalculated for the covcr crop incorporation in fall (between sampling and

t t) and in spring (between sampling t, and t,).

any starter fertilization which resulted in poor cover crop

growth on fieldsE and F with lowest initial Nmin con-

centration (Figure 3c). Despite the variability, the follow-

ing general trends were observed between and within the

two cover cropping strategies.

4.1 I High short-term temporal

variability

We observed significant differences between thetwo cover

cropping strategies in Cmic, Nmin andNmic atmultiple

time points, but only atvery rare occasions in SOC, POXC

andtotalN in 0—20 cm soil depth (Figures2 and 3). Due

to the high spatial and temporal variability, SOC, POXC

andtotal N did not show consistent effects that could be

attributed to cover crop management or above ground

biomass input. However, we determineda few significant

but non-consistent changes over time for SOC and total

N. Changes in SOC stocks in 0-20 cm soil depth ranged

between —0.38 * 0.05 kg m*
2
and 0.46 * 0.06 kg m*

2

inboth treatments established during the9 months cover

cropping period. This latter number is much larger than

the estimated annualC sequestration potential of cover
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cropping of 0.02 to 0.06 kg
—2 I

in the latest literature

(Jian et a1., 2020; Mc Clelland et al., 2021; Poeplau &

Don, 2015). The difference may be explained by the fact

that we looked here into the immediate changes in SOC

that is induced by different cover cropping methods, while

the cited meta-analyses only considered SOC changes from

longer-term trials. Therefore, short-term changes should

not be used to deduce long-term C-sequestration rates.

Nevertheless, the relative changes in SOC stocks between

q and other sampling times ranging between —8.5 * 1.lbs

and 8.3 + l.0‹/ agree with a study reporting SOC to

vary up to 1s*7 around the annual mean (Wuest, 2014).

The temporal variability of totalN {be tween —7.6 + 1.lbs

and 7.3 1.09) was very similar to the one of SOC. This

is plausible, because both parameters are strongly con-

nected with soil organic matter dynamics. We can confirm

our first hypothesis because for the full sampled soil depth

(0-20 cm), we did not measure consistent differences

between the two treatments. On the other hand, POXC

showeda consistent and significant increase in most fields

and time points and both treatments over time (Figure 2b).

The maximum changes in POXC stocks between two sam-

pling dates were 18.9 + 2.l g m*° which corresponds toa

concentration change of +72.7 + 8.1 mg kg*' (assumed

bulk density = 1.3g cm*’) were in the same range as the

maximum changes of POXC concentrations in Lucas and

Weil (2(J2l) aftera two-year cover cropping period. How-

ever, ina soil depth of0—20 cm we did not observe consis-

tent treatment effects on POXC, which does not confirm

our second hypothesis of higher POXC stocks in the DCC

treatment due toabove ground biomass input.

4.2 I Relating changes in soilC fractions

withC input

The maximum above groundC input of both cover crops

in the DCC treatment of around 3oog m
2

(field A) was

in the same range as the maximum changes in SOC stocks

and around 15 times higher than the maximal changes in

POXC stocks (Figure 2a,b). We did not find any relation-

ship between above ground biomassC input and SOC or

POXC stock changes. ThiS suggests that mostC input by

incorporated cover crops was quickly used by Soil microor-

ganisms as also indicated by the strong relationship

betweenC inputs of cover crop biomass and changes in

Cmic (Figure 5). The consistent increase in POXC stocks

with cover cropping was also observed by Burke et al.

(2(119) and was probably related to active cover crop root

growth and not toabove ground biomass input.

POXC is often seen asa sensitive indicator for agri-

cultural management and changes in POXC aresome-

times considered as an indicator for changes in SOC

(Bongiorno ct a1., 2019; Jagadamma et al., 2019). 'be

found significant linear relationships between SOC and

POXC concentrations (0.23ñ R
2
ñ 0.b5,p < 0.001) on

every field (Figure 6o) and for fields B, C,D and E alsoa

significant positive relationship between changes in

POXC and SOC stocks (0.11 <R
2
<0.59, p < 0.001;

Figure 6b). However, the relationship between changes

in POXC andSOC stocks is relatively weak indicating

that in the short-term these two C fractions can react

quite independent from one another.

4.3 I Differences between treatments in

different soil depths

Taking the fields Cth four sampling times (A—D) together

we found significantly higher changes in SOC, POXC in

5-10 cm soil depth compared to0-5 cm soil depth in both

treatments (Figure 4). We see three potential mechanisms

that might explain why the highest increase in SOC

was measured forboth treatments in 5—10 cm and not in

0—5 cm depth. First, the 0—5 cm soil depth was also the layer

that was intensively tilled in fall and spring for the DCC

and only in spring for the PSC treatment. Despite the shal-

low tillage depth of around3 cm, one must be aware thata

rotary tiller isa very intensive tillage method since it cuts

the cover crop plants below ground witha speed of around

500 revolutions per minute and therefore potentially broke

soil aggregates (Li et al., 2023) which could have led toC

loss due to increased microbial respiration. This intensive

tillage in the 0—5 cm soil depth eras likelya main driver

why, despite higher organic matter input, lower accu-

mulation rates of SOC and POXC were observed than

in the below layer of 5—10 cm soil depth. A second

explanation might be that the lowerC saturation in the

5—10 cm layer fosteredC accumulation more compared

to the top 0—5 cm where SOC concentrations were

already higher. Thirdly, and in relation to that, dissolved

organicC (DOC) might have leached from the topsoil

and absorbed in the 5—10 cm layer.

Looking at each depth segment separately, we also

found significant treatment effects for SOC and POXC: in

thePSC treatment, we found significant higher increases

in SOC stocks in 5—10 cm depth but significantly lower

increases in POXC in0—5cm depth compared to the

DCC treatment. The higher increase of SOC in the PSC

treatment in 5-10 cm soil depth can be explained by pos-

sibly higher below groundC inputs in the PSC compared

to theDCC plot. Literature values demonstrated that the

cover crop species in the PSC treatment (mainly peren-

nial ryegrass and clovers) had higher root/shoot ratio

than most other cover crop species that were present in

the mixtures of the DCC treatment (Hu et al„ 201b).

 Part II: Research papers  

37 
 



S
O
C

c
o
n
c
e
n
t
r
a
t
i
o
n
(
g
k
g

')

C
h
a
n
g
e

in
S
O
C

s
t
o
c
i
s
(
k
g
m
2
)

"°
F

II LEY

° (a)

0 d 06 0 8 10

POXC concentration (g kg *)

1 2

”' (b)

-20 0 20

ChangeI n POXC stocks (g m *)

40

F I I›U R E It (a) Scatter plot of’ soil organicC (SOC, 0-20 cm) and permanganate oxidizableC (POXC, 0—20 cm) witha regression for each field.

(b) Scatter plot of changes in SOC and POXC stocks witha regression for cach field (if significant). Significant codes: *** < 0.DU, ** <0.01,* < 0.05.

Additionally, since there was only one cover crop mixture

sown inthePSC treatment the root system hada longer

time to develop than in the DCC treatment and root bio-

mass is considered to be more important than above

ground biomass for stabilizing soil organic matter

(Balesdent et al„ 2017; Ghafoor et al., 2017), The signifi-

cantly higher increase in POXC in0—5cm depth in the

DCC compared tothePSC treatment is probably related

to the increase in microbial biomass. As can be seen in

Figure 7, Cmic is stronger related to POXC than SOC and

we think that the significant treatment difference in

POXC inthetopsoil (0—5 cm) is related to the stronger

increase in microbial biomass and potentially microbial

necromass in theDCC treatment.

4.4 MicrobialC

In general, among theanalysed C-fractions, Cmic was

most sensitive to the two treatments (Figure 2c). On three

fields (C—F) we found significantly higher changes in

Cmic fortheDCC than the PSC treatment, which con-

firms our third hypothesis that the above ground biomass

input increases Cmic. Above ground plantC inpuI was

linearly correlated with Cmic (Figure 5a) suggesting that

the incorporated plant material had a large effect on

Cmic (fi’ = 0.6). Besides cover cropC input, also tillage

could have triggered soil microbial activity. In fall at tt

when theDCC plots were shallowly tilled and the PSC

plot were not, we observed significantly higher increases

in Cmic on fields C and D in the DCC treatment

compared to the PSC treatment. These differences

between treatments on fieldC and D became even more

pronounced inspring (t3J when both plots were tilled the

same way, Increases in Cmic in spring might be

explained by the combination of labile C-inputs and ris-

ing temperatures. Other studies also saw an increase in

Cmic of277a to 409a due to cover cropping which is in the

range of our results (18% to 50%; Kim et a1., 2020;

Muhammad etal., 2021). Unlike the cited literature, we

found these increases in microbial biomass ina single

cover cropping period which suggests that bringing labile

organic material directly into the biologically most active

soil layer (shallow incorporation) led to an immediate

response of microorganisms. However, on fields A and B,

we did not seea significant difference in changes inCmic

between the DCC and the PSC treatment even though

these fields had highest amount ofabove ground cover

crop input. The beneficial effects of the DCC treatment

on Cmic could in the long-term lead to an increase in

SOC and POXC stocks since labile organic matter input

leads to microbial products that forma bigpart of stable

soil organic matter as it is proposed by the microbial

ediciency-matrix stabilization (MEMS) framework’

(Cotrufo et al., 2013; Robertson etal., 2019).

4.5 Mineral and microbial N

The two labileN fractions, Nmin andNmic showed more

pronounced treatment effects than Cmic (Figure 3). For

both parameters we measured on four fields higher
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increases in the DCC than inthePSC plot which confirms

our third hypothesis. Despite their similar treatment

effects, Nmin andNmic showed an opposite development

over time. Nmin decreased on most fields whereas Nmic

increased on most fields. The decrease in Nmin by21"/ to

77% was ina similar range as in other cover crop studies

(Kramberger et al., 2009; Mohammed etal., 2020; Zhou

etal., 2020) and can be explained by four possible mecha-

nisms: uptake through growing plants, leaching into dee-

per soil layer or ground water, microbial immobilization,

and gaseous N losses. We found on all fields, irrespective

of the treatment, lowest Nmin values at sampling time t,

after winter and since plant growth and microbial activity

is low during winter, it is very probable that despite the

cover crops some N was lost through leaching. This

assumption is supported by the decreased ratio between

nitrate-N and ammonium-N after winter since mainly

nitrate is susceptible to leaching (Figure S.1 in the Supple-

mentaiy Material). The increase in Nmic canbeexplained

by cover cropN input and immobilization of already pre-

sent Nmin inthesoil. Though, we didnot finda quantita-

tive relationship between the decrease in Nmin andthe

increase in Nmic. During cover crop biomass decomposi-

tion, gaseousN losses (N O) may playa crucial role

(Baggs et al., 2000; Carter ct al., 2014), but are quantity-

wise often in much lower ranges (Skinner et a1., 2019).

However, since we observed higher changes in Nmin and

Nmic intheDCC plot compared to the PSC plot, we

assume that at least some oftheabove ground plant bio-

mass N stayed within the plant-soil-microbial system.

Since Nmic is not available for plants, one cannot expect

an immediate fertilization effect (Kramberger et al., 2009;

Nevins et al., 2021), moreover thecrop might not meet its

N demand (Thorup-Kristensen et al., 2003). Research deal-

ing with thebenefits of cover cropping on N management

mainly focuses on Nmin (White et al., 2017), while the

dynamics of immobilisedN (Nmic) in cover cropping sys-

tems is still understudied. Late incorporation time, as in

this study, favours immobilization over mineralization of

cover cropN input (Andersen& Jensen, 2tl0l; Wyland

etal., 1995) but we cannot make anyassumption if and

when this immobilised N may become plant available for

the following crop.

5 I SU M MARYANDCO NCL USION

Thewidespread implementation of different cover crop-

ping strategies requires information on their effects on

soil organic matter dynamics for optimal management

decisions. By assessing these dynamics in close spatial

and temporal resolution for two cover cropping strategies

duringa nine-month period, we saw a high variability

over time and between the sixexperimental sites. For

SOC, totalN and POXC we didnotobserve clear differ-

ences between strategies in 0-20 soil depth. When con-

sidering different soil depth segments, we observed that

the strategy of PSC had significantly higher increases in

SOC in 5—10 cm soil depth. The strategy of DCC showed

instead significantly higher increases in POXC stocks in
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0—5 cm soil depth. For the labile fractions Nmin, Cmic

and Nmic, we observed generally higher increases in the

DCC treatment, but these effects have not been observed

consistently on all experimental fields.

We therefore conclude that the above ground biomass

input in the DCC strategy was more beneficial for soil

microbiology and Nmin, but thePSC strategy was more

beneficial for shon-term changes in SOC stocks. We

hypothesize that the longer soil cover in the PSC treatment

was aCcompanied by increased root growth and therefore

higher below groundC inputs which seemed to be more

important forSOC stocks than above ground biomass input.

To find explanations for the effects of different cover crop-

ping systems on SOC dynamics inmore depth we therefore

highly recommend toalso measaze belowgroundC inputs.
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Abstract. Conventional laboratory analysis of soil properties is often expensive and requires much time if vari-

ous soil properties are to be measured. Visual and near-infrared (vis—NIR) spectroscopy offersa complementary

and cost-efficient way to gaina wide variety of soil information at high spatial and temporal resolutions. Yet,

applying vis—NIR spectroscopy requires confidence in the prediction accuracy of the infrared models. In this

study, we used soil data from sixagricultural fields in eastern Switzerland and calibrated (i) field-specific (local)

models and (ii) general models (combining all fields) for soil organic carbon (SOC), permanganate oxidizable

carbon (POXC), total nitrogen (N), total carbon (C) and pH using partial least-squares regression. The 30 local

models showeda ratio of performance to deviation (RPD) between 1.14 and 5.27, and the root mean square

errors (RMSE) were between 1.07 and 2.43g kg°l for SOC, between 0.03 and 0.07g kg°' forPOXC, between

0.09 and 0.14g kg I fortotal N, between 1.29 and 2.63g kg ' for total C, and between 0.04 and 0. 19 for pH.

Two fields with high carbonate content and poor correlation between thetarget properties were responsible for

six local models witha low performance (RPD < 2). Analysis of variable importance in projection, as well as of

correlations between spectral variables and target soil properties, confirmed that high carbonate content masked

absorption features for SOC. Field sites with low carbonate content can be combined with general models with

onlya limited loss in prediction accuracy compared tothefield-specific models. On theother hand, forfields with

high carbonate contents, the prediction accuracy substantially decreased in general models. Whether thecom-

bination of soils with high carbonate contents in one prediction model leads to satisfying prediction accuracies

needs further investigation.

1 Introduction

The application of spectroscopy in the visible and near-

infrared (vis—NIR) range is increasing in soil science and re-

lated disciplines, with the main objective being to gain infor-

mation on the soil properties of more samples at lower costs

than with conventional laboratory methods. Witha larger

sample size, the spatial or temporal resolution can be in-

creased, which allows conclusions about the within-field or

within-farm variability but might potentially also increase the

statistical power in agricultural experiments (Greenberg et

al., 2022). Despite its tendency tobe less accurate compared

to mid-infrared (MIR) spectroscopy, vis—NIR spectroscopy

is widely applied because of less sample preparation,

costs and generally easier portability (Soriano-Disla

lower

et al.,

2014).

On-site vis—NIR measurements aretherefore feasible, but

laboratory measurements with dried and sieved soil sam-

ples have so far shown higher accuracy (Allory et al., 2019;

Hutengs eta1., 2019). In particular, soil properties related to

soil organic matter can be estimated appropriately by lab-

oratory vis—NIR spectroscopy (Angelopoulou et al., 2020).

In most cases, the focus is to provide soil information over

large areas (e.g., soil maps) wherea high sample number is

present and onlya moderate prediction accuracy is needed.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Hence, large-scale spectral libraries have been developed to

further reduce the need forwet chemistry data. Due to the

high complexity within spectral libraries, the application of

a general model toa local context leads to high prediction

errors. Recent research shows that the localization of these

infrared models substantially improves thepredictive perfor-

mance ina local context, for example by spiking (Brown,

2007; Li et a1., 2020; Ng et al., 2022; Seidel et al., 2019;

Wetterlind and Stenberg, 2010; Zhao etal., 2021), memory-

based learning (Ramirez-Lopez eta1., 2013), resampling al-

gorithms (Lobsey etal., 2017) or deep learning (Shen etal.,

2022). However, foranalyzing small-scale variability (field

or farm level),a local model is often still the best choice be-

cause of its low prediction errors. Theoretically, developing

local models is supported by the finding that, in the vis—NIR

range, spectral features that influence specific soil properties

vary strongly between different datasets, which makes highly

heterogenous large datasets prone to insufficient model per-

formance (Angelopoulou etal., 2020; Grunwald eta1., 2018).

The development of local spectral models hasthemain pur-

pose ofcoping witha large sample size at the local scale, but

such local models have no utility beyond theanalysis of the

specific local dataset.

Spectral vis—NIR models developed from local datasets

showeda very high variability in model performance, rang-

ing from excellent models (Breure et at., 2022; Seidel et al.,

2019) to those with relatively poor model performance fCa-

margo etal., 2022; Kuang andMouazen, 201l). The reasons

for these different performances of local models areunder-

studied and remain unclear. Among many different possible

modeling approaches, including support vector machine re-

gression, artificial neural networks, cubist and random forest,

partial least-squares regression (PLSR) is the most frequently

used model type tobuild spectral models with small datasets

(Alomar etal., 2021; Zhao eta1., 2021).

The number ofsamples is crucial for local models, often,

onlya limited number ofsamples with reference laboratory

data are available. Kuang and Mouazen (2012) showed that

local models improve with an increasing number ofcalibra-

tion samples and thata sample size of at least 50 provides ac-

curate prediction models. Some studies thus combined mul-

tiple target sites and developeda general model by combin-

ing all the local datasets to reacha larger sample size and

potentially better model performance (Kuang and Mouazen,

2011; Singh etal., 2022). In these studies, the general model

showed anintermediate performance, and thegeneral predic-

tion error was between thebest- and the poorest-performing

local model. However, these studies only calculated the over-

all prediction error of the general model; therefore, it is not

clear if the prediction for target sites with poorly perform-

ing local models could be improved by applyinga general

model.

For vis—NIR spectroscopy application at local scales, it is

therefore very difficult to estimate the measurement accu-

racy for the predicted samples beforehand. This uncertainty

SOIL, 10,231—249, 2024

is probably the main reason that hampers theapplication of

vis—NIR spectroscopy because researchers prefer to rely on

conventional lab measurements witha smaller sample size

(and smaller spatial resolution) where themeasurement ac-

curacy is known before sampling and measurements arecon-

ducted. Applying spectroscopy atthe field or farm scale thus

bears the risk that the measurement accuracy (RMSE) may

bebeyond thetolerable threshold, which might then bringa

whole project into question. Thus, in this paper, we analyze

the performance of field-specific (local) spectral models ofa

field experiment conducted in sixfields in eastern Switzer-

land and that ofa general model combining the data from

all six fields to ascertain their influencing factors. We ask the

following questions:

1. To what extent do the prediction errors of local spectral

models differ from thelabmeasurement error?

2. Doesa general model that includes several target sites

improve theprediction ona target site witha poor local-

model performance?

3. How do field and soil characteristics (e.g., field size, soil

texture, carbonate content, correlations of soil proper-

ties) of the target site relate to the performance of spec-

tral models?

By answering these questions, we want toprovide insights

into the estimations of prediction accuracies for vis—NIR

studies at the local scale, with the objective of supporting

decision-making during the development ofa sampling de-

sign and the planning of laboratory reference measurements

forsubsequent calibration modeling.

2 Methods

2.1 Datasets froma cover-cropping experiment atsix

field sites

We used datasets from sixfields (A, B, C, D, E, F) of a

cover-cropping experiment intheCanton ofThurgau, eastern

Switzerland (paper in preparation). The six fields were up to

13km apart from one another, and the soil type forall of them

was Eutric Cambisol that had developed on base moraine

(Table I). The aim of the study was tocompare theinfluence

of two different cover-cropping regimes on short-term soil

organic matter cycling. Each field had 39 differential-GPS

(dGPS)-referenced sampling points in an unaligned sam-

pling design. At each dGPS-referenced point, soil was sam-

pled three to four times at three depths (0-5, 5-10 and 10—

20cm) during one long cover-cropping period (August 2019

toMay 2020). Fields A, B,C andD had four sampling times,

resulting in 468 samples per field. FieldsE and F had three

sampling times, resulting in 351 samples per field. All sam-

ples were dried at 40 °C toa constant weight (around 72 h)

and then gently crushed and sieved to2 mm. For the to-

tal sample size of 2574 samples, soil properties were esti-

https://doi.org/10.5194/soil-10-231-2024
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mated using vis—NIR soil spectroscopy, whereas 386 sam-

ples were analyzed conventionally by wet chemistry forsub-

sequent calibration modeling. These 386 samples forlabora-

tory analysis were selected for each field separately using the

Kennard—Stones algorithm (Kennard and Stone, 1969) toen-

sure coverage of the whole spectral variability. Thereby, the

Kennard—Stones algorithm was run with two to seven prin-

cipal components, and thenumber ofprincipal components

was chosen such that it covered at least 99 to of the spectral

variance and provideda reference sample selection that rep-

resented well the different sampling times, soil depths and

spatial distributions. The laboratory analysis comprised soil

organicC (SOC), total C, total N, permanganate oxidizable

C (POXC) (also called active C) and pH.

2.2 Chemical soil analyses and its accuracy

TotalC and N concentrations were measured ona ground

aliquot by dry combustion (vario MICRO tube, Elemental,

Germany). InorganicC was analyzed foreach sample intrip-

licates through the dissolution of carbonate ina Scheibler ap-

paratus with 10 to HCI solution and the measurement of the

evolved COz volume. SOC was then calculated as the differ-

ence between totalC and the mean ofthethree measurements

forinorganic C. POXC wasmeasured according to the Pro-

tocol of Weil et a1. (2003), with the adaption of Lucas and

Weil (2012). In brief, 2.0 mL of 0.2 M KMn 4 was added to

2.5g of soil, and aftera reaction time of 10 min, the absorp-

tion of the liquid was measured at550 nm witha spectropho-

tometer (UV-1800, Shimadzu Corporation, Japan). The mea-

surement of pH was done ina 0.01 M CaClz solution.

To estimate the lab measurement error, we took three sam-

ples per field (in total 18) where we conducted the measure-

ments fortotal C, total N, POXC andpHintriplicates to cal-

culatea standard deviation. We estimated the lab measure-

ment error for SOC ( soc according to Eq. (1):

SOC — °To aIC + °I a c (1)

where T iic is the standard deviation of the totalC mea-

surement, and InorganicC is the standard error of the inor-

ganicC measurement because inorganicC measurements

were done for all samples in triplicates. The measurement

errors of all 18 triplicates were then averaged to obtain the

overall lab measurement error fora soil property.

To characterize the spatial variability of soil texture in

the field, we measured grain size for 20 samples per field

(every second sampling point in 10-20cm soil depth). Or-

ganic matter in the samples was oxidized with hydrogen

peroxide (HzOzl, andthen grain size was measured with

laser-diffraction analysis (LDA) after dispersion of the sam-

ple(22mM sodium carbonate and 18 mM sodium hexaphos-

phate) usinga Mastersizer 2000 (Malvern Panalytical, UK).

Since the LDA underestimates the clay content compared

to thestandard grain size methods (Taubner et al., 2009),

https://doi.org/10.5194/soiI-10-231-2024
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we measured one composite sample per field with the im-

proved integral suspension pressure method (ISP-|-; Durner

and Iden, 2021) ona PARIO Plus Soil Particle Analyzer

(METER Group, Germany andUSA). We rescaled the mean

sand, silt and clay content of the LDA data to the mean of

theIPS-|- method while keeping the coefficient of variation

constant (see Table S5 in theSupplement).

All samples were measured witha vis—NIR spectrometer

(ASD FieldSpec4 Hi-Res, Malvern Panalytical, USA) with

a sampling interval of 1.4 nm from 350 to 1000nm and

1.I nm from 1000 to 2500nm. The device then providesa

reflectance spectrum witha resolution of 1 nm and 2151

wavelengths. Measurements were done witha contact probe,

containing an internal halogen bulb, which was ina fixed

position, and soil samples, placed ina petri dish of 1.5cm

height and3 cm diameter, were lifted witha laboratory scis-

sor jack until coming into close contact with the probe to

ensurea stable measurement position. For each sample, five

petri dishes were filled to provide five replicate spectra per

sample. Each of these five replicates consisted of 50 inter-

nal repetitive scans that were automatically averaged by the

device's internal RS3 software. Between samples, the contact

probe was carefully cleaned with water and ethanol. After the

five replicates ofa sample, thecalibration of the spectrometer

was checked witha 100 to reflectance white reference panel

fspectralon, 12 x 12 cm, Labsphere, USA). The infrared data

of each sample were kept in two versions, once asreflectance

spectra, as provided by the spectrometer, and once as ab-

sorbance spectra using the log(I/ reflectance) transforma-

tion. Several pre-processing options and their combinations

were tested on both thereflectance and the absorbance spec-

tra: (a) resampling of the spectra in an interval from1 to

6 nm, (b)cutting of the beginning (350m00nm) ortheend

(2450-2500 nm) of the spectra, (c) first- or second-order

derivative, (d) Savitzky—Golay (SG) smoothing ina third-

order polynomial with window sizes ranging from5 to 51,

(e) gap segment derivative fGSD) with window widths be-

tween5 and 51 and segment sizes betweenI and 21,(f) stan-

dard normal variate (SNV) combined with GSD, and(g)SG

smoothing combined with multiplicative scatter correction

(MSC). Allapplied pre-processing techniques are frequently

used in soil spectroscopy and are well described in Ellinger

et al. (2019). The pre-processing techniques from (a) to (g)

led to around 100 meaningful combinations that were tested

in model building, and the final pre-processing option was

selected based on the smallest RMSE.
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Table 1. Description of the datasets of the six different fields A to F. All fields were classified as Eutric Cambisol developed on base moraine.

Soil texture was measured with the improved integral suspension pressure method (ISP+).

Field Coordinates

A 47°40‘58”N 08°45’54“E

B 47°40‘54” N, 08°46’05“E

C 47°38'01" N 08°57’02“E

D 47°38'43" N, 08°42’58“E

E 47°38'49" N, 08°43’06“E

F 47°34'22" N, 08°48’52“E

Elevation Area Mean soil texture

(m above sealevel) (ha) (sand/silt/clay) (to)

2.4 Development and evaluation of field-specific local

models

We used for all 50 local models (6 fields x5 properties)a

PLSR modeling approach (Wold et al., 1983). Model per-

formance was assessed using the statistics of the hold-out

folds of each five-times-repeated five-fold cross-validation

because it was evaluated asa robust method for smaller

datasets (Kuhn and Johnson, 2013; Molinaro et al., 2005).

To avoid model overfitting, we set the maximum oflatent

variables in the PLSR model to 12. For each number ofla-

tent variables (1, 2, ., 12) the dataset was randomly split

five times into five folds, of which four were used formodel

training, and the remaining fold was held out and used for

model validation. The RMSE (Eq. 2) of the hold-out samples

was averaged among thefive repeats, resulting ina cross-

validated RMSE pernumber of latent variables. The final

number of latent variables was then chosen according to

the “1-standard-error rule”, which means that, instead of di-

rectly choosing thenumber oflatent variables with thesmall-

est mean RMSE, themost parsimonious (fewer latent vari-

ables) model within1 standard error of the mean RMSE of

theoptimal model was selected (Hastie et al., 2017). The 1-

standard-error rule was also applied during optimization of

pre-processing to avoid model overfitting. The final model

was trained using all training data with an optimized number

oflatent variables.

A proper validation ofa spectral model is very crucial

and is particularly important in this study where soil was re-

peatedly sampled at different depths at the same GPS point.

To analyze the correlation among thesamples and definea

grouping factor for the cross-validation, we calculated the

mean Euclidean distance between all samples and compared

it with the mean distance (I) between samples at the same

GPS point but different depths, (2) between samples at the

same point and depth but different sampling times, and (3)

between samples at the same point but different depth and

sampling times (Fig.S I in the Supplement). Thereby, we

observed that the soil samples from the three different soil

depths sampled at the same GPS point at the same sam-

pling time hada substantially lower mean Euclidean distance

SOIL, 10,231—249, 2024

420 0.84 Sandy loam (50/29/21)

420 0.67 Sandy loam (44/35/20)

600 0.44 Sandy loam (27/35/38)

460 0.64 Clay loam (28/44/28)

460 1.05 Sandy loam (30/48/23)

380 0.3 Sandy loam (39/43/18)

Number ofsamples

Spectroscopy Wet chemistry

468 70

468 70

468 70

468 70

351 53

351 53

compared to the overall mean. Consequently, we grouped

thesamples from thesame GPS point at the same sampling

time and kept them inthesame fold to avoida too-optimistic

model evaluation during cross-validation.

Since we useda cross-validation approach at the field

scale, all models showeda very small bias (see Table 2). We

therefore do not discuss the bias in this paper and focus on

R2,RMSE andRPD (Eq. 3) for the evaluation and compar-

ison of different models. RMSEwascalculated according to

Eq. (2), where y, is the prediction of the spectral model for

sample i, and yi is the actual measured value for the same

sample inthelaboratory.

RMSE=
1

n Z'(›
_ 2

(2)

RPD compares theRMSE with the standard deviation (SD,

Eq. 3)of thedata:

RPD=
SD

RMSE‘

Forall model performance parameters(fi2,RMSEandRPD)

ofthecross-validation, we calculated the uncertainty with

the standard deviation of the prediction of the hold-out folds

across the five repetitions.

To classify the model performance, we combined the

RPD-based classifications of Chang etal. (2001) and Zhang

etat. (2018). We considered spectral models with RPD < 1.4

tobe poor, models with RPD between 1.4and2 tobe approx-

imate, models with RPD between2 and3 tobe accurate, and

models with RPD >3 to be excellent. Even though in spec-

troscopy projects relating to local extent the RMSE is the

most important model performance parameter, RPD is the

best parameter tocompare models ofdifferent scales. Model

metrics R 2, RMSE andRPD) mentioned in the text are

based on the cross-validation, and metrics for the model cal-

ibration in Table2 are specifically labeled as fi2,
1
, RMSE,ai

andRPD ,t.
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Table 2. Description of applied pre-processing and model performance ofthefinal chosen models usinga partial least-squares regression. The local models (fieldsA to F) were evaluated

with five-times-repeated 5-fold cross-validation, and the general models (all) were evaluated with five-times-repeated 10-fold cross-validation. Model metrics of cross-validation are

indicated as mean with the standard deviation across the repeats in brackets. RMSE refers to root mean square error, RPD refers to ratio of performance to deviation, Refl. refers to

reflectance, Abs. refers to absorbance, SG refers to Savitzky—Golay filter (m refers to order of derivative, in refers to window width), SNV refers to standard normal variate, GSD refers

to gap segment derivative (m refers to derivative, u' refers to window width,s refers to segment size), and MSC refers to multiplicative scatter correction.

Field

B

All

Property

SOC [gkg ']

POXC [gkg*']

A Total N [g kg°'

TotalC [g I

pH

Range of Pre-processing

wavelengths/

interval (nm)

410-2506/6 Abs.,

350-2500/2 Refl.,

] 370-2480/6 Refl.,

] 390-25(l0/4 Abs.,

4 10-25(l0/4 Abs.,

SOC [gkg*'] 360—2500/5 Abs.,

POXC [gkg*'] 360-2480/3 Abs.,

Total N [g kg"'] 360-2480/5 Abs.,

TotalC [gkg 370-2500/5 Abs.,

pH 350-2500/3 Abs.,

SOC [gkg°'] 370—2480/1 Abs.,

POXC [g kg°'] 370—2440/3 Refl.,

TotalN [g kg°'] 350—2460/4 Abs.,

TotalC [gkg°'] 350—2500/3 Refl.,

pH 390—2500/5 Abs.,

SOC [gkg°'] 390-2500/3 Abs.,

POXC [g kg°'] 390-2460/6 Refl.,

D Total N [g kg°'] 370-2500/4 Abs.,

TotalC [gkg*'] 350—2500/2 Refl.,

pH 350—2500/6 Refl.,

SOC [gkg*'] 350-2500/3 Abs.,

POXC [gkg*'] 350-2500/4 Abs.,

E Total N [g kg°'] 350—2500/3 Abs.,

TotalC [gkg°] 360-2500/3 Refl.,

pH 350—2500/4 Refl.,

SOC [gkg°'] 350—2500/3 Abs.,

POXC [gkg*'] 380-2500/2 Refl.,

Total N [gkg"'] 350-2506/3 Abs.,

TotalC [gkg*] 370-2500/6 Abs.,

pH 370-2500/4 Refl.,

SOC [g kg ']

POXC [gkg°']

TotalN [g kg*']

TotalC [gkg ']

pH

350—2500/3 Refl.,

350—2500/1 Refl.,

350—2500/4 Abs.,

350-2500/2 Abs.,

350-2500/3 Refl.,

SG (m = 1, w = 35)

SNV, GSD (m = 2, ie = 31,i = l)

SG (m = 1, = 21), MSC

SNV, GSD (m = 2, = 21, .t = 1)

SG (m = 1, z = 35)

SG (m = 2, w = 21), MSC

SG (m = 2, in = 21), MSC

SG (m = 2, = 21), MSC

SG (m = 2, in = 21), MSC

SG (m = 1, = 21), MSC

SNV, GSD (m = 1, w = 11,s = l)

SG (m = 2, = 21)

SG (m = 2, in = 21), MSC

SG (m = 1, > = 21), MSC

SG (m = 2, in = 21), MSC

SG (m = 1, w = 25)

GSD (m = 2, ir = 21,i = 21)

SG (m = 2, = 21)

SG (m = 1, ir = 21), MSC

SG (m = 1, w = 21), MSC

SG (m = 1, = 21), MSC

GSD (m = 2, w = 21,i = 2 l)

SG (m = 1, > = 21), MSC

SG (m = 1, w = 21), MSC

SG (m = 1, n' = 51)

SNV, GSD (m = 2, in = 5,s 1)

SG (m = 1, > = 21), MSC

SG (m = 2, = 11)

SNV, GSD (m = 2, = 5,s = l)

SG (m = 2, w = 21), MSC

Latent

variable

Calibration Cress -validation

g2 Bias RMSE RPD

Model

perfomiance

2 70 0.59 0.00 2.35 1.58 0.55 (0. 14) 0.01 (0.69) 2.43 (0.55) 1.50 (0.30) Approximate

7 70 0.81 0.00 0.05 2.28 0.64 (0. 17) 0.00 (0.02) 0.07 (0.01) 1.65 (0.41) Approximate

7 70 0.87 0.00 0. 11 2.77 0.79 (0.11) —0.01 (0.05) 0. 14 (0.03) 2.18 (0.61) Accurate

6 70 0.94 0.00 2.14 4.21 0.88 (0.09) 0.00 (0.84) 2.63 (0.66) 3.48 (1.41) Excellent

5 70 0.74 0.00 0.06 1.97 0.63 (0.21) 0.00 (0.03) 0.08 (0.02) 1.70 (0.60) Approximate

7 70 0.98 0.00 0.66 6.47 0.91(0.05) -0.04(0.37) 1.26(0.36) 3.46(1.12) Excellent

4 70 0.94 0.00 0.03 4.08 0.84(0.12) 0.00(0.02) 0.05(0.01) 2.60(0.74) Accurate

4 70 0.93 0.00 0.10 3.87 0.87(0.08) 0.00(0.04) 0.13(0.03) 2.85(0.92) Accurate

10 70 0.99 0.00 0.51 9.64 0.93(0.03) -0.05(0.40) 1.29(0.25) 3.65(0.84) Excellent

7 70 0.98 0.00 0.07 6.64 0.83(0.07) 0.00(0.06) 0.19(0.03) 2.46(0.51) Accurate

7 70 0.90 0.00 1.02 3.11 0.77(0.09) 0.03(0.46) 1.59(0.28) 2.05(0.46) Accurate

7 70 0.93 0.00 0.03 3.80 0.77(0.15) 0.00(0.01) 0.05(0.01) 2.30(0.81) Accurate

7 70 0.97 0.00 0.05 5.87 0.90(0.06) 0.00(0.03) 0.09(0.02) 3.22(0.97) Excellent

10 70 0.97 0.00 0.92 5.69 0.93(0.03) —0.07(0.34) 1.44(0.29) 3.74(0.98) Excellent

6 70 0.89 0.00 0.05 3.09 0.77(0.12) 0.00(0.03) 0.08(0.02) 2.00(0.59) Accurate

6 70 0.97 0.00 0.81 6.01 0.95(0.02) —0.01(0.35) 1.07(0.19) 4.74(1.23) Excellent

7 69 0.95 0.00 0.03 4.72 0.92(0.03) 0.00(0.01) 0.05(0.01) 3.47(0.65) Excellent

6 70 0.98 0.00 0.06 7.30 0.95(0.04) 0.01(0.03) 0.11(0.02) 4.66(1.16) Exzellent

6 70 0.97 0.00 1.15 5.44 0.93(0.03) 0.02(0.45) 1.61(0.39) 4.07(1.04) Excellent

9 70 0.99 0.00 0.06 9.79 0.95(0.02) 0.00(0.04) 0.13(0.03) 4.83(1.23) Excellent

3 53 o.82 0.00 1.25 2.35 o.79(0.li) —0.05(0.53) i.4o(0.42) 2.20(o.7o) A ufate

4 53 0.82 0.00 0.05 2.41 0.82(0.li) 0.00(0.02) 0.05(0.02) 2.33(0.69) Accurate

4 53 0.94 0.00 0.07 4.12 0.90(0.04) 0.00(0.03) 0.10(0.02) 3.10(0.57) Excellent

6 53 0.98 0.00 1.20 7.83 0.96 (0.03) 0.04 (0.56) 1.72 (0.51) 5.27 (1.85) Exzellent

7 53 0.98 0.00 0.10 7.15 0.95 (0.03) 0.01 (0.08) 0. 16 (0.05) 4.57 (1.91) Exzellent

4 53 0.66 0.00 1.59 1.73 0.5l (0. 18) 0.01 (0.72) 2.00 (0.38) 1.43 (0.39) Approximate

5 53 0.86 0.00 0.03 2.72 0.76 (0. 16) 0.00 (0.01) 0.03 (0.00) 1.96 (0.60) Approximate

5 53 0.92 0.00 0.06 3.47 0.83 (0. 10) 0.00 (0.04) 0.09 (0.02) 2.51 (0.84) Accurate

5 53 0.84 0.00 0.96 2.49 0.72 (0. 18) 0.01 (0.56) 1.29 (0.24) 1.82 (0.54) Accurate

i 53 0.23 0.00 0.04 i.i5 0.30 (0.20) 0.00 (0.02) 0.04 (0.0i) i. i4 (0.i9) P••

7 386 0.92 0.00 1.66 3.65 0.90(0.04) -0.02(0.39) 1.93(0.32) 3.21(0.57) Excellent

8 385 0.88 0.00 0.05 2.90 0.85(0.05) 0.00(0.01) 0.06(0.01) 2.60(0.43) Accurate

7 386 0.92 0.00 0.14 3.53 0.89(0.04) 0.00(0.03) 0.16(0.02) 3.06(0.46) Excellent

6 386 0.96 0.00 2.31 5.04 0.94(0.01) 0.00(0.53) 2.79(0.30) 4.16(0.47) Excellent

9 386 o.95 0.00 o.12 4.4o o.90(0.03) 0.00(0.02) 0.15(0.02) 3.34(o.59) Exceiient
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2.5 Development and evaluation of general models

Inaddition to the field-specific local models, we built general

models forthefive soil properties that included all reference

samples (n = 386) ofthe sixfields. Even though forthis sam-

plesize an independent test set would be more suitable than

a cross-validation approach, we evaluated the model perfor-

mance using the hold-out samples inthe five-times-repeated

10-fold cross-validation, keeping, as for the local models,

samples from the same GPS point and the same sampling

time in thesame fold. The first reason for not using an inde-

pendent validation set is that the modeling approach of the

general model should be similar to the one of the local mod-

elstomake them comparable. The second reason is thata

representative split of the dataset intoa calibration anda val-

idation set according to the spectral variability would notre-

sult in an equal number ofsamples per field in the validation

set. Conversely, if we selected an equal sample size per field

for the validation set, we would nothave been able to cover

the entire spectral variability. Evaluating the general mod-

elswith hold-out samples of the cross-validation allowed us

to calculate not only theRMSE over all samples but also the

RMSEforthesamples of each field individually. These field-

specific RMSE values of the general model could then be

compared with the RMSE values of the local models. Since

the only purpose of thegeneral models was toincrease mod-

eling efficiency fora specific combined dataset, we did not

group thesamples according to fields during cross-validation

because thesame share of samples from thesame field would

also be in the prediction dataset. For the general models, we

cannot indicate uncertainties ata field-specific level since the

folds did not always contain the same number ofsamples per

field.

2.6 Model interpretation

To interpret spectral models, it is crucial to find relevant

spectral features that are consistently important fora cer-

tain soil property. To identify the most important wavelength

ranges in the final chosen models, we used thevariable im-

portance in projection (VIP) method first published by Wold

etal. (1993) and evaluated by Chong andJun (2005). The

VIP method can deal with multicollinearity and is therefore

suitable for the interpretation of spectral models as it was,

forexample, applied by Baumann etal. (2021). Wavelengths

that have an above-average impact on themodel havea VIP

score above 1. We classified spectral ranges in groups of VIP

scores betweenI and 1.5, 1.5 and 2, and above 2.

2.7 Assessment ofsite characteristics influencing model

performance

To understand the reasons for the varying performance of

the 35 developed spectral models, we studied the influence

of various site characteristics on the models. To do so, we

correlated the model performance parameters(fi2,RPD and

SOIL, 10,231—249, 2024

RMSE) with field size, soil texture and carbonate content and

with the correlation coefficients between SOC and total N

in the dataset. With sixlocal datasets as independent vari-

ables it is hardly possible to apply statistical tests that could

potentially rejecta null hypothesis. Therefore, we relied on

the interpretation of graphs and Pearson's moment correla-

tion coefficients between soil properties and RMSE. Since

theRMSE values are estimates with uncertainties (standard

deviations; see Sect. 2.4), we useda Monte Carlo simula-

tion and reported the mean andstandard deviation of the cor-

relation coefficients after 1000 iterations. For the identified

site characteristics that showed thestrongest trends in terms

of model performance (carbonate content, correlation coef-

ficient between SOC and N and variability in clay content),

we looked forpossible explanations in the spectral features.

Thereby, we relied on the VIP analysis of the trained models,

on the correlation coefficients between soil properties with

spectral variables and on the correlation matrices between

target variables.

2.8 Data organization

All analyses were performed inR version 4.0.3 (R Core

Team, 2020). The spectral datasets were analyzed using theR

package simplerspec version 0.2.0 (Baumann, 2019) incom-

bination with the packages prospectr version 0.2.1 (Stevens

and Ramirez-Lopez, 2020) and caret version 6.0-86 (Kuhn,

2020).

3 Results

3.1 Description of the datasets

A comparison of thedata distribution between thesixdiffer-

ent fields can be seen inFig. 1, and the corresponding statis-

tics can be seen in Table SI in the Supplement. The means

forSOC, totalN and POXC differed between thesixfields,

but the distribution was relatively similar for these three soil

properties. The density functions for totalC and pH were

highly influenced by the spatial distribution of carbonate in

the soil: fields B, D and E contain samples with and with-

out carbonate, resulting ina broad distribution for both total

C and pH. All soil samples of fields A and C contained car-

bonate in varying concentrations, resulting ina broad distri-

bution for totalC but a narrow distribution for pH. FieldF

showed high and only slightly varying carbonate content and

thereforea very narrow distribution for totalC and pH. Field

C had highest mean clay content, and field A had the high-

est mean sand content, whereas fieldF showed thehighest

variability in soil texture.

3.2 Performance ofspectral models

Based on RPD, 15 outof30 local models showed an ex-

cellent performance (RPD > 3),I I models an accurate per-

https://doi.org/10.5194/soil-10-231-2024
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Figure 1. Density plots of the reference samples for the five target properties (SOC, total C, total N, POXC andpH)andinorganic C. Fields

A toD each contained 70 samples, and fieldsE and F each contained 53 samples. Soil texture was analyzed in 20 samples per field.

formance (RPD > 2),5 models an approximate performance

(RPD > 1.4), and 1 modela poor performance (RPD > 1.4;

Table 2). The six models without accurate performance were

SOC, POXCandpHinfields A and F.

However, the RMSE values of the local models forpH

of fields A (0.08 -£0.02; mean -£- standard deviation) and F

(0.04 -I- 0.01) were similar to or smaller than the RMSE

oftheother three local models (between 0.08 0.€J2 and

0. 19 A 0.03) whose performances were classified as ac-

curate. Differently, the local models for SOC in fields

A and F with only approximate performance showeda

higher RMSE (2.43 -l- 0.55 and 2.00 -l- 0.38g kg*1) than the

other accurately performing local models forSOC (between

1.07 0.19 and 1.59 - 0.28g kg 1).The five general models

all showed an accurate to excellent performance, with RPD

values ranging from 2.60 0.43 to 4. 16 -l- 0.47.

3.3 Influence of pre-processing on spectral variability

For all 35 models, pre-processing improved themodels com-

pared to the raw spectra (see an example of pre-processing

optimization for totalC in Table S2 in the Supplement).

https://doi.org/10.5194/soil-10-231-2024

Although pre-processing was necessary for all models, we

highlight that several pre-processing options performed sim-

ilarly well within1 standard deviation, and the differences in

RMSE were often relatively small (see Table S2 in the Sup-

plement). Figure S2 in the Supplement gives an overview of

thebest-performing pre-processing techniques. Most times,

the first- or second-order derivatives improved the models

substantially. Most models performed best when thespec-

tra were reduced to every third wavelength and when mod-

elsbased on absorbance werea bit more frequently used

than models based on reflectance. The combined applica-

tion of SG filter and MSC was the most successful pre-

processing, whilea single SG filter, GSD and SNV in com-

bination with GSD were of minor importance. Cutting of

the beginning (350W00) orend ofthespectra (2450-2500)

sometimes improved themodel performance, but since most

pre-processing steps reduce the beginning and end of the

spectra, it was not possible to evaluate the cutting. Similarly,

it was not possible to evaluate the window width chosen in

theSG filter because there is an interference with theresam-

pling interval. A detailed list of the selected pre-processing

SOIL, 10,231—249, 2024
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options of the final models and thecorresponding metrics for

model performance can be found inTable 2.

The sensitivity of model performance to pre-processing

can be visualized with the biplots of principal component

analysis (PCA). Figure2 shows thefirst three biplots of the

raw spectra and the spectra that were pre-processed accord-

ing to the general models of the five soil properties. The

raw spectra had a very high share of the explained vari-

ance (96.8 to) for the first principal component but hardly

any groups according to fields could be observed with the

first two principal components. All pre-processing options

used forthegeneral models decreased theexplained variance

for the first principal component (32.5 la to 39.6 to), and a

grouping according to fields could already be seen in the bi-

plot of the first two principal components. Thereby, in par-

ticular, fieldF (with the highest carbonate content) and field

C (with the highest clay content) often showed clear groups.

Nevertheless, in the pre-processing for pH, fieldE (with the

highest pH variability) showsa clear group inthefirst biplot,

and the pH variability is well represented with the first PC.

3.4 Comparison ofgeneral models with local models

and labmeasurement error

The overall cross-validated model metrics of the general

model (filled black circle in Fig. 3) indicateda good per-

formance over all fields for all soil properties, but the field-

specific model evaluation showed distinct differences among

fields. The field-specific fi2 of the general models offields B,

C,D and E was similar to the fi2 of the local model forSOC,

total C, total N and POXC (onlya slight slope in Fig. 3). For

pH, only fields C, D and E showed similar fi2 in the local

and general models, while fields A, B and F showed clearly

higher fi2 in the local model. On the other hand, fieldF had

clearly lower fi2 in the general model than inthelocal model

forall soil properties except POXC. Forfield A, fi2 was simi-

lar between thelocal and the general models forSOC, totalC

and POXCbutclearly lower fortotal N and pH in the general

model.

The field-specific RPD of the general model was, on aver-

age, 31 to lower across all soil properties compared tothelo-

cal models (Fig. 3). All property—field combinations of fields

B, C,D and F showed atleast an approximate (RPD > 1.4)

performance inthegeneral models, whereas theseven poorly

(RPD < 1.4) performing property field combinations were all

from fieldsA and F. It can therefore be concluded that the

general models could not improve thelow-performing local

models.

Field-specific RMSE ofthegeneral models was, on av-

erage, 47 to higher compared to the local models. How-

ever, there were substantial differences between thedifferent

fields. For field F, the field-specific RMSE values in the gen-

eral models forSOC, total C, total N and pH (2.58g kg°'

0.17g kg*I and 0.09) were much higher compared tothose

of the local model (2.00 -£0.38g kg°', 0.09 A 0.02g kg '

SOIL, 10,231—249, 2024

and 0.04 -+- 0.01, respectively; Fig. 3). Similarly, for total

N and pH, field A had a much higher RMSE inthegen-

eral model (0.22 and 0.14g kg°') than in the local model

(0.14 0.03 and 0.08 0.02). On the other hand, fieldsC

and E showed quite similar RMSE values in the local and in

the general model forall soil properties except total C.

The RMSE values of the best local models were close

to the overall lab measurement errors for SOC, totalC and

total N, a bit higher for pH, and substantially higher for

POXC (Fig. 3). The RMSE values of SOC for fields B

(1.26 0.36g kg°') andD (l .07 -+- 0.19g kg I) were within

the standard deviation of the lab measurement error for SOC

(1.01 0.40g kg°'). The overall lab measurement error for

SOC was calculated from themeasurement error for totalC

and inorganic C; therefore. for fieldsB and D, with only

a little inorganic C, the lab measurement error for totalC

(0.83 0.25g kg°') might be thebetter reference. However,

theRMSEofthelocal spectral models of all fields exceeded

theoverall lab measurement errors between factors of 1.1 and

2.4 for SOC, 1.6and3.2fortotal C, 1.3 and 2.0 for total N,

2.3 and 4.3 for POXC, andbetween 3.4and 17.8 for pH. The

field-specific RMSEofthegeneral model exceeded theover-

all lab measurement error between factors of 1.3 and 2.3 for

SOC, 2.2and5.2fortotal C, 1.5 and 3.2 for total N, 2.8 and

4.6 for POXC, andbetween 8.3and 19.9 for pH.

The VIP scores (Fig. 4) show that the most important

wavelengths were dataset specific. It can be seen that in

fieldB and, toa lower extent, in field F, the same wave-

lengths were important in all soil properties related to soil

organic matter (SOC, total C, totalN and POXC), whereas

intheother fields, the VIP patterns of the different properties

were more distinct from each other. However, forall the ana-

lyzed soil properties, the wavelength ranges between 400 and

750 nm (visible), as well as between 1800 and 2450nm, were

most important, while therange inbetween was oflower im-

portance. Nevertheless, some models had VIP scores above

2 intherange between 750 and 1800nm.

Prediction performance interms ofRMSE andRPDofto-

talC for fieldsE and F was particularly lower in the gen-

eral model than in the local model (Fig. 3). This finding can

be explained with the VIP analysis (Fig. 4) that showed for

thegeneral model that the most important wavelength range

was between 2150 and 2450nm, while for the local mod-

elsoffieldsE and F, it was in the range of 500 to 1020 nm.

The local model fortotal N of fieldF showed very high

VIP scores (> 2) ina small specific range between 2345 and

2369nm, but these wavelengths were not important in the

general model fortotal N (Fig. 4), which resulted ina much

lower prediction accuracy of total N for fieldF in the general

model compared tointhelocal model.

3.5 Site characteristics influencing model performance

We found an order of model performance with respect to

R 2 and RPD that is dependent on mean carbonate content,

https://doi.org/10.5194/soil-10-231-2024
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Figure 2.Biplots of principal component analysis with the first four principal components fortheraw spectra and the pre-processed spectra

according to the properties SOC, total C, total N, POXC andpH.Thepre-processing is indicated in the figure, and, except for total N, it was

conducted on reflectance spectra (SG refers to Savitzky—Golay filter (m refers to order of derivative, in refers to window width), SNV refers

to standard normal variate, GSD refers to gap segment derivative (m refers to derivative, in refers to window width,s refers to segment size),

and MSC refers to multiplicative scatter correction).
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Fig ure 3. fi
2
, ratio of performance to deviation (RPD) and root mean square error (RMSE) calculated from thelocal models and field-

specifically calculated from thegeneral model forthesixfields (A—F) and thefive soil properties (SOC, total C, total N, POXC andpH).

The error bars for the RMSE ofspectral models represent standard deviations across the repeats in the cross-validation. The overall RMSE

ofthegeneral model is indicated witha filled black circle and the label “All”. The RMSE values are compared with the error of the lab

measurements (mean standard error of 18 triplicates indicated with standard deviation).
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Figure 4. Variable importance in projection (VIP) for the local models offields A—F and the general model that combined the datasets of all

fields (All).

the correlation coefficient between SOC and total N, and

the coefficient of variation in clay content (Fig. 5). Fields

A andF which showed lower model performance interms of

RPD with higher carbonate content,a lower correlation co-

efficient between SOC and total N, and higher variability in

soil texture (compare also with density plots in Fig. l). How-

ever, in absolute prediction performance (RMSE), we only

found forSOC and pH substantial correlations (|r | > 0.46)

between RMSE andfield characteristics (Fig. 6). Compared

tothethree field characteristics mentioned above, we found

a weaker influence of the field size; the absolute contents of

sand, silt and clay; and/or thevariability in the carbonate con-

tent on model performance (see Fig. S3 in the Supplement).

The influence of carbonate content on the model perfor-

mance ofSOC is illustrated by plotting at each wavelength

the correlation coefficients between pre-processed spectral

https://doi.org/10.5194/soil-10-231-2024

variables and inorganicC and SOC content (Fig. 7). The cor-

relation between SOC and spectral variables was higher in

fields B, D and E than in fields A, C and F, which also ex-

plains the better model performance. In field A, SOC and

carbonate content showa very similar correlation with spec-

tral variables across the whole vis—NIR range, which makes

it difficult to distinguish organic and inorganicC in field A,

resulting in an excellent performance of totalC but much

lower performance for SOC (see Table 2). Even though the

correlation between spectral variables and SOC content in

fieldC was lower than in other fields (B, D and E), the

very different correlation pattern of carbonate content still

resulted in good model performance forSOC. Inparticular,

the ranges between 600 and 1200 nm and thepeaks at 1680

and 2240nm showed different spectral features for SOC and

carbonate, which corresponds to the high VIP scores at those

SOIL, 10,231—249, 2024
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Figure 5.B2 andratio of performance to deviation (RPD) from thelocal models for SOC, total C, total N, POXC andpHaggregated (mean

and standard error) per field (A—F) versus mean inorganicC content, Pearson's correlation coefficient between SOC and total N, and the

coefficient of variation (CV) in clay content. The error bars represent standard deviations across the repeats in the cross-validation.

wavelengths for the SOC model infield C. In field F, corre-

lations for both carbonate content and SOC were relatively

weak, whereby carbonate content showed stronger correla-

tions with spectral variables, which probably masked the

spectral features of SOC, resulting, as for field A, ina bet-

ter model fortotalC than SOC.

The better model performance in fields B, D and E com-

pared to in fields A, C and F also coincided witha higher

correlation between SOC and total N (Fig. 5). In general,

correlation coefficients between target variables tended to be

higher in fields B, D and E compared toinfields A, C and

F (see Fig.8 as an example and all correlation matrices in

Fig. S4 in the Supplement).

4 Discussion

4.1 Performance oflocal spectral models

Most of thedeveloped local models showed an accurate

performance and confirm the suitability of vis—NIR spec-

troscopy in projects of local or single-plot extent. The per-

formance (based on RPD) ofthetwomodels forpH infields

A and F, which were classified as only approximate or even

poor, respectively, can be explained by the low variability of

SOIL, 10,231—249, 2024

pH inthese datasets (see Fig. 1) and is supported by the fact

that these two models had thesmallest RMSE values for pH

(Fig. 3). This explanation does not hold for the other three

local models that were also classified as only approximate

because SOC and POXC infield A, as well as SOC in field

F, showeda similar variability compared tointheother fields

(Fig. 1) but higher RMSE values. However, considering the

mean SOC concentration in fields A (22.4 3.7g kg* I) and

F (28.6 -I- 2.7 g kg ') as well as the lab measurement er-

ror (1.00 -l- 0.04g kg*1), we argue that the RMSE values in

fields A (2.43 -£0.55g kg°') andF (2.00 0.38g kg 1) are

probably, for many research projects, still acceptable, espe-

cially when taking into account thata higher sample size can

be analyzed forthe same costs.

In agreement with literature (Soriano-Disla et a1., 2014),

primary properties witha direct impact inthevis—NIR range,

like SOC, total C, total N and POXC, showed an RMSE

that was closer to the lab measurement error. On the other

hand, pH has only an indirect impact on the spectra and thus

showeda much higher RMSE compared tothelabmeasure-

ment error. but the RMSE forpHinthelocal models (be-

tween 0.04 -+- 0.01 and 0. 19 A 0.03) is probably small enough

formost research purposes.

https://doi.org/10.5194/soil-10-231-2024
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Figure 6.Root mean square error (RMSE) forthefive target properties (SOC, total C, total N, POXC andpH)andeach field (A—F) versus

mean inorganicC content, Pearson's correlation coefficient between SOC and total N, and the coefficient of variation (CV) inclay content.

The error bars represent standard deviations across the repeats in the cross-validation. Pearson's correlation coefficients are indicated as the

mean andstandard deviation (in parentheses) ofa Monte Carlo simulation.

4.2 Comparison ofgeneral models with local models

The general models could not improve theprediction of low-

performing local models. This finding is especially interest-

ing because, in this study, the general model was built with

datasets of six fields that were spatially close to one another

(maximal distance of 13 km) and that had the same soil type

https://doi.org/10.5194/soil-10-231-2024

and the same parent material. However, thebase moraine as

a parent material can be variable, which we mainly observed

in different soil textures and carbonate contents but also in

the high spectral variability (see PCA biplots in Fig. 2). In

this sense, we confirm theconclusions of Seidel et al. (2019)

and Ng et a1. (2022), who suggested that the best solution is
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Figure7. Correlation graphs between spectral variables at each wavelength and SOC, aswell as inorganic C, for the combined dataset (AII)

and the individual fields (A—F). The spectra were pre-processed according to the chosen models for SOC.

always to developa local model if enough samples (> 30)

are available. This conclusion is supported in this study by

the quite distinctive pattern of VIP scores between the dif-

ferent models (Fig. 4). The overall picture shows that the

wavelengths between 2000 and 2450nm followed by the

visible range between 400 and 700 nm were most impor-

tant for prediction of the investigated properties, which is in

agreement with the literature (Munnaf and Mouazen, 2022;

Soriano-Disla et al., 2014). Nevertheless, each local model

has distinct and site-specific features that could not be at-

SOIL, 10,231—249, 2024

tributed to specific soil characteristics while being impor-

tant for the model development. The development of gen-

eral models where different locations are aggregated in one

dataset can save costs because the number of labanalyses

per location can be reduced, and less work is required for

model building. Depending on theresearch purpose and the

required measurement accuracy, the development of general

models can bea very suitable and cost-effective approach.

Nevertheless, this study showed that some fields (A and F)

can showa poor performance in general models; hence, it is

https://doi.org/10.5194/soil-10-231-2024
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field with strong correlations (field B) between the target variables. The correlation matrices for all fields can be found in the Supplement

(Fig. S4).

crucial to consider what locations or datasets are being com-

bined.

4.3 Pre-processing

The selection of the optimal pre-processing scheme was

crucial for model performance but was strongly dependent

on the dataset. Often, MSC was the best performing pre-

processing option, which was confirmed in some studies

(Cambule etaI., 2012; Liu et al., 2019) butdisproved in oth-

ers (Knox etal., 2015; Riefolo et al., 2020). We therefore

highly recommend considering MSC asa pre-processing op-

tion in spectral modeling but at the same time agree with

Barra etal. (2021) that there is no general pre-processing so-

lution that works forall datasets. The principal component

analysis with the combined dataset of all fields (Fig. 2) il-

lustrates this finding by the different groupings of individ-

ual field datasets due to different pre-processing. This leads

to the conclusion that studies that did not optimize the pre-

processing scheme for every soil property separately did

eventually not make full use of the spectroscopy, which has

been shown by other studies as well (Alomar et al., 2021;

Rodriguez-Febereiro ei a1., 2022; Singh et a1., 2022). Nev-

ertheless, the property-specific optimization of spectral pre-

processing isa tedious process and constrains the fast and

cost-effective application of vis—NIR spectroscopy, but some

progress has recently been made byMishra etal. (2022).

4.4 Site characteristics influencing model performance

We found higher model performance in fields with low car-

bonate content, high correlations between soil properties and

low variability in clay content. We want todiscuss how these

identified important field characteristics influence or mask

spectral features.

https://doi.org/10.5194/soiI-10-231-2024

4.4.1 Mean carbonate content

We found an influence of carbonate content, with the low-

estperformance of local spectral models in fields A and F.

Similar observations were made byAmare etat. (2013) and

McCarty etal. (2tJ02), who argued that the absorbance bands

of carbonate mask those of SOC. Looking at the correlation

between spectral variables and inorganicC and SOC (Fig. 7),

we can confirm this finding but have toadd that, on the local

scale, the relative intensity of absorption bands forcarbon-

ate and SOC varied substantially between different datasets.

In this context, Reeves (2010), who showed that the spec-

trum ofa soil sample varied greatly with its carbonate con-

tent, considered the prediction of SOC in soils with high car-

bonate content to be one of the open questions in vis—NIR

spectroscopy research. An important point missing in this

discussion is the measurement accuracy of SOC in the lab-

oratory, which is strongly influenced by the presence of car-

bonate and the method used (Goidts et a1., 2009). Ifthe soil

samples contain carbonate, often two measurements must be

conducted, and SOC is calculated as the difference between

totalC and inorganic C. Especially witha high carbonate

content, the measurement error for the inorganicC content

can bea substantial share of the SOC content. The higher

lab measurement error with higher carbonate content might

bea possible explanation for the lower model performance

in soils with high carbonate content for SOC but not for the

other four soil properties where model performance (interms

of RPD) still tended tobe lower than in fields with little car-

bonate content (Fig. 5). This confirms the above-mentioned

observation of spectral interference between inorganicC and

organic matter and is additionally substantiated by the result

that most properties of fields A and F showeda poor per-

formance in the general models (Fig. 3). It is known that

SOIL, 10,231—249, 2024
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carbonate has many more defined peaks and less interfer-

ences with organic matter in the MIR than in the vis—NIR

(Reeves, 2010). Therefore, datasets that combine soil sam-

ples with high and low carbonate content might be better

predicted with MIR spectroscopy. However, while all sam-

ples of fieldF havea high carbonate content, fieldA shows

a broad range of carbonate contents, whereby themean car-

bonate content (7.l + 6.7g kg° ') is only slightly higher com-

pared to the other fields. We therefore hypothesize that the

lower performance of field A compared tofields A, B,C and

D might also have additional reasons besides the field char-

acteristics explored inthis study and requires more research.

The strong correlation between mean carbonate content and

RMSE (r = —0.68 -I- 0. 10; Fig. 6) can be explained by the

very low variability in pH in fields with high carbonate con-

tent. The narrow pH ranges in these fields consequently lead

to models forpH with low RMSE butalso low RPD (see

Fig. 5).

4.4.2 Correlations between target variables

Reflectance measured with vis—NIR spectroscopy isa com-

bined effect of all constituents present in the soil sample

(Stenberg et al., 2010), and through processing and model-

ing, one tries to distinguish the absorption feature of one spe-

cific soil property from theother constituents of the sample.

Apart from pH, all our target variables were closely related

to soil organic matter, which was, therefore, for this study,

the most important soil constituent influencing the absorp-

tion features. In the case of high correlations between target

variables that form part of soil organic matter, the modeling

is easier because the same absorption features can be used

formodeling thedifferent properties, which was thecase for

fieldB (see VIP analysis in Fig. 4). On the other hand,a low

correlation between target variables makes it more difficult

to relate absorption features of organic matter to specific soil

properties, which probably contributed to the lower model

performance of fields A,C and F compared tofields B,D and

E. The literature shows that different soil properties related to

soil organic matter (e.g., SOC and total N) can show different

absorption features in the vis—NIR range (Chang and Laird,

2002; Kusumo etal., 2019), which is also supported in our

study (see VIP analysis in Fig. 4). However, we argue that

prediction accuracy improves substantially if target variables

related to soil organic matter are well correlated with each

other, which was also hypothesized by Martin et al. (2002)

ina one location field study.

4.4.3 Variability of clay content

Unlike Stenberg etal. (2010) and Heinze etal. (2013), we did

not finda better model performance with increasing mean

clay content in the dataset, which might also be explained

by the relatively small range in mean clay contents of be-

tween 18 to (field F) and 38 to (field C). However, we ob-

SOIL, 10,231—249, 2024

served that fieldsA and F, with lower model performance,

also showeda higher variability in soil texture (see den-

sity plots in Fig. I). We hypothesize that this observation is

mainly an effect of our sampling design and the specific agri-

cultural management and is therefore not generalizable. Clay

and soil organic matter are claimed to be modeled witha

high success rate with vis—NIR spectroscopy since they have

strong absorption features (daS ilva-Sangoi et al., 2022). Un-

fortunately, soil texture was measured using different sam-

ples than the reference dataset for the spectral modeling, so

we cannot check forthecorrelation between soil texture and

target variables. However, inthis study, the correlation may

be relatively low for the following reason: we took samples

from different depths (0—5, 5-10 and 10-20 cm) within the

past tillage layer and therefore expect that the soil texture

is homogenized across the sampling depth. Since all fields

are now under organic reduced-tillage management, thethree

soil layers show quite distinct soil organic matter contents

(see Fig. S5 in the Supplement) but, very probably, similar

soil textures. Therefore,a high (horizontal) variability in soil

texture ina field (e.g., clay content) withouta strong correla-

tion to organic matter could have added “noise” to the spec-

trum, which worsened theprediction accuracy inour specific

sampling design. Nevertheless, in untilled soils or more dis-

tinct depth segments,a high variability in soil texture may

not bea disadvantage in vis—NIR modeling because it might

also be correlated with organic matter.

5 Conclusions

This study investigated the impact of site characteristics on

vis—NIR modeling performances and compareda local anda

general modeling approach. Among the35models, 29 per-

formed accurately or even excellently, whereby theRMSE

wasclose to the lab measurement error, and achieved predic-

tion accuracies are probably, for many research purposes, ac-

ceptable. The local models with thelowest performance were

all from fields A and F, and we found three field characteris-

tics in their datasets that interfered with model performance.

FieldsA andF had higher meancarbonate content, lower cor-

relation between target soil properties and higher variability

in soil texture compared totheother fields. The influence of

soil texture variability was mainly an issue in this specific

sampling design, whereas theinfluence of carbonate content

and correlation between soil properties can probably be gen-

eralized due to observed spectral features and VIP analysis.

Before startinga local vis—NIR project, testing for inorganic

C content can be done relatively easily, but it is almost im-

possible to know beforehand the correlations between dif-

ferent soil properties. One can only be aware of thecorrela-

tion issue and consider potential gradients of soil properties

while designing thesampling design, which is probably more

important and feasible in disturbed or agricultural soils than

in natural undisturbed soils. In terms of efficiency in data
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collection, we conclude that, ina region, several target sites

(or agricultural fields) with low carbonate contents can be

combined ina general model with onlya minor reduction in

model performance. A general model formultiple target sites

then also allows us to reduce the number of wet chemistry

analyses. Whether or not several target sites with high car-

bonate content can be combined inone general model using

vis—NIR spectroscopy isa question that requires further re-

search. However, since carbonates show fewer interferences

with organic matter in the MIR than in the vis—NIR spectral

range, soil samples from sites with high carbonate content

might be better predicted with MIR spectroscopy. Yet, the

application of laboratory vis—NIR spectroscopy in projects

of local extent provides the opportunity to increase the spatial

or temporal resolution ina sampling design cost effectively

with only minor decreases in measurement accuracy.

Gode and data availability. Data and R-codes are available on

a Zenodo repository (https://doi.org/10.5281/zenodo.10691694,

Oberholzer and Summerauer, 2024).

Supplement. The supplement related to this article is available

online at: https://doi.org/10.5194/soil-10-231-2024-supplement.

Author contributions. All the co-authors conceptualized the pa-

per. SO collected the data and conducted theanalysis with thehelp

of LS. SO wrote the original draft, and all the co-authors partici-

pated inthe writing and editing of the paper.

Gompeting interests. The contact author has declared that none

oftheauthors has any competing interests.

Disclaimer. Publisher's note: Copernicus Publications remains

neutral with regard to jurisdictional claims made inthetext, pub-

lished maps, institutional affiliations, or any other geographical rep-

resentation in this paper. While Copernicus Publications makes ev-

eryeffort to include appropriate place names, thefinal responsibility

lies with the authors.

Acknowledgements. The authors gratefully acknowledge

Daniela Fischer and Patrick Neuhaus fortheir engaged support

during the lab work. We also warmly thank Philipp Baumann for

sharing his knowledge about thehandling and modeling of spectral

data. Lastly, we would like to thank the two anonymous reviewers

for their detailed and very constructive comments and suggestions.

Financial support. This study was funded by the Land Systems

and Sustainable Land Management Group from theInstitute of Ge-

ography at the University Bern.

https://doi.org/10.5194/soil-10-231-2024

References

247

Review statement. This paper was edited by Kristof Van Oost

and reviewed by two anonymous referees.

Allory, V., Cambou, A., Moulin, P., Schwartz, C., Cannavo,

P., Vidal-Beaudet, L., and Barthes, B. G.: Quantification of

soil organic carbon stock in urban soils using visible and

near infrared reflectance spectroscopy (VNIRS) in situ or

in laboratory conditions, Sci. Total Environ., 686, 764—773,

https://doi.org/10.1016/j.scitotenv.2019.05.192, 2019.

Alomar, S., Mireei, S. A., Hemmat, A., Masoumi, A. A.,

and Khademi, H.: Comparison of Vis/SWNIR and NIR

spectrometers combined with different multivariate tech-

niques for estimating soil fertility parameters of calcare-

ous topsoil in an arid climate, Biosys. Eng., 201, 50—66,

https'//doi.org/10.1016/j.biosystemseng.2020.11.007, 2021.

Amare, T., Hergarten, C., Hurni, H., Wolfgramm, B., Yitaferu,

B., and Selassie, Y. G.: Prediction of Soil Organic Carbon for

Ethiopian Highlands Using Soil Spectroscopy, ISRN Soil Sci.,

2013, 720589, https://doi.org/10.1155/2013/720589, 2013.

Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D.' From

Laboratory to Proximal Sensing Spectroscopy for Soil Organic

Carbon Estimation — A Review, Sustainability-Basel, 12, 443,

https://doi.org/10.3390/su12020443, 2020.

Barra, I., Haefele, S. M., Sakrabani, R., and Kebede, F.: Soil

spectroscopy with the use of chemometrics, machine Iearn-

ing and pre-processing techniques in soil diagnosis: Recent ad-

vances — A review, Trac.-Trend. Anal. Chem., 135, 116166,

https://doi.org/10.1016/j.trac.2020.116166, 2021.

Baumann, P.: philipp-baumann/simp1erspec: Beta re-

lease simplerspec 0.1.0 for zenodo, Zenodo [code],

https'//doi.org/10.5281/zenodo.3303637, 2019.

Baumann, P., Lee, J., Frossard, E., Schönholzer, L. P., Diby, L.,

Hgaza, V. K.,Kiba, D. I., Sila, A., Sheperd, K., and Six, J.: Es-

timation of soil properties with mid-infrared soil spectroscopy

across yam production landscapes in West Africa, Soil, 7, 717—

731, https'//doi.org/10.5194/soil-7-717-2021, 2021.

Breure, T. S., Prout, J. M., Haefele, S. M., Milne, A. E., Han-

nam, J. A., Moreno-Rojas, S., and Corstanje, R.' Comparing the

effect of different sample conditions and spectral libraries on

the prediction accuracy of soil properties from near- and mid-

infrared spectra at the field-scale, Soil TiII. Res., 215, 105196,

https://doi.org/10.1016/j.still.2021.105196, 2022.

Brown, D. J.: Using a global VNIR soil-spectral library

for local soil characterization and landscape modeling in

a 2nd-order Uganda watershed, Geoderma, 140, 444—453,

https://doi.org/10.1016/j.geoderma.2007.04.021, 2007.

Camargo, L. A.,do Amaral, L. R.,dos Reis, A. A., Brasco, T. L.,

and Magalhaes, P. S. G.: Improving soil organic carbon map-

ping witha field-specific calibration approach through diffuse

reflectance spectroscopy and machine learning algorithms, Soil

Use Manage., 38, 292—303, https://doi.org/10.1111/sum.12775,

2022.

Cambule, A. H., Rossiter, D. G., Stoorvogel, J. J., and

Smaling, E. M. A.: Building a near infrared spectral li-

brary for soil organic carbon estimation in the Limpopo

National Park, Mozambique, Geoderma, 183, 41—48,

https'//doi.org/10.1016/j.geoderma.2012.03.011, 2012.

SOIL, 10,231—249, 2024

 Part II: Research papers  

61 
 



248 S.Oberholzer et al.: Best performances ofvisible—near-infrared models

Chang, C. W. and Laird, D. A.: Near-infrared reftectance spec-

troscopic analysis of soilC and N, Soil Sci., 167, 110—1 lò,

https://doi.org/10.1097/00010694-200202000-00003, 2002.

Chang, C. W., Laird, D. A., Mausbach, M. J., and Hurburgh, C.

R.:Near-infrared reflectance spectroscopy-principal components

regression analyses of soil properties, Soil Sci. Soc. Ann. J., 65,

480—490, https://doi.org/10.2l3ò/sssaj200l.652480a, 2001.

Chong, I. G. and Inn, C. H.: Performance of some

variable selection methods when multicollinearity is

present, Chemom. Intell. Lab. Syst., 78, 103—112,

https://doi.org/10.1016/j.chemo1ab.2004. 12.011, 2005.

da Silva-Sangoi, D. V., Horst, T. Z., Moura-Bueno, J. M., DaI-

molin, R. S. D., Sebem, E., Gebler, L., and Santos, M. D.:

Soil organic matter and clay predictions by laboratory spec-

troscopy: Data spatial correlation, Geoderma Reg., 28, e0048ò,

https://doi.org/10.1016/j.geodrs.2022.e00486, 2022.

Durner, W. and Iden, S. C.: The improved integral suspension

pressure method (ISP plus) for precise particle size analysis of

soil and sedimentary materials, Soil Till. Res., 213, 10508ó,

https://doi.org/10.1016/j.stiI1.2021.105086, 2021.

Ellinger, M., Merbach, I., Werban, U.,and Liess, M.: Error propa-

gation in spectrometric functions of soil organic carbon, Soil, 5,

275—288, https://doi.org/10.5194/soi1-5-275-2019, 2019.

Goidts, E., Van Wesemael, B., and Crucifix, M.: Magnitude and

sources of uncertainties in soil organic carbon (SOC) stock

assessments at various scales, Eur. J. Soil Sci., 60, 723—739,

https'//doi.org/10.1111/j.1365-2389.2009.01157.x, 2009.

Greenberg, I., Seidel, M., Vohland, M., Koch, H. J.,

and Ludwig, B.: Performance of in situ vs. labora-

tory mid-infrared soil spectroscopy using local and re-

gional calibration strategies, Geoderma, 409, 115614,

https://doi.org/10.1016/j.geoderma.2021.115614, 2022.

Grunwald, S., Yu, C. R., and Xiong, X.: Transferability and

Scalability of Soil Total Carbon Prediction Models in Florida,

USA, Pedosphere, 28, 856—872, https://doi.org/10.101d/s1002-

0t60(18)60048-7, 20t8.

Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of

statistical learning: data mining, inference, and prediction, Sec-

ond edition, corrected at 12th printing 2017, Springer series in

statistics, Springer, New York, NY, https://doi.org/10.1007/978-

0-387-84858-7, 2017.

Heinze, S., Vohland, M., Joergensen, R. G., and Ludwig, B.:

Usefulness of near-infrared spectroscopy for the prediction

of chemical and biological soil properties in different long-

term experiments, J. Plant Nutr. Soil Sci., 176, 520—528,

https://doi.org/10.1002/jp1n.201200483, 2013.

Hutengs, C., Seidel, M., Oertel, F., Ludwig, B., and Vohland,

M.: In situ and laboratory soil spectroscopy with portable

visible-to-near-infrared and mid-infrared instruments for the as-

sessment of organic carbon in soils, Geoderma, 355, 113900,

https://doi.org/10.1016/j.geoderma.2019.113900, 2019.

Kennard, R. W. and Stone, L. A.: Computer aided de-

sign of experiments, Technometrics, 11, 137—148,

https://doi.org/10.2307/1266770, 1969.

Knox, N. M., Grunwald, S., McDowell, M. L., Bruland,

G. L., Myers, D. B., and Harris, W. G.: Modelling

soil carbon fractions with visible near-infrared (VNIR) and

mid-infrared (MIR) spectroscopy, Geoderma, 239, 229—239,

https://doi.org/10.1016/j.geoderma.2014.10.019, 2015.

SOIL, 10,231—249, 2024

Kuang, B. and Mouazen, A. M.: Calibration of visible and

near infrared spectroscopy for soil analysis at the field scale

on three European farms, Eur. J. Soil Sci., 62, 629—636,

https://doi.org/10.1111/j.1365-2389.2011.01358.x, 2011.

Kuang, B. and Mouazen, A. M.: Influence of the number of sam-

ples on prediction error of visible and near infrared spectroscopy

of selected soil properties at the farm scale, Eur. J. Soil Sci.,

63, 421—429, https://doi.org/10.11l l/j.1365-2389.2012.01456.x,

2012.

Kuhn, M.: caret: Classification and Regression Training,R package

[code], https://doi.org/10.18637/jss.v028.i05, 2020.

Kuhn, M. and Johnson, K.: Applied predictive modeling, Springer,

New York, https://doi.org/10. 1007/978-1-4614-6849-3, 2013.

Kusumo, B. H., Sukartono, S., Bustan, B., and Purwanto, Y.

A.: Total nitrogen in rice paddy field independently predicted

from soil carbon using Near Infrared Reflectance Spectroscopy

(NIRS), 4th Annual Applied Science and Engineering Confer-

ence (AASEC), Univ Pendidikan Indonesia, Sch Postgraduate

Studies, Tech. Vocat. Educ. St., Bali, INDONESIA, IOPPublish-

ing, https://doi.org/10.1088/1742-6596/1402/2/022096, 2019.

Li, H. Y., Jia, S. Y., and Le, Z. C.: Prediction of Soil Organic Carbon

ina New Target Area by Near-Infrared Spectroscopy: Compar-

ison of the Effects of Spiking in Different Scale Soil Spectral

Libraries, Sensors, 20, 4357, https://doi.org/10.3390/s20164357,

2020.

Liu, S., Shen, H., Chen, S., Zhao, X., Biswas, A., Xiaolin, J.,

Shi, Z., and Fang, J.: Estimating forest soil organic carbon con-

tent using vis-NIR spectroscopy: Implications for large-scale

soil carbon spectroscopic assessment, Geoderma, 348, 37—44,

https://doi.org/10. 1016/j.geoderma.2019.04.003, 2019.

Lobsey, C. R., Viscarra Rossel, R. A., Roudier, P., and Hedley,

C. B.: rs-local data-mines information from spectral libraries

to improve local calibrations, Eur. J. Soil Sci., 68, 840—852,

https'//doi.org/10. 1111/ejss. 12490, 2017.

Lucas, S. T. and Weil, R. R.: Can a Labile Carbon Test

be Used to Predict Crop Responses to Improve Soil Or-

ganic Matter Management?, Agron. J., 104, 1160—1170,

https'//doi.org/10.2134/agronj20l 1.0415, 2012.

Martin, P. D., Malley, D. F., Manning, G., and Fuller, L.: Deter-

mination of soil organic carbon and nitrogen at the field level

using near-infrared spectroscopy, Can. J. Soil Sci., 82, 413—422,

https'//doi.org/10.4141/s01-054, 2002.

McCany, G.,Reeves, J., Reeves, V., Follett, R., and Kimble, J.: Mid-

Infrared and Near-Infrared Diffuse Reflectance Spectroscopy for

Soil Carbon Measurement, Soil Sci. Soc. Am. J., 66, 640—646,

https://doi.org/10.2136/sssaj2002.6400a, 2002.

Mishra, P., Roger, J. M., Marini, F., Biancolillo, A., and Rutledge,

D. N.: Pre-processing ensembles with response oriented sequen-

tial alternation calibration (PROSAC):A step towards ending the

pre-processing search and optimization quest for near-infrared

spectral modelling, Chemom. Intell. Lab. Syst., 222, 104497,

https://doi.org/10. 1016/j.chemolab.2022.104497, 2022.

Molinaro, A. M., Simon, R.,and Pfeiffer, R. M.: Prediction error es-

timation:a comparison of resampling methods, Bioinformatics,

21, 3301—3307, https://doi.org/10.1093/bioinformatics/bti499,

2005.

Munnaf, M. A. and Mouazen, A. M.: Removal of external in-

fluences from on-line vis-NIR spectra for predicting soil or-

https://doi.org/10.5194/soil-10-231-2024

62 
 



S. Oberholzer et al.: Best performances ofvisible—near-infrared models

ganic carbon using machine learning, Catena, 211, 106015,

https://doi.org/10.1016/j.catena.2022.106015, 2022.

Ng, W., Minasny, B.,Jones, E., and McBratney, A.: To spike or to

localize? Strategies to improve theprediction of local soil prop-

erties using regional spectral library, Geoderma, 406, 115501,

https://doi.org/10.1016/j.geoderma.2021.115501, 2022.

Oberholzer, S. and Summerauer, L.: Dataset and R-codes

for Publication: “Best performances of visible-near infrared

models in soils with little carbonate — a field study in

Switzerland” (Submission version) (v. 1.0), Zenodo [code],

https://doi.org/10.528 I/zenodo.10691694, 2024.

R Core Team: R: A Language and Environment forStatistical Com-

puting.R Foundation for Statistical Computing [code], https:

//www.R-project.org (last access: 25 February 2024), 2020.

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., De-

matte, J. A. M., and Scholten, T.: The spectrum-based

learner: A new local approach for modeling soil vis-

NIR spectra of complex datasets, Geoderma, 195, 268—279,

https://doi.org/10.1016/j.geoderma.2012.12.014, 2013.

Reeves, J. B.: Near- versus mid-infrared diffuse reflectance

spectroscopy for soil analysis emphasizing carbon

and laboratory versus on-site analysis: Where are we

and what needs to be done?, Geoderma, 158, 3—14,

https://doi.org/10.1016/j.geoderma.2009.04.005, 2010.

Riefolo, C., Castrignano, A., Colombo, C., Conforti, M., Rug-

gieri, S., Vitti, C., and Buttafuoco, G.: Investigation of soil

surface organic and inorganic carbon contents in a low-

intensity farming system using laboratory visible and near-

infrared spectroscopy, Arch. Agron. Soil Sci., 66, 1436—1448,

https://doi.org/10.1080/03650340.2019.1674446, 2020.

Rodriguez-Febereiro, M., Dafonte, J., Fandino, M., Cancela,

J. J., and Rodriguez-Perez, J. R.: Evaluation of Spec-

troscopy and Methodological Pre-Treatments to Estimate

Soi1 Nutrients in the Vineyard, Remote Sens., 14, 1326,

https://doi.org/10.3390/rsl406l326, 2022.

Seidel, M., Hutengs, C., Ludwig, B.,ThieIe-Bruhn, S., and Voh-

land, M.: Strategies for the efficient estimation of soil organic

carbon at the field scale with vis-NIR spectroscopy: Spectral

libraries and spiking vs. local calibrations, Geoderma, 354,

113856, https://doi.org/10.1016/j.geoderma.2019.07.014, 2019.

Shen, Z. F., Ramirez-Lopez, L., Behrens, T., Cui, L., Zhang,

M. X., Walden, L., Wetterlind, J., Shi, Z., Sudduth, K. A.,

Song, Y. Z., Catambay, K., and Rossel, R. A. V.: Deep trans-

fer learning of global spectra for local soil carbon moni-

toring, ISPRS J. Photogramm. Remote Sens., 188, 190—200,

https://doi.org/10.1016/j.isprsjprs.2022.04.009, 2022.

Singh, K., Aitkenhead, M., Fidelis, C., Yinil, D., Sanderson, T.,

Snoeck, D., and Field, D. J.: Optimization of spectral pre-

processing for estimating soil condition on small farms, Soi1

Use Manage., 38, 150—163, https://doi.org/10.1111/sum.12684,

2022.

https://doi.org/1 0.5194/soil-10-231-2024

249

Soriano-DisIa, J. M., Janik, L. J., Viscarra Rossel, R. A.,

Macdonald, L. M., and McLaughlin, M. J.: The Perfor-

mance of Visible, Near-, and Mid-Infrared Reflectance Spec-

troscopy for Prediction of Soil Physical, Chemical, and

Biological Properties, Appl. Spectrosc. Rev., 49, 139—186,

https://doi.org/10.1080/05704928.2013.811081, 2014.

Stenberg, B., Rossel, R. A. V., Mouazen, A. M., and Wetter-

lind, J.: Visible and near infrared spectroscopy in soil sci-

ence, edited by: Sparks, D. L., Adv. Agron., 107, 163—215,

https://doi.org/10. 1016/s0065-2113(10)07005-7, 2010.

Stevens, A. S. and Ramirez-Lopez, L.: An introduction to the

prospectr package,R package [code], https://cran.r-project.org/

web/packages/prospectr/vignettes/prospectr.html (last access: 25

February 2024), 2020.

Taubner, H., Roth, B., and Tippkotter, R.: Determination of soil

texture: Comparison ofthesedimentation method and thelaser-

diffraction analysis, J. Plant Nutr. Soil Sci., 172, 161 —171,

https://doi.org/10. 1002/jp1n.200800085, 2009.

Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., and Samson-

Liebig, S. E.: Estimating active carbon for soil quality assess-

ment:A simplified method forlaboratory and field use, Am.

J. Alternative Agr., 18, 3—17, https://www.jstor.org/stable/pdf/

44503242.pdf (last access: 25 February 2024), 2003.

Wetterlind, J. and Stenberg, B.: Near-infrared spectroscopy for

within-field soil characterization: small local calibrations com-

pared with national libraries spiked with local samples,

Eur. J. Soil Sci., 61, 823—843, https://doi.org/10.l l l l/j. 1365-

2389.2010.01283.x, 2010.

Wold, S., Martens, H., and Wold, H.: The multivariate cali-

bration problem in chemistry solved by the PLS method,

Matrix Pencils, Berlin, Heidelberg, Springer, 286—293,

https://doi.org/10.1007/BFb0062108, 1983.

Wold, S., Johansson, E., and Cocchi, M: PLS-partial least squares

projections to latent structures, in: 3D QSAR indrug design,

edited by: Kubinyi, H., Folkers, G., and Martin, Y., Escom, Lei-

den, 523—550, https://dot.org/10.1007/0-306-46858-1, 1993.

Zhang, L.,Yang, X. M., Drury, C., Chantigny, M., Gregorich, E.,

Miller, J., Bittman, S., Reynolds, W. D.,and Yang, J. Y.: Infrared

spectroscopy estimation methods forwater-dissolved carbon and

amino sugars in diverse Canadian agricultural soils, Can. J. Soil

Sci., 98, 484—499, https://doi.org/10.1139/cjss-2018-0027, 2018.

Zhao, D. X., Arshad, M., Wang, J., and Triantafilis, J.: Soil

exchangeable cations estimation using Vis-NIR spectroscopy

in different depths: Effects of multiple calibration mod-

els and spiking, Comput. Electron. Agric., 182, 105990,

https://doi.org/10.1016/j.compag.2021.105990, 2021.

SOIL, 10,231—249, 2024

 Part II: Research papers  

63 
 



Paper 3:Effective Microorganisms

Authors: Simon Oberholzer, Christa Herrmann, Natacha Bodenhausen, Hans-Martin Krause,

Adrien Mestrot, Chinwe Ifejika Speranza and Klaus A. Jarosch

Manuscript published in: Applied Soil Ecology, 2024, v. 197, p. 105358.

https://doi.org/https://doi.org/10.1016/i apsoil.2024.105358.

6464 
 

Paper 3: Effective Microorganisms 

 

Authors: Simon Oberholzer, Christa Herrmann, Natacha Bodenhausen, Hans-Martin Krause, 

Adrien Mestrot, Chinwe Ifejika Speranza and Klaus A. Jarosch 

Manuscript published in: Applied Soil Ecology, 2024, v. 197, p. 105358. 

https://doi.org/https://doi.org/10.1016/j.apsoil.2024.105358.

https://doi.org/https:/doi.org/10.1016/j.apsoil.2024.105358


ELSEVIER

Applied Soil Ecology 197 (2024) 106358

Contents lists available at ScienceDirect

Applied Soil Ecology

journal homepage: www.elsevier.com/Iocate/apsoil

No effect on biological or chemical soil properties when amended with

effective microorganisms forimproved cover crop decomposition

Simon Oberholzer
a
’*, Christa Herrmann

a
, Natacha Bodenhausen

b
, Hans-Martin Krause

b
,

Adrien Mestrot
a
'’, Chinwe Ifejika Speranza

a
, Klaus A. Jarosch

a
"'

d
*“

tnsâaite of Geography, Urnyersi ofBenn, Tiallerstrasse 12, 3OJ2 Benn, Switzerland

Depamnent ofSoil 5cieru•es, Resean:h Institute of Organic culture T'iBL, Ackeisn•asse 1 3, 5070 F'ric/Sw'iaerlariâ

Oeschger CenaeforClimax' Change Research, tfniversiiy oJ Benn, Switzerland

Agroscope, Agroecology and £nvironmeni, Aeckenholsstrosse 191, 8046 Zurich, Swimerland

A R T I C L E I N F O

Soil incubation

Metabarcoding

Soil respiration

Trace elements

Plant growth promoting rhizobacteria

Microbial biomass

1. Introduction

A B S T R A fiT

The implementation of cover crops intoa crop rotation can contribute toa more sustainable soil management.

For the improved decomposition of cover crop residues, the commercial inoculant Effective Microorganisms&

(EM) is increasingly applied. Despite its extensive application, comprehensive studies on the effect of EM

application on soil processes are lacking, since rarelya clean differentiation between an EM-effect (induced by

living EM directly) ora substrate effect (induced by the accompanying EM subsoate) is made. To determine the

potential effects of EM application after cover crop integration to soil we conducteda labincubation experiment

under spring-like conditions in temperate climates and applied EM either on bare soil or on cover crops prior to

soil incorporation at recommended and 100 times the recommended doses. Control groups included treatments

with no EM addition anda sterilised EM solution applied at 100 times the recommended dose. Overa monitoring

period of 28 days, the application of EM at the recommended dose showed no consistent effect on soil respiration,

microbial bound carbon or nitrogen, soil pH, permanganate oxidizable carbon orwater exoactable nutrients and

trace elements. Any observed effects in the treatment that received 100 times the recommended dose was

attributed to the substrate introduced with the EM solution rather than the living EM themselves. Amplicon

sequencing showed that certain EM taxa could be detected in soil at low abundance after EM application, but

only when EM were applied at 100 times the recommended dose. We conclude that the application of EM did not

producea discernible effect on soil biological or chemical properties, nor did it influence the decomposition

process of the cover crop.

Sustainable agroecosystems aim to maintaina high level of soil

fertility to minimize the external inputs. For that, periods of bare soil

should be avoided because they lead to nutrient losses, soil erosion and

loss in soil organic matter, leading toa decrease of soil fertility (Dar-

yanto etal., 2018). Cover crops bridge the break tirrie between two main

crops and are therefore a key element in soil fertility and nutrient

management (Thorup-Kristensen et a1., 2003). However, particularly in

organic farming systems with reduced tillage, where cover crops are

shallowly incorporated or left on the soil surface, the management of

cover crops faces major challenges. A fast decomposition of the

incorporated cover crop residues is crucial fora good seedbed prepa-

ration (Gollner et al., 2020; Vincent-Caboud et al., 2017). Yet, when

environmental conditions are cold and wet, as it often happens during

spring in temperate climates, the cover cropmaterial on the soil surfaces

often does not decompose properly but becomes slimy and malodorous.

This largely affects the seedbed preparation and the growth of the

subsequent crop. Ideally, most cover crop material should be decom-

posed tosmaller pieces within 10 days so that residues do not disturb the

sowing ofthesubsequent cash crop.

One increasingly used approach to accelerate the decomposition

process of freshly incorporated cover crop material is the use of micro-

bial inoculants. The most applied microbial inoculant with this purpose
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is Effective Microorganisms$ (EM),a product that was developed inthe

1980s and was trademarked by EMRO Japan (2023), The commercial

EM product consists ofa mix of up to 80 naturally occurring aerobic and

anaerobic microorganisms which coexist in a liquid culture (Higa,

1991). The exact composition is not made available by the producer, but

previous analyses have shown that EM solutions are mainly dominated

by lactic acid bacteria (lncto6nciSus plantanini, £actohacillus cosei,

Streptococcus lactis) and yeasts (Saccharomyces cerevisiae, Cnndidn utilir)

with smaller numbers of photosynthetic bacteria tRhodopseudomonas

palustris, Rhodobact:er sphaeroides), actinomycetes LStreptomyces ‹ribus,

Streptomyces griseus and fermenting fungi tAspergiltw oryzae,’ Ahn et al.,

2014; Xu, 2000). Similar to other plant growth promoting rhizobacteria

(PGPR), EM are applied to alter the soil microbial community towards

more favorable growing conditions for the crop (Gouda etal., 2018). In

practice the expectations of EM application are, among others, enhanced

soil fertility, higher crop yield and quality, higher nutrient use efficiency

of organic fertilizers and amendments, improved soil physical charac-

teristics, and better pathogen control (Balogun et al., 2016; Olle and

Williams, 2013), In the specific application of EM on cover crops before

shallow incorporation, farmers expect to accelerate the decomposition

process, improve nutrient cycling and soil organic matter formation (EM

Schweiz, 2023).

The suggested mechanisms how EM rnight influence the decompo-

sition of cover crop biomass or other organic matter in soil are derived

from analogies of food preservation and processing of kitchen wastes

through anaerobic fermentation widely practiced in Asia. For anaerobic

fermentation, it is of most importance that fermenting microorganisms

aredominant over putrefactive bacteria that might damage theproduct

and leadtomalodorous and potentially harmful metabolites (Rhee etal.,

2011; Wangetal., 2001). Putrefaction is associated with theemission of

ammonia, methane and nitrogen (N) oxides and occurs under atleast

partly anoxic conditions. Effective microorganisms are supposed to

avoid putrefaction in periods or locations of low oxygen availability and

shift the metabolic pathways towards fermentation and stabilization of

organic matter (Higa and Parr, 1994). Mostarabie soils are mainly under

oxic conditions, but anoxic microsites are always present inwell aerated

soils as well (Keiluweit et al., 2018; Keiluweit etal., 2017; Lacroix et al.,

2022). Accordingly, EM is proclaimed to benefit the decomposition of

organic matter even inwell aerated soil with rather oxic conditions (Hu

et al., 2018; Javaid, 2011). Lactic acidbacteria and yeasts, the dominant

groups intheEM consortia, are facultative anaerobic, meaning that they

can survive in an environment with oxygen and aretherefore also found

in natural soils (Lamont et al., 2017). The application of EM for

enhanced organic matter decomposition relies thus on the assumptions

that first the inoculated EM can establish themselves in the soil system

and second that they playa dominant role in the decomposition process.

Up to now onlya very limited number ofstudies surveyed the effect

of EM application on critical soil properties such as soil respiration

(Fatunbi and Ncube, 2009; Schenck zu Schweinsberg-Mickan and

Müller, 2009; Valarini et al., 2003) or nutrient availability (Hu et al.,

2018; Jusoh etal., 2013; Van Fan etal., 2018; Zhong etal., 2018). Other

studies suggest, but did not demonstrate that the enhanced decompo-

sition of organic matter via EM application could also lead to an

increased availability of micronutrients (Daur, 2016), ora reduction of

potential toxic trace elernents (PTTEs), (Zhou et al., 2020), Unfortu-

nately, many ofthestudies that tested EM failed in differentiating be-

tween i) the EM-effect (an effect that is induced by theactual living EM

in the inoculant) and ii) the substrate effect (an effect that is induced by

the nutrients, carbon sources and other compounds that is provided in

combination with the EM inociilant solution). By not differentiating

betweenthèse two effects, it is easy toreach misleading conclusions, yet,

the inclusion of thèse critical controls quickly increases the number of

necessary samples.

Given thelarge discrepancy between expectations and actual scien-

tific evidence on the actual effects of EM we conducteda labincubation

study to rigorously differentiate between EM induced effects and

2
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substrate induced effects on soil properties during cover crop decom-

position. The question whether or not the decomposition of freshly

incorporated cover crops can be positively influenced by EM application

hasa particular relevance, since the lack of adequate alternatives was

identified asa major challenge that hampers the practice of cover

cropping in organic reduced tillage systems (Vincent-Caboud et al.,

2017). To obtaina mechanistical understanding on the potential effec-

tiveness of EM application on soil processes we conducteda soil incu-

bation experiment mimicking spring-like field conditions in temperate

climates. Soils were incubated alone or in combination with cover crop

plant material and amended with typical or 100 times the typical

application dose. As control treatments, we sterilized the EM solution

prior to application to rigorously differentiate between an EM effect and

a substrate effect. We followed several soil biological and biochemical

soil properties over thecourse of 28 days todetermine any immediate or

mid-term effect o/ EM application to soil properties.

2. Methods

2. 1. Sampling and preparation of soii and cover crop t›iomoss

The soil and the cover crop biomass were sampled from an agricul-

tural field situated in the temperate climate zone in Diessenhofen,

Canton Thurgau, Switzerland at 414 m elevation. The farmer has been

practicing the shallow incorporation of cover crops with theapplication

of EM in the last five years and reported positive experiences with

respect to soil structure and crop yields. The samplingwas conducted on

5 May 2020 when thecover crop was well established and about tobe

shallowly incorporated. Approximately 200 soil cores (O—10 cm) were

taken randomly with an auger (2.5 cm diameter) on the field of 1.3 ha

size. The cover crop aboveground biomass was eut ina representative

50x 50 cm square on the same day. The sown cover crop was purchased

(Wintergrün, fiamena Samen, Germany) and contained5 frost tolerant

species: 62 % winter rye LSecale cereale L.), 26 % hungarian vetch (vicia

pnnnonicn CRANTZ.1, 10 % crimson clover (rrifolium incomanim L.1,1 %

winter oilseed rape (Brassica nppus L),1 % winter turnip rape LBrassica

rapa 1.). In our plant sample we only collected winter rye, hungarian

vetch, and crimson clover. The harvested and dried cover crop hada

carbon (C) concentration of 42.2 % anda CE ratio of 17.7.

The sampled soil (approx. 15 kg) was air dried at room temperature

forthree days before it could be sieved (2 mm). Remaining larger pieces

of organic material were removed manually. The collected cover crop

biomass was placed in the diying oven at40°C fora week andthen eut

into small pieces.

2.2. Effective microorgonisms$

For this experiment we applieda commercial EM product called

Rottelenker (EM Schweiz, Switzerland) that was specifically developed

to support the shallow incorporation of cover crops. The liquid was

purchased five days before the application to ensure original product

quality, EM Rottelenker is recommended forapplication when temper-

atures rise> 8 °C ina quantity of 100L ha ' and to be diluted with an

amount ofwater that suitsa proper and even application (EM Schweiz,

2023). In practice, that meansa dilution factor between1 and 10

depending on the application technique. To distinguish between the

effects of living EM and a pure-substrate effect, we ran a treatment with

sterilized EM. For the sterilized treatments, EM solution was taken from

theoriginal container one day before the start of the incubation and was

autoclaved twice at 121 °C for 20 min within 24 h. To test both, the

living status of the purchased EM solution as well as the sterilization, we

rana colonyforming unit analysis (CFU). For this, original and sterilized

EM liquid were plated on Trypticase Soy Broth (TSB) media and TSB

media amended with the fungicide cycloheximide, respectively, within

24h of the launch oftheincubation experiment. The dilution rows were

done infive steps froml to10*
5
with five replicates per sample and then
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the plates were incubated atroom temperature forthree days. The CFU

analysis showed that living microorganisms were present in the pur-

chased solution and that no living microorganism was present in the

sterilized EM solution on either of the two TSB media (for details see

Fig. SI in the supplementary material).

2.3. Experimentaldesî

We conducted the 28-day soil incubation experiment with the two

factors cover crop and EM-level. We chose the time span of 28 days to

capture the time between shallow cover crop incorporation and sowing

ofspring crop (around 10 days) aswell as the start of the spring crop. We

tested four different levels of EM- application: no EM (EMO), EM as

recommended in agricultural praxis (100L ha ; EMI), 100 times

higher quantity (EMI00), and 100 times higher quantity of sterilized EM

(EM100st). Ina fully orthogonal design, these four EM-levels were

combined with the factor cover crop resulting in four treatments with

cover crop input (CC-EMO, CC-EMI, CC-EMI00,CC-EMI00st) and four

treatments with no cover crop input and only EM application (NCC-

EMO, NCC-EMI, NCC-EMI00,NCC-EMI00st;l ig. 1). We imitated the

process in the field witha cover crop aboveground biomass of5 t ha '

anda topsoil (0—3 cm) bulk density of 1.3g cm
3
,which corresponds to

a cover crop biomass input of 12.82g dry matter per kg of soil. The EM

application of 100 L ha
l
corresponds to 0.256 mL perkg ofsoil for the

level EMI and accordingly 25.6 mL per kg soil for the EM 100 level

(1'able 2).

1.4. Soif incuboûon

Three days after soil sampling, the air-dried and sieved soil was

slightly rewetted toa gravimetric water content (GWC) of0.16g H2

g soil and then preincubated seven days before the start of the

experiment to re-establish basal respiration. Pre-incubation was con-

ducted at 16 °C and 80 % airhumidity to preventa peak ofmicrobial

respiration induced by the soil sieving before the onset of the

experiment.

The eight soil treatments were prepared on the start day of the in-

cubation (day 0). The pre-incubated soil was brought toa GWC of

approximately 0.2g HzO g
1

soil by gently spraying Milli-Q water on

top whilst constantly mixing the soil by hand wearing plastic gloves to

avoid any contamination. After that, the moist soil was separated into

sealable3 L plastic bags. The different levels of EM and cover crop

biomass were added whereby theEMO-level received the same amount

ofwater. Where cover crop biomass was added, the liquid was carefully

sprinkled onto the plant material before being added to the soil to

imitate the incorporation of cover crops as practiced in the field. Each

bag was then sealed, and the content carefully mixed by hand formul-

tiple minutes until a homogenous mixture was achieved and then

transferred to plastic beakers for the incubation experiment. The incu-

bation was conducted at12 ’C with 80 % airhumidity. The final GWC of

the incubated soil was 0.23g *z a ' soil which corresponded to64 %

of the maximum water holding capacity of the soil. Mixed soil samples

were split into three different groups forsoil respiration (separate glass

jars), POXC (separate corning tubes) while forall other analyses, 75g of

moist soil were placed in plastic beaker with four replicates per time

point (3)and treatment (8)and covered witha paper tissue to allow gas

Experimental Design

(2Factors)

Cover Crop

(2levels)

EM0

Cover Crop CC-EMO

No Cover NCC-EMO

Crop
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exchange but to avoid water loss within the incubator. These were

opened on therespective sampling date and the soil was split into the

different volumes and beakers for further analysis. Throughout thein-

cubation period no signs of dried aggregates on the soil surface could be

visually detected. An overview of the timeline and measurement in-

tervals can be found in Table SI in the supplementary material.

2.3. Assessment of biO!°8*!••!soil parometers

Soil respiration was measured according to the protocol of (Alef,

l99ñ). In brief, two small plastic cups were placed intol L sealable

glasses, where1 cupwouldhold 40g ofdry soil equivalent and the other

cup 10 mL of 0.2 M NaOH totrap produced COz. We used 36 sealable

glass jars (8 treatments* 4 replicates +4 blanks) and 13 time points

resulting in 478 measurements. At every measurement time point thejar

was opened and about4 mL (inexcess) ofl M BaC and few drops of

phenolphthaleinwere added totheNaOHsolution and then trappedC

was determined bya titration with 0.1 M HCI. Each mole ofdissolved

CO2 ledtotheproduction of2 mol ofH which neutralize2 mol of OH

according to formula 1:

MicrobialC (Cmic) andN (Nmic) were measured according to the

protocol of (\'ance et ‹il., 1987) with some adaptions. We weighed moist

soil equal to 10g dry matter and used 40 mL of 0.5 M Kz* 4 forthe

extraction. The dissolvedC and N in the extracts were measured witha

TOC-analyzer (DIMATOC+? 2100, DIMATEC Analysetechnik GmbH,

Germany). We report Cmic and Nmic aschloroform labileC and N did

not use any conversion factor to account for incomplète extraction

efficiency.

The analysis of the microbial community in theEM solution and

incubated soil was performed on treatments with cover crop addition

(CC-EM0, CC-EMI, CC-EMI00, CC-EMI00st) at day seven of the

experiment. For that, DNA was extracted from pure EM solution and

approximately 0.45g soil sample using the “NucleoSpin& 96 Soil” kit

(Macherey- Nagel, Düren, Germany) with lysis buffer SL2 and enhancer

SX following the manufacturer's instruction. Extracted DNA was quan-

tified fluorometrically with the plate reader Infinite M Nano+ (Tecan,

Maennedorf, Switzerland) and the Qubit dsDNA HS Assay Kit (Invi-

trogen by Thermo Fisher Scientific, Waltham, USA). The bacterial

community was characterized using 16S rRNA amplicon sequencing

usinga similar protocol as Lori et al. (2022). Briefly, primers 3l4F and

806R (l'reye t al., 2016) were used forthe first PCR with Kapa Sybr fast

qPCR kitMaster Mix (Kapa Biosystems, Wilmington, USA) and 200 nM

ofeach primer. Samples were used either undiluted, 1: 5, 1: 10 or 1:50,

depending on their concentration. The cycling program consisted of3

min initial denaturation at 95 ’C,38 cycles of 20s denaturation at 95 ’C,

20s annealing at 58 ‘C and 40s elongation at 72°C followed by 10 min

final elongation. Amplicons were purified with homemade magnetic

bead solution (SpeedBead Magnetic Carboxylate Modified Particles, GE

Healthcare) and visualized on agarose gel for validation. The second

PCR to barcode the samples and MiSeq sequencing were performed at

the Genome Quebec Innovation Center (Montreal, Canada).

The fungal community was characterized using ITS amplicon

sequencing with PacBio following Oodenhausen et ml. (2019). M13-

tagged primers ITSIF and ITS4 were used forthe first PCR with HiFi

EM-Level (4levels)

EM1

CC-EM1

NCC-EM1

EM100 EM 100st

CC-EM100 CC-EM100st

NCC-EM100 NCC-EM100st

Fig. 1. Experimental design with four EM levels and two cover crop levels.
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HotStart Ready Mix (Kapa Biosystems, Roche, Basel, Switzerland) and

300 nM of each primer. The first cycling program consisted of3 min

initial denaturation at 95 °C,25 cycles of 20s denaturation at 98 ‘C,20s

annealing at 60°C and 60s elongation at 72 °C followed by5 min final

elongation.3 ul of the first PCR was used as template forthe second PCR

reaction with Ml 3-tagged barcodes. The second cycling program was

similar as above except after the first two cycles, the annealing tem-

perature was increased to 65‘C andthetotal number ofcycles was 22.

After cleaning-up with homemade magnetic bead solution, PCR prod-

ucts were quantified NanoQuant (Tecan, Maennedorf, Switzerland) and

pooled in equimolar fashion. Negative controls were included and

sequenced with the other samples. The library was sequenced with

Pacbio at the Next Sequencing Platform of the University of Bern ona

Sequel II instrument according to their standard protocols. Raw se-

quences were deposited at NCBI Short Read Archive (PRJNAI026363).

MiSeq reads were demultiplexed by the sequencing facility. The

bioinformatics analysis of MiSeq data was performed on Scientifc

Computer Cluster Euler atthe ETH Zurich. Briefly, USEARCH vl1.0.667

(kdgar, 2013) was used to merge the reads and remove primer se-

quences. PRINSEQ-lite 0.20.4 was used to filter for quality (Sclrnieder

and Ld ii ,ords, 2011). After chimeral removal with UPARSE (idg‹u,

2013), reads were clustered into zero radius operational taxonomic units

(ZOTU) with UNOISE3 (Ldgar, 201 fi). ZOTU were further clustered at

97 % similarity with UPARSE (Edg‹ir, 2013). Finally, taxonomy was

assigned with SINTAX vl1.0.667 (Roliert, 201 fi) and the SILVA data-

base, SILVAI 38_RESCRIPt.fasta (Quest ct ‹it., 2013). The bioinformatics

analysis of PacBio data was similar except that lima 2.7.1 (https://1ini,i.

how) was used fordemultiplexing and the taxonomy assignment was

with the UNITE database, UNITE_v83 AllEukaryotes 10.05.2021.fasta

(Alaarenko ct at., 2010).

Relative shares of OTUs from thepure EM solution with> 50 counts

served as target EM taxa and were traced during the soil incubation.

2.6. Assessment of chemical parameters

To measure thedynamics ofeasily oxidizable carbon, we determined

permanganate oxidizable carbon (POXC) atseveral time points of the

incubation. For that,5 g of moist soil were putin50 mL corning tubes

covered witha paper tissue to allow forgas exchange but toavoid water

loss within the incubator. Four replicates per treatment and sampling

time point were prepared (n = 4*8*8 = 256) and when thesampling

date arrived, they were covered witha lidand frozen until analysis.

Afterwards, POXC wasthen measured inone run according to the pro-

tocol of Wei1 ct at. (2003) with 0.2M KMnO4 asreactant and absorption

measurement at550 nm with a Spectrophotometer(UV-l800, Shimadzu

corporation, Japan).

Water-soluble ions were measured by extracting soil equivalent to8

g dry soil from thecollective beakers with40 mL ofMilli-Q waterforone

hour on day 0, 7, 14 and 28. These samples were centrifuged (3000 rpm

for15 min) and5 mL of the supernatant was syringe filtered (hydro-

philic, 0.45 pm) and stored at5 ‘C. Ionchromatography (IC) was per-

formed inone run two weeks after the end of the incubation ona Dionex

Aquion** (Thermo Fisher Scientific Inc., Waltham, USA) tomeasure the

concentrations of the anions fluoride (F ), chloride (Cl ), nitrate (NO3 ),

phosphate (POS ), sulfate (SO2 ) as well as the cations sodium (Na ),

potassium (K' ), magnesium (Mg
2

' ) and calcium (Ca
2

' ).

For the analysis of water-soluble elements, 25 mL of the same su-

pernatant as for the water-soluble ions-measurements were used. To

remove dispersed clay particles in the liquid,l mL ofl M MgClz was

added, and then the samples were vigorously shaken and centrifuged

(3000 rpm for 15 min). From this solution 9.8 mL were filtered (hy-

drophilic, 0.45 pm) and then mixed with 0.2mL nitric acid (HNO5, 69

%) resulting in 10 mL samples containing1 % HNO3. These samples

were then stored at5 ’C andanalyzed in one common runonemonth

after the end of the incubation experiment ona 7700x ICP-MS from

Agilent Technologies (Santa Clara, USA) measuring theconcentrations

8. Results

3. I. Soil respirotion

Applied Soil Ecolog'f 197 (20£4j7 05358

ofarsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni),

silver (Ag), aluminum (AI), phosphorus (P), vanadium (V), manganese

(Mn), iron (Fe), copper (Cu), zinc (Zn) and uranium (U).

To characterize the soil, the cover crop biomass and theEM solution

for elemental composition we conducteda total multielement analysis in

triplicates. For that, 0.2g of soil, 0.2 g of cover crop biomass and 0.2mL

ofa 121-times diluted original EM-solution were mixed with8 mL of69

% HNO3 and2 mL 37% H2O2 andthen digested ina CEM MARS6

microwave (stage 1: 10 min at 120 ‘C, stage 2: 40 min at 170 ‘C). After,

the cooled down samples were brought to 50 mL volume with Milli-Q,

centrifuged (2500 rpm for5 min) and analyzed with the above

mentioned ICP-MS. The turbidity of the EM solution did not allow foran

analysis of containing ions via IC analysis.

Fungal and bacterial richness and Shannon diversity were assessed

on the base of rarefied read counts using the veganR package (Oksanen

etaL,2019). Additionally, differences between thefungal and bacterial

community composition were tested witha PERMANOVA with l0’4

permutations based on Bray-Curties dissimilarity matrices. All other

parameters mostly fulfilled or just showed minor deviations from the

requirements of normality (Shapiro-Wilk test) and homoscedasticity

(Levenes’ test). Therefore, we decided touse parametric tests. We tested

a multiplicative analysis of variance (ANOVA) with the factors cover

crop and EM-level forsoil respiration, microbial biomass, pH, POXC and

water extractable ions and elements. We used Tukey HSD asa post hoc

test to evaluate significant differences between different EM-levels or

different treatments. Only forthe cumulative respiration, which was

very different between treatments with and without cover crop addition,

we useda separate Tukey-HSD test for the CC and NCC treatments. For

the other response variables, if the ANOVA didnotshow a significant

interaction, we only discuss the main effects of EM-level. Otherwise, if

the interaction effect was significant, we discuss only the comparisons

betweenCC-EMO andCC-EMI, NCC-EM0 andNCC-EMI, CC-EMI0O and

CC-EMI00st as well as NCC-EM100andNCC-EM100st, because all other

possible 24 comparisons were not of practical relevance. All analysis

were performed inR version 4.2.2 (R Core l'eaiii, 2020).

The incubation experiment started witha basal respiration rate of

20.2 0.3 mg C kg d (day 0),which was maintained ata similar

level for the course of the soil incubation in the NCC-EMO andNCC-EMI

treatments (1'ig. 2a). Addition of living or sterilized EM in high dose on

bare soil (NCC-EMI00 and NCC-EMI00st) caused an increase in soil

respiration of up to 159 10 mg C kg ’ d ' on day l and basal soil

respiration was reached again latest by day four. The addition of cover

crop biomass clearly had the strongest effect on soil respiration, peaking

at 647 8 mg C kg d forCC-EMI00st at day 1. After that, soil

respiration rates continuously decreased, but CC treatments did not

reach basal soil respiration rates during the whole incubation period.

Differences between thedifferent EM-levels mainly occurred during the

first4 days. During the 28-day incubation the cumulated respiration

summed upbetween 0.42 0.01 and 0.7 0.04g C kg ' forthe NCC

treatments and between 4.09 0.9 and 4.57 0.08g C kg
1
fortheCC

treatments (1 ig. 2b and c). The addition of cover crop biomass aswell as

the addition of EM in high dose (l'i$. 2d) increased the cumulated

respired C. However, we didnotseeany effect on cumulated respiredC

by the combination of cover crops with any level of EM application (no

significant interaction in the multiplicative ANOVA between factors

cover crop and EM-level, p-value = 0. 13, see Table S2 in the supple-

mentary material). The differences in cumulated respiredC among the

EM-levels were more pronounced in theNCC (I'ig. 2b) than in the CC

68 
 

 



J. Ober/la/ser et aI

a)

600

:>• 200

0

)
0.8

0 7

”a 0.6

0.5

0.4

Appiieid Soil Ecology1 97 {2024J 105558

-7 -5 -3 0 1 2 3 4 5 7 9 11 14 17 21 24 28

a

b

Treatment

*’ 4.8

R 4.4

u” ab

; 4.2

E

4.0

a

Time (d)

Treatment

d)

EM100st -EM100 ,

. EM100st - EM1

E,

U EM100st - EMO ’

EM100 -EM1

@ EM100 - EMO '

EM1 - EM0

-0.2 0.0 0.2 0.4

Mean Difference (95% CI)

Fig. 2. a) Daily respiration rates. The value of CC-EM100 atday1 is based only on one replicate, since for the other three replicates the NaOH trap was already

completely saturated, suggesting even higher overall respiration rates in this treatment. b) Cumulated mean soil respiration after 28 days ofincubation fortreatments

without cover crop addition. c) Cumulated mean soil respiration after 28 days ofincubation foroeatments with cover crop addition. d) Tukey's mean difference with

95 % confidence interval for the factor EM-level in the two-way ANOVA with cumulated respiration at the end of the incubation (day 28) as response variable. The

panels a,b and c show themean offour replicates with error bars indicating the standard error.

treatments (Fig. 2c). Pairwise comparison within the NCC treatments

also showed that the cumulative respiration was significantly higher for

NCC-EMI00st than forNCC-EM100 (Fig. 2b). Addition of EM at rec-

ommended dose had no effect on soil respiration as we did not find any

significant difference between theEMI and theEM0 level.

3.2. ñficrofiiol fiiomoss

At the start of the incubation experiment (day 0), soil microbial

biomass contained 342 -I-5 rug C kg ' and 67 -i-1 mg N kg ' (Fig. 3a). In

the NCC treatments, there were onlyminorchanges inmicrobialC and N

overtime, with most times highest values inthe NCC-EM100st treatment

(366 -i- 14 mg C kg ' and 68 + 2 mg N kg ') followed by the NCC-

EMI00 treatment, In contrast, microbialC and N almost doubled in all

CC treatments with highest values in the CC-EM100st treatment (810 -1-

34 mg C kg
1

and 134 + 6 mg N kg °) followed by the CC-EMI00

treatment. There was no significant interaction at any day between

thetwo factors cover crop and EM-level forthe response variables Cmic

andNmic (lowest p-value forthe interaction termwasp —— 0.33 forNmic

atday28). Independent of cover crop input, application of EM in high

dose led to slightly higher Crriic and Nmic butonly the EM100st level

showed on some days significantly higher Cmic and Nmic than theEMI

or EM0 level (Fig. 3b). Independent of cover crop addition, no effect of

the addition of EM at the recommended dose existed as there was no

significant difference between theEMl and EM0 level.

3.3. Identifying and tracing EM taxa

Taxonomic identification of bacterial and fungal taxa within the

applied EM solution showed domination offungal taxa by OTU5, which

made up >90 % offungal OTUs andwasassigned to the Order ofSac-

clioromycetoles. Other identified fungal taxa within the EM solution

include OTUs assigned to the orders of MortiereEates, Pilobasidiales and

Hypocreaier but they comprise onlya small fraction of the inoculated

fungal community (Table 3). Bactria taxa on the EM solution were

dominated by OTUs assigned to the genus ofLactobacillus. Five different
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Mean Difference (95% Cl) Mean Difference (95% Cl) Mean Difference (95% Cl) Mean Difference (95% CI)

Fig. 3. a) MicrobialC and N during the 28-day incubation experiment with4 measurement time points. Means offour replicates and standard errors are shown. b)

Tukey's mean differences between EM-levels for the ANOVA minobialC (orN) Cover crop* EM•level. Only days with significant EM-level effect are presented.

Mean differences are indicated with 95 % confidence interval (CI) and significances are marked based on alpha = 0.05.

OTUs ofthis genus were observed, jointly accounting for >99 % of relative abundances of thèse OTUS were below1 %. For fungal com-

applied bacterial OTUs. Acetobacteraceae and Clostridioceae were iden- munities, there was no effect in the treatments except for the CC-EMI

tified in negligible amounts. Bacterial OTUs 4440 and 4994 were most treatment where therecommended application dose increased fOTU5

abondant with 72.6 and 16.4 % of applied bacterial OTUs (Table 3). (Fig. 5).

After7 days of incubation the structure of soil bacterial and microbial

communities was compared viapermanova, revealinga weak effect on ü.4. Soil pH

bacterial community structure (p = 0.046) and no effect on fungal

community structure (p = 0.816), based on Bray-Curties dissimilarities The initial soil pH of 7.12+ 0.02 was influenced by the different

matrices. For the bacterial community, pairwise permanova further treatments. Addition ofacidic solutions of EMI (pH = 3.98), EM100 (pH

revealed significant difference between CC-EM0 and CC-EMIOO (p= = 3.55) and EM100st (pH = 3.58) decreased soil pH onlywhen added in

0.032), while no other treatment pair significantly differed from each combination with cover crop input (Fig. 6), By day 28, soil pH increased

other. Principally, bacterial community structure was dominated by to about 7.2 in all treatments, except for the NCC-EMO (7.04+ 0.06)

Acônobacteriota and Proteobacteria, while fungal communities mainly treatment, whichwas signiÛcantly lower than theNCC-EM100andNCC-

comprised Mortierellamycota (Fig. 4), Neither fungal and bacterial EM100st treatment.

richness nor Shannon diversity showeda significant effect of experi-

mental treatments seven days after incubation (Table S3 in the supple- 6.6. Perinanganaie oxidizableC

mentary material),

OTUs identified within the EM solution were traced within the Concentrations of POXC decreased from 544+ 3 mg kg** on day

identified bacterial and fungal communities (Fig. 5). While therecom- zero to values between 445 and 510 mg kg*' within the first days ofthe

mended dose ofEM application did not yield an observable increases of incubation experiment and reinained stable from day seven onwards

inoculated EM taxa,a slight increase could be detected in the 100 times (Fig. S2). The CC-EM100st treatment showeda larger decrease within

the recommended application dose forbOTU4440 andbOTU4994. StÎll the first four days but also stabilized after day seven inthesame range as

6
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Fig. 4. Relative abundance ofbacterial (a) and fungal (b) phyla after7 days of incubation in all four replicates per treatment.

bOTU4440 - Lactobacillus

0.020

° 0.015

0.010

0005

bOTU4994 -Lactobacillus

7.5

5.0

2.5

fOTU5 - Saccharomycetales

Fig. S. Relative abundance ofbOTU4440 Lactobacillus, bOTU4994, fOTU5 Saccharomycetales of the four treatments with cover crop addition seven days after the

start of the incubation. Average and standard errors as well as the values of the four replicates per treatment are indicated.

the other treatments. For POXC, the factors cover crop and EM-level

showed significant interactions on all measurement days except day

14 and day 28. Nevertheless, the significantly different treatments as

indicated by the Tukey test were notconsistent over time.

3.d. Water-soluble ions

The concentrations of the analyzed water-soluble ions were influ-

enced by EM and cover crop addition (Fig.7 and corresponding statistics

in Table S4 inthe supplementary material). For F", Cl", Na*, K“, Mg
2
*,

and Ca
2
+ we observed significantly higher concentrations in the treat-

ments with cover crop biomass input. This effect was in general clearer

at the beginning (day 7) of the incubation and decreased towards the

end (day 28). Cl*, SO2*, Na“, Mg
2
+, and Ca

2
* were often significantly

higher in the EMI00 andEM l00st than intheEM0 and EMI levels. We

only observeda few differences between the EMI and EM0 level

7

suggesting that the application of EM at the recommended dose didnot

influence the concentration of water-soluble ions. However, CC-EMI

showed higher Mg
2
’ concentration on day7 but lower K“ concentra-

tion on day 28 than CC-EMO. More consistent was the difference be-

tween the EMI00 andtheEM100st level. The fiC-EM100st treatment

showed atleast at one time point higher ion concentrations than theCC-

EMI00 treatment for F*, Cl* and SO2*. For C1* this effect was also

observed for the NCC treatments and NCC-EMl00st showed signifi-

cantly higher concentrations than NfiC-EMI00. For NOT, we found

higher concentrations inNCC-EMO andNCC-EMI treatments than inall

other treatments.

3.7. Water-soluble elements

The inputs of water-soluble elements through cover aop biomass or

EM addition can be seen inTable4 in absolute numbers and relative to
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Fig. 6. Soil pH during the 28-day incubation experiment with four measurement time points. Values show means offour replicates (except for day4 with only2

replications per treaHnent). Error bars indicate the standard error-
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Fig. 7. Concentration (pg per kg soil) of water-soluble ions that showeda significant main effect of EM-level (chloride, nitrate, sulfate, sodium, potassium, mag-

nesium, and calcium) during the 28-day incubation experiment withq measurement time points. Values show mean offour replicates and error bars the stan-

dard error.

the initial water-soluble concentration in the soil. For all analyzed ele-

ments the input through the cover crop biomass was higher than

through the EM addition. The concentrations of the analyzed water-

soluble elements were influenced by EM and cover crop addition at

least at one of the four measurement time points (Fig. 8 and corre-

sponding statistic in Table S5 in the supplementary material). Cover

crop input significantly increased concentrations of water soluble Pb,

Cd, Cr,Ni, Al,Ag, In, Fe, Cu, Zn andU compared totheNCC treatments

at least at one timepoint. There were only minor and non-systematic

differences in measured concentrations of water-soluble elements be-

tween EM-levels and they only occurred in the treatments with cover

crop addition. The application of EM in high dose (EM100, EM100st) did
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Fig. 8. Concentration (pg or mg kg*' soil) of water-soluble elements that showeda significant main effect of EM-level (arsenic, cadmium, nickel, silver, phosphorus,

vanadium, manganese, iron, copper, zinc, and uranium) during the 28-day incubation experiment with4 measurement time points. Error bars indicate the stan-

dard error.

not consistently influence the concentration of water-soluble elements

during the soil incubation experiment. The only effects of EMl

compared toEM0 thatwere statistically significant were on day 7,where

theCC-EMI treatment showed higher concentrations in As andP than

the CC-EMO treatment. The comparison between sterilized and living

EM revealed atleast at one timepoint significantly higher concentrations

of Cd, Ni,Ag, P, Cu andU in the CC-EM100 compared totheCC-EM100st

treatment. In the NCC treatments, no significant difference was identi-

fied between NCC-EMI and NCC-EMO or NCC-EMI00 and NCC-

EMI 00st.

4. Discussion

4.1. EM application at recommended dose (EMI)

Application of EM at the recommended dose (EMI) showed no effect

on critical soil properties such as soil respiration (Fig. 2) or the devel-

opment ofmicrobial biomass (Fig. 3) compared tothecontrol treatments

(EMO), inboth theCC aswefl as the NCC Œeatments. This is in line with

findings of Schenck zu Schweinsberg-Mickanand Müller (2009) who did

not observe any influence of living EM addition on soil respiration

compared toa sterilized EM control treatment. The lack of observed

results was confirmed by the absence of traced EM-taxa inthe soil, as

only1 out of4 replicates in the CC-EMI treatment showed slightly

higher relative abondance in bOTU4440 (£ectofiocillus) and fOTU5

(Saccheromycetalesl than the CC-EMO treatment. The few statistically
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significant differences in water-soluble ions and elements that occurred

at specific time points during the incubation experiment were incon-

sistent over time. In other studies, (Hu et al., 2018) observed higher

available phosphorus and potassium contents in EM-compost while

other studies reported a slightly higher N content in EM-compost

compared to traditional compost (Daur, 2016; Jusoh et al., 2013; Van

Fan eta1., 2018; Zhong etat., 2018), yet, these investigations were up to

now missing for soil. Furthermore, we did not observe any consistent

change inPOXC throughout the incubation experiment suggesting that

EM addition had no effect on already existing labile soil organic matter

in the soil that could cause additional release of nutrients of PTTEs.

Similarly,a recent review (Safwat and Matta, 2021) also found little

evidence to confirm the beneficial effects of EM on composting of

organic matter.

The soil incubation mimicked spring-like field conditions in

temperate climates (12 °C and 0.2g H2O g*' soil) that wouldberelevant

for enhanced cover crop decomposition through EM application.

Nevertheless, soil temperature, moisture and water filled pore space

during spring are typically highly variable. This would consequently

also affect the establishment of EM, that might require very specific

conditions for their establishment. On the field scale some experiments

have reported higher yield and nutrient efficiency when green manure,

farmyard manure or chemical fertilizer were applied in combination

with EM under mainly under subtropical climates (Hu and Qi, 2013;

Hussain et a1., 1999; Javaid and Bajwa, 2011; Khaliq et al., 2006;

Youssef et a1., 2021). However, inregions with temperate climates, the

few existing field studies could not determine any effects on crop yields

or soil quality that could be traced to the application of EM to soil

(Mayer etal., 2010; Pranagal et at., 2020). This was supported by the

results of our study, demonstrating no effect of EM addition at typical

application rates on soil properties.

4.2. EM applicaâon inh”igh dose (fiM100, EJ 'T100st)

The addition of EM at 100 times higher than recommended dose

showed some effects on soil properties, e.g., on soil respiration (Fig. 2) or

microbialC (Fig. 3). However, these changes took place regardless of

whether thesolution was sterilized (EMl0Ost) or not (EMIOO), and can

thus clearly be assigned toa substrate effect, and not an actual EM effect.

The amount ofcarbon added with theEM100 andEM100st application

level was about 0.2g C per kg ofsoil (Table 2).This closely matched the

difference in cumulated respiredC compared totheEMO level in both

the CC and the NCC treatments (Fig. 2b). Since the EM solution was

acidic (pH 3.6; Table 1), some ofthereleased CO2 may have originated

from thedissolution of carbonates in the alkaline soil. Yet, assumingthat

all the added acid of the EM solution was buffered by CaCO3 and

released as CO2, this would equal toa C release of only 1.6 mg C kg

soil, i.e., to negligible amounts compared to basal soil respiration

(Fig. 2a). The amount ofC added attheEM100 treatment (0.2g C per kg

of soil) was much lower thanC added with cover crop biomass (5.4g C

per kg soil). Cover crop addition also causeda slight increase in mi-

crobial biomass and likely resulted in an immobilization of NO3, which

explains the significantly higher NO3 concentration in the treatments

without high-dose EM or cover crop biomass (NCC-EMO andNCC-EMI;

seeFig.7 and Table S4). Additionally, at certain time points, higher

concentrations of Cl, 502", Na+, Mg
2
, and Ca

2
were observed in

EMI00 and EM l00st levels compared to the EMI and EMO levels,

regardless of cover crop input (Fig. 7, Table S4), suggesting that these

ions were part of the EM solution. This suggests that the higher con-

centrations in those water-soluble ions were alsoa result of the substrate

effect, even though this cannot be fully confirmed since the original EM

solution could not be analyzed forthese water-soluble ions due to high

organic impurities. In contrast, the analysis of the original EM solution

fora wide range ofwater-soluble elements (Table 4) showed that these

inputs at the 100 times application level were still minor compared to

the inputs by the cover crop biomass. Inputs of potentially harmful

10

Applied NoiI Ecology1 97 HOUSE7 05558

Table1

Characteristics of the arable soil used in this study. Means and standard devia-

tion are presented.

Property Unit Value (SD)

Sand' mass % 50

5iIc’ mass 9s 29

Clay' mass 96 2t

Maximum water holding capacity* g water perg soil 0.36

pH tCaClp) 7.12 t0.09)

Total C’ g C kg ' soil 28.6 t0.1)

Inorganic C” g C kg-' soil 9.04 (0.J9J

Organic C” g C kg-' soil 19.5 (0.3J

T‘ermanganate oxidizable C" mg C kg—' soil 543 (12)

microbial C** ingC kg ' soil 342 t! 8)

Total N" g N kg ' soil 2.12 t0.01)

microbial N" mg N kg soil 67.2 t3.81

Magnesium" g kg°' soil 6.02 t0.16)

Aluminum** g kg ' soil 9.44 (0.63)

Phosphorus" g kg*' soil 1.32 (0.66)

Manganese g kg' soil 0.88 (0.02)

Lori" g kg ' soil 17.8 t0.91

Cogpet“ mg Ing—’ soil 43.2 (0.8J

Zinc* mg kg—’ soil 69.9 (2.7J

head“ mg kg—’ soil 38.6 (I.SJ

Improved integral suspension pressure method (ISP+) (Durner and Iden,

2021).

The maximum water holding capacity was determined gravimetrically after

a water saturated sample lost all gravitational water.

Dry combustion with CNS analyzer. For the determination ofinorganic C, the

samples were first ignited at 550 °C.

* According to Protocol of (Wei1 et al., 2003),

** Chloroform fumigation according to the protocol of (Vance et al., 1987).

** Extracted from soils using nitric acid microwave digestion and measured

using an inductively coupled plasma - mass spectrometer.

elements from theEM solution into the soil system can therefore be ruled

out.

4.3. Micro6iat romposi/ion and establ"zsianent in soilupon addition to zoit

The application of EM in high dose, accompanied bya sterilized

Table2

Description of the levels for the factor cover crop (CC, NCC) andfactor EM-level

(EM0, EM1, EM100, EM100st) that were combined toa fully orthogonal

experimental design.

Level Input C N input Dilution pH Remarks

g (kg input mg (kg factor

12.8 5.4 300

(dry

matter)

NCC 0

GM0 0

0

0 0 Only 7.00

Driedandculto

2mmpeces

water

fMl 0.256 0.002 0.075 t:121 3.98 Living EM

applied at

recommended

dose

GM100 25.6 0.2

GM100st 25.6 0.2

7.5 I: I.2t 3.55 Living EM

applied in 100

times higher

recommended

dose

7.5 1: 1.21 3.58 Sterilized EM

applied in 100

times higher

recommended
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3'able3

Taxonomy andrelative share of fungal and bacterial OTUs within the applied EM solution,

Kingdom Phylum Class Order Family

fZOTU5

fZOTU375

ffZOTUt425

fZOTU9

COTU1533

fZOTU66

fZOTU23

fZOTU941

fZOTU1975

fZOTU2087

bZOTU4440

bZOTU4994

bZOTU3653

bZOTU3325

bZOTU2664

bZOTU7663

bZOTU2304

Table4

Genus

Fungi AscomycoA Soccharomycetes Sacchnmmycetoies

Fungi lvfortierellomycoto Mortierellomycetes Mortierellofes Mortierellaceoe NA

Fungi lvfortierellomycoto

7remef/omyceres

Ifiordariornycetes

Bocilli

Bocilli

Bocilli

Bocilli

Afphaproteobacterio

Bocilli

Cíostridin

fi*’íIobasidio(es eiskiaofi rnaceoe Solicoccofiyrrio

Appbed $o”iJ EcologyJ9 ' {2O2Jg 05358

Mean re1arive abundance (%) SG

93.3 0.8

2.9 0.3

2.3 0.t

0.7 0.0

0.6 0.t

0.S 0.2

0.5 01

0.4 01

0.g 0.0

0.8 0.0

1ac/o6aci/Ja/es LactobaciÍlaceae 1ac/obacfJ/us 72.6 0.0

1acioba+-i#a/es lacro6aci/laceae 1ac/obac/J7zfs 6.4 J.9

lacio6nciííales Lacrobacilloceoe lnctobnctilus J.9 1.0

Acetnhocieraíes rtcetobnc£eracene ñceto6acter 0.6 0.2

íocinfiociííoles Locrobocillaceoe ínciobnctílus 0.S 0.0

Cíonridiizíes Closiridinceae Glostridiwn sensu stricinI 0.2 0.t

Concentration ofwater-soluble elements in cover crop biomass and effective microorganisms and theapplied concentrations in the incubation experiment as absolute

numbers and aspercentage of the initial water-soluble concentration in the soil (Standard deviation of three measurements inbrackets).

Unü

Pb

Cd

Cr

Ni

Ag

II

Mn

Fe

Cu

Zn

U

Cover crop Effective microorganisms

Concentration in Added Added concentration Concenoation in Added Added

drymatter concentration to compared to initial water- purchased liquid concentration to concentration to

soil soluble concentration in soil in EMI-level soil in EM100-level

soil tday 0)

0.044 (0.005) 0.558 (0.06)

0.204 (0.007) 2.62 (0.08)

0.011 t0.000) 0.146 (0.003)

4.31 t0.16) S5.2 (2)

0.635 t0.03) 8.15 10.38)

0.013 t0.000) 0.163 (0.000)

35.4 (2.1) 454 t27)

Not measured

0.079 (0.002) 1.01 (0.02)

35.2 t0.71 451 (9)

Not measured

7.7{0.24J 99 t3J

Not nieasured

0.003 (0.001) 0.036 (0.009)

[%]

4.1 (0.4)

241.4 (7.7)

165.1 t3.82)

2429.1 (89.5)

132.4 t6.2)

211.6 (0.1)

18.4 (1.1)

1.7 (0.0)

2056.3 f39.8J

184.8 t5.7J

47.0 (12.3)

2.69 (0.04)

Below detection limit

Below detection limit

7.5 (0.25)

12.7 (1.4)

2.94 (0.09)

173 (33)

7.05 (0.23)

96.3 (1.5)

ï I.9 (0.5}

0.704 (0.017)

0.687 (0.0tJ)

1.91 (0.07)

3.26 (0.36)

0.751 í0.024)

44.3 (8.3)

t.80 (0.05)

24.7 (0.4)

4.05 (0.13}

O.t80 (0.004)

68.7 (I.J)

191.9 f6.5)

326 t36)

75.1 (2.4)

4430 (833)

ï8ï (6)

2466 (38J

305.0 {ï 3J

ï8.0 (0.4)

Added concentration of

EM100 com-pared to initial

water-soluble concentration

in soil (day 0)

[%J

0.5 (7.8)

8.5 (0.3)

S.3 (0.6)

97.3 (3.1

0.18 (0.03)

0.3(0.01)

1L2(0.2)

0.57 (0.02J

23.5 (0.6)

control, enabled the identification of potential effects caused by living within this study.

microorganisms and distinguish thein from substrate effects. In our

study, three main organisms were traced and identified from the EM iS. Conclusion

solution. Among them, two Lactobacillus-taxa (bOTU4440 and

bOTU4994) showeda muchhigher relative abundance intheCC-EMI00 The addition of EM at the recommended application dose (EMI) to

treatment and were not found in the treatments without living EM. soil, with orwithout cover crop biomass, did not lead toany consistently

However, their presence constituted <1 % of the total bacterial effect on any of the monitored biological or chemical soil properties.

community. When applied ata dose 100 times higher than recommended (EMIOO),

Effective microorganisms are distributed worldwide, multiplicated an increased soil respiration and microbial biomass was observed,

and processed into various end products with different additives. This however, similar effects were observed in the sterilized control treat-

variability poses challenges in comparing different EM studies because ments (EM100st) and can thus be fully explained bya substrate induced

the inoculant itself might vary (Dos Santos et al., 2020) and, in most effect. The soil microbial community remained largely unaffected upon

studies, the microbial community was notanalyzed. In our study, we EM addition. The analysis of ten water-soluble ions did not reveal any

analyzed the EM solution via amplicon sequencing oftaxonomic marker significant effect from theaddition of EM solution on the mineralization

genes, which revealed bacterial and fungal OTUs assigned to the bac- oforganic matteror therelease of nutrients. Furthermore, theanalysis of

terial genus £ecto6nciltus and fungal order of Saccheromycetales. How- 14 water-soluble nutrients and elements showed that none of the

ever, we did not identify photosynthetic bacteria or highly abundant analyzed compounds contained in the EM solution are present at

Asconiycota within the applied EM solution, although these taxa were harmful concentrations when applied at the recommended doses.

described as part of the EM consortia (Ahn etal., 2014). Nevertheless, However, there was also no significant effect in mobilizing or immobi-

since Lactobacíllus and Saccharomycetales have thepotential to conduct lizing selected compounds inthesoil. We therefore conclude that added

anaerobic fermentation, which is the main suggested mechanism EM solution themselves did not alter the cover crop decomposition nor

through which EM influences the decomposition oforganic matter (Higa any other soil process beyond thecarbon, nutrients or other substances

and Parr, 1994), we conclude that we testeda representative product added with the EM solution.
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Why EM with green manures?

Green vegetation is the ideal soil cover forpreventing erosion and nutrient

losses, which is why winter-hardy cover crops are the best option for bridging

the period between two main crops froma soil-protection perspective.

Ploughing-ina green intercrop in spring can bea challenge, however, since the

risk of second growth is relatively high. This applies in particular to organic

farms that have embraced no-till. In such systems green manures areoften

only incorporated shallowly, to promote soil life with the rapidly decomposable

plant material ('surface rotting' system). However, environmental conditions in

spring varya great deal from year to year, and cold and damp conditions in

particular can inhibit the decomposition of plant biomass. The incompletely

decomposed smeary plant biomass can therefore make seedbed preparation

substantially more difficult. The use of EM attempts to accelerate the

decomposition ofthe incorporated plant biomass whilsf promoting soil life and

humus formation.
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Effects of EM on soil parameters

An in-depth laboratory experiment was conducted into the effects of adding EM

tosupport surface rotting. In early May we broughta portion of both the top

layer of soil and the plant material ofa patch sown with rye and vetch into the

laboratory and simulated the rotting process under controlled conditions at

12 °C.

The processes with and without EM bath exhaled the same amount ofcarbon

dioxide, suggesting the same microbial activity in both processes. The addition

of EM did not affect the solubility of nutrients and trace elements in the soil, nor

did it influence microbial biomass. Moreover, genetic analyses ofthe sail

microbiome showed that the processes with and without EM did not differ in

terms oftheir microbiological composition. Seven days after the addition of EM

to the soil, lactic acid bacteria were theonly identifiable EM components;

however, this effect was negligible ata normal rate of application

(120 litres/ha), and only measurable at 100 times this application rate. The

study therefore found no evidence that the addition of EM influenced the

decomposition of green manure materials.

Conclusions

• The addition of EM produced no consistent effects on microbial

activity in the soil.

• No differences were found between theprocesses with and

without EM in terms ofnutrient and trace-element solubility.

• Only very minor differences were found in the microbial

composition ofthe two processes.

• Lactic acid bacteria, the primary constituent of EM, were detected

in the soil, but only ata substantially increased application rate.

80 
 

 

 

 



Paper 5: Soil survey in northern Spain

Authors: Maja Schneider, Simon Oberholzer and Chinwe Ifejika Speranza

Manuscript published in: Geoderma Regional, 2024, v. 38, e00835

https://doi.org/10.1016/i geodrs.2024.e00835

81

   

81 
 

Paper 5: Soil survey in northern Spain 

Authors: Maja Schneider, Simon Oberholzer and Chinwe Ifejika Speranza 

Manuscript published in: Geoderma Regional, 2024, v. 38, e00835 

https://doi.org/10.1016/j.geodrs.2024.e00835

https://doi.org/10.1016/j.geodrs.2024.e00835


ELSEVIER

Genderma Regional 38 (2024) e0083S

Contents lists available at ScienceDirect

Geoderma Regional

journal homapaga: www.elsevier.com/locate/geodrs
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A B S T R A C T

Agricultural land abandonment isa major land use change in the Mediterranean region, especially affeciing

marginal areas. The fields of the abandooed village Sierra Estronad (Aragón, Spain), experienced heavy impacL

treatments tbulldozing) after whieh hallof the fields were kept open and tilled without planting any crop and the

other hall of the fields were left fallow, From these two treatments and the surrounding natural forest 483 soil

samples were collected in addition to corresponding vegetation data at 162 GPS referenced sampling points. Soil

samples were analyzed using predictive models based on visible and near-infrared specooscopy forSoiI Organíc

Carbon (SOC), total Nitrogen, and Permanganate Oxidizable Carbon.

Comparing thefallow fields, which have hada lS-year recovery period tothe tilled fields,a SOC sequestration

rate of 0.64 Mg ha ' y ’ was found. On tilled fields however, even aftera recovery period of5 years, very few

plants were able to colonize the area, resulting ina sparse soil cover and significantly lower SOC and totalN

These rebuffs show theinterdependence of soil fertility proxies (SOC and /tota1 NiWogen) and the degree of

vegetation cover, and how practices of preventing former agriculmral fields from revegetating havea long-

lasting impact of soil degradation, even after their termination, However, if left fallow, abandoned fields do

have thepotential to supporta secondary succession and serve asa carbon sink thufi conoibuting to soil fertility

and climate change mitigation.

Agricultural land abandonment hasbeen themostimportant change

in Mediterranean ecosystems over the last centuries (Novara et al.,

2017) and is considered the most important land use change since the

agricultural expansion over 10’000 years ago (Petanidou et a1., 2008).

Spain is especially affected with approximately 5Wo of the total

agricultural land projected to be abandoned by 2030 corresponding to

about 23 million hectares (Perpiña Castillo et aI., 2O20). Within the

European Union (EU), this rate is extraordinarily high compared toan

EU average forecast of 3W• (Perpiña Castillo et al., 2018). The

advancement of mechanization, chemical fertilization, and increased

irrigation, modernizing farming practice and internafional market de-

velopments have ledtoagricultural land use intensifications on easily

accessible agro-ecologically favorable fields and the abandonment of

more marginal fields or steeper slopes and with less fertile soils. This

phenomenon was accompanied by depopulation (“rural exodus”)

(Chauchard et al., 2007; Lasanta et al., 2017; MotteL et al., 2006;

Strijker, 2005). Furthermore, policies like the “set-aside”-policy estab-

lished by the EU Common Agricultural Policy (CAP) in 1992, encour-

aged thewithdrawal of cultivated land, by subsidizing fallows (Garcia-

Ruiz and Lena-Renault, 201 l). Such fallows could be seeded with non-

food crops or remain unseeded as was most commonly practiced in

semiarid regions. Thus, to receive subsidies, the land had tobe ploughed

continuously to prevent plant colonization (Garcia-Ruiz and Lana-

Renault, 2011).

The evolution of fields after abandonment is complex and depends

on many different factors, such as soil, lithology, topography, climate,

and post-abandonment management (Romero-Diaz etal., 2017). How-

ever, the factor which possibly explains soil erosion and degradation

rates after land abandonment best, is the vegetation cover (Lasanta

ct al., 2019; Thornes, 1985). Policies which foster the practice of pre-

venting former agricultural fields from revegetating, therefore most

likely increased the area at risk of severe erosion (Van Leeuwen eta1.,

2019).

Without any anthropogenic disturbances and with favorable climatic
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conditions wherea vegetational cover can be sustained, soil character-

istics may improve after abandonment through the accumulation of

organic matter, an increasing floral and faunal activity, increased water

infiltration rates and lower erosion rates (Dtinjó et al., 2OO3; Itosmos

et al., 2000; López-Bermudez etal., l996¡ Pardini et al., 2002; Piché and

helting, 201 5; Werrol acla et aï., 20J 7J.

Thus, the potential of former agricultural land to sequester soil

organic carbon (SOC) and serve as carbon sinks has becomea research

focus. Many studies (BetI et al., 2021, Djiirnu et at., 2020, GoharrSn-

Gn1eote ot al., 2015b, Lasanta et al., 2020, Lesschen ot nf., 2000, Nndnl-

Romero cta1., 2016, Naves eta1., 2012, among others) have investigated

the accumulation ofSOC intheMediterranean region (Bell et aL, 2021),

examining the influence of many environmental and land management

factors. Several authors have reported veryslow SOC accumulation rates

or even decreases in SOC (Bell ct al., 2021; Djiima ct o1., 2020; Lesschcn

ct al., 200H; Martinez Duro ctz 1., 2010; Nodal nomero ctz 1., 2G 1 f*;

Navas ct aI., 20 i 2, among others).

However, ina literamre review, covering 113 publications, 80% of

the studies reported increases in SOC after land abandonment (Bell

et al., 2024 ). Bell et al. (2021) found an average accumulation rate of

+2.3°Ay ’.

SOC accumulation post-abandonment can be explained by the

increased organic matter input from leaf litter and the increased root

biomass from thevegetation cover emerging through natural revegeta-

tion processes (Kalbitz and Kaiser, 2008; Zhao eta1., 2015). Further-

more, through a denser vegetational coverage the microclimate

improves through increased light absorption, decreased surface tem-

peratures and evaporation rates, resulting in better conditions for mi-

crobial communities, enhancing carbon sequestration (Novara ct at.,

2014). Additionally, secondary succession conWibutes to the formation

of soil aggregates, which promote SOC stabilization and accumulation

(An eta 1., 2010; Nadal-Romero ctal., 2016; Rarest, 2012).

Although there isa consensus, that the vegetation cover isa key

component inthedevelopment of abandoned lands, the spatial resolu-

tion of vegetation data differs greatly among field studies, assessing

changes in physio-chemical soil characteristics. Most studies describe

the vegetation cover ofan entire study site, not considering small spatial

heterogeneities (Alberli ct aI., 2011; Deng ct ol. 2OU end 2016; Emrnn

ci 01., 2012; Guidi ct of., 2£i 14; Nadal-Romero cl ol., 2016; Nodal-

Romero ctat., 202J; Nnvns etal., 2012; Novaza ctal. 2014 and 2Q13; La

Manlia et al., ?dI ñ; Pellis et al., 2gJ 9; Raiesi, b0t2; Tommaso et aT.,

20t b; Zhau utat., 20t SJ. Other studies work wiLh areal data ro describe

the land cover of the study sites, without recording field observations

(Bell et aI., 2021; Gabarrñn-Gzleote ct «1., 2015a; Trigelet el nL, 2016;

Werteliach cta 1., 2017). Only few studies recorded vegetation witha

high spatial resolution (bonet, 2004; Romero-Liiaz ct al., 2017; Knops

nod Tilman, 2000; Li etu ., 2020; Martinez nuro et at., 2010; Bueva

cta 1., 2019) or work with representative subsites in which thevegeta-

tion is recorded (Poote and Grogan, 2010; Losanta ct al., 2020¡ Lesschen

ct nl., 2008; Spohn ctat., 201 6).

In this study high spatial resolution vegetation data isused in addi-

tion to SOC asa prozy forsoil fertility on areas surrounding thevillage of

Sierra Estronad (Spain). The village has experienced land abandonment

inthe1950s, however agricultural activities were temporarily resumed

intheyears after. This included high impact management practices such

as bulldozing in 1998, after which half of the fields were tilled and half

of them left fallow. In addition to the comparison of these two treat-

ments we include the surrounding forests asa control representing the

most natural landscape.

Driven by land management policies, many areas in Spain have un-

dergone similar developments, which makes it important to study the

recovery potential of soil fertility on such severely degraded croplands,

to generate insights for future policy making. Methodologically, this

study contributes insights into the application of visible and near-

infrared (vis—NIR) spectroscopy to soil spectral data analysis.

This study contributes toa better understanding of the impacts of

land abandonment and therecovery potential of vegetation cover and

soil fertility ina semiarid landscape.

2. Methods

Thestudy area inSierra Estronad (42°15’54.95“Nand 0°47’23.29"W)

lies in the rnunicipality of Santa Eulalia de Gállego in the province of

Zaragoza, Aragón, Spain, Aragón is influenced by the western Medi-

terranean cáimate having little precipitation all year round, cool winters

and hot summers. Low precipitation rates combined with strong winds

cause 709’o of Aragón tobe characterized as semi-arid (Cherlei er al.,

20i s). Geologically, Aragón is predominantly made up ofcalcareous

materials and Tertiary and Quaternary sediments. The Calcaric Regosol

(Siltic) soil type is distributed homogeneously over theentire study area.

However, thesoutheast part hasa different soil type, which is why these

areas were excluded from thestudy area.

Sierra Estronad is surrounded by fields, pastores, and foresu. After

the village was abandoned inthemid-1950s, the land (approximately

120 ha) was lightly grazed by sheep for about 20 years but was not

further cultivated. In 1973, former fields were cleared and enlarged with

a bulldozer and cultivated fora short time before being abandoned

again. In 1998, the current owners ofthevillage took over the land and

bulldozed all the fields once more.

In this study three different treatments are compared, including two

types of abandoned fields: After the second time of bulldozing in 1998

‘tilled fields’ (16.25 ha) were tilled and cropped with harley until 2017.

The tillage was done witha cultivator, witha working depth of about

10-15 cm. Alter 2017 the fields were no longer tilled rior cropped.

‘Fallow fields’ (14.9D ha) were left fallow after being bulldozed in 1998.

Additionally, approximately the same amount offorest area f14.97 ha),

as the most natural landscape, was added tothestudy area. The distri-

bution of the included forest area was strongly determined by its

accessibility, as many ofthesurrounding forests are on steep slopes.

Thus, the last bulldozing in 1998 createda common basis, after

which tilled and fallow fields have experienced different treatments. The

forest serves asa natural reference.

2.£. SampMg and sample prepamfion

Within each treatment, 64 GPS (Global Positioning System) refer-

enced sampling points were set in an unaligned sampling design

(Webster and Lark, 2012) (see Fig. ID). Per sampling point3 samples

were taken randomly ina 2 x 2 m square with an auger of 2.5 cm

diameter. The samples were then combined according to the depths 0—5

cm, S—15 cm, IS—25 cm.Intotal 486 samples (3treatments,3 depths, 54

replications) were collected within the first two weeks ofMarch 2022.

For the calculation of bulk density an additional 27 samples were

taken (three per treatment and depth) witha 100 cm steel ring.

All samples were dried in the oven at 40 °C to constant weight

(around 72 h).Then thesamples were gently crushed and sieved to2
j.j.jjy,

To determine the elemental composition of the Rock an X-ray Fluo-

rescence Spectroscopy (XRF) Analysis was conducted ona rock sample.

Additionally, the vegetation coverage of the2 x 2 m square within

which thesoil samples were being taken, was estimated. Categories for

vegetation coverage are 0-20Wo, 2H40Wo, 4W0W•, 6W0% and

80-100d», For the same area the three most dominant vegetation types

were recorded. Here theclasses of Herbs, Gras, Shrubs, and Trees were

used and foreach class the most dominant species were identified.
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W.V. Schneidvero[

Fig. 1. A-fi: Maps witha red mark on Sierra Estronad (Service Layer Credits: Source: Esri, Maxar, GeoEye, Eorthstar Geographies, CNES/Airbus DS, USDA, USGS,

AeroGRlD, IGN, and the GIS User Community National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, MET1, NRCAN, GEBCO, NOAA, increment

P fiorp). D: Map showing thestudy area. The colors indicate the treatments, and the crosses show thesampling points (Service Layer Credits: Source: Esri, Maxar,

GeoEye, Earthstar Geographies, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community). E-G: Photographs of the study area.E showsa tilled

field,F showsa fallow field, and the photographG was taken in the forest (Photos taken by Maja Schneider, March 2022).
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2.3. Visible end neor-inferred specooscopy and selection oJ re/erence

All dried and sieved samples were analyzed with visible and nears

infrared (vis—NIR) spectroscopy. The samples were measured usinga

Field-Spec PRO FR spectrometer (FieldSpec4 Hi-Res, Malvern Pan-

alytical, USA) measuring 2151 wavelengths from 350 to2500 nm witha

resolution of1 nm. The sampling interval was 1.4 nm for wavelengths in

between 350 and 1000 nm and 1.1nm inbetween 1000 and 2500 nm.

Each sample was measured three times, fitlinga new petri dish each

time. Each measurement consisted of SO scans, which were averaged by

the RS3 software. Between measurements of different samples, the

contact probe was cleaned with water and ethanol and the spectrometer

was calibrated usinga 100°ñ reflectance white reference panel (Spe-

tralon, 12 x 12 cm, Labsphere, USA).

The spectral data helped selecting as representative as possible

subset of 57 samples (m12°ñ), which was used forthe wet chemistry

analysis. For thisa principal component analysis (PCA) in combination

with the Kennard Stones algorithm,a technique for selectinga repre-

sentative subset froma larger dataset, was conducted (Fig. 2). This al-

gorithm starts witha randomsample and then successively adds samples

that are the most distant from those already chosen, based on Euclidean

distance. This ensures that the selected samples are evenly distributed

throughout the dataset (Kennurd andSI one, l9fi9). The Kennard-Stones

algorithm was run with2 to7 principal components forraw spectral

data aswell asspectral datawhich had previously been treated with two

different preprocessing procedures: the Savitzky-Golay (SG) correction

of different orders (m), with different window sizes (w) and once com-

bined with theMultiple Scatter Correction (MSC) (SG (m = 2,w = 21)).

The SG smoothin

of data without

technique is used toenhance thesignal-to-noise ratio

significantly distorting the signal. It works by

successive subsets of data points witha polynomial and

fitting

usuig this

polynomial to estimate the smoothed value of each point, effectively

preserving the original shape and features of the signal (Savitzky end

Golly,l 9fi4). The MSC reduces the effects of scattering by normalizing

the spectra (Isaksson and Nos, 1988).

The best performing combination of number ofcomponents, pre-

processing pmcedures, and window size was selected, which covered

most ofthespectral variance and resulted in reference samples from all

depths and treatments and are spatially well distributed.

Fig- 2. Scatterplots generated by the PCA with different colors indicating

different treatments (A, B) or depths (C, D). The red outlines indicate the

selected reference samples.

2.4. Wet chemistry analysis

TotalC and totalN concentrationswere analyzed ona ground aliquot

witha CNS element analyzer (vario MICRO tube, Elemental, Germany).

Inorganic carbon was measured with the Scheibler method through the

dissolution of carbonate in 10°ñ HCI-solution and the measurement of

thevolume oftheevolved CO2 SOC was calculated from thedifference

between totalC and inorganic C. To measure Permanganate-Oxidizable

Carbon (POXC) theprotocol of Weil ctal. (2003) modified by Lucas and

Weil (2012) was followed. For this, 2.5g of soil were mixed with 2.0niL

of 0.2 M KMnO4 followed by 10 min of reaction time. Afterwards,a

Spectrophotometer (UV-1800, Shimadzu Corporation, Japan) was used

to measure theabsorbance ofthe resulted liquid at 550 rim.

For the texture analysis, the samples were further prepared: Organic

material was oxidized by addingH2O2 and thesamples were dispersed

with MgC*zThe texture was then measured using laser radiation by the

Mastersizer 2000.

S.S. Spectral models

Ina following step, the results fromthespectroscopy analysis and the

wet chemistry analysis werecombined tobuild predictive models which

helped computing themeasured proxies for all samples.

We optimized preprocessing for each soil property separately using

the foLowing techniques: SG preprocessing of different orders with

different window sizes and sometimes in combination with MSC were

used. Also, first and second Gap-Segment (GS) derivatives were applied,

sometimes in combination with a Standard Normal Variate (SNV)

correction.

The predictive models foreach parameter (SOC, POXC, total N, etc.)

were calibrated with the machine learning technique Partial Least

Squares Regression (PLSR) (Wold cl of., i 98:4). Random Forest (RF) and

Cubist (CUB) were also tested, however leading to less accurate models.

The measured values of SOC, POXC, totalN etc. served as response

variables foreach covariate in form ofdifferenUy preprocessed spectrum

data.

For the PLSR themaximum number ofcomponents was setat12 to

avoid model overfit. To determine the appropriate number ofcompo-

nent tobe extracted,a 10-fold cross-validation was used (Baumann

cta1., 2021;Kuhn andJohnson, 2013; Moliiinro ct n1., 2005). Again, in

the attempt of avoiding model overfit, the number ofcomponents was

determined by choosing thelowest number ofcomponents witha RMSE

notexceeding one standard error of the lowest RMSE (Hastie ct al.,

2017). The hold-out folds of the cross validation served the final

assessment of the model performance. The one-standard error rule was

also applied during the optimization of preprocessing to avoid model

overfitting.

Finally, for each measured parameter the best fitting model was

selected consideñng different preprocessing steps, absorbance and

reflectance, the number ofPLSR components, different intervals, and

wavelength ranges. The accuracy ofeach model was evaluated based on

the RMSE, the ratio of performance to interquartile distance index

(RPIQ) and the coefficient of determination (R').

With the respective models, sand and clay were predicted while

values for silt were obtained by subtraction. This way the shares of all

three components add up to100%.

2.6. Pteâicâve models

The best performing models arelisted in the table below (Table 1).

The PLSR reached the most accurate models forall parameters.
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Table1

Table describing model performance of the chosen models. for all models the mathematical procedure PLSR (partial Least Square Regression) was applied. Both

reflectance (ref.) and absorbance (abs.) were considered. Preprocessing procedures included the Savitzky-Golay filter (SG, m — order of derivative, w — window

width), gap segment derivative (GSD, m = derivative, w = window width,s = segment size) and multiplicative scatter correction (MSC). The models were evaluated

with5 rimes repeated 10-fold cross-validation. Model metrics of Cross-validation are indicated as mean (ncomp — number ofcomponerus,R
2
— coefficient of

determination, RMSE = Root mean square error, RPIQ = Ratio of Performance toInter Quartile diskance).

Marhemarical Procedure Ab6./Ref. Preptocessing fntewal Win0ow Size ncomp Bias R* RMSE RPIQ

SOC PLSH

TotalC PLSR

POXC PLSR

TotalN PLSR

PH PLSR

Sand PLSR

Clay PLSR

2. 7. Reference samyles

A

A

A

A

R

A

SG (m = t, w = 2t) MSC

GSD (m — 2, w — 9 I , s — 91)

SG ím = 1, w = 21) MSC

GSD (m = 4, w = 2 I , s = 21)

GSD (m 2, w St, s SI)

GSD (m = 2, w = 91, s = t)

The best performance was found using the Sovitzky-Golay (SG) filter,

first order derivative (m), window size (w) 11 (SG (m 1, w 11)),

whereas the first three principal components described most of Lhe

variance (PCI: 51%, PC2: 14%, PC3: 10%), The selected samples were

then compared considering absorbance and reflectance. Looking at the

preprocessing SG (or 1, w l1) and the first three components, Ltte

selected samples arebest distributed among rreatmenrs as well as depths

when considering the reflecronce. Lastly, the spatial distribution of the

selected samples was assessed visually and considered balanced (see

Fi¿. 1 D).

2.8. Statistical analysis

The statistical analysis was conducted with the predicted values,

unless the sample was part of the reference sample subset, in which case

the predicted values were replaced with the measured ones.

According to the Shapiro-Wilk test, the data did not showa normal

distribution. Therefore, non-parametric tests were used forthe statistical

analysis. In place of an analysis of variance (ANOVA), which assumes

that the data followsn normal distribution, the Kriiskal-Wallis test was

used to examine if differences among treatments and depths could be

found. This was followed byn Dunn's post-hoc test with the Bonferroni

correction to test which pairings show statistically significant differ-

ences (p < 0.05). Compared to other post-hoc tests the Bonferroni

correction is rather conservative and effective at reducing typeI errors

(false positives) (li 1. nd a iid \ l tin‹ n 1 °J^J°).

Measured concentrations can be turned into stocks, by multiplying

them with the measured bulk density (BD) of the respective soil depth.

This calculation however can be biased, when bulk density varies

spatially, and stocks ofa fixed depth contain different soil masses.

Therefore, the equivalent soil mass (ESM) approach wiLh fixed depLh

(FD) corrections was applied. Herea reference soil mass is used towork

with thesame soil masses increating stocks for all sampling areas. With

theminimum ESM method, thereference soil mass was adjusted to the

lowest soil mass across all treatments for every layer. All other stocks

were adjusted fo an equivalent soil mass (LI l‹.iI ii nd I3rI l ‹i n\ , l '1'i ).

Values are presented as mean followed by standard deviation.

3. Resulta

3. 1. CharacterizaLion of the suidy area

The texture showsn relatively homogeneous distribution among the

three treatments. The biggest shares are made tip by silt (Tilled: 62

5%, Follow: 62 6%, Forest 57 9%) followed by sand (Tilled: 26

6%, Fallow: 27 -i- 7%, Forest 33 -i- 9%) and clay (Tilled: 12 2%,

Fallow: 11 1%, Forest: 10 -i- 1%) (see Appendix 1).

pH values in the top 0—5 cm range from 7.5 0.2intheforest to 7.7

0.1 on tilled and fallow fields. This corresponds to the inorganicC

3

350-2400

350-2400

370 24°0

35O-243Q

36O-2SOO

350-2490

350-2320

6

Vegetadon MostDominanCBpeles

class

Trees

SI rubs

—0.11 0.88 6.45 3.83

0.2B 0.86 6.17 2.55

0.0U U.46 U.21 I.40

0.d0 d.9 d.26 3.34

—0.00 0.8 0.11 1.73

-I .38 b.6 8J.48 2.29

0.34 0.32 25.0t L^5

Table2

Table showing themost dominant species found within thevegetation classes of

herbs, grass, shrubs, and trees.

Herhs

Laün Spanish Engüsh

Qi ercus rics Encina Holm Oak

Pinus finlopemis Pino de Alepoy Aleppo Pine

AròtlWs u/zedo Maórono

Pistacia ti°.rebinthus ComicaLra

Aosma//rtus Romero

"Strowberry Tree"

Turpenimc Tree

Rosemary

Genist« scorpius Aliaga broom

Juriiperus Eiiebro Juniper

Llor del ham Are C inquefoil

Siete Venas

concentrations of the top 0—5 cm, which areslightly lower in theforest

(31.0 12g kg ) than on tilled (40.7 -I- 6.4 g kg ’) or fallow fields

(39.b 7.6g kg ') (see Appendix 1).

The most dominant species found within each vegetation class can be

seen inle li l‹' ?.

3.2. Carbon sLocks and COA equivalent

Torol carbon stocks were estimated fora depth of 0—25 cm. They

were lowest on tilled fields at 32.4 Mg ha°‘. On average, from tilled to

fallow fields the stocks increased by 27.1% to41.9 Mg ha°’. From fallow

fields to the forest treatment, the stocks increased by another 54.6%.

Here, carbon stocks were highest at 63.1 Mg ha*
1
. ln comparing the

fields, fallow fields were able to store 9.6 Mg ha ’ more SOC than tilled

fields (l 'i . '›).

When extrapolating the SOC stocks to the whole study area, tilled

fields, with On area of 16.3 ha, store S26.1 Mg, follow fields, with an area

of 14.9 ha, store 624.9 Mg, and on 15.0 ha of forests, 944.4 Mg of

organic carbon are stored.

Within 15 years, fallow fields were able to gain 9.6 Mg hn more

carbon than tilled fields. This equalsa carbon sequestration rate of 0.64

Mg ha y or 1 2.76%y .

TheCOC equivalent could be calculated from thecarbon stocks. It is

highest in the forest treatment witha mean value of 231.3 Mg ha*
1

(-i-

17.9 Mg h0*’) equivalent to 3462.9 Mg, forthewhole study free. This is

followed by the fallow fields, witha mean value of 153.8 Mg ha (4
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Fig. 3. Boxplots showing thetotal stocks of SOC (A), POXfi (B), and totalN (C). The letters above theboxplots represent significant differences between thedifferent

treatments (p< 0.05).

53.9 Mg ha*') equivalent to 2291.3 Mg forall fallow fields. The lowest Total stocks ata depth of 0—28 cm were also estimated for POXC

COC equivalent was found on tilled fields, witha mean value of 118.7 (mean: 1.91 Mg ha*' 0.31 Mg ha*') and totalN (mean: 3.44 Mg ha*’

Mg ha*' (-i- 41.9 Mg ha*’) equivalent to 1929.1 Mg on all tilled fields. 0.94 Mg ha*'). The comparison between treatments shows descend-

The additional amount ofCOC that could be stored in fallow fields in ing values from forest over fallow to tilled fields for all parameters.

comparison to tilled fields corresponds to about 1047.3C y°' or 7D.3C According to Dunn's test, these differences are statistically significant

ha°' y°', according to the OECD carbon rates t27.6C Mg°') (€9ECD, for SOC and total N. POXC stocks showed no significant differences

2021). between tilled and fallow fields.

xml -

A

ab b

ab b

bd

^ ab

-i•

g ab

Trcatinent

Soii Depth cm] Q 0-5 Q s-15 | 1 s-zs

e

* •

Fig. 4. Boxplots showing the concentrations of SOC (A), POXC (B), totalN (C), and CA (D), Letters above the boxplots indicate significant differences among

different depths and treatments (p < 0.05).
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3.3. Differences alone Lhe soil profile

Highest SOC and totalN concentrationswerefound inthetop0-5 cm

layer and the lowest in 15—25 cm, lnthetop0—S cm, concentrations are

significantly lower on tilled fields, followed by fallow fields and nre

highest in the forest treatment. The rates of decrease inconcentrations in

an increasing depth are lowest on tilled fields and highest in the forest

treatment. Here (forest treatment), all three measured layers are

significantly different from each other (l it. 1).

Highest POXC concentrations were found inrhetop 0-5 cm. Inthose

top 0-5 cm, concentrations are significantly lower on tilled fields

compared tothe forest. POXC concentrations do not show statistically

significant differences among thethree measured depths in any of the

treatments.

The C/N ratio was found tobe lowest on tilled fields (mean: 11.24 -

3.00), followed by fallow fields (mean: 12.47 - 2.83) and highest in the

forest treatment (mean:i 4.46 3.03).

Looking at the fop 0—5 cm, fhis increase is significant for all treat-

ments. In5—15 cm only theforest treatment hasa significantly higher CA

N ratio than the other two treatments.

3.4. Soil cover and most dominont vegetotion

The degree ofsoil coverage differs among all treatments. Highest soil

covers were found in the forest treatment, followed by fallow fields,

while tilled fields were most often classified in the 40-60% covered

category followed by 20-40% (Fif. iaA C).

The most dominant species differ among treatments, whereas tree

species can mostly be found in the forest treatments, fallow fields are

often colonized by shrubs and tilled fields mostly havea cover of herbs

and grass (fit ¿. °D).

Within thethree treatment, the influence of the degree of soil cover

on different soil fertility proxies were tested using the stocks of the upper

0-15 cm. An increase in stocks with an increasingly dense soil cover

could be seen for SOC, total N, However, significant differences were

only found on tilled and fallow fields. SOC and total N stocks were

significantly higher on tilled fields witha cover of60—80% compared to

0—40%. The samples taken in spots witha cover of 80—100% were

Fig. S. A: One pie chart for each treatment, where the colors indicate the

different soil coverage classes. B: Ber plot showing how often the different plent

species (Herbs, Gras, Shrubs, Pinus halapensis, Quercus ilex, Junipetuso ycedrus,

Arbuan unedo) were feund as themost dominant one. The different colors shew

thedifferent treatments.

7

4. Discussion

slightly lower and didnot differ from stocks measured in0-60% covered

areas. On fallow fields there were less than three samples witha soil

cover of 0-20% which is why this class could not be compared inthe

statistical tests. In the other classesa similar pattern like on tilled fields

was observed, forSOC. TotalN stocks on fallow fields are significantly

higher witha soil cover of40—60% and80—100% compared to20—40%.

However, stocks in areas with 60—80% soil cover did not differ from ony

other soil cover classes( i' i;:. G).

No significant differences in any of the treatments among anyofLhe

soil cover classes were found forPOXC stocks and the C/N ratio.

Considering the most dominant plant species, the stocks of SOC, total

N, and POXC aswell as the C/N ratiowere examined fora depth of0-15

cm.Intheforest treatment, the SOC and totalN stocks were significantly

higher where Quercus ilex (Holm Oak) was themost dominant species

than where Prune hninpensis (Aleppo Pine) was the most dominant spe-

cies. When considering the stocks over thewhole depth (0-25 cm) these

differences can no longer be seen(l'i;;. 7).

4. 1. Predicnve models based on bis-NIR spectroscopy

In this study, as in works byI emun ‹fewe I n1. (2U l la ), l.e vi e i nl

( ?rJ2iI .i, dia iil i>a S,ao;,r›i i t ,a 1.f ? 0E+? ), S‹i ‹ao ii t .aL i L+ti fi ), and /ii o ‹iz ii

ci ,i 1.i L't1t1S I, the vis—NIR approach was found tobe an effective method

inevaluating soil characteristics. The best predictive model forSOC was

obtained by using partial least square regression (PLSR) and Lhe

Savitzky-Golay (SG) preprocessing. This is in accordance with findings

reported by f4n S iI\ U -S,1 n¿‹›ii I ,-i 1. (2tl 22d, \lr›ii 1. I-Eu‹ liei I ,-i 1. (2til 'l) and

\ a si tirs ‹ t ,i 1. (EO tls ). The models built for SOC were found to be per-

forming well, withR
Z
of0.88, RMSEof0.64% andRPIQ of3.83. Similar

R values were reported by f/l3;3n ‹i nd I u i d (2Ot.i2 (R
2
: 0.89, RMSE:

0.036%), L‹‘‹i in’ i‘I ul.t 2tJ12 ) (R
R
: 0.84—0.93, RMSE: 0.34—1.74%), and

\\'eti eil iii‹I et ‹il.( 2t1l ti) (R : 0.9, RMSE: 0.28%).

Of all predictive models, the ones forPOXC were theleast accurate

(R
2
: 0.4b, RMSE of0.21, RPIQ of 1.49). In contrast, ( \nI ‹I ct ‹›iie i nl

f 2O17 i achieved good predictions of POXC using PLSR basing on NIR

spectral data, withR
2

0.6ß—0.76 In their research, predictions of POXC

were even more accurate than forSOC, with slightly higher accuracy

using MIR (R" 0.77-0.81) as compared toNIR.

Since the bias (see1 iils le 1) was for all soil properties very low, Lhe

spectral models did not show any systematic under- or overestimation

but rather increased the variability (indicated by RMSE) inthemeasured

values. The additional error introduced by the spectral models would

theoretically reduce the statistical power and make significant differ-

ences between treatntents less probable. On the other hund, the appli-

cation of spectroscopy increased the sample size drastically which would

theoreticnlly improve Lhe stntistical power. We conducted sLntistical

tests with all samples and only with thereference samples, leaving out

the step of predicting any data (seeli . S). The combination of thethree

land cover categories and the three soil depths results in nine different

treatments that can be compared in36 possible combinations. Looking

et SOC for example, 24 out of 36 possible treatment combinations

showeda statistically significant difference. However, considering only

the reference samples,5 combinations showeda statistically significant

difference. This demonstrates how by including the predicted values

basing on thespectroscopy data, and thtis increasing the sample size, the

number of significant pairings increased dramatically. We conclude

therefore, that the effect of the higher sample size overcompensated the

reduced measurement accuracy and led to an increased statistical

power.
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Fig. 6. Boxplot with jitter showing thestocks within the top 0—15 cm layer of SOC (A), POXC (B)arid totalN (C). The dots show thesample size. The X position of

each dot was randomly computed toassist the readability. The letters above theboxplots *epresent significant differences between thedifferent soil cover classes

within the same treatment (p < 0.05). The ’—' sign appears witha sample size lower than3 and indicates the lack of statistical comparability.

4.2. So'it aryanis carban sequestrnñon mtce post agriculturdl land

In comparing tilled and fallow fields, an addition of 9.55 Mg ha°'

SOC was found. Over the15-year period inwhichthefallow fields were

able to recover after the last bulldozing, while tilled fields were further

cultivated, this corresponds toa yearly sequestration rate of 0.64 Mg

ha‘' y°' and 2.76°ñ y°'. This is slightly higher than theaverage SOC

sequestration rate of +2.396 y°' which Bell ei aI. (2020) identified from

their review of previously published study sites and the sampling of

three new sites in northeastern Spain. Both higher and lower seques-

tration rates were found by Novar8 et aI. (2017), who worked with

previously published field studies in addition to collecting their own

8

samples in Sicily. They reported increases in SOC stocks of the upper

0—30 cm soil layer after croplands were abandoned for20 years with an

average of 0.45 Mg ha°‘y ' ofSOC. Their values ranged from 0.27 Mg

ha ’y ' to 1.34 Mg ha°'y ‘, depending on soils and bioclimate. One

possible explanation for the slightly higher sequestration rates in our

study site as compared totheaverage rate found by Bell cl of. (202U) is

the lithology. Soils on calcareous lithologies, as in Sierra Estronad, were

found to have higher OM accumulation rates post-abandonment as

compared to marly lithologies (Robiedano-Ayrnerich el ol., 2014).

Furthermore, our study site lies within therange ofannual precipitation

rates, which according to Bell ct al. (2020) are optimal for carbon

sequestration.

However, also higher sequestration rates were reported withina
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Fig. 8. Bar plot showing the number of statistically significant differences

among depths and treatments when using all samples (n = 483) in yellow and

when only considering the reference samples (ii = S7) in blue. (For interpre-

tation of the references to color in this figure le8 d, the reader is referred to

rhe web version of this article.)

Mediterranean climate, for example by Tommaso etat. (2018), who

found sequestration rates of 1.3 Mg ha*' y*' ina 14-year period ina

depth of3O cm inthe Alps of Italy. The fact that the sequestration rate,

measured inour study, is lower, could be due to the high impact culti-

vation through bulldozing, which depleted soils and most likely slowed

down therevegetation pmcess ofboth tilled and fallow fields (Bonet,

2004; Robledano-Ayinericl4 ct at., 2014).

However, it is important tonote that the measured sequestration rate

is not expected to last infinitely. De Bnets et nl. (2013) argue thatC

accumulation is rapid over the first 10—50 years after abandonment,

then stabilizing after that. As the current shrub vegetation on fallow

fields mighteventually evolve into young and finally mature forest, SOC

stocks are likely to stabilize. Witha SOC sequestration rate of 0.64 Mg

ha°'y ', it would take 33 years forfallow fields to reach SOC stocks like

the ones found in the forest of Sierra Estronad.

4.3. Development of vegetation cover md soilproperâes posc ngrirultwâl

land abandonment

All fields in the study area experienced very high intensity in-

terventionstbulldozing) and some ofthefields were tilled for 19 years

afterwards. On those fields many spou were sofardegraded, that even

after a 5-year recovery period no vegetation could establish. By

recording small spatial heterogeneities in soil cover within one treat-

ment and comparing them to theSOC and totalN stocks, it could be

shown, that an increased soil cover did correspond to higher SOC and

totalN stocks. Similarly, also on fallow fields, areas were observed,

wherea vegetation coverwas hardly able to establish, however fewer as

on tilled fields. Also here, the SOC and totalN stocks tend to increase

with an increasing soil cover leading to overall significanfly higher SOC

and totalN stocks. This could be due to higher erosion rates on tilled

fields as compared tofallow fields. Ina similar environment, Ccrda ctaL

(20lD)compared two treatments in eastern Spain, where all plots were

tilled for two years and in one treatment, plots were abandoned after-

wards. Eventhough, atfirst, erosion rates increased after abandonment,

already after two years runoffrates were lower on abandoned fields and

afier nine years abandoned fields had 21 times less sediment yield than

the continuously tilled fields.

Furthermore, it can be assumed, that the overall denser vegetation

cover, observed on fallow fields, led to an increased OM input from leaf

litter (Italbitx and Kaiser, 20(lh; Zhao ct al., 2t)I S). This can also be seen

inSOC and totalN concentration which increased from tilled to fallow

fields and decreased with increasing soil depth. The differences between

treatments were highest in the topsoil layer. La i\lantia et a1. (2013)

explained how the litter input “causes the upper mineral soil layers to

respond more rapidly Lhan deeper layers to changes in abovegroundC

andN inputs” (Lu Mantra cta 1., 2013, p. 243).

Even though labile SOC has been found to be more responsive to

management change than total SOC (kocci et aI., 2021) difference in
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POXC concentrations could not be found comparing tilled and fallow

fields. I'm iz.i!‹ ‹ i u 1. t 2iiI i›1 found an initial increase of labile carbon

along secondary succession on abandoned croplnnds in southern Spain.

This increase however only occurred in the first 10 years after aban-

donment and followed the colonization by grasses. When grasslands

turned into shrublands approximately 22 years after abandonment, “the

particulate organic maLter concentration decreased again to its initial

level under cropland” ('I'ii z:i‹ i ‹ i 1.. 2t*I i°, p. 19). Witha similar

development, this decrease inlabile carbon, including POXC, could hnve

already taken place on the fallow fields, which were most often covered

by shruhs. Also, in this study, the predictive models forPOXC hada

lower performance than theones forSOC and total N, leading overall to

only few statistical significances (seel i;v S).

As in I ›iin in ‹u,il ‹2 I!ii ›, C/N ratios were higher than 10,theoptimal

ratio for OM incorporation, and increased from tilled to fallow fields and

the forest.A similar trend was also observed by R‹.I i u l i. ?f I?I ), ;i .is

‹.'t il i ?LiI ?+ 1, and II 'n i -tii 1 t ?tJl .3I who all reported an increasing CA

ratio wiLh tirrte after land abandonment. This could be explained by the

different vegetation coverages, whereas from tilled fields over fallow

fields to the forest treatment thenumber ofwoody plants increase and so

do the input of woody materials and dead leaves, which areknown to

increase the C/N ratio and slow down decomposition rates( \ 1.i i ›s.

2L13 7). This would also explain why the difference among all treatments

can only be seen in the top 0—5 cm, where plant litter is most important.

Planr litter also seems tohave influenced the SOC and total N stocks

within the upper 0-15 cm which were significantly higher where

Querctis ilea (Holm Oak) was the most dominant species than where

Pious halapensis (Aleppo Pine) was the most dominant species. Contrary

to these results, fa“i ii .iz i ‹ i .il ( 2!iI .! found higher SOC stocks in soils

underlying P.halapensis. However, they also reported faster decompo-

sition rates of litters from P.halapensis as compared toQ.ifex litters. This

can also be seen in the slighHy higher C/N ratio found under Q.ilex,

which was however not significant. Due to the therefore larger litler

layer under Q.ifcx, this could have ledtomorelitter being sampled here,

resulting in higher SOC values measured inthetopsoil, while no effects

were found considering the whole depth of 0—25 cm.

4.4. Afartagemenr iJz/p/icarioru

At the national level of Spain, one important driver of recent land

abandonmentwas theEU CAP policy, which supported agricultural land

being set-aside through subsidies. In our study area, due to low pro-

ductivity and low potential for long-term farming, this led to “on and off

farming”, which showed tohavea negative impact on soil fertility. On

tilled fields, even after five years in which the tillage was terminated,

very few plants were able to colonize the area, resulting ina very sparse

soil cover. This led to significantly lower SOC and totalN stocks than in

fallow fields, which were not cultivated since the last high impact

intervention 24 years ago. This supports the argument of \'.-in l.‹‹ i i\\‹ n

‹ i ,!i.I ? I i1" J, that such policies like the set-aside policy of the EU CAP

cen expose areas toa severe risk of erosion. Therefore, the set aside

policy should have been nccompnnied by preventive measures making

it impossible to reopen overgrown land forcrop production.

As an alternative, low intensity grazing could be introduced. This

would allow fora management inwhich the complex and traditional

cultural landscapes of the Mediterranean mountain areas, with pastures,

shrublands rind forests, could be maintained (I, >‹in i« .i 1.. /?t? i'i '). Such

ñeodPrma Regiona/ 38 (2024) e00835

n mosaic landscape could promote “biodiversity, soil quality, carbon

sequestration and the availability of agricultural and livestock resources

to keep the villages alive” (' .-+‹in i:a‹ r .a 1., :.'f12O, p. 2841). In terms of

carbon storage, land abandonment followed by passive management

(secondary succession), or active management (such as reforestation) is

the most effective strategy (1, 1| i -tH I ? i.l.'l i). Thus, options to improve

the set-aside policy needs to be considered, regarding the additional

amount ofCO2 that could be stored infollowed fields and their monetary

value 70.3t ha ' y , based on the OECD carbon rates (27.6t Mg ')

(ri L:I.11,2 ti.? 1), as well regarding the other landscape effects of hallowed

fields such as low-intensity gracing, increased biodiversity and vegeta-

tion cover and climate mitigation potential.

In this study, the impact on soil fertility proxies of policy-driven land

management strategies on abandoned marginal lands in northern Spain

have been investigated. On a small scale but witha high spatial reso-

lution, the interdependenceofsoil fertility proxies (SOC and total N) and

the degree of vegetation cover could be shown, with higher SOC and

total N stocks on fields with higher vegetation covers.

Dnta on soil properties was gained through wet chemistry analysis

and extended through models basing on vis—NIR spectroscopy data,

combined with multivariate dark analysis. This isa low-cost approach

which still allows fora large sample size to be analyzed. As in many

other studies, this method was found to be very effective, leading to

reliable predictive riiodels and a higher statistical power gained through

a large sample size.

A local carbon sequestration rate of 0.64 Mg ha*’ y* following the

secondary succession on former agricultural fields could eventually lead

to the whole study area storing 2’909.9 Mg of SOC equaling 10'b68.8 Mg

of CO; on 46.1 ha of forest. In terms of soil fertility, it can therefore be

concluded, that policies which encourage land abnndonmenf butaskfor

former agricultural fields to be kept from revegetation, do in fact foster

the degradation of soils. The maintenance ofa vegetation cover should

be pursued, to hinder erosional processes and promote carbon seques-

tration, thus contributing to soil fertility and climate change mitigation.
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Appendix 1. tsraph showing thecorrelations between pH, inorganic C, clay, silt, and sand. InorganicC concentrations are shown ing

kg°'. Clay, silt, and sand areahown inpercentages. The colors indicate the different treatments. On the bottom left there are scatter

plots, separated through dlagonally arranged density plots from thePearson Correlation coefficients listed on the top right
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Appendix 2. Piechart showing themajor elemental components measured intheXRP Analysis. The ahares in this plot do not add up to

1009a si•ce there were 49 more elements found which make up theremaining 5896

References

Akratos, C.S., 2017. Chaprer ocomposting of Olíve Míll Wuste forthePredurrion of

Soil Amendments.

Alberti, G., Leronnt, V., Pfazd, M., Petrella, F., Malzota, P., Peressotti, A., Piussi, P.,

Valentlní, R, Grlstioa, L., La Mantia. T., Novara, A., Rühl, J., 2011. Impact ofwnody

encroachment on soil organic carbon and nitmgen lnabandoned agricultural lands

alonga raúdaJl gradient tn ttaly. Reg. Environ. Ctang. 11 (4J, 917—924. htrgs:y/üoi.

org/L0.1O07/s101L3-0t1-D229-6.

An, S., Gentler, A, Mayer, H.,Blum, W.E.H., 2010. Soil aggregation, aggregate stability,

organic carbon and nitrogen in different soil aggregate fractions under forest and

shrub vegetafion on the loess plateau. China CATENA C4(3), 226.-233. hitps://doi.

org to.ioi6zj.c«t•na.zoio.o4.oo2.

Baeva, Yu.I., Kurganova, LN., Lopes de Gerenyu, V.O., Telesnina, V.M., Chemykli, N.A,

Probofeva, T.V., Morel, J.L., Ananyeva, N.D., 2019. Abandonment ofarable lands

triggers the recovery of' natlve vegetadon and organic carbon content in soils. In:

Vasenev, V., Dnvletyarova, •, Cheng, Z. (Eds.), urbanlzadon: Challenge and

Opportunity forSoil Punctions and Etnsystem Servlet. Springer International

Publishing, pp. 89—96. https://doi.orgZl0.1007/978-3-319-89602-1 12.

Baumann, P., Lee, j., prnßsard, R., Schönhnlser, L.P., Dihy, L., Hgaza, V.K., Kiba, D.I.,

Sifa, n_, Shepard, n, Six, j., 2021.R timation or soll qrob«rtis wth nid-infrared soil

spectroäcopy acmäs yarn production landäcapes in West Africa SOIL7 (2), 717-73i.

krrps://dol.o‹g/10.5J94/soiI-7-7J 7-202a.

Bell, S.M., Barriocenal, C., Terrer, C., Cosetl-Melé, A., 2020. Management opportunities

ter soil carbon sequestration following agricultural land at›andr›nment. EnvySci.

Pol. 108, 104-ité.Ittïps.zzüoi.orgzz 0. I0t6zJ.enxsci.2020.O3.0t8.

Bell, S.M., Terrer, C., Barrlocanal, C., Jackson, R.B., Rosell-Melé, A., 202 i. Snil organic

carbon accumuladon rates on Mediterranean abandonea agrltultural lands. ser.

Total Envifon. 759, 143535 https://doi.org/10.1016/j.scitotenv.2020.148535.

Bland, J.M., Alimon, D.G., 1995. Mulfiple significante teats: the Banferroni meih0d. BMJ

310 (6973), 170. https://doi.orgZl0.ll06/bmj.310.6973.170.

Bonet, Tt., 2004. Secondary mcceasion of semi-arid Mediterranean old-fields in South-

Eastem Spain: insights for conservation and restoration of degraded lands. J. Arid

Environ. Sfi (2), 213—238. nttps://dor.ong/10.10l6/S0140-1963í03)00048-X.

Calderón, F.J., Culman, S„ Six, J., Franzluebbers, KJ., Schipanski, M., Beniston, J.,

Grandy, S., Kong, A.Y.Y., 2017. Quanilficadon of soil permariganate OxldlzableC

(POXC) using lnfnred spectrnscopy. Soll Sol. Soc. Am. J. 8i (2j, 277-288. hnps:Z/

a0i.OT 10.Z136zi iai20i6.07.0216.

Cerdá, A, Rodrigo-Comino, J., Novara, A, Brevilt, E.C., Vaezi, A.R, Pulido, M., Giménez-

i\4orera, A, Keesstra, S.D., 2018. Lung-terzn impact ofrainféd agricultural land

abanHonm+•nt on soil presion in the Western Mediterranean basin. Prog. Phys.

Geogmphy: Earth mviron. 42 (2), 20L2l9. https:/Zdoi.org/t0.1177/

030913331875852t.

Chang, C.-W., Laird, D.A., 2002. Near-infrared reflectante spectroecopic analysis of soilC

and N. Soil Sci. 167 (2), 110-116. https://doi.orgZt0.4097/0001069d-200202000-

00003.

Chauchard, S., Carcaillet, C., Gulbal, P., 2007. Patterns of land-use abandonment control

tree-recrultment and forest dynamics luMediterranean Mountalns. Ecnsystems 10

(si. s3e—faa. https:/ ani.nrg/io.i ooh/sioo2i-oo7.so6s.u.

Z2

0 • Fe

Charter, M., Hutchinson, C., Reynolds, J., I-iilI, .J., Sommer, S., Von Mzltitz, G„ 2018.

World Atlas of Desertification; Publication Office of the European Union:

Luxembourg, 2018.

Da Sllva-Sangot, D.V.D., Horst, T.Z., Moura-Bueno, J.M., Dalmolln, RS.D., Seben, fi.,

Gebler, L., Da Silva Santos, M., 2022. Snil organic matter and clay predictions by

laboratory spectroscopy: data spadal correlation. Geoderma. Reg. 28, e00486

https:r’/dot.org/ID. 1016r’j.gee•drs.2022.e00486.

De Baets, S., Meersmans, J., Vanacker, V., Quine, T.A., Van Oost, K., 2013. Spatial

variability and change insoil organic carlxin stocks in response torecovery following

land abandonment and erosion in mountainous drylands. Soil Use ivlanag. 29 (1),

6S—76. https:y2doi,oral0,1 11 1/siim,â 2017.

Deng, L, Wang, K-B., Chen, M.-L, Shangguan, Z.-P., Sweeney, S., 2013. Soil organic

carbon storage capatliy posldvely related to forest succession on the loess plateau,

ciuna. cA':rzNA mo, i—7. https:zzaoi.orquo.i oisyj.Catena.zois.os.oi6.

Deng, L, Wang, K, Tang, Z., Shangguan, Z., 2016. Soll organic carbon dynamlcs

following natural vegetation restondon: evidence from stable carbon isotopes

(6l3C). Agric. Rcoxyst. Environ. 221, 23S-244. https:7/doi.orgz10.10l6/j.

pgce.2016.01.048.

Djuma, H.,Bruggeman, A, ZiasiiDos, A., Ou•istoforou, I., Rliades, M., Zoumides, C., 2020.

Tbe efectofagdcrümralabaodonmenPBnd mountaïolewaCedegrsdaóononsoil

organic carbon ina Mediterranean landscape. CATENA 195, 1047A1. https://doi.

oJ10.t0t6Zj.catena.2020.40d7dl.

D'Orazio, V., Traversa, A., Senesi, N., 2014. Forest soil organic carben dynamin as

affécted by plant species and their corresponding Ltters:A fluorescente spectroscopy

approacii. Plant Soil 374 (1—2), 473-484. https://doi.org/i0.i 007/s1i 104-Oí3-

1897-4.

Dunjó, G.,Pardinl, G., Gispert, M., 2003. Land usechange efFects on abandoned terraced

soíls ina Mediterranean catchmenL NE Spain CATENA 52(1), 23—87. https://dor.

orgZl D. 1016/S03^I-B162(02)00148-0.

Rllert, B.H„ Bethany, 3.R., 1995. Cglculaóon of organíc matter and nutrienb stored in

soils under eontrasting niariagement regimes. Can. J. Soil Seí. 75 (4), 529—538.

https://doi.oral0.4141/cjss95-075.

ómrexi, M.,Ciq›ert, M., Pardini, G., 2012. Pattems ofsoil organic carbon, glomalin and

structural stability in abandoned Mediterranean terruced lands. Eur. J. Soil Sci. 63

(sj, 637—649. https:/zdoi.org io.iii 1/j.i 3ss-23s9.zoi 2.ois9s.x.

Pernández. S., Peón, 3., Redondo, C., Calleja, J.P., Guerrero, C., 2016. Spatlal modelling

of organic carbon inburned mountain soils uslng hypnrspectral images, field

datasets, and HIR spectroscopy (Cantabrlan range; i'4W Spain). Land Degrad. Dev. 27

ts), i4ye—i4gs. https: /aoi.orgzio.ioo2ZIdr.24s2.

fiuccession on abandoned low productivity agricultural laude. Ecosystems l3 (6),

79T-8l2. https:y2doi.oral0, t0077sJ0021-010-9355-0.

Gabarrón-Galeote, M.A., Trigalet, S., Van Wesemael, B., 201Sa. £ífect of land

abandonment on soil organic csrbon fractions alonga Mediterranean precipitetion

gradient. Geoderma 249—2S0, 69—78. hitps:ZZdoi.orgzl0 104 6Zj.

genderma.201 S.OM.007.

Gaharrón-Gateote, M.A., Trlgalet, S., Wesemael, B.V., 2015b. Soll organic carbon

evoludon after land abandonment alonga predpltadon gradlent In southern Spaln.

Agric. Ecosyst. Environ. 199, 114-123. https://dot.org/10.1016/j.

agee.2014.0B.027.

   

93 
 



fieoâenia Refiinal fiB i'20J4ÿ e00B35

Garcfa-Ruiz. J.M., Renault, N., 2011. Hydrological and erosive consequences of Novara, A., Gristina, L., La Mantia, T., Rühl, J., 2013. Carbon dynamics ofsoil organic

íärmland abandonment inEurope, with special reference to tfie Mediterranean matter in bull: soil and aggngate fraction during secondary succession ina

region -A review. Agric. Ecosysn Environ. 140 (W), 817—33ß.h tips:ZZdoi.org/ Mediterranean environment. Geixlerma 19a-194, 21S—221. https://doi.org/

10.1016Zj.agee.2011.0 .003. 10.1016Zj.geoderma.2012.08.036.

Guldi, C., Magld, J., Rodeghiero, M., Gianelle, D., Vesterdal, L., 20i 4. Allens of forest Novara, A, La Manda, T., Rtlhl, fl., ßadalucŒi, L., Kuzyakov, Y., Grlstina, k.,

expanslon on mountatn grasdand: changes withln soìl organic carbon fractlons. taudiclna, v.A., 2014. Dynamics ofsoil organic carbon pools afœr agricultural

Plant Soll 38s (1—2j, 373-3ß7. htrps:zzdoi.orgZio.l007zslii04-014-23lS-2. abandonment Geodertria 23S-a3fi, i9i—19ß. https:Tudor.orgzl0.l0i ÖZj.

Has1*e,T.,Tibxhvani,It, Friedmnn,J., 2OT7.TfieEłementsof5tatisticaJLearnmg:Datn geodennv2Dl4.07.015.

Mining, Inference, and Prediction. Springer, Springer series in stanstics, Novarø, A-, Gristina, L„ Sala, G„ Galałi, A., Cresт•imanno, M., Cerdà, n., Bedalamenti, E„

Isaksson, T., Nes, T„I 9øs, Thg effœt of mulöplicative scatter cnrrecöon (MSC) and Lø Mania, T„ 2017, Agricultural land aben0cnment inhlediterraneøn environment

linearity improvement inNIR spectroscopy. Appl. Spœœosc. 42 (7), 1273-1284. provides ecosystem services viu soil carbon sequestration. Sci. Total Envirom 576,

https:ZZdoi.orgZl0.I 3o6Z0003702884429ß69. 420—429. https://doi.org710.101 öZj.scitotenv.2016.10.1 23.

Katbitz, It., Kaiser, X., 200ß. Contribufion of dissolved organic matter to carbon storage OEC£I, 2021. Effective Carbon Rates 2021: Pricing Carbon Emissions through Taxes and

in forest mineral soils. J. Plant Nutr. Soil Sci. 171 (t), 52Æ0. https:ZZáoi.on Emissions Trading. OECDP ublishing, Paris. OECD Series on Carbon Pricing and

10.4 002/jpln.200700043. Energy Taxation.

Kennard, R.W., Stone, L.A., 1969. Computer alded Design ofRxperimentS. Technornetrlcs Pardíni, G., Dunjó, G., Gispert, M., Barrena, R., Guidî, G.V., 2002. Land useeffects on soil

LL (1),Z 37-t48. httqs://óoi.org/10.ÏOBO/OD4OZ 706. I9ó9.10g90666. response to runoJT generation and sediment yield in the Serra óe Rodes catchment,

Knops, J.M.H., Tilman, D.,200ß. Dynamics ofsoll nitrogen and carbon arcumuladon for AltEmpordà, NE Spain. In: Mnn rind Soil at the Third Millennium. Proceedings

61 years after agricultural abandonment, Ecology 81 (1), 8g—g8. https://doi.orgy International Congress of the European Society for toil Conservation, Valencia,

t0.â ßgD/0D12-9658(2000)0B1[ßo8ß:DOSNAC] 2.n.CO;2, Spain, 2H March-t Aprí1, 20n0, Vol. 2, pp. 1323—1339.

Kosmas, C., Gerontidis, 8., Mørathíanou, V., 2000. The Effect of Land Use Change on Pellis, G., Chiö, T., Rey, A„ Curiel yuøte, J., Trotta, c., Papale, D., 2019. The eco8yøtem

Soils and Vegetation over Various Lithological Formations on Lesvos, Gregce, mrbon øink implications of motmtain fõrea expansion into abandoned grazing lønd:

Kuhn, M., Johnson, iC, 2013. Applied Predictive Modeling. Springer. https:zzdoi.orgy the role ot subsoil and climatic facton. Sci. Total Enviro 672, 106-120. https://

10.i 007/978-1 -4614-6ß49-3. doi.orgZt0. 1016Zj,scitoteriv.2019,03.329.

La Mantra, T., Gristina, k, Rivatdo, E., Pasta, S., Novara, k, Rüht, J., 2013. The effects of Perpiña camtlo, C., Kavatov, B., Ribeiro, B.R., Diogo, V., Jacobs, C., Batista, E.S.F.,

post-pasture woвdy plant colonizadon on soll and at›oveground tliter carbon and Baranzelli, c., Lavalle, c., 2018. Terrltoriai facø and trends in the EU rural areas

nicrogea alonga bïorlfmatir traose«c. iPotesc - Blogeasd. Palest.6 (SJ, 23&-246. wttlúa 2OU-2030. 3RC Pub. Repasit. httqs://doi.org/ID.2760/52557L.

htrps:/ydoi.or@l0.3832yifor08lI-006. Perplña úastillo, C., Coll Alłaga, R., Łavalle, C., I\Martinez Llarlo, J.C., â020. An

lasanta, T., Arnäez, 3., RasaunL, N.,RÆ-Flaño, P., Errea, M.P., Lana-Renault, N., 2017. assessment and spatial inodellirig of agricultural land abandonment inSpaln

Spøce—time process and drivers of land abandonment inEurepe. CATEI4A ld9, (2015—2030). Sustainability 12 (2), 560. nttps:Z/dot.or8yt0.3390/su12020S60.

810—828. https:Z/doi.oralo.1016Zj.catena.2016.02.Ozą, Petønidou, T., Kizos, T., Soulahellis, ht„ 2008. Socioeconomic dimensions of changes in

talents, T., nméez, J., Nodal-Romero, E„ 2019. Soil degradaõon, reøtorøöon and the agrìcultuiøl landscape of the Mediterranean Beain:A case smdy ofthe

management inabandoned and aforested lands. In: Advances inChemiml Polluson, abandonment ofcultivation terraces on Nisyros island. Greece End Manag. 41

Environmental Management and Protection, vol. 4. Elsevier, pp. 71-117. htrps:Z/ (2), 250—266. https:Z/rtoi.org/10.I 007Zs002õ7-007-9054-6.

doiorg/I0 1016/bs.apmp,20t9.07.002. Piché, N„ belting, D.L, 2015. Recovery of soil productivity with forest succession on

Lasania, T., Sáncbez-Navarrete, P., Medrano-Moreno, PM., morchanl, M.,Nadal- abandoned agricultural land. Restor. £col. 23 (5), 64s-бS4. https:/Zdoi.orgy

Romero, E., 2020. Sott quality and soil organic carbon storage in abandoned 10.1III free. 12241.

agricultural lands: efects of revegetation processes ina Meãiterranean mid- naiesi, F., 2012. Soil propertles and C dynamics inabandoned and culdvated farmlands

mounmín area. Land DegraA Dev. 31 (lß), 2ß30—2ß45. https://doí.or@10.1002s ina semi-arid ecosystem: land abandonment andC dynamics. Plant Soil 351 (1-2),

Idr.3655. 161-175. hrtps://doi.orgZ10.l007/st1104-01I -0941-5.

Leone, P.A., Viscarra-Rossel, A., Amenta, P., Buondonno, A, 2012.Pzeôicäan o£ soil RobledanœAymerich, F., Romero-Dfax, A.,ltølmonte-Serrøto, F., Zapata-Pérez, V.M.,

properties with PLSR and Vi>Nm spectroscopy: application to Mediterranean soils Martinez-Hernänden, C., Martfries-l•ópez, V., 2014. Ecogeomorphological

from southern Italy. Curr. Anal. Chem.8 (2), 2ß3—299. https:/Zdoi.orgyI0.2174/ consequences of land abandonment insemiarld Mediterranean areas: integrated

157341112800392571. assessment of physical evolution and biodiversity. Agrio Ecosyst. Envlron. 197,

Lesschen, J.P., Cammeraat, LH., Kooijman, M., Van Wesemael, B., 200ß. Development 222—242. https:ZZdoi.org7l0.101 6yj.agee. 2014.08.006.

of spatial heterogeneity in vegetaäon and soil properties after land abandonment in Rocci, K.S., Lavallee, I.M„ SteWan, C.E., Cotrnfo, M.F., 2021. Soil organic carbon

a semi-arid ecosystem. J. nrid flnvkon. 72 (1i). zoBWzos2. https://dot.orgy response to global envtronnienml change depends on its distrlbudon between

10.I 0l6Zj.jnridenv.200ß.06.006. mineral-associated and particulate organic marter:A meta-analysts. Set. Total

Levi, N., Eamleli, A., Paz-Kagan, T., 2020. Using reflectance spectroscopy fordetecting Envhou. 793, l4B569 https:Z7doi.or@l0.l0l6/j.scitotenv.2021.I 4ß569.

land-use efects on soil quality in drylands. Soil Tillage Res. 199, l0A57l https:ZZdoi. RomerœDíaz, A.,Ruiz-Sinoga, J.D., Robledano-Aymerich, F., ßrevik, E.C., Cerdà, A,

org/10.1016/j.still.2020.104571. 2017. Ecosystem responses to land abandonment inWestern Mediterraiiean

Vi, J.,Li. M.,Dong, R, Wang, iC, Liu, Y., Hat, X., Pan, Y.,l,v, W., Wang,K, Slungguan, Z., Mound CATENA J49, 82W3S. https:Z/doi.org710.t 016Zj.catena.2016.08.013.

Deng, L., 2020. Plant productivity and microbial composiõon drive soil carbon and Savitzky, A, Golay, M.J.E., 196d.Sinoztiring enó differenõaöon of data by simplified

nitrogen sequetradons fóïlowlng crogland abandonment. Set. 3'otat Envlron. 744, least equates procedures. Anal. Chem. 36 (8}, 1627-1639. https://óoi.org/10.l02t/

140802 https://€toi.org/10.10t6/j.sctcotenv.2020.140802. nc602t 4c047.

López-Bermúdez, F., RometoDfaz, A., Martinez-F'emandez, J., t996. lite El Ardal field Serrano, 1., Shahidłan, S., Marques Da Silva, J., Paixăo, L., De Camalho, M., Moral, F.,

site: soil and vegetation cover. Mediterranean Desertificat. Land UseI 69—188. Nogales-Bueno, J., Teixeira, R.P.M., Jongen, M., Domingos, T., Rato, A.R., 2021,

Lucas, S.T., Weil, RR, 2012. Cana labile carbon txt be usød topredlrt crop responses to Evaluadon of near infrared spectroscopy (NIRS) for estimating sail organic matter

improve soll organic matter managønent? Agron. J. lo9 (4), 1160'-1170. https:// and phosphorus inMediterranean Montado ecosystem. Sustainability 13 (5), 273ø.

doi.Org/l 0.213s ’agronj20l 1.04I S. https:/ doi.org/10.3a90/sula0sz73•.

Martinez-Dunn, E., Ferrandis, P., Escudero, A., Luzuriaga, A.L., Herranz, J.M., 2010. Spohn, M., N•vák, T.J., Incze, J., Giant, L., 2016. Dynamics ofsøil carbon, nitrogeii, and

Secondary old-field accession inan ecosystem with restrictive soils: does time from phœphorus incalcareous soils after land-use abandonment— A chronosequence

abandonment matter? Appl. Veg. Sci. 13 (2), 234-24ß. https://doi.oral0. t1t ty study. Plant Soil 401 (1-2), 185-196. htrps://doi.org/10.t007 Zs1I 104-0t5-254 3-6.

j.t654-109x.2009.01064.x. Strijker, D., 2005. Marginal lands in Rump uses of decline. Basic Appl. Rcol.6 (2),

Mollnaro, A.M., Simon, R., Pfeiffer, ft.M., 2005. Predicõon ermr estimation:A 99-106. https:ZZdoi.org710.2 01 öZj.base.200s.01.001.

cømparisan ofresampling methc›ds. Bioinforniaõcs 21 (15), 3301—3307. https:Z/doi. Thornes. J. ß., 198b. The ecology of erosion. Geography 70 (8), 222-23S.

oral0.t093fiioinformaticsfiti'499. Tommaso, C., Emanuele, B., Guido, P., Lucia, P., Vincenza, C.M., Riccardo, V.. 201ß. Soil

jottet, A., Ladet, S., cnquê, N.,Gibon, A., 2006- Agricultural land-use change and its organic carbnn pnol's contribution to climate change mitigation on marginal lanã of

düversinmounBlnùm‹Lcxps:A nesmdyin1ePyrœ‹ns. AgücRrosyst aMedtenaneanmontwe meainIuùy.J. Rninon.Manag.2l8,s95-601. https://

RnvñoŒ 114(2-4),296-310.Gnps://doiorg/I0.10}6)agee2005lL017. doiorg/lOI0Iñ]jenvmnn2018.O 093.

Noura-Bueno, J.M., Dalmolłn, R.S.D., Ten Caten, A., Dotto, A.C., Demattñ, IBM., 2019. Trigalet, S., Gaharrõn-Galeote, NLA., Van Oost, K., Van Wesemael, B., 2016. Chariges In

Stratißcation ofø local VIS-NIR-SWIR spectral library by homogeneity criteria yields soil organic cвrbon pools alonga chronosequenee oflвnd abandonment insouthern

tnore accurate soil organic carbon predictions. Geoderma 337, 565-581. https:/ydoi- Spain. Geoderma 2f'B, l4—2J. https://doi.org/lo.Iota/j,geoderma.2016.01,014.

orgZl0.1o16Zj.geoderma.20l8-10,ols. Van Løeuwen, C.C.E., Canmerøøt, E.Ł.H., ne Vente, J., 8oix-F•ayos, C., 2019. Ttte

NadaI-Romero, E„ Gammerøat, fl., Pérez-Cardiel, E., iasanta, T., 2046. How do soil evoluóou ofsoil conservaöon policies targetng land abandonment and soil ernàon

organlc carbon stocks change after cropland abandonment inMedlterranean humfd inSpainA revtew. Land Use Policy ß3, 174-1ß6. https://õoi.orgZl0.1oiözj.

mountain areas? 8cl. 7otal Snvîron. 566-567, 74t-'7S2. Itttps://doi.org/10.t0ł6/j. lazŁdusepoL2OJ 9.0t.U18.

scitofeny.2016.OF.031. basques, G.M.. Gr«owald, S., Sickman, J.O., 2008. Comparison ofmultivańate otethods

NadaI-Romero, E., Rubio, P., Kiemyda, V-, Ahsalah, S., Cammeraat, R., Jarisen, B., fõr ínferendal modeling ofsoil carhnn using visibly/near-infrared spectra. Geodemia

Lasanta, T., 2021. Effects of agrfcultural land abanãonment on soil organic carbon lq6 (1—2), 14-2S. https:ZZdoi.orgZl0.101ò/j .geoderø’m.2008.0d.0D7.

stncks and composidon of soil organic matter in the central Spanlsh Pyrenees. Webster, R., Lark. M., 201 2. Field Sampling forEnvironmental Science and Management.

enter Nos, io54ąl. https:zzaoi.org to.ioi6zj.caiena.zo2i.ios4^i. noutiedge.

Navas, A., Gaspar, L, Quijano, 1,., Lópec-Vicenre, M., Machtn, J., 2012. Patterns of soil Well, R. R., Islam, K,R., St inc, M.A., Gruver, J.B-, Samson-Liebig, S.E., 2003, Estimaiin8

organic carbon and nitrogen in relation to soil movement under difererit land usm in active carhon forsoil ‹quality *ssessment:A simplified method for laboratory and

mountain fields (soutn Central Pyrenees). CATENA 94,43—52. https.Z/doi.orgy field use. Am. J. Altern. Agric. 18 í41, 3—4 7.

i0. l0lszj.taten«.2011.05.0i2.

94 
 



Wertebach, T., Hö1ze1, N., Kämpf, I., Yurtaev, A., Tupitsin, S., Kiehl, E., Kamp. J.,

DeinebecFer, T., 2017. Soil carbon sequestration due to post+oviet cropland

abandonnent: estimates froma large-scale soil organic carbon field inventory. Glob.

Chang. Biol. 23 (9), 3729-3741. https://doi.org/10.1114Zgcb. 13650.

Wetterllnd, J., Stenberg, B., Söderström, M., 2010. Increased sample point density in

farm soll mapping by local callbradon ofvisible and near infrared prediction models.

Geoderma1 Sfi (3—4). 152-160. https:ZZdoi.orgZl0.l 0l6/j.geoderma.2010.G2.012.

Wold, S., Martens. H., Wold, IL,1983. The muldvañate calibration problem inchemistry

solved by the PLS method. In: Kàgsträm, B., Ruhe, A. (Rds.), Matrix écueils, vol. 973.

springer, Berlin Heiaelberg, pp. 2Bo—z93. https://doi.orgzio.room/8rboo62io8.

QœdnmoA d38f •7mHB3S

Zhao, Y. G., Liu, X.-F., Wang, Z.-L, Zhao, S.-W., 2015. Soil organic carbon fractions and

sequestration acrossa 4 50-yr secondary forest chronosequence on tfie loess plateau,

China. CATENA 133, H3-308. https:Z/doi.org/10.1016/j.catena.20t5.05.028.

Zomoza,R.,Guenero,C.,Mam(rSo1aa,l,ùow,l£M.,Arenegui,V., Mat%r

Beneyto, J.,2008.NerlnharedspecuoscopyfordeemnflnadonofvadousphpicM,

chemical and biochemical properties in Mediterranean solls. Soil Biol. Biothem. 40

(7i. 1923—1930. https:„doi.org/I0.i 0l 6/j.soilrio.2o0o.04.0o3.

   

95 
 



5. Bibliography

Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D., 2020, From Laboratory to Proximal Sensing

Spectroscopy forSoil Organic Carbon Estimation -A Review: Sustainability-Basel, v. 12, no. 2.

https://doi.org/10.3390/su12020443.

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and

Smith, D. L., 2018, Plant Growth-Promoting Rhizobacteria: Context, Mechanisms ofAction, and

Roadmap toCommercialization of Biostimulants for Sustainable Agriculture: Front. Plant Sci.,

v. 9, p. 1473. https://doi.org/10.3389/fpIs.2018.01473.

Bell, S. M., Terrer, C., Barriocanal, C., Jackson, R. B., and Rosell-Mele, A., 2021, Soil organic carbon

accumulation rates on Mediterranean abandoned agricultural lands: Sci. Total Environ., v.759.

https://doi.org/10.1016/i scitotenv.2020.143535.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., and McBratney, A., 2010, Critical

review of chemometric indicators commonly used forassessing the quality of the prediction

of soil attributes by NIR spectroscopy: Trac-Trend. Anal. Chem., v. 29, no. 9, p. 1073-1081.

https://doi.org/10.1016/i trac.2010.05.006.

BioSuisse, 2022, BioSuisse, Richtlinien für die Erzeugung, Verarbeitung und den Handel von Knospe-

Produkten. https://knospe.bio-suisse.ch/verarbeitung-handel/richtlinien-merkblaetter.html.

Blanco-Canqui, H., 2022, Cover crops and carbon sequestration: Lessons from US studies: Soil Sci. Soc.

Am. J., v. 86, no. 3, p. 501-519. https://doi.org/10.1002/sai2.20378.

Blume, H.-P., Scheffer, F., and Schachtschabel, P., 2016, Scheffer/Schachtschabel soil science, Berlin,

Springer-Verlag, Soil science.

Breure, T. S., Prout, J. M., Haefele, S. M., Mime, A.E., Hannam, J. A., Moreno-Rojas, S., and Corstanje,

R., 2022, Comparing the effect of different sample conditions and spectral libraries on the

prediction accuracy of soil properties from near- and mid-infrared spectra at the field-scale:

Soil Till. Res., v. 215. https://doi.org/10.1016/i still.2021.105196.

Brito, L. F., Galvao, J. C. C., Giehl, J., Coellho, S. P., Campos, S. D., Barrella, T. P., dos Santos, T. R.,

Mendonca, B. F., and de Jesus, E. V., 2019, Decomposition of cover crop mulch and weed

control undera no-till system fororganic maize: Bioscience Journal, v. 35, no. 5, p. 1339-1348.

https://doi.org/10.14393/BJ-v35n5a2019-41836.

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., and Reinsch, T. G., 2006, Global soil

characterization with VNIR diffuse reflectance spectroscopy: Geoderma, v. 132, no. 3-4, p. 273-

290. https://doi.org/10.1016/i.geoderma.2005.04.025.

Bundesamt für Landwirtschaft, 2022, Agrarbericht 2022.

https://www.agrarbericht.ch/de/produktion/pflanzliche-produktion/ackerkulturen.

Bünemann, E. K., Bongiorno, G., Bai, Z. G., dreamer, R. E., De Deyn, G., de Goede, R., Fleskens, L.,

Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., and

Brussaard, L., 2018, Soil quality -A critical review: Soil Biol. Biochem., v. 120, p. 105-125.

https://doi.org/10.1016/i soilbio.2018.01.030.

Cambardella, C. A., Moorman, T. B., and Singer, J. W., 2010, Soil nitrogen response to coupling cover

crops with manure injection: Nutr. Cycl. Agroecosyst., v. 87, no. 3, p. 383-393.

https://doi.org/10.1007/s10705-010-9345-9.

Chahal, I., Vyn, R. J., Mayers, D., and Van Eerd, L. L., 2020, Cumulative impact of cover crops on soil

carbon sequestration and profitability ina temperate humid climate: Sci. Rep., v. 10, no. 1.

https://doi.org/10.1038/s41598-020-70224-6.

Cheik, S., and Jouquet, P., 2020, Integrating local knowledge into soil science to improve soil fertility:

Soil Use Manage., v. 36, no. 4, p. 561-564. https://doi.org/10.1111/sum.12656.

Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and Balesdent, J., 2019, Increasing organic

stocks in agricultural soils: Knowledge gaps and potential innovations: Soil Till. Res., v. 188, p.

41-52. https://doi.org/10.1016/i still.2018.04.011.

Clairotte, M., Grinand, C., Kouakoua, E., Thebault, A., Saby, N. P. A., Bernoux, M., and Barthes, B. G.,

2016, National calibration of soil organic carbon concentration using diffuse infrared

9696 
 

5. Bibliography 

Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D., 2020, From Laboratory to Proximal Sensing 
Spectroscopy for Soil Organic Carbon Estimation - A Review: Sustainability-Basel, v. 12, no. 2. 
https://doi.org/10.3390/su12020443. 

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and 
Smith, D. L., 2018, Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and 
Roadmap to Commercialization of Biostimulants for Sustainable Agriculture: Front. Plant Sci., 
v. 9, p. 1473. https://doi.org/10.3389/fpls.2018.01473. 

Bell, S. M., Terrer, C., Barriocanal, C., Jackson, R. B., and Rosell-Mele, A., 2021, Soil organic carbon 
accumulation rates on Mediterranean abandoned agricultural lands: Sci. Total Environ., v. 759. 
https://doi.org/10.1016/j.scitotenv.2020.143535. 

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., and McBratney, A., 2010, Critical 
review of chemometric indicators commonly used for assessing the quality of the prediction 
of soil attributes by NIR spectroscopy: Trac-Trend. Anal. Chem., v. 29, no. 9, p. 1073-1081. 
https://doi.org/10.1016/j.trac.2010.05.006. 

BioSuisse, 2022, BioSuisse, Richtlinien für die Erzeugung, Verarbeitung und den Handel von Knospe-
Produkten. https://knospe.bio-suisse.ch/verarbeitung-handel/richtlinien-merkblaetter.html. 

Blanco-Canqui, H., 2022, Cover crops and carbon sequestration: Lessons from US studies: Soil Sci. Soc. 
Am. J., v. 86, no. 3, p. 501-519. https://doi.org/10.1002/saj2.20378. 

Blume, H.-P., Scheffer, F., and Schachtschabel, P., 2016, Scheffer/Schachtschabel soil science, Berlin, 
Springer-Verlag, Soil science. 

Breure, T. S., Prout, J. M., Haefele, S. M., Milne, A. E., Hannam, J. A., Moreno-Rojas, S., and Corstanje, 
R., 2022, Comparing the effect of different sample conditions and spectral libraries on the 
prediction accuracy of soil properties from near- and mid-infrared spectra at the field-scale: 
Soil Till. Res., v. 215. https://doi.org/10.1016/j.still.2021.105196. 

Brito, L. F., Galvao, J. C. C., Giehl, J., Coellho, S. P., Campos, S. D., Barrella, T. P., dos Santos, T. R., 
Mendonca, B. F., and de Jesus, E. V., 2019, Decomposition of cover crop mulch and weed 
control under a no-till system for organic maize: Bioscience Journal, v. 35, no. 5, p. 1339-1348. 
https://doi.org/10.14393/BJ-v35n5a2019-41836. 

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., and Reinsch, T. G., 2006, Global soil 
characterization with VNIR diffuse reflectance spectroscopy: Geoderma, v. 132, no. 3-4, p. 273-
290. https://doi.org/10.1016/j.geoderma.2005.04.025. 

Bundesamt für Landwirtschaft, 2022, Agrarbericht 2022. 
https://www.agrarbericht.ch/de/produktion/pflanzliche-produktion/ackerkulturen. 

Bünemann, E. K., Bongiorno, G., Bai, Z. G., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., 
Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., and 
Brussaard, L., 2018, Soil quality - A critical review: Soil Biol. Biochem., v. 120, p. 105-125. 
https://doi.org/10.1016/j.soilbio.2018.01.030. 

Cambardella, C. A., Moorman, T. B., and Singer, J. W., 2010, Soil nitrogen response to coupling cover 
crops with manure injection: Nutr. Cycl. Agroecosyst., v. 87, no. 3, p. 383-393. 
https://doi.org/10.1007/s10705-010-9345-9. 

Chahal, I., Vyn, R. J., Mayers, D., and Van Eerd, L. L., 2020, Cumulative impact of cover crops on soil 
carbon sequestration and profitability in a temperate humid climate: Sci. Rep., v. 10, no. 1. 
https://doi.org/10.1038/s41598-020-70224-6. 

Cheik, S., and Jouquet, P., 2020, Integrating local knowledge into soil science to improve soil fertility: 
Soil Use Manage., v. 36, no. 4, p. 561-564. https://doi.org/10.1111/sum.12656. 

Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and Balesdent, J., 2019, Increasing organic 
stocks in agricultural soils: Knowledge gaps and potential innovations: Soil Till. Res., v. 188, p. 
41-52. https://doi.org/10.1016/j.still.2018.04.011. 

Clairotte, M., Grinand, C., Kouakoua, E., Thebault, A., Saby, N. P. A., Bernoux, M., and Barthes, B. G., 
2016, National calibration of soil organic carbon concentration using diffuse infrared 

https://doi.org/10.3390/su12020443
https://doi.org/10.3389/fpls.2018.01473
https://doi.org/10.1016/j.scitotenv.2020.143535
https://doi.org/10.1016/j.trac.2010.05.006
https://knospe.bio-suisse.ch/verarbeitung-handel/richtlinien-merkblaetter.html
https://doi.org/10.1002/saj2.20378
https://doi.org/10.1016/j.still.2021.105196
https://doi.org/10.14393/BJ-v35n5a2019-41836
https://doi.org/10.1016/j.geoderma.2005.04.025
https://www.agrarbericht.ch/de/produktion/pflanzliche-produktion/ackerkulturen
https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1007/s10705-010-9345-9
https://doi.org/10.1038/s41598-020-70224-6
https://doi.org/10.1111/sum.12656
https://doi.org/10.1016/j.still.2018.04.011


reflectance spectroscopy: Geoderma, v. 276, p. 41-52.

https://doi.org/10.1016/i geoderma.2016.04.021.

Daryanto, S., Fu, B. J., Wang, L. X., Jacinthe, P. A., and Zhao, W. W., 2018, Quantitative synthesis on the

ecosystem services of cover crops: Earth-Sci. Rev., v. 185, p. 357-373.

https://doi.org/10.1016/i earscirev.2018.06.013.

Dhakal, M., Singh, G., Cook, R. L., and Sievers, T., 2020, Modeling Hairy Vetch and Cereal Rye Cover

Crop Decomposition and Nitrogen Release: Agronomy-Basel, v. 10, no. 5.

https://doi.org/10.3390/agrono v10050701.

Durner, W., and Iden, S. C., 2021, The improved integral suspension pressure method (ISP plus) for

precise particle size analysis of soil and sedimentary materials: Soil TiII. Res., v. 213, p. 105086.

https://doi.org/10.1016/i still.2021.105086.

EM Schweiz (2023). "Rottelenker." Retrieved 10.05.2023, 2023, from https://www.em-

schweiz.ch/rotteIenker-25-1.

Everett, L. A., Wilson, M. L., Pepin, R. J., and Coulter, J. A., 2019, Winter Rye Cover Crop with Liquid

Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield: Agronomy-Basel, v. 9, no.

12. https://doi.org/10.3390/agronomy9120852.

FAO, 2022, Soils for nutrition: state of the art, Rome, FAO.

Gentsch, N., Boy, J., Batalla, J. D. K., Heuermann, D., von Wiren, N., Schweneker, D., Feuerstein, U.,

Gross, J., Bauer, B., Reinhold-Hurek, B., Hurek, T., Cespedes, F. C., and Guggenberger, G., 2020,

Catch crop diversity increases rhizosphere carbon input and soil microbial biomass: Biol. Fert.

Soils, v. 56, no. 7, p. 943-957. https://doi.org/10.1007/s00374-020-01475-8.

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., and Patra, J. K., 2018, Revitalization of

plant growth promoting rhizobacteria for sustainable development in agriculture: Microbiol.

Res., v. 206, p. 131-140. https://doi.org/10.1016/i.micres.2017.08.016.

Grüne Brücke (2022). "Büro für Bodenfruchtbarkeit." Retrieved 10.10.2022, from

http://www.gruenebruecke.de/.

Hacker, N., Ebeling, A., Gessler, A., Gleixner, G., Mace, 0. G., de Kroon, H., Lange, M., Mommer, L.,

Eisenhauer, N., Ravenek, J., Scheu, S., Weigelt, A., Wagg, C., Wilcke, W., and Oelmann, Y., 2015,

Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in

soil: Ecol. Lett., v. 18, no. 12, p. 1356-1365. https://doi.org/10.1111/eIe.12530.

Harris, D. C., Werner, G., and Werner, T., 2014, Lehrbuch der Quantitativen Analyse, Berlin, Heidelberg,

Springer Berlin Heidelberg.

Higa, T., 1991, Effective microorganisms:a biotechnology for mankind, in Parr, J. F., Hornick, S. B., and

Whitman, C. E., eds., First International Conference on Kyusei Nature Farming: Washington

DC, USA, p. 8-14.

Higa, T., 2003, Kyusei nature farming and environmental management through effective

microorganisms—the past, present and future, Seventh International Conference on Kyusei

Nature Farming: Christchurch, New Zealand.

Hoffland, E., Kuyper, T. W., Comans, R. N. J., and Creamer, R. E., 2020, Eco-functionality of organic

matter in soils: Plant Soil, v. 455, no. 1-2, p. 1-22. https://doi.org/10.1007/s11104-020-04651-

9.

Hoffmann, M.,Jurisch, N., Alba, J. G., Borraz, E. A., Schmidt, M., Huth, V., Rogasik, H., Rieckh, H., Verch,

G., Sommer, M., and Augustin, J., 2017, Detecting small-scale spatial heterogeneity and

temporal dynamics of soil organic carbon (SOC) stocks:a comparison between automatic

chamber-derivedC budgets and repeated soil inventories: Biogeosciences, v. 14, no. 4, p.

1003-1019. https://doi.org/10.5194/bg-14-1003-2017.

Hu, C., 2018, Soil carbon and nitrogen sequestration and crop growth as influenced by long-term

application of effective microorganism compost: Chil. J. Agric. Res., v. 78, no. 1, p. 13-22.

Hu, C., and Qi, Y. C., 2013, Long-term effective microorganisms application promote growth and

increase yields and nutrition of wheat in China: Eur. J. Agron., v. 46, p. 63-67.

https://doi.org/10.1016/ieia.2012.12.003.

Humusfarming (2022). "Wenz Academy." Retrieved 10.10.2022, from http://www.humusfarming.de.

97

   

97 
 

reflectance spectroscopy: Geoderma, v. 276, p. 41-52. 
https://doi.org/10.1016/j.geoderma.2016.04.021. 

Daryanto, S., Fu, B. J., Wang, L. X., Jacinthe, P. A., and Zhao, W. W., 2018, Quantitative synthesis on the 
ecosystem services of cover crops: Earth-Sci. Rev., v. 185, p. 357-373. 
https://doi.org/10.1016/j.earscirev.2018.06.013. 

Dhakal, M., Singh, G., Cook, R. L., and Sievers, T., 2020, Modeling Hairy Vetch and Cereal Rye Cover 
Crop Decomposition and Nitrogen Release: Agronomy-Basel, v. 10, no. 5. 
https://doi.org/10.3390/agronomy10050701. 

Durner, W., and Iden, S. C., 2021, The improved integral suspension pressure method (ISP plus ) for 
precise particle size analysis of soil and sedimentary materials: Soil Till. Res., v. 213, p. 105086. 
https://doi.org/10.1016/j.still.2021.105086. 

EM Schweiz (2023). "Rottelenker." Retrieved 10.05.2023, 2023, from https://www.em-
schweiz.ch/rottelenker-25-l. 

Everett, L. A., Wilson, M. L., Pepin, R. J., and Coulter, J. A., 2019, Winter Rye Cover Crop with Liquid 
Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield: Agronomy-Basel, v. 9, no. 
12. https://doi.org/10.3390/agronomy9120852. 

FAO, 2022, Soils for nutrition: state of the art, Rome, FAO. 
Gentsch, N., Boy, J., Batalla, J. D. K., Heuermann, D., von Wiren, N., Schweneker, D., Feuerstein, U., 

Gross, J., Bauer, B., Reinhold-Hurek, B., Hurek, T., Cespedes, F. C., and Guggenberger, G., 2020, 
Catch crop diversity increases rhizosphere carbon input and soil microbial biomass: Biol. Fert. 
Soils, v. 56, no. 7, p. 943-957. https://doi.org/10.1007/s00374-020-01475-8. 

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., and Patra, J. K., 2018, Revitalization of 
plant growth promoting rhizobacteria for sustainable development in agriculture: Microbiol. 
Res., v. 206, p. 131-140. https://doi.org/10.1016/j.micres.2017.08.016. 

Grüne Brücke (2022). "Büro für Bodenfruchtbarkeit." Retrieved 10.10.2022, from 
http://www.gruenebruecke.de/. 

Hacker, N., Ebeling, A., Gessler, A., Gleixner, G., Mace, O. G., de Kroon, H., Lange, M., Mommer, L., 
Eisenhauer, N., Ravenek, J., Scheu, S., Weigelt, A., Wagg, C., Wilcke, W., and Oelmann, Y., 2015, 
Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in 
soil: Ecol. Lett., v. 18, no. 12, p. 1356-1365. https://doi.org/10.1111/ele.12530. 

Harris, D. C., Werner, G., and Werner, T., 2014, Lehrbuch der Quantitativen Analyse, Berlin, Heidelberg, 
Springer Berlin Heidelberg. 

Higa, T., 1991, Effective microorganisms: a biotechnology for mankind, in Parr, J. F., Hornick, S. B., and 
Whitman, C. E., eds., First International Conference on Kyusei Nature Farming: Washington 
DC, USA, p. 8-14. 

Higa, T., 2003, Kyusei nature farming and environmental management through effective 
microorganisms—the past, present and future, Seventh International Conference on Kyusei 
Nature Farming: Christchurch, New Zealand. 

Hoffland, E., Kuyper, T. W., Comans, R. N. J., and Creamer, R. E., 2020, Eco-functionality of organic 
matter in soils: Plant Soil, v. 455, no. 1-2, p. 1-22. https://doi.org/10.1007/s11104-020-04651-
9. 

Hoffmann, M., Jurisch, N., Alba, J. G., Borraz, E. A., Schmidt, M., Huth, V., Rogasik, H., Rieckh, H., Verch, 
G., Sommer, M., and Augustin, J., 2017, Detecting small-scale spatial heterogeneity and 
temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic 
chamber-derived C budgets and repeated soil inventories: Biogeosciences, v. 14, no. 4, p. 
1003-1019. https://doi.org/10.5194/bg-14-1003-2017. 

Hu, C., 2018, Soil carbon and nitrogen sequestration and crop growth as influenced by long-term 
application of effective microorganism compost: Chil. J. Agric. Res., v. 78, no. 1, p. 13-22. 

Hu, C., and Qi, Y. C., 2013, Long-term effective microorganisms application promote growth and 
increase yields and nutrition of wheat in China: Eur. J. Agron., v. 46, p. 63-67. 
https://doi.org/10.1016/j.eja.2012.12.003. 

Humusfarming (2022). "Wenz Academy." Retrieved 10.10.2022, from http://www.humusfarming.de. 

https://doi.org/10.1016/j.geoderma.2016.04.021
https://doi.org/10.1016/j.earscirev.2018.06.013
https://doi.org/10.3390/agronomy10050701
https://doi.org/10.1016/j.still.2021.105086
https://www.em-schweiz.ch/rottelenker-25-l
https://www.em-schweiz.ch/rottelenker-25-l
https://doi.org/10.3390/agronomy9120852
https://doi.org/10.1007/s00374-020-01475-8
https://doi.org/10.1016/j.micres.2017.08.016
http://www.gruenebruecke.de/
https://doi.org/10.1111/ele.12530
https://doi.org/10.1007/s11104-020-04651-9
https://doi.org/10.1007/s11104-020-04651-9
https://doi.org/10.5194/bg-14-1003-2017
https://doi.org/10.1016/j.eja.2012.12.003
http://www.humusfarming.de/


Hutengs, C., Seidel, M., Oertel, F., Ludwig, B., and Vohland, M., 2019, In situ and laboratory soil

spectroscopy with portable visible-to-near-infrared and mid-infrared instruments for the

assessment of organic carbon in soils: Geoderma, v. 355.

https://doi.org/10.1016/i geoderma.2019.113900.

Janzen, H. H., 2006, The soil carbon dilemma: Shall we hoard it or use it?: Soil Biol. Biochem., v. 38, no.

3, p. 419-424. https://doi.org/10.1016/i.soiIbio.2005.10.008.

Javaid, A., 2011, Effects of Biofertilizers Combined with Different Soil Amendments on Potted Rice

Plants: Chil. J. Agric. Res., v. 71, p. 157-163.

Ji, W., Rossel, R. A. V., and Shi, Z., 2015, Accounting forthe effects of water and the environment on

proximally sensed vis-NIR soil spectra and their calibrations: Eur. J. Soil Sci., v. 66, no. 3, p. 555-

565. https://doi.org/10.1111/eiss.12239.

Jian, J. S., Du, X., Reiter, M. S., and Stewart, R. D., 2020,A meta-analysis of global cropland soil carbon

changes due to cover cropping: Soil Biol. Biochem., v. 143.

https://doi.org/10.1016/i soilbio.2020.107735.

Johannes, A., Weisskopf, P., Schulin, R., and Boivin, P., 2017, To what extent do physical measurements

match with visual evaluation of soil structure?: Soil Till. Res., v. 173, p. 24-32.

https://doi.org/10.1016/instill.2016.06.001.

Khaliq, A., Abbasi, M. K., and Hussain, T., 2006, Effects of integrated use of organic and inorganic

nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan:

Bioresour. Technol., v. 97, no. 8, p. 967-972. https://doi.org/10.1016/i biortech.2005.05.002.

Kim, N., Zabaloy, M. C., Guan, K. Y., and Villamil, M. B., 2020, Do cover crops benefit soil microbiome?

A meta-analysis of current research: Soil Biol. Biochem., v. 142.

https://doi.org/10.1016/i soilbio.2019.107701.

Knox, N. M., Grunwald, S., McDowell, M. L., Bruland, G. L., Myers, D. B., and Harris, W. G., 2015,

Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR)

spectroscopy: Geoderma, v. 239, p. 229-239.

https://doi.org/10.1016/i geoderma.2014.10.019.

Kuang, B., and Mouazen, A. M., 2011, Calibration of visible and near infrared spectroscopy for soil

analysis at the field scale on three European farms: Eur. J. Soil Sci., v. 62, no. 4, p. 629-636.

https://doi.org/10.1111/i 1365-2389.2011.01358.x.

Lal, R., 2015, Restoring Soil Quality to Mitigate Soil Degradation: Sustainability-Basel, v. 7, no. 5, p.

5875-5895. https://doi.org/10.3390/su7055875.

Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G., and Six, J., 2009, Determining soil carbon stock

changes: Simple bulk density corrections fail: Agr. Ecosyst. Environ., v. 134, no. 3-4, p. 251-256.

https://doi.org/10.1016/i agee.2009.07.006.

Lehmann, J., and Kleber, M., 2015, The contentious nature of soil organic matter: Nature, v. 528, no.

7580, p. 60-68. https://doi.org/10.1038/nature16069.

Leifeld, J., 2023, Carbon farming: Climate change mitigation via non-permanent carbon sinks: J.

Environ. Manage., v. 339. https://doi.org/10.1016/iienvman.2023.117893.

Liu, X., Herbert, S. J., Hashemi, A. M., Zhang, X., and Ding, G., 2006, Effects of agricultural management

on soil organic matter and carbon transformation -a review: Plant Soil Environ., v. 52, no. 12,

p. 531-543. https://doi.org/10.17221/3544-pse.

Mayer, J., Scheid, S., Widmer, F., Fliessbach, A., and Oberholzer, H. R., 2010, How effective are

'Effective microorganisms (R) (EM)'? Results froma field study in temperate climate: Appl. Soil

Ecol., v. 46, no. 2, p. 230-239. https://doi.org/10.1016/i apsoil.2010.08.007.

Mayer, M., Krause, H. M., Fliessbach, A., Mader, P., and Steffens, M., 2022, Fertilizer quality and labile

soil organic matter fractions are vital for organic carbon sequestration in temperate arable

soils within a long-term trial in Switzerland: Geoderma, v. 426.

https://doi.org/10.1016/i geoderma.2022.116080.

McBride, M. B., 2022, Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise

versus reality: Eur. J. Soil Sci., v. 73, no. 1. https://doi.org/10.1111/eiss.13192.

9898 
 

Hutengs, C., Seidel, M., Oertel, F., Ludwig, B., and Vohland, M., 2019, In situ and laboratory soil 
spectroscopy with portable visible-to-near-infrared and mid-infrared instruments for the 
assessment of organic carbon in soils: Geoderma, v. 355. 
https://doi.org/10.1016/j.geoderma.2019.113900. 

Janzen, H. H., 2006, The soil carbon dilemma: Shall we hoard it or use it?: Soil Biol. Biochem., v. 38, no. 
3, p. 419-424. https://doi.org/10.1016/j.soilbio.2005.10.008. 

Javaid, A., 2011, Effects of Biofertilizers Combined with Different Soil Amendments on Potted Rice 
Plants: Chil. J. Agric. Res., v. 71, p. 157-163. 

Ji, W., Rossel, R. A. V., and Shi, Z., 2015, Accounting for the effects of water and the environment on 
proximally sensed vis-NIR soil spectra and their calibrations: Eur. J. Soil Sci., v. 66, no. 3, p. 555-
565. https://doi.org/10.1111/ejss.12239. 

Jian, J. S., Du, X., Reiter, M. S., and Stewart, R. D., 2020, A meta-analysis of global cropland soil carbon 
changes due to cover cropping: Soil Biol. Biochem., v. 143. 
https://doi.org/10.1016/j.soilbio.2020.107735. 

Johannes, A., Weisskopf, P., Schulin, R., and Boivin, P., 2017, To what extent do physical measurements 
match with visual evaluation of soil structure?: Soil Till. Res., v. 173, p. 24-32. 
https://doi.org/10.1016/j.still.2016.06.001. 

Khaliq, A., Abbasi, M. K., and Hussain, T., 2006, Effects of integrated use of organic and inorganic 
nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan: 
Bioresour. Technol., v. 97, no. 8, p. 967-972. https://doi.org/10.1016/j.biortech.2005.05.002. 

Kim, N., Zabaloy, M. C., Guan, K. Y., and Villamil, M. B., 2020, Do cover crops benefit soil microbiome? 
A meta-analysis of current research: Soil Biol. Biochem., v. 142. 
https://doi.org/10.1016/j.soilbio.2019.107701. 

Knox, N. M., Grunwald, S., McDowell, M. L., Bruland, G. L., Myers, D. B., and Harris, W. G., 2015, 
Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) 
spectroscopy: Geoderma, v. 239, p. 229-239. 
https://doi.org/10.1016/j.geoderma.2014.10.019. 

Kuang, B., and Mouazen, A. M., 2011, Calibration of visible and near infrared spectroscopy for soil 
analysis at the field scale on three European farms: Eur. J. Soil Sci., v. 62, no. 4, p. 629-636. 
https://doi.org/10.1111/j.1365-2389.2011.01358.x. 

Lal, R., 2015, Restoring Soil Quality to Mitigate Soil Degradation: Sustainability-Basel, v. 7, no. 5, p. 
5875-5895. https://doi.org/10.3390/su7055875. 

Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G., and Six, J., 2009, Determining soil carbon stock 
changes: Simple bulk density corrections fail: Agr. Ecosyst. Environ., v. 134, no. 3-4, p. 251-256. 
https://doi.org/10.1016/j.agee.2009.07.006. 

Lehmann, J., and Kleber, M., 2015, The contentious nature of soil organic matter: Nature, v. 528, no. 
7580, p. 60-68. https://doi.org/10.1038/nature16069. 

Leifeld, J., 2023, Carbon farming: Climate change mitigation via non-permanent carbon sinks: J. 
Environ. Manage., v. 339. https://doi.org/10.1016/j.jenvman.2023.117893. 

Liu, X., Herbert, S. J., Hashemi, A. M., Zhang, X., and Ding, G., 2006, Effects of agricultural management 
on soil organic matter and carbon transformation - a review: Plant Soil Environ., v. 52, no. 12, 
p. 531-543. https://doi.org/10.17221/3544-pse. 

Mayer, J., Scheid, S., Widmer, F., Fliessbach, A., and Oberholzer, H. R., 2010, How effective are 
'Effective microorganisms (R) (EM)'? Results from a field study in temperate climate: Appl. Soil 
Ecol., v. 46, no. 2, p. 230-239. https://doi.org/10.1016/j.apsoil.2010.08.007. 

Mayer, M., Krause, H. M., Fliessbach, A., Mader, P., and Steffens, M., 2022, Fertilizer quality and labile 
soil organic matter fractions are vital for organic carbon sequestration in temperate arable 
soils within a long-term trial in Switzerland: Geoderma, v. 426. 
https://doi.org/10.1016/j.geoderma.2022.116080. 

McBride, M. B., 2022, Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise 
versus reality: Eur. J. Soil Sci., v. 73, no. 1. https://doi.org/10.1111/ejss.13192. 

https://doi.org/10.1016/j.geoderma.2019.113900
https://doi.org/10.1016/j.soilbio.2005.10.008
https://doi.org/10.1111/ejss.12239
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.1016/j.still.2016.06.001
https://doi.org/10.1016/j.biortech.2005.05.002
https://doi.org/10.1016/j.soilbio.2019.107701
https://doi.org/10.1016/j.geoderma.2014.10.019
https://doi.org/10.1111/j.1365-2389.2011.01358.x
https://doi.org/10.3390/su7055875
https://doi.org/10.1016/j.agee.2009.07.006
https://doi.org/10.1038/nature16069
https://doi.org/10.1016/j.jenvman.2023.117893
https://doi.org/10.17221/3544-pse
https://doi.org/10.1016/j.apsoil.2010.08.007
https://doi.org/10.1016/j.geoderma.2022.116080
https://doi.org/10.1111/ejss.13192


McClelland, S. C., Paustian, K., and Schipanski, M. E., 2021, Management ofcover crops in temperate

climates influences soil organic carbon stocks:a meta-analysis: Ecol. Appl., v. 31, no. 3.

https://doi.org/10.1002/eap.2278.

McDaniel, M. D., Tiemann, L. K., and Grandy, A. S., 2014, Does agricultural crop diversity enhance soil

microbial biomass and organic matter dynamics?A meta-analysis: Ecol. Appl., v. 24, no. 3, p.

560-570. https://doi.org/10.1890/13-0616.1.

Metzger, K., Liebisch, F., Herrera, J. M., Guillaume, T., Walder, F., and Bragazza, L., 2024, The use of

visible and near-infrared spectroscopy for in-situ characterization of agricultural soil fertility:

A proposition of best practice by comparing scanning positions and spectrometers: Soil Use

Manage., v. 40, no. 1. https://doi.org/10.1111/sum.12952.

Munnaf, M. A., and Mouazen, A. M.,2021, Development ofa soil fertility index using on-line Vis-NIR

spectroscopy: Comput. Electron. Agric., v. 188.

https://doi.org/10.1016/i compag.2021.106341.

Näser, D., 2021, Regenerative Landwirtschaft, Stuttgart, Eugen Ulmer KG.

Ng,W., Minasny, B., Jones, E., and McBratney, A., 2022, To spike or to localize? Strategies to improve

the prediction of local soil properties using regional spectral library: Geoderma, v. 406.

https://doi.org/10.1016/i geoderma.2021.115501.

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthes, B., Ben Dor, E.,

Brown, D.J., Clairotte, M., Csorba, A., Dardenne, P., Dematte, J. A. M., Genot, V., Guerrero, C.,

Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-

Disla, J. M., Shepherd, K. D., Stenberg, B., Towett, E. K., Vargas, R., and Wetterlind, J., 2015,

Soil Spectroscopy: An Alternative to Wet Chemistry forSoil Monitoring: Adv. Agron., v. 132, p.

139-159. https://doi.org/10.1016/bs.agron.2015.02.002.

OIIe, M., 2021, Review: Bokashi technology asa promising technology forcrop production in Europe:

J. Horticult. Sci. Biotechnol., v. 96, no. 2, p. 145-152.

https://doi.org/10.1080/14620316.2020.1810140.

Patzel, N., Sticher, H., and Karlen, D. L., 2000, Soil fertility - Phenomenon and concept: J. Plant Nutr.

Soil Sci., v. 163, no. 2, p. 129-142. https://doi.org/10.1002/(sici)1522-

2624(200004)163:2<129::Aid-jpIn129>3.0.Co;2-d.

Perez, C., Roncoli, C., Neely, C., and Steiner, J. L., 2007, Can carbon sequestration markets benefit Iow-

income producers in semi-arid Africa? Potentials and challenges: Agric. Syst., v. 94, no. 1, p. 2-

12. https://doi.org/10.1016/i.agsv 2005.09.009.

Pranagal, J., Ligeza, S., and Smal, H., 2020, Impact of Effective Microorganisms (EM) Application on the

Physical Condition of Haplic Luvisol: Agronomy-Basel, v. 10, no. 7, p. 1049.

https://doi.org/10.3390/agronomy10071049.

Rhodes, C. J., 2017, The imperative for regenerative agriculture: Sci. Prog., v. 100, no. 1, p. 80-129.

https://doi.org/10.3184/003685017x14876775256165.

Rietra, R., Heinen, M., and Oenema, 0., 2022,A Review of Crop Husbandry and Soil Management

Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems: Land, v. 11,

no. 2. https://doi.org/10.3390/Iand11020255.

Ruiz, I., Almagro, M., de Jalon, S. G., Sola, M. D., and Sanz, M. J., 2020, Assessment ofsustainable land

management practices in Mediterranean rural regions: J. Environ. Manage., v. 276.

https://doi.org/10.1016/i ienvman.2020.111293.

Scavo, A., Fontanazza, S., Restuccia, A., Pesce, G. R., Abbate, C., and Mauromicale, G., 2022, The role

of cover crops in improving soil fertility and plant nutritional status in temperate climates.A

review: Agron. Sustain. Dev., v. 42, no. 5. https://doi.org/10.1007/s13593-022-00825-0.

Schenck zu Schweinsberg-Mickan, M., and Müller, T., 2009, Impact of effective microorganisms and

other biofertilizers on soil microbial characteristics, organic-matter decomposition, and plant

growth: J. Plant Nutr. Soil Sci., v. 172, no. 5, p. 704-712.

https://doi.org/10.1002/ipln.200800021.

99

   

99 
 

McClelland, S. C., Paustian, K., and Schipanski, M. E., 2021, Management of cover crops in temperate 
climates influences soil organic carbon stocks: a meta-analysis: Ecol. Appl., v. 31, no. 3. 
https://doi.org/10.1002/eap.2278. 

McDaniel, M. D., Tiemann, L. K., and Grandy, A. S., 2014, Does agricultural crop diversity enhance soil 
microbial biomass and organic matter dynamics? A meta-analysis: Ecol. Appl., v. 24, no. 3, p. 
560-570. https://doi.org/10.1890/13-0616.1. 

Metzger, K., Liebisch, F., Herrera, J. M., Guillaume, T., Walder, F., and Bragazza, L., 2024, The use of 
visible and near-infrared spectroscopy for in-situ characterization of agricultural soil fertility: 
A proposition of best practice by comparing scanning positions and spectrometers: Soil Use 
Manage., v. 40, no. 1. https://doi.org/10.1111/sum.12952. 

Munnaf, M. A., and Mouazen, A. M., 2021, Development of a soil fertility index using on-line Vis-NIR 
spectroscopy: Comput. Electron. Agric., v. 188. 
https://doi.org/10.1016/j.compag.2021.106341. 

Näser, D., 2021, Regenerative Landwirtschaft, Stuttgart, Eugen Ulmer KG. 
Ng, W., Minasny, B., Jones, E., and McBratney, A., 2022, To spike or to localize? Strategies to improve 

the prediction of local soil properties using regional spectral library: Geoderma, v. 406. 
https://doi.org/10.1016/j.geoderma.2021.115501. 

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthes, B., Ben Dor, E., 
Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Dematte, J. A. M., Genot, V., Guerrero, C., 
Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-
Disla, J. M., Shepherd, K. D., Stenberg, B., Towett, E. K., Vargas, R., and Wetterlind, J., 2015, 
Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring: Adv. Agron., v. 132, p. 
139-159. https://doi.org/10.1016/bs.agron.2015.02.002. 

Olle, M., 2021, Review: Bokashi technology as a promising technology for crop production in Europe: 
J. Horticult. Sci. Biotechnol., v. 96, no. 2, p. 145-152. 
https://doi.org/10.1080/14620316.2020.1810140. 

Patzel, N., Sticher, H., and Karlen, D. L., 2000, Soil fertility - Phenomenon and concept: J. Plant Nutr. 
Soil Sci., v. 163, no. 2, p. 129-142. https://doi.org/10.1002/(sici)1522-
2624(200004)163:2<129::Aid-jpln129>3.0.Co;2-d. 

Perez, C., Roncoli, C., Neely, C., and Steiner, J. L., 2007, Can carbon sequestration markets benefit low-
income producers in semi-arid Africa? Potentials and challenges: Agric. Syst., v. 94, no. 1, p. 2-
12. https://doi.org/10.1016/j.agsy.2005.09.009. 

Pranagal, J., Ligeza, S., and Smal, H., 2020, Impact of Effective Microorganisms (EM) Application on the 
Physical Condition of Haplic Luvisol: Agronomy-Basel, v. 10, no. 7, p. 1049. 
https://doi.org/10.3390/agronomy10071049. 

Rhodes, C. J., 2017, The imperative for regenerative agriculture: Sci. Prog., v. 100, no. 1, p. 80-129. 
https://doi.org/10.3184/003685017x14876775256165. 

Rietra, R., Heinen, M., and Oenema, O., 2022, A Review of Crop Husbandry and Soil Management 
Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems: Land, v. 11, 
no. 2. https://doi.org/10.3390/land11020255. 

Ruiz, I., Almagro, M., de Jalon, S. G., Sola, M. D., and Sanz, M. J., 2020, Assessment of sustainable land 
management practices in Mediterranean rural regions: J. Environ. Manage., v. 276. 
https://doi.org/10.1016/j.jenvman.2020.111293. 

Scavo, A., Fontanazza, S., Restuccia, A., Pesce, G. R., Abbate, C., and Mauromicale, G., 2022, The role 
of cover crops in improving soil fertility and plant nutritional status in temperate climates. A 
review: Agron. Sustain. Dev., v. 42, no. 5. https://doi.org/10.1007/s13593-022-00825-0. 

Schenck zu Schweinsberg‐Mickan, M., and Müller, T., 2009, Impact of effective microorganisms and 
other biofertilizers on soil microbial characteristics, organic‐matter decomposition, and plant 
growth: J. Plant Nutr. Soil Sci., v. 172, no. 5, p. 704-712. 
https://doi.org/10.1002/jpln.200800021. 

https://doi.org/10.1002/eap.2278
https://doi.org/10.1890/13-0616.1
https://doi.org/10.1111/sum.12952
https://doi.org/10.1016/j.compag.2021.106341
https://doi.org/10.1016/j.geoderma.2021.115501
https://doi.org/10.1016/bs.agron.2015.02.002
https://doi.org/10.1080/14620316.2020.1810140
https://doi.org/10.1002/(sici)1522-2624(200004)163:2
https://doi.org/10.1002/(sici)1522-2624(200004)163:2
https://doi.org/10.1016/j.agsy.2005.09.009
https://doi.org/10.3390/agronomy10071049
https://doi.org/10.3184/003685017x14876775256165
https://doi.org/10.3390/land11020255
https://doi.org/10.1016/j.jenvman.2020.111293
https://doi.org/10.1007/s13593-022-00825-0
https://doi.org/10.1002/jpln.200800021


Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J., 2011, How accurately can soil organic

carbon stocks and stock changes be quantified by soil inventories?: Biogeosciences, v. 8, no. 5,

p. 1193-1212. https://doi.org/10.5194/bg-8-1193-2011.

Schwab, P., Dietrich, M., and Gubler, A., 2017, Messung des Eindringwiderstands und des

Bodenwasserzustandes - Methodenvergleich verschiedener Geräte und Verfahren: Nationale

Bodenbeobachtung (NABO), Agroscope, Zürich-Reckenholz

Singh, K., Aitkenhead, M., Fidelis, C., Yinil, D., Sanderson, T., Snoeck, D., and Field, D. J., 2022,

Optimization of spectral pre-processing for estimating soil condition on small farms: Soil Use

Manage., v. 38, no. 1, p. 150-163. https://doi.org/10.1111/sum.12684.

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M., and McLaughlin, M. J., 2014,

The Performance of Visible, Near-, and Mid-lnfrared Reflectance Spectroscopy for Prediction

of Soil Physical, Chemical, and Biological Properties: Appl. spectrosc. Rev., v. 49, no. 2, p. 139-

186. https://doi.org/10.1080/05704928.2013.811081.

Swiss Ordinance 910.13, 2013, Direktzahlungsverordnung, Stand 2022.

https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen.html.

Taubner, H., Roth, B., and Tippkotter, R., 2009, Determination of soil texture: Comparison of the

sedimentation method and thelaser-diffraction analysis: J. Plant Nutr. Soil Sci., v. 172, no. 2,

p. 161-171. https://doi.org/10.1002/|pIn.200800085.

Thapa, R., Tully, K. L., Cabrera, M., Dann, C., Schomberg, H.H., Timlin, D., Gaskin, J., Reberg-Horton, C.,

and Mirsky, S. B., 2021, Cover crop residue moisture content controls diurnal variations in

surface residue decomposition: Agric. For. Meteorol., v. 308.

https://doi.org/10.1016/i agrformet.2021.108537.

Thorup-Kristensen, K., Magid, J., and Jensen, L. S., 2003, Catch crops and green manures as biological

tools in nitrogen management in temperate zones, in Sparks, D. L., ed., Adv. Agron., Volume

79,p. 227-302.https://doi.org/10.1016/s0065-2113(02)79005-6.

Tiemann, L. K., 2015, Crop rotational diversity enhances belowground communities and functions in

an agroecosystem: Ecol. Lett., v. 18, no. 8, p. 761-771.

Tittonell, P., Vanlauwe, B., Corbeels, M., and Giller, K. E., 2008, Yield gaps, nutrient use efficiencies and

response to fertilisers by maize across heterogeneous smallholder farms of western Kenya:

Plant Soil, v. 313, no. 1-2, p. 19-37. https://doi.org/10.1007/s11104-008-9676-3.

Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J., and Zalidis, G., 2019,A memory-based learning

approach utilizing combined spectral sources and geographical proximity for improved VIS-

NIR-SWIR soil properties estimation: Geoderma, v. 340, p. 11-24.

https://doi.org/10.1016/ieeoderma.2018.12.044.

Van Fan, Y., Lee, C. T., Klemes, J. J., Chua, L. S., Sarmidi, M. R., and Leow, C. W., 2018, Evaluation of

Effective Microorganisms on home scale organic waste composting: J. Environ. Manage., v.

216, p. 41-48. https://doi.org/10.1016/i.|envman.2017.04.019.

Varela, M. F., Barraco, M., Gili, A., Taboada, M. A., and Rubio, G., 2017, Biomass Decomposition and

Phosphorus Release from Residues of Cover Crops under No-Tillage: Agron. J., v. 109, no. 1, p.

317-326. https://doi.org/10.2134/agroni2016.03.0168.

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Chabrillat, S., Dematte, J. A. M., Ge, Y. F., Gomez, C.,

Guerrero, C., Peng, Y., Ramirez-Lopez, L., Shi, Z., Stenberg, B., Webster, R., Winowiecki, L., and

Shen, Z. F., 2022, Diffuse reflectance spectroscopy forestimating soil properties:A technology

forthe 21st century: Eur. J. Soil Sci., v. 73, no. 4. https://doi.org/10.1111/eiss.13271.

Wuest, S., 2014, Seasonal Variation in Soil Organic Carbon: Soil Sei. Soc. Am. J., v. 78, no. 4, p. 1442-

1447. https://doi.org/10.2136/sssai2013.10.0447.

Zhou, Y. X., Roosendaal, L., and Van Eerd, L. L., 2020, Increased nitrogen retention by cover crops:

implications of planting date on soil and plant nitrogen dynamics: Renew. Agric. Food Syst., v.

35, no. 6, p. 720-729. https://doi.ore/10.1017/s1742170519000383.

100100 
 

Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J., 2011, How accurately can soil organic 
carbon stocks and stock changes be quantified by soil inventories?: Biogeosciences, v. 8, no. 5, 
p. 1193-1212. https://doi.org/10.5194/bg-8-1193-2011. 

Schwab, P., Dietrich, M., and Gubler, A., 2017, Messung des Eindringwiderstands und des 
Bodenwasserzustandes - Methodenvergleich verschiedener Geräte und Verfahren: Nationale 
Bodenbeobachtung (NABO), Agroscope, Zürich-Reckenholz 

Singh, K., Aitkenhead, M., Fidelis, C., Yinil, D., Sanderson, T., Snoeck, D., and Field, D. J., 2022, 
Optimization of spectral pre-processing for estimating soil condition on small farms: Soil Use 
Manage., v. 38, no. 1, p. 150-163. https://doi.org/10.1111/sum.12684. 

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M., and McLaughlin, M. J., 2014, 
The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction 
of Soil Physical, Chemical, and Biological Properties: Appl. spectrosc. Rev., v. 49, no. 2, p. 139-
186. https://doi.org/10.1080/05704928.2013.811081. 

Swiss Ordinance 910.13, 2013, Direktzahlungsverordnung, Stand 2022. 
https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen.html. 

Taubner, H., Roth, B., and Tippkotter, R., 2009, Determination of soil texture: Comparison of the 
sedimentation method and the laser-diffraction analysis: J. Plant Nutr. Soil Sci., v. 172, no. 2, 
p. 161-171. https://doi.org/10.1002/jpln.200800085. 

Thapa, R., Tully, K. L., Cabrera, M., Dann, C., Schomberg, H. H., Timlin, D., Gaskin, J., Reberg-Horton, C., 
and Mirsky, S. B., 2021, Cover crop residue moisture content controls diurnal variations in 
surface residue decomposition: Agric. For. Meteorol., v. 308. 
https://doi.org/10.1016/j.agrformet.2021.108537. 

Thorup-Kristensen, K., Magid, J., and Jensen, L. S., 2003, Catch crops and green manures as biological 
tools in nitrogen management in temperate zones, in Sparks, D. L., ed., Adv. Agron., Volume 
79, p. 227-302.https://doi.org/10.1016/s0065-2113(02)79005-6. 

Tiemann, L. K., 2015, Crop rotational diversity enhances belowground communities and functions in 
an agroecosystem: Ecol. Lett., v. 18, no. 8, p. 761-771. 

Tittonell, P., Vanlauwe, B., Corbeels, M., and Giller, K. E., 2008, Yield gaps, nutrient use efficiencies and 
response to fertilisers by maize across heterogeneous smallholder farms of western Kenya: 
Plant Soil, v. 313, no. 1-2, p. 19-37. https://doi.org/10.1007/s11104-008-9676-3. 

Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J., and Zalidis, G., 2019, A memory-based learning 
approach utilizing combined spectral sources and geographical proximity for improved VIS-
NIR-SWIR soil properties estimation: Geoderma, v. 340, p. 11-24. 
https://doi.org/10.1016/j.geoderma.2018.12.044. 

Van Fan, Y., Lee, C. T., Klemes, J. J., Chua, L. S., Sarmidi, M. R., and Leow, C. W., 2018, Evaluation of 
Effective Microorganisms on home scale organic waste composting: J. Environ. Manage., v. 
216, p. 41-48. https://doi.org/10.1016/j.jenvman.2017.04.019. 

Varela, M. F., Barraco, M., Gili, A., Taboada, M. A., and Rubio, G., 2017, Biomass Decomposition and 
Phosphorus Release from Residues of Cover Crops under No-Tillage: Agron. J., v. 109, no. 1, p. 
317-326. https://doi.org/10.2134/agronj2016.03.0168. 

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Chabrillat, S., Dematte, J. A. M., Ge, Y. F., Gomez, C., 
Guerrero, C., Peng, Y., Ramirez-Lopez, L., Shi, Z., Stenberg, B., Webster, R., Winowiecki, L., and 
Shen, Z. F., 2022, Diffuse reflectance spectroscopy for estimating soil properties: A technology 
for the 21st century: Eur. J. Soil Sci., v. 73, no. 4. https://doi.org/10.1111/ejss.13271. 

Wuest, S., 2014, Seasonal Variation in Soil Organic Carbon: Soil Sci. Soc. Am. J., v. 78, no. 4, p. 1442-
1447. https://doi.org/10.2136/sssaj2013.10.0447. 

Zhou, Y. X., Roosendaal, L., and Van Eerd, L. L., 2020, Increased nitrogen retention by cover crops: 
implications of planting date on soil and plant nitrogen dynamics: Renew. Agric. Food Syst., v. 
35, no. 6, p. 720-729. https://doi.org/10.1017/s1742170519000383. 

 

https://doi.org/10.5194/bg-8-1193-2011
https://doi.org/10.1111/sum.12684
https://doi.org/10.1080/05704928.2013.811081
https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen.html
https://doi.org/10.1002/jpln.200800085
https://doi.org/10.1016/j.agrformet.2021.108537
https://doi.org/10.1016/s0065-2113(02)79005-6
https://doi.org/10.1007/s11104-008-9676-3
https://doi.org/10.1016/j.geoderma.2018.12.044
https://doi.org/10.1016/j.jenvman.2017.04.019
https://doi.org/10.2134/agronj2016.03.0168
https://doi.org/10.1111/ejss.13271
https://doi.org/10.2136/sssaj2013.10.0447
https://doi.org/10.1017/s1742170519000383


Part IV Appendices

Appendix I: Reflections

6. Data that were notused in publications and reasons forit

6.1. How to compare changes insoil organic carbon

There aredifferent methods tocompare SOC measurements over time. They can be assessed

as concentrations, as stocks calculated witha fixed depth (FD) or as stocks calculated with an

equivalent soil mass (ESM) approach (see Paper1 as well as Lee et al. (2009)). The comparison

ofSOC based ona fixed depth approach is not so often chosen because changes in bulk density

and changes in SOC carbon cannot be distinguished. Nevertheless, changes in SOC stocks

based ona fixed depth approach are still published in research (Bell et al., 2021). Most SOC

changes in literature are compared ona concentration basis because the assessment of soil

bulk density is quite arduous. Though, also for concentrations, the bulk density in the field has

an influence because the bulk density is the factor that determines which soil layers are

reached whena soil auger is pushed into the soil. Coring soil ata fixed depth brings, depending

on the bulk density more or less soil from the lowest layer into the soil sample which

influences in the end the mean concentration in the sample.

In this sectionI show theresults from Paper1 forSOC (Figure 3) and POXC (Figure 4) based on

thethree different possibilities to report changes ofSOC over time. The concentration and the

ESM stocks approach are relatively similar while the FD stocks would have drawna completely

different conclusion. Witha full depth approach, the FD approach results ina significantly

higher increase in the DCC compared tothe PSC treatment on fieldsA and B. FieldD shows

significantly lower changes in FD stocks for SOC and POXC in the DCC compared tothe PSC

treatment. These results based on FD stocks could be interpreted by the higher cover crop

aboveground biomass input in the DCC plot on fieldsA and B compared tothe other fields.

However, examining the changes based on concentrations or ESM stock we see that the

changes with the FD approach were mainly bulk density driven. The results (significant

differences) between theconcentration and the ESM approach were only different on fieldB

for SOC and fieldC for POXC. On all other fields the concentration and the ESM approach

resulted in the same significant differences between treatments. One could argue on the one

hand, that the ESM approach is superior to the concentration approach because bulk density

is considered but on the other hand bulk density isa relatively rough measurement witha high

variation and therefore it might also bea correction that brings additional error sources. Thus,

the ESM approach is superior when the focus lies on stock changes because with a

concentration approach one has to estimatea bulk density or take the bulk density of one
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sampling time which probably introducesa bigger error than with the ESM approach. For

significant differences between treatments or over time, both the ESM as well as the

concentration approach, deliver reliable results even though they might havea slightly

different statistical outcome.
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Figure 3: Changes in soil organicC (SOC) in 0-20 cm soil depth expressed as stocks calculated witha minimum equivalent soil

mass (a), as concentrations (b) and as stocks calculated with fixed depth (c) over time relative to sampling t0. For everyfield

A-F the aboveground cover cropC input in the double cover cropping (DCC) treatment is given in the title. Significant

differences between treatments were tested witha t-test and are indicated with the codes: ””’< 0.001, ”” <0.01, ”< 0.05.

Significant changes within each treatment over time are indicated with letters for both treatments separately and were

tested witha paired t-test. Error bars represent standard errors.
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Figure 4: Changes in permanganate oxidizableC (POXC) in 0-20 cm soil depth expressed as stocks calculated witha

minimum equivalent soil mass (a), concentrations (b) and stocks calculated with fixed depth (c) over time relative to

sampling t0. For everyfield A-F the aboveground cover cropC input in the double cover cropping (DCC) treatment is given in

the title. Significant differences between treatments were tested witha t-test and are indicated with the codes: ““”< 0.001,

“” <0.01, “< 0.05. Significant changes within each treatment over time are indicated with letters for both treatments

separately and were tested witha paired t-test. Error bars represent standard errors.
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6.2. Prediction of soil texture with vis-NIR spectroscopy

The cover crop paper and the spectroscopy paper only include an average soil texture per field

in the description of the dataset. These data were gained with the improved integral

suspension pressure method (ISP+), which is in very good agreement with the standard

pipette method (Durner and Iden, 2021). Nevertheless, at every second dGPS-referenced

point of the first soil sampling, grain size was measured with the samples of 10-20 cm soil

depth with the laser diffraction analysis (LDA) ona Mastersizer 2000. Although, LDA is the

standard method in the laboratory of the Institute of Geography atthe University of Bern, its

results differ normally from the standard pipette method (Taubner et al., 2009).I also made

this observation and concluded that the LDA substantially overestimated the silt fraction and

underestimated the clay fractions (Table 2).I used the LDA measurement to estimate the

variability of soil texture in the field (see Figure1 and Table S2 (supplementary) in Paper 2)

but did not present spectral models predicting soil texture.

Table 2: Mean percentages of sand, silt and clay measured with the integral suspension pressure method (ISP+) and laser

diffraction method (LDA). For the ISP+ methodonesample was analyzed perfield while with LDA 20 d-GPS referenced samples

were analyzed perfield and the minimum andmaximum values are presented in brackets.

Field Sand (%)

ISP+

A 50

B 44

C 27

D 28

E 30

F 39

Silt (%)

LDA (min, max) ISP+

44 (35, 53) 29

43 (38, 50) 35

29 (23, 39) 35

26 (21, 34) 44

25 (13, 29) 48

37 (25, 51) 43

Clay (%)

LDA (min, max) ISP+

47 (39, 54) 21

48 (42, 52) 20

57 (49, 61) 38

62 (55, 66) 28

65 (60, 74) 23

54 (42, 63) 18

LDA (min, max)

10 (8, 11)

9 (7, 11)

14 (12, 17)

12 (10,14)

11 (10, 13)

9 (7, 12)

I built spectral general models forsand, silt and clay with 20 reference samples per field and

a total of 120 samples. The preprocessing and the model metrics of the final chosen models

forsand, silt and clay can be seen in Table 3.I evaluated the models in five times repeated 10-

fold cross-validation. Very similar preprocessing approaches (gap segment derivative) resulted

in the best model performance which makes sense because the three grain size classes depend

strongly on each other.

Table 3: Description of applied pre-processing and model performance of tlhe /ino/ chosen models forsand silt and clay. AII

models were developed with partial /eost square regression and evaluated with5 times repeated 10-fold cross-validation.

RMSE —- Root mean standard error, RPD —- ratio of RMSE tostandard deviation, Refl. —- Reflectance, GSD —- Gap Segment

Derivative (m —- derivative, w —- window width,s —- segment size)

Range of

Field Property wavelength

/ interval
Pre-processing

Sand 370-2500/1 Refl., GSD (m = 2, w=21, s= 21)

A Silt 350-2500/1 Refl., GSD(m= 2, w=21, s= 21)

Clay 350-3500/2 Refl., GSD (m = 2, w=21, s= 21)

Calibration
Latent

variables
I'M

R*

Cross-validation

RPD R*

Model

RPD performance

6 120 0.82 3.93 2.35 0.77 4.45 2.05 accurate

6 120 0.84 3.16 2.48 0.79 3.61 2.18 accurate

6 120 0.78 0.95 2.13 0.74 1.03 1.99 approximate

105

 Appendix I: Reflections  

105 
 

6.2. Prediction of soil texture with vis–NIR spectroscopy 

The cover crop paper and the spectroscopy paper only include an average soil texture per field 

in the description of the dataset. These data were gained with the improved integral 

suspension pressure method (ISP+), which is in very good agreement with the standard 

pipette method (Durner and Iden, 2021). Nevertheless, at every second dGPS-referenced 

point of the first soil sampling, grain size was measured with the samples of 10-20 cm soil 

depth with the laser diffraction analysis (LDA) on a Mastersizer 2000. Although, LDA is the 

standard method in the laboratory of the Institute of Geography at the University of Bern, its 

results differ normally from the standard pipette method (Taubner et al., 2009). I also made 

this observation and concluded that the LDA substantially overestimated the silt fraction and 

underestimated the clay fractions (Table 2). I used the LDA measurement to estimate the 

variability of soil texture in the field (see Figure 1 and Table S2 (supplementary) in Paper 2) 

but did not present spectral models predicting soil texture. 

Table 2: Mean percentages of sand, silt and clay measured with the integral suspension pressure method (ISP+) and laser 
diffraction method (LDA). For the ISP+ method one sample was analyzed per field while with LDA 20 d-GPS referenced samples 
were analyzed per field and the minimum and maximum values are presented in brackets. 

Field Sand (%) Silt (%) Clay (%) 

ISP+ LDA (min, max) ISP+ LDA (min, max) ISP+ LDA (min, max) 

A 50 44 (35, 53) 29 47 (39, 54) 21 10 (8, 11) 

B 44 43 (38, 50) 35  48 (42, 52) 20   9 (7, 11) 

C 27 29 (23, 39) 35 57 (49, 61) 38 14 (12, 17) 

D 28 26 (21, 34) 44 62 (55, 66) 28 12 (10,14) 

E 30 25 (13, 29) 48 65 (60, 74) 23 11 (10, 13) 

F 39 37 (25, 51) 43 54 (42, 63) 18   9 (7, 12) 

 

I built spectral general models for sand, silt and clay with 20 reference samples per field and 

a total of 120 samples. The preprocessing and the model metrics of the final chosen models 

for sand, silt and clay can be seen in Table 3. I evaluated the models in five times repeated 10-

fold cross-validation. Very similar preprocessing approaches (gap segment derivative) resulted 

in the best model performance which makes sense because the three grain size classes depend 

strongly on each other. 

Table 3: Description of applied pre-processing and model performance of the final chosen models for sand silt and clay. All 
models were developed with partial least square regression and evaluated with 5 times repeated 10-fold cross-validation. 
RMSE = Root mean standard error, RPD = ratio of RMSE to standard deviation, Refl. = Reflectance, GSD = Gap Segment 
Derivative (m = derivative, w = window width, s = segment size) 

Field Property 
Range of 
wavelength 
/ interval 

  
Pre-processing 

Latent 
variables 

n 

Calibration Cross-validation 
Model 
performance R2  

RMSE 
[%] 

RPD R2  
RMSE 
[%] 

RPD  

A 

Sand 370-2500 / 1 Refl., GSD (m = 2, w =21, s = 21) 6 120 0.82 3.93 2.35 0.77 4.45 2.05 accurate 

Silt 350-2500 / 1 Refl., GSD (m = 2, w =21, s = 21) 6 120 0.84 3.16 2.48 0.79 3.61 2.18 accurate 

Clay 350-3500 / 2 Refl., GSD (m = 2, w =21, s = 21) 6 120 0.78 0.95 2.13 0.74 1.03 1.99 approximate 



The results show that soil texture can be well predicted across sites (see Table3 and Figure 5).

Based on RPD, all three models showed an accurate (sand and silt) or approximate (clay)

model performance. However, the plotted models (Figure 5) show, that the models mainly

differentiate the variability between fields but not really the variability within one field.I did

not do field-specific models forsoil texture because 20 samples per field was too little for an

adequate model procedure.
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Figure 5: Spectral modelsforsand, si/t and clay with 20 samples perfield (toto/ 120). Preprocessing was for all modelsa gap

segment derivative. Partial least square regression was used asa modeling approach and all models were evaluated withfive

times repeated 10-fold cross-validationfor the selection of the optimal number oflatent variables (ncomp).
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Figure 5: Spectral models for sand, silt and clay with 20 samples per field (total 120). Preprocessing was for all models a gap 
segment derivative. Partial least square regression was used as a modeling approach and all models were evaluated with five 
times repeated 10-fold cross-validation for the selection of the optimal number of latent variables (ncomp). 
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6.3. Penetrometer Resistance

The original idea to measure penetrometer resistance was to havea fast and cheap indicator

for soil structure that could be applied ina high spatial and temporal resolution. At every d-

GPS referenced sampling point and at all sampling times penetrometer resistance (PR) was

measured in three replicates per point.A hand-held electronic penetrometer (Penetrologger

06.15.SA, Royal Eijkelkamp Company, Netherland) equipped witha 60° cone of1 cm2 basal

area was pushed into the soil at an approximate speed of2 cm s-1. The device providesa

penetrometer resistance per cm of soil depth. To smooth thedata, depth segments of5 cm

were represented by the median ofthe five measurements in it. The median instead of the

mean was taken to exclude the extreme values that were reached when thecone grazeda

stone. The mean ofthemedians per5 cm segments in the top 20 cm (Figure 6) showed only

very limited effects of the two treatments. On FieldA the PR was over all sampling times

consistently higher in the PSC compared totheDCC plot which was probably mainly an effect

of the plot characteristics than the treatment itself. However, the big challenge was to

compare themeasurements over time because PR is strongly and nonlinearly related with the

water content which remains an unsolved problem (Schwab et al., 2017). The little influence

of the treatments as well as the difficulty to compare different timepoints were the reasons

why these data were notfurther analyzed.

D)

Sampling

E)

Sampling

F)

Sampling

Figure 6: Meanpenetrometer resistance in 0-20 cm soil depth. The original data witha penetrometer resistance per cm of soil

depth were aggregated w'itlh mean ofthemedians in 0-5, 5-10, 10-15 and 15-20 cm. Error bars represent the standard error

of the 13 measurements in the PSC and the 26 measurements in the DCC plot
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The original idea to measure penetrometer resistance was to have a fast and cheap indicator 

for soil structure that could be applied in a high spatial and temporal resolution. At every d-

GPS referenced sampling point and at all sampling times penetrometer resistance (PR) was 

measured in three replicates per point. A hand-held electronic penetrometer (Penetrologger 
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compare the measurements over time because PR is strongly and nonlinearly related with the 

water content which remains an unsolved problem (Schwab et al., 2017). The little influence 

of the treatments as well as the difficulty to compare different timepoints were the reasons 

why these data were not further analyzed. 
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