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Summary

Summary

Sustainable agriculture strongly depends on fertile soils. Yet keeping soils in crop production
while maintaining their fertility is highly challenging and most long-term studies indicate a
decrease in soil fertility on arable land under continuous cropping. During the growing period
of the cash crop, only limited options to improve soil fertility exist because there are normally
very specific cultivation requirements. Therefore, the break periods between main crops have
a high potential for soil fertility improvement because no harvest output is expected. Many
studies have shown that long periods of bare soil should be avoided and during long fallow
times the soil should be covered. For that purpose, different options of cover cropping have
been developed. They differ in terms of plant species, frost tolerance, biomass input and
termination methods. So far, in the scientific literature cover crops were mainly compared to
bare soil treatments but different cover cropping strategies are only rarely compared, hence
limiting knowledge on their performance relative to one another. In organic reduced tillage
systems cover cropping has a high priority and since neither herbicides nor intense tillage can
be used, frost-tolerant cover crops can only be terminated with shallow tillage methods that
brings the cover crop biomass into the very topsoil layer. The challenge thereby is that within
a reasonable time (around 2 weeks) the mixture of cover crop pieces and soil must result in
proper seedbed for the next crop. One way to make this process easier is to reduce the
amount of cover crop biomass by mowing and removing the aboveground biomass. Another
approach is to use a microbial inoculant called “Effective Microorganisms” that is promised to

facilitate the decomposition process and make seedbed preparation easier.

In the context of Switzerland, crop rotations are very diverse and accordingly also the fallow
periods differ widely in length and seasonal growing condition. Thus, it is difficult to evaluate
different cover cropping strategies in long-term experiments because the same fallow period
only occurs once in several years. On the other hand, short-term experiments face the
challenge that most soil properties show a high variability in space and changes are normally
rather small which makes it very difficult to statistically detect management effects. The
statistical power could be improved by increasing the sample size but due to the high costs of
conventional soil analyses, the number of soil samples is normally limited. Infrared
spectroscopy is a method that provides fast and cheap soil analyses and can therefore
potentially be very useful in short-term soil experiments because the number of samples can
be increased at little additional costs. Yet, spectral soil data need to be calibrated with
measurements from conventional lab data and still little is known about the performance of

spectral models at the local scale.

The goal of this thesis is to increase scientific knowledge about cover cropping effects on soil

properties in organic reduced tillage systems. Thereby | formulated three major objectives: 1)
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to compare the effects of two frequently used cover cropping strategies on soil fertility
parameters, 2) to evaluate the suitability of infrared spectroscopy in soil sampling projects of
local extent and 3) to investigate the effects of Effective Microorganisms (EM) on cover crop

decomposition.

| thus investigated the effects of two cover cropping methods on soil properties at six fields in
eastern Switzerland (Paper 1). A sampling design in very high temporal and spatial resolution
was implemented and the high number of soil samples (n = 2574) was analyzed in a combined
approach of conventional soil analysis and soil spectroscopy in the visible and near-infrared
range (vis—NIR). Thereby the reasons for the varying performance of spectral models between
different fields were analyzed and summarized in Paper 2. A very similar spectral approach
was used in a soil survey in northern Spain (Paper 5) and results are presented to complement
the insights from Paper 2. The effects of EM on cover crop decomposition were tested in a lab

incubation study and published in paper 3 and 4.

Regarding objective 1, the two cover cropping strategies that either maximized plant biomass
input or soil cover were evaluated in the long fallow period between wheat harvest (End of
July) and sowing of a next spring crop (Paper 1). In the double cover cropping (DCC) strategy
two cover crops were sown subsequently and shallowly (3 cm) incorporated into the soil with
the idea that the biomass input provides an energy source for the soil microorganisms. In the
permanent soil cover (PSC) strategy, the soil was covered for the whole period with one cover
crop, that was mowed, and the plant biomass was removed. In contrast to DCC, the PSC
strategy had no aboveground plant biomass input into the soil but also no tillage throughout
the period. The analysis of the two cover cropping strategies in high spatial and temporal
resolution showed that the effects of differences between different sampling times were far
more pronounced than differences between treatments. Nevertheless, in both treatments the
increase in soil organic carbon was highest in 5-10 cm soil depth and significantly higher in the
PSC compared to the DCC approach. The plant biomass input in the DCC treatment led to
higher microbial biomass and mineral N compared to the PSC treatment. | conclude that the
aboveground biomass input in the DCC strategy was beneficial for biological activity but the
better soil cover and probably higher root biomass input in the PSC strategy was slightly more

beneficial for soil organic carbon.

Addressing objective 2, the spectral models showed over all a good performance, but the
model performance was lower on the two fields with high carbonate content (Paper 2). The
prediction accuracy for fields with high carbonate content could not be improved when data
of all fields were combined to build general models. | therefore conclude that especially in
soils with low carbonate contents, soil spectroscopy is very suitable, and the prediction errors

can be expected to be comparable to the lab measurement error. The application of the same
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spectral approach at a study side in Spain showed clearly that much more detailed information
can be obtained when conventionally analyzed samples are accompanied by additional

spectral measurements (Paper 5).

Concerning objective 3, EM application did not show significant effects on cover crop
decomposition dynamics, under the spring-like conditions mimicked in the incubation study
(12° C) (Paper 3 and 4). Thanks to a sterilized control, | could distinguish effects caused by
living microorganisms and effects caused from substrate (energy and nutrients) addition.
Seven days after the start of the incubation, microbial taxa from EM solution could only be
found when EM were applied in 100 times higher amounts than recommended in agricultural

praxis.

This thesis shows that a high-resolution sampling design and the use of spectral methods
allowed to evaluate different cover cropping strategies in a short-term experiment. | therefore
consider the methodological approach to be very useful for evaluating innovative soil
management strategies as soonest possible after their invention. This thesis is one piece of
knowledge that aims to support decision making about cover cropping in organic reduced
tillage systems and provides results about effects on soil fertility properties. More research is
needed to evaluate effects of cover cropping on other agronomic variables like yields, weed

pressure and profitability.

Keywords: Cover crop, soil spectroscopy, regenerative agriculture, effective microorganisms,

temperate climates, soil fertility, soil organic matter, land abandonment
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Part I: Background and overview

Part I: Background and overview
1. Introduction

1.1. Role of cover crops in soil fertility management

The concept of soil fertility captures the ability of a soil to sustain plant growth by providing
essential plant nutrients and the physical, biological and chemical conditions enabling it to
serve as habitat for plant growth (FAO, 2022). Soil fertility is a relatively narrow term that
focuses on the suitability of soils for agricultural production (Patzel et al., 2000). It has been
expanded to the terms of soil quality or soil health to account for further ecosystem services
like water quality, biodiversity conservation, and climate regulation (Bliinemann et al., 2018).
Since in this thesis the focus lies on the question how different cover cropping management
influences the soil conditions for the next crop, | consider soil fertility as the most adequate
and most intuitive term. Soil fertility is a term that does not have a direct corresponding
guantitative measurement and besides the application of visual methods in the field
(Johannes et al., 2017) and some attempts to combine different measurements to a soil
fertility index (Munnaf and Mouazen, 2021), most studies use measurements of soil organic
matter stocks as a proxy for soil fertility (Tittonell et al., 2008). Soil organic matter improves
the functioning of the soil in many different aspects through improved soil structure
(aggregation, aeration, water retention) and improved elemental cycles (nutrient
mineralization, carbon sequestration, compound retention) or just to serve as a biological
habitat by itself (Hoffland et al., 2020). It is difficult to draw conclusion about soil fertility from
soil organic matter stocks at two completely distinct locations but changes in soil organic
matter stocks over time at one location have strong effects on soil fertility and are therefore

very suitable as a proxy measurement.

In many world regions, agricultural management leads to decreasing soil organic matter stocks
thereby threatening soil fertility which either directly decreases yields or makes them more
dependent on external inputs (Lal, 2015). To reverse this global trend, many management
strategies have been suggested, sometimes called soil-improving cropping systems (Rietra et
al.,, 2022), sustainable land management practices (Ruiz et al., 2020) or regenerative
agriculture (Rhodes, 2017), but always aiming at a high organic matter input (cover crops,
organic fertilizers and amendments), high soil cover (mulch, cover crops), high plant species

diversity in crop rotation and reduced tillage strategies (Liu et al., 2006).

Especially, in humid climates, where water is normally not a limiting factor, cover cropping is
considered to be a major element to increase soil organic matter stocks and its turnover,
which improves soil fertility (Scavo et al., 2022). The benefit of cover cropping is mainly to

avoid bare soil periods that naturally do not exist in temperate climates and are normally



characterized by erosion, increasing nutrient losses, decreasing soil organic matter stocks and

low microbial activity (Daryanto et al., 2018; Thorup-Kristensen et al., 2003).

The use of cover crops does not only bridge the time between two main crops to avoid bare
soil periods but also offers the opportunity to push the agroecosystem into a more biodiverse
and resilient direction. Main crops normally must fulfill clear requirements in terms of product
quality and efficient machinery use at harvesting which limits the flexibility in the cultivation.
Cover crops, on the other hand, can be handled more flexible and allow a direct focus on the

improvement of soil conditions.

The major cover crop effect is its considerable organic matter input having the potential to
increase soil organic matter stocks which is highly beneficial for soil fertility and relevant for
carbon sequestration for climate change mitigation. Additionally, cover crops allow to
increase the biodiversity in the agroecosystem with benefits for soil microbiology (McDaniel
et al., 2014; Tiemann, 2015) whereby higher carbon uptake and microbial biomass has been
measured in cover crop mixtures than in single species cover crops (Gentsch et al., 2020).
Besides total microbial biomass, cover cropping increases also the functional diversity in the
soil microbiome (Kim et al., 2020) which might then affect the resilience of an agroecosystem.
Cover crops have furthermore a crucial role in nutrient cycling, especially nitrogen (N)
retention (Thorup-Kristensen et al., 2003; Zhou et al., 2020), which reduces nutrient losses
and potentially increases fertilizer efficiency. Especially, N losses from farmyard manure can
be reduced if the manure is applied on growing plants whereby cover crops are very suitable
because crop damage due to machine use is almost irrelevant (Cambardella et al., 2010;
Everett et al., 2019).

However, in the agricultural practice, cover cropping must be well coordinated with the
rotation of the main crops which makes the optimal cover cropping strategy strongly
dependent on environmental conditions and the agricultural policy framework and therefore

site-specific.

1.2. Agricultural policy frameworks regarding cover cropping and

crop rotations in Switzerland

Both the public and organized civil society and private actors influence soil management
strategies in Switzerland. In the public domain, Swiss farmers must fulfill the proof of
ecological performance (Okologischer Leistungsnachweis) which also contains regulations
about the bare soil periods (Swiss Ordinance 910.13, 2013) to receive direct payments. If a

crop is harvested before August 31, a next crop or cover crop must be sown in the same year
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(Swiss Ordinance 910.13: Article 17) with the effect that after cereal harvest and a next spring
crop a cover crop or temporary ley must be sown. Additionally, there is an incentive payment
per hectare if the bare soil period between crops or cover crops is shorter than seven weeks
(Swiss Ordinance 910.13: Article 71).

In organic farming, additional requirements must be fulfilled. According to the regulations of
BioSuisse (2022), a national membership organization of Swiss organic farmers, 20 % of the
arable land must be covered with temporary grassland. Cover crops can also be counted (up
to 10 %) according to their area and period if they stand longer than five months. Additionally,
only a maximum of 50 % of the arable land is allowed to be bare over winter (15 Nov. — 15
Feb.; BioSuisse, 2022). Especially organic farms with little or no livestock are interested in

cover cropping because they do not need grassland but must fulfill the label requirements.

These regulations show that in Switzerland cover cropping is widespread and that there are

strong incentives to avoid periods of bare soil.

However, the question of cover cropping is strongly related to crop rotation because the main
crops determine the agronomic requirements and periods for cover cropping. Switzerland is
one of the few countries that has strict regulations on crop rotations. On a farm with more
than three hectares arable land, at least four different crops must be grown per year, and for
each crop, a clear pausing length in the crop rotation is specified (Swiss Ordinance 910.13
(2013), Article 16). These regulations along with the dynamic market situation (Bundesamt fiir
Landwirtschaft, 2022) lead to highly diverse crop rotations that are constantly adjusted.
Hence, they influence the durations of cover cropping and its contributions to soil organic

matter.

1.3. Short-term versus long-term changes in soil organic matter

There are two different views on soil organic matter. From a perspective of climate change
mitigation mainly long-term increases in soil organic matter stocks are of interest because of
their potential for carbon sequestration (Blanco-Canqui, 2022; Chahal et al., 2020). Short-term
increases in soil organic matter stocks can be seen as short-lived carbon sinks and can
accordingly also be quantified in carbon sequestration calculations (Leifeld, 2023) but their
effect is of much lower importance compared to the long-term changes. From a soil fertility
perspective long-term increases in soil organic matter are also very desired because of their
positive effects on soil structure, and storage capacity, but also short-term changes are of
interest, because the dynamic nature of soil organic matter is very beneficial for crop
production (Janzen, 2006). The highest value of soil organic matter lies in its decay (Janzen,

2006) because nutrients are mineralized and become available for the crop (Hacker et al.,
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2015). A sustainable cropping system is therefore mainly interested in a high turn-over of soil
organic matter and needs periods of high organic matter formation (or inputs) that can then
serve as a source for organic matter mineralization. A high increase in soil organic matter
stocks in one year and an equal decrease in the next year is irrelevant from a climate
perspective, but relevant in crop production because it might have been very beneficial for
soil microbiology or nutrient supply. Cover crops are seen as a major elementin a crop rotation
to introduce periods of soil organic matter formation (McClelland et al., 2021), but the
immediate effects of different cover cropping strategies on soil fertility parameters remain
understudied. Given the diverse and flexible crop rotations in Switzerland, it is very difficult to
evaluate a specific cover cropping approach in the long-term because it is probably applied

only once in several years.

From a farmer’s perspective, any measure without direct monetary benefit must pay off in a
relevant time scale (Perez et al., 2007), which is probably mainly the performance of the crop
in the following year or in a maximum of a few years. Long-term field trials are of very high
scientific value but they cannot cover the whole range of management options in agricultural
praxis as Chenu et al. (2019) argued. A participatory approach is thus needed that evaluates
the short-term effects of different management (i.e. cover cropping) options on soil organic

matter and soil fertility.

1.4. Challenges in measuring changes in soil organic matter related

soil properties

Soil organic matter has three characteristics that make the detection of change a major
challenge. According to Hoffmann et al. (2017), these are: a) its small scale spatial
heterogeneity, b) its pronounced short-term temporal dynamics and c) the rather small
magnitude of changes compared to the total stocks. In agricultural research the main strategy
to deal with these challenges is to design long-term field trials, with the disadvantage that the
short-term effects remain concealed and changes in soil organic matter are completely
attributed to the long-term treatment effects (Schrumpf et al., 2011). Recently, Mayer et al.
(2022) showed with data from a long-term field trial that the short-term dynamics of the
occluded particulate organic matter, as part of total soil organic matter, can be substantial
within days to weeks. Similar studies of total soil organic carbon (SOC) showed a very high
temporal variability attributable to the combination of management activity (i.e. tillage,
fertilization) and seasonal patterns (i.e. temperature, moisture; Wuest (2014)). The seasonal
pattern during the growing season can be quite distinct from year to year and especially in

diverse crop rotations, the management is highly variable making soil organic matter dynamics
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on crop land very complex and unpredictable (Wuest, 2014). Thereby, the unpredictable
speed of decomposition processes of crop residues, plant roots, cover crop biomass or organic
fertilizers, plays a major role. A crucial factor is the time point when these organic substances
reach a size of < 2 mm because only then they become part of the soil fine earth that is
normally analyzed (Blume et al., 2016) and classified as soil organic matter. From a soil fertility
perspective, the whole continuum of the decomposition processes from plant residues
(organic matter > 2mm) as well as decomposition processes within the soil organic matter
(organic matter < 2mm) are of relevance because all product of the decomposition processes
interact with the soil mineral phase and the plant roots. This contentious nature of soil organic
matter (Lehmann and Kleber, 2015) where organic matter is gradually more and more
decomposed makes it recommendable to not only measure total soil organic matter but also
associated soil properties like microbial parameters and nutrients as well as different fraction
of soil organic matter (as e.g. particulate organic matter, mineral associated matter or
permanganate oxidizable carbon). To tackle the high spatial and temporal resolution of soil
organic matter related soil properties, the ideal solution would be to have a high spatial and
temporal resolution in soil analysis which is constrained by the analysis costs per soil sample.
Currently mostly applied in soil science is dry combustion, where the ground soil is burnt at
1150°C and produced CO: is quantified (Harris et al., 2014). In acidic soils the measured total
carbon in a soil sample equals SOC but in soils containing carbonate a second measurement is
necessary to determine the carbonate content, which makes the analytical costs per sample
relatively high. Therefore, complementary measurement methods such as visible and near-

infrared (vis—NIR) spectroscopy have the potential to make the analysis cheaper.

1.5. Soil visible and near infrared spectroscopy for cost-efficient soil

sample analysis

Diffuse reflectance spectroscopy has gained increasing attention in soil science because of its
potential to provide fast, non-destructive, and cost-effective measurements (Nocita et al.,
2015). Most spectrometers work either in the visible and near infrared range (vis—NIR, 350-
2500 nm) or in the midinfrared (MIR, 2500-25'000 nm) range (Soriano-Disla et al., 2014).
Comparisons between MIR and vis—NIR spectroscopy normally attribute a higher
measurement accuracy to MIR spectrometers while vis—NIR spectroscopy is much cheaper
and requires less soil sample preparation (no grinding) (Breure et al., 2022; Clairotte et al.,
2016; Knox et al., 2015).

In general, spectral data need to be calibrated with reference values from standard laboratory

measurements whereby different model approaches that can deal with multicollinearity in
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the predictor variables (the reflectance value at each wavelength) such as partial least square
regression or machine learning tools can be used (Viscarra Rossel et al., 2022). The vision is
that one day the spectral analysis could potentially replace expensive lab measurements. In
other disciplines this vision has become reality and spectral measurements are standard to
measure for example the quality of agricultural products (cereals, forage,...), while in soil
science, spectroscopy is still in a research status (Bellon-Maurel et al., 2010). The reason
therefore is that biological products are clearly constrained by the plants genome which
makes all grains or fruits of one plant species highly comparable, while soils normally show a
high heterogeneity resulting in often highly skewed distribution of soil properties (Bellon-
Maurel et al., 2010; Brown et al., 2006). The application of spectral models to soil samples
from areas that have not been part of the calibration dataset is very challenging and one of
the big topics in soil spectroscopy research (McBride, 2022; Ng et al., 2022; Tziolas et al.,
2019).

However, even though the first vision of replacing standard lab measurements seems unlikely,
soil spectroscopy has a high potential in combination with conventional lab measurements
(Viscarra Rossel et al., 2022). Especially, regionally and locally calibrated spectral models
predicting soil properties related to soil organic matter have shown good performance
(Angelopoulou et al., 2020; Breure et al., 2022). Therefore, soil spectroscopy has a high
potential to increase the number of samples at little additional costs which is crucial to tackle
the high spatial and temporal variability of soil organic matter. However, in conventional lab
methods, the measurement error can be very well estimated beforehand, which is not the
case for spectral models. Each local spectral model has its own performance and the
prediction error (corresponding to measurement error in conventional methods) cannot be
estimated beforehand. Therefore, the application of soil spectroscopy bears the risk that the
model performance might not match the measurement accuracy that is required by the

research question.

1.6. Cover crops in organic reduced tillage systems: decomposition

is crucial

In reduced tillage systems cover crops decompose on the soil surface either as mulch or
slightly mixed with topsoil. The optimal decomposition dynamics depend on the management
objective and the following crop and influences the cover crop selection: A slow
decomposition is desired if the cover crop mulch should suppress weeds (Brito et al., 2019), a
decomposition in balance with main crop growths is desired if the cover crop mainly serves as

nutrient source (Dhakal et al., 2020) and a fast decomposition is desired if the following crop
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Part I: Background and overview

has strict requirements about seedbed preparation and mulch sowing is not possible. The
decomposition of cover crops depends highly on diurnal variations of moisture and
temperature (Thapa et al.,, 2021) and therefore the cover crop decomposition in reduced
tillage systems can be slower than desired (Varela et al., 2017), with negative consequences
for seedbed preparation for the next crop. In Switzerland, weather in spring can be cold and
wet which prevents a fast cover crop decomposition and the moist and potentially slimy cover
crop material on the soil surface can cause seedbed preparation and sowing problems (Thapa
et al., 2021).

1.7. A microbial inoculant to accelerate the decomposition of cover

crops

With the promise to enhance cover crop decomposition and boost soil microbiology, a
microbial inoculation product based on the effective microorganism (EM) technology (Higa,
1991) was introduced into the Swiss market (EM Schweiz, 2023). Many Swiss farmers
practicing the shallow incorporation of cover crops apply EM. The general idea of microbial
inoculants, often summarized under the term plant growth promoting rhizobacteria, is to
influence the plant-microbial associations in the soil thereby aiming at better crop
performance (Backer et al., 2018; Gouda et al., 2018). Effective microorganisms are advertised
to have a wide application range that goes far beyond agriculture which makes their scientific
evaluation very difficult. The existing peer-reviewed literature about the application of EM in
agriculture is highly controversial whereby beneficial effects of EM were most times observed
in tropical or subtropical regions in Asia (Hu, 2018; Khaliqg et al., 2006), while studies in Europe
did not detect statistically significant effects of EM (Mayer et al., 2010; Pranagal et al., 2020;
Schenck zu Schweinsberg-Mickan and Miiller, 2009). So far, the main conclusion about EM
application is, that it has to be applied in combination with organic matter, which is the
recommendation of the developer (Higa, 2003) as well as the conclusion of research studies
that found significant effects (Hu and Qij, 2013; Javaid, 2011; Olle, 2021; Van Fan et al., 2018).
The combined application of EM with cover crop termination fulfills this criterium but the
promised effects of faster decomposition, higher nutrient efficiency and formation of soil

organic matter (EM Schweiz, 2023) has not yet been evaluated.

1.8. Summarizing the identified scientific gaps

Much empirical research has been conducted to compare cover cropping and bare soil
treatments and results have been summarized in meta-analyses (Jian et al., 2020; McClelland

etal., 2021). These two meta-analyses summarize various data from long-term cover cropping
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field trials, but 68 % respectively 54 % of the considered field experiments were in
monoculture system and most of the rest in systems with two or three crops (Jian et al., 2020;
McClelland et al., 2021). The evaluation of cover cropping in diverse (more than three crops)
crop rotation is highly understudied because time windows for cover cropping keep changing
and do not occur every year. In Switzerland, diverse crop rotations are general praxis and due
to the federal regulations (see section 1.2) bare soil treatments in long fallow periods are not
of practical relevance. Therefore, there is a clear need to evaluate different cover cropping
strategies in agricultural systems with diverse crop rotations. Since the same cover cropping
time window only occurs once in several years, long-term field trials would only be of limited
use, respectively their cost-benefit ratio would be questionable. Yet, measurement of short-
term changes in soil properties related to organic matter is challenging (see section 1.3) and
requires a high spatial and temporal resolution of soil sampling and therefore a large sample
size. Soil vis—NIR spectroscopy has the potential to analyze large number of samples but its
suitability in field experiments is understudied. Local spectral models at field or on-farm level
have been developed (e.g. Kuang and Mouazen (2011) or Singh et al. (2022)) but their
accuracies are highly varying for unknown reasons. This uncertainty hampers the application
of vis—NIR spectroscopy at the local scale and therefore there is a strong need to analyze the

factors that influence the performance of local spectral models.

Furthermore, the rate of cover crop decomposition is crucial in organic reduced tillage systems
and so far, it is not clear if the application of EM can alter the cover crop decomposition
process. There is no systematic analysis of the effects of cover crop incorporation with EM
application regarding soil microbial activity and community composition as well as released

elements during the cover crop decomposition.

1.9. Research objectives

The goal of this thesis is to enhance knowledge on cover crop management, elucidate short-
term changes in soil fertility and elaborate suitable methods for such assessments. Its
objectives can be divided into three major topics that have been published as individual
papers: 1) analyze the effects of different cover cropping strategies on soil fertility parameters,
2) to explore the suitability of vis—NIR spectroscopy for soil sampling projects of local extent,
3) to examine the effects of EM on cover crop decomposition. These topics were structured

by the following research questions:
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Part I: Background and overview

1) Effect of different cover cropping strategies on soil fertility (Paper 1):

A) Do cover cropping strategies that differ in terms of species composition, growing
period and aboveground biomass input show different effects on soil C and N
fractions?

B) Which of the analyzed soil properties and which soil depth segment is most
sensitive to implemented cover cropping strategies?

2) Suitability of vis—NIR spectroscopy for soil sampling projects of local extent (Paper 2

and 5):

A) To what extent do the prediction errors of local spectral models differ from the lab
measurement error?

B) Can spectral data of several target sites be combined to a general model without
substantial decrease in model performance?

C) How dofield and soil characteristics (e.g., field size, soil texture, carbonate content,
correlations of soil properties) of the target site relate to the performance of
spectral models?

D) Does an increased sample size analyzed with vis—NIR spectroscopy in a local
experiment improve the statistical power compared to a lower sample size with
conventional analysis?

3) Effect of EM on cover crop decomposition: (Paper 3 and 4):
A) Do EM alter the dynamics of cover crop decomposition?
B) Do EM alter the concentration of water-soluble ions or elements?

C) Can microbial taxa from the EM solution establish themselves in the soil?

2. Methodology

2.1. Initiating a participatory on-farm experiment

The starting point for this thesis was a privately organized soil course (Bodenkurs im Griinen,
Konzepte der regenerativen Landwirtschaft), held by the practitioners Dietmar Naser (Griine
Bricke, 2022) and Friedrich Wenz (Humusfarming, 2022) , that | participated with around 20
farmers in 2017. This course is not offered anymore but follow-up programs still exist, and
their content can be checked on the websites of Griine Briicke and Humusfarming. A big topic
of the course was cover cropping with shallow incorporation and EM application, which was
assured to show beneficial effects on soil fertility parameters (Naser, 2021). Together with five
interested farmers, we decided to scientifically evaluate two contrasting cover cropping
approaches in short-term field experiments on their farms (Objective 1, Paper 1). The
experiment took place on six fields in eastern Switzerland that were a maximum of 12.8 km

apart from one another (Figure 1). The field experiment in this PhD theses took place from
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end of July (cereal harvest) to end of April or beginning of May (sowing of spring crop) and in
this long fallow period a bare soil treatment is not an option and was therefore also not

considered in the study design.
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Figure 1: Location of the six fields (A-F) in the canton of Thurgau in eastern Switzerland.

2.2. Application of vis—NIR spectroscopy

The need for more studies to contribute to the emerging evidence about the potential of vis—
NIR spectroscopy to complement laboratory soil analysis and thus enable a cost-effective
analysis of larger soil samples was another motivation (Metzger et al., 2024). The availability
of portable vis—NIR spectrometers allows to collect data through direct in situ measurements.
However, | took soil samples in the field and conducted the spectroscopy measurements on
dried and sieved samples in the lab. There are three reasons why | did not conduct in situ
measurements on the field. First, | would not have had enough time in the field to do proper
measurements and the time window was limited due to the cover cropping management
schedule. Second, the highly variable water content under field conditions at different time
points would probably have resulted in lower model performance compared to lab
measurements (Hutengs et al., 2019). Thirdly, it is a big advantage to have all soil samples
available in the lab, because the spectra can be analyzed and a representative subset for wet
chemistry analysis can be chosen. With field measurements, the reference samples must be
determined beforehand without knowing if they are representative for the whole dataset. The
suitability of vis—NIR spectroscopy application in field experiments (objective 2) was evaluated

in Paper 2 and Paper 5.
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2.3. Effects of EM tested in a lab incubation experiment

The scientific literature about the effects of EM on organic matter decomposition (see section
1.7) indicated that a potential effect of EM on cover crop decomposition might, if at all, only
be minor. Therefore, | did not include EM as an experimental factor in the field trial but ran a
lab incubation experiment with different EM levels and a sterilized control (Objective 3, Paper
3 and 4). The lab experiment allowed to keep the environmental conditions stable and work

with a high temporal resolution.

2.4. Overview of research papers

This thesis contains three first author papers, one policy brief and one co-authored paper.
Figure 2 shows which of the collected datasets were used in which paper and how these
different papers contribute to the three objectives of this thesis. Table 1 provides an overview
about the different research outputs and in which journal they were published or have been

accepted.

Collected dataset Research Papers Objectives

Paper 1: Cover cropping in organic reduced

Field experiment ﬁ tillage systems: Maximizing soil cover or plant [ > Objective 1: Effect of different

X aboveground biomass input? cover cropping strategies on soil
in eastern fertility
Switzerland % Pa per 2: Best performances of visible-near-
infrared models in soils with little carbonate —a
field study in Switzerland
Objective 2: Suitability of vis—
Paper 3: No effect on biological or chemical NIR spectroscopy for soil sampling
soil properties when amended with effective projects of local extent
. . microorganisms for improved cover crop
Lab incubation § ﬁ decomposition

study
% Paper 4: can Effective Microorganisms

influence Green-Manure Decomposition?

Objective 3: Effect of EM on
cover crop decomposition

SO||. survey in Paper 5: Reveget_atlon is key for soil organic
northern Spain carbon sequestration on abandoned and

degraded land in northern Spain

Figure 2: Overview of the connections between collected datasets, research papers and objectives of this PhD thesis.
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Table 1: Overview of research outputs

No. Objective Authors Title Journal Status

1 1 Simon Oberholzer, Klaus A. Cover cropping in European Accepted on
Jarosch, Markus Steffens, organic reduced Journal of Soil October 25,
Nadine Harder and Chinwe tillage systems: Science 2024
Ifejika Speranza Maximizing soil

cover or plant
aboveground
biomass input?

2 2 Simon Oberholzer, Laura Best performances Soil Published on
Summerauer, Markus Steffens  of visible—near- April 10, 2024
and Chinwe Ifejika Speranza infrared models in

soils with little
carbonate — a field
study in Switzerland

3 3 Simon Oberholzer, Christa No effect on Applied Soil Published on
Herrmann, Natacha biological or Ecology March 2, 2024
Bodenhausen, Hans-Martin chemical soil
Krause, Adrien Mestrot, properties when
Chinwe Ifejika Speranza and amended with
Klaus A. Jarosch effective

microorganisms for
improved cover crop
decomposition

4 3 Simon Oberholzer, Christa Can Effective Policy Brief in Published on
Herrmann, Natacha Microorganisms Agrarforschung  April 6, 2024
Bodenhausen, Hans-Martin influence Green- Schweiz
Krause, Adrien Mestrot, Manure
Chinwe Ifejika Speranza and Decomposition?

Klaus A. Jarosch

5 2 Maja V. Schneider, Simon Revegetation is key =~ Geoderma Published on

Oberholzer and Chinwe Ifejika  for soil organic Regional July 11, 2024

Speranza

carbon
sequestration on
abandoned and
degraded land in
northern Spain

18



Part I: Background and overview

3. Key insights and discussion

Paper 1: Cover cropping in organic reduced tillage systems: Maximizing soil cover or plant

aboveground biomass input?

e Comparison of permanent soil cover (PSC) that maximizes soil cover and minimizes tillage
and double cover cropping (DCC) that maximizes cover crop aboveground biomass input.

e Measurement of C and N fractions in high spatio-temporal resolution in a field experiment.

e Aboveground biomass input led generally to higher microbial biomass, mineral N and POXC
(0-5 cm) in the DCC treatment.

e The PSC treatment showed significantly higher increase in SOC in 5-10 cm compared to the
DCC treatment which was probably caused by the higher belowground C inputs.

Box 1: Short summary of the Cover crop paper (Paper 1, objective 1)

The evaluation of the two cover cropping strategies revealed that the temporal variability of
soil properties was very high, which posed a challenge to the identification of management
effects. As the pronounced short-term variability was expected beforehand, | chose a
methodological approach that allowed to collect soil samples in high temporal and spatial
resolution. Despite the high measurement resolution using vis—NIR spectroscopy, only small
differences for the soil properties SOC, total N and POXC between the treatments could be
detected. For the whole analyzed soil depth (0-20 cm) we did not find differences between
treatments. Only when sub-setting per depth segment, we found significantly higher increases
for SOC in 5-10 cm in the PSC treatment but significantly higher increases for POXC in 0-5 cm
in the DCC treatment. The cover crop in the PSC system had much more time to develop its
root system and | hypothesize that therefore the belowground C inputs were probably higher
in the PSC treatment, and which would explain the significantly higher SOC in 5-10 cm soil
depth compared to the DCC treatment. The significantly higher POXC in 0-5 cm in the DCC
treatment was most probable caused by the aboveground biomass input that took place in
that soil depth. The spectral data were accompanied by conventional lab measurements with
a lower spatial sampling resolution. Also, for these soil properties (Cmic, Nmic and Nmin) we
found a pronounced variability over time, but they were, as expected more sensitive to
treatment effects than SOC, total N and POXC. At the end of the field trial, | measured
generally higher Cmic, Nmic and Nmin in the DCC treatment compared to the PSC treatment.
| concluded therefore that the aboveground biomass input in the DCC strategy was beneficial
for soil microbiology and nitrogen availability, but the constant soil cover and minimum tillage
of PSC tended to be more beneficial for SOC.
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Paper 2: Best performances of visible—near-infrared models in soils with little carbonate —

a field study in Switzerland

e Out of 30 local spectral models, 24 showed an accurate performance (RPD > 2) and six
models a low model performance (RPD < 2).

e The low performing models were from the two fields with highest carbonate content.

e Analysis of variable importance in projection (VIP), and correlations between spectral
variables and target soil properties, confirmed that high carbonate content masked
absorption features for SOC.

e When combining data of different fields to build one general model, fields with high
carbonate content showed a strong decrease in model performance compared to the local
model.

Box 2: Short summary of the spectroscopy paper (Paper 2, objective 2)

The spectroscopy paper (see Box 2) showed that most local models had an accurate
performance and the highest prediction error for SOC (2.43 + 0.55 g kg!) was not much higher
than the lab measurement error of the conventional lab analysis using a CNS analyzer (1.01
0.40 g kgt). Additionally, all local models showed a very low bias (see Table 2 in Paper 2),
which means that the spectral models did not systematically over- or underestimate the
measured values. However, soils with high carbonate content (Fields A and F) showed in
general a lower model performance than the other four fields (A, B, C, D) and the utilization
of vis—NIR spectroscopy on fields with high carbonate content remains challenging and should
be addressed by further research. A very similar methodological approach as in Paper 2 was
applied in Paper 5 where in an area of 300 ha soil samples were taken in high spatial resolution
to investigate the effect of contrasting land management (tilled fields, fallow fields and forest).
In this study, the sampling design could also be statistically evaluated by only using the soil
samples where wet chemistry data were available and without using any spectral data. The
comparison between evaluation with wet chemistry data only (57 samples) and with spectral
data (487 samples), showed that the number of statistically significant relations between
treatments could be drastically increased (see Figure 8 in Paper 5). We conclude therefore
that the application of soil spectroscopy in soil survey projects of local extent allows to
increase the number of samples at very little additional costs which can provide more detailed

information than when less samples with only wet chemistry data are used.
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Part I: Background and overview

Paper 3: No effect on biological or chemical soil properties when amended with effective

microorganisms for improved cover crop decomposition

e EM at recommended dose did not change the soil respiration, nor microbial C and N.

e EM at 100 times of recommended dose showed effects due to added substrate and not due
to the added living microorganisms.

e Seven days after the start of the incubation, EM taxa were only detected in the samples that
were treated with a 100 times higher EM dose than recommended.

e EM did not coherently change the concentration of water-soluble ions and elements.

Box 3: Short summary of the EM paper (Paper 3, objective 3)

Effective microorganisms did not change soil respiration nor any of the measured biological
or biochemical soil property (see Box 3). | therefore conclude that the decomposition was not
influenced by the addition of EM in the study setting (laboratory experiment). With the
specific experimental set up, it cannot be excluded that under certain environmental
conditions EM might influence cover crop decomposition but since a general effect was

lacking, | expect such a potentially occurring effect to be minor.

4. Synthesis and outlook

Different cover cropping options have different short-term effects as could be shown by Paper
1. Though, a cover cropping strategy must be integrated into a farming system and therefore
one cover cropping approach cannot be qualified as superior per se compared to another one.
Taking the main results of the two compared approaches in Paper 1, we found that PSC had a
stronger effect on SOC whereas the DCC approach had a stronger effect on soil
microorganisms. For crop rotations that include crops requiring a lot of “soil movement” like
ridge crops (potatoes, carrots, etc.) or multiple sets during the vegetation season (vegetables)
the effects of the PSC approach would probably not be sustainable because it would be
counteracted very soon by the following crop. Since in these crop rotations (independent of
the farming system) a lot of physical soil management takes place, the recovery of soil
structure (aggregates) is probably most important which can only be achieved through a high
microbial activity. Therefore, in such systems | would rather recommend cover cropping
options with biomass input that foster soil microbiology like the DCC approach. On the other
hand, in reduced tillage systems with little soil movement and crop rotations with mainly
threshing crops (cereals, rapeseed, etc.), low tillage intensity and high soil cover strategy like
in the PSC approach is suitable because soil organic matter mineralization is probably
relatively low and soil structure relatively good and therefore plant biomass input is not a
priority. However, there are many more cover cropping options than the ones tested in Paper

1 but only limited or no knowledge about them is available and more research needs to be
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done. The main question thereby should not be “what is the best cover cropping strategy?”
but rather “Which cover cropping strategy can best compensate the negative impacts of a

specific crop rotation on soil fertility?”.

For this type of research at the local extent, soil vis—NIR spectroscopy can be very helpful to
cope with a high number of samples. However, as also shown by this study, soil organic matter
related parameters (SOC, total N, POXC) can be well predicted with vis—NIR spectroscopy but
additional measurements like nutrients or microbial properties might also be necessary for
the evaluation of cover cropping strategies but are normally less accurately predicted by vis—
NIR spectroscopy. These latter properties are quite sensitive to management and even with a
small sample size, effects can be identified, hence no added value or additional insights from
spectral assessment. The performance of vis—NIR spectroscopy was lower on soils with low
carbonate contents and therefore more research is needed to improve the prediction
accuracy for these soils. This issue is probably even more important for larger scale spectral
libraries with highly varying carbonate contents. | can imagine three possible ways to address
this problem but all of them must be first evaluated. First, samples could be pre-treated with
acid to remove carbonates before conducting the measurements. A comparison in model
performance with acid-treated samples and untreated samples could be a first step in that
direction. Second, there might be a possibility to “correct” a reflectance spectrum for its
carbonate content as it was e.g. successfully done for the water content by Ji et al. (2015).
However, since the important areas for organic carbon and carbonate are overlapping, such
correction approach might be challenging. Thirdly, there is still the option to rely on MIR

spectroscopy in soils with high carbonate where the prediction of carbonate is much better.

Even though measuring immediate effects of land management on soil properties is very
challenging, a big motivation to improve the methodology is the farmer’s perspective.
Independent of the management approach that is evaluated, it is more motivating and
relevant for farmers, if immediate effects can be measured and communicated. Due to the
high sample number, soil vis—NIR spectroscopy might be one piece to improve the
methodology to tackle the challenge of short-term effects on soil fertility. If short-term effects
can be made better visible, it is easier to set up research projects with a high participation of
people working in the agricultural praxis. The participation of practitioners in research projects
has been identified as a crucial factor to improve soil fertility (Cheik and Jouquet, 2020) and
could potentially be fostered by the implementation of local soil spectroscopy projects. Like
farmers, also other stakeholders like the agricultural ministry, food retailers and label
organization have an interest in fast evaluation of new measures for sustainable soil

management and might therefore be more interested to participate in research projects.
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Besides its unquestionable positive effects on soil fertility, cover crops also bring challenges
for soil management in the agricultural praxis. Plant or litter material on the soil surface may
hinder efficient machine operation. In Paper 3 we did not find any effect of EM on cover crop
decomposition and therefore conclude that the decomposition process is probably mainly
governed by temperature, soil moisture and the microbial community present in the soil.
Especially, the cover crop moisture content (which is determined by prevailing weather
conditions) has been shown to be the most crucial factor that determines cover crop
decomposition (Thapa et al., 2021). It may be that other microbial inoculants or EM under
different experimental conditions might show an effect on cover crop decomposition but, this
effect is probably very small. Therefore, | conclude that the method to incorporate cover crops
should be chosen according to the crop rotation planning and the prevailing environmental

conditions.
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Abstract

Cover crops are grown between two main crops to reduce periods of bare
fallow. In highly diverse crop rotations, the lengths of break periods between
two main crops vary highly over time and consequently the cover cropping
management differs from year to year. Long-term field trials are thus of limited
use because the same cover cropping approach only appears once in several
years. This increases the need to better determine the immediate effects of dif-
ferent cover cropping strategies on soil properties. This study evaluated two
cover cropping strategies and monitored the temporal development of several
soil properties on six fields in Eastern Switzerland in the 9 months period
between harvest of winter wheat and sowing of spring crops. The two tested
strategies were (a) double cover cropping (DCC) where two cover crops
mixtures were grown subsequently and shallowly (3 cm) incorporated into the
topsoil and (b) permanent soil cover (PSC) with one grass-clover mixture,
which was harvested and thus not incorporated into the soil. Soil samples at
three different soil depths (0-5, 5-10 and 10-20 cm) were sampled four times
in high spatial resolution and analysed using a combined approach of visible
near infrared spectroscopy and conventional lab methods. Differences between
the sampling times and field sites were stronger than effects of different treat-
ments. For soil organic carbon (SOC), no significant difference was measured
between treatments in 0-20 cm soil depth. Only when analysed per depth seg-
ment, the PSC treatment showed significantly higher SOC increase in 5-10 cm
soil depth than the DCC treatment. This could be due to the longer soil cover
and thereby associated longer root growth period in the PSC treatment, leading
to higher below ground C inputs than in the DCC treatment. On the other hand,
the DCC treatment showed generally higher increases in permanganate oxidiz-
able carbon stocks (0-5 cm), microbial C (0-10 cm), microbial N (0-10 cm) and
mineral N (0-10 cm) than the PSC treatment. We conclude that maximizing

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 The Author(s). European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.

Eur J Soil Sci. 2024;75:e70012.
https://doi.org/10.1111/ejss.70012

wileyonlinelibrary.com/journal/ejss I

1 0f19

25



OBERHOLZER Et AL.

e | Wi - EERERS

KEYWORDS

1 | INTRODUCTION

Soil fertility is crucial for sustainable crop production but
is decreasing in arable soils across the world (Lal, 2015).
Depletion in soil organic carbon (SOC) is an important
driver of this process which has also been observed in
Europe (Gubler et al., 2019). The beneficial effects of soil
organic matter (SOM) lie in its dynamic nature where
short-term formation and mineralization of organic matter
influence nutrient availability and crop performance
(Hacker et al.,, 2015; Janzen, 2006). Cover crops are an
important element to promote SOM formation in a crop
rotation (Jian et al, 2020; Kaye & Quemada, 2017,
McClelland et al., 2021; Poeplau & Don, 2015), but region-
specific limitations hamper their adoption in Europe
(Heller et al., 2024). Cover crops, also referred to as catch
crops or intercrops, are sown in the period between two
main crops to avoid periods with bare soil. Additionally,
cover crops can also be undersown in a main crop to
increase the species richness on the field. The major goal
of cover cropping is to improve nutrient cycling, avoid
nutrient losses, increase SOC stocks, enhance microbial
activity, increase soil cover and reduce erosion (Daryanto
et al., 2018; Thorup-Kristensen et al., 2003).

While the overall benefits of cover crops are well docu-
mented, very little information is available on the effects
of different cover cropping strategies on soil properties.
Cover cropping strategies differ in terms of species diver-
sity, incorporation method, biomass input and the fre-
quency they are applied in a crop rotation. All these
factors are relevant for both the decomposition and the
accumulation of organic matter in soil. For example, SOM
formation is more efficient when above ground residues
were mixed with topsoil than just put on the soil surface
(Mitchell et al., 2016, 2018; Sokol et al., 2019).

Several parameters have been suggested to evaluate the
performance of cover crops. Since total SOC is a slowly
reacting C pool, the analysis of labile C fractions to evaluate
the effect of different agricultural management techniques
has been recommended (Bongiorno et al, 2019; Wang
et al., 2014). Among them, permanganate oxidizable carbon
(POXC), also referred as active C, has been shown to be
influenced by cover cropping (Jagadamma et al., 2019;
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cover crop above ground biomass input by planting two cover crops (DCC)
benefitted soil microorganisms on most fields but was less beneficial on SOC
than permanent soil cover (PSC) in 5-10 cm soil depth.

microbial biomass, regenerative agriculture, shallow incorporation, soil fertility, soil organic
matter, soil spectroscopy, temperate climate

Highlights

+ Monitoring of two cover cropping strategies in
high spatial and temporal resolution

« Permanent soil cover (PSC) strategy increased
soil organic carbon in 5-10 cm depth

« Double cover cropping (DCC) increased soil
microbial biomass on most fields

« Above ground biomass input in DCC strategy
increased mineral N on most fields

Lucas & Weil, 2021). Another fast reacting and manage-
ment sensitive C pool is soil microbial biomass carbon
(Cmic), of which some studies have measured an increase
due to cover cropping (Kim et al., 2020). This effect was
more pronounced with species mixtures than with single
species cover crops (Gentsch et al., 2020). Other studies
showed that POXC and Cmic correlate with SOC and
therefore suggested them as indicators for SOC develop-
ment (Bongiorno et al., 2019; Lange, 2015). Besides soil C
fractions, cover crops also influence the soil nitrogen
(N) cycle, whereby some N fractions are more sensitive to
cover cropping than others (Mohammed et al., 2020; Wang
et al., 2007). Similar to SOC, total soil N is a slowly reacting
N pool and cover crop research focuses mainly on the labile
N pools such as mineral N (Nmin) and microbial N
(Nmic). Cover crops use Nmin for their growth and can
thereby prevent the leaching of some Nmin into deeper
soil layers or into ground water (Tonitto et al., 2006). On
the other hand, cover crops enhance the uptake of Nmin
into the microbial biomass (immobilization) because
microbial growth benefits from cover crop's labile C
inputs (in't Zandt et al., 2018).

Two main mechanisms explain the beneficial effects
of cover crops on soil C and N fractions. First, cover crops
increase the organic matter input into the soil. Second,
cover crops are used to suppress weed growth, which
reduces the need for mechanical weed control and
thereby prevents SOC mineralization (Singh et al., 2023).
Traditionally, organic farming systems mainly rely on
cover crops for increasing organic matter inputs whereas
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conservation agriculture systems see the main benefit in
the reduction of soil tillage. In both systems, cover crops
are well established (Biichi et al., 2017; Hubbard, 2013;
Welch et al., 2016). However, the combination of conserva-
tion tillage with organic farming remains challenging
mainly because of increased weed pressure and reduced
yields (Leifeld et al., 2009; Zikeli & Gruber, 2017). In conser-
vation tillage systems, cover crops are often killed with her-
bicides, roller crimper or by frost periods whereas in organic
systems cover crops are normally incorporated by inversion
tillage (Alonso-Ayuso et al., 2020; Wayman et al., 2015).

New cover cropping approaches try to combine
methods from both organic farming and reduced tillage by
shallowly (3 cm) incorporating cover crop mixtures with a
rotary tiller. The resulting plant-soil mixture serves as an
energy source for the soil microbiome. Labile C inputs
enhancing the soil microbiology are a key element for the
stabilization of SOM (Cotrufo et al., 2013). Thereby, the
microbial by-products and the microbial necromass can
play a major role in SOM formation (Kallenbach, 2016;
Miltner et al., 2012; Vidal et al., 2021). This shallow incor-
poration of cover crop mixtures is often used in ‘regenera-
tive agriculture’ that has gained popularity in agricultural
practice in recent years (Giller et al., 2021; Rhodes, 2017),
yet, is still not clearly defined.

Most research on the effects of cover crops focuses on
the comparison between a cover crop treatment and a bare
soil control. However, in Switzerland long-term bare soil
periods are not allowed (Swiss Ordinance 910.13, 2013)
and cover cropping is widely applied (Heller et al., 2024).
Also other European countries try to foster the adoption of
cover crops (Kathage et al., 2022). The question on the
type of cover cropping strategy and their effects on soil
properties will thus become in future more important
than whether or not to implement cover crops at all. In
Swiss organic reduced tillage systems, two different types
of cover cropping are commonly applied in the up to
9 months period between cereal harvest (end of July) and
sowing of a next spring crop (April-May). The so-called
‘double cover cropping’ (DCC) aims to maximize fresh
organic matter into the soil by sowing, growing and
shallowly incorporating a summer cover crop mixture and
a winter cover crop mixture subsequently. The DCC
approach is expected to show beneficial effects on soil
fertility parameters because it has a high above ground
biomass input into the soil that is decomposing in interac-
tion with the soil mineral phase. However, the double
shallow incorporation requires shallow but intensive till-
age that might increase SOM mineralization in the topsoil.
Alternatively, the ‘permanent soil cover’ (PSC) aims for
maximized soil cover and reduced soil tillage. This is
achieved by a temporary ley where the above ground bio-
mass can be harvested and used as forage. The same effect

can also be achieved by undersowing a cover crop with
grasses and clover in the cereal stand and use it as a tem-
porary ley after the cereal harvest. In contrast to DCC, the
PSC approach does not have any above ground biomass
input into the soil but also no disturbance.

Given the increasing implementation of cover cropping,
it becomes more and more relevant to evaluate the effects
of these different strategies as management options on soil
fertility. We thus monitored the immediate effects of the
DCC and the PSC approach on soil C and N fractions at
three different soil depths (0-5, 5-10 and 10-20 cm) over a
period of 9 months in six fields in Switzerland. In highly
diversified crop rotations, a long fallow period that is suit-
able for either the DCC or PSC cover cropping approach
appears only once within several years. For this reason, the
effects of these cover cropping approaches cannot be evalu-
ated in experiments that span over several cropping sea-
sons, as their immediate effects would be covered by any
other crop or management effect. We thus took soil samples
in high spatial and temporal resolution using a combination
of near infrared spectroscopy and conventional lab methods
to enable detection of small changes in the analysed param-
eters. This was done to achieve a better understanding of
the effects of either maximizing cover crop biomass input
(DCC) or soil cover (PSC) on soil fertility using cover crops.
We formulated three hypotheses:

1. Given the short time period of the experiment, SOC
and total N will not significantly differ between the
two treatments.

2. The DCC treatment with above ground biomass input
will show higher labile C and N (POXC and Nmin),
compared to the PSC treatment with no such above
ground biomass input.

3. The DCC treatment with above ground biomass input
will promote the soil microbial biomass (Cmic and
Nmic), compared to the PSC treatment with no such
above ground biomass input.

2 | METHODS

2.1 | Study sites and experimental set-up
The trial was conducted on six agricultural fields in the
canton of Thurgau, Switzerland (Table 1). All fields were at
maximum 12 km apart from each other. In 2019, the mean
temperature in the region was 10.8°C and total annual pre-
cipitation summed up to 815 mm, which was a bit warmer
and drier than the long-term average (1991-2020) of 8.7°C
and 853 mm. The trial comprised the period of 9 months
between cereal harvest at the end of July and sowing of a
cash crop in late spring (Figure 1). Before the onset of the
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TABLE 1

Elevation

Field (ma.s.l)

A 420

B 420

C 600

D 460

E 460

F 380

Trial
area (ha)

0.84

0.67

044

0.64

0.3

Description of the trial sites.

Soil class (world
reference base)

Eutric Cambisol

Eutric Cambisol

Eutric Cambisol

Eutric Cambisol

Eutric Cambisol

Eutric Cambisol

Soil texture (% of
sand/silt/clay)

50/29/21
Sandy loam

44/35/20
Sandy loam

27/35/38
Clay loam

28/44/28
Clay loam

30/48/23
Sandy loam

39/43/18
Sandy loam

pH
(CaCly)
7.18

6.88

6.6

7.49

Crop rotation (4 years
before trial)

2015:
2016:
2017:
2018:
2019:

2015:
2016:
2017
2018:
2019:

2015
2016:
2017:
2018:
2019:

2015:
2016:
2017:
2018:
2019:

2015:
2016:
2017:
2018:
2019:

2015:
2016:
2017:
2018:
2019:

Temporary ley
Celeriac

Rye

Potato

Winter wheat

Potato
Dwarf beans

: Temporary ley

Corn
Rye

: Sugar beet

Winter wheat
Temporary ley
Temporary ley
Winter wheat

Oat

Spelt

Field beans
Red clover
Winter wheat

Spelt

Dwarf bean and peas
Winter wheat

Linen

Winter wheat

Winter wheat
Sugar beet
Corn

Potato
Winter wheat

Last
ploughing
(year)
2012

2016

2015

2018

2018

2017

Fertilization

None

Processed organic fertilizer
(Bio-Enne, Timac Agro,
Switzerland)

N: 72 kgha ™’
C:210kgha !

Applied: 27.04.2020

None

Chicken manure
N: 112 kg ha™'
C:740 kg ha™!
Applied: 01.04.2020

None

None

2
r
y
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Fall: Shallow
incorporation

Double cover
cropping (DCC)

Cereal
Summer cover croj

Permanent soil

cover (PSC) Cereal

Undersown cover

Fall: Aboveground biomass
removed

Sampling t; Sampling t,

FIGURE 1
temperature and total precipitation are indicated.

trial, every field was planted with winter cereal and an
undersown cover crop called GreenCarbonFix that was
purchased at Camena Samen (Germany) and contained six
species: 55% perennial ryegrass (Lolium perenne L.), 25%
crimson clover (Trifolium incarnatum L.), 5% white clover
(Trifolium repens L.), 5% hop clover (Medicago lupulina L.),
5% bird's-foot trefoil (Lofus corniculatus L.) and 5% came-
lina (Camelina sativa L.). After the cereal harvest in July
each field was divided into a PSC plot in the middle and
two DCC plots on both sides. Plot sizes were between 1000
and 3500 m®. Each plot comprised 13 GPS-referenced sam-
pling points (circles with a radius of 1 m) that were homo-
geneously distributed across the plot in an unaligned
design (Webster & Lark, 2013). The results of the two DCC
plots (26 subplots) were combined and referred here as
DCC plot. The unequal sample number for each treatment
was accounted for in all statistical analyses (see Section 2.7).
The management was conducted by the farmers and there-
fore we used a strip design and not a randomized block
design which would have made the machine handling very
complicated. In the DCC plots, two commercial cover crop
mixtures were sown subsequently (Figure 1). The summer
cover crop mixture (Dominanzgemenge; Camena Samen)
was sown after cereal harvest (end of July) and comprised
12 species: 20% buck wheat (Fagopyrum esculentum
MOENCH), 20% flax (Linum usitatissimum L.), 20% serra-
della (Ornithopus sativus BROT.), 8% corn (Zea mays L.),
7% sunflower (Helianthus annuus L.), 5% bristle oat (Avena
strigose SCHREB.), 5% camlina (camelina sativa L.), 4%
winter oilseed rape (Brassica napus L.), 4% white mustard
(sinapsis alba L.), 3% deeptill radish (Raphanus sativus var.
oleiformis), 2% sudan grass (Sorghum sudanense STEUD.),
2% lacy phacelia (Phacelia tanacetifolia BENTH.). After the
shallow incorporation of the fall cover crop in September, a
frost tolerant winter cover crop mixture (Wintergriin,
Camena Samen) was sown that contained five species: 62%
winter rye (Secale cereale L.), 26% Hungarian vetch (Vicia

19.5°C 18.1 °C 9 ° 10.7 °C 34°C 4.7 °C 11.8°C 124°C 15.1 °C
- e
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Spring: Shallow
incorporation

Spring

Winter cover crop crop

Spring

\ crop

Spring: Aboveground biomass
removed, shallowtillage

|
Sampling t;

Sampling t,

Timeline for the two treatments double cover cropping (DCC) and permanent soil cover (PSC). For every month the average

pannonica CRANTZ.), 10% crimson clover (Trifolium incar-
natum L.), 1% winter oilseed rape (Brassica napus L.), 1%
winter turnip rape (Brassica rapa L.). The winter cover crop
was shallowly incorporated at the end of April or beginning
of May. The shallow incorporation was done each time
with a rotary tiller with right-angled knives that cut the
plants 3 cm below the soil surface. The result was a plant
soil mixture on the surface that was left on the soil for
10 days. After that the soil surface was again treated
with a rotary tiller and the winter cover crop, respec-
tively the spring cash crop, was sown. In the PSC plot
the GreenCarbonFix mixture undersown in the cereal
was kept and further on managed equal to a temporary
ley. In fall, when the cover crop in the DCC plot was
incorporated, the PSC plot was mowed and the above
ground biomass was removed from the field. In spring,
when the winter cover crop on the DCC plot was incor-
porated, the PSC plot was mowed again, and the stub-
bles were incorporated the same way as in the DCC plot
using a rotary tiller. The exact dates and management
details of the four sampling times are provided in
Table S.1 and an overview about the used cover crop
mixtures is provided in Table S.2. For the fields E and F,
soil sampling had to be reduced to three time points
because of management issues with the seedbed prepa-
ration in these two fields. Consequently, those two fields
were ploughed in spring and therefore the soil sampling
before the incorporation of spring cover crop (t,) was
the last sampling time on these two fields. All cover
crops were grown without any fertilizer and under
organic farming conditions. Yet, on fields B and D for
the spring cash crop, an organic fertilizer was applied
after cover crop incorporation between t, and ti. Same
amounts of fertilizers were applied on both treatment
plots. The C and N inputs from fertilization can be seen
in Table 1. Right before the cover crops were incorpo-
rated with a rotary tiller (DCC in fall, DCC and PSC in
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spring) 100 L ha~' commercially purchased effective
microorganisms (EM; Rottelenker, EM Schweiz AG,
Switzerland) were sprayed on the cover crops. The
objective of this measure is to improve the decomposi-
tion process and reduce C and N losses (Oberholzer,
Herrmann, et al., 2024). This practice is commonly used
by farmers in the region when they shallowly incorpo-
rate a cover crop and was therefore part of both cover
cropping systems.

2.2 | Plant biomass sampling

In the DCC plots cover crop biomass was cut right before
cover crop incorporation in a square of 50 x 50 cm with
seven replications per field and subsequently dried at
65°C for 48 h to determine the dry weight. The sampling
replication with the median weight was ground and ana-
lysed for C and N content by dry combustion (vario
MICRO tube, Elementar, Germany), separately for each
field. The concentrations of plant C and N were multi-
plied by the dry matter weight to obtain the cover crop C
and N input.

2.3 | Soil sampling and sample
treatment

Soil sampling was done before incorporation of the fall
cover crop (t, September), about 4 weeks after the shallow
incorporation (t;, October), in early spring (t,, March) and
about 4 weeks after the incorporation of the spring cover
crop (t;, May; Table S.1 in the Supplementary Material).
At every sampling time, three batches of soil samples were
obtained for different analyses. Batch one to determine
SOC, POXC and total N was sampled by taking five sam-
ples per sampling point using an auger (0-20 cm, 2 cm
diameter) and subsequently separated per depth segment
of 0-5, 5-10 and 10-20 cm. The GPS reference for each
sampling point was done using a dGPS device (Geo7X,
Trimble, USA) with an approximate measurement accu-
racy of 10 cm, allowing for point specific monitoring of
soil properties over time. In total, six fields with each three
plots (two DCC, one PSC), each with 13 sampling points,
were sampled in three depths at four (field A, B, C and D)
respectively three (field E and F) sampling times which
resulted in a total number of 2574 soil samples. These
samples were dried for 72 h or constant weight at 40°C
and sieved to 2 mm. Batch two to determine Cmic, Nmic
and Nmin was obtained by randomly sampling 15 subsam-
ples in 0-10 cm depth in four replicates per plot and sam-
pling time (n = 264). Samples were stored at 4°C and
sieved to 2 mm before the analysis of Cmic and Nmic.
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Thereof a part of sieved soil was frozen at —20°C for the
analysis of Nmin. Batch three to determine soil bulk den-
sity and soil water content was obtained by sampling three
undisturbed soil cores per plot and sampling time from
0 to 20 cm with 5 cm diameter that were taken with an
impact probe (HumaxTube®, Switzerland). These cores
were cut into 5 cm segments, weighed and dried at 105°C
for at least 48 h to assess soil bulk density and water con-
tent for each 5 cm layer (n = 792).

2.4 | Spectral measurement and
modelling

All 2574 samples of batch one were measured with a vis—
NIR spectrometer (350-2500 nm, ASD FieldSpec 4 Hi-
Res, Malvern Panalytical, USA) in five replicates using a
contact probe in a dark room. We treated the samples
from each field as one individual dataset (n = 468 for
fields A, B, C and D and n = 351 for fields E and F)
for the spectral modelling. For every field 15% of the sam-
ples were selected as reference samples for wet chemistry
analysis based on a Kennard-Stones algorithm that uses
the principal component scores to select a representative
subset of a given dataset (Wadoux, 2021). Therein, sam-
pling times and soil depth were similarly represented.
For each parameter (SOC, POXC and total N) and for every
field a spectral model was calibrated with the reference
samples to predict the values for the other samples. For
every spectral model we selected the optimal preprocessing
technique and applied a partial least square regression
(PSLR; Wold et al,, 1983). A five times repeated fivefold
cross-validation approach was used to calibrate for a spec-
tral model for each field and soil property. We evaluated
the model performance using the three model performance
parameters, coefficient of determination (R*), root mean
standard error (RMSE) and the ratio of performance to
deviation (RPD) which is the ratio of standard deviation of
the measured reference values to RMSE. According to
Chang et al. (2001) and Zhang et al. (2018) we considered
an RPD above 3 as excellent, above 2 as accurate, above 1.4
as approximate and below 1.4 as poor model performance.
The RMSE has always the unit of the measured parameter
and therefore does not allow a generalized evaluation
scheme. The executed preprocessing steps and the accuracy
of the final chosen model for SOC, POXC and total N can
be found in Table S.3 in the Supplementary Material. Spec-
tral models for SOC and POXC on fields A and F showed
an approximative performance while all other models
showed an accurate or even excellent performance. The
slightly lower model performance of fields A and F can
probably be explained by their higher carbonate content
(see Oberholzer, Summerauer, et al. (2024)). The RMSE
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ranged between 1.07 and 2.43 gkg™' for SOC, 0.03 and
0.05 g kg™* for POXC and between 0.09 and 0.14 for total
N. These achieved RMSE from spectral models were
relatively close to the lab measurement errors that were
1.01 + 0.40 g kg~* for SOC, 0.02 + 0.01 g kg* for POXC
and 0.07 +0.02gkg ! for total N (Oberholzer,
Summerauer, et al., 2024).

2.5 | Chemical soil analyses

For the reference samples of batch one (n = 386 £ 15% of
all samples) concentrations of total C and total N were
determined by dry combustion (vario MICRO tube, Ele-
mentar, Germany). Inorganic C was determined through
dissolution of carbonate in 10% HCl-solution and mea-
surement of the volume of the evolved CO,, and SOC as
the difference between total C and inorganic C. POXC
was measured based on the protocol of Weil et al. (2003)
with the modifications of Lucas and Weil (2012), where
2.5g instead of 5g soil were used to make sure that
enough reactant (0.2 M KMnO,) is available (Culman
et al., 2012; Lucas & Weil, 2021).

Cmic and Nmic were measured based on the protocol
of Vance et al. (1987) with some adaptations: We weighed
moist soil equal to 10 g dry matter and used 40 mL of 0.5 M
K,S0,. After the extraction, dissolved C and N were mea-
sured with a TOC-analyser (DIMATOC® 2100, DIMATEC
Analysetechnik GmbH, Germany). We did not use any con-
version factor and report Cmic and Nmic as chloroform
labile C and N. For the measurement of Nmin as the sum
of nitrate and ammonium, 4 g of soil were extracted with
40 mL 1 M KCl. Nitrate was determined by using vanadium
(IIT) as a reductant according to the Protocol of Garcia-
Robledo et al. (2014). Nitrate content in the solution was
colorimetrically determined by measuring the absorbance
at 540 nm with a Spectrophotometer (UV-1800, Shimadzu
Corporation, Japan). Ammonium was determined as
described in Rhine et al. (1998) with salicylate as a reactant.
The ammonium absorbance was measured at 650 nm with
the same spectrophotometer.

2.6 | Calculation of soil organic carbon,
permanganate oxidizable carbon and total
N stocks

Due to seasonal and management induced changes in soil
bulk density over the nine-month period of the trial, we
used an equivalent soil mass (ESM) approach to calculate
stocks and stock changes of SOC, POXC and total N. The
concept of ESM was introduced by Ellert and Bettany
(1995) and evaluated by Lee et al. (2009). When the soil
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bulk density varies over time and between treatments,
stocks of a fixed depth (FD) contain different soil masses,
which makes a comparison between them uneven. The
ESM approach uses a reference soil mass that is used for a
correction to obtain stocks of same soil masses among
all treatments and sampling times. We used here the
minimum ESM approach (Lee et al., 2009) and used the
sampling time with the lowest bulk density to set the mini-
mum reference soil mass. The SOC, POXC and total N
stocks of the other sampling times were accordingly
adjusted to an equivalent soil mass. For every soil layer
(i) the FD stock was calculated as:

Ci fixed = CONC; + M;

where cong; is the concentration and M; the dry soil mass
of the corresponding layer. Then for every soil layer the
surplus soil mass (M; 4q4q4) Was calculated:

Mi‘add - Mi _Mj‘equiv

where M; .q.: is the equivalent or reference soil mass of
the corresponding layer. The stocks of the first soil layer
(0-5 cm) were obtained by subtracting the surplus soil
mass times the concentration in 0-5 cm:

Co 5= CO—SJl‘xcd —My_5,qdd * CONCo 5

For the 5-10 cm layer ESM stocks were obtained by
adding the surplus stock of the 0-5 cm layer and deduct-
ing the surplus soil masses from 0-5 and 5-10 cm times
the concentration of the 5-10 cm layer:

Cs_10=Cs_10ixed +Mo_s5,qdd * CORCy_s5
—(Mo_sadd +Ms_10,0dd) * CONCs_19

Accordingly, the calculation was also done for the 10—~
20 cm layer. At the end there remains a soil mass that is
unaccounted and must be dropped to obtain an ESM.

We calculated stocks based on the ESM approach for
SOC, POXC and total N. We did not calculate stocks
for Cmic, Nmin and Nmic because we measured them
only in one depth (0-10 cm).

2.7 | Data evaluation and statistics

2.71 | Field specific evaluation

The objective of this study was to assess the influence of
two cover cropping strategies on soil parameters. We thus
do not focus much on absolute values but rather on the
changes of these values over time. For SOC, POXC and
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total N, we subtracted the measured values of sampling t,
from the values of sampling t;, t; and t; to obtain a
stock change for every GPS-referenced sampling point
and sampling time t;, t; and t;. Since samples for Cmic,
Nmin and Nmic were not GPS referenced, we sub-
tracted the mean of sampling t, from concentration
values of samplings ti, t> and t5. These changes relative
to sampling t, showed for all data a normal distribution
or could be transformed to fulfil the requirement of
normality with log(x), sqrt(x) or 1/x. Since we had an
unequal sample size, we used the Levene's-test to
check for equal variances. To detect significant differ-
ences in changes between treatments a Welch two-
sample t-test was applied for every field and sampling
time separately.

To test the changes over time within one treatment
we applied a multiple pairwise comparison using a paired
t-test for the GPS referenced samples (SOC, POXC, total
N). When the different sampling times of the samples of
batch two (Cmic, Nmin and Nmic) were combined per
field, the data often could not be transformed to a normal
distribution. For these samples we therefore used the
non-parametric Kruskal-Wallis test followed by a Dunn's
post hoc test to detect significant changes over time
within one treatment. For both, the multiple ¢-test as well
as the Dunn's test, we used the Holm method to correct
for multiple pairwise comparisons.

2.7.2 | Statistics across fields

To test the treatment influence in different soil depths,
we took the changes in SOC, POXC and total N between
tp and t; for field A, B, C and D and applied a general
mixed model with treatment and soil depth as fixed fac-
tors and field as random factor.

We related the changes between t, and t; to the fall
cover crop input and the changes between t, and t; to
the spring cover crop input to analyse the relationship
between C inputs and changes in SOC, POXC and
Cmic as well as N inputs and changes in total N, Nmin
and Nmic. For this analysis we only considered the
data from the DCC plots since the PSC plots did not
have any above ground input. For field C and D, we
added the fertilizer C and N input to the spring cover
crop input.

All analyses were performed in R version 4.0.3
(R Core Team, 2020). The spectral datasets were ana-
lysed using the R-package simplerspec (Baumann, 2019)
in combination with the packages prospectr (Stevens &
Ramirez-Lopez, 2020) and caret (Kuhn, 2020). In the
figures and in the text means and standard errors are
presented.
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3 | RESULTS

3.1 | Cover crop performance

Cover crop above ground biomass showed large differences
between the six fields in the DCC treatment. In Figures 2
and 3, fields are therefore ordered according to total cover
crop biomass in the DCC treatment (fall and spring)
whereby field A had the highest (716 g m™?) and field F the
lowest (102 g m~) cover crop biomass produced in the
entire duration of the trial. The cover crop C content ranged
between 38% and 42% and the N content between 1.8% and
3.1%. All figures that show changes in the selected parame-
ters also indicate the cover crop C or N inputs for each field.

3.2 | Changes in soil C fractions (SOC,
POXC, Cmic)

Soil organic carbon stocks ranged from 4.2 + 0.1 (Field E)
to 8.2+ 0.2 kg m * (Field F) at t, and on each field, the
changes over time in 0-20 cm soil depth were quite similar
between the DCC and PSC treatment (Figure 2a). The only
significant difference between treatments was observed on
field F for t; where the PSC treatment showed significantly
higher increases in SOC stocks than the DCC treatment.
On every field we determined significant differences in
SOC stocks over time in at least one treatment. At the end
of the nine-month trial, the maximum increase in SOC
stocks over time in 0-20 cm soil depth was measured on
the PSC plot of field A with +0.46 + 0.06 kg m 2. The
maximum decrease in SOC stocks was measured on the
DCC plot on field E at t; (—0.38 + 0.05 g m™>). In relative
terms, SOC stocks changed between —8.5+ 1.1% (DCC
field E, t,) and + 8.3 + 1.0% (PSC field A, t,) over the
monitoring period of 9 months in 0-20 cm soil depth.

At the start of the experiment (t,), POXC stocks ran-
ged between 181 + 8 g m > (Field E) and 225+ 8 gm >
(Field C) and only a few differences between PSC and
DCC treatment were measured over time (Figure 2b).
The DCC treatment exceeded the PSC treatment signifi-
cantly on field C at t, and on field D at t; (Figure 2b). On
the other hand, the PSC treatment on field F showed sig-
nificantly higher changes in POXC stocks than the DCC
treatment at t;. On all fields, the POXC stocks in the
DCC treatment were significantly higher at the last sam-
pling time than at t,. For the PSC treatment, only on
field B, the POXC did not significantly increase during
the trial while all other fields showed significantly higher
POXC stocks at the last sampling time compared to t,.
The maximum significant increase in POXC stocks over
time was +18.9 + 2.1 g m 2 (PSC field F, t,), which cor-
responds to a relative increase of +10.4 + 1.2%.
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Change in SOC Stocks (kg m

Change in SOC Stocks (kg m'z)

Field A) C-Input:

Fall 96, Spring 205 g m™

Field B) C-Input: Fall 137, Spring 160 g m?

Field C) C-Input: Fall 39, Spring 199 g m?

ab ab b

P T [ P [p " [5 B A c A B B
- T _I_III -j q=1=. i
- SOC stocks at t;: SOC stocks at t;: SOC stocks at t;:
PSC: 6.0 £ 0.2 kg m“: (a) PSC: 4.6 £ 0.2 kg m': (@) PSC:7.4+0.2kg m'§ (b)
DCC: 5.8+ 0.1 kgm * (A) DCC:4.6+02kgm ” (B) DCC: 7.5+ 0.1 kgm * (B)|
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Microbial C ranged from 184 + 3mg kg ' (Field B) to
502+ 7mgkg ' at t, and increased over time reaching
highest values in all treatments at the last sampling time
(Figure 2c). On fields C, D and F, microbial C was at least at
one sampling time significantly higher in the DCC than in
PSC treatment. At the end of the trial on field C, D and F
the changes in Cmic in the DCC plots exceeded the PSC
plots significantly by 85 + 23, 97 + 27 and 123 + 29 mg kg~
which corresponds to a relative increase of +17.8 + 4.5,
+33.6 + 9.3 and + 49.6 + 11.5% compared to t,.

3.3 | Changes in soil N fractions (total N,
Nmin and Nmic)

Soil N stocks ranged from 496 + 19 g m ? (Field E) to
734 +6¢g m~? (Field C) at t, and the development of
total N stocks over time was very distinct on the differ-
ent fields and did not show a clear pattern. Only at two
time points significant differences in changes of total N
stocks (0-20 cm) between the two treatments were
observed (t; on field D and F; Figure 3a). Compared
to ty, total N stocks varied between —7.6 + 1.1% (PSC
field E, tz) and + 7.3 + 1.0% (PSC field F, t;).

Mineral N ranged from 55+7mgkg ' to
112+ 5mgkg™! at t, and showed on most fields a
higher increase in the DCC treatment. On fields A, B, D
and F we observed at least at one sampling time signifi-
cantly higher Nmin changes in the DCC treatment with
highest differences in spring (t;) where the Nmin
changes in the DCC plots of fields A, B and D exceeded the
changes in the PSC plots by +19 + 10, +11 + 9 and + 18 +
6 mg kg ' (Figure 3b). On all fields Nmin decreased from t,
to t, after winter between —21 + 17% (PSC plot field C)
and — 77 + 10% (DCC plot field E) compared to t,. The
ratio between nitrate-N and ammonium-N did not show a
treatment effect but varied substantially over time and was
for all fields highest in fall at t, or t; (between 9 and 15) and
lowest in spring at t, or t; (between 0.5 and 6; Figure S.1 in
the Supplementary Material).

Similar to Nmin, Nmic showed similarly large differ-
ences between treatments at several time points on all
fields except field E (Figure 3c). Highest differences were
measured at t; where changes in the DCC plots signifi-
cantly exceeded the changes in the PSC plot on field B, C

and D by +25 + 15, +29 + 7 and + 25 + § mg kg . This
corresponds to percental increases of +63 + 29, +102 + 12
and + 97 + 8% in Nmic compared to t, for fields B, C
and D, respectively.

3.4 | Changesin SOC, POXC and total N
in different soil depths

During the experimental period of 9 months, SOC, POXC
and total N generally showed an increasing trend, yet
depth-specific differences (Figure 4, fields A-D only). In
particular, the 5-10 cm depth segment always showed the
highest increases, compared to the 0-5 cm and the 10-20 cm
depth segments (Figure 4). In 5-10 cm soil depth, the PSC
treatment showed significantly higher increases in SOC
(but not POXC or total N) than the DCC treatment
(p = 0.026). On the other hand, in depth 0-5 cm the DCC
treatment showed significantly higher increases in POXC
stocks (p = 0.037) compared to the PSC treatment. The
absolute stocks for SOC, POXC and total N per depth seg-
ment and sampling time can be seen in Table S4 in the
Supplementary Material. The same analysis applied on
concentrations instead of stocks obtained the same results
(see Figure S.2 in the Supplementary Material).

3.5 | Relationship between C and N
input by double cover cropping and soil
C and N fractions

There was a significant linear relationship between above
ground cover crop plus fertilizer C or N input by the two
cover crop incorporations in the DCC treatment and
changes in Cmic or Nmic (Figure 5). Parameters SOC,
POXC, total N and Nmin did not show a significant relation-
ship with above ground C or N inputs (data not shown).

4 | DISCUSSION

Cover crop growth on the six fields showed a high vari-
ability and reflects the difficulties to predict nitrogen
dynamics under organic farming conditions with no min-
eral N fertilization. All cover crops were grown without

FIGURE 2

Changes in soil organic C stocks (SOC, 0-20 c¢m, a), permanganate oxidizable C stocks (POXC, 0-20 cm, b) and microbial

biomass C (Cmic, 0-10 cm, c) over time relative to sampling t,, which is listed for each field in the subplots. For every field A-F, the above
ground cover crop C input in the double cover cropping (DCC) treatment is given in the title. Within each field, significant differences
between treatments were tested with a (-test and are indicated with the codes: *** < 0.001, ** <0.01, * < 0.05. Significant changes over time

within each treatment are indicated with letters for both treatments separately and were tested with a paired t-test for SOC and POXC and
with a Kruskal-Wallis-test for Cmic. Error bars represent standard errors.
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FIGURE 3

Changes in total N stocks (0-20 cm, a), mineral N (Nmin, 0-10 cm, b) and microbial biomass N (Nmic, 0-10 cm, c) over
time relative to sampling t,, which is listed for each field in the subplots. For every field A-F, the above ground cover crop N input in the

H WILEY_| e

double cover cropping (DCC) plot is given in the title. Within each field, significant differences between treatments were tested with a t-test

and are indicated with the codes: *** < 0.001, ** <0.01, * < 0.05. Significant changes over time within each treatment are indicated with
letters for both treatments separately and were tested with a paired f-test for total N and with a Kruskal-Wallis-test for Nmin and Nmic.

Error bars represent standard errors.
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any starter fertilization which resulted in poor cover crop
growth on fields E and F with lowest initial Nmin con-
centration (Figure 3c). Despite the variability, the follow-
ing general trends were observed between and within the
two cover cropping strategies.

41 | High short-term temporal
variability

We observed significant differences between the two cover
cropping strategies in Cmic, Nmin and Nmic at multiple

36

time points, but only at very rare occasions in SOC, POXC
and total N in 0-20 cm soil depth (Figures 2 and 3). Due
to the high spatial and temporal variability, SOC, POXC
and total N did not show consistent effects that could be
attributed to cover crop management or above ground
biomass input. However, we determined a few significant
but non-consistent changes over time for SOC and total
N. Changes in SOC stocks in 0-20 cm soil depth ranged
between —0.38 + 0.05kgm * and + 046 + 0.06 kg m >
in both treatments established during the 9 months cover
cropping period. This latter number is much larger than
the estimated annual C sequestration potential of cover
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cropping of 0.02 to 0.06 kg m™~> yr~ " in the latest literature
(Jian et al, 2020; McClelland et al., 2021; Poeplau &
Don, 2015). The difference may be explained by the fact
that we looked here into the immediate changes in SOC
that is induced by different cover cropping methods, while
the cited meta-analyses only considered SOC changes from
longer-term trials. Therefore, short-term changes should
not be used to deduce long-term C-sequestration rates.
Nevertheless, the relative changes in SOC stocks between
to and other sampling times ranging between —8.5 + 1.1%
and 8.3 + 1.0% agree with a study reporting SOC to
vary up to 15% around the annual mean (Wuest, 2014).
The temporal variability of total N (between —7.6 + 1.1%
and + 7.3 + 1.0%) was very similar to the one of SOC. This
is plausible, because both parameters are strongly con-
nected with soil organic matter dynamics. We can confirm
our first hypothesis because for the full sampled soil depth
(0-20 cm), we did not measure consistent differences
between the two treatments. On the other hand, POXC
showed a consistent and significant increase in most fields
and time points and both treatments over time (Figure 2b).
The maximum changes in POXC stocks between two sam-
pling dates were +18.9 + 2.1 g m™ > which corresponds to a
concentration change of 4727 +8.1 mgkg ' (assumed
bulk density = 1.3 g cm ™) were in the same range as the
maximum changes of POXC concentrations in Lucas and
Weil (2021) after a two-year cover cropping period. How-
ever, in a soil depth of 0-20 cm we did not observe consis-
tent treatment effects on POXC, which does not confirm
our second hypothesis of higher POXC stocks in the DCC
treatment due to above ground biomass input.

4.2 | Relating changes in soil C fractions
with C input

The maximum above ground C input of both cover crops
in the DCC treatment of around 300 g m 2 (field A) was
in the same range as the maximum changes in SOC stocks
and around 15 times higher than the maximal changes in
POXC stocks (Figure 2a,b). We did not find any relation-
ship between above ground biomass C input and SOC or
POXC stock changes. This suggests that most C input by
incorporated cover crops was quickly used by soil microor-
ganisms as also indicated by the strong relationship
between C inputs of cover crop biomass and changes in
Cmic (Figure 5). The consistent increase in POXC stocks
with cover cropping was also observed by Burke et al.
(2019) and was probably related to active cover crop root
growth and not to above ground biomass input.

POXC is often seen as a sensitive indicator for agri-
cultural management and changes in POXC are some-
times considered as an indicator for changes in SOC

oil Science

(Bongiorno et al., 2019; Jagadamma et al., 2019). We
found significant linear relationships between SOC and
POXC concentrations (0.23 < R> <0.85, p < 0.001) on
every field (Figure 6a) and for fields B, C, D and E also a
significant positive relationship between changes in
POXC and SOC stocks (0.11 <R* <0.59, p < 0.001;
Figure 6b). However, the relationship between changes
in POXC and SOC stocks is relatively weak indicating
that in the short-term these two C fractions can react
quite independent from one another.

4.3 | Differences between treatments in
different soil depths

Taking the fields with four sampling times (A-D) together
we found significantly higher changes in SOC, POXC in
5-10 cm soil depth compared to 0-5 cm soil depth in both
treatments (Figure 4). We see three potential mechanisms
that might explain why the highest increase in SOC
was measured for both treatments in 5-10 cm and not in
0-5 cm depth. First, the 0-5 cm soil depth was also the layer
that was intensively tilled in fall and spring for the DCC
and only in spring for the PSC treatment. Despite the shal-
low tillage depth of around 3 cm, one must be aware that a
rotary tiller is a very intensive tillage method since it cuts
the cover crop plants below ground with a speed of around
500 revolutions per minute and therefore potentially broke
soil aggregates (Li et al., 2023) which could have led to C
loss due to increased microbial respiration. This intensive
tillage in the 0-5cm soil depth was likely a main driver
why, despite higher organic matter input, lower accu-
mulation rates of SOC and POXC were observed than
in the below layer of 5-10 cm soil depth. A second
explanation might be that the lower C saturation in the
5-10 cm layer fostered C accumulation more compared
to the top 0-5cm where SOC concentrations were
already higher. Thirdly, and in relation to that, dissolved
organic C (DOC) might have leached from the topsoil
and absorbed in the 5-10 cm layer.

Looking at each depth segment separately, we also
found significant treatment effects for SOC and POXC: in
the PSC treatment, we found significant higher increases
in SOC stocks in 5-10 cm depth but significantly lower
increases in POXC in 0-5cm depth compared to the
DCC treatment. The higher increase of SOC in the PSC
treatment in 5-10 cm soil depth can be explained by pos-
sibly higher below ground C inputs in the PSC compared
to the DCC plot. Literature values demonstrated that the
cover crop species in the PSC treatment (mainly peren-
nial ryegrass and clovers) had higher root/shoot ratio
than most other cover crop species that were present in
the mixtures of the DCC treatment (Hu et al., 2018).
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Additionally, since there was only one cover crop mixture
sown in the PSC treatment the root system had a longer
time to develop than in the DCC treatment and root bio-
mass is considered to be more important than above
ground biomass for stabilizing soil organic matter
(Balesdent et al., 2017; Ghafoor et al., 2017). The signifi-
cantly higher increase in POXC in 0-5 cm depth in the
DCC compared to the PSC treatment is probably related
to the increase in microbial biomass. As can be seen in
Figure 7, Cmic is stronger related to POXC than SOC and
we think that the significant treatment difference in
POXC in the topsoil (0-5 cm) is related to the stronger
increase in microbial biomass and potentially microbial
necromass in the DCC treatment.

44 | Microbial C

In general, among the analysed C-fractions, Cmic was
most sensitive to the two treatments (Figure 2c¢). On three
fields (C-F) we found significantly higher changes in
Cmic for the DCC than the PSC treatment, which con-
firms our third hypothesis that the above ground biomass
input increases Cmic. Above ground plant C input was
linearly correlated with Cmic (Figure 5a) suggesting that
the incorporated plant material had a large effect on
Cmic (R* = 0.6). Besides cover crop C input, also tillage
could have triggered soil microbial activity. In fall at t,
when the DCC plots were shallowly tilled and the PSC
plot were not, we observed significantly higher increases
in Cmic on fields C and D in the DCC treatment

38

compared to the PSC treatment. These differences
between treatments on field C and D became even more
pronounced in spring (t;) when both plots were tilled the
same way. Increases in Cmic in spring might be
explained by the combination of labile C-inputs and ris-
ing temperatures. Other studies also saw an increase in
Cmic of 27% to 40% due to cover cropping which is in the
range of our results (18% to 50%; Kim et al., 2020;
Muhammad et al., 2021). Unlike the cited literature, we
found these increases in microbial biomass in a single
cover cropping period which suggests that bringing labile
organic material directly into the biologically most active
soil layer (shallow incorporation) led to an immediate
response of microorganisms. However, on fields A and B,
we did not see a significant difference in changes in Cmic
between the DCC and the PSC treatment even though
these fields had highest amount of above ground cover
crop input. The beneficial effects of the DCC treatment
on Cmic could in the long-term lead to an increase in
SOC and POXC stocks since labile organic matter input
leads to microbial products that form a big part of stable
soil organic matter as it is proposed by the ‘microbial
efficiency-matrix  stabilization (MEMS) framework’
(Cotrufo et al., 2013; Robertson et al., 2019).

4.5 | Mineral and microbial N

The two labile N fractions, Nmin and Nmic showed more
pronounced treatment effects than Cmic (Figure 3). For
both parameters we measured on four fields higher
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increases in the DCC than in the PSC plot which confirms
our third hypothesis. Despite their similar treatment
effects, Nmin and Nmic showed an opposite development
over time. Nmin decreased on most fields whereas Nmic
increased on most fields. The decrease in Nmin by 21% to
77% was in a similar range as in other cover crop studies
(Kramberger et al., 2009; Mohammed et al., 2020; Zhou
et al., 2020) and can be explained by four possible mecha-
nisms: uptake through growing plants, leaching into dee-
per soil layer or ground water, microbial immobilization,
and gaseous N losses. We found on all fields, irrespective
of the treatment, lowest Nmin values at sampling time t;
after winter and since plant growth and microbial activity
is low during winter, it is very probable that despite the
cover crops some N was lost through leaching. This
assumption is supported by the decreased ratio between
nitrate-N and ammonium-N after winter since mainly
nitrate is susceptible to leaching (Figure S.1 in the Supple-
mentary Material). The increase in Nmic can be explained
by cover crop N input and immobilization of already pre-
sent Nmin in the soil. Though, we did not find a quantita-
tive relationship between the decrease in Nmin and the
increase in Nmic. During cover crop biomass decomposi-
tion, gaseous N losses (N,O) may play a crucial role
(Baggs et al., 2000; Carter et al., 2014), but are quantity-
wise often in much lower ranges (Skinner et al., 2019).
However, since we observed higher changes in Nmin and
Nmic in the DCC plot compared to the PSC plot, we
assume that at least some of the above ground plant bio-
mass N stayed within the plant-soil-microbial system.

Since Nmic is not available for plants, one cannot expect
an immediate fertilization effect (Kramberger et al., 2009;
Nevins et al., 2021), moreover the crop might not meet its
N demand (Thorup-Kristensen et al., 2003). Research deal-
ing with the benefits of cover cropping on N management
mainly focuses on Nmin (White et al., 2017), while the
dynamics of immobilized N (Nmic) in cover cropping sys-
tems is still understudied. Late incorporation time, as in
this study, favours immobilization over mineralization of
cover crop N input (Andersen & Jensen, 2001; Wyland
et al., 1995) but we cannot make any assumption if and
when this immobilized N may become plant available for
the following crop.

5 | SUMMARY AND CONCLUSION

The widespread implementation of different cover crop-
ping strategies requires information on their effects on
soil organic matter dynamics for optimal management
decisions. By assessing these dynamics in close spatial
and temporal resolution for two cover cropping strategies
during a nine-month period, we saw a high variability
over time and between the six experimental sites. For
SQOC, total N and POXC we did not observe clear differ-
ences between strategies in 0-20 soil depth. When con-
sidering different soil depth segments, we observed that
the strategy of PSC had significantly higher increases in
SOC in 5-10 cm soil depth. The strategy of DCC showed
instead significantly higher increases in POXC stocks in
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0-5 cm soil depth. For the labile fractions Nmin, Cmic
and Nmic, we observed generally higher increases in the
DCC treatment, but these effects have not been observed
consistently on all experimental fields.

We therefore conclude that the above ground biomass
input in the DCC strategy was more beneficial for soil
microbiology and Nmin, but the PSC strategy was more
beneficial for short-term changes in SOC stocks. We
hypothesize that the longer soil cover in the PSC treatment
was accompanied by increased root growth and therefore
higher below ground C inputs which seemed to be more
important for SOC stocks than above ground biomass input.
To find explanations for the effects of different cover crop-
ping systems on SOC dynamics in more depth we therefore
highly recommend to also measure below ground C inputs.
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Abstract. Conventional laboratory analysis of soil properties is often expensive and requires much time if vari-
ous soil properties are to be measured. Visual and near-infrared (vis—NIR) spectroscopy offers a complementary
and cost-efficient way to gain a wide variety of soil information at high spatial and temporal resolutions. Yet,
applying vis—NIR spectroscopy requires confidence in the prediction accuracy of the infrared models. In this
study, we used soil data from six agricultural fields in eastern Switzerland and calibrated (i) field-specific (local)
models and (ii) general models (combining all fields) for soil organic carbon (SOC), permanganate oxidizable
carbon (POXC), total nitrogen (N), total carbon (C) and pH using partial least-squares regression. The 30 local
models showed a ratio of performance to deviation (RPD) between 1.14 and 5.27, and the root mean square
errors (RMSE) were between 1.07 and 2.43 gkg™! for SOC, between 0.03 and 0.07 gkg~! for POXC, between
0.09 and 0.14 gkg™"' for total N, between 1.29 and 2.63 gkg~! for total C, and between 0.04 and 0.19 for pH.
Two fields with high carbonate content and poor correlation between the target properties were responsible for
six local models with a low performance (RPD < 2). Analysis of variable importance in projection, as well as of
correlations between spectral variables and target soil properties, confirmed that high carbonate content masked
absorption features for SOC. Field sites with low carbonate content can be combined with general models with
only a limited loss in prediction accuracy compared to the field-specific models. On the other hand, for fields with
high carbonate contents, the prediction accuracy substantially decreased in general models. Whether the com-
bination of soils with high carbonate contents in one prediction model leads to satisfying prediction accuracies
needs further investigation.

1 Introduction

The application of spectroscopy in the visible and near-
infrared (vis—NIR) range is increasing in soil science and re-
lated disciplines, with the main objective being to gain infor-
mation on the soil properties of more samples at lower costs
than with conventional laboratory methods. With a larger
sample size, the spatial or temporal resolution can be in-
creased, which allows conclusions about the within-field or
within-farm variability but might potentially also increase the
statistical power in agricultural experiments (Greenberg et
al., 2022). Despite its tendency to be less accurate compared
to mid-infrared (MIR) spectroscopy, vis—NIR spectroscopy

is widely applied because of less sample preparation, lower
costs and generally easier portability (Soriano-Disla et al.,
2014).

On-site vis—NIR measurements are therefore feasible, but
laboratory measurements with dried and sieved soil sam-
ples have so far shown higher accuracy (Allory et al., 2019;
Hutengs et al., 2019). In particular, soil properties related to
soil organic matter can be estimated appropriately by lab-
oratory vis—NIR spectroscopy (Angelopoulou et al., 2020).
In most cases, the focus is to provide soil information over
large areas (e.g., soil maps) where a high sample number is
present and only a moderate prediction accuracy is needed.
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Hence, large-scale spectral libraries have been developed to
further reduce the need for wet chemistry data. Due to the
high complexity within spectral libraries, the application of
a general model to a local context leads to high prediction
errors. Recent research shows that the localization of these
infrared models substantially improves the predictive perfor-
mance in a local context, for example by spiking (Brown,
2007; Li et al., 2020; Ng et al., 2022; Seidel et al., 2019;
Wetterlind and Stenberg, 2010; Zhao et al., 2021), memory-
based learning (Ramirez-Lopez et al., 2013), resampling al-
gorithms (Lobsey et al., 2017) or deep learning (Shen et al.,
2022). However, for analyzing small-scale variability (field
or farm level), a local model is often still the best choice be-
cause of its low prediction errors. Theoretically, developing
local models is supported by the finding that, in the vis—NIR
range, spectral features that influence specific soil properties
vary strongly between different datasets, which makes highly
heterogenous large datasets prone to insufficient model per-
formance (Angelopoulou et al., 2020; Grunwald et al., 2018).
The development of local spectral models has the main pur-
pose of coping with a large sample size at the local scale, but
such local models have no utility beyond the analysis of the
specific local dataset.

Spectral vis—NIR models developed from local datasets
showed a very high variability in model performance, rang-
ing from excellent models (Breure et al., 2022; Seidel et al.,
2019) to those with relatively poor model performance (Ca-
margo et al., 2022; Kuang and Mouazen, 2011). The reasons
for these different performances of local models are under-
studied and remain unclear. Among many different possible
modeling approaches, including support vector machine re-
gression, artificial neural networks, cubist and random forest,
partial least-squares regression (PLSR) is the most frequently
used model type to build spectral models with small datasets
(Alomar et al., 2021; Zhao et al., 2021).

The number of samples is crucial for local models , often,
only a limited number of samples with reference laboratory
data are available. Kuang and Mouazen (2012) showed that
local models improve with an increasing number of calibra-
tion samples and that a sample size of at least 50 provides ac-
curate prediction models. Some studies thus combined mul-
tiple target sites and developed a general model by combin-
ing all the local datasets to reach a larger sample size and
potentially better model performance (Kuang and Mouazen,
2011; Singh et al., 2022). In these studies, the general model
showed an intermediate performance, and the general predic-
tion error was between the best- and the poorest-performing
local model. However, these studies only calculated the over-
all prediction error of the general model; therefore, it is not
clear if the prediction for target sites with poorly perform-
ing local models could be improved by applying a general
model.

For vis—NIR spectroscopy application at local scales, it is
therefore very difficult to estimate the measurement accu-
racy for the predicted samples beforchand. This uncertainty
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is probably the main reason that hampers the application of
vis—NIR spectroscopy because researchers prefer to rely on
conventional lab measurements with a smaller sample size
(and smaller spatial resolution) where the measurement ac-
curacy is known before sampling and measurements are con-
ducted. Applying spectroscopy at the field or farm scale thus
bears the risk that the measurement accuracy (RMSE) may
be beyond the tolerable threshold, which might then bring a
whole project into question. Thus, in this paper, we analyze
the performance of field-specific (local) spectral models of a
field experiment conducted in six fields in eastern Switzer-
land and that of a general model combining the data from
all six fields to ascertain their influencing factors. We ask the
following questions:

1. To what extent do the prediction errors of local spectral
models differ from the lab measurement error?

2. Does a general model that includes several target sites
improve the prediction on a target site with a poor local-
model performance?

3. How do field and soil characteristics (e.g., field size, soil
texture, carbonate content, correlations of soil proper-
ties) of the target site relate to the performance of spec-
tral models?

By answering these questions, we want to provide insights
into the estimations of prediction accuracies for vis—INIR
studies at the local scale, with the objective of supporting
decision-making during the development of a sampling de-
sign and the planning of laboratory reference measurements
for subsequent calibration modeling.

2 Methods

2.1 Datasets from a cover-cropping experiment at six
field sites

We used datasets from six fields (A, B, C, D, E, F) of a
cover-cropping experiment in the Canton of Thurgau, eastern
Switzerland (paper in preparation). The six fields were up to
13 km apart from one another, and the soil type for all of them
was Eutric Cambisol that had developed on base moraine
(Table 1). The aim of the study was to compare the influence
of two different cover-cropping regimes on short-term soil
organic matter cycling. Each field had 39 differential-GPS
(dGPS)-referenced sampling points in an unaligned sam-
pling design. At each dGPS-referenced point, soil was sam-
pled three to four times at three depths (0-5, 5-10 and 10-
20 cm) during one long cover-cropping period (August 2019
to May 2020). Fields A, B, C and D had four sampling times,
resulting in 468 samples per field. Fields E and F had three
sampling times, resulting in 351 samples per field. All sam-
ples were dried at 40 °C to a constant weight (around 72 h)
and then gently crushed and sieved to 2mm. For the to-
tal sample size of 2574 samples, soil properties were esti-
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mated using vis—NIR soil spectroscopy, whereas 386 sam-
ples were analyzed conventionally by wet chemistry for sub-
sequent calibration modeling. These 386 samples for labora-
tory analysis were selected for each field separately using the
Kennard—-Stones algorithm (Kennard and Stone, 1969) to en-
sure coverage of the whole spectral variability. Thereby, the
Kennard—Stones algorithm was run with two to seven prin-
cipal components, and the number of principal components
was chosen such that it covered at least 99 % of the spectral
variance and provided a reference sample selection that rep-
resented well the different sampling times, soil depths and
spatial distributions. The laboratory analysis comprised soil
organic C (SOC), total C, total N, permanganate oxidizable
C (POXC) (also called active C) and pH.

2.2 Chemical soil analyses and its accuracy

Total C and N concentrations were measured on a ground
aliquot by dry combustion (vario MICRO tube, Elementar,
Germany). Inorganic C was analyzed for each sample in trip-
licates through the dissolution of carbonate in a Scheibler ap-
paratus with 10 % HCI solution and the measurement of the
evolved CO; volume. SOC was then calculated as the differ-
ence between total C and the mean of the three measurements
for inorganic C. POXC was measured according to the Pro-
tocol of Weil et al. (2003), with the adaption of Lucas and
Weil (2012). In brief, 2.0 mL of 0.2 M KMnO4 was added to
2.5 g of soil, and after a reaction time of 10 min, the absorp-
tion of the liquid was measured at 550 nm with a spectropho-
tometer (UV-1800, Shimadzu Corporation, Japan). The mea-
surement of pH was done in a 0.01 M CaCl; solution.

To estimate the lab measurement error, we took three sam-
ples per field (in total 18) where we conducted the measure-
ments for total C, total N, POXC and pH in triplicates to cal-
culate a standard deviation. We estimated the lab measure-
ment error for SOC (osoc) according to Eq. (1):

_ [ 2
asoC = \/UTota] ct Onorganic C O

where oo ¢ 18 the standard deviation of the total C mea-
surement, and Oforganic ¢ iS the standard error of the inor-
ganic C measurement because inorganic C measurements
were done for all samples in triplicates. The measurement
errors of all 18 triplicates were then averaged to obtain the
overall lab measurement error for a soil property.

To characterize the spatial variability of soil texture in
the field, we measured grain size for 20 samples per field
(every second sampling point in 10-20cm soil depth). Or-
ganic matter in the samples was oxidized with hydrogen
peroxide (H2O7), and then grain size was measured with
laser-diffraction analysis (LDA) after dispersion of the sam-
ple (22 mM sodium carbonate and 18 mM sodium hexaphos-
phate) using a Mastersizer 2000 (Malvern Panalytical, UK).
Since the LDA underestimates the clay content compared
to the standard grain size methods (Taubner et al., 2009),
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we measured one composite sample per field with the im-
proved integral suspension pressure method (ISP+; Durner
and Iden, 2021) on a PARIO Plus Soil Particle Analyzer
(METER Group, Germany and USA). We rescaled the mean
sand, silt and clay content of the LDA data to the mean of
the IPS+ method while keeping the coefficient of variation
constant (see Table S3 in the Supplement).

2.3 Spectral measurement and pre-processing of
spectra

All samples were measured with a vis—NIR spectrometer
(ASD FieldSpec 4 Hi-Res, Malvern Panalytical, USA) with
a sampling interval of 1.4nm from 350 to 1000nm and
1.1 nm from 1000 to 2500 nm. The device then provides a
reflectance spectrum with a resolution of 1nm and 2151
wavelengths. Measurements were done with a contact probe,
containing an internal halogen bulb, which was in a fixed
position, and soil samples, placed in a petri dish of 1.5cm
height and 3 cm diameter, were lifted with a laboratory scis-
sor jack until coming into close contact with the probe to
ensure a stable measurement position. For each sample, five
petri dishes were filled to provide five replicate spectra per
sample. Each of these five replicates consisted of 30 inter-
nal repetitive scans that were automatically averaged by the
device’s internal RS3 software. Between samples, the contact
probe was carefully cleaned with water and ethanol. After the
five replicates of a sample, the calibration of the spectrometer
was checked with a 100 % reflectance white reference panel
(Spectralon, 12 x 12 cm, Labsphere, USA). The infrared data
of each sample were kept in two versions, once as reflectance
spectra, as provided by the spectrometer, and once as ab-
sorbance spectra using the log(1/ reflectance) transforma-
tion. Several pre-processing options and their combinations
were tested on both the reflectance and the absorbance spec-
tra: (a) resampling of the spectra in an interval from 1 to
6 nm, (b) cutting of the beginning (350400 nm) or the end
(2450-2500nm) of the spectra, (c) first- or second-order
derivative, (d) Savitzky—Golay (SG) smoothing in a third-
order polynomial with window sizes ranging from 5 to 51,
(e) gap segment derivative (GSD) with window widths be-
tween 5 and 51 and segment sizes between 1 and 21, (f) stan-
dard normal variate (SN'V) combined with GSD, and (g) SG
smoothing combined with multiplicative scatter correction
(MSC). All applied pre-processing techniques are frequently
used in soil spectroscopy and are well described in Ellinger
et al. (2019). The pre-processing techniques from (a) to (g)
led to around 100 meaningful combinations that were tested
in model building, and the final pre-processing option was
selected based on the smallest RMSE.

SOIL, 10, 231-249, 2024
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Table 1. Description of the datasets of the six different fields A to F. All fields were classified as Eutric Cambisol developed on base moraine.
Soil texture was measured with the improved integral suspension pressure method (ISP+-).

Field Coordinates Elevation

Area

Mean soil texture Number of samples

(m above sea level) (ha)  (sand/silt/clay) (%)

Spectroscopy ~ Wet chemistry
A 47°40'58" N, 08°45'54"” E 420  0.84  Sandy loam (50/29/21) 468 70
B 47°40'54"" N, 08°46'05” E 420  0.67  Sandy loam (44/35/20) 468 70
C 47°38'01” N, 08°57'02" E 600 0.44  Sandy loam (27/35/38) 468 70
D 47°38'43"" N, 08°42'58"” E 460  0.64 Clay loam (28/44/28) 468 70
E 47°38'49"' N, 08°43'06"” E 460  1.05  Sandy loam (30/48/23) 351 53
F 47°34'22""N, 08°48'52" E 380 0.3 Sandy loam (39/43/18) 351 53

2.4 Development and evaluation of field-specific local
models

We used for all 30 local models (6 fields x 5 properties) a
PLSR modeling approach (Wold et al., 1983). Model per-
formance was assessed using the statistics of the hold-out
folds of each five-times-repeated five-fold cross-validation
because it was evaluated as a robust method for smaller
datasets (Kuhn and Johnson, 2013; Molinaro et al., 2005).
To avoid model overfitting, we set the maximum of latent
variables in the PLSR model to 12. For each number of la-
tent variables (1, 2, ..., 12) the dataset was randomly split
five times into five folds, of which four were used for model
training, and the remaining fold was held out and used for
model validation. The RMSE (Eq. 2) of the hold-out samples
was averaged among the five repeats, resulting in a cross-
validated RMSE per number of latent variables. The final
number of latent variables was then chosen according to
the “1-standard-error rule”, which means that, instead of di-
rectly choosing the number of latent variables with the small-
est mean RMSE, the most parsimonious (fewer latent vari-
ables) model within 1 standard error of the mean RMSE of
the optimal model was selected (Hastie et al., 2017). The 1-
standard-error rule was also applied during optimization of
pre-processing to avoid model overfitting. The final model
was trained using all training data with an optimized number
of latent variables.

A proper validation of a spectral model is very crucial
and is particularly important in this study where soil was re-
peatedly sampled at different depths at the same GPS point.
To analyze the correlation among the samples and define a
grouping factor for the cross-validation, we calculated the
mean Euclidean distance between all samples and compared
it with the mean distance (1) between samples at the same
GPS point but different depths, (2) between samples at the
same point and depth but different sampling times, and (3)
between samples at the same point but different depth and
sampling times (Fig. S1 in the Supplement). Thereby, we
observed that the soil samples from the three different soil
depths sampled at the same GPS point at the same sam-
pling time had a substantially lower mean Euclidean distance
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compared to the overall mean. Consequently, we grouped
the samples from the same GPS point at the same sampling
time and kept them in the same fold to avoid a too-optimistic
model evaluation during cross-validation.

Since we used a cross-validation approach at the field
scale, all models showed a very small bias (see Table 2). We
therefore do not discuss the bias in this paper and focus on
R?, RMSE and RPD (Eq. 3) for the evaluation and compar-
ison of different models. RMSE was calculated according to
Eq. (2), where ; is the prediction of the spectral model for
sample i, and y; is the actual measured value for the same
sample in the laboratory.

1 n N2
RMSE=\/-% . (3 —3) )

RPD compares the RMSE with the standard deviation (SD,
Eq. 3) of the data:

SD
RMSE’

RPD = ©)
For all model performance parameters (R, RMSE and RPD)
of the cross-validation, we calculated the uncertainty with
the standard deviation of the prediction of the hold-out folds
across the five repetitions.

To classify the model performance, we combined the
RPD-based classifications of Chang et al. (2001) and Zhang
et al. (2018). We considered spectral models with RPD < 1.4
to be poor, models with RPD between 1.4 and 2 to be approx-
imate, models with RPD between 2 and 3 to be accurate, and
models with RPD > 3 to be excellent. Even though in spec-
troscopy projects relating to local extent the RMSE is the
most important model performance parameter, RPD is the
best parameter to compare models of different scales. Model
metrics (RZ, RMSE and RPD) mentioned in the text are
based on the cross-validation, and metrics for the model cal-
ibration in Table 2 are specifically labeled as Rgal, RMSE_,
and RPD¢,.
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Table 2. Description of applied pre-processing and model performance of the final chosen models using a partial least-squares regression. The local models (fields A to F) were evaluated
with five-times-repeated 5-fold cross-validation, and the general models (all) were evaluated with five-times-repeated 10-fold cross-validation. Model metrics of cross-validation are
indicated as mean with the standard deviation across the repeats in brackets. RMSE refers to root mean square error, RPD refers to ratio of performance to deviation, Refl. refers to
reflectance, Abs. refers to absorbance, SG refers to Savitzky—Golay filter (m refers to order of derivative, w refers to window width), SNV refers to standard normal variate, GSD refers
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to gap segment derivative (m refers to derivative, w refers to window width, s refers to segment size), and MSC refers to multiplicative scatter correction.

Field Property Range of  Pre-processing Latent n Calibration Cross-validation Model
wavelengths/ variable performance
interval (nm)

R2, Biasqy RMSEy RPDy | R? Bias RMSE RPD

SOC [gkg™ o 410-2500/6  Abs., SG (m =1, w = 35) 2 70 059 0.00 235 1.58 | 0.55(0.14) 0.01 (0.69) 2.43(0.55) 1.50(0.30) Approximate
POXC [gkg™!] 350-2500/2  Refl.,, SNV, GSD (m =2, w =31,s =1) 7 70 081 0.00 0.05 2.28 | 0.64(0.17) 0.00 (0.02) 0.07 (0.01) 1.65(0.41) Approximate

A Total N [gkg~!] 370-2480/6  Refl., SG (m = 1, w =21), MSC 7 70 087 0.00 0.11 277 | 0.79(0.11) —0.01 (0.05) 0.14(0.03) 2.18(0.61) Accurate
Total C [gkg~!] 390-2500/4 Abs., SNV,GSD (m =2, w =21,5=1) 6 70 094 0.00 2.14 4.21 | 0.88(0.09) 0.00 (0.84) 2.63(0.66) 3.48 (1.41) Excellent
pH 410-2500/4  Abs., SG (m =1, w = 35) 5 70 074 0.00 0.06 1.97 | 0.63(0.21) 0.00 (0.03) 0.08(0.02) 1.70(0.60) Approximate
SOC [g kg’I] 360-2500/5  Abs., SG (m =2, w =21), MSC 7 70 098 0.00 0.66 647 | 091(0.05) -0.04(0.37) 1.26(0.36) 3.46(1.12) Excellent
POXC [gkg™!] 360-2480/3  Abs., SG (m =2, w = 21), MSC 4 70 094 0.00 0.03 4.08 | 0.84(0.12) 0.00 (0.02) 0.05(0.01) 2.60(0.74) Accurate

B Total N [g kg‘l] 360-2480/5 Abs., SG (m =2, w =21), MSC 4 70 093 0.00 0.10 3.87 | 0.87(0.08) 0.00 (0.04) 0.13(0.03) 2.85(0.92) Accurate
Total C [g kg"] 370-2500/5  Abs., SG (m =2, w =21), MSC 10 70 099 0.00 0.51 9.64 | 0.93(0.03) -0.05(040) 1.29(0.25) 3.65(0.84) Excellent
pH 350-2500/3  Abs., SG (m =1, w =21), MSC 7 70 098 0.00 0.07 6.64 | 0.83(0.07) 0.00 (0.06) 0.19(0.03) 2.46 (0.51) Accurate
SOC [gkg™ 11 370-2480/1  Abs., SNV,GSD(m=1,w=11,5s=1) 7 70 0.90 0.00 1.02 3.11 | 0.77 (0.09) 0.03 (0.46) 1.59(0.28) 2.05(0.46) Accurate
POXC [g kg’l] 370-2440/3  Refl., SG (m =2, w =21) 7 70 0.93 0.00 0.03 3.80 | 0.77 (0.15) 0.00 (0.01) 0.05(0.01) 2.30(0.81) Accurate

c Total N [g kg’l] 350-2460/4  Abs., SG (m =2, w =21), MSC 7 70 097 0.00 0.05 5.87 | 0.90(0.06) 0.00 (0.03) 0.09(0.02) 3.22(0.97) Excellent
Total C [g kg’l] 350-2500/3  Refl., SG (m =1, w =21), MSC 10 70 097 0.00 0.92 5.69 | 0.93(0.03) —0.07(0.34) 1.44(0.29) 3.74(0.98) Excellent
pH 390-2500/5  Abs., SG (m =2, w =21), MSC 6 70 089 0.00 0.05 3.09 | 0.77(0.12) 0.00 (0.03) 0.08(0.02) 2.00(0.59) Accurate
SOC [gkg™ '] 390-2500/3  Abs., SNV,GSD(m =2, w=21,5s=1) 6 70 097 0.00 0.81 6.01 | 0.95(0.02) —0.01(0.35) 1.07(0.19) 4.74(1.23) Excellent
POXC [gkg™!] 390-2460/6  Refl., SG (m =2, w =21) 7 69 095 0.00 0.03 4.72 | 0.92(0.03) 0.00 (0.01) 0.05(0.01) 3.47(0.65) Excellent

D Total N [gkg~!] 370-2500/4  Abs., SG (m =2, w = 21), MSC 6 70 098 0.00 0.06 7.30 | 0.95(0.04) 0.01 (0.03) 0.11(0.02) 4.66(1.16) Excellent
Total C [g kg’l] 350-2500/2  Refl, SNV,GSD (m =2, w=21,s=1) 6 70 097 0.00 1.15 5.44 | 0.93(0.03) 0.02 (0.45) 1.61(0.39) 4.07(1.04) Excellent
pH 350-2500/6  Refl., SG (m =2, w =21), MSC 9 70 099 0.00 0.06 9.79 | 0.95(0.02) 0.00 (0.04) 0.13(0.03) 4.83(1.23) Excellent
SOC [gkg™ " 350-2500/3  Abs., SG(m =1, w =25) 3 53 082 0.00 1.25 235 | 0.79(0.11) —0.05(0.53) 1.40(0.42) 2.20(0.70) Accurate
POXC [g kg"] 350-2500/4  Abs., GSD (m =2, w =21, 5 =21) 4 53 082 0.00 0.05 241 | 0.82(0.11) 0.00 (0.02) 0.05(0.02) 2.33(0.69) Accurate

E Total N [gkg~!] 350-2500/3  Abs., SG(m =2, w =21) 4 53 094 0.00 0.07 4.12 | 0.90 (0.04) 0.00 (0.03) 0.10(0.02) 3.10(0.57) Excellent
Total C [gkg™!] 360-2500/3 Refl., SG (m = 1, w =21), MSC 6 53 098 0.00 1.20 7.83 | 0.96 (0.03) 0.04 (0.56) 1.72(0.51) 5.27(1.85) Excellent
pH 350-2500/4  Refl., SG (m =1, w =21), MSC 7 53 098 0.00 0.10 7.15 | 0.95(0.03) 0.01 (0.08) 0.16(0.05) 4.57(1.91) Excellent
SOC [gkg™ ! 350-2500/3  Abs., SG (m =1, w =21), MSC 4 53 0.66 0.00 1.59 1.73 | 0.51(0.18) 0.01(0.72)  2.00(0.38) 1.43(0.39) Approximate
POXC [g kg"] 380-2500/2 Refl, GSD (m =2, w=21,5 =21) 5 53 086 0.00 0.03 2.72 | 0.76 (0.16) 0.00 (0.01) 0.03(0.00) 1.96 (0.60) Approximate

F Total N [g kg‘l] 350-2500/3  Abs., SG (m =1, w = 21), MSC 5 53 092 0.00 0.06 3.47 | 0.83(0.10) 0.00 (0.04) 0.09(0.02) 2.51(0.84) Accurate
Total C [g kg"] 370-2500/6  Abs., SG (m =1, w =21), MSC 5 53 084 0.00 0.96 249 | 0.72(0.18) 0.01 (0.56) 1.29(0.24) 1.82(0.54) Accurate
pH 370-2500/4 Refl., SG (m =1, w =51) 1 53 023 0.00 0.04 1.15 | 0.30(0.20) 0.00 (0.02) 0.04 (0.01) 1.14(0.19) Poor
SOC [gkg™ 1 350-2500/3  Refl., SNV,GSD (m =2, w=35,5=1) 7 38 092 0.00 1.66 3.65 | 0.90(0.04) -0.02(0.39) 1.93(0.32) 3.21(0.57) Excellent
POXC [g kg’l] 350-2500/1 Refl., SG (m =1, w =21), MSC 8 385 0.88 0.00 0.05 2.90 | 0.85(0.05) 0.00 (0.01) 0.06 (0.01) 2.60(0.43) Accurate

All Total N [g kg’l] 350-2500/4  Abs., SG(m =2, w=11) 7 38 092 0.00 0.14 3.53 | 0.89(0.04) 0.00 (0.03) 0.16(0.02) 3.06 (0.46) Excellent
Total C [g kg’l] 350-2500/2 Abs., SNV,GSD(m =2, w =5,5s=1) 6 38 096 0.00 231 5.04 | 0.94(0.01) 0.00 (0.53) 2.79(0.30) 4.16(0.47) Excellent
pH 350-2500/3  Refl., SG (m =2, w =21), MSC 9 38 095 0.00 0.12 4.40 | 0.90(0.03) 0.00 (0.02) 0.15(0.02) 3.34(0.59) Excellent
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2.5 Development and evaluation of general models

In addition to the field-specific local models, we built general
models for the five soil properties that included all reference
samples (n = 386) of the six fields. Even though for this sam-
ple size an independent test set would be more suitable than
a cross-validation approach, we evaluated the model perfor-
mance using the hold-out samples in the five-times-repeated
10-fold cross-validation, keeping, as for the local models,
samples from the same GPS point and the same sampling
time in the same fold. The first reason for not using an inde-
pendent validation set is that the modeling approach of the
general model should be similar to the one of the local mod-
els to make them comparable. The second reason is that a
representative split of the dataset into a calibration and a val-
idation set according to the spectral variability would not re-
sult in an equal number of samples per field in the validation
set. Conversely, if we selected an equal sample size per field
for the validation set, we would not have been able to cover
the entire spectral variability. Evaluating the general mod-
els with hold-out samples of the cross-validation allowed us
to calculate not only the RMSE over all samples but also the
RMSE for the samples of each field individually. These field-
specific RMSE values of the general model could then be
compared with the RMSE values of the local models. Since
the only purpose of the general models was to increase mod-
eling efficiency for a specific combined dataset, we did not
group the samples according to fields during cross-validation
because the same share of samples from the same field would
also be in the prediction dataset. For the general models, we
cannot indicate uncertainties at a field-specific level since the
folds did not always contain the same number of samples per
field.

2.6 Model interpretation

To interpret spectral models, it is crucial to find relevant
spectral features that are consistently important for a cer-
tain soil property. To identify the most important wavelength
ranges in the final chosen models, we used the variable im-
portance in projection (VIP) method first published by Wold
et al. (1993) and evaluated by Chong and Jun (2005). The
VIP method can deal with multicollinearity and is therefore
suitable for the interpretation of spectral models as it was,
for example, applied by Baumann et al. (2021). Wavelengths
that have an above-average impact on the model have a VIP
score above 1. We classified spectral ranges in groups of VIP
scores between 1 and 1.5, 1.5 and 2, and above 2.

2.7 Assessment of site characteristics influencing model
performance

To understand the reasons for the varying performance of
the 35 developed spectral models, we studied the influence
of various site characteristics on the models. To do so, we
correlated the model performance parameters (R2, RPD and
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RMSE) with field size, soil texture and carbonate content and
with the correlation coefficients between SOC and total N
in the dataset. With six local datasets as independent vari-
ables it is hardly possible to apply statistical tests that could
potentially reject a null hypothesis. Therefore, we relied on
the interpretation of graphs and Pearson’s moment correla-
tion coefficients between soil properties and RMSE. Since
the RMSE values are estimates with uncertainties (standard
deviations; see Sect. 2.4), we used a Monte Carlo simula-
tion and reported the mean and standard deviation of the cor-
relation coefficients after 1000 iterations. For the identified
site characteristics that showed the strongest trends in terms
of model performance (carbonate content, correlation coef-
ficient between SOC and N and variability in clay content),
we looked for possible explanations in the spectral features.
Thereby, we relied on the VIP analysis of the trained models,
on the correlation coefficients between soil properties with
spectral variables and on the correlation matrices between
target variables.

2.8 Data organization

All analyses were performed in R version 4.0.3 (R Core
Team, 2020). The spectral datasets were analyzed using the R
package simplerspec version 0.2.0 (Baumann, 2019) in com-
bination with the packages prospectr version 0.2.1 (Stevens
and Ramirez-Lopez, 2020) and caret version 6.0-86 (Kuhn,
2020).

3 Results

3.1 Description of the datasets

A comparison of the data distribution between the six differ-
ent fields can be seen in Fig. 1, and the corresponding statis-
tics can be seen in Table S1 in the Supplement. The means
for SOC, total N and POXC differed between the six fields,
but the distribution was relatively similar for these three soil
properties. The density functions for total C and pH were
highly influenced by the spatial distribution of carbonate in
the soil: fields B, D and E contain samples with and with-
out carbonate, resulting in a broad distribution for both total
C and pH. All soil samples of fields A and C contained car-
bonate in varying concentrations, resulting in a broad distri-
bution for total C but a narrow distribution for pH. Field F
showed high and only slightly varying carbonate content and
therefore a very narrow distribution for total C and pH. Field
C had highest mean clay content, and field A had the high-
est mean sand content, whereas field F showed the highest
variability in soil texture.

3.2 Performance of spectral models

Based on RPD, 13 out of 30 local models showed an ex-
cellent performance (RPD > 3), 11 models an accurate per-
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Figure 1. Density plots of the reference samples for the five target properties (SOC, total C, total N, POXC and pH) and inorganic C. Fields
A to D each contained 70 samples, and fields E and F each contained 53 samples. Soil texture was analyzed in 20 samples per field.

formance (RPD > 2), 5 models an approximate performance
(RPD > 1.4), and 1 model a poor performance (RPD > 1.4;
Table 2). The six models without accurate performance were
SOC, POXC and pH in fields A and F.

However, the RMSE values of the local models for pH
of fields A (0.08 +0.02; mean = standard deviation) and F
(0.04 +0.01) were similar to or smaller than the RMSE
of the other three local models (between 0.08 £0.02 and
0.19+0.03) whose performances were classified as ac-
curate. Differently, the local models for SOC in fields
A and F with only approximate performance showed a
higher RMSE (2.43 4 0.55 and 2.00 4 0.38 gkg™!) than the
other accurately performing local models for SOC (between
1.07+0.19 and 1.59 + 0.28 gkg~!). The five general models
all showed an accurate to excellent performance, with RPD
values ranging from 2.60 + 0.43 to 4.16 +0.47.

3.3 Influence of pre-processing on spectral variability

For all 35 models, pre-processing improved the models com-
pared to the raw spectra (see an example of pre-processing
optimization for total C in Table S2 in the Supplement).

https://doi.org/10.5194/s0il-10-231-2024

Although pre-processing was necessary for all models, we
highlight that several pre-processing options performed sim-
ilarly well within 1 standard deviation, and the differences in
RMSE were often relatively small (see Table S2 in the Sup-
plement). Figure S2 in the Supplement gives an overview of
the best-performing pre-processing techniques. Most times,
the first- or second-order derivatives improved the models
substantially. Most models performed best when the spec-
tra were reduced to every third wavelength and when mod-
els based on absorbance were a bit more frequently used
than models based on reflectance. The combined applica-
tion of SG filter and MSC was the most successful pre-
processing, while a single SG filter, GSD and SNV in com-
bination with GSD were of minor importance. Cutting of
the beginning (350—400) or end of the spectra (2450-2500)
sometimes improved the model performance, but since most
pre-processing steps reduce the beginning and end of the
spectra, it was not possible to evaluate the cutting. Similarly,
it was not possible to evaluate the window width chosen in
the SG filter because there is an interference with the resam-
pling interval. A detailed list of the selected pre-processing

SOIL, 10, 231-249, 2024
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options of the final models and the corresponding metrics for
model performance can be found in Table 2.

The sensitivity of model performance to pre-processing
can be visualized with the biplots of principal component
analysis (PCA). Figure 2 shows the first three biplots of the
raw spectra and the spectra that were pre-processed accord-
ing to the general models of the five soil properties. The
raw spectra had a very high share of the explained vari-
ance (96.8 %) for the first principal component but hardly
any groups according to fields could be observed with the
first two principal components. All pre-processing options
used for the general models decreased the explained variance
for the first principal component (32.5% to 39.6 %), and a
grouping according to fields could already be seen in the bi-
plot of the first two principal components. Thereby, in par-
ticular, field F (with the highest carbonate content) and field
C (with the highest clay content) often showed clear groups.
Nevertheless, in the pre-processing for pH, field E (with the
highest pH variability) shows a clear group in the first biplot,
and the pH variability is well represented with the first PC.

3.4 Comparison of general models with local models
and lab measurement error

The overall cross-validated model metrics of the general
model (filled black circle in Fig. 3) indicated a good per-
formance over all fields for all soil properties, but the field-
specific model evaluation showed distinct differences among
fields. The field-specific R? of the general models of fields B,
C, D and E was similar to the R? of the local model for SOC,
total C, total N and POXC (only a slight slope in Fig. 3). For
pH, only fields C, D and E showed similar R” in the local
and general models, while fields A, B and F showed clearly
higher R? in the local model. On the other hand, field F had
clearly lower R? in the general model than in the local model
for all soil properties except POXC. For field A, R? was simi-
lar between the local and the general models for SOC, total C
and POXC but clearly lower for total N and pH in the general
model.

The field-specific RPD of the general model was, on aver-
age, 31 % lower across all soil properties compared to the lo-
cal models (Fig. 3). All property—field combinations of fields
B, C, D and F showed at least an approximate (RPD > 1.4)
performance in the general models, whereas the seven poorly
(RPD < 1.4) performing property field combinations were all
from fields A and F. Tt can therefore be concluded that the
general models could not improve the low-performing local
models.

Field-specific RMSE of the general models was, on av-
erage, 47 % higher compared to the local models. How-
ever, there were substantial differences between the different
fields. For field F, the field-specific RMSE values in the gen-
eral models for SOC, total C, total N and pH (2.58gkg*1,
0.17 gkg~! and 0.09) were much higher compared to those
of the local model (2.0040.38 gkg™!, 0.0940.02 gkg™!
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and 0.04 £ 0.01, respectively; Fig. 3). Similarly, for total
N and pH, field A had a much higher RMSE in the gen-
eral model (0.22 and 0.14 gkg™!) than in the local model
(0.14 £0.03 and 0.08 £ 0.02). On the other hand, fields C
and E showed quite similar RMSE values in the local and in
the general model for all soil properties except total C.

The RMSE values of the best local models were close
to the overall lab measurement errors for SOC, total C and
total N, a bit higher for pH, and substantially higher for
POXC (Fig. 3). The RMSE values of SOC for fields B
(1.26 £0.36 gkg™") and D (1.07 £0.19 gkg~!) were within
the standard deviation of the lab measurement error for SOC
(1.01 £0.40 gkg™"). The overall lab measurement error for
SOC was calculated from the measurement error for total C
and inorganic C; therefore. for fields B and D, with only
a little inorganic C, the lab measurement error for total C
(0.83 £0.25 gkg™") might be the better reference. However,
the RMSE of the local spectral models of all fields exceeded
the overall lab measurement errors between factors of 1.1 and
2.4 for SOC, 1.6 and 3.2 for total C, 1.3 and 2.0 for total N,
2.3 and 4.3 for POXC, and between 3.4 and 17.8 for pH. The
field-specific RMSE of the general model exceeded the over-
all lab measurement error between factors of 1.3 and 2.3 for
SOC, 2.2 and 5.2 for total C, 1.5 and 3.2 for total N, 2.8 and
4.6 for POXC, and between 8.3 and 19.9 for pH.

The VIP scores (Fig. 4) show that the most important
wavelengths were dataset specific. It can be seen that in
field B and, to a lower extent, in field F, the same wave-
lengths were important in all soil properties related to soil
organic matter (SOC, total C, total N and POXC), whereas
in the other fields, the VIP patterns of the different properties
were more distinct from each other. However, for all the ana-
lyzed soil properties, the wavelength ranges between 400 and
750 nm (visible), as well as between 1800 and 2450 nm, were
most important, while the range in between was of lower im-
portance. Nevertheless, some models had VIP scores above
2 in the range between 750 and 1800 nm.

Prediction performance in terms of RMSE and RPD of to-
tal C for fields E and F was particularly lower in the gen-
eral model than in the local model (Fig. 3). This finding can
be explained with the VIP analysis (Fig. 4) that showed for
the general model that the most important wavelength range
was between 2150 and 2450 nm, while for the local mod-
els of fields E and F, it was in the range of 500 to 1020 nm.
The local model for total N of field F showed very high
VIP scores (> 2) in a small specific range between 2345 and
2369 nm, but these wavelengths were not important in the
general model for total N (Fig. 4), which resulted in a much
lower prediction accuracy of total N for field F in the general
model compared to in the local model.

3.5 Site characteristics influencing model performance

We found an order of model performance with respect to
R? and RPD that is dependent on mean carbonate content,

https://doi.org/10.5194/s0il-10-231-2024
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Figure 2. Biplots of principal component analysis with the first four principal components for the raw spectra and the pre-processed spectra
according to the properties SOC, total C, total N, POXC and pH. The pre-processing is indicated in the figure, and, except for total N, it was
conducted on reflectance spectra (SG refers to Savitzky—Golay filter (m refers to order of derivative, w refers to window width), SNV refers
to standard normal variate, GSD refers to gap segment derivative (m refers to derivative, w refers to window width, s refers to segment size),
and MSC refers to multiplicative scatter correction).
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Figure 3. R2, ratio of performance to deviation (RPD) and root mean square error (RMSE) calculated from the local models and field-
specifically calculated from the general model for the six fields (A-F) and the five soil properties (SOC, total C, total N, POXC and pH).
The error bars for the RMSE of spectral models represent standard deviations across the repeats in the cross-validation. The overall RMSE
of the general model is indicated with a filled black circle and the label “All”. The RMSE values are compared with the error of the lab
measurements (mean standard error of 18 triplicates indicated with standard deviation).
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Figure 4. Variable importance in projection (VIP) for the local models of fields A—F and the general model that combined the datasets of all

fields (All).

the correlation coefficient between SOC and total N, and
the coefficient of variation in clay content (Fig. 5). Fields
A and F which showed lower model performance in terms of
RPD with higher carbonate content, a lower correlation co-
efficient between SOC and total N, and higher variability in
soil texture (compare also with density plots in Fig. 1). How-
ever, in absolute prediction performance (RMSE), we only
found for SOC and pH substantial correlations (|r| > 0.46)
between RMSE and field characteristics (Fig. 6). Compared
to the three field characteristics mentioned above, we found
a weaker influence of the field size; the absolute contents of
sand, silt and clay; and/or the variability in the carbonate con-
tent on model performance (see Fig. S3 in the Supplement).
The influence of carbonate content on the model perfor-
mance of SOC is illustrated by plotting at each wavelength
the correlation coefficients between pre-processed spectral

https://doi.org/10.5194/s0il-10-231-2024

variables and inorganic C and SOC content (Fig. 7). The cor-
relation between SOC and spectral variables was higher in
fields B, D and E than in fields A, C and F, which also ex-
plains the better model performance. In field A, SOC and
carbonate content show a very similar correlation with spec-
tral variables across the whole vis—NIR range, which makes
it difficult to distinguish organic and inorganic C in field A,
resulting in an excellent performance of total C but much
lower performance for SOC (see Table 2). Even though the
correlation between spectral variables and SOC content in
field C was lower than in other fields (B, D and E), the
very different correlation pattern of carbonate content still
resulted in good model performance for SOC. In particular,
the ranges between 600 and 1200 nm and the peaks at 1680
and 2240 nm showed different spectral features for SOC and
carbonate, which corresponds to the high VIP scores at those

SOIL, 10, 231249, 2024
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Figure 5. R? and ratio of performance to deviation (RPD) from the local models for SOC, total C, total N, POXC and pH aggregated (mean
and standard error) per field (A-F) versus mean inorganic C content, Pearson’s correlation coefficient between SOC and total N, and the
coefficient of variation (CV) in clay content. The error bars represent standard deviations across the repeats in the cross-validation.

wavelengths for the SOC model in field C. In field F, corre-
lations for both carbonate content and SOC were relatively
weak, whereby carbonate content showed stronger correla-
tions with spectral variables, which probably masked the
spectral features of SOC, resulting, as for field A, in a bet-
ter model for total C than SOC.

The better model performance in fields B, D and E com-
pared to in fields A, C and F also coincided with a higher
correlation between SOC and total N (Fig. 5). In general,
correlation coefficients between target variables tended to be
higher in fields B, D and E compared to in fields A, C and
F (see Fig. 8 as an example and all correlation matrices in
Fig. S4 in the Supplement).

4 Discussion

4.1 Performance of local spectral models

Most of the developed local models showed an accurate
performance and confirm the suitability of vis—NIR spec-
troscopy in projects of local or single-plot extent. The per-
formance (based on RPD) of the two models for pH in fields
A and F, which were classified as only approximate or even
poor, respectively, can be explained by the low variability of

SOIL, 10, 231-249, 2024

pH in these datasets (see Fig. 1) and is supported by the fact
that these two models had the smallest RMSE values for pH
(Fig. 3). This explanation does not hold for the other three
local models that were also classified as only approximate
because SOC and POXC in field A, as well as SOC in field
F, showed a similar variability compared to in the other fields
(Fig. 1) but higher RMSE values. However, considering the
mean SOC concentration in fields A (22.4 +3.7 gkg™!) and
F (28.64+27gkg™") as well as the lab measurement er-
ror (1.0040.04 gkg™!), we argue that the RMSE values in
fields A (2.43+0.55gkg™") and F (2.00 £ 0.38 gkg™!) are
probably, for many research projects, still acceptable, espe-
cially when taking into account that a higher sample size can
be analyzed for the same costs.

In agreement with literature (Soriano-Disla et al., 2014),
primary properties with a direct impact in the vis—NIR range,
like SOC, total C, total N and POXC, showed an RMSE
that was closer to the lab measurement error. On the other
hand, pH has only an indirect impact on the spectra and thus
showed a much higher RMSE compared to the lab measure-
ment error. but the RMSE for pH in the local models (be-
tween 0.04 £0.01 and 0.19 £ 0.03) is probably small enough
for most research purposes.
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4.2 Comparison of general models with local models

The general models could not improve the prediction of low-
performing local models. This finding is especially interest-
ing because, in this study, the general model was built with
datasets of six fields that were spatially close to one another
(maximal distance of 13 km) and that had the same soil type
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and the same parent material. However, the base moraine as
a parent material can be variable, which we mainly observed
in different soil textures and carbonate contents but also in
the high spectral variability (see PCA biplots in Fig. 2). In
this sense, we confirm the conclusions of Seidel et al. (2019)
and Ng et al. (2022), who suggested that the best solution is
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Figure 7. Correlation graphs between spectral variables at each wavelength and SOC, as well as inorganic C, for the combined dataset (All)
and the individual fields (A-F). The spectra were pre-processed according to the chosen models for SOC.

always to develop a local model if enough samples (> 30)
are available. This conclusion is supported in this study by
the quite distinctive pattern of VIP scores between the dif-
ferent models (Fig. 4). The overall picture shows that the
wavelengths between 2000 and 2450nm followed by the
visible range between 400 and 700 nm were most impor-
tant for prediction of the investigated properties, which is in
agreement with the literature (Munnaf and Mouazen, 2022;
Soriano-Disla et al., 2014). Nevertheless, each local model
has distinct and site-specific features that could not be at-

SOIL, 10, 231-249, 2024

tributed to specific soil characteristics while being impor-
tant for the model development. The development of gen-
eral models where different locations are aggregated in one
dataset can save costs because the number of lab analyses
per location can be reduced, and less work is required for
model building. Depending on the research purpose and the
required measurement accuracy, the development of general
models can be a very suitable and cost-effective approach.
Nevertheless, this study showed that some fields (A and F)
can show a poor performance in general models; hence, it is
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field with strong correlations (field B) between the target variables. The correlation matrices for all fields can be found in the Supplement

(Fig. S4).

crucial to consider what locations or datasets are being com-
bined.

4.3 Pre-processing

The selection of the optimal pre-processing scheme was
crucial for model performance but was strongly dependent
on the dataset. Often, MSC was the best performing pre-
processing option, which was confirmed in some studies
(Cambule et al., 2012; Liu et al., 2019) but disproved in oth-
ers (Knox et al., 2015; Riefolo et al., 2020). We therefore
highly recommend considering MSC as a pre-processing op-
tion in spectral modeling but at the same time agree with
Barra et al. (2021) that there is no general pre-processing so-
lution that works for all datasets. The principal component
analysis with the combined dataset of all fields (Fig. 2) il-
lustrates this finding by the different groupings of individ-
ual field datasets due to different pre-processing. This leads
to the conclusion that studies that did not optimize the pre-
processing scheme for every soil property separately did
eventually not make full use of the spectroscopy, which has
been shown by other studies as well (Alomar et al., 2021;
Rodriguez-Febereiro et al., 2022; Singh et al., 2022). Nev-
ertheless, the property-specific optimization of spectral pre-
processing is a tedious process and constrains the fast and
cost-effective application of vis—NIR spectroscopy, but some
progress has recently been made by Mishra et al. (2022).

4.4 Site characteristics influencing model performance

We found higher model performance in fields with low car-
bonate content, high correlations between soil properties and
low variability in clay content. We want to discuss how these
identified important field characteristics influence or mask
spectral features.
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4.41 Mean carbonate content

We found an influence of carbonate content, with the low-
est performance of local spectral models in fields A and F.
Similar observations were made by Amare et al. (2013) and
McCarty et al. (2002), who argued that the absorbance bands
of carbonate mask those of SOC. Looking at the correlation
between spectral variables and inorganic C and SOC (Fig. 7),
we can confirm this finding but have to add that, on the local
scale, the relative intensity of absorption bands for carbon-
ate and SOC varied substantially between different datasets.
In this context, Reeves (2010), who showed that the spec-
trum of a soil sample varied greatly with its carbonate con-
tent, considered the prediction of SOC in soils with high car-
bonate content to be one of the open questions in vis—NIR
spectroscopy research. An important point missing in this
discussion is the measurement accuracy of SOC in the lab-
oratory, which is strongly influenced by the presence of car-
bonate and the method used (Goidts et al., 2009). If the soil
samples contain carbonate, often two measurements must be
conducted, and SOC is calculated as the difference between
total C and inorganic C. Especially with a high carbonate
content, the measurement error for the inorganic C content
can be a substantial share of the SOC content. The higher
lab measurement error with higher carbonate content might
be a possible explanation for the lower model performance
in soils with high carbonate content for SOC but not for the
other four soil properties where model performance (in terms
of RPD) still tended to be lower than in fields with little car-
bonate content (Fig. 5). This confirms the above-mentioned
observation of spectral interference between inorganic C and
organic matter and is additionally substantiated by the result
that most properties of fields A and F showed a poor per-
formance in the general models (Fig. 3). It is known that
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carbonate has many more defined peaks and less interfer-
ences with organic matter in the MIR than in the vis-NIR
(Reeves, 2010). Therefore, datasets that combine soil sam-
ples with high and low carbonate content might be better
predicted with MIR spectroscopy. However, while all sam-
ples of field F have a high carbonate content, field A shows
a broad range of carbonate contents, whereby the mean car-
bonate content (7.1 = 6.7 gkg™1) is only slightly higher com-
pared to the other fields. We therefore hypothesize that the
lower performance of field A compared to fields A, B, C and
D might also have additional reasons besides the field char-
acteristics explored in this study and requires more research.
The strong correlation between mean carbonate content and
RMSE (r = —0.68 £0.10; Fig. 6) can be explained by the
very low variability in pH in fields with high carbonate con-
tent. The narrow pH ranges in these fields consequently lead
to models for pH with low RMSE but also low RPD (see
Fig. 5).

4.4.2 Correlations between target variables

Reflectance measured with vis—NIR spectroscopy is a com-
bined effect of all constituents present in the soil sample
(Stenberg et al., 2010), and through processing and model-
ing, one tries to distinguish the absorption feature of one spe-
cific soil property from the other constituents of the sample.
Apart from pH, all our target variables were closely related
to soil organic matter, which was, therefore, for this study,
the most important soil constituent influencing the absorp-
tion features. In the case of high correlations between target
variables that form part of soil organic matter, the modeling
is easier because the same absorption features can be used
for modeling the different properties, which was the case for
field B (see VIP analysis in Fig. 4). On the other hand, a low
correlation between target variables makes it more difficult
to relate absorption features of organic matter to specific soil
properties, which probably contributed to the lower model
performance of fields A, C and F compared to fields B, D and
E. The literature shows that different soil properties related to
soil organic matter (e.g., SOC and total N) can show different
absorption features in the vis—NIR range (Chang and Laird,
2002; Kusumo et al., 2019), which is also supported in our
study (see VIP analysis in Fig. 4). However, we argue that
prediction accuracy improves substantially if target variables
related to soil organic matter are well correlated with each
other, which was also hypothesized by Martin et al. (2002)
in a one location field study.

4.4.3 Variability of clay content

Unlike Stenberg et al. (2010) and Heinze et al. (2013), we did
not find a better model performance with increasing mean
clay content in the dataset, which might also be explained
by the relatively small range in mean clay contents of be-
tween 18 % (field F) and 38 % (field C). However, we ob-
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served that fields A and F, with lower model performance,
also showed a higher variability in soil texture (see den-
sity plots in Fig. 1). We hypothesize that this observation is
mainly an effect of our sampling design and the specific agri-
cultural management and is therefore not generalizable. Clay
and soil organic matter are claimed to be modeled with a
high success rate with vis—NIR spectroscopy since they have
strong absorption features (da Silva-Sangoi et al., 2022). Un-
fortunately, soil texture was measured using different sam-
ples than the reference dataset for the spectral modeling, so
we cannot check for the correlation between soil texture and
target variables. However, in this study, the correlation may
be relatively low for the following reason: we took samples
from different depths (0-5, 5-10 and 10-20 cm) within the
past tillage layer and therefore expect that the soil texture
is homogenized across the sampling depth. Since all fields
are now under organic reduced-tillage management, the three
soil layers show quite distinct soil organic matter contents
(see Fig. S5 in the Supplement) but, very probably, similar
soil textures. Therefore, a high (horizontal) variability in soil
texture in a field (e.g., clay content) without a strong correla-
tion to organic matter could have added “noise” to the spec-
trum, which worsened the prediction accuracy in our specific
sampling design. Nevertheless, in untilled soils or more dis-
tinct depth segments, a high variability in soil texture may
not be a disadvantage in vis—NIR modeling because it might
also be correlated with organic matter.

5 Conclusions

This study investigated the impact of site characteristics on
vis—NIR modeling performances and compared a local and a
general modeling approach. Among the 35 models, 29 per-
formed accurately or even excellently, whereby the RMSE
was close to the lab measurement error, and achieved predic-
tion accuracies are probably, for many research purposes, ac-
ceptable. The local models with the lowest performance were
all from fields A and F, and we found three field characteris-
tics in their datasets that interfered with model performance.
Fields A and F had higher mean carbonate content, lower cor-
relation between target soil properties and higher variability
in soil texture compared to the other fields. The influence of
soil texture variability was mainly an issue in this specific
sampling design, whereas the influence of carbonate content
and correlation between soil properties can probably be gen-
eralized due to observed spectral features and VIP analysis.
Before starting a local vis—NIR project, testing for inorganic
C content can be done relatively easily, but it is almost im-
possible to know beforehand the correlations between dif-
ferent soil properties. One can only be aware of the correla-
tion issue and consider potential gradients of soil properties
while designing the sampling design, which is probably more
important and feasible in disturbed or agricultural soils than
in natural undisturbed soils. In terms of efficiency in data
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collection, we conclude that, in a region, several target sites
(or agricultural fields) with low carbonate contents can be
combined in a general model with only a minor reduction in
model performance. A general model for multiple target sites
then also allows us to reduce the number of wet chemistry
analyses. Whether or not several target sites with high car-
bonate content can be combined in one general model using
vis—NIR spectroscopy is a question that requires further re-
search. However, since carbonates show fewer interferences
with organic matter in the MIR than in the vis—NIR spectral
range, soil samples from sites with high carbonate content
might be better predicted with MIR spectroscopy. Yet, the
application of laboratory vis—NIR spectroscopy in projects
of local extent provides the opportunity to increase the spatial
or temporal resolution in a sampling design cost effectively
with only minor decreases in measurement accuracy.
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ARTICLE INFO ABSTRACT

Keywords: The implementation of cover crops into a crop rotation can contribute to a more sustainable soil management.
Soil incubation For the improved decomposition of cover crop residues, the commercial inoculant Effective Microorganisms®
Metabarcoding

(EM) is increasingly applied. Despite its extensive application, comprehensive studies on the effect of EM
application on soil processes are lacking, since rarely a clean differentiation between an EM-effect (induced by
living EM directly) or a substrate effect (induced by the accompanying EM substrate) is made. To determine the
potential effects of EM application after cover crop integration to soil we conducted a lab incubation experiment
under spring-like conditions in temperate climates and applied EM either on bare soil or on cover crops prior to
soil incorporation at recommended and 100 times the recommended doses. Control groups included treatments
with no EM addition and a sterilized EM solution applied at 100 times the recommended dose. Over a monitoring
period of 28 days, the application of EM at the recommended dose showed no consistent effect on soil respiration,
microbial bound carbon or nitrogen, soil pH, permanganate oxidizable carbon or water extractable nutrients and
trace elements. Any observed effects in the treatment that received 100 times the recommended dose was
attributed to the substrate introduced with the EM solution rather than the living EM themselves. Amplicon
sequencing showed that certain EM taxa could be detected in soil at low abundance after EM application, but
only when EM were applied at 100 times the recommended dose. We conclude that the application of EM did not
produce a discernible effect on soil biological or chemical properties, nor did it influence the decomposition
process of the cover crop.

Soil respiration

Trace elements

Plant growth promoting rhizobacteria
Microbial biomass

1. Introduction incorporated cover crop residues is crucial for a good seedbed prepa-

ration (Gollner et al., 2020; Vincent-Caboud et al., 2017). Yet, when

Sustainable agroecosystems aim to maintain a high level of soil
fertility to minimize the external inputs. For that, periods of bare soil
should be avoided because they lead to nutrient losses, soil erosion and
loss in soil organic matter, leading to a decrease of soil fertility (Dar-
yanto et al., 2018). Cover crops bridge the break time between two main
crops and are therefore a key element in soil fertility and nutrient
management (Thorup-Kristensen et al., 2003). However, particularly in
organic farming systems with reduced tillage, where cover crops are
shallowly incorporated or left on the soil surface, the management of
cover crops faces major challenges. A fast decomposition of the

* Corresponding author.

environmental conditions are cold and wet, as it often happens during
spring in temperate climates, the cover crop material on the soil surfaces
often does not decompose properly but becomes slimy and malodorous.
This largely affects the seedbed preparation and the growth of the
subsequent crop. Ideally, most cover crop material should be decom-
posed to smaller pieces within 10 days so that residues do not disturb the
sowing of the subsequent cash crop.

One increasingly used approach to accelerate the decomposition
process of freshly incorporated cover crop material is the use of micro-
bial inoculants. The most applied microbial inoculant with this purpose
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is Effective Microorganisms® (EM), a product that was developed in the
1980s and was trademarked by EMRO Japan (2023). The commercial
EM product consists of a mix of up to 80 naturally occurring aerobic and
anaerobic microorganisms which coexist in a liquid culture (Higa,
1991). The exact composition is not made available by the producer, but
previous analyses have shown that EM solutions are mainly dominated
by lactic acid bacteria (Lactobacillus plantarum, Lactobacillus casei,
Streptococcus lactis) and yeasts (Saccharomyces cerevisiae, Candida utilis)
with smaller numbers of photosynthetic bacteria (Rhodopseudomonas
palustris, Rhodobacter sphaeroides), actinomycetes (Streptomyces albus,
Streptomyces griseus) and fermenting fungi (Aspergillus oryzae; Ahn et al.,
2014; Xu, 2000). Similar to other plant growth promoting rhizobacteria
(PGPR), EM are applied to alter the soil microbial community towards
more favorable growing conditions for the crop (Gouda et al., 2018). In
practice the expectations of EM application are, among others, enhanced
soil fertility, higher crop yield and quality, higher nutrient use efficiency
of organic fertilizers and amendments, improved soil physical charac-
teristics, and better pathogen control (Balogun et al., 2016; Olle and
Williams, 2013). In the specific application of EM on cover crops before
shallow incorporation, farmers expect to accelerate the decomposition
process, improve nutrient cycling and soil organic matter formation (EM
Schweiz, 2023).

The suggested mechanisms how EM might influence the decompo-
sition of cover crop biomass or other organic matter in soil are derived
from analogies of food preservation and processing of kitchen wastes
through anaerobic fermentation widely practiced in Asia. For anaerobic
fermentation, it is of most importance that fermenting microorganisms
are dominant over putrefactive bacteria that might damage the product
and lead to malodorous and potentially harmful metabolites (Rhee et al.,
2011; Wang et al., 2001). Putrefaction is associated with the emission of
ammonia, methane and nitrogen (N) oxides and occurs under at least
partly anoxic conditions. Effective microorganisms are supposed to
avoid putrefaction in periods or locations of low oxygen availability and
shift the metabolic pathways towards fermentation and stabilization of
organic matter (Higa and Parr, 1994). Most arable soils are mainly under
oxic conditions, but anoxic microsites are always present in well aerated
soils as well (Keiluweit et al., 2018; Keiluweit et al., 2017; Lacroix et al.,
2022). Accordingly, EM is proclaimed to benefit the decomposition of
organic matter even in well aerated soil with rather oxic conditions (Hu
etal., 2018; Javaid, 2011). Lactic acid bacteria and yeasts, the dominant
groups in the EM consortia, are facultative anaerobic, meaning that they
can survive in an environment with oxygen and are therefore also found
in natural soils (Lamont et al., 2017). The application of EM for
enhanced organic matter decomposition relies thus on the assumptions
that first the inoculated EM can establish themselves in the soil system
and second that they play a dominant role in the decomposition process.

Up to now only a very limited number of studies surveyed the effect
of EM application on critical soil properties such as soil respiration
(Fatunbi and Ncube, 2009; Schenck zu Schweinsberg-Mickan and
Miiller, 2009; Valarini et al., 2003) or nutrient availability (Hu et al.,
2018; Jusoh et al., 2013; Van Fan et al., 2018; Zhong et al., 2018). Other
studies suggest, but did not demonstrate that the enhanced decompo-
sition of organic matter via EM application could also lead to an
increased availability of micronutrients (Daur, 2016), or a reduction of
potential toxic trace elements (PTTEs), (Zhou et al., 2020). Unfortu-
nately, many of the studies that tested EM failed in differentiating be-
tween i) the EM-effect (an effect that is induced by the actual living EM
in the inoculant) and ii) the substrate effect (an effect that is induced by
the nutrients, carbon sources and other compounds that is provided in
combination with the EM inoculant solution). By not differentiating
between these two effects, it is easy to reach misleading conclusions, yet,
the inclusion of these critical controls quickly increases the number of
necessary samples.

Given the large discrepancy between expectations and actual scien-
tific evidence on the actual effects of EM we conducted a lab incubation
study to rigorously differentiate between EM induced effects and
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substrate induced effects on soil properties during cover crop decom-
position. The question whether or not the decomposition of freshly
incorporated cover crops can be positively influenced by EM application
has a particular relevance, since the lack of adequate alternatives was
identified as a major challenge that hampers the practice of cover
cropping in organic reduced tillage systems (Vincent-Caboud et al.,
2017). To obtain a mechanistical understanding on the potential effec-
tiveness of EM application on soil processes we conducted a soil incu-
bation experiment mimicking spring-like field conditions in temperate
climates. Soils were incubated alone or in combination with cover crop
plant material and amended with typical or 100 times the typical
application dose. As control treatments, we sterilized the EM solution
prior to application to rigorously differentiate between an EM effect and
a substrate effect. We followed several soil biological and biochemical
soil properties over the course of 28 days to determine any immediate or
mid-term effect of EM application to soil properties.

2. Methods
2.1. Sampling and preparation of soil and cover crop biomass

The soil and the cover crop biomass were sampled from an agricul-
tural field situated in the temperate climate zone in Diessenhofen,
Canton Thurgau, Switzerland at 414 m elevation. The farmer has been
practicing the shallow incorporation of cover crops with the application
of EM in the last five years and reported positive experiences with
respect to soil structure and crop yields. The sampling was conducted on
5 May 2020 when the cover crop was well established and about to be
shallowly incorporated. Approximately 200 soil cores (0-10 cm) were
taken randomly with an auger (2.5 cm diameter) on the field of 1.3 ha
size. The cover crop aboveground biomass was cut in a representative
50 x 50 cm square on the same day. The sown cover crop was purchased
(Wintergriin, Camena Samen, Germany) and contained 5 frost tolerant
species: 62 % winter rye (Secale cereale L.), 26 % hungarian vetch (Vicia
pannonica CRANTZ.), 10 % crimson clover (Trifolium incarnatum L.), 1 %
winter oilseed rape (Brassica napus L.), 1 % winter turnip rape (Brassica
rapa L.). In our plant sample we only collected winter rye, hungarian
vetch, and crimson clover. The harvested and dried cover crop had a
carbon (C) concentration of 42.2 % and a C/N ratio of 17.7.

The sampled soil (approx. 15 kg) was air dried at room temperature
for three days before it could be sieved (2 mm). Remaining larger pieces
of organic material were removed manually. The collected cover crop
biomass was placed in the drying oven at 40 °C for a week and then cut
into small pieces.

2.2. Effective microorganisms®

For this experiment we applied a commercial EM product called
Rottelenker (EM Schweiz, Switzerland) that was specifically developed
to support the shallow incorporation of cover crops. The liquid was
purchased five days before the application to ensure original product
quality. EM Rottelenker is recommended for application when temper-
atures rise >8 °C in a quantity of 100 L ha~! and to be diluted with an
amount of water that suits a proper and even application (EM Schweiz,
2023). In practice, that means a dilution factor between 1 and 10
depending on the application technique. To distinguish between the
effects of living EM and a pure-substrate effect, we ran a treatment with
sterilized EM. For the sterilized treatments, EM solution was taken from
the original container one day before the start of the incubation and was
autoclaved twice at 121 °C for 20 min within 24 h. To test both, the
living status of the purchased EM solution as well as the sterilization, we
ran a colony forming unit analysis (CFU). For this, original and sterilized
EM liquid were plated on Trypticase Soy Broth (TSB) media and TSB
media amended with the fungicide cycloheximide, respectively, within
24 h of the launch of the incubation experiment. The dilution rows were
done in five steps from 1 to 10> with five replicates per sample and then
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the plates were incubated at room temperature for three days. The CFU
analysis showed that living microorganisms were present in the pur-
chased solution and that no living microorganism was present in the
sterilized EM solution on either of the two TSB media (for details see
Fig. S1 in the supplementary material).

2.3. Experimental design

We conducted the 28-day soil incubation experiment with the two
factors cover crop and EM-level. We chose the time span of 28 days to
capture the time between shallow cover crop incorporation and sowing
of spring crop (around 10 days) as well as the start of the spring crop. We
tested four different levels of EM- application: no EM (EMO0), EM as
recommended in agricultural praxis (100 L ha l; EM1), 100 times
higher quantity (EM100), and 100 times higher quantity of sterilized EM
(EM100st). In a fully orthogonal design, these four EM-levels were
combined with the factor cover crop resulting in four treatments with
cover crop input (CC-EMO, CC-EM1, CC-EM100, CC-EM100st) and four
treatments with no cover crop input and only EM application (NCC-
EMO, NCC-EM1, NCC-EM100, NCC-EM100st; Fig. 1). We imitated the
process in the field with a cover crop aboveground biomass of 5 t ha™!
and a topsoil (0-3 cm) bulk density of 1.3 g cm ™, which corresponds to
a cover crop biomass input of 12.82 g dry matter per kg of soil. The EM
application of 100 L ha~! corresponds to 0.256 mL per kg of soil for the
level EM1 and accordingly 25.6 mL per kg soil for the EM100 level
(Table 2).

2.4. Soil incubation

Three days after soil sampling, the air-dried and sieved soil was
slightly rewetted to a gravimetric water content (GWC) of 0.16 g H>0
g ! soil and then preincubated seven days before the start of the
experiment to re-establish basal respiration. Pre-incubation was con-
ducted at 16 °C and 80 % air humidity to prevent a peak of microbial
respiration induced by the soil sieving before the onset of the
experiment.

The eight soil treatments were prepared on the start day of the in-
cubation (day 0). The pre-incubated soil was brought to a GWC of
approximately 0.2 g H,0 g ! soil by gently spraying Milli-Q water on
top whilst constantly mixing the soil by hand wearing plastic gloves to
avoid any contamination. After that, the moist soil was separated into
sealable 3 L plastic bags. The different levels of EM and cover crop
biomass were added whereby the EMO-level received the same amount
of water. Where cover crop biomass was added, the liquid was carefully
sprinkled onto the plant material before being added to the soil to
imitate the incorporation of cover crops as practiced in the field. Each
bag was then sealed, and the content carefully mixed by hand for mul-
tiple minutes until a homogenous mixture was achieved and then
transferred to plastic beakers for the incubation experiment. The incu-
bation was conducted at 12 °C with 80 % air humidity. The final GWC of
the incubated soil was 0.23 g H,0 g~ soil which corresponded to 64 %
of the maximum water holding capacity of the soil. Mixed soil samples
were split into three different groups for soil respiration (separate glass
jars), POXC (separate corning tubes) while for all other analyses, 75 g of
moist soil were placed in plastic beaker with four replicates per time
point (3) and treatment (8) and covered with a paper tissue to allow gas
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exchange but to avoid water loss within the incubator. These were
opened on the respective sampling date and the soil was split into the
different volumes and beakers for further analysis. Throughout the in-
cubation period no signs of dried aggregates on the soil surface could be
visually detected. An overview of the timeline and measurement in-
tervals can be found in Table S1 in the supplementary material.

2.5. Assessment of biological soil parameters

Soil respiration was measured according to the protocol of (Alef,
1995). In brief, two small plastic cups were placed into 1 L sealable
glasses, where 1 cup would hold 40 g of dry soil equivalent and the other
cup 10 mL of 0.2 M NaOH to trap produced COy. We used 36 sealable
glass jars (8 treatments * 4 replicates +4 blanks) and 13 time points
resulting in 478 measurements. At every measurement time point the jar
was opened and about 4 mL (in excess) of 1 M BaCl, and few drops of
phenolphthalein were added to the NaOH solution and then trapped CO2
was determined by a titration with 0.1 M HCl. Each mole of dissolved
COz led to the production of 2 mol of H" which neutralize 2 mol of OH
according to formula 1:

CO,[mmol] trapped in NaOH = 0.5* (HClyyie [mI]~HClympie [m1] ) *Mycr (1)

Microbial C (Cmic) and N (Nmic) were measured according to the
protocol of (Vance et al., 1987) with some adaptions. We weighed moist
soil equal to 10 g dry matter and used 40 mL of 0.5 M K2SO4 for the
extraction. The dissolved C and N in the extracts were measured with a
TOC-analyzer (DIMATOC® 2100, DIMATEC Analysetechnik GmbH,
Germany). We report Cmic and Nmic as chloroform labile C and N did
not use any conversion factor to account for incomplete extraction
efficiency.

The analysis of the microbial community in the EM solution and
incubated soil was performed on treatments with cover crop addition
(CC-EMO, CC-EM1, CC-EM100, CC-EM100st) at day seven of the
experiment. For that, DNA was extracted from pure EM solution and
approximately 0.45 g soil sample using the “NucleoSpin® 96 Soil” kit
(Macherey- Nagel, Diiren, Germany) with lysis buffer SL2 and enhancer
SX following the manufacturer’s instruction. Extracted DNA was quan-
tified fluorometrically with the plate reader Infinite M Nano+ (Tecan,
Maennedorf, Switzerland) and the Qubit dsDNA HS Assay Kit (Invi-
trogen by Thermo Fisher Scientific, Waltham, USA). The bacterial
community was characterized using 16S rRNA amplicon sequencing
using a similar protocol as Lori et al. (2022). Briefly, primers 314F and
806R (Frey et al., 2016) were used for the first PCR with Kapa Sybr fast
qPCR kit Master Mix (Kapa Biosystems, Wilmington, USA) and 200 nM
of each primer. Samples were used either undiluted, 1:5, 1:10 or 1:50,
depending on their concentration. The cycling program consisted of 3
min initial denaturation at 95 °C, 38 cycles of 20 s denaturation at 95 °C,
20 s annealing at 58 °C and 40 s elongation at 72 °C followed by 10 min
final elongation. Amplicons were purified with homemade magnetic
bead solution (SpeedBead Magnetic Carboxylate Modified Particles, GE
Healthcare) and visualized on agarose gel for validation. The second
PCR to barcode the samples and MiSeq sequencing were performed at
the Genome Quebec Innovation Center (Montreal, Canada).

The fungal community was characterized using ITS amplicon
sequencing with PacBio following Bodenhausen et al. (2019). M13-
tagged primers ITS1F and ITS4 were used for the first PCR with HiFi

Experimental Design EM-Level (4 levels)

(2 Factors) EMO EM1 EM100 EM100st

Cover Crop Cover Crop | CC-EMO CC-EM1 CC-EM100 CC-EM100st

(2 levels) Eo Cover NCC-EMO NCC-EM1 NCC-EM100 NCC-EM100st
rop

Fig. 1. Experimental design with four EM levels and two cover crop levels.
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HotStart Ready Mix (Kapa Biosystems, Roche, Basel, Switzerland) and
300 nM of each primer. The first cycling program consisted of 3 min
initial denaturation at 95 °C, 25 cycles of 20 s denaturation at 98 °C, 20 s
annealing at 60 °C and 60 s elongation at 72 °C followed by 5 min final
elongation. 3 ul of the first PCR was used as template for the second PCR
reaction with M13-tagged barcodes. The second cycling program was
similar as above except after the first two cycles, the annealing tem-
perature was increased to 65 °C and the total number of cycles was 22.
After cleaning-up with homemade magnetic bead solution, PCR prod-
ucts were quantified NanoQuant (Tecan, Maennedorf, Switzerland) and
pooled in equimolar fashion. Negative controls were included and
sequenced with the other samples. The library was sequenced with
Pacbio at the Next Sequencing Platform of the University of Bern on a
Sequel II instrument according to their standard protocols. Raw se-
quences were deposited at NCBI Short Read Archive (PRINA1026363).

MiSeq reads were demultiplexed by the sequencing facility. The
bioinformatics analysis of MiSeq data was performed on Scientifc
Computer Cluster Euler at the ETH Zurich. Briefly, USEARCH v11.0.667
(Edgar, 2013) was used to merge the reads and remove primer se-
quences. PRINSEQ-lite 0.20.4 was used to filter for quality (Schmieder
and Edwards, 2011). After chimeral removal with UPARSE (Edgar,
2013), reads were clustered into zero radius operational taxonomic units
(ZOTU) with UNOISE3 (Edgar, 2016). ZOTU were further clustered at
97 % similarity with UPARSE (Edgar, 2013). Finally, taxonomy was
assigned with SINTAX v11.0.667 (Robert, 2016) and the SILVA data-
base, SILVA138_RESCRIPt.fasta (Quast et al., 2013). The bioinformatics
analysis of PacBio data was similar except that lima 2.7.1 (https://lima.
how) was used for demultiplexing and the taxonomy assignment was
with the UNITE database, UNITE_v83_AllEukaryotes_10.05.2021.fasta
(Abarenkov et al., 2010).

Relative shares of OTUs from the pure EM solution with >50 counts
served as target EM taxa and were traced during the soil incubation.

2.6. Assessment of chemical parameters

To measure the dynamics of easily oxidizable carbon, we determined
permanganate oxidizable carbon (POXC) at several time points of the
incubation. For that, 5 g of moist soil were put in 50 mL corning tubes
covered with a paper tissue to allow for gas exchange but to avoid water
loss within the incubator. Four replicates per treatment and sampling
time point were prepared (n = 4*8*8 = 256) and when the sampling
date arrived, they were covered with a lid and frozen until analysis.
Afterwards, POXC was then measured in one run according to the pro-
tocol of Weil et al. (2003) with 0.2 M KMnOy4 as reactant and absorption
measurement at 550 nm with a Spectrophotometer (UV-1800, Shimadzu
corporation, Japan).

Water-soluble ions were measured by extracting soil equivalent to 8
g dry soil from the collective beakers with 40 mL of Milli-Q water for one
hour on day 0, 7, 14 and 28. These samples were centrifuged (3000 rpm
for 15 min) and 5 mL of the supernatant was syringe filtered (hydro-
philic, 0.45 pm) and stored at 5 °C. Ion chromatography (IC) was pet-
formed in one run two weeks after the end of the incubation on a Dionex
Aquion™ (Thermo Fisher Scientific Inc., Waltham, USA) to measure the
concentrations of the anions fluoride (F ™), chloride (Cl ), nitrate (NO3),
phosphate (PO§ ), sulfate (SO% ) as well as the cations sodium (Na™),
potassium (K), magnesium (Mg2 ") and calcium (Ca2 .

For the analysis of water-soluble elements, 25 mL of the same su-
pernatant as for the water-soluble ions-measurements were used. To
remove dispersed clay particles in the liquid, 1 mL of 1 M MgCl, was
added, and then the samples were vigorously shaken and centrifuged
(3000 rpm for 15 min). From this solution 9.8 mL were filtered (hy-
drophilic, 0.45 pm) and then mixed with 0.2 mL nitric acid (HNO3, 69
%) resulting in 10 mL samples containing 1 % HNO3. These samples
were then stored at 5 °C and analyzed in one common run one month
after the end of the incubation experiment on a 7700x ICP-MS from
Agilent Technologies (Santa Clara, USA) measuring the concentrations
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of arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni),
silver (Ag), aluminum (Al), phosphorus (P), vanadium (V), manganese
(Mn), iron (Fe), copper (Cu), zinc (Zn) and uranium (U).

To characterize the soil, the cover crop biomass and the EM solution
for elemental composition we conducted a total multielement analysis in
triplicates. For that, 0.2 g of soil, 0.2 g of cover crop biomass and 0.2 mL
of a 121-times diluted original EM-solution were mixed with 8 mL of 69
% HNO3 and 2 mL 37 % H202 and then digested in a CEM MARS 6
microwave (stage 1: 10 min at 120 °C, stage 2: 40 min at 170 °C). After,
the cooled down samples were brought to 50 mL volume with Milli-Q,
centrifuged (2500 rpm for 5 min) and analyzed with the above
mentioned ICP-MS. The turbidity of the EM solution did not allow for an
analysis of containing ions via IC analysis.

2.7. Statistics

Fungal and bacterial richness and Shannon diversity were assessed
on the base of rarefied read counts using the vegan R package (Oksanen
et al., 2019). Additionally, differences between the fungal and bacterial
community composition were tested with a PERMANOVA with 10°4
permutations based on Bray-Curties dissimilarity matrices. All other
parameters mostly fulfilled or just showed minor deviations from the
requirements of normality (Shapiro-Wilk test) and homoscedasticity
(Levenes’ test). Therefore, we decided to use parametric tests. We tested
a multiplicative analysis of variance (ANOVA) with the factors cover
crop and EM-level for soil respiration, microbial biomass, pH, POXC and
water extractable ions and elements. We used Tukey HSD as a post hoc
test to evaluate significant differences between different EM-levels or
different treatments. Only for the cumulative respiration, which was
very different between treatments with and without cover crop addition,
we used a separate Tukey-HSD test for the CC and NCC treatments. For
the other response variables, if the ANOVA did not show a significant
interaction, we only discuss the main effects of EM-level. Otherwise, if
the interaction effect was significant, we discuss only the comparisons
between CC-EMO and CC-EM1, NCC-EMO and NCC-EM1, CC-EM100 and
CC-EM100st as well as NCC-EM100 and NCC-EM100st, because all other
possible 24 comparisons were not of practical relevance. All analysis
were performed in R version 4.2.2 (R Core Team, 2020).

3. Results
3.1. Soil respiration

The incubation experiment started with a basal respiration rate of
20.2 + 0.3 mg C kg * d! (day 0), which was maintained at a similar
level for the course of the soil incubation in the NCC-EM0 and NCC-EM1
treatments (Fig. 2a). Addition of living or sterilized EM in high dose on
bare soil (NCC-EM100 and NCC-EM100st) caused an increase in soil
respiration of up to 159 + 10 mg C kg™* d~! on day 1 and basal soil
respiration was reached again latest by day four. The addition of cover
crop biomass clearly had the strongest effect on soil respiration, peaking
at 647 + 8 mg C kg1 d~! for CC-EM100st at day 1. After that, soil
respiration rates continuously decreased, but CC treatments did not
reach basal soil respiration rates during the whole incubation period.
Differences between the different EM-levels mainly occurred during the
first 4 days. During the 28-day incubation the cumulated respiration
summed up between 0.42 & 0.01 and 0.7 + 0.04 g C kg * for the NCC
treatments and between 4.09 + 0.9 and 4.57 + 0.08 g C kg~ for the CC
treatments (Fig. 2b and c). The addition of cover crop biomass as well as
the addition of EM in high dose (Fig. 2d) increased the cumulated
respired C. However, we did not see any effect on cumulated respired C
by the combination of cover crops with any level of EM application (no
significant interaction in the multiplicative ANOVA between factors
cover crop and EM-level, p-value = 0.13, see Table S2 in the supple-
mentary material). The differences in cumulated respired C among the
EM-levels were more pronounced in the NCC (Fig. 2b) than in the CC
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Fig. 2. a) Daily respiration rates. The value of CC-EM100 at day 1 is based only on one replicate, since for the other three replicates the NaOH trap was already
completely saturated, suggesting even higher overall respiration rates in this treatment. b) Cumulated mean soil respiration after 28 days of incubation for treatments
without cover crop addition. ¢) Cumulated mean soil respiration after 28 days of incubation for treatments with cover crop addition. d) Tukey’s mean difference with
95 % confidence interval for the factor EM-level in the two-way ANOVA with cumulated respiration at the end of the incubation (day 28) as response variable. The
panels a, b and ¢ show the mean of four replicates with error bars indicating the standard error.

treatments (Fig. 2c). Pairwise comparison within the NCC treatments
also showed that the cumulative respiration was significantly higher for
NCC-EM100st than for NCC-EM100 (Fig. 2b). Addition of EM at rec-
ommended dose had no effect on soil respiration as we did not find any
significant difference between the EM1 and the EMO level.

3.2. Microbial biomass

At the start of the incubation experiment (day 0), soil microbial
biomass contained 342 + 5 mg Ckg ' and 67 + 1 mg Nkg ! (Fig. 3a). In
the NCC treatments, there were only minor changes in microbial C and N
over time, with most times highest values in the NCC-EM100st treatment
(366 + 14 mg C kg~ ! and 68 + 2 mg N kg™ ') followed by the NCC-
EM100 treatment. In contrast, microbial C and N almost doubled in all
CC treatments with highest values in the CC-EM100st treatment (810 +
34 mg C kg~ ! and 134 + 6 mg N kg™ 1) followed by the CC-EM100
treatment. There was no significant interaction at any day between
the two factors cover crop and EM-level for the response variables Cmic

and Nmic (lowest p-value for the interaction term was p = 0.33 for Nmic
at day 28). Independent of cover crop input, application of EM in high
dose led to slightly higher Cmic and Nmic but only the EM100st level
showed on some days significantly higher Cmic and Nmic than the EM1
or EMO level (Fig. 3b). Independent of cover crop addition, no effect of
the addition of EM at the recommended dose existed as there was no
significant difference between the EM1 and EMO level.

3.3. Identifying and tracing EM taxa

Taxonomic identification of bacterial and fungal taxa within the
applied EM solution showed domination of fungal taxa by OTUS5, which
made up >90 % of fungal OTUs and was assigned to the Order of Sac-
charomycetales. Other identified fungal taxa within the EM solution
include OTUs assigned to the orders of Mortierellales, Filobasidiales and
Hypocreales but they comprise only a small fraction of the inoculated
fungal community (Table 3). Bactria taxa on the EM solution were
dominated by OTUs assigned to the genus of Lactobacillus. Five different
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Fig. 3. a) Microbial C and N during the 28-day incubation experiment with 4 measurement time points. Means of four replicates and standard errors are shown. b)
Tukey’s mean differences between EM-levels for the ANOVA microbial C (or N) ~ Cover crop * EM-level. Only days with significant EM-level effect are presented.
Mean differences are indicated with 95 % confidence interval (CI) and significances are marked based on alpha = 0.05.

OTUs of this genus were observed, jointly accounting for >99 % of
applied bacterial OTUs. Acetobacteraceae and Clostridiaceae were iden-
tified in negligible amounts. Bacterial OTUs 4440 and 4994 were most
abundant with 72.6 and 16.4 % of applied bacterial OTUs (Table 3).
After 7 days of incubation the structure of soil bacterial and microbial
communities was compared via permanova, revealing a weak effect on
bacterial community structure (p = 0.046) and no effect on fungal
community structure (p = 0.816), based on Bray-Curties dissimilarities
matrices. For the bacterial community, pairwise permanova further
revealed significant difference between CC-EMO and CC-EM100 (p =
0.032), while no other treatment pair significantly differed from each
other. Principally, bacterial community structure was dominated by
Actinobacteriota and Proteobacteria, while fungal communities mainly
comprised Mortierellamycota (Fig. 4). Neither fungal and bacterial
richness nor Shannon diversity showed a significant effect of experi-
mental treatments seven days after incubation (Table S3 in the supple-
mentary material).

OTUs identified within the EM solution were traced within the
identified bacterial and fungal communities (Fig. 5). While the recom-
mended dose of EM application did not yield an observable increases of
inoculated EM taxa, a slight increase could be detected in the 100 times
the recommended application dose for bOTU4440 and bOTU4994. Still

relative abundances of these OTUS were below 1 %. For fungal com-
munities, there was no effect in the treatments except for the CC-EM1
treatment where the recommended application dose increased fOTUS
(Fig. 5).

3.4. Soil pH

The initial soil pH of 7.12 + 0.02 was influenced by the different
treatments. Addition of acidic solutions of EM1 (pH = 3.98), EM100 (pH
= 3.55) and EM100st (pH = 3.58) decreased soil pH only when added in
combination with cover crop input (Fig. 6). By day 28, soil pH increased
to about 7.2 in all treatments, except for the NCC-EMO (7.04 + 0.06)
treatment, which was significantly lower than the NCC-EM100 and NCC-
EM100st treatment.

3.5. Permanganate oxidizable C

Concentrations of POXC decreased from 544 + 3 mg kg™! on day
zero to values between 445 and 510 mg kg ™! within the first days of the
incubation experiment and remained stable from day seven onwards
(Fig. S2). The CC-EM100st treatment showed a larger decrease within
the first four days but also stabilized after day seven in the same range as
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Fig. 5. Relative abundance of bOTU4440 Lactobacillus, bOTU4994, fOTUS Saccharomycetales of the four treatments with cover crop addition seven days after the
start of the incubation. Average and standard errors as well as the values of the four replicates per treatment are indicated.

the other treatments. For POXC, the factors cover crop and EM-level
showed significant interactions on all measurement days except day
14 and day 28. Nevertheless, the significantly different treatments as
indicated by the Tukey test were not consistent over time.

3.6. Water-soluble ions

The concentrations of the analyzed water-soluble ions were influ-
enced by EM and cover crop addition (Fig. 7 and corresponding statistics
in Table S4 in the supplementary material). For F~, CI~, Na*, K*, Mg?*,
and Ca®* we observed significantly higher concentrations in the treat-
ments with cover crop biomass input. This effect was in general clearer
at the beginning (day 7) of the incubation and decreased towards the
end (day 28). C1, SOF ", Na*, Mg?*, and Ca®" were often significantly
higher in the EM100 and EM100st than in the EMO and EM1 levels. We
only observed a few differences between the EM1 and EMO level

suggesting that the application of EM at the recommended dose did not
influence the concentration of water-soluble ions. However, CC-EM1
showed higher Mg?* concentration on day 7 but lower K* concentra-
tion on day 28 than CC-EMO. More consistent was the difference be-
tween the EM100 and the EM100st level. The CC-EM100st treatment
showed at least at one time point higher ion concentrations than the CC-
EM100 treatment for F~, CI” and SO% . For Cl  this effect was also
observed for the NCC treatments and NCC-EM100st showed signifi-
cantly higher concentrations than NCC-EM100. For NO3, we found
higher concentrations in NCC-EMO and NCC-EM1 treatments than in all
other treatments.

3.7. Water-soluble elements

The inputs of water-soluble elements through cover crop biomass or
EM addition can be seen in Table 4 in absolute numbers and relative to
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the initial water-soluble concentration in the soil. For all analyzed ele-
ments the input through the cover crop biomass was higher than
through the EM addition. The concentrations of the analyzed water-
soluble elements were influenced by EM and cover crop addition at
least at one of the four measurement time points (Fig. 8 and corre-
sponding statistic in Table S5 in the supplementary material). Cover

crop input significantly increased concentrations of water soluble Pb,
Cd, Cr, Ni, Al, Ag, Mn, Fe, Cu, Zn and U compared to the NCC treatments
at least at one timepoint. There were only minor and non-systematic
differences in measured concentrations of water-soluble elements be-
tween EM-levels and they only occurred in the treatments with cover
crop addition. The application of EM in high dose (EM100, EM100st) did
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Fig. 8. Concentration (ug or mg kg~ soil) of water-soluble elements that showed a significant main effect of EM-level (arsenic, cadmium, nickel, silver, phosphorus,
vanadium, manganese, iron, copper, zinc, and uranium) during the 28-day incubation experiment with 4 measurement time points. Error bars indicate the stan-

dard error.

not consistently influence the concentration of water-soluble elements
during the soil incubation experiment. The only effects of EM1
compared to EMO that were statistically significant were on day 7, where
the CC-EM1 treatment showed higher concentrations in As and P than
the CC-EMO treatment. The comparison between sterilized and living
EM revealed at least at one timepoint significantly higher concentrations
of Cd, Ni, Ag, P, Cuand U in the CC-EM100 compared to the CC-EM100st
treatment. In the NCC treatments, no significant difference was identi-
fied between NCC-EM1 and NCC-EMO or NCC-EM100 and NCC-
EM100st.

4. Discussion
4.1. EM application at recommended dose (EM1)

Application of EM at the recommended dose (EM1) showed no effect
on critical soil properties such as soil respiration (Fig. 2) or the devel-
opment of microbial biomass (Fig. 3) compared to the control treatments
(EMO), in both the CC as well as the NCC treatments. This is in line with
findings of Schenck zu Schweinsberg-Mickan and Miiller (2009) who did
not observe any influence of living EM addition on soil respiration
compared to a sterilized EM control treatment. The lack of observed
results was confirmed by the absence of traced EM-taxa in the soil, as
only 1 out of 4 replicates in the CC-EM1 treatment showed slightly
higher relative abundance in bOTU4440 (Lactobacillus) and fOTU5
(Saccheromycetales) than the CC-EMO treatment. The few statistically
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significant differences in water-soluble ions and elements that occurred
at specific time points during the incubation experiment were incon-
sistent over time. In other studies, (Hu et al., 2018) observed higher
available phosphorus and potassium contents in EM-compost while
other studies reported a slightly higher N content in EM-compost
compared to traditional compost (Daur, 2016; Jusoh et al., 2013; Van
Fan et al., 2018; Zhong et al., 2018), yet, these investigations were up to
now missing for soil. Furthermore, we did not observe any consistent
change in POXC throughout the incubation experiment suggesting that
EM addition had no effect on already existing labile soil organic matter
in the soil that could cause additional release of nutrients of PTTEs.
Similarly, a recent review (Safwat and Matta, 2021) also found little
evidence to confirm the beneficial effects of EM on composting of
organic matter.

The soil incubation mimicked spring-like field conditions in
temperate climates (12 °C and 0.2 g H.O g’l soil) that would be relevant
for enhanced cover crop decomposition through EM application.
Nevertheless, soil temperature, moisture and water filled pore space
during spring are typically highly variable. This would consequently
also affect the establishment of EM, that might require very specific
conditions for their establishment. On the field scale some experiments
have reported higher yield and nutrient efficiency when green manure,
farmyard manure or chemical fertilizer were applied in combination
with EM under mainly under subtropical climates (Hu and Qi, 2013;
Hussain et al., 1999; Javaid and Bajwa, 2011; Khaliq et al., 2006;
Youssef et al., 2021). However, in regions with temperate climates, the
few existing field studies could not determine any effects on crop yields
or soil quality that could be traced to the application of EM to soil
(Mayer et al., 2010; Pranagal et al., 2020). This was supported by the
results of our study, demonstrating no effect of EM addition at typical
application rates on soil properties.

4.2. EM application in high dose (EM100, EM100st)

The addition of EM at 100 times higher than recommended dose
showed some effects on soil properties, e.g., on soil respiration (Fig. 2) or
microbial C (Fig. 3). However, these changes took place regardless of
whether the solution was sterilized (EM100st) or not (EM100), and can
thus clearly be assigned to a substrate effect, and not an actual EM effect.
The amount of carbon added with the EM100 and EM100st application
level was about 0.2 g C per kg of soil (Table 2). This closely matched the
difference in cumulated respired C compared to the EMO level in both
the CC and the NCC treatments (Fig. 2b). Since the EM solution was
acidic (pH 3.6; Table 1), some of the released CO2 may have originated
from the dissolution of carbonates in the alkaline soil. Yet, assuming that
all the added acid of the EM solution was buffered by CaCO3 and
released as CO2, this would equal to a C release of only 1.6 mg C kg™*
soil, i.e., to negligible amounts compared to basal soil respiration
(Fig. 2a). The amount of C added at the EM100 treatment (0.2 g C per kg
of so0il) was much lower than C added with cover crop biomass (5.4 g C
per kg soil). Cover crop addition also caused a slight increase in mi-
crobial biomass and likely resulted in an immobilization of NO3, which
explains the significantly higher NO3 concentration in the treatments
without high-dose EM or cover crop biomass (NCC-EMO0 and NCC-EM1;
see Fig. 7 and Table S4). Additionally, at certain time points, higher
concentrations of Cl~-, SO%~, Na*, Mg?*, and Ca®* were observed in
EM100 and EM100st levels compared to the EM1 and EMO levels,
regardless of cover crop input (Fig. 7, Table S4), suggesting that these
ions were part of the EM solution. This suggests that the higher con-
centrations in those water-soluble ions were also a result of the substrate
effect, even though this cannot be fully confirmed since the original EM
solution could not be analyzed for these water-soluble ions due to high
organic impurities. In contrast, the analysis of the original EM solution
for a wide range of water-soluble elements (Table 4) showed that these
inputs at the 100 times application level were still minor compared to
the inputs by the cover crop biomass. Inputs of potentially harmful
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Table 1
Characteristics of the arable soil used in this study. Means and standard devia-
tion are presented.

Property Unit Value (SD)
Sand mass % 50

Silt mass % 29

Clay mass % 21
Maximum water holding capacity g water per g soil 0.36

pH (CaCl,) 7.12 (0.09)
Total C g C kg™ ! soil 28.6 (0.1)
Inorganic C g C kg ! soil 9.04 (0.19)
Organic C £ C kg ! soil 19.5 (0.3)
Permanganate oxidizable C mg C kg ! soil 543 (12)
microbial Cf mg C kg ! soil 342 (18)
Total N g N kg soil 2.12(0.01)
microbial N mg N kg™! soil 67.2 (3.8)
Magnesium g kg ! soil 6.02 (0.16)
Aluminum g kg~ ! soil 9.44 (0.63)
Phosphorus’ g kg soil 1.32 (0.66)
Manganese g kg ! soil 0.88 (0.02)
Iron g kg~ ! soil 17.8 (0.9)
Copper mg kg " soil 43.2(0.8)
Zine mg kg~ soil 69.9 (2.7)
Lead mg kgt soil 38.6 (1.5)

T Improved integral suspension pressure method (ISP+) (Durner and Iden,
2021).

# The maximum water holding capacity was determined gravimetrically after
a water saturated sample lost all gravitational water.

¥ Dry combustion with CNS analyzer. For the determination of inorganic C, the
samples were first ignited at 550 °C.

# According to Protocol of (Weil et al., 2003).

1 Chloroform fumigation according to the protocol of (Vance et al., 1987).

# Extracted from soils using nitric acid microwave digestion and measured
using an inductively coupled plasma - mass spectrometer.

elements from the EM solution into the soil system can therefore be ruled
out.
4.3. Microbial composition and establishment in soil upon addition to soil

The application of EM in high dose, accompanied by a sterilized

Table 2

Description of the levels for the factor cover crop (CC, NCC) and factor EM-level
(EMO, EM1, EM100, EM100st) that were combined to a fully orthogonal
experimental design.

Level Input C N input Dilution pH Remarks
g (kg input mg (kg factor
soil)~! g (kg soil)~*
soil)~!
cc 12.8 5.4 300 Dried and cut to
(dry 2 mm pieces
matter)
NCC 0 0 0
EMO 0 0 0 Only 7.00
water
EM1 0.256 0.002 0.075 1:121 3.98 Living EM
applied at
recommended
dose
EM100 25.6 0.2 7.5 1:1.21 3.55 Living EM
applied in 100
times higher
quantity than
recommended
dose
EM100st 25.6 0.2 7.5 1:1.21 3.58 Sterilized EM

applied in 100
times higher
quantity than
recommended
dose
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Table 3

Applied Soil Ecology 197 (2024) 105358

Taxonomy and relative share of fungal and bacterial OTUs within the applied EM solution.

Kingdom Phylum Class Order Family Genus Mean relative abundance (%) SE
fZOTUS Fungi Ascomycota Saccharomycetes Saccharomycetales 93.3 0.8
fZOTU375 Fungi Mortierellomycota  Mortierellomycetes Mortierellales Mortierellaceae NA 19 0.3
ffZOTU1425  unidentified 1.3 0.1
fZOTU9 unidentified 0.7 0.0
fZOTU1533 Fungi Mortierellomycota  Mortierellomycetes Mortierellales 0.6 0.1
fZOTU66 Fungi Basidiomycota Tremellomycetes Filobasidiales Piskurozymaceae  Solicoccozyma 0.5 0.2
fZOTU23 Fungi Ascomycota Sordariomycetes Hypocreales Nectriaceae Gibberella 0.5 0.1
fZOTU941 Fungi Mortierellomycota  Mortierellomycetes Mortierellales Mortierellaceae 0.4 0.1
fZOTU1975 Fungi Ascomycota Sordariomycetes 0.4 0.0
fZ0TU2087 Fungi 0.3 0.0
bZOTU4440 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 72.6 0.0
bZOTU4994 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 16.4 1.9
bZOTU3653 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 5.8 1.2
bZOTU3325 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 3.9 1.0
bZOTU2664 Bacteria Proteobacteria Alphaproteobacteria ~ Acetobacterales ~ Acetobacteraceae  Acetobacter 0.6 0.2
bZOTU7663  Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 0.5 0.0
bZOTU2304 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium sensu_stricto_1 0.2 0.1

Table 4

Concentration of water-soluble elements in cover crop biomass and effective microorganisms and the applied concentrations in the incubation experiment as absolute
numbers and as percentage of the initial water-soluble concentration in the soil (Standard deviation of three measurements in brackets).

Cover crop Effective microorganisms
Concentration in Added Added concentration Concentration in Added Added Added concentration of
dry matter concentration to compared to initial water- purchased liquid concentration to concentration to EM100 com-pared to initial
soil soluble concentration in soil in EM1-level soil in EM100-level water-soluble concentration
soil (day 0) in soil (day 0)

Unit  [mgkg] [ng kg1 [%) [pg L1 [ng kg™ [ng kg1 [%]

As 0.044 (0.005) 0.558 (0.06) 4.1 (0.4) 2.69 (0.04) 0.687 (0.011) 68.7 (1.1) 0.5(7.8)

Pb 0.204 (0.007) 2.62 (0.08) 241.4 (7.7) Below detection limit

Cd 0.011 (0.000) 0.146 (0.003) 165.1 (3.82) Below detection limit

Cr 4.31 (0.16) 55.2(2) 2429.1 (89.5) 7.5 (0.25) 1.91 (0.07) 191.9 (6.5) 8.5 (0.3)

Ni 0.635 (0.03) 8.15 (0.38) 132.4 (6.2) 12.7 (1.4) 3.26 (0.36) 326 (36) 5.3 (0.6)

Ag 0.013 (0.000) 0.163 (0.000) 211.6 (0.1) 2.94 (0.09) 0.751 (0.024) 75.1 (2.4) 97.3 (3.1)

Al 35.4(2.1) 454 (27) 184 (1.1) 173 (33) 44.3 (8.3) 4430 (833) 0.18 (0.03)

P Not measured

\4 0.079 (0.002) 1.01 (0.02) 1.7 (0.0) 7.05 (0.23) 1.80 (0.05) 181 (6) 0.3 (0.01)

Mn  35.2(0.7) 451 (9) 2056.3 (39.8) 96.3 (1.5) 24.7 (0.4) 2466 (38) 11.2 (0.2)

Fe Not measured

Cu 7.7 (0.24) 99 (3) 184.8 (5.7) 11.9 (0.5) 3.05 (0.13) 305.0 (13) 0.57 (0.02)

Zn Not measured

U 0.003 (0.001) 0.036 (0.009) 47.0 (12.3) 0.704 (0.017) 0.180 (0.004) 18.0 (0.4) 23.5(0.6)

control, enabled the identification of potential effects caused by living
microorganisms and distinguish them from substrate effects. In our
study, three main organisms were traced and identified from the EM
solution. Among them, two Lactobacillus-taxa (bOTU4440 and
bOTU4994) showed a much higher relative abundance in the CC-EM100
treatment and were not found in the treatments without living EM.
However, their presence constituted <1 % of the total bacterial
community.

Effective microorganisms are distributed worldwide, multiplicated
and processed into various end products with different additives. This
variability poses challenges in comparing different EM studies because
the inoculant itself might vary (Dos Santos et al., 2020) and, in most
studies, the microbial community was not analyzed. In our study, we
analyzed the EM solution via amplicon sequencing of taxonomic marker
genes, which revealed bacterial and fungal OTUs assigned to the bac-
terial genus Lactobacillus and fungal order of Saccheromycetales. How-
ever, we did not identify photosynthetic bacteria or highly abundant
Ascomycota within the applied EM solution, although these taxa were
described as part of the EM consortia (Ahn et al., 2014). Nevertheless,
since Lactobacillus and Saccharomycetales have the potential to conduct
anaerobic fermentation, which is the main suggested mechanism
through which EM influences the decomposition of organic matter (Higa
and Parr, 1994), we conclude that we tested a representative product

11

within this study.
5. Conclusion

The addition of EM at the recommended application dose (EM1) to
soil, with or without cover crop biomass, did not lead to any consistently
effect on any of the monitored biological or chemical soil properties.
When applied at a dose 100 times higher than recommended (EM100),
an increased soil respiration and microbial biomass was observed,
however, similar effects were observed in the sterilized control treat-
ments (EM100st) and can thus be fully explained by a substrate induced
effect. The soil microbial community remained largely unaffected upon
EM addition. The analysis of ten water-soluble ions did not reveal any
significant effect from the addition of EM solution on the mineralization
of organic matter or the release of nutrients. Furthermore, the analysis of
14 water-soluble nutrients and elements showed that none of the
analyzed compounds contained in the EM solution are present at
harmful concentrations when applied at the recommended doses.
However, there was also no significant effect in mobilizing or immobi-
lizing selected compounds in the soil. We therefore conclude that added
EM solution themselves did not alter the cover crop decomposition nor
any other soil process beyond the carbon, nutrients or other substances
added with the EM solution.
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the period between two main crops from a soil-protection perspective.
Ploughing-in a green intercrop in spring can be a challenge, however, since the o

risk of second growth is relatively high. This applies in particular to organic F I B L
farms that have embraced no-till. In such systems green manures are often

only incorporated shallowly, to promote soil life with the rapidly decomposable University of Bern

plant material (‘surface rotting’ system). However, environmental conditions in

spring vary a great deal from year to year, and cold and damp conditions in

particular can inhibit the decomposition of plant biomass. The incompletely Share
decomposed smeary plant biomass can therefore make seedbed preparation

substantially more difficult. The use of EM attempts to accelerate the 0 o @ @
decomposition of the incorporated plant biomass whilst promoting soil life and

humus formation.
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Effects of EM on soil parameters

An in-depth laboratory experiment was conducted into the effects of adding EM
to support surface rotting. In early May we brought a portion of both the top
layer of soil and the plant material of a patch sown with rye and vetch into the
laboratory and simulated the rotting process under controlled conditions at

12 °C.

The processes with and without EM both exhaled the same amount of carbon
dioxide, suggesting the same microbial activity in both processes. The addition
of EM did not affect the solubility of nutrients and trace elements in the soil, nor
did it influence microbial biomass. Moreover, genetic analyses of the soil
microbiome showed that the processes with and without EM did not differ in
terms of their microbiological composition. Seven days after the addition of EM
to the soil, lactic acid bacteria were the only identifiable EM components;
however, this effect was negligible at a normal rate of application

(120 litres/ha), and only measurable at 100 times this application rate. The
study therefore found no evidence that the addition of EM influenced the

decomposition of green manure materials.

Conclusions

« The addition of EM produced no consistent effects on microbial
activity in the soil.

» No differences were found between the processes with and
without EM in terms of nutrient and trace-element solubility.

« Only very minor differences were found in the microbial
composition of the two processes.

Lactic acid bacteria, the primary constituent of EM, were detected
in the soil, but only at a substantially increased application rate.
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ARTICLE INFO ABSTRACT

Keywords:
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Agricultural land abandonment is a major land use change in the Mediterranean region, especially affecting
marginal areas. The fields of the abandoned village Sierra Estronad (Aragon, Spain), experienced heavy impact
treatments (bulldozing) after which half of the fields were kept open and tilled without planting any crop and the
other half of the fields were left fallow. From these two treatments and the surrounding natural forest 483 soil

g;EEﬁZaw succession samples were collected in addition to corresponding vegetation data at 162 GPS referenced sampling points. Soil

Soil cover samples were analyzed using predictive models based on visible and near-infrared spectroscopy for Soil Organic

Regosol Carbon (SOC), total Nitrogen, and Permanganate Oxidizable Carbon.

Land use change Comparing the fallow fields, which have had a 15-year recovery period to the tilled fields, a SOC sequestration

Spain rate of 0.64 Mg ha ! y ! was found. On tilled fields however, even after a recovery period of 5 years, very few
plants were able to colonize the area, resulting in a sparse soil cover and significantly lower SOC and total N
stocks.

These results show the interdependence of soil fertility proxies (SOC and /total Nitrogen) and the degree of
vegetation cover, and how practices of preventing former agricultural fields from revegetating have a long-
lasting impact of soil degradation, even after their termination. However, if left fallow, abandoned fields do
have the potential to support a secondary succession and serve as a carbon sink thus contributing to soil fertility
and climate change mitigation.
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1. Introduction

Agricultural land abandonment has been the most important change
in Mediterranean ecosystems over the last centuries (Novara et al.,
2017) and is considered the most important land use change since the
agricultural expansion over 10’000 years ago (Petanidou et al., 2008).

Spain is especially affected with approximately 5% of the total
agricultural land projected to be abandoned by 2030 corresponding to
about 23 million hectares (Perpina Castillo et al.,, 2020). Within the
European Union (EU), this rate is extraordinarily high compared to an
EU average forecast of 3% (Perpina Castillo et al., 2018). The
advancement of mechanization, chemical fertilization, and increased
irrigation, modernizing farming practice and international market de-
velopments have led to agricultural land use intensifications on easily
accessible agro-ecologically favorable fields and the abandonment of
more marginal fields on steeper slopes and with less fertile soils. This
phenomenon was accompanied by depopulation (“rural exodus™)
(Chauchard et al., 2007; Lasanta et al., 2017; Mottet et al., 2006;

* Corresponding author at: Bernstrasse 103, 3018 Bern, Switzerland.

Strijker, 2005). Furthermore, policies like the “set-aside”-policy estab-
lished by the EU Common Agricultural Policy (CAP) in 1992, encour-
aged the withdrawal of cultivated land, by subsidizing fallows (Garcia-
Ruiz and Lana-Renault, 2011). Such fallows could be seeded with non-
food crops or remain unseeded as was most commonly practiced in
semiarid regions. Thus, to receive subsidies, the land had to be ploughed
continuously to prevent plant colonization (Garcia-Ruiz and Lana-
Renault, 2011).

The evolution of fields after abandonment is complex and depends
on many different factors, such as soil, lithology, topography, climate,
and post-abandonment management (Romero-Diaz et al., 2017). How-
ever, the factor which possibly explains soil erosion and degradation
rates after land abandonment best, is the vegetation cover (Lasanta
et al.,, 2019; Thornes, 1985). Policies which foster the practice of pre-
venting former agricultural fields from revegetating, therefore most
likely increased the area at risk of severe erosion (Van Leeuwen et al.,
2019).

Without any anthropogenic disturbances and with favorable climatic
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conditions where a vegetational cover can be sustained, soil character-
istics may improve after abandonment through the accumulation of
organic matter, an increasing floral and faunal activity, increased water
infiltration rates and lower erosion rates (Dunjo et al., 2003; Kosmas
et al., 2000; Lopez-Bermudez et al., 1996; Pardini et al., 2002; Piché and
Kelting, 2015; Wertebach et al., 2017).

Thus, the potential of former agricultural land to sequester soil
organic carbon (SOC) and serve as carbon sinks has become a research
focus. Many studies (Bell et al., 2021, Djuma et al., 2020, Gabarron-
Galeote et al., 2015b, Lasanta et al., 2020, Lesschen et al., 2008, Nadal-
Romero et al., 2016, Navas et al., 2012, among others) have investigated
the accumulation of SOC in the Mediterranean region (Bell et al., 2021),
examining the influence of many environmental and land management
factors. Several authors have reported very slow SOC accumulation rates
or even decreases in SOC (Bell et al., 2021; Djuma et al., 2020; Lesschen
et al., 2008; Martinez-Duro et al., 2010; Nadal-Romero et al., 2016;
Navas et al., 2012, among others).

However, in a literature review, covering 113 publications, 80% of
the studies reported increases in SOC after land abandonment (Bell
et al., 2021). Bell et al. (2021) found an average accumulation rate of
+2.3% y L

SOC accumulation post-abandonment can be explained by the
increased organic matter input from leaf litter and the increased root
biomass from the vegetation cover emerging through natural revegeta-
tion processes (Kalbitz and Kaiser, 2008; Zhao et al., 2015). Further-
more, through a denser vegetational coverage the microclimate
improves through increased light absorption, decreased surface tem-
peratures and evaporation rates, resulting in better conditions for mi-
crobial communities, enhancing carbon sequestration (Novara et al.,
2014). Additionally, secondary succession contributes to the formation
of soil aggregates, which promote SOC stabilization and accumulation
(An et al., 2010; Nadal-Romero et al., 2016; Raiesi, 2012).

Although there is a consensus, that the vegetation cover is a key
component in the development of abandoned lands, the spatial resolu-
tion of vegetation data differs greatly among field studies, assessing
changes in physio-chemical soil characteristics. Most studies describe
the vegetation cover of an entire study site, not considering small spatial
heterogeneities (Alberti et al., 2011; Deng et al. 2013 and 2016; Emran
et al.,, 2012; Guidi et al., 2014; Nadal-Romero et al., 2016; Nadal-
Romero et al., 2021; Navas et al., 2012; Novara et al. 2014 and 2013; La
Mantia et al., 2013; Pellis et al., 2019; Raiesi, 2012; Tommaso et al.,
2018; Zhao et al., 2015). Other studies work with areal data to describe
the land cover of the study sites, without recording field observations
(Bell et al., 2021; Gabarron-Galeote et al., 2015a; Trigalet et al., 2016;
Wertebach et al., 2017). Only few studies recorded vegetation with a
high spatial resolution (Bonet, 2004; Romero-Diaz et al., 2017; Knops
and Tilman, 2000; Li et al., 2020; Martinez-Duro et al., 2010; Baeva
et al., 2019) or work with representative subsites in which the vegeta-
tion is recorded (Foote and Grogan, 2010; Lasanta et al., 2020; Lesschen
et al., 2008; Spohn et al., 2016).

In this study high spatial resolution vegetation data is used in addi-
tion to SOC as a proxy for soil fertility on areas surrounding the village of
Sierra Estronad (Spain). The village has experienced land abandonment
in the 1950s, however agricultural activities were temporarily resumed
in the years after. This included high impact management practices such
as bulldozing in 1998, after which half of the fields were tilled and half
of them left fallow. In addition to the comparison of these two treat-
ments we include the surrounding forests as a control representing the
most natural landscape.

Driven by land management policies, many areas in Spain have un-
dergone similar developments, which makes it important to study the
recovery potential of soil fertility on such severely degraded croplands,
to generate insights for future policy making. Methodologically, this
study contributes insights into the application of visible and near-
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infrared (vis-NIR) spectroscopy to soil spectral data analysis.

This study contributes to a better understanding of the impacts of
land abandonment and the recovery potential of vegetation cover and
soil fertility in a semiarid landscape.

2. Methods
2.1. Study area

The study area in Sierra Estronad (42°15'54.95"N and 0°47'23.29'W)
lies in the municipality of Santa Eulalia de Gallego in the province of
Zaragoza, Aragon, Spain. Aragon is influenced by the western Medi-
terranean climate having little precipitation all year round, cool winters
and hot summers. Low precipitation rates combined with strong winds
cause 70% of Aragon to be characterized as semi-arid (Cherlet et al.,
2018). Geologically, Aragon is predominantly made up of calcareous
materials and Tertiary and Quaternary sediments. The Calcaric Regosol
(Siltic) soil type is distributed homogeneously over the entire study area.
However, the southeast part has a different soil type, which is why these
areas were excluded from the study area.

Sierra Estronad is surrounded by fields, pastures, and forests. After
the village was abandoned in the mid-1950s, the land (approximately
120 ha) was lightly grazed by sheep for about 20 years but was not
further cultivated. In 1973, former fields were cleared and enlarged with
a bulldozer and cultivated for a short time before being abandoned
again. In 1998, the current owners of the village took over the land and
bulldozed all the fields once more.

In this study three different treatments are compared, including two
types of abandoned fields: After the second time of bulldozing in 1998
‘tilled fields’ (16.25 ha) were tilled and cropped with barley until 2017.
The tillage was done with a cultivator, with a working depth of about
10-15 cm. After 2017 the fields were no longer tilled nor cropped.
‘Fallow fields’ (14.90 ha) were left fallow after being bulldozed in 1998.
Additionally, approximately the same amount of forest area (14.97 ha),
as the most natural landscape, was added to the study area. The distri-
bution of the included forest area was strongly determined by its
accessibility, as many of the surrounding forests are on steep slopes.

Thus, the last bulldozing in 1998 created a common basis, after
which tilled and fallow fields have experienced different treatments. The
forest serves as a natural reference.

2.2. Sampling and sample preparation

Within each treatment, 54 GPS (Global Positioning System) refer-
enced sampling points were set in an unaligned sampling design
(Webster and Lark, 2012) (see Fig. 1D). Per sampling point 3 samples
were taken randomly in a 2 x 2 m square with an auger of 2.5 cm
diameter. The samples were then combined according to the depths 0-5
cm, 5-15 cm, 15-25 cm. In total 486 samples (3 treatments, 3 depths, 54
replications) were collected within the first two weeks of March 2022.

For the calculation of bulk density an additional 27 samples were
taken (three per treatment and depth) with a 100 cm? steel ring.

All samples were dried in the oven at 40 °C to constant weight
(around 72 h). Then the samples were gently crushed and sieved to 2
mm.

To determine the elemental composition of the Rock an X-ray Fluo-
rescence Spectroscopy (XRF) Analysis was conducted on a rock sample.

Additionally, the vegetation coverage of the 2 x 2 m square within
which the soil samples were being taken, was estimated. Categories for
vegetation coverage are 0-20%, 20-40%, 40-60%, 60-80% and
80-100%. For the same area the three most dominant vegetation types
were recorded. Here the classes of Herbs, Gras, Shrubs, and Trees were
used and for each class the most dominant species were identified.
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Fig. 1. A-C: Maps with a red mark on Sierra Estronad (Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographies, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment
P Corp). D: Map showing the study area. The colors indicate the treatments, and the crosses show the sampling points (Service Layer Credits: Source: Esri, Maxar,
GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community). E-G: Photographs of the study area. E shows a tilled
field, F shows a fallow field, and the photograph G was taken in the forest (Photos taken by Maja Schneider, March 2022).
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2.3. Visible and near-infrared spectroscopy and selection of reference
samples

All dried and sieved samples were analyzed with visible and near-
infrared (vis-NIR) spectroscopy. The samples were measured using a
Field-Spec PRO FR spectrometer (FieldSpec 4 Hi-Res, Malvern Pan-
alytical, USA) measuring 2151 wavelengths from 350 to 2500 nm with a
resolution of 1 nm. The sampling interval was 1.4 nm for wavelengths in
between 350 and 1000 nm and 1.1 nm in between 1000 and 2500 nm.
Each sample was measured three times, filling a new petri dish each
time. Each measurement consisted of 30 scans, which were averaged by
the RS3 software. Between measurements of different samples, the
contact probe was cleaned with water and ethanol and the spectrometer
was calibrated using a 100% reflectance white reference panel (Spe-
tralon, 12 x 12 c¢m, Labsphere, USA).

The spectral data helped selecting as representative as possible
subset of 57 samples (~12%), which was used for the wet chemistry
analysis. For this a principal component analysis (PCA) in combination
with the Kennard-Stones algorithm, a technique for selecting a repre-
sentative subset from a larger dataset, was conducted (Fig. 2). This al-
gorithm starts with a random sample and then successively adds samples
that are the most distant from those already chosen, based on Euclidean
distance. This ensures that the selected samples are evenly distributed
throughout the dataset (Kennard and Stone, 1969). The Kennard-Stones
algorithm was run with 2 to 7 principal components for raw spectral
data as well as spectral data which had previously been treated with two
different preprocessing procedures: the Savitzky-Golay (SG) correction
of different orders (m), with different window sizes (w) and once com-
bined with the Multiple Scatter Correction (MSC) (SG (m = 2, w = 21)).
The SG smoothing technique is used to enhance the signal-to-noise ratio
of data without significantly distorting the signal. It works by fitting
successive subsets of data points with a polynomial and using this
polynomial to estimate the smoothed value of each point, effectively
preserving the original shape and features of the signal (Savitzky and
Golay, 1964). The MSC reduces the effects of scattering by normalizing
the spectra (Isaksson and Naes, 1988).

The best performing combination of number of components, pre-
processing procedures, and window size was selected, which covered
most of the spectral variance and resulted in reference samples from all
depths and treatments and are spatially well distributed.

e Treatment
3
= Tilled
g Fallow
® Forest
‘3: s Soil Depth [em]
~ : 0-5
g g 5-15
s o 1525

PC1,51%

Fig. 2. Scatterplots generated by the PCA with different colors indicating
different treatments (A, B) or depths (C, D). The red outlines indicate the
selected reference samples.

Geoderma Regional 38 (2024) e00835
2.4. Wet chemistry analysis

Total C and total N concentrations were analyzed on a ground aliquot
with a CNS element analyzer (vario MICRO tube, Elementar, Germany).
Inorganic carbon was measured with the Scheibler method through the
dissolution of carbonate in 10% HCl-solution and the measurement of
the volume of the evolved CO,. SOC was calculated from the difference
between total C and inorganic C. To measure Permanganate-Oxidizable
Carbon (POXC) the protocol of Weil et al. (2003) modified by Lucas and
Weil (2012) was followed. For this, 2.5 g of soil were mixed with 2.0 mL
of 0.2 M KMnOy4 followed by 10 min of reaction time. Afterwards, a
Spectrophotometer (UV-1800, Shimadzu Corporation, Japan) was used
to measure the absorbance of the resulted liquid at 550 nm.

For the texture analysis, the samples were further prepared: Organic
material was oxidized by adding H205 and the samples were dispersed
with MgCls. The texture was then measured using laser radiation by the
Mastersizer 2000.

2.5. Spectral models

In a following step, the results from the spectroscopy analysis and the
wet chemistry analysis were combined to build predictive models which
helped computing the measured proxies for all samples.

We optimized preprocessing for each soil property separately using
the following techniques: SG preprocessing of different orders with
different window sizes and sometimes in combination with MSC were
used. Also, first and second Gap-Segment (GS) derivatives were applied,
sometimes in combination with a Standard Normal Variate (SNV)
correction.

The predictive models for each parameter (SOC, POXC, total N, etc.)
were calibrated with the machine learning technique Partial Least
Squares Regression (PLSR) (Wold et al., 1983). Random Forest (RF) and
Cubist (CUB) were also tested, however leading to less accurate models.
The measured values of SOC, POXC, total N etc. served as response
variables for each covariate in form of differently preprocessed spectrum
data.

For the PLSR the maximum number of components was set at 12 to
avoid model overfit. To determine the appropriate number of compo-
nents to be extracted, a 10-fold cross-validation was used (Baumann
et al., 2021; Kuhn and Johnson, 2013; Molinaro et al., 2005). Again, in
the attempt of avoiding model overfit, the number of components was
determined by choosing the lowest number of components with a RMSE
not exceeding one standard error of the lowest RMSE (Hastie et al.,
2017). The hold-out folds of the cross validation served the final
assessment of the model performance. The one-standard error rule was
also applied during the optimization of preprocessing to avoid model
overfitting.

Finally, for each measured parameter the best fitting model was
selected considering different preprocessing steps, absorbance and
reflectance, the number of PLSR components, different intervals, and
wavelength ranges. The accuracy of each model was evaluated based on
the RMSE, the ratio of performance to interquartile distance index
(RPIQ) and the coefficient of determination (Rz).

With the respective models, sand and clay were predicted while
values for silt were obtained by subtraction. This way the shares of all
three components add up to 100%.

2.6. Predictive models

The best performing models are listed in the table below (Table 1).
The PLSR reached the most accurate models for all parameters.
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Table 1
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Table describing model performance of the chosen models. For all models the mathematical procedure PLSR (partial Least Square Regression) was applied. Both
reflectance (ref.) and absorbance (abs.) were considered. Preprocessing procedures included the Savitzky-Golay filter (SG, m = order of derivative, w = window
width), gap segment derivative (GSD, m = derivative, w = window width, s = segment size) and multiplicative scatter correction (MSC). The models were evaluated
with 5 times repeated 10-fold cross-validation. Model metrics of Cross-validation are indicated as mean (ncomp = number of components, R? = coefficient of
determination, RMSE = Root mean square error, RPIQ = Ratio of Performance to Inter Quartile distance).

Mathematical Procedure Abs. /Ref. Preprocessing Interval Window Size ncomp Bias R? RMSE RPIQ
soc PLSR A SG(m=1,w=05) 3 350-2400 1 -0.11 0.88 6.45 3.83
Total C PLSR A SG (m = 1, w = 21) MSC 3 350-2400 6 0.28 0.86 6.17 2.55
POXC PLSR A GSD (m =2, w=91,5=91) 3 370-2440 2 0.00 0.46 0.21 1.49
Total N PLSR A SG (m = 1, w = 21) MSC 9 350-2430 5 0.00 0.9 0.26 3.34
PH PLSR A GSD(m=4,w=21,5=21) 3 360-2500 5 —0.00 0.8 0.11 1.73
Sand PLSR R GSD (m = 2, w = 51,5 = 51) 3 350-2490 7 -1.38 0.6 83.48 2.29
Clay PLSR A GSD(m=2,w=091,5=1) 6 350-2320 3 -0.34 0.32 25.01 1.45
2.7. Reference samples
Table 2

The best performance was found using the Savitzky-Golay (SG) filter,
first order derivative (m), window size (w) 11 (8G (m = 1, w = 11)),
whereas the first three principal components described most of the
variance (PC1: 51%, PC2: 14%, PC3: 10%). The selected samples were
then compared considering absorbance and reflectance. Looking at the
preprocessing SG (m = 1, w = 11) and the first three components, the
selected samples are best distributed among treatments as well as depths
when considering the reflectance. Lastly, the spatial distribution of the
selected samples was assessed visually and considered balanced (see
Fig. 1D).

2.8. Statistical analysis

The statistical analysis was conducted with the predicted values,
unless the sample was part of the reference sample subset, in which case
the predicted values were replaced with the measured ones.

According to the Shapiro-Wilk test, the data did not show a normal
distribution. Therefore, non-parametric tests were used for the statistical
analysis. In place of an analysis of variance (ANOVA), which assumes
that the data follows a normal distribution, the Kruskal-Wallis test was
used to examine if differences among treatments and depths could be
found. This was followed by a Dunn’s post-hoc test with the Bonferroni
correction to test which pairings show statistically significant differ-
ences (p < 0.05). Compared to other post-hoc tests the Bonferroni
correction is rather conservative and effective at reducing type I errors
(false positives) (Bland and Altman, 1995).

Measured concentrations can be turned into stocks, by multiplying
them with the measured bulk density (BD) of the respective soil depth.
This calculation however can be biased, when bulk density varies
spatially, and stocks of a fixed depth contain different soil masses.
Therefore, the equivalent soil mass (ESM) approach with fixed depth
(FD) corrections was applied. Here a reference soil mass is used to work
with the same soil masses in creating stocks for all sampling areas. With
the minimum ESM method, the reference soil mass was adjusted to the
lowest soil mass across all treatments for every layer. All other stocks
were adjusted to an equivalent soil mass (Ellert and Bettany, 1995).

Values are presented as mean followed by + standard deviation.

3. Results
3.1. Characterization of the study area

The texture shows a relatively homogeneous distribution among the
three treatments. The biggest shares are made up by silt (Tilled: 62 +
5%, Fallow: 62 + 6%, Forest 57 + 9%) followed by sand (Tilled: 26 +
6%, Fallow: 27 + 7%, Forest 33 + 9%) and clay (Tilled: 12 + 2%,
Fallow: 11 + 1%, Forest: 10 + 1%) (see Appendix 1).

pH values in the top 0-5 cm range from 7.5 + 0.2 in the forest to 7.7
+ 0.1 on tilled and fallow fields. This corresponds to the inorganic C

Table showing the most dominant species found within the vegetation classes of
herbs, grass, shrubs, and trees.

Vegetation Most Dominant Species
class
Latin Spanish English
Trees Quercus ilex Encina Holm Oak
Pinus halapensis Pino de Alepo / Aleppo Pine
Pino Carrasco
Arbutus unedo Madrono “Strawberry Tree”
Pistacia terebinthus ~ Cornicabra Turpentine Tree
Shrubs Rosmarinus Romero Rosemary
officinalis
Doryncium Escobon Badassi
pentaphyllum
Genista scorpius Aliaga Broom
Juniperus Enebro Juniper
oxycedrus
Grass Brachypodium Laston Ramoso Mediterranean False
retusum Brome
Herbs Potentilla Flor del hambre Cinquefoil
neumanniana
Plantago Llantén Menor / Ribwort Plantain
lanceolata Siete Venas
Sanguisorba Burnet
hybrida L.

concentrations of the top 0-5 cm, which are slightly lower in the forest
(31.0 = 12 g kg ') than on tilled (40.7 + 6.4 g kg™ ') or fallow fields
(39.5 + 7.6 g kg ') (see Appendix 1).

The most dominant species found within each vegetation class can be
seen in Table 2.

3.2. Carbon stocks and COz equivalent

Total carbon stocks were estimated for a depth of 0-25 cm. They
were lowest on tilled fields at 32.4 Mg ha™!. On average, from tilled to
fallow fields the stocks increased by 27.1% to 41.9 Mg ha~!. From fallow
fields to the forest treatment, the stocks increased by another 54.6%.
Here, carbon stocks were highest at 63.1 Mg ha !, In comparing the
fields, fallow fields were able to store 9.6 Mg ha~! more SOC than tilled
fields (Fig. 3).

When extrapolating the SOC stocks to the whole study area, tilled
fields, with an area of 16.3 ha, store 526.1 Mg, fallow fields, with an area
of 14.9 ha, store 624.9 Mg, and on 15.0 ha of forests, 944.4 Mg of
organic carbon are stored.

Within 15 years, fallow fields were able to gain 9.6 Mg ha~! more
carbon than tilled fields. This equals a carbon sequestration rate of 0.64
Mg ha™! y'] or + 2.76% y"].

The CO3 equivalent could be calculated from the carbon stocks. It is
highest in the forest treatment with a mean value of 231.3 Mg ha ! (+
17.9 Mg ha ) equivalent to 3462.9 Mg, for the whole study area. This is
followed by the fallow fields, with a mean value of 153.8 Mg ha ' (=
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Fig. 3. Boxplots showing the total stocks of SOC (A), POXC (B), and total N (C). The letters above the boxplots represent significant differences between the different

treatments (p < 0.05).

53.9 Mg ha 1) equivalent to 2291.3 Mg for all fallow fields. The lowest
CO; equivalent was found on tilled fields, with a mean value of 118.7
Mg ha! (& 41.9 Mg ha™!) equivalent to 1929.1 Mg on all tilled fields.

The additional amount of CO, that could be stored in fallow fields in
comparison to tilled fields corresponds to about 1047.3 € y ! or 70.3 €
ha~! y~!, according to the OECD carbon rates (27.6 € Mg™) (OECD,

2021).

Fig. 4. Boxplots showing the concentrations of SOC (A), POXC (B), total N (C), and C/N (D). Letters above the boxplots indicate significant differences among
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Total stocks at a depth of 0-25 cm were also estimated for POXC
(mean: 1.91 Mg ha ! +0.31 Mg ha’l) and total N (mean: 3.44 Mg ha!
+ 0.94 Mg ha1). The comparison between treatments shows descend-
ing values from forest over fallow to tilled fields for all parameters.
According to Dunn’s test, these differences are statistically significant
for SOC and total N. POXC stocks showed no significant differences
between tilled and fallow fields.
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different depths and treatments (p < 0.05).
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3.3. Differences along the soil profile

Highest SOC and total N concentrations were found in the top 0-5 cm
layer and the lowest in 15-25 c¢m. In the top 0-5 cm, concentrations are
significantly lower on tilled fields, followed by fallow fields and are
highest in the forest treatment. The rates of decrease in concentrations in
an increasing depth are lowest on tilled fields and highest in the forest
treatment. Here (forest treatment), all three measured layers are
significantly different from each other (Fig. 4).

Highest POXC concentrations were found in the top 0-5 cm. In those
top 0-5 cm, concentrations are significantly lower on tilled fields
compared to the forest. POXC concentrations do not show statistically
significant differences among the three measured depths in any of the
treatments.

The C/N ratio was found to be lowest on tilled fields (mean: 11.24 =
3.00), followed by fallow fields (mean: 12.47 + 2.83) and highest in the
forest treatment (mean: 14.46 + 3.03).

Looking at the top 0-5 cm, this increase is significant for all treat-
ments. In 5-15 cm only the forest treatment has a significantly higher C/
N ratio than the other two treatments.

3.4. Soil cover and most dominant vegetation

The degree of soil coverage differs among all treatments. Highest soil
covers were found in the forest treatment, followed by fallow fields,
while tilled fields were most often classified in the 40-60% covered
category followed by 20-40% (Fig. 5A-C).

The most dominant species differ among treatments, whereas tree
species can mostly be found in the forest treatments, fallow fields are
often colonized by shrubs and tilled fields mostly have a cover of herbs
and grass (Fig. 5D).

Within the three treatments, the influence of the degree of soil cover
on different soil fertility proxies were tested using the stocks of the upper
0-15 cm. An increase in stocks with an increasingly dense soil cover
could be seen for SOC, total N. However, significant differences were
only found on tilled and fallow fields. SOC and total N stocks were
significantly higher on tilled fields with a cover of 60-80% compared to
0-40%. The samples taken in spots with a cover of 80-100% were

A B C

Tilled Fallow Forest
4% 20

6%

7% 2%
Soil Coverage [%] . 0-20 [ 2040 [l 40-60 60-80 80-100

50~ Treatment
Tilled
Fallow

0- 7 . 7 - Forest

Dominant Species

Fig. 5. A: One pie chart for each treatment, where the colors indicate the
different soil coverage classes. B: Bar plot showing how often the different plant
species (Herbs, Gras, Shrubs, Pinus halapensis, Quercus ilex, Juniperus oxycedrus,
Arbutus unedo) were found as the most dominant one. The different colors show
the different treatments.
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slightly lower and did not differ from stocks measured in 0-60% covered
areas. On fallow fields there were less than three samples with a soil
cover of 0-20% which is why this class could not be compared in the
statistical tests. In the other classes a similar pattern like on tilled fields
was observed, for SOC. Total N stocks on fallow fields are significantly
higher with a soil cover of 40-60% and 80-100% compared to 20-40%.
However, stocks in areas with 60-80% soil cover did not differ from any
other soil cover classes (Fig. 6).

No significant differences in any of the treatments among any of the
soil cover classes were found for POXC stocks and the C/N ratio.

Considering the most dominant plant species, the stocks of SOC, total
N, and POXC as well as the C/N ratio were examined for a depth of 0-15
cm. In the forest treatment, the SOC and total N stocks were significantly
higher where Quercus ilex (Holm Oak) was the most dominant species
than where Pinus halapensis (Aleppo Pine) was the most dominant spe-
cies. When considering the stocks over the whole depth (0-25 cm) these
differences can no longer be seen (Fig. 7).

4, Discussion
4.1. Predictive models based on vis-NIR spectroscopy

In this study, as in works by Fernandez et al. (2016), Levi et al.
(2020), Da Silva-Sangoi et al. (2022), Serrano et al. (2021), and Zornoza
et al. (2008), the vis-NIR approach was found to be an effective method
in evaluating soil characteristics. The best predictive model for SOC was
obtained by using partial least square regression (PLSR) and the
Savitzky-Golay (SG) preprocessing. This is in accordance with findings
reported by Da Silva-Sangoi et al. (2022), Moura-Bueno et al. (2019) and
Vasques et al. (2008). The models built for SOC were found to be per-
forming well, with R? of 0.88, RMSE of 0.64% and RPIQ of 3.83, Similar
R? values were reported by Chang and Laird (2002) (R% 0.89, RMSE:
0.036%), Leone et al. (2012) (R* 0.84-0.93, RMSE: 0.34-1.74%), and
Wetterlind et al. (2010) (R% 0.9, RMSE: 0.28%).

Of all predictive models, the ones for POXC were the least accurate
(R%: 0.46, RMSE of 0.21, RPIQ of 1.49). In contrast, Calderdn et al.
(2017) achieved good predictions of POXC using PLSR basing on NIR
spectral data, with R? 0.66-0.76 In their research, predictions of POXC
were even more accurate than for SOC, with slightly higher accuracy
using MIR (R?0.77-0.81) as compared to NIR.

Since the bias (see Table 1) was for all soil properties very low, the
spectral models did not show any systematic under- or overestimation
but rather increased the variability (indicated by RMSE) in the measured
values. The additional error introduced by the spectral models would
theoretically reduce the statistical power and make significant differ-
ences between treatments less probable. On the other hand, the appli-
cation of spectroscopy increased the sample size drastically which would
theoretically improve the statistical power. We conducted statistical
tests with all samples and only with the reference samples, leaving out
the step of predicting any data (see Fig. 8). The combination of the three
land cover categories and the three soil depths results in nine different
treatments that can be compared in 36 possible combinations. Looking
at SOC for example, 24 out of 36 possible treatment combinations
showed a statistically significant difference. However, considering only
the reference samples, 5 combinations showed a statistically significant
difference. This demonstrates how by including the predicted values
basing on the spectroscopy data, and thus increasing the sample size, the
number of significant pairings increased dramatically. We conclude
therefore, that the effect of the higher sample size overcompensated the
reduced measurement accuracy and led to an increased statistical
power.
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Fig. 6. Boxplot with jitter showing the stocks within the top 0-15 cm layer of SOC (A), POXC (B) and total N (C). The dots show the sample size. The X position of
each dot was randomly computed to assist the readability. The letters above the boxplots represent significant differences between the different soil cover classes
within the same treatment (p < 0.05). The ‘~ sign appears with a sample size lower than 3 and indicates the lack of statistical comparability.

4.2. Soil organic carbon sequestration rates post agricultural land
abandonment

In comparing tilled and fallow fields, an addition of 9.55 Mg ha ™"
SOC was found. Over the 15-year period in which the fallow fields were
able to recover after the last bulldozing, while tilled fields were further
cultivated, this corresponds to a yearly sequestration rate of 0.64 Mg
ha !y !and + 2.76% y . This is slightly higher than the average SOC
sequestration rate of +2.3% y~! which Bell et al. (2020) identified from
their review of previously published study sites and the sampling of
three new sites in northeastern Spain. Both higher and lower seques-
tration rates were found by Novara et al. (2017), who worked with
previously published field studies in addition to collecting their own

samples in Sicily. They reported increases in SOC stocks of the upper
0-30 cm soil layer after croplands were abandoned for 20 years with an
average of 0.45 Mg ha™! y™! of SOC. Their values ranged from 0.27 Mg
ha 'y !to 1.34 Mg ha™* y’l, depending on soils and bioclimate. One
possible explanation for the slightly higher sequestration rates in our
study site as compared to the average rate found by Bell et al. (2020) is
the lithology. Soils on calcareous lithologies, as in Sierra Estronad, were
found to have higher OM accumulation rates post-abandonment as
compared to marly lithologies (Robledano-Aymerich et al., 2014).
Furthermore, our study site lies within the range of annual precipitation
rates, which according to Bell et al. (2020) are optimal for carbon

sequestration.
However, also higher sequestration rates were reported within a
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Dominant Species

Fig. 7. Boxplot showing the SOC stocks within the top 0-15 cm layer of the forest treatment. No effects were found considering the whole depth of 0-25 cm. The
letters above the boxplot represent significant differences with different dominant species (p < 0.05).
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Fig. 8. Bar plot showing the number of statistically significant differences
among depths and treatments when using all samples (n = 483) in yellow and
when only considering the reference samples (n = 57) in blue. (For interpre-
tation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Mediterranean climate, for example by Tommaso et al. (2018), who
found sequestration rates of 1.3 Mg ha™! y! in a 14-year period in a
depth of 30 cm in the Alps of Italy. The fact that the sequestration rate,
measured in our study, is lower, could be due to the high impact culti-
vation through bulldozing, which depleted soils and most likely slowed
down the revegetation process of both tilled and fallow fields (Bonet,
2004; Robledano-Aymerich et al., 2014).

However, it is important to note that the measured sequestration rate
is not expected to last infinitely. De Baets et al. (2013) argue that C

accumulation is rapid over the first 10-50 years after abandonment,
then stabilizing after that. As the current shrub vegetation on fallow
fields might eventually evolve into young and finally mature forest, SOC
stocks are likely to stabilize. With a SOC sequestration rate of 0.64 Mg
ha! y 1, it would take 33 years for fallow fields to reach SOC stocks like
the ones found in the forest of Sierra Estronad.

4.3. Development of vegetation cover and soil properties post agricultural
land abandonment

All fields in the study area experienced very high intensity in-
terventions (bulldozing) and some of the fields were tilled for 19 years
afterwards. On those fields many spots were so far degraded, that even
after a 5-year recovery period no vegetation could establish. By
recording small spatial heterogeneities in soil cover within one treat-
ment and comparing them to the SOC and total N stocks, it could be
shown, that an increased soil cover did correspond to higher SOC and
total N stocks. Similarly, also on fallow fields, areas were observed,
where a vegetation cover was hardly able to establish, however fewer as
on tilled fields. Also here, the SOC and total N stocks tend to increase
with an increasing soil cover leading to overall significantly higher SOC
and total N stocks. This could be due to higher erosion rates on tilled
fields as compared to fallow fields. In a similar environment, Cerda et al.
(2018) compared two treatments in eastern Spain, where all plots were
tilled for two years and in one treatment, plots were abandoned after-
wards. Even though, at first, erosion rates increased after abandonment,
already after two years runoff rates were lower on abandoned fields and
after nine years abandoned fields had 21 times less sediment yield than
the continuously tilled fields.

Furthermore, it can be assumed, that the overall denser vegetation
cover, observed on fallow fields, led to an increased OM input from leaf
litter (Kalbitz and Kaiser, 2008; Zhao et al., 2015). This can also be seen
in SOC and total N concentration which increased from tilled to fallow
fields and decreased with increasing soil depth. The differences between
treatments were highest in the topsoil layer. La Mantia et al. (2013)
explained how the litter input “causes the upper mineral soil layers to
respond more rapidly than deeper layers to changes in aboveground C
and N inputs” (La Mantia et al., 2013, p. 243).

Even though labile SOC has been found to be more responsive to
management change than total SOC (Rocci et al., 2021) difference in
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POXC concentrations could not be found comparing tilled and fallow
fields. Trigalet et al. (2016) found an initial increase of labile carbon
along secondary succession on abandoned croplands in southern Spain.
This increase however only occurred in the first 10 years after aban-
donment and followed the colonization by grasses. When grasslands
turned into shrublands approximately 22 years after abandonment, “the
particulate organic matter concentration decreased again to its initial
level under cropland” (Trigalet et al., 2016, p. 19). With a similar
development, this decrease in labile carbon, including POXC, could have
already taken place on the fallow fields, which were most often covered
by shrubs. Also, in this study, the predictive models for POXC had a
lower performance than the ones for SOC and total N, leading overall to
only few statistical significances (see Fig. 8).

Asin Dunjo et al. (2003), C/N ratios were higher than 10, the optimal
ratio for OM incorporation, and increased from tilled to fallow fields and
the forest. A similar trend was also observed by Bell et al. (2021), Navas
etal. (2012), and Deng et al. (2013) who all reported an increasing C/N
ratio with time after land abandonment. This could be explained by the
different vegetation coverages, whereas from tilled fields over fallow
fields to the forest treatment the number of woody plants increase and so
do the input of woody materials and dead leaves, which are known to
increase the C/N ratio and slow down decomposition rates (Akratos,
2017). This would also explain why the difference among all treatments
can only be seen in the top 0-5 cm, where plant litter is most important.

Plant litter also seems to have influenced the SOC and total N stocks
within the upper 0-15 cm which were significantly higher where
Quercus ilex (Holm Oak) was the most dominant species than where
Pinus halapensis (Aleppo Pine) was the most dominant species. Contrary
to these results, D' Orazio et al. (2014) found higher SOC stocks in soils
underlying P.halapensis. However, they also reported faster decompo-
sition rates of litters from P.halapensis as compared to Q.ilex litters. This
can also be seen in the slightly higher C/N ratio found under Q.ilex,
which was however not significant. Due to the therefore larger litter
layer under Q.ilex, this could have led to more litter being sampled here,
resulting in higher SOC values measured in the topsoil, while no effects
were found considering the whole depth of 0-25 cm.

4.4. Management implications

At the national level of Spain, one important driver of recent land
abandonment was the EU CAP policy, which supported agricultural land
being set-aside through subsidies. In our study area, due to low pro-
ductivity and low potential for long-term farming, this led to “on and off
farming”, which showed to have a negative impact on soil fertility. On
tilled fields, even after five years in which the tillage was terminated,
very few plants were able to colonize the area, resulting in a very sparse
soil cover. This led to significantly lower SOC and total N stocks than in
fallow fields, which were not cultivated since the last high impact
intervention 24 years ago. This supports the argument of Van Leeuwen
et al. (2019), that such policies like the set-aside policy of the EU CAP
can expose areas to a severe risk of erosion. Therefore, the set-aside
policy should have been accompanied by preventive measures making
it impossible to reopen overgrown land for crop production.

As an alternative, low intensity grazing could be introduced. This
would allow for a management in which the complex and traditional
cultural landscapes of the Mediterranean mountain areas, with pastures,
shrublands and forests, could be maintained (Lasanta et al., 2020). Such
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a mosaic landscape could promote “biodiversity, soil quality, carbon
sequestration and the availability of agricultural and livestock resources
to keep the villages alive™ (Lasanta et al., 2020, p. 2841). In terms of
carbon storage, land abandonment followed by passive management
(secondary succession), or active management (such as reforestation) is
the most effective strategy (Bell et al., 2020). Thus, options to improve
the set-aside policy needs to be considered, regarding the additional
amount of CO; that could be stored in fallowed fields and their monetary
value 70.3 € ha! y“l, based on the OECD carbon rates (27.6 € Mg’l)
(OECD, 2021), as well regarding the other landscape effects of fallowed
fields such as low-intensity grazing, increased biodiversity and vegeta-
tion cover and climate mitigation potential.

5. Conclusion

In this study, the impact on soil fertility proxies of policy-driven land
management strategies on abandoned marginal lands in northern Spain
have been investigated. On a small scale but with a high spatial reso-
lution, the interdependence of soil fertility proxies (SOC and total N) and
the degree of vegetation cover could be shown, with higher SOC and
total N stocks on fields with higher vegetation covers.

Data on soil properties was gained through wet chemistry analysis
and extended through models basing on vis-NIR spectroscopy data,
combined with multivariate data analysis. This is a low-cost approach
which still allows for a large sample size to be analyzed. As in many
other studies, this method was found to be very effective, leading to
reliable predictive models and a higher statistical power gained through
a large sample size.

A local carbon sequestration rate of 0.64 Mg ha™! y~! following the
secondary succession on former agricultural fields could eventually lead
to the whole study area storing 2'909.9 Mg of SOC equaling 10'668.8 Mg
of CO;3 on 46.1 ha of forest. In terms of soil fertility, it can therefore be
concluded, that policies which encourage land abandonment but ask for
former agricultural fields to be kept from revegetation, do in fact foster
the degradation of soils. The maintenance of a vegetation cover should
be pursued, to hinder erosional processes and promote carbon seques-
tration, thus contributing to soil fertility and climate change mitigation.
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Appendix 1. Graph showing the correlations between pH, inorganic C, clay, silt, and sand. Inorganic C concentrations are shown in g
kg~ Clay, silt, and sand are shown in percentages. The colors indicate the different treatments. On the bottom left there are scatter
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plots, separated through diagonally arranged density plots from the Pearson Correlation coefficients listed on the top right
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Appendix 2. Pie chart showing the major elemental components measured in the XRF Analysis. The shares in this plot do not add up to
100% since there were 49 more elements found which make up the remaining 58%

Na
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Part IV Appendices

Appendix I: Reflections
6. Data that were not used in publications and reasons for it

6.1. How to compare changes in soil organic carbon

There are different methods to compare SOC measurements over time. They can be assessed
as concentrations, as stocks calculated with a fixed depth (FD) or as stocks calculated with an
equivalent soil mass (ESM) approach (see Paper 1 as well as Lee et al. (2009)). The comparison
of SOC based on a fixed depth approach is not so often chosen because changes in bulk density
and changes in SOC carbon cannot be distinguished. Nevertheless, changes in SOC stocks
based on a fixed depth approach are still published in research (Bell et al., 2021). Most SOC
changes in literature are compared on a concentration basis because the assessment of soil
bulk density is quite arduous. Though, also for concentrations, the bulk density in the field has
an influence because the bulk density is the factor that determines which soil layers are
reached when a soil auger is pushed into the soil. Coring soil at a fixed depth brings, depending
on the bulk density more or less soil from the lowest layer into the soil sample which

influences in the end the mean concentration in the sample.

In this section | show the results from Paper 1 for SOC (Figure 3) and POXC (Figure 4) based on
the three different possibilities to report changes of SOC over time. The concentration and the
ESM stocks approach are relatively similar while the FD stocks would have drawn a completely
different conclusion. With a full depth approach, the FD approach results in a significantly
higher increase in the DCC compared to the PSC treatment on fields A and B. Field D shows
significantly lower changes in FD stocks for SOC and POXC in the DCC compared to the PSC
treatment. These results based on FD stocks could be interpreted by the higher cover crop
aboveground biomass input in the DCC plot on fields A and B compared to the other fields.
However, examining the changes based on concentrations or ESM stock we see that the
changes with the FD approach were mainly bulk density driven. The results (significant
differences) between the concentration and the ESM approach were only different on field B
for SOC and field C for POXC. On all other fields the concentration and the ESM approach
resulted in the same significant differences between treatments. One could argue on the one
hand, that the ESM approach is superior to the concentration approach because bulk density
is considered but on the other hand bulk density is a relatively rough measurement with a high
variation and therefore it might also be a correction that brings additional error sources. Thus,
the ESM approach is superior when the focus lies on stock changes because with a

concentration approach one has to estimate a bulk density or take the bulk density of one

101



sampling time which probably introduces a bigger error than with the ESM approach. For
significant differences between treatments or over time, both the ESM as well as the
concentration approach, deliver reliable results even though they might have a slightly

different statistical outcome.
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Figure 3: Changes in soil organic C (SOC) in 0-20 cm soil depth expressed as stocks calculated with a minimum equivalent soil
mass (a), as concentrations (b) and as stocks calculated with fixed depth (c) over time relative to sampling t0. For every field
A-F the aboveground cover crop C input in the double cover cropping (DCC) treatment is given in the title. Significant
differences between treatments were tested with a t-test and are indicated with the codes: *** < 0.001, ** <0.01, *< 0.05.
Significant changes within each treatment over time are indicated with letters for both treatments separately and were
tested with a paired t-test. Error bars represent standard errors.
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Figure 4: Changes in permanganate oxidizable C (POXC) in 0-20 cm soil depth expressed as stocks calculated with a
minimum equivalent soil mass (a), concentrations (b) and stocks calculated with fixed depth (c) over time relative to

sampling t0. For every field A-F the aboveground cover crop C input in the double cover cropping (DCC) treatment is given in
the title. Significant differences between treatments were tested with a t-test and are indicated with the codes: *** < 0.001,

** <0.01, *< 0.05. Significant changes within each treatment over time are indicated with letters for both treatments
separately and were tested with a paired t-test. Error bars represent standard errors.
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Appendix |: Reflections

6.2. Prediction of soil texture with vis—NIR spectroscopy

The cover crop paper and the spectroscopy paper only include an average soil texture per field
in the description of the dataset. These data were gained with the improved integral
suspension pressure method (ISP+), which is in very good agreement with the standard
pipette method (Durner and Iden, 2021). Nevertheless, at every second dGPS-referenced
point of the first soil sampling, grain size was measured with the samples of 10-20 cm soil
depth with the laser diffraction analysis (LDA) on a Mastersizer 2000. Although, LDA is the
standard method in the laboratory of the Institute of Geography at the University of Bern, its
results differ normally from the standard pipette method (Taubner et al., 2009). | also made
this observation and concluded that the LDA substantially overestimated the silt fraction and
underestimated the clay fractions (Table 2). | used the LDA measurement to estimate the
variability of soil texture in the field (see Figure 1 and Table S2 (supplementary) in Paper 2)

but did not present spectral models predicting soil texture.
Table 2: Mean percentages of sand, silt and clay measured with the integral suspension pressure method (ISP+) and laser

diffraction method (LDA). For the ISP+ method one sample was analyzed per field while with LDA 20 d-GPS referenced samples
were analyzed per field and the minimum and maximum values are presented in brackets.

Field Sand (%) Silt (%) Clay (%)
ISP+ LDA (min, max) | ISP+ LDA (min, max) | ISP+ LDA (min, max)

A 50 44 (35, 53) 29 47 (39, 54) 21 10 (8, 11)

B 44 43 (38, 50) 35 48 (42, 52) 20 9(7,11)

C 27 29 (23, 39) 35 57 (49, 61) 38 14 (12, 17)

D 28 26 (21, 34) 44 62 (55, 66) 28 12 (10,14)

E 30 25 (13, 29) 48 65 (60, 74) 23 11 (10, 13)

F 39 37 (25, 51) 43 54 (42, 63) 18 9(7,12)

| built spectral general models for sand, silt and clay with 20 reference samples per field and
a total of 120 samples. The preprocessing and the model metrics of the final chosen models
for sand, silt and clay can be seen in Table 3. | evaluated the models in five times repeated 10-
fold cross-validation. Very similar preprocessing approaches (gap segment derivative) resulted
in the best model performance which makes sense because the three grain size classes depend

strongly on each other.

Table 3: Description of applied pre-processing and model performance of the final chosen models for sand silt and clay. All
models were developed with partial least square regression and evaluated with 5 times repeated 10-fold cross-validation.
RMSE = Root mean standard error, RPD = ratio of RMSE to standard deviation, Refl. = Reflectance, GSD = Gap Segment
Derivative (m = derivative, w = window width, s = segment size)

Range of Calibration Cross-validation
Field | Property | wavelength Latent n RMSE RMSE Model
- i i 2 2
/ interval Pre-processing variables R (%] RPD R (%] RPD performance
Sand 370-2500 /1 | Refl., GSD (m =2, w =21, s = 21) 6| 120|0.82 3.93 2.35|0.77 4.45 2.05 | accurate
A Silt 350-2500/ 1 | Refl.,, GSD (m =2, w =21, s=21) 6| 120|0.84 3.16 2.48 | 0.79 3.61 2.18 | accurate
Clay 350-3500/2 | Refl.,, GSD (m =2, w =21, s=21) 6| 120 0.78 0.95 2.13 | 0.74 1.03 1.99 | approximate

105




The results show that soil texture can be well predicted across sites (see Table 3 and Figure 5).

Based on RPD, all three models showed an accurate (sand and silt) or approximate (clay)

model performance. However, the plotted models (Figure 5) show, that the models mainly

differentiate the variability between fields but not really the variability within one field. | did

not do field-specific models for soil texture because 20 samples per field was too little for an

adequate model procedure.
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Figure 5: Spectral models for sand, silt and clay with 20 samples per field (total 120). Preprocessing was for all models a gap
segment derivative. Partial least square regression was used as a modeling approach and all models were evaluated with five
times repeated 10-fold cross-validation for the selection of the optimal number of latent variables (ncomp).
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Appendix |: Reflections

6.3. Penetrometer Resistance

The original idea to measure penetrometer resistance was to have a fast and cheap indicator
for soil structure that could be applied in a high spatial and temporal resolution. At every d-
GPS referenced sampling point and at all sampling times penetrometer resistance (PR) was
measured in three replicates per point. A hand-held electronic penetrometer (Penetrologger
06.15.SA, Royal Eijkelkamp Company, Netherland) equipped with a 60° cone of 1 cm? basal
area was pushed into the soil at an approximate speed of 2 cm s. The device provides a
penetrometer resistance per cm of soil depth. To smooth the data, depth segments of 5 cm
were represented by the median of the five measurements in it. The median instead of the
mean was taken to exclude the extreme values that were reached when the cone grazed a
stone. The mean of the medians per 5 cm segments in the top 20 cm (Figure 6) showed only
very limited effects of the two treatments. On Field A the PR was over all sampling times
consistently higher in the PSC compared to the DCC plot which was probably mainly an effect
of the plot characteristics than the treatment itself. However, the big challenge was to
compare the measurements over time because PR is strongly and nonlinearly related with the
water content which remains an unsolved problem (Schwab et al., 2017). The little influence
of the treatments as well as the difficulty to compare different timepoints were the reasons

why these data were not further analyzed.
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Figure 6: Mean penetrometer resistance in 0-20 cm soil depth. The original data with a penetrometer resistance per cm of soil
depth were aggregated with mean of the medians in 0-5, 5-10, 10-15 and 15-20 cm. Error bars represent the standard error
of the 13 measurements in the PSC and the 26 measurements in the DCC plot
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