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Abstract
Methods and algorithms for undifferenced multi-GNSS global network

processing and applications to satellite geodesy
by Emilio José Calero Rodríguez

The constant monitoring of the Earth is a key factor to understand the physical
processes that our planet undergoes. For many of such processes, the scientific
community agrees on their human-induced nature, and preventing (or, ultimately,
reacting to) them is vital to keep the human footprint under control (or, at least, to
avoid catastrophic hazards).

The global geodetic techniques play an important role in this context, as they
permit us to observe the Earth as a whole, beyond political barriers. In particular, ob-
servations from artificial satellites have become a mayor contribution in this domain,
being the Global Navigation Satellite System (GNSS) constellations the backbone
for most of the scientific satellite geodetic missions, since they help to define the
terrestrial frame upon which the Earth measurements are referred to. Such an impor-
tant contribution to metrology is entangled with the GNSS contribution to geodesy
through the provision of coordinates for fiducial sites (Earth’s shape) as well as the
orientation of the Earth in space.

The present dissertation gives, on the one hand, an exhaustive description of the
implemented GNSS processing strategy using undifferenced observations, including
a tailor-made algorithm to cope with the so-called carrier phase ambiguity resolution
problem. The reader will find this novel algorithm especially useful when large
networks of ground stations are involved. On the other hand, there are some chapters
intended to give a deep insight into the GNSS capabilities in geodesy, with particular
focus on geodynamics. Especially, geocenter motion, Earth’s orientation and long-
wavelength time-varible gravity field recovery. This latter subject has received very
little attention in the dedicated literature and, hence, grants scientific value to the
present work.

The comprehensive characterization of the GNSS capabilities in geodesy is a
mandatory preceding step for a more ambitious objective: To rigorously combine ob-
servations from different geodetic techniques, leveraging their individual advantages,
while diminishing their lacks. Particularly, the estimation of common geodynamic
parameters (Earth’s rotation, geocenter motion and time-variable gravity field) dur-
ing the reduction of all the satellite-based observations could act as a global tie,
strengthening the geodetic solution, which, in turn, closes the cycle by stabilizing the
terrestrial frame.

https://www.unibe.ch/index_eng.html
https://www.philnat.unibe.ch/index_eng.html
https://www.aiub.unibe.ch/index_eng.html
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Dissertation Overview
The present dissertation has been envisaged to equally distribute theory, state-of-the-
art review and practical aspects within the following seven chapters:

Chapter 1: Introduction to the concepts underpinning satellite geodesy
An introduction to the principles of satellite geodesy, contextualizing this dis-
sertation and including basic ideas of time, Earth’s rotation, gravity field and
satellite orbits. These discussions aim at understanding the results presented in
the remaining chapters from a fundamental point of view.

Chapter 2: Theory of parameter estimation for GNSS processing
This chapter introduces the basis of parameter estimation, pointing out very
specific results which are of special interest in the frame of this work.

Chapter 3: Global network GNSS solutions using undifferenced observations
Here, we provide an overall view of the GNSS technologies. Special attention
is paid to the different terms that make up the observation model and their
parameterization. Additionally, we describe the adopted GNSS processing
schemes, which are based on undifferenced observations. The derived results
are evaluated and discussed.

Chapter 4: Global GNSS ambiguity resolution for undifferenced processing
This chapter describes a novel ambiguity resolution strategy developed and
implemented in the context of this dissertation. The chapter begins with some
basic theoretical and practical notions and elaborates on the implemented algo-
rithm for global ambiguity resolution, along with its validation and technical
considerations.

Chapter 5: Review of the GNSS capabilities to derive geodynamic parameters
This chapter provides an overview of the current multi-GNSS capabilities for
estimating geodynamic parameters. It begins by presenting the ideas and
findings from existing literature and then exemplifies them through numerous
exercises.

Chapter 6: The role of the time-variable gravity field in GNSS network solutions
This chapter quantifies the influence of the time-variable gravity field in GNSS
orbits throughout various experiments. It includes the estimation of GNSS-
based long-wavelength gravity signals, as well as the general impact that these
signals have over the geodetic network solutions.

Chapter 7: Summary, conclusions and outlook
This chapter concludes the dissertation, stressing the achievements along with
the present challenges.
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Introduction to the concepts under-
pinning satellite geodesy

1.1 Introduction

The history of geodesy (KC and Acharya, 2023) starts around 600 BC with Thales
of Miletus, who conjectured the Earth as a flat disc floating in an infinite ocean.
Unfortunately for the flat Earth society, that view did not last long, since Pythagoras
and his school (580-500 BC) hypothesized a spherical Earth, for which Eratosthenes
of Alexandria (250 BC) was able to quantify its radius by looking into the shadow
cast by a vertical rod in two distant cities located at the same meridian. Centuries
of scientific development, borne by the brightest minds, especially after the modern
era, have forged today’s definition of geodesy, which is customarily introduced by
quoting the German geodesist Friedrich Robert Helmert: “Geodesy is the science of
the measurement and mapping of the Earth’s surface”. The mapping of the Earth’s
surface directly translates into the knowledge of the Earth’s shape, which depends
on its mass distribution, i.e., its gravity field. Additionally, a global view of the Earth
is only possible w.r.t. an external (extraterrestrial) reference (e.g., quasars), for which
the Earth’s orientation is needed. In short, it is said that the three pillars of geodesy
are the shape, gravity field and orientation of the Earth (Fig. 1.1, Plag and Pearlman,
2007).

Geodesy

Earth’s
orientation

Earth’s
gravity

Earth’s
shape

FIGURE 1.1: Components of geodesy

Geodesy itself belongs to the domain
of basic sciences and there is a mul-
titude of textbooks compiling its prin-
ciples (e.g., Hofmann-Wellenhof and
Moritz, 2006). On the other hand, satel-
lite geodesy comprises geodetic solu-
tions which are derived from measure-
ments of artificial satellites and, depend-
ing on how we approach to the subject,
it may belong to the domain of basic
and/or applied sciences. In particular,
if we focus on the description of the or-
bits from the basis of orbital mechanics,
then it belongs to the former group (e.g.,

Kaula, 2013). Likewise, if we pay more attention to the processing of the observations,
then it belongs to the latter group (e.g., Seeber, 2003), which is closely aligned to
the work carried out throughout this dissertation. Consequently, this chapter has
been envisaged to give a wider, more fundamental, context to the results presented
in subsequent chapters.



2

Satellite geodesy is in the scope of space geodesy, which includes all those tech-
niques whose observations are derived from any extraterrestrial source (e.g., the
Moon or extragalactic quasars). These techniques give an external view of the Earth
and are thus employed to realize the most precise global terrestrial frames upon which
global measurements of all the Earth sciences (navigation, hydrography, oceanog-
raphy, etc.) are referred to. Despite the fact that terrestrial frames are defined by
the coordinates of a number of fiducial sites (shape of the Earth), the reduction of
space geodetic observations generally requires the orientation of the Earth and, for
the processing of satellite data, its gravity field. Therefore, the boundary between
terrestrial frames and geodesy itself faints.

This chapter has been divided into a total of seven sections, including this in-
troduction. The following section describes some of the infrastructure and services
used by the geodetic community and stresses its present and future challenges. The
treatment of time for high precision applications (such as satellite geodesy) is a topic
that often leads to confusion and, hence, it is convenient to revisit some of its notions
in section 1.3. Afterwards, sections 1.4 and 1.5 succinctly deal with the fundamentals
of the Earth’s rotation and gravitational potential, covering the minimum underlying
theory needed to contextualize the results presented in chapter 5 and chapter 6, re-
spectively. Since the trajectory of any satellite is best described by orbital mechanics,
some insight into this matter is given in section 1.6. The seventh section concludes
the chapter.

1.2 Geodetic community

The International Association of Geodesy (IAG), whose origin dates back to 1862,
is the scientific organization devoted to the advancement of geodesy (Altamimi
and Gross, 2017). It is an association of the International Union of Geodesy and
Geophysics (IUGG) and fulfills its objectives by means of different operating compo-
nents, including services to process observations from the four main space geodetic
techniques, namely (see Fig. 1.2):

• The Global Navigation Satellite System (GNSS) technique, whose associated
service is the International GNSS Service (IGS, Johnston et al., 2017). It has
an important space segment consisting of several satellite constellations trans-
mitting radio frequency signals. These signals are tracked by (either ground,
airborne, or spaceborne) dedicated receivers that correlate them against internal
signal replicas, resulting in a one-way signal transfer time measurement.

• The Satellite Laser Ranging (SLR) technique, whose associated service is the
International Satellite Ranging Service (ILRS, Pearlman et al., 2019). Its ground
segment consists of a number of laser ranging stations. The fundamental
observable is the round trip time of flight of a transmitted laser pulse emitted
by one of these stations and reflected back by a target satellite.

• The Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)
technique, whose associated service is the International DORIS Service (IDS,
Willis et al., 2016). Its ground segment consist of a number of well-distributed
stations transmitting radio frequency signals towards space. When these sig-
nals are collected by dedicated receivers equipped on some orbiting satellites, a
doppler-shift measurement is generated.
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VLBI principle

DORIS principle
SLR principle

GNSS principle

FIGURE 1.2: Geodetic techniques representation

• The Very Long Baseline Interferometry (VLBI) technique, whose associated
service is the International VLBI Service (IVS, Nothnagel et al., 2017). This
technique relies on a number of ground stations tracking radio frequency signals
emitted from distant extraterrestrial sources (such as quasars). When two
stations separated thousands of kilometers apart track the same source, the
difference in signal propagation time between them can be measured, which
results in the fundamental observable of this technique.

The activities of the different services are performed by analysis centers (ACs). In
particular, it deserves special mention the Center for Orbit Determination in Europe
(CODE), which is the IGS AC hosted by the Astronomical Institute of the University
of Bern (AIUB), where this dissertation has been carried out.

The Global Geodetic Observing System (GGOS) component of the IAG gives a
common framework for the many IAG services, hence forming a unified observing
instrument. It coordinates international geodetic activities, promotes the improve-
ment of the geodetic infrastructure, bridges the scientific activities with society, and
serves as the expertise hub in the field.

Each of the aforementioned techniques has its own advantages and drawbacks.
VLBI, for instance, is the only one linking the celestial reference frame (CRF)1, defined
by the coordinates of some fundamental quasars, and the terrestrial reference frame
(TRF), defined by the coordinates of fiducial sites, from a geometrical point of view.
Because of that, VLBI is able to locate the Earth’s pole w.r.t. the inertial space, but it
cannot sense the geocenter motion or the gravity field. In contrast, these properties can

1Although it is not completely rigorous, in this context we will interchangeably use celestial frame of
reference and inertial frame of reference. It is also important to point out here the difference between
reference coordinate systems and reference coordinate frames: The former refer to the theoretical
definition of its fundamental properties (e.g., scale, origin and orientation, in case of terrestrial systems),
whereas the latter to its practical realization.
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be derived to a certain extent by the other techniques, which are satellite techniques
connected to inertial space by means of the laws of celestial mechanics. Nonetheless,
they only have a limited access to those parameters (depending on the orbital regime
and geometry) and are insensitive to the absolute orientation of the Earth around its
rotation axis. Additionally, every technique is subject to technique-specific systematic
errors.

To seize the individual strengths of the different geodetic techniques, combined
inter-technique solutions are used for the realization of the International Terrestrial
Reference Frame (ITRF, which is the (most precise) internationally accepted standard
for a TRF2), maintained by another IAG service: The International Earth Rotation
and Reference Systems Service (IERS3). The most recent realizations of this frame
are ITRF2008 (Altamimi et al., 2011), ITRF2014 (Altamimi et al., 2016) and ITRF2020
(Altamimi et al., 2023), where the last four digits indicate the year corresponding to
the latest assimilated observations. The IERS also provides conventions (the so-called
IERS Conventions, Petit, Luzum, et al., 2010) to guarantee the consistency between
the many different products generated by the community. They include definitions,
background models and procedures to describe the Earth’s rotation, the gravitational
potential and the propagation of signals, among others. Of course, the content of the
IERS Conventions and the references thereof exceed by far the theoretical aspects that
are treated in the following sections and should be considered as the basis for any
practical implementation in geodesy.

The technique-specific solutions involved in the ITRF realization consist of time
series of the coordinates of fiducial sites and parameters describing the orientation
of the Earth. During the combination process, local ties (i.e., measurements between
instrument reference points of independent geodetic techniques, derived from local
surveys), local constraints in the velocity field of nearby stations, as well as a global
ties for the rotation of the Earth are introduced to connect the different techniques.
Some fundamental frame properties are, however, defined by technique-specific
solutions: The scale is aligned to the SLR and VLBI solutions (although Villiger et al.,
2020 show that the scale can be derived from GNSS solutions, too), and the origin
to the SLR solutions. On the other hand, the orientation is defined by imposing
no-net-rotation w.r.t. the previous ITRF realization. Altogether, Altamimi et al., 2023
stipulate that the uncertainty of the frame origin and its temporal evolution are about
5 mm and 0.5 mm/yr, respectively. In spite of such a good performance, it does not
suffice the requirements defined by the community of 1 mm for the frame positions
and 0.1 mm/yr for its velocities, as demanded by scientific studies of sea level change
(Plag and Pearlman, 2007). To homogeneously enlarge the SLR and VLBI networks,
as well as to develop new technologies could improve the performance of future ITRF
realizations.

Besides those costly investments, there are still fundamental open points that, if
properly addressed, could also convey enhancements to the ITRF realization. They
are related to the combination process itself, which misses important physical ties
common to the various techniques. For example, Herrera Pinzón, 2023 explores local
tropospheric and clock ties between co-located GNSS and VLBI sites. It could be even
more interesting to also consider global ties, such as the geocenter motion and the
gravity field, which are common to the satellite techniques.

A prerequisite for such a rigorous combination that accounts for those global
ties is to fully characterize the capabilities of the different techniques in the different

2Analogously, the International Celestial Reference Frame (ICRF) is the most precise internationally
accepted standard for a CRF. It is maintained by the International Astronomical Union (IAU).

3http://www.iers.org

http://www.iers.org
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domains, which justifies the effort that this dissertation devotes to the understanding
of GNSS-based geocenter motion and time-variable gravity field solutions in chap-
ter 5 and chapter 6, respectively. Additionally, many scientific satellites (typically
placed at low Earth orbits, or, LEO) are equipped with geodetic (high-performance)
GNSS receivers, allowing to integrate them as orbiting stations in the global GNSS
processing. Since these satellites are seen as stand-alone stations (i.e., it is not common
to form baselines between them), it is preferred to develop GNSS processing schemes
based on undifferenced observations, being this the driving element for chapter 3
and chapter 4.

The geodetic community is aware of the necessity to connect all the space geodetic
techniques together. This is the reason why it has been planned the mission GENESIS
(Delva et al., 2023), which will co-locate the instruments for those techniques into
a satellite platform. Thanks to the availability of very precise calibrations between
their reference points, it is expected to gain an unprecedented insight into the inter-
technique biases and systematics.

1.3 Understanding time

Time t

Time t +
1 sidereal day

Time t +
1 universal time

day

FIGURE 1.3: Sidereal and universal time repre-
sentation

The necessity to precisely measure time
is a prerequisite for most of the sciences
(including, of course, satellite geodesy)
in order to link the observational data
with physical events. Intuitively, time
can be measured by counting the cycles
of a periodic process w.r.t. a given ref-
erence. The stability of such a periodic
process will thus define the stability of
the time scale.

The topic of time has been covered
by countless authors. In particular, an
easy-to-follow introduction can be found
in Montenbruck et al., 2002, chapter 5,
being the primary reference on which
the definitions presented in the sequel
are based. On the other hand, the reader may find an exhaustive insight into time
and clock technologies, with special focus on GNSS, in Beard and Senior, 2017 and
the references thereof.

There are several time scales that are of interest in satellite geodesy:

• The sidereal time uses the Earth’s rotation as reference, so that it maps any
rotated angle with a lapse of time. The length of day (LOD) is defined as one
complete revolution. Sidereal time is realized by the Greenwich Mean Sidereal
Time (GMST), which gives the Greenwich hour angle w.r.t. the vernal equinox.

• The universal time, whose time scale realization is known as UT1, also uses
the Earth’s rotation as reference, but differs from sidereal time in the definition
of the LOD: One day is measured as two consecutive transits of the same
Earth’s meridian w.r.t. the Sun (see Fig. 1.3). This implies a longer LOD and,
consequently, the conversion factor from universal time into sidereal time is
greater than one (about 1.0027).
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• Since the Earth’s rotation is somewhat irregular, the time scales that it defines
do not qualify to label precise astronomy observations. To overcome this limi-
tation, the IAU introduced the ephemeris time (ET) in 1956. It is an ideal time
scale based on the uniform and absolute time that appears as the independent
variable in the formulation of classical mechanics. If the trajectories of the Earth
and Moon were propagated considering all the perturbing effects, it would
be possible to know their relative position at any future time, and hence any
Earth-to-Moon observation could be tagged with a temporal label. The actual
application of the method is, however, unpractical due to the absurdly long
observational intervals required to precisely find those time labels.

• Atomic time is based on the low-energy transitions that an atom undergoes
when it is coherently excited. Today’s atomic clocks are mainly based on
hydrogen, rubidium or cesium, and they provide the most stable commercially
available time scales. In particular, some cesium-based clocks are stable at
the second level within more than 100 million years. Not in vain, the cesium
atom participates in the definition of second (as unit of time) established by the
Système International (SI; BI, 2006): “[...] the duration of 9192631770 periods of
the radiation corresponding to the transition between the two hyperfine levels
of the ground state of the cesium 133 atom”. The International Atomic Time
(known as TAI due to its French abbreviation) is the practical realization of a
uniform time scale based on atomic standards.

• A variant of TAI is the Universal Time Coordinate (UTC), which is present in our
daily lives. It follows TAI in rate, but includes some one-second discontinuities
(known as leap seconds) to accommodate the difference between TAI and
UT1. Since the rotation of the Earth is slowing down due to some dissipative
processes, the difference between UTC and TAI is negative.

We shall point out that the different GNSS ground segments also maintain their own
atomic-based time scales to accomplish their operational purposes.

Once the theories of special and general relativity became widely accepted, an
additional layer of complexity was added to the handling of time. In contrast to
the classical belief that time flows at a constant pace equal for the entire universe,
this new theoretical framework poses the idea that time is the fourth coordinate of
a four-dimensional manifold defining space-time (Bambi, 2018), for which different
observers use different times to label the same event. In order to cope with the
scenarios imposed by today’s scientific missions, the community has established
three main coordinate times:

• Barycentric Coordinate Time (known as TCB due to its French abbreviation) is
the coordinate time of a coordinate system with origin at the barycenter of the
solar system.

• Geocentric Coordinate Time (known as TCG due to its French abbreviation) is
the coordinate time of a coordinate system with origin at the center of the Earth.

• Terrestrial Time (TT) is a rescaled version of TCG that follows the rate of a clock
located on the surface of the Earth. Its practical realization is TAI (plus a 32.184
s bias).

The TCB is conveniently used to describe interplanetary trajectories and it relates
with TCG through the position and time of the studied body. On the other hand, TCG
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and TT relates through the linear relationship

∆TT := (1 − LG)∆TCG, where LG := 6.969290134 · 10−10.

It has to be stressed that a GNSS ground station tags the observational data
according to TT, which is, on the other hand, the independent variable used for the
equations of motion governing the geocentric GNSS orbits. The time sensed by an
orbiting satellite differs, however, from TT, and its correct interpretation requires to
account for relativistic effects (sections 3.3.4 and 3.8).

1.4 An insight into the Earth’s rotation

1.4.1 Dynamic equations

The rotational dynamic of the Earth is governed by the law of conservation of angular
momentum, which links the time derivative of the total angular momentum vector,
l4, expressed in an inertial system (in this case, realized by the ICRF) with the sum of
external torques, τ, exerted on the Earth

dlI
dt

= τI (1.1)

Let us consider R as the rotation matrix that converts terrestrial coordinates (in this
case, expressed in the ITRF) into inertial coordinates, so that

R⊤ d(RlT )
dt

=
dlT
dt

+ R⊤ dR
dt

lT = R⊤τI = τT (1.2)

Computing the time derivative of R⊤R = I (with I the identity matrix), we see that
the term R⊤ dR

dt is represented by a skew-symmetric matrix,

R⊤ dR
dt

=

 0 −ωzT ωyT
ωzT 0 −ωxT
−ωyT ωxT 0

 (1.3)

and R⊤ dR
dt lT can thus be expressed as ωT × lT , being ω =

(
ωx ωy ωz

)⊤ the
angular velocity vector of the terrestrial system. Hence, equation (1.2) leads to the
more compact form

dlT
dt

+ ωT × lT = τT (1.4)

For a rigid body, the angular momentum is computed as the product between the
inertia tensor and the angular velocity vector, i.e, l = I · ω. However, the Earth
behaves as a rigid body only to a first order approximation and, consequently, the
so-called relative (to the terrestrial system) angular momentum, h, shall be added to
account for some small departures. All in all, equation (1.4) becomes the Liouville
equation

d
dt

(IT · ωT + hT ) + ωT × (IT · ωT + hT ) = τT (1.5)

Since the Earth resembles a revolution ellipsoid (whose principal moments of
inertia are A and C, with A < C) and rotates at an almost constant rate (denoted

4We will make use of the subscripts I and T to appoint to the components of a vector/tensor
expressed in the inertial and terrestrial reference systems, respectively.
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by Ω), it is preferred to closely align the terrestrial reference system to the Earth’s
rotation pole, such that

τT = Ω2C
(
τx τy τz

)⊤ (1.6)

hT = ΩC
(
hx hy hz

)⊤ (1.7)

ωT = ω0T + ΩmT =
(
0 0 Ω

)⊤
+ Ω

(
mx my mz

)⊤ (1.8)

IT = I0T + CIT =

A 0 0
0 A 0
0 0 C

+ C

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (1.9)

with τ(·) << 1, h(·) << 1, m(·) << 1 and I(·) << 1. Note that the subscript T has
been omitted on purpose from the vector/tensor components to simplify the notation.
Replacing (1.6-1.9) into (1.5) and keeping only first order terms, we readily get (e.g.,
Gross, 2007)

1
σ

dmx

dt
+ my = − 1

Ω

dϕx

dt
+ ϕy +

C
C − A

τx (1.10)

1
σ

dmy

dt
− mx = − 1

Ω

dϕy

dt
− ϕx +

C
C − A

τy (1.11)

1
Ω

dmz

dt
= − 1

Ω

dϕz

dt
+ τz (1.12)

where σ = Ω(C − A)/A, and the ϕ(·) terms (known as excitation functions)

ϕx =
C

C − A
(hx + Ixz) (1.13)

ϕy =
C

C − A
(
hy + Iyz

)
(1.14)

ϕz = hz + Izz (1.15)

It has to be noted that (1.10-1.15) are linear equations, being conveniently exploited
when looking for solutions. More specifically, we split different contributions of
τ(·), h(·) and I(·) into two different m(·) solutions: The so-called precession-nutation
(subscript n) and polar motion (subscript p) solutions, such that

ωT = ω0T + ΩmnT + ΩmpT =(
0 0 Ω

)⊤
+ Ω

(
mxn myn mzn

)⊤
+ Ω

(
mxp myp mzp

)⊤ (1.16)

It is noteworthy that the magnitude5 of the angular velocity vector can be approxi-
mated as

ω ≈ Ω
(
1 + mzn + mzp

)
(1.17)

Nonetheless, we can advance that the precession-nutation solution primary accounts
for external torques (subsection 1.4.3), which do not induce variations in the third
terrestrial component of the angular velocity vector for an ideal axisymmetric Earth
(i.e., mzn ≈ 0, see Beutler, 2004a, equation (3.125)), and then

ω ≈ Ω
(
1 + mzp

)
(1.18)

5Here we appoint to the magnitude of a vector, ∥a∥, by simply using non-bold fond, i.e., a.



1.4. An insight into the Earth’s rotation 9

1.4.2 Kinematic equations

The orientation of the terrestrial system w.r.t. inertial space (in practice, the orientation
of the ITRF w.r.t. the ICRF) is mathematically realized by the rotation matrix R, such
that

rI = RrT (1.19)

for any vector r. This rotation is decomposed as

R = N(ψ, ϵ, s)Rz(−Ωt)P(px, py, pz) (1.20)

where N and P are rotation matrices associated to the precession-nutation and polar
motion solutions, respectively, and can be further decomposed as

N = Rz(−ψ)Rx(ϵ)Rz(−s) (1.21)
P = Rz(−pz)Ry(px)Rx(py) (1.22)

Recall that the matrices R(·) represent basic rotations:

Rx(α) =

1 0 0
0 + cos(α) + sin(α)
0 − sin(α) + cos(α)

 (1.23)

Ry(α) =

+ cos(α) 0 − sin(α)
0 1 0

+ sin(α) 0 + cos(α)

 (1.24)

Rz(α) =

+ cos(α) + sin(α) 0
− sin(α) + cos(α) 0

0 0 1

 (1.25)

According to the empirical evidence, p(·), as well as the time derivatives of the
angles appearing in (1.20) are small, and so the application of (1.3) to (1.20) approxi-
mately results in

ωT =

 0
0
Ω

+

− sin(ϵ) sin(Ωt + s)dψ
dt − cos(Ωt + s)dϵ

dt
− sin(ϵ) cos(Ωt + s)dψ

dt + sin(Ωt + s)dϵ
dt

cos(ϵ)dψ
dt +

ds
dt

+

+Ωpx −
dpy
dt

−Ωpy − dpx
dt

+dpz
dt


(1.26)

Comparing with (1.16), it can be identified

ΩmnT =

− sin(ϵ) sin(Ωt + s)dψ
dt − cos(Ωt + s)dϵ

dt
− sin(ϵ) cos(Ωt + s)dψ

dt + sin(Ωt + s)dϵ
dt

cos(ϵ)dψ
dt +

ds
dt

 (1.27)

ΩmpT =

+Ωpx −
dpy
dt

−Ωpy − dpx
dt

+dpz
dt

 (1.28)

Equations (1.27) arise in multitude of applications and are referred to as Euler’s kine-
matic equations. Equations (1.28), on the other hand, define more specific relations
for the Earth’s rotation problem and have been previously derived by several other
authors (e.g., Gross, 1992).
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We have to note that, for the sake of clarity, the decomposition (1.20) does not fully
agree with the one employed by the IERS Conventions, although it still preserves the
underlying ideas.

1.4.3 A qualitative view of the motion

23.5◦

Precession Nutation

Earth’s
figure axis

Celestial pole

FIGURE 1.4: Precession-nutation motion

The ecliptic and Earth’s equator planes
are the fundamental references to orient
the Earth in space. These planes are in-
clined about 23.5◦ w.r.t. each other, and,
because of perturbing dynamical interac-
tions, they undergo some temporal varia-
tions. It is necessary then to freeze those
planes at a given epoch (by convention,
the beginning of the year 2000) for the
definition of a suitable inertial system.
In such a case, the pole (third axis) of the
celestial system is perpendicular to the
frozen ecliptic, its first axis follows the
intersection between the frozen ecliptic
and Earth’s equator towards the vernal
equinox, and the second axis is such that the resulting coordinate system is orthog-
onal and right-handed. The terrestrial system can be simply defined through the
rotation (1.20). Note that the angles ϵ and −Ωt have a straightforward interpretation:
The former approximates the 23.5◦ tilted angle, so that the third axis of the terrestrial
system is nearly the Earth’s pole, whereas the latter accounts for a nominal rotation
rate in order for the terrestrial system to closely rotate with the Earth.

py

p x Polar
motion

CIP

Towards
Greenwich

Towards
90◦ west

FIGURE 1.5: Polar motion

The solution for (1.10-1.15), comple-
mented by (1.27) and considering that
the only external torques acting upon a
perfect ellipsoidal rigid Earth are exerted
by the Sun and Moon, will provide the
precession-nutation motion of the Earth.
Its dominant long-term features are de-
picted in Fig. 1.4 and can be explained by
the variations of ψ and ϵ (Beutler, 2004b,
pages 44-45): On the one hand, a secu-
lar drift in ψ (i.e., lunisolar precession in
longitude) of about 50.5 as/yr. This drift
causes a retrograde complete rotation of
the Earth’s pole around the celestial pole
in about 26.000 years. On the other hand,

owe to the retrograde motion of the Moon orbital node, periodic variations in ψ
(i.e., lunisolar nutation in longitude) and ϵ (i.e., lunisolar nutation in obliquity) arise.
These variations are responsible of a prograde motion, characterized by a 18.6-year
period and an amplitude of about 11 as, of the Earth’s pole w.r.t. inertial space.

The homogeneous solution for (1.10-1.15) is simply

mx = ρ0 cos(σt − σ0) (1.29)
my = ρ0 sin(σt − σ0) (1.30)
mz = 0 (1.31)
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and it exhibits the most distinctive characteristic of the polar motion: As seen from the
terrestrial frame, the Earth’s pole traces a prograde rotation with amplitude ρ0 ≈ 0.2

as and period of 2π/σ ≈ 303 days. If we neglect 1
Ω

dp(·)
dt , then p(·) equals m(·) by virtue

of (1.28). This is only a coarse approximation and, rather than the location of the
Earth’s pole, it is said that the angles p(·) (particularly, px and py) give the location of
the so-called Celestial Intermediate Pole (CIP) as seen from a left-handed terrestrial
coordinate system (Fig. 1.5). Because of this geometrical interpretation, px and py are
known as polar motion (abbreviated as PM) coordinates.

Although for the polar motion scenario presented before pz = 0, as soon as
Earth irregularities are considered (i.e., hz ̸= 0 and Izz ̸= 0), that statement no
longer holds and we have to properly discuss the pz interpretation. Its geometrical
interpretation is simply a rotation around the CIP according to (1.20-1.22). More
interesting is its dynamical explanation: Equations (1.18, 1.28) indicate that dpz

dt
induces small excursions to the nominal rotation rate of the Earth. Considering the
defining relations for UT1 and ∆LOD (i.e., departure from nominal LOD)

ΩdUT1 = ωdt (1.32)
ΩLOD = ω (LOD + ∆LOD) (1.33)

where t represents absolute time, which can be realized by UTC, we obtain the
fundamental relation

−∆LOD
LOD

≈ d (UT1 − UTC)

dt
=

1
Ω

dpz

dt
(1.34)

The IERS Conventions generalize precession-nutation and polar motion according
to the frequencies of the motion of the CIP (see Fig. 1.6), disregarding their physical
origin:

• Precession-nutation includes all those terms with frequencies between -0.5 cpsd
(cycles per sidereal day) and 0.5 cpsd as seen from the ICRF.

• Polar motion includes all those terms with frequencies below -1.5 cpsd and
above -0.5 cpsd as seen from the ITRF.

-0.5

-1.5

-1.5

-2.5

-2.5

-3.5

-3.5

-4.5

+0.5

-0.5

+1.5

+0.5

+2.5

+1.5

+3.5

+2.5

(cpsd)

(cpsd)

ICRF

ITRF

Precession-nutation

Polar
motion

FIGURE 1.6: Conventional frequency-based distinction between
precession-nutation and polar motion

The background models provided by the IERS Conventions build on external
lunisolar and planetary torques as well as internal processes caused by ocean tides.
The rotation of the Earth depends, however, on many other physical effects, and hence
the IERS also reports observation-based tabular corrections to complement those
models. For instance, by using the Poincaré’s Earth Model (rigid Earth with liquid
core), Beutler, 2004b (pages 114-115) shows that the unobservable initial state of the
core induces long-period signals in nutation, causing the so-called Free Core Nutation
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(FCN), for which the otherwise well-predicted precession-nutation model requires
corrections. Likewise, the non-rigidity of the Earth, surficial fluid processes as well as
internal processes, including different mechanisms for angular momentum exchange
between the mantle and the core, produce polar motion variations at different time
scales. Among those variations, the most significant are: A linear trend towards 79◦

west at a 3.5 mas/yr rate, and a different period for the main polar motion wobble of
about 433 days6, instead of the 303 days previously noted. This difference is attributed
to the elastic response of the Earth and the empirical evidence actually suggests that
it is a multi-modal motion (Beutler et al., 2020). An exhaustive insight into these and
more long-term polar motion variations can be found in Gross, 2007.

It must be stressed that the satellite geodetic techniques participate in the genera-
tion of the aforementioned IERS corrections for the polar motion model (note that
corrections for the precession-nutation model are only accessible with VLBI). This
is achieved by computing corrections over the kinematic p(·) angles (section 3.3.2),
which are referred to as earth rotation parameters (ERP), and whose GNSS-based
derivation is at the heart of chapter 5. By means of (1.28) and (1.10-1.15), such param-
eters allow to infer and evaluate physical models for the Earth’s processes, and so
they become a valuable scientific asset for the community.

1.5 Description of the Earth’s gravitational potential

1.5.1 Spherical harmonics

The gravitational potential (or geopotential, when referred to the Earth) at a point r,
V(r), caused by a massive body equals the integral of the contributions associated to
every infinitesimal mass of the body, dm0, located at r0, i.e.,

V(r) =
∫

m0

Gdm0

∥r − r0∥
=

G
r

∞

∑
l=0

∫
m0

( r0

r

)l
Pl(cos γ)dm0 (1.35)

where G is the gravitational constant, γ the angle formed by r and r0 (see Fig. 1.7),
and Pl the Legendre polynomial of degree l7. The second equality in (1.35) directly
follows from the expansion of ∥r − r0∥−1 for r > r0 (Battin, 1999, pages 387-391).

Thanks to the Legendre addition theorem that relates Legendre polynomials with
associated Legendre functions (Maleček and Nádeník, 2001), equation (1.35) can be
expressed in a more convenient way in terms of the terrestrial longitude, λ, and
latitude, ϕ, for the vector r, and λ0 and ϕ0 for r0 (Battin, 1999, pages 405-406):

V(r, λ, ϕ) =
GM

r

∞

∑
l=0

(
R
r

)l l

∑
m=0

Plm(sin(ϕ)) [Clm cos(mλ) + Slm sin(mλ)] (1.36)

6This wobble is known as Chandler wobble to honor the American astronomer Seth Carlo Chandler
who discovered it in the late 1800s.

7Recall that the Legendre polynomial of degree l, Pl(x), and the associated Legendre functions of
degree/order l/m, Plm(x), can be defined as

Pl(x) =
1

2l l!
dl

dxl (x2 − 1)l and Plm(x) = (1 − x2)m/2 dm

dxm Pl(x),

and are efficiently computed using recursive relations (Battin, 1999, page 393).
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where M and R are the mass and equatorial radius of the Earth, respectively, and the
coefficients Clm and Slm:

Cl0 =
1

Rl M

∫
m0

rl
0Pl(sin(ϕ0))dm0 (1.37)

Clm =
2

Rl M
(l − m)!
(l + m)!

∫
m0

rl
0Plm(sin(ϕ0)) cos(mλ0)dm0 (1.38)

Slm =
2

Rl M
(l − m)!
(l + m)!

∫
m0

rl
0Plm(sin(ϕ0)) sin(mλ0)dm0 (1.39)

Cl0 and Cll/Sll are known as zonal and sectorial coefficients, respectively. The re-
maining ones are named tesseral coefficients. It is common in geodesy to normalize
the Legendre functions as P̄lm = NlmPlm, and, consequently, C̄lm = Clm/Nlm and
S̄lm = Slm/Nlm, with

Nlm =

√
k(2l + 1)

(l − m)!
(l + m)!

, k =

{
1 if m = 0
2 if m ̸= 0

(1.40)

such that∫ π
2

− π
2

P̄l1m(sin(ϕ))P̄l2m(sin(ϕ)) cos(ϕ)dϕ = 2kδl1l2 , δl1l2 =

{
1 if l1 = l2
0 if l1 ̸= l2

(1.41)

We see from (1.37-1.39) that the Clm/Slm coefficients depend on the definition of
the terrestrial coordinate system upon which the vectors r and r0 are projected. That
connection becomes evident for the first- and second-degree coefficients, which can
be written in terms of the terrestrial components of the geocenter vector, rg, and the
Earth’s inertia tensor I, i.e.,

γ

r0

r

λ0

ϕ0

λ

ϕ

FIGURE 1.7: Definitions for the geometrical ar-
guments of the gravitational potential as seen

from a terrestrial system

rgT =

rx
ry
rz

 and IT =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 ,

such that (Beutler, 2004a, equations
(3.154,3.155))

C10 =
rz

R
(1.42)

C11 =
rx

R
(1.43)

S11 =
ry

R
(1.44)

C20 =
Ixx + Iyy − 2Izz

2MR2 (1.45)

C21 = − Ixz

MR2 (1.46)

S21 = −
Iyz

MR2 (1.47)

C22 =
Iyy − Ixx

4MR2 (1.48)

S22 = −
Ixy

2MR2 (1.49)
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Although, according to (1.42-1.44), we have access to the geocenter motion through
the degree-1 Stokes coefficients, it is more conveniently modeled in GNSS analyses
as a common displacement for all the ground stations involved in the geodetic
solution (section 3.3.2). The GNSS-based derivation of those displacements, known
as geocenter coordinates (GCC), is, along with the computation of ERP, the subject of
chapter 5.

Looking now into (1.45-1.49), we first notice that C20 represents the Earth’s oblate-
ness. On the other hand, let us suppose that we know the value of all those degree-2
coefficients in a terrestrial system aligned with the figure axis, where the inertia tensor
is IF (by definition, IxzF = IyzF = C21 = S21 = 0). Now, let us say that the actual
terrestrial system is related to this frame by (1.22), where pz = 0, and px and py
are identified with the coordinates of the Earth’s figure axis. Because of the tensor
transformation IT = P⊤IFP, we can show that, to first order in px and py, the only
degree-2 coefficients which take on different values in the actual terrestrial system
(i.e., instantaneous ITRF) are C21 and S21, so that(

C21
S21

)
=

(
C20 − 2C22 2S22
−2S22 −C20 − 2C22

)(
px
py

)
(1.50)

The potential function, V(r), satisfies the Laplace equation, ∆V = 0, for r > R
and hence (1.36) can also be derived from it by looking for regular solutions of
the type Vl =

1
rl+1 gl(ϕ, λ)8. These functions are known as spherical harmonics (the

terms gl(ϕ, λ) alone are known as surface spherical harmonics), and Clm and Slm
are thus spherical harmonic (or Stokes) coefficients. Approaching to the problem
from this perspective may establish that the gl(ϕ, λ) functions turn out to be the two-
dimensional generalization of the Fourier series, which allows them to approximate
functions in the sphere (Gallier, 2009, Atkinson and Han, 2012).

Finally, we have to mention that the IERS Conventions include several models
for the computation of the Stokes coefficients. On the one hand, we have an almost
static part based on the Earth Gravitational Model 2008 (EGM2008, Pavlis et al., 2012),
which includes drifts for C30 and C40. This model is further complemented by a
SLR-derived C20 and a time-dependent realization of C21/S21 based on (1.50). Since
the figure axis, Earth’s pole and CIP coincide in the long-term (Wahr, 1987, Wahr,
1990), the observed mean PM coordinates are used in place of the Earth’s figure
axis when evaluating (1.50). On the other hand, variations in the Earth’s density
entail variations in the Stokes coefficients. The IERS Conventions primary provide
models for those variations caused by tidal deformations due to external bodies,
i.e., solid and ocean tides, as well as due to Earth’s rotation irregularities, i.e., pole
tides (although recent studies assert that the conventional pole tide model is flawed,
Wahr et al., 2015). Moreover, other non-tidal variations originating from global mass
variability in oceans and atmosphere, made available through the atmosphere and
ocean de-aliasing level-1B (AOD1B) product (Dobslaw et al., 2017), may cause non-
negligible variations in the Stokes coefficients. Which model should be considered or
safely neglected depends on the specific application, e.g., specific considerations are
necessary for time-variable gravity field estimation (chapter 6).

8More precisely, by looking for regular solutions of the type Vl = rl gl(ϕ, λ). However, it is proven
that for every rl gl(ϕ, λ) solution there exist a 1

rl+1 gl(ϕ, λ) solution (Ferrers, 1877, pages 1-3).
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1.5.2 Geoid and reference ellipsoid

Prior to introducing the geoid, we have to note that any gravity measurement col-
lected by an instrument co-rotating with the Earth fundamentally differs from the
gravitation sensed by an orbiting satellite by the fictitious centrifugal acceleration.
Therefore, gravity potential, W, gravitational potential, V, and centrifugal potential,
1/2ω2r2 cos2(ϕ), are related by

W(r, ϕ, λ) = V(r, ϕ, λ) +
1
2

ω2r2 cos2(ϕ) (1.51)

The Earth’s shape is configured by gravity itself and, hence, it is very closely
defined by the geoid: An equipotential gravity surface that coincides with the mean
sea level. This definition establishes a clear link between the Earth’s shape and gravity
(and gravitation). The actual realization of the geoid from the gravitational Stokes
coefficients is, however, really layered (Kaula, 2013, pages 8-10). Conceptually, it is
accomplished by representing the geoid, N, as a sum of spherical harmonics:

N(ϕ, λ) = R
∞

∑
l=0

l

∑
m=0

Plm(sin(ϕ))
[
Ĉlm cos(mλ) + Ŝlm sin(mλ)

]
(1.52)

Replacing (1.52) in (1.51) results in a function W(N(ϕ, λ), ϕ, λ) that can also be repre-
sented as a sum of spherical harmonics. The constant l = m = 0 coefficient identifies
with the sought equipotential surface. The remaining coefficients, accompanying
Plm(sin(ϕ)) cos(mλ) and Plm(sin(ϕ)) sin(mλ), must be identically zero, which gives
the functional connections between the gravitational coefficients Clm/Slm and the
geoid coefficients Ĉlm/Ŝlm.

λe

ϕe

heu
en

r

FIGURE 1.8: Ellipsoidal coordinates

Since the geoid resembles a revolu-
tion ellipsoid, it is handy to use an ellip-
soidal coordinate system to locate posi-
tions in the vicinity of the Earth’s surface
(e.g., the location of ground stations).
This coordinate system is realized by a
reference ellipsoid (see Torge and Müller,
2012, section 4.1), which is defined by its
semi-major and -minor axes (a and b, re-
spectively), or any derived parameter,
such as the flattening, f , or eccentricity,
e:

f =
a − b

a
, e =

√
a2 + b2

a
(1.53)

The Cartesian coordinates of a vector r can thus be expressed in terms of the
ellipsoidal height, longitude and latitude (he, λe and ϕe, respectively; see Fig. 1.8):

rT =

(N + he) cos(ϕe) cos(λe)
(N + he) cos(ϕe) sin(λe)(
(1 − e2)N + he

)
sin(ϕe)

 , N =
a√

1 − e2 sin2(ϕe)
(1.54)

The up, east and north directions (u, e and n in Fig. 1.8, respectively) are well-suited
to define a local Cartesian coordinate system, which is especially useful for the
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description of kinematic processes within the surface of the Earth (e.g., the velocity
field of the tectonic plates).

As for the gravitational potential, the IERS Conventions provide models to ac-
count for surface displacements caused by tides and loading effects. For precise
geodetic applications, they have to be taken into account during the reduction of the
observations (section 3.3.2).

1.5.3 Surface mass variations

Satellite-based time-variable corrections to the Stokes coefficients primary account
for the variability induced by hydrological processes that occur in the vicinity of
the Earth’s surface. Although the GNSS-based time-variable gravity field solutions
generated in chapter 6 do not qualify on their own to analyse such processes, it
is still meaningful, because of its conceptual value, to introduce the surface mass
representation of the Stokes coefficients. This is done in the sequel by following the
discussion given by Wahr et al., 1998.

Variations in the Earth’s density, ∆ρ, induce variations in the Stokes coefficients
∆C̄lm/∆S̄lm, which, according to (1.37-1.40), can be formulated as(

∆C̄lm
∆S̄lm

)
=

3
4πRρE(2l + 1)∫ π

2

− π
2

∫ 2π

0

∫ R

0

( r0

R

)l+2
P̄lm(sin(ϕ0))

(
cos(mλ0)
sin(mλ0)

)
∆ρ cos(ϕ0)dr0dλ0dϕ0 (1.55)

where we have made use of dm0 = ∆ρr2
0 cos(ϕ0)dr0dλ0dϕ0 and M = 4/3πR3ρE,

being ρE the average Earth’s density.
The hydrological processes (atmosphere, oceans, ice caps and groundwater stor-

age) occur in a thin layer of thickness H (about 10-15 km), modifying the Earth’s
surface mass, which, in turn, loads and deforms the underlying non-rigid Earth. The
variations ∆C̄lm/∆S̄lm shall then account for both phenomena:(

∆C̄lm
∆S̄lm

)
=

(
∆C̄lm
∆S̄lm

)
surface mass

+

(
∆C̄lm
∆S̄lm

)
loading

(1.56)

being both terms related by the load Love number of degree l, kl , as(
∆C̄lm
∆S̄lm

)
loading

= kl

(
∆C̄lm
∆S̄lm

)
surface mass

(1.57)

Integrating (1.55) for R − H ≤ r0 ≤ R, so that we only account for the surface
mass contribution, and defining surface density, ∆σ, as

∆σ =
∫ R

R−H
∆ρdr0 (1.58)

equation (1.56) yields(
∆C̄lm
∆S̄lm

)
=

3(1 + kl)

4πRρE(2l + 1)∫ π
2

− π
2

∫ 2π

0
P̄lm(sin(ϕ0))

(
cos(mλ0)
sin(mλ0)

)
∆σ cos(ϕ0)dλ0dϕ0 (1.59)
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Note that it has been assumed (l + 2)H/R << 1 (only valid for relatively small
degrees, i.e., l < 100) and, therefore, (r0/R)l+2 ≈ 1.

By expressing the surface density as a sum of spherical harmonics

∆σ(λ0, ϕ0) = Rρw

∞

∑
l=0

l

∑
m=0

Plm(sin(ϕ0))
[
Ĉlm cos(mλ0) + Ŝlm sin(mλ0)

]
(1.60)

where ρw is the density of water, and taking into account (1.41), together with the
orthogonality of the cos(mλ) and sin(mλ) functions, we eventually establish the
relationship between ∆C̄lm/∆S̄lm and ∆Ĉlm/∆Ŝlm from (1.59):(

∆Ĉlm
∆Ŝlm

)
=

ρE

3ρw

1 + 2l
1 + kl

(
∆C̄lm
∆S̄lm

)
(1.61)

Equations (1.60, 1.61) can be used to relate the satellite-based time-variable gravity
field solutions with hydrological processes, being used, for instance, to infer global
freshwater trends (Rodell et al., 2018), or to quantify net ice mass loss in frigid regions
(Velicogna, 2009). Consequently, the ultimate application of the gravity field solutions
returns to science and, above all, society as a high-value asset.

It is worth closing this discussion by introducing the Equivalent Water Height
(EWH) index, defined as the thickness of water that would produce the observed
surface density variations, i.e., ∆σ = ρwEWH. This index gives an alternative inter-
pretation of (1.60).

1.6 Orbit representation

1.6.1 Equations of motion

Ω

i

ω

νr

Ascending
node

Satellite Perigee

Apogee

FIGURE 1.9: Keplerian orbit

The geocentric position, r, of an Earth
orbiting satellite is governed by the con-
servation of linear momentum, which
establishes for a satellite with constant
mass

d2rI
dt2 = −GM

r3 rI + apI (1.62)

where the first term on the right-hand
side corresponds to the first term of the
gravitational potential, and the vector
ap accounts for any additional perturb-
ing acceleration acting upon the satel-
lite, typically several order of magnitude
smaller than the central force. It may
contain, for example, higher-order geopotential terms, atmospheric drag or relativis-
tic corrections. The perturbations used in GNSS orbit modeling are outlined in section
3.3.2.

If ap = 0, equation (1.62) admits a very well-known solution: The satellite traces
a conic curve, or, more specifically for our application, an ellipse, known as Keplerian
orbit. The constants of integration for (1.62) are then conveniently chosen to agree
with the geometrical properties of the ellipse as well as its orientation, namely, the
semi-major axis, a, the eccentricity, e, the inclination, i, the right ascension of the
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ascending node, Ω, the argument of perigee, ω, and the perigee passing time, τp
(see angles in Fig. 1.9). These constants are referred to as orbital elements and, when
confined as the components of the one-dimensional array α, establish the functional
relations r = r(t, α) and v = v(t, α) for the position and velocity vectors, respectively.
Explicit expressions are given by Beutler, 2004a, equations (4.62-4.66):

rI =
a(1 − e2)

1 + e cos(ν)
Rz(−Ω)Rx(−i)Rz(−ω)

cos(ν)
sin(ν)

0

 (1.63)

vI =

√
GM

a(1 − e2)
Rz(−Ω)Rx(−i)Rz(−ω)

 − sin(ν)
e + cos(ν)

0

 (1.64)

The so-called true anomaly, ν, implicitly defines the dependency with time through
the eccentric anomaly, E, and Kepler’s equation:

tan
(

E
2

)
=

√
1 − e
1 + e

tan
(ν

2

)
, E − e sin(E) = n(t − τp) (1.65)

where n =
√

GM/a3 is the mean motion, related to the orbital period, T, by T = 2π/n.
For the manipulation of these equations, it is often useful to introduce the argument
of latitude, defined as u = ν + ω.

Relevant directions for the orbit analysis are the radial (unit vector in the r di-
rection), along-track (velocity direction) and cross-track (orthogonal to the others,
resulting in a right-handed trihedron) directions.

1.6.2 Osculating elements and precession of the ascending node

As soon as the perturbing acceleration is other than zero, i.e., ap ̸= 0, the orbit
described by r is no longer an ellipse. To solve (1.62), we may then use the method of
variation of the constants, i.e., r = r(t, α(t)) and v = v(t, α(t)), eventually obtaining
a number of equations for dα

dt . Therefore, the orbital elements are now osculating
elements that define an osculating orbit and, instantaneously, r and v through (1.63-
1.65). If ap can be expressed as ap = ∇W, then dα

dt is better described by the Lagrange’s
planetary equations (Battin, 1999, equation (10.31)). Otherwise, dα

dt is described by the
more general Gauss’ equations (Battin, 1999, equation (10.41)).

Because of its relevance in satellite geodesy, let us only focus on the Lagrange’s
planetary equation for the ascending node,

dΩ

dt
=

1
na2

√
1 − e2 sin(i)

∂W
∂i

(1.66)

and let us consider the perturbation due to the oblateness of the Earth, which mani-
fests through the C20 coefficient of the gravitational potential:

W =

√
5

2
GMR2C̄20

(1 + e cos(ν))3

a3(1 − e2)3

(
3 sin2(ν + ω) sin2(i)− 1

)
(1.67)

The secular behavior of the orbital elements is computed by averaging the corre-
sponding equation, in this case (1.66), within one orbital period, while keeping the
orbital elements constant. The necessary integral is better performed in the variable
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ν, related to time by means of ∥r × v∥ = r2 dν
dt =

√
GMa(1 − e2)9, which eventually

yields (Battin, 1999, equation (10.94))

Ω̇s =
3
√

5
2

C̄20

(
R

a(1 − e2)

)2

n cos(i) (1.68)

where the secular variation of Ω has been denoted by Ω̇s. Note that C̄20 is negative
(about −4.8 · 10−4), resulting in a retrograde precession of the ascending node for
i < 90◦.

Because of the precession of the ascending node, the geometry between the Sun
and the satellite orbital plane repeats after one draconitic period, Td, which affects the
GNSS-based geodetic solutions (see section 5.2) and can be computed for the GNSS
orbits as

Td =
Ty

|Ω̇s|
2π Ty + 1

(1.69)

being Ty one sidereal year (365.25 days).

1.6.3 Variational equations

For the reduction of the GNSS observations, we first linearize the corresponding
observational model around some a priori information. During this step, we need
the so-called variational equations for the orbits, whose development is introduced
in the following paragraphs. The reader may complement this section with Beutler,
2004a, chapter 5.

Let us write (1.62) in the more compact form

dx
dt

= f (1.70)

being the state vector and the right-hand side

x =

(
r
v

)
and f =

(
v

−GM
r3 r + ap

)
(1.71)

respectively, where the subscript I has been dropped on purpose to alleviate the
notation. The term f generally depends on the time, t, the state vector, x, and a
number n of other dynamical parameters (e.g., Stokes coefficients) that we may
confine in the one-dimensional array q, i.e., f = f (t, x, q). The integration of (1.70)
hence yields an a priori solution x = x(t, x0, q), with x0 the state vector at some initial
epoch, t0. Owing to this functional relation, we prefer to replace the total derivative
operator, d(·)

dt , by the partial derivative operator, ∂(·)
∂t , in (1.70). Variations in x (i.e., δx)

are thus caused by variations in x0
10 (i.e., δx0) and variations in q (i.e.,δq), such that

x(t, x0 + δx0, q + δq) = x + δx = x +
6

∑
i=1

xx0i δx0i +
n

∑
i=1

xqi δqi (1.72)

9This expression is only rigorously true for ∂ν
∂t , since, according to (1.65), ν = ν(t, a, e, τp). However,

∂ν
∂t = dν

dt provided that we kept fixed the orbital elements.
10Rather than variations in the initial state vector, we often use variations in the osculating elements

at t0. This does not present any conceptual problem thanks to (1.63, 1.64).
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where we have denoted the ith component of x0 and q by the subscript i, and x(·) :=
∂x

∂(·) . If we further apply variations to (1.70), we get

δ
∂x
∂t

=
∂

∂t

(
6

∑
i=1

xx0i δx0i +
n

∑
i=1

xqi δqi

)
=

δ f =
∂ f
∂x

(
6

∑
i=1

xx0i δx0i +
n

∑
i=1

xqi δqi

)
+

n

∑
i=1

∂ f
∂qi

δqi (1.73)

Since this equation must be satisfied for any δx0i (with i = 1, 2, ..., 6) and δqi (with
i = 1, 2, ..., n), we obtain the claimed variational equations:

∂xx0i

∂t
=

∂ f
∂x

xx0i (1.74)

∂xqi

∂t
=

∂ f
∂x

xqi +
∂ f
∂qi

(1.75)

Using the so-called transition matrix, Φ(t, t0) , which results from integrating

∂

∂t
Φ(t, t0) =

∂ f
∂x

Φ(t, t0), with Φ(t0, t0) = I (1.76)

we may verify that the solutions for the differential equations (1.74, 1.75) can be
written as:

xx0i = Φ(t, t0)ei (1.77)

xqi =
∫ t

t0

Φ(t, τ)
∂ f
∂qi

∣∣∣∣
t=τ

dτ (1.78)

where ei is a one-dimensional array (column matrix) populated with zeros, except for
its ith position, which is one.

We shall close this section by noting two important properties of the transition
matrix:

Φ(t2, t1) = Φ−1(t1, t2) (1.79)
Φ(t3, t1) = Φ(t3, t2)Φ(t2, t1) (1.80)

1.7 Summary

As soon as we dive into the GNSS observation model in chapter 3, the link to geodesy
may be shadowed by the mathematical models and tools employed for the reduction
of the measurements, as well as by technical implementations, numerical experiments
and results. To prevent from that, this chapter has been so designed to connect the
otherwise mere mathematical parameters (i.e., GCC, ERP and time-variable gravity
field) to physical quantities that can actually give a profound understanding of the
Earth’s processes.

It was firstly introduced the current status and challenges that the geodetic com-
munity is facing, where it was pointed out the present efforts to unify the different
geodetic techniques as well as the important role that global ties play in pursuit of this
purpose, which is the driving element of the present dissertation. It actually justifies
the analyses carried out in the following chapters: The use of undifferenced GNSS
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observations (chapter 3 and chapter 4) allow to include stand-alone geodetic receivers
equipped in scientific satellites into the GNSS network processing. On the other hand,
the rigorous characterization of the GNSS capabilities to sense the geocenter motion,
the Earth’s orientation and the time-variable gravity field (chapter 5 and chapter 6)
allows to detect systematics, and to identify the benefits of a common inter-technique
processing. In this regard, to understand the sensitivity of GNSS solutions to the
time-variable gravity field is of special interest, since this topic has received little
attention in former studies.

Later, we showed how the Earth’s rotation can be split into precession-nutation
and polar motion from a formal point of view. This allowed to relate the kinematic
parameters that can be derived with geodetic techniques to their physical meaning.
We concluded the discussion of the Earth’s rotation with a qualitative description of
the motion.

The modeling of the Earth’s gravitational potential as a sum of spherical harmon-
ics was also introduced. Here we paid special attention to explain the meaning of
the first and second degrees, which are related to the GCC and the Earth’s inertia
tensor. Because of its importance for society, it was also discussed the role that the
time-variable gravity field plays in understanding the surface water processes.

Finally, this chapter gave an insight into orbital mechanics, where we first stressed
the elliptic nature of the orbits, and how the oblateness of the Earth produces a pre-
cession in the orbital nodes. This mechanism makes the geometry between the orbital
plane and the Sun repeat every one draconitic period (shorter than one sidereal year
for GNSS satellites), which plays a major role in orbit modeling. This section eventu-
ally included the so-called variational equations, which results from the linearization
of dynamical systems, and are necessary to parameterize the GNSS orbits.
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Theory of parameter estimation for
GNSS processing

2.1 Introduction

It can be advanced from chapter 3 that the GNSS observations reflect a number
of physical and geometrical effects, including, among others, geometrical ranges,
clock errors, or signal propagation delays. To exploit these observations, we thus
need to reconstruct them applying several well-known background models and
parameterizing some only roughly known quantities (i.e., unknown quantities), for
which we later compute corrections. The mathematical underpinning theory that we
use to determine such corrections is parameter estimation (i.e., statistical inference)
in linear models, and we hence refer to those corrections as estimates.

The functional relation between the observations, collected in the column matrix
y of dimension n, and the unknown quantities, collected in the column matrix x of
dimension m (for our GNSS processing, n > m), is simply

y = f (x) (2.1)

Linearizing around some a priori information, x0, such that x = x0 + δx, we get

y − f (x0) =
∂ f
∂x

∣∣∣∣
x=x0

δx (2.2)

The left-hand side term is known as the observed minus computed (O-C) term, and ∂ f
∂x

is named design matrix. Note that f can depend on functions of the actual parameters.
In particular, this is the case for the satellite coordinates, which are related to some
dynamical parameters by (1.72). In such cases, the derivatives w.r.t. them are better
computed using the chain rule, whose composition requires the solutions (1.77, 1.78).

The linear system of equations defined by (2.2) is inconsistent because of some
stochastic errors that disrupt the observations. For that reason, we commonly treat
the observations (and the O-C term) as normally distributed random variables char-
acterized by the covariance matrix Σyy = σ2P−1, where σ and P are known as root
mean square (RMS) of unit weight and weight matrix, respectively. The deterministic
δx parameters are then assumed to relate to the mean observations by means of the
so-called Gauss-Markoff model:

E[y] = Ax, D[y] = Σyy = σ2P−1 (2.3)

where we have alleviated the notation with y − f (x0) → y, ∂ f
∂x → A and δx → x. On
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the other hand, E[·] and D[·] represent the expectation and dispersion operators1,
respectively. From an algebraic point of view, E[y] belongs to the range (or column
space) of A, i.e., E[y] ∈ R(A), and, therefore, estimating x is equivalent to estimating
E[y].

It is generally accepted that (2.3) is not perfect due to deficiencies in the observa-
tion functional model (which includes the background models) and the stochastic
model, causing systematic errors in the estimates. Such errors may become very
harmful since they are often unnoticed and lead to inconsistencies between estimates
from different geodetic techniques.

The whole theory of parameter estimation not only covers the estimators them-
selves, but a wider range of other topics, namely, algebra, probability and hypothesis
testing. All these topics are rigorously covered in Koch, 1999. A more succinct
discussion, yet comprehensive, can be found in Verhagen and Teunissen, 2017 and
Teunissen, 2017a. In this chapter we limit ourselves to the introduction of the es-
timation principle (section 2.2), to the development of specific results that are of
interest in the frame of this work, i.e., the equivalence principle between differenced
or undiferenced GNSS processing schemes in section 2.3 and the basis for ambiguity
resolution (AR) in section 2.4, to efficiently handle the resulting equations (section 2.5)
and to manipulate them to generate the so-called GNSS long-arc solutions (section
2.6). A final section is left to the summary.

2.2 Estimation principles

For the Gauss-Markoff model (2.3), there are three principles that lead to the same
estimate of x (denoted by a hat, i.e., x̂):

• The best linear unbiased principle, meaning that (1) we require x̂ to be best in
the sense that the variance of each component is minimum, (2) we require x̂ to
be linear in the sense that x̂ = Ly, and (3) we require x̂ to be unbiased in the
sense that E[x̂] = x.

• The least squares (LS) principle, meaning that we require the norm of the
residuals, i.e, e = y − Ax, weighted by the inverse of the covariance matrix of
the observations2 to be minimum, i.e., (y − Ax)⊤ Σ−1

yy (y − Ax) is the objective
function to be minimized.

• The maximum-likelihood principle, meaning that we require the probability of
the observed data to be maximum. Since it was assumed that the observations
are normally distributed3, we once more conclude that (y − Ax)⊤ Σ−1

yy (y − Ax)
shall be minimized.

The sought estimate is eventually obtained from

Nx̂ = b (2.4)

1Commonly speaking, the expectation operator represents the mean statistic, the dispersion operator
the standard deviation (STD) statistic and the square of the RMS statistic equals the square of the mean
plus the square of the STD statistics.

2Σ−1
yy must be by definition a positive definite matrix. Hence, Σ−1

yy can be regarded as a metric, such
that the dot product between u and v is u⊤Σ−1

yy v.
3Recall that the probability density function of a multivariate (k components) normally distributed

random variable, x, is f (x) = 1√
(2π)k |Σ|

exp(− 1
2 (x − µ)⊤Σ−1(x − µ)), with µ = E[x] and Σ = D[x].
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with
N = A⊤Σ−1

yy A and b = A⊤Σ−1
yy y (2.5)

It has to be pointed out that observation-specific weighting is readily made by directly
modifying the components of the matrix Σ−1

yy .
Equations (2.4) are known as normal equations (NEQ) due to their geometrical

interpretation: The estimated observations, ŷ = Ax̂, and the estimated residuals,
ê = y − Ax̂, are orthogonal w.r.t. the Σ−1

yy metric, i.e., ê⊤Σ−1
yy ŷ = 0. It is also worth

noting that (2.4) yields the same x̂ for whatever σ in (2.3). Therefore, it is preferred
to use an a priori RMS of unit weight, σ0, when setting-up the NEQ and estimating
its a posteriori value, σ̂, after solving for x̂, which can be used in place of σ0 when
evaluating the formal errors of the parameters, i.e.,

σ̂2

σ2
0
=

ê⊤Σ−1
yy ê

n − m
=

y⊤Σ−1
yy y − x̂⊤b
n − m

(2.6)

Σx̂x̂ =
σ̂2

σ2
0

N−1 (2.7)

The first equation follows from the best invariant quadratic unbiased principle used
to estimate variance components (Koch, 1999, section 3.6.4), the second one from the
propagation of Σyy

4. In case of considering additional unknown variance components
in Σyy, their estimator and the estimator of the parameters are no longer uncoupled
and the solution has to be iteratively computed (Koch, 1999, section 3.6).

2.3 The fundamental differencing theorem

Differencing GNSS observations is useful to eliminate some parameters (e.g., satellite
and receiver clock corrections) before solving the NEQ. Although this has actually
been the approach followed by CODE for many years (Dach et al., 2015), the process-
ing schemes designed in the frame of this work are based on undifferenced GNSS
observations. Nonetheless, either approach leads to the same estimates, as stated by
a weak version of the fundamental differencing theorem (Wells et al., 2023): “Linear
biases can be accounted for either by reducing the number of observations so that the
biases cancel, or by adding an equal number of unknowns to model the biases. Both
approaches give identical results, under certain circumstances”. A formal proof of
this theorem can be found in Schaffrin, 1986. Because of its relevance in the present
work, it is the purpose of this section to use somewhat stronger assumptions (still
valid for our processing) to demonstrate that theorem using an easier, yet convincing,
discussion.

Let us rewrite the model (2.3) as

E[y] = Aa + Bb, D[y] = Σyy (2.8)

where b contains the mb parameters that are to be eliminated by differentiation, and B
is a full column rank matrix (this condition is feasible since collinear parameters can
always be lumped together). Let us note that for any n-dimensional column array v,
there exists an orthogonal decomposition w.r.t. the metric Σ−1

yy , such that v = ∑i viei

and e⊤i Σ−1
yy ej = δij, being δij the Kronecker delta. Without loss of generality, we can

4Recall that the covariance matrices of two multivariate random variables, x1 and x2, related by
x2 = Mx1, satisfy Σx2x2 = MΣx1x1 M⊤.
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further assume that the ei vectors, for 1 ≤ i ≤ mb, span R(B). The remaining n − mb
vectors consequently span the orthogonal complement of R(B), i.e., R(B)⊥. Since
vi = e⊤i Σ−1

yy v, the orthogonal projection operators on R(B), i.e., PB, and R(B)⊥, i.e.,
PB⊥ , can be written as

PB = EBE⊤
B Σ−1

yy (2.9)

PB⊥ = EB⊥E⊤
B⊥Σ−1

yy (2.10)

with EB the n × mb matrix whose columns contain the first mb ei vectors. EB⊥ , on the
other hand, is a n × (n − mb) matrix containing the remaining vectors.

Let us apply the LS principle to (2.8), i.e., we shall find a and b so that the
following quantity is minimized

(y − Aa − Bb)⊤ Σ−1
yy (y − Aa − Bb) =

(PBy − PBAa − Bb + PB⊥y − PB⊥Aa)⊤ Σ−1
yy (PBy − PBAa − Bb + PB⊥y − PB⊥Aa) =

(PBy − PBAa − Bb)⊤ Σ−1
yy (PBy − PBAa − Bb) +

(PB⊥y − PB⊥Aa)⊤ Σ−1
yy (PB⊥y − PB⊥Aa) (2.11)

The first equality follows from the decomposition v = PBv + PB⊥v5. On the other
hand, the second equality holds because P⊤

B Σ−1
yy PB⊥ = 0 and B⊤Σ−1

yy PB⊥ = 0. Since
Σ−1

yy is a positive definite matrix, both terms in this second equality can be indepen-
dently minimized. It is interesting to note that the first one can be steered to zero
because there exists a b̃ so that Bb̃ = PBy − PBAã for any ã, implying that only the
second term contributes to the numerator of (2.6). Using (2.10) and E⊤

B⊥Σ−1
yy EB⊥ = I,

this second term can be written as(
E⊤

B⊥Σ−1
yy y − E⊤

B⊥Σ−1
yy Aa

)⊤ (
E⊤

B⊥Σ−1
yy y − E⊤

B⊥Σ−1
yy Aa

)
(2.12)

Let us now apply a differencing operator, D, to (2.8) so that B vanishes, while the
remaining terms are redefined as: y∗ = Dy, A∗ = DA and Σy∗y∗ = DΣyyD⊤. The
most general form for this operator is D = ME⊤

B⊥Σ−1
yy , hence Σy∗y∗ = MM⊤. If we

impose that M is a (n − mb)× (n − mb) regular matrix, the number of reduced obser-
vations in y equals the amount of eliminated b parameters, and Σ−1

y∗y∗ = M−⊤M−1.
For the new differenced model, the LS principle requires the following quantity to be
minimized

(y∗ − A∗a)⊤ M−⊤M−1 (y∗ − A∗a) =(
E⊤

B⊥Σ−1
yy y − E⊤

B⊥Σ−1
yy Aa

)⊤ (
E⊤

B⊥Σ−1
yy y − E⊤

B⊥Σ−1
yy Aa

)
(2.13)

which is the same as (2.12), leading to the same estimate for a. Additionally, since the
number of reduced observations is the same as the number of eliminated parameters,
the denominator in (2.6) does not vary, leading also to the same estimate for σ. All in
all, we have established the validity of the fundamental differencing theorem.

5More generally, I = PB + PB⊥ , and, therefore, PB⊥ = I − PB.
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2.4 A posteriori parameter constraining

Additional interesting results can be derived from further developing the LS principle.
In particular, this section is devoted to show how the best estimate b̂ becomes b̌ when
a non-optimal ǎ replaces â in (2.11). The penalty that the non-optimal ǎ produces in
the LS objective function will be discussed, too. These results are of special interest in
the realm of AR, and the reader may find an alternative derivation in Teunissen and
Kleusberg, 2012, section 8.2.2. Another approach is possible using probability theory,
where the conditional probability distributions (Koch, 1999, section 2.5.3) yield closely
related results.

In accord with the previous section, R(B) = R(EB), and, hence, B = EBC, with
C a mb × mb regular matrix. Consequently, EB = BC−1, B⊤Σ−1

yy B = C⊤C and the
orthogonal projection operators (2.9, 2.10) can be written in the better known forms

PB = B
(

B⊤Σ−1
yy B

)−1
B⊤Σ−1

yy (2.14)

PB⊥ = I − B
(

B⊤Σ−1
yy B

)−1
B⊤Σ−1

yy (2.15)

Making use of (2.14) when steering to zero the first term in the last equality of
(2.11) for the non-optimal and optimal solutions and computing the difference, we
get:

b̌ = b̂ −
(

B⊤Σ−1
yy B

)−1
B⊤Σ−1

yy A (ǎ − â) (2.16)

On the other hand, developing now the last term of (2.11) yields

y⊤Σ−1
yy PB⊥y + a⊤A⊤Σ−1

yy PB⊥Aa − 2â⊤A⊤Σ−1
yy PB⊥Aa (2.17)

where we have used P⊤
B⊥Σ−1

yy PB⊥ = Σ−1
yy PB⊥ , and, from the application of the LS

principle,
(

A⊤Σ−1
yy PB⊥A

)
â = A⊤Σ−1

yy PB⊥y. Using (2.15), evaluating in ǎ and â, and
computing the difference, we get:

(ǎ − â)⊤ A⊤
[

Σ−1
yy − Σ−1

yy B
(

B⊤Σ−1
yy B

)−1
B⊤Σ−1

yy

]
A (ǎ − â) (2.18)

From (2.7), assuming that N is constructed with σ0 = σ̂,(
A⊤Σ−1

yy A A⊤Σ−1
yy B

B⊤Σ−1
yy A B⊤Σ−1

yy B

)(
Σââ Σâb̂
Σb̂â Σb̂b̂

)
=

(
I 0
0 I

)
(2.19)

which, after algebraic manipulation (Koch, 1999, section 1.3.4), leads to

Σââ =
(

A⊤Σ−1
yy A

)−1
+ Σâb̂Σ−1

b̂b̂
Σb̂â (2.20)

Σb̂âΣ−1
ââ = −

(
B⊤Σ−1

yy B
)−1

B⊤Σ−1
yy A (2.21)

Σ−1
ââ = A⊤

[
Σ−1

yy − Σ−1
yy B

(
B⊤Σ−1

yy B
)−1

B⊤Σ−1
yy

]
A (2.22)

With these expressions, we can write (2.16, 2.18) in the more compact forms

b̌ = b̂ + Σb̂âΣ−1
ââ (ǎ − â) (2.23)
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and
(ǎ − â)⊤ Σ−1

ââ (ǎ − â) (2.24)

respectively. The term (2.24) quantifies the penalty that the LS objective function ex-
periences when we constrain the a parameters to non-optimal values. Its astonishing
resemblance with the LS principle makes it especially useful to divide the optimiza-
tion problem in several steps. For instance, we can estimate kinematic coordinates
for a satellite (in our notation, â) and use them later together with their covariance
information (Σââ) to eventually estimate an orbit constrained by the laws of orbital
mechanics (i.e., ǎ is represented by some dynamical parameterization) minimizing
the penalty (2.24) as done by Jäggi et al., 2011. The algorithms for AR, on the other
hand, should keep (2.24) present, too (section 4.2). Equation (2.23) very compactly
establishes how the remaining parameters of the model vary due to that constraining.

2.5 Manipulation of normal equations

2.5.1 Stacking of normal equations

If the Gauss-Markoff model can be written as

E


y1

...
yl


 =

A1
...

Al

 x, D


y1

...
yl


 =

Σ1 0
. . .

0 Σl

 (2.25)

where each yi contains ni observations, then the NEQ become(
l

∑
i=1

Ni

)
x̂ =

l

∑
i=1

bi (2.26)

with
Ni = A⊤

i Σ−1
i Ai and bi = A⊤

i Σ−1
i yi (2.27)

as well as
σ̂2

σ2
0
=

∑l
i=1 y⊤

i Σ−1
i yi − x̂⊤ ∑l

i=1 bi

∑l
i=1 ni − m

(2.28)

When the observations are collected in independent batches (e.g., from indepen-
dent ground stations), the NEQ are more efficiently constructed through (2.26), which
is popularly known as stacking of NEQ. Note that if the batch j is not sensitive to
some specific set of parameters, the corresponding columns of Aj are populated by
zeros, and, consequently, the associated sub-matrices of Nj contain zeros, too (it is
said that Nj is expanded to comprise all the parameters).

Constraints over the parameters are often expressed as linear equations, which can
be interpreted as another set of independent observations with very tight variances.
By using (2.26), those constraints can be applied at any point during the processing.

2.5.2 Linear transformations of parameters

It can be readily shown that a linear transformation of the form x = Cx∗ + c, relating
the new, x∗, and old, x, parameterizations, leads to the equations

N∗ x̂∗ = b∗ (2.29)
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σ̂∗2

σ2
0

=

(
y⊤Σ−1

yy y
)∗

− x̂∗⊤b∗

n − m∗ (2.30)

where the new (·)∗ terms can be written in terms of the old ones as:

N∗ = C⊤NC (2.31)
b∗ = C⊤ (b − Nc) (2.32)(

y⊤Σ−1
yy y

)∗
= y⊤Σ−1

yy y + c⊤Nc − 2c⊤b (2.33)

m∗ = m − number of reduced parameters (2.34)

A useful application of these transformations arises when the a priori information
of the parameters is to be modified, for which C = I and c = x∗0 − x0.

2.5.3 Pre-eliminating parameters

The NEQ can be block-wise divided as(
N11 N12
N21 N22

)(
x̂1
x̂2

)
=

(
b1
b2

)
(2.35)

Using algebraic operations, we can pre-eliminate x̂2, so that the equations for the
estimates x̂1 and σ̂ become

N∗
11 x̂1 = b∗

1 (2.36)

σ̂2

σ2
0

=

(
y⊤Σ−1

yy y
)∗

− x̂⊤1 b∗
1

n − m
(2.37)

where

N∗
11 = N11 − N12N−1

22 N21 (2.38)
b∗

1 = b1 − N12N−1
22 b2 (2.39)(

y⊤Σ−1
yy y

)∗
= y⊤Σ−1

yy y − b⊤
2 N−1

22 b2 (2.40)

Note that, for the original model

E[y] = A1x1 + A2x2, D[y] = Σyy (2.41)

with N11 = A⊤
1 Σ−1

yy A1, N⊤
21 = N12 = A⊤

1 Σ−1
yy A2 and N22 = A⊤

2 Σ−1
yy A2, N∗

11 equals
Σ−1

x̂1 x̂1
in analogy to (2.22). On the other hand, when back-substituting the previously

pre-eliminated x2 parameters, we reduce A1 x̂1 from the O-C term, resulting in(
A⊤

2 Σ−1
yy A2

)
x̂2 = A⊤

2 Σ−1
yy (y − A1 x̂1) (2.42)

In view of this equation, we could be tempted to state Σx̂2 x̂2 =
(

A⊤
2 Σ−1

yy A2

)−1
.

However, this is a mistake according to (2.20). Unfortunately, since the blocks Σx̂1 x̂1

and Σx̂1 x̂2 are not typically stored during the GNSS network processing to optimize the
computational resources, the covariance information associated to back-substituted
parameters is typically too optimistic. Particularly, this fact has conditioned the AR
strategy implemented in chapter 4.
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2.6 Computation of long-arc solutions

Despite the fact that the GNSS observations are typically processed in daily batches,
it is common to accumulate data from several consecutive sessions6 to generate the
final geodetic solution (section 3.4). This solution benefits from continuous orbital
arcs, and so it is known as long-arc solution. Mathematically, we require the same
orbit parameterization in consecutive daily NEQ before stacking them, as done in
section 2.5.1, which, in turn, requires the parameters of session i + 1 to be converted to
session i through linear transformations, following the equations provided in section
2.5.2. The discussion given in the sequel is a simplified version of the more general
procedure offered by Beutler et al., 1996, and so we will focus only on the subtlest
parts of the development.

Let us write the NEQ of sessions i and i + 1 as

Nizi = bi (2.43)
Ni+1zi+1 = bi+1 (2.44)

where z is used here to denote the unknown parameters, which, for the sake of sim-
plicity, only include the orbit parameterization, i.e., variations w.r.t. the initial state
vector, δx0, variations w.r.t. physical (e.g., gravity field coefficients as for chapter 6)
and empirical quantities describing the orbit modeling, δq, and variations w.r.t. em-
pirical pulses, δp (it is worth advancing from section 3.3.2 that these pulses represent
instantaneous velocity changes):

zi =
(
δxi⊤

0 δq⊤ δpi⊤)⊤ (2.45)

zi+1 =
(
δxi+1⊤

0 δq⊤ δpi+1⊤)⊤ (2.46)

The superscripts i and i + 1 appoint to specific quantities of the corresponding session.
Here we have assumed that the parameters δq are the same for both sessions, implying
that they also represent corrections about the same a priori information. Note that
pulses of sessions i and i + 1 are applied only on days i and i + 1, respectively.

We see that both NEQ (2.43, 2.44) have to be expanded to account for all the pulses.
In case of session i, this expansion only requires to populate the corresponding normal
equation block with zeros, since the orbits are forward propagated and δpi+1 does not
alter the satellite coordinates of session i. This no longer holds for session i + 1, where
δpi does modify the satellite coordinates of session i + 1. We thus have to find an
equivalence relation between the orbit parameters defining the family of trajectories
of session i + 1 if δpi is, or not, considered. The linearized version of such a family of
trajectories follows from (1.72, 1.77, 1.78) as7

xi+1(t) + Φi+1(t, ti)δxi+1
0 (ti) +

[∫ t

ti

Φi+1(t, τ)
∂ f i+1

∂q

∣∣∣∣
t=τ

dτ

]
δq+[∫ t

ti

Φi+1(t, τ)
∂ f i+1

∂pi

∣∣∣∣
t=τ

dτ

]
δpi +

[∫ t

ti

Φi+1(t, τ)
∂ f i+1

∂pi+1

∣∣∣∣
t=τ

dτ

]
δpi+1 (2.47)

6The session i contains observations from day i. However, the orbit solution can be backward and
forward propagated, beyond the day i limits.

7The superscripts i and i + 1 over x, Φ and f indicate which trajectory has been used for the
linearization, either the one from session i or the one from session i + 1. Additionally, the summation
symbols have been exchanged by matrix multiplication to alleviate the notation.
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or, equivalently,

xi+1(t) + Φi+1(t, ti+1)δxi+1
0 (ti+1) +

[∫ t

ti+1

Φi+1(t, τ)
∂ f i+1

∂q

∣∣∣∣
t=τ

dτ

]
δq+[∫ t

ti+1

Φi+1(t, τ)
∂ f i+1

∂pi+1

∣∣∣∣
t=τ

dτ

]
δpi+1 (2.48)

depending on the epoch at which we start the orbit propagation: For (2.47), it starts
at t = ti, i.e., initial epoch of day i, and at t = ti+1, i.e., initial epoch of day i + 1, for
(2.48), being this latter the parameterization used to build the NEQ of session i + 1.
Consequently, the initial state vector parameters represent orbit variations at different
epochs, explicitly indicated in these equations by δxi+1

0 (ti) and δxi+1
0 (ti+1). Likewise,

and in accord with (1.71) and (3.17),

∂ f (·)

∂pk
= δ(t − t̃k)d

(·)
k = δ(t − t̃k)

(
0

e(·)k

)
(2.49)

being δ(t − t̃k) the Dirac delta function, and e(·)k and t̃k the direction and application
time of the kth pulse, respectively (the index k here refers to any pulse disregarding if
it belongs to session i or session i + 1).

We can force (2.47) and (2.48) to be equal for t ≥ ti+1, which leads, with the help
of (1.80), to

Φi+1(t, ti)δxi+1
0 (ti) = Φi+1(t, ti+1)

[
δxi+1

0 (ti+1)− Pi+1(ti+1)δpi
]
+

−
[∫ ti+1

ti

Φi+1(t, τ)
∂ f i+1

∂q

∣∣∣∣
t=τ

dτ

]
δq (2.50)

where

P(·)(t) =
(

Φ(·)(t, t̃1)d
(·)
1 | Φ(·)(t, t̃2)d

(·)
2 | · · · | Φ(·)(t, t̃k)d

(·)
k | · · ·

)
(2.51)

for k sweeping the pulses of session i. Plugging (2.50) into (2.47) yields (for t ≥ ti+1)

xi+1(t) + Φi+1(t, ti+1)δx∗i+1
0 (ti+1) +

[∫ t

ti+1

Φi+1(t, τ)
∂ f i+1

∂q

∣∣∣∣
t=τ

dτ

]
δq+

Pi+1(t)δpi +

[∫ t

ti+1

Φi+1(t, τ)
∂ f i+1

∂pi+1

∣∣∣∣
t=τ

dτ

]
δpi+1 (2.52)

with δx∗i+1
0 (ti+1) = δxi+1

0 (ti+1) − Pi+1(ti+1)δpi. Note that both (2.48) and (2.52)
define, by construction, exactly the same family of trajectories for t ≥ ti+1, even
if both equations are represented by different parameterizations. This holds true
because of the existing collinearity between Φi+1(t, ti+1)δx∗i+1

0 (ti+1) and Pi+1(t)δpi8.

8Suppose that Aa and Bb are collinear, so that R(B) ⊆ R(A), and, therefore, B = AC. The model
E[y] = Aa + Bb can thus be written as E[y] = A (a + Cb) = Ax. We can build the NEQ for x and then
apply the linear transformation x = a + Cb to finally obtain the NEQ for a and b. It can be verified that
the same NEQ can also be derived in one single step from the original E[y] = Aa + Bb model.
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The consequence is that the linear transformation

zi+1 =

δxi+1
0

δq
δpi+1

 = Cz∗i+1 =

I 0 Pi+1(ti+1) 0
0 I 0 0
0 0 0 I




δx∗i+1
0
δq
δpi

δpi+1

 (2.53)

together with (2.31-2.34), expand the i + 1 NEQ as though they were initially con-
structed using (2.52) instead of (2.48).

Once the NEQ are expanded to account for all the pulses, we have to impose
continuity between the trajectories of both sessions. In pursuit of this, we first
construct the family of trajectories of session i as:

xi(t) + Φi(t, ti)δxi
0(ti) +

[∫ t

ti

Φi(t, τ)
∂ f i

∂q

∣∣∣∣
t=τ

dτ

]
δq+[∫ t

ti

Φi(t, τ)
∂ f i

∂pi

∣∣∣∣
t=τ

dτ

]
δpi +

[∫ t

ti

Φi(t, τ)
∂ f i

∂pi+1

∣∣∣∣
t=τ

dτ

]
δpi+1 (2.54)

and evaluate it, as well as (2.52), at t = ti+1. Dropping the (·)∗ superscript, omitting
the explicit temporal dependency of the initial state vector, i.e., δxi

0 = δxi
0(ti) and

δxi+1
0 = δx∗i+1

0 (ti+1), and equating both expressions, it is obtained

δxi+1
0 = Φi(ti+1, ti)δxi

0 + Hi(ti+1)δq+[
Pi(ti+1)− Pi+1(ti+1)

]
δpi +

[
xi(ti+1)− xi+1(ti+1)

]
(2.55)

with

H(·)(t) =
∫ t

t(·)
Φ(·)(t, τ)

∂ f (·)

∂q

∣∣∣∣∣
t=τ

dτ (2.56)

The term
[
Pi(ti+1)− Pi+1(ti+1)

]
δpi = δP(ti+1)δpi is a second order term, being safely

neglected provided that the trajectories used to linearize the variational equations
from both sessions are “close” to each other. Eventually, we make the parameters of
session i + 1 compatible with session i, using (2.31-2.34) and the linear transformation

zi+1 =


δxi+1

0
δq
δpi

δpi+1

 = Czi + c =


Φi(ti+1, ti) Hi(ti+1) 0 0

0 I 0 0
0 0 I 0
0 0 0 I




δxi
0

δq
δpi

δpi+1

+


xi(ti+1)− xi+1(ti+1)

0
0
0

 (2.57)

allowing to later stack the NEQ according to section 2.5.1.

2.7 Summary

The GNSS observation model is linearized and parameterized by a number of un-
known quantities, which represent geometrical contributions and physical phenom-
ena. The computation of those quantities is the subject of estimation theory, whose
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principles have been presented at the beginning of this chapter. In practice, the
estimates are the solutions of a number of linear equations referred to as NEQ.

By developing the LS principle we found some conceptually profound results,
which are of special interest in GNSS processing. In particular, it was shown that
eliminating parameters by means of differentiation prior to building the NEQ leads
to the same estimates as using the original observations, as long as the number of
reduced observations equals the number of eliminated parameters. This equivalence
principle is known as the fundamental differencing theorem. On the other hand, we
found the expression representing the penalty that the objective function of the LS
optimization problem experiences when some parameters are a posteriori constrained.
The resemblance of such an expression and the LS principle makes it specially useful
to divide the problem in several steps, which is the common approach to cope with
the GNSS carrier phase AR problem.

The GNSS processing schemes implemented in the following chapter have to
handle a huge amount of observations. An efficient processing thus requires clever
manipulations of the NEQ. For instance, processing the observations within inde-
pendent batches, which are later stacked, or pre-eliminating parameters so that the
size of the NEQ is sequentially reduced. Those manipulations were introduced in
this chapter. A useful application of those manipulations arises when accumulating
observations from consecutive days, for which the particularities in the handling
of orbit parameters deserve special attention in order to guarantee orbit continuity
between days. The generation of these solutions (referred to as long-arc solutions)
was also detailed in this chapter, stressing the most delicate parts.
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Global network GNSS solutions us-
ing undifferenced observations

3.1 Introduction

The beginning of the GNSS era, as known today, dates back to the year 1978, with
the launch of the first American Global Positioning System (GPS) satellite. Since the
primary purpose of the GPS constellation was to strength the USA military capac-
ities, the USSR developed its own navigation system shortly after: The Global’naya
Navigatsionnaya Sputnikovaya Sistema (GLONASS), whose first satellite was launched
in 1982. These technologies have been progressively incorporated into the people’s
lives, through both scientific and commercial applications, with great success and,
therefore, other political communities have deployed their own navigation systems.
Such is the case of the European Galileo and the Chinese BeiDou, which provide
global coverage, and, for regional coverage, the Indian Regional Navigation Satellite
System (IRNSS) and the Japanese Quasi-Zenith Satellite System (QZSS).

During the last decades, the scientific community has been exploiting the GNSS
observations for geodetic applications, which has resulted in a variety of state-of-the-
art software packages. To list a few: The Bernese GNSS Software (BSW, Dach et al.,
2015), the Gravity Recovery Object Oriented Programming System (GROOPS, Mayer-
Gürr et al., 2021), the Navigation Package for Earth Observation Satellites (NAPEOS,
Springer et al., 2009), the GNSS-Inferred Positioning System (GIPSY, Bertiger et al.,
2020), the GPS High Precision Orbit Determination Software Tools (GHOST, Wermuth
et al., 2010), and GNSS Analysis at MIT (GAMIT, Herring et al., 2006), among others.
We rely on the BSW for the many results computed in the frame of this dissertation.
AIUB started the development of this software in the 1980s, being still maintained
and operationally used by CODE in its IGS activities. Furthermore, there is a large
number of BSW users spread around the world.

The GNSS network solutions derived from the BSW are commonly generated
using differenced observations, i.e., differencing the measurements from two stations
and two satellites (double-difference observations, or, simply, DD observations) in
order to eliminate nuisance parameters, such as clock corrections. These eliminated
parameters are, however, necessary for single-receiver users (e.g., for precise point
positioning solutions, also known as PPP solutions) as well as for other specific
applications (such as time transfer). To guarantee the integrity of the service, a second
undifferenced (UD) processing (where the already estimated information is kept
fixed) is thus necessary to recover those parameters. In the frame of this dissertation,
we process UD observations to make all the parameters accessible at once. In pursuit
of this goal, we have to design new processing schemes, as well as to implement new
algorithms wherever the DD-based functionalities have to be adapted.
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In theory (section 2.3), UD and DD processing schemes lead to equivalent results.
However, UD strategies have some advantages lacking in their DD counterparts. To
list a few:

• The UD processing schemes are more compact and offer more flexibility in the
handling of the observations.

• More efficient use of the observations, since differential approaches require
common tracking windows for the involved stations and satellites, which leads
to the rejection of some measurements at the boundaries of the tracking interval.

• The UD strategies explicitly include all the parameters, which eases the applica-
tion of new models and constraints over the otherwise eliminated parameters.

• Processing UD observations permits to easily integrate stand-alone receivers
(e.g., equipped in LEO satellites) into the network processing.

Altogether, the use of UD processing schemes has become the most attractive option
for GNSS analysts, justifying the effort dedicated in this dissertation to work with
them in the BSW framework. It deserves a special mention, as a more general
case, the raw observation approach (Strasser et al., 2019), which aims at processing
undifferenced and uncombined observations1.

Besides this introduction, this chapter consists of seven additional sections. In the
following one we discuss some general aspects of the navigation systems employed
in the frame of this dissertation (i.e., GPS, Galileo and GLONASS). Later (section
3.3), we dive into the GNSS observation model, where we discuss the observation
model itself, the various background corrections and the parameterization. Next,
the implemented processing schemes are described (section 3.4) and the derived
results validated through several comparisons (section 3.5). Two additional sections
analyze the impact of some important developments that have occurred in the frame
of this work, namely, the transition from ITRF2014 to ITRF2020 (section 3.6), and the
refinement of the Galileo orbit modeling according to the disclosed satellite metadata
(section 3.7). For the sake of inquiry, we provide another observational evidence of
the general relativistic effect that the Earth’s oblateness has upon the Galileo clocks
using SLR measurements in section 3.8. The chapter closes with the summary.

Some preliminary results included in this chapter were presented in Calero-
Rodríguez et al., 2022.

3.2 General aspects of the navigation systems

The reader may find an exhaustive description of GPS, Galileo and GLONASS in
Hegarty, 2017, Falcone et al., 2017 and Revnivykh et al., 2017, respectively. A shorter
description, followed in this section, is given in Sanz-Subirana et al., 2013, chapter 2.

Any navigation system consists of three segments, namely:

• The space segment, which is composed by the satellites. The main function of
this segment is to transmit the signals and to store and broadcast the navigation
message.

1Note that we refer to “differenced observations” when the observations are differenced between
several satellites (e.g., between-satellite observations), or stations (e.g., baseline observations) or both
(e.g., double-differenced observations). The expression “combined observations” is used, on the other
hand, to refer to the observations that result after applying linear combinations to the various GNSS
signals.
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• The ground segment, which operates the system. This segment monitors the
status of the corresponding constellation, maintains the GNSS time scale and
frame, and predicts ephemeris and clock corrections, which are later uplinked
to the satellites.

• The user segment comprises the receivers, whose primary function is to process
the received signals and to derive position and time estimates.

The various navigation systems are so designed to ensure a minimum of four
satellites in view at any point within the Earth, although each constellation has its
own characterization, summarized in Table 3.1. Note that the orbital eccentricities
(not included in this table) are nominally close to zero and that the orbital regime,
defined by the semi-major axis, is Medium Earth Orbit (MEO).

TABLE 3.1: Main aspects of the GNSS constellations

GPS Galileo GLONASS
Number of nominal sat. 24 27 24
Number of planes 6 3 3
Semi-major axis 26560 km 29600 km 25510 km
Inclination 55◦ 56◦ 64.8◦

Orbital period 11 h 58 min 14 h 5 min 11 h 16 min
Ground track period 1 d 10 d 8 d
Draconitic year 351.4 d 355.9 d 353.4 d

The continuous decommission and replenishment of satellites entails the mod-
ernization of the constellations with newer generations of spacecrafts. Although the
satellites within the same generation are, to some extent, homogeneous, there are
important inter-generation differences: Different satellite dimensions and optical
properties, attitude modes, antennas and signals, among others. These generations
are referred to as blocks for GPS, namely, BLOCK-I, BLOCK-II/IIA, BLOCK-IIR-A,
BLOCK-IIR-B, BLOCK-IIR-M, BLOCK-IIF and BLOCK-IIIA. Regarding Galileo, only
the first generation has been launched so far, which is divided in two phases: The
In Orbit Validation (IOV) phase and the Full Operational Capability (FOC) phase.
Incidentally, due to problems during launch, two FOC satellites where placed in
eccentric orbits (eccentricity around 0.16), with non-nominal inclinations (50◦ instead
of 56◦). Since the Galileo satellites are equipped with high-performance passive
hydrogen maser (PHM) clocks (Beard and Senior, 2017), this geometry allowed to
carry out some general relativity tests (Kouba, 2021). The GLONASS generations are
addressed as GLONASS, GLONASS-M, GLONASS-K1 and GLONASS-K2.

Fig. 3.1 shows the evolution of the number of GNSS satellites used for the solutions
generated in the frame of this dissertation (July 2018 to June 2022). During this
interval, the number of GPS satellites is very stable, whereas we see the incorporation
of new Galileo satellites on late 2018 and on early 2022. The size of the GLONASS
constellation is, however, progressively decreasing due to the decommission of
malfunctioning satellites2.

The GNSS signals consist of ranging codes (a sequence of bits known as pseudo-
random noise sequences, or, simply, PRN sequences) and navigation data modulated
on a carrier (radio) wave in the L-band (1164 MHz - 1610 MHz). The navigation
data contains some ancillary information (satellite trajectories, or satellite health

2As of 2022, fifteen GLONASS satellites were working beyond their expected lifetime
(https://www.gpsworld.com/directions-2022-a-new-epoch-for-glonass/).

https://www.gpsworld.com/directions-2022-a-new-epoch-for-glonass/
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status) needed to compute the navigation solution, whereas the fundamental GNSS
observation (a rough station-to-satellite distance, or pseudorange observation) is
derived from the ranging codes. Note that the stations also measure the phase of the
carrier, which constitutes another fundamental GNSS observation.

FIGURE 3.1: Evolution of number of GNSS
satellites between July 2018 and June 2022

The GNSS constellations transmit dif-
ferent ranging codes at different frequen-
cies, supporting various applications
(e.g., civil, military, or search and res-
cue). To handle the many observable
types and ease their usage within the dif-
ferent members of the GNSS community,
it was developed a uniform standard for-
mat: The receiver independent exchange
format (RINEX, Romero, 2020). In this
format, the signals are denoted with the
pattern “tna”, being “t” the observation
type (C for pseudorange, L for phase),
“n” refers to the frequency (from 1 to 9)
and “a” is an attribute (e.g., if it is the in
phase, I, or quadrature, Q, component of
the ranging code).

The legacy GPS signals are transmitted in the L1 (1575.420 MHz; n = 1 in the
RINEX format) and L2 (1227.600 MHz; n = 2) frequencies, although newer blocks
(BLOCK-IIF and BLOCK-IIIA) also transmit in the L5 (1176.450 MHz; n = 5) frequency.
Additionally, the GPS constellation uses the code division multiple access (CDMA)
technique, meaning that each active satellite transmits a different substream of the
PRN sequence, which allows the stations to distinguish the satellites. Galileo also
uses the CDMA technique, transmitting its signals at five different frequencies: E1
(1575.420 MHz; n = 1), E5a (1176.450 MHz; n = 5), E5b (1207.140 MHz; n = 7), E5
(1191.795 MHz; n = 8) and E6 (1278.750 MHz; n = 6).

Unlike for GPS and Galileo, the legacy GLONASS signals are transmitted in the G1
(n = 1) and G2 (n = 2) frequency bands using the frequency division multiple access
(FDMA) technique, implying that each satellite broadcasts at a particular frequency,
i.e.,

Frequency at G1 = 1602 + k × 9/16 MHz
Frequency at G2 = 1246 + k × 7/16 MHz,

being k = −7, . . . , 6 the frequency channel number. This channel number allows the
stations to identify individual GLONASS satellites. Note that antipodal satellites use
the same channel number. In addition, newer GLONASS satellites (some GLONASS-
M satellites and the entire GLONASS-K1 and GLONASS-K2 generations) include
a new ranging code in the G3 (1202.025 MHz; n = 3) frequency using the CDMA
technique. Likewise, the GLONASS-K2 satellites transmit, together with the legacy
signals, CDMA ranging codes in the G1 and G2 frequencies.

In the BSW we process two different frequencies per satellite and station (two
pseudorange observations and two phase observations). Since some stations can
track a wide range of GNSS signals, the observations are selected according to some
predefined priorities in order to achieve the highest possible uniformity within the
network. Table 3.2 shows those priorities, referring to the signals according to the
RINEX notation.
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TABLE 3.2: Observation selection scheme used in BSW. The signals
inside the cells are sorted in descending priority

GPS Galileo GLONASS
Phase #1 L1W, L1C, L1X L1C, L1X L1P, L1C, L1X
Phase #2 L2W, L2C, L2D, L2P, L2X L5Q, L5I, L5X L2P, L2C, L2X
Pseudorange #1 C1W, C1C, C1X C1C, C1X C1P, C1C, C1X
Pseudorange #2 C2W, C2C, C2D, C2P,

C2X, C2S, C2L
C5Q, C5I, C5X C2P, C2C, C2X

3.3 GNSS observation model

The GNSS receivers generate replicas of the PRN sequences transmitted by the
satellites. Such replicas are correlated with the actual received codes, resulting
in a lag that measures the signal transfer time or, scaled by the speed of light, a
rough station-to-satellite distance (code observation or, equivalently, pseudorange
observation). Likewise, the receivers also align an internally generated carrier to
the incoming signal. This process yields a phase shift (phase observation) that is
converted to units of length when multiplied by the carrier wavelength. Note that
this observation type is ambiguous in its own nature, as it represents a fractional
cycle of the carrier rather than the total number of cycles separating satellite from
station. Nonetheless, the receiver produces a continuous set of phase observations by
counting the number of complete cycles that have occurred since the beginning of
the track.

The transmitted wave is affected by several physical effects within its travel path.
These effects can delay or advance the signal, ultimately altering the apparent station-
to-satellite distance. Hence, we have to apply several models to cope with those
effects during the processing of the observations. Likewise, some parameters shall
be estimated on top of such models to mitigate their deficiencies. Both the models
and parameterizations are briefly discussed in the sequel, with further insights when
deemed convenient. However, it is not the purpose of this section to facilitate a
“cooked” set of equations that can be directly implemented. If needed, the reader
can find complementary and more exhaustive material in Hauschild, 2017a and
Hauschild, 2017b; chapters 4 and 5 in Sanz-Subirana et al., 2013; chapters 5 and 6 in
Strasser, 2022; or in Kouba, 2009b.

For a receiver r, a satellite s, a carrier identifier ν, and a ranging code identifier C3,
the corresponding pseudorange, Ps,C

r,ν , and phase, Ls
r,ν, observations read as

Ps,C
r,ν = ρs

r + ζs
r,ν + c(τr − τs) +

Is
r

f 2
ν

+ Ts
r + c(dC

r + ds,C) + es,C
r (3.1)

Ls
r,ν = ρs

r + ζs
r,ν + c(τr − τs)− Is

r
f 2
ν

+ Ts
r + λν(Ns

r,ν + ωs
r + δr,ν + δs

ν) + ϵs
r,ν (3.2)

with constants c, λν and fν representing the speed of light in vacuum, the correspond-
ing carrier wavelength, and the corresponding carrier frequency, respectively (note
that c = λν fν). The different terms in (3.1, 3.2) refer to different contributions, namely:

• ρs
r is the range between the station and the satellite (section 3.3.2).

3Note that a dependency on the ranging code implicitly defines a dependency on the carrier. How-
ever, the opposite is not true.
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• ζs
r,ν accounts for the antenna phase center offset (PCO) and phase center varia-

tions (PCV), which are addressed in section 3.3.3.

• τr and τs are clock corrections on the receiver and satellite sides, respectively
(section 3.3.4).

• Is
r

f 2
ν

represents the first order ionospheric delay. Although omitted in (3.1, 3.2),
other higher order terms also affect the observations (section 3.3.5).

• Ts
r represents the tropospheric delay (section 3.3.6).

• ωs
r is the phase wind-up effect (section 3.3.7).

• dC
r and ds,C are hardware delays associated to the code observations (section

3.3.8). Note that they have a positive sign disregarding if they originate on the
receiver or the satellite side in accord with Schaer, 2016.

• Ns
r,ν is the phase ambiguity (integer number in its own nature), and δr,ν and δs

ν

are biases associated to the phase observations (section 3.3.9). Note that they
have a positive sign disregarding if they originate on the receiver or the satellite
side in accord with Schaer, 2016.

• es,C
r and ϵs

r,ν represent any additional mismodeling in the pseudorange and
phase observations.

The es,C
r and ϵs

r,ν terms mainly account for the multipath and the observation
stochastic noise, which is in the order of meters and millimeters for pseudorange
and phase observations, respectively (in practice, we down-weight the pseudorange
observations by a factor of 1002). The multipath results when the transmitted signal
is reflected by nearby structures, arriving to the antenna from different directions.
Since it is more significant for lower elevation angles, it is common to weight the
observations according to an elevation-dependent law, which, in our case, is sin2(e),
being e the elevation angle. In the sequel, no further discussion is necessary for these
terms and, hence, they are omitted for brevity.

Instead of the raw observations themselves, for two ν1 and ν2 carrier frequencies
(e.g., Galileo E1 and E5a), and their corresponding C1 and C2 ranging codes (e.g., C1C
and C5Q), we process the ionospheric-free (IF) and the Hatch–Melbourne–Wubbena
(HMW; Hatch, 1983; Melbourne, 1985; Wübbena, 1985) linear combinations, defined
as

Ps,C1C2
r,IF =

f 2
ν1

Ps,C1
r,ν1 − f 2

ν2
Ps,C2

r,ν2

f 2
ν1
− f 2

ν2

, Ls
r,IF =

f 2
ν1

Ls
r,ν1

− f 2
ν2

Ls
r,ν2

f 2
ν1
− f 2

ν2

and

HMWs
r =

fν1 Ls
r,ν1

− fν2 Ls
r,ν2

fν1 − fν2

− fν1 Ps,C1
r,ν1 + fν2 Ps,C2

r,ν2

fν1 + fν2

(3.3)

Applying these linear combinations to (3.1, 3.2), we get

Ps,C1C2
r,IF = ρs

r + ζs
r,IF + c(τr − τs) + Ts

r + c(dC1C2
r,IF + ds,C1C2

IF ) (3.4)

Ls
r,IF = ρs

r + ζs
r,IF + c(τr − τs) + Ts

r+

λNL

(
Ns

r,ν1
+

λWL

λ2
Ns

r,WL + ωs
r + δr,NL + δs

NL

) (3.5)

HMWs,C1C2
r = ζs

r,HMW − c(dC1C2
r,WL + ds,C1C2

WL ) + λWL(Ns
r,WL + δr,WL + δs

WL) (3.6)
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where we have introduced the narrow-lane (NL) and wide-lane (WL) wavelengths,
i.e., λNL = c/( fν1 + fν2) and λWL = c/( fν1 − fν2), respectively (see table 3.3 for their
numerical values). Moreover, some terms have been lumped together, namely,

ζs
r,IF =

f 2
ν1

ζs
r,ν1

− f 2
ν2

ζs
r,ν2

f 2
ν1
− f 2

ν2

, ζs
r,HMW = 2

fν1 fν2

f 2
ν1
− f 2

ν2

(ζs
r,ν1

− ζs
r,ν2

),

Ns
r,WL = Ns

r,ν1
− Ns

r,ν2
, δ

(·)
(·),WL = δ

(·)
(·),ν1

− δ
(·)
(·),ν2

, δ
(·)
(·),NL =

fν1 δ
(·)
(·),ν1

− fν2 δ
(·)
(·),ν2

fν1 − fν2

,

d(·),C1C2
(·),IF =

f 2
ν1

d(·),C1
(·),ν1

− f 2
ν2

d(·),C2
(·),ν2

f 2
ν1
− f 2

ν2

and d(·),C1C2
(·),WL =

fν1 d(·),C1
(·),ν1

+ fν2 d(·),C2
(·),ν2

fν1 + fν2

.

We can refer to Ns
r,WL, δ

(·)
(·),WL, Ns

r,ν1
, δ

(·)
(·),NL, d(·),C1C2

(·),IF and d(·),C1C2
(·),WL as WL ambiguities,

WL phase biases, NL ambiguities, NL phase biases, IF code biases and WL code
biases, respectively. It has to be stressed that using either the observations (3.1, 3.2) or
the observations (3.4-3.6) during the GNSS processing leads to equal results by virtue
of the fundamental differencing theorem (section 2.3), provided that the Is

r terms are
estimated as epoch-wise parameters. Moreover, if the biases are calibrated and the
ambiguities are resolved to integers (as is typically the case during the final stages of
the GNSS processing), then (3.4, 3.5) and (3.6) are uncoupled.

TABLE 3.3: Numerical values for those frequencies selected according
to table 3.2 (channel number k = 0 for GLONASS)

GPS
ν1/ν2= L1/L2

Galileo
ν1/ν2= E1/E5a

GLONASS
ν1/ν2= G1/G2

λν1 19.0 cm 19.0 cm 18.7 cm
λν2 24.4 cm 25.5 cm 24.1 cm
λNL 10.7 cm 10.9 cm 10.5 cm
λW L 86.2 cm 75.1 cm 84.2 cm

The geometry-free (GF) linear combination of the code observations is useful to
derive ionospheric information (section 3.3.5), being computed as

Ps,C1C2
r,GF = Ps,C1

r,ν1
− Ps,C2

r,ν2
= ζs

r,GF +

(
1
f 2
ν1

− 1
f 2
ν2

)
Is
r + c(dC1C2

r,GF + ds,C1C2
GF ) (3.7)

with
ζs

r,GF = ζs
r,ν1

− ζs
r,ν2

and d(·),C1C2
(·),GF = d(·),C1

(·) − d(·),C2
(·) .

Note that the GF code biases are sometimes referred to as inter-frequency biases (IFBs)
and they relate to IF and WL biases through the equation

d(·),C1C2
(·),WL = d(·),C1C2

(·),IF − fν1 fν2

f 2
ν1
− f 2

ν2

d(·),C1C2
(·),GF (3.8)

Since the GLONASS satellites transmit their signals at slightly difference frequen-
cies, it is not possible to separate receiver and satellite code biases, and these terms
are hence considered as a single contribution (i.e., dC

r + ds,C → ds,C
r ). Conversely, it

is possible to neglect the frequency dependence for the phase biases according to
Sleewaegen et al., 2012, which, in principle, still allows to separate δr from δs.
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3.3.1 GNSS attitude model

x y
z

Sun direction

β

FIGURE 3.2: Orientation of the satellite body-
fixed frame

Knowledge of the satellite attitude is nec-
essary to easily describe some contribu-
tions of the GNSS observation model,
as well as to precisely characterize the
orbital dynamics. Nominally, GPS,
Galileo and GLONASS follow the the
so-called yaw-steering attitude mode,
which meets two requirements: The an-
tenna boresight shall point towards the
Earth (nadir direction) and the axis of the
solar panels shall be orthogonal to the
Sun direction, allowing them to rotate
so that their entire surface is illuminated.
Further imposing that one of the satellite
cross-sides4 is always sunlit unambigu-
ously defines the attitude.

Based on the yaw-steering attitude, the IGS defines a body-fixed frame uniform
within the various constellations (which differs from the frames used by the manufac-
turers). The directions of this frame are defined as follows (Montenbruck et al., 2015a;
see Fig. 3.2):

• The z-direction is the principal body axis closest to the antenna boresight
direction.

• The y-direction goes through the solar panel axis. It is oriented in such a way
that the satellite +x-side is sunlit.

• The x-direction is chosen orthogonal to the previous directions so that the
resulting xyz-trihedron is right-handed oriented.

For low β angles (angle formed between the orbital plane and the Sun’s direction,
Fig. 3.2), the yaw-steering mode demands high spin rates at orbit noon and orbit
midnight that the attitude control system is unable to follow, being the extreme
case when the Sun lies in the orbital plane (an instantaneous 180◦ turn is required).
Additionally, some GNSS satellites cannot determine their attitude during eclipse,
which also precludes the well-functioning of the control system. To cope with these
difficulties, the true attitude followed by the satellites deviates from the yaw-steering
mode for such low β angles. These refined models are characterized and implemented
in the BSW according to Kouba, 2009a, the European GNSS Agency5 and Dilssner
et al., 2011 for GPS, Galileo and GLONASS, respectively.

3.3.2 Range contribution

The range contribution accounts for the distance between the satellite at emission
time, tE, and the receiver at arrival time, tA

6. It consists of the geometrical (Euclidean)
4Here we identify the satellite cross-sides with those satellite sides which do not contain either the

antenna or the solar panels.
5The European GNSS Agency provides useful metadate information to characterize the Galileo

satellites (https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata).
6The arrival time is derived from the receiver clock reading after removing an initial estimate of the

receiver clock error. This clock error comes from a coarse single-receiver navigation solution, where
the satellite orbits and clock corrections are fixed to the satellite broadcast information. We refer to this
process as clock synchronization.

https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
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distance and a relativistic correction owing to the space-time curvature. This latter
effect (Shapiro effect) is modeled and directly removed from the observations in
accord with Ashby, 2003.

The Euclidean distance is written as

ρs
r =

∣∣∣rrT (tA)− R⊤(tA)rs
I (tE)

∣∣∣ (3.9)

with rrT (tA), rs
I (tE) and R(tA) the terrestrial coordinates of the ground station an-

tenna reference point (ARP), the inertial coordinates of the satellite center of mass,
and the rotation matrix that transforms terrestrial into inertial coordinates, respec-
tively. Note that this transformation is evaluated at tA in order to express the satellite
coordinates in the same frame as the station coordinates. Moreover, emission and
arrival times are related by tE = tA − ∆t, with ∆t the signal travel time, which can be
approximated using the a priori information as ∆t = |rr(tA)− rs(tA)| /c.

Equation (3.9) is the preferred representation for the geometrical range when
processing the entire network, as in our case, since the satellite orbits are better
described in inertial coordinates. However, those GNSS users that kept fixed the
satellite orbits (e.g., for PPP applications) avoid the frame transformation by directly
evaluating the GNSS orbits in the terrestrial frame, for which (3.9) becomes

ρs
r = |rrT (tA)− rs

T (tE)|+
1
c

ωT · (rs
T (tE)× rrT (tA)) (3.10)

being ω the angular velocity vector of the Earth. The second term in the right-hand
side is known as Sagnac correction (Su, 2001).

Station coordinates

The station coordinates (here we omit the T subscript for simplicity) are built by
summing up several terms:

rr(t) = rreg
r + ∆rmod

r + ∆rcorr
r (3.11)

where

• rreg
r denotes regularized coordinates. In essence, these coordinates define a

long-term TRF by removing high-frequency variations. They are composed of a
station (constant) position vector plus a station (linear) velocity vector. After
ITRF2014 (Altamimi et al., 2016), they also include post-seismic deformations,
and, with the newer ITRF2020 (Altamimi et al., 2023), non-linear annual and
semiannual variations. These variations are, however, not included as part of
the regularized coordinates for the results generated hereafter.

• ∆rmod
r includes background models to capture high-frequency variations. The

IERS Conventions provide such models for the Earth solid tides, ocean tides
and ocean pole tides. Additionally, ocean tidal loading corrections (significant
in coastal regions) are also applied based on FES2014b (Carrère et al., 2016).
Likewise, atmospheric loading corrections (Boehm et al., 2009, Männel et al.,
2023) can also induce variations of a few centimeters in the station coordi-
nates. Because of the homogeneous coverage (all weather tracking) of the GNSS
receivers, this effect is averaged out and, hence, we do not apply the corre-
sponding corrections (they are, however, relevant for SLR processing due to the
"blue-sky effect", as analyzed by Sośnica et al., 2013b).
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• ∆rcorr
r denotes the estimated corrections, which are parameterized as constant

offsets for the geodetic solution (typically, we use 1- or 3-day processing win-
dows). If we are intended to explicitly estimate the geocenter motion, this
term can be parameterized as ∆rcorr

r − ∆rGCC, where ∆rGCC represents the GCC
common to all the stations.

The regularized coordinates realize the underlying TRF. In order to preserve its
fundamental properties, the estimated parameters shall not induce net translation, net
rotation and net scale change. This is achieved by imposing some constraints over the
TRF fiducial sites (IGS stations) during the LS adjustment. Such constraints, known
as minimum constraints and defining the datum, can be formulated as (Altamimi
et al., 2002)

B∆rcorr = 0 (3.12)

being ∆rcorr a column array containing the corrections over all the involved stations,
and B a design matrix built as (A⊤A)−1A, where A is made up by station-wise blocks
of the type

A =


· · ·

1 0 0 rreg
r1 0 rreg

r3 −rreg
r2

0 1 0 rreg
r2 −rreg

r3 0 rreg
r1

0 0 1 rreg
r3 rreg

r2 −rreg
r1 0

· · ·

 (3.13)

with rreg
ri the ith component of rreg

r .
The first three rows of B are associated to the origin, the following one to the

scale and the remaining ones to the orientation, and so it can be specifically chosen
which TRF properties are constrained. In our GNSS processing we include minimum
constraints over the orientation (no-net-rotation, or NNR) and the origin (no-net-
translation, or, NNT), which, due to collinearities, are necessary if ERP and GCC are
co-estimated. Even if the GCC are not estimated, it is still preferred to apply NNT
constraints to the long-term origin of the corresponding ITRF realization (based on
SLR) because of the somewhat degraded origin realized by the GNSS solutions (Zajdel
et al., 2019). For safety reasons, only those stations whose estimated corrections
are below 1 cm and 3 cm in RMS for the horizontal (i.e., north-east plane) and
up directions (see Fig. 1.8), respectively, are used for datum definition. It has also
to be pointed out that the scale must be constrained if satellite PCO values are
estimated (i.e., radially expanding the network can be compensated by adjusting
PCO parameters on the satellite side).

During the IGS realization of the corresponding ITRF, PCO satellite values are
estimated while fixing the ITRF scale, because both parameter types are correlated.
The values are fitted in such a way that they match the ITRF scale at a reference
epoch. Afterwards, both scale realizations drift from one another (Rebischung and
Schmid, 2016). This approach has also been followed for the newer ITRF2020/IGS20,
even though PCO values for the Galileo and BLOCK-IIIA GPS satellites are ground
calibrated prior to launch. This is justified by the fact that data from these satellites
only cover a small period of the total processing interval and, more importantly, the
resulting GNSS scale does not agree with the VLBI and SLR scales. Nonetheless,
some studies (Villiger et al., 2020; Steigenberger and Montenbruck, 2023) hint that the
GNSS scale could be considered in future ITRF realizations.
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Satellite coordinates

The integration of the equations of motion (1.62) leads to the trajectories traced by
the center of mass of the satellites. To achieve the highest accuracy, we use advance
background models for the perturbing acceleration vector, namely:

• For the gravitational accelerations:

– Static gravity field in accord with IERS Conventions up to degree-12.

– Solid Earth tides in accord with IERS Conventions.

– Ocean tides based on FES2014b (Carrère et al., 2016) up to degree-8.

– Ocean pole tides in accord with IERS Conventions (only the most signifi-
cant C21 and S21 coefficients included).

– Third body perturbations using DE421 ephemeris (Folkner et al., 2009).

– Relativistic Schwarzschild effect in accord with IERS Conventions (from
Brumberg and Kopejkin, 1989).

• For the non-gravitational accelerations:

– Solar radiation pressure (SRP; Milani et al., 1987) model only for Galileo
(optical properties disclosed by the European GNSS Agency).

– Albedo modeling in accord with Rodriguez-Solano et al., 2012b.

– Antenna thrust modeling in accord with Steigenberger et al., 2018.

– Thermal radiation for Galileo in accord with Sidorov et al., 2020.

The previous list of background models has to be complemented by some empiri-
cal accelerations to mitigate their deficiencies, being the SRP mismodeling the major
error source in the satellite dynamics (note that no background model is employed for
GPS and GLONASS). The Empirical CODE orbit Model (ECOM; Beutler et al., 1994)
was developed in the 1990s to cope with this problem. This model is very powerful
in design, since it does no require any a priori satellite information (neither geometry
nor optical properties, unlike those physically-driven models, Rodriguez-Solano et al.,
2012a, Montenbruck et al., 2015b), and so it is equally used for the various GNSS
constellations. Within the years, however, some limitations were found and several
model revisions have been implemented. In the frame of this dissertation we are
using the so-called ECOM2, which was developed to improve the GLONASS results
(Arnold et al., 2015).

The various ECOM versions describe an empirical acceleration profile projected
in a frame which is oriented towards the Sun to better capture the SRP contribution.
The fundamental directions of such a frame, as given by Prange et al., 2020, are: The
E3 direction that points from the satellite to the Sun; the E2 direction, which results
from the cross product between the satellite radial direction and the E3 direction; and
the E1 direction, orthogonal to the previous directions and forming a left-handed
frame.

The mathematical representation of the ECOM2 accelerations is7

E1(∆u) = E10 + E1C1 cos(∆u) + E1S1 sin(∆u) (3.14)
E2(∆u) = E20 (3.15)

7The BSW also applies a scaling factor to each component proportional to the inverse of the square
distance to the Sun in order to reduce the yearly variability induced by the intensity of the solar flux.
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E3(∆u) = E30 + E3C2 cos(2∆u) + E3S2 sin(2∆u) (3.16)

where the argument ∆u is the difference between the satellite and Sun latitudes
(measured in the orbital plane). The notation for each parameter matches the pattern
Ei(0/C/S)j, where i defines the direction, 0, C and S define the constant, cosine and sine
contributions, respectively, and j the corresponding jth harmonic. These parameters
are freely estimated during the LS adjustment.

Stochastic pulses (Beutler et al., 1994), or instantaneous velocity changes, are also
able to compensate mismodeling. The acceleration that they produce is represented
by the Dirac delta function as

p = pδ(t − t̃)e (3.17)

with t̃, e and p the pulse application time, its direction, and its magnitude (to be
estimated). We set-up pulses in the radial, along-track and cross-track directions at
orbit midnight with constraining of 10−6 m/s, 10−5 m/s and 10−8 m/s, respectively.
If the application time differs by less than six hours from any of the arc boundaries,
the pulse is not estimated (Dach et al., 2021).

We shall finally note that the initial state vectors of the satellites are also estimated
during the LS adjustment in the shape of orbital elements (section 1.6.1).

Rotation matrix

The rotation matrix R converts terrestrial coordinates (in practice, ITRF) into inertial
(or celestial) coordinates (ICRF)8. It is composed by three motions as discussed in
section 1.4: The precession-nutation motion, the daily Earth’s rotation and small
departures (i.e., polar motion and universal time variations) from such a uniform
rotation. The IERS Conventions provide guidelines on the implementation of the
various standard background models that account for those different motions. In
the case of the precession-nutation, the model is known as IAU2006A and follows
from Mathews et al., 2002 and Mathews and Bretagnon, 2003. On the other hand,
the recommended model for PM and UT1 has been recently updated during the
realization of the ITRF2020, according to Desai and Sibois, 2016.

On top of the PM and UT1 background models we estimate piece-wise linear
functions with continuity conditions, whose parameters, which we have referred to
as ERP in section 1.4.3, are set-up every 24 h. However, it is not possible to estimate
the absolute rotation angle of the Earth (i.e., UT1 origin) due to correlations with the
orbital parameterization. More specifically, rotating the Earth around its pole can be
compensated by rotating the orbital plane, through the redefinition of the ascending
node, without altering the range (use Fig. 1.9 for visual aid). Consequently, one UT1
parameter is constrained to its a priori value. Likewise, a similar mechanism would
occur between orbit inclination and ascending node angles and corrections over the
precession-nutation model, if estimated. These correlations are analytically demon-
strated in Teunissen and Kleusberg, 2012, section 14.3 by observing the collinearity of
the corresponding columns of the design matrix.

Out of curiosity, we can reach the above conclusion by approaching the problem
from a different analytical perspective. Specifically, we can describe the dynamics
of satellite orbits in the terrestrial frame, obtaining identical solutions provided that
we account for fictitious accelerations due to the Earth’s rotation (namely, centrifugal
and Coriolis terms). These accelerations depend on the Earth’s angular velocity

8Whereas the ICRF origin is defined by the barycenter of the Solar System, the origin of the ITRF is
defined by the center of mass of the Earth. Therefore, the R matrix strictly accounts only for the rotation
part of the transformation.
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vector, whose precise characterization involves precession-nutation, polar motion,
and universal time. Considering (1.26), it is evident that, to a first approximation,
we do not have access to either the absolute value of UT1 (represented by pz) or the
absolute value of the precession-nutation angles.

3.3.3 PCO and PCV contributions

The effective station-to-satellite distance is not a direct measure between the cor-
responding ARPs because of the delays induced by the radiation pattern of the
antennas. This effect, previously denoted by ζs

r,ν, is actually different for code and
phase observations (Kersten and Schön, 2011). However, since the estimation process
is driven by the phase observations due to their higher weighting, such discrepancy
is not taken into account in the BSW.

PCO

ARP

PCV

FIGURE 3.3: PCO and PCV representation

The radiation patterns are modeled
as the sum of a constant offset (re-
ferred to as PCO), which must be pro-
jected in the station-to-satellite line of
sigh (LOS), and an azimuth-, elevation-
dependent variation (referred to as PCV;
see Fig. 3.3). These corrections are de-
scribed in a frame attached to the an-
tenna. In the case of the ground stations,
the north-east-up directions (Fig. 1.8) are
well-suit for that purpose, whereas, on
the satellite side, we use the y (satel-
lite north), x (east) and z (up) directions
of the IGS satellite body-fixed frame
(Fig. 3.2).

PCO and PCV values for the GNSS satellites, ground stations and different fre-
quencies are provided by IGS in the so-called antenna exchange format (ANTEX;
Rothacher and Schmid, 2010). Note that the values for the GNSS satellites are referred
to their center of mass. In addition, and as noted in the preceding section, the PCO
values are connected to the TRF through the scale, and, hence, it is important to
consistently use the regularized IGS station coordinates together with the associated
ANTEX file when realizing any specific ITRF.

3.3.4 Clock corrections

The reading of an orbiting clock does not refer to TT according to the special and
general relativity theories (Ashby, 2003). On the one hand, a frequency shift occurs
due to the orbit semi-major axis, being pre-launch (at the factory) calibrated in order
to facilitate the maintenance of the GNSS time scales. On the other hand, the orbital
eccentricities are responsible of a period clock variation that can be expressed as

∆τs = −2
r · v
c2 (3.18)

and is, by convention, corrected from the observations. Any other effect will be
absorbed by the clock parameters, which are epoch-, station- and satellite-wise
estimated because of their stochastic behavior.

The clock term appears as the difference between the station and satellite contri-
butions and, therefore, any epoch-wise common offset cancels out. This rank defect
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can be overcome by applying some epoch-wise constraints (i.e., a clock datum), for
instance:

• To fix to zero the clock corrections of a particular reference station. This is the
preferred option in post-processing, because some ground stations are equipped
with very stable clocks. However, if that reference station has, at some point,
a data gap, the associated epochs will miss the datum, hence affecting the
integrity of the parameter estimation process.

• A zero mean condition over the clock corrections of several satellites. This is
our preferred option during the parameter estimation process, using the GPS
satellites as reference (i.e., we realize the GPS time scale).

All in all, we do not have access to the absolute clock values, but our clock
estimates are shifted by an arbitrary clock offset, i.e.,

τ
(·)
(·) + τ → τ

(·)
(·) (3.19)

3.3.5 Ionospheric delay

Ionosphere

e
e′

FIGURE 3.4: Ionosphere thin layer model

The ionosphere is a dispersive medium,
meaning that the propagation speed of a
wave depends on its frequency. The im-
mediate consequence is that GNSS sig-
nals at different frequency bands expe-
rience different delays. Moreover, be-
cause of the modulation itself, the rang-
ing code information travels at a seem-
ingly different frequency than the carrier,
resulting in a different response for the
code and phase observations: The code
is delayed and the phase is advanced.

In (3.1, 3.2) we have only included
the first order ionospheric term, which
amounts to about 99% of the total contri-
bution (Sanz-Subirana et al., 2013, section 4.1), to emphasize that it vanishes in both
the IF and MW linear combinations (3.4-3.6). However, the ionospheric effect is more
precisely characterized as (IERS Conventions)

∆P =
s1

f 2 + 2
s2

f 3 + 3
s3

f 4 (3.20)

∆L = − s1

f 2 − s2

f 3 − s3

f 4 (3.21)

for code and phase observations, respectively. The coefficients s(·) depends, among
others, on the total electron content (TEC) within the ray path (in particular, s1 =
40.3 · 1016TEC), which must be known in order for us to eliminate those higher
order terms (proportional to f−3 and f−4 in the the above equations) during the
reconstruction of the observations.

CODE provides TEC information in the shape of global ionospheric maps (GIM;
Schaer et al., 1996; Montenbruck et al., 2014). These maps represent the ionosphere as
a thin layer at a given altitude (e.g., 350 km), where the (vertical) TEC is approximated
by a spherical harmonics expansion. The slant TEC (i.e., TEC within the ray path) is
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later computed thanks to a mapping function that uses as argument the incidence
signal angle at the layer piercing point (e′ in Fig. 3.4). The GF code observations (3.7)
are used in this procedure, in which the GF code biases are generated as a by-product.
Other studies have demonstrated that these biases can also be derived using a local
(rather than global) TEC parameterization (Wang et al., 2016).

3.3.6 Tropospheric delay

The troposphere is a non-dispersive medium for frequencies below 30 GHz (Petit,
Luzum, et al., 2010, section 9.2). The delay that it produces in the GNSS signals is
divided into two main parts, namely, dry (or hydrostatic; subscript d) and wet (w)
parts. For precise applications (as the ours), it is common to also account for the so-
called tropospheric gradients (g). Therefore, the total contribution is mathematically
modeled as (IERS Conventions)

T = md(e)Dd + mw(e)Dw + mg(e) (GN cos(a) + GE sin(a)) (3.22)

with e and a the local elevation and azimuth angles of the received signal. The dry
and wet terms are described by a mapping function m(·) and a zenith delay D(·).
For the results generated in the frame of this dissertation, we account for them by
using the information provided in the Vienna Mapping Function 1 (VMF1; Boehm
and Schuh, 2004) products, which are updated in a regular basis as they assimilate
methodological data. Due to uncertainties in the wet part, we also estimate piece-wise
linear parameters with two-hour resolution and relative constraining of 1 m in STD
on top of Dw.

The tropospheric gradients are described by another mapping function (that
follows from Chen and Herring, 1997) and the two parameters GN and GE, which are
estimated with daily resolution in our processing.

3.3.7 Phase wind-up effect

Due to the circular polarization of the GNSS signals, changes in the relative orientation
between the station and the satellite produce variations in the phase observations
that could be erroneously interpreted as range variations. This effect, known as
wind-up effect, is corrected in the BSW according to the geometrical relationships
firstly introduced by Wu et al., 1992.

3.3.8 Pseudorange biases

The pseudorange biases account for systematic effects in the code observations, which
are associated to hardware delays. Such biases are modeled as station-, satellite-,
frequency-, signal- and constellation-dependent linear terms (Håkansson et al., 2017),
and must be estimated or calibrated. To handle them, the BSW uses the concept of
observable specific bias (OSB; Villiger et al., 2019), for which these biases are set-up
station-, satellite- and signal-wise (note that the signal dependency already includes
the dependencies on the frequency and on the constellation). The major difficulty
in deriving these biases resides on the many involved rank-defects, which require
specific constraints, i.e., we have to define a OSB datum. As stated in Villiger et al.,
2019, this is achieved by applying zero-mean conditions over each observable type
and GNSS constellation, as well as by imposing that certain satellite and receiver
IF code biases are zero. On the satellite side, the IF biases that we drive to zero are
associated to the signals C1W/C2W, C1C/C5Q and C1P/C2P for GPS, Galileo and
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GLONASS, respectively. On the receiver side, the corresponding signal pair, which
depends on the station tracking scheme and on our signal selection priorities (table
3.3). Note that, if only IF observations are processed (as in our procedures), then
another constraint imposing zero GF bias is applied. These multiple constraints have
implications, not only on the biases themselves, but on the meaning of other linear
parameters (in particular, clock and ionospheric corrections) of the GNSS observation
model, which we shall discuss next.

Using the GF observations (3.7) we have access to dC1C2
r,GF + ds,C1C2

GF in an absolute
sense thanks to the use of ionospheric modeling (based on GIM). For GLONASS, it is
one single parameter because of the FDMA technique. For GPS and Galileo we can
separate receiver and satellite contributions by imposing zero-mean conditions over
the satellite biases of those linearly independent C1/C2 pairs, which redefines the GF
biases as

ds,C1C2
GF + dC1C2

GF → ds,C1C2
GF , dC1C2

r,GF − dC1C2
GF → dC1C2

r,GF (3.23)

These biases can be removed from the HMW observations (3.6) according to (3.8).
Let us now focus on the processing of CDMA (i.e., GPS and Galileo) IF obser-

vations. In order to separate satellite clock corrections and satellite code biases, we
consistently fix to zero those satellite IF code biases pertaining to the same pair of
(constellation-wise) selected signals C̃1/C̃2 (e.g., C1W/C2W for GPS), which results
in the following redefinitions

τs − ds,C̃1C̃2
IF → τs (3.24)

ds,C1C2
IF − ds,C̃1C̃2

IF → ds,C1C2
IF (3.25)

δs
NL − ( f1 + f2)d

s,C̃1C̃2
IF → δs

NL (3.26)

δs
WL − ( f1 − f2)d

s,C̃1C̃2
IF → δs

WL (3.27)

Because of (3.25), the term ds,C1C2
IF can be referred to as differential code bias (DCB).

Additionally, and similar to the GF processing, we separate satellite and receiver
contributions for other than the previously constrained signal pairs by applying
zero-mean conditions over the satellite biases, hence

ds,C1C2
IF + dC1C2

IF → ds,C1C2
IF , dC1C2

r,IF − dC1C2
IF → dC1C2

r,IF (3.28)

On the other hand, to separate receiver clock corrections and receiver code biases, we
fix to zero a receiver code bias per receiver and reference constellation (conventionally,
GPS), resulting in

τr + dC̃1C̃2
r,IF → τr (3.29)

dC1C2
r,IF − dC̃1C̃2

r,IF → dC1C2
r,IF (3.30)

δr,NL − ( f1 + f2)d
C̃1C̃2
r,IF → δr,NL (3.31)

δr,WL − ( f1 − f2)d
C̃1C̃2
r,IF → δr,WL (3.32)

Typically the pairs C1/C2 and C̃1/C̃2 correspond to different constellations in these
equations and, as a consequence, dC1C2

r,IF is often referred to as inter-system bias (ISB).
For other than the reference constellation, a common shift on all the associated

receiver biases can be compensated by a shift on the constellation clock corrections.
Hence, another zero-mean condition is applied over all the receiver biases of the same
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constellation, which implies:

τs + τGNSS → τs (3.33)
dC1C2

r,IF + τGNSS → dC1C2
r,IF (3.34)

δs
NL + ( f1 + f2)τ

GNSS → δs
NL (3.35)

δs
WL + ( f1 − f2)τ

GNSS → δs
WL (3.36)

The term τGNSS represents a shift on the clock corrections pertaining to a specific
constellation, and, consequently, acts upon its time scale. The time scale is actually an
important conceptual element that has to be taken into account when manipulating
clock products in post-processing. For instance, if we change the clock datum by
applying an epoch-wise offset over the clock corrections of a particular clock product,
we have to guarantee that those epoch-wise offsets are, in average, zero in order not
to influence the underlying time scale.

Due to the FDMA technique, the GLONASS code biases are defined per satellite
and receiver, i.e., dC1C2

r,IF + ds,C1C2
IF → ds,C1C2

r,IF for the IF observations. To separate them
from the GLONASS clock corrections, we have to apply a zero-mean condition over
all the stations for those biases pertaining to the same satellite. This conveys a
redefinition of the parameters in a similar manner as before.

3.3.9 Phase ambiguities and biases

The phase biases are linear terms that can be estimated or calibrated, and whose
major difficulty lies on the rank defects that they involve, as they depend on the
receiver, satellite and carrier frequency. Although omitted from (3.2) for simplicity,
the phase biases also depends on the GNSS constellation (Håkansson et al., 2017),
implying that δr,ν is different for GPS L1 than for Galileo E1, even if both are the same
frequency band.

In view of (3.6), we can easily recognize a one-to-one correlation between WL
phase biases and ambiguity parameters. To overcome these singularities we can
apply an ambiguity datum (independent for each constellation) by imposing, on the
one hand, a zero-mean condition over the satellite phase biases, for which

δs
WL + δWL → δs

WL, δr,WL − δWL → δr,WL (3.37)

and, on the other hand, by fixing to zero as many ambiguities as satellites for a
reference station (i.e., Ns

r1,WL) and, for the remaining stations, the ambiguity of a
reference satellite (i.e., Ns1

r,WL). This constraining eventually yields

Ns
r1,WL + δs

WL → δs
WL (3.38)

Ns1
r,WL − Ns1

r1,WL + δr,WL → δr,WL (3.39)(
Ns

r,WL − Ns1
r,WL

)
−
(

Ns
r1,WL − Ns1

r1,WL

)
→ Ns

r,WL (3.40)

λWL

λ2

(
Ns

r1,WL − Ns1
r1,WL

)
+ δs

NL → δs
NL (3.41)

λWL

λ2
Ns1

r,WL + δr,NL → δr,NL (3.42)

Proceeding in an analogous manner for the NL terms, we discover transformations
equivalent to (3.37-3.40). The main advantage of this ambiguity datum is that the
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redefined UD ambiguities (3.40) are actually DD ambiguities (Teunissen and Khoda-
bandeh, 2015), preserving their integer nature.

Another option to avoid the aforementioned singularities is to lump together
biases and ambiguities, such that

Ns
r,(·) + δr,(·) + δs

(·) → Bs
r,(·) (3.43)

Although it seemingly hampers AR, this is actually our preferred option. For the
AR strategy developed in chapter 4, we implement a novel and efficient method to
calibrate the phase biases as well as to recover the integer nature of the ambiguities
based on the inspection of the fractional parts of Bs

r,(·).

3.4 General aspects of the processing strategy

The results generated along this work rely on the existing tools of the BSW as well as
on the BSW processing engine, for which specific details and exhaustive descriptions
are given in Dach et al., 2015. In this section we discuss the general aspects of the
implemented processing strategies.

TABLE 3.4: Breakdown of parameters for a daily GNSS network solu-
tion assimilating observations from 200 stations at a 5-minute sampling

Parameter type Approx. number
Station coordinates 600

Orbit parameters 1500
Earth rotation parameters 6
Satellite clock corrections 20000
Station clock corrections 60000

Ambiguity parameters 30000
Troposphere parameters 3400

Our primary processing strategy comprises four different stages: Preprocessing,
computation of global parameters, computation of receiver-dependent parameters
and AR. The associated flowchart is displayed in Fig. 3.5. It shall be clarified that
global parameters enclose satellite orbits and clock corrections, ERP, and station coor-
dinates (defining a global TRF as noted in section 3.3.1). Likewise, receiver-dependent
parameters include receiver clock corrections, ambiguities, and tropospheric delays.
In numbers, assuming a multi-GNSS (70 satellites) network made up by 200 stations,
we have to solve a least-square problem with about 2000000 observations and 100000
parameters (daily sessions with code and phase observations at a 5-minute sampling).
The breakdown of the parameters is given in table 3.4. Note that the OSBs (about
10000 parameters, with the largest contribution coming from GLONASS due to the
FDMA technique, for which we estimate station- and satellite-dependent biases) are
not included since they can be calibrated in later stages of the processing.

Preprocessing

The preprocessing aims at cleaning the observations through several steps. Firstly,
we prepare the inputs, including daily batches of observations from about 300 IGS
stations (more than 200 of which containing GPS, Galileo and GLONASS data) and a
priori orbit and clock information. Initially, the presented processing strategy was
validated with the satellite broadcast information (Calero-Rodríguez et al., 2023a),
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FIGURE 3.5: General flowchart of the processing strategy

although here we use the CODE Multi-GNSS Experiment (MGEX, Prange et al., 2016)
products as a priori information for the sake of robustness. In this step we also select
the signals that will be processed for each station (according to table 3.2), carry out
a coarse screening by inspecting the observations (e.g., the HMW observations are
well-suited to detect blunders), smooth the code observations (equations (2.8a,2.8b)
in Schaer et al., 1996), and synchronize the receiver clocks to the GPS time scale. Note
that, if it is not said otherwise, our set-up uses IF observations at a 5-minute sampling.

Secondly, code-only solutions are iteratively generated and their residuals ana-
lyzed to detect outliers. In order to perform this step more efficiently, some simplifi-
cations are considered: The stations are grouped in regional clusters, for which clock
corrections and OSBs are independently pre-eliminated. Afterwards, the resulting
NEQ are stacked to generate the geometric part of the solution (satellite orbits, station
coordinates and troposphere parameters) that is fixed in a subsequent cluster-wise
processing where the sought residuals are retrieved.

FIGURE 3.6: Code biases for satellite E33

Since OSBs and clock corrections
have to be jointly estimated due to
the involved rank defects, the compu-
tation of OSB parameters also requires
some shortcuts to alleviate the compu-
tational burden: The observations are
once more processed in regional clus-
ters, for which the previously generated
code-only orbits and station coordinates
are held fixed. For these clusters we
pre-eliminate other than hourly satellite

clock corrections (to get a common satellite clock inbetween the clusters) and GPS
and Galileo OSBs, which are estimated after NEQ stacking and plug back into the
original NEQ to retrieve the GLONASS OSBs cluster by cluster. It shall be stressed
here that we are using IF observations and, consequently, we do not have access to the
GF part of the biases. In order to produce a complete bias product, we hence account
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for those GF biases through the a priori OSB information, directly coming from the
CODE production line (particularly, GF processing), where OSBs are disseminated
with monthly resolution. A remarkable fact is that biases belonging to the same
frequency have similar magnitude (Sleewaegen and Clemente, 2018), which is exem-
plified in Fig. 3.6 by showing one years of estimated biases for the Galileo satellite
E33 and code signals C1C, C1X, C5Q and C5X. Recall that the pair C1C/C5Q is used
as Galileo reference in (3.28-3.26) and, therefore, the figure depicts corresponding GF
contributions, whose lower dispersion is explained by their monthly resolution.

Eventually, the phase data is analyzed within several iterations too, not only to
clean the observations (inspection of residuals similarly to the code data), but also to
define the set of ambiguity parameters (i.e., cycle-slip detection), which is reliably
done by reconstructing and examining the phase observations using the previously
computed code-only solution.

The screened observations, cycle-slips and OSB information are stored and, there-
fore, the preprocessing stage can be skipped in any subsequent computation of
geodetic solutions.

Computation of geodetic solutions

The core of the processing is based on a station-wise architecture, i.e., single stations
are independently processed as far as possible, uniformly distributing the com-
putational resources while alleviating the computational effort for large networks.
Therefore, the first step to compute the global parameters (second block in Fig. 3.5) is
the rigorous station-wise pre-elimination of receiver-dependent parameters, where
resolved ambiguities are considered as known after the first processing loop iteration.
Once all the station-dependent NEQ are generated, they are stacked, and inverted.
This inversion is carried out along with a reduction of the clock parameters by sequen-
tially splitting the stacked NEQ into smaller NEQ, each one containing 3-hour-clock
batches, in order to reduce the computational time. Substituting the previously gen-
erated global solution allows to readily estimate the remaining receiver-dependent
parameters during another station-wise parallelization (third block in Fig. 3.5). Op-
tionally, the resolution of the clock product can be augmented (e.g., from 5-minute
rate to 30-seconds rate) to support specific applications. We refer to this step as clock
densification. It is based on the processing of inter-epoch-difference observations (in
order for the ambiguity parameters to vanish) using the estimated clock corrections
as anchor points (Bock et al., 2009).

In the case that additional iterations are still pending (we perform two nominal
iterations with AR), it is important that the ambiguities are estimated as real numbers
during the computation of receiver-dependent parameters, since their fractional parts
will be the input for the subsequent AR stage.

The NEQ from the second block of Fig. 3.5 are stored to easily generate long-arc
solutions (section 2.6). In particular, we retrieve and stack NEQ from three consecutive
days to produce our nominal 3-day-arc global solutions, from which we extract the
middle to strictly produce daily solutions. These are fed into the third block of Fig. 3.5
to consistently compute the receiver-dependent parameters.

Ambiguity resolution

Our implemented AR strategy follows a very popular approach used within the GNSS
community when dual-frequency observations are available (e.g., Sanz-Subirana et
al., 2013, section 6.3). It is based on the processing of HMW and IF observations in
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two differentiated steps: The WL ambiguities are firstly resolved using the HMW
observations, which permits to removed them from the IF observations prior to
resolving for the NL in the second step. Even though this procedure is intuitive and
seamless at first sight, we have to tackle conceptual and practical difficulties that arise
when processing UD observations due to the phase biases, for which the DD-based
algorithms have to be revisited. This topic is exhaustively addressed in the following
chapter and a more detailed discussion on the ambiguity resolution strategy is given
in section 4.3.

3.5 Validation of the results

We carry out several comparisons to validate the generated GNSS solutions:

• Comparisons between UD- and DD-based solutions generated under equivalent
conditions (section 3.5.1).

• Comparisons between UD-based solutions and CODE MGEX products (section
3.5.2).

The comparison of (either satellite or station) coordinates belonging to two dif-
ferent products is performed in subsequent sections after correcting for frame mis-
alignments, which are accounted for through the so-called Helmert transformation
(Watson, 2006), which considers three translations along the coordinate axes, three
rotations around the coordinate axes and one scale for all three components. This
transformation is applied uniformly to all the coordinates associated with a specific
product, aiming at minimizing the square norm of the differences. On the other
hand, a meaningful metric that will also be employed in the sequel to compare GNSS
products is the so-called signal in space (SIS, Montenbruck et al., 2018b) range. For
the satellites s1 and s2, an ideal station located at the center of the Earth (i.e., rr = 0),
and the products A and B, the between-satellite SIS range differences are computed
as

SISs1s2
AB = ρs1s2

AB − cτs1s2
AB + Es1s2

AB (3.44)

with (·)s1s2
AB := (·)s1

A − (·)s2
A − (·)s1

B + (·)s2
B . The quantity Es1s2

AB represents errors that
originate at the network and leak into the satellite parameters. If the ambiguities
are resolved as integers, however, the connection between receiver and satellite
parameters is weak, which permits to decompose Es1s2

AB in terms of WL and NL
integer jumps and NL phase bias differences. This decomposition is paramount
if independent products compatible with AR are to be combined (Banville et al.,
2020). For the sake of simplicity, here Es1s2

AB is removed as a constant bias. Note that
satellite-specific SIS differences can be derived from (3.44) applying an epoch-wise
zero-mean condition.

3.5.1 UD-based against DD-based solutions: Controlled test case

From March 23 to April 6, 2021, fifteen daily DD-based solutions have been gener-
ated following the standard procedures adopted by CODE, i.e., a two-fold strategy:
Generation of geometry using DD observations, followed by the computation of
clock corrections and associated biases through a UD processing scheme where the
geometry is held fixed. To preserve to the extent possible the consistency with the
corresponding UD-based solutions, the same screening has been used as well as the
same a priori models and even the same ambiguity parameterization, for which the
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UD ambiguities have been converted into baseline ones. The fundamental differenc-
ing theorem proven in section 2.3 states that both solutions will be identical, provided
that every reduced (during differentiation) observation also reduces the number of
parameters. This assumption is, however, not fully met as the baseline measurements
demand equal observation windows between two stations, which generally leads to
the rejection of some measurements at the boundaries of the satellite tracks.

FIGURE 3.7: Comparisons between UD-based and DD-based solutions.
The top panel depicts differences in the midnight misclosures (RMS of
DD-based misclosure minus RMS of UD-based misclosure), whereas

the bottom panel shows orbital RMS differences

FIGURE 3.8: SIS range differences between UD-
based and DD-based products

The corresponding orbit compar-
isons are given on the bottom panel of
Fig. 3.7. An excellent agreement can be
seen at the level of 1.6 and 2.1 cm in (3D)
RMS for GPS and Galileo, respectively.
The satellite G11, which shows larger dif-
ferences, is unhealthy and, hence, very
poorly observed during this period, es-
pecially affecting the generation of base-
lines for the DD-based solution. The
satellites E11, E12 and E19 (IOV satel-
lites), and E14 and E18 (placed in eccen-
tric orbits) are also showing larger dif-
ferences than the majority of the Galileo
satellites, although remain at an accept-
able averaged level of about 3 cm. The
GLONASS constellation, on the other hand, depicts clearly worse performance, with
comparisons at the level of 4.4 cm and higher variability within the satellites. This
can be largely explained by the weaker GLONASS model based on real-valued ambi-
guities (for both compared solutions, in this case). Likewise, the top panel of Fig. 3.7
represents differences in midnight misclosures, i.e., RMS of DD-based misclosure
minus RMS of UD-based misclosure. Therefore, positive values indicate superior
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performance (smaller overlap) for the UD-based product. This is systematically the
case, with average differences of 1.2, 2.4 and 2.3 cm for GPS, Galileo and GLONASS,
respectively.

Fig. 3.8 compares the epoch-wise UD- and DD-based SIS range for the different
constellations (Galileo comparisons shifted by 100 ps for clarity). The cloud of points
is at the 6 ps level in STD for GPS and Galileo, illustrating that the UD- and DD-based
solutions may be considered equivalent from both the user’s perspective and the
perspective of AR. Once more, the comparison performs much worse for GLONASS,
with a STD of about 70 ps (2 cm). It becomes thus evident that the term Es1s2

AB in (3.44)
cannot be regarded as a constant bias if the ambiguity parameters are not resolved.

3.5.2 UD-based solution against CODE MGEX products

FIGURE 3.9: Comparisons between CODE
MGEX products and UD-based solutions. The
upper panel shows the RMS of the daily orbit
comparisons, whereas the lower panel repre-
sents the STD of the daily SIS range differences

In order to adjust the set-up to the CODE
MGEX solutions, long-arc UD-based
products referred to ITRF2014 have been
derived from stacking three individual
daily NEQ for a time interval of four
years (from July 2018 to June 2022). The
resulting orbit comparisons are depicted
in the upper panel of Fig. 3.9. The agree-
ment between both processing lines is
in line with the expectations (Griffiths
and Ray, 2009), with an average RMS of
1.91, 2.63 and 5.43 cm for GPS, Galileo
and GLONASS, respectively. The visi-
ble change in the pattern of the Galileo
comparisons at the beginning of the year
2020 is attributed to the integration of
an internally developed SRP model into
the CODE production line, which has
been preserved for the reprocessing of
the UD-based solutions. The lower panel
of Fig. 3.9, on the other hand, shows the
STD of the daily SIS range differences.
Each daily comparison may contain ab-

normally high differences for specific satellites, which usually implies that the corre-
sponding AR algorithm has converged to a different solution (see section 4.6.5). Such
degraded satellites have been excluded from the displayed daily metrics for a fairer
comparison. We see that, in average, the STD statistics are at an outstanding level of
7 and 8 ps for GPS and Galileo, respectively, whereas such comparison is at the level
of 63 ps for GLONASS, which is still acceptable for solutions that do not benefit from
AR.

The daily RMS of the orbit midnight misclosures for the different constellations
is displayed in Fig. 3.10 for both the MGEX products (left panel) and the UD-based
solutions (right panel). The UD-based solutions perform better for GPS and Galileo,
with average values of 6.86 and 7.44 mm, respectively, in comparison with the 9.57
and 13.56 mm (11.86 mm, if the inconsistent period is omitted) obtained from the
CODE MGEX products. This difference is not that significant if we compare with
the final CODE products, whose corresponding GPS figure is 8.49 mm. In case of
GLONASS, the orbit overlaps seem superior for the CODE MGEX products (15.04
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FIGURE 3.10: Orbit midnight misclosures for the CODE MGEX prod-
ucts (left panel) and the UD-based solutions (right panel)

mm in average, contrasting with the 16.76 mm for the UD-based solution), which
very likely obeys to the use of an AR strategy (Habrich, 2000), whose implementation
is technically challenging when processing UD observations.

3.6 TRF update: From ITRF2014 to ITRF2020

It is an interesting exercise to evaluate the performance of the TRF underlying the
geodetic solutions, since the quality of the derived geophysical parameters is condi-
tioned to the stability of the frame itself. Such an exercise is the subject of the present
section.

The solutions presented in the previous section are based on ITRF2014. However,
the IGS transitioned from ITRF2014 to ITRF2020 at the end of 2022 9. Therefore, we
have computed analogous solutions using this newer frame along with the newer
standards it conveys, namely:

• An updated mean pole used in the modeling of the ocean pole tides (Petit,
Luzum, et al., 2010, v1.2.0).

• An updated version of the sub-daily polar motion model (Desai and Sibois,
2016).

The orbit midnight misclosures can be used to measure the stability of the frame.
Nonetheless, the resulting figures only differ at the sub-millimeter level from the
corresponding ITRF2014 values (right panel of Fig. 3.10). In order to gain further
insight into the stability of the frame, we have compared the daily estimates of the
station coordinates against their regularized positions. The RMS of the Helmert
transformation as well as the associated Helmert parameters are given in Fig. 3.11
(rotation angles and scale multiplied by the Earth’s radius) for both ITRF2014- and
ITRF2020-based solutions. It can be seen that the RMS is smaller for the ITRF2020
solutions, indicating a better stability during the processed time interval. A similar
conclusion yields from the smaller biases and smaller signal amplitudes observed
in the translation and scaling figures for the ITRF2020 solution. Conversely, no
conclusion can be drawn from the rotation parameters.

3.7 Galileo SRP model based on satellite metadata

The metadata disclosed by the European GNSS Agency for the Galileo satellites was
not integrated as part of the Galileo SRP model in the CODE production line until the

9IGSMAIL-8238 https://lists.igs.org/pipermail/igsmail/2022/008234.html

https://lists.igs.org/pipermail/igsmail/2022/008234.html
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FIGURE 3.11: RMS of the Helmert transformation and Helmert pa-
rameters that result from comparing the estimated station coordinates

against their regularized positions

switch to ITRF2020. Earlier solutions were using, instead, an internal characterization
of the Galileo surface dimensions and optical properties derived from an in-house
investigation. The performance of the new model (based on satellite metadata) was
evaluated in the scope of this dissertation prior to its operational deployment. The
main findings are presented herein.

The orbit misclosures are an excellent figure of merit to confirm that the in-house
SRP model had a very positive impact on the Galileo solutions, as we can see on the
left panel of Fig. 3.10, where the most distinct artifacts vanished after its deployment
in early 2020. Upgrading the SRP model in accord with the satellite metadata has,
however, a more subtle impact on the midnight misclosures: The average value
turns from 7.44 to 6.42 mm. To get a more acute insight into the impact of using
the satellite metadata, we also inspect the estimated Galileo ECOM2 parameters,
which are devoted to compensate deficiencies in the SRP model. The estimates for
the same four-year interval that we have processed so far are displayed in Fig. 3.12 as
a function of the β angle (from Fig. 3.2, it represents the elevation of the Sun above
the orbital plane, and, consequently, plays a vital role in SRP modeling). We can
see that the new model (labeled as “Metadata”) reduces the dependency on β for
every parameter (especially for low β angles), indicating that they are becoming more
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FIGURE 3.12: Comparison of estimated Galileo ECOM2 parameters
for two different SRP background models

empirical than physical, as expected. Furthermore, E30, which compensates direct
SRP, has a much smaller amplitude.

The interested reader may notice that the parameter E3S1, also appearing in
Fig. 3.12, is not part of the standard ECOM2 parameterization (3.14-3.16). It was
included for low β angles (i.e., eclipsing satellites) in order to compensate satellite
thermal radiation (Sidorov et al., 2020). Nonetheless, we can presume from Fig. 3.12
that it rather compensates mismodeling in the background SRP model, and, hence, is
no longer necessary when using the Galileo metadata.

The ILRS network is able to track the Galileo constellation thanks to the laser
retroreflectors arrays equipped on the satellites. The resulting SLR observations are
commonly fitted to the precise orbits in post-processing, providing valuable metrics
for validation purposes (the residuals can be used, for instance, to identify a variety of
satellite- and station-dependent systematics, Arnold et al., 2019). Since the SRP model
physically depends on the β and ∆u angles, the Galileo SLR residuals are projected
on a β/∆u map in Fig. 3.13, where each 2◦ × 2◦ cell represents the average value of
the confined residuals. The left panel is generated with the solutions based on the in-
house SRP background model, whereas the solutions based on the satellite metadata
are used for the right panel. This latter panel depicts a much weaker pattern (i.e., less
aggressive systematics), demonstrating an astonishing modeling improvement when
the Galileo metadata is employed.
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FIGURE 3.13: SLR residuals to Galileo satellites projected on a β/∆u
map. The residuals are averaged within a grid of 2◦ × 2◦ cells. The
left panel is associated to the Galileo solutions using the in-house SRP
model, whereas the right panel corresponds to the solutions using the

Galileo satellite metadata

3.8 SLR-based evidence of second-order relativistic effect on
Galileo clocks

FIGURE 3.14: Galileo SLR residuals (la-
bel “SLR”) and residuals of the detrended
Galileo clock estimates (“CLK”). The solution
“CLK_rel” depicts the clock residuals after re-

moving the relativistic correction (3.45)

The right panel in Fig. 3.13 still hints a
dependency on ∆u, which is more visible
in Fig. 3.14, where we show the signature
that results from averaging the Galileo
SLR residuals within a 2◦-partition of ∆u
(label “SLR”). Superimposed to this sig-
nature, it is also displayed the averaged
(within the same partition) residuals of
the detrended Galileo clock corrections
interpolated at the epochs of the SLR ob-
servations (label “CLK”). The relativistic
clock correction (3.18) only accounts for
the first term of the geopotential and can
be extended to also account for the influ-
ence of the Earth’s oblateness by adding
(Beard and Senior, 2017)

∆τs =
3
2

R2

a2c2 C20
√

GMa sin2 i sin2 2u
(3.45)

where we attach to the notation of chapter 1 for the orbital elements and remaining
constants. Once the correction (3.45) is applied to the Galileo clock corrections (not
IGS standard), we recover the pattern labeled as “CLK_rel” in Fig. 3.14. Under
the assumption that systematic effects are averaged out, only orbital radial errors
(measured by the SLR observations) are mapped into the clock estimates. Hence,
the remarkable correlation between the SLR and CLK_rel signatures (correlation
index of 0.88, contrasting with a moderate 0.50 index between SLR and CLK) is
a SLR-based observational test for general relativity (other recent studies, such as
Kouba, 2021 and Formichella et al., 2021, are based solely on the inspection of Galileo
clock corrections).
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The specific ∆u-projection of the detrended clock residuals, after accounting for
(3.45), can be used as a figure of merit to validate newer procedures. In particular,
it becomes self-evident that the assimilation of SLR observations during the GNSS
processing would have a positive impact in such a figure (Bury et al., 2021 already
pointed out an improvement in the LOD estimation). The use of new models and
parameterizations should be, however, the preferred option, so that the SLR ob-
servations can still be employed for independent validation. Because of the high
performance of the PHM clock of Galileo (Rochat et al., 2005), some authors have
proposed a stochastic model for the Galileo clock corrections based on a relative
constraining of the parameters (Hackel et al., 2015, Qing et al., 2017), which is techni-
cally possible in our UD processing schemes. Since this constraining acts upon the
high-frequency clock variations, we consider more interesting to apply restrictions
on those frequencies proportional to the satellite orbital periods in order to uncouple
orbit parameters from clock corrections. There was an attempt to implement such
a concept within this dissertation. However, no conclusive results were obtained,
since the clock corrections also account for other physical (unmodeled) effects that
occur with orbital periodicities, such as the thermal response of the clock or attitude
mismodeling (Montenbruck et al., 2012).

3.9 Summary

The main aspects of the processing of GNSS observations for geodetic applications
have been presented in this chapter. We started with an introduction of the GNSS
constellations used in the scope of this work, namely, GPS, Galileo and GLONASS.
Here we gave a general discussion on the orbital geometries and transferred signals.

Later on, the model for the GNSS code and phase observations was addressed,
with emphasis on the IF and HMW linear combinations, which are the primary
observable types used to derive our GNSS solutions. Although without deep detail,
every constituent of the GNSS observation model was discussed or referred to, as
well as the parameterization employed to reduce the observations. We paid special
attention to the involved rank defects, mainly associated to the code and phase
biases, since their handling redefines the meaning of the parameters and thus have
conceptual and, more importantly, practical consequences. For instance, they define
the time scale of the resulting clock product or the integerness of the estimated
ambiguities.

The overall view of the implemented processing schemes was also described in
general terms, where we distinguished between different stages: Preprocessing, com-
putation of geodetic solution and AR. Each stage comprises several steps, which are
mostly executed by the BSW tools. For later cross-reference, we give a comprehensive
compilation of the general aspects of our processing strategy in appendix A.

The performance of the newly generated UD-based products was evaluated
by means of comparisons against two independent DD-based solutions, one of
which derives from a controlled test case where the same network, screening and
parameterization as for the UD processing scheme were preserved, whereas the other
comes from the official CODE MGEX production line. The findings show that the UD-
based solution is at a competitive level, with STD statistics of SIS range comparisons
at the level of 6-7 ps for GPS and Galileo and 70 ps for GLONASS. The (3D) RMS
of the orbit comparisons, on the other hand, are in the order of 1.5-2 cm for GPS
and Galileo and 5 cm for GLONASS. The GPS and Galileo UD-based solutions are
apparently superior in internal consistency, measured as orbit midnight misclosures,
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with averaged statistics at the level of 6.9 and 7.4 mm for GPS and Galileo, respectively.
Conversely, this figure is slightly worse for the GLONASS UD-based solutions (16.8
mm) than for the CODE MGEX products (15.0 mm), presumably due to the lack of
GLONASS AR in our processing schemes.

We made an exercise to evaluate the performance of the recently realized ITRF2020.
GNSS solutions referred to both ITRF2014 and ITRF2020 were generated and the re-
sulting station coordinates compared against the corresponding regularized positions.
For the processed time interval, the solutions associated to the ITRF2020 frame render
better in terms of RMS and stability of the estimated Helmert parameters. On the
other hand, another exercise was undertaken to assess the use of the Galileo metadata
in SRP modeling. A positive impact was observed in the estimated ECOM2 param-
eters, which reduce their dependency on the β angle, as well as on the systematics
that are visible in a β/∆u-mapping of the SLR residuals. Incidentally, as the clock
corrections are prone to compensate radial errors, the comparison between clock and
SLR residuals revealed the influence that the C20 geopotential coefficient has on the
Galileo clocks according to the general relativity theory.
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Global GNSS ambiguity resolution
for undifferenced processing

4.1 Introduction

To resolve the carrier phase ambiguities of the GNSS observation model (3.1), or,
equivalently, (3.5, 3.6), to their integer values is referred to as ambiguity resolution
(abbreviated in this document as AR). From the parameter estimation perspective, AR
largely reduces the amount of unknown parameters (the ambiguity terms represent a
third of all the parameters involved in our problem in accord with table 3.4), hence
increasing the strength of the geodetic solutions. In addition, since those ambiguity
terms are the only parameters mutually depending on both stations and satellites, we
can intuitively think that AR separates the network from the satellite side. In practice,
this implies that applications based on stand-alone receivers (e.g., PPP) can attain
network performance if the ambiguities are resolved as integer numbers (altogether,
PPP-AR).

Despite AR has become a mature research topic supported by its own underpin-
ning mathematical formalism (e.g., Teunissen, 2017b), different processing strategies
count with different AR algorithms. These algorithms have to cope, in an efficient
manner, with the high computational burdens that AR demands, especially when the
amount of ambiguity parameters is sizable (as for global GNSS network solutions).
Moreover, the performance of the same AR implementation can be degraded under
different processing conditions. This was observed for the AR strategy employed in
the CODE UD-based procedure that generates integer-cycle-conform clock products
(Schaer et al., 2021). While such a strategy properly works when the algorithm is fed
with GNSS orbits already compatible with AR (retrieved from a DD-based production
line1), its performance is not satisfactory if we use instead preliminary GNSS orbits
based on real-valued ambiguities (first iteration in our UD-based processing strategy,
Fig. 3.5). Therefore, we carried out some investigations to figure out the origin of
such underperformance. The findings yielded a novel AR algorithm, which is the
subject of the present chapter.

Besides CODE, various GNSS research groups have developed strategies rely-
ing on the availability of a priori geometry solutions compatible with AR (typically
derived from a DD-based processing) to estimate satellite clock corrections in a dedi-
cated UD-based processing (Geng et al., 2012, Duan et al., 2021). Other approaches,
on the other hand, estimate the different contributions of the GNSS observation
model within a single UD-based processing (Loyer et al., 2012, Strasser et al., 2019).
Whereas the former strategies easily unveil (at station level) the integer nature of the

1More precisely, in addition to GNSS orbits, station coordinates, troposphere delays and ERP are
also retrieved from the DD-based production line.
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ambiguities after calibrating phase biases at the cost of a two-fold processing scheme,
the latter ones are challenged by a more complex AR stage, which must address
potential errors, primarily related to the orbits, absorbed by the real-valued ambi-
guities, as well as confront a prohibitive computational burden for large networks
due to the huge amount of ambiguity parameters. Aiming at taking the greatest
advantage of both approaches, we have developed an AR strategy for UD-based
processing that overcomes the restriction associated to the network size based on
the inspection of real-valued ambiguities, which ultimately turns the preliminary
orbit and clock solutions into integer-cycle-conform solutions that enable AR in an
inexpensive station-wise parallelization.

Ge et al., 2005 integrate the DD-AR information into an UD-based processing
scheme by using the resolved DD ambiguities as tight constraints in the LS adjustment,
which is still computationally expensive for large networks. Likewise, similar to
our approach, some authors have explored methods based on real-valued ambiguity
inspection (Ge et al., 2008, Laurichesse et al., 2009). However, we address the problem
from a different perspective that poses a new framework, enhancing the robustness.

From the many research groups active in this field, a number of integer-cycle-
conform products are available that are actually equivalent under certain transforma-
tions, as proven by Teunissen and Khodabandeh, 2015. The authors also emphasize
the essential idea stemming from (3.40), i.e., resolved UD ambiguities become DD
ambiguities after properly handling the rank defects of the GNSS observation model.
In the frame of this work, we use the integer-recovery clock (IRC) model presented in
Laurichesse et al., 2009 and Loyer et al., 2012, which is in analogy to the decoupled
satellite clock (DSC) model (Collins, 2008 and Collins et al., 2008). The IRC model is
characterized by lumping together clock corrections and NL phase biases.

We avoid AR for GLONASS due to the difficulties arising from the FDMA tech-
nique. Despite the phase biases are supposed to be frequency-independent (Sleewae-
gen et al., 2012), there exist, however, an apparent dependency because the ambiguity
parameters are multiplied by different wavelengths for each satellite, and because
the code biases leak into the phase observations when coping with the rank defects
of the observation model (3.25, 3.26, 3.31, 3.32). Therefore, the phase biases have
to be accounted for either by using linear functions of the frequency (Chuang et al.,
2013), or by resolving triple-difference ambiguities, rather than DD ones (Banville
et al., 2013). Recent studies also show how to build more general integer-estimable
functions for the GLONASS ambiguities (Teunissen, 2019,Teunissen and Khodaban-
deh, 2019). Other researchers tackle the problem using only IF phase observations,
which is feasible by redefining the wavelength in such a way that the GLONASS IF
ambiguities become integer numbers by construction (Banville, 2016). Finally, we
shall note that the GLONASS AR approach that the BSW implements is oriented to
the processing of baseline observations and makes some delicate assumptions on the
magnitude of the ambiguities that are difficult to implement when processing UD
observations (Habrich, 2000).

In this chapter, some theoretical notions of AR are given in section 4.2. Later, we
discuss our implemented AR strategy (section 4.3) and describe the algorithm that
inspects the real-valued ambiguities (section 4.4). Afterwards, the metrics used to
evaluate the quality of the AR solutions are described together with some interesting
technical aspects emerging from practical implementations (sections 4.5 and 4.6,
respectively). A final section is dedicated to the summary.

The main ideas of this chapter can also be found in Calero-Rodríguez et al., 2023a.
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4.2 Theoretical framework

A mixed-integer model is characterized by both real and integer parameters, i.e.,

E[y] = Aa + Bb, D[y] = Σyy (4.1)

with a(i) ∈ Z and b(j) ∈ R (for every i and j components of a and b, respectively).
The GNSS model (3.1, 3.2), or (3.4-3.6), qualifies as such due to the carrier phase am-
biguities. To cope with (4.1), we first compute a real-valued estimate for a (ambiguity
vector) by using the LS principle, namely, â with covariance Σââ, which must later be
mapped into a vector composed by integer numbers, i.e., ǎ, in such a way that the
quantity

(ǎ − â)⊤ Σ−1
ââ (ǎ − â) (4.2)

is minimized (recall discussion in section 2.4). The optimization problem arising from
(4.2) is known as integer least-squares (ILS) and the underlying theory is compiled in
Teunissen, 2017b. In essense, ILS is solved by a search algorithm, whose efficiency
decays exponentially with an increasing size of a. If Σââ is diagonal, the solution can,
however, be trivially computed as ǎ = ⌊â⌉ (the rounding operation is denoted by
⌊·⌉). Therefore, it is preferred to solve the ILS problem in a nearly decorrelated space
after applying a Z-transformation (Teunissen, 1995)

ž = Zǎ, ẑ = Zâ, Σẑẑ = ZΣââZ⊤ (4.3)

for which (4.2) becomes
(ž − ẑ)⊤ Σ−1

ẑẑ (ž − ẑ) (4.4)

A proper Z-transformation requires the components of Z to be integer numbers and
|det(Z)| = 1, so that any integer vector a maps into an integer vector z and vice versa.
Under these conditions, the idea behind such transformations is to find the Z matrix
that makes Σẑẑ “as diagonal as possible” with the variances sorted in descending
order. Indeed, the most widespread algorithm for ILS in the GNSS community, i.e.,
the least-squares ambiguity decorrelation adjustment (LAMBDA, Teunnissen, 1995),
makes extensive use of this transformation. An efficient version of LAMBDA can be
implemented from the algorithms given by Chang et al., 2005.

Because of the huge amount of ambiguities when processing a dense network of
GNSS stations (table 3.4), it is unfeasible to face our AR problem exclusively using a
search algorithm. Consequently, other integer estimators, namely, integer rounding
and integer bootstrapping, can be more appropriate options from the computational
point of view. As its name suggests, integer rounding consists in rounding off the real-
valued ambiguities to the nearest integers. On the other hand, integer bootstrapping
resolves the ambiguities to integers one-by-one according to their formal errors: The
ambiguity with the lowest error is rounded off and plugged into the NEQ so that
the remaining ambiguities can be updated and resolved in subsequent iterations.
The process finishes when there are no more ambiguities left. Note that both integer
rounding and integer bootstrapping can implement some mechanisms to increase
their robustness. For instance, resolving only those ambiguities whose fractional
parts are below a certain threshold. Likewise, it is also beneficial to apply a Z-
transformation prior to resolving the ambiguities with either integer estimator.

The BSW implements integer rounding, integer bootstrapping (referred to as
SIGMA algorithm) and its own search algorithm (other than LAMBDA; Dach et al.,
2015, section 8.3).
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4.3 AR strategy based on HMW/IF observations

The AR stage implemented in our UD-based processing strategy (last block in Fig.
3.5) tries to resolve between-satellite ambiguities (i.e., single-differences per station
are generated from the estimated UD ambiguities) in a two-fold procedure:

• The WL phase biases are calibrated by inspecting the fractional parts of the
real-valued WL ambiguities. Those biases are later removed from the HMW
observations (3.6), allowing to resolve the WL ambiguities to their integer values
station-by-station using the bootstrapping integer estimator (BSW SIGMA with
maximum allowed fractional part for resolvable ambiguities of 0.3 WL cycles).

• The previously resolved WL ambiguities are removed from the IF observations
(3.5) and the fractional parts of the real-valued NL ambiguities are inspected
to derive NL phase biases as well as other corrections. Once these biases and
corrections are removed from the IF observations, we unveil the integer nature
of the NL ambiguities, which are again resolved station-by-station using a boot-
strapping integer estimator (BSW SIGMA with maximum allowed fractional
part for resolvable ambiguities of 0.12 NL cycles). Note that we shall disregard
those NL ambiguities associated with unresolved WL ambiguities, i.e., they
must be estimated as real-valued numbers and cannot be used for the inspection
algorithm.

Resolving ambiguities station-by-station is nothing but PPP-AR, for which integer-
cycle-conform products (orbits, clock corrections and phase biases) are necessary.
Because of this, the inspection of the ambiguities in the preceding steps (and the
corrections thereof) is the most important and delicate part of our AR strategy, since
it conceptually assumes the role of global AR.

As noted by (3.43), when the ambiguities are not resolved, their estimated real
values absorb the phase biases. Conversely, if the ambiguities are resolved as integer
numbers, the phase biases have to be accounted for. Since we resolve between-
satellite ambiguities instead of UD ones, at least one reference real-valued ambiguity
parameter per station has to be estimated, being lumped with δr,(·). Although for
the HMW observations we explicitly account for the satellite phase biases (i.e., the
δs

WL terms are calibrated when resolving the ambiguities), we treat the NL phase
biases in a dissimilar fashion. The δs

NL parameters have a magnitude in the order of
the NL wavelength (∼ 10 cm from table 3.3) because of its own construction: The
code observations weakly constrain the ambiguities, which, in turn, align phase and
code measurements at a certain level. If they were absorbed by the satellite clock
corrections, the code observations would be distorted by the same amount, which
would be scarcely sensed due to their precision, leaving the remaining parameters
unaltered. This is the basis for the IRC model, which lumps NL phase biases and
clock corrections together (Laurichesse et al., 2009), also experimentally confirmed in
Schaer et al., 2021. The final consequence is that the NL phase biases are implicitly
accounted for (i.e., they are neither estimated nor calibrated, but compensated by the
satellite clock corrections).

4.4 Inspection of real-valued ambiguities

As can be seen from the lower panel of Fig. 3.9, the agreement between integer-cycle-
conform products (GPS and Galileo) is excellent, reaching consistencies below 10 ps
in STD for the between-satellite SIS range differences. However, when we compared
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for the first time our preliminary UD-based solution (i.e., unresolved ambiguities;
second block, first iteration in Fig. 3.5) against the CODE Final (integer-cycle-conform)
products we observed a much worse performance, at a level comparable with the
GLONASS figures. In particular, the blue line in Fig. 4.1 shows such a comparison
for the between-satellite pair G26/G29 on 2021/050 (the horizontal axis denotes the
epoch number, stretching from 1 to 288 for daily sessions with 5-minute sampling).
Far from a stability of 10 ps ( 0.03 NL cycles), the preliminary products may exhibit a
drift with deviations larger than 1 NL cycle in the course of one day, which precludes
station-wise AR. Superimposed to this curve, the red lines indicate the real-valued
between-satellite ambiguities associated to the UD-based solution (resulting from
third block, first iteration in Fig. 3.5), which have been shifted by integer jumps to
better accommodate the clock comparison. Typically, each red line corresponds to
different passes and different stations. As can be seen, there is a clear correlation
between the ambiguities and the SIS range differences. This hints that, by inspecting
the unresolved ambiguities, we can derive corrections to remove the drift of the
preliminary products in order to make them consistent with global AR. The goal of
this section is to define a systematic and rigorous way to accomplish this objective.

FIGURE 4.1: Between-satellite (G26/G29) SIS
range comparison between the preliminary
UD-based solution and the CODE Final prod-

ucts on 2021/050

Since the HMW observations (3.6)
are GF and IF, the inspection of WL
ambiguities is a moderate effort exer-
cise. To omit redundancy in the follow-
ing subsections, we thus focus only on
the NL ambiguities to explain the im-
plemented algorithm, with a final note
(section 4.4.4) on how to adapt such an
algorithm for WL AR.

It is worth pointing out that, al-
though Fig. 4.1 illustrates the cou-
pling between ambiguities and satellite-
dependent parameters, some coupling
could also originate on the receiver side.
This mechanism is inferred in Mon-
tenbruck et al., 2018a, where the unre-
solved ambiguities are shown to trace
signatures with a period equal to the or-

bital period of the LEO Sentinel-3A altimetry satellite, which is equipped with a
geodetic GNSS receiver.

4.4.1 Ambiguity parameterization

To mathematically quantify the coupling between the different parameters of the IF
phase observation model (3.5)2, let us start writing its linearized O-C version (with
removed WL ambiguities) for the between-satellite pair s1/s2 in units of NL cycles:

Ls1s2
r = (es1

r · xs1 − es2
r · xs2)− (τs1 − τs2) + (δs1 − δs2) + Ts1s2

r + es1s2
r · xr + Ns1s2

r (4.5)

2Technically, what we need is nothing but the covariance matrix associated to the ambiguity parame-
ters. However, since we fix satellite orbits and clock corrections when retrieving them (section 3.4), the
resulting covariance information is overoptimistic.



70

where (·)s1s2
r := (·)s1 − (·)s2 , es

r stands for the LOS pointing from station r to satellite
s, and xs and xr are corrections over the a priori orbit and station coordinates, respec-
tively. Note that the subscript NL has been dropped to alleviate the notation. This
observation can be reconstructed using either the preliminary (PRE) estimates or the
integer-cycle-conform (ICC) estimates, and, therefore, the following equality holds
within the noise of the phase observations:

[(es1
r · xs1 − es2

r · xs2)− (τs1 − τs2) + Ts1s2
r + es1s2

r · xr + Bs1s2
r ]PRE =

[(es1
r · xs1 − es2

r · xs2)− (τs1 − τs2) + (δs1 − δs2) + Ts1s2
r + es1s2

r · xr + Ns1s2
r ]ICC (4.6)

We have defined, in accord with (3.43), Ns1s2
r + δs1 − δs2 → Bs1s2

r . Regrouping terms, it
yields

Bs1s2
r − Ns1s2

r = ∆Ns1s2
r =

(es1
r · ∆xs1 − es2

r · ∆xs2)− (∆τs1 − ∆τs2) + ∆Ts1s2
r + es1s2

r · ∆xr + (δs1 − δs2) (4.7)

where ∆ represents the difference between the ICC and PRE realizations of the
corresponding parameter (opposite sign convention for ∆Ns1s2

r ).
In the following we use the ∆Ns1s2

r quantities as “observations” in a subsequent
LS adjustment where the right-hand side terms are estimated as corrections for the
preliminary solution. A direct implementation is, however, impossible since these
observations are the (known) real-valued between-satellite ambiguities shifted by
an unknown number of NL cycles. To overcome this issue, we may form ambiguity
clusters. As will be detailed in the next section, their main outcome is the redefinition
of the ∆Ns1s2

r terms in such a way that they are not individually shifted, but the
shift is common for a set of observations. This is, ∆Ns1s2

r → ∆Ns1s2
r − Bs1s2

α , where
the new realization of ∆Ns1s2

r is unambiguously known and Bs1s2
α is an unknown

shift unique for every cluster (Greek letters, in this case α, designates ambiguity
clusters). The unknown shifts, referred to as cluster biases, can be initially interpreted
as between-satellite ambiguities and will be estimated as part of the LS adjustment.

The model (4.7) is further simplified with:

• We address the ambiguity resolution problem from a global point of view,
neglecting the receiver-dependent parameters (i.e., ∆Ts1s2

r and ∆xr).

• The time-dependent orbit and clock corrections (∆xs and ∆τs, respectively) are
averaged over the time interval stretched by the observations ∆Ns1s2

r .

• The orbit and clock corrections are characterized by a sum of polynomials,
whose coefficients are the sought parameters. In our nominal set-up, we use
9th-degree polynomials (i.e., 10 coefficients) for each orbital component (radial,
cross- and along-track) and the clock-like corrections (deeper discussion in
section 4.6.2).

Altogether, the simplified model eventually reads as

∆Ns1s2
r =

(
es1

r · ∆xs1 − es2
r · ∆xs2

)
−
(
∆τs1 − ∆τs2

)
+ Bs1s2

α (4.8)

The horizontal upper bars indicate temporal average of the corresponding contri-
bution. In this equation, the phase biases are absorbed by the clock corrections,
which require a dedicated datum (we apply a zero-mean condition over the satellites
per clock coefficient) to give access to the “absolute” satellite-specific information.
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There is another rank defect between cluster biases and clock corrections that can be
overcome by fixing n − 1 (with n equal to the number of satellites) Bs1s2

α parameters
to zero, implying that they can now be interpreted as DD ambiguities and, as such,
should converge to integer numbers. On the other hand, the radial component of the
orbit corrections should be loosely constrained to mitigate the numerical instability
resulting from their high correlation with the clock corrections.

The model (4.8) can be understood as a kinematic approach that refines satellite
orbits and clock corrections without requiring any a priori model. However, ∆xs

and ∆τs compensate general error sources, and, hence, do not have a real physical
interpretation. The only important aspect for a successful station-wise AR in our
processing is that, when those corrections are applied over the preliminary solution
(final block in Fig. 3.5), it eventually resembles an integer-cycle-conform solution.

One between-satellite observation, ∆Ns1s2
r , is obtained from two overlapping

UD real-valued ambiguities belonging to the same station, whose difference and
common overlap represent, respectively, the observation value and the observation
time interval. The between-satellite pairs s1/s2 are selected from the linearly inde-
pendent combinations that maximize the overall coverage. Afterwards, in order to
complement potentially poorly observed periods, additional between-satellite pairs
are included following the same criterion. The new pairs are appended into the set
of observations until a predefined redundancy level is satisfied, which is defined as
the number of occurrences of one satellite in the set of between-satellite combina-
tions. Since no correlations between observations are considered, the larger the level
of redundancy, the better. However, an increasing number of observations would
compromise the computational performance of the method. Therefore, as a trade-off
solution, a redundancy level of four occurrences per satellite is assumed in the frame
of this work.

Although no correlations are considered, specific variances are used to weight the
observations. Being σs2 the variance associated to the UD ambiguity of satellite s for
a particular station, and ∆Ts its temporal length, the variance for a between-satellite
combination is defined as

σs1s2 2 =
∆Ts1 σs1 2 + ∆Ts2 σs2 2

∆Ts1s2
(4.9)

where ∆Ts1s2 represents the common tracked time for the satellites. Note that a
rejection criterion could be considered as well for those observations stretching time
intervals shorter than a user-defined length (1 hour in our case). Eventually, it has
to be emphasized that the model (4.8) should be separately used for different GNSS
systems (i.e., independent runs for GPS and Galileo) because of the inter-system
biases.

4.4.2 Ambiguity clustering

Let us recover the definition of the observations from (4.7):

∆Ns1s2
r = Bs1s2

r − Ns1s2
r (4.10)

Without loss of generality, these observations can be initialized as the fractional part
of the real-valued between-satellite ambiguities. Now, let us take two observations
from two different stations and same satellite pair (i.e., ∆Ns1s2

r1 and ∆Ns1s2
r2 ), and let

us focus on a specific property of the definition: If the DD ambiguity formed by
them can be resolved to its correct integer number using integer rounding, then the
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rounding operation shall return an exact zero, i.e.,

M = ⌊∆Ns1s2
r1

− ∆Ns1s2
r2

⌉ = ⌊Bs1s2
r1

− Bs1s2
r2

⌉ −
(

Ns1s2
r1

− Ns1s2
r2

)
= 0 (4.11)

If this outcome is other than zero, either ∆Ns1s2
r1 or ∆Ns1s2

r2 has to be redefined accord-
ingly, i.e.,

∆Ns1s2
r1

+ M → ∆Ns1s2
r1

(4.12)

After this redefinition, a two-ambiguity cluster has been created. Additionally, since it
is only required to preserve the underlying DD ambiguity, any common shift (i.e., the
cluster bias Bs1s2

α ) applied over both observations represents a valid transformation.
Of course, the more the number of between-satellite ambiguities per cluster, the better.
This is achieved by combining clusters. To exemplify this idea, let us consider two
ambiguity clusters, namely, α and β, each composed by three observations with the
following numerical values:

∆Ns1s2
r1α = 0.3 ∆Ns1s2

r2α = 0.4 ∆Ns1s2
r3α = 0.5

∆Ns1s2
r3β = −0.5 ∆Ns1s2

r4β = −0.4 ∆Ns1s2
r5β = −0.3

(4.13)

It can be seen that the two clusters are overlapping, because each cluster contains its
own realization of the observation ∆Ns1s2

r3 . This allows to merge them by properly
shifting the ambiguities of, e.g., cluster β:

∆Ns1s2
(·)β

+
(

∆Ns1s2
r3α − ∆Ns1s2

r3β

)
→ ∆Ns1s2

(·)α (4.14)

leading to one single α cluster:

∆Ns1s2
r1α = 0.3 ∆Ns1s2

r2α = 0.4 ∆Ns1s2
r3α = 0.5

∆Ns1s2
r4α = 0.6 ∆Ns1s2

r5α = 0.7
(4.15)

Note that the combination of clusters results in a set of observations whose fractional
parts are not necessarily bounded by -0.5 and 0.5 cycles.

Although we use the least reliable integer rounding estimator to create the am-
biguity clusters according to the rules (4.11, 4.12), the experience with DD-based
network solutions demonstrates that the error sources potentially absorbed by the
ambiguity parameters partially vanish when forming regional baselines (Dach et al.,
2015, section 8.5). In line with this, we can establish a robust AR criteria obeying three
physical-driven principles:

• The absolute value of the fractional part associated to the DD ambiguity shall
be lower than a predefined threshold (we use 0.1 cycles).

• The maximum baseline length between the stations involved in the DD ambi-
guity shall not exceed a predefined distance (we use 4000 km).

• The overlapping factor between the observations involved in the DD ambiguity
shall not be lower than a predefined ratio (we use 0.5). This ratio is computed as
the overlapping time over the total time span covered by both between-satellite
ambiguities.
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Disconnected
clusters

Overlapping
clusters

Neighboring
clusters

FIGURE 4.2: Abstract representation of cluster
inter-relations

A basic cluster associated to a par-
ticular pivot observation can be defined
as the cluster containing all those obser-
vations that, when double-differentiated
w.r.t. the former one, satisfy the above
AR criteria for a fixed between-satellite
pair (the pivot observation is part of the
basic cluster, too). The combination of
these basic clusters, on the other hand,
leads to globally applied ambiguity clus-
ters, which can be systematically con-
structed by taking into account the fol-
lowing cluster inter-relations (Fig. 4.2):

• We address those clusters as disconnected clusters if they are fully independent
and, hence, one cluster bias needs to be estimated for each cluster.

• We address those clusters as overlapping clusters if they share at least one
common observation. These clusters shall be combined.

• We address those clusters as neighboring clusters if at least one observation in
cluster α is in the vicinity of at least one observation in cluster β. Such a vicinity
occurs if those (at least) two observations fulfill the AR criteria. In which case,
both clusters must be combined.

FIGURE 4.3: Between-satellite (G06/G17) ambiguity clusters on
2021/050. Each cluster is represented by a different color. The left
panel displays the temporal distribution of the observations ∆Ns1s2

r
associated to each cluster. The right panel shows the corresponding

tracking stations for the temporal period with gray background

Fig. 4.3 shows the temporal distribution (left panel) of some observations along
with the geographical distribution for those with shaded background (right panel).
The selected between-satellite pair is G06/G17 on 2021/050. As can be seen, these
observations are grouped in several ambiguity clusters, which are represented by
different colors. The generic black color has been designated for those containing
five observations or fewer. A drift is observed, ranging up to one NL cycle once
the pink and green clusters are dragged downwards, which is accomplished by
the estimation of cluster biases in (4.8). It is interesting to note that each cluster is
homogeneously spaced in different regions of the globe and isolated from the others.
This is a consequence mainly (but not exclusively) induced by the maximum baseline
length rule.
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Loyer et al., 2012 and Strasser et al., 2019 define the ambiguity datum by fixing, in
the most favorable case, the best observed independent ambiguities such that (3.38-
3.40) holds. In the unlikely (but possible) case in which one ambiguity is individually
biased, the underlying DD ambiguities will lose their integer nature, leading to an
inconsistent AR stage. In contrast, the use of ambiguity clusters allows to use those
Bs1s2

α parameters performing best (e.g., in terms of ambiguity density, which, in turn,
implies good DD-AR performance), minimizing the probability of those events to
happen.

4.4.3 Mixed-integer model property

The model (4.8) features as a mixed-integer model, since ∆xs
(p), ∆τs ∈ R and Bs1s2

α ∈ Z

(where ∆xs
(p) stands for the p-component of ∆xs). To make full profit of this property,

it is convenient to use an integer estimator to map as integers the cluster biases
determined as real numbers after a first LS adjustment.

FIGURE 4.4: Correlations between Bs1s2
α parameters. The left panel

contains the entire set of parameters, whereas the middle and right
panels contain only those related to densely populated ambiguity
clusters (≥ 5 obs/clust) before and after applying a Z-transformation

The integer rounding estimator was initially tested with great success, except
for a very few isolated cases, where some solutions were labeled as degraded after
validation. This motivated to strive for a better estimator. Fig. 4.4 shows the correla-
tions between the Bs1s2

α parameters for a GPS run on 2021/050 from different views:
The left-hand side figure depicts such correlations for the entire set of parameters,
whereas the middle panel displays them only for relatively high densely populated
clusters, i.e., clusters containing at least five observations. As shown, the correlations
are not negligible and, thus, the integer rounding could benefit from applying a
Z-transformation (right-hand side panel). Additionally, it illustrates that the majority
of the correlations may be found on the set of dense clusters. Should it be small
enough, then this set qualifies for ILS. Indeed, this is confirmed in table 4.1. This
table contains the percentage of observations as well as the number of clusters which
hold when discriminating them by their size (defined as observations per cluster, or,
shorter, obs/clust) for a case study on 2021/050. If we do not consider clusters that
are smaller than 5 obs/clust, a total of 233 and 204 Bs1s2

α parameters remain, which is
an affordable amount that LAMBDA may deal with for this problem, while retaining
the 95% and 91% of the GPS and Galileo observations, respectively. All in all, the
strategy to resolve the cluster biases is two-fold:

• For those cluster biases whose associated cluster size is larger or equal than a
predefined value (we use 5 obs/clust), they are resolved using the LAMBDA
algorithm.
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TABLE 4.1: Accumulated percentage of observations and number of
clusters for different cluster size levels on 2021/050

GPS Galileo
obs/clust % Obs. # Clust. % Obs. # Clust.
≥ 75 83 116 58 48
≥ 15 93 184 86 134
≥ 5 95 233 91 204
≥ 3 96 289 94 278
≥ 2 97 411 95 368
≥ 1 100 1319 100 880

• The remaining cluster biases are recomputed to account for the ones previously
resolved and, afterwards, they are rounded to the nearest integer as long as
their fractional part is below a predefined threshold (we use 0.2 cycles). The
process finishes when no more cluster biases can be resolved.

Table 4.1 also reflects a slow growing number of clusters as their size diminishes.
Only the transition between the last two rows, i.e., from 2-observation to 1-observation
lower bound for the cluster size, manifests a massive increment of about 300% for both
GPS and Galileo. It can be presumed that this is caused by a number of non-integer
Bs1s2

α parameters that are confined in their own single-observation clusters.

4.4.4 Inspection of WL ambiguities

FIGURE 4.5: Histogram of the differences be-
tween WL phase biases derived with the de-

veloped tool and the CODE tool

We can parameterize the fractional parts
of the WL ambiguities following the
methodology of section 4.4.1. Due to
the parametric simplicity of the HMW
observation model (3.6), we find that the
resulting observations (fractional parts
of real-valued WL ambiguities) only de-
pend on the WL phase biases and am-
biguity clusters. Therefore, the same
tools developed to inspect NL ambigui-
ties can be used to inspect WL ambigui-
ties by only setting-up zero-degree poly-
nomials in the shape of clock-like cor-
rections, which are identified with the
sought WL phase biases. Although the
criteria to generate the ambiguity clus-
ters could also be simplified (relaxing,

e.g., the baseline length), we attach to the same configuration for simplicity.
As noted in the introduction of this chapter, the CODE UD-based procedure is

fed with integer-cycle-conform information (essentially satellite orbits) coming from
a DD-based processing. In this scenario, it was observed that the fractional parts of
both WL and NL ambiguities can be represented by constant biases, namely, phase
biases. Hence, a specific tool was developed to calibrate them. Such a tool is also
based on the inspection of real-valued ambiguities, however, its robustness lies in
the extensive use of the median estimator (Schaer et al., 2021), rather than in the
use of ambiguity clustering. For the four-year period stretching from mid 2018 to
mid 2022, we have estimated WL phase biases using both our tool and CODE’s tool
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under the same conditions (i.e., same observations and code biases). The results are
compared and the histogram of the differences (after removing integer jumps) is
shown in Fig. 4.5. We can see that both products are equivalent, since the differences
are narrowed between −0.05 and 0.05 WL cycles. Interestingly, we can also see that
the performance is better for Galileo (STD of 0.005 WL cycles) than for GPS (0.009).

4.5 Metrics for quality control

There is a direct connection between the overall AR performance and the number of
resolved cluster biases. In fact, we define the AR rate as the percentage of observations
(i.e., real-valued ambiguities) that belong to a cluster whose cluster bias has been
resolved as integer. However, the unresolved cluster biases do not degrade the
LS adjustment, since they are confined in their own single-ambiguity clusters (i.e.,
one Bs1s2

α parameter and one ∆Ns1s2
r ). We thus compute the LS residuals (ϵ) in a

non-standard way:
ϵ = y − Axxx − Aτxτ − AB⌊xB⌉ (4.16)

where y, xx, xτ and xB are the vectors containing the observations, the estimated
orbit corrections, the estimated clock corrections, and the estimated cluster biases
(including both unresolved and resolved ones), respectively. Ax, Aτ and AB are
the corresponding parts of the design matrix. Since these residuals are actually
between-satellite residuals, we generate satellite-specific errors at epoch t (et) as

et = diag
([

D⊤
t Σ−1

t Dt

])1/2
(4.17)

Here, the rows of the matrix Dt contain the between-satellite differences of each
s1/s2 pair participating at epoch t (with a final row including a zero-mean-like
condition), and Σt is a covariance-like diagonal matrix whose k (diagonal) component
is computed as (note that every different s1/s2 pair is mapped into one and the same
k index)

dk = Nr
Nt,max

Ns1/s2
t

(
ms1s2

t [ϵ]2 + IQRs1s2
t [ϵ]2

)
(4.18)

with Nr, Ns1s2
r and Nt,max being the user-defined redundancy level, the total number

of s1/s2 observations at t, and the maximum number of observations for any s1/s2
pair at t, respectively. ms1s2

t [·] and IQRs1s2
t [·] are the median and inter-quartile range

operators applied over all the elements belonging to the s1/s2 pair at t. This normal-
ization of the residuals, yet empirically found, is very valuable to detect epoch- and
satellite-dependent anomalous events.

The AR metrics described hitherto (i.e., AR rates, residuals and other specific
errors) are derived as part of our real-valued ambiguity inspection procedure, which
can be interpreted as global AR. Nonetheless, equivalent metrics stem from the
subsequent station-by-station AR phase. In fact, these metrics give a more realistic
view of the AR performance, since they are ultimately connected to the ambiguities
actually resolved in the NEQ. Fig. 4.6 shows the time series of the AR metrics (AR
rates and STD of ambiguity residuals) that we have derived from both steps, i.e., from
the global procedure (left panels) and from the station-by-station AR phase (right
panels). Since both AR steps are independent, there is not an exact correspondence
between equivalent figures, specially for the NL metrics. Note that the AR rates for
the NL ambiguities use the resolved WL ambiguities as reference.

We may note from Fig. 4.6 that:
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FIGURE 4.6: Time series of the AR metrics. The left panels correspond
to the global AR phase, whereas the right panels to the subsequent

station-wise AR phase

• The inclusion of new Galileo satellites in late 2018 (Fig. 3.1) has a very positive
impact on the AR rates, which is specially noticeable in the station-by-station
AR phase for both WL and NL ambiguities.

• The WL residuals are considerably poorer than the NL residuals. This is mainly
due to the higher noise of the code observations, which are involved in the
generation of the HMW observable. Moreover, errors coming from the cali-
brated code biases could also deteriorate this figure, or even the neglected PCO
differences between code and phase observations (section 3.3.3).

• The WL residuals are significantly worse for GPS (∼0.1 cycles) than for Galileo
(∼0.07 cycles), which is in line with Fig. 4.5. This fact very likely obeys to a
superior quality for the Galileo code observations.

• At the beginning of the processing interval we can see higher values for the
Galileo WL residuals, which might be related to wrong code bias informa-
tion. Indeed, we did not account for the Galileo GF code bias information
until 2019/265 (marked with vertical lines in the figures), which could lead to
corrupted WL phase biases when data from stations with different tracking



78

schemes (commonly, C1C/C5Q and C1X/C5X) is assimilated. Nonetheless,
since the Galileo signals transmitted at equal frequency bands contain similar
code biases (Fig. 3.6), the overall impact is minor (no degradation is observed
in the NL residuals).

• The general AR performance is outstanding, with AR residuals well below 0.1
cycles for the NL ambiguities, and AR rates around 90% after the station-wise
AR phase.

4.6 Technical considerations

4.6.1 Integer-cycle-conform products for PPP-AR

Global parameters (particularly satellite orbits and clock corrections) are consistent
with the integer-cycle property of the carrier phase ambiguities if they do not preserve
any (between-satellite) signature that could induce arbitrary patterns on the receiver
ambiguities, preventing PPP-AR applications. As a consequence, the drift observed
in the real-valued ambiguities (Fig. 4.1) must eventually be compensated for as the
global parameters are progressively updated in the processing loop (Fig. 3.5). This
is confirmed in Fig. 4.7. In this figure, we show the temporal distribution of the
estimated real-valued ambiguities (third block in Fig. 3.5) resulting from the first (left
panels) and second (right panels) processing loop iterations for the Galileo satellite
pair E11/E12 on 2021/069. During the second iteration, the satellite orbits and
clock corrections already benefit from AR, becoming integer-cycle-conform products.
Hence, as can be seen, the estimated real-valued between-satellite ambiguities tend
to converge to integer numbers (zero fractional part due to the use of IRC model;
otherwise, a constant bias would be observed), enabling PPP-AR (i.e., our station-wise
AR phase).

FIGURE 4.7: Temporal stability of E11/E12 real-valued ambiguities on
2021/069. The left and right panels correspond to the first and second

processing loop iterations, respectively

Because of the distinct features that the real-valued ambiguities exhibit for the
first and the second iterations, our ambiguity inspection procedure could benefit
from independent customized setups. In particular, for the first iteration, we use
9th-degree polynomials to characterize both orbit and clock corrections (as stated
in section 4.4.1). Likewise, only one constant coefficient is used to characterize the
clock corrections during the second iteration, for which no orbit parameters are
estimated (in line with the calibration of WL biases in section 4.4.4). The criteria for
the generation of ambiguity clusters could also be different (e.g., relaxing the baseline
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length limitation), but these criteria have remained the same in the frame of this work
for simplicity.

4.6.2 Boundary effect

It has been noticed that the use of polynomials to approximate the orbit and clock
corrections may cause a poor fit at the boundaries of the time interval. This problem
is subject to the polynomial degree, becoming more evident for the higher degrees.
A similar behavior originates from the polynomial interpolation problem, where
convergence is not guaranteed as the number of nodes increases. This is also known
as Runge’s Phenomenon (Epperson, 1987).

FIGURE 4.8: E24/E31 solutions characterized
by different polynomial degrees

In order to preserve the adaptability
of a relatively high-degree polynomial
without compromising the fitting at the
boundaries, it has been empirically ob-
served that constraining the first deriva-
tive to zero at the boundaries could
partly mitigate such an effect. This is
exemplified in Fig. 4.8 for the between-
satellite pair E24/E31 on 2021/069. Here,
the radial component of the solution (i.e.,
∆ρs1s2 − ∆τs1s2 , where ∆ρs1s2 stands for
the radial component of the orbit correc-
tions) is generated from different polyno-
mial degrees: 5th, 7th and 9th, including
a version of the latter with boundary con-
straints. We see that the distribution of
the observations (horizontal red lines) is very stable, implying that a 9th-degree
polynomial overparameterizes the problem for this specific satellite pair. In fact, the
9th-degree solution exhibits some drifts at the boundaries, which are suppressed by
its constrained counterpart, behaving similar to the lower degree solutions.

The boundary constraining implemented here is merely a artifice to ensure a
good fit at the boundaries. However, other approaches may be better suited for this
problem. Specifically, it would be interesting to employ a different parameterization
to characterize the orbit- and clock-like corrections. For instance, instead of using
polynomials, we could incorporate a bias, a drift, and sine and cosine functions with
orbital periodicities.

4.6.3 Implications of orbit corrections

The use of orbit corrections to better inspect the real-valued ambiguities is one of the
novelties of our procedure. It has been empirically observed that they really improve
the reliability of the results, especially for the Galileo satellite system (probably due
to its sparser constellation). Here the role of such corrections is exemplified with the
between-satellite pair E11/E12 on 2021/069 (see the corresponding ambiguity cluster
distribution on the left panel of Fig. 4.7). Two different solutions for this satellite
pair are displayed in Fig. 4.9: We parameterize the real-valued ambiguities only with
clock-like parameters for the left panel, whereas orbit- and clock-like parameters are
considered for the solution on the right panel. For a fairer visualization, the averaged
along- and cross-track orbit corrections (whose joint contribution is denoted by ∆ρs1s2

⊥r )
complement the corresponding background observations in the latter case. These
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corrections may amount up to more than 2 NL cycles ( 20 cm), which project at the
2 cm level along the receiver-to-satellite line-of-sight. As can be seen, they manifest
by shrinking the observations at the middle of the session. On the other hand, the
strength of the left side solution is clearly debilitated by an apparent middle gap and
a poorer fit of the observations.

FIGURE 4.9: E11/E12 solutions on 2021/069. The one on the left-
hand side uses a clock-only parameterization, whereas orbit and clock

parameters are considered for the solution on the right panel

Incidentally, the corresponding epoch- and satellite-dependent errors as described
by (4.16-4.18) are also displayed in the panels of Fig. 4.9 (right axis scale). They
dramatically increase from about 0.15 to 0.4 NL cycles when no orbit parameters are
considered, with the largest peak at the level of 0.6 NL cycles for the satellite E11.
Altogether, we can state that the orbit-like parameters are statistically significant.

4.6.4 Phase jumps

In rare cases some satellites may undergo an apparent phase jump event that induces
cycle slips during the preprocessing of the carrier phase measurements. It has been
often, but not always, identified with unhealthy satellites. In principle, such an event
should not be an issue, since it can be compensated by ambiguities and/or clock
parameters.

FIGURE 4.10: G01/G21 comparisons between
independent AC solutions. A phase jump is

commonly spotted at epoch number 218

On 2021/050, a phase jump occurs
for satellite G21, illustrated in Fig. 4.10.
This figure shows the between-satellite
G01/G21 comparison of the newly gen-
erated UD-based solution against the
CODE Final products as well as other
cross-comparisons between three inde-
pendent IGS ACs, which are included to
confirm that this event is commonly ob-
served at epoch number 218 (5-minute
sampling; roughly 6 p.m. UTC). For
these external ACs, the comparison rep-
resents a clock comparison, whereas we
depict SIS range differences for our UD-
based solution in order to highlight the
good stability on both sides of the jump.
In fact, if it is manually calibrated, the
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overall stability becomes 0.02 NL cycles (or 7 ps) in STD. A more interesting point
is that the jump amounts to 3 NL cycles, implying that the product still enables
PPP-AR provided that such a discontinuity on the SIS range triggers a cycle slip on
the station side. Nevertheless, it has to be pointed out that not every affected day
exhibits integer jumps in the clock comparison. Further investigations are needed for
a better understanding of this phenomenon.

FIGURE 4.11: Correlation index example for
satellite G21 on 2021/050

Phase jumps could actually lead to in-
consistencies in our AR procedure, since
the cluster biases defining the datum
are no longer valid for the entire ses-
sion. One can argue that it is not a prob-
lem either: If one cycle slip is simulta-
neously detected by every station for a
specific satellite, the datum is broken
(the problem becomes singular) and a
new parameter must unconditionally be
fixed for the resulting interval. Unfortu-
nately, any shortcoming in the cycle slip
detection algorithm may translate into
uncut isolated ambiguities, as shown in
Fig. 4.11. It displays the ambiguity clus-
ters generated for the between-satellite pair G21/G22 on 2021/050, exemplifying
that one ambiguity of the blue cluster bridges both sides of the jump. Therefore, to
robustly detect these jumps, we propose the use of an inter-epoch correlation index.
Let us consider the vectors vs

t and vs
t+1, both containing as many components as

clusters overlapping epochs t and t + 1 that include satellite s. Their components, vs
t(α)

and vs
t+1(α)

, are equal to the number of observations in cluster α intersecting epochs t
and t + 1, respectively. Then, this correlation index is readily computed as

vs
t · vs

t+1

vs
tv

s
t+1

(4.19)

triggering a jump detection when it is below a user-defined threshold (e.g., 0.5). This
index is also represented in Fig. 4.11 (right axis scale) for the case study.

Every time that a phase jump is detected, a new parameter (satellite-specific
constant bias over the split interval) is added to our model (4.8) while a new cluster
bias is accordingly fixed. The influence of this new parameter over those observations
crossing the phase jump is proportional to their fraction lying on the new interval.
The estimated phase jump is later combined with the corresponding clock corrections.

4.6.5 Diverging clock estimates

The SIS range comparisons are an excellent metric to evaluate the AR equivalence
between independent products. In particular, we showed in Fig. 3.9 (bottom) that
this metric is systematically well below 10 ps (3 mm) in STD when our UD-based
solutions are compared against the CODE MGEX solutions. Therefore, processing
the data of a stand-alone receiver would yield virtually the same results using either
product to account for the satellite information (orbits and clock corrections).

During the computation of daily SIS range STD values for Fig. 3.9, we excluded
certain satellite comparisons (potentially associated to degraded AR solutions) in
order to produce representative statistics. In total, 892 out of 46322 comparisons



82

(1.9%) were excluded for GPS, and 121 out of 34517 (0.4%) for Galileo. Note that the
rejection criterion is the satellite-specific STD being higher than three times the overall
daily STD, which does not necessary entail that the rejected solutions are degraded.
Additionally, cross-comparisons against the CODE Final products often locate the
potential problems on the MGEX side3. Therefore, the previous ratios are very likely
upper bounds for the amount of degraded AR solutions in our UD-based processing.
In any case, other GNSS research groups also report recurrent issues associated to
their AR strategies (see discussion in Strasser, 2022, section 6.6.2). In particular, the
CNES/CLS IGS AC provides an exhaustive list with the satellites omitted during
AR4. In summary, the number of issues that we have identified in our processing
remains within an acceptable margin.

FIGURE 4.12: On top, detailed SIS range com-
parison (UD-based vs MGEX solutions), and,
on bottom, AR errors from (4.16-4.18). E11

eclipse period pale-red shaded

As an example of degraded solution,
we show epoch-by-epoch SIS range dif-
ferences on the top panel of Fig. 4.12 for
day 2021/126 (May 6, 2021). As can
be seen, the satellite E11 (highlighted
in red) exhibits suspicious variations
that usually entail a damaged AR solu-
tion. This satellite experiences an eclipse
period at noon on this day (pale-red
shaded in the figure), which, according
to Banville et al., 2020, may induce di-
verging clock estimates due to attitude
mismodeling. Moreover, the AR satellite
errors (4.17) are depicted on the lower
panel of Fig. 4.12. They hint that, indeed,
something probably went wrong with
AR from the end of the eclipse to the
lapse of the clock transition for this satel-

lite.

4.6.6 Influence of the network size

To evaluate the robustness of our AR procedure, we have computed daily solutions
on 2022/100 using three different set-ups for the size of the network: We generate a
nominal solution (reference solution) with 280 stations, a more relaxed solution with
120 stations (this network size is used for the operational CODE Rapid products), and
a test solution using only 30 stations (selected in such a way that global coverage is
still attained) in order to assess the performance of our AR strategy under challenging
conditions. Table 4.2 shows the orbit (3D) RMS comparisons as well as the STD
of the SIS range differences that result from comparing the two latter set-ups with
the nomial solution. For GPS and Galileo, we can see that the 120-station network
produces virtually the same results as the nominal network. However, the compar-
isons, especially for the SIS range, blow when using the 30-station test network (30 #1
row), indicating a damaged AR phase. This is also inferred from the AR metrics. For
nominal scenarios (i.e., 280- and 120-station network solutions), the RMS of the NL

3For the comparison between our UD-based solutions and the CODE Final products, the ratio of
rejected GPS solutions is 1.7%, whereas this number ascends to 2.1% when comparing CODE Final
against CODE MGEX products. Note that the CODE Final solutions are not used as reference within
this dissertation as they do not include Galileo information for the processed interval.

4ftp://ftpsedr.cls.fr/pub/igsac/GRG_ELIMSAT_all.dat

ftp://ftpsedr.cls.fr/pub/igsac/GRG_ELIMSAT_all.dat
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residuals and AR rates (no evidence is found in the WL counterpart) for the global AR
stage are about 0.06 cycles and 98%, respectively, whereas, for the 30-station network,
these numbers are 0.12 cycles and 90%.

To recover nominal results from the 30-station network, our inspection algorithm
has been fine-tuned with minor intuitive changes. After a few attempts, the AR
metrics have become 0.07 cycles and 97% for the RMS of the residuals and AR rates.
The new set-up differs from the nominal set-up in:

• Since the number of observations (real-valued ambiguities) has been signifi-
cantly reduced, we have duplicated the redundancy level (recall, number of
occurrences of one satellite in the between-satellite pairs) from 4 to 8.

• Since the size of the ambiguity clusters is small, the minimum number of
obs/clust to try ILS decreases from 5 to 3.

• We provide extra “stiffness” to the LS adjustment by reducing the degree of the
employed polynomials from 9 to 7.

A new 30-station network solution has been generated according to the above
criteria and the results are also shown in table 4.2 (30 #2 row). It is observed that both
orbital and SIS range comparisons are outstanding for such a small network.

TABLE 4.2: Comparisons between solutions using different network
sizes and a reference solution generated from a 280-station network.
The solution 30 #2 employs a different fine-tuning for the inspection

the real-valued ambiguities

RMS of orbit diff. [cm] STD of SIS Range diff. [ps]
Num. of
stations

GPS Gal GLO GPS Gal GLO

120 0.9 0.8 5.1 5.2 3.7 84.9
30 #1 8.7 14.5 9.7 90.1 102.5 126.1
30 #2 2.2 2.9 9.1 13.1 11.4 124.8

In table 4.2, we have also included the comparisons for GLONASS, which does
not benefit from AR. It is observed that the quality of the solutions is significantly
punished when the size of the network is reduced (even for the 120-station network),
but it is almost insensitive to a degraded AR phase.

4.7 Summary

An AR strategy for UD-based GNSS processing has been designed and implemented
to generate global GNSS solutions without the need to have precise a priori informa-
tion at hand. Such a strategy follows from the usual WL and NL representation of
the ambiguities, for which each contribution is independently resolved using either
HMW or IF observations, respectively. In order for the ambiguities to reveal their in-
tegerness at the station level, some corrections shall be applied on the corresponding
observations. The generation of those corrections is the core of our AR algorithm,
which is based on the inspection of real-valued ambiguities.

The proposed AR algorithm uses a mixed-integer model to rigorously inspect
the between-satellite real-valued ambiguities in a stand-alone step, which can be
interpreted as global AR. The AR experience from baseline processing is implicitly
considered here through the use of ambiguity clusters, which group the ambiguities
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according to their fractional parts as well as the geographical distribution of the
tracking stations. Those clusters complement the mixed-integer model in such a
way that the number of integer parameters is reduced down to ∼200, which is of
utmost importance because it allows LAMBDA to be used at a global scale. As a final
outcome, the derived corrections modify the preliminary solution (orbits and clock
information) so that it becomes compatible with the integer-cycle property of the
carrier phase ambiguities, enabling between-satellite AR in an inexpensive station-
wise sense (analogous to PPP-AR). We would like to also emphasize that our AR
strategy employs three of the most widely recognized integer estimators. Specifically,
integer rounding is utilized to generate ambiguity clusters, ILS is applied to determine
the solution for the developed mixed-integer model, and integer bootstrapping is
employed to ultimately resolve ambiguities in the final station-by-station phase.

The detailed view offered by our method can be exploited to define a more robust
datum for the integer parameters, and to characterize other phenomena, such as
apparent phase jump events. On the other hand, the resulting metrics may also
reveal relevant information about the quality of the AR performance, supporting the
identification of potential anomalies associated to diverging clock estimates.

The AR metrics are shown to be at an outstanding level, with ambiguity residuals
well below 0.1 cycles and AR rates at the level of 95% and 88% for the WL and
NL ambiguities, respectively. Additionally, cross-comparisons against the CODE
products suggest that our strategy could even be more robust than classical DD-based
AR strategies. Such a robustness has also been tested by processing data from a
reduced 30-station network. After some fine-tuning, the results agreed with the
reference solution at the 2-3 cm level for the orbit RMS and at the 10-15 ps level for
the SIS range.
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Review of the GNSS capabilities to
derive geodynamic parameters

5.1 Introduction

Arguably, we can say that GNSS participates in virtually all the disciplines related
to geodesy, since this technique densifies the ITRF, which is widely used for geo-
referencing measurements (including precise orbit determination of LEO satellites).
Moreover, during the reduction of the GNSS observations, we access to two important
sets of parameters that are directly connected to geodynamics:

• The earth rotation parameters (abbreviated in this manuscript as ERP), which
are a set of kinematic parameters that represent corrections to the rotation
matrix which accounts for the rotational part of the ITRF-to-ICRF transformation
(section 3.3.2). From section 1.4.3, we know that these corrections are divided
into polar motion (abbreviated as PM), which is the equatorial wobble of the
Earth’s pole, and variations in the Earth’s rotation rate around the CIP, which are
described by UT1 and length of day (abbreviated as LOD1; recall that the GNSS
solutions are not sensitive to the absolute rotated angle, i.e., UT1, according
to the discussion given in section 3.3.2). From a physical point of view, they
describe the Earth’s angular velocity in accord with (1.26) and, with (1.10-1.15),
can be used to understand the Earth’s physical processes (Gross, 2007).

• The geocenter coordinates (abbreviated as GCC), which are a set of kinematic
parameters that represent the position vector of the geocenter w.r.t. the origin of
the ITRF, provided that NNT constraints are applied to the fiducial coordinates
defining the frame (section 3.3.2). From a physical point of view, they relate
with the degree-1 gravity coefficients according to (1.42-1.44). Since the GCC
are estimated as a common offset to the coordinates of the entire network,
such parameters also absorb errors emerging from higher gravity degrees if the
network is not homogeneously distributed within the Earth surface (Zhang and
Jin, 2014).

Over the last few decades, ERP and GCC have been derived using GNSS observa-
tions, which has led to a wealth of specialized articles covering the most prominent
findings. Special mention deserves the dissertation by Zajdel, 20212, which is fully
devoted to the estimation of ERP and GCC parameters in a multi-GNSS scenario
(GPS, Galileo and GLONASS, as for our case) using the BSW. Therefore, rather than

1We actually estimate variations in LOD, i.e., ∆LOD. However, for brevity, we will refer to this
parameter simply as LOD in the sequel.

2See Zajdel et al., 2019, Zajdel et al., 2020, Zajdel, 2021 and Zajdel et al., 2021.
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further expanding the body of knowledge, this chapter intends to provide a review of
the matter, presenting some results that exemplify the achievable level of performance
using the state-of-the-art GNSS processing strategy developed in previous chapters.
Although this goal lacks of scientific aspiration, the present analysis is a mandatory
preceding step that must be conducted prior to combining observations from diverse
space techniques.

This introduction is followed by three additional sections: In section 5.2, we give
a brief summary of the known difficulties associated to the GNSS-based estimation of
ERP and GCC. Afterwards, the derived ERP and GCC results are presented. Here,
we have carried out a number of experiments to evaluate the impact of significant
changes in our GNSS processing scheme. The final section concludes the chapter.

5.2 Main difficulties estimating ERP and GCC

It is known that virtually all GNSS-based products are contaminated by spurious
signals at harmonics of the draconitic year (e.g., Hugentobler, 2005, Ray et al., 2008,
Griffiths and Ray, 2013), which is the repetition period of the relative geometry be-
tween the orbital plane and the Sun (section 1.6.2), equal to 351.4 d, 355.7 d and 353.4 d
for GPS, Galileo and GLONASS, respectively. These artifacts have both physical and
mathematical origins: From the physics, the satellite experiences some perturbations
(owing to SRP) at those periodicities; if they are not perfectly modeled, then they
are compensated to some extent by the estimated parameters. From the maths, on
the other hand, all the co-estimated parameters correlate among themselves, and,
therefore, the dependency of the empirical SRP parameterization on the draconitic
year (recall that the ECOM frame is oriented towards the Sun) may induce artifacts
in the whole solution matching that period. These spurious signals can be used as
a figure of merit to assess the performance of new models and parameterizations
(Rodriguez-Solano et al., 2014, Arnold et al., 2015). Furthermore, resonances between
the orbital motion of the satellites and the Earth’s rotation (Beutler, 2004b, section 3.3)
could also lead to artifacts in the solution time series with periods of∣∣∣∣ 1

n · fs + m · fE

∣∣∣∣ , for any integers n, m (5.1)

being fs and fE the periods of the satellite orbital motion and Earth’s rotation, re-
spectively. For instance, Zajdel et al., 2020 spot spurious signals in the time series
of the ERP at periods of 2.5 d (n = 2, m = −3), 3.4 d (n = 1, m = −2) and 10 d
(n = 3, m = −5) for Galileo, and, for GLONASS, 2.6 d (n = 3, m = −6), 3.9 d (n = 2,
m = −4) and 7.9 d (n = 1, m = −2).

In relation with the GCC, there is an inferior sensitivity to the z component due
to correlations with the SRP empirical model. According to Meindl et al., 2013,
such correlations are associated to the ECOM2 E30 parameter and become more
dangerous for high β angles. This is especially critical for the GLONASS constellation,
which reach β angles as high as 88◦ (about 75◦ for GPS and Galileo). Zajdel et al.,
2021 analyze different SRP parameterizations aiming at mitigating those undesirable
artifacts.

The IERS Conventions provide background models for the Earth’s pole. In essence,
they are described by periodic motions at different frequencies (or different tides).
Any error emerging from these models can be aliased into our ERP estimations (daily
sampling). Indeed, this mechanism is proven in Griffiths and Ray, 2013 by means of a
sensitivity analysis. For instance, it is shown that errors in the O1 (period of 25.82 d)
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and M2 (12.42 d) tides produce alias signals of period 14.19 d and 14.76 d, respectively.
A similar effect is observed in the time series of GNSS-derived coordinates due to the
aliasing of tidal displacements mismodeling (Abraha et al., 2018).

FIGURE 5.1: General view of the ERP results

5.3 GNSS-based ERP and GCC results

We have generated ERP and GCC results (four-year solution interval from mid 2018
to mid 2022) following our standard GNSS processing (appendix A) with minor
modifications to conduct different exercises that exemplify the issues highlighted in
the previous section. From these results, it is noteworthy to mention:

• Former studies (Lutz et al., 2016) have shown that computing 3-day-arc so-
lutions (instead of 1-day-arc solutions) helps to attenuate long-period (more
than 30 days) spurious signals. Therefore, we adhere to our nominal 3-day-arc
solutions without further discussion in this regard.

• The BSW allows to easily estimate ERP and GCC in a GNSS-specific fashion
(i.e., system specific parameter sets under a common run). This functionality is
exploited in the solutions generated hereafter (Scaramuzza et al., 2018).

• The main features of the time series generated in accord with ITRF2014 are
discussed in section 5.3.1.

• The impact of updating the sub-daily polar motion model from the IERS Con-
ventional model (Petit, Luzum, et al., 2010) to Desai and Sibois, 2016 is evaluated
in section 5.3.2.

• The main features of the time series generated in accord with ITRF2020 are
disucssed in section 5.3.3.

• The impact of using different fiducial sites for the TRF datum definition is
evaluated in section 5.3.4.

• The impact of updating the Galileo SRP model according to the satellite meta-
data (recall section 3.7) is evaluated in section 5.3.5.
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5.3.1 ERP and GCC solutions in accord with ITRF2014

In Fig. 5.1, we can see the GNSS-derived PM and LOD estimates on the left and right
panels, respectively. These estimates are consistent with ITRF2014, and, therefore,
we also include the IERS C04-14 series as reference, which are derived from a multi-
technique combination and represent the most precise ERP available today (Bizouard
et al., 2019). Unfortunately, both solutions are not fully independent, since the C04
series assimilate GNSS data, except for the UT1 values, mostly relying on the VLBI
technique. Because of this, we generate C04 LOD values from UT1 differences, instead
of directly using the C04 LOD entries.

Although the panels in Fig. 5.1 show interesting features from the physical point
of view (see Gross, 2007 for a deep discussion on the matter), we cannot assess
in detail the performance of our estimates. Therefore, we compute the differences
between both solutions and display their amplitude spectra in Fig. 5.2 (including
the single-system solutions). The associated statistics (mean and STD) are given in
table 5.1. Note that we use the labels “GNSS”, “GPS”, “Gal” and “GLO” to refer to
the multi-GNSS, GPS-only, Galileo-only and GLONASS-only solutions, respectively.

FIGURE 5.2: Amplitude spectra of the differ-
ences between GNSS-based (ITRF14) and C04-

14 ERP solutions

The various panels in Fig. 5.2 depicts
several spikes at particular frequencies
that can be identified with some of the
problems highlighted in the previous
section. We speculate that the noticeable
peak at around 14 d in the x coordinate of
the polar motion could be related to the
alias of the O1 and M2 tides into our 24-h
ERP estimates. Likewise, the GLONASS-
only PM solution contains visible arti-
facts around 3.9 d and 7.9 d, which could
originate from the resonance between
the orbital period and the Earth’s rota-
tion. Regarding the LOD panel, most of
the low-frequency spikes are harmonics
of the draconitic year.

In view of Fig. 5.2, it can be stated
that the estimates from the GLONASS-
only solutions are inferior than the es-
timates from the other set-ups, which
are at a comparable level at first glance.
For a more detailed perspective, we ad-
dress to table 5.1, where the mean and
STD of the comparisons are included. In-
deed, it is confirmed that the GLONASS
solution performs the worst for all the
figures, but the bias in LOD, which is
seemingly worse for GPS. This bias is ex-
pected, since it has been long known that

the cumulative GNSS-based LOD series diverges from the VLBI-based UT1 solutions
(Ray, 1996, Dach, 2022). All the metrics for the PM solutions show a competitive
performance, being slightly better than the results presented by Zajdel et al., 2020.
Our LOD statistics, on the other hand, seem a bit high. Nevertheless, when compared
against the C04 LOD entries, the STD values around 20 µs/d decrease to 15 µs/d.
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TABLE 5.1: Statistics of the differences between GNSS-based
(ITRF2014) and C04-14 ERP solutions

x pole [µas] y pole [µas] LOD [µs/d]
mean STD mean STD mean STD

GNSS 19 37 -12 27 -6.3 20.5
GPS 16 37 -9 27 -9.1 20.7
Gal 22 38 -14 28 -4.1 21.0

GLO 34 45 -25 36 -2.1 21.3

The corresponding time series for the GCC are displayed in Fig. 5.3, including
two different scales for the z coordinate (right panels). For a better visualization, the
time series are smoothed by averaging the values within a 15-day sliding window. It
can be seen at naked eye that the z coordinate for the GLONASS-only solution suffers
from dire artifacts, arising, as advanced in the previous section, from correlations
with the ECOM2 E30 parameter. Likewise, the Galileo time series for the x and y
coordinates are biased, probably because ITRF2014 is not compatible with the Galileo
system (Specifically, no antenna calibrations are given for the Galileo E5 signals;
instead, the GPS L2 calibrations are adopted).

FIGURE 5.3: Time series of GNSS-based (ITRF2014) GCC solutions

A model with bias, drift, annual signal and semiannual signal is fit to the GCC
time series. The resulting amplitudes and phases of the annual signals (along with the
formal errors of the fit) are given in table 5.2, also including a SLR solution (Altamimi
et al., 2016) for reference purposes. Whilst the GNSS, GPS and GLO solutions are
consistent with each other for the x and y coordinates, with amplitudes (phases) at
the level of 1.6 mm (44◦) and 4.2 mm (−44◦), respectively, the Gal solution seems to
sense a different annual signal, which is mainly reflected in the phase component.
Comparing the GNSS and SLR rows, we do not see especially different amplitudes
and phases. Therefore, incorporating both GNSS and SLR data to define the long-term
origin of the TRF should not compromise the integrity of the frame.
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TABLE 5.2: Annual signals of the GNSS-based (ITRF2014) GCC esti-
mates. A SLR-based solution is included for reference. The amplitudes

are given in millimeters and the phases in degrees

x coord. y coord. z coord.
Amp. Phase Amp. Phase Amp. Phase

GNSS 1.6 ± 0.1 44 ± 3 4.2 ± 0.1 −44 ± 1 4.2 ± 0.3 17 ± 4
GPS 1.7 ± 0.1 53 ± 3 4.1 ± 0.1 −47 ± 2 4.5 ± 0.3 12 ± 4
Gal 2.3 ± 0.1 7 ± 2 3.4 ± 0.1 −35 ± 2 4.8 ± 0.3 25 ± 4

GLO 1.7 ± 0.1 53 ± 4 5.3 ± 0.1 −46 ± 2 17.0± 3.6 −53 ± 12
SLR 2.6 ± 0.1 46 ± 3 2.9 ± 0.1 −40 ± 2 5.7 ± 0.2 28 ± 2

5.3.2 Sub-daily polar motion background model update

The transition between ITRF2014 and ITRF2020 includes a new sub-daily PM model.
According to Desai and Sibois, 2016, this newer model assimilates more altimetry
and gauge observations, yielding better resolution in polar regions. Additionally,
there is a higher consistency between ocean tide and libration models, as well as a
better agreement with GPS observations. Consequently, it is worth evaluating its
performance in an intermediate step before definitively switching to ITRF2020. This is
done in this section (also investigated in Dach et al., 2021), where solutions equivalent
to those of the previous section have been computed with updated sub-daily PM
model. As a figure of merit, we use the overlaps of the PM estimates (note that the
C04 14 series are in line with the old model), whose amplitude spectra is shown
Fig. 5.4 (labels “IERS2010” and “DESAI2016” for old and new models, respectively).

FIGURE 5.4: Amplitude spectra for the PM overlaps based on different
sub-daily PM background models

The updated model reduces, on the one hand, the annual and semiannual spurious
signals for the x PM coordinate (according to Griffiths and Ray, 2013, they could
be related to the alias of the π1 and P1 tides), and, for the y PM coordinate, we see
smaller amplitudes at periods about 14 d (O1 and M2 tides alias). All in all, this hints
a superior performance for the newer model.
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5.3.3 ERP and GCC solutions in accord with ITRF2020

The solutions of section 5.3.1 are repeated in full agreement with ITRF2020. This time,
we use the C04-20 series (i.e., ITRF2020 realization of the C04 series3) as reference. The
statistics of the ERP comparisons are given in table 5.3 (GLONASS shows, once more,
the worse performance). Unexpectedly, these figures, yet lying within acceptable
margins, are poorer than their ITRF2014 counterparts given in table 5.14. In any case,
it can be stated that the achievable ERP precision using our state-of-the-art GNSS
processing scheme is about 50 µas, 40 µas and 25 µs/d for the x pole coordinate, y
pole coordinate and LOD, respectively. These figures should be the baseline for any
future analysis combining observations from different techniques.

TABLE 5.3: Statistics of the differences between GNSS-based
(ITRF2020) and C04-20 ERP solutions

x pole [µas] y pole [µas] LOD [µs/d]
mean STD mean STD mean STD

GNSS 19 51 -8 38 -6.8 25.3
GPS 20 51 -11 38 -9.8 25.5
Gal 16 52 1 39 -4.9 25.7

GLO 26 55 -29 45 -2.4 25.9

FIGURE 5.5: Time series of Galileo-based GCC x and y coordinates
(bias in brackets)

The time series for the Galileo-based x and y GCC are shown in Fig. 5.5. We can
see that the ITRF2020 solution reduces the magnitude of the bias for both coordinates.
In particular, the x bias goes from -3.4 mm to -1.2 mm, and the y bias from 2.2 mm to
-0.9 mm. This improvement is expected since Galileo observations were assimilated
for the ITRF2020 realization (Altamimi et al., 2023). The main features (amplitudes
and phases) of the resulting annual and semiannual signals for the multi-GNSS
(GNSS row) and GNSS-specific (GPS, Gal and GLO rows) solutions are given in
table 5.4 together with the corresponding SLR figures for reference (coming from
Altamimi et al., 2023). There is an overall good agreement between all the GNSS-
based solutions (except for the GLONASS z coordinate, which is clearly degraded)
and the SLR solution for both annual and semiannual signals, with amplitude and
phase differences within 1 mm and 20◦, respectively. These differences are at the

3https://hpiers.obspm.fr/iers/eop/eopc04/updateC04.txt
4It has to be pointed out that these metrics not only evaluate the accuracy of the generated GNSS-

based ERP but are also highly dependent on the C04 time series used as reference. On the other hand,
the PM overlaps do not show significant differences between the solutions generated in both ITRF
realizations.

https://hpiers.obspm.fr/iers/eop/eopc04/updateC04.txt
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same level as the SLR differences for two consecutive ITRF realizations (compare
with tabla 5.2). Consequently, we further conclude that GNSS observations could be
considered for the definition of the long-term ITRF origin.

TABLE 5.4: Annual signals of the GNSS-based (ITRF2020) GCC es-
timates. A SLR-based solution is included for reference. Solutions
GNSS-b and Gal-b use an alternative datum definition (section 5.3.4)
and an alternative SRP model (section 5.3.5), respectively. The ampli-

tudes are given in millimeters and the phases in degrees

x coord. y coord. z coord.
Amp. Phase Amp. Phase Amp. Phase

Annual signals
GNSS 1.5 ± 0.1 40 ± 4 4.4 ± 0.1 −43 ± 1 4.4 ± 0.2 24 ± 3
GPS 1.5 ± 0.1 48 ± 4 4.3 ± 0.1 −44 ± 1 4.8 ± 0.2 22 ± 3
Gal 1.8 ± 0.1 12 ± 3 4.2 ± 0.1 −38 ± 1 4.4 ± 0.3 30 ± 4

GLO 1.7 ± 0.1 44 ± 4 5.3 ± 0.1 −45 ± 1 21.1± 3.6 −44 ± 10
GNSS-b 1.1 ± 0.1 44 ± 5 4.3 ± 0.1 −45 ± 1 3.7 ± 0.2 18 ± 4

Gal-b 1.8 ± 0.1 12 ± 3 4.2 ± 0.1 −38 ± 1 3.7 ± 0.2 38 ± 4
SLR 1.2 ± 0.1 57 ± 7 3.5 ± 0.2 −27 ± 3 2.8 ± 0.3 40 ± 7

Semiannual signals
GNSS 1.5 ± 0.1 −87 ± 4 0.5 ± 0.1 167 ± 11 1.5 ± 0.2 −118 ± 9
GPS 1.6 ± 0.1 −84 ± 3 0.5 ± 0.1 176 ± 11 0.6 ± 0.2 −144± 23
Gal 1.1 ± 0.1 −88 ± 5 0.5 ± 0.1 145 ± 10 2.0 ± 0.3 −148 ± 9

GLO 1.7 ± 0.1 −99 ± 4 0.7 ± 0.1 174 ± 11 25.9± 3.6 −119 ± 8
GNSS-b 1.4 ± 0.1 −85 ± 4 0.5 ± 0.1 167 ± 10 1.5 ± 0.2 −120 ± 9

Gal-b 1.3 ± 0.1 −88 ± 4 0.5 ± 0.1 145 ± 11 0.5 ± 0.2 −149± 26
SLR 0.5 ± 0.2 −73 ± 18 0.2 ± 0.2 182 ± 39 1.2 ± 0.3 −150± 16

5.3.4 Influence of the TRF datum definition

FIGURE 5.6: Original datum network (blue
dots) and resulting balanced datum network
(red dots) after minimizing (5.2) on 2018/190

We have generated ERP solutions with
and without co-estimating GCC, since
the comparison of both time series be-
comes an effective way to quantify the
correlation between ERP and GCC esti-
mates. Such a comparison for the PM is
represented by the blue curves in Fig. 5.7.
These curves mainly depict annual varia-
tions with amplitudes up to 5µas, which
is not negligible in view of the ampli-
tude spectra of the PM errors shown in
Fig. 5.2. The origin of these correlations
is mainly associated with the distribu-
tion of fiducial sites used to define the terrestrial datum. If these sites are homoge-
neously distributed within the surface of the Earth, then the coupling between ERP
and GCC estimates should vanish. Conveniently, our datum definition is given by
those IGS stations whose estimated coordinates deviate only within limited margins
w.r.t. their regularized coordinates (section 3.3.2). Since the IGS network is denser in
the northern hemisphere, this is not enough to achieve a balanced network.
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FIGURE 5.7: Comparison of PM time series generated with and with-
out co-estimating GCC

In order to leverage these ideas, we shall find an index, b, able to measure how
balanced the reference network is. An adequate option for such an index is

b =

∣∣∣∣∣∑i
ri

∣∣∣∣∣ (5.2)

where ri is the position vector of the ith station. For an ideal network, this index
should be identically zero. Hence, we aim at discriminating stations for the definition
of the terrestrial datum in such a way that (5.2) is minimized. This is attained
with brute computational force: We select an initial station for the datum, and then
sequentially include those stations that have the least impact on b. It is observed that,
at some point, including additional stations monotonically increases b. The datum
is thus defined by the network with minimum b that exists before this divergence
occurs and contains, at least, 100 stations to guarantee global coverage. Fig. 5.6 shows
the distribution of the original datum network (b = 338463 km, blue dots) and the
balanced datum network (b = 523 km, red dots) on 2018/190. It can be seen that
most of the stations in Europe and the United States have been made redundant.

FIGURE 5.8: Amplitude spectra of the differences between GNSS-
based and C04-20 PM solutions applying different terrestrial datum

definitions

The comparisons of the PM results generated with and without co-estimating
GCC, but applying the balanced datum, are represented by the red curves in Fig. 5.6.
Because of this new datum, the coupling between ERP and GCC is now virtually
zero. The main consequence in the GNSS-based GCC estimates is that the annual
amplitude of the z component reduces from 4.4 mm to 3.7 mm (see GNSS-b rows in
table 5.4), which can be interpreted as a good indicator. On the other hand, the new
PM estimates are compared with the C04-20 series and the amplitude spectra of the
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differences shown in Fig. 5.8. The annual peak becomes more aggressive for the new
solution. Although this is not a good indicator, the artifact could actually be located
on the reference solution. Unfortunately, the PM day boundary overlaps do not show
relevant differences between both the old and the new solutions, and further studies
shall be conducted to accept or rule out this new approach for the definition of the
terrestrial datum.

5.3.5 Influence of the Galileo SRP model on the ERP and GCC solutions

FIGURE 5.9: Amplitude spectra of the Galileo-
only PM overlaps and z GCC for different SRP

models

We showed in section 3.7 that updat-
ing an internally developed Galileo SRP
background model with the metadata
provided by the European GNSS Agency
yielded better figures for both the empir-
ical orbital parameters and the SLR resid-
uals. This model update can also be no-
ticed in the Galileo-only ERP and GCC
estimates. The top and middle panels
shown in Fig. 5.9 display the amplitude
spectra of the PM overlaps, whereas the
bottom panel depicts the amplitude spec-
tra of the z GCC. It is observed that
the spurious signals associated to the
3rd and 7th draconitic harmonics dimin-
ish in the x pole overlaps if the Galileo
metadata is used. Likewise, for the z
GCC, most of the peaks associated with
draconitic harmonics also reduce their
amplitude. More explicitly, table 5.4
shows that applying the updated SRP
model (Gal-b rows) produce smaller am-
plitudes in both annual and semiannual
signals for the Galileo-only z GCC solu-
tion, which change from 4.4 mm and 2.0
mm to 3.7 and 0.5 mm, respectively. Ad-
ditionally, the associated formal errors
are also smaller (for 0.3 mm to 0.2 mm
in both cases), indicating a lower noise
level in the time series.

5.4 Summary

This chapter has provided an overview of the GNSS capabilities for recovering ERP
and GCC geodetic estimates. Since this topic has been covered numerous times in the
specialized literature, the main issues that are encountered are known beforehand,
namely, spurious signals in the time series arising from SRP mismodeling (draconitic
harmonics), resonances owing to the coupling between the orbital motion and the
Earth’s rotation, aliasing of background models, and correlations between z GCC
estimates and the orbit empirical parameterization (mainly due to E30). Just for
instructive purposes, these problems were reflected within various exercises. It was
explicitly exemplified how the spurious signals are reduced when updating the
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background sub-daily PM model, as well as the background SRP model for Galileo.
Additionally, the use of a balanced network (stations uniformly distributed within the
Earth) to define the terrestrial datum has implications on the ERP and GCC annual
signals. Whereas the amplitude of the z GCC annual signal became smaller, which
can be interpreted as a positive indicator, the annual amplitude of the PM deviations
w.r.t. the C04 series increased. This misbehavior could actually be related to the
reference itself. However, further investigations are needed to accept or rule out the
proposed terrestrial frame realization.

Comparing our solutions with respect to the C04 series allows to bound the ERP
precision to 50 µas, 40 µas and 25 µs/d for the x pole, y pole and LOD, respectively.
This level of consistency should be regarded as the baseline precision for any future
ERP analysis involving GNSS (e.g., in a combined GNSS and SLR processing). In
addition, it was observed that the annual and semiannual signals for the GNSS- and
SLR-based GCC time series agree at the level of 1 mm and 20◦ for the amplitudes and
phases, respectively. Consequently, it seems reasonable to consider also GNSS results
for the definition of the long-term ITRF origin.
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The role of the time-variable gravity
field in GNSS network solutions

6.1 Introduction

As pointed out in section 1.5.3, satellite-derived time-variable gravity field solutions
are of special societal interest as they provide information on the surface water
processes that our planet undergoes (Wahr et al., 1998). For instance, Rodell et al.,
2018 and Velicogna, 2009 have used them to infer global freshwater trends and to
quantify net ice mass loss in frigid regions, respectively. Likewise, these gravity
solutions are also valuable for the orbit modeling of scientific LEO satellites with very
stringent accuracy requirements, whose benefits have been reported by Rudenko et
al., 2014 and Peter et al., 2022. It is hence not striking that the community recognized
the importance of such gravity solutions with the creation of the Combination Service
for Time-variable Gravity fields (COST-G, Jäggi et al., 2020) in 2019, being a new
Product Center of the IAG’s International Gravity Field Service (IGFS). The purpose
of COST-G is to combine monthly gravity field models from various ACs, reducing
the systematic errors of the individual solutions (Jean et al., 2018).

Among the dedicated satellite missions, the Gravity Recovery and Climate Ex-
periment (GRACE, Tapley et al., 2004) and its successor GRACE-FO (Follow On,
Flechtner et al., 2016) have become the most fruitful missions in this domain, pro-
viding almost persistent gravity monitoring since 2002 until the present day, except
for some isolated months and an annoying gap between both missions. Nonetheless,
any Earth’s orbiting satellite is subject to accelerations caused by the Earth’s gravity
field, and so is the case for the GNSS constellations, whose capabilities to recover the
Stokes’ coefficients have barely been explored by the community, in spite of being at
the core of the space geodetic techniques (Altamimi and Gross, 2017).

An early analysis performed by Ineichen et al., 2003 already showed the feasibility
of estimating low-degree Stokes’ coefficients in a multi-GNSS scenario including GPS
and GLONASS. However, that analysis was not yet optimal, since precise satellite
positions derived from the dynamics were used as observations instead of the original
GNSS observations. Later, Sośnica et al., 2013a rigorously processed about ten years
of data, where coefficients up to degree-4 were co-estimated along with other geodetic
parameters. Although this study showed promising preliminary results, an important
correlation between the Earth’s oblateness and the variation in length of day was
overlooked, which is to be addressed in the sequel. More recently, Nowak et al.,
2023 used the so-called inverse method to retrieve C20 and C30 time series1 from the

1An upper bar is commonly used to denote normalized Stokes’ coefficients (chapter 2). Although all
the presented results are so normalized, that upper bar is omitted within this chapter to alleviate the
notation.
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solutions generated in the frame of the third IGS reprocessing campaign. By modeling
the elastic response of the Earth, this method uses the displacements experienced by
a network of ground stations to infer the mass redistribution that originates them
(Blewitt and Clarke, 2003). In this chapter, we complement those former studies
by using the direct method through the celestial mechanics approach (Beutler et al.,
2010b) in order to thoroughly assess the GNSS capabilities to determine the low-
degree Stokes’ coefficients, with special focus on the degree-2 coefficients, as well as
to evaluate the impact of applying time-variable gravity field background models to
generate GNSS network solutions.

The celestial mechanics approach is an intrinsic generalization of the orbit determi-
nation process, since the corrections over the geopotential are jointly estimated with
other parameters involved in the estimation process. Consequently, it has become
very popular when producing gravity field solutions derived from satellite-based
data (Beutler et al., 2010a, Lasser, 2022). Nevertheless, there exist other approaches
(e.g., acceleration approach) that, in practice, yield equivalent results, as empirically
shown by Baur et al., 2014. It is then up to the analysts to select the one that better fits
their applications.

Although we have to limit ourselves to the long-wavelength gravity field when
processing GNSS-based data, the relevance of these solutions go beyond their rel-
atively small number of associated coefficients. From a conceptual point of view,
Couhert et al., 2020 stress the link between low-degree Stokes’ coefficients and the
defining properties of a TRF: The degree-0 coefficient acts directly upon the Earth’s
mass, which, in turn, affects the semi-major axis of the orbits and, hence, the scale of
the TRF; the degree-1 coefficients relate, as reflected by (1.42-1.44), to the geocenter
coordinates, which are linked to the origin of the TRF; the degree-2 coefficients are
associated, in line with (1.45-1.49), to the Earth’s inertia tensor, and, indirectly, to
the theoretical Earth’s figure axis, which is an intuitive choice for the orientation of
the TRF. These low degree terms tie the geometric frame to the gravity field and
are in this sense essential for orbit determination in satellite geodesy. On the other
hand, there are also practical reasons to pay extra attention to low-degree Stokes’
coefficients, since it was noticed that the GRACE mission is unable to provide reliable
C20 estimates and, in case of the GRACE-FO mission, some problems also arise for
the C30 estimates (see Loomis et al., 2019 and Loomis et al., 2020). These issues are
bypassed by replacing both coefficients by SLR-derived solutions, which results in a
better characterization of some long-term geophysical processes, such as the glacial
isostatic adjustment.

As inferred from the above discussion, the SLR technique is well-suited to provide
long-wavelength time-variable gravity field solutions (Sośnica et al., 2015; Geisser
et al., 2023). Additionally, Meyer et al., 2019 process SLR observations from geodetic
satellites together with GPS observations collected by some scientific LEO satellites,
successfully proving a better agreement between the resulting Stokes’ coefficients
and those derived from GRACE. Because of the relevance of GNSS and SLR as major
geodetic techniques (recall section 1.2), it is a natural evolution in the processing
standards to rigorously combine observations from they both, justifying the effort
devoted in the sequel to understand the GNSS capabilities to recover time-variable
gravity field solutions, which could be considered as a common tie.

This chapter includes seven additional sections. The subsequent one describes
the general features of the multi-GNSS processing strategy and methodology used to
generate the solutions of this chapter. Later, in section 6.3, we focus on the generation
of degree-2 gravity signals exclusively using GNSS observations, which requires to
address several points: The sensitivity of the GNSS orbits to time-variable gravity
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signals, the handling of an emerging rank defect involving the UT1 parameters, and
a deeper fine-tuning of the processing set-up and data accumulation to mitigate
harmful correlations and spurious signals. Afterwards, the same time series are
analyzed but using single-GNSS scenarios. In the fifth section, the parameter space
is extended to include up to degree-4 coefficients. Next, we evaluate the impact of
using time-variable gravity field solutions (either from the GNSS-derived solution
previously computed or from COST-G) when generating global geodetic solutions.
Due to the correlation between the C20 and LOD parameters, the C20 time series can
be strongly influenced by those perturbing accelerations causing orbital precession,
such as some otherwise neglected relativistic effects. The influence of these effects is
assessed in section 6.7. As usual, the last section is left to the summary.

It is to be finally mentioned that the content presented herein has already been
made available to the community through Meyer et al., 2023 and Calero-Rodríguez
et al., 2023b.

6.2 Processing strategy

The baseline processing strategy follows from the schemes implemented in chapter 3,
although with some particularities that require a dedicated fine-tuning. This fine-
tuning is conducted in subsequent sections so that the newly generated GNSS-based
gravity field solutions resemble some state-of-the-art references, namely, SLR-derived
C20 and C30 coefficients extracted from the Technical Note 14 (TN-14, Loomis et al.,
2020), and, for the remaining coefficients, GRACE-derived solutions provided by
COST-G (Jäggi et al., 2020).

The general processing aspects from appendix A are still valid, except for some
specific points which are relevant throughout this chapter:

• The fine-tuning employed for the generation of GNSS-based gravity field solu-
tions considers (section 6.3):

– Orbit arc length (Beutler et al., 1996).

– Amount of accumulated data.

– Constraining of stochastic pulses (Beutler et al., 1994).

• Multi-GNSS (GPS, Galileo and GLONASS) or, for section 6.4, single-GNSS
processing.

• Estimated Stokes’ coefficients up to degree-2 or, for the experiments of section
6.5, up to degree-4.

• If the gravity field is to be estimated, the a priori static gravity field follows from
the IERS Conventions (Petit, Luzum, et al., 2010), based on EGM2008 (Pavlis et
al., 2012). When we evaluate the impact of using time-variable gravity fields in
GNSS network solutions (Stokes’ coefficients not estimated; section 6.6), several
background models are tested: IERS Conventions, the generated GNSS-based
time-variable degree-2 solutions (complemented by the IERS Conventions up
to degree-12) and a fitted signal model (FSM, which includes bias, drift, annual
signal and semiannual signal) to the COST-G monthly solutions.

• To keep consistency with the reference solutions, the AOD1B product (Dobslaw
et al., 2017; not IGS standard) is used as a background model, too. Additionally,
although it suffices to model only the C21 and S21 contributions of the ocean
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pole tides when processing GNSS data, we apply this model up to degree-8 for
this chapter.

• The relativistic accelerations due to the Lense–Thirring and de Sitter effects as
specified in the IERS Conventions (not IGS standards) are applied for the study
presented in section 6.7.

6.3 Estimability of degree-2 Stokes’ coefficients using GNSS
orbits

6.3.1 Sensitivity to the time-variable gravity field

The signals of the observed time-variable gravity field have amplitudes that range
from hundreds to thousands ppb w.r.t. the static part in the corresponding coefficients
(table 6.1). Such small variations are scarcely sensed by the GNSS satellites placed at
altitudes of about 20200 km, 23200 km and 19100 km for GPS, Galileo and GLONASS,
respectively. In order to get an insight into the estimability of these signals through the
dynamics of those GNSS satellites, we carry out a sensitivity analysis in this section.
It consists in comparing a set of GNSS reference orbits against other two sets for
which we have induced degree- and order-specific perturbations to the background
static gravity field according to the amplitudes of the expected time-variable signals.
The first of these sets (case #1 in table 6.2) results from the direct propagation of the
initial state vectors of the reference orbits. The second set (case #2 in table 6.2) fits the
satellite dynamics to the reference satellite coordinates, where, besides initial state
vectors, empirical ECOM2 parameters are estimated. The first comparison quantifies
the net impact that gravity signals have on the dynamics itself, whilst the second one
reflects the sensitivity to those parameters during the estimation process.

TABLE 6.1: Degree- and order-specific amplitudes of the time-variable
gravity field derived from the COST-G FSM. Each value accounts for
the sum of the amplitudes of the semiannual and annual signals for
the sine and cosine harmonic terms. The “abs” (absolute) rows give
the net value scaled by 1010, whereas the “rel” (relative) ones give the

ratio w.r.t. the static part in ppb

Order
Degree 0 1 2 3 4 5 6

2
abs 0.98 0.38 0.97
rel 2 · 101 93 · 106 56 · 103

3
abs 1.00 0.63 0.63 1.40
rel 11 · 104 2 · 105 98 · 103 15 · 104

4
abs 0.32 0.61 0.88 0.44 1.40
rel 6 · 104 12 · 104 16 · 104 15 · 104 64 · 104

5
abs 1.00 0.40 0.52 0.60 0.56 0.42
rel 15 · 105 47 · 104 98 · 103 18 · 104 9 · 105 11 · 104

6
abs 0.44 0.61 0.56 0.47 0.40 0.47 0.49
rel 29 · 104 11 · 105 81 · 104 36 · 105 23 · 104 98 · 103 3 · 106

Table 6.2 shows the outcome of the aforementioned comparisons by using the
overall (i.e., including all the satellites) 3D-RMS as representative metric. Note that the
chosen day for the experiment is 2022/100 (year/day of year). We can see that, except
for the case #1 and degree-2 values, the 3D-RMS of the comparisons is well below 1
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TABLE 6.2: Comparison between reference GNSS orbits and test or-
bits computed with perturbed static gravity field (according to the
amplitudes of table 6.1). For the case #1, the test orbits are propagated,
whereas they are fitted to the reference coordinates for case #2. Note

that the values are in mm and represent overall 3D-RMS

Order
Degree 0 1 2 3 4 5 6

2
#1 3.163 1.230 3.925
#2 0.416 0.090 0.114

3
#1 0.682 0.542 1.086 1.947
#2 0.042 0.035 0.068 0.206

4
#1 0.088 0.102 0.227 0.094 1.242
#2 0.009 0.012 0.007 0.010 0.059

5
#1 0.059 0.014 0.050 0.033 0.040 0.066
#2 0.002 0.002 0.003 0.003 0.002 0.003

6
#1 0.009 0.007 0.007 0.007 0.009 0.014 0.014
#2 0.002 0.002 0.000 0.002 0.002 0.002 0.002

mm, suggesting that the GNSS-based estimation of Stokes’ coefficients is extremely
challenging because of the accuracy of the GNSS orbits themselves, which is reported
to be at the centimeter level (Griffiths and Ray, 2009). The degree-2 comparisons, on
the other hand, could be statistically significant since the midnight misclosures hint
that the internal orbit precision is at the millimeter level (Fig. 3.10). Nonetheless, the
estimability of degree-2 coefficients is still hampered by the co-estimation of empirical
parameters (degree-2, case #2) and, hence, the orbit parameterization plays a vital
role in determining true gravity signals.

Incidentally, we can also see from table 6.2 that the sensitivity increases with the
order as a result of the relatively big polar gap of the GNSS orbital planes (Gelderen
and Koop, 1997).

6.3.2 Collinearity between length of day and Earth’s oblateness

The same mechanism that explains the collinearity between the orbit ascending nodes
and the universal time parameters (representing deviations w.r.t. UTC), as discussed
in section 3.3.2, makes the time derivatives of these quantities correlate, too. Equation
(1.68) tells how the secular variation of the orbit ascending node relates to the Earth’s
oblateness, which, complemented by (1.34), shows how its variations (i.e., ∆C20) can
be compensated with variations in universal time or length of day parameters (∆UT1
or ∆LOD, respectively) during the LS adjustment:

∆Ω̇s =
3
√

5
2

∆C20

(
R

a(1 − e2)

)2

n cos(i) = Ω
d∆UT1

dt
= −Ω

∆LOD
LOD

(6.1)

In view of this equation, these parameters could be decorrelated if the involved
orbital geometries were sufficiently different. Unfortunately, this is not the case for
the included GNSS constellations, whose eccentricities are near zero, whose mean
motions are about two revolutions per day, and whose inclinations are about 55◦

for GPS and Galileo and 64◦ for GLONASS. Therefore, we expect that length of day
and Earth’s oblateness contaminate each other during the LS adjustment, losing their
physical meaning.
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The previous discussion is confirmed with numerical experiments by simply
looking into the corresponding block of the correlation matrix obtained from a LS
adjustment. This block, extracted from a 7-day-arc solution on 2022/100, is displayed
on top of Fig. 6.1 (the UT1 parameters are referred to the day boundaries). The
parameter UT14 is constrained to its a priori value, hence defining the origin (anchor
point) from which the other universal time parameters are measured. According to
(6.1), a positive ∆C20 leads to a positive ∆UT1 if cos(i) > 0 (as for the GNSS orbits)
and, therefore, a positive correlation for UT1i with i > 4. For i < 4, the origin is
advanced w.r.t. reference epoch of the UT1i parameters, inverting the sign of the
correlation.

FIGURE 6.1: Correlation blocks between C20
and UT1 parameters for a 7-day-arc solution.
The upper block results from a standard pro-
cessing, whereas the lower one includes zero-
mean conditions applied to the UT1 parame-

ters

In order to get rid of this rank de-
fect, we include a more restrictive con-
straining over the universal time param-
eters in the shape of zero-mean condi-
tions w.r.t. the bias and slope of the a
priori values (for these solutions we are
using the IERS C04-14 series, Bizouard et
al., 2019, that contains VLBI-based UT1
information). The zero-mean condition
w.r.t. the bias replaces the standard con-
straining (i.e., UT14 = 0), whereas the

zero-mean condition w.r.t. the slope directly acts upon the average length of day. In
analogy to the minimum constraints (3.12) that define the TRF, these new constraints
are formulated as

(A⊤A)−1A⊤u = 0 (6.2)

where u is a vector containing the UT1i parameters, and A is a n × 2 matrix (with n
equal to the number of UT1i parameters) whose first column is populated with ones
and whose second column contains the epochs associated to the UT1i parameters.
After applying this constraining, the correlations vanish as shown on the lower block
of Fig 6.1. Note that, since the universal time values provided by the IERS C04 series
are based on VLBI observations, our GNSS-based C20 estimates are arguably steered
by the VLBI technique.

It has to be pointed out that the correlations between the C21 and S21 coefficients
and PM coordinates are fully negligible. This seems in conflict with (1.50). Nonethe-
less, these equations give a theoretical realization of the (mean) PM, associated to the
mass distribution of the Earth, whereas its practical realization relies on a kinematic
principle, subject to the coordinates of a set of fiducial ground stations. IIt is probably,
on the other hand, that such correlations manifest if, instead of the celestial mechanics
approach, the inverse method is used to determine the gravity field.

6.3.3 Arc length selection

The length of the orbital arcs (section 2.6) is a defining variable of the orbit modeling.
Longer arcs help to decorrelate the orbit parameters at the cost of increasing the effect
of mismodeling, hence, the best compromise depends on the parameters of interest.
In this section we evaluate the impact of the orbital arc length on the C20 estimates.
Time series of the GNSS-derived gravity field have been computed using different arc
lengths, namely, 1-day-arc, 3-day-arc, 5-day-arc, 7-day-arc and 9-day-arc solutions.
In particular, the temporal evolution of the estimated C20 parameters is shown in
Fig. 6.2.
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FIGURE 6.2: GNSS-derived C20 time series for
different arc lengths (the EGM2008 constant
value is subtracted from all the series). The
RMS differences w.r.t. the reference are given

in brackets with a scaling of 1010

As expected from the sensitivity anal-
ysis of section 6.3.1, the various solu-
tions of Fig. 6.2 present a very high level
of noise, which precludes the detection
of the physical signal traced by the ref-
erence solution. We thus compute the
RMS of the differences w.r.t. such a ref-
erence to evaluate the performance of
the individual solutions, which yield
11.68 · 10−10, 6.55 · 10−10, 4.26 · 10−10,
3.62 · 10−10 and 3.68 · 10−10 for the 1-day-
arc, 3-day-arc, 5-day-arc, 7-day-arc and
9-day-arc solutions, respectively. This
metric suggests the use of 7-day-arc so-
lutions as baseline. However, due to its
low statistical significance, the main mo-
tivation for us to definitively choose the
7-day-arc set-up is to better agree with
the arc lengths employed in SLR processing (Geisser et al., 2023), facilitating a later
joint analysis.

6.3.4 Data accumulation

In view of Fig. 6.2, to unveil time-variable gravity signals requires to assimilate larger
batches of data. The common approach followed by the existing solutions consists in
accumulating one month of data. For GRACE, daily NEQ are stacked (Meyer et al.,
2012), whereas weekly NEQ are combined by SLR analysts (Geisser et al., 2023). In
this section we test four different strategies to stack our weekly solutions (note that at
this point the NEQ only contain Stokes’ coefficients and UT1 parameters to impose
the zero-mean conditions):

• Accumulation of 4 non-overlapping NEQ, amounting to 28 days of assimilated
data (solution labeled as “NonOve30”).

• Accumulation of 24 overlapping NEQ, amounting to 30 days of assimilated
data (solution labeled as “Ove30”).

• Accumulation of 9 non-overlapping NEQ, amounting to 63 days of assimilated
data (solution labeled as “NonOve60”).

• Accumulation of 54 overlapping NEQ, amounting to 60 days of assimilated
data (solution labeled as “Ove60”).

Note that the accumulated NEQ contain Stokes’ coefficients and, additionally, ERP
so that one single set of minimum constraints 6.2 is applied for the entire interval.
Moreover, the window used to accumulate the data slides with daily steps, resulting
in time series with daily resolution.

Figure 6.3 depicts the generated time series. To exemplify the role of using (6.2),
the left panel includes an auxiliary solution labeled as “Ove60_Aux” that follows
the same set-up as Ove60, but applying the standard constraining to the universal
time parameters (recall, simply UT14 = 0). It clearly exhibits much larger spurious
signals. The panel on the right-hand side excludes this degraded solution for a better
visualization. It has to be pointed out that the strategy NonOve30 is in line with the
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SLR processing standards and so it is the one that should be used in a joint processing.
However, it is ruled out here because of its higher noise. On the other hand, the
strategies NonOve60 and Ove60 seem to attenuate more spurious signals than their
monthly counterparts, being Ove60 our preferred option due to its lower noise (the
non-rigorous stacking of overlapping NEQ acts as a smoothing).

We refuse to further increase the time window of accumulated NEQ because
that could leak important signals. In particular, the limiting theoretical sampling to
capture semiannual signals equals three months according to the Nyquist theorem.

FIGURE 6.3: Different data accumulation strategies for the GNSS-
derived C20 time series (w.r.t. EGM2008). The left panel shows the
impact, through Ove60_Aux, of not applying (6.2), whereas the right

panel omits this solution for a better visualization

6.3.5 Constraining of stochastic pulses

Because of the limited sensitivity to the gravity signals, small correlations between
the parameters might significantly affect the gravity solutions. Correlation blocks
between the estimated Stokes’ coefficients and the orbit parameterization for a 7-
day-arc solution on 2022/100 are shown in Fig. 6.4. These figures depict the extreme
cases, i.e., maximum or minimum correlation index within all the parameters of
the same type. Note that the orbit parameterization includes the initial state vector
represented by orbital elements (section 1.6.1), the ECOM2 parameters, and stochastic
pulses in the radial (pR), along-track (pS) and cross-track (pW) directions. It is worth
recalling from section 3.3.2 that the notation for the ECOM2 parameters matches the
pattern Ei(0/C/S)j, where i defines the direction (E3, E2 and E1 are the satellite-to-Sun
direction, the axial direction of the satellite solar panels and a mutually orthogonal
direction resulting in a left-handed frame), 0, C and S define the constant, cosine
and sine contributions, respectively, and j the corresponding jth harmonic. The
set-ups used to generate the panels of this figure only differ in the constraining of the
stochastic pulses: The top panel agrees with our standard constraining, i.e., pulses
constrained to zero with a STD of 10−6 m/s, 10−5 m/s and 10−8 m/s for pR, pS and
pW , respectively; the middle solution adds a more restrictive constraining of 10−7

m/s over pS; the bottom solution also includes this constraining along with a tight
constraint of 10−7 m/s for pR.

Theoretically, the reduction of the number of parameters produces stronger so-
lutions, which is the motivation to test different empirical models. In particular, if
a background SRP model is applied, the omission of the E3C2 and E3S2 parameters
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might benefit some figures of the ERP and GCC geodetic estimates (Zajdel et al., 2020,
Zajdel et al., 2021). However, since their correlations seem to be the least harmful
(Fig. 6.4, top panel), and we only model SRP for Galileo, these parameters are not
considered here for further analysis. Conversely, the most dangerous correlations
appear between C20 and the E10 and E20 terms. These terms are paramount in orbit
modeling and it was empirically verified that the solution is degraded as soon as one
of them is excluded from the LS adjustment.

In another attempt to reduce the correlations between C20 and the ECOM2 pa-
rameters, a tailor-made empirical model was developed. To generate this model, we
evaluated the projection of the acceleration caused by the Earth’s oblateness onto the
ECOM2 directions and created, from the original ECOM2 functions and the Gram-
Schmidt orthogonalization, a set of functions orthogonal to such an acceleration
profile. These functions were later used instead of the original ECOM2 functions.
The outcome of this exercise was, however, unsuccessful since the mismodeling
dominated the solution. Additionally, the original purpose, i.e., to mitigate the C20
correlations, was not satisfactory either because intermediate estimated parameters
indirectly connect the new empirical parameters with C20.

FIGURE 6.4: Correlation blocks between Stokes’ coefficients and orbital
parameters. Each panel uses a different constraining for the pulses pR,
pS and pW : 10−6 m/s, 10−5 m/s and 10−8 m/s for the upper panel;
10−6 m/s, 10−7 m/s and 10−8 m/s for the middle panel; and 10−7

m/s, 10−7 m/s and 10−8 m/s for the lower panel

Within the panels of Fig. 6.4 it is noticed that the stochastic pulses play a decisive
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role in controlling the correlations. In the middle panel it can be seen that the more
stringent constraining over pS (10−7 m/s instead of 10−5 m/s) reduces not only its
own correlation with C20, but also the correlations arising from the orbital elements
(especially for the semi-major axis), which hints that the pulses convey information
between the parameters. Likewise, we have also observed that constraining the pR
parameters to 10−7 m/s (lower panel) turns out to be positive for the estimability of
C21 and S21. The overall impact that this constraining of pS and pR has in the gravity
solutions is illustrated in the following section.

6.3.6 GNSS-based degree-2 gravity solutions

By applying the fine-tuning developed in previous sections, the time series of the
GNSS-derived degree-2 coefficients have been generated and displayed in Fig. 6.5
with the label “GNSS”, whose average formal errors (considering 1 mm STD for the
carrier phase observations) are depicted on the top right panel. The panels of this
figure also show the reference solution for comparison purposes and an auxiliary solu-
tion (labeled “GNSS_Ini”) that follows from the initial constraining for the stochastic
pulses. The direct inspection of these panels exemplifies the positive impact that the
new constraining has over C20, C21 and S21, heavily alleviating spurious signals. The
impact over C22 and S22 is, on the other hand, insignificant, as could be inferred from
their much lower correlation indexes (Fig. 6.4).

In general, there is a good agreement between the GNSS and reference solutions,
with correlation factors of 0.85, 0.78, 0.62, 0.83 and 0.89 for C20, C21, S21, C22 and S22,
respectively, indicating that it is possible to estimate true gravity signals using the dy-
namics of GNSS orbits. Nonetheless, we can still see some discrepancies that deserve
special mention. First, the GNSS-based C20 coefficient is biased w.r.t. the reference
by 1.18 · 10−10. The origin of this bias is uncertain as it could be a mixture of VLBI
(owing to the minimum constraining of section 6.3.2), GNSS (thorough the orbital
dynamics) and SLR (because of the reference solution) systematics. We shed further
light on this in section 6.7. Secondly, the C21 and, above all, S21 coefficients contain
suspicious signals, which are most probably artifacts. This poorer performance is
indicated by their comparatively larger formal errors. The sectoral coefficients, on the
other hand, perform the best, which can be explained by the polar gap rule-of-thumb
(Gelderen and Koop, 1997).

In order to have a quantitative insight into the performance, bias, drift, annual
and semiannual signals have been extracted from the time series, whose values
are given in table 6.3. Except for the C20 bias, the GNSS signal components, and,
particularly, the bias and drift, are in agreement with those of the reference solution,
which indicates a good long-term estimability and increases the confidence in the
solutions.

6.4 GNSS-specific estimation of degree-2 gravity signals

The fine-tuning and results presented so far are based on a multi-GNSS processing
including GPS, Galileo and GLONASS. To evaluate the individual performance of
each constellation, single-GNSS solutions are generated in this section, where the set-
up developed in former analyses is inherited. To guarantee the consistency between
the different solutions, the network of ground stations is reduced (from ∼ 300 to
∼ 200 stations) such that only multi-GNSS receivers simultaneously tracking the three
systems are included. This reduced network was proven to produce multi-GNSS
gravity solutions equivalent to the ones in section 6.3.6 (RMS differences in the order
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FIGURE 6.5: Time series of GNSS-derived degree-2 Stokes’ coefficients
(w.r.t. EGM2008) using the final set-up (“GNSS”) and a preliminary set-
up based on the standard constraining over the pulses (“GNSS_Ini”).
The reference solutions follow from TN-14 or COST-G for C20 or the
other coefficients, respectively. The top right panel shows the average

formal errors of the GNSS solution

of 10−12). Likewise, since we only apply a SRP background model for Galileo, it was
also proven that disabling it does not lead to crucial variations in the Galileo-specific
Stokes’ coefficients (RMS differences in the order of 10−11).

The correlation blocks between Stokes’ coefficients and orbital parameters for GPS,
Galileo and GLONASS are shown on the top, middle and bottom panels of Fig. 6.6,
respectively. Likewise, the time series of the estimated solutions and their formal
errors are given in Fig. 6.7, where the previously generated multi-GNSS solution is
kept as reference.

The most meaningful feature that can be observed from Fig. 6.6 is the compara-
tively higher correlation numbers associated to the GPS-only C22 and S22 coefficients,
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TABLE 6.3: Bias (w.r.t. EGM2008), drift, annual and semiannual signals
for the degree-2 Stokes’ coefficients resulting from multi-GNSS and
single-GNSS solutions, along with the corresponding reference values.
The bias, drift and signal amplitudes are scaled by 1010, the drift
represents yearly variations and the signal phases are given in degrees

Bias Drift
Annual
Amp.

Annual
Phase

Semi.
Amp.

Semi.
Phase

C20

GNSS -1.85 -0.30 0.60 -101.63 0.49 -83.55
GPS -1.76 -0.36 0.52 -104.18 0.25 -95.06
Gal -2.04 -0.18 1.01 -111.13 1.29 -97.42

GLO -1.60 -0.27 0.90 -76.23 0.69 -34.85
TN-14 -3.03 -0.30 0.57 -89.09 0.30 -86.78

C21

GNSS -2.79 -0.19 0.17 37.57 0.06 -97.34
GPS -2.80 -0.15 0.12 75.40 0.14 -58.05
Gal -3.01 -0.14 0.49 -2.78 0.18 -145.35

GLO -2.16 0.14 1.13 159.18 0.20 -246.50
COST-G -2.57 -0.17 0.15 85.82 0.00 -92.69

S21

GNSS 1.39 0.10 0.50 171.49 0.20 195.11
GPS 1.36 0.11 0.63 183.24 0.20 211.62
Gal 1.34 0.03 0.43 188.51 0.39 145.59

GLO 0.87 0.33 1.06 139.21 0.26 254.02
COST-G 1.38 0.08 0.10 140.57 0.12 170.65

C22

GNSS 0.18 0.12 0.33 143.52 0.20 -178.01
GPS -0.06 -0.16 0.91 124.13 0.69 -136.74
Gal 0.49 0.14 0.51 142.64 0.14 -243.86

GLO -0.06 0.12 0.26 136.95 0.30 -169.39
COST-G 0.03 0.12 0.28 131.71 0.12 -158.78

S22

GNSS -0.57 -0.03 0.63 160.19 0.12 124.99
GPS -1.11 0.20 3.22 315.09 0.63 152.14
Gal -0.38 0.00 1.00 170.26 0.26 132.02

GLO -0.56 -0.09 0.51 146.71 0.10 137.24
COST-G -0.39 -0.04 0.43 140.37 0.07 164.32

which turn out to be resonant terms due to the 2:1 ratio between the GPS orbital
period and the Earth’s rotation (Kaula, 2013, section 3.6). This coupling debilitates the
estimability of such coefficients, which also manifests in the corresponding formal
errors, given on the top right panel of Fig. 6.7. The bottom panels of this figure
definitively confirm that the GPS-only C22 and S22 solutions are clearly polluted. In
contrast, the corresponding multi-GNSS solution is mainly driven by the GLONASS
constellation. This behavior was already explained by Ineichen et al., 2003. The
remaining C20, C21 and S21 solutions are steered by the GPS constellation, being the
C21 and S21 coefficients especially badly estimated with the GLONASS orbits. This
poor performance is reflected in the corresponding formal errors, although, at the
time of writing, the reason is not known.

In relation with the Galileo solutions, these are not outstanding for any coefficient.
It can be speculated that the main reason for this misbehavior is its higher orbital
altitude (more than 3000 km higher than the altitude for GPS and GLONASS). The
interested reader may still claim that this should be reflected in the formal errors,
which are comparatively better than for the GLONASS constellation. However,
unlike for Galileo, phase ambiguities are not resolved during the GLONASS-only
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FIGURE 6.6: Correlation blocks between Stokes’ coefficients and or-
bital parameters for GPS- (top), Galileo- (middle) and GLONASS-only

(bottom) solutions

processing, resulting in a weaker model that can ultimately increase the formal errors
of the various parameters above the ones of Galileo.

The bias, drift, annual and semiannual signals of these solutions are also given
in table 6.3. Although single-GNSS solutions can show better metrics (w.r.t. the
reference) than the multi-GNSS solution for some specific components (e.g., see
annual signal for the GLONASS-only C22 coefficient), the multi-GNSS solution has
the best overall performance.

6.5 Higher order GNSS-derived gravity signals

We have extended the gravity field parameterization up to degree-4 for the present
exercise. The average formal errors of the resulting coefficients are shown in Fig. 6.8.
For comparison reasons, this figure also includes the corresponding metrics from the
degree-2 solutions (i.e., Fig. 6.5, top right panel). It is observed that the errors for the
second-degree coefficients get worse due to new correlations: The parameters C20, C21,
S21, C22 and S22 correlate with C40, C41, S41, C42 and S42, respectively, with correlation
indexes of about 0.8. This order- and parity-wise coupling is well-known, being
its underlying mechanism explained by the so-called lumped coefficient approach
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FIGURE 6.7: Time series of degree-2 Stokes’ coefficients (w.r.t.
EGM2008) derived from single-GNSS solutions. The top right panel

shows their average formal errors

(Sneeuw, 2000), which allows to formulate the gravity recovery problem by means of
order-wise equations.

Because of the existing difficulties found when estimating degree-2 coefficients,
the comparatively higher formal errors for the new higher degree coefficients hint
that these are very poorly estimated. Indeed, this is confirmed in table 6.4, which
includes the bias, drift, annual and semiannual signals extracted from the freshly
computed time series, as well as the corresponding values for the reference solutions.
We have to firstly highlight the worse performance observed for the new degree-2
signal components in comparison with the previously computed values, which better
fitted the reference figures (recall table 6.3). Moreover, the degree-3 and degree-4
estimated signals are mostly spoiled by the presence of artifacts, as can be presumed
from their unrealistically big annual amplitudes. From these amplitudes (and in
line with the formal errors), we deduce that the sectoral C33 and S33 terms are best
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FIGURE 6.8: Average formal errors for the GNSS-based Stokes’ coeffi-
cients estimated up to degree-4. The corresponding degree-2 metrics

are included for the sake of comparison

estimated, yet still containing pervasive spurious signals, as become evident from
Fig. 6.9.

We finally conclude that other than degree-2 gravity coefficients are very weakly
estimated, debilitating also the degree-2 time series. Nonetheless, these coefficients
could be included into the GNSS-derived NEQ in a multi-technique processing, as
long as the weighting scheme makes those higher order coefficients steer by the most
capable technique (e.g., SLR).

FIGURE 6.9: Time series of GNSS-derived C33 and S33 coefficients
(w.r.t. EGM2008)

6.6 GNSS network solutions based on time-variable gravity
field models

We do not recommend to co-estimate gravity field parameters during the generation
of geodetic GNSS network solutions, since the relatively small amount of assimilated
observations employed by the different ACs in their regular products (e.g., 3-day-arc
solutions for the CODE final products, Dach et al., 2020) do not allow to retrieve real-
istic gravity signals (Fig. 6.2). Consequently, these parameters would mostly absorb
noise, losing their statistical significance and weakening the model. Nonetheless, the
use of time-variable gravity background models, if available, might still benefit the
geodetic solution itself, which is evaluated herein.
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TABLE 6.4: Bias (w.r.t. EGM2008), drift, annual and semiannual sig-
nals for the degree-4 Stokes’ coefficients. The bias, drift and signal
amplitudes are scaled by 1010, the drift represents yearly variations

and the signal phases are given in degrees

Bias Drift
Annual
Amp.

Annual
Phase

Semi.
Amp.

Semi.
Phase

C20
GNSS -2.00 -0.27 0.80 -113.52 0.66 -116.96
TN-14 -3.03 -0.30 0.57 -89.09 0.30 -86.78

C21
GNSS -2.86 0.05 0.41 66.92 0.14 -103.19

COST-G -2.57 -0.17 0.15 85.82 0.00 -92.69

S21
GNSS 1.57 0.07 0.66 192.80 0.38 183.33

COST-G 1.38 0.08 0.10 140.57 0.12 170.65

C22
GNSS 0.22 0.16 0.31 170.67 0.09 -121.56

COST-G 0.03 0.12 0.28 131.71 0.12 -158.78

S22
GNSS -0.59 -0.01 0.66 170.17 0.10 211.49

COST-G -0.39 -0.04 0.43 140.37 0.07 164.32

C30
GNSS -3.14 0.03 8.35 -184.28 6.75 -70.55
TN-14 -0.12 -0.07 0.71 -85.88 0.06 -55.23

C31
GNSS 0.45 0.64 2.15 -315.72 2.60 137.75

COST-G -0.08 -0.17 0.11 -177.60 0.03 58.22

S31
GNSS -0.61 0.39 3.37 -29.59 1.35 -153.27

COST-G 0.60 0.06 0.42 -58.85 0.03 19.83

C32
GNSS -1.85 -0.15 1.64 56.87 0.27 132.59

COST-G -0.72 -0.03 0.02 -6.52 0.04 42.48

S32
GNSS 0.22 -0.64 0.65 -172.98 0.39 -4.99

COST-G -0.36 -0.17 0.52 -82.94 0.03 -151.19

C33
GNSS -0.69 0.06 0.62 165.62 0.18 161.77

COST-G -0.10 0.05 0.74 119.93 0.08 178.48

S33
GNSS 0.30 0.13 0.67 -59.00 0.28 -74.98

COST-G 0.91 0.04 0.43 -92.45 0.02 -158.98

C40
GNSS 4.10 -0.37 5.64 35.36 8.71 12.27

COST-G -0.43 0.03 0.17 -5.52 0.11 -84.68

C41
GNSS 2.16 -5.52 6.95 -100.16 2.16 84.36

COST-G -1.02 -0.18 0.40 -68.90 0.01 127.13

S41
GNSS -4.22 0.42 6.50 49.54 4.29 -9.39

COST-G -0.32 -0.05 0.15 -99.62 0.02 -52.39

C42
GNSS 1.34 1.34 4.36 -96.16 4.98 -24.19

COST-G -0.53 0.05 0.11 54.68 0.08 32.07

S42
GNSS -0.06 0.75 4.04 -118.98 4.26 -95.13

COST-G 0.12 -0.05 0.64 -67.91 0.03 82.03

C43
GNSS -8.86 0.32 2.57 54.58 4.31 37.47

COST-G 0.20 -0.05 0.13 -103.65 0.03 44.39

S43
GNSS 12.60 -4.12 3.72 -135.25 2.63 153.98

COST-G 0.56 0.00 0.18 -113.55 0.09 -57.64

C44
GNSS 0.51 -0.39 1.03 97.39 1.02 -51.08

COST-G 0.60 -0.05 0.81 105.30 0.06 -96.52

S44
GNSS -0.53 0.20 1.90 32.30 0.55 129.88

COST-G 0.27 0.08 0.39 -64.49 0.04 -6.12
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The impact of modeling the time-variable gravity field during the GNSS network
processing is assessed by comparing three solutions generated from the same standard
procedure (in particular, 3-day-arc solutions with nominal pulses constraining of 10−6

m/s, 10−5 m/s and 10−8 m/s in the radial, along-track and cross-track directions), but
varying the “static” part of the geopotential, namely, a first solution in accord with the
model from the IERS Conventions up to degree-12 (label “IERS”), a second solution
using the estimated degree-2 gravity signals (Fig. 6.5) complemented by the IERS
Conventions for the higher degrees (label “GNSS”), and a third solution using the
COST-G FSM (label “FSM”). The choice of the FSM rather than the original COST-G
gravity fields is not arbitrary, since the FSM can be used during the generation of IGS
operational products (even for real time applications) without the latency associated
to the regular COST-G monthly solutions (Peter et al., 2022).

FIGURE 6.10: Amplitude spectra of the differ-
ences between GNSS-based LOD solutions and
the C04-14 series. Annual, semiannual and tri-

annual periods marked with vertical lines

The midnight orbit misclosures show
identical internal consistency (only sub-
millimeter discrepancies between the fig-
ures), whereas the cross-comparisons of
the resulting orbits depict differences of
2-3 mm in 3D-RMS, with a better syn-
ergy between the GNSS and FSM solu-
tions, which indicates, as expected from
table 6.1, that other than degree-2 gravity
signals are almost negligible for GNSS
orbit modeling. In any case, these met-
rics do not permit to make any strong
statement about the quality of the orbits,
or, equivalently, the associated realiza-
tion of the terrestrial frame. If we inspect,
on the other hand, the estimated time se-
ries for the PM coordinates, we do not
see a significant impact either (RMS dif-

ferences below 1 µas). On the contrary, the various time series for the LOD estimates
do have fine distinctions that manifest when they are compared against the C04-14
series, as expected from (6.1). The amplitude spectra of these comparisons is given
in Fig. 6.10. The IERS solution contains the largest bias (-6.5 µs/d), which is moved
close to zero for the FSM and GNSS solutions (0.8 µs/d and -1.2 µs/d, respectively).
This is a very meaningful finding, since we know that the cumulative GNSS-based
LOD series diverges from the VLBI-based UT1 solutions (tables 5.1 and 5.3). We can
now explain such an excursion, to a certain extent, by deficiencies in C20. However,
system-specific differences are still expected because of the different C20 biases and
drifts recovered by GPS, Galileo and GLONASS (table 6.3). At the middle epoch of
the processing interval, their corresponding C20 shifts w.r.t. the multi-GNSS solution
amount to −0.03 · 10−10, 0.05 · 10−10 and 0.31 · 10−10, which, by using (6.1), are ex-
pressed in LOD variations of 0.06 µs/d, -0.06 µs/d and -0.52 µs/d, respectively. A
further insight into Fig. 6.10 also reveals a reduction of the annual harmonic when
a time-variable gravity field is used (from 1.29 µs/d for IERS to 0.56 µs/d for both
FSM and GNSS), as well as improvements for the semiannual (from 1.21 µs/d to 0.70
µs/d) and triannual (from 0.63 µs/d to 0.28 µs/d) signals for the GNSS solution. The
better performance of this solution is expected by construction, since it is a direct con-
sequence of the application of a zero-mean condition w.r.t. the slope of the universal
time parameters.
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6.7 Mapping of the relativistic orbit precession into the Earth’s
oblateness

General relativity effects acting upon the orbits of artificial satellites in the vicinity of
the Earth can be accounted for by applying three main acceleration terms when prop-
agating the equations of motion (Brumberg and Kopejkin, 1989): The Schwarzschild
term, the Lense-Thirring effect and the de Sitter effect. Disregarding these effects
results in 3D-RMS orbital errors for the GNSS satellites of about 20 cm, 1 mm and
1 cm, respectively, over the course of one day. Consequently, only the most notable
Schwarzschild term has become part of the IGS processing standards, being the others
safely neglected.

Sośnica et al., 2021 thoroughly assess the impact of these relativistic effects on
the Galileo orbits. It is stressed that both the Lense-Thirring and de Sitter effects
cause a precession in the orbit ascending nodes. The latter contributes by 53 µas/d
to the total precession (independent of the orbital geometry), whereas the secular
contribution of the former is given by

∆Ω̇s = 2
GMJ

c2a3(1 − e2)3/2 (6.3)

where G, M, a, e and c are, in line with the notation followed so far, the gravitational
constant, the Earth’s mass, the orbit semi-major axis, the orbit eccentricity and the
speed of light in vacuum. The new J symbol represents the magnitude of the Earth’s
angular momentum per unit mass (≈ 9.8 · 108 m2/s). Evaluating (6.3), it is obtained a
secular precession of 8 µas/d, 6 µas/d and 9 µas/d for GPS, Galileo and GLONASS,
respectively, being mapped into total (i.e., Lense-Thirring plus de Sitter) C20 variations
of 2.1 · 10−10, 3 · 10−10 and 2.4 · 10−10, according to (6.1). If we average these numbers
using the square inverse of the GNSS-specific C20 formal errors (0.32 · 10−12, 0.57 ·
10−12 and 0.73 · 10−12 from Fig. 6.7) as weights, we then recover a theoretical C20
variation of 2.3 · 10−10 for the multi-GNSS solution.

FIGURE 6.11: GNSS- and SLR-derived C20 time
series (w.r.t. EGM2008)

The degree-2 gravity field results of
section 6.3.6 have been repeated, but in-
cluding the Lense-Thirring and de Sitter
effects as part of the orbit modeling. This
new solution (“GNSS_Rel”) is shown in
Fig. 6.11. It differs from the previous so-
lution mainly by a 2.3 · 10−10 shift, which
perfectly matches our theoretical expec-
tation. Note that this new GNSS-based
C20 solution no longer compensates the
relativistic precession and, therefore, it
is dragged downwards. Although the
bias w.r.t. the reference exhibited by the
GNSS_Rel solution is similar in magni-
tude to the bias of the GNSS solution,
the new solution better fits our internal
SLR realization of C20 (labeled as “SLR” in Fig. 6.11), which follows from Geisser
et al., 2023. Therefore, those relativistic corrections should be modeled in a combined
GNSS-SLR processing.

We shall close this section by highlighting some truly profound implications
that stem from the good agreement between the GNSS_Rel and SLR C20 time series:
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Since our GNSS realization is steered by a new constraint based on VLBI-derived
universal time information, that agreement actually indicates a good GNSS-SLR-
VLBI consistency. Additionally, the necessity to apply the otherwise neglected Lense-
Thirring and de Sitter effects is another observational evidence supporting the general
relativity theory.

6.8 Summary

In this chapter we have analyzed the GNSS capabilities to sense and estimate the long-
wavelength time-variable gravity field (with special focus on degree-2 coefficients)
applying the celestial mechanic approach, as well as its impact over the geodetic
solutions. The motivation to conduct this study is two-fold: On the one hand, the
community has paid very little attention to this topic and so new results can be highly
appreciated; on the other hand, any rigorous GNSS-SLR combined analysis shall
consider as many common parameters as possible, for which the Stokes’ coefficients
may act as common global ties.

The GNSS sensitivity to time-variable gravity signals is really discouraging since
accounting for such signals was found to only produce millimeter (for the degree-2
coefficients) or sub-millimeter (for the remaining coefficients) orbit variations, which
is beyond the GNSS orbital accuracy. Additionally, the estimation of C20 is hampered
by a rank defect involving this quantity and the LOD. Therefore, to separate both
contributions, we included a zero-mean condition w.r.t. the slope of the universal
time parameters given by the C04-14 series. The conceptual consequence of this
constraint is that our GNSS C20 estimate is arguably defined by VLBI observations.

Our standard GNSS processing was fine-tuned so that the estimated degree-2
gravity coefficients eventually represented actual gravity signals as inferred from the
direct comparisons with some state-of-the-art references (correlation factors of 0.85,
0.78, 0.62, 0.83 and 0.89 for C20, C21, S21, C22 and S22, respectively). In particular, the
orbital arc length was broadened to one week, the resulting NEQ were accumulated
to assimilate two months of observations and the stochastic pulses were applied with
a tighter constraining. This constraining is necessary to decorrelate along-track pulses
and C20 parameters, as well as radial pulses and C22 and S22 parameters. Interestingly,
it was observed that GPS contributes the most to the estimation of C20, C21 and S21,
whereas the contribution to the C22 and S22 terms, which are resonant terms for the
GPS constellation, mainly comes from GLONASS. The Galileo constellation does not
play an important role for any coefficient, presumably due to its higher altitude.

A further effort to expand the gravity field parameterization to degree-4 turned
out to be pointless, since only artifacts were observed in the resulting time series.
Therefore, if these coefficients are considered in a multi-technique processing, we
have to ensure that the observations are so weighted that those coefficients stem from
the more capable technique (e.g., SLR).

The influence that the time variable gravity field has on the GNSS network
solutions was evaluated by using the previously generated GNSS-based degree-
2 estimates as well as the COST-G FSM as background models that replace the IERS
Conventions for the static part of the geopotential. The only geodetic parameter
that experienced a significant impact was the LOD, which reduced its bias and
some annual harmonics when compared against the C04-14 series. This observed
enhancement is enough to recommend the use of the COST-G FSM for the generation
of IGS products (already implemented in the operational CODE processing).
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Due to the connection between the orbit ascending nodes and C20, any perturba-
tion affecting the precession of the orbits can be mapped into the C20 parameter. In
particular, this was observed for the Lense–Thirring and de Sitter effects, which are
two relativistic contributions typically neglected in GNSS processing. When these
accelerations were applied, the GNSS C20 series were shifted by 2.3 · 10−10, placing
them close to an internally generated SLR-based solution. This good agreement has
a very profound meaning because, all in all, it can be interpreted as a consistency
measure between GNSS, SLR, VLBI and the general relativity theory.
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Summary, conclusions and outlook

This dissertation has covered methods and algorithms for undifferenced multi-GNSS
global network processing and applications to satellite geodesy. Conceptually, the
six core chapters over which the content has been exposed can be grouped into two
parts:

• An introductory part (encompassing the first three chapters) has been devoted
to elaborating on basic principles and fundamentals. Initially, we discussed
the physical interpretation of the quantities derived when reducing the GNSS
observations (i.e., the connection between ERP, GCC, and the time-variable
gravity field with Earth’s angular velocity and surface water processes), aiming
to provide an attractive introduction to the geodetic results that are at the core
of this dissertation.

The topic of parameter estimation was also covered from an atypical perspec-
tive, where we mostly focused on specific results that are not usually treated in
general literature. Namely, the equivalence between our undifferenced process-
ing scheme and the legacy differenced processing schemes, the mathematical
idea underlying the AR algorithms, and the methodology to generate long-arc
orbital solutions from daily NEQ. In our context, these results are of conceptual
interest and hence, grant extra value to the dissertation overall.

This introductory part concludes with an overview of the models employed to
generate our GNSS solutions. Although the scope of this dissertation precludes
an in-depth analysis of the GNSS observation model, our discussion remains
comprehensive, and every contribution of the model is discussed or referenced.
Additionally, the implemented processing strategy used to derive global GNSS
solutions is presented. Here, it was stressed that the stations are processed in
parallel as much as possible to reduce the computational burden. During the
validation of the results, we observed that our solutions are at a competitive
level when compared against the state-of-the-art solutions produced by CODE
(satellite orbits and SIS range precision superior to 3 cm and 10 ps, respectively),
which serves as a starting point to focus on other geodetic results.

• The central part comprises the three remaining chapters and presents the geode-
tic results and innovations. We began developing a novel AR algorithm specifi-
cally designed for our undifferenced processing strategy, which could prove
beneficial when processing sizable GNSS networks. The algorithm is based
on the inspection of real-valued ambiguities while considering the theoretical
foundations of AR. This allowed us to properly apply integer rounding, in-
teger bootstrapping, and ILS estimators at different stages of the algorithm,
enhancing both efficiency and robustness. The general AR metrics were at a
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competitive level, with ambiguity residuals and rates around 0.1 cycles and
90%, respectively.

By means of several exercises, we provided an instructive view on the GNSS
capabilities to derive ERP and GCC, where several known problems related
to spurious signals in the time series were exemplified. It was shown that the
current precision for the PM and LOD estimates is about 40 − 50 µas and 25
µs/d, respectively. Furthermore, annual and semiannual signals of GNSS- and
SLR-based GCC differ by about 1 mm.

We finally evaluated the role that the time-variable part of the gravity field
has in GNSS processing. This topic poses a nearly virgin scenario, since it has
received very little attention in the specialized literature. We firstly observed
that, after a thorough fine-tuning, the derived GNSS-based degree-2 gravity
solutions correlate above 80% with state-of-the-art SLR-based solutions. More
importantly, it was found that the known bias between the GNSS- and VLBI-
based LOD estimates is mainly explained by C20 mismodeling: Using the COST-
G solutions as background static gravity field reduces the bias from −6.5 µs/d
to 0.8 µs/d. Additionally, the otherwise neglected relativistic perturbations
due to the Lense-Thirring and the de Sitter effects become noticeable by the C20
estimates.

The work carried out in this dissertation could be complemented or extended in
many regards. Three major lines of research as a natural continuation are:

• Although we have successfully generated undifferenced GNSS global solutions
using the BSW for the first time, our processing method still has certain limita-
tions. Primarily, we are currently processing IF observations and only utilizing
two frequencies per constellation and ground station. Apart from technical
constraints, this prevents us from accessing to the entire set of OSB, which has
to be complemented by an independent solution based on GF observations. The
current trends in the GNSS community circumvent this issue by employing un-
differenced and uncombined observations, which represent the natural strategy
for processing every available GNSS signal. Incorporating this approach into
our procedures stands as an important pending task for the future.

• There is a strong coupling between the orbits and the clock corrections, which
may produce systematic errors of about 1 cm in the orbital radial direction, as
became obvious from Fig. 3.14. Over the years, huge efforts have been dedicated
to improve the quality of the orbits (and, by extension, the quality of the
geodetic solutions) through novel modelings and parameterizations. However,
improvements could also be achieved by modeling the clock corrections instead,
which is technically possible when processing undifferenced observations. This
is a very challenging task, since it requires to process all the clock parameters
together, very badly affecting the computational burden. Additionally, the clock
corrections not only absorb the stochastic behaviour of the satellite oscillators,
but also other physical effects (such as deviations from nominal attitude or
thermal effects). Nevertheless, properly constraining the clock parameters
(e.g., by reducing those signals occurring with orbital period) could lead to an
important breakthrough in future GNSS-based solutions.

• Geodetic solutions of superior quality could be generated by combining ob-
servations from different scenarios, so that the estimability of the parameters
is improved. For instance, as part of the Space Tie Project, it was shown that
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including LEO satellites (some of which placed in polar orbits) into the global
GNSS processing helps to decorrelate the z GCC. Similarly, improvements are
also expected if observations from the main geodetic techniques (i.e., SLR, VLBI
and DORIS) are jointly processed. The implementation and standardization of
procedures combining an eclectic variety of observations is another important
milestone that could be achieved in the near future as a continuation of the
present work.
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GNSS processing strategy

Solution
interval

Four-year time series: July 2018 to June 2022.
When consecutive days (e.g., for 3-day arc solutions) of data are
accumulated, the middle day gives the effective epoch of the time
series and, hence, the interval of the assimilated observations is
somewhat wider than the interval of the time series.

Observations UD pseudorange and phase measurements from a network with
about 300 stations.
Multi-GNSS (i.e., GPS, Galileo and GLONASS) processing.
GPS signals: IF L1/L2; Galileo signals: IF E1/E5a; GLONASS
signals: IF G1/G2.
Pseudorange measurements down-weighted by a factor of 1002

w.r.t. phase measurements.
Cut-off angle of 5◦ with elevation-dependent weighting (sin2(e)
law, being e the elevation angle).
Observations processed with a 300 s sampling.

Observation
nuisance
terms

Resolved phase ambiguities for GPS and Galileo removed from
the observations (chapter 4).
Calibrated OSB removed from the observations (Villiger et al.,
2019).
Estimated unresolved ambiguities.
Estimated epoch-wise receiver and satellite clock corrections. The
relativistic clock correction originating from the orbital eccentric-
ity is removed from the satellite clock estimates in accord with
Ashby, 2003.

Signal
propagation
delays

First order ionospheric delays eliminated by using IF observa-
tions.
Applied corrections to eliminate higher order ionospheric delays
and ray-bending (Brunner and Gu, 1991 and Bassiri and Hajj,
1993) based on GIM (Schaer et al., 1996).
Applied corrections to eliminate the Shapiro effect (Ashby, 2003).
Applied corrections to eliminate the phase wind-up effect (Wu
et al., 1992).
Estimated VMF1 (Boehm and Schuh, 2004) piece-wise linear tro-
posphere parameters with 2-hour sampling and loose relative
constraints of 1 m in STD.
Estimated tropospheric gradients (Chen and Herring, 1997) with
daily resolution.
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Terrestrial
reference
frame

IGS realization of ITRF2020 (Altamimi et al., 2023) and corre-
sponding antenna model. The nonlinear seasonal signals are not
applied.
Estimated station coordinates.
Datum defined by NNT and NNR constraints over fiducial sites,
after their verification: Maximum allowed deviation in horizontal
and up displacements equal to 1 cm and 3 cm, respectively.
Solid Earth tides, pole tides and ocean pole tides in agreement
with IERS Conventions.
Ocean tidal loading corrections based on FES2014b (Carrère et al.,
2016).

Attitude
modeling

GPS: Kouba, 2009a; Galileo: Galileo satellite metadataa; GLONASS:
Dilssner et al., 2011.

Earth’s
orientation

Precession and nutation: IAU2006A (Mathews et al., 2002, Math-
ews and Bretagnon, 2003).
Sub-daily polar motion originating from ocean tides and libration
according to Desai and Sibois, 2016.
Estimated piece-wise linear ERP with continuity condition and
daily resolution.

Orbit
modeling

3-day-arc orbital solutions (Beutler et al., 1996).
Static gravity field up to degree-12: IERS Conventions; solid Earth
tides: IERS Conventions; ocean tides up to degree-8: FES2014b
(Carrère et al., 2016); ocean pole tides up to degree-8: IERS Con-
ventions; Atmospheric and ocean de-aliasing up to degree-8:
AOD1B (Dobslaw et al., 2017); third body perturbations using
DE421 ephemeris (Folkner et al., 2009).
SRP modeling only for Galileo according to Galileo satellite
metadataa.
Albedo modeling according to Rodriguez-Solano et al., 2012b.
Antenna thrust (Steigenberger et al., 2018).
Thermal radiation for Galileo (Sidorov et al., 2020).
Relativistic corrections to the satellite accelerations according to
IERS Conventions: Schwarzschild term applied.
Estimated orbit initial state vector.
Estimated ECOM2 empirical parameters (Arnold et al., 2015).
Estimated stochastic pulses (Beutler et al., 1994) at orbit midnight
in radial, along-track and out-of-plane directions with 10−6 m/s,
10−5 m/s and 10−8 m/s constraining. The pulses are only applied
if the application time differs by more than six hours from the
orbital arc boundaries.

a https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata

https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
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Bury, Grzegorz, Krzysztof Sośnica, Radosław Zajdel, Dariusz Strugarek, and Urs
Hugentobler (2021). “Determination of precise Galileo orbits using combined
GNSS and SLR observations”. In: GPS Solutions 25.1, p. 11.

Calero-Rodríguez, Emilio J, Arturo Villiger, Stefan Schaer, Rolf Dach, and Adrian
Jäggi (2023a). “Between-satellite ambiguity resolution based on preliminary GNSS
orbit and clock information using a globally applied ambiguity clustering strat-
egy”. In: GPS solutions 27.3, p. 125.

Calero-Rodríguez, Emilio J., Rolf Dach, and Adrian Jäggi (2023b). “Estimation of
degree-2 gravity field solutions using GNSS observations”. In: XXVIII General As-
sembly of the International Union of Geodesy and Geophysics (IUGG), Berlin, Germany.

Calero-Rodríguez, Emilio J., Arturo Villiger, Stefan Schaer, Rolf Dach, and Adrian
Jäggi (2022). “Combined orbit and clock zero-difference solution at CODE: ambi-
guity resolution strategy”. In: EGU General Assembly Conference Abstracts, EGU22–
11628.

Carrère, Loren, F Lyard, M Cancet, A Guillot, N Picot, et al. (2016). “FES 2014, a
new tidal model—Validation results and perspectives for improvements”. In:
Proceedings of the ESA living planet symposium, pp. 9–13.

Chang, X -W, X Yang, and T Zhou (2005). “MLAMBDA: A modified LAMBDA
method for integer least-squares estimation”. In: Journal of Geodesy 79, pp. 552–
565.

Chen, G and Thomas A Herring (1997). “Effects of atmospheric azimuthal asymmetry
on the analysis of space geodetic data”. In: Journal of Geophysical Research: Solid
Earth 102.B9, pp. 20489–20502.

Chuang, Shi, Yi Wenting, Song Weiwei, Lou Yidong, Yao Yibin, and Zhang Rui (2013).
“GLONASS pseudorange inter-channel biases and their effects on combined
GPS/GLONASS precise point positioning”. In: GPS solutions 17, pp. 439–451.

Collins, Paul (2008). “Isolating and estimating undifferenced GPS integer ambigui-
ties”. In: Proceedings of the 2008 national technical meeting of the institute of navigation,
pp. 720–732.

Collins, Paul, Francois Lahaye, Pierre Heroux, and Sunil Bisnath (2008). “Precise
point positioning with ambiguity resolution using the decoupled clock model”.
In: Proceedings of the 21st international technical meeting of the satellite division of the
Institute of Navigation (ION GNSS 2008), pp. 1315–1322.

Couhert, A, C Bizouard, F Mercier, K Chanard, M Greff, and P Exertier (2020). “Self-
consistent determination of the Earth’s GM, geocenter motion and figure axis
orientation”. In: Journal of Geodesy 94, pp. 1–16.

Dach, Rolf (2022). “Dependency of satellite geodesy on UT1-UTC from VLBI”. In:
International VLBI Service for Geodesy and Astrometry, pp. 3–9.

Dach, Rolf, Daniel Arnold, Christian Baumann, Stefano Bertone, Heike Bock, Yoomin
Jean, Adrian Jäggi, Simon Lutz, Andrea Grahsl, Michael Meindl, et al. (2015).
“Bernese GNSS software”. In.

Dach, Rolf, Stefan Schaer, Daniel Arnold, Elmar Brockmann, Maciej Sebastian Kalarus,
Lars Prange, Pascal Stebler, and Adrian Jäggi (2020). “CODE final product series
for the IGS”. In.



126 Bibliography

Dach, Rolf, Inga Selmke, Arturo Villiger, Daniel Arnold, Lars Prange, Stefan Schaer,
Dmitry Sidorov, Pascal Stebler, Adrian Jäggi, and Urs Hugentobler (2021). “Re-
view of recent GNSS modelling improvements based on CODEs Repro3 contribu-
tion”. In: Advances in space research 68.3, pp. 1263–1280.

Delva, Pacôme, Zuheir Altamimi, Alejandro Blazquez, Mathis Blossfeld, Johannes
Böhm, Pascal Bonnefond, Jean-Paul Boy, Sean Bruinsma, Grzegorz Bury, Miltiadis
Chatzinikos, et al. (2023). “GENESIS: co-location of geodetic techniques in space”.
In: Earth, Planets and Space 75.1, p. 5.

Desai, Shailen D and Aurore E Sibois (2016). “Evaluating predicted diurnal and
semidiurnal tidal variations in polar motion with GPS-based observations”. In:
Journal of Geophysical Research: Solid Earth 121.7, pp. 5237–5256.

Dilssner, F, T Springer, G Gienger, and J Dow (2011). “The GLONASS-M satellite
yaw-attitude model”. In: Advances in Space Research 47.1, pp. 160–171.

Dobslaw, H, I Bergmann-Wolf, R Dill, L Poropat, M Thomas, Christoph Dahle, Saskia
Esselborn, R König, and Frank Flechtner (2017). “A new high-resolution model
of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite
gravity observations: AOD1B RL06”. In: Geophysical Journal International 211.1,
pp. 263–269.

Duan, Bingbing, Urs Hugentobler, Inga Selmke, and Ningbo Wang (2021). “Estimat-
ing ambiguity fixed satellite orbit, integer clock and daily bias products for GPS
L1/L2, L1/L5 and Galileo E1/E5a, E1/E5b signals”. In: Journal of Geodesy 95,
pp. 1–14.

Epperson, James F (1987). “On the Runge example”. In: The American Mathematical
Monthly 94.4, pp. 329–341.

Falcone, Marco, Jörg Hahn, and Thomas Burger (2017). “Galileo”. In: Springer handbook
of global navigation satellite systems, pp. 247–272.

Ferrers, Norman Macleod (1877). An elementary treatise on spherical harmonics and
subjects connected with them. Macmillan and Company.

Flechtner, Frank, Karl-Hans Neumayer, Christoph Dahle, Henryk Dobslaw, Elisa
Fagiolini, Jean-Claude Raimondo, and Andreas Güntner (2016). “What can be
expected from the GRACE-FO laser ranging interferometer for earth science
applications?” In: Remote sensing and water resources, pp. 263–280.

Folkner, William M, James G Williams, and Dale H Boggs (2009). “The planetary and
lunar ephemeris DE 421”. In: IPN progress report 42.178, p. 1.

Formichella, Valerio, Lorenzo Galleani, Giovanna Signorile, and Ilaria Sesia (2021).
“Time–frequency analysis of the Galileo satellite clocks: looking for the J2 relativis-
tic effect and other periodic variations”. In: GPS Solutions 25, pp. 1–14.

Gallier, Jean (2009). “Notes on spherical harmonics and linear representations of Lie
groups”. In: preprint.

Ge, Maorong, Gerd Gendt, Galina Dick, and FP Zhang (2005). “Improving carrier-
phase ambiguity resolution in global GPS network solutions”. In: Journal of Geodesy
79, pp. 103–110.

Ge, Maorong, Gerd Gendt, Met al Rothacher, C Shi, and J Liu (2008). “Resolution
of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily
observations”. In: Journal of geodesy 82, pp. 389–399.

Geisser, Linda, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi (2023). “Contribution
of LARES SLR Data to Co-estimated Earth Geopotential Coefficients”. In: Springer.

Gelderen, Martin van and Radboud Koop (1997). “The use of degree variances in
satellite gradiometry”. In: Journal of Geodesy 71, pp. 337–343.

Geng, Jianghui, Chuang Shi, Maorong Ge, Alan H Dodson, Yidong Lou, Qile Zhao,
and Jingnan Liu (2012). “Improving the estimation of fractional-cycle biases



Bibliography 127

for ambiguity resolution in precise point positioning”. In: Journal of Geodesy 86,
pp. 579–589.

Griffiths, J and Jim R Ray (2013). “Sub-daily alias and draconitic errors in the IGS
orbits”. In: GPS solutions 17, pp. 413–422.

Griffiths, Jake and Jim R Ray (2009). “On the precision and accuracy of IGS orbits”.
In: Journal of Geodesy 83.3-4, pp. 277–287.

Gross, Richard (1992). “Correspondence between theory and observations of polar
motion”. In: Geophysical Journal International 109.1, pp. 162–170.

— (2007). “Earth rotation variations-long period”. In: Treatise on geophysics 3, pp. 239–
294.

Habrich, Heinz (2000). Geodetic applications of the global navigation satellite system
(GLONASS) and of GLONASS/GPS combinations. Verlag des Bundesamtes für
Kartographie und Geodäsie.

Hackel, Stefan, Peter Steigenberger, Urs Hugentobler, Maik Uhlemann, and Oliver
Montenbruck (2015). “Galileo orbit determination using combined GNSS and SLR
observations”. In: GPS solutions 19, pp. 15–25.

Håkansson, Martin, Anna BO Jensen, Milan Horemuz, and Gunnar Hedling (2017).
“Review of code and phase biases in multi-GNSS positioning”. In: GPS Solutions
21, pp. 849–860.

Hatch, Ron (1983). “The synergism of GPS code and carrier measurements”. In:
International geodetic symposium on satellite doppler positioning. Vol. 2, pp. 1213–1231.

Hauschild, André (2017a). “Basic observation equations”. In: Springer handbook of
global navigation satellite systems, pp. 561–582.

Hauschild, Andre (2017b). “Combinations of observations”. In: Springer handbook of
global navigation satellite systems, pp. 583–604.

Hegarty, Christopher J (2017). “The global positioning system (GPS)”. In: Springer
handbook of global navigation satellite systems, pp. 197–218.

Herrera Pinzón, Ivan Dario (2023). “Methods for an Enhanced Co-Location of Space
Geodetic Techniques”. PhD thesis. ETH Zurich.

Herring, TA, RW King, and SC McClusky (2006). “Gamit”. In: Refer ence Manual. GPS
Analysis at MIT. Release 10, pp. 1–182.

Hofmann-Wellenhof, Bernhard and Helmut Moritz (2006). Physical geodesy. Springer
Science & Business Media.

Hugentobler, Urs (2005). “Models in GNSS data analysis”. In: Presentation at “Advances
in GPS data processing and modelling for geodynamics”held at University College London,
pp. 9–10.

Ineichen, D, Gerhard Beutler, and U Hugentobler (2003). “Sensitivity of GPS and
GLONASS orbits with respect to resonant geopotential parameters”. In: Journal of
Geodesy 77, pp. 478–486.

Jäggi, Adrian, Ulrich Meyer, Martin Lasser, Barbara Jenny, Teodolina Lopez, Frank
Flechtner, Christoph Dahle, Christoph Förste, Torsten Mayer-Gürr, Andreas Kvas,
et al. (2020). “International combination service for time-variable gravity fields
(COST-G) start of operational phase and future perspectives”. In: Beyond 100: The
Next Century in Geodesy: Proceedings of the IAG General Assembly, Montreal, Canada,
July 8-18, 2019. Springer, pp. 57–65.

Jäggi, Adrian, Lars Prange, and Urs Hugentobler (2011). “Impact of covariance infor-
mation of kinematic positions on orbit reconstruction and gravity field recovery”.
In: Advances in space research 47.9, pp. 1472–1479.

Jean, Yoomin, Ulrich Meyer, and Adrian Jäggi (2018). “Combination of GRACE
monthly gravity field solutions from different processing strategies”. In: Journal of
Geodesy 92, pp. 1313–1328.



128 Bibliography

Johnston, Gary, Anna Riddell, and Grant Hausler (2017). “The international GNSS
service”. In: Springer handbook of global navigation satellite systems, pp. 967–982.

Kaula, William M (2013). Theory of satellite geodesy: applications of satellites to geodesy.
Courier Corporation.

KC, Shanker and Tri Acharya (June 2023). “A Brief History of Advances in Geodesy
with National Cases”. In: 5, pp. 16–26.

Kersten, Tobias and Steffen Schön (2011). “GNSS Group Delay Variations-Potential for
improving GNSS based Time and Frequency Transfer?” In: Proceedings of the 43rd
Annual Precise Time and Time Interval Systems and Applications Meeting, pp. 255–270.

Koch, Karl-Rudolf (1999). Parameter estimation and hypothesis testing in linear models.
Springer Science & Business Media.

Kouba, J (2009a). “A simplified yaw-attitude model for eclipsing GPS satellites”. In:
GPS solutions 13, pp. 1–12.

— (2021). “Testing of general relativity with two Galileo satellites in eccentric orbits”.
In: GPS Solutions 25.4, p. 139.

Kouba, Jan (2009b). A guide to using International GNSS Service (IGS) products.
Lasser, Martin (2022). “Noise Modelling for GRACE Follow-On Observables in the

Celestial Mechanics Approach”. PhD thesis. Universität Bern.
Laurichesse, Denis, Flavien Mercier, JEAN-Paul Berthias, Patrick Broca, and Luca

Cerri (2009). “Integer ambiguity resolution on undifferenced GPS phase measure-
ments and its application to PPP and satellite precise orbit determination”. In:
Navigation 56.2, pp. 135–149.

Loomis, Bryant D, Kenneth E Rachlin, and Scott B Luthcke (2019). “Improved Earth
oblateness rate reveals increased ice sheet losses and mass-driven sea level rise”.
In: Geophysical Research Letters 46.12, pp. 6910–6917.

Loomis, Bryant D, Kenneth E Rachlin, David N Wiese, Felix W Landerer, and Scott
B Luthcke (2020). “Replacing GRACE/GRACE-FO with satellite laser ranging:
Impacts on Antarctic Ice Sheet mass change”. In: Geophysical Research Letters 47.3,
e2019GL085488.

Loyer, Sylvain, Félix Perosanz, Flavien Mercier, Hugues Capdeville, and Jean-Charles
Marty (2012). “Zero-difference GPS ambiguity resolution at CNES–CLS IGS Anal-
ysis Center”. In: Journal of Geodesy 86, pp. 991–1003.

Lutz, Simon, Michael Meindl, Peter Steigenberger, Gerhard Beutler, Krzysztof Sośnica,
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