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Introduction

This thesis comprises three chapters, which study normative aspects in the field of mone-

tary policy, under the lens of Heterogeneous Agents New Keynesian theoretical framework

(HANK).

In the first chapter, optimal monetary and fiscal policy are jointly analyzed in a heteroge-

neous two-agents New Keynesian environment, where fiscal policy is modeled in the form of

lump-sum transfers set by the government. The main result is that transfer policy does not
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serve as a substitute for forward guidance - as it entails consumption dispersion costs - and

does not affect its optimal duration. Transfers indeed influence the length of stay at the zero

lower bound through two offsetting channels: a shortening channel works through an initial

increase in transfers that mitigates the recession (reducing the need for forward guidance),

and a lengthening channel works through a later transfer cut that curbs the undesired ex-

pansion (making forward guidance desirable for a longer horizon). Imposing a homogeneous

transfer policy across agents does not change the stabilization outcome or the effect on the

duration of forward guidance, nor does so allowing for cyclical income differences.

The second chapter analyzes the monetary policy trade-off between defending purchasing

power of consumers and keeping moderate debt cost to borrowers, in the framework of a

heterogeneous agents New Keynesian open economy hit by a foreign energy price shock.

Raising the interest rate indeed fights the real depreciation of domestic goods and wages due

the energy shock, at the expense of an increase in debt costs of borrowers. The trade-off can

be resolved by implementing a milder interest rate policy during the crisis in exchange for a

prolonged contraction beyond the energy shock time span: this forward guidance approach

allows to still enjoy a real appreciation today at the expense of a more smoothed effect on

mortgage cost over time. This policy counterfactual is analyzed in a quantitative model of

the UK economy under the 2022-2023 energy price hike, where the loss of consumers’ pur-

chasing power and the vulnerability of mortgagors to higher policy rates have been elements

of paramount empirical relevance.

The third chapter proposes a new method to solve for optimal policy in heterogeneous agents

New Keynesian models (HANK). It builds on the discretize-then-optimize method by Nuño,

Gonzalez, Thaler, and Albrizio (2023), and reduces its computational complexity by leverag-

ing the linearity of the first order conditions of the Ramsey planner in terms of the co-states

of the problem. An application is carried out in the case of optimal management of energy

shocks in HANK.
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Chapter 1

Optimal Monetary and Transfer Policy

in a Liquidity Trap

Chapter 1 includes a paper in its submitted version to Journal of Money, Credit and Banking and

is subject to all relevant copyright rules of © 2024 The Ohio State University.
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1 Introduction

The challenges posed by a liquidity trap to stabilization policy relate to the impossibility to fully ad-

dress a demand shock by conventional monetary tools, due to the zero lower bound on the nominal

interest rate. Several authors have explored policy alternatives to overcome this émpasse, within

the perimeter of monetary policy or fiscal policy. The range of considered policies include forward

guidance on the nominal interest rate (according to the seminal paper by Eggertsson and Woodford

(2003)), quantitative easing (Gertler and Karadi (2013)), distortionary taxation (Eggertsson and

Woodford (2006)), helicopter money (Benigno and Nisticò (2020)) and lump sum transfers.

This paper studies lump sum transfers from the perspective of an optimal monetary and fiscal

policy problem. The setting is one with heterogeneous agents, in which transfers have different

effects on consumption due to a heterogeneity in marginal propensity to consume (MPC). In this

perspective, the conventional view is that transfers can be used as a substitute of forward guidance

over the recessionary phase of the liquidity trap, as they can produce an expansionary stimulus

(see Eggertsson and Krugman (2012), Farhi and Werning (2016), Wolf (2021)). In this paper I

challenge this view by showing first that, from an optimal policy perspective, transfers are not a

substitute tool for forward guidance; secondly, that their optimal use over the liquidity trap does

not even influence the optimal time of the liftoff of the interest rate from the zero lower bound.

The first result relies on the fact that transfer policies create consumption variations across house-

holds, that negatively affects welfare: therefore, a government seeking to use transfers to mitigate

output fluctuations in the liquidity trap faces a trade-off between stabilization and consumption

dispersion. The second result relies on the presence of a shortening and lengthening role of transfer

policy with respect to the duration of forward guidance, which quantitatively offset each other.

Over the early stages of the liquidity trap, the government wants to transfer resources to the high

MPC agents (in my model, “hand to mouth” households) in order to mitigate the drop in output:

this effect alone would reduce the room for forward guidance intervention, and shorten the optimal

stay of the interest rate at the zero lower bound. When the shock is over and the interest rates

are still kept at zero, then the government would like to cut the transfers to the hand to mouth in

order to cool down the overheating of the economy - making a delay of the interest rate liftoff more

desirable, as forward guidance becomes less costly in terms of output expansion. The shortening

and lengthening channels lean against each other, giving rise to an analytically ambiguous effect

on the duration of forward guidance. I calibrate the model using standard parameters assumed in
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the liquidity trap literature, finding that quantitatively these effects offset each other, leaving no

significant influence on the optimal duration of stay at the zero lower bound.

Results are robust to two important extensions. First, I consider an environment in which the gov-

ernment is constrained to set the same transfer for all the households (as in Wolf (2021)). While in

the baseline case the transfer to the hand to mouth could be used for stabilization, and the transfer

to the other households could be set to satisfy public debt solvency, instead, with homogeneous

transfer policy, the transfer is set equal for all the households: therefore it needs to satisfy both

the goals, creating a trade-off between stabilization and public debt solvency. My finding points

out that this additional trade-off is negligible, as any necessary public debt adjustment required by

government policy can be smoothed out by long run movements in transfers - so well beyond the

end of the liquidity trap.

Then, I study optimal transfer policy in a general environment where I allow for cyclical income

differences between the hand to mouth and the other households (see Bilbiie (2018)), other than the

ones implied by transfer policy. In this case, the extent to which the hand to mouth consumes more

than the other households over the trap depends both on transfers and these additional sources of

income differences. I show that the optimal transfer pattern is replaced by an optimal augmented

transfer pattern, which incorporates both the transfer and the other cyclical income differences.

By setting the transfer, the government can fully control the pattern of the augmented transfer, so

it can still achieve the same stabilization results of the baseline setting. The results in terms of the

role of transfers and their effect on forward guidance extend also to this more general framework.

This paper formulates an optimal fiscal-monetary policy problem in a liquidity trap, following in

spirit Eggertsson and Woodford (2006). While they model fiscal policy as a distortionary VAT tax,

I analyse lump sum transfers. The model builds on a literature exploring optimal policy in a TANK

environment: Bilbiie, Monacelli, and Perotti (2020) analyse optimal monetary and transfer policy,

where consumption dispersion arises from the tax scheme financing government spending; Hansen,

Mano, and Lin (2020) treat instead optimal monetary policy alone in a two agents new keynesian

environment. An analysis of optimal monetary policy in a TANK setting over the liquidity trap

is carried out in Eggertsson and Krugman (2012) and in Benigno, Eggertsson, and Romei (2020):

I contribute to these works by using the TANK framework to analyse a joint fiscal and monetary

policy. The paper also contributes to the analysis of inequality effects of stabilization policies in

TANK models, carried out in Debortoli and Galí (2017), Punzo and Rossi (2023) and Komatsu

(2023): these papers allow for an effect of monetary policy on inequality through wealth effects on
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hand to mouth households (when characterized as borrowers) or through asymmetric profit redis-

tribution. I abstract from these features, obtaining inequality-neutral monetary policy, and focus

instead on consumption dispersion driven by transfer policy alone.

In the heterogeneous agents (HANK) literature, optimal monetary policy has been analysed in

Acharya, Challe, and Dogra (2021), Nuño et al. (2023) and Ragot (2017) - the latter in a liquid-

ity trap scenario; Le Grand, Martin-Baillon, and Ragot (2022) treats optimal fiscal policy, while

Bhandari, Evans, Golosov, and Sargent (2021) and Wolf (2022) analyse the optimal fiscal-monetary

mix. I contribute to these last two papers by studying optimal fiscal and monetary policy in a liq-

uidity trap.

The effect of transfers on aggregate output , disentangled from an optimal policy perspective, is

addressed in Farhi and Werning (2016), McKay and Reis (2013), Mehrotra (2018), Giambattista

and Pennings (2017). Wolf (2021) shows an equivalence result in aggregate inflation-output stabi-

lization between interest rate and stimulus check policies. I embed the results of this literature in

my paper, by considering the role of transfers in achieving output and inflation stabilization.

Last, this paper relates also to the analysis of cyclical inequality in the liquidity trap (see Bilbiie

(2021)), which I account for in the second extension of the model. The paper is organized as

follows: section 2 reports the model’s features: section 3 illustrates the main results in terms of

transfer policy over the liquidity trap. Sections 4 and 5 develop the extensions with respect to the

homogeneous transfer response and cyclical income difference.

2 Model

2.1 Households

An infinite-horizon economy features unit mass of households, with a fraction 1 − λ of “ricardian”

and λ of “hand-to-mouth” (“HtM”). The ricardian households can access to a financial market for

short term bonds, in which they can save or borrow, whereas this possibility is instead precluded

to the hand to mouth. The ricardian solves the following utility maximization problem:
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maxE0

∞∑
t=0

t−1∏
s=0

ξsβ
t (1 − exp(−zCt) − δ exp(ηLt))

s.t.

PtCt + Bt
1 + it

≤ WtLt +Bt−1 + Tt + 1 − χ

1 − λ
PtD̄t (2.1.1)

lim
s→∞

βs−t
Bs
Ps

= 0 (2.1.2)

where Ct is consumption, Lt is labor supply, Bt is bond holding, Wt is the nominal wage, Pt is

the aggregate price index, Tt is a nominal transfer from the public sector, Lt is labor supply, β is

the discount factor, ξt is an intertemporal preference shock1, and z, δ, η are positive parameters. I

assume that each period a fraction 1 − χ of the total amount of real firms’ profits D̄t is rebated

evenly across the 1−λ ricardian households, and the rest to the hand to mouth. The last condition

(2.1.2) is the transversality condition on bond holding. A particular remark relates to the adoption

of exponential utility: it is suitable to maintain tractability in building an aggregate demand and

supply for the economy in a heterogenous agents setting as the current one.

Consumption is specified by a Dixit-Stigliz aggregator of a unit mass of varieties:

Ct =

 1∫
0

Ct(j)
θ−1

θ


θ

θ−1

(2.1.3)

where Ct(j) is ricardian household’s consumption of good of variety j and θ > 1 is the elasticity of

substitution between goods. First order conditions imply variety demand

Ct(j) =
(
Pt(j)
Pt

)−θ
Ct

whose sensitivity to the ratio between the variety price Pt(j) and the price index Pt is measured

by the elasticity θ - a standard result. The first order condition for labor supply implies:

δη exp(ηLt) = z exp(−zCt)
Wt

Pt
(2.1.4)

where the marginal disutility of labor is equated to the marginal utility of consumption multiplied
1Without loss of generality, I set ξ−1 = 1
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by the real wage. The Euler equation is given by:

z exp(−zCt) = ξtβ(1 + it)Et
[
z exp(−zCt+1) Pt

Pt+1

]
(2.1.5)

where the shock ξt affects the intertemporal consumption choice of the household: the higher is the

realization of ξt, the more the household is propense to shift consumption from period t to t+ 1.

Let us now turn the attention to the hand to mouth problem. The latter writes similarly to the

ricardian’s one, with the notable differences that the household cannot trade in bonds. The hand

to mouth receives a transfer T ∗
t from the public sector- analogously to the ricardian household;

moreover, a fraction χ of the total real dividend amount is rebated evenly across the λ hand to

mouth households. The problem of the hand to mouth writes

maxE0

∞∑
t=0

t−1∏
s=0

ξsβ
t (1 − exp(−zC∗

t ) − δ exp(ηL∗
t ))

s.t.

PtC
∗
t ≤ WtL

∗
t + χ

λ
PtD̄t + T ∗

t (2.1.6)

where C∗
t and L∗

t are the consumption level and the labor supplied, respectively. I will assume for

now χ = λ, so that the share of profit levied to the hand to mouth is equal to the share of this

type of household out of total population. This assumption implies that each period the hand to

mouth receives the same dividend amount of the ricardian household.

Assuming C∗
t to have the same Dixit-Stigliz aggregator form of (2.1.3), the hand to mouth demand

for the variety of good is specular to the ricardian household case:

C∗
t (j) =

(
Pt(j)
Pt

)−θ
C∗
t (2.1.7)

Taking the first order condition with respect to labor in the hand to mouth problem, we also obtain

a labor supply condition analogous to the ricardian household:

δη exp(ηL∗
t ) = −z exp(−zC∗

t )Wt

Pt
(2.1.8)

Optimally, the budget constraint (2.1.6) hold with equality, pinning down the consumption of the
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hand to mouth for each period t:

PtC
∗
t = L∗

tWt + T ∗
t + PtD̄t (2.1.9)

Due to the lack of access to the bond market, the hand to mouth cannot save or borrow: therefore

each period the whole sum of labor income and transfers is spent in consumption.

2.2 Firms

There is a unit mass of monopolistically competitive firms, each one producing a different variety

j of good, with technology:

Yt(j) = ALt(j)

where Lt(j) is labor demanded by firm j, and A is labor productivity. Each firm faces a probability

α each period of not being able to reset its price; in that case, its price automatically increases

by the steady state inflation Π. When a firm resets its price, it seeks to maximize its expected

discounted sum of profits, adjusted for the probability of not being able to reoptimize in the future:

max
Pt(j)

Et

∞∑
T=t

(αβ)T−t
T−1∏
s=t

ξsΛT
1
PT

[
ΠT−tPt(j)

(
Pt(j)ΠT−t

PT

)−θ

YT

− WT

A
(1 − ν)

(
Pt(j)ΠT−t

PT

)−θ

YT − ζT

]
(2.2.1)

where the term ν is a government subsidy on labor costs and ζt is a lump sum tax. Firms value

future profits according to an average Λt of marginal utilities of the two households, weighted by

the respective profit shares: Λt = (1 − χ)z exp(−zCt) + χz exp(−zC∗
t ) (see Benigno et al. (2020)).

The first order condition for the optimal pricing problem yields:

P ∗
t

Pt
= θ

θ − 1(1 − ν)
Et

∞∑
T=t

(αβ)T−t
T−1∏
s=t

ξsΛT WT
PT

(
PT
Pt

1
ΠT −t

)θ YT
A

Et
∞∑
T=t

(αβ)T−t
T−1∏
s=t

ξsΛT
(
PT
Pt

1
ΠT −t

)θ−1
YT

(2.2.2)

where P ∗
t is the optimal price set by the resetting firms at time t. Equation (2.2.2) shows how

firms set current price price by taking into account future discounted flow of costs and revenues,

weighted by the probability of not be able to reset the price in the future.
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Calvo pricing implies the following standard motion for inflation:

P 1−θ
t = (1 − α)P ∗1−θ

t + αP 1−θ
t−1 Π1−θ (2.2.3)

Or equivalently:

1 = (1 − α)
(
P ∗
t

Pt

)1−θ
+ α

(Πt

Π

)θ−1
(2.2.4)

The optimal price setting condition (2.2.2) and the law of motion (2.2.4) give rise to the usual

forward-looking expression for inflation in sticky price models (New Keynesian Phillips curve):

1 − α
(

Πt
Π

)θ−1

1 − α


1

θ−1

= Ft
Kt

(2.2.5)

where:

Ft = YtΛt + αβξtEt

{
Ft+1

(Πt+1
Π

)θ−1
}

(2.2.6)

Kt = θ

θ − 1(1 − ν)Λt
Wt

Pt

Yt
A

+ αβξtEt

{
Kt+1

(Πt+1
Π

)θ}
(2.2.7)

2.3 Public sector

Public sector sets bond supply B̄t and taxes Tt. It needs to satisfy the following flow constraint:

B̄t
1

1 + it
= B̄t−1 + (1 − λ)Tt + λT ∗

t + VtPt − ζtPt (2.3.1)

The resources gathered through the new debt issued B̄t serves to repay the existing debt B̄t−1 and to

finance the transfers to the agents Tt, T ∗
t . The spending for subsidy Vt = ν(Wt/Pt)((1−λ)Lt+λL∗

t )

is exactly financed by the lump sum tax on firms ζt:

Vt = ζt (2.3.2)

Levying the lump sum fiscal burden of subsidies on firms allows to isolate the transfers Tt, T ∗
t as the

only lump sum fiscal instrument affecting the budget constraint of the household. I assume that

transfers are set by the public sector in real terms. I will refer to these quantities by the following
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notation:

τt ≡ Tt
Pt

, τ∗
t ≡ T ∗

t

Pt
(2.3.3)

The public sector also sets the nominal interest rate it. The interest rate policy is constrained by

a zero lower bound:

it ≥ 0 (2.3.4)

2.4 Equilibrium

The equilibrium is given by the households’ optimality conditions (2.1.4),(2.1.5),(2.1.8),(2.1.9), the

firms’ optimality condition (2.2.5), the public sector budget constraint (2.3.1) together with the

market clearing conditions:

Yt(i) = (1 − λ)Ct(i) + λC∗
t (i) ∀i (2.4.1)

Yt = (1 − λ)Ct + λC∗
t (2.4.2)

B̄t = (1 − λ)Bt (2.4.3)
Yt∆t

A
= (1 − λ)Lt + λL∗

t ≡ L̄t (2.4.4)

The first two market clearing conditions above are the ones holding in the the goods market: for

each variety and at the aggregate level, supply needs to be equal to the sum of the consumption

levels of each household type, multiplied by the relative mass. The second condition equalizes

aggregate bond supply to the aggregate demand for bonds of the ricardian households, which are

the only ones who can hold them. The third condition is the market clearing condition in the

labor market, displaying aggregate firms’ labor demand on the left hand side - distorted by price

dispersion2 ∆t =
∫ 1

0 (Pt(i)/Pt)−θ - and the aggregate labor supply of the households on the right

hand side (L̄t).
2Aggregate labor demand is indeed given by the sum of all the firm-specific demands for good variety,

divided by labor productivity: Ldemand =
∫ 1

0 (Yt(j)/A)dj =
1∫
0

(Pt(j)/Pt)−θ(Yt/A)dj = Yt∆t/A

12



2.5 Steady state

In steady state the firm’s problem (2.2.1) boils down to a static problem yielding to the real wage

ω determination.

ω = (1 − ν)θ − 1
θ

A (2.5.1)

The subsidy ν is set to eliminate the monopolistic distortions, yielding an undistorted steady state

(ω = A).

Following Benigno et al. (2020) and Wolf (2022), I also assume that the steady state distribution

of transfers τ, τ∗ is such that the consumption levels C and C∗ are the solutions of a static Ramsey

problem of the government seeking to maximise in steady state a welfare function given by weighted

average of the flow utility of the two agents3. This, together with the optimal subsidy to firms,

implies that in steady state the first best is achieved. This assumption is made to prevent any

steady state suboptimality concern from interfering with the optimal policy formulation in the

dynamics of the liquidity trap.

In what follows I will assume C = C∗ = Y , so that the government’s optimum is to let the two

household consume the same amount of goods in steady state: this implies, by (2.1.4) and (2.1.8),

also an equal labor supply between household types L = L∗ = L̄. This assumption, together with

the equal dividend split, is necessary to rule out endogenous cyclical differences in income between

ricardian and hand to mouth households: asymmetries in steady state labor supply yield indeed

different labor - and then income - response over the liquidity trap. I will come back to this in

Section 5, when both the steady state labor-consumption equalization and the equal dividend split

assumptions will be lifted.

3 The stabilization role of transfer policy

In this section I will consider a government solving a dynamic Ramsey problem of maximization

of the average utility of the two household types (weighting each type as in the steady state static

Ramsey problem discussed in section 2.5). In order to set up the welfare objective function of the

government it suffices to take a second order expansion of the weighted sum of the utility of the two

types of households around the efficient steady state (details are reported in the online appendix),
3Details about the Ramsey problem in steady state are reported in the online appendix
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yielding the following object that the government aims at minimizing:

min Et0

∞∑
t=t0

βt−t0
{1

2
θ

κ
π̂2
t + 1

2 ŷ
2
t + 1

2
σ

ϕ
λ(1 − λ)(ĉt − ĉ∗

t )2
}

(3.0.1)

where, denoting U(Ct) ≡ 1 − exp(−zCt) and V (Lt) ≡ δ exp(ηLt), we have ϕ ≡ (V ′′(L̄)/V ′(L̄))L̄ as

the inverse Frisch elasticity of labor supply and σ ≡ −(U ′′(Y )/U ′(Y ))Y as the relative risk aversion,

when labor and consumption are equal to the aggregate steady state levels L̄ and Y (which, in the

current case, correspond to the equal steady state labor and consumption levels of the two household

types). The coefficient κ is given by κ = [(1 − α)(1 − αβ)]/α](ϕ+σ). “Hat” variables are log-linear

deviations around the steady state. Since households face a concave utility function, and their

utility levels are weighted equally by the government, any departure from equalized consumption

ĉt = ĉ∗
t entails welfare costs, under the form of consumption dispersion (ĉt − ĉ∗

t )2. This term shows

up in the loss function together with the usual output gap and inflation costs.

The linearized budget constraint of the hand to mouth - see the online appendix for a detailed

derivation - can be written as:

ĉ∗
t = ŷt + ϕ

ϕ+ σ
τ̂∗
t (3.0.2)

where I define the linearized transfer τ̂∗
t as τ̂∗

t ≡ (τ∗
t − τ∗)/Y . Using (3.0.2) together with the

aggregate resource constraint ŷt = (1 − λ)ĉt + λĉ∗
t , we can express consumption dispersion as a

function of the HtM transfer only (see derivation in the online appendix):

(ĉt − ĉ∗
t )2 =

( 1
1 − λ

)2 ( ϕ

ϕ+ σ
τ̂∗
t

)2
(3.0.3)

Assuming steady state consumption and labor equalization, and dividends rebated equally to each

household type (χ = λ) is key to obtain the above result of consumption dispersion as a function

only of the HtM transfer; any cyclical income differences over the dynamics of the model, depending

on steady state asymmetries or on uneven dividend distribution, are indeed ruled out. Therefore,

the only way to have the hand to mouth consume more - or less - than the ricardian household is

through a positive - or negative - change in HtM transfer τ̂∗
t .

Problem (3.0.1) is constrained by the aggregate demand equation of the economy, that is derived

as follows. The linearized version of the ricardian household’s Euler equation (2.1.5) writes:

ĉt − Etĉt+1 = − 1
σ

(̂it − Etπ̂t+1 + ξ̂t) (3.0.4)

14



Using the aggregate resource constraint ŷt = (1 − λ)ĉt + λĉ∗
t at time t and t + 1, together with

(3.0.2) and (3.0.4), we obtain the aggregate demand equation:

ŷt = Etŷt+1 − 1
σ

(̂it − Etπ̂t+1 + ξ̂t) − λ

1 − λ

ϕ

ϕ+ σ
Et∆τ̂∗

t+1 (3.0.5)

Output ŷt changes over time according both on the evolution in the ricardian and hand to mouth

consumption. The former is determined by the intertemporal incentives given by interest rate,

inflation and preference shock; the latter is pinned down by the variation in the transfer ∆τ̂∗
t . The

evolution of HtM transfer affects aggregate output proportionally to the overall fraction of hand to

mouth λ.

The second constraint of problem (3.0.1) is the aggregate supply equation, given by the log-linear

counterpart of (2.2.5):

π̂t = κŷt + βEtπ̂t+1 (3.0.6)

As a temporary simplifying assumption, let us drop constraint (3.0.6) from the government problem

by imposing Π = Π = 1 ∀t, implying π̂t = 0 ∀t 4.

Let us consider an unexpected shock ξ̂t0 > 0 hitting the economy at t0, which then reverts to ξ̂t = 0

∀t > t0. Let us also define the long run HtM transfer τ̂∗′ ≡ lim
t→∞

τ̂∗
t , that is the value that the

government chooses to let the transfer converge to in the limit, after that the economy is hit by

the shock. In the online appendix, I show that lim
t→∞

ŷt = 0, so that long run output converges to

the initial steady state level and is policy invariant5. By iterating (3.0.5) forward (and taking into

account π̂t = 0 ∀t) we obtain:

yt0 = − 1
σ
Et0

ξ̂t0 +
∞∑
t=t0

ît − σΘτ̂∗
t0 + σΘτ̂∗′

 (3.0.7)

where Θ = λϕ/[(1 − λ)(ϕ + σ)]. The sum of the prospective interest rates
∞∑
t=t0

ît affects current

output, by acting on the intertemporal consumption choices of the ricardian household. On the

side of transfer policy, the effect on current output can be summarized exclusively by the difference

between the current transfer τ̂∗
t0 and the long run transfer τ̂∗′. Increasing the current transfer τ̂∗

t0

4This condition can be retrieved by setting κ = 0, that in turn can be obtained by setting the fraction
of non-resetting firms α to 1.

5This is not a trivial result: the government may indeed impose a nonzero long run transfer deviation
τ̂∗′ ̸= 0: reallocating wealth between households then would affect labor supply and the output level in the
limit. In the online appendix I show that this effect is negligible up to a first order approximation.
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with respect to the long run transfer τ̂∗
t

′ boosts current output relatively to the long run policy-

invariant output level, by increasing current hand to mouth consumption. Since setting nonzero

transfers τ̂∗
t0 , τ̂

∗′ implies consumption dispersion (by (3.0.3)), and cutting future nominal rates

{̂it}∞
t=t0+1 produces future undesired output expansions, the only term the government can use in

equation (3.0.7) to neutralize the shock without incurring in welfare costs is the current nominal

rate ît0 , namely by setting ît0 = −ξ̂t0 . However, for a realization of ξ̂t0 high enough, this is not

feasible because it would require ît0 to go below the lower bound îZLB (i.e. the log-linearized

counterpart of the zero lower bound condition (2.3.4)). The government is then willing to keep ît

at the lower bound up to some period T > t0, in order improve the recession mitigation at time

t0 (see Eggertsson and Woodford (2003)). Figure 3.1 illustrates in gray the behavior of output

0 t0 t0 + 1

Output gap
curbing

ŷt

ŷt

Recession
mitigation

t

ŷt

Optimal transfer policy
Constant transfer policy τ̂ ∗

t = 0

Figure 3.1: Output gap, optimal policy vs. optimal policy with τ̂ ∗
t = 0

when this forward guidance intervention on nominal rates is implemented, while keeping transfers

{τ̂∗
t }∞

t=t0 at zero. Looking at the gray line first, output drops due to the shock at the onset of the

trap, and then overshoots the steady state in the subsequent periods, when the nominal interest

rates are still kept at the zero lower bound by forward guidance.

If the sequence of transfers {τ̂∗
t }∞

t=t0 is not kept at 0, but instead set optimally, the government can

achieve a better stabilization of the output gap, by setting a positive transfer τ̂∗
t0 > 0 to mitigate

even more the output drop at t0, and by setting τ̂∗
t < 0 afterwards in order to curb the undesired

output expansions arising from keeping the interest rates at 0 for t > t0. Figure 3.2 and 3.1 report

in black respectively the implied pattern of transfers and the response of output, under a policy
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Figure 3.2: Hand to mouth transfer, optimal policy vs. optimal policy with τ̂ ∗
t = 0

setting transfers optimally and jointly with the interest rate. Notice that at the optimum the

government does not want to completely stabilize output, because setting nonzero transfers entails

consumption dispersion costs: transfers are not a substitute of the interest rate policy, which would

instead be able to fully offset the shock by setting ît0 = −ξ̂t0 , absent the zero lower bound, and

without yielding consumption dispersion. Moreover, transfer policy affects the optimal duration of

0 t0 T T T

îZLB

ît ît

t

ît

Recession
mitigation

Output gap
curbing

t

ît

Optimal transfer policy
Constant transfer policy τ̂ ∗

t = 0

Figure 3.3: Interest rate, optimal policy vs. optimal policy with τ̂ ∗
t = 0

stay of the interest rate at the zero lower bound through two offsetting channels: at t0 it entails a

shortening effect on duration of the stay of the interest rate at the zero lower bound, as it exerts
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an additional expansionary effect on output, reducing the need for forward guidance. Afterwards,

it counteracts the undesired output-boosting effect of monetary policy, so it makes the latter less

costly in welfare terms: in this perspective, transfer policy plays a lengthening role with respect to

forward guidance. The overall effect on the length of the stay of the interest rate at the zero lower

bound remains ambiguous (see Figure 3.3).

3.1 An interpretation through the natural rate of interest

In what follows, I will define the effective natural interest rate as the natural interest rate that

would be faced by a hypothetical representative agent with consumption levels aggregating the

ones of the optimizer and the hand to mouth:

rnt = −ξt − σΘEt∆τ̂∗
t+1 (3.1.1)

Plugging indeed the term above into the AD equation (3.0.5), the latter becomes exactly alike the

one that would be found in a representative agent framework (let us recall that π̂t = 0 ∀t):

ŷt = Etŷt+1 − 1
σ

(̂it − rnt ) (3.1.2)

Equation (3.1.1) shows that the natural rate can be manipulated through he HtM transfer variation

∆τ̂∗
t+1: it is then endogenous to fiscal policy. Using again lim

t→∞
ŷt = 0, output gap yt0 as from equation

(3.0.5) (with the assumption π̂t = 0 ∀t) can be rewritten by forward iteration as depending on the

sum of the current and future deviations of the nominal from the natural interest rate, up to the

liftoff period T , and from then onwards:

yt0 = −(̂iZLB − rnt0) − 1
σ
Et0

T∑
t=t0+1

(̂iZLB − rnt ) − 1
σ
Et0

∞∑
t=T+1

(̂it − rnt ) (3.1.3)

The shock term ξ̂t0 is embedded into the natural rate rnt0 , that experiences a fall, involving a negative

effect on current output. As discussed above, the government reacts by keeping the nominal rate ît
at the lower bound îZLB until time T . Therefore the future deviations up to the forward guidance

horizon T , i.e. {̂iZLB − rnt }Tt=t0+1, entail undesired future output expansions. The government can

increase the current natural rate rnt0 to strengthen the contemporaneous policy effect (̂iZLB − rnt0)

and cut future natural rates {rnt }Tt=t0 to curb the future expansionary effects
T∑

t=t0+1
(̂iZLB − rnt ).
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Figure 3.4: Natural and nominal interest rate, optimal policy vs. optimal policy with τ̂ ∗
t = 0

In this way it can achieve a better output drop mitigation at t0, at the expense of lower output

expansions in the future periods. The optimal natural interest response is illustrated in Figure 3.4.

Also under this interpretation, the two roles of transfer policy influence in an opposite way the

duration of forward guidance.

According to (3.1.1), the optimal pattern of rnt is produced exactly by the optimal transfer policy

illustrated in Figure 3.2: the fall of the transfer at t0 + 1 after the initial peak creates an upward

shift the natural rate at t0, while then increasing the transfer back to steady state pushes the

natural interest rate downwards.

3.2 Transfer financing

In the argument outlined so far I did not yet discuss how HtM transfers are financed. Let us take

a log-linear approximation of the government’s budget constraint (2.3.1) (after having substituted

inside for bond market clearing (2.4.3)) in this simplified environment with π̂t = 0 ∀t:

Γτ̂∗
t = 1 − λ

λ

[
βb̂t − b̂t−1 − βît − Γτ̂t

]
(3.2.1)

where Γ = YΠ/b = Y/b, with b̂t and b the deviation and the steady state level of ricardian bond

holding Bt/Pt, respectively. We can see how at any time t the transfer τ̂∗
t , if positive, is financed

by taking resources away from ricardian household, either through an increase in its public debt

holding, or through an interest rate cut, or through a direct redistribution through the transfer
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τ̂t (the opposite holds if τ̂∗
t is negative). Taking the discounted sum with respect to the steady

state discount factor β of both the right and the left hand side up to infinity, and imposing the

transversality condition lim
j→∞

βj b̂t0+j = 0 and the predetermined condition b̂t0−1 = 0, we can write:

ΓEt0
∞∑
j=0

βj τ̂∗
t0+j = −1 − λ

λ

ΓEt0
∞∑
j=0

βj τ̂t0+j + βEt0

∞∑
j=0

βj ît0+j

 (3.2.2)

The government can select any appropriate pattern of ricardian transfers {τ̂t0+j}∞
j=0 to satisfy the

financing constraint above, without affecting the stabilization results (which depend uniquely on

the aggregate demand determinants showing up in (3.0.7)). Of course, this will impact ricardian

consumption. The latter is pinned down by the Euler equation and the ricardian intertemporal

budget constraint (IBC)6:

ĉt − Etĉt+1 = − 1
σ

(̂it + ξ̂t) (3.2.3)

ΓEt0
∞∑
j=0

βj ĉt0+j = ΓEt0
∞∑
j=0

βj l̂t0+j + ΓEt0
∞∑
j=0

βj τ̂t0+j + βEt0

∞∑
j=0

βj ît0+j (3.2.4)

where in the IBC the real wage and dividend deviations do not show up, as they exactly offset each

other (see the online appendix). Transfer financing through the term
∞∑
j=0

βj τ̂t0+j has the effect of

shifting up or down the whole discounted sum of ricardian consumption
∞∑
j=0

βj ĉt0+j
7. Therefore,

while redistribution has a direct effect on current hand to mouth consumption, it can only affect

ricardian consumption only with respect to its total discounted amount. The effectiveness of current

HtM transfer movements in stabilizing output is not jeopardized by the financing scheme.

3.3 The general case

With the above considerations in mind, we can now consider the general case in which prices are

not fully rigid and solve for the optimal policy problem of the government, which seeks to set
6The IBC of the ricardian household (3.2.4) is recovered by the infinite iteration forward of the log-linear

version of (2.1.1) (the flow budget constraint), subject to the the transversality condition lim
j→∞

βj b̂t0+j = 0,

the predetermined condition b̂t0 = 0, and the simplifying assumption π̂t = 0 ∀t
7I the current simplified case with rigid prices, it can be shown that the effect on ricardian consumption

is null due to the adjustment in the labor sequence {l̂t0+j}∞
j=0. This limit case is not further discussed here.
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jointly the pattern of nominal interest rates and transfers. In this perspective I will lift the zero

inflation assumption of the previous simplified setting; moreover, I will substitute the consumption

dispersion term (ĉt − ĉ∗
t )2 as a function of the transfer τ̂∗

t using (3.0.3). The problem writes:

min
{π̂t}∞

t0
,{ŷt}∞

t0
,{τ̂∗

t }∞
t0
,{̂it}∞

t0

Et0

∞∑
t=t0

βt−t0
{1

2
θ

κ
π̂2
t + 1

2 ŷ
2
t + 1

2
ϕσ

(ϕ+ σ)2
λ

1 − λ
τ̂∗2
t

}
(3.3.1)

s.t

ŷt = Etŷt+1 − 1
σ

(̂it − π̂t+1 + ξ̂t) − ΘEt∆τ̂∗
t+1 (3.3.2)

π̂t = κŷt + βEtπ̂t+1 (3.3.3)

ît ≥ îZLB (3.3.4)

where (3.3.2) is the previously derived AD equation; constraints (3.3.3) and (3.3.4) are the log-

linearized versions of the New Keynesian Phillips curve (2.2.5) and of the zero lower bound on the

interest rate (2.3.4). The consumption deviations ĉt and ĉ∗
t can be determined residually by using

the aggregate resource constraint ŷt = (1 − λ)ĉt + λĉ∗
t and the hand to mouth budget constraint

(3.0.2).

The government needs to satisfy a solvency requirement (the generalized version of constraint

(3.2.2)), obtained by iterating forward the log-linearized counterpart of the public sector budget

constraint (2.3.1) and imposing the transversality condition lim
j→∞

βj b̂t0+j = 0:

ΓEt0
∞∑
j=0

βj τ̂∗
t0+j = −1 − λ

λ

ΓEt0
∞∑
j=0

βj τ̂t0+j + βEt0

∞∑
j=0

βj ît0+j − Et0

∞∑
j=0

βj π̂t0+j

 (3.3.5)

As discussed previously, the government can always choose one of the infinite possible appropriate

sequences {τ̂t0+j}∞
j=0 to satisfy (3.3.5): as a consequence, condition (3.3.5) is not included among

the constraints of the problem.

The system allows to analytically identify the trade-off between aggregate stabilization and con-

sumption dispersion, with respect to transfer policy: taking the first order condition of problem

(6.1.1)-(3.3.4) with respect to τ̂∗
t , we obtain:

σ

ϕ+ σ
τ̂∗
t + 1

β
νADt−1 − νADt = 0 (3.3.6)
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The zero consumption dispersion solution τ̂∗
t = 0 is not achieved over the dynamics, since τ̂∗

t is

valuable for aggregate stabilization: this value is embedded in the difference (1/β)νADt−1 −νADt , where

ν̂ADt , ν̂ADt−1, are the multipliers of the aggregate demand equation at time t and t − 1, respectively.

When the multiplier displays sizable variation over time, the further output is from steady state, and

the more the government leans towards aggregate stabilization rather than consumption dispersion.

In the simple case with π̂t = 0, condition (3.3.6) boils down to the following rule:

τ̂∗
t = −ϕ+ σ

σ
ŷt (3.3.7)

where I substituted for the multipliers using the first order condition on ŷt. In this case transfer

reacts linearly to deviations in output. The higher is σ, the more concave is the utility function

of the households, and the more relevant are consumption dispersion costs, calling for a weaker

transfer reaction.

3.4 Simulation

In order to simulate the model under optimal policy, I adopt the following calibration: I set η

and z such that ϕ ≡ (V ′′(L̄)/V ′(L̄))L̄ = 0.47, and σ ≡ −(U ′′(Y )/U ′(Y ))Y = 2, where L̄ =

(1 − λ)L+ λL∗. In this way the impulse response functions of the model replicate exactly the ones

that would be yielded by assuming a standard utility function of the type U(C) = C1−σ/(1 − σ)

and V (L) = L1+ϕ/(1 + ϕ), with σ = 2 and ϕ = 0.47 (see Eggertsson and Woodford (2006)). I set

κ to 0.02 (see Benigno et al. (2020)). I assume λ = 0.33, according to the observation of Kaplan

and Violante (2014) about hand-to-mouth the households in the Survey of Consumer Finance

being approximately one third of the total amount of surveyed households. The discount factor

β = 0.9987 and the steady state inflation rate Π = 1.005 implies a 2% inflation at the annualized

level and a 2.5 % steady state nominal interest rate. I assume the ratio b/Y equal to 4 (translating

a steady state debt-GDP annualized ratio of 1 in quarterly terms): this last calibrated value is not

relevant for this setting but it will become so in the extension of the model developed in the next

section.

Figure 3.5 reports the impulse response functions for the economy when hit by an unexpected

shock at t0 = 1, bringing ξ̂t to 0.025 and lasting 12 periods. It compares optimal policy to an

optimal policy when the HtM transfer does not vary. All the variables are in percentage deviation

terms (let’s recall here that transfer deviations are expressed in percentage of steady state output);
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Figure 3.5: Optimal policy vs. optimal policy with τ̂ ∗
t = 0

inflation and nominal interest rate are annualized.

The shock is high enough to bring the interest rate to the zero lower bound. The duration of the

stay at the zero lower bound is long and up to quarter 25, i.e. double the time span of the shock

(which ends at quarter 13). The output and inflation drop in the early stages of the liquidity trap is

mitigated at the expense of an output and inflation expansion later. At the onset of the shock, the

government sets positive transfers for the hand to mouth to alleviate the output drop; as output

increases, transfers are reduced, up until the former becomes positive; then, the government starts

setting negative transfers to curb the expansion. The transfer deviation are sizable: the hand to

mouth enjoys a rebate up to 12% of its steady state income over the recession and a down to -8%

over the recovery. The pattern of transfers involve a manipulation of the natural interest rate:

the transfer decreases gradually - after the initial peak - over the recession, implying an upward

pressure on the natural rate, that has been dragged down by the shock. Then, over the recovery,

the increasing pattern of transfers implies a downward shift in the natural rates, which allow to

curb the expansion.

The introduction of the optimal response of transfer policy allows to achieve a better stabilization

of output gap and inflation: the output trough of the constant transfer policy at the onset of the

shock is reduced by nearly one fourth, and the same holds for the peak over the recovery. Also
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inflation fluctuates significantly less in the optimal policy with respect to the constant transfer

policy scenario. This stabilization outcome is achieved at the expense of consumption dispersion

costs: so transfers cannot perfectly substitute for the stabilization power of monetary policy that

is foregone because of the zero lower bound. The HtM consumes more than the Ricardian when

the transfer deviation is positive and less when it is negative. Remarkably, consumption difference

between households moves less strongly than the the transfer: this is because agents can partially

compensate the positive (or negative) transfer deviation by adjusting labor supply.

Notice that the impact of transfer policy on the duration of forward guidance is null: the nominal

interest rate remains at zero until quarter 25 both in the constant transfer policy and in the

optimal policy. This is due to the interaction of the two opposite roles of transfers with respect to

monetary policy: on one side they call for a lower forward guidance horizon, when they mitigate

the early recession; on the other side, they make more desirable an extension of the stay at the zero

lower bound by counteracting the undesired output expansion of forward guidance. As discussed

previously, these two effects act oppositely on the duration of stay of the rates at the zero lower

bound. This can be seen in Figure 3.6, where the optimal transfer policy is decomposed into the

optimal policy constrained by τ̂∗
t ≥ 0 and the optimal policy constrained by τ̂∗

t ≤ 0. In the first

benchmark case, only positive transfer deviations are allowed, so only the recession mitigation and

then the shortening role of transfers is active, and this implies a decrease in the horizon of forward

guidance with respect to the optimal policy: the interest rate is kept at 0 for a quarter less. In the

second case, only the later curbing of the expansion and then the lengthening role of transfers is

in place - as only negative transfer deviations are allowed, and this drives the government to keep

the interest rates at 0 for one quarter more.

The result of a null effect of transfer policy on the duration of forward guidance is robust to sensitiv-

ity analysis carried out on different parameters. Specifically, in the online appendix I consider lower

and higher values - with respect to the current calibration - for λ, σ, ϕ, which are the parameters

determine the effect of transfers on the economy (through stabilization via aggregate demand, or

through the impact on consumption dispersion costs). I also consider lower and higher values for

the shock εξ and the parameter β, which determine the severity of the zero lower bound constraint8.

Also in this case the alternative parametrizations lead still to the same finding.

A key parameter to assess the stabilization power of transfer policy is the fraction of hand to mouth
8Consider that the steady state nominal interest rate is given by i = Π/β − 1. The higher is β, the

closer is this value to 0, and the more binding will be the zero lower bound when the demand shock hits the
economy
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Figure 3.6: Optimal policy vs optimal policy with τ̂ ∗
t ≥ 0 and τ̂ ∗

t ≤ 0

households λ. As discussed previously, the higher is the fraction of hand to mouth in the economy,

the stronger is the stabilizing effect on output of rebating them more resources, as λ enters in the

AD curve (3.3.2) under the form of the coefficient Θ = λ/(1 − λ). However, the same expression

λ/(1 − λ) also appears in the coefficient of the consumption dispersion term in the government

objective (6.1.1): this is because redistributing resources to or away from the hand to mouth im-

pacts consumption dispersion more heavily the higher is their relative weight in the population.

However, the effect of λ on output stabilization enters quadratically in the welfare objective (as

the government draws disutility from output deviation squared), whereas it enters only linearly in

the consumption dispersion coefficient. Therefore increasing λ entail better aggregate stabilization

results at the expense of lower consumption dispersion: this can be seen by comparing Figure 3.5

(where λ is equal to 0.33) to Figure 3.7 - where we have instead λ = 0.5, implying half of the

population being hand to mouth.

4 Optimal policy under a homogeneous tax response

So far I assumed that the government was able to freely differentiate lump sum taxation between

Ricardians and hand to mouth. While using HtM tax τ̂∗
t to stabilize output and inflation over
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Figure 3.7: Optimal policy vs. optimal policy with τ̂ ∗
t = 0, λ = 0.5 case

the liquidity trap, the government could select any of the infinite possible sequences of ricardians’

transfers {τ̂t0+j}∞
j=0 appropriate to guarantee the solvency constraint to hold (equation (3.3.5)).

However, due to political constraints, a government could have hard time in implementing a hetero-

geneous tax response across households. In this section I explore to what extent the results in terms

of the stabilizing effect of optimal transfers, as well as their imperfect substitutability with interest

rate policy and their null effect on the duration of the stay at the zero lower bound, carry over to

a case in which a unique stimulus check is rebated to all households in the economy (following in

spirit Wolf (2021)). The additional constraint that I am setting is:

τt − τ = τ∗
t − τ∗ ∀t (4.0.1)

Constraint (4.0.1) imposes that the the same increment of transfers with respect to steady state is

set for the whole cross-section of households. This also implies that the transfer deviation terms -

defined in output terms as previously - are equal:

τ̂t = τt − τ

Y
= τ∗

t − τ∗

Y
= τ̂∗

t (4.0.2)
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I will thereafter call τ̂∗∗
t the unique transfer deviation set on both ricardian and hand to mouth

households.

Let us restate the solvency constraint (3.3.5), with only the unique transfer τ̂∗∗
t available:

ΓEt0
∞∑
j=0

βj τ̂∗∗
t0+j = −(1 − λ)βEt0

∞∑
j=0

βj ît0+j + (1 − λ)Et0
∞∑
j=0

βj π̂t0+j (4.0.3)

Now the transfer instrument used for aggregate stabilization τ̂∗∗ in (3.3.2) is the same that is used

to guarantee solvency (4.0.3). It appears that the use of transfers now implies a trade-off not only

between aggregate stabilization and consumption dispersion, but also with respect to public debt

management.

Let us for now consider only the trade-off between aggregate stabilization and public debt manage-

ment, leaving aside consumption dispersion concerns. Notice that when the prospective sequences

of nominal interest rates and inflation change as a consequence of the preference shock hitting the

economy, transfers have to adjust as well to guarantee solvency (4.0.3). However, since condition

(4.0.3) is satisfied by setting an appropriate sum of discounted transfers, the government is free to

smooth out the required fiscal response over time. In particular, given
∞∑
j=0

βj τ̂∗
t0+j being the sum of

discounted hand to mouth transfers generated by optimal policy in the benchmark heterogeneous

transfer scheme of last section (either with or without the constant transfer constraint τ̂∗
t = 0),

we can obtain the required total discounted transfer amount for public debt management in the

current setting,
∞∑
j=0

βj τ̂∗∗
t0+j , by increasing every period τ̂∗

t by a fixed amount ∆τ∗ :

Et0

∞∑
j=0

βj τ̂∗∗
t0+j = Et0

∞∑
j=0

βj(τ̂∗
t0+j + ∆τ∗) (4.0.4)

In this way we can obtain exactly the same aggregate output and inflation dynamics {ŷt}∞
t=t0 ,

{π̂t}∞
t=t0 as in the benchmark case: the effect of the ∆τ∗ increase indeed cancels out in the output

determination equation:

yt0 = − 1
σ
Et0

ξ̂t0 +
∞∑
t=t0

ît −
∞∑

t=t0+1
π̂t − σΘ(τ̂∗∗

t0 + ∆τ∗) + σΘ(τ̂∗∗′ + ∆τ∗)

 =

= − 1
σ
Et0

ξ̂t0 +
∞∑
t=t0

ît −
∞∑

t=t0+1
π̂t − σΘτ̂∗∗

t0 + σΘτ̂∗∗′

 (4.0.5)

The effect of the increase in current transfer τ̂∗
t0 on output is indeed exactly offset by the increase in
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the limit transfer τ̂∗′. A rise in the latter implies indeed that resources are systematically rebated

away from the ricardian budget constraint in the final steady state, making it poorer and forcing

it to cut its current consumption.

From the argument developed so far, we can infer that there is no trade-off between aggregate

stabilization and public debt management: this result follows from the fact that output at any

time t is affected by the difference between current transfer τ̂∗∗
t and long run transfer τ̂∗∗′; while

public debt instead is determined by the size of transfers per se. Therefore the government is able to

conduce a transfer policy that disentangles aggregate stabilization from public debt management.

Intuition is that in the limit steady state, additional ∆τ∗ resources are rebated away from ricardian’s

consumption, which shrinks accordingly also its current consumption by an amount ∆τ∗ , offsetting

the additional expansionary effect on output that passes through the current hand to mouth transfer

τ̂∗∗
t0 + ∆τ∗ : output response remains therefore unchanged with respect to the baseline setting at

time t0.

Rearranging equation (4.0.4), we can back out ∆τ∗ as a function of the difference between the

discounted sum of transfers in the homogeneous transfer scheme and the one in the heterogeneous

transfer scheme:

∆τ∗ = (1 − β)Et0

 ∞∑
j=0

βj τ̂∗∗
t0+j −

∞∑
j=0

βj τ̂∗
t0+j

 (4.0.6)

The extra-fiscal deficit (or surplus) needed is multiplied by a coefficient 1 − β to give rise to the

required ∆τ∗ , that therefore turns out to be small - since β is close to 1. The government, by

shifting the whole transfer sequence, can indeed smooth out the fiscal surplus/deficit over time.

As showed above, shifting all the transfers by a quantity ∆τ∗ does not interfere with aggregate

stabilization; however it does affect consumption dispersion, as the latter is related with the squared

size of the transfers:

(ĉt − ĉ∗
t )2 =

( 1
1 − λ

)2 ( ϕ

ϕ+ σ
τ̂∗∗
t

)2
=
( 1

1 − λ

)2 ( ϕ

ϕ+ σ
(τ̂∗
t + ∆τ∗)

)2
(4.0.7)

However, since the term ∆τ∗ is small in size, as showed above, the optimal solution of the govern-

ment will not significantly deviate from the parallel shift of the whole HtM transfer sequence, nor it

will display significant departures of output and inflation from the baseline heterogeneous transfer

case. Figure 4.1 compares the impulse response functions of the economy in the case where the

unique transfer τ̂∗∗
t is set optimally to the case in which it is set constant to the level satisfying
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solvency (4.0.3), keeping the same calibration of parameters and specification of the shock as in

section 3.

By equation (4.0.3) we can see that when debt dynamics are characterized by a low interest rate
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Figure 4.1: Optimal policy vs. optimal policy with constant transfers, τ = τ ∗ case
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Figure 4.2: Optimal policy vs. optimal policy with homogeneous transfers: difference in
HtM transfer

time span (a fall in the term β
∞∑
j=0

βj ît0+j) which is a wealth gain for the government, that needs to

be offset by an increase in transfers {τ̂∗∗
t }∞

t=t0 . According to the argument made above, the whole

sequence of transfers need to be shifted (upward, in this case) with respect to the baseline path

{τ̂t}∞
t=t0 : in this way solvency is satisfied, and both optimal and constant transfer policy succeed

in generating the same response of the economy as in the baseline setting (it can be indeed seen by

comparing Figure 4.1 to Figure 3.5). The difference between the sequence of HtM transfers in the

heterogeneous transfer scheme and in the homogeneous transfer response, reported in Figure 4.2,
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is of a negligible degree of magnitude - as it is smoothed out in the long run.

Since all the variables’ responses to the shock track closely the ones of the baseline setting, we can

conclude that the results in terms transfers being imperfect substitutes for interest rate policy - as

they generate consumption dispersion - and entailing a zero effect on the length of the stay at the

zero lower bound, carry over to the homogeneous transfer response case.

5 Optimal policy under cyclical income differences

So far, cyclical income differences (unrelated to transfer policy) have been shut down through two

assumptions: the equal dividend split χ = λ and the equalization of steady state consumption

and labor levels C = C∗, L = L∗. In this section I relax these two assumptions and explore the

implications for the formulation of an optimal monetary and transfer policy. The relevance of these

forces in affecting hand to mouth consumption can be analytically identified by considering the HtM

budget constraint, once these assumptions are lifted (see the online appendix for the derivation):

C∗

Y
ĉ∗
t = Φŷt + ŷt + ϕ

ϕ+ σ
τ̂∗
t (5.0.1)

Hand to mouth consumption, standardized by the steady state consumption share C∗/Y , is deter-

mined by the same term of the baseline framework, ŷt + ϕ
ϕ+σ τ̂

∗
t , plus an additional component Φŷt,

such that:

Φ = ϕ

(
L∗

L̄
− χ

λ

)
(5.0.2)

The sensitivity of HtM income to aggregate output (1 + Φ) depends on both the steady state

heterogeneity - through the term L∗/L̄ - and on the dividend split rule χ/λ. The higher is L∗

with respect to aggregate labor supply L̄, the stronger HtM labor supply varies with the aggregate

output, making hand to mouth consumption more cyclical. The higher is the fraction of dividends χ
λ

allocated to each hand to mouth household, the more countercyclical is HtM consumption instead.

The latter feature is due to the unrealistic countercyclical nature of dividends in the New Keynesian

models with stickiness in firms’ price setting. I will nevertheless not take a stance on the sign and

size of the whole cyclical coefficient Φ, but instead I will hereafter incorporate this quantity together

with the transfer τ̂∗
t into a single term τ̃∗

t - the augmented transfer - which consists in an endogenous
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cyclical component and a policy-driven component provided by the transfer:

τ̃∗
t ≡ ϕ+ σ

ϕ
Φŷt + τ̂∗

t (5.0.3)

So that we can rewrite the hand to mouth budget constraint (5.0.1) as:

c̃∗
t = ŷt + ϕ

ϕ+ σ
τ̃∗
t (5.0.4)

Where c̃∗
t ≡ (C∗/Y )ĉt is the hand to mouth consumption deviation standardized by its steady state

consumption share. Notice that the government can always freely choose the augmented transfer

level τ̃∗
t , thanks to the degree of freedom provided by the transfer term τ̂∗

t in equation (2.7.5).

The augmented transfer affects the economy through the exact same channel of the transfer in the

baseline model: by boosting hand to mouth consumption though its budget constraint. We can

then reformulate the problem of the government in reaction to the shock ξt0 as an optimal policy

setting jointly the interest rate and the augmented transfer sequence {̂it, τ̃∗
t }∞

t=t0 :

min
{π̂t}∞

t0
,{ŷt}∞

t0
,{τ̃∗

t }∞
t0
,{̂it}∞

t0

Et0

∞∑
t=t0

βt−t0
{1

2
θ

κ
π̂2
t + 1

2 ŷ
2
t + 1

2
ϕσ

(ϕ+ σ)2
λ

1 − λ
τ̃∗2
t

}
(5.0.5)

s.t

ŷt = Etŷt+1 − 1
σ

(̂it − π̂t+1 + ξ̂t) − ΘEt∆τ̃∗
t+1 (5.0.6)

π̂t = κŷt + βEtπ̂t+1 (5.0.7)

ît ≥ îZLB (5.0.8)

The problem is exactly equivalent to the baseline problem (6.1.1)-(3.3.4), with transfers {τ̂∗
t }∞

t=t0

replaced by augmented transfers {τ̃∗
t }∞

t=t0 ; therefore it gives rise to exactly the same optimal im-

pulse response for the augmented transfer as for transfers in the setting without cyclical income

differences; output, inflation, and consumption dispersion are also generated by the equivalent

problem, so track exactly the ones produced in the case with no cyclical income difference. Con-

sumption dispersion, in particular, is here given in terms of the consumption deviations of the

households, standardized for the steady state consumption shares, that is expressed as a function

of the augmented transfer:

(c̃t − c̃∗
t )2 =

( 1
1 − λ

)2 ( ϕ

ϕ+ σ
τ̃∗
t

)2
(5.0.9)
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The sequence of transfers that the government needs to engineer to produce the desired sequence

of the augmented transfer τ̃∗
t is now reliant on the sensitivity of HtM income to aggregate output

(see (2.7.5)). If Φ > 0, an endogenous cyclical component is introduced into hand to mouth

consumption, dragging it downward over the recession and upwards during the boom. Optimal

augmented transfer policy aims at achieving the opposite pattern (boosting HtM consumption

initially and then curbing it), so transfers need to compensate for this effect: they will be raised

more during the trough and cut more during the expansionary phase, with respect to the no-

cyclical income difference scenario. By the same logic, transfers will display milder fluctuations

with respect to the no-cyclical income difference case if Φ < 0, i.e. if endogenous inequality boosts

HtM consumption when output drops and curbs it when output expands. Figure 5.1 compares
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Figure 5.1: Optimal policy. Φ = 0: no cyclical income difference; Φ > 0: procyclical HtM
income; Φ < 0: countercyclical HtM income. The bottom left graph relates to cyclical
income differences unrelated to transfer policy.

aggregate stabilization outcomes in the case Φ = 0, with the case Φ = 0.094 and Φ = −0.094 -

corresponding to a calibration where χ is kept equal to λ, and the steady state hand to mouth’s
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hours worked are 20% more and less than the economywide labor supply L̄, respectively. In the

former case, the HtM supplies more labor to make partially up for a steady state consumption

lower than average (C∗ < Y ), in the latter, it affords working less by a consumption advantage

(C∗ > Y ). This consumption and labor steady state asymmetry arises from an uneven transfer

distribution τ, τ∗, favouring the Ricardian in the former case and the hand to mouth in the latter.

The shock process considered is the same as in section 3.4. In the case Φ = 0, we are back to exactly

the same impulse response as in Figure 3.5, since cyclical income difference is shut down. In the

case Φ > 0, the high steady state labor supply of the hand to mouth implies a higher cyclicality

of its consumption, which calls for a more massive use of transfers over both the recession and

the boom. In the case Φ < 0 consumption of the hand to mouth is instead more countercyclical,

and this feature substitute partially for the transfer intervention: the latter display then less sharp

fluctuations over the trap. Overall, the government succeeds in making the augmented transfer

term τ̃t follow exactly the same optimal pattern in all the three cases, and that guarantees the

same outcomes in terms of aggregate inflation-output stabilization and consumption dispersion.

The use of transfers affects consumption dispersion costs (together with cyclical income difference):

then, in line with the results of in the baseline setting, the transfer instrument is not a substitute

for monetary policy. Optimal transfers rise over the recession to mitigate the output drop, and

fall over the later stages of the trap, to curb the expansion: these two forces once again imply

countervailing effects on forward guidance duration, yielding an overall null impact on the duration

of stay at the zero lower bound, as reported in Figure 5.2 and 5.3, and analogously to the baseline

setting’s results.
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Figure 5.2: Optimal policy vs optimal policy with τ̂ ∗
t = 0, Φ < 0 case
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Figure 5.3: Optimal policy vs optimal policy with τ̂ ∗
t = 0, Φ > 0 case

6 Conclusion

In this paper I formulate an optimal monetary and fiscal policy problem in a heterogeneous agents

economy facing a shock that brings it to liquidity trap, where fiscal policy is modelled as trans-

fer policy. Transfers are used by the government to manipulate the natural interest rate in the

economy, at the expense of consumption dispersion, which prevent them from being an effective

substitute of the foregone stabilization power of monetary policy. During the early stages of the

liquidity trap, transfer policy is used jointly with monetary policy to mitigate the recession, while

later it is used to curb the undesired output expansion implied by forward guidance. These two

forces impact oppositely on the optimal duration of stay of nominal rates at the zero lower bound,

with an overall impact that is negligible. The findings are robust to both restrictions imposing

homogeneous transfer responses between household types, and to a broader framework allowing for

cyclical income difference.

Remarkably, the optimal fiscal-monetary policy prescriptions of the paper do not call for a relax-

ation of treasury - central bank separation. Since the duration of forward guidance is not affected

by transfers - when the latter are introduced in an optimal fashion - the optimal fiscal-monetary

mix can be implemented with treasury observing the planned path of interest rates and setting

transfers accordingly.

This paper opens up several avenues of extension: taking into account shocks triggering a liquidity

trap through the hand to mouth side, as a deleveraging shock, would change the optimal transfer

policy implication, introducing different trade-offs between aggregate stabilization and consumption

dispersion. Also modeling the effect of dividends and stock market fluctuations on inequality can

have relevant implications, as foreshadowed by the results of the last section. Finally, extending the

model to a full heterogeneous agents New Keynesian environment (HANK) would allow to carry

on further the analysis of the quantitative effects of transfer policy over the liquidity trap.
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A Appendix

A.1 Derivation of the linearized labor supply conditions of the

ricardian and hand to mouth

In the following, take into account the following definitions:

σ = −U ′′(Y )
U ′(Y ) Y = zY (A.1.1)

ϕ = V ′′(L)
V ′(L) L̄ = ηL̄ (A.1.2)

Where L̄ = (1 − λ)L + λL∗. Taking a log-linear approximation of the Ricardian and HtM labor

supply, we obtain:

ηLl̂t = −zCĉt + ω̂t (A.1.3)

ηL∗ l̂∗t = −zC∗ĉ∗
t + ω̂t (A.1.4)

Where ω̂t is real wage deviation. Aggregating up (A.1.3) and (A.1.4), and using Y = A((1 −λ)L+

λL∗) = ω((1 − λ)L+ λL∗), we obtain:

η
Y

ω
ŷt = −zY ŷt + ω̂t (A.1.5)

Then:

ω̂t =
(
η

ω
Y + zY

)
ŷt = (ϕ+ σ)ŷt (A.1.6)

Therefore, plugging (A.1.1), (A.1.2) and (A.1.6), into (A.1.3) and (A.1.4), we get:

L

L̄
l̂t = −σ

ϕ

C

Y
ĉt + ϕ+ σ

ϕ
ŷt (A.1.7)

L∗

L̄
l̂∗t = −σ

ϕ

C∗

Y
ĉ∗
t + ϕ+ σ

ϕ
ŷt (A.1.8)

Which, in the baseline case with C = C∗ = Y and L = L∗ = L̄, boils down to:

l̂t = −σ

ϕ
ĉt + ϕ+ σ

ϕ
ŷt (A.1.9)

l̂∗t = −σ

ϕ
ĉ∗
t + ϕ+ σ

ϕ
ŷt (A.1.10)
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A.2 Derivation of the linearized hand to mouth budget constraint

Let us take a log-linear approximation of the hand to mouth budget constraint (2.1.9) (in real

terms) around the steady state:

C∗ĉ∗
t = L∗ω(l̂∗t + ω̂t) + Y τ̂∗

t + χ

λ
Y d̂t (A.2.1)

Where I define the HtM transfer deviation τ̂∗
t = (τt − τ∗)/Y , and the dividend deviation d̂t as

(D̄t −D)/Y .

Aggregate real dividend D̄t consists of aggregate output net of the labor cost, corrected for the

subsidy and net of the lump sum tax ζt (which is given by ζt = ((1 − λ)Lt + λL∗
t )ωtν):

D̄t = Yt − ((1 − λ)Lt + λL∗
t )ωt(1 − ν) − ((1 − λ)Lt + λL∗

t )ωtν (A.2.2)

In log linearized terms:

Y d̂t = Y ŷt − (1 − λ)Lωl̂t + λL∗ωl̂∗t − ((1 − λ)L+ λL∗)ωω̂t = −Y ω̂t (A.2.3)

Plugging (A.1.6),(A.1.8) and (A.2.3) into (A.2.1), we obtain the expression:

C∗

Y
ĉ∗
t = Φŷt + ŷt + ϕ

ϕ+ σ
τ̂∗
t (A.2.4)

Where Φ = ϕ
(
L∗/L̄− χ/λ

)
. This is the general form for the hand to mouth budget constraint,

reported in Section 5 (equation (5.0.1)). Setting L = L∗ and χ = λ, we recover instead the budget

constraint in the baseline case of Section 3 (equation (3.0.2)).

A.3 Proof of limt→∞ ŷt = 0

We do not restrict our analysis to optimal transfer policy, but account for any possible sequence of

HtM transfer {τ̂∗
t }∞

t=t0 . Let us take a first order approximation of the aggregate resource constraint

(1 − λ)C + λC∗ = Yt around the initial steady state (namely, the state of the economy before

the shock ξ̂t0 hits). This approximation spans all the possible steady state to which the economy
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converges after the liquidity trap9:

(1 − λ)Cĉ+ λC∗ĉ∗ = (1 − λ)Ll̂ + λL∗ l̂∗ (A.3.1)

Then, using (A.1.7) and (A.1.8), we get:

(1 − λ)Cĉ+ λC∗ĉ∗ = (1 − λ)L
(

−zC

ηL
ĉ+ 1

ηL
ω̂

)
+ λL∗

(
−zC∗

ηL∗ ĉ
∗ + 1

ηL∗ ω̂

)
(A.3.2)

In steady state the real wage ω is fixed to the stationary level A (see section 2.5), then ω̂ = 0. Then

we can rearrange and simplify the equation above as:

(1 − λ)Cĉ = −λC∗ĉ∗ (A.3.3)

That implies

Y ŷt = (1 − λ)Cĉ+ λC∗ĉ∗ = 0 (A.3.4)

Therefore steady state output is not affected by the crossectional distribution of consumption up

to a first order approximation. So any long run HtM transfer τ̂∗′ ̸= 0 set by the government in the

limit is not driving lim
t→∞

ŷt away from 0.

A.4 Expressing consumption dispersion as a function of the the

HtM transfer only

Using the aggregate resource constraint Y ŷt = (1 − λ)Cĉt + λC∗ĉ∗
t and the hand to mouth budget

constraint (A.2.4), we can derive:

Y ŷt = C(1 − λ)ĉt + C∗λĉ∗
t = (A.4.1)

= (1 − λ)(Cĉt − C∗ĉ∗
t ) + C∗ĉ∗

t = (A.4.2)

= (1 − λ)(Cĉt − C∗ĉ∗
t ) + Y Φŷt + Y ŷt + Y

ϕ

ϕ+ σ
τ̂∗
t (A.4.3)

Rearranging the equation above, we obtain:

C

Y
ĉt − C∗

Y
ĉ∗
t = − ϕ

ϕ+ σ

1
1 − λ

τ̃∗
t (A.4.4)

9The price dispersion term ∆t is not considered up to a first order approximation
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Where τ̃∗
t ≡ [(ϕ+ σ)/ϕ]Φŷt + τ̂∗

t . And, squaring both sides, we obtain:

(
C

Y
ĉt − C∗

Y
ĉ∗
t

)2
=
( 1

1 − λ

)2 ( ϕ

ϕ+ σ
τ̃∗
t

)2
(A.4.5)

Notice that, if L = L∗ and χ = λ, then Φ = 0, C = C∗ = Y , and τ̂t = τ̃t, so we recover the

formulation for consumption dispersion in the baseline setting without cyclical income difference

(equation (3.0.3)).

A.5 The optimal steady state transfer problem

In what follows, we will approach the government Ramsey problem of optimal steady state transfer

selection τ, τ∗ in two steps: first, through a social planner problem, which selects the optimal

steady state consumption and labor levels C,C∗, L, L∗; then, we will find the transfers τ, τ∗ which

implement this solution in the decentralized equilibrium. the formulation of a full social planner

problem is possible as the steady state is not distorted thanks to the optimal labor cost subsidy ν,

that guarantee the achievement of Pareto-efficiency.

The social planner problem is a utilitarian maximization of a linear combination of the utility of

the households, according to some weights ψ,ψ∗, and subject to the aggregate resource constraint

of the economy:

max
C,C∗,L,L∗

ψ(1 − λ) (1 − exp(−zC) − δ exp(ηL)) + ψ∗λ (1 − exp(−zC∗) − δ exp(ηL∗)) (A.5.1)

s.t. (1 − λ)C + λC∗ = (1 − λ)AL+ λAL∗

The first order conditions of the problem yield the following optimality conditions:

(1 − λ)C + λC∗ = (1 − λ)AL+ λAL∗ (A.5.2)

δη exp(ηL) = z exp(−zC)A (A.5.3)

δη exp(ηL∗) = z exp(−zC∗)A (A.5.4)

ψz exp(−zC) = ψ∗z exp(−zC∗) (A.5.5)

Optimally, the social planner equates the marginal disutility from labor to the marginal utility of

consumption times the productivity, for each agent. Moreover, the household weighted more in

the welfare function has lower marginal utility of consumption than the other one (and then , by
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(A.5.3) and (A.5.4), lower marginal disutility of labor as well).

Turning the attention to the decentralized equilibrium, the consumption levels found through the

social planner problem can be decentralized by setting appropriate transfers. The steady state

budget constraints of the ricardian and the hand to mouth indeed write:

C = ωL+ τ + B
( 1

Π − β

)
(A.5.6)

C∗ = ωL∗ + τ∗ (A.5.7)

Where B is steady state aggregate real bond quantity. Notice that aggregate dividends D̄ are zero

in steady state by (A.2.2), so they do not show up in the households’ budget constraint. Equations

(A.5.6) and (A.5.7) pin down the optimal steady state transfers τ, τ∗, given the optimal levels

C,C∗, L, L∗ and the aggregate bond real quantity10.

A.6 Derivation of the welfare objective of the government (6.1.1)

Let us restate the flow welfare function of the government ((A.5.1)):

Ut = ψ(1 − λ) (1 − exp(−zCt) − δ exp(ηLt)) + ψ∗λ (1 − exp(−zC∗
t ) − δ exp(ηL∗

t )) (A.6.1)

Taking a second order approximation of the expression above around the steady state USS yields:

Ut ≈ USS + ψ(1 − λ)z exp(−zC)CCt − C

C
+ ψ∗λz exp(−zC∗)C∗C

∗
t − C∗

C∗ +

− ψ(1 − λ)δη exp(ηL)LLt − L

L
− ψ∗λδη exp(ηL∗)L∗L

∗
t − L∗

L∗ +

− 1
2ψ(1 − λ)z2 exp(−zC)C2

(
Ct − C

C

)2
− 1

2ψ
∗λz2 exp(−zC∗)C∗2

(
C∗
t − C∗

C∗

)2

− 1
2ψ(1 − λ)δη2 exp(ηL)L2

(
Lt − L

L

)2
− 1

2ψ
∗λδη2 exp(ηL∗)L∗2

(
L∗
t − L∗

L∗

)2
(A.6.2)

10If I allowed the size of real debt to be chosen by the planner, that would have provided an additional
and not necessary degree of freedom to implement the optimal allocation.
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Using results (A.5.3)-(A.5.5), we can factor out some constant terms:

Ut ≈ USS + ψz exp(−zC)ω
[
(1 − λ) 1

ω
C
Ct − C

C
+ λ

1
ω
C∗C

∗
t − C∗

C∗

− (1 − λ)LLt − L

L
− λL∗L

∗
t − L∗

L∗ +

− 1
2(1 − λ) 1

ω
zC2

(
Ct − C

C

)2
− 1

2λ
1
ω
zC∗2

(
C∗
t − C∗

C∗

)2

− 1
2(1 − λ)ηL2

(
Lt − L

L

)2
− 1

2ληL
∗2
(
L∗
t − L∗

L∗

)2 ]
(A.6.3)

Using the aggregate resource constraint Yt = (1 − λ)Ct + λC∗
t , the expression above becomes:

Ut ≈ USS + ψz exp(−zC)ω
[
Y

ω

Yt − Y

Y
− (1 − λ)LLt − L

L
− λL∗L

∗
t − L∗

L∗ +

− 1
2(1 − λ) 1

ω
zC2

(
Ct − C

C

)2
− 1

2λ
1
ω
zC∗2

(
C∗
t − C∗

C∗

)2

− 1
2(1 − λ)ηL2

(
Lt − L

L

)2
− 1

2ληL
∗2
(
L∗
t − L∗

L∗

)2 ]
(A.6.4)

A first order approximation of the market clearing condition (5.7.3) yields:

Y∆
A

Yt − Y

Y
+ Y∆

A

∆t − ∆
∆ = (1 − λ)LLt − L

L
+ λL∗L

∗
t − L∗

L∗ (A.6.5)

Where ∆ = 1. Recalling that ω = A, and substituting for the above expression into (A.6.4) yields:

Ut ≈ USS + ψz exp(−zC)ω
[

− Y

ω

∆t − ∆
∆ − 1

2(1 − λ) 1
ω
zC2

(
Ct − C

C

)2
− 1

2λ
1
ω
zC∗2

(
C∗
t − C∗

C∗

)2
+

− 1
2(1 − λ)ηL2

(
Lt − L

L

)2
− 1

2ληL
∗2
(
L∗
t − L∗

L∗

)2 ]
(A.6.6)

Consider for any variable xt the second order approximations (xt − x)/x ≈ x̂t + (1/2)x̂2
t and

[(xt − x)/x]2 ≈ x̂2
t where x̂t is the log-deviation. Let us take also into account that ∆̂2

t = 0

up to a second order approximation. Then we can write the expression above as follows:

Ut ≈ USS +ψz exp(−zC)ω
[

− Y

ω
∆̂t−

1
2(1−λ) 1

ω
zC2ĉ2

t − 1
2λ

1
ω
zC∗2ĉ∗2

t − 1
2(1−λ)ηL2 l̂2t − 1

2ληL
∗2 l̂∗2

t

]
(A.6.7)

By the aggregate resource constraint Y ŷt = (1 − λ)Cĉt + λC∗ĉ∗
t and (A.6.5), notice the following
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first order equivalences (where the second order term ∆̂t does not show up):

Cĉt = Y ŷt + λ(Cĉt − C∗ĉ∗
t ) (A.6.8)

C∗ĉ∗
t = Y ŷt − (1 − λ)(Cĉt − C∗ĉ∗

t ) (A.6.9)

Ll̂t = Y

ω
ŷt + λ(Ll̂t − L∗ l̂∗t ) (A.6.10)

L∗ l̂∗t = Y

ω
ŷt − (1 − λ)(Ll̂t − L∗ l̂∗t ) (A.6.11)

Moreover, using (A.1.7) and (A.1.8) we can rewrite (A.6.10) and (A.6.11) as:

Ll̂t = Y

ω
ŷt − λ

z

η
(Cĉt − C∗ĉ∗

t ) (A.6.12)

L∗ l̂∗t = Y

ω
ŷt + (1 − λ)z

η
(Cĉt − C∗ĉ∗

t ) (A.6.13)

using (A.6.8), (A.6.9), (A.6.12) and (A.6.13), we can rewrite (A.6.7) as follows:

Ut ≈ USS + ψz exp(−zC)ω
[

− Y

ω
∆̂t+

− 1
2(1 − λ) z

ω

[
Y 2ŷ2

t + λ2(Cĉt − C∗ĉ∗
t )2 + 2λY ŷt(Cĉt − C∗ĉ∗

t )
]

+

− 1
2λ

z

ω

[
Y 2ŷ2

t + (1 − λ)2(Cĉt − C∗ĉ∗
t )2 − 2(1 − λ)Y ŷt(Cĉt − C∗ĉ∗

t )
]

+

− 1
2(1 − λ)η

[(
Y

ω

)2
ŷ2
t + λ2

(
z

η

)2
(Cĉt − C∗ĉ∗

t )2 − 2λz
η

Y

ω
ŷt(Cĉt − C∗ĉ∗

t )
]

+

− 1
2λη

[(
Y

ω

)2
ŷ2
t + (1 − λ)2

(
z

η

)2
(Cĉt − C∗ĉ∗

t )2 + 2(1 − λ)z
η

Y

ω
ŷt(Cĉt − C∗ĉ∗

t )
] ]

(A.6.14)

Rearranging the expression above, we get:

Ut ≈ USS + ψz exp(−zC)Y
[
−∆̂t − 1

2

(
z + η

ω

)
Y ŷ2

t − 1
2λ(1 − λ)zω

η
Y

(
z + η

ω

)(
C

Y
ĉt − C∗

Y
ĉ∗
t

)2]
(A.6.15)

Consider a recursive formulation for price dispersion:

∆t = α

(Πt

Π

)θ
∆t−1 + (1 − α)

1 − α
(

Πt
Π

)θ−1

1 − α


θ

θ−1

(A.6.16)
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Taking a second order approximation of the equation above and summing through time yields

∞∑
t=t0

βt−t0∆̂t = α

(1 − α)(1 − αβ)θ
∞∑
t=t0

βt−t0
1
2 π̂

2
t (A.6.17)

As standard in the literature. Taking the infinite discounted sum of (A.6.15), we can substitute for

the result above, obtaining the government’s loss function:

Et0

∞∑
t=t0

βt−t0

[
1
2

(
z + η

ω

)
Y
θ

κ
π̂2
t + 1

2

(
z + η

ω

)
Y ŷ2

t + 1
2z
ω

η

(
z + η

ω

)
Y λ(1 − λ)

(
C

Y
ĉt − C∗

Y
ĉ∗
t

)2]
(A.6.18)

where κ = [(1 −α)(1 −αβ)/α](z+ η
ω )Y . Equivalently, using (A.1.1), (A.1.2) and L̄ = Y/ω, we can

write the loss function as:

Et0

∞∑
t=t0

βt−t0

[
1
2
θ

κ
π̂2
t + 1

2 ŷ
2
t + 1

2
σ

ϕ
λ(1 − λ)

(
C

Y
ĉt − C∗

Y
ĉ∗
t

)2]
(A.6.19)

Notice that, setting C = C∗ = Y , the welfare objective is the one of section 3.3.

A.7 Sensitivity analysis

A key quantitative result of the paper is the mutual offsetting nature of the lengthening and

shortening channels of optimal transfer policy with respect to the duration of forward guidance,

which gives rise to a null effect on the optimal time of the liftoff of the nominal interest rate

from the zero lower bound. In this section I perform numerical robustness analysis on this result,

by considering a range of alternative parametrizations. I take into account the three parameters

that show up in the aggregate demand equation (3.3.2) and in the coefficient of the consumption

dispersion term showing up in the welfare objective of the government ((6.1.1)), i.e. the fraction of

hand to mouth households λ, the relative risk aversion coefficient σ, and inverse Frisch elasticity of

labor supply ϕ. These parameters determine the effect of transfers on the economy, either through

the stabilization via aggregate demand, or through the impact on consumption dispersion. For each

of these parameters, I select a couplet of alternative parametrizations, one higher and the other

lower than the value used in the paper - see Table 1.

I also perform a sensitivity analysis with respect to the size of the shock εξ and the discount factor

β. Both these parameters indeed determine the extent to which the zero lower bound is binding

during the liquidity trap (β in particular pins down the steady state value of the nominal interest
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Table 1: Alternative parametrizations

Parameter Low value Paper High value
λ 0.2 0.33 0.5
σ 1 2 3
ϕ 0.2 0.47 1
β 0.995 0.9987 0.999
εξ 0.02 0.025 0.07

rate i = Π/β − 1, so the proximity of the latter to the zero lower bound). Also in this case I take

into account a lower and a higher value with respect to the parametrization of the paper, which

are reported as well in Table 1.

All these alternative simulations are carried out moving one parameter at a time. Results are

summarized in Figure .1. In all the alternative configurations we can highlight the presence of

the lengthening and shortening effects of transfer policy with respect to forward guidance; these

effect offset each other, leaving the duration of the stay of the interest rate at the zero lower bound

unchanged with respect to the baseline case with constant transfers.
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Figure A.1: Sensitivity analysis, nominal interest rate
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Chapter 2

Interest Rate Smoothing

in Face of Energy Shocks
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1 Introduction

The years 2022 and 2023 witnessed a substantial rise in energy prices, exacerbating the in-

flationary pressures that had been steadily building since 2021; in response to the inflation

surge, central banks in advanced economies have raised the policy rates, aiming to curb

inflationary pressures and to safeguard the real income of consumers. Generally these in-

terventions increased interest rates on variable-rate mortgages and fixed-rate mortgages due

for renewal during the period of rate hikes. The case of the UK economy is particularly

illustrative of this phenomenon: housing mortgages’ cost are typically renegotiated every 5

years or less, making their interest rate particularly sensible to the movements in the policy

rate set by the Bank of England (BoE).

The Central Banks’ trade-off between shielding real income of consumers and maintaining

moderate mortgage interest rates poses challenges for the formulation of a monetary policy

reaction to an energy price shock. A contractionary interest rate policy effectively safeguards

households’ wages purchasing power by fostering a real exchange rate appreciation (by un-

covered interest rate parity); on the other side, it increases the cost of mortgages.

The main theoretical result of the paper is that the trade-off between the protection of

households’ real income and preventing high interest rates for borrowers can be resolved

once we account for monetary policy manipulating the whole path of future interest rates. If

the central bank indeed commits to monetary tightening in the future, this implies a current

real appreciation of domestic goods - through uncovered interest rate parity holding across

the whole yield curve - that protects real wages’ purchasing power ; therefore there is room

to adopt a milder monetary policy at the onset of the shock, in order not to increase too

much the financial burden on borrowers. The result of the paper echoes Silvana Tenreyro’s

argument in her final speech as Monetary Policy Committee member at the Bank of Eng-

land, which stated that the monetary authority should commit in advance to a determined

path of future interest rates, in order to partially offset the need to raise current rates in

reaction to the surge in energy prices.

This paper analyses this trade-off in a small open economy new keynesian setting where

agents are heterogeneous because of uninsurable idiosyncratic income risk. Agents trade in
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a liquid assets and are endowed with perpetual liabilities (mortgages) whose interest rate

is in part fixed and in part variable, i.e. directly connected with the monetary policy rate.

The presence of mortgages creates a quantitatively relevant adverse effect of contractionary

monetary policy on the budget constraints of households. Agents’ heterogeneity is a key

assumption to make both the components of the trade-off (increases in temporary mort-

gage costs and falls in the real wage) quantitatively relevant from a welfare perspective:

households indeed are unable to fully absorb income and mortgage cost shocks due to a

precautionary saving motive, which especially holds true for the ones closer to the borrowing

limit. Moreover, a full heterogeneous agents environment allows to have both a real wage

fall and mortgage cost increases to be quantitatively relevant in affecting consumption over

the whole crossection of agents (differently from a two-agents models, where these effects

would only be numerically important for the borrowing constrained agents).

Once obtained the theoretical results in terms of benefit of interest rate smoothing, I pro-

ceed to a quantitative assessment of the implications of the model in the UK economy. The

model is fed with the actual current and expected interest rate hike implemented by the

BoE, as well as by the actual energy price data. The model is constructed and calibrated to

match data both in an “aggregate” dimension (CPI inflation, real exchange rate, real wage,

aggregate mortgage cost) and to align with the incidence of mortgages on the cross-sectional

households’ consumption patterns. The reference panel data for this analysis, “Understand-

ing Society”, reports nearly exclusively food expenditure among various expenditure items:

therefore, I focus on comparing the model’s outcomes to the data in terms of the effects of

mortgage cost increases on food consumption.

The quantitative results of the paper point out that a smoothed interest rate policy - char-

acterized by the interest rate peaking at 1 percentage point less than in BoE implemented

policy, and requiring an additional three years to land on the new long-term level - is able

to attain the same real exchange appreciation over the energy crisis, while reducing the food

consumption difference between mortgagors and non-mortgagors by 4% over 2022, thanks

to the reduced interest rate surge.

Contribution to the literature The model builds on the framework by Auclert, Rognlie,
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Souchier, and Straub (2023b), which study fiscal and monetary response to energy shocks in

a HANK-type small open economy. Other recent literature studying the behavior of hetero-

geneous agents open economy in face of foreign shocks are Auclert, Rognlie, Souchier, and

Straub (2023a) and Fukui, Nakamura, and Steinsson (2023) - for the case of depreciation

shocks, and de Ferra, Mitman, and Romei (2020) - for sudden stops in capital inflows. This

paper complements this strand of literature by analysing the trade-off - faced by a monetary

policy reacting to the energy price shock - between fighting real wages deterioration and

keeping moderate welfare costs for borrowers.

Pieroni (2023) studies the inflation - output gap trade-off faced by monetary policy during

an energy supply shock in a closed economy HANK environment. Also in his framework

the government’s choice is characterized by a tension between raising interest rates to fight

inflation, and the aim of not penalizing too much borrowers though the cost of debt channel.

However, it restricts monetary policy to a Taylor-rule without room for monetary smoothing.

The 2022-2023 energy crisis gives rise to other sources of welfare loss, which have been an-

alyzed by recent literature: Olivi, Sterk, and Xhani (2023) study optimal monetary policy

when consumption baskets vary across households: their model does not display neither an

open economy dimension (so an appreciation channel of monetary policy) nor a debt cost

channel of interest rate policy, which are the key factors of the trade-off examined in my

work.

My paper, while assessing the trade-off between purchasing power defense and mortgage

cost moderation, explicitly takes into account distributional effects of interest rate hikes,

effects which are investigated empirically and theoretically in Del Negro, Dogra, Gundam,

Lee, and Pacula (2024). Factoring inequality outcomes in the assessment of monetary pol-

icy performance is a robust implication of optimal policy analysis in heterogeneous agents’

models such as in Bhandari et al. (2021), Wolf (2023), Ragot (2017), Acharya et al. (2021),

Dávila and Schaab (2023) and Smirnov (2023). My paper naturally relates to this branch of

literature by accounting for the asymmetric effect on monetary policy across the households’

crossection in formulating an alternative monetary policy with respect to the benchmark one

followed by the BoE over the energy crisis. In accordance with the findings from optimal

policy literature, the proposed alternative suggests a “milder” contraction during the most
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severe stages of the economic cycle, to avoid excessively burdening borrowers.

The modelization of the heterogeneous agents’ setting follow closely Nuño and Thomas (2022)

and Achdou, Han, Lasry, Lions, and Moll (2021).

The paper is organized as follows: section 2 presents the model; section 3 analyzes the real

appreciation - mortgage cost trade-off of the central bank, and provides the analytical re-

sult behind the interest rate smoothing policy prescription. Section 4 lays the ground for

the quantitative application: it first presents the macro trends of the UK economy over the

energy crisis and computes the empirical effect of mortgages on food consumption of house-

holds over the crossection; then proceeds to calibration and validation of the model. Section

5 explores the quantitative results of the model by comparing the benchmark BoE policy

with a smoothed policy alternative. Section 6 concludes.
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2 Model

The following general open economy framework builds on Auclert et al. (2023a) and Auclert

et al. (2023b), while introducing two novel elements: long term bonds and mortgages (the

latter modeled as perpetual debt, as in Burya and Davitaya (2022)), and food and non-food

consumption (in order to construct a model-counterpart of food consumption variations

analyzed in section 4).

2.1 Domestic households

A small open economy (the “domestic” economy) is populated by a unit mass of households,

heterogeneous with respect to their wealth and their labor productivity. The discounted

utility of a generic household i in economy j reads:

E0

∞∫
0

eρt
[
c1−σ
t

1 − σ
− χ

n1+ϕ
t

1 + ϕ

]
dt (2.1.1)

where ρ is a subjective discount rate, σ is the coefficient of risk aversion, ct is a Dixit-

Stigliz consumption aggregator of a food cft and non-food good cnft , with elasticity ν and

time-varying relative weight φt:

ct = [φ
1
ν
t cft

ν−1
ν + (1 − φt)

1
ν cnt

ν−1
ν ]

ν
1−ν (2.1.2)

The Dixit-Stigliz formulation gives rise to the standard characterization of the price level as

a harmonic average of the food and non-food goods:

pt = [φtp1−ν
ft + (1 − φt)p1−ν

nt ]
1

1−ν (2.1.3)

Labor supply nt is a bundle of a unit mass of labor varieties k supplied by the household:

nt =
1∫

0

nktdk (2.1.4)
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where each variety’s supply nkt - equal across all household - is determined by a union, whose

optimization problem will be discussed later.

I follow Nuño and Thomas (2022), in assuming that households trade in a nominal risk-free

long-term bond at, among themselves and with foreign investors. A bond issued a time t

promises a stream of nominal payments {δe−δ(s−t)}s∈(t,∞) summing up to one unit of domestic

currency over the infinite lifetime of the bond. A fraction ω of households is also endowed

with mortgage stock, equal across all of them, that enter the budget constraint under the form

of an nominal perpetual debt paid at interest rate idt , and whose proceeds are rebated equally

to each domestic household. Therefore the remaining fraction 1 − ω of households which

are non-mortgagors (or “outright owners”) still enjoy the stream of proceeds of mortgage

revenues. The real levels of mortgage stocks Dr
t ≡ D/pt follows a law of motion which takes

into account the effect of inflation πt ≡ ṗt/pt on its denominator:

Ḋr
t = −Dr

tπt (2.1.5)

The drift in the asset’s dynamics is determined by the saving of the household, converted in

asset units by division by the price Xt of the currently traded bond, net of the real reduction

of asset amount by the amortization rate δ and inflation πt:

ȧt = δat + ztwtnt + dt − ct −Dr
t i
d
t + Πt

Xt

− (δ + πt)at (2.1.6)

where wt ≡ Wt/pt is the real wage, zt is an idiosyncratic productivity shock that follows a

diffusion process with parameters µ(z), ς2; iDt is a household-specific interest rate on mort-

gages dt and Πt are dividends rebated to the household, generated respectively by the profits

o firms and by the pooled economy-wide revenues from mortgages.

Each household’s mortgage debt stock D is made up by a variable rate amount Dv and a

fixed rate amount Df , such that D = Dv +Df . Both Dv and Df have real value determined

with the same process of (2.1.5): so the ratios Dv/D and Df/D are constant over time. The

variable rate mortgage yields interest rate it, anchored to the one provided by a security

issued by the central bank (see section 2.5). The fixed rate mortgage consists instead in

the sum of a continuum of mortgages of the same size Df/S, indexed with subscript s and
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ranging from 0 to S:

Df =
S∫

0

Df (s)ds (2.1.7)

Each Df (s) entails a household-specific interest rate ift (s): this implies ift = 1
S

S∫
0
ift (s)ds.

At each period t, only the mortgage s(t) gets its interest rate updated, where s(t) is the

remainder of the division of t/S: this introduces a S-interval periodicity in the update

of each mortgage s. When a mortgage s(t) is renewed, it is paired with an interest rate

ift (s) = ifτ∈[t,t+S)(s), constant until next time of renewal t + S. I assume that this interest

rate is set to the level that would guarantee to the foreign household the same total payment

amount of domestic currency over the next S time interval that would be accrued if Df (s)

were behaving as a variable rate mortgage (given the information set of the economy at time

t). In other terms, the fixed interest rate is equal to the average of the variable rates over

the time until the next mortgage rate renewal:

ift (s) = ifτ∈[t,t+S)(s) = 1
S

∫
[t,t+S)

iτdτ (2.1.8)

It is here worth to highlight that the updating mechanism for idt (2.1.8) is arbitrarily assumed

in a stylized way to capture the forward-looking nature of the fixed rate of mortgage, and it

will prove to be suitable to let the aggregate mortgage rate idt track its empirical counterpart

in section 4.3. Given the exogenous and non-tradable nature of the mortgage perpetuity D,

the interest rate update rule for both fixed and variable mortgages is indeed detached from

any market force in the model11. Let us define the aggregate interest rate on mortgages idt
11The non-tradability of the perpetuity could be relaxed by assuming that the latter was sold only once

in the life of the economy, by a private perfectly competitive intermediary with property rights equally split
across all households, to only a subset of agents (the since then called “mortgagors”), up to a limit D, while
no unexpected shock had yet hit the economy. At the trade time, the perpetuity D would be expected to
yield the same interest rate ī as the long-term debt at, for the whole infinite horizon on the economy. Every
agent who could buy the perpetuity would do it up to the limit D, and invest the whole amount in the
long term bond, in order to get its position in at as clear as possible from the borrowing limit ā. After
that moment, mortgagors would be locked-in with their mortgage position D and converge to a steady state
distributions of assets and states - that one that will be treated in section 2.8.
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as the weighted average of the fixed and variable rate:

idt = Df

D
ift + Dv

D
it (2.1.9)

Households aim at maximizing lifetime utility (5.1.1) by choosing consumption, asset hold-

ing under constraints (5.1.7) and the borrowing limit. The intertemporal problem of the

household can be formulated recursively under the form of a Hamiltonian-Bellman-Jacobi

equation for household with productivity realization z, asset holding a:

ρVt(a, z) =max
at,ct

[
c1−σ
t

1 − σ
− χ

n1+ϕ
t

1 + ϕ
+ st(a, z)

∂Vt
∂a

]
+ µ(z)∂Vt

∂z
+ ς2

2
∂2Vt
∂z2 + ∂Vt(a, z)

∂t
(2.1.10)

where

st(a, z) =


δat+ztwtnt+dt−ct−Dr

t i
d
t +Πt

Xt
− (δ + πt)at if mortgagor

δat+ztwtnt+dt−ct+Πt

Xt
− (δ + πt)at if non-mortgagor

(2.1.11)

We can define the joint density of wealth and productivity ft(a, z). Its dynamics over time

are governed by a Kolmogorov-forward equation:

∂ft(a, z)
∂t

= − ∂

∂a
[st(a, z)ft(a, z)] − µ(z)∂Vt

∂z
+ ς2

2
∂2Vt
∂z2 (2.1.12)

I will assume that the process for z is normalized such that the idiosyncratic productivity

realizations aggregate to one:
1∫

0

zft(a, z)dz = 1 (2.1.13)

Lastly, let us define Ct as aggregate consumption in the domestic economy - the integral of

ct(a, z) over all states a, z.

2.2 Final good producers

A mass of perfectly competitive firms produce either the food or non-food good, according

to a CES production function in energy input yEt (supplied by the foreign economy) and
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non-energy domestic input yDt (supplied by domestic producers):

yjt = [(1 − αE) 1
ϵ yDt

ϵ−1
ϵ + α

1
ϵ
EyEt

ϵ−1
ϵ ]

ϵ
1−ϵ j = f, n (2.2.1)

where ϵ is the elasticity of substitution between energy and non-energy goods. Notice that,

being the production function for the food and non-food good exactly equal, the marginal

cost mcft ,mcnt for both goods is the same, and it immediately follows that mcft = mcnt =

pft = pnt = pt by perfect competition. The CES production function gives rise to the

following formulation for the latter nominal marginal cost (equal to the final consumer’s

price pt):

mcft = mcnft = pft = pnt = pt = [(1 − αE)p1−ϵ
Dt + αEp

1−ϵ
Et ]

1
1−ϵ (2.2.2)

where pDt and pEt are respectively the prices of the non-energy and energy inputs.

The non-energy input yDt is in turn itself a CES aggregator of a home-produced good yHt

and foreign-produced good yFt:

yDt = [(1 − α)
1
η yHt

η−1
η + α

1
η yFt

η−1
η ]

η
1−η (2.2.3)

Where η is the elasticity of substitution between the domestic and foreign good. The price

of the non-energy good can be derived as:

pDt = [(1 − α)p1−η
Ht + αp1−η

F t ]
1

1−η (2.2.4)

Final producers and producers of the domestic non-energy good solve an optimal variety

expenditure problem, which delivers a standard Dixit-Stigliz demand formulation for energy,

domestic and foreign goods:

yEt = αE

(
pEt
pt

)−ϵ

yjt (2.2.5)

yHt = (1 − αE)
(
pDt
pt

)−ϵ

(1 − α)
(
pHt
pDt

)−η

yjt (2.2.6)

yFt = (1 − αE)
(
pDt
pt

)−ϵ

α

(
pFt
pDt

)−η

yjt (2.2.7)
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2.3 Intermediate good producers

The intermediate domestic good yHt is produced by a competitive mass of firms12 which

operate under a technology linear in aggregate labor Nt and aggregate productivity A:

YHt = ANt (2.3.1)

This implies that dividends are zero (dt = 0). Aggregate labor Nt is a Dixit-Stigliz aggregator

of labor varieties:

Nt =
(∫

N
ε−1

ε
kt

) ε
ε−1

(2.3.2)

where Nkt is the aggregate labor demand for variety k. The zero profit condition equates

the real wage per unit of output to the price of the domestic good:

wt
1
A

= pHt
pt

(2.3.3)

Firms also face an optimal choice of the labor variety mix, leading to the standard optimal

labor variety demand:

Nkt =
(
Wkt

Wt

)−ε
Nt (2.3.4)

where Wkt is the nominal wage in labor market k.

2.4 Unions

Each union k determines the labor supply of variety k, i.e. nkt - equal across all households

- standing ready to satisfy labor demand:

nkt = Nkt (2.4.1)

Following Wolf (2021), the union chooses the nominal wage Wkt at which it supplies labor

in order to maximize the utility of the average agent; this utility is considered net of a

nominal adjustment cost and a real wage stabilization motive (the latter being introduced
12Auclert et al. (2023a) instead assumes a monopolistically competitive sector with flexible prices
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as in Auclert et al. (2023b):

max
∫
τ≥0

exp
[
−ρτ

(
{u (Ct+τ ) − v (Nt+τ )} − ψ

2 π
W2
t Nt+τ − ζ

2
(ε− 1)Ñu′C̃

w̃
(wk,t+τ − w̃)2

)]
(2.4.2)

where Ñ , C̃ and w̃ are respectively the final steady state levels of labor, aggregate con-

sumption and the real wage and ζ is a parameter measuring the extent of the real wage

stabilization motive. The latter is an important element to produce a positive pattern of

inflation even in the tail of the energy shock, when energy price inflation would turn neg-

ative. As shown in the appendix, I solve the maximization problem subject to constraint

(2.3.4) and the real labor earnings specification derived from the household block, obtaining

the New Keynesian Phillips curve for inflation in the labor market:

πWt = 1
ρ− Ṅt/Nt

[
κ

(
χNϕ

t − ε− 1
ε

wtC
−σ
t − ζ

ε− 1
ε

Ñ

Nt

C̃−σ(wt − w̃)wt
w̃

)
+ π̇Wt

]
(2.4.3)

where the slope κ is given by ε
ψ

.

2.5 Central bank

The central bank trades a short term (instantaneous) risk-free asset with foreign households

- as in Nuño and Thomas (2022). and sets its nominal return it. I assume the central bank

not to follow any rule, but instead to set the prospective it for [t,∞) according to a fully

arbitrary path contingent to the information set of the policy-maker at time t. Given the

perfect foresight nature of the model, the planned path for it updates only if an unexpected

(“MIT”) shock hits the model a time t. This modelization choice allows to replicate a close

fit of actual interest rate policy data, as showed in section 4.2. Equilibrium implication of

this unconventional assumptions for monetary policy will be discussed in section 5.7.

2.6 Foreign economy

The rest of the world displays a representative household with constant consumption C∗ of

a non-energy good (C∗ = y∗). The good is produced by a foreign representative firm, with
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technology symmetric to the final producers in the domestic economy ((5.1.4)):

y∗ = [α
1
η yHt

∗ η−1
η + (1 − α)

1
η yFt

∗ η−1
η ]

η
1−η (2.6.1)

where y∗
Ht and y∗

Ft are respectively the quantities of domestic and foreign input used by the

foreign representative firm; note that the coefficient (1 − α) is paired with y∗
Ft, due to home

bias, mirroring expression (5.1.4).

Exported domestic goods are priced in foreign currency. Therefore, the foreign firms features

the following Dixit-Stigliz demand for the domestic good:

y∗
Ht = α

(
p∗
Ht

p∗
t

)−η

y∗
HF (2.6.2)

Where p∗
Ht and p∗

t are the home good price and the foreign price level in foreign currency,

respectively. The foreign price index p∗
t is given by the standard CES formulation, symmetric

to (5.1.3):

p∗
t = [(1 − α)p∗1−η

F t + αp∗1−η
Ht ]

1
1−η (2.6.3)

with p∗
Ft being the price of the foreign good in foreign currency; I assume p∗

Ft to be itself

a Dixit-Stigliz aggregator of a mass of varieties N∗, i.e. p∗
Ft =

(
N∗∫
0
p̃∗1−η
F t (n)dn

) 1
1−η

. For

N∗ → ∞, imposing symmetry across the foreign varieties’ prices p̃∗
Ft(n) implies p∗

Ft → p∗
t -

namely, the foreign economy is “big” with respect to the domestic one, so its price index is

not affected by domestic economy’s price fluctuations.

Monetary policy in the foreign economy ensures full price stability:

p∗
t = p∗

Ft = 1 (2.6.4)

where I normalize p∗ to 1. I assume the law of one price to hold, hence I obtain:

p∗
Ht = pHtSt (2.6.5)

pFt = p∗
Ft/St = 1/St (2.6.6)
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where St is the nominal exchange rate. Defining the real exchange rate as Qt = St pt

p∗
t

= ptSt,

and substituting y∗ by C∗ by foreign economy’s good market clearing, we can rewrite foreign

demand (5.4.2) as:

y∗
Ht = α

(
pHt
pt
Qt

)−η

C∗ (2.6.7)

From the equation above, it can be noticed how a real appreciation (i.e. an increase in Qt),

leads foreign consumers to express a lower demand for the domestic good, which becomes

relatively less convenient.

In the light of the foreign price stability and law of one price assumptions, and using the

definition Qt = ptSt we can also rearrange the domestic price index (5.1.3) formulation to

obtain the real price of energy and the domestic and foreign goods as a functions of real

exchange rate Qt and energy price in foreign currency p∗
Et, that I assume to be exogenous :

pEt
pt

= p∗
Et/Qt ≡ pE(Qt, p

∗
Et) (2.6.8)

pDt
pt

=
(

1 − αEpE(Qt, p
∗
Et)1−ϵ

1 − αE

) 1
1−ϵ

≡ pD(Qt, p
∗
Et) (2.6.9)

pHt
pt

=
 1

1 − α

(
1 − αEpE(Qt, p

∗
Et)1−ϵ

1 − αE

) 1−η
1−ϵ

− α

1 − α
pF (Qt)1−η


1

1−η

≡ pH(Qt, p
∗
Et) (2.6.10)

pFt
pt

= 1/Qt ≡ pF (Qt) (2.6.11)

The real price of energy pEt/pt depends positively on the foreign nominal price of energy

p∗
Et, and negatively on the real exchange rate Qt: domestic goods’ appreciation indeed makes

imported energy relatively cheaper. Conversely, the price of the nonenergygoodpDt is nega-

tively related to the price of energy, so it is decreasing in p∗
Et and increasing in Qt. pFt/pt

depends negatively on the real exchange rate: real appreciations indeed reduce the price of

the foreign good relatively to the domestic one. The real price of the domestic good, pHt/pt,

depends negatively on both the real price of energy and the real price of foreign goods: there-

fore, a real appreciation (i.e. and increase in Qt) boosts the real price of domestic goods by

making energy and foreign goods relatively cheaper. An increase in energy price p∗
Et instead

lowers pHt/pt by reducing the relative price of domestic goods with respect to energy.
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I assume that the foreign household can invest both in an short term foreign asset yielding

nominal return i∗ + ξt (with ξt being a time varying component), and in the domestic central

bank’s security mentioned in section 2.5: to rule out arbitrage opportunities, the return from

the two assets needs therefore to be equal (uncovered interest parity, “UIP”):

it = i∗ − dSt
St

+ ξt (2.6.12)

The condition can also be expressed in real terms:

it − πt = i∗ − π∗ − dQt

Qt

+ ξt (2.6.13)

where π∗ = 0 due price stability in the foreign economy. The foreign households, being able

to invest also in domestic long term bonds, discounts the coupon payments of the latter at

the central bank’s security short term interest rate, allowing us to pin down the price of

bonds at time t:

Xt =
∞∫
t

δe−[
∫ s

t
is+δ(s−t)]ds (2.6.14)

2.7 Equilibrium

Given a path for the interest rates it and energy prices p∗
Et, an initial distribution of wealth

and productivity f0(a, z), and foreign consumption C∗, a competitive equilibrium is de-

fined as a path for households’ choices (at,cft,cnt,ct), firms’ choices (Nt, yft, ynt,yHt,yEt),

unions’ choices (nt,πWt ), prices (pH(Qt, p
∗
Et),pE(Qt, p

∗
Et),pF (Qt),wt,Qt,Xt), aggregate quan-

tities (Yft,Ynt,YHt,Ct) and distributions (ft(a, z), consistent with the Kolmogorov forward

dynamics (5.1.14)) such that households and firms optimize, and the following market clear-

ing conditions in the goods and labor market are satisfied, as well as the uniform rebating
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rule for mortgage payment revenues:

YHt =(1 − αE)
(
pDt
pt

)−ϵ

(1 − α)
(
pHt
pDt

)−η

(Yft + Ynt) + α

(
p∗
Ht

p∗
t

)−η

C∗ =

=(1 − αE)
(

1 − αEpE(Qt, p
∗
Et)1−ϵ

1 − αE

)− ϵ
1−ϵ

(1 − α)
(

1 − α(pF (Qt)/pD(Qt, p
∗
Et))1−η

1 − α

)− η
1−η

(Yft + Ynt)

+ α (pH(Qt, p
∗
Et)Qt)−η C∗ (2.7.1)

Ct =Yft + Ynt (2.7.2)

YHt =ANt (2.7.3)

Nt =nt (2.7.4)

Πt =ωDr
t i
d
t (2.7.5)

where (5.7.1) is market clearing in the domestic good’s market13, (2.7.2) is market clearing

in the final goods’ market14, (5.7.2) is market clearing the labor market, and (5.7.3) stands

for the assumptions of households complying with the unions’ choices in setting their labor

supply (by symmetry among unions,
1∫
0
nktdk ≡ nt ∀k). The goods market clearing condition

(5.7.1) in particular is given by the sum of domestic demand (the first term on the right

hand side) and foreign demand (the second term on the right hand side).

It is here worth stressing that the variables that we need to take as exogenous in order

to compute the equilibrium are not only the energy shocks P ∗
Et, but also the interest rates

it, unlike standard modelization choices which would introduce policy rules to endogenize

monetary policy (as a Taylor rule). Assuming an arbitrary path for interest rate opens up

the possibility for inflation and output indeterminacy due to mean-zero sunspot shocks (see

Cochrane (2011); I acknowledge here the limitation of this approach and decide to focus only

on purely deterministic equilibria.
13Condition (5.7.1) is retrieved by substituting for pDt/pt and pHt/pDt by using the price indexes (5.1.3)

and (5.1.5) and results (5.4.8)-(5.4.10).
14Since pft = pnt = pt, the aggregate demands for the food and non-food goods write Cft = φtCt and

Cnt = (1 − φt)Ct. By market clearing in the two markets, we have Yft = Cft and Ynt = Cnt, hence, since
φt ∈ (0, 1), we obtain Ct = Yft + Ynt
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2.8 Steady state

In order to obtain a stationary value for Dr
t , I need calibrate the model to obtain price

stability (π = 0): this is achieved by imposing the stationary interest rate ī equal to i∗ + ξ in

the steady state version of UIP ((5.5.3)), with ξ being a stationary value for ξt. The model

exhibits an infinite number of steady states, each one indexed by a value for the stationary

real stock of mortgage D̄r. This is due to the fact that any nonzero inflation path πt ∈ [0,∞),

for given initial stock D, determines a different limit value of Dr
t ( for t → ∞) - determined

by the extent to which the inflation path reduces the real mortgage stock over time. The

following discussion will characterize a steady state for given D̄r.

The real domestic price pH(Q) is determined uniquely by the steady state Q̄, and so is w̄,

by (5.2.3). Therefore, by (5.1.7), each household’s consumption in home and foreign good

c(a, z) is determined uniquely by Q̄, the steady state interest rate ī (which also pins down

the mortgage rate id = i), labor N̄ and the states a, z ( provided that I already substitute

for the mortgage proceeds’ rebating rule (2.7.5) and the labor supply compliance (5.7.3)).

This implies that the drift function s(a, z) depends only on ī , Q̄ and N̄ and the states a, z.

Then, by setting to 0 the left hand side of (5.1.14), we can obtain the whole steady state

distribution f(a, z) as a function of ī, Q̄ and N̄ .

Aggregate consumption C̄ is defined as the integral over steady state consumption for each

combination of states, given the stationary distribution f̄(a, z): C̄ =
∫
c̄(a, z)f̄(a, z)dadz;

since both the idiosyncratic consumption levels c̄(a, z) and the distribution f̄(a, z) are deter-

mined by ī, Q̄ and N̄ , we can then retrieve the following parsimonious functional formulation

for C̄:

C̄ = C (̄i, Q̄, N̄) (2.8.1)

Given D̄r, ī = i∗ and the stationary price of energy P̄ ∗
E, equations (5.3.3),(5.7.1),(2.7.2),(5.7.2),

(5.8.1),(5.5.3) define a system of six equations in six variables: π̄, ȲH , N̄ , C̄, (Ȳft + Ȳnt), Q̄.

If mortgages are 0 (D̄r = 0), the model shocks are small enough in size to guaranteee that

the dynamics revert to the initial steady state: heterogeneous agents small open economy

models can indeed feature stable steady states thanks to the convergence property of the

asset distribution (beyond Auclert et al. (2023a), see also Nuño and Thomas (2022) de Ferra
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et al. (2020)15).

However, allowing for D̄r > 0 leads to convergence to a different final steady state from the

initial one, due to the different final mortgage stock Dr, if inflation πt is different from 0 at

any point in time.

Notice that the discussion so far relies on the assumption of no structural parametric changes

over the dynamics of the model, which would mechanically lead to a different final steady

state. This however will be the case for the quantitative analysis of section 4 and 5, which

will postulate a different final stationary interest rate both in the domestic and foreign econ-

omy, ĩ = i∗ + ξ̃ > ī = ī∗ + ξ̄ (with ξ̄ and ξ̃ being respectively the initial and final stationary

value for ξt) providing an additional reason behind the attainment of a different final steady

state, in addition to the inflation-driven adjustment of the mortgage stock.

3 Trading off appreciations with mortgage costs

In this section I analyse the impact of an energy price shock on crossectional household in-

come, and later will introduce the trade-off faced by monetary policy in its reaction. Starting

from a steady state configuration for the domestic economy, I will take into account an unex-

pected and temporary rise in the price of energy p∗
Et (P ∗

Et > P̄ ∗
E and P ∗

Es = P̄ ∗
E for s ∈ (t,∞)).

Given the results obtained in model outline, we can express the real income of a mortgage-

holding household with states a, z (i.e. δat + ztwtnt −Dr
t i
d
t + Πt), net of the coupon payment

δat, as follows:

zpH(Qt, pEt)YHt − (1 − ω)Dr
t i
d
t (iss ∈ [t, t+ S))) (3.0.1)

Where labor income is a function of domestic output YHt and and the real price of domestic

good pH(Qt, p
∗
Et), while the mortgage rate idt is expressed as a function of all the future

short-term interest rates until t + S ( i.e. idt (iss ∈ [t, t + S)))). The equilibrium expression

(1 − ω)Dr
t i
d
t stands for mortgage payment net of revenues Πt. Notice that I decide not to

include coupon payments δat in the income specification (3.0.1), as they do not depend

directly on the energy price variation, nor on the interest rate policy (they depend instead
15Then it is not needed to resort to debt-elastic interest rates as commonly done in representative agent

models without international risk sharing.
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indirectly on these shocks through the endogenous response of the household in adjusting

its asset stock at).

A jump in p∗
Et makes domestic goods relatively more attractive than energy, increasing overall

world demand for domestic goods relatively to demand for the foreign ones. This effect is

captured in equation (5.7.1) , and has a positive impact on domestic output YHt (expenditure

switching channel, ES). On the other side, an increase in p∗
Et lowers the firms’ revenue per

unit of output, and then wages, i.e. the term pH(Qt) in equation (3.0.1) (terms of trade

channel, TT). This last effect is produced by the higher price of energy relative to domestic

goods, which passes through on domestic real wages.

If ES is stronger, households will enjoy a higher current wage income, while if TT dominates

they will suffer from a current wage income loss. By looking at equation (5.7.1), with

elasticities ϵ and η low enough the effect of energy price on demand for domestic good is

muted: therefore the expenditure switching channel is dominated by the terms of trade

channel. This is the case I will focus from now onwards, as it allows the energy price shock

to induce a real income loss (as in Auclert et al. (2023b)).

Let us now assume rigid prices and zero wedges in the UIP16: πs = ξs = 0 ∀s > t. Therefore,

following the discussion of Section 2.8, the dynamics following the energy shocks are such to

make the economy revert to the initial steady state (since the real value of mortgages does

not change over time), with real exchange rate level Q̄. If the central bank reacts to the

shock by producing an increase in the interest rate it by a contractionary monetary policy,

that implies dQt < 0 by the UIP condition (5.5.3). In order to have this movement being

consistent with a reversion to the initial steady state, Qt needs to jump at the onset of

the shock: the economy experiences a real appreciation. Intuitively, the domestic currency

temporarily soars before depreciating over time back to its steady state level: this reduces

the incentive to invest in domestic assets and restores indifference between the two countries’

investment opportunities. This will be hence labelled as the UIP channel of an interest rate

hike. The real exchange rate appreciation in turn passes through the real domestic wages

by the firms’ pricing condition (5.2.3), restoring some purchasing power for the household:
16This is obtained by assuming fully rigid nominal wages, so non-energy good prices PDt, together with

the fact that P ∗
Es = P̄ ∗

E for s > t.

63



analytically, in equation (3.0.1),the real wage term pH(Qt, p
∗
Et) is negatively affected by the

shock to p∗
Et but positively affected by the increase in Qt. The interest rate hike fights the

fall in real income by a domestic real appreciation.

However, the rise in the interest rate it affects real income (3.0.1) also through a higher

outflows in terms of mortgage payment, as the aggregate mortgage rate idt rises due to the

increase in the short-term interest rate (by the mechanisms unraveled in equations (2.1.8)

and (2.1.9) (debt-cost channel of an interest rate increase). The effects of an interest rate

hike on consumption of mortgagors poses a trade-off to central bank’s policy: on one side,

the whole households’ crossection suffers a weaker real income loss, on the other, mortgagors

incur into a higher cost of debt.

The key aspect, however, is that whether the interest rate hike is frontloaded or smoothed can

make a lot of difference to mitigate this trade off. Indeed you can achieve an appreciation

of the current exchange rate even if the interest rate hike is smoothed over time. Let us

consider the policy maker willing to attain the level Qt = Q∗ > Q̄. The forward iteration of

the UIP condition (5.5.3) up to infinity yields:

lnQ∗ − ln Q̄ =
∞∫
t

(iτ − i∗)dτ (3.0.2)

So the current real exchange rate depends on the whole sum of future interest rates.

The question to be posed here is whether the trade-off between current appreciation and

mortgage cost increase can be relaxed by distributing the latter over a protracted time span,

leveraging the forward looking nature of Qt. This can be engineered by an increase in the

future interest rates short term rates
∞∫
t

(iτ − i∗)dτ (from now onwards, I will refer to this

policy as monetary smoothing); notice that this would nevertheless come at the expense of

Qt and it being persistently above steady state beyond t, when it would be not anymore

needed.

What does this interest rate smoothing strategy implies for the current variation in the

mortgage cost, idt − i∗? I will answer to this question by considering first two simple extreme

cases (S → 0 and S = ∞), and then I will analyze the general case for any fixed term

horizon.
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1. Case S → 0 (short maturity mortgages). The fixed rate behaves as a variable rate

(ift = it) (we can see that by plugging the limit S → 0 inside (2.1.8)). So, by equation

(2.1.9), the variation in mortgage cost (idt − i∗) boils down to it − i∗. A smoothed

pattern for the policy rate it over time maps exactly into the same pattern for idt , so

interest rate smoothing is extremely effective in shifting the mortgage cost burden of

an appreciation forward in time.

2. Case S → ∞ (long maturity mortgages). The size of the sub-mortgages getting their

interest rate updated in the interval dt, i.e. (dt/S), goes to 0. The aggregate fixed

mortgage interest rate at t is the average of the previously renewed mortgage rates

down to time t− S (set at i∗ since the economy was in steady state before t) and the

current renewed rate at the forward looking value 1
S

∫
[t,t+S)

iτdτ (see equation (2.1.8)).

Therefore, the variation in ift (i.e. ˙(i)ft is given by:

˙(i)ft = 1
S

 1
S

∫
[t,t+S)

iτdτ − i∗

 (3.0.3)

where for S → ∞, the expression above equals zero. Hence, by (2.1.9), the overall

variation in mortgage cost is ˙(i)dt = Dv

D
˙(i)t. The total mortgage rate deviation is

pinned down only by variable rate mortgages variations. Therefore, the rationale to

implement interest rate smoothing is more limited and given exclusively by the aim to

smooth out variable rate mortgage cost increases over time.

The two simple cases above represent two extreme cases with respect to the extent to which

interest rate smoothing shifts ahead the mortgage cost burden: significantly in the case

S → 0 and minimally in the case S → ∞. Hence it is reasonable to expect that this policy

would be more desirable the lower is the mortgage horizon S, as showed below. Consider

the variation at t of mortgage cost (according to equation (2.1.9)):

˙(i)dt =
(

1 − Dv

D

)
˙(i)ft + Dv

D
˙(i)t (3.0.4)
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We can then substitute for (3.0.3):

˙(i)dt =
(

1 − Dv

D

) 1
S2

∫
[t,t+S)

(iτ − i∗)dτ + Dv

D
˙(i)t (3.0.5)

Substituting for (3.0.2) we obtain:

˙(i)dt =
(

1 − Dv

D

) 1
S2

lnQ∗ − ln Q̄−
∫

[t+S,∞)

(iτ − i∗)dτ

+ Dv

D

lnQ∗ − ln Q̄−
∫

(t,∞)

(iτ − i∗)dτ


(3.0.6)

And finally rearranging, we obtain:

˙(i)dt =
[(

1 − Dv

D

) 1
S2 + Dv

D

]
(lnQ∗−ln Q̄)−

(1 − Dv

D

) 1
S2

∫
[t+S,∞)

(iτ − i∗)dτ + Dv

D

∫
(t,∞)

(iτ − i∗)dτ


︸ ︷︷ ︸

smoothing effect
(3.0.7)

Equation (5.5) provide the key analytical result to understand why monetary policy smooth-

ing can relax the trade-off between appreciation of Qt and increase in idt . Adopting a

smoothed policy allows to achieve the target Q∗ at the expense of a lower mortgage rate

idt - effect captured in the term
∞∫
t+S

(iτ − i∗)dτ (the raise in interest rates beyond the fixed

mortgage term t+ S entails indeed no effect on the currently updating fixed rate ift ) and in

the term
∫

(t,∞)
(iτ − i∗)dτ (the raise in interest rates beyond t has not effect on the current

variable rate it).

For a higher mortgage term S (higher maturity), interest rate smoothing is less effective in

mitigating the increase in mortgage costs (the impact becoming minimal for S → ∞, as

discussed previously). This is due to:

1. the impact of future monetary contraction on today’s rate idt is active for a longer

time span [t, t+ S] (analytically, the“innocuous” forward guidance term
∞∫
t+S

(iτ − i∗)dτ

shrinks).

2. a smaller fraction of mortgages are updated at t, so shifting the debt cost burden ahead

in time is quantitatively less important in the determination of idt (analytically, this is
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given by the smaller term 1
S

).

The results indicate that smoothing the interest rate path during an energy shock is beneficial

from a welfare perspective, as it allows for real exchange rate appreciation while reducing

the immediate pressure on mortgage costs. By avoiding sharp rate hikes, policymakers can

mitigate the financial burden on households during the shock period.

However, this approach has a long-term cost. Prolonged monetary accommodation leads

to higher future mortgage rates due to delayed monetary tightening, extending beyond the

energy shock. This creates a forward guidance challenge, where the policymaker must assess

whether short-term relief outweighs the future burden. A detailed quantitative analysis, as

outlined in the next sections, is necessary to determine the overall welfare impact of this

trade-off.

4 A quantitative application to the UK economy

4.1 The UK case in data

The surge in energy prices starting from 2021 had significant consequences for the UK econ-

omy. As depicted in Figure 4.1, the industrial energy price index for electricity, gas, and

other fuels surged by approximately 150% from 2021 to 2023. This surge in energy prices

translated into a surge in CPI inflation, which peaked at 11% in 2023. Real wages, as illus-

trated in Figure 4.1, experienced a fall from the second half of 2021 onwards, resulting in

a decline in the purchasing power of workers and households. In response to the inflation

surge brought on by the increase in energy prices, the Bank of England responded decisively.

Between 2021 and 2024, the bank significantly raised nominal interest rates, climbing from

0.25% to approximately 5%. This shift in nominal interest rates held implications for mort-

gages’ cost dynamics. Notably, approximately a quarter of the total outstanding mortgage

stock were poised to conclude their fixed-rate terms between the final quarter of 2022 and

the culmination of 2023, getting their interest rate revised upwards and impacting negatively

on households’ finances; moreover, a 12% of the total outstanding mortgage stock is made
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Figure 4.1: Energy prices to industry (quarterly data), policy rate, real exchange rate, CPI
inflation rate, real wage and aggregate mortgage rate. Source: Office for National Statistics,
BoE and FRED database)

up by variable rate mortgages17. These features of the mortgage market determined a dis-

cernible increase in the aggregate economy-wide mortgage rate, which climbed from 2% to

almost 3.5% between 2021 and 2024. The facts presented above demonstrate the challenging

trade-off faced by the Bank of England. Striking a balance between restoring real wage

values and keeping borrowing rates moderate for mortgages was a complex task: while the

former objective required a tight monetary policy to contain inflation, the latter was calling

for a loose interest rate setting.

In what follows, I will further dig into the relevance of the increase in mortgage rates in

affecting crossectional consumption. Leveraging data from the “Understanding Society” sur-

vey, a longitudinal panel that tracks information across various households in the UK over

time, I explore the dynamics within two interview waves: 2020-2021 and 2021-2022.

In particular, I restrict the the analysis to households interviewed both in 2021 and in 2022, in

order to track their consumption behavior over time. I include in the sample only households
17Source: Office of National Statistics
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categorized as either housing mortgagors or outright homeowners. Households with tenure

status changing between the two interview waves are also excluded, leading to a final sample

of 2,477 households. The survey associates to each household its food consumption consumed

at home, in addition to income, demographic and geographical characteristics.

Table 2: Descriptive Statistics (monthly), households in 2021 interview wave

Per capita food consumption (£) Income (£) % mortgagors

Decile Mean Std Mean Std

Bottom 20% 98.6 23.2 4’099 2’242 63%

Bottom 40% 124.7 31.9 4’084 2’348 61%

Bottom 60% 148.1 43.1 4’143 2’649 59%

Bottom 80% 174.2 59.4 4’137 2.742 56%

100% 222.7 133.9 4.128 2.779 54%

Due to the importance of distributional outcomes of a mortgage cost surge in the current

framework, it is convenient to express descriptive statistics of the sample with respect to dif-

ferent subsamples of the distribution of food consumption in the pre-energy shock interview

wave (i.e. 2021). The total sample of households is indeed split into 5 subsamples according

to the position held by each household in the 2021 consumption distribution, namely the

bottom 20%,40%,60%,80%,100% of the distribution. I restrict my analysis to the variation in

annual food consumption, due to the limited range of expenditure items captured in the sur-

vey. For each household, I compute the percentage variation in per-member household food

consumption (given by the ratio between household food consumption and household size

Cf (i, t) = food_consumption(i, t)/size(i, t)) between 2022 and the initial wave response:

∆c,f (i, 2022) =
[

Cf (i, 2022)
CPI_food(2022) − Cf (i, 2021)

CPI_food(2022)

]/
Cf (i, 2021)

CPI_food(2022) (4.1.1)

where Cf (i, 2022) is the food consumption value for household i reported in 2022, and

Cf (i, 2021) is the value stated by the same respondent in the previous 2021 interview. The

variations is adjusted for changes in the food price index, in order to track only movements

in real expenditure for food.
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In order to capture distributional effects of mortgage cost increases along the households’

crossection, I regress the consumption variation ∆j
c,f (i, 2022) on a dummy IM(i), which as-

sumes value 1 if the household owns its house through a mortgage and 0 if it is an owner

outright; in the regression I control for the total net household real income variation between

the two interview waves, ∆income(i, 2022) = income(i,2022)
CPI(2022) / income(i,2021)

CPI(2021) . An additional vec-

tor X of regressors include government office regions as a geographical controls, and both

number of children and number of people in working age as demographical controls. The

empirical specification, for each quintile Qj of the consumption distribution for C(i, 2021),

writes:

∆j
c,f (i, 2022) = βj0 + βj1 ∗ IM(i) + βj2 ∗ ∆income(i, 2022) + βj3Xt(i) + ε(i) (4.1.2)

∀ i s.t. Cf (i, 2021) ≤ Qj(Cf (i, 2021))

The results up are summed up in Table 3.

Figure 4.2: Coefficient βj of mortgagor dummy in the regression for consumption varia-
tion ∆j

c(i, 2022), with all controls, for households lying below each 2021 wealth quintile Dj.
Shaded area: 90% confidence bandwidth

Consistently with the prediction of heterogeneous agents literature, households which are

able to afford lower consumption levels have also a low capacity to financially absorb income

shocks (like a mortgage cost increase). We can indeed notice how the coefficients of the
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Table 3: Regression results for consumption variation ∆j
c(i, 2022)

Variable (1) (2) (3) (4) (5)

Mortgagor -0.3006*** -0.1570*** -0.0830 -0.0653 -0.0692
(0.1306) (0.0590) (0.0988) (0.0745) (0.0597)

Demographic controls Yes Yes Yes Yes Yes
Regional controls Yes Yes Yes Yes Yes

Mortgagor -0.2916*** -0.1525*** -0.0852 -0.0634 -0.0717
(0.1034) (0.0590) (0.0983) (0.0742) (0.0595)

Demographic controls Yes Yes Yes Yes Yes
Regional controls No No No No No

Mortgagor -0.4210*** -0.2750*** -0.1088 -0.0575 -0.0228
(0.0894) (0.0510) (0.0846) (0.0636) (0.0513)

Demographic controls No No No No No
Regional controls Yes Yes Yes Yes Yes

Mortgagor -0.4156*** -0.2732*** -0.1095 -0.0570 -0.0249
(0.0892) (0.0510) (0.0841) (0.0633) (0.0511)

Demographic controls No No No No No
Regional controls No No No No No

∆% income control Yes Yes Yes Yes Yes
Bottom % of C(i, 2021) 20% 40% 60% 80% 100%
Observations 495 991 1486 1982 2477

Note: Standard errors in parentheses. *Significant at the 10% level. **Significant at the 5% level.
***Significant at the 1% level
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“Mortgagor” dummy increase in size and significance as we consider subsamples closer to

the bottom of the consumption distribution. In particular, controlling for locations and

demographic characteristics, the the bottom 20% and 40% of the distribution displayed

respectively a 30% and 16% consumption loss of mortgagors with respect to outright owners

- with a statistical significance of 1%; the other samples (bottom 60%, 80% and 100%)

feature instead lower and not significant consumption effect from mortgage holding. Overall,

controlling for geographical locations does not change significantly the estimated impact of

mortgage holding, while controlling for demographics drops this impact from 42% to 30%,

suggesting that household’s composition is a determinant of the mortgagor/owner outright

status of the household, as well as of its consumption variation over the 2021-2022 time span.

In what follows, I will tailor the calibration of the model to calibrate the empirical estimates

in the case with all controls (first line of Table 3), reported graphically in Figure 4.2.

4.2 Calibration

The main channels of effect of real exchange rate policy in the model are the “open econ-

omy” dimension, that generates the adverse effects of the price of energy on domestic real

wages through a terms-of-trade effect, and the “mortgage” dimension, which mediates the

transmission of contractionary interest rate policy on crossectional consumption through the

mortgage cost variation faced by households. Therefore my calibration strategy aims at

matching salient features of the UK economy along both these dimensions.

Parameters. Following the calibration of Chan, Diz, and Kanngiesser (2023), tailored to

the UK economy, I set the energy share in production αe to 0.05 and the elasticity between

labor and energy ϵ to 0.15, the price elasticity of world demand for domestic exports η to 0.35,

and the export share α to 0.25. The time step ∆ is 1/3 (monthly unit periods). The slope

of the Phillips curve is set to 0.0049 as in Auclert et al. (2023a). The real wage stabilization

motive ζ = 25 guarantees that the pressure on nominal wages in the labor market is such to

push inflation to a 8% peak above the steady state. By a proper choice of value for foreign

consumption C∗, I obtain an initial steady state real exchange rate Q̄ equal to 1, which serves

to mediate the effect of the energy shock on real wages down to a -3% at the beginning of
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Table 4: Calibrated parameters

Parameter Definition Value Source/Target
Households

ρ Household discount factor 0.05 Auclert et al. (2023b) - HANK with energy shocks
σ Household risk aversion 1 Chan et al. (2023) - Quantitative model for UK
ϕ Inverse Frisch elasticity 2 Auclert et al. (2023b) - HANK with energy shocks
µ(z) Mean of the diffusion process 0.3(1 − z) Literature
ς2 Variance of the diffusion process 4 Shape of crossectional ∆ consumption (section 4.4)
δ Amortization rate, LT bonds 0.021 Nuño and Thomas (2022)
ā Borrowing limit -0.02 Literature

Mortgages
D Mortgage stock -50 Magnitude of crossectional ∆ consumption (section 4.4)
S Mortgage duration 66 Aggregate mortgage rate path

Dv/D % variable rate mortgages 12% ONS UK
ω % mortgagors 54% Understanding society survey (2021)

Labour Unions
ε Labor demand elasticity 10 Literature
κ Slope of Phillips curve 0.0049 Auclert et al. (2023a) - HANK open economy
ζ Real wage stabilization 25 Inflation peak ≈ 8% above pre-crisis mean

Firms and international trade
αe Energy share in production 0.05 5% energy share in production
ϵ CES degree energy-labour in production 0.15 UK estimates
η Elasticity of world demand for domestic goods 0.35 Chan et al. (2023) - Quantitative model for UK
α Foreign preference for domestic exports 0.25 Export share ≈ 0.25
C∗ Foreign consumption 1.29 Q̄ = 1.4 such that real wage fall ≈ 3%

Monetary Policy
ī+ ξ̄ Initial steady state interest rate (with ξ̄ = 0) 0.5% yearly Pre-energy crisis path
ĩ+ ξ̃ Final steady state interest rate 3% yearly Post-energy crisis path (BoE projections)

2023, in line with data (see Figure 4.4)18.

With regards to the household crossectional dimension, I follow Chan et al. (2023) quantita-

tive model for energy shock effects on the UK in setting σ = 1, while I set ϕ = 2 and ρ = 0.05

as in the open economy HANK calibration of Auclert et al. (2023a); the borrowing limit is

close to 0 (ā = −0.2) according to literature’s standard practice. The long-term bonds amor-

tization rate δ is set to 0.021, consistent with a bond duration of 4.5 years (see Nuño and

Thomas (2022)). The fraction of mortgagors replicates the data for the full “Understanding

Society” survey sample (54%, see Table 2). The average mortgage duration S is set to 5.5

years to match the aggregate mortgage rate path as in Figure 4.4, and the fraction of vari-

able rate mortgages is set to 0.12 according to the most recent Office of National Statistics

(ONS) data. The mortgage stock is calibrated at D = −50, to match the magnitude of the

consumption effect of mortgages as in Figure 4.2 (as carried out in section 4.4). In order
18Different values for Q̄ have indeed the consequence of scaling up and down the whole path for Qt

(reported in Figure 4.3 in percentage deviations from steqady state), with mitigating or amplificating effect
on the domestic price of energy P ∗

Et/Qt.
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to replicate not only the magnitude of the curve of effects in Figure 4.2, but also its shape,

while assuming a standard calibration value µ(z) = 0.3(zmean−z) as in Achdou et al. (2021),

I set the variance of the diffusion ς2 = 4. The high idiosyncratic risk indeed creates a strong

precautionary motive in a household the closer it is to the borrowing limit, letting its con-

sumption absorb the mortgage cost shock in order not to affect the precautionary asset buffer.

Shocks. The model is fed with an energy price shock and an interest rate policy following

a lognormal time profile starting from t = 01/2022 and and tracking the data pattern, as

showed in Figure 4.3. The right tail of the lognormal model input for it (i,.e. at the right

of the argmax of the curve) is truncated when the implied value for it would fall below the

final steady state ĩ, i.e. at year September 2027: from then onwards, it is set at the new

level ĩ. The lognormal time profile is described in the following equations:

P ∗
Et = P̄ ∗

E +KeLognormalµe,σ2
e
(t) ∀t > 04/2022 (4.2.1)

it =


ī+KiLognormalµi,σ2

i
(t) ∀t ∈ [01/2022, argmax(it)]

max{̄i+KiLognormalµi,σ2
i
(t) , ĩ} ∀t > argmax(it)

(4.2.2)

where Ke = 29.2, Ki = 1.07, µe = 3.25, µi = 4.1, σe = 0.7, σi = 1 are parameters set to match

closely the data counterpart. Policy rate data are retrieved from realized and expected

future interest rates (from BoE monetary policy committee’s projections): the latter point

out to a gradual interest rate cut - already initiated in April 2024 - to be implemented at

a progressively slower pace. Consistently with this assumption, I assume a final “landing”

stationary value for the BoE rate it of 3% (annualized). As mentioned previously, in order

to obtain π̃ = 0 in the final steady state, I assume the final stationary value for the foreign

interest rate i∗ + ξ̃ to be equal to an annualized 3% as well (see equation (5.5.3)). The initial

steady state interest rate ī is instead set at 0.5% annualized, consistently with the pre-energy

crisis existing policy rate data (see Figure 4.3, centre plot).

As far as energy price is concerned, the observed counterpart is given by the quarterly overall

fuel cost to industry index (detrended with respect to the same time span of the exchange

rate series ,i.e. 2017-2021) - recalling that the energy enters the model as a domestic firms’
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input.

Qt is set to steady state until December 2021 - the onset of the energy crisis shock. Afterwards

it is computed as the filtered version of the real exchange data series19, whose computation

details are left in the appendix. Using UIP condition (5.5.3), I can backward-engineer the

pattern of UIP shocks ξt such that the imposed time profile of Qt is consistent with the data

input. In this way, even though Qt is endogenous in the model, I can successfully reproduce

its path in simulation. The pattern of Qt reported in Figure 4.3 is characterized by a different

final steady state: as discussed in section 2.8, this is due to the fact that the final steady

state displays a different interest rate in both economies :̃i = i∗ + ξ̃ > ī = i∗ + ξ̄, where ξ̃ is

the final stationary value for ξt.
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Figure 4.3: Input of the model: Energy shock, interest rate, real exchange rate, vs. data (Re-elaboration
from series by Office for National Statistics, BoE and FRED). Energy shock and real exchange rate removed
trends are computed on the 2017-2021 time sample, while the interest rate is presented in raw data.

4.3 Model validation at the aggregate level

The model is solved under perfect foresight, by looping over the final steady state real

mortgage stock D̄r, and aggregate consumption, building on the solution method by Achdou

et al. (2021) - details are reported in the appendix. The impulse responses for inflation,

real wage and aggregate mortgage rate idt are reported in Figure 4.4 and compared with the

data counterparts, which are build from the dataset of BoE and ONS; UK inflation from

01/2022 (CPI) is presented in % points and absolute difference from the 2% BoE target; the

aggregate mortgage rate is presented in % points and absolute difference from the plateau
19Real exchange data for UK are recovered by the FRED database.
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reached in 2021 after a steady decrease ongoing since year 2016 (see Figure 4.1) . Real wages

are presented in percentage deviation from a trend computed on a shorter time span (2017-

2019) due to the impact of the pandemic period on the variable’s path. The magnitude and

hump-shape (resp. u-shape) of CPI inflation (resp. real wage) is successfully replicated by

the model output, with inflation peaking at 9% above the steady state level, and real wages

falling beyond 3%. The aggregate mortgage rate follows a similar upward trend as the data,

while deviating by up to 0.5 percentage point.
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Figure 4.4: Output of the model: Inflation, real wage and aggregate mortgage rate idt , vs. data (Re-
elaboration from series by Office for National Statistics and BoE). CPI inflation is take in difference from the
pre-crisis 2%. The real wage is presented with the linear trend removed, calculated based on the 2017-2019
pre-COVID time sample. Aggregate mortgage rates is showed in absolute differences from the 2% 2021
plateau.

4.4 Model validation in the crossectional consumption response

So far calibration choices were not discussed in detail with respect to the per-household

mortgage stock D and the variance of the diffusion process ς2. The goal of this section is

to present a calibration choice of these parameters, suitable to let the models replicate the

difference in the 2021-2022 percentage consumption variation between the mortgagors and

non-mortgagors (Figure 4.2). The features of the diffusion process of idiosyncratic shocks are

indeed a paramount element of the model to determine the differences in precautionary saving

across households according to their position held in the initial consumption distribution -

and hence, the difference in consumption responses to the increase in mortgage costs.

The main challenge that needs to be addressed by the validation method consists in producing

a discrete sample of mortgage and non-mortgage households with food consumption and
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income variations between 2021 and 2022, in order to implement a regression of the type

(4.1.2) on the simulation output.

4.4.1 A model-generated crossectional effect of mortgages

In order to compare the effect of the mortgage cost increase on crossectional household

consumption with the data output in Table 3, I need to perform a regression of the same

type on the data delivered by the model: that requires, for each household starting at

node a, z in period 12/2021, to identify the model implied variation of food consumption

between 2021 and 2022 ∆j
c,f (2022)(a, z) and variation of income ∆income(2022)(a, z), which

I formulate as the ratio of the average expected consumption and income in 2022, on their

initial steady state value (as of January 2021), given the initial state node a, z:

∆j
c,f (2022)(a, z) =

1
12
∑
t∈2022 E [cft|cf,ss = cf (a, z)]

cf,ss
− 1 (4.4.1)

∆j
y(2022)(a, z) =

1
12
∑
t∈2022 E [yt|yss = y(a, z)]

yss
− 1 (4.4.2)

where income yt is defined as the resources flow accrued to the household:

yt = δat + ztwtnt + Πt −Dr
t i
d
t (4.4.3)

The asset a and shock z are discretized along grids with dimension I and J respectively, which

deliver discretized vectors {gt}t, {Cft}t, {yt}t with size I ∗J × 1, which comprise respectively

the density, food consumption and income for each state node a, z. Following Achdou et al.

(2021), we can also derive for each period a transition matrix Gt+1
t such that gt+1 = Gt+1

t gt;

therefore, by multiplying the transition matrices from t = 12/2021 to any t ∈ 2022, we

obtain the transition matrix that map gss to gt:

gt = Gt
ssgss (4.4.4)

Each column of the matrix Gt
ss (hence, each row of the transpose (Gt

ss)T ) represents the dis-

tribution of outcomes in t conditional on state a, z in staedy state. Then I can recover the
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expected consumption (resp., income) in 2022, conditional on the household being charac-

terized by states a, z in steady state (i.e. in 12/2021 ), and hence the variations introduced

in equations (4.4.1)-(4.4.2):

∆j
c,f (2022)(a, z) =

1
12

∑
t∈2022

(Gt
ss)T ∗ Cft

cf,ss
− 1 ≈ ln

[
1
12

∑
t∈2022

(Gt
ss)T ∗ Cft

]
− ln cf,ss (4.4.5)

∆j
y(2022)(a, z) =

1
12

∑
t∈2022

(Gt
ss)T ∗ yt

yss
− 1 ≈ ln

[
1
12

∑
t∈2022

(Gt
ss)T ∗ yt

]
− ln yss (4.4.6)

At this stage, discretizing gss into a frequency allows to obtain a countable number of house-

holds - indexed by i - each one with consumption css(i). I can then rank the resulting

sample of model household according to css(i), to obtain the initial discretized distribution

of consumption. Notice that, alongside the derivation carried out in this section, I can also

formulate an expression for the variation in total consumption basket ct, analogous to (4.4.5)

∆j
c(2022)(a, z) =

1
12

∑
t∈2022

(Gt
ss)T ∗ Ct

css
− 1 ≈ ln

[
1
12

∑
t∈2022

(Gt
ss)T ∗ Ct

]
− ln css (4.4.7)

4.4.2 From total nondurable to food consumption

The total nondurable consumption values for each model household (ct(i)) are necessary

inputs to generate the model-implied idiosyncratic food consumption levels and hence to

draw a comparison with the empirical section results’, as previously discussed. Given the

consumption aggregator (2.1.2) and the result pft = pt, food consumption is given by:

cft(i) = φtct(i) (4.4.8)

Similarly to Aguiar and Bils (2015)20, for any t I can carry out a first order approximation

of ct(i) around cτ (i), where τ is any benchmark date:

ln cft(i) − ln cf,τ (i) = (lnφt − lnφτ ) + (ln ct(i) − ln cτ (i)) (4.4.9)
20The authors perform instead a linear approximation around the crossectional average of ct(i).
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Therefore the equation boils down to:

ln cft(i) = Φt + ln ct(i) (4.4.10)

where Φt is a time varying coefficient. Let us assume that φt (and then Φt) varies only on

a yearly basis; taking time difference between the expected value of 2022 consumption and

12/2021 (steady state), we get:

∆c,f (i, 2022) = ∆Φ2022 + ∆c(i, 2022) (4.4.11)

where the quantities ∆c,f (i, 2022) and ∆c(i, 2022) are defined respectively by (4.4.5) and

(4.4.7), and ∆Φ2022 is given by ∆Φ2022 = Φ2022 − Φ2021.

Let us now run a regression on the model output, mirroring the empirical counterpart (4.1.2),

with the exception of being performed on total nondurable consumption instead of exclusively

food:

∆j
c(i, 2022) = γj0 + γj1 ∗ IM(i) + γj2 ∗ ∆y(i, 2022) + ε(i) (4.4.12)

∀ i s.t. c12/2021(i) ≤ Qj(c12/2021)

where ∆y(i, 2022) is the percentage income variation of household i between 12/2021 and

year 2022 (given by expression (4.4.6), IM(i) is the previously defined indicator function for

mortage holders, and Qj(c12/2021) is the j−th quintile of the steady state model consumption

distribution. Results are summarized in Table 5.

Table 5: Regression results for consumption variation ∆j
c(i, 2022) (model output)

Variable (1) (2) (3) (4) (5)

Mortgagor -0.2406 -0.1172 -0.0730 -0.0747 -0.0649

Bottom % of C(i, 2021) 20% 40% 60% 80% 100%
∆% income control Yes Yes Yes Yes Yes

Note: All values are significant as the regression is performed on the whole model population

Once having estimated the coefficients γj0, γj1, γj2, we substitute for the linear prediction
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(4.4.12) inside (4.4.11):

∆c,f (i, 2022) = ∆Φ2022 + γj0 + γj1 ∗ IM(i) + γj2 ∗ ∆y(i, 2022) + ε(i) (4.4.13)

The coefficient γj1 provides the impact of mortgage holding on 2021 -2022 on food consump-

tion variation, a model counterpart of the empirical estimate of βj1 retrieved in section 4.1

and plotted in Figure 4.2 for each sample of the model consumption distribution in 12/2021.

Note that, while the model accounts percentage variations in food consumption deviating

from the ones in total consumption by the factor ∆Φ2022, the average difference between

percentage consumption variations of mortgagors and non-mortgagors is the same both with

respect to food and total consumption, and measured by the factor γj1.

Table 6: Consumption variation ∆j
c,f (i, 2022). Model vs. Data.

Variable (1) (2) (3) (4) (5)

Mortgagor Data -0.3006*** -0.1570*** -0.0830 -0.0653 -0.0692
(0.1306) (0.0590) (0.0988) (0.0745) (0.0597)

Model (γj
1) -0.2406 -0.1172 -0.0730 -0.0747 -0.06494

Bottom % of C(i, 2021) 20% 40% 60% 80% 100%

Note: Standard errors in parentheses. *Significant at the 10% level. **Significant at the 5% level.
***Significant at the 1% level

Figure 4.5 compares the crossectional effects of the mortgage cost increase as from the simu-

lation’s outcome, to the empirical counterpart illustrated in Figure 4.2, and to the outcome

which would arise in a setting with near-zero idiosyncratic shock (ς2 = 0.0001). The model

replicates closely the negative relationship between the position held in the consumption

distribution at the end of 2021 (i.e. in steady state) and the extra-consumption loss with re-

spect to owners outright over the crossection of mortgagors, with households at the bottom of

the distribution suffering most in food consumption terms. No confidence bandwidths arise

in the model-based regression, as the latter is performed on the whole model population.

In the near-zero idiosyncratic shock case, the heterogeneity dimension of the model is shut

down, as all agents have nearly the same propensity to consume: consequently the impact

on consumption of the mortgage cost increase is equal across all quintiles of the steady state
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Figure 4.5: Coefficient βj of mortgagor dummy in the regression for food consumption vari-
ation ∆j

c,f (i, 2022), for households lying below steady state consumption deciles Qj. Shaded
area: 90% confidence bandwidth of the empirical results. Model vs Data.

distribution (around 7% loss with respect to non-mortgagors). Therefore the heterogeneity

dimension of the model is a key element to match the stronger impact of the shock at the

bottom of the steady state consumption distribution; however, for higher quintiles the effects

become increasingly similar in magnitude, due to the consumption smoothing behavior of

households in HANK being more aligned to the ones in the complete markets environment,

thanks to the higher wealth stock working as a buffer against idiosyncratic shocks.

5 Smoothing interest rate policy

5.1 The equilibrium effect of the benchmark BoE policy

The impulse response of the variables under the interest rate set by the BoE (from onwards

labelled as ibmkt , where “bmk” being short for “benchmark”), which were showcased in the

previous section, underlie a real appreciation effect that fights the real income loss due to

the energy price shock, along the lines discussed in section 3. Through the UIP condition, a

persistent increase in the interest rate produces an upward shift of the whole real exchange

rate path. In order to show that, Figure 5.1 compares the equilibrium pattern for CPI
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Figure 5.1: Impulse response functions to the energy shock. Benchmark policy vs. Moderate
hike.

inflation, nominal and real (it−πt) interest rate, real exchange rate, real wage and aggregate

mortgage rate to the one that would materialize with a milder interest rate policy (“moderate

hike”, in short mh) implemented. Such alternative policy is constructed as imposing the

parameters σmhi = 0.75 and Kmh
i = 0.7 (lower than the σi = 1 and Ki = 1.07 of the

benchmark). While lowering σi reduces the mass in the tails of the interest rate path, the

decrease in Ki shrinks the whole path downwards. The parametrization allows to implement

the landing on the new steady state interest rate in the same year of the benchmark (2027),

while mitigating the hike especially in the first stages of the crisis.

The lower nominal interest rate hike translates into a stronger drop in the real interest

rate, as the former makes up less for inflation. Through UIP, this not only implies a lower

appreciation in the real exchange rate, but even a depreciation: Qt falls by more than 6%

from its steady state level. The combined effect of the energy shock and the real depreciation

determines a stronger fall in the real wage (down to an extra 2% over 2022) in the moderate

hike case with respect to the benchmark scenario. Nevertheless, the milder rise in the nominal

interest rate allows to produce a lower path for the aggregate mortgage rate (by around 0.4%

for five years from the onset of the shock).
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Figure 5.2: Left: food consumption % fall over 2022 for each consumption quintile of the
12/2021 consumption distribution (total ∆total

c,f and decomposed by real wage effect ∆w
c,f ).

Right: 2022 ∆% consumption difference between mortgage and non-mortgagors (∆c,f from
equation (4.4.11)). Benchmark policy vs. Moderate hike.

Figure 5.2 showcases the average % variation in food consumption between steady state

(12/2021) and year 2022, isolating the effect of real wage fall alone, for the households lying

below each j quintile of the steady state consumption distribution. The overall variation

in consumption (∆total
c,f ) is defined as the average of the total expected extra variation in

consumption over the crossection with respect to a scenario without any aggregate shock.

The effect of wages is isolated by subtracting from this variation the one that would be

obtained by exogenously fixing the real wages to steady state in the partial equilibrium

outcome of the households’ block. The total ∆total
c,f and real wage-driven ∆w

c,f variations can
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then be defined as follows:

∆̃j,total
c,f (2022) =

1
12

∑
t∈2022

(Gt
ss)T ∗ Cft

cf,ss
−

1
12

∑
t∈2022

(Gt,no shock
ss )T ∗ Cno shock

ft

cf,ss
(5.1.1)

∆̃j,w=w̄
c,f (2022) =

1
12

∑
t∈2022

(Gt, w=w̄
ss )T ∗ C w=w̄

ft

cf,ss
−

1
12

∑
t∈2022

(Gt,no shock
ss )T ∗ Cno shock

ft

cf,ss
(5.1.2)

∆̃j,w
c,f (2022) = ∆̃j,total

c,f (2022) − ∆̃j,w=w̄
c,f (2022) (5.1.3)

where Gt
ss and Cft are respectively the transition matrix from 12/2021 to time t, and the

food consumption level.

Figure 5.2 well captures the trade-off implied by the “moderate hike” policy between real

exchange rate appreciation and mortgage costs. The alternative policy produces a worse

impact of energy shock on consumption through a real wage fall - as real exchange rate

appreciation is milder - by approximately 5% with respect to the 2% of the benchmark, across

all consumption quintiles (see left plots). However, the lower interest rate involves a better

performance in terms of consumption of mortgagors, who can enjoy a weaker increase in

the aggregate mortgage rate and see their consumption inequality gap with non-mortgagors

being reduced by approximately 4 percentage points across all consumption quintiles.

5.2 A smoothed interest rate policy alternative

In what follows, I will introduce a new candidate policy (“smoothed policy”, in short sm),

which assumes a lognormal profile specified in the same way as in the benchmark policy

(equation (4.2.2)),except for the “location” parameter µsmi and the scaling coefficient Ksm
i

which are such that µsmi ̸= µi and Ksm
i ̸= Ki, while keeping σsmi equal to the benchmark

σbmki . In order to make this alternative policy smoother than the benchmark one, I im-

pose the assumption µsmi > µi: an increase in the location parameter indeed reduces the

height of the peak and shifts the whole distribution to the right, as it is illustrated in Figure

5.3, where the smoothed policy path is compared to the benchmark and the moderate hike

previously considered in Figure 5.1. Furthermore, the scaling size parameter is set higher

than the benchmark (Ksm
i > Ki) such to generate a prospective cumulate sum of interest
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Figure 5.3: Benchmark policy vs. smoothed policy and moderate hike. Graaphical path and
functional form

rates
∞∫

01/2022
itdt sizable enough to determine the same effect on the real exchange appre-

ciation through UIP as the one produced by the benchmark policy. This can be seen in

the bottom-left plot of Figure 5.4, where until 2024 the real exchange rate path under the

smoothed policy is quantitatively similar to the benchmark, implying a similar patterns of

real wages as well, which experience a 3% fall with respect to steady state over 2023. This

in turn implies that the effect of the energy shock on consumption through the real wage

is equal between the benchmark and smoothed policy (in both cases comprising a 2% food

consumption loss), as shown in the left graph of Figure 5.5. On the other side, the mort-

gage rate idt in the smoothed policy takes lower values until 2026, with a peak reduction of

up to 0.7 percentage points. As highlighted in the bottom-right plot, this translates into

a significantly lower consumption drop for mortgagors with respect to non-mortgagors (by

4% in the 2021-2022 time window): smoothed policies are successful in partially closing the

inequality gap between the two types of agents, without affecting the performance in terms

of real exchange rate appreciation during the energy crisis.

By comparing the smoothed policy with the simple moderate hike, we can observe that the

equally mild initial rise in the interest rate implemented by both policies delivers an equal

relief on mortgagors’ consumption (right graph of Figure 5.5); however, only the smoothed
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policy is able to achieve that without affecting negatively the real exchange rate, since it

sustains it at the same level implied by the benchmark policy through the 3-years further

protracted interest rate hike. Therefore, the smoothed policy overperforms the moderate

hike and matches the benchmark policy in reducing the consumption loss due to real wage

fall.
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Figure 5.4: Impulse response functions to the energy shock. Benchmark policy vs. Smoothed
policy and Moderate hike.

From the discussion above, we can see how the quantitative results confirm the theoretical

prescriptions coming from the stylized model of section 3: a smoothing motive of the interest

rate policy relaxes the trade-off between real appreciation and mortgage cost increase, which

instead was still relevant in the simple moderate hike case: the consumption loss due to real

wage fall is indeed the approximately the same between the benchmark and the smoothed

policy, while the latter can achieve more moderate mortgage rates and therefore a lower

impact on consumption of mortgagors.
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Figure 5.5: Left: food consumption % fall over 2022 for each consumption quintile of the
12/2021 consumption distribution (total ∆total

c,f and decomposed by real wage effect ∆w
c,f ).

Right: 2022 % consumption fall difference between mortgage and non-mortgagors (∆c,f from
equation (4.4.11)). Benchmark policy vs. Smoothed policy and Moderate hike.

5.3 Welfare implications

As a further step with respect to the policy experiment carried out so far, I proceed to
investigate the welfare implications of adopting the smoothed interest rate policy. Given the
perfect foresight nature of the model, the discounted welfare of any household is embedded
in its value function V m

t0 (a, z) or V nm
t0 (a, z), where t0 is the time index for the first period of

the simulation, and m and nm are respectively indexes for mortgagor and an non-mortgagor
household. The analysis of the previous section pointed out that interest rate smoothing,
during initial stages of the energy crisis, relieves the mortgage cost burden without giving up
real wage defence; however, the interest rate remains higher for a longer time, making real
exchange and wages’ appreciation more persistent until 2028 - and less needed, as the energy
price would have already decreased substantially (see Figure 4.3); moreover the interest
rate smoothing involves an undesirable longer protraction of high mortgage rates, as can
be observed in the bottom-right plot of Figure 5.4, where idt under the smoothed policy
overtakes the one produced by the benchmark policy from year 2028 onwards. The adverse
effect of this kind of “forward guidance” intervention needs to be taken into account in order
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to quantitatively evaluate the welfare implications of the smoothing policy: such implications
are nonetheless encoded in the initial level of the value functions V m

t0 (a, z) or V nm
t0 (a, z), which

can be averaged across the initial idiosyncratic shocks to obtain average value functions per
asset level V m

t0 (a) and V nm
t0 (a). Figure 5.6 reports on the left an “inequality” measure given

by the difference between V m
t0 (a) and V nm

t0 (a): mortgagors are worse off than non-mortgagors
in both policy scenarios, due to mortgage costs burdening both over the dynamics and in the
final steady state; however, implementing the smoothed policy allows to reduce inequality
between the two household class, thanks to its mitigation effect on mortgage rates. In the
current scenario a policymaker caring about inequality would then consider the smoothed
policy as a “less costly” measure, from a welfare perspective, to tackle the impact of the
energy shocks on the economy. Total utilitarian welfare, defined as the average discretized
value function at time 0, i.e.

T∑
t=12/2021

βt
∑
a,z
gt(a, z)v(a, z) (with β = 1

1+ρ∆ and T being the

last simulation period) increases from -5.7639 to -5.7501, pointing out that the reduction
in inequality is not achieved at the expense of a lower economywide utility. In order to
substantiate the welfare increase in terms of consumption unit, I compute in the benchmark
scenario the consumption subsidy that would need to be accrued to every household over
2022, taking the equilibrium consumption and labor choices as given, in order to yield the
same total welfare of the smoothed policy outcome. In other terms, I seek to compute the
subsidy k∗ such that:

∞∑
t=12/2021

βt
∑
a,z

gt(a, z)u(cbmkt (1 + kt), nbmkt ) =
∞∑

t=12/2021
βt
∑
a,z

gt(a, z)u(csmt , nsmt ) (5.3.1)

with kt =


k∗ if t ≤ 12/2022

0 if t > 12/2022

The resulting 2022 subsidy k∗ is equal to 1.1%, implying that the consumption path of all

the households (and consequently aggregate consumption) would need to be shifted upward

over 2022 by this percentage amount in order to guarantee the achievement of the same total

welfare as in the smoothed policy case (see right plot of Figure 5.6).
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Figure 5.6: Value functions at the first simulation period, for each household class and asset
level, Benchmark policy vs. Smoothed policy. (left plot). Consumption-equivalent gain of
adopting the Smoothed policy (right plot)

5.4 Testing the model implications: increasing fixed mortgage

horizon

A corollary policy prescriptions coming from the discussion of section 3 is that a shorter

time horizon S for fixed rates’ renewal leads to a stronger effect of interest rate smoothing

in relaxing the trade-off between exchange rate appreciation and mortgage costs, due to the

higher sensibility of the current mortgage rate to future short term interest rate variations.

I can test this implication in the current quantitative setting, by assessing the impulse re-

sponses under the same shock and three candidate policies of last section, with the exception

of S being now set to three years instead of the 5.5 years calibrated so far. Note that the

pressure of contractionary policy on real exchange rate determination (through UIP (5.5.3))

is the same as in the previous section, as the policy paths for it are the same as the ones

considered before. On the other side, given the lower stickiness of fixed rate mortgages, the

overall mortgage rate idt displays for all the three policies a stronger reaction in magnitude

with respect to the baseline, with the benchmark policy’s mortgage rate peak amounting to

4% (as opposed to the 3.5% peak of the baseline), as showed in Figure 5.7.

What is now the impact of the different policies on mortgage rates? As a result of the in-

creased influence of the fixed-rate mortgage channel on the overall mortgage channel idt , the

impact of rising mortgage costs on mortgagors’ consumption is amplified in both the policy
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Figure 5.7: Policy’s impact of mortgages for different fixed rate time horizons. Benchmark
vs. Smoothed policy.

options (see the bottom-right plot), with the consumption effects of mortgage cost increases

now being different by 7 percentage points between the two policies (with respect to the

4% difference of the benchmark case). This confirms the analytical prediction outlined in

section 3.

6 Conclusion

The trade-off between shielding the real wage of households and maintaining moderate costs

for mortgagors in response to an energy price shock through an interest rate hike presents a

complex challenge. While an increase in the interest rate can protect the purchasing power

of households via real exchange rate appreciation, it also leads to higher mortgage rates.

The benchmark contractionary policy implemented by the Bank of England (BoE) during

2022-2023 resulted in significant consumption losses for mortgagors, particularly those at

the lower end of the consumption distribution. To address these challenges, this paper has

explored an alternative strategy that employs milder and prolonged interest rate hikes. This
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approach achieves the same real exchange rate appreciation but allows for the spread of

mortgage cost increases over an extended period, thereby mitigating the immediate burden

on mortgagors. The effect is decreasing in the length of fixed rate mortgage contracts.

This strategy presents a balanced approach to monetary policy, that would lead to more

equitable welfare outcomes in the face of energy price shocks. A natural extension for this

paper would therefore consist in a fully microfounded normative analysis, in the spirit of the

literature about optimal policy in HANK.

A Appendix

B Derivation of the New Keynesian Phillips curve

Following Wolf (2023), I assume that unions seek to maximize the utility the average house-

hold 21, i.e, a fictitious agent consuming the average amount over the household’s crossection,

and subject to the same supply schedule across labor varieties - set by the unions. The util-

ity is evaluated net of an inflation and real wage stabilization cost Ψt. The maximization

problem writes:

max
∫
τ≥0

exp [−ρτ ({u (Ct+τ ) − v (Nt+τ )} − Ψt)] = (B.0.1)

max
∫
τ≥0

exp
[
−ρτ

(
{u (Ct+τ ) − v (Nt+τ )} − ψ

2 π
W2
t Nt+τ − ζ

2
(ε− 1)Ñu′(C̃)

w̃
(wk,t+τ − w̃)2

)]
(B.0.2)

subject to 1) the average real labor earning at time t+ τ being given by:

Zt+τ = 1
Pt+τ

∫ 1

0
Wkt+τ

(
Wkt+τ

Wt+τ

)−ε

Nt+τdk (B.0.3)

21This is a convenient assumption to model the way union aggregates preferences, because it allows to
abstract inflation dynamics from distributional outcomes; an alternative is to assume maximization of the
average utility of households for some arbitrary weights
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2) the envelope condition:

∂Ct+τ
∂Wkt+τ

= ∂Zt+τ
∂Wkt+τ

= 1
Pt+τ

∫ 1

0
Wkt+τ

(
Wkt+τ

Wt+τ

)−ε

Nt+τdk (B.0.4)

and 3) the effect of the kth-variety nominal wage Wkt on labor supply, that , due to the Nkt

determination Nkt ≡
∫ 1

0

(
Wkt

Wt

)−ε
Ntdk, and the symmetry Nkt = Nt, writes:

∂Nt

∂Wkt

= ∂Nkt

∂Wkt

= −εNkt

Wkt

= −ε Nt

Wkt

(B.0.5)

The problem can be formulated as a Hamilton-Bellman-Jacobi equation:

ρJ(W, t) = max
πw

[
{u (Ct) − v (Nt)} − ψ

2 π
2
tNt − ζ

2
(ε− 1)N̄u′(C̄)

w̄
(wk,t+τ − w̄)2

]
+JW (W, t)WπW+Jt(W, t)

(B.0.6)

where J(W, t) is the real value of a union with wage W . Taking the envelope and first order

conditions and imposing symmetry across all k, we get:

JW (W, t)W = ψπWN (B.0.7)(
ρ− πW

)
JW (W, t) = ε

W

[
Nv′ (N) − ε− 1

ε
Nwu′ (C) − ζ

N̄
ε
ε−1w̄

u′(C) (w − w)w
]

+ (B.0.8)

+ JWW (W, t)WπW + JWt(W, t) (B.0.9)

Differentiating (B.0.7) with respect to time gives

JWW (W, t)Ẇ + JWt(W, t) = ψN̄ ˙πW
W

+ ψṄπW

W
− ψπW N̄

W

Ẇ

W
(B.0.10)

Substituting the above expression and (B.0.7) inside (B.0.8) we obtain the Phillips curve as

presented in section 5.3 (equation (5.3.3)), with κW = ε
ψ

.

C Equilibrium conditions

The model equilibrium is described by the following set of conditions:
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ρVt(a, z) = max
at,ct

[
c1−σ

t

1−σ − χ
n1+ϕ

t

1+ϕ + st(a, z) ∂Vt

∂a

]
+ µ(z) ∂Vt

∂z + ς2

2
∂2Vt

∂z2 + ∂Vt(a,z)
∂t

ct(a, z)−σ = ∂Vt(a,z)
∂a

st(a, z) =


δat+ztwtnt+dt−ct−Dr

t id
t +Πt

Xt
− (δ + πt)at if mortgagor

δat+ztwtnt+dt−ct+Πt

Xt
− (δ + πt)at if non-mortgagor

∂ft(a,z)
∂t = − ∂

∂a [st(a, z)ft(a, z)] − µ(z) ∂Vt

∂z + ς2

2
∂2Vt

∂z2

Ct =
1∫
0
ct(a, z)ft(a, z)dadz

wt
1
A = pH(Qt, P

∗
Et)

Ḋr
t = −Dr

tπ

idt = Df

D ift + Dv

D it

ift = 1
S

S∫
0
ift (s)ds

ift (s) = ifτ∈[t,t+S)(s) = 1
S

∫
[t,t+S) iτdτ

πW
t = 1

ρ−Ṅt/Nt

[
κ
(
χNϕ

t − ε−1
ε wtC

−σ
t − ζ ε−1

ε
Ñ
Nt
C̃−σ(wt − w̃) wt

w̃

)
+ π̇W

t

]
Xt =

∫∞
t
δe

−
[∫ s

t
is+δ(s−t)

]
ds

it − πt = i∗ − π∗ − dQt

Qt
+ ξt

YHt = (1 − αE)
(

1−αEpE(Qt,p∗
Et)1−ϵ

1−αE

)− ϵ
1−ϵ (1 − α)

(
1−α(pF (Qt)/pD(Qt,p∗

Et))1−η

1−α

)− η
1−η (Yft + Ynt) +

α (pH(Qt, p
∗
Et)Qt)−η

C∗

Yft + Ynt = Ct

YHt = ANt

Nt = nt

Πt = ωDr
t i

d
t

dt = YHt −ANt

wt = Wt/pt

πt = ṗt/pt

πW
t = Ẇt/Wt

Which in order, are: the Hamiltonian-Bellman-Jacobi equation, the optimality condition of

the household, the drift function, the Kolmogorov-Forward equation, the definition of aggre-

gate consumption, the domestic good producers’ pricing, the evolution of the real mortgage

stock, the definition of the mortgage rate, of the fixed mortgage rate, and of the fixed rate

of submortgage s. Then we have the Phillips curve, the pricing of long term bonds, the UIP

condition, the market clearing conditions and the mortgage revenues rebating rule. Finally

we have the definition of dividends, real wage, price inflation and wage inflation.
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D Real exchange rate path in the benchmark scenario

Qt is set to the initial steady state Q̄ until April 2022 - the onset of the energy crisis shock.

Afterwards it is denoted by Q′
t and it is computed as the filtered version of the real exchange

data series (Figure 4.3). Q′
t is made up by the following two subsets: 1) Q̄+the detrended real

exchange rate index for UK for 01/2022 < t < 07/2023 (denoted by Q̂data
t ). The linear trend

is computed according to the pre-energy crisis period 01/2017-04/2022. I choose 2017 as

starting year for the trend computation sample, when the time series for the real exchange

rate presents a structural break due to Brexit. 2) a diffusion process Qt for t ≥ 08/2023

with no innovation, persistence ρ = 0.85, and with starting point Q′
08/2023 = Q̂data

08/2023. This

represents the normalization “tail” of monetary contraction following the decline of energy

price pressures.

Q′
t = Q̃+ Q̂data

t 01/2022 < t < 07/2023 (D.0.1)

dQ′
t = (ρ− 1)(Qt − Q̃) ∀t ≥ 08/2023 (D.0.2)

Where Q′ is the final steady state real exchange rate. The input Qt is given then by:

Qt = Q̄ ∀t < 01/2022 (D.0.3)

Qt = filter(Q′
t) ∀t ≥ 01/2022 (D.0.4)

E Solution algorithm

E.1 Steady state

Under the benchmark policy, the model is solved numerically with the method presented in

Achdou et al. (2021), by iteration over the aggregate consumption value. Prior to considering

the solution over the dynamics it is necessary to solve for the final steady state of the model

(for given Dr) through the following steps:
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1. Use the calibrated value for Q̃ to obtain the wage

w = pH(Q̃, p∗
E)/A (E.1.1)

2. As discussed in section, 2.8, steady state requires π = 0. Therefore, since the real wage

is constant, also nominal wage inflation is 0, πW = 0.

3. Imposing stationarity in the Phillips curve (5.3.3), we get

N =
(
ε− 1
ε

wC̃−σ 1
χ

) 1
ϕ

(E.1.2)

4. Solve the household problem by iteration on the HJB equation (see Nuño and Thomas

(2022) for the case with long-term bonds). Notice id = i in the initial steady state and

id = i′ in the final steady state.

5. Compute aggregate consumption C =
∫
a

∫
z
c(a, z)dadz

6. From the equilibrium condition (5.7.1)-(2.7.2), we obtain:

AÑ =(1 − αE)
(

1 − αEpE(Q̃, p∗
E)1−ϵ

1 − αE

)− ϵ
1−ϵ

(1 − α)
(

1 − α(pF (Q̃)/pD(Q̃, p∗
E))1−η

1 − α

)− η
1−η

C̃

+ α
(
pH(Q, p∗

E)Q̄
)−η

C∗ (E.1.3)

From which we can retrieve the value for foreign consumption C∗ consistent with the

stationary equilibrium

Once computed the final steady state, I already exploited the degree of freedom provided by

C∗, so , in order to compute the initial steady state, as well as a different final steady state

characterized by a different D, I need to solve the system of equations (E.1.1),(E.1.2),(E.1.3),

together with aggregate demand (equation (5.8.1))

C̄ = C (̄i, Q̄) (E.1.4)
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that is a system of four variables (w̄,Q̄,N̄ ,C̄) in four equations. Since (E.1.4) has to be solved

numerically as in points 4-5, I proceed as follows:

1. Guess C̄

2. Use (E.1.1),(E.1.2),(E.1.3) to get Q̄, w̄,N̄

3. Use w̄ and to solve for the households’ optimization and aggregate into an updated

guess C̄ ′ ((as in point 4 and 5 of final steady state computation))

4. Update the guess:

C̄ = C̄ + ϑS(C̄ ′ − C̄) (E.1.5)

until convergence of the quantity |C̄ − C̄ ′| to a threshold small enough. The sign

and magnitude of the coefficient ϑ depends on the parameters of the model. For my

parametrization and initial guess for C̄, imposing a positive ϑS leads to an explosive

feedback-loop between C̄ and w̄, while a negative ϑS (=0.1) allows to reach convergence.

E.2 Dynamics

Let us now turn the attention to the solution over the dynamics following an unexpected

shock to p∗
Et, under perfect foresight. The algorithm unfolds as follows:

• Assume a long time horizon T for the discretized variables’ path

• Start with the inputs for it, Qt, p∗
Et

• Compute {wt} = {pH(Qt, p
∗
Et)/A}

• Use the sequence {it} to compute the path for long-term bond prices {Xt}

Then go through the following loop

1. Guess a value for the final steady state real mortgage stock Dr ′ and compute the final

steady state through the same steps showcased in the second part of section E.1

2. Guess a value for {Ct}
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3. Compute {Nt} as a function of {Qt}, {p∗
Et}, {Ct} (see equilibrium conditions (5.7.1)-

(2.7.2))

4. Use {Ct}, {Nt}, {wt} to compute πWt backward, starting from πWT = 0

5. Compute πt = wt−1
wt

1
πW

t
∀t ≤ T (notice w−1 = w̄)

6. Use the UIP condition (5.5.3) to back out the path of wedges {ξt} such that the assumed

values for Qt are consistent with the resulting inflation path {πt}

7. Starting from Dr
−1 = D, use {πt} to compute the path for the real mortgage stock

{Dr
t } up to time T (leading to a final value Dr

T not necessarily equal to the guess Dr ′

8. At each t, compute idt = Df

D
ift + Dv

D
it. Following the assumptions of section 2.1, we can

express ift = 1
S

((S − 1)ift + 1
S

∞∑
τ=0

it+τ ) (S needs to be ∈ N).

9. Solve the household problem with long term bonds holding (see Nuño and Thomas

(2022) backward, starting from the value functions of the final steady state computed

in point 1.

10. Compute the new path for aggregate consumption {C ′
t} = {∑ a, zct(a, z)dadz}

11. Update Ct as Ct = (1 − ϑ)Ct + ϑC ′
t for an arbitrary coefficient ϑ ∈ (0, 1)

12. Iterate until convergence of max |{Ct} − {C ′
t}| to some low threshold value.

13. Update D′
r as D′

r = (1 − ϑD)D′
r + ϑDDr

T for an arbitrary coefficient ϑD ∈ (0, 1)

14. Iterate until convergence of max |Dr ′ −Dr
T

′| to some low threshold value.

E.3 Alternative policies

In order to solve the model for the alternative policies, we do not take anymore {Qt} as an

input and back out the UIP wedges {ξt} consistent with equilibrium, but we instead take

{ξt} as exogenous and solve for {Qt}. In order to accomplish this task, I augment the model

with an inner loop over the real interest rate, in order to determine the inflation path given

the policy on it. The modified algorithm writes:
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• Assume a long time horizon T for the discretized variables’ path

• Start with the inputs for it and p∗
Et

• Use the sequence {it} to compute the path for long-term bond prices {Xt}

1. Guess a value for the final steady state real mortgage stock Dr ′ and compute the final

steady state through the same steps showcased at the beginning of the current section.

2. Guess a value for {Ct}

3. Go through the following loop

(a) Guess a path for the real interest rate rt ≡ it − πt

(b) Obtain the implied path for inflation πt = it − rt

(c) Substitute for {rt} ≡ {it − πt} and the wedges {ξt} inside the UIP condition

(5.5.3) for every t. Iterate the condition backward, starting from QT = Q̄, to

recover the path for Qt.

(d) Compute {wt} = {pH(Qt, p
∗
Et)/A}

(e) Compute {Nt} as a function of {Qt}, {p∗
Et}, {Ct} (see equilibrium conditions

(5.7.1)-(2.7.2))

(f) Use {Ct}, {Nt}, {wt} to compute πWt backward, starting from πWT = 0

(g) Compute the implied inflation from energy prices and labor market forces: π′
t =

wt−1
wt

1
πW

t
∀t ≤ T (notice w−1 = w̄)

(h) Update the real rate at each t according to the variation between inflation deter-

mined by the guess and the resulting inflation from the last point:

rt = rt − ϑ(π′
t − πt) for an arbitrary coefficient ϑ ∈ (0, 1)

(i) iterate until convergence of max |{rt} − {r′
t}| to some low threshold value.

4. Go through the point 7-14 as for the benchmark policy algorithm, and iterate until

convergence of max |Dr ′ −Dr
T

′| to some low threshold value.
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F Extension: price stickiness

In this section I study a version of the model where price stickiness characterize firms instead

of unions. The extension is relevant to explore the robustness of the results of the model

in presence of slow pass-through of energy prices onto final product prices. I will hereafter

assume the wage adjustment cost ψ equal to 0, while introducing an alternative layer of price

rigidity at the final producers’ level.

For simplicity I assume away food and non food duality in the final good supply, which

instead is now given by a range of varieties from 0 to 1 - each variety being produced by

a different firm in a monopolistically competitive market. In presence of Rotemberg’s price

adjustment costs, the recursive problem of a final producer writes:

(ρF − π)J(p, t) = max
π

(
p

Pt
−mt

1
τF

)(
p

pjt

)−υ

Ct − ψ̃

2 π
2Ct + Jp(p, t)pπ + Jt(p, t) (F.0.1)

where ρFt is the discount factor of any firm, J(p, t) is the real value of a firm with price

p, Pt is the price level, Ct is aggregate consumption, mt is the real marginal cost, τF is a

government’s subsidy, and ψ̃ is a coefficient measuring the extent of price adjustment costs.

The first order and envelope conditions for the firm are

Jp(p, t) = ψ̃πC

p(
ρF − π

)
Jp(p, t) = −

(
p

P
−m

1
τF

)
υ
(
p

P j

)−υ−1 C

P
+
(
p

P

)−υ C

P
+ Jpp(p, t)pπ + Jtp(p, t)

By perfect competition within food and non-food industry, and symmetry among firms, we

will have p = P , and hence

Jp(p, t) = ψ̃πC

p
(F.0.2)

(
ρF − π

)
Jp(p, t) = −(1 −m

1
τF

)υC
p

+ C

p
+ Jpp(p, t)pπ + Jtp(p, t) (F.0.3)

99



Differentiating (F.0.2) with respect to time gives

Jpp(p, t)ṗ+ Jpt(p, t) = ψ̃Cπ̇

p
+ ψ̃Ċπ

p
− θC

p

ṗ

p
π

Substituting into condition (F.0.3) and dividing by θC/p gives

(
ρF − Ċ

C

)
π = 1

θ
(−(1 −m

1
τF

)υ + 1) + π̇

Since profits of firms are accrued to households, we assume discounting of firms is weighted

by the marginal utility of the latter, i.e. ρF = ρ+ (σ − 1) Ċ
C

, that implies:

(
ρ+ (σ − 1)Ċ

C

)
π = 1

θ
(−(1 −m

1
τF

)υ + 1) + π̇ (F.0.4)

Notice that the marginal cost is given by the following Dixit-Stigliz price aggregator

mt = τF

(1 − αe)


(1 − α)

(
ph,t
pt

)1−η

+ α

(
pft
pt

)1−η
 1

1−η


1−ε

+ αe

(
pe,t
pt

)1−ε


1
1−ε

(F.0.5)

Importantly, now that perfect competition is ruled out, a profit term ΠF
t coming from the

dividends of the final producers is rebated to households; following Wolf (2021), I assume

that this dividend term is weighted by household productivity (i.e. it enters the budget

constraint as ΠF
t z, summing to ΠF

t over the crossection, thanks to assumption (5.1.15)); this

allows not to have cyclical inequality implied by the dividends’ rebating scheme. For sim-

plicity, I assume that profit are zero in steady state thanks to a proper level of τF - financed

by firm’s profit itself in la lump-sum fashion, as in Corbellini (2024b).

The algorithm solution needs to be updated from its version of section E.2: point 3 is re-

placed by a joint computation of the equilibrium wt, mt, Nt , by a system of market clearing

conditions (5.7.1)-(5.7.2), marginal cost expression (F.0.5) and the union’s first order con-

dition (5.3.3) with ψ = 0. The results in terms of mt is in turn propedeutical to compute

inflation πt at each point in time using (F.0.4), which replaces point 4.
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Figure F.1 reports the impulse response functions of the economy in presence of sticky prices

and flexible wage setting.
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Figure F.1: Impulse response functions to the benchmark energy shock. Benchmark vs.
Smoothed policy and Moderate hike. Sticky prices with flexible wage setting.

By looking at the top-centre and bottom-left subplot, we can note how also in this case

the implementation of the smoothed policy yields quantitative results which confirm the

theoretical implications of the model, even though significantly smaller: the real exchange

rate is better stabilized with respect to the moderate hike case, with the aggregate mortgage

rate closely tracking the moderate hike counterpart until 2024.

G Sensitivity Analysis

The following robustness checks aims at generating the impulse responses to the same en-

ergy shock analyzed in the body of the text, under different parametrizations of the key

quantities determining the extent of the appreciation-mortgage cost trade-off, namely the

mortgage stock amount D and the steady state real exchange rate Q̄, that is determined

through leaving a degree of freedom on the foreign consumption parameter C∗, as discussed

in section 4.2.
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Real exchange movements are a key force behind the monetary policy trade-off explored by

the model. Varying values of Q̄ effectively result in scaling the entire path of Qt (shown in

Figure 4.3 as percentage deviations), which either dampens or enhances the domestic energy

price P ∗
Et/Qt and then the impact on real wages. Figure G.1 reports the impulse response

functions of the economy under a lower value for Q̄, i.e. Q̄ = 1.1 - recovered by the steady

state computation by choosing a proper value of foreign consumption C∗.

As the real exchange rate is characterized by different path in absolute levels but not in per-

centage deviations with respect to the steady state, the impulse response of Qt is unchanged

with respect to the baseline scenario of Figure 5.4. Real wages instead react more strongly

than in the baseline analysis, with the benchmark policy implying a peak fall in wt of 4%

- stronger than the 3% trough illustrated in Figure 5.4. Again, the intuition in terms of

trade-off relaxation by the smoothing of the interest rates follows exactly as in the analysis

in the body of the paper.

Next, I consider an alternative calibration of the mortgage stock D: I compare the effects of

mortgage cost increase on consumption under the benchmark scenario (D = −50), with the

case of a calibration D = −30 (Figure G.2). The mechanisms and trade-off of the baseline

scenario are yet unaltered.

102



2022 2024 2026 2028
0

2

4

6

%
 f

ro
m

 s
.s

.

Interest rate

2022 2024 2026 2028

-5

0

5

%
 f

ro
m

 s
.s

.

Real exchange rate

2022 2024 2026 2028
-8

-6

-4

-2

0

2

%
 f

ro
m

 s
.s

.

Real wage

2022 2024 2026 2028

0

1

2

3

4

%
 a

n
n

u
a

li
z
e

d
 f

ro
m

 s
.s

.

Aggregate mortgage rate

Figure G.1: Impulse response functions to the benchmark energy shock. Benchmark vs.
Smoothed policy and Moderate hike. Case Q̄ = 1.1
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Figure G.2: Impulse response functions to the benchmark energy shock. Benchmark vs.
Smoothed policy and Moderate hike. Case D = −30
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Chapter 3

Solving for Optimal Monetary Policy in HANK

by a Discretize-then-Optimize Algorithm:

a 2-stage Iterative Approach
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1 Introduction

In recent years, heterogeneous agents New Keynesian (HANK) models have emerged as a

pivotal framework for understanding macroeconomic dynamics in economies characterized

by incomplete insurance markets, hence by households with different consumption reactions

to idiosyncratic and aggregate shocks.

The introduction of agents’ heterogeneity in a new keynesian environment gives rise to differ-

ent marginal propensity to consume across households, creating deviations in the response of

aggregate variables from the benchmark representative agent framework, as well as cyclical

consumption inequality. These elements point out to the importance of a normative analysis

in HANK. The study of optimal policy in these environments is a challenging objective, as

the Ramsey planner needs to optimize over a variety of individual histories which branch out

to an infinite amount in the time limit - making impossible to apply the standard dynamic

optimization techniques used in representative agents models.

Continuous time methods, used in Nuño and Moll (2018) and Nuño and Thomas (2022),

solve the problem by optimizing over the time-varying distribution of states itself, instead

of over the single agents’ histories. This requires functional differentiation under the form

of Gateaux derivatives, that implies a degree of mathematical complexity that becomes par-

ticularly challenging when treating models with both a Ramsey problem and aggregate

externalities. Smirnov (2023) uses calculus of variations to address this task. A solution to

reducing mathematical burden in normative continuous time HANK has been proposed by

Nuño et al. (2023), which use a discretize-then-optimize algorithm. This method consists in

setting up the the Ramsey problem in continuous time, and then take the first order con-

ditions once having discretized the problem: this allows to take first order conditions with

respect to the distributions exactly as done for all the other variables, ruling out the need

to resort to Gateaux differentiation.

The solution algorithm of Nuño et al. (2023) prescribes to solve the entire system of equilib-

rium equations at once by a guess-and-verify approach on the policy instrument (the interest

rate), requiring a heavy numerical task to be accomplished by the machine. In my paper,

I show that the numerical burden can be eased by splitting the system of equations into
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two subsets: the planner’s constraints, i.e. agents’ optimal conditions and market clearing

(which can be solved by the standard routine by Achdou et al. (2021)), and the planner’s

first order conditions. All the sources of nonlinearities are contained in the first block, so the

second block can be solved by a first-order approximation and Blanchard-Kahn approach.

Once described the algorithm, I apply my method to a HANK setting built on Auclert et

al. (2023b), to describe optimal monetary policy response to energy price shocks in a small

open economy - a particularly relevant topic for the current policy debate.

My contribution to the literature is to further reduce the computational weight of normative

HANK models, with respect to what continuous time papers as Nuño and Moll (2018), Nuño

and Thomas (2022) and Nuño et al. (2023) have attained so far. The value added of this

branch of models to the general optimal policy literature in HANK lies indeed in the capa-

bility to reduce the numerical complexity through additional analytical intermediate results

that can be obtained in a continuous time setting. Alternative models have pursued instead

more numerical-intensive strategies to compute optimal policies. Crossectional consumption

inequality measure and the impact of idiosyncratic choices on aggregate variables are the

elements that in principle would require keeping track of all cumulated households’ states his-

tories in a normative analysis: Dávila and Schaab (2023) and Wolf (2023) propose a sequence

space jacobian computation that allows to recover the evolution of both those elements over

time without need to track all the idiosyncratic histories. The method, grounded on the

workhorse algorithm by Auclert, Bardóczy, Rognlie, and Straub (2021), requires to perform

small perturbation to a steady state configuration of the model, to compute numerically and

under matrix forms both the micro-to-aggregate effects and crossectional inequality, which

evolve by interacting with aggregate variables. Bhandari et al. (2021) instead take functional

(Fréchet) derivatives of the discrete distribution by introducing small noise perturbations,

and then uses such derivatives in the Ramsey problem’s optimization.

The paper unfolds as follows: in section 1 I present the algorithm for a general class of

models and derive the discretized version and first order conditions, in line with Nuño et al.

(2023); in section 2 I describe the solution algorithm, and in section 3 I show the application

to energy shock management.
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2 Discretization of a generic Ramsey problem for a

heterogeneous agents model

The following framework is taken from Nuño et al. (2023), and sums up the problem of a

Ramsey planner in a heterogeneous agents environment.

max
Zt,ut(x),µt(x),vt(x),rt

∫ ∞

0
exp(−ϱt)f0 (Zt) dt (2.0.1)

s.t. ∀t

Ẋt = f1 (Zt, rt) (2.0.2)

U̇t = f2 (Zt, rt) (2.0.3)

0 = f3 (Zt, rt) (2.0.4)

Ũt =
∫
f4 (x, ut(x), Zt, rt)µt(x)dx (2.0.5)

ρvt(x) = v̇t(x) + f5 (x, ut(x), Zt, rt) +
I∑
i=1

bi (x, ut(x), Zt, rt)
∂vt(x)
∂xi

+
I∑
i=1

I∑
k=1

(
σ(x)σ(x)⊤

)
i,k

2
∂2vt(x)
∂xi∂xk

,∀x

(2.0.6)

0 = ∂f5

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)
∂xi

, j = 1, . . . , J, ∀x (2.0.7)

µ̇t(x) = −
I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt, rt)µt(x)] + 1

2

I∑
i=1

I∑
k=1

∂2

∂xi∂xk

[(
σ(x)σ(x)⊤

)
i,k
µt(x)

]
,∀x

(2.0.8)

X0 = X̄0 (2.0.9)

µ0(x) = µ̄0(x) (2.0.10)

lim
t→∞

U = Ū∞ (2.0.11)

lim
t→∞

v(x) = v̄(x)∞ (2.0.12)

where rt is the policy variables (e.g. the interest rate), x is the individual state vector ,

u individual control vector with J elements , u(x) is the vector of controls as function of

individual state, µ(x) is the density of agents at x, and v(x) is the value function. X (with
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size NX) is the vector of aggregate states, U (with size NU) is the vector of aggregate in-

tertemporal controls, Ũ is the vector of aggregator controls22 and Zt (with size NZ) is the

vector of all aggregate variables - including purely contemporaneous aggregate controls. b is

the drift function of x, f0 is the welfare function and f1, f2, f3 are the aggregate equilibrium

conditions; f4 is an aggregator function and f5 is individual utility.

Line (2.0.1) outlines the planner’s objective function. Equations (2.0.2)-(2.0.4) set forth

the aggregate equilibrium conditions covering aggregate states, jump variables, and contem-

poraneous variables (for example, an aggregate labor supply condition). Equation (2.0.5)

establishes a link between aggregate and individual variables (for example, the sum between

capital holding of individual households summing up to aggregate capital). Equations (2.0.6)

and (2.0.7) describe the individual agent’s value function and first-order conditions, which

need to be met across the entire individual state vector x. The Kolmogorov Forward equa-

tion (2.0.8) dictates the agent distribution’s evolution.

The discretized version of the problem is obtained as follows. I consider a time step of size

∆. For any variable kt, its time variation dkt is approximated by the discrete version ∆[kt] =
kt+1−kt

∆ if the variable is forward looking (for instance, the value function vt(a, z)), and by

∆[kt] = kt−kt−1
∆ if it is backward looking (for instance, the distribution ft(a, z)). The idiosyn-

cratic state is discretized by a evenly-spaced grid of size [N1, . . . , NI ] where 1, .., I are the di-

mensions of the state x. The state step size is ∆xi. We define xn ≡ (x1,n1 , . . . , xi,ni
, . . . , xI,nI

),

where n1 ∈ {1, N1} , . . . , nI ∈ {1, NI}. Due to state constraints and/or reflecting bound-

aries, the dynamics of idiosyncratic states are constrained to the compact set [x1,1, x1,N1 ] ×

[x2,1, x2,N2 ] × . . . × [xI,1, xI,NI
]. We also define xni+1 ≡ (x1,n1 , . . . , xi,ni+1, . . . , xI,nI

) , xni−1 ≡

(x1,n1 , . . . , xi,ni−1, . . . , xI,nI
) fnt ≡ f (xn, unt , Zt) , fni−1

t ≡ f (xni−1, unt , Zt) and fni+1
t ≡ f (xni+1, unt , Zt).

The upwind derivatives ∇ or ∇̂ for the discretized functions vnt , µnt are defined as:
22an exampe of an aggregator variable is the Dixit-Stigliz basket of consumption varieties in the New

Keynesian model (
∫
c(i)

η−1
η di)

η
η−1 , with η being the elasticity of substitution among varieties
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∇i [vnt ] ≡
[
Ibn

i,t>0
vni+1
t − vnt

∆xi
+ Ibn

i,t<0
vnt − vni−1

t

∆xi

]
(2.0.13)

∇̂i [µnt ] ≡

Ibni+1
i,t <0µ

ni+1
t − Ibn

i,t<0µ
n
t

∆xi
+

Ibn
i,t>0µ

n
t − I

b
ni−1
i,t >0µ

ni−1
t

∆xi

 (2.0.14)

The discretized problem writes:

max
Zt,un

t ,µ
n
t ,v

n
t ,rt

∑
t

βtf0 (Zt) (2.0.15)

s.t. ∀t
Xt+1 −Xt

∆t = f1 (Zt, rt) (2.0.16)
Ut+1 − Ut

∆t = f2 (Zt, rt) (2.0.17)

0 = f3 (Zt, rt) (2.0.18)

Ũt =
N∑
n=1

f4 (xn, unt , Zt, rt)µnt (2.0.19)

ρvnt = vnt+1 − vnt
∆t + f5 (xn, unt , Zt, rt) +

I∑
i=1

bi (xn, unt , Zt, rt) ∇i [vnt ] + 1
2

I∑
i=1

(
σ2
i

)n
△2
i [vnt ] ,∀n

(2.0.20)

0 =
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [vnt ] , ∀j, n (2.0.21)

µnt+1 − µnt
∆t = −

I∑
i=1

∇̂i

[
bni,tµ

n
t

]
+ 1

2

I∑
i=1

△i

[
σ2
i µ

n
t

]
(2.0.22)

Where the proper initial condition specified in the continuous time problem still hold. The

problem can be formulated in the form of a Lagrangian, where the objective (2.0.15) is

maximized under constraints (2.0.16)-(2.0.22).

The total number of constraints is NZ + N × 3, where NZ are respectively the numbers of

aggregate state equation embedded in (2.0.16),(2.0.17),(2.0.18),(2.0.19); while N × 3 is the

number of constraints represented by equations ((2.0.20)-(2.0.22)), the number of possible
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idiosyncratic state combinations being equal to N .

As we are dealing with a Lagrangian, we can take first order conditions with respect to each of

the discretized endogenous variables of the model, i.e. each of the NZ +1 aggregate variables

(states and the unique policy variable) plus each of the N × 3 idiosyncratic variables (i.e.

value function vnt , density µnt and individual control unt , for every combination of states); the

appendix of Nuño et al. (2023) provides algebraic computation of each of these conditions.

3 Timeless perspective

In the problem outlined in the previous section, some endogenous variables are forward

looking (for example, the value function vnt ). Evaluating the first order conditions at time 0

delivers a t = −1 multiplier showing up in the expressions, for each forward looking variable:

in order to solve the problem, we must assign a value to these multipliers. I choose to adopt

a timeless perspective, consistently with Dávila and Schaab (2023), that involves assigning

these multipliers the steady state value, i.e. the value they would attain in the time limit if

optimal policy were implemented long ago and in absence of aggregate shocks. In this case,

time 0 multipliers represent the value of the policymaker to fulfill past promises when the

economy is hit by an unexpected aggregate shock at time 0.

4 The algorithm

4.1 Leveraging linearity of the Ramsey first order conditions

Once taken the first order conditions, the resulting system is composed by the NZ +N × 3

constraints of the problem, the first order condition with respect to the policy variable rt,

plus all the other NZ +N × 3 other first order conditions (i.e. with respect to all the aggre-

gate and idiosyncratic variables). Due to the high number of non-linearities embedded in the

drift and upwind functions, log-linearization around the steady state is not viable. Nuño et

al. (2023) rely on the “perfect foresight” built-in Dynare routine, that considers the system

simulated for T periods, with reversion to steady state by time T , and computes the solution

through a Newton-type solver. This method turns out to be computationally demanding for
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models with no blocks solvable by closed form.

My approach builds on the observation that all the first order conditions of problem (2.0.15)-

(2.0.22) are linear in the multipliers, due to the fact that the latter enter the Lagrangian

multiplied by the constraints of the model, according to the following structure:

L =
∑
t

βt [f0(Zt) + ξ′
tmt] (4.1.1)

where ξt is a vector of multipliers and mt is a vector comprising constraints (2.0.16)-(2.0.22).

The overall system of equations can therefore by rewritten in three blocks: 1) the nonlinear

block, that comprises the constraints of the Ramsey planner, i.e. equations (2.0.16)-(2.0.22);

2) the first order condition with respect to the policy variable rt; 3) the linear block, which

gathers all the other first order conditions of the Ramsey problem, under the form of a linear

system in the multipliers:

Atξt+1 +Btξt + Ctξt−1 + dt = 0 ∀t (4.1.2)

where the matrices At, Bt, Ct and the vector dt are time-varying and with entries given by

parameters and non-multiplier variables, while ξt is the vector of the NZ +N ×3 multipliers.

Let us define ξFt as the forward looking multipliers, ξBt as the backward-looking multipliers,

ξCt as the purely contemporaneous multipliers. Leveraging linear algebra, equation (4.1.2)

can be simplified into the following dynamic system:

ξFt+1

ξBt

 = Pt

 ξFt
ξBt−1

+ pt (4.1.3)

ξCt = Qt

 ξFt
ξBt−1

 (4.1.4)

ξt =


ξFt

ξCt

ξBt

 (4.1.5)
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Where again matrices Pt, Qt and vector pt are filled with parameters and non-multiplier

variables.

Let us first assume that the time varying matrices and vectors of the system above are all

known: the system can be solved starting straight from (4.1.3), which delivers the sequences

of ξFt and ξBt , which in turn allow to solve for ξCt through (4.1.4) and finally for the overall ξt
through (4.1.5). It is here important to remark that the system (4.1.3) presents almost the

same structure of generalised state space form, solvable through Blanchard-Kahn method,

if only Pt and pt were constant over time. In order to transform the system in this sense, I

take a first order approximation of equation (4.1.3) around the steady state, obtaining the

state space model: ξ̂Ft+1

ξ̂Bt

 = P

ξ̂Ft+1

ξ̂Bt

+ p̃t (4.1.6)

where “hat” variables are deviations in level, P is the Pt matrix evaluated at steady state

and p̃t = ξ is a vector of residual time-varying terms defined as follows:

p̃t =



P̂11t P̂12t ... ... ...

P̂21t ...

... ...

... ...

... ...


ξ + p̂t (4.1.7)

System (4.1.6) can be solved in an computationally effective way through Schur decompo-

sition (see Klein (2000)). The condition for a unique solution as in the Blanchard-Kahn

approach, requires Assumption 4.1.1 holding:

Assumption 4.1.1. The number of eigenvalues of matrix P higher than one in modulus is

equal to the number of forward-looking multipliers

Summing up the solution algorithm for the linear block of the Ramsey problem, provided that

we know matrices At, Bt, Ct, Qt and the vector dt, and given the “timeless” intial conditions

ξB−1 = ξB, we can compute the state-space formulation for forward and backward looking

variables in deviations ((4.1.6)) by applying Schur decomposition (see Klein (2000)). We can
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then retrieve the sequences of ξFt and ξBt in levels by applying ξFt = ξF + ξ̂Ft and ξBt = ξB+ ξ̂Bt ,

where ξF and ξB are the vectors of steady state forward and backward looking multipliers ;

finally, through equations (4.1.4)-(4.1.5), we recover the whole sequence of multipliers ξt in

levels. Of course, due to the linear approximation carried out to apply Schur decomposition,

the resulting solution for {ξt}t is a linear approximation of the “true” solution as well.

4.2 A two-stages iterative approach

In the previous section I showed how a sizable part of the equilibrium equations of the

models are efficiently and simply solved once having considered their linearity in the co-

states (multipliers) variables. I presented the solution strategy by assuming in the first

place that the matrices At, Bt, Ct, Qt and the vector dt in equations (4.1.3)-(4.1.4) are

known. However this is not the case, since their entries are made up by non-multiplier

variables which are endogenous as well. These variables would be in principle recovered

by solving separately the first block of the paper, i.e. the Ramsey planner’s constraints

(equations (2.0.16)-(2.0.22)). This block can indeed be solved separately from the first order

conditions’ block, given a path for the policy variable rt. Equations (2.0.16)-(2.0.22) are

indeed equilibrium conditions of an economy without optimal policy being put in place, and

can be solved by a time-effective guess-and-update routine on an aggregator variable Ũt, as

in Achdou et al. (2021) (the typical example for this kind of looping solution is the iterated

update of aggregate capital in the Aiyagari model, starting from an initial guess).

Therefore so far I established that, for a given path for rt, the constraints block of the

problem can be solved by nonlinear guess-and-verify techniques, delivering the entries of the

matrices At, Bt, Ct, Qt and dt, which allow in turn to solve the linear first order conditions

block (up to a first order approximation) and obtain the value of the multiplier at each point

in time. The entire set of equilibrium equations, except for the first order condition with

respect to rt, is therefore solved in two stages for a given path for the policy variable rt. If

we initiate the path for rt by an initial guess, we can use the still unaddressed condition,

i.e. the derivative with respect to rt, in order to update the guess, and then launch again

the two-stages algorithm. In this sense, my solution approach is iterative. Defining as g(rt)

the derivative of the Ramsey lagrangian with respect to to rt the update of the solution is
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Guess policy variable rt

First Stage: Solve Ramsey planner’s constraints
(loop over aggregator variable Ũt (Achdou et al. (2021)))

Second Stage: Linearize Ramsey’s first order conditions and solve for ξt
(without including the FOC with respect to rt)

Update policy variable guess
(evaluating derivative with respect to rt)

Stop

Figure 4.1: The two-stages iterative algorithm

carried out by the following rule:

r′
t − rt = Kϕ(rt) ∀t (4.2.1)

where K is a positive parameter, and ϕ(rt) is the first order condition of problem (2.0.15)-

(2.0.22) with respect to rt. When the derivative is positive, it means that there is scope for a

further interest rate rise a time t to increase welfare, while when g(rt) < 0, a higher welfare

is achieved by decreasing rt. The algorithm is iterated until some measure of accuracy of

satisfaction of first order conditions is high enough (for instance I check whether
T∑
t=0

|(g(rt)|

is close enough to 0).
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5 An application to energy price shocks in a HANK

open economy

In this section I provide an application of the solution algorithm to a general framework

building on Auclert et al. (2023a), that explores the role of monetary policy in addressing

foreign energy price shock in a small open HANK economy.

5.1 Domestic households

A small open economy (the “domestic” economy) is populated by a unit mass of households,

heterogeneous with respect to their wealth and their labor productivity. Households display

Greenwood–Hercowitz–Huffman preferences (GHH), characterized by utility from consump-

tion and disutility from labor23 . They also bear quadratic costs from wage inflation. The

discounted utility of a generic household i in economy j reads:

E0

∞∫
0

eρt

 1
1 − σ

(
ct − χ

n1+ϕ
t

1 + ϕ

)1−σ

− Ψ
2 π

W2
t

 dt (5.1.1)

where ρ is the subjective discount rate, and σ is the coefficient of risk aversion. Wage

inflation πWt is given by πWt = dWt/Wt, where Wt is the nominal wage in the domestic

economy. Consumption level of the household is given by a CES aggregator of consumption

of a non-energy good, cHFt, and consumption of the energy good supplied by the foreign

economy, cEt:

ct = [(1 − αE) 1
ϵ cHFt

ϵ−1
ϵ + α

1
ϵ
EcEt

ϵ−1
ϵ ]

ϵ
1−ϵ (5.1.2)

Where ϵ is the elasticity of substitution between energy and non-energy goods. The CES

utility function gives rise to the standard formulation for the domestic price index:

pt = [(1 − αE)p1−ϵ
HFt + αEp

1−ϵ
Et ]

1
1−ϵ (5.1.3)

23A discussion of the advantages of adopting GHH preferences in this setting is carried out in section 5.3.
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where pHt and pEt are respectively the prices of the non-energy and energy goods.

The non-energy good cHFt is in turn itself a CES aggregator of a home-produced good cHt

and foreign-produced good cFt:

cHFt = [(1 − α)
1
η cHt

η−1
η + α

1
η cFt

η−1
η ]

η
1−η (5.1.4)

Where η is the elasticity of substitution between the domestic and foreign good. The price

of the non-energy good can be derived as:

pHFt = [(1 − α)p1−η
Ht + αp1−η

F t ]
1

1−η (5.1.5)

Labor supply nt is a bundle of a unit mass of labor varieties k supplied by the household:

nt =
∫
nktdk (5.1.6)

where each variety’s supply nkt is determined by a union, whose optimization problem will

be discussed later.

Households can invest in a risk-free asset at; asset holding evolves according to:

ȧt = ztwtnt + rtat − pHFt
pt

cHFt − pEt
pt
cEt + dt (5.1.7)

where wt ≡ Wt/pt is the real wage, dt is the dividend amount rebated to the household, and

zt is an idiosyncratic productivity shock that follows a diffusion process with parameters

µ(z), ς2. The law of motion of at is constrained by the following borrowing limit:

at ≥ ā (5.1.8)

Household aims at maximizing lifetime utility (5.1.1) by choosing consumption and asset

holding under constraints (5.1.7) and (5.1.8). The household also solves an intratemporal

optimal consumption variety selection problem, which delivers the standard demand formu-
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lation for energy, and domestic and foreign goods:

cEt = αE

(
pEt
pt

)−ϵ

ct (5.1.9)

cHt = (1 − αE)
(
pHFt
pt

)−ϵ

(1 − α)
(
pHt
pHFt

)−η

ct (5.1.10)

cFt = (1 − αE)
(
pHFt
pt

)−ϵ

α

(
pFt
pHFt

)−η

ct (5.1.11)

The intertemporal problem of the household can be formulated recursively under the form

of a Hamiltonian-Bellman-Jacobi equation for household with productivity realization z and

asset holding a:

ρVt(a, z) =max
at,ct

[
1

1 − σ

(
ct − χ

n1+ϕ
t

1 + ϕ

)1−σ

− Ψ
2 π

W2
t + st(a, z)

∂Vt
∂a

]
+ µ(z)∂Vt

∂z
+ ς2

2
∂2Vt
∂z2 + ∂Vt(a, z)

∂t

(5.1.12)

The drift function s(a, z) is given by st(a, z) = ztwtnt+rtat− pHF t

pt
cHt− pEt

pt
cEt+dt. Optimality

leads to the standard first order condition for consumption:

ct(a, z)−σ = ∂Vt(a, z)
∂a

(5.1.13)

We can also define the joint density of wealth and productivity ft(a, z) (and the correspond-

ing cumulative distribution function Ft(a, z)). Its dynamics over time are governed by a

Kolmogorov-forward equation:

∂ft(a, z)
∂t

= − ∂

∂a
[st(a, z)ft(a, z)] − µ(z)∂Vt

∂z
+ ς2

2
∂2Vt
∂z2 (5.1.14)

I will assume that the process for z is normalized such that the idiosyncratic productivity

realizations aggregate to one:
1∫

0

zft(a, z)dz = 1 (5.1.15)
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Lastly, let us define aggregate consumption in the domestic economy:

Ct =
1∫

0

ct(a, z)ft(a, z)dadz (5.1.16)

5.2 Firms

The domestic good is a produced by a competitive mass of firms24 which operate under a

technology linear in aggregate labor Nt and aggregate productivity A:

YHt = ANt (5.2.1)

Aggregate labor Nt is a Dixit-Stigliz aggregator of labor varieties:

Nt =
(∫

N
ε−1

ε
kt

) ε
ε−1

(5.2.2)

where Nkt is the aggregate labor demand for variety k. The zero profit condition equates

the real wage per unit of output to the price of the domestic good:

wt
1
A

= pHt
pt

(5.2.3)

Notice that this implies zero dividends (dt = 0). Firms also face an optimal choice of the

labor variety mix, leading to the standard optimal labor variety demand:

Nkt =
(
Wkt

Wt

)−ε
Nt (5.2.4)

where Wkt is the nominal wage in labor market k.
24Auclert et al. (2023a) instead assumes a monopolisticaly competitive sector with flexible prices. This

allows to obtain endogenous markups under domestic currency export pricing - an extension here not explored
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5.3 Unions

Each union k determines the labor supply nkt - equal across all households - standing ready

to satisfy labor demand:

nkt = Nkt (5.3.1)

The union chooses the nominal wage Wkt at which it supplies labor in order to maximize the

average utility of agents, where inflation disutility is measured by a coefficient ψ that needs

not to be equal to the households’ “true” inflation cost Ψ25:

1∫
0

 1
1 − σ

(
ct − χ

n1+ϕ
t

1 + ϕ

)1−σ

− Ψ
2 π

W2
t

 dF (a, z) (5.3.2)

As shown in the appendix, solving the maximization problem and imposing symmetry across

unions gives rise to a standard New Kynesian Phillips curve in the labor market:

ρπWt = ε

ψ
Nt

(
χNϕ

t − ε− 1
ε

wt

)
+ dπWt (5.3.3)

From the equation above it can be seen how an increase in labor demand raises households’

marginal disutility of labor and drives unions to revise nominal wages upwards, causing wage

inflation to rise. Notice that the adoption of GHH preferences at the household level allows to

factor out any role for heterogeneity in the New Keynesian Phillips curve (otherwise the union

should take into account the average marginal utility from consumption of households, as in

Auclert, Rognlie, and Straub (2018)). Wolf (2023) follows a similar approach, by assuming,

instead of GHH, that the union maximizes the welfare of a hypothetical household consuming

the average level if consumption in the economy.

5.4 Foreign economy

The rest of the world is populated by a representative household with constant exogenous

consumption C∗. It has exactly symmetrical preferences to the domestic households, except

for the fact that it does not consume energy. Their consumption basket is therefore symmetric
25Allowing for different inflation costs of households and unions is a handy feature for computational

purposes, as discussed in section 6.3
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to (5.1.4)

ct = [α
1
η cHt

∗ η−1
η + (1 − α)

1
η cFt

∗ η−1
η ]

η
1−η (5.4.1)

Exported domestic goods are priced in foreign currency, and the law of one price holds.

Given these assumptions, foreign households feature a demand for the domestic good which

mirrors (5.1.10):

c∗
Ht = α

(
p∗
Ht

p∗
t

)−η

C∗ (5.4.2)

Where p∗
Ht and p∗

t are the home good price and the foreign price level in foreign currency,

respectively. The foreign price index p∗
t is given by the standard CES formulation, symmetric

to (5.1.3):

p∗
t = [(1 − α)p∗1−η

F t + αp∗1−η
Ht ]

1
1−η (5.4.3)

with p∗
Ft being the price of the foreign good in foreign currency; I assume p∗

Ft to be itself

a Dixit-Stigliz aggregator of a mass of varieties N∗, i.e. p∗
Ft =

(
N∫
0
p̃∗1−η
F t (n)dn

) 1
1−η

. For

N → ∞, imposing symmetry across the foreign varieties’ prices p̃∗
Ft(n) implies p∗

Ft → p∗
t -

namely, the foreign economy is “big” with respect to the domestic one, so its price index is

not affected by domestic economy’s price fluctuations.

Monetary policy in the foreign economy ensures full price stability:

p∗
t = p∗

Ft = 1 (5.4.4)

where I normalize p∗ to 1. Applying the law of one price, we obtain:

p∗
Ht = pHt/δt (5.4.5)

pFt = p∗
Ftδt = δt (5.4.6)

where δt is the nominal exchange rate. Defining the real exchange rate as Qt = pt

δtp∗
t

= pt

δt
, we

can rewrite foreign demand (5.4.2) as:

c∗
Ht = α

(
pHt
pt
Qt

)−η

C∗ (5.4.7)
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From the equation above, it can be noticed how a real appreciation (i.e. an increase in

Qt), leads foreign consumers to express a lower demand for domestic goods, which become

relatively less convenient.

In the light of the foreign price stability and law of one price assumptions, and using the

definition Qt = pt

δt
we can also rearrange the domestic price index (5.1.3) formulation to

obtain the real price of energy and the domestic and foreign goods as a functions of real

exchange rate Qt and energy price p∗
Et:

pEt
pt

= p∗
Et/Qt ≡ pE(Qt, p

∗
Et) (5.4.8)

pHt
pt

=
 1

1 − α

(
1 − αEpE(Qt, p

∗
Et)1−ϵ

1 − αE

) 1−η
1−ϵ

− α

1 − α
pF (Qt)1−η


1

1−η

≡ pH(Qt, p
∗
Et) (5.4.9)

pFt
pt

= 1/Qt ≡ pF (Qt) (5.4.10)

The real price of energy pEt/pt depends positively on the foreign nominal price of energy

p∗
Et, and negatively on the real exchange rate Qt: domestic goods’ appreciation indeed makes

imported energy relatively cheaper. pFt/pt depends negatively on the real exchange rate as

well: real appreciations indeed reduce the price of the foreign good relatively to the domestic

one. The real price of the domestic good, pHt/pt, depends negatively on both the real price

of energy and the real price of foreign goods: therefore, a real appreciation (i.e. and increase

in Qt) boosts the real price of domestic goods by making energy and foreign goods relatively

cheaper. An increase in energy price p∗
Et instead lowers pHt/pt by reducing the relative price

of domestic goods with respect to energy.

5.5 Financial intermediaries

The real risk-free asset claims in the domestic economy are supplied by competitive risk-

neutral financial intermediaries, which can invest in two types of nominal assets: a domestic

one, yielding it return in domestic currency, and a foreign one, yielding i∗t in foreign currency.

Following Galí (2020), assume a behavioral wedge in expectations, such that the expected

log real exchange rate of logQt+∆ is systematically biased to the level κ logQt+∆: for a
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proper choice of κ, the assumption guarantees the correct number of explosive eigenvalues

in the system of first order conditions of the discretized problem (Assumption 4.1.1). In

discrete time, the expected log-gain for the financial intermediaries in investing in the foreign

asset would be given by the log-foreign interest rate corrected by the log-change in the real

exchange rate (recalling that foreign inflation is equal to 0):

i∗ − (κ logQt+1 − logQt) =

i∗ − (κ(logQt+1 − logQt) − (κ− 1) logQt) (5.5.1)

The intermediaries seek to maximise profit, given by the total revenue from the investment

in the domestic and foreign asset, net of the payment due to the household (i.e. the real rate

rt times the aggregate investment of domestic agents); formally, the period t problem of the

intermediary writes:

max
ht

[
ht(it − πt)

∫
adFt(a, z) + (1 − ht)

[
i∗t − (κ ˙(lnQt) − (κ− 1) lnQt)

] ∫
adFt(a, z)

− rt

∫
adFt(a, z)

]
(5.5.2)

where ht and 1 − ht denote resepectively the fraction of aggregate investment allocated in

home and foreign assets, and πt = dPt/Pt and π∗
t = dP ∗

t /P
∗
t = 0 (the latter inflation term

being 0 by the foreign price stability assumption). Notice that the effective return of the

foreign asset takes into account the movements in the inverse of the real exchange rate over

time, ˙(lnQt). To rule out arbitrage opportunities (which would imply an optimal choice of

ht → ∞ or ht → −∞), the return from the two assets need to be equal (uncovered interest

parity, “UIP”):

it − πt = i∗t − (κ ˙(lnQt) − (κ− 1) lnQt) (5.5.3)

By perfect competition intermediaries make zero profit. Therefore, equating the argument

of objective (5.5.2) to zero, and substituting for condition (5.5.3), we can pin down rt as

equal to the nominal domestic rate net of inflation:

rt = it − πt (5.5.4)
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5.6 Central bank

Public sector is in charge to set the nominal interest rate on the domestic risk free asset it.

Following Auclert et al. (2023a), I assume that the central bank sets

it = πt + r′
t (5.6.1)

where r′
t is the targeted real interest rate.

5.7 Equilibrium

Given a path for the interest rates it and energy prices p∗
Et, an initial distribution of wealth

and productivity f0(a, z), and foreign consumption C∗, a competitive equilibrium is de-

fined as a path for households’ choices (at,cHt,cFt,c∗
Ht), firms’ choices (Nt), unions’ choices

(nt,πt), prices (rt, pH(Qt, p
∗
Et), pE(Qt, p

∗
Et), pF (Qt), wt, Qt), aggregate quantities (YHt,Ct) and

distributions (ft(a, z), consistent with the Kolmogorov forward dynamics (5.1.14)) such that

households and firms optimize, and the following market clearing conditions in the goods

and labor market are satisfied:

YHt =(1 − αE)
(
pHFt
pt

)−ϵ

(1 − α)
(
pHt
pHFt

)−η

ct + α

(
p∗
Ht

p∗
t

)−η

C∗ =

=(1 − αE)
(

1 − αEpE(Qt, p
∗
Et)1−ϵ

1 − αE

)− ϵ
1−ϵ

(1 − α)
(

1 − αpF (Qt)1−η

1 − α

)− η
1−η

Ct + α (pH(Qt, p
∗
Et)Qt)−η C∗

(5.7.1)

YHt =ANt (5.7.2)

Nt = nt (5.7.3)

where (5.7.1) is market clearing in the domestic consumption good’s market26, (5.7.2) is

market clearing the labor market, and (5.7.3) stands for the assumptions of households

complying with the unions’ choices in setting their labor supply (by symmetry among unions,

nkt ≡ nt ∀k). The goods market clearing condition (5.7.1) in particular is given by the sum
26Condition (5.7.1) is retrieved by substituting for pHF t/pt and pHt/pHF t by using the price indexes

(5.1.3) and (5.1.5) and results (5.4.8)-(5.4.10).
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of domestic demand (the first term on the right hand side) and foreign demand (the second

term on the right hand side). Notice that, for the elasticities ϵ → 0 and η → 0 , the impact

of energy price and the real exchange rate on demand goes to zero as well, as substitution

effects among goods are muted.

5.8 Steady state

In steady state pH(Q) and w are determined uniquely by the steady state Q. Therefore, by

(5.1.7), each household’s consumption in home and foreign good cH(a, z), cF (a, z) - and also

the overall consumption basket c(a, z) - is determined uniquely by Q, the steady state real

rate r and the states a, z. This implies that the drift function s(a, z) depends only on r and

Q. Then, by setting to 0 the left hand side of (5.1.14), we can obtain the whole steady state

distribution f(a, z) as a function of r and Q.

Aggregate consumption C is defined as C =
∫
c(a, z)f(a, z)dadz; since both the idiosyncratic

consumption levels c(a, z) and the distribution f(a, z) are determined by r and Q, we can

retrieve the following parsimonious functional formulation for C:

C = C(r,Q) (5.8.1)

Given r, equations (5.3.3),(5.7.1),(5.7.2),(5.8.1) and (5.5.3) define a system of five equations

in five variables: π, YH , N, C,Q. The model is calibrated such that, whenever is hit by a

temporary shock to policy (it) or exogenous variables (i∗t ), the dynamics revert to the initial

steady state: heterogeneous agents small open economy models can indeed feature stable

steady states thanks to the convergence property of the asset distribution (beyond Auclert

et al. (2023a), see also Nuño and Thomas (2022) de Ferra et al. (2020)27).
27Then it is not needed to resort to debt-elastic interest rates as commonly done in representative agent

models with incomplete markets
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6 Optimal monetary policy

6.1 The optimal policy problem

The monetary authority sets a path for the nominal interest rate it in order to maximise the

average utility of all the equally weighted households. The Ramsey problem is given, under

the Hamiltonian form, by

L =
∞∫

0

eρt

 1∫
0

 1
1 − σ

(
ct(a, z) − χ

n1+ϕ
t

1 + ϕ

)1−σ

− Ψ
2 π

W2
t

 dF (a, z)dadz + ξ′
tmt

 dt (6.1.1)

where mt is a vector of constraints and ξt is a vector of multipliers. The entries of vector mt

are the equilibrium conditions derived in the previous section: the Kolmogorov-forward equa-

tion (5.1.14), the Bellman equation (5.1.12), the intertemporal optimality condition (5.1.13),

market clearing conditions (5.7.1), (5.7.2), (5.7.3), domestic wage and price determination

(5.2.3) and (5.4.9), the new Keynesian Phillips curve (5.3.3), UIP (5.5.3), zero profit condi-

tion of the intermediaries (5.5.4), and monetary policy (5.6.1).

The discretized version of problem (6.1.1) is a Lagrangian of which I can derive first or-

der conditions with respect to all the variables of the problem. According to the notation

introduced in section 2, I label by N the number of gridpoints spanning every possible com-

bination of idiosyncratic states a, z; moreover, NZ = 4 stands for the number of aggregate

variables Nt, πt, wt, Qt (after simple rearrangements that allow to remove Ct and YHt from

the final set of erquilibrium conditions). The discretized problem is reported below:

L =
∞∑
0
βt

∑
i,j

f ti,j

 1
1 − σ

(
cti,j − χ

N1+ϕ
t

1 + ϕ

)1−σ

− Ψ
2 π

W2
t

+ ξ′
tmt

 (6.1.2)

where β = 1/(1 + ρ∆), and f ti,j and cti,j are respectively the discretized distribution and

consumption level for states a = i, z = j. The vector of constraints mt is given by the

discretized equilibrium conditions, as follows:
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mt =



∀i, j



f t
i,j−f t−1

i,j

∆ −
[

− f t
i,j [Ntwtzj+rai−ct

i,j ]+−f t
i−1,j [Ntwtzj+rai−1−ct

i−1,j ]+

∆a

−f t
i+1,j [Ntwtzj+rai+1−ct

i+1,j ]−−f t
i,j [Ntwtzj+rai−ct

i,j ]−

∆a

−f t
i,jµ(zj)−f t

i,j−1µ(zj−1)
∆z + f t

i,j+1ς
2+f t

i,j−1ς
2−2f t

i,jς
2

2(∆z)2

]

∀i, j



vn+1
i,j −vn

i,j

∆ + ρvn+1
i,j −

[
u
(
cni,j
)

+ vt+1
i+1,j−vt+1

i,j

∆a

(
Ntwtzj + rai − cti,j

)+
+

+vt+1
i,j −vt+1

i−1,j

∆a

(
Ntwtzj + rai−1 − cti−1,j

)−

+vt+1
i,j+1−vt+1

i,j

∆z µ+
j + vt+1

i,j −vt+1
i,j−1

∆z µ−
j + ς2

2
vt+1

i,j+1−2vn+1
i,j +vt+1

i,j−1
(∆z)2

]

∀i, j
{ (

cti,j − χ
N1+ϕ

t

1+ϕ

)−σ
−
[
vt

i+1,j−vt
i,j

∆a [Ntwtzj + rai − cti,j]+ + vt
i,j−vt

i−1,j

∆a [Ntwtzj + rai − cti,j]−
]

ANt −
[
(1 − αE)

(
1−αEpE(Qt,p∗

Et)1−ϵ

1−αE

)− ϵ
1−ϵ

(1 − α)
(

1−αpF (Qt)1−η

1−α

)− η
1−η ∑

i,j f
t
i,jc

t
i,j+

+α (pH(Qt, p
∗
Et)Qt)−η C∗

]
wt − ApH(Qt, p

∗
Et)

ρπWt −
[
ε
ψ
Nt

(
χNϕ

t − ε−1
ε
wt
)

+ πW
t+1−πW

t

∆

]

rt −
[
i∗t − (κ ˙(lnQt) − (κ− 1) lnQt)

]



where vti,j is the value function for states i, j at time t. The entries of mt are given by (in

order): the Kolmogorov-Forward condition, the HBJ equation, the optimality condition of

households. These are the N × 3 conditions (recalling that N is equal to the number of all

possible ij combinations). The remaining NZ = 4 constraints are the market clearing in the

goods-labor markets, the firms’ pricing condition, the Phillips curve and the UIP condition.

The resulting set of first order conditions of problem (6.1.2) includes N conditions for con-

sumption cti,j, and the same number of equations for vti,j and f ti,j (summing to N × 3 condi-

tions). Moreover, NZ conditions hold for each of the aggregate variables, plus one first order

condition for the policy variable rt. The system of first order conditions at time t can be

summed up in the following compact form (see equation (4.1.2)):

Atξt+1 +Btξt + Ctξt−1 + dt = 0 ∀t (6.1.3)

126



where At, Bt.Ct, dt are matrices filled with non-multiplier variables or parameters.

6.2 Timeless perspective

In expression (6.1.1) all the forward-looking variables (i.e, Vt(a, z), πt, Qt) show up both in

mt and mt−1: therefore, for t = 0, some elements of ξ−1 show up in the system. Following

the “timeless penalties” approach described in section 3, I set m−1 = m, so that the initial

multipliers of the forward-looking variables are at their steady state values. This is the

timeless perspective which considers optimal policy as having been implemented since far in

the past.

From the discussion above, in order to solve for the dynamics of the model we need first to

solve it in steady state to obtain the stationary vector of costates m, containing the initial

condition for the multipliers of the forward looking variables. In line with section 2, the

steady state system display 2× (NZ +N×3)+1 equations in 2× (NZ +N×3)+1 unknowns

(the +1 standing for the steady state policy variable r̄).

Now that, once solved for the steady state of the model under the Ramsey plan, we are able

to retrieve the initial multiplier vector m−1 ≡ m; therefore now it is possible to solve the

system of first order conditions and constraints also over the dynamics, as we computed the

necessary initial conditions on multipliers.

6.3 The algorithm

The goal of the algorithm is to solve the system of 2 × (NZ +N × 3) + 1 (constraint and first

order conditions) to recover the pattern of the variables and the multipliers over time.

The starting point is to guess the pattern for the real rate rt - which, using the NZ +N × 3

constraints contained in vector mt, in turn delivers the pattern for all the NZ +N × 3 non-

multiplier variables (ct(a, z),Vt(a, z), qt, etc.). As discussed in section 2, to accomplish this

task I adapt the standard routine by Achdou et al. (2021) to the current framework:

• Compute {Nt} as a function of {Qt}, {p∗
Et}, {Ct} (see equilibrium conditions (5.7.1)-

(5.7.3)). Note that {Qt} can be computed separately at once trough (5.5.3), given the

sequence for {rt}
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• Use {Ct}, {Nt}, {wt} to compute πWt backward, starting from πWT = 0

• Compute πt = wt−1
wt

1
πW

t
∀t ≤ T (notice w−1 = w̄)

• Solve the household problem backward, starting from the value functions in steady

state.

• Compute the new path for aggregate consumption {C ′
t} = {∑ a, zct(a, z)dadz}

• Update Ct as Ct = (1 − ϑ)Ct + ϑC ′
t for an arbitrary coefficient ϑ ∈ (0, 1)

• Iterate until convergence of max |{Ct} − {C ′
t}| to some low threshold value.

Once computed the value of all the non-multipliers variable through the routine above

(Nt, πt, wt, Qt, plus the cti,j, vti,j, f ti,j for each of the N gridpoints), I can fill the entries of

the matrices At, Bt, Ct, dt of the system given by the Nz + N × 3 + 1 first order conditions

of the planner:

Atξt+1 +Btξt + Ctξt−1 + dt = 0 ∀t (6.3.1)

where At, Bt, Ct is a (Nz+N×3+1)×(Nz+N×3+1) matrix and dt is a (Nz+N×3+1)×1

vector; both have entries filled with of “parameters” (i.e. their entries contains either properly

said parameters, or the guessed values of the non-multipliers variables). ξt is a (Nz+N×3+1)

vector of multipliers. System (6.3.1) can be solved along the lines of section (4.1). In

particular we can segment vector ξt into multipliers of forward-looking (Vt, qt, πt), backward

looking (ft), and contemporaneous variables to obtain subsystems of the type (4.1.3)-(4.1.4).

The whole model is solved by the guess and update routine on rt, starting from the rt = r ∀t

guess, then going through the iteration on Ct to compute non-multiplier variables, and then

solving (6.3.1) to retrieve the first order condition with respect to rt and update its value

accordingly, as outlined in Figure 4.1.

7 Simulation

Optimal monetary policy in the current setting is characterized by the tension between

two forces: on ones side the need to sustain consumption by implementing a mild interest
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rate policy, and on the other side a monetary contraction motive, that allows to fight the

real depreciation induced by the energy shock, by acting on the UIP margin (equation

(5.5.3)). This trade-off is analyzed in depth in Corbellini (2024a), as a key determinant of

the incentives of the policymaker in face of an energy shock. The remainder of this sections

outlines the results in terms of optimal monetary policy when the model described so far is

hit by a shock to energy price p∗
Et.

7.1 Calibration

I consider a time step ∆ = 1/3, implying monthly data. The asset continuum is discretized

into I = 30 gridpoints, where ā = −1 and amax = 5, while the shock values z are discretized

into 10 gridpoints. The coefficient of relative risk aversion σ and the inverse Frisch elasticity of

labor supply ϕ are both set at 2. The discount factor ρ is 0.04, while i∗ = 0.03. The diffusion

process is characterized by ς = 1.52 and −µ(z) = − log(1/ exp(0.05))(zmean − z). The labor

disutility coefficient χ is set at 0.01, and the trade elasticities ϵ and η are set respectively

at 0.1 and 0.51, following Auclert et al. (2023b). I assume a coefficient ε/ψ = 0.02 in the

New Keynesian Phillips curve - a standard calibration choice. The steady state real price

of energy p̄E/Q is set to the high value 15: that, for presentation purposes, minimizes the

extent of the “appreciation” channel of a monetary contraction compared to the debt-cost

channel, providing an interesting result of in terms of desirability of a monetary loosening,

displayed in the next section. The shock process is log-autoregressive with a low persistence

parameter ρE = 0.5:

log(p∗
Et) = ρ log(p∗

Et−1) + εt (7.1.1)

where εt0 is such to raise the initial price above steady state by 10% i.e. εt0 = log(0.5p̄E).

7.2 Results

Figures 7.1 and 7.2 report respectively the impulse response functions of aggregate variables

and crossectional consumption for each level of wealth to the shock specified above. The

outcome is compared to an inertial policy of the type considered in Auclert et al. (2023b),

where the real interest rate is kept constant by the monetary authority.
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The higher price of energy reduces the real value of wages; due to a low elasticity between

energy and non-energy consumption ϵ, this effect on income is not balanced by a higher

demand for domestic goods, therefore aggregate and crossectional consumption falls (as in

Auclert et al. (2023b) and Corbellini (2024a)). In the optimal policy scenario, the central

bank finds more convenient to sustain aggregate consumption by a real interest rate cut,

which benefits more the household holding a lower asset level, rather then appreciating the

real exchange rate by an interest rate hike. The consumption gain is present at all levels of

wealth as, showed in the crossectional outcome figures. In particular, the first wealth decile,

made up by borrowers, is benefited by lower debt costs. Inflation and real wages remain

substantially unchanged from the inertial policy scenario, due to the modest effect on the

real exchange rate of the implemented interest rate policy. Wage inflation slightly decreases

in both policy cases, due to the fall in consumption and hence labor demand.
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Figure 7.1: Optimal policy vs. Constant real interest rate. Aggregate variables impulse
response

Figure 7.3 illustrates the welfare gain - in terms of of implementing optimal policy with

respect to constant real rate policy: the gain is expressed simply as the difference between

the average value function for each asset level at time 0, without considering the commitment
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Figure 7.2: Optimal policy vs. Constant real interest rate. Crossectional consumption
impulse response
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Figure 7.3: Optimal policy vs. Constant real interest rate. Welfare gains in terms of average
value function across shocks z for each discretized asset level a

value of timeless penalties. Optimal policy benefits all the households at each asset level,

consistently with the distributional outcome showed in Figure 7.2.

8 Conclusion

This paper presented an algorithm to compute optimal policy in HANK through a discretize-

then-optimize routine in the spirit of Nuño et al. (2023). The contribution of the paper relies

on exploiting the linearity of the first order conditions of the Ramsey planner in the co-states
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to deliver less-computationally intensive solution method. The algorithm proves effective in

handling non-stylized models, as a small open economy HANK subject to energy shocks.
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