
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
6
2
3
5

|

d
o
w
n
l
o
a
d
e
d
:

6
.
6
.
2
0
2
5

Pattern Recognition on Reduced
Graphs

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Anthony Gillioz

von Isérable VS

Leiter der Arbeit:

PD Dr. K. Riesen
Institut für Informatik, Universität Bern

This work is licensed under a Cre-
ative Commons “Attribution 4.0 In-
ternational” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

ii Pattern Recognition on Reduced Graphs

Pattern Recognition on Reduced
Graphs

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Anthony Gillioz

von Isérable VS

Leiter der Arbeit:

PD Dr. K. Riesen
Institut für Informatik, Universität Bern

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, den 27.05.2024 Der Dekan:
Prof. Dr. Marco Herwegh

ii Pattern Recognition on Reduced Graphs

Abstract

In both everyday life and business, a huge amount of data is generated,

underscoring the need for researching and developing efficient and accurate

methods to automatically process these massive amounts of data. The data

generated is often inherently complex, making traditional feature vectors

not well suited for data representation. Graphs provide a general and ver-

satile data representation that can be used to represent a wide range of

complex systems. In addition, a variety of graph-based pattern recognition

algorithms have been proposed in recent years, further strengthening this

approach.

One of the main challenges hindering the widespread use of graph-based

pattern recognition, is the expensive computation time required by most of

the graph-based algorithms. Although approximation algorithms have been

proposed for various tasks, the computation time remains a challenge, in

particular when the graph sizes increase. In this thesis, we aim to address

the problem of computation time by reducing the input size of the under-

lying graphs through an approximation of the data. In this particular case,

data approximation refers to reducing the size of a graph while maintaining

its essential properties. The major hypothesis of this thesis is as follows. As

the input problem is reduced, the overall computation cost of graph-based

pattern recognition algorithm should be reduced as well. The crucial ques-

tion is, of course, what happens to the accuracy of the respective methods

when they operate on reduced rather than on the original data.

In the present thesis, four graph reduction methods are introduced and

thoroughly evaluated in the context of graph-based pattern recognition.

The first technique is based on sampling the most important nodes within

a graph. To this end, centrality measures to compute scores for each node

are used. Next, one can remove a given percentage of the nodes with

iii

iv Pattern Recognition on Reduced Graphs

the lowest scores to generate reduced versions of the graphs. The second

method is based on a spectral clustering algorithm of the graphs, which

identifies communities within a graph. Those communities are aggregated

into super-nodes, and the inter-community edges are aggregated into super-

edges to create reduced graphs. The third method uses a modified graph

neural network to learn the importance of each node in the graph from

the data. Based on these learned scores, the graph reduction method re-

moves the nodes with the least importance. The fourth method uses a

compression-based distance metric. In this approach, graphs are reduced

with a compression algorithm and a distance is derived out of this compres-

sion.

To evaluate the benefits and imitations of the four reduction methods,

we perform comprehensive empirical evaluations of all reduction methods

on different real-world datasets. In this context, we compare both their

classification accuracy and their computational efficiency with the results

obtained on the original graphs. A wide variety of graph classifiers are

used. In general, the evaluation confirms that even highly reduced graphs

maintain satisfactory classification accuracies and can significantly speed

up graph-based pattern recognition. Furthermore, we utilize the reduced

graphs in various novel graph matching frameworks with the general aim to

improve the overall classification accuracy, and we succeed in this endeavor

in several scenarios.

Acknowledgments

My heartfelt thanks go to my supervisor, PD Dr. Kaspar Riesen, for his

invaluable guidance and encouragement throughout this journey. I am es-

pecially thankful for his role in helping me face my deepest fear: ”the blank

page syndrome”. With perseverance and a willingness to face this challenge

head-on, I gradually gained confidence in my writing abilities. As a result,

I made significant progress in overcoming the initial obstacles and moving

forward with my work. The guidance and support of PD Dr. Riesen were

pivotal in this process, and I am sincerely thankful for his mentorship. I ex-

tend my gratitude to Prof. Dr. Benoit Gaüzère for serving as the co-referee

of this thesis and to Prof. Dr. Timo Kehrer for supervising the examination

process. Additionally, I would like to acknowledge the funding provided by

the Swiss National Science Foundation under Project 200021 188496.

A big shout-out to my colleagues of the Pattern Recognition Group

for their camaraderie, support, and shared experiences. In particular, I

would like to thank Dr. Mathias Fuchs, my co-PhD student. Mathias has

always been open to discuss and share new ideas on a wide range of topics,

extending beyond technical matters. For this, I am truly thankful.

I owe a debt of gratitude to the faculty and staff of the Institute of

Computer Science, especially Dr. Peppo Brambilla, Bettina Choffat, and

Prof. Dr. Thomas Studer. Their consistently positive attitude, moral sup-

port and assistance with numerous technical and administrative challenges

have been invaluable. Additionally, I appreciate their role in providing a

friendly environment during our coffee breaks, which has contributed to a

positive working atmosphere.

Je tiens à remercier ma mère, mon frère et ma sœur pour leur soutien et

leur gentillesse tout au long de ma thèse. Votre encouragement m’a donné

la force et la motivation nécessaires pour poursuivre cette aventure (pour

v

vi Pattern Recognition on Reduced Graphs

ça, merci maman). To the friends I have made along the way, I would like

to express my sincere gratitude. Thank you for always providing me with

a space to clear my mind, both during the good and the bad times. Your

friendship and support have been invaluable throughout this journey.

Last but not least, I want to extend my gratitude to Sabrina Selva for

her always positive attitude (except when we have to leave early in the

morning, lmao XD). Thank you for your unwavering support during the

final, stressful months of the thesis. Your encouragement has always been

a source of strength to me.

Contents

Abstract iii

Acknowledgments v

1. Introduction 1

2. Graph Based Pattern Recognition 7

2.1 Machine Learning . 9

2.1.1 Learning Paradigms 10

2.2 Statistical vs. Structural Pattern Recognition 12

2.2.1 Statistical Pattern Recognition 13

2.2.2 Structural Pattern Recognition 13

2.2.3 Basic Definitions on Graphs 14

2.3 Graph Matching . 18

2.3.1 Exact Graph Matching 19

2.3.2 Inexact (Error-tolerant) Graph Matching 22

2.4 Graph Classifiers . 24

2.4.1 Distance-based Graph Classifier 24

2.4.2 Kernel-based Graph Classifier 27

2.4.3 Neural Network-based Graph Classifier 31

2.5 Graph Reduction . 33

2.5.1 Graph Summarization 36

2.5.2 Graph Coarsening 37

2.5.3 Hierarchical Graph Reduction 38

vii

viii Pattern Recognition on Reduced Graphs

3. Graph Datasets 41

3.1 Chemical Compound Graph Datasets 43

3.1.1 AIDS . 44

3.1.2 BZR & BZR-MD 45

3.1.3 COX2 & COX2-MD 47

3.1.4 DHFR & DHFR-MD 49

3.1.5 ER-MD . 51

3.1.6 MUTAG . 52

3.1.7 MUTAGENICITY 53

3.1.8 NCI1 & NCI109 54

3.1.9 PTC . 56

3.2 Bioinformatic Graph Datasets 59

3.2.1 DD . 60

3.2.2 ENZYMES . 61

3.2.3 PROTEINS . 63

3.2.4 KKI . 64

3.2.5 OHSU . 65

3.2.6 Peking-1 . 66

3.3 Computer Vision Graph Datasets 67

3.3.1 MSRC-9 & MSRC-21 68

3.4 Social Networks Graph Datasets 72

3.4.1 COLLAB . 73

3.4.2 IMDB-BINARY 74

3.4.3 REDDIT-MULTI-5K & REDDIT-MULTI-12K . . 75

3.5 Dataset Filtering . 78

3.5.1 Classification Methods Comparison 78

3.5.2 Experimental Setup 80

3.5.3 Graph Classification 81

3.5.4 Dataset Selection 86

4. Graph Reduction by means of Centrality Measures 91

4.1 Introduction . 91

4.2 Graph Reduction Using Centrality Measures 93

4.2.1 Centrality Measures 93

4.2.2 Creation of Reduced Graphs 94

4.2.3 Qualitative Results 96

Contents ix

4.3 Graph Matching on Reduced Graphs 98

4.3.1 Computation Time and Classification Accuracy . 99

4.3.2 GED Quality Measure 102

4.4 Two-Step Graph Classification 105

4.4.1 Candidate Selection Strategy 106

4.4.2 Early Classification Strategy 107

4.4.3 Experimental Evaluation 108

4.5 Multiple Classifier System Based On Reduced Graphs . . 112

4.5.1 Building a Multiple Classifier System 113

4.5.2 Experimental Setup and Validation Process 116

4.5.3 Accuracy of the Multiple Classifier System 120

4.5.4 Time Analysis . 122

4.6 Conclusion . 123

5. Graph Reduction by means of Spectral Clustering 127

5.1 Introduction . 127

5.2 Graph Reduction Method 128

5.2.1 Graph Clustering 129

5.2.2 Graph Reduction 130

5.3 Experimental Evaluation 133

5.3.1 Datasets . 133

5.3.2 Experimental Setup 135

5.3.3 Classification Accuracy and Computation Time . 137

5.3.4 Similarity/Dissimilarity Quality Measure 142

5.4 Conclusion . 146

6. Further Graph Reduction Methods 149

6.1 Introduction . 149

6.2 Graph Reduction Neural Networks for Structural Pattern

Recognition . 150

6.2.1 Graph Reduction Neural Network (GReNN) . . . 151

6.2.2 Graph Matching on GNN Reduced Graphs 153

6.2.3 Datasets and Experimental Setup 154

6.2.4 Analysis of the Structure of the Reduced Graphs . 154

6.2.5 Classification Results 157

6.2.6 Ablation Study 158

x Pattern Recognition on Reduced Graphs

6.3 Graph Classification With Normalized Compression Distance159

6.3.1 The Normalized Compression Distance (NCD) . . 160

6.3.2 Graph Matching via NCD 162

6.3.3 Empirical Evaluation 165

6.4 Conclusion . 173

7. Conclusion and Future Work 175

Appendix A Appendix Chapter 3 179

A.1 T-SNE Visualization of Labeled Datasets 179

Appendix B Appendix Chapter 4 181

B.1 Visualization of Reduced Graphs by Means of Centrality

Measures . 181

B.2 Visualization of the Pairwise GED between the Original

Graphs and their Reduced Counterpart 184

Appendix C Appendix Chapter 5 185

C.1 Visualization of the Pairwise GED between the Original

Graphs and their Reduced Counterpart 185

C.2 Visualization of the Pairwise SP between the Original

Graphs and their Reduced Counterpart 187

C.3 Visualization of the Pairwise WL between the Original

Graphs and their Reduced Counterpart 189

Appendix D Appendix Chapter 6 191

D.1 Analysis of the Connected Components of Graphs Reduced

with GReNN . 191

D.2 Example of Reduced Graphs using GReNN 194

Bibliography 197

Introduction 1
J’ai été élevé selon le principe que l’oisiveté est
mère de tous vices. Comme j’étais un enfant
pétris de vertu, je croyais tout ce qu’on me
disait, et je me suis ainsi doté d’une conscience
qui m’a contraint à peiner au travail toute ma
vie.

Éloge de l’oisiveté (1932), Bertrand Russell

Pattern Recognition is the ability to identify, analyze, and interpret

recurring patterns in data. This process happens both in the human brain

and through computer algorithms. For humans, it helps us navigate the

world, make sense of information, and learn new things. For computers, it

enables them to automate tasks, make predictions, and perform complex

analyses. Humans do it intuitively, while computers rely on algorithms to

identify patterns in data. Patterns can be simple, like the stripes on a

zebra, or complex, like the trends in the stock market.

The human brain is constantly engaged in pattern recognition and uses

it in our everyday life. For instance, when we meet a friend, our brain

compares the visual information with the facial patterns in our memory,

which enables recognition. Spoken and written words also follow patterns

(e.g., words, grammar or syntax), which our brain learns to decode. Even

when we are listening to music, our brain recognizes patterns of melody,

rhythm and harmony. These patterns help us to anticipate the notes or

beats that follow and give meaning to the music we hear. By analyzing

features and comparing them to known patterns, we can extract meaning

from data and make informed decisions.

As mentioned above, computers use algorithms to recognize patterns.

Pattern recognition algorithms can be used to automate tasks, make pre-

1

2 Pattern Recognition on Reduced Graphs

dictions, and perform complex analyses. In general, pattern recognition

algorithms can be divided into different categories based on the way they

actually recognize the patterns. Some algorithms rely on a set of fine-tuned

features, while others rely on features learned directly from data. One of

the main advantages of computer algorithms over the human brain is their

ability to process large amounts of data, recognize hidden complex pat-

terns, and uncovering subtle trends humans might miss. Moreover, pattern

recognition algorithms can perform complex computations and repetitive

tasks both quickly and accurately, making them invaluable tools in various

research areas. Actually, automatic pattern recognition has proven to be

superior to manual analysis in many situations [1].

In areas where vast amounts of data are generated pattern recognition

algorithms are even more valuable. For instance, in a field such as bioin-

formatics, the advent of genome sequencing techniques has generated vast

amounts of data that can be used to describe complex life at the molecular

level [2]. This genetic data is important for advancing medical research and

understanding the complex interactions between genes in microbial commu-

nities. Similarly, the data-driven forecasting has also begun in the field of

weather forecasting. Modern satellite systems and complex networks of

sensors collect vast amounts of stratospheric data, including temperature,

humidity, and wind speed, giving meteorologists a better understanding of

weather patterns [3]. By analyzing this data, meteorologists can make more

accurate weather forecasts and predict long-term climate trends and poten-

tial natural disaster. However, the exponential growth of data brings with

it new challenges, ranging from the development of efficient management

and analysis tools to ethical implications in data use.

Pattern recognition has become one of the cornerstones of artificial intel-

ligence and its importance cannot be overestimated, as it allows machines to

efficiently recognize patterns and learn from large amounts of data. Pattern

recognition can be divided into two main approaches, each of which offers

different perspectives and has its own strengths and weaknesses depending

on the scenario. The first approach is statistical pattern recognition. This

approach analyzes the statistical properties of features in the data, such

as means, variances and co-occurrences. The statistical approach is char-

acterized by its ease of implementation and interpretation, its efficiency in

dealing with large data sets and its robustness to noise and data variabil-

ity. The second approach is structural pattern recognition, which focuses on

analyzing spatial or relational arrangements of data elements to describe

the data components. This approach has the advantage that it can de-

Introduction 3

scribe more complex data elements (including relationships). In addition,

structural shape recognition provides valuable information about the inter-

nal structure of shapes, which improves the understanding of complex data

models. In the remainder of the present thesis, we focus our attention on

structural pattern recognition.

Graph matching is an important part of structural pattern recogni-

tion, in which correspondences between graphs or graph-like structures (e.g.

trees) are compared and found. Graphs are mathematical representations of

nodes connected by edges and can be used to model a variety of structured

data, such as networks, molecular structures and relational databases. In

the context of pattern recognition, graph matching algorithms aim to rec-

ognize similarities and correspondences between (sub-)graphs, enabling, for

instance, pattern matching or relationship inference.

Over the last four decades, structural pattern recognition with graphs

has evolved significantly, leading to the development of various graph match-

ing algorithms [4; 5], graph kernels [6; 7], and graph neural networks [8; 9].

• Graph matching algorithms have evolved to accurate and efficient

methods for finding matches between graph components. Former

methods typically involved subgraph isomorphism [10] or graph

edit distance [11]. More, recent developments have led to the

emergence of spectral graph matching methods [12; 13; 14] and

approaches based on continuous optimization [15; 16; 17].

• Graph kernels aim to define similarity measures between graphs

by embedding them in high-dimensional feature spaces where con-

ventional machine learning algorithms can operate. Different type

of graph kernels have been proposed, including random walk ker-

nels [18], shortest-path kernels [19], or Weisfeiler-Lehman subtree

kernels [20], each describing a different aspect of graph structure

and topology.

• Graph neural networks have been shown to be an effective class of

models for learning representations of graph data. Graph neural

networks use the structure of a graph to send information mes-

sages between nodes, thus allowing to represent complex depen-

dencies and interactions in the graph. Architectures such as graph

convolutional network [21], graph attention network [22], and gated

graph recurrent network [23] have been proposed and have achieved

state-of-the-art performance on a variety of graph-based tasks.

4 Pattern Recognition on Reduced Graphs

Graph matching algorithms, graph kernels and graph neural networks

have shown promising results in overcoming various challenges inherent to

structural pattern recognition. Their application span a wide range of fields,

including signature verification [24], biological network predictions [25], so-

cial network analysis [26], and others.

However, graph-based techniques in pattern recognition are still limited

in some cases due to expensive computational requirements. Actually, the

computational cost of pattern analysis and detection using graph-based

representation is high due to their ability to model complex structural

relationships. For instance, graph matching algorithms aim to find cor-

respondences between nodes and edges of different graphs, which can be

computationally expensive as the number of possible correspondences in-

creases exponentially depending on the size of the graph [27]. Similarly,

graph kernels compute pairwise similarities between graphs by embedding

them into higher dimensional feature spaces, which increases the compu-

tational requirements, especially for large graphs [7]. In addition, graph

neural networks have computational time issues as they iteratively pass

information between neighboring nodes. Especially for large, densely con-

nected graphs, this requires significant computational resources and time

for learning and evaluation [9]. As a result, the computational challenges

hinder the widespread use of graph-based methods in real-world applica-

tions.

To address the computational issues of graphs in pattern recogni-

tion, approximation techniques have been proposed for both graph match-

ing [11; 28] and graph kernels [29; 30]. Additionally, for graph neural net-

works more efficient training procedures have been researched [31]. How-

ever, working with large graphs remains a challenge even with these more

efficient algorithms.

A complementary strategy to improve the efficiency of graph-based pat-

tern recognition is to use simplified graphs. The simplification can be

achieved through graph reduction [32; 33; 34] and involves reducing the

number of nodes and edges in the graph. However, the main difficulty lies

in finding graph reduction techniques that preserves the main topology and

properties of the original graph [33]. There exists three major strategies to

perform graph reduction, namely graph summarization, graph coarsening,

and hierarchical graph reduction.

Graph summarization [32] is a graph reduction strategy that can be used

to discover complex patterns in graphs. Graph summarization methods

consist of selecting the most relevant nodes in the graph structure, and

Introduction 5

ultimately removing the nodes with the lowest importance in a sampling

strategy. Graph summarization eases the discovery of complex patterns

in structural data and is employed in a wide range of applications, such

as community detection [35], classification [36], and visualization [37].

Graph coarsening [33; 34] is the second prominent graph reduction

strategy. Graph coarsening methods consist of clustering nodes together

into super-nodes and aggregating the inter-cluster edges into super-edges.

That is, unlike graph summarization, graph coarsening techniques do not

remove nodes and/or edges while reducing the graphs, but rather merge

substructures. Graph coarsening methods have found application in ma-

chine learning, where coarsened graphs are used to speed up the training

of graph neural networks [33] or in electrical networks, where coarsening

techniques are used to obtain lower dimensional electrically equivalent cir-

cuits [38].

Hierarchical graph representation [39] is a third prominent graph re-

duction approach. This approach makes use of graph summarization and

graph coarsening methods to progressively reduce the original graphs as

the number of reduction levels increases. The key concept of hierarchical

graph representation methods is to construct a pyramid of subgraphs and

then use the subgraphs at the highest level to perform the graph matching.

For instance, in [40; 41], hierarchical representation for graphs is used in

a pattern recognition context. The authors propose to embed graphs into

a vector space and use a community detection method to find the nodes

to merge. Thereby, they create a representation that encodes the abstract

information while preserving the relationship with the initial graph.

In the present thesis, we propose and analyze various graph reduction

methods from both graph summarization and graph coarsening in the con-

text of structural pattern recognition. The main goal of the present thesis

is to generate reduced graphs that, when used with graph-based pattern

recognition methods (i.e., graph matching, graph kernels, or graph neural

networks), can maintain, or even outperform, the results achieved with the

original graphs. In order to verify whether we have achieved our goal, we

conduct thorough evaluations using datasets stemming from a wide range

of domains.

The remainder of the thesis is organized as follows. First, Chapter 2

outlines the theoretical background necessary to understand the details

of this thesis. Next, we present 28 graph datasets used throughout the

thesis in Chapter 3 (the graph datasets represent chemical compounds as

well as data from bioinformatics, computer vision, and social media net-

6 Pattern Recognition on Reduced Graphs

works). In Chapter 4, we introduce a first graph reduction method that is

based on centrality measures. We also describe how the generated reduced

graphs can be employed for graph-based pattern recognition (this chapter

is the first major part of the present contribution and is is based on four

papers [42; 43; 44; 45]). Following this, in Chapter 5, we introduce and

analyze a novel graph reduction method that uses spectral clustering (this

chapter is based on one journal paper [46]). The final part of the thesis

is presented in Chapter 6, where we propose two further graph reduction

methods using graph neural networks and a compression based distance

metric (this chapter summarizes two preliminary papers [47; 48]). Finally,

Chapter 7 draws general conclusions and provides a thorough list of ideas

for future research activities.

Graph Based Pattern
Recognition 2

La crise est le moment où l’ancien ordre du
monde s’estompe et où le nouveau doit
s’imposer en dépit de toutes les résistances et de
toutes les contradictions. Cette phase de
transition est justement marquée par de
nombreuses erreurs et de nombreux tourments.

Cahiers de prison (1948), Antonio Gramsci

This chapter closely follows the theory and structure presented

in [11; 49]. It provides the essential theoretical foundation on which the

main contribution of this thesis is based (described in Chapters 4, 5 and 6)1.

The present chapter is structured as described in the following paragraph,

with a visual summary shown in Fig. 2.1.

First, Section 2.1 gives a basic overview of the essential theoretical foun-

dations of machine learning. Subsequently, the distinction between statis-

tical and structural learning is discussed in detail in Section 2.2. In par-

ticular, the focus is on graph data structures, as it is the main object of

investigation of the present thesis. A common task related to graphs, and

a prominent one addressed in this thesis, is to perform some kind of match-

ing between any two (sub)graphs. Therefore, in Section 2.3 the concept of

graph matching and the main differences between exact and inexact graph

matching are explained in detail. In Section 2.4, we present three families

of popular graph-based pattern recognition, namely Graph Edit Distance,

Graph Kernel, and Graph Neural Network. These three families of graph

algorithms are used in association with three classifiers to perform the final

classification (namely, a k-Nearest Neighbor classifier, a Support Vector Ma-

1It is important to note, however, that the present chapter does not describe a contri-
bution of the author.

7

8 Pattern Recognition on Reduced Graphs

chine, and a Neural Network). Throughout the remainder of this thesis, all

of these graph classifiers play a pivotal role and serve as a verification proto-

col to evaluate the performance of the proposed graph reduction methods.

Finally, in Section 2.5, we introduce the general concept of graph reduc-

tion and explain the main challenges of graph reduction in the context of

pattern recognition.

Fig. 2.1: Diagram illustrating the organization of Chapter 2.

Graph Based Pattern Recognition 9

2.1 Machine Learning

Machine Learning is a subfield of Artificial Intelligence that enables algo-

rithms to improve their performance in a data-driven manner. To be more

precise, the general machine learning process involves fitting mathemati-

cal models on data to identify patterns and, ultimately, to make accurate

predictions or decisions. Machine learning algorithms differ from other con-

ventional methods in that they do not rely on a rigid set of rules but on

learning patterns and relationships directly from data, allowing them to

improve their performance over time.

Standard machine learning algorithms operate in two main stages.

Fig. 2.22 illustrate those two key stages. First, machine learning algorithms

iteratively learn from the data in the training phase. In this phase, machine

learning algorithms are fed a large amount of data so that they learn to

recognize the relevant patterns in the data. Once the algorithm is trained,

it can be used in the inference phase, which involves making predictions or

decisions on previously unseen data.

(a) Training Phase

(b) Inference Phase

Fig. 2.2: (a) Training Phase: The machine learning algorithm processes the

training data to learn patterns and relationships within the dataset. (b)

Inference Phase: The trained model applies the learned knowledge to make

predictions on new, unseen data, proving its ability to generalize beyond

the training data.

2Image adapted from: https://developer-blogs.nvidia.com/wp-content/uploads/

2015/08/training_inference1.png

https://developer-blogs.nvidia.com/wp-content/uploads/2015/08/training_inference1.png
https://developer-blogs.nvidia.com/wp-content/uploads/2015/08/training_inference1.png

10 Pattern Recognition on Reduced Graphs

2.1.1 Learning Paradigms

In machine learning, there exist many common learning paradigms. In the

following paragraphs, we describe those that are most commonly used.

Supervised learning algorithms are machine learning methods that

train on a set of labeled data, where each input has a known output. The

algorithm learns to predict the output for new inputs based on the patterns

it has learned from the training data. Formally, for a set of labeled data

D = {(x1, y1), ..., (xn, yn)}, where xi ∈ X represents the input and yi ∈ Y
the corresponding output, a supervised learning algorithm is a function f

with parameters θ that maps the input xi to a possible output yi.

Note that both the input and output spaces X and Y can belong to

any domain, e.g., these spaces can be continuous, discrete, or a graph space

(as used in the present thesis and formally defined in Section 2.2.3). The

objective of training a supervised learning algorithm is to find the optimal

values of the parameters θ that minimize the total loss over the entire

dataset.

Formally, we aim at optimizing

θ∗ = argmin
θ

n∑
i=1

L(f(xi; θ), yi) (2.1)

where L(·) is a loss function that measures the error between the pre-

dicted output f(xi; θ) = ŷi and the true output yi. The loss function is

typically chosen among convex functions so that the optimization problem

can be efficiently solved. The definition of the actual loss function may

vary according to the learning task in question (e.g., the loss can be the

Mean Square Error [50], or the Cross-Entropy [51], to name two prominent

examples).

Common examples of supervised learning algorithms include linear re-

gression [51], logistic regression [51], Bayesian decision [51], support vector

machines [51], and neural networks [52]. Each of these algorithms ap-

proaches the learning problem in a different way, but all use the basic

definition of supervised learning described above.

Unsupervised Learning involves discovering essential patterns, re-

lationships, and structures of the data without explicitly accessing the

true output. In this scenario, we have access to a given dataset D =

{x1, . . . , xn}, where each xi ∈ X represents a data point without corre-

sponding output yi. The main objective of an unsupervised learning algo-

rithm is to learn a function that captures the underlying structure of the

Graph Based Pattern Recognition 11

data. This includes, for instance, tasks such as learning the entire distribu-

tion that generated the data (e.g., by density estimation [53], or similar).

Another prominent task in unsupervised learning is dimensionality re-

duction [54], which involves transforming high-dimensional data points

xi ∈ Rn into lower-dimensional representations x̂i ∈ Rm using a trans-

formation function f : Rn → Rm with n > m. The aim of this mapping is

to accurately represent the data in the lower-dimensional space. That is,

dimensionality reduction methods generally aim to find a mapping f that

retains certain attributes of the data, such as distance or local neighborhood

structure, to ensure that the low-dimensional representation accurately cap-

tures the relevant information in the data.

A third fundamental task performed in an unsupervised setting is

data clustering [55; 56], which involves dividing data into groups, or

clusters, based on some similarity measure. Formally, given a dataset

D = {x1, . . . , xn}, the objective is to partition the data into k clusters,

denoted as C = {C1, . . . , Ck}, so that each cluster contains at least one

data point (non-empty clusters), no data point belongs to more than one

cluster (mutual exclusivity), and all data points belong to at least one clus-

ter (comprehensive coverage). Clustering algorithms attempt to minimize

a defined criterion (i.e. a predefined similarity measure) for points within

the same cluster (intra-cluster points), aiming for similarity of feature at-

tributes. At the same time, clusterings aim to maximize the criterion for

points in different clusters (inter-cluster points), which implies dissimilarity

in feature space.

There are different types of clustering algorithms available, includ-

ing centroid-based methods (e.g., K-means [55]), density-based methods

(e.g., DBSCAN [57]), and hierarchical methods (e.g., agglomerative clus-

tering [55]), each with its mathematical formulation and approach to data

partitioning.

Semi-supervised Learning tackles the challenge of data labeling, a

task known for its tedious nature [58]. It aims to extract features from the

data using a minimal set of labeled examples. Some semi-supervised learn-

ing methods use unsupervised information from the data to infer pseudo-

labels and thus augmenting the pool of labeled data in the dataset [59].

This is typically done in an iterative process. Initially, the unlabeled data

are pseudo-labeled, followed by an evaluation phase to assess the quality of

the labeling. This process is repeated, progressively refining the labels for

the unlabeled data, until a certain criterion is met.

12 Pattern Recognition on Reduced Graphs

Reinforcement learning is a type of machine learning in which an

agent interacts with its environment [60]. This interaction involves the

agent performing actions and then receiving feedback based on these ac-

tions. More precisely, the agent performs actions, observes the environ-

ment’s response, and learns from its experiences to improve its policy,

which is a set of rules for selecting actions [60]. Reinforcement learning

algorithms typically use a trade-off between exploration and exploitation to

learn the optimal policy. Exploration involves trying out new actions to

learn more about the environment, while exploitation involves performing

the actions known to be most likely to lead to high rewards. In recent years,

many reinforcement learning techniques have been developed, including Q-

learning [61], Policy Iteration [62], and Deep Reinforcement Learning [63].

2.2 Statistical vs. Structural Pattern Recognition

The theory of machine learning provided in the previous section is, in gen-

eral, applicable to any data regardless of the actual representation formal-

ism. Machine learning methods are based on the principle of learning how

to match the data representation to the desired output. Nevertheless, data

representation is a key factor in the performance of any machine learning

algorithm. It is, therefore, essential to determine the appropriate data rep-

resentation for a given learning task. However, determining the optimal

representation is a difficult task, as it depends on the underlying problem.

The data representation for a given problem can be chosen at two different

levels.

The first level essentially determines the appropriate data structure for

modeling the problem at hand. The following subsections describe the

main data representations used in modern machine learning scenarios, viz.

statistical and structural approaches. Statistical methods (described in

Subsection 2.2.1) focus on modeling and classifying patterns in a statistical

domain (e.g., the real vector space Rn). Structural methods (described

in Subsection 2.2.2), particularly in the context of graph-based pattern

recognition, analyze the structural relationships between the components

of graphs.

The second level of data representation is that – once the data structure

is chosen – the representation is refined or transformed. This can be done

statically via a feature selection [64] process that iteratively refines the op-

timal features to be used for data representation. More advanced methods,

Graph Based Pattern Recognition 13

such as deep learning [52], simultaneously learn data representation and

pattern recognition directly from raw data.

In the present thesis, we focus primarily on structural representations

(in particular, graph-based data structures) and present various novel ap-

proaches for graph refinement and graph reduction.

2.2.1 Statistical Pattern Recognition

Statistical pattern recognition relies heavily on probability theory and statis-

tics. It treats patterns as the results of random processes and aims to

model the underlying statistical distributions of the data [51]. In statis-

tical pattern recognition, data is generally represented as vectors in an

n-dimensional space Rn. Each dimension of this space corresponds to a

feature, or attribute, that characterizes the objects or entities under con-

sideration.

Representing data as feature vectors x ∈ Rn provides efficient mathe-

matical operations in a vector space and enables the use of a wide range of

algorithmic tools for statistical pattern recognition. For example, images

can be formally defined as a discrete grid of pixel vectors (for 2D images or

for 3D images like MRI scans). In this case, each pixel vector represents the

color (or the intensity) of a single pixel in the image. The matrix dimen-

sions correspond to the resolution of the image, and the number of columns

in the matrix corresponds to the number of color channels in the image.

This formal definition allows for the rigorous mathematical treatment of

images and underlies various techniques used in computer vision [65], and

related fields.

Representation as feature vectors, however, has two major limitations.

The first is that vectors, since they represent a predetermined set of fea-

tures, must have a constant length regardless of the size or complexity of the

data they represent. The second limitation is that vectors cannot easily de-

scribe binary, or higher-order, relationships that may exist between different

components of the underlying data. These drawbacks become significant

when dealing with data characterized by complex structural relationships

rather than a fixed set of features.

2.2.2 Structural Pattern Recognition

When the underlying data consists of both features and relationships that

might exist between different parts of the data, we consider this to be struc-

14 Pattern Recognition on Reduced Graphs

tural pattern recognition. That is, structural pattern recognition highlights

relationships and structures within the data. It is therefore particularly

well-suited for applications where understanding the arrangement or rela-

tionships between components is essential [4; 5]. One of the best ways to

formalize such data is to use trees or, more generally, graphs.

A Tree is a hierarchical data structure made up of nodes and edges.

Each node can have zero or more child nodes, and each edge connects a

parent node to a child node. In case of a rooted tree, the root node is the

top-level node in the tree and has no parent nodes. The tree data structure

is a versatile tool for representing and organizing data in a hierarchical

form, enabling information to be retrieved, analyzed, and navigated effi-

ciently [66].

A Graph is a ubiquitous data structure that can be used to represent

a wide variety of problems. A graph is a mathematical structure used to

model pairwise relationships between a set of objects. Objects are typ-

ically represented by nodes, while the relations between them are then

represented by edges. This basic framework enables us to model complex

systems and capture complicated connections and dependencies between

different elements.

Graph-based pattern representation overcomes major limitations of fea-

ture vectors. That is, graphs can capture not only features but also binary

relationships and data arrangement. Moreover, they are not restricted to

a fixed size, allowing adaptation to the size and complexity of different

data objects. However, the use of graphs can lead to increased algorithmic

complexity compared to feature vectors – actually one of the major chal-

lenges in graph-based pattern recognition. Nevertheless, the flexibility and

expressive power of graphs make them an invaluable framework in pattern

recognition in many fields, from social networks analysis [26] to transporta-

tion system modeling [67], and from biological network predictions [25] to

recommendation systems [68].

2.2.3 Basic Definitions on Graphs

The present thesis is based on graph-based model representations3, so

graphs are the main data structure used in the remainder of this thesis.

3Different fields, such as Mathematics, network analysis, and pattern recognition, work
with graphs and often use similar terminology and definitions. In this work we adopt the

nomenclature of pattern recognition, i.e., entities are called nodes, while relationships

are called edges.

Graph Based Pattern Recognition 15

In this section, we provide some basic definitions on graphs that are impor-

tant for the present research.

Definition 2.1 (Graph). A graph G is a four-tuple G = (V,E, µ, ν),

where

• V is the finite set of nodes,

• E ⊆ V × V is the set of edges,

• µ : V → LV is the node labeling function, and

• ν : E → LE is the edge labeling function.

In this definition, sets LV and LE represent the labels for the nodes and

edges, respectively. A node (and edge) labeling function µ : V 7→ LV (and

ν : E 7→ LE) is defined in the case of labeled nodes (and labeled edges).

For example, the label alphabets LV and LE for both nodes and edges can

be given by the set of integers L = {1, 2, 3, . . . }, the vector space L = Rn,

or a set of symbolic labels L = {α, β, γ, . . . }. Three graph examples are

displayed in Fig. 2.3.

(a) Unlabeled (b) Node labeled (c) Edge weighted

Fig. 2.3: Examples of different graph types (a) Unlabeled graph, (b) Node

labeled graph where each color represents a different node label, (c) Edge

weighted graph.

In some applications, it might be suitable to define empty “nodes”

and/or empty “edges”, both denoted by ε. The size of a graph G is typically

defined as the number of available nodes in G and is thus denoted by |V |.
Edges are given by pairs of nodes (vi, vj) ∈ V ×V . If the graph is directed,

an edge is defined as (vi, vj) ∈ E with a start node vi ∈ V and an end node

vj ∈ V . Otherwise, an edge is defined as (vi, vj) ∈ E ↔ (vj , vi) ∈ E in the

case of undirected graphs. The neighbors of a node v ∈ V are the nodes

that are directly connected to v by exactly one edge and the neighborhood

16 Pattern Recognition on Reduced Graphs

of a node v is defined as N (v) = {u ∈ V : (v, u) ∈ E}, where (v, u) is an

edge in the undirected graph G.

In this thesis, we focus on simple, undirected graphs, that is, graphs

with at most one edge between pairs of nodes and no self-loops (i.e., edges

between a node and itself). Note, however, that the present research is in

general applicable to any kind of graph (i.e., directed, undirected, labeled,

unlabeled, etc.) For more information on the actual graph datasets used,

see Chapter 3.

Another important concept to consider is that of a subgraph. A subgraph

G′ is derived from a graph G by selectively removing certain nodes with

their connected edges, and potentially some additional edges from G.

Definition 2.2 (Subgraph). Let’s have two graphs G = (V,E, µ, ν) and

G′ = (V ′, E′, µ′, ν′). Graph G′ is a subgraph of G, denoted by G′ ⊆ G, if

(1) V ′ ⊆ V ,

(2) E′ ⊆ E,

(3) µ′(u) = µ(u) and ν′(e) = ν(e) for all u ∈ V ′ and for all e ∈ E′.

A walk w is any sequence of nodes v0, v1, . . . , vk such that (vi−1, vi) ∈ E

for all i = 1, . . . , k. The length of walk w corresponds to the number of edges

in w. A walk w is termed path p if vi ̸= vj for all i, j = 1, . . . , k with i ̸= j.

That is, a path is a walk with distinct nodes. A shortest-path pmin(vi, vj)

is the path of minimum length starting at node vi and ending at node vj .

A graph G = (V,E) is termed connected, if there exists at least one path

connecting every pair of nodes vi, vj ∈ V ×V . Otherwise, that is if at least

one pair of nodes vi, vj ∈ V × V exists that is not connected via a path,

G is called disconnected. Visual examples of these graph concepts can be

found in Fig. 2.4 (a) to (e).

The structure of a graph G = (V,E) is often encoded by means of the

adjacency, degree, or Laplacian matrix. The adjacency matrix A of a graph

G = (V,E) with n nodes V = {v1, . . . , vn} is an n × n matrix A = [aij],

where

aij =

{
1, if (vi, vj) ∈ E

0, otherwise.
(2.2)

In the case of a simple, undirected graph, the adjacency matrix A is

symmetric and the diagonal entries are zero. The degree matrix D = [dij]

of the same graph G = (V,E) is defined by

Graph Based Pattern Recognition 17

(a) Walk (b) Path p(v2, v5)

(c) Shortest-path pmin(v2, v5) (d) Connected graph G1

(e) Disconnected graph G2

Fig. 2.4: Examples of different graph concepts: (a) Walk, (b) Path, (c)

Shortest-path, (d) Connected graph, and (e) Disconnected graph.

18 Pattern Recognition on Reduced Graphs

dij =

{
deg(vi), if i = j

0, otherwise.
(2.3)

The Laplacian matrix L = [lij] of the simple graph G = (V,E) is defined

element-wise as

lij =


deg(vi), if i = j

−1, if i ̸= j and vi is adjacent to vj

0, otherwise.

(2.4)

In Fig. 2.5, we illustrate an example of the adjacency matrix A, the

degree matrix D and the Laplacian matrix L for the connected graph G1

shown in Fig. 2.4 (d).

(a) Adjacency matrix A (b) Degree matrix D (c) Laplacian matrix L

Fig. 2.5: Examples of the different matrix representations of the connected

graph G1 in Fig. 2.4 (d): (a) Adjacency matrix, (b) Degree matrix, and

(c) Laplacian matrix

The graph domain G = {G(1), . . . , G(N)} is defined as a set of N graphs

contained in a given dataset. Assuming that N i.i.d. classified training

graphs D = {Gi, yi} ⊆ (G×Y), where G represents the graph graph domain

and Y the corresponding class label alphabet. The graph classification task

consists of learning a model f : G → Y that assigns a class label y ∈ Y to

any input graph G ∈ G.

2.3 Graph Matching

When working with graphs, it is essential to be familiar with graph match-

ing, especially when graphs have to be compared. Graph matching is the

Graph Based Pattern Recognition 19

problem of finding a correspondence between two graphs. This basically

means finding a mapping between the nodes of two graphs that preserves –

more or less stringent – the underlying edge structure. Hence, graph match-

ing involves finding correspondences, or alignments, between the nodes and

edges of two or more graphs. The concept of graph matching finds appli-

cations in different fields, such as chemistry [69], computer vision [24], and

biology [25], where it is used to compare networks, recognize objects, or

analyze molecular structures. Efficient algorithms and techniques [20] are

used to meet the computational challenges of graph matching, making it an

important framework for obtaining meaningful information from complex

graph data.

Graph matching can be broadly categorized into two categories: exact

graph matching, which requires an exact one-to-one correspondence between

the nodes and edges, and inexact graph matching (also known as error-

tolerant graph matching), which allows for some degree of tolerance in the

correspondence found.

Several methods from inexact graph matching are relevant to this thesis.

For the sake of completeness, however, we also provide a concise overview

of three exact methods in Section 2.3.1. This includes graph isomorphism,

subgraph isomorphism, as well as the concept of maximum common sub-

graph. Following this, Subsection 2.3.2 delves into inexact graph matching,

providing general explanations of this concept. Last but not least, Sec-

tion 2.4 presents three graph-based classification schemes that are based on

three error-tolerant graph matching paradigms.

2.3.1 Exact Graph Matching

Exact graph matching involves determining whether two graphs, or parts

of them, are identical in terms of node and edge arrangement. Yet, the

way a graph is typically represented does not depend on a specific order

of its nodes. Hence, it is not possible to determine whether two graphs, G

and G′ are equal simply by comparing their respective adjacency matrices,

A and A′. Furthermore, it is not often practical to examine all possible

node arrangements in the adjacency matrix, as the number of possible

permutations increases factorially. For instance, in a simple graph G =

(V,E) with |V | = n, there are n! potential node permutations that would

need to be checked.

The identity of two graphs G and G′ is generally determined by finding

a graph isomorphism [10; 49], which is a function that maps the nodes of

20 Pattern Recognition on Reduced Graphs

a source graph G to the nodes of the target graph G′ in such a way that

the adjacency relationship between the nodes is preserved.

Definition 2.3 (Graph Isomorphism). Assume that two graphs G =

(V,E, µ, ν) and G′ = (V ′, E′, µ′, ν′) are given. A graph isomorphism is a

bijective function f : V → V ′ satisfying

(1) µ(v) = µ′(f(v)) for all nodes v ∈ V

(2) for each edge e = (vi, vj) ∈ E, there exists an edge e′ =

(f(vi), f(vj)) ∈ E′ such that ν(e) = ν′(e′)

(3) for each edge e′ = (vi, vj) ∈ E′, there exists an edge e =

(f−1(vi), f
−1(vj)) ∈ E such that ν(e) = ν′(e′)

Two graphs G and G′ are called isomorphic if there exists an isomorphism

between them.

Based on the definition of graph isomorphism, it is clear that two iso-

morphic graphs G and G′ share the same structure and labels. The bi-

jective mapping must preserve edge connections and ensure consistency in

node and edge labels. A node v in graph G corresponds to f(v) in G′ only

if their labels are the same, denoted as µ(v) = µ′(f(v)). This applies to

edges as well, requiring that their labels remain identical after mapping,

i.e., ν((vi, vj)) = ν′(f(vi, vj)). Furthermore, connected nodes (vi, vj) ∈ E

must have corresponding connected nodes (f(vi), f(vj)) in E′.

Graph isomorphism is a difficult problem, and there is no polynomial-

time algorithm known [27]. In other words, there is no known way to

quickly determine whether two graphs are identical in terms of structure

and labels. Note that the graph isomorphism problem has not been demon-

strated to belong to the class P, and it stands as one of the most significant

decision problems for which it remains unproven whether it falls into P
or is NP-complete [70]. Strong assumptions suggest that it may not be

NP-complete, implying that there is no efficient algorithm to solve it and

checking if a given potential isomorphism is valid cannot be done efficiently

either [71].

The uncertain computational complexity makes the graph isomorphism

problem to a prominent open question in computational theory. However,

in practical pattern recognition scenarios, specialized algorithms have been

devised for certain types of graphs, offering manageable computation times.

These algorithms apply to trees [66; 72], bounded-valence graphs [73], or-

dered graphs [74], planar graphs [75], permutation graphs [76], and graphs

Graph Based Pattern Recognition 21

with unique node labels [77; 78].

Subgraph isomorphism involves determining whether a given graph is

identically contained within another graph in such a way that the adjacency

relationship between the nodes of the smaller graph is preserved. In other

words, a subgraph isomorphism is a one-to-one correspondence between

the nodes of the first graph and the nodes of a subgraph of the other

graph, such that every edge in the subgraph has a corresponding edge in

the subgraph of the larger graph. Subgraph isomorphism is a more general

problem than graph isomorphism, because it allows for the second graph

to have additional nodes and edges.

Definition 2.4 (Subgraph Isomorphism). Let G = (V,E, µ, ν) and

G′ = (V ′, E′, µ′, ν′) be graphs. An injective function f : V → V ′ from

G to G′ is a subgraph isomorphism if there exists a subgraph G′′ ⊆ G′ such

that f is a graph isomorphism between G and G′′. The subgraph isomor-

phism is denoted as G ⊆ G′.

Subgraph isomorphism is computationally more complex than graph

isomorphism. It involves not only verifying if a permutation of graph G

matches graph G′, but also determining if G can be matched to any sub-

graph of G′ with a size equal to the number of nodes in G. Unlike graph

isomorphism, subgraph isomorphism is classified as NP-complete [27], sig-

nifying that it belongs to a set of computationally difficult problems for

which no known polynomial-time solution exists.

(a) Graph G (b) Graph G′ (c) Graph G′′

Fig. 2.6: Examples of both graph and subgraph isomorphism.

In Fig. 2.6 (a) and (b), there are two graphs G and G′. We observe

that G′ is isomorphic to G, which means that there exists a bijective map-

ping between the nodes of G and G′ that preserves the edges’ structure.

22 Pattern Recognition on Reduced Graphs

Moreover, in Fig. 2.6 (c) there is a graph G′′, which is deemed subgraph

isomorphic to G. This means that G′′ contains a set of nodes and edges

that, when matched appropriately, can be superimposed onto G to form a

subgraph within G that preserves structural relationships.

The maximum common subgraph (MCS) problem is the problem of find-

ing the largest subgraph that is contained in both of two given graphs. This

subgraph must have the same structure and labels as the corresponding sub-

graphs in the two original graphs. The MCS problem is a generalization of

the graph isomorphism problem, which asks whether two graphs are iden-

tical in terms of structure and labels. The MCS problem is more general

because it allows for two graphs to have different sizes. Mathematically,

the MCS problem can be defined as follows.

Definition 2.5 (Maximum Common Subgraph). Given two graphs

G = (V,E) and G′ = (V ′, E′), the MCS problem is to find the largest

graph Gc = (Vc, Ec) that is subgraph isomorphic to both graphs G and G′.

The MCS problem is known to be NP-complete [27], which means that

finding the optimal solution may require exponential time in the worst case.

Therefore, heuristic and approximation algorithms are often employed in

practice [79].

2.3.2 Inexact (Error-tolerant) Graph Matching

Inexact (or error-tolerant) involves finding similarities between graph G

and G′, even if they do not match exactly. This is in contrast to exact

graph matching, which requires the two graphs to be identical in terms of

both structure and labels. Inexact graph matching takes into account the

fact that real data often contains errors in the translation from observation,

noise, or variations that prevent an exact match [80]. This principle allows a

degree of flexibility in graph matching and thus can often handle real-world

scenarios better than exact matching paradigms.

Through the years many methods have been proposed to perform in-

exact graph matching. In this section, we briefly review two prominent

families of inexact graph-matching techniques and we refer to [4; 5; 81] for

more extensive reviews on different graph-matching methods.

Spectral methods [14; 82; 83] is a first prominent class of error-tolerant

graph matching algorithms. These methods use the spectral properties of

graphs to match them. Spectral properties of graphs are captured by the

Graph Based Pattern Recognition 23

eigenvalues and eigenvectors of the adjacency or Laplacian matrices. In [82],

the authors use spectral properties of the underlying structural matrices to

construct a vector space onto which the nodes of the graphs are embedded.

This vector space is then used to find potential matches. In [83] another

spectral graph matching algorithm is presented. This algorithm uses regu-

larized quadratic relaxation. It starts by forming a similarity matrix from

the spectral embeddings of the two graphs. This matrix then defines a

regularized quadratic program, which is subsequently solved to achieve the

graph matching. The authors of [14] introduce an error-tolerant graph

matching that relies upon spectral features that encode a graph as a bag

of partial node coverages.

A second prominent family of graph matching is Continuous Graph

Matching [15; 16; 17]. This alternative approach transforms the graph

matching problem, typically from a discrete optimization problem, into

a continuous, nonlinear optimization problem. Basically, this is achieved

by allowing the elements of a |V | × |V | permutation matrix P = (pij) to

take on continuous values between 0 and 1, rather than restricting them

to discrete {0, 1}-values. Given the assumption of continuity, continuous

optimization provides the opportunity to employ calculus-based techniques.

This enables the use of continuous, nonlinear optimization techniques (e.g.,

gradient descent methods [84] or interior-point methods [85]).

In [15], for instance, a novel binary linear programming approach is in-

troduced for exact Graph Edit Distance computation between graphs (see

Section 2.4.1 for details on the concept of Graph Edit Distance). The intro-

duced formulation is highly versatile and capable of handling both directed

and undirected labeled graphs. Additionally, a continuous relaxation of do-

main constraints provides an efficient lower-bound approximation of Graph

Edit Distance. The authors of [16] make the observation that in traditional

graph matching, only one-to-one node correspondences are considered. Yet,

in practical scenarios, perfect matches are often unattainable. It becomes

more important to explore many-to-many correspondences, where groups of

nodes in one graph correspond to clusters in the other. In [16] the many-to-

many graph matching is formulated as a discrete optimization problem and

they introduce an approximate algorithm based on a continuous relaxation

approach to tackle the combinatorial nature of the problem.

In [17], the authors prove that an exact solution of the indefinite relax-

ation typically leads to the optimal permutation, whereas a standard con-

vex relaxation tends to fall short. These findings imply that starting the

indefinite algorithm with the convex optimum could enhance practical per-

24 Pattern Recognition on Reduced Graphs

formance. The authors experimentally confirm these theoretical insights,

showcasing superior results across both benchmark and real-world datasets.

The present thesis is based on three important paradigms of inexact

graph matching, namely Graph Edit Distance, Graph Kernel and Graph

Neural Networks. These concepts are therefore explained in detail in the

following three sections in conjunction with their corresponding classifica-

tion scheme.

2.4 Graph Classifiers

2.4.1 Distance-based Graph Classifier

The specific definition of a dissimilarity (or vice versa a similarity) measure

between two graphs depends on the problem at hand. A graph dissimilarity

measure can be based on various graph properties, such as the number of

common nodes, edges or subgraphs, as well as the node and edge labels, or

the topological structure. A general dissimilarity measure can be defined

by

d : G × G → R+, (2.5)

such that d(G,G′) quantifies the dissimilarity between G and G′.

Dissimilarity measures for graphs are often defined upon a found

graph matching. In the present thesis, we employ Graph Edit Distance

(GED) [86; 87] as basic graph dissimilarity paradigm. GED was proposed

in the early 1980s and can be interpreted as a standard dissimilarity mea-

sure for graphs. Its high degree of flexibility makes it easily applicable to a

broad range of problems and GED has gained interest in a broad range of

problems and applications [88; 89].

In contrast to other distance measures for graphs, GED provides more

information than merely a dissimilarity score. In its formal definition, it

computes an edit path which gives us the important interaction on how the

substructures of the graphs actually match with each other (e.g., [90; 91]).

The basic idea behind GED is to find the minimum amount of edit op-

erations required to transform graph G into graph G′. We represent the

three fundamental edit operations, which are widely used (namely, inser-

tion, deletion, and substitution), as follows:

• The substitution of two nodes v ∈ V and v′ ∈ V ′ is denoted as

(v → v′).

Graph Based Pattern Recognition 25

• The deletion of node v ∈ V is expressed as (v → ε).

• The insertion of node v′ ∈ V ′is denoted (ε → v′).

A similar notation is used for the corresponding edge edit operations.

Definition 2.6 (Graph Edit Distance). The graph edit distance be-

tween source graph G = (V,E) and target graph G′ = (V ′, E′) is defined

by

GED(G,G′) = min
λ∈Λ(G,G′)

∑
ei∈λ

c(ei), (2.6)

where Λ(G,G′) denotes the set of all complete edit paths transforming G

into G′.

An edit path λ(G,G′) between G and G′ is a set {e1, . . . , ek} of k edit

operations ei that are necessary to convert a source graph G into a target

graph G′. With Λ(G,G′) we denote the set of all edit paths transforming

G into G′. A cost function c(ei) associated with each edit operation ei is

generally used to formalize the severity of operation ei. GED can now be

formally defined as follows.

The selection of edit costs c(ei) is a pivotal aspect of GED computations,

and it heavily relies on the nature of the specific application. For instance,

in the field of chemistry, where graphs represent molecular structures, the

costs could be determined by the intricacy of chemical transformations.

This might include operations like bond formation, cleavage, or the intro-

duction of new functional groups [92]. By customizing the edit costs to suit

the specific domain, GED becomes a powerful tool for accurately assessing

dissimilarities between graphs in a meaningful and contextually relevant

manner.

Exact solutions for the computation of graph edit distance GED(G,G′)

are often obtained with methods based on combinatorial search procedures

that possibly check all matches of all nodes of G to all nodes of G′. In these

formulations, GED searches the optimal edit path λmin ∈ Λ(G,G′) in the

set of all admissible edit paths Λ(G,G′). Due to the exponential number of

admissible edit paths, this type of computation of GED has an exponential

computational complexity.

The complexity of graph edit distance optimization is actually known

to be NP-complete for general graphs [27]. This, in general, hinders

its application to large-scale problems. However, in recent years several

26 Pattern Recognition on Reduced Graphs

approximate, or suboptimal, algorithms for GED problem have been pro-

posed [28; 93; 94]. These algorithms offer polynomial, rather than expo-

nential, run-times. Yet, in contrast to optimal algorithms for GED, subop-

timal algorithms do not guarantee to find the global minimum of the GED,

but only a local one.

In [11], a sub-optimal algorithm for GED (termed BP-GED) is pro-

posed. This algorithm approximates GED by solving a linear sum assign-

ment problem on graph nodes (including their local substructures). To this

end, graphs are specifically formatted and the optimal assignment of local

substructures is exploited for a fast approximation of GED. BP-GED is

based on a fast (optimal) optimization method that maps the nodes and

their local structure of one graph to the nodes and their local structure of

another graph. The BP-GED algorithm has cubic time complexity and is

a widely used method in the field of graph-based pattern recognition [95].

The traditional approach for distance-based graph classification is given

by the k-Nearest Neighbor (k-NN) algorithm. The k-NN algorithm is a

popular supervised machine learning technique that can be used for both

classification and regression tasks [51]. It operates on the principle of prox-

imity, where it predicts the target value of a given data point by considering

the k-nearest data points in the training set (in our specific case, the data

points are represented by means of graphs).

Formally, let us consider a supervised learning task with a training

dataset D consisting of n graphs, where each graph is represented as Gi ∈ G
with its corresponding target label yi ∈ Y. Given an unknown graph G,

k-NN identifies the k graphs in the training set that are closest to G ac-

cording to some chosen distance measure. These k data points are denoted

as Nk(G). For a classification task, the predicted class for G is determined

by a majority vote among the classes of its k-nearest neighbors:

y = argmax
c

∑
Gi∈Nk(G)

I(yi = c) (2.7)

where I is the indicator function and c represents the class labels.

The choice of using the k-NN algorithm in graph-based pattern recog-

nition is motivated by the fact that this particular algorithm relies directly

on a distance function, which can readily be defined in any graph domain

G (e.g., by means of GED in the context of this thesis).

Graph Based Pattern Recognition 27

2.4.2 Kernel-based Graph Classifier

Graph Kernels [6] constitute another prominent family of graph classifica-

tion algorithms. Roughly speaking, a graph kernel is a measure of similarity

between graphs that compares their underlying structures. Kernels are of-

ten used to construct matrices, known as kernel matrices, where the (i, j)-th

entry represents the similarity between the i-th and j-th graphs. For these

matrices to be valid, they must be positive semi-definite. Specifically, a ker-

nel matrix K is positive semi-definite, if and only if, for any vector v ∈ Rn

(where n is the number of graphs), the following inequality holds:

vTKv ≥ 0. (2.8)

This property is essential because it guarantees that the kernel matrix

K encodes a valid notion of similarity between the graphs. Formally, a valid

graph kernel is a symmetric, positive semi-definite function κ : G × G → R
defined on the graph domain G.

The vast majority of graph kernels proposed in the literature are in-

stances of so-called convolution kernels [6]. Given two graphs G and G′,

the idea of the convolution framework is to decompose G and G′ into sub-

structures and evaluate a kernel between each pair of such substructures.

Using a convolution operation, these similarities are then turned into a ker-

nel function on the complete graphs. Prominent examples are, for instance,

walk kernels [30], cycle kernels [96], or subgraph kernels [97], to name just

three examples.

The power of the kernel framework (regardless of the graph kernel ac-

tually used) is based on the following observation. Given a graph kernel

κ, there exists a function ϕ : G → H mapping graphs from G to a Hilbert

spaceH such that κ(G,G′) = ⟨ϕ(G), ϕ(G′)⟩ for all G,G′ ∈ G. Thus, a graph
kernel computes an implicit embedding of the graphs in a Hilbert space H.

The shortcut for the computation of the dot product in an embedding space

H is known as kernel trick. The impact and practical relevance of the ker-

nel trick is large. In particular, any algorithm that can be reformulated

entirely in terms of dot products can be directly accessed via any graph

kernel. An abstract example of kernel trick usage is displayed in Fig. 2.74.

In the present thesis, we employ Support Vector Machines (SVMs) [98]

in combination with graph kernels for graph classification. SVMs are popu-

lar supervised machine learning algorithms, which construct a hyperplane,

4Image adapted from [49]

28 Pattern Recognition on Reduced Graphs

Fig. 2.7: Explicit comparison between mapping G and G′ in a feature space

H using ϕ and the subsequent dot product induced by the shortcut kernel

trick.

or set of hyperplanes, in a high dimensional space, which can be used for

both regression or classification. The use of a graph kernel in conjunction

with SVM is motivated by the fact that with SVMs both training and clas-

sification can be entirely reformulated in terms of pairwise dot products.

Hence, the kernel trick is fully applicable and SVMs are able to handle

non-vectorial data by implicitly mapping the data into a high-dimensional

feature space H.

In the present thesis, we make use of two widely applied graph kernels,

viz. the Shortest-Path kernel [19] and the Weisfeiler-Lehman kernel [20],

which are briefly reviewed next.

Shortest-Path Kernel [19] consists of deriving a kernel κSP : G×G →
R based on both attributes and length of the shortest paths between pairs

of nodes (vi, vj) ∈ V × V in both graphs to be compared.

Formally, in order to compute κSP(G,G′) one first applies the so-called

Floyd-transformation [99] (see Alg. 1) on the underlying graphs G = (V,E)

and G′ = (V ′, E′) to obtain the corresponding shortest-path graphs S =

(V,ES) and S′ = (V ′, E′
S), respectively. The graphs S and S′ are weighted

versions of G and G′ such that they share the same node sets V and V ′.

Yet, in contrast to G, there is a weighted edge (vi, vj) ∈ ES , if and only

if, there exists a path in G, that actually connects nodes vi and vj . The

weight wij of edge (vi, vj) ∈ ES corresponds to the length of the shortest

path between nodes vi and vj . The same accounts for graph G′ = (V ′, E′)

and S′ = (V ′, E′
S), respectively.

Graph Based Pattern Recognition 29

Algorithm 1: Floyd-Warshall

Input: Adjacency matrix A ∈ R|V |×|V | of graph G = (V,E)

1 Initialize D as empty 2-dimensional array

2 for i = 1, . . . , |V | do
3 for j = 1, . . . , |V | do
4 if A[i, j] == 1 and i ̸= j then

5 D[i, j] = ν((vi, vj))

6 else

7 if i == j then

8 D[i, j] = 0

9 else

10 D[i, j] = inf

11 end

12 end

13 end

14 end

15 for k = 1, . . . , |V | do
16 for i = 1, . . . , |V | do
17 for j = 1, . . . , |V | do
18 if D[i, k] +D[k, j] < D[i, j] then

19 D[i, j] = D[i, k] +D[k, j]

20 end

21 end

22 end

23 end

Output: Return D as ES

Given two graphs G and G′ and their corresponding Floyd-transformed

graphs S and S′, respectively, the shortest-path kernel is then defined by

κSP(G,G′) =
∑
e∈ES

∑
e′∈E′

s

κpath(e, e
′), (2.9)

where κpath is an edge path kernel defined as follows. Let us assume two

edges e = (vi, vj) ∈ ES and e′ = (v′i, v
′
j) ∈ E′

S are given, then κpath(e, e
′) is

defined as the product of node and edge kernels

κpath(e, e
′) = κnode(vi, v

′
i) · κnode(vj , v

′
j) · κedge(e, e

′).

30 Pattern Recognition on Reduced Graphs

Here κnode(·) is a kernel for quantifying the node label similarity and

κedge(·) is a kernel to measure the similarity of the shortest-path distances

assigned to the edges, such that κedge((vi, vj), (v
′
i, v

′
j)) = 0 if d(vi, vj) = ∞

and/or d(v′i, v
′
j) = ∞

The complexity of the shortest-path graph kernel depends on the al-

gorithm used to compute the shortest-path between all pairs of nodes in

G. A common algorithm for this task is the Floyd-Warshall algorithm

(see Alg. 1), which has a time complexity of O(|V |3), where |V | is the

number of nodes in graph G. This is because in the Floyd-Warshall algo-

rithm the distance matrix d is updated |V | times, and each update requires

O(|V |2) operations. Another algorithm that can be used to compute the

shortest-path graph kernel is Dijkstra’s algorithm. Dijkstra’s algorithm has

a time complexity of O(|V | + |E|log(|V |)) and is typically faster than the

Floyd-Warshall algorithm for sparse graphs, but slower for dense graphs.

In practice, the shortest-path graph kernel can be computed efficiently for

graphs of moderate size.

Weisfeiler-Lehman Kernel [20] is a popular graph kernel with effi-

cient classification performance. This kernel works on top of a well-known

graph isomorphism algorithm, namely the Weisfeiler-Lehman graph iso-

morphism test. This test consists of an iterative method that produces a

canonical form for each graph. In each iteration, the current feature label

l of a given node vi is aggregated with the labels of all adjacent nodes and

replaced with a new compressed label. The Weisfeiler-Lehman test per-

forms h iterations over the graph. If the canonical forms of the underlying

graphs do not match after h iterations, then the two graphs in question

can not be isomorphic. However, if the canonical forms do match, it is

not yet clear whether or not the two graphs are isomorphic as two non-

isomorphic graphs can end up with the same canonical form during the

Weisfeiler-Lehman procedure.

The basic idea of the Weisfeiler-Lehman graph kernel is to compute the

above-described procedure h ≥ 0 times. In each iteration i, one computes

a feature vector ϕi(G) for each graph G, which is formally defined as

ϕi(G) = (ci(G, σi1), . . . , ci(G, σi|Σi|)). (2.10)

Here, Σi is the set of aggregated node features of G and G′ and ci :

G ×Σi → N corresponds to the number of occurrences of the updated label

l at iteration i. The h-Weisfeiler-Lehman kernel is then formally defined as

κh-WL(G,G′) = ⟨ϕh-WL(G), ϕh-WL(G
′)⟩, (2.11)

Graph Based Pattern Recognition 31

where ϕh-WL(G) is the sequence of feature vectors of all h iterations,

i.e., ϕh-WL(G) = (ϕ0(G), ϕ1(G), . . . , ϕh(G)), and ⟨·, ·⟩ denotes the standard

dot product.

The complexity of the Weisfeiler-Lehman graph kernel can be broken

down into three steps, which are repeated h times.

(1) The sorting step, where each node v is represented as a list Lv of

its neighbors, has a complexity of O(|E|).
(2) During the compression step, each list Lv is compressed into a hash

value (also complexity of O(|E|)).
(3) Finally, the relabeling step, relabel the node v with the previously

computed hash value as its new node label. The complexity of this

step is O(|V |).

Thus, we can observe that for a given pair5 of graphs the runtime com-

plexity is O(|E|h).

2.4.3 Neural Network-based Graph Classifier

Graph Neural Networks (GNNs) [8; 9; 100] are a type of deep learning

method that is specifically designed to work with graph-based data. At a

high level, GNNs learn representations for each node in a graph based on

their local neighborhood structure. This is done by exchanging information

between neighboring nodes in the graph in a way similar to dissemination

of information in a social network. This allows GNNs to capture important

local patterns and relationships in the graph, while also leveraging the

overall structure of the graph to make predictions.

The typical architecture of a GNN consists of several layers of com-

putation, each of which typically contains a message-passing mechanism,

aggregation functions, and learnable parameters. In a GNN, the represen-

tation of a node v is updated on the basis of information collected from

its neighbors. In the message-passing step, each node in the graph sends

a message to its neighboring nodes, based on its current feature represen-

tation. These messages are then aggregated and transformed into a new

representation for each node. This is done using the following equation:

h(t+1)
v = UPDATE

(
h(t)
v ,AGGREGATE

(
{h(t)

u : u ∈ N (v)}
))

(2.12)

5Remark that, in general, |V | ≪ |E|

32 Pattern Recognition on Reduced Graphs

Here, h
(t)
v represents the representation of node v in the t-th layer. N (v)

denotes the set of neighbors of node v. The function AGGREGATE com-

bines the information from the neighbors. The function UPDATE combines

the current node representation with the received aggregated messages.

The AGGREGATE function can be any type of function that is inde-

pendent of the order it receives the information from the neighboring nodes.

The AGGREGATE function is typically a sum, a mean, or a max function.

However, other methods involving more advanced functions were also pro-

posed, e.g., DiffPool [101] or SortPool [102], to name just two examples.

In the node update step, each node combines its new representation

with its old representation, using a neural network to compute a new feature

vector. The specific form of the update function depends on the architecture

and design of the GNN. It typically involves a learnable transformation

that combines the node’s current representation with the messages received.

This transformation may include parameters such as weights and biases,

which are learned during the learning process. This new feature vector is

then passed on to the next GNN layer or used to make predictions.

There are different variations of GNNs available (for a thorough re-

view of GNN models we refer to [9]). The Graph Convolutional Net-

work (GCN) [21] is a widely used baseline model in GNNs. It incorporates

the symmetric-normalized aggregation technique along with the self-loop

update strategy. These choices in aggregation and update mechanisms

play a critical role in the model’s ability to effectively propagate infor-

mation across the nodes of the graph, which ultimately contributes to its

performance in tasks involving graph data.

Graph Attention Network (GAT) is another variant of a GNN [22]. GAT

introduces a novel neural architecture for processing graph-structured data.

GAT use masked self-attentional layers, overcoming the limitations of pre-

vious methods based on graph convolutions. This allows nodes to assign

varying weights to their neighbors’ features without expensive operations

or prior knowledge of the graph structure.

In [103], Graph WaveNet is introduced as a novel graph neural network

architecture designed for spatial-temporal graph modeling. It incorporates

an adaptive dependency matrix, learned through node embedding, to ac-

curately capture hidden spatial dependencies. The model also employs a

stacked dilated 1D convolution component with an exponentially expanding

receptive field to handle long sequences.

The authors of [104] propose a graph transformer with two specific fea-

Graph Based Pattern Recognition 33

tures. First, an attention mechanism based on neighborhood connectivity

and second, positional encoding using Laplacian eigenvectors. Addition-

ally, they proposed to substitute the layer normalization with batch nor-

malization for enhanced training speed and generalization, and extend the

architecture to incorporate edge feature representation.

In [105], a graph similarity metric is directly computed by means of

a GNN. It uses a message-passing neural network to capture the graph

structure and employs a siamese network approach to learn the similarity

metric.

In the present thesis, we make use of the Deep Graph Convolutional

Neural Network (DGCNN) [102]. This architecture consists of three con-

secutive stages. First, graph convolutional layers are used to extract local

substructure features of the nodes and establish a consistent node ordering.

Second, a SortPooling layer arranges the node features in the established

order and standardizes input sizes. Third, traditional convolutional and

dense layers are utilized to process the sorted graph representations and

generate the final classification. The time complexity of this specific GNN

is O(|E|), so it depends on the sparsity of graphs involved in the training

process [9].

2.5 Graph Reduction

The expansion of computing resources has enabled the generation of vast

amounts of data. This in turn evoked the need for efficient and reliable

methods to summarize and simplify data in order to extract meaningful

insights from it. Although data reduction methods on statistical data have

been extensively studied, it is only recently that researchers started to focus

on structural data reduction [32], i.e., reduction of graphs.

Graph reduction methods offer many benefits. First, by generating

smaller summaries through graph reduction methods, the storage space re-

quired can be significantly reduced compared to the original graphs. This

is especially useful when dealing with large-scale graphs (e.g., graphs repre-

senting social media networks with billions of users). Second, graph reduc-

tion methods can help filter out this noise and retain only the ”essential”

information. This is also highly beneficial as the underlying data often

contains noise from collection and transcription errors, including erroneous

nodes and edges hidden from the human eye. In addition, graph reduc-

tion methods can help to speed up graph matching algorithms, thereby

34 Pattern Recognition on Reduced Graphs

addressing one of the main problems described in Section 2.4, namely high

computation cost. That is, graph reduction methods typically generate

smaller graphs while preserving relevant information, which supports fast

and efficient analysis by means of graph matching algorithms.

The concept of graph reduction lacks a widely accepted definition as it

is, in general, context-dependent and can be defined differently depending

on the actual goal. One can define graph reduction, for instance, to preserve

specific structural patterns or to focus on maintaining given distributions

of graph properties (e.g., the degree distribution or the diameter to name

two examples).

This lack of a generally applicable definition poses three major chal-

lenges. First, the inherent structural complexity of graph data makes it

often complex to partition and parallelize operations due to many interac-

tions between nodes. Second, since graph reduction method aim to extract

interesting information, determining what is considered interesting is sub-

jective and requires expert knowledge and user preferences. Moreover, the

distinction between interesting and uninteresting information is difficult to

make in practice and often involves a trade-off between time, space, and

preserved information in the reduced graph. Third, since graph reduction

methods depend on the specifics of the problem, there is no universal way

to evaluate the effectiveness of graph reduction methods. For instance, in a

database context, a reduction method may be considered successful if the

data retrieved from queries are highly accurate. In the context of graph

matching, however, the effectiveness of the reduction method would be bet-

ter assessed based on the similarity of graph distances obtained from the

reduced graphs compared to those obtained from the original graphs.

This particular lack of a universal benchmark emphasizes the need to

carefully consider the context and specific goals when evaluating the effec-

tiveness of graph reduction techniques. In this thesis, our main goal is to

reduce the size of the graphs in order to speed up standard graph matching

algorithms. Consequently, our goal is to ensure that these algorithms main-

tain the same level of accuracy whether they are applied on the reduced or

original graphs. Hence, we define the classification accuracy obtained using

reduced graphs as one of the main criteria of our evaluations (alongside

the runtime). That is, the classification task is used as a proxy-task for

assessing the effectiveness of the proposed graph reduction methods.

The basic hypothesis underlying this approach is that if graph matching

algorithms achieve comparable (or even better) classification accuracies on

reduced graphs compared to the one achieved on the original graphs, then

Graph Based Pattern Recognition 35

the reduction methods is considered successful and can leverage the ”most

important” information out of the original graphs.

Fig. 2.8: General framework for graph reduction6

Despite that no universal definition of graph reduction is available, we

choose to base our research on the following generic definition for graph

reduction. Graph reduction is defined as the process of finding a graph

of smaller size while preserving key information. Formally, given a graph

G = (V,E), the goal is to find a smaller graph Gr = (Vr, Er) with |Vr|
nodes and |Er| edges, where |Vr| < |V | and/or |Er| < |E|, which is a

good approximation of G in some sense [33]. In other words, this definition

requires a reduction algorithm that takes a graph as input and produces a

smaller graph in terms of nodes and/or edges (see Fig. 2.8). The reduced

graph domain Gr = {G(1)
r , . . . , G

(N)
r } is obtained from the original graph

domain G by reducing all graphs G ∈ G according to the defined reduction

method.

The following three subsections describe the three main graph re-

duction strategies used throughout this thesis, viz. graph summarization,

graph coarsening, and hierarchical graph reduction. Graph summariza-

tion methods (described in Subsection 2.5.1) reduce the graphs by sam-

pling the most influential nodes. Graph coarsening methods (described

in Subsection 2.5.2) reduce the graphs by aggregating nodes together into

super-nodes. Hierarchical graph reduction methods (described in Subsec-

6Image adapted from [34]

36 Pattern Recognition on Reduced Graphs

tion 2.5.3) leverage the other two reduction strategies to create a pyramid

of reduced graphs at different levels of reduction.

2.5.1 Graph Summarization

A prominent graph reduction strategy is graph summarization [32]. Graph

summarization eases the discovery of complex patterns in structural data

and is employed in a wide range of applications, such as community detec-

tion [35], classification [36], and visualization [37].

Graph summarization is based on a graph approximation that retains

only a subset of the most important nodes and edges based on specific cri-

teria. The selection of the most relevant nodes and/or edges in the graph

structure is accomplished by first quantifying the importance or relevance

of each node and/or edge within the graph. Eventually, the nodes and/or

edges with the least importance or relevance are omitted leading to a re-

duced graph via a sampling strategy. We present an illustrative example

for graph summarization in Fig. 2.9.

Graph summarization methods include, for instance, methods that sam-

ple nodes based on their in- or out- degree or spanning tree substructures,

as well as methods that sample edges based on their weights or their ef-

fective resistance [106]. Additionally, those methods aim to maintain cuts

and the graph spectrum up to some multiplicative error [107] or the node

reachability [108]. In [109], for instance, the graph spectrum of reduced

graphs is approximated to match the spectrum of the original graphs by

first extracting sparse subgraphs via a spanning tree algorithm and then

iteratively retrieving some edges that do not appear in the tree.

Another approach to graph summarization is based on bit-

compressions [32]. This approach aims to minimize the number of bits

required to represent the input graph through its reduced version. Some

bit-compression based methods are lossless, allowing perfect reconstruction

of the original graph from its reduced version, For instance, the authors

of [110] demonstrate that web graphs are compressible down to almost two

bits per edge. Other compression methods are lossy compromising some de-

tails in the reconstruction process to save more space. For instance, in [111],

a lossy graph compression method is introduced with the aim to preserve

the communities in social networks.

Note that, in general graph reduction methods aim at obtaining sparse

subgraphs that approximate the characteristics of the original graphs (e.g.,

the distribution of the connected components size or community structure)

Graph Based Pattern Recognition 37

and not on identifying patterns that summarize the input graph to improve

user understanding [32]. While sampling nodes and/or edges can approxi-

mate certain graph properties with theoretical guarantees [112], it has the

major limitation that it cannot detect complex graph structures and often

focuses on individual nodes and/or edges rather than on collective patterns.

Fig. 2.9: Illustrative example of graph summarization: In the left part,

nodes with the least score are highlighted in red. In the right part, nodes

with the least score are omitted in the reduced version.

2.5.2 Graph Coarsening

The selection of nodes and/or edges that are eventually deleted, as proposed

in graph summarization, ultimately leads to a loss of some information.

Graph coarsening methods are an alternative to graph summarization that

aim at maintaining as much information as possible during the graph reduc-

tion process. Graph coarsening involves grouping and aggregating nodes

and/or edges into super-nodes and/or super-edges. Different approaches

are possible to group and aggregate nodes and/or edges, namely node clus-

tering methods and node aggregation methods. An illustrative example of

graph coarsening is presented in Fig. 2.10.

For instance, node clustering methods use graph clustering algorithms

for aggregation. Graph clustering methods usually aim to find a grouping

of the nodes into clusters such that the number of cross-cluster edges is

minimized. A reduced version of the input graph can then be obtained by

mapping all the nodes that belong to the same cluster into a super-node and

connecting them with super-edges. The weight of those super-edges can be

determined by the sum of the cross-cluster edges. For instance, in [113], a

graph coarsening method is proposed where clusters with high intra-cluster

38 Pattern Recognition on Reduced Graphs

edge densities and relatively low inter-cluster edge densities are first found

and then grouped into super-nodes. The authors of [114] introduce SNAP,

a graph coarsening method that is used to analyze social media networks.

SNAP produces a reduced graph where every node inside a super-node has

the same values for selected attributes and is adjacent with similar selected

relation. In [33], spectral coarsening methods are reviewed and evaluated

in order to speed up graph neural network training.

Node aggregation methods use a recursive process of aggregating nodes

into super-nodes connected with super-edges. The aggregation is typically

based on an optimization of the specific problem at hand. In [115], for

instance, biological graphs are coarsened into smaller and more compre-

hensible versions of the graphs, where the nodes represent entire patterns

of the original graphs. The authors of [38] use graph coarsening methods

in electrical networks to obtain lower dimensional, yet electrically equiva-

lent, circuits. In [116], graphs are reduced by merging nodes with similar

relationships to minimize the approximation error of edge weights and to

maximize the compression.

Fig. 2.10: Illustrative example of graph coarsening. In the left part, the

different cluster of nodes are highlighted in different colors. In the right

part, the nodes belonging to the same cluster are aggregated into super-

nodes.

2.5.3 Hierarchical Graph Reduction

A third prominent graph reduction approach is hierarchical graph represen-

tation [39]. This approach can be used with both of the previously reviewed

Graph Based Pattern Recognition 39

graph summarization and graph coarsening methods.

The basic idea of hierarchical graph representations is to progressively

reduce the original graphs as the number of reduction levels increases. The

key concept of hierarchical graph representation methods is to construct a

pyramid of subgraphs and then use the subgraphs at the highest level to

perform the graph matching. In this way, only the most abstract versions of

the graphs remain at the top level, simplifying the processing and analysis of

complex structural data. We present an illustrative example of hierarchical

graph representation in Fig. 2.11

Fig. 2.11: Illustrative example of hierarchical graph representation, where

the graph G is progressively reduced as the level of reduction Hi increases

(i = 1, . . . , k).

Originally, hierarchical graph representations are proposed in the field

of Computer Vision [117; 118]. The basic idea is to represent an image

in a multiresolution pyramid where level 0 is the original image and the

upper levels are aggregations of the pixels of the previous levels. In the

multilevel representation, each level represents different semantic proper-

ties like texture or color [117]. This representation can then be used, for

instance, to find boundaries between regions in an image. Following that

idea, in [119], the authors use hierarchical representations in conjunction

with graph data structures. The idea is to create a hierarchy based on the

community compression of the previous levels.

In [120], for instance, the authors use the Fiedler vector to decompose

a graph in a stable way. Based on this decomposition, a hierarchical graph

simplification process is proposed in which each neighborhood is represented

40 Pattern Recognition on Reduced Graphs

by a node and connected by edges if there is at least one edge between their

common neighborhood. In [40; 41], hierarchical representation for graphs

is used in a pattern recognition context. The authors propose to embed

graphs into a vector space and use a community detection method to find

the nodes to merge. Thereby, they create a representation that encodes

the abstract information while preserving the relationship with the initial

graph. In [121], a coarse-to-fine graph matching strategy is proposed. The

idea is to represent graphs as a pyramid where the lower levels contain

the coarse information of the graphs and the upper levels contain more

fine information. Then the authors perform the graph comparison in a

coarse-to-fine fashion.

Graph Datasets 3
Quand les choses sont connues, ne dirait-on pas
qu’elles ne sont que mieux cachées.

La commune (1898), Louise Michel

According to recent studies, the machine learning and pattern recogni-

tion community has expressed concerns about several methodological issues

in research. These include, for example, the replicability crisis, whereby

previously published results cannot be replicated [122]. Other problems

include biased results [123] and models that cannot handle real-world sce-

narios due to too small datasets or a lack of diversity [124].

In summary, poor research practices, such as unclear experimental se-

tups, non-reproducible results, and inappropriate model comparisons, pre-

vent consistent evaluation of machine learning and pattern recognition

methods and require concerted efforts to prevent their use.

To address the challenge of inadequate model comparisons, the use of

standardized datasets with rigorous experimental designs is a common ap-

proach [125]. In the present thesis, we apply this strategy using different

graph datasets from various domains for graph classification tasks.

The present chapter consists of two major parts. First, we present a

comprehensive list of 28 graph datasets, including both node-labeled and

unlabeled datasets. For each dataset, we detail its source along a visual plot

of the graph for each class and with some key metrics. These metrics are

organized as tables, and they include the number of graphs per dataset, the

number of classes, the proportion of each class, the minimum, average, and

maximum number of nodes and edges per graph, as well as the average node

degree and edge density per graph. The datasets presented are pulled from

a diverse range of domains such as chemistry (Section 3.1), bioinformatics

(Section 3.2), computer vision (Section 3.3), and social network analysis

41

42 Pattern Recognition on Reduced Graphs

(Section 3.4).

The second part of the chapter consists of an analysis of the three graph-

based pattern recognition techniques, presented in Section 2.4, which are

Graph Edit Distance, Graph Kernel, and Graph Neural Network in conjunc-

tion with standard classifiers (such as k-NN, SVM or Neural Networks),

which in turn are widely used in academic and applied research.

In particular, the experiments aim to determine which information is

most important in the graph structure i.e., structure, labels, or both. For

this purpose, we test the three classification paradigms in three different

configurations:

• A classifier that has access to the original graphs

• A classifiers that has access to the original graphs without labels

• A classifier that has access to a feature vector that aggregates all

labels of the graphs

The third configuration can be seen as a näıve baseline, which should serve

as a reference system whenever a novel graph-based method is proposed.

For instance, if a graph dataset yields inferior results with a graph-based

method compared to the näıve vector-based embedding, it implies that ap-

plying any graph reduction method will likely result in suboptimal results.

We are aware that this is not the first attempt to identify when, why

and which graph-based methods are most effective. For instance, in [6], the

authors provide a thorough review of the most common graph kernels, and

in [126] it is shown that the state-of-the-art graph kernels can underperform

compared to simpler methods. Furthermore, the authors of [125] present a

comprehensive comparison of six graph neural network architectures.

Our analysis differs from previous work in two key points. First, to the

best of our knowledge, we are the first to compare each of the three popular

graph-based classifiers with two systems that operate in a similar (or iden-

tical) way, but with access only to the graph structure or the node labels.

Second, we complement our work by explicitly listing graph datasets that

can be used to report the results of (approximate) graph-based methods

(or, put negatively, we point out which graph datasets should not be used

for such research purposes). That is the list of graph datasets that are the

most valuable for us to use to assess our graph reduction methods.

Graph Datasets 43

3.1 Chemical Compound Graph Datasets

Chemical compounds, the building blocks of matter, consist of atoms

bonded together [127]. That is a chemical compound is made up of different

types of atoms. Moreover, they have distinct structures held together by

chemical bonds, which can be covalent, ionic, or metallic.

The description of the molecular compounds can be effectively achieved

through graph representations. In this context, a graph uses nodes to rep-

resent atoms and edges to represent the covalent bonds that connect them.

Nodes in such graph are typically labeled with the specific chemical sym-

bols corresponding to the atoms they represent. The edges representing the

bonds between atoms can be labeled with information about the nature of

those bonds, such as their valence. An example of a molecule represented

as a graph can be found in Fig. 3.1.

This section introduces 16 molecule graph datasets from the TUDataset

repository [128] used in the remainder of this thesis. These datasets are

derived from real chemical compounds, and they serve as the foundation

for exploring the relationship between molecular structure and biological

activity. We present the following 16 graph datasets:

• AIDS (in Subsection 3.1.1)

• BZR and BZR-MD (in Subsection 3.1.2)

• COX2 and COX2-MD (in Subsection 3.1.3)

• DHFR and DHFR-M (in Subsection 3.1.4)

• ER-MD (in Subsection 3.1.5)

• MUTAG (in Subsection 3.1.6)

• MUTAGENICITY (in Subsection. 3.1.7)

• NCI1 and NCI109 (in Subsection 3.1.8)

• PTC-MM, PTC-FM, PTC-MR, and PTC-FR (in Subsection 3.1.9)

Fig. 3.1: Example of a molecular compound represented as a graph.

44 Pattern Recognition on Reduced Graphs

3.1.1 AIDS

The AIDS dataset is sourced from the National Cancer Institute (NCI),

specifically from the AIDS Antiviral Screen Database of Active Com-

pounds [129]. It was first proposed in the IAM Graph Repository [130] as a

graph dataset and contains 2,000 graphs. The graphs in the AIDS dataset

represent the molecular structure of chemical compounds. The nodes in

the graphs represent atoms, and the edges represent covalent bonds be-

tween atoms. The node labels indicate the atom type. Edges are unlabeled.

AIDS

Num Graphs |G| 2,000

Num Classes |Ω| 2

Class proportion 20.0% - 80.0%

Min. - Avg. - Max. |V | 2 - 15.7 - 95

Min. - Avg. - Max. |E| 1 - 16.2 - 103

Avg. node degree 2.01

Avg. edge density 0.19

Table 3.1: Summary of some metrics

of the AIDS dataset.

Fig. 3.2: Distribution of graphs by

number of nodes and edges

The main purpose of this dataset is a classification task, viz. determine

whether a given compound is active or inactive against the HI virus. Ad-

ditionally, Fig. 3.3 showcases one compound from each class, with distinct

colors representing different chemical symbols.

(a) Class ’0’ (b) Class ’1’

Fig. 3.3: Example graph for both classes of the AIDS dataset.

Graph Datasets 45

3.1.2 BZR & BZR-MD

Benzodiazepine receptor (BZR) [131] is a node labeled graph dataset that

contains 405 distinct chemical compounds. Each individual graph in this

dataset represent a brain receptor molecule (BZR), where atoms are rep-

resented by nodes and covalent bonds are represented by edges. Nodes are

labeled by the atom type, while edges are unlabeled.

BZR

Num Graphs |G| 405

Num Classes |Ω| 2

Class proportion 79.0% - 21.0%

Min. - Avg. - Max. |V | 13 - 35.8 - 57

Min. - Avg. - Max. |E| 13 - 38.4 - 60

Avg. node degree 2.15

Avg. edge density 0.06

Table 3.2: Summary of some metrics

of the BZR dataset.

Fig. 3.4: Distribution of graphs by

number of nodes and edges

The BZR dataset has been designed as a classification task that consists

of distinguishing compounds that are active on the Benzodiazepine receptor

from those that are not reactive. Table 3.2 contains important metrics for

the BZR dataset, while Fig. 3.4 shows the distribution of graphs based on

their number of nodes and edges. Fig. 3.5 represents a compound from each

class, with differently colored nodes for different chemical symbols.

(a) Class ’0’ (b) Class ’1’

Fig. 3.5: Example graph for both classes of the BZR dataset.

46 Pattern Recognition on Reduced Graphs

Benzodiazepine receptor - Modified (BZR-MD) [97; 131] graph dataset

is a modified version of the BZR dataset. The number of graphs is reduced

to obtain a balanced dataset (i.e., there is the same number of graphs in

each class). Moreover the edge structure of all graphs is modified to obtain

complete graphs (see, for instance, Fig. 3.7 where we observe that graphs

from both classes are complete). A summary of the different graph metrics

about BZR-MD as well as a distribution of the graphs by the number of

nodes and edges can be found in Table 3.3 and Fig. 3.6, respectively.

BZR-MD

Num Graphs |G| 306

Num Classes |Ω| 2

Class proportion 49.0% - 51.0%

Min. - Avg. - Max. |V | 8 - 21.3 - 33

Min. - Avg. - Max. |E| 28 - 225.1 - 528

Avg. node degree 20.30

Avg. edge density 1.00

Table 3.3: Summary of some metrics

of the BZR-MD dataset.

Fig. 3.6: Distribution of graphs by

number of nodes and edges

(a) Class ’0’ (b) Class ’1’

Fig. 3.7: Example graph for both classes of the BZR-MD dataset.

Graph Datasets 47

3.1.3 COX2 & COX2-MD

The Cyclooxygenase-2 (COX2) dataset is originally proposed in [131] and

represents a collection of 467 graphs modelling compounds that inhibit the

COX2 enzyme. In this dataset, each individual molecule is represented

as graph with nodes representing atoms and edges representing covalent

bonds. Nodes are labeled by the atom type, while edges are unlabeled.

COX2

Num Graphs |G| 467

Num Classes |Ω| 2

Class proportion 78.0% - 22.0%

Min. - Avg. - Max. |V | 32 - 41.2 - 56

Min. - Avg. - Max. |E| 34 - 43.4 - 59

Avg. node degree 2.11

Avg. edge density 0.05

Table 3.4: Summary of some metrics

of the COX2 dataset.

Fig. 3.8: Distribution of graphs by

number of nodes and edges

This dataset has been primarily designed as a classification task to rec-

ognize COX2 enzymes and COX2 inhibiters. The COX2 enzymes are in-

volved in processes like inflammation, pain, and fever and COX2 inhibitors

target this enzyme, and are thus commonly used for anti-inflammatory, and

antipyretic effects. Table 3.4 contains important metrics about the COX2

dataset. In addition to this table, Fig. 3.8 shows the distribution of the

graphs in the dataset based on the number of nodes and edges. Fig. 3.9

displays two graph examples stemming from the two classes.

(a) Class ’0’ (b) Class ’1’

Fig. 3.9: Example graph for both classes of the COX2 dataset.

48 Pattern Recognition on Reduced Graphs

The Cyclooxygenase-2 - Modified (COX2-MD) [97; 131] dataset is a

modified version of the original COX2 dataset. In order to obtain a balanced

dataset, the number of graphs in the dominant class has been reduced.

Moreover for all graphs, the edge structure has been adapted to obtain

complete graphs (see, for instance, Fig. 3.11 where we present a visual

representation of two complete graphs stemming from the two classes).

Table 3.5 and Fig. 3.10 contain a summary of the various graph metrics

and a distribution of the graphs based on the number of nodes and edges,

respectively.

COX2-MD

Num Graphs |G| 303

Num Classes |Ω| 2

Class proportion 51.0% - 49.0%

Min. - Avg. - Max. |V | 21 - 26.3 - 36

Min. - Avg. - Max. |E| 210 - 335.1 - 630

Avg. node degree 25.28

Avg. edge density 1.00

Table 3.5: Summary of some metrics

of the COX2-MD dataset.

Fig. 3.10: Distribution of graphs

by number of nodes and edges

(a) Class ’0’ (b) Class ’1’

Fig. 3.11: Example graph for both classes of the COX2-MD dataset.

Graph Datasets 49

3.1.4 DHFR & DHFR-MD

The Dihydrofolate Reductase (DHFR) data, originally proposed in [131], is

a collection of 756 graphs representing chemical compounds that inhibit the

dihydrofolate reductase (DHFR) enzyme. In this graph dataset, each atom

is represented by a node, and each covalent bond is represented by an edge.

The nodes are labeled with the atom type, and the edges are unlabeled.

DHFR

Num Graphs |G| 756

Num Classes |Ω| 2

Class proportion 39.0% - 61.0%

Min. - Avg. - Max. |V | 20 - 42.4 - 71

Min. - Avg. - Max. |E| 21 - 44.5 - 73

Avg. node degree 2.10

Avg. edge density 0.05

Table 3.6: Summary of some metrics

of the DHFR dataset.

Fig. 3.12: Distribution of graphs

by number of nodes and edges

The DHFR dataset has been designed as a classification task that con-

sists of discriminating between molecular compounds that inhibit or not

inhibit the DHFR enzyme. DHFR is an enzyme that plays a crucial role

in DNA synthesis and is an important target for various pharmaceutical

drugs. For a comprehensive overview of the dataset, including important

metrics, as well as the distribution the graphs based on the number of nodes

and edges refer to Table 3.6 and 3.12, respectively. Additionally, we provide

two examples to visually grasp the structure of these graphs in Fig. 3.13.

(a) Class ’0’ (b) Class ’1’

Fig. 3.13: Example graph for both classes of the DHFR dataset.

50 Pattern Recognition on Reduced Graphs

The Dihydrofolate reductase - Modified (DHFR-MD) [97; 131] dataset

is a modified version of the original DHFR dataset. The edge structure

of all graphs has been adapted to transform them into complete graphs

(see Fig. 3.15 where we display two examples stemming from both classes

representing complete graphs)1. Table 3.7 and Fig. 3.14 give an overview

of the different metrics for this modified dataset and the distribution of the

graphs based on the number of nodes and edges, respectively.

DHFR-MD

Num Graphs |G| 393

Num Classes |Ω| 2

Class proportion 32.0% - 68.0%

Min. - Avg. - Max. |V | 13 - 23.9 - 39

Min. - Avg. - Max. |E| 78 - 283.0 - 741

Avg. node degree 22.87

Avg. edge density 1.00

Table 3.7: Summary of some metrics

of the DHFR-MD dataset.

Fig. 3.14: Distribution of graphs

by number of nodes and edges

(a) Class ’0’ (b) Class ’1’

Fig. 3.15: Example graph for both classes of the DHFR-MD dataset.

1Note that, for this particular dataset and contrary to the other MD versions (i.e.,
BZR-MD, COX2-MD) the class proportion has not been even out.

Graph Datasets 51

3.1.5 ER-MD

The Estrogen Receptor - Modified (ER-MD) [131; 97] dataset contains 446

graphs representing ligands that interact with the estrogen receptor (ER).

In this graph dataset, each atom corresponds to a node, and their bonds

are represented by edges. Nodes are labeled with the atom type and edges

are unlabelled.

ER-MD

Num Graphs |G| 446

Num Classes |Ω| 2

Class proportion 59.0% - 41.0%

Min. - Avg. - Max. |V | 4 - 21.3 - 43

Min. - Avg. - Max. |E| 6 - 234.8 - 903

Avg. node degree 20.33

Avg. edge density 1.00

Table 3.8: Summary of some metrics

of the ER-MD dataset.

Fig. 3.16: Distribution of graphs

by number of nodes and edges

ER-MD dataset is designed as a classification task, focusing on distin-

guishing compounds that interact with the ER enzyme and those that do

not. ER-MD is a modification of the original ER graph dataset2, with

all graphs modified to be complete. Table 3.8 provides important metrics

about the dataset and Fig. 3.16 illustrates the distribution of graphs ac-

cording to their number of nodes and edges. Fig. 3.17 visually shows a

chemical compound from each class in ER-MD.

(a) Class ’0’ (b) Class ’1’

Fig. 3.17: Example graph for both classes of the ER-MD dataset.

2Note that the original ER dataset is not present in the TUDataset repository.

52 Pattern Recognition on Reduced Graphs

3.1.6 MUTAG

The MUTAG [132] dataset was introduced by [133] as a graph dataset

in the Inductive Logic Programming (ILP) task and contains 188 graphs.

The graphs in the MUTAG dataset represent the molecular structure of

molecular compounds, with nodes representing atoms identified by their

atom type and unlabeled edges representing covalent bounds.

MUTAG

Num Graphs |G| 188

Num Classes |Ω| 2

Class proportion 34.0% - 66.0%

Min. - Avg. - Max. |V | 10 - 17.9 - 28

Min. - Avg. - Max. |E| 10 - 19.8 - 33

Avg. node degree 2.19

Avg. edge density 0.14

Table 3.9: Summary of some metrics

of the MUTAG dataset.

Fig. 3.18: Distribution of graphs

by number of nodes and edges

The classification task of the MUTAG dataset is to predict the muta-

genicity on Salmonella Typhimurium. That is the dataset is divided into

two classes according to their mutagenic effect on bacteria. Table 3.9 con-

tains important metrics for the MUTAG dataset. The distribution of graphs

according to their nodes and edges is shown in Fig. 3.18. Fig. 3.19 provides

a visual representation of two graphs for each class.

(a) Class ’0’ (b) Class ’1’

Fig. 3.19: Example graph for both classes of the MUTAG dataset.

Graph Datasets 53

3.1.7 MUTAGENICITY

The MUTAGENICITY data originates from the Chemical Carcinogenic-

ity Research Information System (CCRIS) database [134] The graph-based

dataset is sourced from the IAM graph repository [130] and contains 4,337

graphs. In the MUTAGENICITY dataset, graph nodes represent atoms

and are labeled by atom type, while edges represent covalent bonds and are

unlabeled.

MUTAGENICITY

Num Graphs |G| 4,337

Num Classes |Ω| 2

Class proportion 55.0% - 45.0%

Min. - Avg. - Max. |V | 4 - 30.3 - 417

Min. - Avg. - Max. |E| 3 - 30.8 - 112

Avg. node degree 2.04

Avg. edge density 0.09

Table 3.10: Summary of some metrics

of the MUTAGENICITY dataset.

Fig. 3.20: Distribution of graphs

by number of nodes and edges

Mutagenicity refers to the ability of a chemical to induce mutations in

DNA. This dataset was therefore designed as a classification task, which

consists of distinguishing between mutagenic and non-mutagenic molecules.

Table 3.10 provides essential metrics about the dataset and Fig. 3.20 shows

the distribution of the graphs based on the number of nodes and edges.

Fig. 3.21 showcases example graphs from both classes.

(a) Class ’0’ (b) Class ’1’

Fig. 3.21: Example graph for both classes of the MUTAGENICITY dataset.

54 Pattern Recognition on Reduced Graphs

3.1.8 NCI1 & NCI109

The NCI1 and NCI109 [135] datasets are both derived from the PubChem

website [136] and are selected from the bioassay records for two different

types of cancer cell lines. The nodes of the graphs of both datasets corre-

spond to the various atoms, and the edges correspond to the bonds between

the atoms. The labels on the nodes correspond to the atom type while edges

are unlabelled. The NCI1 and NCI109 datasets both contain about 4,100

chemical compounds.

NCI1

Num Graphs |G| 4,110

Num Classes |Ω| 2

Class proportion 50.0% - 50.0%

Min. - Avg. - Max. |V | 3 - 29.9 - 111

Min. - Avg. - Max. |E| 2 - 32.3 - 119

Avg. node degree 2.16

Avg. edge density 0.09

Table 3.11: Summary of some metrics

of the NCI1 dataset.

Fig. 3.22: Distribution of graphs

by number of nodes and edges

(a) Class ’0’ (b) Class ’1’

Fig. 3.23: Example graph for both classes of the NCI1 dataset.

Each of the NCI anti-cancer screens forms a classification problem. The

class labels on these datasets are decided by the outcome field of the bioas-

say which is either active or inactive. The NCI1 dataset pertains to a

human tumor cell line known as NCI-H23, specifically focusing on Non-

small cell lung cancer. The NCI109 dataset pertains to a human tumor cell

Graph Datasets 55

line known as OVCAR-8, which is derived from ovarian cancer cells.

In Table 3.11 and Table 3.12, we present some key metrics about the

NCI1 and NCI109 datasets, respectively. The graph distribution based on

their number of nodes and edges is displayed in Fig. 3.22 and in Fig. 3.24

for the NCI1 and NCI109 datasets, respectively. Fig. 3.23 and Fig. 3.25

showcase two example graphs for the NCI1 and the NCI109 dataset, re-

spectively.

NCI109

Num Graphs |G| 4,127

Num Classes |Ω| 2

Class proportion 50.0% - 50.0%

Min. - Avg. - Max. |V | 4 - 29.7 - 111

Min. - Avg. - Max. |E| 3 - 32.1 - 119

Avg. node degree 2.16

Avg. edge density 0.09

Table 3.12: Summary of some metrics

of the NCI109 dataset.

Fig. 3.24: Distribution of graphs

by number of nodes and edges

(a) Class ’0’ (b) Class ’1’

Fig. 3.25: Example graph for both classes of the NCI109 dataset.

56 Pattern Recognition on Reduced Graphs

3.1.9 PTC

The PTC dataset comes from the Predictive Toxicology Challenge [137].

The original PTC dataset is divided into four different subsets [97]: PTC-

MM, PTC-FM, PTC-MR, and PTC-FR, each corresponding to a different

type of laboratory animal. Each of the PTC datasets contains about 350

individual compounds. In these datasets, molecules are naturally repre-

sented as graphs, where nodes symbolize atoms labeled by the atom type

and unlabeled edges denote chemical bonds.

PTC-MM

Num Graphs |G| 336

Num Classes |Ω| 2

Class proportion 62.0% - 38.0%

Min. - Avg. - Max. |V | 2 - 14.0 - 64

Min. - Avg. - Max. |E| 1 - 14.3 - 71

Avg. node degree 1.97

Avg. edge density 0.22

Table 3.13: Summary of some metrics

of the PTC-MM dataset.

Fig. 3.26: Distribution of graphs

by number of nodes and edges

(a) Class ’0’ (b) Class ’1’

Fig. 3.27: Example graph for both classes of the PTC-MM dataset.

The PTC datasets serve as a resource for various toxicological predic-

tion tasks related to chemical compounds. The task consist of determining

whether or not a given chemical compound has as a specific toxicity on

different types of laboratory animals.

Graph Datasets 57

In Tables 3.13, 3.14, 3.15, and 3.16, some key metrics concerning the

PTC-MM, PTC-FM, PTC-MR and PTC-FR datasets, are presented. In

addition, we display the graph distribution according to their number of

nodes and edges for all PTC datasets in Figs. 3.26, 3.28, 3.29, and 3.30.

In Fig. 3.27, we present two example graphs from the PTC-MM dataset

(similar plots are obtained for the other datasets, PTC-FM, PTC-MR and

PTC-FR).

PTC-FM

Num Graphs |G| 349

Num Classes |Ω| 2

Class proportion 59.0% - 41.0%

Min. - Avg. - Max. |V | 2 - 14.1 - 64

Min. - Avg. - Max. |E| 1 - 14.5 - 71

Avg. node degree 1.98

Avg. edge density 0.22

Table 3.14: Summary of some metrics

of the PTC-FM dataset.

Fig. 3.28: Distribution of graphs

by number of nodes and edges

PTC-MR

Num Graphs |G| 344

Num Classes |Ω| 2

Class proportion 56.0% - 44.0%

Min. - Avg. - Max. |V | 2 - 14.3 - 64

Min. - Avg. - Max. |E| 1 - 14.7 - 71

Avg. node degree 1.98

Avg. edge density 0.21

Table 3.15: Summary of some metrics

of the PTC-MR dataset.

Fig. 3.29: Distribution of graphs

by number of nodes and edges

58 Pattern Recognition on Reduced Graphs

PTC-FR

Num Graphs |G| 351

Num Classes |Ω| 2

Class proportion 66.0% - 34.0%

Min. - Avg. - Max. |V | 2 - 14.6 - 64

Min. - Avg. - Max. |E| 1 - 15.0 - 71

Avg. node degree 1.99

Avg. edge density 0.21

Table 3.16: Summary of some metrics

of the PTC-FR dataset.

Fig. 3.30: Distribution of graphs

by number of nodes and edges

Graph Datasets 59

3.2 Bioinformatic Graph Datasets

Bioinformatics is an interdisciplinary field that combines elements of biol-

ogy, computer science, and statistics to analyze biological data [138]. It

plays a pivotal role in modern biology, providing tools and methods for

managing, analyzing, and interpreting large quantities of biological data.

In the present thesis, we use graphs that represent two types of biological

data, viz. proteins and brain images.

Proteins are complex molecules composed of amino acids linked into

chains. Proteins play a crucial role in the structure and regulation of the

body’s tissues and organs [139]. The specific arrangement of the amino acids

that make up a protein determines its unique function and structure. In the

following sections, we discuss three graph datasets representing proteins

• DD (in Subsection 3.2.1)

• ENZYMES (in Subsection 3.2.2)

• PROTEINS (in Subsection 3.2.3)

A brain scan is a non-invasive procedure that uses a variety of imaging

techniques to create pictures of the brain. Brain scans can be used to diag-

nose a variety of conditions, e.g., brain tumors, or neurological disorders.

Brain scans can also be segmented into parts and can be used to find dif-

ferent relations between those parts. A simplified example of a segmented

brain represented as a graph can be found in Fig. 3.31. We present the

following graph datasets representing brain networks.

• KKI (in Subsection 3.2.4)

• OHSU (in Subsection 3.2.5)

• Peking-1 (in Subsection 3.2.6)

Fig. 3.31: Example of a brain segmented by region of interest represented

as a graph3.

60 Pattern Recognition on Reduced Graphs

3.2.1 DD

The DD dataset, introduced in [140], comprises a collection of 1, 178 distinct

protein structures. In this dataset, each individual protein is represented

as a graph, with nodes representing amino acids. An edge connects two

nodes if the corresponding amino acids are located within 6 angstroms of

each other, indicating spatial proximity.

DD

Num Graphs |G| 1,178

Num Classes |Ω| 2

Class proportion 59.0% - 41.0%

Min. - Avg. - Max. |V | 30 - 284.3 - 5748

Min. - Avg. - Max. |E| 63 - 715.7 - 14267

Avg. node degree 4.98

Avg. edge density 0.03

Table 3.17: Summary of some metrics

of the DD dataset.

Fig. 3.32: Distribution of graphs

by number of nodes and edges

The main objective of this dataset is a classification task that consists

of distinguishing proteins that function as enzymes from those that have

no enzymatic activity. Table 3.17 lists key metrics for the DD dataset, and

Fig. 3.32 displays the distribution of graphs by nodes and edges. Fig. 3.33

shows a compound from each class, using distinct colors for amino acids

(node labels).

(a) Class ’0’ (b) Class ’1’

Fig. 3.33: Example graph for both classes of the DD dataset.

3Image adapted from https://www.ninds.nih.gov/health-information/

public-education/brain-basics/brain-basics-know-your-brain

https://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-know-your-brain
https://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-know-your-brain

Graph Datasets 61

3.2.2 ENZYMES

The ENZYMES graph dataset is a collection of 600 protein tertiary struc-

tures obtained from the BRENDA enzyme database [141]. The ENZYMES

dataset is formally proposed a graph dataset in [142] and graphs represent

the structural and functional relationships between amino acids in proteins.

The nodes serve as representations of secondary structure elements (SSE),

and each node is labeled according to its specific type, whether it is a he-

lix, sheet, or turn. The unlabeled edges represent non-covalent interactions

between amino acids.

ENZYMES

Num Graphs |G| 600

Num Classes |Ω| 6

Class proportion

17.0% - 17.0%

17.0% - 17.0%

17.0% - 17.0%

Min. - Avg. - Max. |V | 2 - 32.6 - 126

Min. - Avg. - Max. |E| 1 - 62.1 - 149

Avg. node degree 3.86

Avg. edge density 0.16

Table 3.18: Summary of some metrics

of the ENZYMES dataset.

Fig. 3.34: Distribution of graphs

by number of nodes and edges

The ENZYMES dataset is associated with the task of classifying 600

enzymes to one of the 6 EC top-level classes. Table 3.18 provides impor-

tant statistical measures for the ENZYMES dataset, offering a comprehen-

sive overview of its key metrics. Meanwhile, Fig. 3.34 visually presents

the distribution of graphs based on their nodes and edges. Furthermore,

Fig. 3.35 offers a visual representation of an enzyme from each class within

the ENZYMES dataset. Different colors are employed to distinguish be-

tween various amino acids.

62 Pattern Recognition on Reduced Graphs

(a) Class ’0’ (b) Class ’1’

(c) Class ’2’ (d) Class ’3’

(e) Class ’4’ (f) Class ’5’

Fig. 3.35: Example graph for all classes of the ENZYMES dataset.

Graph Datasets 63

3.2.3 PROTEINS

The PROTEINS dataset originates from the Protein Data Bank

(PDB) [143] and was created and transformed to a graph dataset

in [140; 142]. The 1, 113 graphs in the PROTEINS dataset represent struc-

tural and functional relationships among amino acids in proteins. PRO-

TEINS uses secondary structure elements as nodes, depicting structural and

functional connections between amino acids in proteins. Unlabeled edges

connect two nodes which are neighbors along the amino acid sequence.

PROTEINS

Num Graphs |G| 1,113

Num Classes |Ω| 2

Class proportion 60.0% - 40.0%

Min. - Avg. - Max. |V | 4 - 39.1 - 620

Min. - Avg. - Max. |E| 5 - 72.8 - 1049

Avg. node degree 3.73

Avg. edge density 0.21

Table 3.19: Summary of some metrics

of the PROTEINS dataset.

Fig. 3.36: Distribution of graphs

by number of nodes and edges

The PROTEINS dataset differs from ENZYMES, as it comes with the

task of classifying into enzymes and non-enzymes. Table 3.19 presents rel-

evant metrics for the PROTEINS dataset. Alongside, Fig. 3.36 visually

represents the distribution of graphs, giving an overview of their structural

diversity. Furthermore, Fig. 3.37 serves as a visual representation, present-

ing sample graphs from both classes.

(a) Class ’0’ (b) Class ’1’

Fig. 3.37: Example graph for both classes of the PROTEINS dataset.

64 Pattern Recognition on Reduced Graphs

3.2.4 KKI

The KKI [144] dataset is a brain network derived from the complete at-

las of functional brain resonance images (fMRI) [145]. The graphs in the

KKI graph dataset represent the functional relationships between different

brain regions. In these graphs, each node represents a specific Region Of

Interest (ROI) in the brain, while edges indicate correlations between pairs

of these ROIs.

KKI

Num Graphs |G| 83

Num Classes |Ω| 2

Class proportion 45.0% - 55.0%

Min. - Avg. - Max. |V | 5 - 27.0 - 90

Min. - Avg. - Max. |E| 4 - 48.4 - 237

Avg. node degree 3.19

Avg. edge density 0.18

Table 3.20: Summary of some metrics

of the KKI dataset.

Fig. 3.38: Distribution of graphs

by number of nodes and edges

The construction of the ROI network has been specifically designed for

the classification of Attention Deficit Hyperactivity Disorder (ADHD), a

neurodevelopmental disorder characterized by symptoms such as inatten-

tion, hyperactivity, and impulsivity. Table 3.20 provides key metrics for the

dataset and Fig. 3.38 visually presents how graphs are distributed in terms

of nodes and edges. Fig. 3.39 showcases ROI networks from each class in

the KKI dataset.

(a) Class ’0’ (b) Class ’1’

Fig. 3.39: Example graph for both classes of the KKI dataset.

Graph Datasets 65

3.2.5 OHSU

The OHSU dataset introduced in [144], is – similar as KKI – a brain net-

work derived from the comprehensive atlas of functional brain resonance

images (fMRI) [145]. Functional connectivity graphs are constructed from

this fMRI data. Each node in these graphs signifies a distinct region of

interest (ROI) within the brain, while edges denote correlations between

pairs of these ROIs.

OHSU

Num Graphs |G| 79

Num Classes |Ω| 2

Class proportion 44.0% - 56.0%

Min. - Avg. - Max. |V | 9 - 82.0 - 171

Min. - Avg. - Max. |E| 9 - 199.7 - 823

Avg. node degree 4.33

Avg. edge density 0.08

Table 3.21: Summary of some metrics

of the OHSU dataset.

Fig. 3.40: Distribution of graphs

by number of nodes and edges

The construction of the ROI network is specifically designed for the clas-

sification of Attention Deficit Hyperactivity Disorder (ADHD). That is, the

OHSU dataset is designed for the task of hyperactive-impulsive (HI) clas-

sification. In Table 3.21, we give important metrics on the OHSU dataset,

while in Fig. 3.40, we display the distribution of the graphs on the basis of

their number of nodes and edges. Furthermore, Fig. 3.41 serves as a visual

showcase, presenting ROI networks from both classes in the OHSU dataset.

(a) Class ’0’ (b) Class ’1’

Fig. 3.41: Example graph for both classes of the OHSU dataset.

66 Pattern Recognition on Reduced Graphs

3.2.6 Peking-1

The Peking-1 [144] dataset is a brain graph derived from the complete atlas

of functional brain resonance images (fMRI) [145]. This dataset comprises

resting-state fMRI. To construct functional connectivity graphs, the fMRI

data is combined with the CC200 functional parcellation algorithm [145].

In these graphs, each node represents a specific region of interest (ROI)

within the brain, while edges signify correlations between pairs of these

ROIs.

Peking-1

Num Graphs |G| 85

Num Classes |Ω| 2

Class proportion 58% - 42.0%

Min. - Avg. - Max. |V | 7 - 39.3 - 134

Min. - Avg. - Max. |E| 7 - 77.4 - 535

Avg. node degree 3.55

Avg. edge density 0.13

Table 3.22: Summary of some metrics

of the Peking-1 dataset.

Fig. 3.42: Distribution of graphs

by number of nodes and edges

The Peking-1 dataset is constructed for gender classification. Table 3.22

provides key metrics about the Peking-1 dataset. Meanwhile, Fig. 3.42 illus-

trates the distribution of graphs based on their nodes and edges. Fig. 3.43

showcases ROI networks from both classes within the Peking-1 dataset.

(a) Class ’0’ (b) Class ’1’

Fig. 3.43: Example graph for both classes of the Peking-1 dataset.

Graph Datasets 67

3.3 Computer Vision Graph Datasets

Graph-based computer vision is a branch of computer vision that uses graph

theory to represent and analyze visual data [24; 146]. In this approach, an

image or video is represented as a graph, where each pixel, superpixel,

or region of interest (ROI) is a node in the graph. The edges between

nodes are then often used to represent the relationships between the corre-

sponding nodes, capturing their similarity, spatial proximity, or functional

connectivity. These relationships can be quantified using various features,

such as intensity, color, texture, or motion vectors. Graph representa-

tions make it possible to apply graph algorithms and techniques to extract

meaningful information from visual data (e.g., Multi-level Graph Learning

Network (MGLN) for Hyperspectral Image (HSI) classification [147]).

Graphs with regular structures, like grid graphs, can be used to repre-

sent images. In the context of this special type of graph, nodes (representing

individual pixels) may contain discrete or continuous vector-valued data,

representing a range of information about the pixel. For instance, if an

image contains rich 3-channel color information, this can be represented by

continuous node attributes.

Images often come with additional data and semantic annotations

(known as metadata). However, due to the resource-intensive nature of

data collection, this information may only be partially available.

A rather simplified example of a graph representing an image using the

image segmentation annotation is presented in Fig. 3.44.

In the following subsection, we present two graph datasets representing

semantic images:

• MSRC9 and MSRC-21 (in Subsection 3.3.1)

Fig. 3.44: Example of an image represented as a grid-graph4.

68 Pattern Recognition on Reduced Graphs

3.3.1 MSRC-9 & MSRC-21

The MSRC 9-class and MSRC 21-class datasets are used in semantic image

processing, as introduced in [148], and transformed as a graph dataset

in [149]. Each image is represented as a conditional Markov random field

graph, derived from image over-segmentation into superpixels. Nodes are

connected if the superpixels are adjacent, and each node can further be

annotated with a semantic label. Node labels are derived by considering

the most common label among all pixels in the corresponding superpixel.

MSRC-9

Num Graphs |G| 221

Num Classes |Ω| 8

Class proportion

9.0% - 14.0%

14.0% - 14.0%

10.0% - 14.0%

13.0% - 14.0%

Min. - Avg. - Max. |V | 25 - 40.6 - 55

Min. - Avg. - Max. |E| 53 - 97.9 - 145

Avg. node degree 4.82

Avg. edge density 0.12

Table 3.23: Summary of some metrics

of the MSRC-9 dataset.

Fig. 3.45: Distribution of graphs

by number of nodes and edges

Semantic labels include various classes like building, grass, tree, cow, and

others, along with a void label for unclassified objects. Images with void

labels were excluded, resulting in a classification task with eight classes for

MSRC-9 and 20 classes for MSRC-21.

Table 3.23 and Table 3.24 provides important metrics for the MSRC-

9 and MSRC-21 dataset, respectively. Fig. 3.45 and Fig. 3.47 show the

distribution of graphs by the number of nodes and edges for the MSRC-9

and MSRC-21 datasets, respectively. Finally, in Fig. 3.46 and Fig. 3.48, a

visual example is presented for each class for both datasets.

4Image adapted from https://commons.wikimedia.org/wiki/File:Bundeshaus_Bern_

2009,_Flooffy.jpg

https://commons.wikimedia.org/wiki/File:Bundeshaus_Bern_2009,_Flooffy.jpg
https://commons.wikimedia.org/wiki/File:Bundeshaus_Bern_2009,_Flooffy.jpg

Graph Datasets 69

(a) Class ’0’ (b) Class ’1’

(c) Class ’2’ (d) Class ’3’

(e) Class ’4’ (f) Class ’5’

(g) Class ’6’ (h) Class ’7’

Fig. 3.46: Example graph for all classes of the MSRC-9 dataset.

70 Pattern Recognition on Reduced Graphs

MSRC-21

Num Graphs |G| 563

Num Classes |Ω| 20

Class proportion

4.0% - 5.0%

5.0% - 5.0%

5.0% - 5.0%

5.0% - 5.0%

5.0% - 6.0%

5.0% - 6.0%

5.0% - 5.0%

4.0% - 5.0%

5.0% - 4.0%

5.0% - 2.0%

Min. - Avg. - Max. |V | 51 - 77.5 - 141

Min. - Avg. - Max. |E| 121 - 198.3 - 405

Avg. node degree 5.10

Avg. edge density 0.07

Table 3.24: Summary of some metrics

of the MSRC-21 dataset.

Fig. 3.47: Distribution of graphs

by number of nodes and edges

Graph Datasets 71

(a) Class ’0’ (b) Class ’1’ (c) Class ’2’ (d) Class ’3’

(e) Class ’4’ (f) Class ’5’ (g) Class ’6’ (h) Class ’7’

(i) Class ’8’ (j) Class ’9’ (k) Class ’10’ (l) Class ’11’

(m) Class ’12’ (n) Class ’13’ (o) Class ’14’ (p) Class ’15’

(q) Class ’16’ (r) Class ’17’ (s) Class ’18’ (t) Class ’19’

Fig. 3.48: Example graph for all classes of the MSRC-21 dataset.

72 Pattern Recognition on Reduced Graphs

3.4 Social Networks Graph Datasets

Social networks are a kind of graph in which the nodes typically represent

individual persons and the edges the social connections between them [150].

In this way, it is possible to model a wide range of social relationships, such

as friendships, family ties, and professional relationships.

Two main types of graphs are commonly used to represent social net-

works, viz. undirected and directed graphs. Undirected graphs are suitable

for modeling relationships such as friendships, in which the connection is

mutual. A directed graph is better suited to modeling relationships such

as following or mentoring, in which one person follows or guides another.

Graphs can be used to analyze social networks in a variety of ways. For

example, we can use graphs to identify key individuals in a network. To this

end, one can identify individuals who have a large number of connections or

who are close to many other important individuals. A second task consists

of identifying communities in a network. The objective is to identify groups

of individuals who are more closely connected than they are to individuals

in other groups. An example of a simplified social network graph can be

found in Fig. 3.49.

The following sections present the following four graph datasets sampled

from the social network domain.

• COLLAB (in Subsection 3.4.1)

• IMDB-BINARY (in Subsection 3.4.2)

• REDDIT-MULTI-5K and -MULTI-12K (in Subsection 3.4.3).

Fig. 3.49: Example of a social network graph

Graph Datasets 73

3.4.1 COLLAB

The COLLAB [151] dataset is a compilation of scientific collaboration

graphs. It is derived from three public collaboration datasets [152]: High

Energy Physics, Condensed Matter Physics, and Astro Physics. Each graph

represents the ego-network of a researcher within a specific research field.

That is the nodes represent researchers and an edge between two nodes

exists if the corresponding researchers have collaborated with each others.

COLLAB

Num Graphs |G| 5,000

Num Classes |Ω| 3

Class proportion
52.0% - 15.0%

33.0%

Min. - Avg. - Max. |V | 32 - 74.5 - 492

Min. - Avg. - Max. |E| 60 - 2457.2 - 40119

Avg. node degree 37.37

Avg. edge density 0.51

Table 3.25: Summary of some metrics

of the COLLAB dataset.

Fig. 3.50: Distribution of graphs

by number of nodes and edges

The COLLAB dataset is designed as a classification task, where the

graph labels indicate the corresponding research area. Table 3.25 provides

important metrics about the COLLAB dataset. Fig. 3.50 illustrates the dis-

tribution of graphs based on their nodes and edges. Additionally, Fig. 3.51

shows ego-networks of different classes within the COLLAB dataset. It is

noteworthy that in these graphs, the color of a node corresponds to the

number of its neighbors.

(a) Class ’0’ (b) Class ’1’ (c) Class ’2’

Fig. 3.51: Example graph for all classes of the COLLAB dataset.

74 Pattern Recognition on Reduced Graphs

3.4.2 IMDB-BINARY

The IMDB-BINARY [151] is a collection of ego-networks derived for each

actor/actress from movie data on IMDB5. In each graph, nodes represent

actors/actresses, and an edge connects them if they appear in the same

movie.

IMDB-BINARY

Num Graphs |G| 1,000

Num Classes |Ω| 2

Class proportion 50.0% - 50.0%

Min. - Avg. - Max. |V | 12 - 19.8 - 136

Min. - Avg. - Max. |E| 26 - 96.5 - 1249

Avg. node degree 8.89

Avg. edge density 0.52

Table 3.26: Summary of some metrics

of the IMDB-BINARY dataset.

Fig. 3.52: Distribution of graphs

by number of nodes and edges

These collaboration graphs are specifically generated for Action and

Romance genres and each ego-network is labeled with the corresponding

genre the graph belongs to. The objective is to predict the genre of an

ego-network graph. Table 3.26 presents key information about the IMDB-

BINARY dataset. Fig. 3.52 visually presents how graphs are distributed

based on the number of nodes and edges. Fig. 3.53 displays ego-networks

from both classes within the IMDB-BINARY dataset. Note that in these

graphs, the node color corresponds to the number of its neighbors.

(a) Class ’0’ (b) Class ’1’

Fig. 3.53: Example graph for all classes of the IMDB-BINARY dataset.

5https://www.imdb.com/

https://www.imdb.com/

Graph Datasets 75

3.4.3 REDDIT-MULTI-5K & REDDIT-MULTI-12K

The REDDIT-MULTI-5K and REDDIT-MULTI-12K [151] datasets are

collections of online subreddits6 discussion represented as graphs. In both

REDDIT-MULTI-5K and REDDIT-MULTI-12K, each graph corresponds

to a discussion thread on the Reddit platform, where nodes represent users

and there is an edge between two nodes if at least one of them responds to

another’s comment.

REDDIT-MULTI-5K

Num Graphs |G| 4,999

Num Classes |Ω| 5

Class proportion

20.0% - 20.0%

20.0% - 20.0%

20.0%

Min. - Avg. - Max. |V | 22 - 508.5 - 3648

Min. - Avg. - Max. |E| 21 - 594.9 - 4783

Avg. node degree 2.25

Avg. edge density 0.01

Table 3.27: Summary of some metrics

of the REDDIT-MULTI-5K dataset.

Fig. 3.54: Distribution of graphs

by number of nodes and edges

In REDDIT-MULTI-5K, the data is sourced from five different sub-

reddits: worldnews, videos, AdviceAnimals, aww, and mildlyinteresting.

REDDIT-MULTI-12K includes all the subreddits found in REDDIT-

MULTI-5K along with a broader selection of subreddits, viz. AskReddit,

atheism, IAmA, Showerthoughts, todayilearned, TrollXChromosomes. Each

graph is labeled according to its originating subreddit. The objective of

the classification task is to categorize each graph into the corresponding

subreddit.

Table 3.27 and Table 3.28 provide important metrics for the REDDIT-

MULTI-5K and REDDIT-MULTI-12K dataset, respectively. Fig. 3.54 and

Fig. 3.56 illustrate the distribution of graphs based on their nodes and edges

for REDDIT-MULTI-5K and REDDIT-MULTI-12K, respectively. Finally,

Fig. 3.55 and Fig. 3.57 provide visual examples for each class in both

datasets. Note that for those graph representations the color of a node

corresponds to the number of its neighbors.

6https://www.reddit.com/

https://www.reddit.com/

76 Pattern Recognition on Reduced Graphs

(a) Class ’0’ (b) Class ’1’ (c) Class ’2’

(d) Class ’3’ (e) Class ’4’

Fig. 3.55: Example graph for all classes of the REDDIT-MULTI-5K dataset.

REDDIT-MULTI-12K

Num Graphs |G| 11,929

Num Classes |Ω| 11

Class proportion

6.0% - 9.0%

8.0% - 10.0%

4.0% - 8.0%

10.0% - 9.0%

4.0% - 22.0%

8.0%

Min. - Avg. - Max. |V | 2 - 391.4 - 3782

Min. - Avg. - Max. |E| 1 - 456.9 - 5171

Avg. node degree 2.28

Avg. edge density 0.02

Table 3.28: Summary of some metrics

of the REDDIT-MULTI-12K dataset.

Fig. 3.56: Distribution of graphs

by number of nodes and edges

Graph Datasets 77

(a) Class ’0’ (b) Class ’1’ (c) Class ’2’

(d) Class ’3’ (e) Class ’4’ (f) Class ’5’

(g) Class ’6’ (h) Class ’7’ (i) Class ’8’

(j) Class ’9’ (k) Class ’10’

Fig. 3.57: Example graph for all classes of the REDDIT-MULTI-12K

dataset.

78 Pattern Recognition on Reduced Graphs

3.5 Dataset Filtering

In the present section, we present a thorough experiment (presented in a

conference paper [46]) to filter out graph datasets unsuited for evaluating

the proposed graph reduction methods (detailed in the following Chap-

ters 4, 5, and 6).

First, in Subsection 3.5.1, we detail the configurations tested for the

three classifier paradigms (described in Chapter 2). Following this, in Sub-

section 3.5.2, we provide a detailed description of the technical parameters

employed in the experiments, including the evaluation scheme, metrics, and

hyperparameter ranges. The actual experimental evaluation is then divided

into two parts. First, in Subsection 3.5.3, we compare classification accura-

cies across the three classifier paradigms in the three configurations for both

the labeled and unlabeled graph datasets. Second, in Subsection 3.5.4, we

analyze in which datasets the graph-based approaches are actually signifi-

cantly better than the vector-based counterparts. In the same section, we

ultimately define the different graph datasets that are used for the various

evaluations in the remainder of the present thesis.

3.5.1 Classification Methods Comparison

The overall information of a graph consists of two parts, namely the struc-

ture and the labels. By omitting one or the other, or using both pieces of

information at the same time, we thus obtain three different configurations.

To determine the most beneficial piece of information in a graph in the con-

text of graph classification, we use three classification paradigms that are

graph edit distance, graph kernel, and graph neural network coupled with

the three configurations presented in the present paragraph.

In Table 3.29, the three configurations are summarised for all the dif-

ferent classifiers (see Fig. 3.58).

(I) The initial configuration (shown in column 1) consists of Labeled

Graphs, which involves conducting graph classification on the orig-

inal graphs, including both its structure and node labels.

(II) The second configuration (shown in column 2) aims to examine

the significance of the graph structure itself by excluding the node

labels to obtain Unlabeled Graphs.

(III) The final configuration (shown in the third column) is the

Aggregated Labels setup, in which only the node information is

Graph Datasets 79

Fig. 3.58: A visual summary of the three tested configurations.

Table 3.29: Three configurations (L, U, A) for the three classifier paradigms

(k-NN, SVM, NN). (I) Labeled Graphs: Original graphs with node labels

and graph structure, (II) Unlabeled Graphs: Graphs without labels (graph

structure only), and (III) Aggregated Labels: Vector representation of the

graphs based on the node labels.

Graph-Based Vector-Based

Labeled Graphs Unlabeled Graphs Aggregated Labels

k-NN GED(L) GED(U) L2(A)

SVM WL(L) WL(U) RBF(A)

C
la
ss
ifi
e
r

NN GNN(L) GNN(U) MLP(A)

retained. We use global sum pooling on the graphs’ nodes to ob-

tain a basic vector representation of the graphs. This feature vector

is then fed into three statistical classifiers (a k-NN classifier using

the Euclidean distance (L2), an SVM with a radial basis func-

tion (RBF), and a multilayer perceptron (MLP)). The rationale of

this procedure is to use statistical classifiers that are conceptually

closely related to the three graph-based classifiers used for the two

configurations.

80 Pattern Recognition on Reduced Graphs

3.5.2 Experimental Setup

In order to ensure the reliability of the empirical results and reduce the

impact of random data partitioning, we use a 10-fold cross-validation strat-

egy that is repeated 10 times in a stratified manner for each dataset and

configuration. The performance of the models is then estimated using each

partition, where hyperparameters are chosen through an internal model

selection process that only uses the training data. Note that the model

selection is conducted independently for each training and test split, thus

the optimal hyperparameter configurations may differ from one split to

another.

A common metric to assess the quality of a classifier is the classifica-

tion accuracy. It measures the relative proportion of correctly classified

instances out of the total number of instances. However, the classification

accuracy can be misleading in imbalanced datasets, where the number of in-

stances in one class is much larger than the number of instances in another

class (this may cause the classifier to predict the majority class more often

and thus report over-optimistic results). Therefore, we report the balanced

accuracy [153] in this chapter since not all datasets used are class-balanced.

Concerning the computation of BP-GED, we use unit costs for both

node and edge insertions/deletions. For the node substitution cost, we use

the Euclidean distance between the corresponding node labels. For edge

substitution, we use a zero cost (since the edges of all graphs are unlabeled).

Parameter α ∈]0, 1[represents the relative importance of node and edge

edit operation costs and is varied from 0.1 to 0.9 in increments of 0.1 in our

evaluation. For the k-NN classifier, we optimize the number of neighbors k

within the range k ∈ {3, 5, 7}.
In the kernel scenario, we use a 4-Weisfeiler-Lehman kernel which means

we perform four refinement iterations. To optimize the SVM parameter C,

which balances the trade-off between large margins and minimizing mis-

classification, we explore values in the range 10−2.0,−1.5,...,2.0. We use the

same range for the regularization parameter when optimizing the SVM with

radial basis function for the aggregated node labels.

For the training process of the GNN experiments, we use the hyper-

parameters as proposed in [125]. For the fully connected network, the

following parameters are optimized. The depth of the standard fully

connected layers d ∈ {1, 3, 5, 10}, the number of neurons per layer n ∈
{5, 10, 20, 30}, the dropout value δ ∈ {0, 0.25, 0.5} and the learning rate

l ∈ {0.005, 0.01, 0.05, 0.1}.

Graph Datasets 81

3.5.3 Graph Classification

Fig. 3.59 shows the balanced classification accuracy results obtained by the

classifiers in the tested settings on labeled graph datasets. For the three

graph-based classifiers (GED,WL, GNN) two different setups are evaluated,

viz. labeled graphs (L) and unlabeled graphs (U). The three vector-based

classifiers (L2, RBF, MLP) are tested on the aggregated node labels (A).

Four main trends can be observed from Fig. 3.59 on the node-labeled

graph datasets. First, we observe that on the datasets MUTAGENICITY,

NCI1, and NCI109 the three different types of classifiers somehow achieve

the expected results. That is the statistical classifiers using the aggre-

gated vectors achieve the lowest accuracies, the second-best performance is

achieved with graph-based methods using unlabeled graphs, and the best

classification results are obtained on the original graphs.

Second, we notice that on the six datasets BZR-MD, COX2-MD, MSRC-

9, MSRC-21, PROTEINS, and DD, the classifiers face difficulties when

the node labels are removed from the graphs. That is, on those datasets,

the accuracies obtained by the classifiers operating on unlabeled graphs

is almost consistently lower than those of the classifiers that operate on

the aggregated feature vectors. That indicates that the structure in those

datasets is complicated to distinguish from one another, and moreover, that

the labels on the nodes play a pivotal role in those applications.

Third, we observe that all classifiers have difficulties performing well

on the OHSU, Peking-1, and KKI datasets. The achieved results are only

slightly better than random predictions, indicating that these tasks are

extremely challenging and currently unsolved by the tested classifiers.

Finally, we observe that on the datasets BZR-MD, COX2, COX2-MD,

ER-MD, DHFR-MD, MSRC-9, MSRC-21, DD, PROTEINS, and the four

PTCs datasets, the performance of the näıve vector-based approach is com-

parable to that of the more advanced graph-based techniques. We have two

possible explanations for this phenomenon. First, for the MD versions of

these datasets, the graphs are heavily modified and fully connected, ren-

dering graph-based classification less effective. Second, by visualizing the

aggregated feature vectors with T-SNE in Fig. 3.60 7, we find that the dif-

ferent classes are easily separable on these datasets, which in turn explains

the good results of the vector-based classifiers.

Fig. 3.61 (a) and (b) illustrate the balanced classification accuracy ob-

7Fig. 3.60 displays the T-SNE visualization for only four datasets the visualization of
the remaining datasets can be found in Appendix A.1.

82 Pattern Recognition on Reduced Graphs

tained by the classifiers on unlabeled graph datasets, both without and

with the inclusion of the node degree information, respectively. For the

three graph-based classifiers (GED, WL, GNN), only the unlabeled graphs

(U) configuration is evaluated. The three vector-based classifiers (L2, RBF,

MLP) are tested with aggregated ”dummy”-node labels (A).

Note that the computation of the GED(U) for the REDDIT-MULTI-

5K and the REDDIT-MULTI-12K datasets are computationally too ex-

pensive, so we cannot report those results. When analyzing the results

of the balanced classification accuracy on the unlabeled graph datasets in

Fig. 3.61 (a), we observe that the advanced graph classification methods

consistently outperform the näıve baseline across all datasets and all classi-

fication methods. A second observation can be made from the use of node

degree (see Fig. 3.61 (b)). Specifically, we note that incorporating node de-

gree potentially enhances the classification accuracies of graph-based clas-

sifiers, though not consistently across all datasets. That is, we can see an

improvement in the results compared to the näıve baseline embedding.

The T-SNE visualization for the unlabeled graph datasets is presented

in Fig. 3.62. We observe that across all datasets, the classes are not easily

separable.

Graph Datasets 83
L

2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

90

95

100

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
]

AIDS

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

60

65

70

75

BZR

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

55

60

65

70

BZR-MD

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

50

55

60

65
COX2

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

50

55

60

65

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
]

COX2-MD

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

70

72

74

76

78
DD

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

60

70

80

DHFR

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

50.0

52.5

55.0

57.5

DHFR-MD

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

30

40

50

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
]

ENZYMES

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

60

65

70

75

ER-MD

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

45

50

55

KKI

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

20

40

60

80

MSRC-21

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

20

40

60

80

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
]

MSRC-9

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

77.5

80.0

82.5

85.0

87.5
MUTAG

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

65

70

75

80

Mutagenicity

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

65

70

75

80

85

NCI1

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

60

70

80

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
]

NCI109

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

45

50

55

60

OHSU

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

68

70

72

PROTEINS

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

50

55

60

PTC-FM

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

Classifiers

50

52

54

56

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
]

PTC-FR

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

Classifiers

50

55

60

PTC-MM

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

Classifiers

50

55

60

PTC-MR

L
2
(A

)

G
E

D
(U

)

G
E

D
(L

)

R
B

F
(A

)

W
L

(U
)

W
L

(L
)

M
L

P
(A

)

G
N

N
(U

)

G
N

N
(L

)

Classifiers

45

50

55

60

Peking-1

L2(A)

GED(U)

GED(L)

RBF(A)

WL(U)

WL(L)

MLP(A)

GNN(U)

GNN(L)

Balanced Classification Accuracy - Labeled Datasets

Fig. 3.59: Balanced classification accuracy of the three types of classifiers

(k-NN, SVM, NN) achieved in the three tested configurations (L, U, A)

across all node-labeled graph datasets.

84 Pattern Recognition on Reduced Graphs

DD MSRC-9 NCI1 PROTEINS

T-SNE Visualization - Labeled Datasets

Fig. 3.60: T-SNE visualization of the vector representation of the node-

labeled graph datasets.

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

40

50

60

70

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
] COLLAB

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

50

55

60

65

70

IMDB-BINARY

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

Classifiers

30

35

40

45

50

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
] REDDIT-MULTI-5K

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

Classifiers

15

20

25

30

REDDIT-MULTI-12K

L2(A)

GED(U)

RBF(A)

WL(U)

MLP(A)

GNN(U)

Balanced Classification Accuracy - Unlabeled Datasets

(a) Balanced classification accuracy of unlabeled graph datasets.

Fig. 3.61: Balanced classification accuracy (with and without node degree

information) of the three types of classifiers (k-NN, SVM, NN) achieved in

the three tested configurations (L, U, A) across all unlabeled graph datasets.

Graph Datasets 85

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)
50

60

70

80

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
] COLLAB

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

60

65

70

IMDB-BINARY
L

2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

Classifiers

35

40

45

50

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y[

%
] REDDIT-MULTI-5K

L
2
(A

)

G
E

D
(U

)

R
B

F
(A

)

W
L

(U
)

M
L

P
(A

)

G
N

N
(U

)

Classifiers

10

20

30

40
REDDIT-MULTI-12K

L2(A)

GED(U)

RBF(A)

WL(U)

MLP(A)

GNN(U)

Balanced Classification Accuracy - Unlabeled Datasets

(b) Balanced classification accuracy of unlabeled graph datasets with node degree
information.

Fig. 3.61: Balanced classification accuracy (with and without node degree

information) of the three types of classifiers (k-NN, SVM, NN) achieved in

the three tested configurations (L, U, A) across all unlabeled graph datasets.

COLLAB IMDB-BINARY REDDIT-MULTI-5K REDDIT-MULTI-12K

T-SNE Visualization - Unlabeled Datasets

Fig. 3.62: T-SNE visualization of the vector representation of unlabeled

graph datasets.

86 Pattern Recognition on Reduced Graphs

3.5.4 Dataset Selection

Comparing two classification algorithms is not a trivial task due to the

risk of committing type I or type II errors. Type I errors occur when the

null hypothesis is wrongly rejected even though it is true, whereas type II

errors occur when the null hypothesis is not rejected even though it is false.

To address this issue, the authors of [154] conduct an empirical evaluation

of multiple statistical tests and conclude that the 10-time repeated 10-

fold cross-validation test is the most effective. This test involves all 100

individual systems to estimate the mean and variance of the accuracy with

10 degrees of freedom (making it conceptually simple to use).

We apply this statistical test on the node-labeled graph datasets, to con-

duct a comparison between the statistical classifiers that use the aggregated

node labels only and their graph-based counterparts (i.e., the classifiers

that use both node labels and graph structure). In particular, this analysis

counts how often the graph-based methods outperform their vector-based

counterpart.

Regarding the results in Fig. 3.63, we observe that on the following

six datasets, all of the three graph-based approaches outperform the corre-

sponding vector-based approaches.

• DHFR

• ENZYMES

• MUTAG

• MUTAGENICITY

• NCI1

• NCI109

On the following four datasets, two of the three graph-based methods

outperform the vector-based methods.

• AIDS

• BZR

• DD

• OHSU

Finally, in five cases, only one of the graph-based methods outperforms

the vector-based method (this is most frequently observed when comparing

the two kernel approaches).

• COX2

Graph Datasets 87

• ER-MD

• PTC-FM

• PTC-MM

• PTC-MR

Fig. 3.63: Comparison of the statistical classifiers that use the aggregated

labels (i.e., L2(A), RBF(A), and MLP(A) and the graph-based approaches

that operate on the original graphs with both structure and node labels

(i.e., GED(L), WL(L), GNN(L)).

On the remaining nine node-labeled datasets, the graph-based methods

show no significant advantage over the corresponding vector-based methods.

On the total of 24 datasets, the GED and GNN methods show superiority

over the corresponding vector-based methods in 9 cases, while the WL-

graph kernel performs better than the RBF-kernel in 14 cases.

Concerning the unlabeled datasets, the graph-based method consis-

tently outperform the näıve embedding across all datasets. Hence, we opt

not to explicitly present the classifier comparison for the unlabeled datasets.

Based on the results shown in Fig. 3.63, we can make the following

assumption. First, the new graph-based approximation algorithms that

we propose and that aim to reduce computation time should, most of the

time, be tested on datasets where the graph-based classification methods

outperform the vector-based method in at least two, ideally three, cases.

This recommendation is based on the fact that even the fastest approxima-

tion method is likely to be slower than the baseline feature vector method

presented here.

Based on this analysis, we now outline the dataset selection used

throughout the rest of the present thesis. Table 3.30 and 3.31 provide

an overview of the labeled and unlabeled datasets used to evaluate the

proposed graph reduction methods (described in Chapter 4, 5, and 6), re-

spectively.

88 Pattern Recognition on Reduced Graphs

Note that out of the 28 datasets initially presented, nine datasets are

excluded from further consideration in this thesis. Specifically, the majority

of these datasets exhibited poor performance, as indicated in Fig. 3.63 – for

instance ER-MD, KKI, MSRC-9, MSRC-21, the four PTC datasets, and

PEKING-1.

Table 3.30: Selection of the labeled datasets per chapter.

Dataset Used in Chapter

AIDS 4

BZR 5, 6

BZR-MD 6

COX2 6

COX2-MD 6

DD 6

DHFR 5, 6

DHFR-MD 6

ENZYMES 4, 5, 6

ER-MD -

KKI -

MSRC-9 -

MSRC-21 -

MUTAG 6

MUTAGENICITY 4, 5, 6

NCI1 4, 5, 6

NCI109 5

OHSU 6

PROTEINS 4, 5, 6

PTC-FM -

PTC-FR -

PTC-MM -

PTC-MR -

PEKING-1 -

Graph Datasets 89

Table 3.31: Selection of the unlabeled datasets per chapter.

Dataset Used in Chapter

COLLAB 5

IMDB-BINARY 4, 6

REDDIT-MULTI-5K 5

REDDIT-MULTI-12K 5

90 Pattern Recognition on Reduced Graphs

Graph Reduction by
means of Centrality
Measures 4

Toute connaissance est une réponse à une
question. S’il n’y a eu de question, il ne peut y
avoir de connaissance scientifique. Rien ne va
de soi. Rien n’est donné. Tout est construit.

La formation de l’esprit scientifique (1938),
Gaston Bachelard

4.1 Introduction

As thoroughly described in Chapter 2, graph matching [4; 5] is one of the

most fundamental problems in graph-based pattern recognition. Consid-

ering the influence of graph matching in miscellaneous pattern recognition

applications, it is crucial to develop and research efficient procedures for

this task. The Graph Edit Distance (GED) [86] (also described in Chap-

ter 2), introduced approximately 40 years ago, remains one of the most

versatile and robust graph matching models available. Unfortunately, it is

well known that the computation of GED is an NP-complete problem in

general [27]. Therefore, comparing large graphs is often not possible (or at

least computationally expensive) and thus not feasible for real-time pattern

analysis.

Over the last decade, however, different approximations to reduce the

runtime of GED have been proposed [11; 155; 156; 157; 158]. These ap-

proximation span a range of techniques, from using a beam search procedure

instead of A∗ to narrow down the search space [156; 157], to employing lin-

ear programming methods for computing the upper and lower bounds of

GED [158], and ultimately reducing the GED computation to a linear sum

91

92 Pattern Recognition on Reduced Graphs

assignment problem (LSAP) [11; 155]. All of these approximations sub-

stantially reduce the computational complexity of GED. Yet, even with

these polynomial time algorithms, the application of GED remains prob-

lematic – in particular for large graphs with many nodes and/or many

edges.

The present chapter aims to further improve the computation cost of

GED. However, we do not suggest a new algorithmic approximation but

introduce a novel approximation on the data side, i.e., we propose and

investigate novel graph reduction method. That is, besides using approxi-

mations, we reduce the matching time by working with reduced versions of

the graphs rather than the original graphs.

In the present chapter, the proposed graph-based pattern recognition

framework operates directly in the graph domain. For this reason, our

graph classification method is based on the BP-GED [11] approximation

(termed GED from now on). This GED approximation is joined with a

distance-based classifier such as the k-Nearest Neighbors classifier (k-NN)

as it has shown reasonable classification accuracies on diverse classification

tasks (e.g., [159; 160]).

Note that the present chapter summarizes three preliminary conference

papers [42; 43; 44] and one journal paper [45] and is organized as follows.

In Section 4.2, we explain in detail our graph reduction process. That is,

we show how to map graphs from the original graph domain to a graph sub-

space where the graph matching is eventually conducted. In Section 4.3, we

demonstrate the effectiveness of our proposed method. That is, we compare

both matching time and classification accuracy obtained on the reduced

graphs (with different sizes) with the corresponding results obtained in the

original graph domain. In Section 4.4, we propose and research an exten-

sion of the graph reduction strategy to address the problem of the loss of

information when nodes are discarded. That is, we propose and evaluate

two distinct modifications to the classification procedure to mitigate this

effect. The goal of Section 4.5 is to improve the classification performance

of a k-NN classifier coupled with GED. To this end, we define and evaluate

a novel method that extracts extra information out of different reduced

versions of the original graphs and combines this information in a multiple

classifier system. Finally, in Section 4.6, we summarize the key findings of

the proposed approaches and conclude this chapter.

Graph Reduction by means of Centrality Measures 93

4.2 Graph Reduction Using Centrality Measures

The reduction method proposed in this chapter is based on network’s node

centrality measures [150] and employs the strategy of graph summariza-

tion. In Subsection 4.2.1, we present centrality measures – borrowed from

the field of network analysis [150] – to decide which nodes to omit from

the original graphs. In Subsection 4.2.2, we present our graph reduction

procedure. Finally, in Subsection 4.2.3, we present a qualitative analysis of

the reduced graphs obtained after applying our proposed graph reduction

method.

4.2.1 Centrality Measures

Centrality measures indicate how important a node in a graph is by quan-

tifying the contribution of each node to the graph connection. The idea

is imported from social network analysis, where it helps to comprehend

the social network interactions [150]. There is no universal definition for

the influence of a node, and thus there exists a wide variety of centrality

measures that depend on the problem to be solved [150].

Roughly speaking there are two categories of centrality measures avail-

able, viz. Degree-based and Shortest-path based measures. The degree-based

methods use the degree property of the nodes, i.e., how many edges are con-

nected to a node, to derive their centrality score. Meanwhile, the shortest-

path based algorithms compute a node’s centrality score by counting the

number of paths between any two pairs of nodes that pass by it.

In the present chapter, we focus on two popular centrality measures

stemming from both categories, namely PageRank (degree-based) [161] and

Betweenness (shortest-path based) [162]. Note that our graph reduction

framework is not only limited to those two measures. That is, any other

centrality measures could be used as well.

PageRank [161] is a centrality measure that is originally used to rank

search engine results and has the advantage to be content-independent.

The basic concept relies on the fact that a node’s importance increases by

having connections with other nodes that are themselves important. That

is, the importance of a node is thus proportional to the sum of the scores

of the nodes in its neighborhood.

This naive formulation has, however, an undesirable property; if an im-

portant node points to many other nodes then its high-centrality will be

spread among all its neighbors. That means they are all going to be consid-

94 Pattern Recognition on Reduced Graphs

ered as important by association (which is often not a desirable behavior).

Hence, the authors of [161] propose to dilute the influence of an influential

node proportionally to the number of its neighbors. Formally, PageRank is

defined as

x = αAD−1x+ β1 , (4.1)

where vector x contains the n PageRank scores for all nodes {v1, . . . , vn}
of a given graph G = (V,E). Parameter α plays the role of a damping

factor (there is no clear theory to choose its values, it was primarily set to

0.85). The matrix A is the adjacency matrix of graph G = (V,E) and D

is the diagonal matrix with elements Dii = max(douti , 1), where value douti

corresponds to the outdegree of the i-th node (max(·, ·) is used in case a

node has zero neighbors). In the second part of Eq. 4.1, β is an additive

constant (conventionally set to 1).

Betweenness [162] is a centrality measure that counts the number

of times a node lies on the shortest paths connecting pairs of nodes. In

a graph with flowing information, it expresses, on average, the number

of time messages passes between each pair of nodes. Nodes with a high

Betweenness score have significant importance within a graph by the control

of the information flowing between other nodes. Formally, the Betweenness

score xi for the i-th node vi ∈ V of a given graph G = (V,E) is defined by

xi =
∑

u,v∈V

ni
uv, (4.2)

where

ni
uv =

1,
if node i is on the shortest-path

between node u and v

0, otherwise

(4.3)

In its primal formulation (see Eq. 4.2), Betweenness scales with the

number of pairs of nodes. One may be interested to re-scale the Betweenness

score to be between 0 and 1. This can readily be done by dividing the score

by (|V | − 1)(|V | − 2), where |V | is the number of nodes in graph G.

4.2.2 Creation of Reduced Graphs

Once the node centrality scores are computed for each node (either with

PageRank or with Betweenness), one can sort them according to their cen-

Graph Reduction by means of Centrality Measures 95

trality from the least to the most important one. The higher the score

for a node, the more significant it is and thus should remain in the graph.

Hence, we use the centrality score to sort the nodes from the least to the

most influential ones. With a reduction factor λ ∈]0, 1] we are then readily

able to select the most influential σ = ⌊λ|V |⌋ nodes in the graph, while

the other nodes and their incident edges can be removed from the graph.

The reduction factor λ is a user-defined parameter and can be seen as the

percentage of remaining nodes of the original graph.

That is, if we set λ = 0.8, then around 80% of the nodes remain

in the reduced versions of the graphs and 20% of the nodes are omit-

ted. We can now arbitrarily vary the reduction factor λ from 1.0 to 0.0

by different step-sizes to obtain differently sized graphs out of one source

graph. By using either PageRank or Betweenness as selection criterion

with λ ∈ {1.0, 0.8, 0.6, 0.4, 0.2}, we thus build for both centrality measures

four different graph subspaces from the original graph domain. Note that

with λ = 1.0 all the nodes remain in the reduced graph which obviously

corresponds to the original graph.

In practice, we stop removing nodes from G whenever the number of

nodes falls below a fixed threshold (in our experiments we set this threshold

to 5 nodes). Note, moreover, that if c > 1 nodes have the same score and

ρ = ⌊(1 − λ)|V |⌋ < c nodes should be actually removed in the next step,

the ρ omitted nodes are randomly selected from the c candidates.

For each node, the centrality score is initially computed once on the

original graphs. Based on these scores we build all graph subspaces at once.

That is, we do not recompute the centrality measures on a specific reduction

level λ before continuing to the next lower level. Actually, preliminary

experiments show no significant differences in the reduced graphs whether

or not the centrality scores are recomputed after each graph reduction.

In Fig. 4.1, we show an original graph G = (V,E) with |V | = 14 and

two reduced versions of the graph with λ = 0.8 and λ = 0.4. The number of

nodes that remain in the graph with λ = 0.8 and λ = 0.4 is ⌊0.8 · 14⌋ = 11

and ⌊0.4 · 14⌋ = 5, respectively.

In the remainder of the chapter, we term a reduced graph (with re-

duction factor λ) as Gλ = (Vλ, Eλ). When reducing all graphs in a

given dataset of size N , we obtain a reduced graph subspace Gλ =

{G(1)
λ , . . . , G

(N)
λ }. Repeating this process with different reduction factors

λ1, . . . , λr we obtain r reduced graph subspaces Gλ1
, . . . ,Gλr

.

96 Pattern Recognition on Reduced Graphs

Fig. 4.1: An example of our reduction approach on a synthetic graph with

both node selection criteria (i.e., PageRank and Betweenness) and λ ∈
{0.8, 0.4}. (For better visibility, the PageRank scores are scaled up by

factor 10.)

4.2.3 Qualitative Results

We start our evaluation with a qualitative investigation on the AIDS

dataset1 (see Chapter 3). Fig. 4.2 shows original and reduced graphs of

molecular compounds from the AIDS dataset. We vary the parameter λ

to all reduction levels (including λ = 1.0 which corresponds to the original

graph domain).

We notice variations between the two centrality measures. By reducing

the graph size based on the PageRank selection method, we tend to preserve

the intra-community nodes. The communities are kept together while being

separated from one another. Roughly speaking, PageRank tends to produce

reduced graphs with large numbers of connected components. This effect

is particularly apparent in Fig. 4.2 (a), with λ = 0.6.

On the other hand, by deleting nodes upon Betweenness values, we keep

the backbone structure of the graph. That is, we observe that the main

paths in the graph form communities and are kept when discarding nodes

from the graph. For instance, in Fig. 4.2 (a) and (c) with λ = 0.2 we

observe that the main paths in the graph form communities and are kept

in the graph. Simultaneously, the external nodes from the communities

1On the other datasets similar observations can be made (see Appendix B.1).

Graph Reduction by means of Centrality Measures 97

tend to be omitted using this specific centrality measure.

(a) Reduced molecular compound from AIDS

(b) Reduced molecular compound from AIDS

Fig. 4.2: Example graphs from AIDS with both reduction techniques (Page-

Rank, Betweenness) and all reduction levels λ.

98 Pattern Recognition on Reduced Graphs

(c) Reduced molecular compound from AIDS

Fig. 4.2: Example graphs from AIDS with both reduction techniques (Page-

Rank, Betweenness) and all reduction levels λ.

4.3 Graph Matching on Reduced Graphs

In the present section, the goal is to research how GED and its computation

are affected when working on reduced graphs. Our experimental evalua-

tion consists of two different parts. First, in Section 4.3.1 we perform GED

computations on the original graphs and all graph subspaces and compare

the run times with each other. Moreover, we compare the classification

accuracies achieved on different reduction levels with both the accuracy

achieved on the original graphs and on randomly reduced graphs. Second,

in Section 4.3.2, we show and discuss scatter plots that illustrate the cor-

relation between the original distances and the corresponding distances in

the graph subspaces.

We use six graph datasets presented in Table 4.1 to conduct empirical

evaluations. We split all datasets into three disjoint subsets for training,

validation, and testing as follows. We split the graphs from the IAM graph

repository (i.e, AIDS and MUTAGENICITY) according to the proposed

splitting of the benchmark. The NCI1 dataset is split to match the size

of the three sets of the MUTAGENICITY dataset. The other datasets are

divided w.r.t. the 60-20-20% split rule for training, validation, and test sets,

respectively. In this chapter, we also report the standard classification ac-

curacy that allows us to measure the performance of the different proposed

methods on the classification task.

Graph Reduction by means of Centrality Measures 99

In Table 4.1, we summarize the number of graphs per split used for

training, validation and testing and present some other statistical properties

for each graph dataset, viz. the number of graphs, the number of classes,

and the average number of nodes and edges (for further information about

those datasets we refer to Chapter 3).

Table 4.1: Properties of the graph datasets. We show the size of the graph

datasets (|G|) with the number of graphs in the training, validation, and

test set (|Gtr|, |Gva|, |Gte|), the number of classes (|Ω|) and the average

number of nodes and edges per graph (∅|V |, ∅|E|).

Graph Dataset Property

|G| (|Gtr|, |Gva|, |Gte|) |Ω| ∅|V | ∅|E|

AIDS 2,000 (250, 250, 1,500) 2 9.5 10.0

ENZYMES 600 (360, 120, 120) 6 32.6 62.1

IMDB-BINARY 1,000 (600, 200, 200) 2 19.8 96.5

MUTAGENICITY 4,337 (1,500, 500, 2,337) 2 30.3 30.8

D
a
ta

se
t

NCI1 4,110 (1,500, 500, 2,110) 2 29.9 32.3

PROTEINS 1,113 (660, 220, 223) 2 39.1 72.8

In all of the experiments of the present section, we first reduce all graphs

(stemming from training, validation, and test sets) to have σ = ⌊λ|V |⌋
remaining nodes for all reduction levels λ. For the second and third ex-

periment, we then compute the required distance matrices between the

condensed graphs using GED at each level λ. For GED computation, we

apply unit costs for node and edge insertions/deletions. The cost for node

substitutions with unequal node symbols is set to a constant cost of 2.

On all datasets and reduction levels λ, we individually optimize param-

eter α ∈ [0, 1] that weights the relative importance of node and edge edit

operation costs.

4.3.1 Computation Time and Classification Accuracy

The goal of this evaluation is twofold. First, we aim to verify whether

or not our reduction process deteriorates the classification accuracy when

compared to the one obtained with the original graphs. We choose a k-

100 Pattern Recognition on Reduced Graphs

Nearest Neighbor (k-NN) as our classification method2. The second goal

of this evaluation is concerned with the runtimes. That is, we aim at

verifying the expected substantial speed-up of the computation time due to

the smaller number of nodes in the reduced graphs.

In order to verify the benefit of the proposed graph reduction using

elaborated centrality measures, we also compare the novel method with

a random subsampling of the graphs. For this experiment, we run our

algorithm 10 times with random node selection for each reduction level in

order to alleviate the variance of accuracies of the random node selection.

In Fig. 4.3 we display the classification accuracy per reduced graph level

for all datasets (including λ = 1.0). For the control experiment (random

selection), we plot the 95% confidence interval from the 10 runs for each

reduced graph level. All computations have been conducted in a parallel

configuration on an AMD Ryzen 9 5900X with 12 cores.

As expected, the classification accuracy of the k-NN generally decreases

when reducing the size of the graphs. This is, most probably, due to the loss

of information when discarding nodes. Note, however, that the classification

accuracy remains relatively stable on the AIDS dataset for all reduction

levels and for MUTAGENICITY up to level λ = 0.6. We can observe

that the classification accuracy obtained with our reduction methods (both

PageRank and Betweenness) are clearly better than the random selection

on all molecule graphs (AIDS, MUTAGENICITY, and NCI1).

For the PROTEINS and ENZYMES graphs, the reduction based on

Betweenness gives better classification accuracies than the random deletion

for all reduction levels. Yet, the reduced graphs based on PageRank achieve

quite similar accuracies as offered with the randomly reduced graphs. On

the IMDB graphs, we do not observe a clear benefit of our reduction scheme

compared to a random node selection.

Despite the general drop in the classification accuracy using the reduced

graphs rather than the original graphs, we can conclude that the accura-

cies achieved with reduced graphs using our method remains comparable

with the accuracies achieved with the original graphs. Moreover, we can

state that using elaborated reduction methods rather than using random

subsampling is clearly beneficial.

The great benefit of the novel method is, of course, the computation time

that steadily decreases on the reduced graphs. In Table 4.2, we observe an

evident speed up of the runtimes on the reduced graphs. Note that the

2Parameter k ∈ {1, 3, 5, 7}, that defines the number of neighbors considered in the
k-NN classifier, is optimized on all datasets and reduction levels individually.

Graph Reduction by means of Centrality Measures 101

Ref.
Syst.

0.8 0.6 0.4 0.2

Reduction level

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

AIDS

Pagerank

Betweenness

random

Ref.
Syst.

0.8 0.6 0.4 0.2

Reduction level

56

58

60

62

64

66

68

70

72

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

Mutagenicity

Pagerank

Betweenness

random

Ref.
Syst.

0.8 0.6 0.4 0.2

Reduction level

54

56

58

60

62

64

66

68

70

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

NCI1

Pagerank

Betweenness

random

Ref.
Syst.

0.8 0.6 0.4 0.2

Reduction level

68

70

72

74

76

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

Proteins

Pagerank

Betweenness

random

Ref.
Syst.

0.8 0.6 0.4 0.2

Reduction level

20

25

30

35

40

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

Enzymes

Pagerank

Betweenness

random

Ref.
Syst.

0.8 0.6 0.4 0.2

Reduction level

50

52

54

56

58

60

62

64

66

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

IMDB-Binary

Pagerank

Betweenness

random

Fig. 4.3: Classification accuracies for all datasets and all reduction levels

(including λ = 1.0) for our reduction methods (PageRank and Betweenness)

and a random subsampling.

runtimes are averaged from 10 runs with a 95% confidence interval.

Table 4.2, shows runtime improvements up to a factor of four (with

λ = 0.4 on MUTAGENICITY, for instance). Using reduction level λ = 0.6,

we can report that the runtimes on all datasets are approximately halved

102 Pattern Recognition on Reduced Graphs

Table 4.2: Computation time in seconds on the test set using the original

graphs (i.e., λ = 1.0) and all evaluated reduction levels λ.

Reduction Level λ

λ = 1.0 λ = 0.8 λ = 0.6 λ = 0.4 λ = 0.2

D
a
ta

se
t

AIDS 9.93± 0.25 7.25± 0.30 5.59± 0.13 4.00± 0.13 2.78± 0.21

MUTAGENICITY 63.27± 1.62 46.08± 1.55 33.23± 0.95 21.91± 0.55 15.18± 0.72

NCI1 51.41± 1.10 36.72± 0.95 25.85± 0.71 17.89± 0.68 12.62± 0.88

PROTEINS 7.09± 0.37 4.67± 0.25 3.09± 0.16 2.02± 0.21 1.18± 0.24

ENZYMES 2.18± 0.10 1.41± 0.10 1.11± 0.14 0.61± 0.04 0.35± 0.05

IMDB-BINARY 4.32± 0.15 2.91± 0.23 1.94± 0.21 1.08± 0.13 0.61± 0.11

when compared with the runtimes on the original graphs (with λ = 1.0).

Note that the matching times for PageRank, Betweenness and randomly

reduced graphs are the same. Once the graphs are reduced, they have the

same size no matter which reduction method is used and thus the matching

time is equivalent.

4.3.2 GED Quality Measure

GED is often employed in conjunction with distance-based classifiers.

Hence, we aim at verifying whether the distances obtained with the reduced

graphs make sense. In order to verify this, we show scatter plots that in-

dicate the correlation between the original graph distance and the distance

obtained in the reduced graph space with PageRank (equivalent plots are

obtained with Betweenness are shown in Appendix B.2). In particular, for

each pair of graphs a dot is plotted in Fig. 4.4. Each dot represents the

distance in the original graph space on the x-axis and the corresponding

distance on the reduced graphs on the y-axis.

Graph Reduction by means of Centrality Measures 103

Fig. 4.4: Pairwise distances between graphs in the original graph space and

their resulting counterpart in the reduced graph domain using PageRank

on all datasets.

104 Pattern Recognition on Reduced Graphs

Two main observation can be drawn from these plots. First, the dis-

tances in the original and reduced graph space correlate quite well. In

general, if the distance is large between two graphs in the original graph

space then the distance is also relatively large in the reduced graph space.

Vice versa, if the distance is small in the original graph space, the corre-

sponding distance is small as well in the reduced graph space. However, the

more the graphs are reduced the more the overall distances decrease, reduc-

ing the correlation which makes it more complicated for a distance-based

classifier to accurately predict the correct class of the graphs.

The second observation is that there are some points above the main

diagonal. That means, the distances in the reduced graph space (espe-

cially for λ = 0.8) overestimate the GED compared to its corresponding

counterpart in the original graph domain. At first glance this seems to

be counter-intuitive. However, an in-depth examination of those pairwise

graphs shows that this GED overestimation is a ”natural” effect. Due to

the reduction, the approximate GED finds other assignments of local sub-

structures for the nodes, and that might lead – for some pairs of graphs

– to greater distances than in the original graph space. An illustration of

this behavior is given in Fig. 4.5.

Fig. 4.5: Example of the GED overestimation after graph reduction.

On the upper part of Fig 4.5 the original GED is shown, where just

deleting one node allows to match both graphs. On the lower part of

Fig 4.5 GED is displayed after graph reduction. In this setup, the overall

GED rises from 1.0 to 3.0 in order to incorporate the updated structural

assignment (inserting one node and two edges).

Graph Reduction by means of Centrality Measures 105

4.4 Two-Step Graph Classification

As demonstrated in Section 4.3, some limitation appears when working

with systematically reduced graphs – specifically, it has a disadvantageous

effect on the classification accuracy. To counter this negative effect, one

could modify the standard classification process into a two-step classifi-

cation scheme. For the sake of conciseness, we use the reduced graphs

described in Section 4.2 using the PageRank centrality measure only.

In the proposed framework the size-reduced and original graphs are now

employed in two separate steps. The basic idea of the first step is to conduct

all matchings on the strongly reduced graphs. Then, in the second step,

we conduct as few matchings as possible on the original graphs. Hence,

our method can also be interpreted as a coarse-to-fine approach that starts

on rather coarse representations and eventually continues on the more fine-

grained graph representations – similar to the approach presented in [121].

of Majority class

Fig. 4.6: Illustration of the two steps of two different classification strategies

(shown in blue and red color.

However, our approach differs in three major parts with [121]. First,

we use node centrality measures (rather than node clustering) for graph

reductions. Second, we employ only two levels of hierarchy (since we pri-

106 Pattern Recognition on Reduced Graphs

marily aim at speeding up the classification process). Third, we propose

two different strategies for the crucial decision on how to proceed after step

1 (a visual summary of both strategies is presented in Fig. 4.6).

• The first strategy is to select appropriate candidates in the reduced

graph space for further processing (described in blue in Fig. 4.6).

• The second strategy is to accept the classification obtained in the

reduced graph space if the classifier is confident enough (described

in red in Fig. 4.6).

Both strategies are described in greater detail in the next two subsec-

tions.

Note that, regardless of the strategy actually employed, the proposed

two-step classification scheme allows us to trade-off between runtime and

classification accuracy. That is, pruning numerous graphs in the first step

allows a faster computation time but possibly deteriorates the classifier’s

accuracy. Contrariwise, keeping many graphs for the second step possibly

allows better classification accuracy but might increase the computation

time.

4.4.1 Candidate Selection Strategy

The aim of this strategy is as follows. Based on the matching information

obtained on the reduced graphs, we keep in a first step the nearest training

graphs for each test graph. We term these nearest neighbors – actually used

in step 2 – as candidates. We define a parameter ω that defines the relative

amount of training graphs that are selected as candidates. With ω = 0.1,

for instance, we select 10% of the nearest training graphs as candidates for

each test graph.

The second step of the classification process is based on the original

graphs. That is, the test graphs are matched with the original graphs that

correspond to the selected candidates from step 1. Intuitively, step 1 acts

as a filter that pre-selects plausible candidates from the training set for

further and more precise investigations during step 2.

The complete process – termed CandSel from now on – is formalized in

Alg. 2. The algorithm takes as parameters a test graph in two represen-

tations G(t) and G
(t)
λ (the original and the size-reduced graph), as well as

N original training graphs G = {G(1), . . . , G(N)} and their corresponding

reduced versions Gλ = {G(1)
λ , . . . , G

(N)
λ }. Note that we use a k-NN classifier

on line 8 of the algorithm. However, any other distance or similarity-based

Graph Reduction by means of Centrality Measures 107

classification could be employed as well.

Algorithm 2: CandSel

Input: Parameter ω, training graphs G = {G(1), . . . , G(N)} and

their reduced counterparts Gλ = {G(1)
λ , . . . , G

(N)
λ }, graph to

classify from test set G(t) and its reduced version G
(t)
λ

1 STEP 1

2 n = ⌊ω ·N⌋ // number of candidates

3 for i ∈ {1, . . . , N} do

4 compute GED(G
(i)
λ , G

(t)
λ)

5 Cλ = {G(1)
λ , . . . , G

(n)
λ } // n training graphs in Gλ closest to

G
(t)
λ

6 C = {G(1), . . . , G(n)} // corresponding graphs in G
7 STEP 2

8 Classify G(t) with the aid of the selected candidates

C = {G(1), . . . , G(n)}

4.4.2 Early Classification Strategy

In this second strategy, we first apply a k-NN classification on the reduced

graphs. All graphs for which the classification is — more or less — confi-

dent, are directly classified without further processing in step 2. Formally,

we measure the confidence of each decision by means of the number of

neighbors k′ among the k-nearest neighbors that stem from the same class

(with k′ ≤ k). If k′ is greater than, or equal to, a certain threshold δ we

consider the class prediction as confident enough to be accepted.

Considering a 5-NN, for instance, and we set δ = 4, then at least four of

the nearest neighbors have to stem from the same class so that the graph

is classified in the first step3. Note that this strategy directly depends on

the classifier actually employed. That is, when this strategy is used in

conjunction with another distance-based classifier, another metric for the

confidence has to be defined first.

For any reduced graph G
(t)
λ that is not classified in the first step (due

to too-low classification confidence), the classification is conducted on its

3Note that for a binary classification task with a 5-NN, it makes no sense to set δ ≤ 3
because all samples would be immediately classified in the first step.

108 Pattern Recognition on Reduced Graphs

original counterpart G(t). That is, we have to compute all distances from

G(t) to all original training graphs to apply a final k-NN classification. We

formalize this procedure – termed EarlyClass from now on – in Alg. 3.

Algorithm 3: EarlyClass

Input: Parameter δ, training graphs G = {G(1), . . . , G(N)} and

their reduced counterparts Gλ = {G(1)
λ , . . . , G

(N)
λ }, graph to

classify from test set G(t) and its reduced version G
(t)
λ

1 STEP 1

2 for i ∈ {1, . . . , N} do

3 compute GED(G
(i)
λ , G

(t)
λ)

4 Cλ = {G(1)
λ , . . . , G

(k)
λ } // k closest graphs to G

(t)
λ in Gλ

5 if number of graphs of majority class in Cλ ≥ δ then

6 Classify G(t) as the accepted classification of G
(t)
λ

7 else

8 Add G(t) in U

9 STEP 2

10 Classify the remaining G(t) ∈ U with the aid of the original

training graphs G = {G(1), . . . , G(N)}

4.4.3 Experimental Evaluation

The purpose of our experimental evaluation is twofold. First, we aim at

investigating the reduction of the computation time actually possible with

the proposed framework. Second, we want to evaluate whether or not the

classification accuracy can be maintained when applying the two strategies

in our two-step classification procedure. Hence, we compare both the run-

time and the classification accuracy obtained by our novel methods with a

standard classification method, viz. a k-NN classifier that operates on the

original graphs only.

4.4.3.1 Candidate Selection

Table 4.3 shows both the classification accuracy and the runtime for the

reference system (i.e., a standard k-NN classifier operating in the original

graph space) and the novel method CandSel with ω ∈ {0.20, 0.10, 0.05}.
On all datasets, we observe that the classification accuracy generally

Graph Reduction by means of Centrality Measures 109

Table 4.3: Classification accuracy and runtime (in seconds) obtained with

a k-NN classifier on the original graphs (Reference System) and the results

obtained with our novel method CandSel with ω ∈ {0.20, 0.10, 0.05}. (◦/•:
statistically significantly better/worse than the reference system.)

Ref.

System

CandSel

ω = 0.20 ω = 0.10 ω = 0.05

Acc [%] 98.53 97.53• 98.80 96.53•
AIDS

Time [s] 9.93 7.56 5.62 4.99

Acc [%] 41.67 36.66• 29.17• 24.17•
ENZYMES

Time [s] 2.18 1.21 0.86 0.66

Acc [%] 66.00 59.50• 58.50• 55.50•
IMDB-BINARY

Time [s] 4.32 3.67 2.03 2.26

MUTAGENICITY
Acc [%] 71.33 72.95◦ 72.02 70.60

D
a
ta

se
t

Time [s] 63.27 48.70 41.99 36.90

Acc [%] 70.33 69.24• 68.96• 68.15•
NCI1

Time [s] 51.41 43.10 34.05 29.38

PROTEINS
Acc [%] 73.82 70.82 70.82 71.24

Time [s] 7.09 3.88 2.88 1.97

decreases as the parameter ω is reduced (as expected). Simultaneously, we

observe substantial reductions in the runtimes with increasing values of ω.

The runtime of our novel system with ω = 0.10, for instance, is reduced to

about 50% of the runtimes of the reference system on all datasets.

On the AIDS, NCI1, ENZYMES, and IMDB-BINARY, we observe that

the classification accuracy of our novel approach is in general worse than the

accuracy obtained by the reference system. We also see that most of these

deteriorations are statistically significant (with the exception of the result

obtained on the AIDS dataset with ω = 0.10). However, we can also report

that at least on AIDS and NCI1 the classification accuracies obtained by

means of our novel system are in a fairly similar range as those of the refer-

ence system. Moreover, on the other two datasets, viz. MUTAGENICITY

and PROTEINS, not a single statistically significant deterioration com-

pared to the reference system can be seen – on the contrary, we observe

one statistically significant improvement (on the MUTAGENICITY dataset

with ω = 0.20).

Overall these classification results of CandSel are convincing and en-

couraging especially when considering the substantial decrease in the run-

times of our framework compared with the reference system.

110 Pattern Recognition on Reduced Graphs

Table 4.4: Classification accuracy and runtime (in seconds) obtained with

a k-NN classifier on the original graphs (Reference System) and the results

obtained with our novel method EarlyClass with δ ∈ {5, 4}. (◦/•: statisti-
cally significantly better/worse than the reference system.)

Ref.

System

EarlyClass

δ = 5 δ = 4

Acc [%] 98.93 98.60 98.73
AIDS

Time [s] 9.93 3.48 3.31

ENZYMES
Acc [%] 41.67 36.67• 37.50

Time [s] 2.18 3.96 3.76

Acc [%] 66.00 64.00 62.00•
IMDB-BINARY

Time [s] 4.32 8.14 5.63

MUTAGENICITY
Acc [%] 71.63 71.07 68.12•

D
a
ta

se
t

Time [s] 63.27 60.07 39.00

Acc [%] 70.52 70.56 68.15•
NCI1

Time [s] 51.41 54.22 33.78

PROTEINS
Acc [%] 73.82 75.10 75.54◦

Time [s] 7.09 7.32 4.40

4.4.3.2 Early Classification

Table 4.4 shows the classification accuracy and the runtime achieved with

the reference system and our novel method EarlyClass that uses a 5-NN

classifier in conjunction with two thresholds δ ∈ {4, 5}4.
Likewise to the method CandSel, the accuracies achieved with Early-

Class are – more or less – comparable to the results of the reference sys-

tem. For instance, with δ = 5, the classification accuracy remains statis-

tically equivalent to the results obtained with the reference system on all

datasets. When the threshold is reduced to δ = 4, the classification accu-

racy achieved on MUTAGENICITY, NCI1, and IMDB-BINARY is statisti-

cally worse than the accuracy of the reference system. Note, however, that

our novel system performs in a fairly similar range as the reference system

in all cases. Moreover, with δ = 4 we even observe a statistically significant

improvement in the classification accuracy on the PROTEINS dataset.

Regarding the runtimes we also observe substantial speed-ups of our

4During the validation of the meta-parameters on the AIDS dataset, we observe that
in step 2 the graphs stem from one class only. Hence, rather than performing a second

matching on these graphs, we decide to directly classify the few graphs for which the

second step is actually necessary. Note that this applies on the AIDS dataset only.

Graph Reduction by means of Centrality Measures 111

Table 4.5: Statistics drawn from the method EarlyClass with δ = 4. |Gte|
is the number of test graphs per dataset. Num class. and Acc refer to

the number of graphs classified and the classification accuracy obtained,

respectively (during that step). Final Acc is the global classification accu-

racy obtained at the end of the classification process.

Step 1 Step 2 Final

Acc [%]
|Gte| Num class. Acc [%] Num class. Acc [%]

AIDS 1,500 1,479 98.78 21 95.24 98.73

ENZYMES 120 14 14.29 106 40.57 37.50

IMDB-BINARY 200 56 55.36 144 64.58 62.00

MUTAGENICITY 2,337 1,182 70.73 1,155 65.45 68.12

D
a
ta

se
t

NCI1 2,100 1,004 67.43 1,096 68.81 68.15

PROTEINS 233 133 78.95 100 71.00 75.54

method compared to the reference system. Using threshold δ = 4, for

instance, we observe a substantial decrease of the runtime of about 40%

on the datasets MUTAGENICITY, NCI1, and PROTEINS. On the AIDS

dataset, the runtime of our method is even about five times faster than the

runtimes of the reference system (mainly due to the omitted second step

on this dataset). Interestingly, we observe an increase in the runtime of our

method on both the ENZYMES and IMDB-BINARY datasets. This result

has encouraged us to do some further research and investigations on the

behavior of the early classification strategy.

In Table 4.5, we show the number of actually classified graphs with

EarlyClass (we focus on δ = 4) and the corresponding classification accu-

racy in both steps (step 1 and step 2).

We observe that, in general, a large amount of the graphs are classified

during the first step. For instance, on the AIDS dataset about 98% of

the test graphs are classified during the first step. For MUTAGENICITY,

NCI1, and PROTEINS, about 50% of the graphs are instantly classified

without any further computation. For ENZYMES and IMDB-BINARY,

however, we observe that the majority of the graphs are classified during the

second step of the algorithm, which might explain why the runtime for this

dataset increases. That is, on these particular datasets, the computational

overhead of our novel two-step classification method cannot be compensated

by many early classifications.

112 Pattern Recognition on Reduced Graphs

When comparing the classification accuracies achieved in step 1 and

step 2 separately, we observe that the classification accuracy decreases in

general in the second step (see, for instance, on AIDS, MUTAGENICITY

and PROTEINS). A possible explanation might be that only the ”difficult”

graphs remain to be classified during the second step.

4.5 Multiple Classifier System Based On Reduced Graphs

In the present section, we propose a novel framework that makes use of the

reduction process presented in Section 4.2. Roughly speaking, the novel

method is based on three basic steps (as illustrated in Fig. 4.7).

• First, we create various reduced graph subspaces, that contain

graphs that are in turn reduced to the nodes that contribute the

most to the original graph structure. That is, we map the graphs

into various reduced graph spaces.

• The second step consists of computing a graph dissimilarity be-

tween the graphs in each of the reduced graph subspaces.

• The third and last step of our procedure consists in linearly combin-

ing either the distances or the predictions obtained in the different

graph subspaces. The meta-parameters for combination, viz. the

weight coefficients, are either optimized via grid-search or by means

of a genetic algorithm.

The combined distances or predictions are used as a basis for the

final classification. Any classification method that makes use of

GED in some way can be used for this purpose (e.g., distance-based

graph kernels or distance-based classifiers such as the k-Nearest

Neighbor classifier).

From a broad perspective, the proposed framework, as shown in Fig. 4.7,

is somehow related to a recently introduced hierarchical graph matching

framework [121]5. In this framework, the nodes are aggregated into super-

nodes during a graph compression process. A hierarchy of compressed

graphs is constructed by means of a community detection algorithm. Then,

the matching is performed, starting at the most compressed graphs and po-

tentially going up level by level if a certain similarity threshold is exceeded.

In our method, however, we make use of reduced graphs, i.e., nodes are

5Other hierarchical graph representations are presented in [40; 41], for instance.

Graph Reduction by means of Centrality Measures 113

... ...

Step 1 Step 2 Step 3

A:
Combination of Distances

B:

Combination of Predictions

Reduce graphs to different graph subspaces

A: Using PageRank

B: Using Betweenness

Compute graph dissimilarity
in each graph subspace

Combine distances or predictions
from each graph subspace

Fig. 4.7: The three basic steps of our novel framework: (1) graph reduction

to obtain the reduced graph subspaces, (2) graph matching in reduced graph

subspaces and (3) building a multiple classifier system

omitted/deleted during the graph reduction procedure (rather than com-

bined via compression). To this end, we quantify the structural information

of each node via centrality measures adapted from social network analysis

(formally introduced in Subsection 4.2.1). Next, we remove the nodes that

contribute the least to the structure of the graph (according to the cen-

trality measure actually applied). Moreover, we use the extra information

gained from the reduced graph subspaces in a multiple classifier scenario

and do not perform a coarse-to-fine classification.

4.5.1 Building a Multiple Classifier System

In this subsection, we build a multiple classifier system for graphs. To

this end, we apply the graph reduction method presented in Section 4.2

on all graphs in G to obtain graph subspace Gλ, where λ corresponds to a

given reduction level. We define N := |G| = |Gλ|. Given r different graph

subspaces Gλ1
, . . . ,Gλr

, we can now compute pairwise graph dissimilarities

in each graph subspace Gλi
. In the present chapter, we employ the GED

approximation BP as outlined in Section 4.1.

In detail, for each graph G
(j)
λi

∈ Gλi
we create a distance vector

dj = [dj,1, dj,2, ..., dj,N]

114 Pattern Recognition on Reduced Graphs

representing the distances between itself and the N other graphs in Gλi

and merge the obtained vectors to produce a distance matrix Dλi
.

Dλi
=


d1,1 · · · d1,N
d2,1 · · · d2,N
...

. . .
...

dN,1 · · · dN,N

 (4.4)

Once the distance matrices Dλi
for each reduction level λi are obtained,

we employ two different procedures to combining them and getting a final

classification result. In both of these combination scenarios, we employ a

distance-based classifier, viz. a k-Nearest Neighbor classifier (k-NN). The

k-NN is clearly advantageous in the proposed framework because it directly

operates on the resulting distances and can also be used as an indicator of

the underlying quality of the distances. Both combination procedures are

described in detail in the following paragraphs.

The first combination procedure consists of linearly combining the mul-

tiple distance matrices Dλ1
, . . . ,Dλr

at different levels λ1, . . . , λr into one

meta-distance matrix defined by

D =

r∑
i

ωλiDλi , (4.5)

where parameter ωλi
∈ [0, 1] weights the influence of each reduced graph

subspace Gλi
. Matrix D is eventually fed into a k-NN to perform the final

classification.

The second idea for condensing the r different graph subspaces

Gλ1 , . . . ,Gλr consists of combining the predictions obtained from the k-NN

at each reduced graph subspace. Formally, we obtain a prediction vector

pλi
= [p1, p2, ..., pN]T (4.6)

for each graph subspace Gλi
where pj with j = 1, . . . , N corresponds to

the prediction of the j-th graph in the graph subspace Gλi
. The prediction

vectors are finally linearly combined by

P =

r∑
i

ωλi
pλi

(4.7)

Graph Reduction by means of Centrality Measures 115

in order to obtain the final classification result. That is, we conduct a

weighted majority voting [163].

To weight the influence of each reduced graph subspace Gλi both combi-

nation methods introduced above make use of a vector ω = [ωλ1
, . . . , ωλn

],

that incorporates the n weighting factors ωλi
for all graph subspaces.

Our goal is to linearly combine the n reduced graph subspaces, and

thus we apply further constraints on ω such that each entry ωλi
∈ ω is

comprised in a range between 0 and 1 and the sum of all weights equals 1.

Formally,

r∑
i=1

ωλi
= 1

and

ωλi
∈]0, 1[∀i = 1, . . . , n

(4.8)

We aim to find the linear coefficient vector ω∗ such that the combined

distance matrix D or the combined predictions P lead to the best possible

classification accuracy. We use two different strategies to find the optimal

coefficient vector ω∗.

The first optimization method consists of a search over the parameter

space in a grid-search fashion. Unfortunately, grid-search is not an efficient

technique and scales poorly when the search space is large. In our specific

case the search space has a size of O(Dr), where D is the total number

of values that a weight ωλi
∈ ω can take and r is the number of graph

subspaces that are potentially combined.

As a second optimization technique we use a Genetic Algo-

rithm (GA) [164]. GAs are more efficient and scalable search procedures

over large search spaces than grid search approaches. Therefore, by means

of GAs, we are able to explore more subtle combinations of the weights

and thus potentially leading to improved classification accuracies. How-

ever, it is important to note that the optimality of the solution found is not

guaranteed, and GAs may suffer from overfitting without any well-defined

regularization procedures to prevent it.

The GA procedure begins by randomly initiating a set of chromosomes.

These chromosomes are then evaluated using the fitness function, and the

best-performing ones are selected for the crossover operation, generating the

next generation of chromosomes. The crossover step is uniformly performed

among the genes of the parents. We introduce a mutation chance with

a probability of pm for each newly created chromosome. This procedure

116 Pattern Recognition on Reduced Graphs

is repeated until a specified criterion is met, with the criterion set to be

reached after a fixed number of optimization iterations in practice.

In our approach, we define ω as the so-called chromosome where each

entry ωλi
∈ ω represents a gene. We set the fitness function of a chromo-

some to be the classification accuracy of the k-NN and allow both operations

mutations and cross-overs.

4.5.2 Experimental Setup and Validation Process

The main purpose of the following experiments is to empirically verify

whether or not the information extracted out of the reduced graphs can

help to improve the overall classification performance. In order to test this

hypothesis, we first build a baseline for our evaluation by running a k-NN

classifier on the original graphs.

The individual hyperparameters of the k-NN are optimized with the

graphs contained in the validation set. To alleviate overfitting during the

optimization process, we apply a 5-fold cross-validation. The parameters to

optimize consist of α ∈]0, 1[that weights the relative influence of node and

edge edit operation costs and k ∈ {1, 3, 5} that corresponds to the number

of neighbors used by the k-NN. We show the optimal parameters α and k

found for each dataset in Table 4.6.

For our novel framework, we use the optimized hyperparameters α

and k computed during the optimization phase on all graph subspaces

Gλ1
, . . . ,Gλr

. We set the reduction factors to λ ∈ {1.0, 0.8, 0.6, 0.4, 0.2} to

obtain the original graph space and four reduced graph subspaces with both

PageRank and Betweenness. In our evaluation the five graph (sub)spaces,

reduced with PageRank and Betweenness, are either used individually or

combined with each other. In the combined case, we obtain a total of

nine graph (sub)spaces (the original graph space and four subspaces per

centrality measure).

When optimizing the weighting parameters ω with grid search we use

the five reduction levels presented above in conjunction with 11 possible

weighting factors , i.e. ωλi
∈ {1.0, 0.9, . . . , 0.1, 0.0}. Only with those reduc-

tion factors the search space is already quite large (having 115 = 161, 051

different possibilities). Because of the exponential growth of the search

space we cannot apply the grid-search procedure in the scenario where

we combine PageRank and Betweenness graph subspaces (in this case the

search space would have a size of 119 ≈ 2.9 billion possibilities which is no

longer feasible).

Graph Reduction by means of Centrality Measures 117

Table 4.6: Optimal values for α and k obtained during the hyperparameter

optimization on the validation sets.

Hyperparameter

α k

AIDS 0.7 1

ENZYMES 0.9 1

IMDB-BINARY 0.9 5

MUTAGENICITY 0.6 5

D
a
ta

se
t

NCI1 0.7 5

PROTEINS 0.9 3

Table 4.7: The different reduction, combination, and optimization methods

to create ten experimental setups.

Reduction Methods Combination Methods Optimization Methods

PageRank (PR)
Combination of Distances

(CoD)
Grid Search (GS)

Betweenness (BW)
Combination of Predictions

(CoP)
Genetic Algorithm (GA)

PageRank + Betweenness

(PR + BW)6

For the GA optimization, we use a random initial population of 30

individual chromosomes, where the random weights of each chromosome

(i.e., the genes) are defined such that they sum up to one to match the

weighting constraints. Furthermore, the crossover sites in each iteration of

the GA are randomly chosen, the mutation probability pm is set to 0.1, and

we run the GA for 100 iterations.

In Table 4.7 we summarize all the reduction, combination, and opti-

mization methods discussed above. We are now able to combine all the

presented methods with each other. For instance, we can create a system

termed PR-CoD-GS that associates PageRank with the combination of

distances and a grid search optimization. As stated above, the grid search

optimization is not applicable to the combined reduction, leading to a total

of ten different experimental setups (see Fig. 4.8).

6Due to computational reasons this combined reduction is only optimized via GA.

118 Pattern Recognition on Reduced Graphs

PageRank
(PR)

Combination of Distances
(CoD)

Grid Search
(GS)

(1) PR - CoD - GS

Genetic Algorithm
(GA)

(2) PR - CoD - GA

Combination of Predictions
(CoP)

Grid Search
(GS)

(3) PR - CoP - GS

Genetic Algorithm
(GA)

(4) PR - CoP - GA

Betweeness
(BW)

Combination of Distances
(CoD)

Grid Search
(GS)

(5) BW - CoD - GS

Genetic Algorithm
(GA)

(6) BW - CoD - GA

Combination of Predictions
(CoP)

Grid Search
(GS)

(7) BW - CoP - GS

Genetic Algorithm
(GA)

(8) BW - CoP - GA

PageRank + Betweeness
(PR + BW)

Combination of Distances
(CoD)

Genetic Algorithm
(GA)

(9) PR + BW - CoD - GA

Combination of Predictions
(CoP)

Genetic Algorithm
(GA)

(10) PR + BW - CoP - GA

Reduction Methods Combination Procedures Optimization Methods Experimental Setups

Fig. 4.8: Combinations of reduction, combination, and optimization meth-

ods to create ten experimental setups

In Fig. 4.9, we show a bar plot that displays the individual weights ω∗

obtained after the optimization procedure. The figure exhibits the influence

of the individually reduced subspaces for all conducted experiments.

In some cases we observe that the original graph subspace Gλ1.0
domi-

nates the other subspaces. This trend is particularly apparent, for instance,

on the ENZYMES and NCI1 datasets with BW-CoD-GS and BW-CoP-GS,

respectively. On the other hand, we can observe in some cases that the re-

duced graph subspaces substantially contribute to the combined distances

and/or predictions. For instance, on the MUTAGENICITY or PROTEINS

datasets with BW-CoP-GS, the original graph space is completely omitted

or does not substantially influence the final classification.

Graph Reduction by means of Centrality Measures 119

B
W

- C
oD

- G
S

B
W

- C
oP

- G
S

PR
- C

oP
- G

S

PR
- C

oD
- G

S

B
W

- C
oP

- G
A

PR
- C

oD
- G

A

B
W

- C
oD

- G
A

PR
- C

oP
- G

A

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

or
ta

n
ce

of
li
n

ea
r

p
ar

am
et

er
s

AIDS

ω0.2

ω0.4

ω0.6

ω0.8

ω1.0

PR
- C

oP
- G

A

B
W

- C
oP

- G
S

PR
- C

oD
- G

S

PR
- C

oP
- G

S

B
W

- C
oP

- G
A

PR
- C

oD
- G

A

B
W

- C
oD

- G
S

B
W

- C
oD

- G
A

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

or
ta

n
ce

of
li
n

ea
r

p
ar

am
et

er
s

Mutagenicity

ω0.2

ω0.4

ω0.6

ω0.8

ω1.0

B
W

- C
oP

- G
A

B
W

- C
oD

- G
A

PR
- C

oD
- G

S

PR
- C

oD
- G

A

PR
- C

oP
- G

A

B
W

- C
oD

- G
S

PR
- C

oP
- G

S

B
W

- C
oP

- G
S

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

or
ta

n
ce

of
li
n

ea
r

p
ar

am
et

er
s

NCI1

ω0.2

ω0.4

ω0.6

ω0.8

ω1.0

B
W

- C
oP

- G
A

B
W

- C
oP

- G
S

PR
- C

oP
- G

S

B
W

- C
oD

- G
S

PR
- C

oP
- G

A

PR
- C

oD
- G

S

B
W

- C
oD

- G
A

PR
- C

oD
- G

A

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

or
ta

n
ce

of
li
n

ea
r

p
ar

am
et

er
s

Proteins

ω0.2

ω0.4

ω0.6

ω0.8

ω1.0

B
W

- C
oP

- G
A

PR
- C

oD
- G

A

PR
- C

oP
- G

A

B
W

- C
oP

- G
S

PR
- C

oP
- G

S

PR
- C

oD
- G

S

B
W

- C
oD

- G
A

B
W

- C
oD

- G
S

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

or
ta

n
ce

of
li
n

ea
r

p
ar

am
et

er
s

Enzymes

ω0.2

ω0.4

ω0.6

ω0.8

ω1.0

PR
- C

oD
- G

S

B
W

- C
oD

- G
S

B
W

- C
oP

- G
S

B
W

- C
oD

- G
A

PR
- C

oD
- G

A

B
W

- C
oP

- G
A

PR
- C

oP
- G

S

PR
- C

oP
- G

A

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

or
ta

n
ce

of
li
n

ea
r

p
ar

am
et

er
s

IMDB-Binary

ω0.2

ω0.4

ω0.6

ω0.8

ω1.0

Fig. 4.9: Importance of the individual graph subspaces in the linear combi-

nation for all datasets as well as all reduction, combination and optimization

methods

120 Pattern Recognition on Reduced Graphs

Yet, in tendency, no clear pattern in the weighting factors is visible

that could favor any of the graph subspaces. Thus the optimal weighting

parameters have to be found in an empirical fashion. This observation may

indicate that all the reduced subspaces are somehow important and that

the optimal weighting depends on the actual application7.

4.5.3 Accuracy of the Multiple Classifier System

In Table 4.8, we present the classification accuracies obtained on all test sets

by our method that combines either the distances, termed Combination of

Distance Matrices (CoD), or the predictions, termed Combination of Pre-

dictions (CoP). Both combinations are either applied on PageRank (PR),

Betweenness (BW), or PageRank and Betweenness (PR + BW) reduced

graphs. Additionally, we present individual results for both optimization

strategies, viz. grid search (GS) and genetic algorithm (GA) (note that

for PR + BW only the GA optimization is applied due to computational

reasons).

We start our discussion with a focus on the PageRank reduced graphs.

We observe that at least one of the proposed combinations of distances or

predictions of the reduced subspaces improves the classification accuracy

compared to the baseline on all datasets. In 21 out of 24 comparisons our

novel approach achieves better results than the reference system (6 of these

improvements are statistically significant). These significant improvements

are observed on four different data sets. On the other hand we observe only

three deteriorations of which only one is significant. Last but not least, we

observe that on four datasets the combination of PageRank reduced graphs

achieves the overall best results (shown in bold face). Two of these overall

best results are achieved with distance based and two with prediction based

combinations.

In the case of combinations of Betweenness reduced graphs, comparable,

yet slightly worse, results as with the PageRank reduction are obtained.

That is, with Betweenness we observe only in 13 out ouf 24 comparisons

an improvement over the reference system. On the ENZYMES dataset,

however, the classification accuracy is substantially improved by about 8

percentage points when compared to the baseline (from 41.67% to 49.18%).

When combining both PageRank and Betweenness graph subspaces, we

7We also study the weighting factors of each graph subspace when combining PageRank

and Betweenness graph subspaces. Yet, no clear trend appears in the visualization and
thus we do not display those results here.

Graph Reduction by means of Centrality Measures 121

T
ab

le
4.
8:

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

[%
]
ob

ta
in
ed

o
n
th
e
te
st

se
t
w
it
h
li
n
ea
r
co
m
b
in
a
ti
o
n
s
o
f
re
d
u
ce
d
g
ra
p
h
s.

W
e

p
re
se
n
t
th
e
re
su
lt
s
ob

ta
in
ed

b
y
a
k
-N

N
fo
r
th
e
b
a
se
li
n
e
a
n
d
o
u
r
tw

o
co
m
b
in
a
ti
o
n
m
et
h
o
d
s
th
a
t
a
re

C
o
m
b
in
a
ti
o
n

of
D
is
ta
n
ce
s
(C

oD
)
an

d
C
om

b
in
at
io
n
o
f
P
re
d
ic
ti
o
n
s
(C

o
P
).
T
h
e
b
es
t
re
su
lt
p
er

d
a
ta
se
t
is

sh
ow

n
in

b
o
ld
fa
ce
.
(◦
/•

:

st
at
is
ti
ca
ll
y
si
gn

ifi
ca
n
tl
y
b
et
te
r/
w
or
se

th
a
n
th
e
b
a
se
li
n
e
o
n
a
5
%

le
ve
l
u
si
n
g
a
Z
-t
es
t.
)

D
a
ta

se
t

A
ID

S
E
N
Z
Y
M

E
S

IM
D
B
-B

IN
A
R
Y

M
U
T
A
G
E
N
IC

IT
Y

N
C
I1

P
R
O
T
E
IN

S

B
a
se
li
n
e
k
-N

N
98
.5
3

41
.6
7

6
6.
0
0

7
1.
3
3

7
0
.3
3

7
3.
8
2

P
R

-
C
o
D

-
G
S

99
.1
3
◦

45
.8
3

64
.5
0

7
1.
8
4

7
2.
0
9

7
3
.3
9

P
R

-
C
o
D

-
G
A

99
.1
3
◦

48
.3
3◦

6
6.
0
0

7
2
.6
6

7
3
.2
2
◦

7
5.
5
4

P
R

-
C
o
P

-
G
S

9
9
.3
3
◦

41
.6
7

7
0
.0
0

7
2.
3
2

7
0
.5
2

7
3.
8
2

P
R

-
C
o
P

-
G
A

99
.1
3
◦

37
.5
0•

7
0
.0
0

7
1.
8
4

7
0
.5
2

7
6.
3
9
◦

B
W

-
C
o
D

-
G
S

98
.0
7

4
6
.6
7

6
4
.0
0

71
.2
5

7
1.
2
8

6
9.
5
2

B
W

-
C
o
D

-
G
A

99
.2
0
◦

4
9
.1
8
◦

6
4.
0
0

7
2
.5
3

7
1
.5
6

75
.5
3

B
W

-
C
o
P

-
G
S

98
.0
7

43
.3
3

6
5.
5
0

7
1.
2
9

7
0
.5
2

7
6.
8
2
◦

B
W

-
C
o
P

-
G
A

99
.2
0
◦

41
.6
7

6
5.
5
0

7
1.
5
9

7
0
.2
4

7
3.
8
2

MethodCombination

P
R

+
B
W

-
C
o
D

-
G
A

99
.1
3
◦

48
.3
3◦

6
5.
5
0

7
2
.6
6

71
.8
9

7
5.
5
4

P
R

+
B
W

-
C
o
P

-
G
A

9
9.
27
◦

4
0.
8
3

6
5.
0
0

7
1
.7
2

6
9.
3
8

7
7
.2
5
◦

122 Pattern Recognition on Reduced Graphs

Table 4.9: The average rank for each classification method, with the top

three highlighted.

Average Rank

PR - CoD - GS 4.1

PR - CoD - GA 2.0

PR - CoP - GS 3.5

PR - CoP - GA 3.9

BW - CoD - GS 5.8

BW - CoD - GA 3.3

BW - CoP - GS 4.4

BW - CoP - GA 4.8

PR + BW - CoD - GA 2.3

M
e
th

o
d

C
o
m
b
in
a
ti
o
n

PR + BW - CoP - GA 4.5

observe eight improvements in total when compared to the baseline. Three

of these improvements are statistically significant. Moreover, with this par-

ticular combination we obtain overall best results on the MUTAGENICITY

and PROTEINS datasets.

In order to assess which reduction method (PR or BW) together with

which combination method (CoD or CoP), coupled with which optimization

procedure (GS or GA) performs the best, we rank all methods per dataset

and average up the ranks per method (see Table 4.9). We report the top

three that achieve the smallest average of rank points, viz. PR-CoD-GA,

PR+BW-CoD-GA, and BW - CoD - GA. It is noteworthy that PageRank

plays at least a role in the top two and that the top three methods are based

on the distance combination that is optimized via genetic algorithm. At

the opposite end of the ranking, we have BW-CoD-GS and BW-CoP-GA.

In summary, we can report that the GA optimization method achieves

better results than the grid search, the combination of distances performs

better than the combination of predictions, and PageRank works better

than Betweenness for building the reduced graph subspaces.

4.5.4 Time Analysis

The main drawback of our novel three-step method is the extra compu-

tation time used to compute GED in the different graph subspaces. The

computation of GED is actually the bottleneck of our framework in terms of

Graph Reduction by means of Centrality Measures 123

time complexity (although using an O(n3) approximation algorithm where

n = |V |). Hence, we focus our runtime analysis on the second step of our

framework.

Based on the fact that the reduced graphs have by definition fewer

nodes, the run time of GED is supposed to decrease the smaller the graph

subspaces are. In Fig. 4.10, we show the runtime of GED for each graph

subspace per dataset. We observe that in 4 out of 6 datasets (i.e., AIDS,

PROTEINS, ENZYMES, and IMDB-BINARY) the execution time is only

about twice slower compared to the runtime of GED computation on the

original graphs. On the other two datasets (MUTAGENICITY and NCI1)

the run time is about three times slower than the original system. Consid-

ering that our combined systems are superior to the reference system, one

can certainly argue that the higher runtime is worth it in any case.

AIDS Mutagenicity NCI1 Proteins Enzymes IMDB-Binary

Dataset

0

25

50

75

100

125

150

175

R
u

n
ti

m
e

[s
]

Time: ω0.2

Time: ω0.4

Time: ω0.6

Time: ω0.8

Time: ω1.0

Fig. 4.10: Runtime of GED computation for each graph subspace per

dataset.

4.6 Conclusion

In the present chapter, we propose to use centrality measures for nodes in

a graph in order to iteratively discard nodes with low centrality scores. We

apply two different centrality measures, viz. PageRank and Betweenness.

The main motivation for this reduction is a potential gain in the runtime

124 Pattern Recognition on Reduced Graphs

when the reduced rather than the original graphs are matched with each

other.

We demonstrate the benefits and limitations of our reduction technique

in a comprehensive experimental evaluation on six real-world datasets. We

observe substantial reductions of the graph matching time on all datasets.

That is, the runtime of GED computation can be more than halved in gen-

eral. Comparing the classification accuracies achieved on reduced graphs

with the classification accuracy achieved on the original graphs, we can re-

port that in general the accuracies drop with increasing reduction levels.

However, at least up to Level λ = 0.6 the accuracies remain comparable

with the original classification accuracies. Moreover, our evaluation clearly

shows that using elaborated methods for graph reduction rather than ran-

dom subsampling is clearly beneficial for most reduction levels and data

sets.

Following this, we investigate the use of a graph reduction method in

a two-step classification scheme. In particular, we propose two strategies

(candidate selection and early classification) that are applied on reduced

graphs in order to speed up the complete classification procedure. Both

modifications allow us to control the trade-off between classification accu-

racy and computation time.

With an empirical evaluation on the same six graph datasets, we ver-

ify the computational advantages of our novel two-step classification tech-

nique. That is our pruning strategies substantially reduce the runtime on

all datasets. Moreover, we demonstrate that by using strongly reduced

graphs in a two-step procedure, it is possible to maintain reasonable classi-

fication accuracy in general. Note that our approach is in some cases and

on some datasets even capable to improve the classification accuracy of the

reference system.

Finally, we propose a novel framework for graph-based pattern recogni-

tion that combines extra information gained from reduced graph subspaces.

Roughly speaking, the proposed method works in three subsequent steps.

In the first step, multiple reduced graph subspaces using graph reduction

methods are produced. During the second step, we use GED to compute

the distances between the graphs in their corresponding reduced graph

subspaces. In the last step, we linearly combine either the distances or the

predictions obtained in the differently reduced graph subspaces. The linear

coefficients for the combination are either optimized by means of a grid

search or a genetic algorithm.

We empirically validate the advantage of this novel ensemble method.

Graph Reduction by means of Centrality Measures 125

In particular, we show that a k-NN classifier clearly benefits from the com-

bination of the distances or predictions of reduced graphs. That is, on

all datasets the proposed algorithmic framework outperforms the reference

system by several percentage points. Comparing the different subsystems

with each other, we conclude that the PageRank reduction in conjunction

with the combination of distances optimized via genetic algorithm is a good

choice in general.

Regarding the importance of each graph subspace we can conclude that

all of them are somehow important. That is, the actual importance seems

to depend on both the dataset and optimization process.

Clearly, the increase in computation time is the major drawback of the

proposed ensemble system. The runtime of our novel framework is actually

higher than that of the reference system, but not five times higher, as

one might have expected at first glance. The reason for this is, of course,

the dramatic decrease of the runtime in strongly reduced graph subspaces.

Overall, we observe runtimes that are twice or at most three times as high

as those of the reference system. Considering the significantly improved

classification accuracy, this slowdown seems acceptable.

126 Pattern Recognition on Reduced Graphs

Graph Reduction by
means of Spectral
Clustering 5

Nous sentons que même si toutes les possibles
questions scientifiques ont trouvé leur réponse,
nos problèmes de vie n’ont pas même été
effleurés. Assurément il ne subsiste plus alors de
question ; et cela même constitue la réponse.

Tractatus logico-philosophicus (1922),
Ludwig Wittgenstein

5.1 Introduction

As previously explained in Chapter 2, several methods have been pro-

posed in the literature to perform graph matching [4; 5]. In this chapter,

we focus on four popular graph matching paradigms (formally defined in

Section 2.4), namely Graph Edit Distance (GED) [86], Graph Kernels [6]

with the Shortest-Path kernel (SP) [19] and the Weisfeiler-Lehman ker-

nel (WL) [20], as well as a Graph Neural Network (GNN) [9].

As discussed before, a major limitation of graph-based pattern recogni-

tion is its high computational cost. To address the computational problems

of graph matching, diverse approximation techniques have been proposed.

Another approach for improving the efficiency of graph-based pattern recog-

nition is to work with reduced versions of the original graphs [32] (as dis-

cussed in Chapter 4).

In the present chapter, we propose a novel two-step approach (originally

published in [46]) with the common goal of the previous chapter, viz. to

substantially reduce the time required for graph classification.

• In the first step, the original graphs are reduced to a given level

127

128 Pattern Recognition on Reduced Graphs

using spectral clustering.

• In the second step, graph matching and classification are performed

on the reduced graphs (using both GED in conjunction with a k-

NN, two Graph Kernels (i.e., SP and WL) with an SVM, and a

GNN).

The main contribution of this chapter is to investigate the effects of this

graph reduction process in a typical graph-based pattern recognition sce-

nario. In particular, we evaluate the effectiveness of the proposed method

by comparing the matching time and classification accuracy achieved on

the reduced graphs with the corresponding metrics observed in the original

graph domain. This experimental setup allows us to study the impact of

the proposed spectral graph reduction on graph-based pattern recognition

computation.

The remainder of the present chapter is structured as follows. In Sec-

tion 5.2, we describe the spectral graph clustering used to determine graph

partitioning, and then present our novel graph reduction method. In Sec-

tion 5.3, we describe the experimental setup and present the main results

of the conducted empirical study. In the last section, Section 5.4, we sum-

marize our findings and suggest directions for future work.

5.2 Graph Reduction Method

The major objective of the present section is to introduce and research a

novel method for substantially reducing the size of graphs while preserving

their essential properties. These properties can vary depending on the

specific problem at hand. In this work, we aim to maintain the classification

accuracy achieved on the reduced graphs as close as possible to the one

obtained on the original graphs.

Specifically, given a graph G = (V,E) with n nodes and m edges, we

create a reduced graph Gρ = (Vρ, Eρ) with nρ < n nodes and mρ < m edges

such that Gρ is a good approximation of G in some sense [33]. Parameter

ρ ∈ N is a user-defined reduction factor1 that controls the extent to which

1In the present chapter, the reduction factor ρ is defined slightly differently to the
reduction factor λ introduced in Chapter 4. Here, the parameter ρ quantifies by how

much the size of a graph is reduced (see further explanation in Subsection 5.2.2), while
the parameter λ specifies the percentage of nodes remaining in the reduced graphs.

This distinction in ρ is made for ease of notation when using node clustering in graph
reduction.

Graph Reduction by means of Spectral Clustering 129

the original graph is reduced. For example, a value of ρ = 2 results in a

reduction of the graph size (i.e., the number of nodes) by approximately

50%. The reduced graph domain Gρ = {G(1)
ρ , . . . , G

(N)
ρ } is obtained from

the original graph domain G by reducing all graphs G ∈ G according to the

defined reduction procedure.

The aim of the following two subsections is twofold. First, in Sub-

section 5.2.1, we elaborate on the principles of spectral graph clustering,

which builds the basis of our reduction method. Second, in Subsection 5.2.2,

we demonstrate how one can employ the node partitioning resulting from

spectral clustering to achieve a substantial and meaningful reduction of the

underlying graphs.

5.2.1 Graph Clustering

Graph Clustering [165] is a technique for dividing the nodes of a graph into

groups, called clusters, such that the nodes within each cluster are closely

related in some pre-defined sense.

Formally, given a graph G = (V,E), the c-way clustering of the node

set V is defined as a set of non-empty clusters P c = {C1, . . . , Cc} such

that each Ci ∩ Cj = ∅ for i ̸= j, and ∪c
i=1Ci = V . The clustering of the

nodes is typically based on the underlying structure of the graph so that

nodes belonging to the same cluster must exhibit ”similar behavior”. One

possible way to formally define this behavior is to quantify the pairwise node

similarity by their connectivity in terms of the underlying edge structure.

In the present chapter, we use spectral graph clustering [166; 167],

which relies on a few important properties of the graph Laplacian L (for-

mally defined in Subsection 2.2.3). The graph Laplacian matrix L is sym-

metric and positive semi-definite with L1 = 0, where 1 refers to the n-

dimensional all-ones vector 1 = (1, . . . , 1). This implies that the smallest

eigenvalue λ1 of L is 0, and moreover, the corresponding eigenvector u1 is

equal to 1. The n non-negative, real-valued and ascendingly sorted eigenval-

ues of L (i.e., 0 = λ1 ≤ λ2 ≤ · · · ≤ λn) associated with their corresponding

eigenvectors u1, . . . ,un are known as the graph spectrum of L (thus the

name spectral clustering).

The graph Laplacian and its spectrum have useful properties for analyz-

ing the topology of the corresponding graph. In particular, many theorems

from spectral analysis of the graph Laplacian L show that the combinatorial

properties of a graph can be captured by its spectrum [168]. For instance,

one can show that the m multiplicity of the eigenvalue 0 of L equals the

130 Pattern Recognition on Reduced Graphs

number of connected components in G. For a thorough review of spectral

properties of the graph Laplacian, we refer to [166; 168].

The basic idea behind spectral graph clustering is to compute a node em-

bedding based on the c smallest eigenvectors of the graph Laplacian matrix

(where c is the number of clusters). This embedding encodes information

about the connections between the nodes and can thus be used to identify

clusters of densely connected nodes within the graph. Once the embedding

has been computed, standard clustering methods (such as k-means [169]

or others) can be applied to find the node partitioning of the graph. The

spectral graph clustering algorithm is formally described in Alg. 4.

For our specific purpose of fast graph reduction, we apply a slight mod-

ification to the standard spectral clustering algorithm to improve the com-

putational efficiency of the eigendecomposition (line 2 of Alg. 4). Instead

of embedding the nodes in a c-dimensional space, where c is the number of

clusters to be identified in the graph, we embed the nodes in a d-dimensional

space with d < c. This reduction in the number of dimensions speeds up the

computation of the eigenvalues and eigenvectors, and therefore the overall

clustering method. The value of d is treated as a free parameter and is

optimized for each dataset individually.

Algorithm 4: (Unnormalized) Spectral Clustering

Input: Adjacency matrix A ∈ Rn×n of graph G = (V,E), number

c of clusters.

1 Compute the graph laplacian L = D−A

2 Compute the first c eigenvectors u1, . . . ,uc of L

3 Let U ∈ Rn×c be the matrix containing the vectors u1, . . . ,uc as

columns

4 For i = 1, . . . n, let yi ∈ Rc be the i-th row of U which corresponds

to the embedding vector of the i-th node of G

5 Cluster the vectors {yi}i=1,...,n in Rk with any standard clustering

algorithm into clusters C1, . . . ,Cc

Output: Clusters C1, . . . ,Cc

5.2.2 Graph Reduction

Based on the spectral graph clustering described above, we propose to

coarsen the underlying graphs in a novel graph reduction approach, which

Graph Reduction by means of Spectral Clustering 131

is potentially able to preserve important structural features of the graphs.

We are aware that graph reduction has been largely investigated in the lit-

erature under different formalisms and different names, such as graph sum-

marization and graph coarsening [32; 33]2. Moreover, connections between

graph reduction and spectral algorithms were also explored in [170; 171].

The major contribution of the present chapter is that we thoroughly eval-

uate the effects of reduced graphs on a wide range of graph classifiers.

Before applying the spectral graph clustering algorithm, we first conduct

a pre-processing step to all of the graphs in the underlying dataset. In this

pre-processing step, we consider all connected components of the graphs

as distinct graphs. In other words, in case a certain graph G ∈ G consists

of more than one connected component, we individually apply the spectral

graph clustering to each connected component. This pre-processing step

turns out to be necessary because the spectral clustering algorithm may

not produce meaningful results when applied to graphs that consist of more

than one connected component (due to the multiplicity of zero eigenvalues,

which can result in problematic node embeddings).

The basic idea of the proposed graph reduction approach is to condense

the nodes of one cluster into supernodes and simplify the edge structure

between these supernodes. To create the supernodes, we first obtain the

graph partitioning by means of the spectral clustering algorithm and then

condense all the nodes in a given partition into a single entity without

considering the intra-cluster edges. The computation of the feature vector

attached to the supernode is achieved by summing up the n feature vectors

x1, . . . ,xn of the n nodes that belong to the same cluster3.

This process effectively reduces the size of the graph by replacing mul-

tiple nodes with a single supernode. Additionally, we condense all inter-

cluster edges into a single edge between two corresponding supernode in

order to simplify the edge structure while preserving the connections be-

tween the clusters.

In Fig. 5.1, we illustrate how our supernode creation process operates.

In this example, we show two levels of reduction, with ρ = 2 and ρ = 4, and

how nodes are merged at each level once the node clustering is determined.

The clusterings obtained with ρ = 2 and ρ = 4 are represented by blue

and red circles, respectively. In the reduced graphs Gρ=2 and Gρ=4, the

node feature vectors correspond to the sum of the feature vectors of the

2In the present chapter, the graph coarsening strategy is employed.
3Note that other, in particular more elaborated, methods for the labeling of supernodes

could be defined – see future work in Section 5.4.

132 Pattern Recognition on Reduced Graphs

nodes belonging to the blue and red clusters, respectively. Note also how

the inter-cluster edges are simplified during the reduction process.

[1, 0, 0]

[1, 0, 0][1, 0, 0]

[1, 0, 0]

[0, 1, 0]

[0, 1, 0][0, 1, 0]

[0, 0, 1]

(a)

[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

[1, 0, 1]

(b)

[2, 2, 0]

[2, 1, 1]

(c)

Fig. 5.1: Example of the supernode creation process. We show parts of the

original graph G in (a) and two corresponding graph reductions in (b) and

(c) with ρ = 2 and ρ = 4, respectively.

In our reduction scheme, the number of clusters c corresponds to the

number of supernodes obtained upon merging the nodes (and vice versa).

Hence, value c determines the size of the reduced graph that is finally cre-

ated. The number of nodes in each cluster is proportional to the reduction

factor ρ, which specifies the amount by which the size of a graph must be

divided to obtain the desired reduction. In particular, the number of clus-

ters can be calculated as c = |V |
ρ , where |V | is the total number of nodes

in the graph. For example, if we have a graph with |V | = 1,000 nodes and

a reduction factor of ρ = 2, the size of the graph would be reduced by a

factor of two, resulting in c = 1,000
2 = 500 clusters.

In Fig. 5.1, we provide two real-world examples that illustrate the graph

reduction process. We use graphs from the NCI1 dataset (see Subsec-

tion 3.1.8 for details on this particular dataset). We apply a graph reduc-

tion with parameters ρ = 2 and ρ = 4. As can be seen in the figure, both

clustering and reduction reflect the communities present in the graphs. In

the original graphs, each cluster found is represented by a unique color,

and in the reduced graphs, the color corresponds to the reduction of nodes

within that cluster into a single supernode. An interesting aspect of spec-

tral partitioning is that it might produce unequally sized clusters, with

some clusters containing only a single node while others containing multi-

ple nodes. This behavior is noteworthy because we typically want to keep

Graph Reduction by means of Spectral Clustering 133

the main communities within the same cluster.

(a) (b)

Fig. 5.2: Two examples of the graph reduction algorithm on two different

graphs (a) and (b) from the NCI1 dataset using two reduction factors ρ = 2

and ρ = 4. Each color corresponds to a cluster in the original graph and

the corresponding color in the reduced graph represents the condensation

of all nodes in the respective cluster into a supernode.

5.3 Experimental Evaluation

This section is organized as follows. First, in Subsection 5.3.1, we briefly

outline the datasets used in our evaluation. Next, in Subsection 5.3.2, we

summarize the experimental setup. In Subsection 5.3.3, we present the

major results obtained on the datasets, and finally, in Subsection 5.3.4, we

present a qualitative evaluation of the effects of the proposed reduction.

5.3.1 Datasets

We conduct empirical evaluations of the novel reduction approach using

nine datasets from the TUDataset graph repository [128]. Table 5.1 pro-

vides details on the number of graphs, and classes, as well as the average

number of nodes and edges per graph for each dataset.

The first six datasets (BZR, DHFR, ENZYMES, MUTAGENIC-

ITY, NCI1, and NCI109) are composed of graphs that represent real-

134 Pattern Recognition on Reduced Graphs

world molecules and their potential effects or activities. The last three

datasets (COLLAB, REDDIT-MULTI-5K, and REDDIT-MULTI-12K)

contain graphs that represent different social media networks. For further

information about those datasets, please refer to Chapter 3, which provides

a detailed explanation for each.

Table 5.1: Statistics of the graph datasets. We show the number of graphs

(|G|), the number of classes (|Ω|), and the average number of nodes and

edges per dataset (∅|V |, ∅|E|).

Graph Dataset Property

|G| |Ω| ∅|V | ∅|E|

BZR 405 2 35.7 38.4

DHFR 467 2 42.4 44.5

ENZYMES 600 6 32.6 62.1

MUTAGENICITY 4,337 2 30.3 30.8

NCI1 4,110 2 29.9 32.3

NCI109 4,127 2 29.7 32.1

D
a
ta

se
t

COLLAB 5,000 3 74.5 2,457.8

REDDIT-MULTI-5K 4,999 5 508.5 594.9

REDDIT-MULTI-12K 11,929 11 391.4 456.9

Table 5.1 reveals that on most of the graph datasets, the number of

nodes are quite similar to the number of edges. This implies that the graphs

are sparse, which is positive in our scenario. Spectral graph clustering is

particularly efficient on sparse graphs because it involves computing the

eigendecomposition of the Laplacian matrix L (which is computationally

efficient on sparse matrices).

We are aware that there are numerous additional datasets available

in the TUDataset graph repository that could potentially be used in our

evaluation. However, as demonstrated in Section 3.5, rather simple base-

line approaches, such as global sum pooling of node features, which reduce

graphs to a single feature vector (completely neglecting the edge struc-

ture), perform very well and even outperform elaborated graph kernels in

some cases. Therefore, we only use datasets in our analysis for which the

classification accuracy using this näıve baseline approach is lower than the

accuracy achieved with an SVM based on 4-Weisfeiler-Lehman kernel (i.e.,

Graph Reduction by means of Spectral Clustering 135

a Weisfeiler-Lehman kernel with h = 4)4.

An interesting question is whether or not the graph reduction process

has a substantial influence on the graph density. To find this out, we

show in Table 5.2 the average graph density for both the original graphs

and reduced graphs (with reduction factors of ρ = 4 and ρ = 16). We

observe that the original graphs are generally sparse (except the COLLAB

dataset where a mean density of 0.51 is observed). On the other datasets,

the mean densities range from 0.01 (on REDDIT-MULTI-5K) to 0.16 (on

ENZYMES). We observe a trend towards increasing graph densities as the

reduction factor is increased. On some data sets the increase in density is

substantial. For instance, on BZR the density is increased from 0.06 to 0.27

and 0.70 for ρ = 4 and ρ = 16, respectively. However, it is also observed

that even with the strongest reduction, complete graphs are not obtained

(the highest density is obtained on the DFHR data with 0.81).

Table 5.2: Mean of the graph densities of the original graphs and their

reduced counterparts (for ρ = 4 and ρ = 16) for all datasets.

Reduction Factor ρ

Original ρ = 4 ρ = 16

BZR 0.06 0.27 0.70

DHFR 0.05 0.21 0.81

ENZYMES 0.16 0.32 0.57

MUTAGENICITY 0.09 0.37 0.50

NCI1 0.09 0.33 0.50

NCI109 0.09 0.34 0.49

D
a
ta

se
t

COLLAB 0.51 0.54 0.79

REDDIT-MULTI-5K 0.01 0.04 0.15

REDDIT-MULTI-12K 0.02 0.08 0.21

5.3.2 Experimental Setup

For each dataset described in the previous subsection, we create reduced

graph domains Gρ by reducing the original graphs with reduction factors

4We report the results of this näıve baseline approach together with the results of the
novel method in Subsection 5.3.3

136 Pattern Recognition on Reduced Graphs

ρ ∈ {2, 4, 8, 16}. These reduction factors lead to slightly reduced graphs

(when ρ = 2) to quite strongly reduced graphs (when ρ = 16). The re-

duction process is not applied on graphs that have a number of nodes |V |
already smaller than, or equal to, ρ. For each reduction factor ρ, we gener-

ate reduced graphs using different dimensions for node embedding during

spectral clustering. That is, the dimension of the node embedding space

is varied in d ∈ {2, 3, 4, 5, 8}. Note that d is treated as an additional free

hyperparameter and is chosen during the optimization phase.

For each experiment, we produce stratified splits of the datasets into

training, validation, and test sets using a 60%, 20%, and 20% split size,

respectively. For each dataset, we optimize the classifiers and hyperpa-

rameters five times with different data splits and random initialization by

means of the validation sets. Finally, the mean and standard deviation

of the classification results for the five runs obtained on the test sets are

reported.

For the computation of GED, we use unit costs for both node and edge

insertions/deletions. To calculate the node substitution cost c(ui → vi),

we utilize the Euclidean distance between the node features xi and xj ,

respectively, with a cost limit of 2.0. Formally, the substitution cost is

c(ui → vi) = min(||xi - xj ||, 2.0). This definition ensures that the substitu-

tion cost is never greater than the sum of cost of a deletion and a subsequent

insertion. Parameter α ∈]0, 1[represents the relative importance of node

and edge edit operation costs and is varied from 0.1 to 0.9 in increments

of 0.1 in our evaluation (with the exception of both REDDIT datasets on

the original graphs and REDDIT-MULTI-12K with reduction factor ρ = 2.

Here, α is fixed to 0.5 due to the high computational cost).

The only parameter that needs to be optimized for the k-NN classifier

is the number of neighbors k considered in the classification process. We

optimize this parameter in the range k ∈ {3, 5, 7}. For the SVM we op-

timize parameter C ∈ 10{−2.0,−1.5,...,2.0}, which serves as a regularization

parameter to control the trade-off between the requirements of large mar-

gins and few misclassifications. In other words, C controls what is more

important, the minimization of the structural risk or the minimization of

the empirical risk. For the training process of the GNN experiments, we

use the hyperparameters as proposed in [102].

The experimental evaluation is divided into two parts. In the first part,

described in Subsection 5.3.3, we evaluate the classification performance of

the four graph classification algorithms that are GED in conjunction with

a k-NN (reviewed in Subsection 2.4.1), two Graph Kernels (i.e., SP and

Graph Reduction by means of Spectral Clustering 137

WL) with an SVM (reviewed in Subsection 2.4.2), and a GNN (reviewed

in Subsection 2.4.3). By comparing the classification accuracy of these four

systems on both the original graphs and the reduced counterparts we can

examine the power of the proposed reduction mechanism. We also compare

the runtime of the matching and kernel algorithms on both the original and

reduced graphs in order to observe the time gain attributable to our novel

approach.

In the second part of the evaluation, in Subsection 5.3.4, we present scat-

ter plots that visualize the correlations between the similarity/dissimilarity

values obtained on the original graphs and the similarity/dissimilarity val-

ues obtained on the reduced graphs.

5.3.3 Classification Accuracy and Computation Time

In this subsection, we address the following two research questions:

Q.1 Does the proposed reduction lead to graphs on which a significant

decline in classification accuracy is observed (compared to using the

original graphs)? Are there substantial differences among the four

classifiers employed on the reduced graphs?

Q.2 How large is the runtime improvement that can be achieved by per-

forming graph classification on the reduced rather than on the original

graphs?

In order to answer question Q.1, we present the classification accura-

cies for each reduced graph domain across all datasets and all classifiers in

Fig. 5.3. Additionally, in each figure, the black horizontal lines represent

the results obtained with the baseline where all graphs are reduced to a

single feature vector by means of a global sum pooling. The classification

of these vectors is then performed with an SVM based on a RBF kernel.

Overall, we observe a general, yet relatively slight, decrease in classification

accuracy as the size of the graphs is reduced. However, the classification

accuracy remains relatively stable even with strongly reduced graphs. This

is particularly noteworthy as it indicates that the reduced graphs still retain

sufficient information for accurate classification. For example, the classifi-

cation accuracies of the k-NN using GED obtained on the datasets BZR,

DHFR, MUTAGENICITY, NCI1, and NCI109 remain relatively consistent

even with strongly reduced graphs. This observation is also valid for the

two kernel classifiers. However, on some datasets, we also observe rather

138 Pattern Recognition on Reduced Graphs

Fig. 5.3: Graph classification accuracies for all datasets and all reduction

factors using GED (Graph Edit Distance and k-NN), SP (Shortest Path

Kernel and SVM), 4-WL (4-Weisfeiler-Lehman Kernel and SVM), and GNN

(DGCNN Graph Neural Network), including the corresponding reference

systems that rely on the original graphs (ρ = 1). The black horizontal lines

represent the results obtained with the baseline, where all the graphs are

reduced to a single feature vector.

strong reductions of the classification accuracies – in particular when strong

graph reductions are applied (see for instance the ENZYMES dataset where

the accuracy drop is clearly visible for all classifiers).

Note that on some datasets – especially on the unlabeled datasets

REDDIT-MULTI-5K and REDDIT-MULTI-12K – we can actually improve

Graph Reduction by means of Spectral Clustering 139

the classification accuracy when the classification is performed on the re-

duced rather than the original graphs. This phenomenon might be at-

tributed to the fact that we fixed parameter α to 0.5 for the reference

system (with ρ = 1) in order to avoid computational expenses and thus the

results shown here are somehow sub-optimal.

In general, we observe that the black horizontal line, representing the

results obtained with the baseline where all graphs are reduced to a single

feature vector, is only crossed when the graphs are strongly reduced (with

reduction factors of ρ = 8 or ρ = 16). However, on the DHFR dataset and

both REDDIT datasets, we observe that even for the original graphs and

slightly reduced graphs with ρ = 2 and ρ = 4, the accuracies obtained with

GNN and GED, struggle to surpass the accuracy of the näıve baseline. This

indicates that neither GNN nor GED are well-suited methods for solving

those tasks.

Overall the results suggest that our approach is effective in improving

the accuracy of pattern recognition systems based on graph representations,

although, there may be some instances where the baseline outperforms the

novel approach (particularly for graphs that have undergone significant

reduction).

To provide a more precise analysis of the relative differences among the

different systems, we present the classification accuracies for all datasets,

classification methods, and reduction factors in Table 5.3. This table allows

us to compare the number of instances where the classification accuracy

achieved on the reduced graphs is statistically significantly worse than the

accuracy achieved on the original graphs. We employ a t-test using the

classification accuracy of the five runs to determine if there is a statisti-

cally significant difference in accuracy between the reference system and

the systems that use the reduced graphs.

We first analyze the effects of the different reduction factors by compar-

ing all datasets and classifiers simultaneously. When the reduction factors

are small, we observe no statistically significant difference to the original

graphs in 26 out of 36 cases and 19 out of 36 cases for ρ = 2 and ρ = 4, re-

spectively. However, as the reduction factors increase to ρ = 8 and ρ = 16,

the results degrade and we find that only 12 out of 36 and 9 out of 36

cases are statistically equivalent to the original system, respectively. These

observations, together with the insights from Fig. 5.3, suggest that it is

possible to obtain reasonable results on the reduced graphs, but that it

is considerably more difficult to do so (especially with strongly reduced

graphs).

140 Pattern Recognition on Reduced Graphs

Table 5.3: Classification accuracies obtained by all classifiers, viz. a k-NN

using Graph Edit Distance (GED), as well as the ShortestPath graph kernel

(SP), the 4-Weisfeiler-Lehman graph kernel (4-WL) in conjunction with an

SVM and the DGCNN Graph Neural Network (GNN). We present results

on all datasets and reduction factors, i.e., Ref. System (ρ = 1) and ρ ∈
{2, 4, 8, 16}. Using symbols ◦/ •, we indicate results that are statistically

significantly better or worse than those achieved with the reference system,

respectively.

Reduction Factor ρ

Classifier Ref. System ρ = 2 ρ = 4 ρ = 8 ρ = 16

GED 86.9 ± 4.0 84.4 ± 5.4 84.0 ± 6.1 82.2 ± 3.5 80.2 ± 5.5

SP 85.2 ± 3.7 86.7 ± 3.3 80.2 ± 3.7 82.2 ± 3.5 81.0 ± 3.5

4-WL 87.9 ± 1.6 83.7 ± 3.0 • 82.5 ± 2.7 • 80.7 ± 2.8 • 79.5 ± 3.2 •BZR

GNN 81.3 ± 0.8 82.7 ± 1.0 83.3 ± 0.5 ◦ 83.8 ± 0.7 ◦ 82.6 ± 0.7 ◦
GED 77.7 ± 1.0 76.8 ± 2.4 73.8 ± 3.1 • 74.8 ± 1.1 • 77.9 ± 3.4

SP 76.6 ± 3.1 74.6 ± 1.9 75.5 ± 3.9 74.3 ± 2.9 70.5 ± 3.3 •
4-WL 81.6 ± 2.9 78.7 ± 2.0 77.0 ± 1.8 • 74.3 ± 2.8 • 77.1 ± 2.8 •DHFR

GNN 68.0 ± 1.4 68.5 ± 1.1 68.5 ± 1.1 67.0 ± 0.5 63.8 ± 0.7 •
GED 43.5 ± 5.5 41.3 ± 3.1 38.0 ± 3.9 33.7 ± 3.6 34.2 ± 5.1

SP 41.8 ± 4.0 37.2 ± 1.9 32.5 ± 2.4 • 30.0 ± 2.8 • 21.5 ± 2.7 •
4-WL 51.0 ± 3.5 41.0 ± 3.9 • 37.8 ± 4.3 • 31.3 ± 2.9 • 27.2 ± 1.9 •ENZYMES

GNN 37.5 ± 1.6 37.9 ± 1.6 34.6 ± 0.4 • 31.8 ± 1.1 • 27.9 ± 0.5 •
GED 74.5 ± 1.6 74.7 ± 1.7 74.5 ± 1.2 71.6 ± 1.5 • 70.5 ± 1.4 •
SP 79.0 ± 1.2 75.4 ± 1.5 • 75.1 ± 1.5 • 68.7 ± 1.3 • 58.5 ± 1.4 •
4-WL 83.5 ± 1.3 78.2 ± 1.1 • 77.8 ± 1.2 • 73.2 ± 1.2 • 69.9 ± 1.4 •MUTAGENICITY

GNN 75.6 ± 0.6 74.3 ± 0.3 • 74.1 ± 0.4 • 73.3 ± 0.2 • 72.8 ± 0.2 •
GED 73.3 ± 1.1 74.7 ± 1.4 73.3 ± 0.9 72.1 ± 0.9 • 68.2 ± 1.6 •
SP 74.3 ± 1.0 75.9 ± 0.9 74.7 ± 1.3 69.8 ± 0.9 • 57.9 ± 1.2 •
4-WL 85.8 ± 1.1 80.3 ± 1.1 • 77.4 ± 0.5 • 73.5 ± 1.1 • 68.8 ± 1.2 •

D
a
ta

se
t

NCI1

GNN 70.9 ± 0.9 70.8 ± 0.7 69.4 ± 0.4 • 69.0 ± 0.2 • 67.1 ± 0.3 •
GED 73.5 ± 2.1 72.4 ± 1.3 73.5 ± 2.3 70.6 ± 0.9 • 66.5 ± 0.7 •
SP 73.0 ± 0.8 75.5 ± 1.5 ◦ 74.2 ± 2.0 70.1 ± 1.5 • 57.7 ± 1.9 •
4-WL 86.2 ± 1.3 80.6 ± 1.0 • 77.2 ± 1.9 • 72.3 ± 0.8 • 68.3 ± 1.3 •NCI109

GNN 69.9 ± 0.8 69.4 ± 0.5 68.0 ± 0.4 • 67.1 ± 0.2 • 66.8 ± 0.1 •
GED 69.9 ± 1.2 66.3 ± 1.6 • 65.2 ± 1.3 • 65.1 ± 1.8 • 61.9 ± 2.2 •
SP 67.8 ± 1.7 69.2 ± 1.0 69.6 ± 1.0 64.7 ± 2.2 • 63.0 ± 1.9 •
4-WL 77.6 ± 0.5 70.6 ± 1.6 • 70.4 ± 1.7 • 67.2 ± 2.1 • 63.8 ± 2.0 •COLLAB

GNN 57.3 ± 0.3 65.9 ± 0.4 ◦ 65.4 ± 0.2 ◦ 62.2 ± 0.5 ◦ 58.8 ± 0.1 ◦
GED 24.9 ± 1.1 38.3 ± 1.7 ◦ 38.1 ± 1.2 ◦ 34.2 ± 1.9 ◦ 31.1 ± 2.1 ◦
SP 41.2 ± 0.9 42.5 ± 0.5 ◦ 43.4 ± 1.8 ◦ 41.9 ± 1.6 40.0 ± 0.8 •
4-WL 52.3 ± 1.1 52.9 ± 1.2 49.5 ± 0.9 • 47.8 ± 1.0 • 45.2 ± 0.9 •REDDIT-MULTI-5K

GNN 39.9 ± 0.2 43.2 ± 0.3 ◦ 46.8 ± 0.3 ◦ 45.4 ± 0.4 ◦ 42.3 ± 0.7 ◦
GED 15.3 ± 0.7 14.1 ± 0.5 • 24.3 ± 1.2 ◦ 21.8 ± 1.6 ◦ 21.0 ± 1.7 ◦
SP 33.8 ± 0.4 32.4 ± 0.7 32.1 ± 0.8 29.5 ± 0.9 • 27.5 ± 0.2 •
4-WL 37.0 ± 0.8 37.0 ± 1.2 35.1 ± 0.7i • 32.5 ± 0.4 • 29.2 ± 0.4 •REDDIT-MULTI-12K

GNN 27.9 ± 0.9 32.3 ± 0.3 ◦ 32.4 ± 0.3 ◦ 31.2 ± 0.4 ◦ 28.6 ± 0.4

Next, we compare the four different classifiers for all datasets and reduc-

tion factors simultaneously. We observe that when using GED, we obtain

results that are statistically equivalent to those obtained on the original

graphs in 23 out of 36 cases. When using the GNN (DGCNN), we obtain

Graph Reduction by means of Spectral Clustering 141

results that are statistically equivalent to the original system also in 22 out

of 36 cases. When using the SP graph kernel, we obtain results that are

statistically equivalent to the original system in 19 out of 36 cases, when

using the 4-WL graph kernel, we obtain results that are statistically equiv-

alent in only 3 out of 36 cases. This analysis clearly shows that the 4-WL

graph kernel does not cope well with the reduced graphs. One possible ex-

planation for these rather bad results is that the similarity matrix obtained

with the 4-WL kernel on the reduced graphs tends to shrink towards zero,

as it will be explained in further detail in the following subsection.

To investigate the potential of the proposed graph reduction with re-

spect to computation time, that is answering question Q.2, we present the

runtimes of all classifiers5 and reduction factors. In particular, Fig. 5.4 il-

lustrates the average runtime, calculated over five runs for all datasets and

classification methods.

In summary, our method demonstrates a clear improvement in runtime

for all tested configurations. Already with the first reduction factor (i.e.,

ρ = 2), the results indicate a substantial decrease in computation time.

That is, we observe an average reduction of the total runtime of about

a factor of two for all datasets and classifiers. As the reduction factor is

increased, we further observe a consistent decrease in runtime. When the

graphs are strongly reduced (with ρ = 16), we see a reduction in the runtime

of approximately an order of magnitude on all datasets and classification

methods. This improvement is even more pronounced for the large graphs

stemming from the REDDIT datasets, where we see a reduction of two

orders of magnitude.

In general, we observe that computationally demanding classifiers (i.e.,

GED and the SP kernel) benefit to a greater extent from using the reduced

graphs. However, also the 4-WL kernel, which is computationally more

efficient than both GED and SP kernel, shows clear improvements through

the use of reduced graphs. It is worth noting that these reductions in run-

time are achieved while maintaining, or even improving, the classification

accuracy (as we have seen before).

5We omit the analysis of the runtime achieved using the GNN classifier, as the clas-
sification runtime is negligible once the GNN has been trained, and no clear difference

appears in the runtime between the reference system and the systems that operate on

the reduced graphs.

142 Pattern Recognition on Reduced Graphs

Fig. 5.4: Runtime in seconds on a logarithmic scale for all reduction factors

and all datasets using all three classification systems, viz. a k-NN using

Graph Edit Distance (GED), as well as the ShortestPath graph kernel (SP)

and the 4-Weisfeiler-Lehman graph kernel (4-WL) in conjunction with an

SVM.

5.3.4 Similarity/Dissimilarity Quality Measure

Graph edit distance and graph kernels are often used in conjunction

with distance-based classifiers and SVMs, respectively. Thus, it is im-

portant to determine whether the similarities/dissimilarities obtained on

reduced graphs are reliable. To validate this, we visually compare the

similarities/dissimilarities obtained on the original graphs to those obtained

Graph Reduction by means of Spectral Clustering 143

in the reduced graph domains using scatter plots (see Fig. 5.5). Each point

in these plots represents a similarity/dissimilarity in the original graph

domain (x-axis) and the corresponding distance on the reduced graph (y-

axis). The Pearson Correlation Coefficient (PCC) is also shown to indicate

the linear correlation between the distances obtained on the original and

reduced graphs. The black diagonal represents the one-to-one correspon-

dence between reduced and original graphs. Due to the lack of space, we

show results on two datasets only (BZR and NCI1). Note, however, that

similar behavior is observed for the remaining datasets as well. Detailed

pairwise comparisons of similarity/dissimilarity for the GED, SP and WL

classifiers for these datasets can be found in Appendix C.1, C.2, and C.3

respectively.

The GEDs obtained in the original graph domain and in the reduced

ones appear to be quite correlated. In general, when the distance between

two graphs is large in the original domain, it is also relatively large in the

reduced domain. Conversely, when the distance is small in the original

graph domain, it is also small in the reduced graph domain. Yet, the

similarities obtained with both graph kernels are reduced when performed

on the weakly reduced graphs (i.e., with ρ = 2) and shrink towards zero

when the graphs are strongly reduced.

Overall, we observe that GEDs on the reduced graphs retain a coherent

correlation and are still suitable for classification, while it may be more

difficult to utilize the graph kernel similarities, as they tend to approach

zero when the graphs are reduced in their sizes. This accounts for the lower

classification accuracy obtained with the reduced graphs, as compared to

the original graphs, for both graph kernels.

Upon deeper analysis, we observe that diverse graph similarities/dis-

similarities in the original graph domain are mapped to the same value in

the reduction space. The large number of equal similarities/dissimilarities

between different pairs of graphs makes it difficult to discern any pattern

in the data. Thus, it is no longer possible to extract trends from the intra-

class similarities or dissimilarities (shown with red dots) and inter-class

similarities/dissimilarities (shown with blue dots).

144 Pattern Recognition on Reduced Graphs

(a) GED

(b) SP

(c) 4-WL

Fig. 5.5: Comparison of pairwise similarities/dissimilarities between graphs

in the original and the reduced graph domains for both BZR and NCI109

datasets using Graph Edit Distance (GED), the ShortestPath graph kernel

(SP), and the 4-Weisfeiler-Lehman graph kernel (4-WL).

Graph Reduction by means of Spectral Clustering 145

Table 5.4: Pearson correlation coefficient (PCC) between similarities (i.e.,

ShortestPath (SP) and the 4-Weisfeiler-Lehman graph kernel (4-WL))/dis-

similarities (i.e., Graph Edit Distance (GED)) obtained in the original and

reduced graph domain on all datasets. We show the correlations between

the original domain and two reduction factors (ρ = 2 and ρ = 16).

GED SP 4-WL

ρ = 2 ρ = 16 ρ = 2 ρ = 16 ρ = 2 ρ = 16

BZR 0.70 0.46 0.74 0.06 0.70 0.14

DHFR 0.67 0.71 0.69 0.09 0.76 0.11

ENZYMES 0.91 0.79 0.84 0.02 0.87 0.03

MUTAGENICITY 0.90 0.82 0.87 0.05 0.86 0.04

NCI1 0.97 0.90 0.89 0.07 0.92 0.03

NCI109 0.96 0.88 0.88 0.11 0.92 0.04

D
a
ta

se
t

COLLAB 0.80 0.90 0.77 0.73 0.91 0.89

REDDIT-MULTI-5K 0.95 0.99 0.94 0.93 0.96 0.91

REDDIT-MULTI-12K 0.94 0.99 0.92 0.90 0.93 0.92

In Table 5.4, we show the PCCs between similarities/dissimilarities ob-

tained in the original and reduced graph domain (we show the correlations

between the original domain and two reduction factors only (ρ = 2 and

ρ = 16)).

As already seen in Fig. 5.5, the PCCs of GED remain stable when

the graphs are strongly reduced. However, the PCCs tend to decrease

when the reduction is increased and approaches zero when using both graph

kernels. This trend is consistently visible across all labeled datasets. Yet, on

the three unlabeled datasets (i.e., COLLAB, and both REDDIT datasets),

we observe that the PCCs remain stable when the reduction is increased.

This stability is actually also visible in the corresponding scatter plots. In

Fig. 5.6, for instance, we show as an example a comparison of the WL

kernel similarities in the original and in the reduced graph domain on the

COLLAB dataset.

146 Pattern Recognition on Reduced Graphs

Fig. 5.6: Comparison of pairwise similarities, obtained with the 4-WL graph

kernel, between the original graphs and their reduced counterparts (with

ρ = 2 and ρ = 16) for the COLLAB dataset.

5.4 Conclusion

In the present chapter, we propose and research spectral graph clustering as

basis for a novel graph reduction framework. In particular, we use spectral

graph clustering to first partition the nodes of a graph and then condense

each partition of the nodes into supernodes. The benefit of this reduction

process is that it can efficiently discover significant communities in the

underlying graphs, thus offering accurate clusters for reducing the graphs

to their most significant structures.

The proposed procedure to reduce the size of the graphs can be easily

controlled by a parameter that defines the size of the resulting graphs (ba-

sically by the number of clusters to be found in the graph). The general

goal of the proposed reduction framework is to speed up the computation

of standard graph classification algorithms while maintaining satisfactory

classification accuracy. In order to demonstrate the effectiveness of the pro-

posed graph reduction technique, we compare the classification accuracy as

well as the computation time on the original and reduced graphs with four

different classifiers (GED with a k-NN as well as SP, 4-WL kernel with

SVMs, and GNN).

We conduct a comprehensive experimental evaluation on nine real-world

graph datasets. Our experimental evaluation shows that while the classi-

fication accuracy decreases with the use of reduced graphs in general, the

resulting accuracies are still comparable to those obtained with the original-

sized graphs. In more detail, we are able to draw the following conclusions

regarding the classification accuracy.

Graph Reduction by means of Spectral Clustering 147

1. We find that the use of GED in conjunction with a k-NN on reduced

graphs achieves comparable classification accuracies to that of the orig-

inal graphs in the majority of the cases.

2. We also show that the SP kernel works quite well on the weakly reduced

graphs (i.e., ρ ∈ {2, 4}), as the classification accuracy remains statisti-

cally similar to those achieved with the reference system on the majority

of datasets.

3. The reduced graphs have the least beneficial effect when used in con-

junction with the 4-WL kernel, as the classification accuracy drops sta-

tistically significantly for almost all the reduction factors and datasets.

4. We observe that GEDs obtained in the original and the reduced graph

domain remain in the same order of magnitude, while the similarities

(obtained with the SP and the 4-WL graph kernel) shrink toward zero

as the reduction factor is increased.

The empirical evaluation also shows a significant decrease in computa-

tion time across all datasets and graph classifiers. That is, we observe a

reduction of the runtime of about a factor of two when using weakly reduced

graphs (i.e., ρ = 2) and at least one order of magnitude (and in some cases

more than two orders of magnitude) when the graphs are strongly reduced

(i.e., ρ = 16). These empirical results suggest that our approach may pro-

vide significant time savings compared to existing methods, which could be

particularly useful in contexts where the time required for classification is

a major limiting factor.

148 Pattern Recognition on Reduced Graphs

Further Graph
Reduction Methods 6

Car enfin, il faut en prendre son parti et se dire
une fois pour toutes, que la bourgeoisie est
condamnée à être chaque jour plus hargneuse,
plus ouvertement féroce, plus dénuée de pudeur,
plus sommairement barbare; que c’est une loi
implacable que toute classe décadente se voit
transformée en réceptacle où affluent toutes les
eaux sales de l’histoire;

Discours sur le Colonialisme (1950),
Aimé Césaire

6.1 Introduction

As extensively detailed in Chapter 2, graphs are recognized as robust

and flexible data representation in pattern recognition and related fields

(e.g. in [172; 173; 174]). At the core of graph-based pattern recognition

lies a central task known as graph matching [4; 5], which is known to be

very time consuming in general.

As presented in Chapter 4 and 5, a possible idea to better handle graphs

in pattern recognition, is to work with size-reduced versions of the original

graphs [33; 112]. Graph reduction methods produce a graph GR = (VR, ER)

from the original graph G = (V,E), with reduced node and/or edge sets

|VR| and/or |ER|, respectively. The aim of such a reduction is to obtain a

smaller graph GR that maintains the main topology and properties of the

original graph G.

In the present chapter, we introduce in two separate sections (Sec-

tions 6.2 and 6.3) two novel pattern recognition procedures that rely on

149

150 Pattern Recognition on Reduced Graphs

novel graph reduction frameworks.

• The first framework is presented in Section 6.2 and consists of two

basic parts. First, we substantially reduce the size of the original

graphs by means of a graph neural network. Eventually, we use

the reduced graphs in conjunction with GED and a distance-based

classifier. On five datasets we empirically confirm the benefit of the

novel reduction scheme regarding both classification performance

and computation time.

• The second framework is presented in Section 6.3. The core concept

of this framework revolves around the extraction of graph-inherent

regularity patterns within a classification scheme. To this end, we

propose a framework based on a compressor-based metric associ-

ated with a k-Nearest Neighbor classifier. The compressor-based

metric aims to identify regularities in the compressed graphs and

assigns smaller distances to graphs that appear comparable and are

assumed to belong to the same class. To evaluate the effectiveness

of the proposed graph matching framework, we perform a series of

evaluations on eleven datasets.

Note that both sections are based on preliminary works presented in a

conference paper [47] and in a journal paper [48], respectively. Also note

that in the present chapter, the first graph reduction method is a graph

summarization method similar to the method presented in Chapter 4, while

the second method is a is compression-based approach.

6.2 Graph Reduction Neural Networks for Structural Pat-

tern Recognition

In the present section, we discuss a novel graph reduction method [47]

that learns the relevant features of the graph topology by means of Graph

Neural Networks (GNN). Research on GNNs is a rapidly emerging field in

structural pattern recognition [100; 175]. The general idea of GNNs is to

learn vector representations for nodes and/or (sub-)graphs such that given

criteria are optimized. From a broader perspective, GNNs can be seen as

a mapping from a graph domain into a vector space. Once an embedding

is computed for a node and/or a (sub-)graph, the vectorial representation

can be used to solve downstream tasks such as node or graph classifica-

tion. For more detailed information about the concept of GNN, we refer to

Further Graph Reduction Methods 151

Subsection 2.4.3.

The contribution of the proposed reduction framework is twofold. First,

we show how a learned GNN model can be used to select the nodes of

a graph to be removed (instead of applying explicitly defined rules for

graph coarsening as proposed in [44], for instance). Once the GNN model

is trained, we are able to readily reduce arbitrary graphs from various

datasets. Second, we use the learned graph reductions in a graph matching

scenario. In particular, we approximate the GED on the reduced graphs in

order to solve an underlying graph classification task. To the best of our

knowledge, such an approach – that combines GNNs for graph reduction

with fast approximate GED – has not been proposed before.

The remainder of the present section is structured as follows. In Sub-

section 6.2.1 and 6.2.2, we delve into the proposed reduction algorithm

based on GNNs as well as the complete graph matching framework, respec-

tively. In Subsection 6.2.3, we provide a comprehensive overview of our

experimental evaluation on five distinct graph datasets. Subsequently, in

Subsection 6.2.4, we evaluate and analyze the structure and characteristics

of the reduced graphs. This is followed by a large-scale classification exper-

iment detailed in Subsection 6.2.5. Finally, in Subsection 6.2.6, we conduct

an ablation study.

6.2.1 Graph Reduction Neural Network (GReNN)

In contrast with the proposed reduction methods described in Chapter 4

and 5, we aim for a reduction method that learns the nodes to be deleted.

Actually, a learned model has the advantage that once it is trained it can

readily be applied on unseen data. In particular, we propose to use a GNN

to learn the graph reduction on a training set and eventually apply the

model to the complete dataset.

In Table 6.1, we present an overview of the architecture of the pro-

posed Graph Reduction Neural Network (GReNN). We use a mix of graph

convolution layers (GCNConv) [100] to learn the node representation, and

gPool layers [176] as node sampling method.

The gPool layer is based upon the projection of the feature vector x⃗u

(attached to node u) on a trainable vector p⃗ (i.e., yu = x⃗up⃗/∥p⃗∥). The

scalar value yu quantifies the retained information when projecting the

feature vector of node u ∈ V onto the direction of vector p⃗. The node

sampling is done according to the largest scalar projection value in order

to preserve the maximum of information.

152 Pattern Recognition on Reduced Graphs

Table 6.1: Overview of the architecture of our graph reduction scheme

GReNN for both the 50% and 25% setting. Reduced graphs are obtained

after the last graph convolution layer (marked with an asterisk *)

GReNN-50 GReNN-25

GCNConv(Rn, 64)

gPool(0.5) gPool(0.5)

GCNConv(64, 64) GCNConv(64, 64)

- gPool(0.5)

- GCNConv(64, 64)

GCNConv(64, 64)*

POOLING

Linear(64, #classes)

The gPool layer also incorporates a graph connectivity augmentation

that turns out to be particularly advantageous in our framework. This

augmentation method is originally employed to improve the information

flow in subsequent layers. In our case it prevents the creation of reduced

graphs that are sparsely connected or even completely edge-free.

We propose two versions of the reduction model, termed GReNN-50

and GReNN-25 (where the number indicates the percentage of remaining

nodes). For GReNN-50 we apply a pooling ratio of 0.5 (means that we are

deleting 50% of the nodes). For GReNN-25 we evaluate two ways to reduce

the graphs. First, we train the network from scratch with a pooling ratio of

0.25. Second, we train the model with a reduction level of 50%, freeze the

already trained layers, and add a new layer (again with pooling ratio 0.5)

to obtain graphs with 25% of the nodes. The newly updated network is

then trained with half of the original epochs. Preliminary experiments show

that for the architecture of GReNN-25 the two step optimization process

actually achieves better results than training from scratch. Hence, we apply

this specific architecture of an extra pooling layer in our framework.

The last two layers of our model are used for training only. That is,

they are used to produce a graph embedding which in turn is used to

back-propagate the classification error during the training of the reduction

model. The reduced graphs – actually used for classification part of our

framework (detailed in the next Subsection) – are obtained after the last

graph convolution layer (marked with an asterisk in Table 6.1).

Further Graph Reduction Methods 153

6.2.2 Graph Matching on GNN Reduced Graphs

Fig. 6.1: The proposed graph matching framework consists of two basic

parts. (1) Training of a GNN and reduction of the graphs with the op-

timized GNN. (2) Graph classification with a k-NN using approximated

GED that is computed on the reduced graphs.

Major goal of the proposed method is to make graph-based pattern

recognition more efficient. To this end, we combine two complementary

research directions, viz. GNNs (for graph reduction) and approximate GED

(for graph matching). Hence, the proposed framework can be split into two

main parts as illustrated in Fig. 6.1.

• In part (1), we aim at producing reduced graphs via GNNs. This

part includes both training of the network model and the actual

reduction of the graphs. Goal of the GNN based reduction is to

obtain strongly reduced graphs, that are still representative enough

such that they can be used for pattern recognition tasks.

• In part (2) of our framework, we use the reduced graphs in a clas-

sification scenario by means of approximate graph matching. It

is our main hypothesis that the power and flexibility of GED in

conjunction with the strong generalization and learning power of

GNNs lead to a fast and accurate graph recognition framework.

For classification, we employ a k-Nearest Neighbor classifier (k-NN) that

operates on the GReNN reduced graphs. In particular, we compute the

GED on GReNN reduced graphs using the fast approximation algorithm

BP-GED [11] (as thoroughly described in Section 2.4).

Rather than a k-NN any other dissimilarity based classification algo-

rithm could be employed as well in our framework. We feel, however, that

the k-NN is particularly well suited because of its direct use of the dis-

similarity information without any additional training. The same accounts

somehow for the GED computation via algorithm BP. That is, any other

154 Pattern Recognition on Reduced Graphs

approximation algorithm could be used for this task (e.g., suboptimal al-

gorithms surveyed in [4]).

6.2.3 Datasets and Experimental Setup

For the experimental evaluation, we use five standard datasets, namely,

DD, ENZYMES, MUTAGENICITY, NCI1, and PROTEINS. Some graph

properties, such as the number of graphs, number of classes, and the average

number of nodes and edges per graph, are given in Table 6.2. For details

about these datasets, please refer to Chapter 3, where a comprehensive

description is provided for each dataset.

The datasets used in the present section are split into three disjoint

sets for training, validation, and testing1. The splitting is carried out once

at the beginning of our evaluation, and – for the sake of consistency –

we maintain this splitting throughout each run. Yet, it is known that the

performance of neural networks depend on the initialization of its weights

and the actual split of the dataset [177]. To disentangle this random factor

from our method and be sure that our reduction scheme works properly,

each experiment is repeated five times with different weight initialization

and different dataset splits.

The training and optimization of the hyperparameters for the GReNNs

are exclusively achieved on the training and validation sets, respectively.

The same accounts for the optimization of the k-NN classification and GED

computation via BP in the second part of our framework.

For the training of the GReNNs, we use the hyperparameters as orig-

inally proposed in [176]. Yet, we reduce the number of epochs from 200

to 20 as preliminary experiments show limited improvements when using

more than 20 epochs. For optimizing the k-NN we evaluate the number

of nearest neighbors k ∈ {1, 3, 5} and for the computation of GED we op-

timize a factor α that weights the relative importance between node and

edge edit costs in the range]0, 1] with a step size of 0.05.

6.2.4 Analysis of the Structure of the Reduced Graphs

When reducing a graph by removing nodes and their incident edges one

might obtain edge-free, or at least sparsely connected graphs. To confirm

that the proposed reduction does not produce graphs that consists of sets

1During the splitting of the datasets we sample the graphs such that the class balance
is preserved in each subset.

Further Graph Reduction Methods 155

Table 6.2: Properties of the graph datasets. We show the number of graphs

(|G|) with the sizes of the training, validation, and test set (|Gtr|, |Gva|,
|Gte|), the number of classes (|Ω|) and the average number of nodes and

edges per graph (∅|V |, ∅|E|).

Graph Dataset Property

|G| (|Gtr|, |Gva|, |Gte|) |Ω| ∅|V | ∅|E|

DD 1,178 (707, 235, 236) 2 284.3 715.6

ENZYMES 600 (360, 120, 120) 6 32.6 62.1

MUTAGENICITY 4,337 (2,600, 867, 870) 2 30.3 30.8

D
a
ta

se
t

NCI1 4,110 (2,466, 822, 822) 2 29.9 32.3

PROTEINS 1,113 (660, 220, 223) 2 39.1 72.8

of unconnected nodes only, we start our evaluation by thoroughly analyz-

ing the reduced graphs. The following evaluations and visualizations are

related to one dataset only, viz. DD. However, on the other datasets we ob-

tain similar results (available in Appendix D.1 and D.2) and make similar

observations.

In Fig. 6.2 we visualize the number of graphs on the y-axis that have a

certain number of connected components (x-axis) in a histogram. We com-

pare the original graphs with the reduced graphs obtained with GReNN-50

and GReNN-25. We observe that the vast majority of original graphs con-

sist of one connected component. On the other hand, the reduced graphs

tend to have more than only one connected component. However, we see

that the number of connected components is smaller than, or equal to, five

for about 80% of the graphs (for both reduction levels).

We also analyze the number of isolated nodes per graph obtained after

reduction on all datasets. We can report that on three datasets (MUTA-

GENICITY, ENZYMES, and PROTEINS) there are less than three iso-

lated nodes per graph for both reductions. On NCI1 and DD we observe a

maximum of seven isolated nodes per graph when reducing the graphs with

GReNN-25. This implies that the connected components of the reduced

graphs do not mainly consist of single nodes but rather of connected sub-

graphs. Hence, the reduced graphs maintain their connectivity in general,

which is mainly due to the connectivity augmentation method of the gPool

layer (as discussed in Subsection 6.2.2).

In Fig. 6.3 we illustrate the effects of our graph reduction on a sample

graph. Reductions from the original graph to 50% and 25% of the available

156 Pattern Recognition on Reduced Graphs

1000

1100

1200

0 1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

Num Connected Components per Graph

N
um

G
ra

ph
s

DD - Analysis Connected Components

Original graphs
Graphs reduced w/ GReNN-50
Graphs reduced w/ GReNN-25

Fig. 6.2: Histogram that shows the number of graphs (on the y-axis) that

have a given number of connected components per graph (on the x-axis)

on the dataset DD (the frequencies of graphs with more than 11 connected

components are clipped for the sake of conciseness).

nodes clearly lead to an increased number of connected components. How-

ever, we also observe the effects of the built-in edge augmentation. That is,

the remaining nodes stay — in general — highly connected via dense and

local edge structures.

(a) Original Graph (b) GReNN-50 (c) GReNN-25

Fig. 6.3: Example of an original graph and the corresponding reduced

graphs via GReNN-50 and GReNN-25.

Further Graph Reduction Methods 157

Table 6.3: Classification accuracies obtained on test sets with the reference

system and our novel framework (GReNN-50, GReNN-25). We also show

the relative speed up of the matching times. (•: indicates a statistically

deterioration compared to the reference system using a t-test with p-value=

0.05.)

Ref. System GReNN-50 GreNN-25

Acc [%] Acc [%] Speed Up Acc [%] Speed Up

DD 73.4±1.7 74.3±2.2 2.2 70.1±2.0 12.6

ENZYMES 43.5±5.5 43.5±2.9 2.1 33.2±5.1 • 4.6

MUTAGENICITY 74.5±1.6 72.6±2.6 3.6 68.1±2.3 • 8.5

D
a
ta

se
t

NCI1 73.3±1.1 71.6±1.7 3.7 63.8±1.6 • 9.9

PROTEINS 71.8±4.2 70.5±1.6 3.4 69.3±1.6 8.8

6.2.5 Classification Results

Next, we conduct classification experiments in order to evaluate our com-

plete framework (using both parts (1) and (2)). The first experiment com-

pares our framework (GReNN-50 and GReNN-25) with a k-NN classifier

that operates on the original graphs (termed reference system from now

on).

In Table 6.3, we show the classification accuracies of all systems and the

speed up of the matching times achieved with our framework (compared

to the reference system). With GreNN-50, we achieve quite similar clas-

sification accuracies as the reference system on four out of five datasets.

As expected, we also observe a clear speed up on all datasets (we observe

speed ups by factors of about three).

The improvement regarding computation time is even more pronounced

when using graphs reduced to 25% of their original size. That is, with

GReNN-25 we reduce the runtime by factors of about ten on four out of

five datasets (on ENZYMES the speed up is about a factor of five).

Using such a strong reduction of the graphs, however, leads to more

substantial deteriorations w.r.t the classification accuracy. That is, with

GreNN-25 we observe three statistically significant deteriorations. On the

other two datasets, however, no statistically significant difference is visi-

ble between our system and the reference system. In general, the results

obtained are in a fairly similar range to the original results – this is quite

astonishing, considering that we are using 25% of the nodes only.

158 Pattern Recognition on Reduced Graphs

6.2.6 Ablation Study

Finally, we conduct an ablation study in order to investigate the usefulness

of the two separate parts of our framework (for the sake of conciseness

we use GReNN-50 only). We compare the complete framework with the

following systems

• Without-1 : This refers to a system in which we replace the first

part of our framework (1) with a random reduction of the graphs to

50% of the available nodes. This system helps us to verify whether

or not our framework actually benefits from the elaborated GNN

reduction.

• Without-2 : This system refers to the proposed GNN architecture

of the GReNN that is directly employed for graph classification

without taking the detour of GED computation (that is, we omit

part (2) of our framework). This system helps us to verify whether

the proposed framework actually benefits from the combination of

GNN reductions and GED computations.

In Table 6.4 we observe that our novel framework GReNN-50 outper-

forms the system Without-1 on all five data sets (three of the five improve-

ments are statistically significant). On four out of five data sets GReNN-50

also outperforms the second reference system Without-2 (three out of five

improvements are statistically significant).

The main finding of this comparison is twofold. First, it clearly shows

that our novel learning-based reduction scheme outperforms a näıve graph

reduction, and second, the proposed graph reduction based on GNNs in

conjunction with GED computations is clearly beneficial as it outperforms

the isolated GNN in general.

Further Graph Reduction Methods 159

Table 6.4: Ablation study where we compare the classification accuracy

obtained with and without the use of the two parts (1) and (2) of our

framework. Symbols 1○/ 2○ indicate a statistically significant improvement

with and without the use of the two parts (1) and (2), respectively (using

a t-test with p-value = 0.05). The best result per dataset is highlighted.

Dataset

DD ENZYMES MUTAGENICTY NCI1 PROTEINS

Without-1 72.5±1.7 23.2±3.3 64.4±1.3 59.5±0.9 69.7±1.5

Without-2 67.9±3.1 26.1±3.7 73.3±4.4 67.0±2.3 70.2±2.4

Ours 74.3±2.2 -/ 2○ 43.5±2.9 1○/ 2○ 72.6±2.6 1○/- 71.6±1.7 1○/ 2○ 70.5±1.6 -/-

6.3 Graph Classification With Normalized Compression

Distance

In recent years, interest in the use of compression-based distances for graph

classification purposes has increased. One algorithm that embodies this

approach is, for instance, Graphitour [178]. This algorithm works with an

iterative contraction of similar edges, focusing on the selection of the most

frequently occurring edges. To achieve this, Graphitour solves an instance

of the maximum cardinality matching problem, trying to find as many edges

as possible without any two edges sharing common nodes. In [179], the au-

thors use a modified version of the Graphitour algorithm in conjunction

with the Normalized Compression Distance (NCD) [180]. The goal of this

procedure is to ensure that two isomorphic graphs are compressed in the

same way. In [181], a parameter-free method is proposed in the context

of low resource text classification. In this approach, the authors use the

NCD to compute the distance between two texts. It is noteworthy that the

results obtained are comparable to those achieved by advanced, yet compu-

tationally expensive, text classification algorithms (such as BERT [182]).

In the present section, we introduce and research a novel method for

graph matching that consists of an adaptation of a lossless compressor-

based distance metric [183] to the graph domain. This particular metric

offers the inherent ability to capture regularity patterns in the underlying

data, which in turn motivates our effort to adapt its properties to a graph

matching scenario. Roughly speaking, our novel graph matching method is

based on two steps.

(1) First, we extract string representations from the underlying graphs.

160 Pattern Recognition on Reduced Graphs

(2) Second, we compute a lossless compression distance between the

extracted strings.

The contribution of the presented section is twofold. First, we formally

demonstrate how a lossless compression distance can be used in the con-

text of graph matching. In doing so we have to overcome the challenge

of extracting a string from a graph posed by the exponential number of

node arrangements in a graph. In our novel method, we propose to re-

arrange the nodes of the graphs based on deterministic node permutation

algorithms. Second, in an empirical evaluation, we show that the proposed

framework can produce results comparable to those of a standard graph

matching framework (i.e., GED), yet, substantially faster.

The remainder of the present paper is organized as follows. In Sub-

section 6.3.1, we present the Normalized Compression Distance (NCD)

and review the general idea behind the Kolmogorov complexity which is

at the heart of our novel graph matching framework. In Subsection 6.3.2,

we explain in details the main steps of the proposed graph classification

framework. Finally, in Subsection 6.3.3, we evaluate different parts of our

framework. For instance, we analyze how the compression rate influences

the classification accuracy and compare the resulting runtimes across dif-

ferent compression rates.

6.3.1 The Normalized Compression Distance (NCD)

The Kolmogorov Complexity [184] is a measure of complexity, or compress-

ibility, of a finite string of symbols. Essentially, it formalizes the idea that

the complexity of a binary string is closely linked to the length of the

shortest program that can generate this string. That is, the Kolmogorov

complexity KU (x) of a binary string x is the length of the shortest binary

program p that outputs string x using a universal Turing Machine U [184].

Formally,

KU (x) = min{|p|, U(p) = x} (6.1)

The use of a universal Turing Machine U ensures that Eq. 6.1 is inde-

pendent of any particular machine or programming language2. Intuitively,

K(x) is the minimum amount of information required to generate x by an

2For the sake of convenience, we write to K(·) rather than KU (·) from now.

Further Graph Reduction Methods 161

effective process, i.e., the shorter the program is, the more compressible or

less complex the string x is.

The authors of [185] derived the Algorithmic Information Dis-

tance (AID) between strings x and y with the use of the Kolmogorov

complexity. The AID is defined as the length of the shorter binary pro-

gram that computes both x from y and y from x. By ensuring that the

program is the shortest, it is guaranteed that it makes optimal use of any

redundancy between the information needed to compute x from y and vice

versa.

Formally, the AID(x, y) is defined as follows.

AID(x, y) = max(K(x|y),K(y|x))
= K(xy)−min(K(x),K(y)),

(6.2)

where K(x|y) is the conditional Kolmogorov complexity of x relative to

y (that is, the length of a shortest program to compute x if y is given as an

auxiliary input to the computation), whileK(xy) represent the Kolmogorov

complexity of the concatenation of string x and y.

The AID leverages the absolute measure of complexity through the Kol-

mogorov complexity K(x). This ensures that the distance is independent

of the choice of the compressor. However, the Kolmogorov complexity

K(x) is actually a theoretical concept only, which is difficult to calculate in

practice. Hence, the Normalized Compression Distance (NCD) [180] was

proposed that uses a compression algorithm C(·) instead of the Kolmogorov

complexity K(·).
NCD relies on the application of data compression algorithms to com-

press two strings independently (exploiting redundancies and patterns).

The NCD computation can be split into the following three steps.

(1) Each string is compressed separately using a lossless compression

algorithm C(·).
(2) The sizes of the compressed representations and the size of their

concatenation is compared. The smaller the difference in the com-

pressed representations, the more similar the two strings are con-

sidered to be.

(3) The resulting difference is normalized to ensure that the NCD falls

within a specific range (commonly between 0 and 1). This nor-

malization step makes the metric more interpretable and allows for

comparisons across different types and sizes of data.

162 Pattern Recognition on Reduced Graphs

Formally, the NCD(x, y) between string x and y is defined by

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
(6.3)

where C(x) and C(y) represent the sizes of the compressed representa-

tions of strings x and y, and C(xy) is the size of the compressed represen-

tation when the two strings are concatenated.

Note that higher compression rates generally result in C(·) being a closer
approximation of K(·). This in turn means that the higher the compression

rate can be defined, the better NCD (from Eq. 6.3) approximates AID (from

Eq. 6.2).

In essence, the NCD is a measure of dissimilarity between two data

objects based on how well their information content can be compressed

and represented in a concise form. Lower NCD(x, y) values generally indi-

cate higher similarity between x and y, while higher values suggest greater

dissimilarity.

6.3.2 Graph Matching via NCD

In the present subsection, we propose a novel graph matching framework

based on the NCD. As formally introduced in Subsection 6.3.1, the NCD is

a computable approximation of the normalized information distance that

allows us to compute the compression distance between two strings x and y.

Consequently, to enable the application of the NCD within a graph domain

G, we need to convert graphs G ∈ G into strings xG.

In the proposed approach, the transformation of graphs to strings relies

on using the adjacency matrices A = (aij)n×n of the underlying graphs

G ∈ G (with n nodes). First, we extract the upper diagonal part of the

adjacency matrix A and flatten it into a binary string xG. Formally, we

define this string as

xG = a12, . . . , a1n, a23, . . . , a2n, . . . , an−1n.

Then, to preserve potential node labels, we append a one-hot encoded

vector that represents the node labels to the end of xG (using the same

node ordering as used in A). A visual summary of this procedure can be

found in Fig. 6.4.

The primary goal of any lossless compression algorithm is to minimize

the overall bit size of the data by assigning shorter bit codes to more prob-

able symbols (and vice versa). Given that graphs within the same class

Further Graph Reduction Methods 163

have more common regularities than graphs from different classes, our hy-

pothesis states that performing compression on similar graphs will result

in similar compressions.

Fig. 6.4: Example of a graph G with labels on the nodes that is transformed

into a binary string xG. To this end, the upper part of the adjacency

matrix A is concatenated with the flattened matrix X containing the one-

hot encoded node labels.

One of the pivotal pillars of our approach is the use of lossless compres-

sion algorithms, which feature the ability to capture and encode regularity

patterns within the data. However, both the encoding of the regularities

and the resulting compression crucially depend on the actual arrangement

of the nodes in the adjacency matrix. Consequently, this dependency can

potentially lead to different distances for pairs of graphs by simply changing

their node orderings. Given the exponential number of possible adjacency

matrices A for a given graph G ∈ G (resulting from different node order-

ings) this problem is further exacerbated.

Essentially, our goal is to develop a permutation-invariant method that

achieves the same compression regardless of the original node arrangement.

Hence, we propose to first compute a deterministic representation of the

adjacency matrix A. As it is uncertain in the first place which node permu-

tation is useful in our context, we treat the permutation as a free hyperpa-

rameter. In this regard, we propose and evaluate the five node permutation

algorithms presented below (stemming from two categories, viz. direct node

rearrangement algorithms and community detection algorithms).

164 Pattern Recognition on Reduced Graphs

Direct Node Rearrangement Algorithm

• Cuthill-Mckee [186] is an algorithm that reorders sparse matrices.

The idea is to permute the nodes of a graph such that the bandwidth

of the resulting adjacency matrix is minimized. The bandwidth of

a matrix is the maximum distance between non-zero elements along

any diagonal.

Community Detection Algorithm

• Girvan Newman [187] is a hierarchical algorithm that finds commu-

nities in a network by iteratively removing edges based on centrality

indices induced by the betweenness measure [162].

• Label Propagation [188] operates on the idea that nodes within the

same community should share equal labels. The algorithm itera-

tively propagates the labels through the edges of the graph. In each

iteration, the nodes are assigned the label that is most prevalent

among their neighbors. This process continues until the labels of

all nodes have converged, indicating the resulting communities.

• Louvain [189] is a greedy algorithm that iteratively refines the mod-

ularity in two subsequent steps (modularity is an often used mea-

sure of the quality of a partition of a network). In a first step,

it identifies small communities by locally optimizing modularity

across all nodes. Then, in a second step, each small community is

merged into a node. These two steps are repeated until no more

changes in the graph occur.

• Scalable Community Detection (SCD) [190] is an efficient version

of the Label Propagation algorithm [188]. Its distinctive feature is

that SCD partitions the graph by maximizing the Weighted Com-

munity Clustering (WCC) [191], which is a triangle-based commu-

nity detection metric.

Given a certain permutation algorithm and two graphs G and G′, we

now define the Normalized Graph Compression Distance (NGCD), as fol-

lows

NGCD(G,G′) =
C(xGxG′)−min(C(xG), C(xG′))

max(C(xG), C(xG′))
, (6.4)

where xG and xG′ are the string representations extracted from the

adjacency matrices A and A′ arranged according to the given permutation

algorithm.

Further Graph Reduction Methods 165

Using the NGCD: G × G → R, any distance-based classification can

be applied to the graphs from G. In this paper we use – for the sake of

simplicity – the k-nearest neighbor classifier.

In order to speed up the distance computation in a k-nearest neighbor

classifier, we propose to use the following heuristic procedure. First, we

divide the training set into bins of graphs based on their number of nodes.

Subsequently, for a given test graph G(t) = (V (t), E(t)) with |V (t)| nodes,
we first retrieve training graphs from Gtr that have the same number of

nodes as the test graph G(t). Then, while the maximum number of graphs

ϵ · |Gtr| is not yet selected (with ϵ ∈ [0, 1] being a user-defined parameter),

we add the training graphs to our selection Gsel that have |V (t)| ± i nodes

with i = 1, 2, In Alg. 5 this idea is formalized.

After obtaining the training set corresponding to graph G(t), the NGCD

is computed between graph G(t) and any graph in Gsel.

Algorithm 5: Heuristic Selection of Training Graphs

Input: Parameter ϵ, training graphs Gtr, and test graph

G(t) = (V (t), E(t))

Output: Selection of training graphs Gsel for G
(t)

1 i = 0

2 Gsel = {}
3 while |Gsel| < ϵ · |Gtr| do
4 Gsel = Gsel ∪ {G ∈ Gtr with |V (t)| ± i nodes }
5 i+ = 1

6.3.3 Empirical Evaluation

6.3.3.1 Experimental Setup

We empirically evaluate our novel graph matching approach on eleven real-

world datasets from the TUDataset graph repository [128]. Details on the

number of graphs, classes, as well as the average numbers of nodes and

edges per graph are presented in Table 6.7 for each dataset. Eight datasets

(BZR, BZR-MD, COX2, COX2-MD, DHFR, DHFR-MD, MUTAG, and

NCI1) consists of graphs representing molecules stemming from two classes

(based on their potential effects or activities). Two datasets, namely EN-

ZYMES and OHSU, are from the bioinformatics domain and contain graphs

166 Pattern Recognition on Reduced Graphs

Table 6.5: Properties of the graph datasets. We show the number of graphs

(|G|), the number of classes (|Ω|) and the average number of nodes and edges

per graph (∅|V |, ∅|E|).

Graph Dataset Property

|G| |Ω| ∅|V | ∅|E|

BZR 405 2 35.8 38.4

BZR-MD 306 2 21.3 225.1

COX2 467 2 41.2 43.4

COX2-MD 303 2 26.3 335.1

DHFR 756 2 42.4 44.5

DHFR-MD 393 2 23.9 283.0

D
a
ta

se
t

ENZYMES 600 6 32.6 62.1

IMDB-BINARY 1,000 2 19.8 96.5

MUTAG 188 2 17.9 19.8

NCI1 4,110 2 29.9 32.3

OHSU 79 2 82.0 199.7

that represent proteins and segmented brain scans, respectively. The re-

maining dataset, IMDB-BINARY, includes graphs representing social me-

dia networks from two classes.

In our evaluation, we use a 10-fold cross-validation scheme and report

the balanced classification accuracy achieved on a test set. In particular,

the training and optimization of the NGCD hyperparameters are performed

in a 3-fold inner loop exclusively on the training and validation sets.

The selection of the node permutation (among the node permutation

algorithms presented above) is treated as a free parameter and is thus also

optimized. In our experiments, if two or more node permutation meth-

ods achieve the best classification accuracy, the method with the shorter

runtime is selected. Additionally, we optimize the heuristic parameter

ϵ ∈ {0.1, 0.3, 0.5} which represents the percentage of remaining graphs in

the selected training set (see Alg. 5) and the number of nearest neighbors

k ∈ {1, 3, 5} for k-NN classification.

For the computation of the NGCD we use the python module gzip as

compression function C(·) 3. The gzip algorithm uses the dictionary-based

compression algorithm called LZ77 [192]. This compression algorithm re-

3Note that any other compression algorithm can be used.

Further Graph Reduction Methods 167

Table 6.6: Properties of the graph datasets. We show the number of graphs

(|G|), the number of classes (|Ω|) and the average number of nodes and edges

per graph (∅|V |, ∅|E|).

Graph Dataset Property

|G| |Ω| ∅|V | ∅|E|

AIDS 2,000 2 9.5 10.0

BZR 405 2 35.8 38.4

BZR-MD 306 2 21.3 225.1

COX2 467 2 41.2 43.4

COX2-MD 303 2 26.3 335.1

DD 1,178 2 284.3 715.6

DHFR 756 2 42.4 44.5

DHFR-MD 393 2 23.9 283.0

D
a
ta

se
t

ENZYMES 600 6 32.6 62.1

MUTAG 188 2 17.9 19.8

MUTAGENICITY 4,337 2 30.3 30.8

NCI1 4,110 2 29.9 32.3

NCI109 4,127 2 29.7 32.1

OHSU 79 2 82.0 199.7

PROTEINS 1,113 2 39.1 72.8

places repeated patterns in a string with references to their entries in a

dictionary. The output of the LZ77 algorithm is further compressed using

Huffman coding [193]. This particular compression function allows us to

control the compression rate, denoted by r from now on. Lower values of

r means faster but lower compressions, while larger values of r indicate

slower but higher compressions.

6.3.3.2 Impact of the Compression Rate

We start our analysis with a study on the impact of the compression rate

r on the classification accuracy of a k-NN operating on NGCD values. In

Fig. 6.5, we plot the classification accuracy across all datasets and for four

compression rates, viz. r ∈ {1, 3, 6, 9} (remember that lower compression

rates correspond to faster but less effective compression, while higher rates

leads to stronger but slower compressions). To highlight the general trend,

168 Pattern Recognition on Reduced Graphs

Table 6.7: Properties of the graph datasets. We show the number of graphs

(|G|), the number of classes (|Ω|) and the average number of nodes and edges

per graph (∅|V |, ∅|E|).

Graph Dataset Property

|G| |Ω| ∅|V | ∅|E|

IMDB-BINARY 1,000 2 19.8 96.5

COLLAB 5,000 3 74.5 2,457.8

REDDIT-MULTI-5K 4,999 5 508.5 594.9

D
a
ta

se
t

REDDIT-MULTI-12K 11,929 11 391.4 456.9

we additionally fit a regression line on the accuracies for each dataset.

65.0

70.0

75.0

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

BZR

65.0

70.0

75.0

80.0
BZR-MD

56.0

58.0

60.0

62.0

64.0

COX2

62.0

64.0

66.0

68.0

70.0

COX2-MD

70.0

75.0

80.0

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

DHFR

65.0

70.0

75.0

DHFR-MD

40.0

60.0

80.0

100.0

ENZYMES

1 3 6 9

Compression Rate

57.5

60.0

62.5

65.0

67.5

70.0
IMDB-BINARY

1 3 6 9

Compression Rate

65.0

70.0

75.0

80.0

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

MUTAG

1 3 6 9

Compression Rate

50.0

60.0

70.0

NCI1

1 3 6 9

Compression Rate

50.0

55.0

60.0

OHSU

Classification Accuracy per Compression Rate

Fig. 6.5: Classification accuracies on the validation sets for each compres-

sion rate r ∈ {1, 3, 6, 9}.

There are three out of twelve datasets (viz. COX2, COX2-MD, and MU-

TAG) where the classification tends not to improve as the compression rate

increases. That is, on these datasets, the regression line tends to decrease

(or remains stable) with higher compression rates. In general, however,

we observe that the classification accuracy tends to increase with higher

compression rates (which makes sense as greater compression rates better

Further Graph Reduction Methods 169

approximate the theoretical AID induced by the Kolmogorov complexity).

For the BZR-MD and DHFR datasets, for instance, we observe improve-

ments of about five percent points when the compression rate r is increased

from 1 to 9.

0

1

2

3

R
un

ti
m

e
[s

]

BZR

0.00

0.05

0.10

0.15

0.20

BZR-MD

0

1

2

3

4

COX2

0.00

0.05

0.10

0.15

0.20

COX2-MD

0.0

2.5

5.0

7.5

10.0

12.5

R
un

ti
m

e
[s

]

DHFR

0.0

0.1

0.2

0.3

DHFR-MD

0

1

2

3

4

ENZYMES

1 3 6 9 h

Compression Rate

0

1

2

3

4

IMDB-BINARY

1 3 6 9 h

Compression Rate

0.00

0.02

0.04

0.06

0.08

0.10

R
un

ti
m

e
[s

]

MUTAG

1 3 6 9 h

Compression Rate

0

50

100

150

200

NCI1

1 3 6 9 h

Compression Rate

0.0

0.2

0.4

0.6

0.8

1.0

OHSU

Runtime per Compression Rate

Fig. 6.6: Classification runtime across all datasets with different compres-

sion rates r ∈ {1, 3, 6, 9}. We also show the runtime with r = 9 in conjunc-

tion with our heuristic selection of training graphs (denoted by h in the

figure).

However, the major drawback of larger compression rates r is the sub-

sequent increase of the runtime (due to more complex computations). In

Fig. 6.6, we plot the runtime of the graph classification framework for the

four compression rates r ∈ {1, 3, 6, 9}. Additionally, we show the runtime

of the framework that employs the proposed heuristic where the training

set Gtr is reduced according to Alg. 5 (with a compression rate of r = 9)4.

We observe a consistent pattern where the runtimes steadily increase with

higher compression rates. For some datasets (such as BZR or COX2), we

observe that the runtime for r ∈ {1, 3, 6} remains relatively constant but

increases sharply when the compression rate becomes r = 9. This behavior

can be attributed to the relatively low edge density in these datasets, which

4In this analysis, the runtime for the node permutation is not taken into account, i.e.,
only the runtime for the classification is reported.

170 Pattern Recognition on Reduced Graphs

facilitate compression at lower compression rates.

We clearly observe the positive impact on the runtime when the pro-

posed training set selection heuristic is applied 5. That is, despite using a

compression rate of r = 9, the runtime is significantly improved. In seven

out of eleven datasets, the runtime is even lower than the runtime obtained

with a compression rate of r = 1.

On the basis of these observations, we decide to use a compression rate of

r = 9 across all datasets for the remaining parts of the present evaluations.

6.3.3.3 Impact of the Node Permutation

The objective of this subsection is to analyze the effects of different node

permutations in our framework. To this end, we first compare the clas-

sification accuracy achieved with deterministic node permutations against

random node permutations.

In Fig. 6.7, we show the classification accuracies obtained by our graph

matching framework on the test sets with both random and deterministic

node permutations. Across all datasets, we observe that results obtained

with random node permutation show lower classification accuracies com-

pared to their counterparts using deterministic node permutation. This

highlights the crucial role of the node permutation step within our graph

matching framework.

In Table 6.8, we present the runtimes in seconds of the five node per-

mutation methods per dataset. Cuthill-Mckee is the fastest permutation

method on all data sets (followed by Label Propagation and Louvain). The

two methods Girvan Newman and SCD are in part drastically slower.

The runtime of the node permutation method that achieves the best

classification accuracy (on the validation set) is highlighted for each dataset

(e.g., the SCD node permutation method achieves the best classification

accuracy for the COX2 dataset). When two or more node permutation

methods achieve the best classification accuracy, two or more runtimes are

highlighted per dataset.

We also calculate rank 1 to 5 for each node permutation method and

each data set according to the classification accuracy and report the average

rank in the bottom row of Table 6.8. We observe that both Girvan New-

man and SCD achieve the lowest ranks, which suggests that these two node

permutation methods produce the most meaningful orderings of the adja-

5Here, the runtime is reported with parameter ϵ being optimized to yield the best
classification accuracy on the validation set.

Further Graph Reduction Methods 171
B

Z
R

B
Z

R
-M

D

C
O

X
2

C
O

X
2-

M
D

D
H

F
R

D
H

F
R

-M
D

E
N

Z
Y

M
E

S

IM
D

B
-B

IN
A

R
Y

M
U

T
A

G

N
C

I1

O
H

S
U

Datasets

0

10

20

30

40

50

60

70

80

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

[%
]

Classification Accuracy - Random VS Deterministic

Random

Deterministic

Fig. 6.7: Classification accuracy [%] obtained with random or deterministic

node permutation across all datasets.

cency matrices. However, in our evaluations, we observe that Cuthill-Mckee

performs poorly on the three specific MD datasets (BZR-MD, COX2-MD,

and DHFR-MD). Actually, if those datasets were not taken into account

in the ranking, Cuthill-Mckee would have the lowest average rank. In fact,

we also find that this method is the only method to achieve the best result

on three datasets (while Louvain is the only winner on two datasets and

Girvan Newman, Label Propagation and SCD are the only winners on one

of the datasets).

6.3.3.4 NGCD vs. GED

In the last comparison, we evaluate the novel graph matching approach

using NGCD in a classification scenario and compare the results with the

standard approach of GED. For the computation of GED, we use an opti-

mized version of the BP-GED algorithm with cubic time complexity [11]. In

Table 6.9, we present the classification accuracies of a k-NN classifier on all

datasets obtained with NGCD and GED. We observe that our novel method

outperforms the GED baseline in seven out of eleven cases. For instance,

our approach outperforms the reference system on BZR-MD, COX2-MD,

and DHFR-MD, by about 5 to 10 percent points. On the OHSU dataset,

which is known to be a very challenging datasets [46], GED yields results

172 Pattern Recognition on Reduced Graphs

Table 6.8: Runtime in seconds [s] of the node permutation methods per

dataset. The method(s) that achieve(s) the best classification result on

the validation set is highlighted. The last row represents the average rank

obtained on the validation set.

Node Permutation Method

C
u
th

il
l-
M

ck
e
e

G
ir
v
a
n

N
e
w
m
a
n

L
a
b
e
l
P
ro

p
a
g
a
ti
o
n

L
o
u
v
a
in

S
C
D

BZR 0.25 6.09 0.36 0.66 7.87

BZR-MD 0.18 1.47 0.31 0.57 11.07

COX2 0.29 7.84 0.44 0.87 10.60

COX2-MD 0.19 2.21 0.37 0.71 15.92

DHFR 0.47 14.42 0.73 1.34 17.11

DHFR-MD 0.23 2.35 0.40 0.80 16.97

ENZYMES 0.35 20.38 0.57 0.96 11.45

D
a
ta

se
t

IMDB-BINARY 0.55 45.08 0.72 1.27 18.83

MUTAG 0.11 0.83 0.13 0.21 1.93

NCI1 2.48 44.90 3.38 5.98 63.67

OHSU 0.07 83.88 0.21 0.29 4.47

Average Rank 2.9 2.7 3.3 3.4 2.7

slightly better than random decision. Our approach, however, achieves a

notable increase of 15 percentage points (suggesting the efficacy of NGCD

on this dataset).

We also compare the computation time of NGCD and GED. We report

the total time for computing the complete distance matrix for all available

graphs in seconds and the time per graph matching in milliseconds for both

NGCD (including node permutation computation) and GED in Table 6.10.

We observe that the novel dissimilarity measure NGCD consistently

shows faster computation times than GED. Specifically, the runtime is

about four times faster for datasets such as BZR or OSHU, while it is up to

about 12 to 14 times faster for datasets like DHFR-MD or IMDB-Binary.

Further Graph Reduction Methods 173

Table 6.9: Mean classification accuracy [%] achieved using NGCD and

GED. The best result, for each dataset, is highlighted in blue.

NGCD GED

BZR 70.28± 2.43 74.17± 1.44

BZR-MD 69.12± 2.11 64.62± 1.72

COX2 62.21± 2.17 60.46± 0.59

COX2-MD 64.67± 2.01 57.55± 0.86

DHFR 76.80± 1.21 77.18± 0.72

DHFR-MD 69.26± 2.15 55.49± 1.47

D
a
ta

se
t

ENZYMES 48.00± 1.62 46.21± 1.20

IMDB-BINARY 64.80± 1.04 69.59± 1.01

MUTAG 85.25± 1.48 84.76± 1.66

NCI1 69.22± 1.16 75.13± 0.51

OHSU 65.08± 3.49 51.55± 4.96

Table 6.10: Runtime time in seconds [s] of the NGCD and GED for compar-

ing all graphs of the dataset with each other and the time per comparison

in miliseconds [ms].

NGCD GED
Speed-up

FactorTotal [s] Time / Comp. [ms] Total Time / Comp. [ms]

BZR 44.13 0.54 172.47 2.10 4

BZR-MD 3.67 0.08 44.57 0.95 12

COX2 71.86 0.66 288.69 2.65 4

COX2-MD 4.77 0.10 61.96 1.35 12

DHFR 195.85 0.69 807.38 2.85 4

DHFR-MD 6.26 0.08 88.31 1.14 14

D
a
ta

se
t

ENZYMES 37.80 0.21 338.25 1.88 9

IMDB-BINARY 35.10 0.07 428.67 0.86 12

MUTAG 1.51 0.09 12.15 0.69 6

NCI1 2367.88 0.28 14,000.87 1.66 6

OHSU 9.29 2.98 32.52 10.42 3

6.4 Conclusion

In this chapter, we propose two novel methods for graph-based pattern

recognition to achieve two distinct objectives in two parts.

In the first part of the chapter, we introduce a novel framework that uses

recent GNN layers and adopt them for the specific task of graph reduction.

Eventually, we classify the learned graph reductions with well-known pat-

174 Pattern Recognition on Reduced Graphs

tern recognition techniques based on GED. To the best of our knowledge,

such an architecture has not been proposed before.

By means of an experimental evaluation on diverse datasets we empir-

ically confirm that our graph reduction process is useful for downstream

graph classification tasks. That is, we show that our framework main-

tains satisfactory classification accuracy when deleting 25%, and on some

datasets even 50%, of the nodes. Simultaneously, we show that the run-

time can – as expected – be substantially reduced by means of our novel

reduction method. The conducted experiments also clearly reveal that the

novel approach for graph reduction performs significantly better than ran-

domized graph reductions. Last but not least, we observe that combining

graph matching with our specific GNN for graph reduction achieves better

results than an isolated GNN model (that employs the same architecture

as we use for reduction).

In the second part of the present chapter, we propose a novel framework

for graph matching, termed NGCD, that is based on a lossless compression

algorithm. Roughly speaking, the proposed method works in two separate

steps. In the first step, we apply a node permutation algorithm to fix the

node ordering of the graphs. Second, we compute the normalized compres-

sion distance (NCD) on the adjacency matrices of the graphs and perform

graph classification using the NCD as a distance metric.

We validate the benefits of our novel method with a thorough evaluation

on eleven datasets. For instance, we research the impact of the compres-

sion rate on the classification accuracy and observe that the classification

rate generally increases when the compression rate is increased. We also

evaluate a novel heuristic to reduce the set of training graphs which in turn

speeds up the complete classification framework. Furthermore, we com-

pare the proposed framework with a standard graph matching framework,

viz. GED. Overall, we demonstrate that NGCD outperforms the reference

system GED on seven out of eleven datasets. Additionally, the runtime

is consistently lower when using NGCD instead of GED for graph match-

ing. Last but not least, our framework performs quite well in domains

where standard models struggle, as evidenced by its performance on the

challenging OHSU dataset.

Conclusion and Future
Work 7

La densité de l’Histoire ne détermine aucun de
mes actes. Je suis mon propre fondement. Et
c’est en dépassant la donnée historique,
instrumentale, que j’introduis le cycle de ma
liberté.

Peau noire, masques blancs (1952),
Frantz Fanon

A Graph is a data structure that consists of a set of nodes which are in

turn potentially connected by edges. In contrast to other data representa-

tions (e.g., feature vectors), graphs have an inherent structure encoded in

their representation. Due to this unique property, graphs can be used in

many fields to represent complex systems such as molecules or social media

networks. Structural pattern recognition is the field of research that de-

velops and investigates algorithms that take graph data structures as their

input.

Over the years, many structural pattern recognition algorithms have

been developed and researched. These algorithms can broadly be cate-

gorized into three groups, namely, graph matching algorithms that find

similar parts between graphs, graph kernels that implicitly embed graphs

into a Hilbert space, and graph neural networks that compute a explicit

embedding of the graphs. These methods are commonly used for graph

classification or graph clustering.

A major challenge for any graph-based pattern recognition algorithm is,

in general, the high computation cost, which hinders their application on

large-scale problems or in real-time processing tasks. A common approach

to address this issue is to use faster approximation algorithms for graph

processing (e.g., approximate graph matching algorithms). While these al-

175

176 Pattern Recognition on Reduced Graphs

gorithms reduce accuracy to some extent, they can significantly improve the

computation time and in some cases achieve polynomial-time complexity

(rather than exponential-time complexity).

Another idea to counteract the high computational cost of graph match-

ing, is offered by graph reduction methods. These methods pursue the

strategy of data approximation instead of algorithm approximation. Graph

reduction algorithms aim to reduce the size of the input graph while pre-

serving its essential properties. However, determining the properties which

are actually essential and should thus be preserved during the reduction

process is not straightforward and often context-dependant. This means

that the effectiveness of a reduction method depends on the problem to be

solved and therefore it might not be possible to define a generic method for

graph reduction.

The main objective of the present thesis is to thoroughly research graph

reduction in the context of graph matching. In particular, the goal is to

develop graph reduction algorithms that generate reduced graphs which

are able to maintain the classification accuracy as high as possible when

used in combination with different graph classification algorithms. The

present thesis introduces and researches the following four graph reduction

approaches.

• In a first approach (presented in Chapter 4), two centrality mea-

sures are used to rank the nodes of a graph from the least to the

most important. Based on these centrality scores, the least impor-

tant nodes are iteratively discarded, resulting in differently reduced

graphs. We evaluate the performance of those reduced graphs in

a graph classification task on multiple datasets. The results show

that the use of centrality reduced graphs can maintain satisfactory

classification accuracies in general and simultaneously reduce the

computation time.

We extend the use of those centrality reduced graphs in two novel

frameworks with the goal to improve the classification accuracy. In

the first case, we propose a two-step graph classification framework

that first selects graphs in the reduced graph space and then, if

the performance is not convincing enough, classifies them in the

original graph space. In the second case, the centrality reduced

graphs obtained at each reduction level are combined in a multiple

classifier system which is weighted according to the importance of

each level. Both systems are convincing in terms of the resulting

Conclusion and Future Work 177

classification accuracy (even if an increase in computation time

must generally be accepted).

• In a second approach (presented in Chapter 5), spectral graph clus-

tering is used to find communities in the graphs. The found clus-

ters are then aggregated into supernodes to reduce the size of the

graph. The classification experiments conducted show that even

strongly reduced graphs maintain satisfactory classification accu-

racies across the four graph classification algorithms tested. More-

over, the computation time can be accelerated up to two orders of

magnitude on datasets with large graphs. In a detailed study of

the dissimilarities, we observe that the dissimilarity shrinks as the

reduction level is reduced, yet, the distances on the reduced graphs

remain coherent with the original distances.

• In a third approach (presented in the first part of Chapter 6), we

propose to use a modified graph neural network to directly learn

the importance of a node from the data. Through several exper-

imental evaluations, we show that this approach maintains satis-

factory classification accuracies while significantly speeding up the

computation time (compared to processing on the original graphs).

• The fourth approach (presented in the second part of Chapter 6)

is based on a compression-based distance measure. This method

involves the computation of a deterministic node ordering and then

computing the normalized compression distance (NCD) on the re-

sulting adjacency matrices. Evaluations of the proposed framework

show that it outperforms standard graph matching algorithms both

in terms of classification accuracy and computation time.

Although we have thoroughly researched the four different graph reduc-

tion methods in the present thesis, we see at least three different future

research activities that could be rewarding.

• A first line of research might concern the method presented in

Chapter 5, where the process of aggregating nodes of one cluster

into supernodes consists of summing up the node features. As a

first direction for future research, more advanced methods for merg-

ing nodes into supernodes could be explored. Specialized graph

neural networks may be used in this process, for instance, with the

goal of identifying optimal feature vectors for the super-nodes.

• A second line of research could involve the use of graph neural

178 Pattern Recognition on Reduced Graphs

network architectures to learn graph coarsening. This approach

would aim to optimize coarsening specifically to generate reduced

graphs that perform particularly well for the graph classifier being

used. To this end, the classification of the reduced graphs obtained

with the subsequent graph classifier must be incorporated into the

loss function used to train the coarsening graph neural networks,

thus creating an end-to-end pipeline.

• A third line of research could involve the development of a function

that assess how well the dissimilarity in the reduced graph space

evolves compared to the original graph space. An idea could be to

compute the topological persistence diagrams of both the original

and reduced graph space and then perform a comparison on these

persistence diagrams.

Appendix A

Appendix Chapter 3

A.1 T-SNE Visualization of Labeled Datasets

AIDS BZR BZR-MD COX2

COX2-MD DD DHFR DHFR-MD

ENZYMES ER-MD KKI MSRC-21

MSRC-9 MUTAG Mutagenicity NCI1

NCI109 OHSU PROTEINS PTC-FM

PTC-FR PTC-MM PTC-MR Peking-1

T-SNE Visualization - Labeled Datasets

Fig. A.1: Visualization of the T-SNE embedding of labeled datasets

179

180 Pattern Recognition on Reduced Graphs

Appendix B

Appendix Chapter 4

B.1 Visualization of Reduced Graphs by Means of Central-

ity Measures

Fig. B.1: Reduced graph from Mutagenicity

181

182 Pattern Recognition on Reduced Graphs

Fig. B.2: Reduced graph from NCI1

Fig. B.3: Reduced graph from Proteins

Appendix Chapter 4 183

Fig. B.4: Reduced graph from Enzymes

Fig. B.5: Reduced graph from IMDB-BINARY

184 Pattern Recognition on Reduced Graphs

B.2 Visualization of the Pairwise GED between the Origi-

nal Graphs and their Reduced Counterpart

Fig. B.6: Pairwise distances between graphs in the original graph space and

their resulting counterpart in the reduced graph domain using Betweenness

on all datasets.

Appendix C

Appendix Chapter 5

C.1 Visualization of the Pairwise GED between the Origi-

nal Graphs and their Reduced Counterpart

(a) Pairwise distances DHFR

(b) Pairwise distances ENZYMES

(c) Pairwise distances Mutagenicity

185

186 Pattern Recognition on Reduced Graphs

(d) Pairwise distances NCI1

(e) Pairwise distances COLLAB

(f) Pairwise distances REDDIT-MULTI-5K

(g) Pairwise distances REDDIT-MULTI-12K

Fig. C.1: Comparison of pairwise similarities/dissimilarities between graphs

in the original and the reduced graph domains for both DHFR, ENZYMES,

Mutagenicity, NCI1, COLLAB, REDDIT-5K, REDDIT-12K and NCI109

datasets using Graph Edit Distance (GED).

Appendix Chapter 5 187

C.2 Visualization of the Pairwise SP between the Original

Graphs and their Reduced Counterpart

(a) Pairwise similarities DHFR

(b) Pairwise similarities ENZYMES

(c) Pairwise similarities Mutagenicity

188 Pattern Recognition on Reduced Graphs

(d) Pairwise similarities NCI1

(e) Pairwise similarities COLLAB

(f) Pairwise similarities REDDIT-MULTI-5K

(g) Pairwise similarities REDDIT-MULTI-12K

Fig. C.2: Comparison of pairwise similarities/dissimilarities between graphs

in the original and the reduced graph domains for both DHFR, ENZYMES,

Mutagenicity, NCI1, COLLAB, REDDIT-5K, REDDIT-12K and NCI109

datasets using the ShortestPath graph kernel (SP)

Appendix Chapter 5 189

C.3 Visualization of the Pairwise WL between the Original

Graphs and their Reduced Counterpart

(a) Pairwise similarities DHFR

(b) Pairwise similarities ENZYMES

(c) Pairwise similarities Mutagenicity

190 Pattern Recognition on Reduced Graphs

(d) Pairwise similarities NCI1

(e) Pairwise similarities COLLAB

(f) Pairwise similarities REDDIT-MULTI-5K

(g) Pairwise similarities REDDIT-MULTI-12K

Fig. C.3: Comparison of pairwise similarities/dissimilarities between graphs

in the original and the reduced graph domains for both DHFR, ENZYMES,

Mutagenicity, NCI1, COLLAB, REDDIT-5K, REDDIT-12K and NCI109

datasets using the 4-Weisfeiler-Lehman graph kernel (WL).

Appendix D

Appendix Chapter 6

D.1 Analysis of the Connected Components of Graphs Re-

duced with GReNN

500

600

0 1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

Num Connected Components per Graph

N
um

G
ra

ph
s

ENZYMES - Analysis Connected Components

Original graphs
Graphs reduced w/ GReNN-50
Graphs reduced w/ GReNN-25

Fig. D.1: Histogram that shows the number of graphs (on the y-axis) that

have a given number of connected components per graph (on the x-axis)

on the ENZYMES dataset.

191

192 Pattern Recognition on Reduced Graphs

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11
0

500

1000

Num Connected Components per Graph

N
um

G
ra

ph
s

MUTAGENICITY - Analysis Connected Components

Original graphs
Graphs reduced w/ GReNN-50
Graphs reduced w/ GReNN-25

Fig. D.2: Histogram that shows the number of graphs (on the y-axis) that

have a given number of connected components per graph (on the x-axis)

on the MUTAGENICITY dataset.

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

Num Connected Components per Graph

N
um

G
ra

ph
s

NCI1 - Analysis Connected Components

Original graphs
Graphs reduced w/ GReNN-50
Graphs reduced w/ GReNN-25

Fig. D.3: Histogram that shows the number of graphs (on the y-axis) that

have a given number of connected components per graph (on the x-axis)

on the NCI1 dataset.

Appendix Chapter 6 193

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

Num Connected Components per Graph

N
um

G
ra

ph
s

PROTEINS - Analysis Connected Components

Original graphs
Graphs reduced w/ GReNN-50
Graphs reduced w/ GReNN-25

Fig. D.4: Histogram that shows the number of graphs (on the y-axis) that

have a given number of connected components per graph (on the x-axis)

on the PROTEINS dataset.

194 Pattern Recognition on Reduced Graphs

D.2 Example of Reduced Graphs using GReNN

(a) Original Graph (b) GReNN-50 (c) GReNN-25

Fig. D.5: Example of an original graph and the corresponding reduced

graphs via GReNN-50 and GReNN-25 for the ENZYMES dataset.

(a) Original Graph (b) GReNN-50 (c) GReNN-25

Fig. D.6: Example of an original graph and the corresponding reduced

graphs via GReNN-50 and GReNN-25 for the MUTAGENCITY dataset.

(a) Original Graph (b) GReNN-50 (c) GReNN-25

Fig. D.7: Example of an original graph and the corresponding reduced

graphs via GReNN-50 and GReNN-25 for the NCI1 dataset.

Appendix Chapter 6 195

(a) Original Graph (b) GReNN-50 (c) GReNN-25

Fig. D.8: Example of an original graph and the corresponding reduced

graphs via GReNN-50 and GReNN-25 for the PROTEINS dataset.

196 Pattern Recognition on Reduced Graphs

Bibliography

[1] Joel Serey, Miguel D. Alfaro, Guillermo Fuertes, Manuel Vargas, Clau-
dia A. Durán, Rodrigo Ternero, Ricardo Rivera, and Jorge Sabattin. Pat-
tern Recognition and Deep Learning Technologies, Enablers of Industry
4.0, and Their Role in Engineering Research. Symmetry, 15(2):535, 2023.

[2] John S. Mattick, Marie A. Dziadek, Bronwyn N. Terrill, Warren Kaplan,
Allan D. Spigelman, Frank G. Bowling, and Marcel E. Dinger. The im-
pact of genomics on the future of medicine and health. Medical Journal of
Australia, 201(1), July 2014.

[3] Gilbert Brunet, David B. Parsons, Dimitar Ivanov, Boram Lee, Peter
Bauer, Natacha B. Bernier, Veronique Bouchet, Andy Brown, Antonio
Busalacchi, Georgina Campbell Flatter, Rei Goffer, Paul Davies, Beth
Ebert, Karl Gutbrod, Songyou Hong, P. K. Kenabatho, Hans-Joachim
Koppert, David Lesolle, Amanda H. Lynch, Jean-François Mahfouf, Laban
Ogallo, Tim Palmer, Kevin Petty, Dennis Schulze, Theodore G. Shepherd,
Thomas F. Stocker, Alan Thorpe, and Rucong Yu. Advancing Weather and
Climate Forecasting for Our Changing World. Bulletin of the American
Meteorological Society, 104(4):E909–E927, May 2023. Publisher: American
Meteorological Society Section: Bulletin of the American Meteorological
Society.

[4] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty
Years Of Graph Matching In Pattern Recognition. IJPRAI, 18:265–298,
May 2004.

[5] Pasquale Foggia, Gennaro Percannella, and Mario Vento. Graph Matching
and Learning in Pattern Recognition in the Last 10 Years. Int. J. Pattern
Recognit. Artif. Intell., 28(1), 2014.

[6] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey
on graph kernels. Appl. Netw. Sci., 5(1):6, 2020.

[7] Karsten M. Borgwardt, M. Elisabetta Ghisu, Felipe Llinares-López, Leslie
O’Bray, and Bastian Rieck. Graph Kernels: State-of-the-Art and Future
Challenges. Found. Trends Mach. Learn., 13(5-6), 2020.

[8] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The Graph Neural Network Model. IEEE Transac-

197

198 Pattern Recognition on Reduced Graphs

tions on Neural Networks, 20(1):61–80, January 2009. Conference Name:
IEEE Transactions on Neural Networks.

[9] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S. Yu. A Comprehensive Survey on Graph Neural Networks.
IEEE Trans. Neural Networks Learn. Syst., 32(1):4–24, 2021.

[10] Martin Grohe and Pascal Schweitzer. The graph isomorphism problem.
Commun. ACM, 63(11):128–134, 2020.

[11] Kaspar Riesen and Horst Bunke. Approximate graph edit distance com-
putation by means of bipartite graph matching. Image Vis. Comput.,
27(7):950–959, 2009.

[12] T. Caelli and S. Kosinov. An eigenspace projection clustering method for
inexact graph matching. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(4):515–519, April 2004. Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[13] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neu-
ral networks: A review of methods and applications. AI Open, 1:57–81,
2020.

[14] Francisco Escolano, Boyan Bonev, and Miguel A. Lozano. Information-
Geometric Graph Indexing from Bags of Partial Node Coverages. In Xiaoyi
Jiang, Miquel Ferrer, and Andrea Torsello, editors, Graph-Based Represen-
tations in Pattern Recognition, Lecture Notes in Computer Science, pages
52–61, Berlin, Heidelberg, 2011. Springer.

[15] Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and
Sébastien Adam. New binary linear programming formulation to compute
the graph edit distance. Pattern Recognit., 72:254–265, 2017.

[16] Mikhail Zaslavskiy, Francis R. Bach, and Jean-Philippe Vert. Many-to-
Many Graph Matching: A Continuous Relaxation Approach. In José L.
Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors,
Machine Learning and Knowledge Discovery in Databases, European Con-
ference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010,
Proceedings, Part III, volume 6323 of Lecture Notes in Computer Science,
pages 515–530. Springer, 2010.

[17] Vince Lyzinski, Donniell E. Fishkind, Marcelo Fiori, Joshua T. Vogelstein,
Carey E. Priebe, and Guillermo Sapiro. Graph Matching: Relax at Your
Own Risk. IEEE Trans. Pattern Anal. Mach. Intell., 38(1):60–73, 2016.

[18] Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On Graph Kernels:
Hardness Results and Efficient Alternatives. In Bernhard Schölkopf and
Manfred K. Warmuth, editors, Computational Learning Theory and Kernel
Machines, 16th Annual Conference on Computational Learning Theory and
7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August
24-27, 2003, Proceedings, volume 2777 of LNCS, pages 129–143. Springer,
2003.

[19] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-Path Kernels on
Graphs. In Proceedings of the 5th IEEE International Conference on Data
Mining (ICDM 2005), 27-30 November 2005, Houston, Texas, USA, pages

Bibliography 199

74–81. IEEE Computer Society, 2005.
[20] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt

Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-Lehman Graph Kernels.
J. Mach. Learn. Res., 12:2539–2561, 2011.

[21] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. CoRR, abs/1609.02907, 2016. arXiv:
1609.02907.

[22] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks. CoRR,
abs/1710.10903, 2017. arXiv: 1710.10903.

[23] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated Graph Recur-
rent Neural Networks. IEEE Trans. Signal Process., 68:6303–6318, 2020.

[24] Paul Maergner, Vinaychandran Pondenkandath, Michele Alberti, Marcus
Liwicki, Kaspar Riesen, Rolf Ingold, and Andreas Fischer. Combining graph
edit distance and triplet networks for offline signature verification. Pattern
Recognit. Lett., 125:527–533, 2019.

[25] Weidong Xie, Wei Li, Shoujia Zhang, Linjie Wang, Jinzhu Yang, and Dazhe
Zhao. A novel biomarker selection method combining graph neural net-
work and gene relationships applied to microarray data. BMC Bioinform.,
23(1):303, 2022.

[26] Maryam Khalid and Akane Sano. Exploiting social graph networks for emo-
tion prediction. Scientific Reports, 13(1):6069, 2023.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA,
1990.

[28] Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen, and
Horst Bunke. Approximation of graph edit distance based on Hausdorff
matching. Pattern Recognit., 48(2):331–343, 2015.

[29] S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph.
Fast Computation of Graph Kernels. In Bernhard Schölkopf, John C. Platt,
and Thomas Hofmann, editors, Advances in Neural Information Processing
Systems 19, Proceedings of the Twentieth Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006, pages 1449–1456. MIT Press, 2006.

[30] U. Kang, Hanghang Tong, and Jimeng Sun. Fast Random Walk Graph
Kernel. In Proceedings of the Twelfth SIAM International Conference on
Data Mining, Anaheim, California, USA, April 26-28, 2012, pages 828–
838. SIAM / Omnipress, 2012.

[31] Xiaoyang Chen, Hongwei Huo, Jun Huan, and Jeffrey Scott Vitter. Fast
Computation of Graph Edit Distance. CoRR, abs/1709.10305, 2017. arXiv:
1709.10305.

[32] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph Sum-
marization Methods and Applications: A Survey. ACM Comput. Surv.,
51(3):62:1–62:34, 2018.

[33] Jie Chen, Yousef Saad, and Zechen Zhang. Graph coarsening: From scien-
tific computing to machine learning. CoRR, abs/2106.11863, 2021. arXiv:

200 Pattern Recognition on Reduced Graphs

2106.11863.
[34] Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B. Aditya

Prakash, and Wei Jin. A Comprehensive Survey on Graph Reduction: Spar-
sification, Coarsening, and Condensation. CoRR, abs/2402.03358, 2024.
arXiv: 2402.03358.

[35] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra Modha, and
Christos Faloutsos. Fully Automatic Cross-Associations. KDD-2004 - Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, August 2004.

[36] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. Compression Picks
Item Sets That Matter. In Johannes Fürnkranz, Tobias Scheffer, and Myra
Spiliopoulou, editors, Knowledge Discovery in Databases: PKDD 2006,
10th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases, Berlin, Germany, September 18-22, 2006, Proceed-
ings, volume 4213 of Lecture Notes in Computer Science, pages 585–592.
Springer, 2006.

[37] Cody Dunne and Ben Shneiderman. Motif simplification: improving net-
work visualization readability with fan, connector, and clique glyphs. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 3247–3256, New York, NY, USA, April 2013. As-
sociation for Computing Machinery.

[38] Florian Dörfler and Francesco Bullo. Kron Reduction of Graphs With Ap-
plications to Electrical Networks. IEEE Trans. Circuits Syst. I Regul. Pap.,
60-I(1):150–163, 2013.

[39] Luc Brun, Pasquale Foggia, and Mario Vento. Trends in graph-based repre-
sentations for Pattern Recognition. Pattern Recognit. Lett., 134:3–9, 2020.

[40] Seyedeh Fatemeh Mousavi, Mehran Safayani, Abdolreza Mirzaei, and Hoda
Bahonar. Hierarchical graph embedding in vector space by graph pyramid.
Pattern Recognit., 61:245–254, 2017.

[41] Anjan Dutta. Hierarchical stochastic graphlet embedding for graph-based
pattern recognition. Neural Computing and Applications, page 18, 2020.

[42] Anthony Gillioz and Kaspar Riesen. Speeding up Graph Matching by
Means of Systematic Graph Reductions Using Centrality Measures. In 2022
12th International Conference on Pattern Recognition Systems (ICPRS),
pages 1–7, 2022.

[43] Anthony Gillioz and Kaspar Riesen. Two-Step Graph Classification on
the Basis of Hierarchical Graphs. In Maria De Marsico, Gabriella San-
niti di Baja, and Ana L. N. Fred, editors, Proceedings of the 12th In-
ternational Conference on Pattern Recognition Applications and Methods,
ICPRAM 2023, Lisbon, Portugal, February 22-24, 2023, pages 296–303.
SCITEPRESS, 2023.

[44] Anthony Gillioz and Kaspar Riesen. Improving Graph Classification by
Means of Linear Combinations of Reduced Graphs. In Maria De Marsico,
Gabriella Sanniti di Baja, and Ana L. N. Fred, editors, Proceedings of
the 11th International Conference on Pattern Recognition Applications and
Methods, ICPRAM 2022, Online Streaming, February 3-5, 2022, pages 17–

Bibliography 201

23. SCITEPRESS, 2022.
[45] Anthony Gillioz and Kaspar Riesen. Building Multiple Classifier Systems

Using Linear Combinations of Reduced Graphs. SN Comput. Sci., 4(6):743,
2023.

[46] Anthony Gillioz and Kaspar Riesen. Graph-Based vs. Vector-Based Classi-
fication: A Fair Comparison. In Mario Vento, Pasquale Foggia, Donatello
Conte, and Vincenzo Carletti, editors, Graph-Based Representations in
Pattern Recognition - 13th IAPR-TC-15 International Workshop, GbRPR
2023, Vietri sul Mare, Italy, September 6-8, 2023, Proceedings, volume
14121 of Lecture Notes in Computer Science, pages 25–34. Springer, 2023.

[47] Anthony Gillioz and Kaspar Riesen. Graph Reduction Neural Networks for
Structural Pattern Recognition. In Adam Krzyzak, Ching Y. Suen, Andrea
Torsello, and Nicola Nobile, editors, Structural, Syntactic, and Statistical
Pattern Recognition - Joint IAPR International Workshops, S+SSPR 2022,
Montreal, QC, Canada, August 26-27, 2022, Proceedings, volume 13813 of
Lecture Notes in Computer Science, pages 64–73. Springer, 2022.

[48] Anthony Gillioz and Kaspar Riesen. Graph Classification with NCD. Pat-
tern Recognition Letters, 2024. Currently under review for possible publi-
cation.

[49] Kaspar Riesen. Structural Pattern Recognition with Graph Edit Distance -
Approximation Algorithms and Applications. Advances in Computer Vision
and Pattern Recognition. Springer, 2015.

[50] Arthur B. Yeh. A Modern Introduction to Probability and Statistics. Tech-
nometrics, 49(3):359, 2007.

[51] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive
computation and machine learning series. MIT Press, 2012.

[52] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive computation and machine learning. MIT Press, 2016.

[53] Boyang Liu, Pang-Ning Tan, and Jiayu Zhou. Unsupervised Anomaly De-
tection by Robust Density Estimation. In Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pages 4101–4108. AAAI Press,
2022.

[54] Michel Verleysen and John Aldo Lee. Nonlinear Dimensionality Reduc-
tion for Visualization. In Minho Lee, Akira Hirose, Zeng-Guang Hou, and
Rhee Man Kil, editors, Neural Information Processing - 20th International
Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceed-
ings, Part I, volume 8226 of Lecture Notes in Computer Science, pages
617–622. Springer, 2013.

[55] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data mining: practical
machine learning tools and techniques, 3rd Edition. Morgan Kaufmann,
Elsevier, 2011.

[56] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data Clustering:
A Review. ACM Comput. Surv., 31(3):264–323, 1999.

202 Pattern Recognition on Reduced Graphs

[57] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors,
Proceedings of the Second International Conference on Knowledge Discov-
ery and Data Mining (KDD-96), Portland, Oregon, USA, pages 226–231.
AAAI Press, 1996.

[58] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A Survey on Deep
Semi-Supervised Learning. IEEE Trans. Knowl. Data Eng., 35(9):8934–
8954, 2023.

[59] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. Workshop on challenges in rep-
resentation learning, ICML, 3(2):896, 2013.

[60] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an in-
troduction. Adaptive computation and machine learning. MIT Press, 1998.

[61] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook
Kim. Q-Learning Algorithms: A Comprehensive Classification and Appli-
cations. IEEE Access, 7:133653–133667, 2019.

[62] Dimitri P. Bertsekas. Value and Policy Iteration in Optimal Control and
Adaptive Dynamic Programming. CoRR, abs/1507.01026, 2015. arXiv:
1507.01026.

[63] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. A Brief Survey of Deep Reinforcement Learning. IEEE
Signal Processing Magazine, 34(6):26–38, November 2017.

[64] Girish Chandrashekar and Ferat Sahin. A survey on feature selection meth-
ods. Comput. Electr. Eng., 40(1):16–28, 2014.

[65] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios D. Doulamis, and
Eftychios Protopapadakis. Deep Learning for Computer Vision: A Brief
Review. Comput. Intell. Neurosci., 2018:7068349:1–7068349:13, 2018.

[66] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. On Finding Low-
est Common Ancestors in Trees. SIAM J. Comput., 5(1):115–132, 1976.

[67] Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson.
Graph Neural Networks for Intelligent Transportation Systems: A Survey.
IEEE Trans. Intell. Transp. Syst., 24(8):8846–8885, 2023.

[68] Kaige Yang and Laura Toni. Graph-Based Recommendation System. In
2018 IEEE Global Conference on Signal and Information Processing, Glob-
alSIP 2018, Anaheim, CA, USA, November 26-29, 2018, pages 798–802.
IEEE, 2018.

[69] Olumide Owolabi. An efficient graph approach to matching chemical struc-
tures. J. Chem. Inf. Comput. Sci., 28(4):221–226, 1988.

[70] Ingo Wegener. Complexity theory - exploring the limits of efficient algo-
rithms. Springer, 2005.

[71] Mario Vento. A long trip in the charming world of graphs for Pattern
Recognition. Pattern Recognit., 48(2):291–301, 2015.

[72] Baida Zhang, Yuhua Tang, Junjie Wu, and Shuai Xu. Ld: a polynomial
time algorithm for tree isomorphism. Procedia Engineering, 15:2015–2020,
2011. Publisher: Elsevier.

Bibliography 203

[73] Eugene M. Luks. Isomorphism of Graphs of Bounded Valence can be Tested
in Polynomial Time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[74] Xiaoyi Jiang and Horst Bunke. Optimal quadratic-time isomorphism of
ordered graphs. Pattern Recognit., 32(7):1273–1283, 1999.

[75] John E. Hopcroft and J. K. Wong. Linear Time Algorithm for Isomorphism
of Planar Graphs (Preliminary Report). In Robert L. Constable, Robert W.
Ritchie, Jack W. Carlyle, and Michael A. Harrison, editors, Proceedings of
the 6th Annual ACM Symposium on Theory of Computing, April 30 - May
2, 1974, Seattle, Washington, USA, pages 172–184. ACM, 1974.

[76] Charles J. Colbourn. On testing isomorphism of permutation graphs. Net-
works, 11(1):13–21, 1981.

[77] Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. On Graphs
with Unique Node Labels. In Edwin R. Hancock and Mario Vento, editors,
Graph Based Representations in Pattern Recognition, 4th IAPR Interna-
tional Workshop, GbRPR 2003, York, UK, June 30 - July 2, 2003, Pro-
ceedings, volume 2726 of Lecture Notes in Computer Science, pages 13–23.
Springer, 2003.

[78] Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. Matching
graphs with unique node labels. Pattern Anal. Appl., 7(3):243–254, 2004.

[79] Péter Englert and Péter Kovács. Efficient Heuristics for Maximum Common
Substructure Search. J. Chem. Inf. Model., 55(5):941–955, 2015.

[80] Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. Exact and Inexact Graph
Matching: Methodology and Applications. In Charu C. Aggarwal and
Haixun Wang, editors, Managing and Mining Graph Data, volume 40 of
Advances in Database Systems, pages 217–247. Springer, 2010.

[81] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and
Xiaokang Yang. A Short Survey of Recent Advances in Graph Matching. In
John R. Kender, John R. Smith, Jiebo Luo, Susanne Boll, and Winston H.
Hsu, editors, Proceedings of the 2016 ACM on International Conference on
Multimedia Retrieval, ICMR 2016, New York, New York, USA, June 6-9,
2016, pages 167–174. ACM, 2016.

[82] Terry Caelli and Serhiy Kosinov. Inexact Graph Matching Using Eigen-
Subspace Projection Clustering. Int. J. Pattern Recognit. Artif. Intell.,
18(3):329–354, 2004.

[83] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral Graph
Matching and Regularized Quadratic Relaxations: Algorithm and Theory.
In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 2985–2995. PMLR, 2020.

[84] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016. arXiv: 1609.04747.

[85] Osman Güler, Dick den Hertog, Cornelis Roos, Tamás Terlaky, and Takashi
Tsuchiya. Degeneracy in interior point methods for linear programming: a
survey. Ann. Oper. Res., 46-47(1):107–138, 1993.

[86] Horst Bunke and Gudrun Allermann. Inexact graph matching for structural
pattern recognition. Pattern Recognition Letters, 1(4):245–253, May 1983.

204 Pattern Recognition on Reduced Graphs

[87] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed
relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern.,
13(3):353–362, 1983.

[88] Kaspar Riesen and Horst Bunke. Graph Classification and Clustering Based
on Vector Space Embedding. World Scientific Publishing Co., Inc., USA,
2010.

[89] Xavier Cortés and Francesc Serratosa. Learning graph-matching edit-costs
based on the optimality of the oracle’s node correspondences. Pattern
Recognition Letters, 56:22–29, April 2015.

[90] Mathias Fuchs and Kaspar Riesen. Graph Embedding in Vector Spaces
Using Matching-Graphs. In Nora Reyes, Richard Connor, Nils M. Kriege,
Daniyal Kazempour, Ilaria Bartolini, Erich Schubert, and Jian-Jia Chen,
editors, Similarity Search and Applications - 14th International Confer-
ence, SISAP 2021, Dortmund, Germany, September 29 - October 1, 2021,
Proceedings, volume 13058 of Lecture Notes in Computer Science, pages
352–363. Springer, 2021.

[91] Mathias Fuchs and Kaspar Riesen. Graph Augmentation for Neural Net-
works Using Matching-Graphs. In Neamat El Gayar, Edmondo Trentin,
Mirco Ravanelli, and Hazem Abbas, editors, Artificial Neural Networks in
Pattern Recognition - 10th IAPR TC3 Workshop, ANNPR 2022, Dubai,
United Arab Emirates, November 24-26, 2022, Proceedings, volume 13739
of Lecture Notes in Computer Science, pages 3–15. Springer, 2022.

[92] Carlos Garcia-Hernandez, Alberto Fernández, and Francesc Serratosa.
Ligand-Based Virtual Screening Using Graph Edit Distance as Molecular
Similarity Measure. J. Chem. Inf. Model., 59(4):1410–1421, 2019.

[93] Francesc Serratosa. Fast computation of Bipartite graph matching. Pattern
Recognit. Lett., 45:244–250, 2014.

[94] Mostafa Darwiche, Donatello Conte, Romain Raveaux, and Vincent
T’kindt. A local branching heuristic for solving a Graph Edit Distance
Problem. Comput. Oper. Res., 106:225–235, 2019.

[95] Michael Stauffer, Thomas Tschachtli, Andreas Fischer, and Kaspar Riesen.
A Survey on Applications of Bipartite Graph Edit Distance. In Pasquale
Foggia, Cheng-Lin Liu, and Mario Vento, editors, Graph-Based Representa-
tions in Pattern Recognition - 11th IAPR-TC-15 International Workshop,
GbRPR 2017, Anacapri, Italy, May 16-18, 2017, Proceedings, volume 10310
of Lecture Notes in Computer Science, pages 242–252, 2017.

[96] Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern ker-
nels for predictive graph mining. In Won Kim, Ron Kohavi, Johannes
Gehrke, and William DuMouchel, editors, Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Seattle, Washington, USA, August 22-25, 2004, pages 158–167. ACM,
2004.

[97] Nils M. Kriege and Petra Mutzel. Subgraph Matching Kernels for At-
tributed Graphs. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July
1, 2012, pages 1–20. icml.cc / Omnipress, 2012.

Bibliography 205

[98] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A Training Algo-
rithm for Optimal Margin Classifiers. In David Haussler, editor, Proceedings
of the Fifth Annual ACM Conference on Computational Learning Theory,
COLT 1992, Pittsburgh, PA, USA, July 27-29, 1992, pages 144–152. ACM,
1992.

[99] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345,
1962.

[100] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs, stat], February 2017.
arXiv: 1609.02907.

[101] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with differ-
entiable pooling. Advances in neural information processing systems, 31,
2018.

[102] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-
to-End Deep Learning Architecture for Graph Classification. Proceedings of
the AAAI Conference on Artificial Intelligence, 32(1), April 2018. Number:
1.

[103] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Sarit
Kraus, editor, Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 1907–1913. ijcai.org, 2019.

[104] Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Trans-
former Networks to Graphs. CoRR, abs/2012.09699, 2020. arXiv:
2012.09699.

[105] Pau Riba, Andreas Fischer, Josep Lladós, and Alicia Fornés. Learn-
ing graph edit distance by graph neural networks. Pattern Recognit.,
120:108132, 2021.

[106] Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective
Resistances. SIAM J. Comput., 40(6):1913–1926, 2011.

[107] Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua
Teng. Spectral sparsification of graphs: theory and algorithms. Commun.
ACM, 56(8):87–94, 2013.

[108] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The Transitive Re-
duction of a Directed Graph. SIAM J. Comput., 1(2):131–137, 1972.

[109] Zhuo Feng. Spectral graph sparsification in nearly-linear time leveraging
efficient spectral perturbation analysis. In Proceedings of the 53rd Annual
Design Automation Conference, DAC 2016, Austin, TX, USA, June 5-9,
2016, pages 57:1–57:6. ACM, 2016.

[110] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: compression
techniques. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E.
Wills, editors, Proceedings of the 13th international conference on World
Wide Web, WWW 2004, New York, NY, USA, May 17-20, 2004, pages
595–602. ACM, 2004.

[111] Hossein Maserrat and Jian Pei. Community Preserving Lossy Compression

206 Pattern Recognition on Reduced Graphs

of Social Networks. In Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu
Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu, editors, 12th IEEE
International Conference on Data Mining, ICDM 2012, Brussels, Belgium,
December 10-13, 2012, pages 509–518. IEEE Computer Society, 2012.

[112] Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs.
arXiv:0808.4134 [cs], July 2010. arXiv: 0808.4134.

[113] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller.
Graph Clustering with Graph Neural Networks. J. Mach. Learn. Res.,
24:127:1–127:21, 2023.

[114] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient ag-
gregation for graph summarization. In Jason Tsong-Li Wang, editor, Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages
567–580. ACM, 2008.

[115] Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael
Itzkovitz, and Uri Alon. Coarse-graining and self-dissimilarity of com-
plex networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter
Physics, 71(1 Pt 2):016127, January 2005.

[116] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Com-
pression of weighted graphs. In Chid Apté, Joydeep Ghosh, and Padhraic
Smyth, editors, Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Diego, CA, USA,
August 21-24, 2011, pages 965–973. ACM, 2011.

[117] Yll Haxhimusa and Walter G. Kropatsch. Segmentation Graph Hierarchies.
In Ana L. N. Fred, Terry Caelli, Robert P. W. Duin, Aurélio C. Campilho,
and Dick de Ridder, editors, Structural, Syntactic, and Statistical Pattern
Recognition, Joint IAPR International Workshops, SSPR 2004 and SPR
2004, Lisbon, Portugal, August 18-20, 2004 Proceedings, volume 3138 of
Lecture Notes in Computer Science, pages 343–351. Springer, 2004.

[118] R. Marfil, L. Molina-Tanco, A. Bandera, and F. Sandoval. The Construc-
tion of Bounded Irregular Pyramids with a Union-Find Decimation Process.
In Francisco Escolano and Mario Vento, editors, Graph-Based Representa-
tions in Pattern Recognition, Lecture Notes in Computer Science, pages
307–318, Berlin, Heidelberg, 2007. Springer.

[119] Horst Bunke, Peter J. Dickinson, Miro Kraetzl, and Walter D. Wallis.
Matching Hierarchical Graphs. In A Graph-Theoretic Approach to Enter-
prise Network Dynamics, Progress in Computer Science and Applied Logic
(PCS), pages 199–210. Birkhäuser, Boston, MA, 2007.

[120] Huaijun Qiu and Edwin R. Hancock. Graph matching and clustering using
spectral partitions. Pattern Recognit., 39(1):22–34, 2006.

[121] Pau Riba, Josep Lladós, and Alicia Fornés. Hierarchical graphs for coarse-
to-fine error tolerant matching. Pattern Recognition Letters, 134:116–124,
June 2020.

[122] Matthew Hutson. Artificial intelligence faces reproducibility crisis. Science,
359(6377):725–726, 2018.

[123] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accu-

Bibliography 207

racy Disparities in Commercial Gender Classification. In Sorelle A. Friedler
and Christo Wilson, editors, Conference on Fairness, Accountability and
Transparency, FAT 2018, 23-24 February 2018, New York, NY, USA, vol-
ume 81 of Proceedings of Machine Learning Research, pages 77–91. PMLR,
2018.

[124] Galit Shmueli. To Explain or to Predict? Statistical Science, 25(3), 2010.
[125] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A Fair

Comparison of Graph Neural Networks for Graph Classification. In 8th
International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[126] Till Schulz and Pascal Welke. On the Necessity of Graph Kernel Baselines.
In Graph Embedding and Mining Workshop at ECML PKDD, pages 0–13,
2019.

[127] Jeremy Ramsden. Bioinformatics - An Introduction, 4th Edition. Compu-
tational Biology. Springer, 2023.

[128] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra
Mutzel, and Marion Neumann. TUDataset: A collection of benchmark
datasets for learning with graphs. arXiv:2007.08663 [cs, stat], July 2020.

[129] Development Therapeutics Program. AIDS Antiviral Screen, 2004.
[130] Kaspar Riesen, Michel Neuhaus, and Horst Bunke. Graph Embedding in

Vector Spaces by Means of Prototype Selection. In Francisco Escolano and
Mario Vento, editors, Graph-Based Representations in Pattern Recogni-
tion, 6th IAPR-TC-15 International Workshop, GbRPR 2007, Alicante,
Spain, June 11-13, 2007, Proceedings, volume 4538 of LNCS, pages 383–
393. Springer, 2007.

[131] Jeffrey J. Sutherland, Lee A. O’Brien, and Donald F. Weaver. Spline-
Fitting with a Genetic Algorithm: A Method for Developing Classification
Structure-Activity Relationships. J. Chem. Inf. Comput. Sci., 43(6):1906–
1915, 2003.

[132] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch. Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. Correlation with molecular orbital ener-
gies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786–797,
February 1991.

[133] Ashwin Srinivasan, Stephen H. Muggleton, Michael J. E. Sternberg, and
Ross D. King. Theories for Mutagenicity: A Study in First-Order and
Feature-Based Induction. Artif. Intell., 85(1-2):277–299, 1996.

[134] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and Vali-
dation of Toxicophores for Mutagenicity Prediction. Journal of Medicinal
Chemistry, 48(1):312–320, 2005. Publisher: American Chemical Society.

[135] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowl. Inf. Syst.,
14(3):347–375, 2008.

[136] Natiobnal Center for Biotechnology Information. The PubChem Project.
[137] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan.

The Predictive Toxicology Challenge 2000-2001. Bioinform., 17(1):107–108,

208 Pattern Recognition on Reduced Graphs

2001.
[138] Thomas Dandekar and Meik Kunz. Bioinformatics - An Introductory Text-

book. Springer, 2023.
[139] Peter D Sun, Christine E Foster, and Jeffrey C Boyington. Overview of pro-

tein structural and functional folds. Current Protocols in Protein Science,
Chapter 17(1):Unit 17.1, May 2004. Backup Publisher: National Institute
of Allergy and Infectious Diseases, National Institutes of Health, Rockville,
Maryland, USA Publisher: Wiley Online Library.

[140] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology, 330(4):771–
783, 2003. Publisher: Elsevier.

[141] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Chris-
tian Heldt, Gregor Huhn, and Dietmar Schomburg. BRENDA, the en-
zyme database: updates and major new developments. Nucleic Acids Res.,
32(Database-Issue):431–433, 2004.

[142] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alex J. Smola, and Hans-Peter Kriegel. Protein function pre-
diction via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, June 2005.

[143] Helen M. Berman, John D. Westbrook, Zukang Feng, Gary Gilliland, T. N.
Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein
Data Bank. Nucleic Acids Res., 28(1):235–242, 2000.

[144] Shirui Pan, Jia Wu, Xingquan Zhu, Guodong Long, and Chengqi Zhang.
Task Sensitive Feature Exploration and Learning for Multitask Graph Clas-
sification. IEEE Trans. Cybern., 47(3):744–758, 2017.

[145] R. Cameron Craddock, G. Andrew James, Paul E. Holtzheimer, Xiaop-
ing P. Hu, and Helen S. Mayberg. A whole brain fMRI atlas gener-
ated via spatially constrained spectral clustering. Human Brain Mapping,
33(8):1914–1928, August 2012.

[146] Qi Xuan, Yun Xiang, and Dongwei Xu. Deep Learning Applications - In
Computer Vision, Signals and Networks. WorldScientific, 2023.

[147] Sheng Wan, Shirui Pan, Shengwei Zhong, Jie Yang, Jian Yang, Yibing
Zhan, and Chen Gong. Multi-level graph learning network for hyperspectral
image classification. Pattern Recognition, 129:108705, 2022.

[148] John M. Winn, Antonio Criminisi, and Thomas P. Minka. Object Cate-
gorization by Learned Universal Visual Dictionary. In 10th IEEE Interna-
tional Conference on Computer Vision (ICCV 2005), 17-20 October 2005,
Beijing, China, pages 1800–1807. IEEE Computer Society, 2005.

[149] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian
Kersting. Propagation kernels: efficient graph kernels from propagated in-
formation. Mach. Learn., 102(2):209–245, 2016.

[150] Mark E. J. Newman. Networks: An Introduction. Oxford University Press,
2010.

[151] Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1365–1374. Association for Computing
Machinery, New York, NY, USA, August 2015.

Bibliography 209

[152] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Robert
Grossman, Roberto J. Bayardo, and Kristin P. Bennett, editors, Proceed-
ings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005,
pages 177–187. ACM, 2005.

[153] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and
Joachim M. Buhmann. The Balanced Accuracy and Its Posterior Distri-
bution. In 20th International Conference on Pattern Recognition, ICPR
2010, Istanbul, Turkey, 23-26 August 2010, pages 3121–3124. IEEE Com-
puter Society, 2010.

[154] Remco R. Bouckaert. Choosing Between Two Learning Algorithms Based
on Calibrated Tests. In Tom Fawcett and Nina Mishra, editors, Machine
Learning, Proceedings of the Twentieth International Conference (ICML
2003), August 21-24, 2003, Washington, DC, USA, pages 51–58. AAAI
Press, 2003.

[155] Andreas Fischer, Réjean Plamondon, Yvon Savaria, Kaspar Riesen, and
Horst Bunke. A Hausdorff Heuristic for Efficient Computation of Graph
Edit Distance. In Pasi Fränti, Gavin Brown, Marco Loog, Francisco Es-
colano, and Marcello Pelillo, editors, Structural, Syntactic, and Statisti-
cal Pattern Recognition, Lecture Notes in Computer Science, pages 83–92,
Berlin, Heidelberg, 2014. Springer.

[156] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast Suboptimal Algo-
rithms for the Computation of Graph Edit Distance. In Dit-Yan Yeung,
James T. Kwok, Ana L. N. Fred, Fabio Roli, and Dick de Ridder, editors,
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR In-
ternational Workshops, SSPR 2006 and SPR 2006, Hong Kong, China,
August 17-19, 2006, Proceedings, volume 4109 of Lecture Notes in Com-
puter Science, pages 163–172. Springer, 2006.

[157] Kaspar Riesen, Andreas Fischer, and Horst Bunke. Combining Bipartite
Graph Matching and Beam Search for Graph Edit Distance Approxima-
tion. In Neamat El Gayar, Friedhelm Schwenker, and Cheng Suen, edi-
tors, Artificial Neural Networks in Pattern Recognition - 6th IAPR TC 3
International Workshop, ANNPR 2014, Montreal, QC, Canada, October
6-8, 2014. Proceedings, volume 8774 of Lecture Notes in Computer Science,
pages 117–128. Springer, 2014.

[158] Derek Justice and Alfred O. Hero III. A Binary Linear Programming For-
mulation of the Graph Edit Distance. IEEE Trans. Pattern Anal. Mach.
Intell., 28(8):1200–1214, 2006.

[159] Paul Maergner, Vinaychandran Pondenkandath, Michele Alberti, Marcus
Liwicki, Kaspar Riesen, Rolf Ingold, and Andreas Fischer. Offline Signa-
ture Verification by Combining Graph Edit Distance and Triplet Networks.
arXiv:1810.07491 [cs], 11004:470–480, 2018. arXiv: 1810.07491.

[160] Mathias Fuchs and Kaspar Riesen. Matching of Matching-Graphs - A Novel
Approach for Graph Classification. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 6570–6576, January 2021. ISSN:

210 Pattern Recognition on Reduced Graphs

1051-4651.
[161] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

Web search engine. Computer Networks and ISDN Systems, 30(1):107–117,
April 1998.

[162] Linton C. Freeman. A Set of Measures of Centrality Based on Betweenness.
Sociometry, 40(1):35–41, 1977.

[163] Arnoldo Uber Junior, Ricardo Azambuja Silveira, Paulo José de Fre-
itas Filho, Julio Cezar Uzinski, and Reinaldo Augusto da Costa Bianchi.
MASDES-DWMV: Model for Dynamic Ensemble Selection Based on Mul-
tiagent System and Dynamic Weighted Majority Voting. In Lourdes
Mart́ınez-Villaseñor, Oscar Herrera-Alcántara, Hiram E. Ponce, and Félix
Castro-Espinoza, editors, Advances in Computational Intelligence - 19th
Mexican International Conference on Artificial Intelligence, MICAI 2020,
Mexico City, Mexico, October 12-17, 2020, Proceedings, Part II, volume
12469 of Lecture Notes in Computer Science, pages 419–434, 2020.

[164] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing.
Springer Publishing Company, Incorporated, 2nd edition, 2015.

[165] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–
64, August 2007.

[166] Ulrike von Luxburg. A tutorial on spectral clustering. Stat. Comput.,
17(4):395–416, 2007.

[167] Mariá Cristina Vasconcelos Nascimento and André Carlos Ponce de Leon
Ferreira de Carvalho. Spectral methods for graph clustering - A survey.
Eur. J. Oper. Res., 211(2):221–231, 2011.

[168] Jacob Lurie. Review of Spectral Graph Theory: by Fan R. K. Chung.
SIGACT News, 30(2):14–16, 1999.

[169] Na Shi, Xumin Liu, and Yong Guan. Research on k-means Clustering Algo-
rithm: An Improved k-means Clustering Algorithm. In Third International
Symposium on Intelligent Information Technology and Security Informat-
ics, IITSI 2010, Jinggangshan, China, April 2-4, 2010, pages 63–67. IEEE
Computer Society, 2010.

[170] Yu Jin, Andreas Loukas, and Joseph F. JáJá. Graph Coarsening with
Preserved Spectral Properties. In Silvia Chiappa and Roberto Calandra,
editors, The 23rd International Conference on Artificial Intelligence and
Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy], volume 108 of Proceedings of Machine Learning Research, pages
4452–4462. PMLR, 2020.

[171] Arpit Merchant, Michael Mathioudakis, and Yanhao Wang. Graph Sum-
marization via Node Grouping: A Spectral Algorithm. In Tat-Seng Chua,
Hady W. Lauw, Luo Si, Evimaria Terzi, and Panayiotis Tsaparas, editors,
Proceedings of the Sixteenth ACM International Conference on Web Search
and Data Mining, WSDM 2023, Singapore, 27 February 2023 - 3 March
2023, pages 742–750. ACM, 2023.

[172] Lu Bai, Lixin Cui, Yuhang Jiao, Luca Rossi, and Edwin R. Hancock.
Learning Backtrackless Aligned-Spatial Graph Convolutional Networks for
Graph Classification. IEEE Trans. Pattern Anal. Mach. Intell., 44(2):783–

Bibliography 211

798, 2022.
[173] David B. Blumenthal, Nicolas Boria, Sébastien Bougleux, Luc Brun, Jo-

hann Gamper, and Benoit Gaüzère. Scalable generalized median graph es-
timation and its manifold use in bioinformatics, clustering, classification,
and indexing. Inf. Syst., 100:101766, 2021.

[174] Hoda Bahonar, Abdolreza Mirzaei, Saeed Sadri, and Richard C. Wilson.
Graph Embedding Using Frequency Filtering. IEEE Trans. Pattern Anal.
Mach. Intell., 43(2):473–484, 2021.

[175] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learn-
ing on Graphs: Methods and Applications. arXiv:1709.05584 [cs], April
2018. arXiv: 1709.05584.

[176] Hongyang Gao and Shuiwang Ji. Graph U-Nets. arXiv:1905.05178 [cs,
stat], May 2019. arXiv: 1905.05178.

[177] Christofer Fellicious, Thomas Weissgerber, and Michael Granitzer. Effects
of Random Seeds on the Accuracy of Convolutional Neural Networks. In
Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Giorgio Jansen, Vin-
cenzo Sciacca, Panos Pardalos, Giovanni Giuffrida, and Renato Umeton,
editors, Machine Learning, Optimization, and Data Science, Lecture Notes
in Computer Science, pages 93–102, Cham, 2020. Springer International
Publishing.

[178] Leonid Peshkin. Structure induction by lossless graph compression. In 2007
Data Compression Conference (DCC 2007), 27-29 March 2007, Snowbird,
UT, USA, pages 53–62. IEEE Computer Society, 2007.

[179] Morihiro Hayashida and Tatsuya Akutsu. Comparing biological networks
via graph compression. BMC Syst. Biol., 4(S-2):S13, 2010.

[180] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi. The similarity
metric. IEEE Trans. Inf. Theory, 50(12):3250–3264, 2004.

[181] Zhiying Jiang, Matthew Y. R. Yang, Mikhail Tsirlin, Raphael Tang, Yiqin
Dai, and Jimmy Lin. ”Low-Resource” Text Classification: A Parameter-
Free Classification Method with Compressors. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 6810–6828. Association for Computational Linguistics, 2023.

[182] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[183] É. Rivals, M. Dauchet, J. P. Delahaye, and O. Delgrange. Compression and
genetic sequence analysis. Biochimie, 78(5):315–322, January 1996.

[184] Ming Li and Paul M. B. Vitányi.An Introduction to Kolmogorov Complexity
and Its Applications, Third Edition. Texts in Computer Science. Springer,
2008.

[185] Charles H. Bennett, Péter Gács, Ming Li, Paul M. B. Vitányi, and Woj-
ciech H. Zurek. Information Distance. CoRR, abs/1006.3520, 2010. arXiv:
1006.3520.

[186] Elizabeth H. Cuthill and J. McKee. Reducing the bandwidth of sparse
symmetric matrices. In Solomon L. Pollack, Thomas R. Dines, Ward C.
Sangren, Norman R. Nielsen, William G. Gerkin, Alfred E. Corduan, Len
Nowak, James L. Mueller, Joseph Horner III, Pasteur S. T. Yuen, Jeffery
Stein, and Margaret M. Mueller, editors, Proceedings of the 24th national
conference, ACM 1969, USA, 1969, pages 157–172. ACM, 1969.

[187] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, June 2002. Publisher: Proceedings of the National
Academy of Sciences.

[188] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near lin-
ear time algorithm to detect community structures in large-scale networks.
Physical Review E, 76(3):036106, September 2007. Publisher: American
Physical Society.

[189] Vincent D. Blondel, Jean-Loup Guillaume, and Renaud Lambiotte. Fast
unfolding of communities in large networks: 15 years later. CoRR,
abs/2311.06047, 2023. arXiv: 2311.06047.

[190] Arnau Prat-Pérez, David Dominguez-Sal, and Josep Llúıs Larriba-Pey.
High quality, scalable and parallel community detection for large real
graphs. In Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten
Suel, editors, 23rd International World Wide Web Conference, WWW ’14,
Seoul, Republic of Korea, April 7-11, 2014, pages 225–236. ACM, 2014.

[191] Arnau Prat-Pérez, David Dominguez-Sal, Josep M. Brunat, and Josep Llúıs
Larriba-Pey. Shaping communities out of triangles. In Xue-wen Chen, Guy
Lebanon, Haixun Wang, and Mohammed J. Zaki, editors, 21st ACM
International Conference on Information and Knowledge Management,
CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pages 1677–
1681. ACM, 2012.

[192] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

[193] Alistair Moffat. Huffman Coding. ACM Comput. Surv., 52(4):85:1–85:35,
2019.

	Abstract
	Acknowledgments
	1. Introduction
	2. Graph Based Pattern Recognition
	Machine Learning
	Learning Paradigms

	Statistical vs. Structural Pattern Recognition
	Statistical Pattern Recognition
	Structural Pattern Recognition
	Basic Definitions on Graphs

	Graph Matching
	Exact Graph Matching
	Inexact (Error-tolerant) Graph Matching

	Graph Classifiers
	Distance-based Graph Classifier
	Kernel-based Graph Classifier
	Neural Network-based Graph Classifier

	Graph Reduction
	Graph Summarization
	Graph Coarsening
	Hierarchical Graph Reduction

	3. Graph Datasets
	Chemical Compound Graph Datasets
	AIDS
	BZR & BZR-MD
	COX2 & COX2-MD
	DHFR & DHFR-MD
	ER-MD
	MUTAG
	MUTAGENICITY
	NCI1 & NCI109
	PTC

	Bioinformatic Graph Datasets
	DD
	ENZYMES
	PROTEINS
	KKI
	OHSU
	Peking-1

	Computer Vision Graph Datasets
	MSRC-9 & MSRC-21

	Social Networks Graph Datasets
	COLLAB
	IMDB-BINARY
	REDDIT-MULTI-5K & REDDIT-MULTI-12K

	Dataset Filtering
	Classification Methods Comparison
	Experimental Setup
	Graph Classification
	Dataset Selection

	4. Graph Reduction by means of Centrality Measures
	Introduction
	Graph Reduction Using Centrality Measures
	Centrality Measures
	Creation of Reduced Graphs
	Qualitative Results

	Graph Matching on Reduced Graphs
	Computation Time and Classification Accuracy
	GED Quality Measure

	Two-Step Graph Classification
	Candidate Selection Strategy
	Early Classification Strategy
	Experimental Evaluation

	Multiple Classifier System Based On Reduced Graphs
	Building a Multiple Classifier System
	Experimental Setup and Validation Process
	Accuracy of the Multiple Classifier System
	Time Analysis

	Conclusion

	5. Graph Reduction by means of Spectral Clustering
	Introduction
	Graph Reduction Method
	Graph Clustering
	Graph Reduction

	Experimental Evaluation
	Datasets
	Experimental Setup
	Classification Accuracy and Computation Time
	Similarity/Dissimilarity Quality Measure

	Conclusion

	6. Further Graph Reduction Methods
	Introduction
	Graph Reduction Neural Networks for Structural Pattern Recognition
	Graph Reduction Neural Network (GReNN)
	Graph Matching on GNN Reduced Graphs
	Datasets and Experimental Setup
	Analysis of the Structure of the Reduced Graphs
	Classification Results
	Ablation Study

	Graph Classification With Normalized Compression Distance
	The Normalized Compression Distance (NCD)
	Graph Matching via NCD
	Empirical Evaluation

	Conclusion

	7. Conclusion and Future Work
	Appendix A Appendix Chapter 3
	T-SNE Visualization of Labeled Datasets

	Appendix B Appendix Chapter 4
	Visualization of Reduced Graphs by Means of Centrality Measures
	Visualization of the Pairwise GED between the Original Graphs and their Reduced Counterpart

	Appendix C Appendix Chapter 5
	Visualization of the Pairwise GED between the Original Graphs and their Reduced Counterpart
	Visualization of the Pairwise SP between the Original Graphs and their Reduced Counterpart
	Visualization of the Pairwise WL between the Original Graphs and their Reduced Counterpart

	Appendix D Appendix Chapter 6
	Analysis of the Connected Components of Graphs Reduced with GReNN
	Example of Reduced Graphs using GReNN

	Bibliography

