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General Abstract 1 

Benzoxazinoids (BXs) are plant specialized metabolites involved in herbivore-defenses of 2 

cereals such as maize and wheat. The Western Corn Rootworm (WCR, Diabrotica 3 

virgifera virgifera), a specialist root herbivore, stabilizes, sequesters and accumulate 4 

them into their bodies. The interactions of these WCR accumulated toxins with the WCR 5 

natural enemies, entomopathogenic nematodes (EPNs) are not fully understood. This 6 

thesis aimed to investigate EPN benzoxazinoid tolerance and resistance mechanisms 7 

and or strategies. 8 

Chapter 2 demonstrated using an evolutionary experiment that EPNs evolved BX 9 

resistance within three host cycles. Additionally, we also found that before adaptation, 10 

BX repulsive effect can explain the initial differences between BX- sensitive and Bx 11 

resistance isolates. However, this phenomenon (repulsion) cannot explain difference 12 

between BX-adapted and non-adapted isolates. These findings highlight the capacity of 13 

EPNs to rapidly adapt to plant chemical defenses, providing new insights into enhancing 14 

the efficacy of biocontrol strategies against BX-sequestering pests like WCR. 15 

Chapter 3, revealed that EPNs can fight back benzoxazinoid toxin effects by biodegrading 16 

them to their breakdown derivates, thus, showing EPNs ability to respond in stressful 17 

situations. This work findings will be helpful in elucidation mechanistic bases of inter-18 

strain benzoxazinoid tolerance variation. Additionally, this will make prediction of 19 

benzoxazinoid effect on various strains possible. Furthermore, this paves way for 20 

nematode breeders for development of genetic markers linked benzoxazinoid tolerance.  21 

Chapter 4, indicated cooperative acts between EPN and some of its associates in times 22 

of trouble which may in turn benefit the EPN to grow, develop and survive in stressful 23 

situations. These findings will motivate nematologists to study and understand other 24 

symbiosis relationships between EPNs and their associates. Understanding the 25 

influences of such EPN associations in EPN biological, physiological and biochemical 26 

process may give crucial information for EPN-contents manipulations programs, which 27 

may be used in maximizing EPN- control potential and protection.  28 
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General introduction 29 

The domestication of plants is believed to have started about 12000 years ago when 30 

farmers decided to switch from nomadism to permanent settlement (Hillel, 2010; 31 

Sushma Naithani, 2021). This was later threatened by impending famine due to 32 

populations increase (Wu & William, 2004). This led to introduction of the “green 33 

revolution”, which refer to the large scale transfer and adaptation of new technologies in 34 

agriculture that boosted crop yield since the mid-20th century (Khush, 1999). This 35 

resulted in a remarkable yield increase, which, for example, in countries like China, a five 36 

-fold increase in food productivity was reported ( (FAO, 2010; Horlings & Marsden, 2011). 37 

However, today, food insecurity is still being reported as this increase in food production 38 

cannot meet the present challenge of human population growth pressure which is 39 

estimated to be causing about a billion additional mouths every 12-14 years ((Rajendra 40 

Prasad, 2013) with a census prediction of (~10 billion people) globally by 2050 (Fess et 41 

al., 2011; UN, 2022).  42 

Continuing to expand harvests to meet this population growth pressure is constrained by 43 

the availability of arable land (Ehrlich et al., 1993; Fess et al., 2011). The demand for 44 

arable land will increase as the population grows and the demand for food increases. 45 

Any attempts to expand arable will be at the expense of natural forests, which are 46 

habitats for wildlife, wild crops as well as crop pests natural enemies (Popp et al., 2013). 47 

Thus, there is urgent need to develop sustainable and productive agroecosystems 48 

measures. Such measures can target nutrient cycling, as well as ecological 49 

management of crop weeds, crop pathogens as well as crop animal pests (Reddy, 2017; 50 

Ahmad et al., 2020). Pests greatly threaten food security (Deguine et al., 2023). Global 51 

studies on crop losses due to pests and disease are estimated to be approximately 40% 52 

every year (Oerke, 2006; FAO, 2025). This clearly indicates that minimizing crop yield and 53 

quality losses which are mostly lost to crop herbivore will significantly boost production. 54 

Plant defenses  55 

Plants have evolved some defense strategies against herbivory ranging from specialized 56 

morphological structures, secondary metabolites and proteins that have toxic, repellent, 57 



General Introduction  

3 
 

and/or antinutritional effects on the herbivores ( (Kogan & Paxton; War et al., 2011; War 58 

et al., 2012). One of the defense mechanisms in maize plants is the production of 59 

benzoxazinoids 60 

Benzoxazinoids 61 

Benzoxazinoids (BXs) are specialized indole-derived metabolites that have been studied 62 

primarily in Poaceae. In this plant family, BXs were most isolated from wild grasses and 63 

major agricultural crops like maize, wheat, and rye. Besides Poaceae, BXs have also 64 

been isolated from dicotyledonous medicinal plant families Acanthaceae, 65 

Calceolariaceae, Lamiaceae, Plantaginaceae, and Ranunculaceae. (Baumeler et al., 66 

2000 ; Sicker et al., 2000; Bruijn et al., 2018; Machado et al., 2020). Due to the agricultural 67 

importance and well-developed genetic resources of maize, many of the recent 68 

advances in benzoxazinoid research have been made in this species. (Zhou et al., 2018). 69 

Structure and classification of benzoxazinoids 70 

Chemically, they are double ringed aromatic compounds which can be classified into 71 

two main classes. Benzoxazinoids are normally stored as stable benzoxazinones gluco-72 

sides, which upon tissue maceration by herbivores, will be converted to their corre-73 

sponding unstable benzoxazinones aglucones (Wouters et al., 2016). The unstable ag-74 

lucones are very reactive and can pose allelopathic, toxicity, repulsion and anti- her-75 

bivory effects against herbivores (Sicker et al., 2000; Sicker & Schulz, 2002; Bruijn et al., 76 

2018, 2018). The aglucones can later be converted by microbes to either aminophenoxa-77 

zinones, malonamic acids, or acetamides, some of which are also bioactive (Zikmun-78 

dová et al., 2002; Krogh et al., 2006; Schulz et al., 2013; Robert & Mateo, 2022). Efforts 79 

have been made to use BXs for pest control (Zhou et al., 2018).). Their interaction with 80 

various organisms is clearly shown with their tritrophic interaction with the western corn 81 

rootworm and its natural enemies the entomopathogenic nematodes sparked a lot of re-82 

search interest (Erb & Robert, 2016 ; Robert et al., 2017; Zhang et al., 2019; Bruno et al., 83 

2020; Machado et al., 2020). 84 
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Below ground herbivory 85 

Subterranean pests pose a significant economic threat due to their substantial impact 86 

on food security. These pests have been observed to cause substantial damage to forests 87 

and agricultural crops, resulting in considerable yield losses. The damage of these 88 

underground pests may begin soon after seed planting when they feed on seed and 89 

continue till harvesting when they mostly feed on stalk just below soil level as well as 90 

plant roots and root hairs (Khudoykulov et al., 2021). Plant roots are mostly important for 91 

acquisition of water and nutrients, anchoring of the plant as well as the production of 92 

herbivory defense compounds (van Dam, 2009). Any disturbance of plant roots due to 93 

root feeding pests can impact plant fitness and yield (Blossey & Hunt-Joshi, 2003). It has 94 

been reported that, if root herbivores are not detected and treated in time, their damage, 95 

as well as the effects of related secondary stresses such as drought, can cause dramatic 96 

declines in plant populations (Blossey & Hunt-Joshi, 2003). 97 

Their impact on crop production is worsened by the fact that belowground-feeding 98 

herbivores are difficult to see and manipulate (Andersen, 1987; Brown & Gange, 1990; 99 

Blossey & Hunt-Joshi, 2003). To farmers, this also pose a serious challenge as their 100 

treatment and management normally occur late, mostly after severe symptoms appear. 101 

Below ground herbivory is mainly from rodents, nematodes, molluscs, and insect (Brown 102 

& Gange, 1990). Some examples of belowground insect herbivores include seed corn 103 

maggots, wireworms, white grubs, cutworms as well as northern and western corn 104 

rootworms (Heather & Sebe, 2017; Khudoykulov et al., 2021)  105 

Western corn rootworm (WCR) 106 

The western corn rootworm (WCR), or Diabrotica virgifera virgifera LeConte is a beetle 107 

belonging to the family Chrysomelidae. The beetles are specialised maize root herbi-108 

vores that were introduced to Europe in the early 1990s from North America (Miller et al., 109 

2005; Bažok et al., 2021). The pest is believed to have originated from the north America 110 

and has been introduced to Europe without its natural enemies through air travel and or 111 

shipment of goods (Hummel, 2003). The beetles are good flyers as they can cover more 112 

than 20 km in a single flight and can also be carried by weather such as storms and cold 113 

fronts (Grant & Seevers, 1989). Together with its high fecundity, the pest, rapidly spreads 114 
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and infests vast maize fields in Europe. According to (Lemic et al., 2015) , the pest had, 115 

by 2011, spread to most maize growing areas in Europe where it is causing maize crop 116 

yield and quality losses. 117 

The female WCR mostly lay eggs in autumn, and the eggs can overwinter underground 118 

and will hatch in spring. The hatched WCR larvae has three instars which are all 119 

specialized maize root feeders (St Clair & Gassmann, 2021).They larvae feed on seed 120 

kernels, root hairs and burrow tunnels in maize roots as they feed. The damages caused 121 

by WCR to maize growth and yield were elaborated by (Hoffmann et al., 2000).The 122 

authors stated that larval feeding on roots result in plant lodging, stunting and root 123 

injuries are pathogen entry points. They also stated that adult WCR can feed on corn silk, 124 

pollen leaves and immature kernels, all of which can cause yield losses. Finally, the 125 

authors also stated that the pest is also a virus and fungus vector to plants. The adults 126 

also can feed and oviposit on alternative hosts like Soybeans, Cucurbitaceous, and 127 

Lucerne (Gray et al., 2009). Thus, the pest has a potential to cause other crop losses to 128 

farmers. In the United States, an annual estimated loss exceeding USB~1-2 billion 129 

(Darlington et al., 2022) through pest management and crop damage losses has been 130 

reported ((Miller & Krysan, 1986; St Clair & Gassmann, 2021). Other past studies in 131 

Europe, reported that the annual economic benefits of controlling WCR in best case 132 

scenario and worst case scenario range between 143 million Euro and 1739 million Euro 133 

respectively (Wesseler & Fall, 2010). With all these impacts, WCR poses serious threats 134 

to farmers worldwide , who have implemented various ways in affected areas against 135 

WCR to try to reduce losses (Vidal et al., 2005; Meissle et al., 2010; Meissle et al., 2011). 136 

Crop rotation 137 

Rotation of maize with WCR non hosts has been effective, as the pest preferably lay eggs 138 

on maize and the devastating larval instars do not survive well on other crop roots (Boriani 139 

et al., 2006). In North America, maize rotation with soy beans has been effective till the 140 

mid-1990s when the cultural practice failed as the pest had developed behavioural 141 

adaptations (Knolhoff et al., 2006; Gray et al., 2009). Similar behavioural adaptations 142 

were also reported in Europe where the beetle were discovered in Slovenia in pumpkin oil 143 

plants (Hummel, 2007). The time when the beetles were seen in the pumpkin oil plants 144 

coincides with the time when the females are looking for oviposition sites. Thus, longer 145 
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crop rotations are needed to suppress WCR populations, which come with their own 146 

costs in terms of complexity and crop choice.  147 

Chemical control  148 

The most common pest control strategy of reducing the WCR density, root lodging, and 149 

yield loss in Europe is the application of soil insecticides at planting. This application can 150 

be performed in seed furrow during planting operation or through seed treatment, using 151 

pyrethroids or neonicotinoids (Sutter et al., 1990; Blandino et al., 2017; Souza et al., 152 

2020; Ferracini et al., 2021). However, WCR has evolved resistance against several of 153 

these insecticides (Sutter et al., 1989; Meinke et al., 1998; Souza et al., 2020; St Clair et 154 

al., 2020; Meinke et al., 2021). Lifetime WCR females lay 500 to 1000 eggs, which hatch 155 

across several weeks, thus resulting in variable insecticide exposure and control success 156 

(Branson & Johnson, 1973; Hill, 1975; Rondon & Gray, 2004). Furthermore, neonicotids 157 

have major adverse impacts on non-target organisms and are therefore being banned in 158 

the EU (Kluser et al., 2010; Laurino et al., 2011; Alemanno, 2013; European Commission, 159 

2013; Blake, 2018; Kathage et al., 2018). Alternative control strategies for WCR and other 160 

soil-dwelling pests are thus needed.  161 

Transgenic maize 162 

Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus 163 

thuringiensis (Bt) provide an effective management tool against WCR(Gassmann, 2012). 164 

These maize lines express crystalline (Cry) proteins whose mode of action involves insect 165 

intoxication by disrupting midgut epithelial tissues upon ingestion (Vachon et al., 2012). 166 

However, in 2009, fields were discovered in Iowa, USA, with populations of western corn 167 

rootworm that had evolved resistance to maize producing the Bt toxin Cry3Bb1. (Andow 168 

et al., 2016). Laboratory selection experiments confirmed that evolution of Bt resistance 169 

is possible in insects (Tabashnik, 1994). To make matters worse, a single insect can 170 

develop resistance to many Bt strains and/or toxins, even when many toxins are used 171 

simultaneously. (Tabashnik et al., 1993a; Tabashnik et al., 1993b).  172 

The other avenue that has been explored to control WCR has been the use of RNA 173 

interference (RNAi ), which refers to a set of processes that involve introduction of 174 

double-stranded RNAs of the gene of interest to silence gene of interest expression. (Yang 175 
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et al., 2011). Oral admission of the dsRNA into WCR using artificial diets bioassays has 176 

been successful targeting a putative endoglucanase (DvvENGaseI) gene that is involved 177 

in cellulose digestion (Valencia et al., 2013), however, this oral feeding does not apply to 178 

field situation. Thus, the challenge was to have transgenic plants expressing dsRNA for 179 

the target gene to allow continuous oral delivery for effective silencing hindered progress 180 

(Narva et al., 2013). Research in this area is ongoing.  181 

Biological control with natural enemies 182 

Several natural enemy species or groups appeared to be promising candidates for WCR 183 

control strategies, including parasitoid, fungi, viruses, and nematodes. (Kuhlmann et al; 184 

Kuhlmann & van der Burgt, 1998; Pilz et al., 2009). One of the biological control agents 185 

being investigated is Celatoria compressa (Wulp) (Diptera: Tachinidae), a parasitoid of 186 

adult chrysomelid beetles of the subtribe Diabrotica in North America, which has been 187 

selected as a candidate for classical biological control of the European invasive bark 188 

beetle WCR. In the study, C. compressa parasitized about 45 % of the tested WCR larvae 189 

(Toepfer et al., 2009). Gaeolaelaps aculeifer, a soil-dwelling predatory mite that inhabits 190 

the first few centimeters of the soil, was also assessed for its predatory potential against 191 

WCR larvae. The results of the study showed that G. aculeifer has the potential to control 192 

WCR at densities starting from 100 mites/plant (Pasquier et al., 2021). The infection rate 193 

of these two agents is too low to be used as reliable biological control agents. 194 

Entomopathogenic fungi were another biocontrol agent tested against the WCR. In one 195 

study, twenty strains of Metarhizium anisopliae, Beauveria bassiana and Beauveria 196 

brongniartii were used in bioassays in the laboratory. The results of the study showed that 197 

adults were significantly more susceptible to entomopathogenic fungi than larvae (Pilz et 198 

al., 2007) and the strain Metarhizium anisopliae showed the greatest WCR larvae 199 

infectivity. (Pilz et al., 2007; Rudeen et al., 2013). Viral research has demonstrated that 200 

the presence of viral particles in the male reproductive organs of D. virgifera virgifera is 201 

associated with a high incidence of abnormal sperm. (Degrugillier et al., 1991), However, 202 

these viruses had no effect on insects in the family Chrysomelidae, which includes WCR. 203 

The viruses did not affect the insects' lifespan, mobility, or mating behavior. After several 204 

unsatisfactory attempts with most of the above WCR natural enemies, hope was raised 205 

when scientists tested the efficacy of entomopathogenic nematodes (EPNs) against 206 
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WCR, which became one of the successful candidates. (Journey & Ostlie, 2000; Kurtz et 207 

al., 2007).  208 

Entomopathogenic nematodes (EPNs) 209 

EPNs are non-segmented, soil-dwelling roundworms and are a discovered biological 210 

control agent that have been successful in controlling insect pests such as white grubs, 211 

black vine weevil, turf grass pests, fungus gnats, mole crickets, weevils, and cutworms, 212 

etc.(Singh et al., 2022). Species in two families (Heterorhabditidae and Steinerne-213 

matidae) have been effectively used as biological insecticides in pest management pro-214 

grams (Grewal & Georgis, 1999; Grewal, 2012). The high virulence, broad host range, ease 215 

of mass production, and host-seeking ability of these worms are desirable traits. (Timper 216 

& Kaya, 1989).Both groups of EPNs have similar life-cycles where the infective juvenile 217 

(IJ), a modified third stage juveniles (dauer juveniles) (Ciche et al., 2006), which are the 218 

only free living and infective stage of EPNs. The only infective stage (the third-stage (L3) 219 

duer juveniles) can survive outside the host. They are environmentally stress resistant, 220 

nonfeeding and ensheathed with a second cuticle (Poinar & Leutenegger, 1968; Timper & 221 

Kaya, 1989; Donald L. Lee, 2002). The cuticular sheath uncovering the L3 is as a result of 222 

incomplete molt of the second stage juveniles which may seem to play a role in environ-223 

mental stress tolerance (Timper & Kaya, 1989; Campbell & Gaugler, 1992; Donald L. Lee, 224 

2002) ). Exsheathment of the L3 second cuticle, which is usually stimulated by the host, 225 

marks the transition of these L3s from free -living to parasitic stage (Campbell & Gaugler, 226 

1992; Donald L. Lee, 2002)). EPNs live in association with other microbes and even co-227 

operate with some during host infection. 228 

EPN-associated microorganisms 229 

The two EPN Genera (Heterorhabditis and Steinernema) have evolved mutualisms with 230 

entomopathogenic bacteria spp (Photorhabdus and Xenorhabdus), which they carry in 231 

their intestines (Boemare et al., 1993; Kaya & Gaugler, 1993; Forst et al., 1997; Grewal & 232 

Georgis, 1999; Tomar et al., 2022). Studies on EPN microbiota revealed that this 233 

association is not monoxenic, but occurs within more complex bacterial communities, 234 

which also seem to aid in nematode entomopathenogenity (Jiménez-Cortés et al., 2016; 235 

Goda et al., 2020; Ogier et al., 2020; Ogier et al., 2023). The microbiota of studied 236 

Steinernema spp confirmed the presence of dozens of Proteobacteria (Pseudomonas, 237 
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Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, 238 

Brevundimonas, Deftia) among others (Ogier et al., 2020). Studies with Heterorhabditis 239 

also revealed a bacterial community consisting of different bacteria, including 240 

Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter 241 

sp., and Leucobacter spp (Jiménez-Cortés et al., 2016). Whether these microbes are from 242 

the inside or the surface of nematodes still needs more research, although some studies 243 

with different nematodes including the entomopathogenic nematode strain EN01 have 244 

managed to target only potentially endogenous microbes as recovered microbes were 245 

obtained after fsurface sterilizing nematodes with sodium hypo chloride (Loulou et al., 246 

2023).  247 

Efficacy of entomopathogenic nematodes against WCR 248 

A lot of research on the efficacy of EPNs against WCR has been reported. One of the re-249 

search projects involved laboratory screening of eight EPN spp (7 Steinernema spp and 250 

H. bacteriophora) against larvae and adults of WCR. All tested species were able to infect 251 

WCR larvae, but not adults. Heterorhabditis bacteriophora was among the spp that 252 

caused high mortality rate by reducing populations of WCR by 81% (Toepfer et al., 2005). 253 

Heterorhabditis bacteriophora was later mostly used in other EPN efficacy studies. It was 254 

proven that nematodes have a great potential to reduce WCR populations in all types of 255 

soil, with the highest efficacy in clay maize fields (Toepfer et al., 2010). Some studies 256 

showed that the mortality of WCR larvae increases with the increase in nematode initial 257 

populations (Hoffmann et al., 2014) showing that nematodes work in a concentration de-258 

pendent manner. 259 

The WCR has a number of resistance mechanisms that reduce EPN infectivity. One of 260 

these are maize defense metabolites (benzoxazinoids, BXs), which it can ingest and ac-261 

cumulate (sequester) (Erb & Robert, 2016; Robert et al., 2017). No negative effects of BXs 262 

on WCR growth and development have been found (Alouw & Miller, 2015). The accumu-263 

lated benzoxazinoids include the glucosides HDMBOA-Glc and MBOA-Glc. In addition, 264 

WCR larvae can hydrolyze HDMBOA-Glc, to produce another toxic BX: MBOA. Both 265 

HDMBOA-Glc and MBOA have a toxic effect on EPN, while MBOA-Glc acts as a repellent 266 

(Robert et al., 2017). Benzoxazinoids can interact with both EPNs and their associated 267 

microbes. However, many questions regarding this interaction remain open.  268 
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Aim and scope of the thesis 269 

This thesis explores the multitrophic interactions involving plant defense metabolites 270 

(benzoxazinoids), herbivores (western corn rootworm), their natural enemies 271 

(entomopathogenic nematodes), and their associated microbes. 272 

In Chapter 1, EPN response strategies to various biotic (viruses, bacteria, fungi, and 273 

predatory insects) as well as abiotic (starvation, low/elevated temperatures, desiccation, 274 

osmotic stress, hypoxia, and ultra-violet light) stresses are reviewed. The reports provide 275 

new avenues and targets to select and engineer nematodes for better adaptations to field 276 

conditions.  277 

Chapter 2 assesses the benzoxazinoid tolerance of various EPNs by comparing their 278 

infectivity success towards benzoxazinoid-fed WCR. It furthermore investigates the 279 

possibility to enhance infectivity of benzoxazinoid-susceptible EPN strains through 280 

forward evolution. Based on earlier experiments, we hypothesized that exposure to BX-281 

containing WCR should result in the rapid evolution of BX-dependent infectivity.  282 

Chapter 3 investigates the capacity of EPNs to metabolize BXs . We hypothesized that 283 

BX resistant strains may have a higher ability to metabolize and/or degrade BXs than non-284 

resistant strains.  285 

Chapter 4 aimed at understanding the role of microbes in benzoxazinoid metabolization 286 

by EPNs. We hypothesized that surface microbes may mediate the rapid metabolization 287 

of BXs in the EPN environment.  288 

Together, these chapters provide novel insights into EPN-environment interactions and 289 

reveal the dynamic nature of BX metabolization and BX-dependent infectivity.  290 
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Abstract 291 

Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms 292 

commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles 293 

locate and infect a host in which they will grow and multiply until resource depletion. 294 

During their free-living stage, EPNs face a series of internal and environmental stresses. 295 

Their ability to overcome these challenges is crucial to determine their infection success 296 

and survival. In this review, we provide a comprehensive overview of EPN response to 297 

stresses associated with starvation, low/elevated temperatures, desiccation, hypoxia, 298 

and ultra-violet light. We further report EPN defense strategies to cope with biotic 299 

stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the 300 

genetic and biochemical basis of these strategies to the nematode model 301 

Caenorhabditis elegans, we provide new avenues and targets to select and engineer 302 

precision nematodes adapted to specific field conditions.  303 

Keywords: Entomopathogenic nematodes, biological control, stress tolerance, soil en-304 

vironment, Caenorhabditis elegans  305 
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1. Introduction 306 

Sustainable strategies to increase crop productivity are urgently required to ensure food 307 

safety and food security worldwide (Vågsholm et al., 2020). Biological control is a 308 

promising and environmentally friendly avenue to increase food production by 309 

decreasing herbivore-associated crop losses. 310 

Animal pests are responsible for 8-16% crop losses annually (Birch et al., 2011; Oerke, 311 

2006). Among these pests, root feeding insects are particularly damaging (Agrawal, 2011; 312 

Anbesse et al., 2013; Hunter, 2001; Johnson and Murray, 2008; Kergunteuil et al., 2016). 313 

For example, the western corn rootworm, Diabrotica virgifera virgifera Le Conte, causes 314 

damage and control costs exceeding two billion USD annually in the USA alone (Gray et 315 

al., 2009; Wechsler and Smith, 2018). Wireworms, larvae of click beetles (Coleoptera: 316 

Elateridae), inflict potato yield losses and control costs of about six million USD (Vernon 317 

et al., 2009). The greyback grub, Dermolepida albohirtum, causes about 28 million USD 318 

losses annually in Australian sugar industry (Chandler, 2002). While soil-dwelling herbi-319 

vores are out-of-sight, their populations can be controlled by biocontrol agents such as 320 

entomopathogenic nematodes (EPNs) (Grewal et al., 2005; Koppenhöfer et al., 2020).  321 

Entomopathogenic nematodes (EPNs) are obligate pathogenic roundworms that can in-322 

fect and kill soil-living arthropods (Poinar, 2018; Shapiro-Ilan et al., 2014; Weischer and 323 

Brown, 2000). They belong to the Heterorhabditidae and Steinernematidae families. 324 

EPNs shelter a community of endosymbiotic bacteria, referred to as the EPN pathobiome 325 

(Machado et al., 2018; Ogier et al., 2020; Pervez et al., 2020; Poinar and Grewal, 2012; 326 

Sajnaga and Kazimierczak, 2020). Infective juvenile (IJ) nematodes penetrate their host 327 

through natural apertures or by puncturing the cuticle (Bedding and Molyneux, 1982; 328 

Castelletto et al., 2014; Ciche and Ensign, 2003; Dowds and Peters, 2002). Once in the 329 

body, EPNs release their bacterial symbionts by regurgitation or defecation (Ciche et al., 330 

2006; Ciche and Ensign, 2003; Martens et al., 2004; Poinar, 1966). The bacteria produce 331 

digestive enzymes, immunosuppressors, and toxins, which ultimately kill the host within 332 

a few days (Brivio and Mastore, 2018; Ciche and Ensign, 2003; Clarke, 2020; Duchaud et 333 
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al., 2003; Gaugler and Kaya, 1990; Kaya and Gaugler, 1993). EPNs then feed on the bac-334 

teria and reproduce in their insect host until resource depletion (Ciche and Ensign, 2003). 335 

At this stage, the nematodes produce new IJs that leave the body and seek for a new host 336 

(Gaugler and Kaya, 1990; Grewal and Georgis, 1999; Zhang et al., 2021). EPNs have 337 

evolved several strategies, ranging from ambush to cruising, to locate and/or to increase 338 

probabilities of encountering preys (for review see Zhang et al., 2021). Their high viru-339 

lence, together with the ease of mass production (Ehlers, 2001), suggest them as a bio-340 

logical agent of high potential for controlling soil-dwelling pests (Gaugler and Kaya, 1990; 341 

Kaya and Gaugler, 1993). To make use of this potential, however, it is crucial to attain 342 

high consistency of EPN’s impact on herbivore populations that is independent of envi-343 

ronmental conditions and pest characteristics, and robust to changes in application 344 

strategies (Gaugler, 1988; Griffin, 2012; Khatri-Chhetri et al., 2011; Koppenhöfer et al., 345 

2020; Shapiro-Ilan et al., 2006b). This lack of understanding brings an urgent need to 346 

identify and characterize nematode traits that enhance their success in different condi-347 

tions to generate superior EPNs.. To make use of this potential, however, it is crucial to 348 

attain high consistency of EPN’s impact on herbivore populations that is independent of 349 

environmental conditions and pest characteristics, and robust to changes in application 350 

strategies (Gaugler, 1988; Griffin, 2012; Khatri-Chhetri et al., 2011; Koppenhöfer et al., 351 

2020; Shapiro-Ilan et al., 2006b). This lack of understanding brings an urgent need to 352 

identify and characterize nematode traits that enhance their success in different condi-353 

tions to generate superior EPNs 354 

Traits conferring superior efficacy include attributes increasing EPN persistence in soil, 355 

host encountering probability, infectivity success, and multiplication potential (Shapiro-356 

Ilan et al., 2012; Shapiro-Ilan et al., 2006a). Traits involved in EPN commercial suitability, 357 

such as EPN production, formulation, and shelf-life, should also be considered for ap-358 

plied perspectives (Georgis and Gaugler, 2002; Glazer, 2015; Vernon and van Herk, 359 

2022), but are not under the scope of this review. Although the identification of relevant 360 

traits by comparing EPN populations of different geographical origins or through artificial 361 

selection, hybridization or genomics-assisted breeding offers valuable insights, the func-362 

tional characterization of genes encoding for specific traits remains a milestone to be 363 
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achieved in developing genetic improvement programs (GIPs), and ultimately superior 364 

nematode strains adapted to specific field conditions and pest targets. 365 

Multiple genomes of EPNs and their endosymbionts are available to characterize the 366 

genetic pathways and gene families underlying specific traits (Table 1). Initial resources, 367 

such as the H. bacteriophora and H. indica draft genomes that are 77 Mb (~16’000 368 

annotated protein coding genes) and 91 Mb (~10’000 annotated protein coding genes) 369 

long respectively, are available for comparative genomics (Bai et al., 2013; Bhat et al., 370 

2021; McLean et al., 2018). Steinernema genomes have been assembled for multiples 371 

species including S. carpocapsae, S. diaprepesi and S. feltiae (Table 1). While the 372 

dissection of the genetic pathways involved in EPN biology and stress tolerance are still 373 

at an early stage, the knowledge gained from the model nematode Caenorhabditis 374 

elegans offers a unique opportunity to accelerate EPN research and genetic 375 

improvement in stress tolerance. 376 

In this review, we provide an overview of EPN traits that modulate nematode toler-377 

ance to endogenous and exogenous stressors and thus their persistence in soil as IJs. 378 

We highlight the current knowledge about the involved genetic pathways underlying 379 

stress resistance in EPNs and in C. elegans. Finally, we emphasize some of the limita-380 

tions associated with the breeding of superior EPNs and advocate mitigation plans for 381 

effective biocontrol strategies. 382 

2. Endogenous stresses 383 

2.1. Nutritional stress tolerance 384 

IJs are nonfeeding organisms that rely on internal lipids (mainly triacylglycerols) and gly-385 

cogen reserves for survival (Grewal and Georgis, 1999; The C. elegans Research Com-386 

munity). Neutral lipids represent between 24 and 31% of the nematode dry weight (Patel 387 

et al., 1997b). In IJs of H. bacteriophora and H. megidis, unsaturated fatty acids represent 388 

57% and 62% of the detected fatty acids, respectively . Interestingly, steinernematid spe-389 

cies contain relatively more saturated fatty acids, as the latest can reach up to 70% of 390 

the lipid pool (Patel and Wright, 1997a; Selvan et al., 1993b; Selvan et al., 1993a). Among 391 
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the 18 fatty acids detected in Steinernema species, oleic acid (C18:1n-9), palmitic acid 392 

(C16:0), and stearic acid (C18:0) decline over storage time (100 days), suggesting that 393 

these fatty acids are preferentially used as energy suppliers (Patel and Wright, 1997a). 394 

On the other hand, glycogen reserves in steinernematids ranges from 8% to 18% dry 395 

weight (Patel and Wright, 1997b) and their level seem to decline more slowly than lipids 396 

in young IJs, but tend to decline faster after lipid depletion. Thus, it is hypothesized that 397 

glycogen might be the alternative source of energy after lipids reserves depletion in aged 398 

IJs. This was experimentally shown in a study of (Wright et al., 1997) where S. car-399 

pocapsae maintained its infectivity potential at low lipid levels when glycogen levels 400 

were high. Infectivity later markedly decreased with decline in glycogen reserves. IJ re-401 

serves are critical factors shaping the nematode survival, stress tolerance, motility, be-402 

haviour, and ultimately infectivity (Abu Hatab and Gaugler, 1997; Fitters and Griffin, 403 

2006; Grewal and Georgis, 1999; Griffin and Fitters, 2004; Hass et al., 2002; Jagdale and 404 

Gordon, 1997; Patel et al., 1997b; Qiu and Bedding, 2000). Although the role of neutral 405 

lipids and glycogen as energy storage for IJs seems established, manipulative studies 406 

using the available information from C. elegans (e.g., 471 putative genes involved in the 407 

lipid metabolism, fatty acid pathway (Rappleye et al., 2003; Watts and Ristow, 2017), 408 

should be undertaken to disentangle their specific roles in IJ nutritional stress tolerance.   409 

2.2. Oxidative stress tolerance 410 

Oxidative stress is caused by an imbalance between reactive species (RS) production 411 

and antioxidant defenses (Sies, 2018; Sies, 1985a). The production of RS, including reac-412 

tive oxygen species (ROS) and reactive carbonyl species (RCS), results from the reduc-413 

tion-oxidation reactions associated with the use of oxygen (Halliwell and Gutteridge, 414 

2015; Pamplona and Costantini, 2011). For instance, ROS are mostly produced by the 415 

electron transport system of mitochondria during ATP production (Zorov et al., 2014). As 416 

highly reactive molecules, RS can disrupt the cellular metabolism and their overproduc-417 

tion results in cell death (Frijhoff et al., 2015; Nanette and Tim, 2013; Sies, 2018; Sies, 418 

1985b; Zorov et al., 2014). RS are detoxified through several mechanisms, such as con-419 

jugation (e.g., to glutathione), oxidation (e.g., by aldehyde dehydrogenases), or reduction 420 

(e.g., by aldoketoreductases) (Detienne et al., 2018; Hulbert et al., 2007; Pamplona and 421 
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Costantini, 2011; West and Marnett, 2006). In H. bacteriophora, IJ tolerance to H2O2 ex-422 

posure correlates with their lifespan in sand (Sumaya et al., 2017). The crossing of two 423 

strains and mutagenesis further revealed that tolerance to oxidative stress can be en-424 

hanced (Sumaya et al., 2018). These results are consistent with studies conducted in C. 425 

elegans demonstrating the role of the oxidation level on nematode lifespan. For instance, 426 

silencing antioxidant enzymes such as catalases (CTL-2), thioredoxins (TRX-1), peroxi-427 

dases (PRDX-2 and PRDX-3), or glutathione-S-transferases (GST-5, GST-10) accelerates 428 

aging and decreases lifespan (Ayyadevara et al., 2007; Ha et al., 2006; Jee et al., 2005; 429 

Miranda-Vizuete et al., 2006; Oláhová et al., 2008; Petriv and Rachubinski, 2004). Note-430 

worthy, not all RS detoxification enzymes are associated with nematode lifespan and 431 

some of them have tissue-specific functions (for a review in C. elegans see Shields et al. 432 

2021). The impact of RS and their detoxification machinery on C. elegans is well ad-433 

vanced, however, how oxidative stress shapes EPN IJs persistence in soil remains elusive 434 

and should be further investigated.  435 

3. Abiotic stresses 436 

3.1. Low temperatures 437 

EPN juveniles can persist in the soil for over a year in continental climates (Kurtz et al., 438 

2007) and can cope with cold temperatures (Ali and Wharton, 2013). Yet, EPN tolerance 439 

to low temperature and the underlying mechanisms are species- and likely even strain-440 

specific (Godina et al., 2022; Grewal et al., 1994; Jagdale and Grewal, 2003). 441 

IJs can withstand and acclimate to falling temperatures by lowering their metabolism ac-442 

tivity (Ali and Wharton, 2013; Brown and Gaugler, 1996). While IJs/dauer nematodes al-443 

ready have a hypometabolism, IJs subjected to cold conditions further slacken their me-444 

tabolism, as reflected by the slower use rate of their lipid reserves (Andaló et al., 2011). 445 

In another example, H. megidis IJs decrease the production of proteins involved in me-446 

tabolism and protein synthesis (e.g., ribosomal proteins), and S. carpocapsae decreases 447 

the production of proteins involved in intermediary metabolism and oxidative phosphor-448 

ylation (Jagdale and Grewal, 2003). Reducing the metabolism and protein synthesis, as 449 
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in H. megidis, may be an effective strategy to prevent proteotoxic stress and to spare en-450 

ergy for the cruiser nematodes (Lillis et al., 2022). Decreasing intermediary metabolism 451 

and oxidative phosphorylation may limit energy loss and reactive oxygen species (ROS) 452 

production (Lillis et al., 2022). 453 

Additionally, EPNs can enhance their tolerance to low temperatures by producing treha-454 

lose, a natural disaccharide (α-d-glucopyranosyl-1,1-α-d-glucopyranoside) involved in 455 

resistance to freezing in numerous organisms (Ali and Wharton, 2015; Grewal and Jag-456 

dale, 2002; Jagdale and Grewal, 2003; Kandror et al., 2002; Liu et al., 2019; NDong et al., 457 

2002; Virgilio et al., 1994). For instance, cold shock induces the transient activity of the 458 

trehalose-6-phosphate synthase (T6PS), trehalose accumulation, and cold tolerance in 459 

S. carpocapsae and H. bacteriophora (Jagdale et al., 2005; Pellerone et al., 2003). Treha-460 

lose protects the cells from thermal injury by stabilizing proteins in their native state and 461 

preventing denaturation or aggregation (Erkut et al., 2011; Hottiger et al., 1994; Jain and 462 

Roy, 2009; Singer and Lindquist, 1998), decreasing damage by oxygen radicals (Bena-463 

roudj et al., 2001), and stabilizing lipid membranes (Crowe et al., 1998a; Crowe et al., 464 

1984; Leslie et al., 1994). In EPNs and in C. elegans, two trehalose phosphate synthases, 465 

Tps-1 and Tps-2, were reported (Depuydt et al., 2014; Murphy et al., 2003; Sonoda et al., 466 

2016). In C. elegans, the two isoforms are under the control of one transcription factor 467 

(DAF-16) (Depuydt et al., 2014; Murphy et al., 2003; Sonoda et al., 2016). Trehalose is 468 

likely released in the intestines and transported via the glucose transporter FGT-1 over 469 

the plasma membrane into the pseudocoel (Feng, 2010; Kitaoka et al., 2013). Finally, tre-470 

halose and late embryogenesis proteins can promote bioglass formation and enhance 471 

EPN tolerance to freezing temperatures (Qiu and Bedding, 2002). Understanding the reg-472 

ulation of trehalose production may offer promising targets to enhance cold tolerance in 473 

EPNs. 474 

Some EPN species further respond to cold stress by producing stress and detoxification 475 

proteins (Lillis et al., 2022). Incubating EPNs at 9°C promotes the production of dehydro-476 

genases, thioredoxins, glutathione-S-transferases (GSTs), catalase, and oxidoreduc-477 

tases in S. carpocapsae (Lillis et al., 2022). In nematodes, the antioxidant-, detoxifica-478 

tion-, and unfolding protein response-pathways are regulated by the transcription factor 479 
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SKN-1, a critical player for nematode longevity (Choe et al., 2012; Ewald et al., 2015; Gil-480 

let et al., 2017).  481 

In C. elegans, low temperatures induce epidermal-specific autophagy (Chen et al., 482 

2019). Autophagy is a process that maintains intracellular homeostasis by degrading and 483 

recycling cytoplasmic components through a lysosomal pathway (Deter et al., 1967; Lev-484 

ine et al., 2011; Megalou and Tavernarakis, 2009; Mizushima, 2007; Palmisano and Me-485 

léndez, 2019). The genetic and molecular pathways involved in autophagy are well char-486 

acterized in the model nematode species and are likely to be conserved across the dif-487 

ferent nematode clades (Fu et al., 2022; Palmisano and Meléndez, 2019). The product of 488 

PAQR-2 detects low temperatures and upregulates poly-unsaturated fatty acids, 489 

gamma-linolenic acid and arachidonic acid, which in turn increases the ratio between 490 

unsaturated and saturated fatty acids and increases epidermal autophagy (Chen et al., 491 

2019; Svensk et al., 2013). Silencing bec-1, let-512, or epg-1 in C. elegans shortens the 492 

nematode lifespan when exposed to low, but not to ambient, temperatures (Chen et al., 493 

2019; Liang et al., 2012; Takacs-Vellai et al., 2005). Interestingly, in their study, Lillis et al 494 

(2022) noted that an autophagy-related protein accumulated over storage time in H. me-495 

gidis, and that the protein levels increased faster at 9°C than at 20°C, suggesting a pos-496 

sible role of autophagy in cold tolerance in EPNs.  497 

Additional cold-tolerance mechanisms were described in C. elegans, including sensing 498 

by transient receptor potential (TRP) channels, activation of a PKC-2/Ca2+-sensitive pro-499 

tein kinase C, activation of DAF-16/FOXO, or phosphorylation (Okahata et al., 2022). 500 

Whether similar mechanisms also exist in EPNs remains to be investigated. 501 

3.2. Elevated temperatures 502 

Elevated temperatures (>32 °C) have detrimental effect on EPN reproduction, growth, 503 

survival and pathogenicity (Grewal et al., 1994; Kung et al., 1991; Zervos et al., 1991). 504 

However some species have been isolated from hot deserts (Edgington et al., 2011; 505 

Glazer et al., 1991; Kusakabe et al., 2019). This shows that some EPNs have evolved 506 

adaptive mechanisms to tolerate elevated temperatures. Up to date, whether the varia-507 

tion in tolerance is genetically determined, or plastic remains unclear. 508 
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Efforts have been made to elucidate genetic information linked to high temperature tol-509 

erance. For example, H. bacteriophora isolates with contrasting heat tolerance were 510 

compared based on their specific expression patterns from RNA-seq and highlighted sig-511 

nificant downregulation of transcript levels in the heat tolerant (EN01) than in the heat 512 

sensitive (Grofit) nematodes (Levy et al., 2020). In the study, highly tolerant line (EN01) 513 

transcripts specific include glycerol kinase (GK), fatty acid desaturase (FAD), and a zinc 514 

finger protein (ZFP). Down regulation of TRE (trehalose)-stress responding in low tolerant 515 

lines (Grofit) while the heat shock proteins (HSPs) and related pathways were up regu-516 

lated in of both natural variants. HSPs catalyze the unfolding of either native or denatured 517 

proteins enabling the cell to eliminate or renature proteins damaged by high temperature 518 

(Candido et al., 1989). High genetic variation in one of the family protein, HSP70, has long 519 

been reported using the Restriction Fragment Length Polymorphism (RFLP) among 6 dif-520 

ferent high temperature surviving EPN species from different geographical locations 521 

(Hashmi et al., 1997). However the involvement of these HSPs in heat tolerance of stud-522 

ied EPN isolates is not known (Glazer, 1996). In other studies, heat stress causes accu-523 

mulation of trehalose as well as a shift in enzyme activities in the trehalose metabolism 524 

(T6PS and trehalase). For example the activity of T6PS and trehalase increase and de-525 

crease, respectively, during the heat shock (Jagdale et al., 2005; Jagdale and Grewal, 526 

2003). The trehalose accumulation might be an adaptive way to cope with thermal stress 527 

or preparation for desiccation stress that will subsequently follow due to evaporation. In 528 

other studies, heat stress causes accumulation of trehalose as well as a shift in enzyme 529 

activities in the trehalose metabolism (T6PS and trehalase). The genetic manipulation 530 

and or modification to attain heat tolerance in EPNs is possible through continuous ex-531 

posure of EPNs to heat stress. For instance, in one study, hybrids of H. bacteriophora 532 

(PS7 and H06 crosses), have increased their mean temperature tolerance from 38.5 to 533 

39.2°C after four selection steps (Ehlers et al., 2005).  534 

Although the genetic mechanisms of heat tolerance in EPNs are not clear yet, studies in 535 

C. elegans have shown that the model organism is equipped with systems helping them 536 

in tolerating the adverse effects of high temperatures stress. The Heat shock transcrip-537 

tion factor-1 (HSF-1) and the forkhead box O (FOXO) transcription factor DAF-16 upreg-538 

ulate chaperone expression after acute heat exposure (Park et al., 2017). According to 539 
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previous studies, HSF1 targets genes encoding molecular chaperones, that are essential 540 

for protein folding, preventing misfolding, and restoring the native conformation of mis-541 

folded proteins. Thus HSF1 promotes stability by preventing protein aggregation and sub-542 

sequent proteome imbalance (Li et al., 2017; Servello and Apfeld, 2020). 543 

3.3. Desiccation 544 

EPNs are soil organisms living in large soil pores on surface films of water or at relative 545 

humidity > 97% (Jung et al., 2012; Navaneethan et al., 2010; Neher, 2010). They possess 546 

a hydrostatic skeleton, inferring that the nematode body is supported by fluid pressure 547 

(Neher, 2010; Riddle et al., 1997; Wallace, 1971). Low water content may thus drastically 548 

limit their motility and survival. (Glazer, 2002; Grant and Villani, 2003; Kaya, 2018).  549 

Nematodes have evolved behavioural and biochemical strategies to cope with unfavour-550 

able soil moisture levels. The model worm C. elegans can navigate towards more favour-551 

able environment following a gradient in soil moisture, a process referred to as hygrotaxis 552 

(El-Borai et al., 2016). The nematode perceives and responds to changes in water gradi-553 

ents as shallow as 0.03% (Russell et al., 2014). Hygrotaxis requires the activation of both 554 

mechanosensitive- and thermosensitive pathways (Hibshman et al., 2020; Russell et al., 555 

2014). The mechanosensitive pathway relies on a conserved DEG/ENaC/ASIC mechano-556 

receptor complex in the FLP neuron pair in the nematode cuticle (Russell et al., 2014). 557 

The FLP neurons are located below the epidermis and are likely sensitive to changes in 558 

cuticle stretch by hydration (Russell et al., 2014). The thermosensitive pathway is acti-559 

vated through cGMP-gated channels in the AFD neuron pair (Russell et al., 2014). The 560 

relevance of thermosensing during the detection and response to dry environment was 561 

suggested to reflect the drop of temperatures due to water evaporation in moister soil 562 

layers (Russell et al., 2014). Signalling pathways involving a patched related protein 563 

(DAF-6), a notch ligand (OSM-11), and mitogen-activated protein kinases (MAPK) were 564 

further suggested to mediate the nematode behaviour (Banton and Tunnacliffe, 2012). 565 

Interestingly, hygrotaxis depends on the nutritional status of the nematode, as dry con-566 

ditions only trigger C. elegans directional movements in starved conditions (Russell et 567 

al., 2014). Although yet untested, similar mechanisms likely drive moisture perception 568 
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and response in EPNs. Nematodes have evolved behavioural and biochemical strategies 569 

to cope with unfavourable soil moisture levels.  570 

Under severe dehydration, EPNs enter in anhydrobiosis (Gal et al., 2005a). Anhydrobiosis 571 

is a reversible physiological process by which an organism loses up to 98% of its body 572 

water up to metabolism arrest, a state called cryptobiosis (Cooper and van Gundy, 1971; 573 

Womersley, 1981). EPNs can reach partial anhydrobiosis (decreasing oxygen consump-574 

tion by ~80%, (Grewal, 2000a)), but not cryptobiosis, and are thus considered as quies-575 

cent anhydrobiotes (Gaugler and Kaya, 1990; Simons and Poinar, 1973; Womersley, 576 

1990). Desiccation elicits a transient increase in EPN metabolism, prior to slowing it 577 

down to levels below the normal metabolic rate (Grewal, 2000b). The glycogen produc-578 

tion decreases, as reflected by the down-regulation of the glycogen synthase (gsy-1 while 579 

trehalose and glycerol synthesis from existing glycogen and neutral lipid reserves in-580 

creases (Behm, 1997; Crowe and Crowe, 1992; Gal et al., 2001; Qiu et al., 2000; Wom-581 

ersley, 1990). Trehalose progressively replaces water in membranes and contributes to 582 

maintaining the structures and stabilizing proteins (Behm, 1997; Crowe et al., 1998b; 583 

Crowe and Crowe, 1992; Elbein et al., 2003). In S. feltiae, desiccation triggers a two-fold 584 

increase in trehalose contents (Solomon and Glazer, 1999). Additionally, the casein ki-585 

nase (CK2) is induced and elicits the transcriptional activation of a nucleosome-assem-586 

bly protein (NAP-1) through physical interaction (Gal et al., 2005b; Gal et al., 2003; 587 

Somvanshi et al., 2008). Osmoregulant molecules (e.g. produced by ALDH), antioxidants 588 

(e.g., Gg., DESC47, HSP40) are further synthesized and may further protect the cells from 589 

desiccation-induced damage (Gal et al., 2003; Solomon et al., 2000; Somvanshi et al., 590 

2008).  591 

While C. elegans dauer nematodes are true anhydrobiotes which are able to lose more 592 

than 98% of their water content (Erkut et al., 2011; Madin and Crowe, 1975), some of the 593 

genetic and molecular mechanisms underlying desiccation responses are likely to be 594 

similar to those of EPNs’ (for review see Hibshman et al., 2020). These mechanisms in-595 

clude the production of trehalose (by trehalose 6-phosphate synthases TPS-1 and TPS-596 

2), an upregulation of the glyoxylate shunt to synthesize succinate and malate (by the 597 

isocitrate lyase and malate synthase enzyme ICL-1), the synthesis of late embryogenesis 598 
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abundant proteins (LEA proteins), heat shock proteins (F08H9.3 and F08H9.4), and anti-599 

oxidant enzymes (SOD-1, GPX-2, GPX-6, GPX-7, CTL-1) and the desaturation of fatty ac-600 

ids by fatty acid desaturases (FAT-3 through FAT-7) (Abusharkh et al., 2014; Braeckman 601 

et al., 2009; Erkut et al., 2016; Erkut et al., 2013; Gal et al., 2004). The accumulation of 602 

trehalose, heat-shock proteins, and LEA proteins is further associated with the formation 603 

of glasses in a dry state, a process referred to as vitrification, which stabilize biomaterials 604 

and avoid free-radical oxidation, lipid phase transition and protein crystallization 605 

(Crowe, 2002; Crowe et al., 1998a; Sun and Leopold, 1997). Finally, LEA proteins act as 606 

molecular shields around proteins and prevent them from aggregating (Goyal et al., 607 

2005; Wise and Tunnacliffe, 2004). EPN ability for water replacement, vitrification, and 608 

molecular shielding under desiccation may be targeted as promising trait for EPN selec-609 

tion (Hibshman et al., 2020). 610 

Desiccation-induced quiescence can increase (e.g., S. carpocapsae) or decrease (e.g., 611 

in S. feltiae) EPN lifespan, but has no or limited effect on their virulence when stored at 612 

room temperature (25°C) (Grewal, 2000a; Grewal, 2000b, 1998; Matadamas-Ortiz et al., 613 

2014). The differential effect of quiescence on EPN lifespan has been attributed to their 614 

foraging lifestyles. Ambushers (e.g., S. carpocapsae) may be more exposed to desicca-615 

tion during nictation than mobile cruisers (e.g., S. feltiae) and may thus have been under 616 

higher selection pressure to tolerate desiccation stresses (Grewal, 2000a; Patel et al., 617 

1997a). However, a concomitant storage of desiccated EPNs at lower temperatures re-618 

duce EPN lifespan (Grewal, 2000a). This sharp effect may be explained by the costs as-619 

sociated with desiccation and low temperature tolerance costs (Grewal, 2000a). 620 

Desiccation tolerance is increased in EPNs being exposed to dehydration gradually ra-621 

ther than rapidly (Simons and Poinar, 1973; Womersley, 1990). Preconditioning EPNs to 622 

sub-lethal dehydration levels elicit an adaptive response that enhances their tolerance 623 

to subsequent, stronger, desiccating conditions (Kung et al., 1991; Nimkingrat et al., 624 

2013; Patel et al., 1997a; Strauch et al., 2004) . The potential of the adaptive response is 625 

species and strain specific (Grewal, 2000a; Nimkingrat et al., 2013; Somvanshi et al., 626 

2008). The selection of desiccation tolerant strains was successful in several studies 627 

(Mukuka et al., 2010b; Mukuka et al., 2010a), although this trait is rapidly lost during in 628 
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vivo mass production when the selection pressure is relieved (Anbesse et al., 2013; 629 

Mukuka et al., 2010c). 630 

3.4. Hypoxia 631 

Nematodes are aerobic organisms. They use oxygen to fuel mitochondrial energy pro-632 

duction and to ensure a proper metabolism. In soil, oxygen levels are naturally lower than 633 

ambient levels (21%) due to root- and microbial respiration and/or soil water contents, 634 

and ranges between 0.5 and 21% (Félix and Braendle, 2010; Grant and Villani, 2003). Hy-635 

poxia (<1% oxygen for worms like C. elegans) limits the cell mitochondrial respiration and 636 

energy production, disrupts proteostasis (Fawcett et al., 2015). EPN tolerance to hypoxia 637 

is highly variable among species and strains (Burman and Pye, 1980; Grewal et al., 2002; 638 

Kour et al., 2021; Morton and García-del-Pino, 2009). For instance, the survival rate of 639 

different H. bacteriophora strains ranges from 10 to 90% after four day exposure to hy-640 

poxia (Grewal et al., 2002). Nematodes have evolved behavioural and physiological strat-641 

egies to prevent hypoxia-induced detrimental effects on their virulence, longevity, and 642 

survival.  643 

Nematodes can perceive environmental oxygen levels and migrate up or down its con-644 

centration gradients. While this behaviour remains elusive in EPNs, it has been investi-645 

gated in C. elegans (Choudhry and Harris, 2018; Gray et al., 2004; Kitazume et al., 2018; 646 

Kumar, 2016). Interestingly, the oxygen sensing neurons (AQR, PQR, URX, BAG) involved 647 

in C. elegans repellence from elevated (21%) levels of oxygen do not mediate the nema-648 

tode response to hypoxia (Zhao et al., 2022). Instead, the sensory neurons ADL and ASH 649 

seem to interact with signals from neurons producing 3′,5′-cyclic guanosine monophos-650 

phate (cGMP), a major second messenger, to modulate the nematode response (Zhao et 651 

al., 2022). Additionally, mitochondria are critical in sensing and responding to hypoxic 652 

conditions. Hypoxia triggers a reversible oxidation of a cysteine residue (Cys366) in the 653 

mitochondrial complex I subunit NDUF2.1, causing a decrease in the complex activity 654 

(Onukwufor et al., 2022). This decrease in turn modulates the production of ROS in a site-655 

specific manner, a process sufficient to elicit a behavioural response to hypoxia (Kaelin 656 

and Ratcliffe, 2008; Onukwufor et al., 2022). In parallel, the conserved oxygen-activated 657 
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prolyl hydroxylases (PHDs) can also act as oxygen sensors and activate the hypoxia ad-658 

aptation program (Bruick and McKnight, 2001; Darby et al., 1999; Epstein et al., 2001; 659 

Ivan et al., 2002; Kaelin and Ratcliffe, 2008; Trent et al., 1983). In C. elegans, a single 660 

family member of PHD is known (EGL-9) (Epstein et al., 2001). Under hypoxic conditions, 661 

the lower PHD activity leads to the inhibition of the glutamate receptor (GLR-1) recycling, 662 

itself inducing a roaming behaviour, and to the upregulation of the hypoxia inducible fac-663 

tor (HIF-1) and its target genes, including genes involved in the energy metabolism, path-664 

ophysiological processes, cell differentiation, and apoptosis (Dengler et al., 2014; Ku-665 

mar, 2016; Liu et al., 2012; Ma et al., 2012; Park and Rongo, 2016; Powell-Coffman, 2010; 666 

Shen et al., 2006; Vora et al., 2022). Finally, the nuclear hormone receptor NHR-49 is re-667 

quired to orchestrate a hif-1 independent response to hypoxia, including detoxification, 668 

and autophagy genes (Doering et al., 2022). The orchestrated response to low oxygen 669 

levels enables the nematode to switch from mitochondrial respiration to anaerobic gly-670 

colysis while maintaining its homeostasis (physiological functions), and ultimately sup-671 

port the nematode survival (Doering et al., 2022; Shih et al., 1996). 672 

3.5. Ultra-violet (UV) tolerance 673 

UV light exposure elevates the mutation rates in the genome. EPN IJs can suffer from 674 

UV irradiation, although an important variability between strains and between studies 675 

should be noted. For example, (Fujiie and Yokoyama, 1998; Gaugler and Boush, 1978; 676 

Jagdale and Grewal, 2007) showed that UV radiations drastically decreased IJ virulence 677 

and survival in S. carpocapsae, but (Shapiro-Ilan et al., 2015) found that the effect was 678 

neglectable. While UV exposure was similar in both studies in terms of wavelength (254 679 

nm) and exposure duration (7-10 min), several hypotheses can explain the apparent dis-680 

crepancy. First, the UV irradiation intensity is a crucial parameter to consider. Studies in 681 

C. elegans demonstrate that UV irradiations at 20 J/m2/min triggers severe stresses, 682 

while irradiations at 10 J/m2/min elicit limited toxicity (Wang et al., 2010). Second, pre-683 

exposure to a mild, sub-lethal, stress can elicit an adaptive response of the organism, 684 

leading to increased tolerance to higher stress levels (Yanase et al., 1999). Finally, differ-685 

ent exogenous (e.g., temperature) and endogenous (e.g., nutritious status) conditions 686 

may modulate the ability of EPNs to cope with specific stresses. When compared within 687 
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the same study, steinernematids have a higher tolerance to UV exposure than het-688 

erorhabditids (Shapiro-Ilan et al., 2015). Yet, the tolerance spectrum of different Het-689 

erorhabditis strain remains large, suggesting possible genetic differences in UV toler-690 

ance between strains (Shapiro-Ilan et al., 2015). 691 

Several UV tolerance mechanisms were elucidated in C. elegans. The model nema-692 

tode can perceive and avoid UV light through (at least) four sensory neurons (ASJ, ASK, 693 

AWB, ASH) (Bargmann, 2006; Ward et al., 2008). ASH and ASK neurons express a seven-694 

transmembrane protein (LITE-1) UV light receptor (Gong et al., 2016) whose activation 695 

triggers the release of a neurotransmitter, glutamate (Ozawa et al., 2022). Glutamate re-696 

ceptors (glc-3, mgl-1, mgl-2) are expressed only in ASH and ASK (glutaminergic neurons) 697 

(Ozawa et al., 2022). The mechanisms involved in ASJ and AWB activation in response to 698 

UV light remain yet more elusive. Using similar technologies than in C. elegans (e.g, neu-699 

ron ablation, genetically inserted synapses, RNAi) will contribute to better understanding 700 

whether the same cellular and molecular mechanisms are involved in EPNs perception 701 

and behavioral responses to UV irradiations. Upon exposure to UV, animal cells activate 702 

surveillance mechanisms responsible for cell cycle arrest, DNA repair, and apoptosis in 703 

case of elevated DNA damage (Bailly and Gartner, 2013; Fortunato et al., 2021). These 704 

cellular mechanisms have been extensively studied in C. elegans and their underlying 705 

pathways have been mostly elucidated (for review see (Canchaya et al., 2003; Elsakrmy 706 

et al., 2020)). Because DNA damage response pathways are highly conserved in animals 707 

(Clancy, 2008), it is likely that EPNs undergo similar processes upon UV exposure. Un-708 

derstanding the impact of UV light on EPN biology is critical when using inundative or 709 

foliar pest control strategies. 710 

4. Biotic stresses 711 

4.1. Viruses 712 

To date, no viral pathogen is known to infect EPNs in soil, although the presence of 713 

bacteriophages has been described in the nematode endosymbiont genomes (Can-714 

chaya et al., 2003; Kaya et al., 1998). Accumulating genomic resources such as RNAseq 715 
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data will likely identify a diversity of viruses interacting with EPNs. Several viruses are in-716 

deed known to infect C. elegans (Félix et al., 2011). The nematode anti-viral response 717 

includes RNA interference (RNAi), RNA uridylation, and intracellular pathogen response 718 

(IPR) (for review see Martineau et al., 2021). The natural variation in C. elegans resistance 719 

to viral infections revealed the crucial role of the dicer related helicase DHR-1 protein, a 720 

pattern recognition receptor (PRR) that mediates the intracellular pathogen response 721 

(IPR) program (van Sluijs et al., 2021). Whether and which viruses can infect EPNs, and 722 

which markers are critical for EPN immune response remains to be elucidated.  723 

4.2. Bacteria 724 

Soil bacteria can attach to nematodes’ cuticle (Adam et al., 2014; Topalović et al., 725 

2019) Pathogenic bacteria have been isolated from free-living nematodes, (e.g., C. ele-726 

gans, (Schulenburg and Félix, 2017)), plant pathogenic nematodes, (e.g., Meloidogyne 727 

hapla, (Adam et al., 2014; Elhady et al., 2017), and EPNs (Bajaj and Walia, 2005; Enright 728 

et al., 2003). For instance, the screening of EPN soil isolates identified Pasteuria sp. on 729 

the cuticle and inside S. pakistense IJs (Bajaj and Walia, 2005). In addition to that, re-730 

cently, several other bacteria were washed-off from soil borne nematodes´ cuticle and 731 

most of them proved to be pathogenetic against Galleria mellonella larvae (Loulou et al., 732 

2023). The entomopathogenic bacterial strains isolated by the authors include Lysini-733 

bacillus fusiformis, Kaistia sp., Alcaligenes sp., Enterobacter sp., Klebsiella quasipneu-734 

moniae subsp. quasipneumoniae, Bacillus cereus, Acinetobacter sp., Pseudomonas ae-735 

ruginosa, and Morganella morganii subsp. morganii (Loulou et al., 2023). The presence 736 

of the endospore-forming bacteria is associated with the abolition of virulence in EPNs 737 

(Bajaj and Walia, 2005). The EPN immune response to bacterial agents remains unclear. 738 

In C. elegans, a pathogen attack is detected through PRRs that detect pathogen-associ-739 

ated molecular patterns and/or disturbances in cellular homeostasis and triggers cell 740 

autonomous and non-autonomous responses (Martineau et al., 2021). Interestingly, C. 741 

elegans is able to detect and evade pathogenic bacteria (Bai et al., 2013; Kim and Flavell, 742 

2020; Schulenburg and Müller, 2004; Tran et al., 2017). For example, the worm can detect 743 
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and avoid bacterial products, such as the exolipid serrawettin W2 from Serratia mar-744 

cescens (Pradel et al., 2007). Understanding how EPNs detect and respond to specific 745 

pathogens may provide target markers that enhance EPN survival in soil.  746 

4.3. Fungi 747 

Nematophagous fungi are common nematode enemies and can be classified as nema-748 

tode-trapping (predators), endoparasitic, or egg- and cyst- parasites (Lopez-Llorca and 749 

Jansson, 2007; Pathak et al., 2017; Soares et al., 2018). The presence of nematophagous 750 

fungi in the soil can decrease EPN populations and their biocontrol efficacy (Kaya and 751 

Koppenhöfer, 1996; Soares et al., 2018). EPNs can protect themselves from the fungal 752 

predators/parasites through several mechanisms. First, cruising nematodes with high 753 

mobility can move away from a fungal trap (Bright et al., 2009; Karthik Raja et al., 2021). 754 

Second, Heterorhabdits species conserve their second-stage cuticle after moulting for 755 

some time, often until invasion into the insect, which provides them an enhanced pro-756 

tection from fungal infection (Timper and Kaya, 1989). Third, EPNs can detect and avoid 757 

fungal chemical cues, although several fungal species have evolved to produce nema-758 

tode attractants (El-Borai et al., 2011). Finally, EPN can learn cues associated with the 759 

presence of fungi and avoid them in subsequent exposure (Willett et al., 2017). In C. ele-760 

gans, the detection of nematophagus fungi is achieved through mechanical and chemi-761 

cal perception, via the tyramine signalling (Maguire et al., 2011; O'Donnell et al., 2020). 762 

Fungus-induced cuticular damage and fungal polysaccharides further activate the worm 763 

immune system (e.g., production of antimicrobial peptides) via pattern recognition re-764 

ceptors (PRRs) (Martineau et al., 2021). EPNs with enhanced physical or immune de-765 

fenses, as well as “educated” EPNs, may provide future avenues to treat fields with high 766 

nematophagous fungi density and ensure EPN efficacy.  767 

4.4. Insects  768 

Predatory collembolas, such as Folsomia candida, Sinella curviseta, or Hypogasturas 769 

cotti, prey on EPNs, reducing their biocontrol efficacy in natural conditions (Epsky et al., 770 

1988; Gilmore and Potter, 1993; Hodson et al., 2012; Ishibashi et al., 1987; Read et al., 771 

2006; Ulug et al., 2014). Although very few studies investigated the EPN defenses against 772 
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insects, it can be hypothesized that nematodes and/or their endosymbionts, are produc-773 

ing and exuding a range of chemicals that repels their enemies.  774 

5. Engineering superior nematodes  775 

5.1. Artificial selection and genetic engineering methods 776 

Understanding mechanisms that modulate EPN IJ persistence in soil will be key to de-777 

velop “superior” (more resistant or tolerant) nematodes and thus enhance pest biocon-778 

trol. Engineering superior EPNs can be achieved through artificial selection or genetic 779 

engineering (Lu et al., 2016). The short life cycle of EPNs and their ease of mass cultiva-780 

tion render them ideal to select traits of interest.  781 

Artificial selection can be conducted by exposing EPNs to a chosen selection pressure 782 

(e.g., desiccation, low temperature) for several generations. Genetic traits that promote 783 

EPN fitness under the imposed stress will be selected. Many studies successfully im-784 

proved EPN tolerance to diverse stressors, such as cold (Koppenhöfer et al., 2000), plant 785 

secondary metabolite (Zhang et al., 2019), plant volatiles (Hiltpold et al., 2010), etc. Se-786 

quencing the genome of the first and last, selected, EPN generations may further allow 787 

to elucidate the genetic pathways/markers involved in tolerance. However, as several 788 

pathways can be concomitantly involved in tolerance to one stress, it is judicious to split 789 

the initial EPN population in several sub-populations each ongoing artificial selection in 790 

parallel to compare the obtained results. Additionally, selecting several superior strains 791 

in variable genetic backgrounds is recommended to prevent trait deterioration through 792 

inter-crossing (Bilgrami et al., 2006; Chaston et al., 2011). Not only have EPNs been se-793 

lected under stressful conditions, but also their endosymbiontic bacteria alone. The best 794 

example was shown in an experimental evolution study where five Photorhabdus symbi-795 

onts from different nematodes were selected in benzoxazinoids. The selected endosym-796 

bionts were later reintroduced to their host strain and one of the selected bacteria signif-797 

icantly improved the infectivity of the host strain against benzoxazinoid-sequestering 798 

western corn rootworm (Machado et al., 2020). 799 
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Genetic engineering tools include mutagenesis, transgene insertion, and genome editing 800 

tools. Mutagenesis can be performed by exposing nematodes to chemical agents such 801 

as ethyl methane sulfonate (EMS) (Liu et al., 2012; Sumaya et al., 2018). The induced DNA 802 

mutations may (or may not) lead to the appearance of a desired phenotype that can then 803 

be stabilized. Transgenes can be inserted into the gonads of adult hermaphrodites, re-804 

sulting in extrachromosomal arrays that can be further incorporated into the genome 805 

(Mello et al., 1991). However, the insertion site of the sequences is not controlled in these 806 

assays (Praitis et al., 2001; Wilm et al., 1999). To palliate these limitations, several ge-807 

nome editing technologies were developed, such as zinc-finger nucleases (ZFNs), tran-808 

scriptional activator-like nucleases (TALENs), and clustered regularly interspaced short 809 

palindromic repeats (CRISPR/Cas9) (Sugi, 2016). ZFNs and TALENs are engineered site 810 

specific nucleases that induce double strand breaks at desired loci (Wood et al., 2011). 811 

The breaks are then repaired by non-homologous end-joining, resulting in insertions and 812 

deletions at the site of interest (Wei et al., 2014; Wood et al., 2011). CRIPSR/Cas9 allows 813 

targeted genome editing by incorporating foreign nucleotides into the CRISPR locus of 814 

the host genome, resulting in the production of CRISPR RNAs (crRNAs) and to the se-815 

quence-specific cleavage of homologous target dsDNA by Cas endonucleases (Jinek et 816 

al., 2012). CRISPR/Cas9 can induce heritable changes in the nematodes’ genome 817 

(Bortesi and Fischer, 2015; Chiu et al., 2013; Frøkjær-Jensen, 2013; Lo et al., 2013; Tzur 818 

et al., 2013). 819 

5.2. Selection limitations 820 

Engineering EPNs that are superior in tolerating some stresses can be associated with 821 

some limitations. First, the success of selection depends on the trait heritability (h2) 822 

(Hartl and Clark, 1997). For instance, the heritability of oxidative stress tolerance is of 823 

h2>0.9 in H. bacteriophora, implying a high probability for the tolerance trait to be trans-824 

mitted to the next generation (Sumaya et al., 2018). Engineering EPNs that are superior 825 

in tolerating some stresses can be associated with some limitations. Firstly, the selected 826 

traits may deteriorate in absence of the selective pressure (Anbesse et al., 2013; Chas-827 

ton et al., 2011). Second, selecting specific traits may come at the expense of other traits 828 

relevant for EPN efficacy (persistence in soil, but also infectivity, reproduction, or storage 829 



Chapter 1 

31 
 

ability). Neutral (e.g., between desiccation and freezing tolerance) (Sumaya et al., 2017), 830 

negative (e.g., between desiccation tolerance and EPN fitness) (Gaugler et al., 1990), and 831 

positive (e.g., between heat-tolerance and longevity) (Grewal et al., 2002) correlations 832 

were reported. A better understanding of the genetic mechanisms underlying the differ-833 

ent responses will be crucial in predicting the occurrence of possible cross-talks. Ge-834 

netic improvement should always be associated with a thorough characterization of the 835 

EPN virulence, longevity, and reproduction abilities, ideally under field conditions 836 

(Bilgrami et al., 2006; Gaugler et al., 1989).  837 

6. Conclusion 838 

EPNs are promising biological control agents of numerous agricultural pests. Yet, their 839 

variable outcome in controlling pest populations in the field has hindered their use. En-840 

gineering superior EPNs with enhanced tolerance to endogenous and exogenous 841 

stresses encountered at the free-living stage (IJs) will likely promote their efficacy. Im-842 

portantly, the selection of traits of interest should be performed according to the specific 843 

characteristics of the field and target pest. Using such a precision approach may rein-844 

force the use of biological control in sustaining food production and food security.  845 
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Abstract 1777 

Benzoxazinoids are plant herbivory defense special metabolites produced by cereal 1778 

crops like maize and wheat. Western corn rootworm (WCR, Diabrotica virgifera virgifera) 1779 

larvae, a serious specialised maize root pest, has evolved some benzoxazinoid adapta-1780 

tion mechanisms. The pest has the capacity to stabilise and sequester (accumulate) 1781 

some of these benzoxazinoids into its own body. Suppressive impacts of these plant me-1782 

tabolites on WCR natural enemies [entomopathogenic nematode, (EPN)], which prey on 1783 

WCR, has been observed. Very few studies focused looking for possible ways of enhanc-1784 

ing EPN performance and fitness under such benzoxazinoids stressful environment like 1785 

the haemolymph of the WCR. In this study, we first assessed the benzoxazinoid toler-1786 

ance of various EPNs by comparing their infectivity success towards benzoxazinoid-fed 1787 

WCR to determine their BX tolerance level. We, furthermore, investigated the possibility 1788 

of enhancing infectivity of benzoxazinoid-susceptible EPN strains through a forward evo-1789 

lutionary experiment. Our results identified six Heterorhabditis bacteriophora strains 1790 

with benzoxazinoid susceptibility with regards to infectivity success. These susceptible 1791 

EPN strains later evolved benzoxazinoid resistance within three host cycles of continu-1792 

ous exposure to benzoxazinoids in WCR, achieving infectivity rates comparable to those 1793 

reared initially resistant ones. With these results we managed to show that EPN benzox-1794 

azinoid tolerance is strain specific. Furthermore, our findings from the evolution experi-1795 

ment highlighted the capacity of EPNs to rapidly adapt to plant chemical defenses, 1796 

providing new insights into enhancing biocontrol strategies against BX-sequestering 1797 

pests like WCR. 1798 

 

Keywords: Entomopathogenic nematodes, benzoxazinoids, adaptation, western 1799 

corn rootworm 1800 
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Introduction 1801 

Insect pests are regulated by both bottom-up forces, such as plant defenses that reduce 1802 

herbivore survival and reproduction, as well as top-down forces, including natural ene-1803 

mies like predators, parasitoids, and pathogens, which suppress herbivore abundance 1804 

(Gripenberg & Roslin, 2007). These forces are critical determinants of ecosystem func-1805 

tioning and biodiversity, as they influence species interactions, population dynamics, 1806 

and the balance between herbivores and their natural enemies (Price et al., 1980). Yet, 1807 

some specialized herbivores like the WCR have evolved the ability to hijack plant de-1808 

fenses by sequestering toxic compounds, which they can repurpose for their own de-1809 

fense against their natural enemies, entomopathogenic nematodes (EPNs) (Erb & Rob-1810 

ert, 2016). This strategy, while beneficial WCR, can turn WCR into significantly resistant 1811 

agricultural pests. However EPNs can still succeed in controlling WCR and mitigating 1812 

their negative impacts on plant health and yield (Hajek & Eilenberg, 2018). Understanding 1813 

how pest enemies have evolved to counter plant defenses sequestered or utilized by in-1814 

sects could open new avenues for developing sustainable biocontrol strategies in pest 1815 

management and to ensure food security. 1816 

Predators and parasitoids have evolved different strategies to resist or to tolerate plant 1817 

defense metabolites. For example, it has been demonstrated that birds in Mexico that 1818 

prey on monarch butterflies have become insensitive to the bitter-taste-plant 1819 

cardenolides that the butterflies sequester from plant (Fink & Brower, 1981). The same 1820 

scenario was also shown by the predators, big-eyed bugs which prey on nicotine seques-1821 

tering -Manduca sexta larvae equally as those fed on nicotine-free plants (Kumar et al., 1822 

2014). Furthermore, development of the specialist parasitoid Cotesia melitaearum was 1823 

unaffected by plant- sequestered iridoid glycosides sequestered by its host Melitaea 1824 

cinxia (Reudler et al., 2011). Additionally , upto date, the  underlying  mechanisms of such 1825 

adaptations remain unclear (Ode, 2006). 1826 

A notable example of a specialized herbivore that can tolerate, sequester, and use plant 1827 

specialized metabolites is the western corn rootworm (Diabrotica virgifera virgifera Le-1828 

Conte, WCR) (Robert et al., 2012; Robert et al., 2017), which is one of the most econom-1829 

ically significant agricultural pests worldwide, responsible for over $2 billion in annual 1830 
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losses due to yield reduction and pest management costs in the United States alone 1831 

(Gray et al., 2009). WCR larvae tolerate the benzoxazinoid compounds by sequestering  1832 

HDMBOA-Glc, and glucosylating  MBOA to MBOA-Glc and again sequestering the result-1833 

ant MBOA-Glc (Robert et al., 2017). Entomopathogenic nematodes (EPNs) infectivity  to-1834 

wards BX-sequestering WCR larvae can be drastically reduced (Robert et al., 2017; 1835 

Zhang et al., 2019). First, WCR larvae release MBOA-Glc through their skin, acting as a 1836 

repellent to EPNs (Robert et al., 2017). Second, EPNs that enter the insect host encoun-1837 

ter elevated level of HDMBOA-Glc, which is also toxic to EPNs (Robert et al., 2017). Fi-1838 

nally, HDMBOA-Glc is locally deglucosylated, leading to the rapid formation of MBOA, 1839 

which is again toxic for both EPNs and their endosymbiotic bacteria (Robert et al., 2017).  1840 

It very clear that EPN effectiveness is greatly compromised against these WCR and any 1841 

possible ways of improving EPN performances in benzoxazinoid stressful situation will 1842 

likely boost crop (maize) productivity.  1843 

In this study, we first assessed the benzoxazinoid tolerance of various EPNs by compar-1844 

ing their infectivity success towards benzoxazinoid-fed larvae to that of benzoxazinoid-1845 

free larvae. We later adapted initially susceptible to benzoxazinoids by  continually ex-1846 

posing them to benzoxazinoid in WCR larvae for 5 successive generation. We hypothe-1847 

sised that benzoxazinoid tolerance may be explained by metabolic and behavioural tol-1848 

erance of EPNs. 1849 
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Material and Methods  1850 

Biological resources 1851 

Maize seeds of the wild type inbred line W22 and benzoxazinoid-deficient mutant 1852 

bx1::W22 (gene identifier GRMZM2G085381; Ds, B.W06.0775 for bx1 and Ds) on the bx1 1853 

gene (Tzin et al., 2015) were kindly provided by Georg Jander (Boyce Thompson Institute, 1854 

Ithaca, NY; USA). Western corn rootworm (WCR, Diabrotica virgifera virgifera) eggs were 1855 

obtained from USDA-ARS-NCARL (North Central Agricultural Research Laboratory, US 1856 

Department of Agriculture, Agriculture Research Service, Brookings, SD, USA). WCR eggs 1857 

were incubated at room temperature and hatching larvae were raised on either bx1::W22 1858 

(“bx- mutant”) or W22 (Bx+) seedlings. WCR larvae fed on bx1::W22 are hereafter referred 1859 

to as bx--fed WCR. WCR larvae fed on W22 are hereafter referred to as BX+-fed WCR. Sec-1860 

ond and third instar larvae were used for infectivity assays. Entomopathogenic nema-1861 

todes (EPNs) were originally provided by Prof. Raquel Campos Herrera (Institute of 1862 

Grapevine and Wine Sciences, Spain) and Prof. Ralf Udo Ehlers (e-nema GmbH, Ger-1863 

many) and maintained in the Biotic Interactions and Chemical Ecology collection. The 1864 

detailed description of 8 individual EPN strains used in this study can be found in Table 1865 

S1, and whole genome sequencing data for all of the strains (Ogi et al., under review.). 1866 

EPNs were amplified in Galleria mellonella larvae bought from a local fish store 1867 

(Fischereibedarf N. Wenger AG, Kasernenstrasse, Bern). Emerging EPNs were collected 1868 

using white traps (White, 1927), filtered through 25 µm sieves, and kept in tap water in 1869 

cell culture flasks (Thermo Fisher scientific, Switzerland). All EPNs were stored in 8°C 1870 

fridges until use. Infective juveniles (IJs) were used in all experiments unless specified 1871 

otherwise. 1872 

Phenotyping benzoxazinoid tolerance of different entomopathogenic 1873 

nematodes strains. 1874 

For this, 26 nematodes strains in our laboratory had their susceptibility against BX-se-1875 

questering WCR larvae assessed. Briefly, W22 and bx1::W22 fed larvae collected from 1876 

rearing pots were separately infected with each of the nematode strains. For this, 5 WCR 1877 

larvae fed on either W22 (BX+) or bx1::W22 (bx-) were placed into individual solo cups (30 1878 



Chapter 2 

68 
 

mL; Frontier Scientific Services, Inc.) containing 3.5g of moist, autoclaved sand (Sel-1879 

materra, Bigler Samen AG). Each treatment was replicated 5 times. An approximate of 1880 

about 100 nematodes suspended in 700 μL tap water were applied in each solo cups. 1881 

Incubating these treatments at 25 ± 0.5 °C promote nematodes infectivity against WCR 1882 

larvae. The percentage of nematode-infected larvae (mostly brick reddish, pinked or yel-1883 

lowish) in each solo cup was determined. For each nematode strain, BX tolerance phe-1884 

notype (resistant or susceptible) was determined by statistical comparison of infected 1885 

BX containing- larvae (W22-fed) to infected BX-free- larvae (bx1::W22-fed). 1886 

Experimental evolution experiment  1887 

Four suceptible strain (09_43, EN01, MG618b and DE6) and 4 resistant strains (HU2, 1888 

VM1, IT6, and DE2) from the infectivity phenotyping experiment results above (Table 1) 1889 

were selected and later divided into four subpopulations named A-D. The individual EPN 1890 

subpopulations were then selected in either W22-fed or bx1::W22 -fed WCR larvae, 1891 

resulting in 64 replicates within subpopulations (8 strains x 4 subpopulations x 2 host 1892 

diet). EPNs were multiplied by adding 50 EPNs to solo cups (30 mL; Frontier Scientific 1893 

Services, Inc.) containing 3.5g of moist, autoclaved sand (Selmaterra, Bigler Samen AG) 1894 

and 5 WCR larvae over five host cycles (called F0 to F5, n= 5 per subpopulation). Each host 1895 

cycle represents approximately 2-3 EPN generations depending on host size (Dillman & 1896 

Sternberg, 2012; Trejo-Meléndez et al., 2024) . EPN infectivity success in BXs, BXs 1897 

preference, and BX survival rate were tested at F0, F3, and F5 generations. 1898 

Entomopathogenic nematodes benzoxazinoids survival rate 1899 

To test EPN susceptibility to BXs, 2’000 living IJs were placed in microtubes (1.5 mL, 1900 

Nolato Treff AG, Degersheim, Switzerland) containing either 25 µg/mL MBOA or 150 1901 

µg/mL HDMBOA-Glc suspended in 1 mL tap water. These doses represent physiological 1902 

WCR concentrations (Robert et al., 2017) Control EPNs were placed in water also in-1903 

cluded. The tubes were left at ambient conditions (25 +/-0.5°C) at ambient light levels. 1904 

After 48 h, all samples were homogenised, and 3 aliquots of 20 µL were used to record 1905 

the number of live and or dead EPNs under a binocular microscope (10x16). The average 1906 

percentage of living nematodes per sample for EPNs of the F0, and F5 generation (n=5 1907 

per strain (F0)/per subpopulation (F5)) was determined. 1908 
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Host preference of entomopathogenic nematodes 1909 

EPN preference assays were conducted as previously described (Robert et al., 2017). 1910 

Briefly, a 5 mm layer of 0.5 % agarose (Sigma Aldrich CHEMIE GmbH, USA) was poured 1911 

into 94 mm diameter petri dishes (Huberlab). Three wells were made along the dish 1912 

diameter. The side wells (5 mm diameter) were filled with 50 uL exudates of bx-fed and 1913 

BX-fed WCR larvae respectively. WCR exudates were collected by rinsing WCR larvae 1914 

with tap water. The central well (1 cm diameter) was used to add 100 EPNs in 100 µL tap 1915 

water. The preference assays were conducted for EPNs of the F0, and F5 generation 1916 

(n=10 per strain (F0)/per subpopulation (F5)). After 24 h, the number of EPNs in each of 1917 

the small wells (left or right side) and their surrounding three marked ring sectors was 1918 

recorded under the microscope.  1919 

Statistical analyses 1920 

For the first BX-tolerance phenotyping test, infectivity of each strain to BX-fed larvae was 1921 

compared to its infectivity to BX-free larvae using t-test (parametric test requirements 1922 

met ) or Wilcox test as an alternative non-parametric test in R. (https://www.r-1923 

project.org/ , version 4.4.2). For the evolution experiment, infectivity assays statistical 1924 

comparisons between diets (BX-fed larvae vs BX-free larvae) or between EPN pheno-1925 

types (resistant vs susceptible strains) per each day  of the, we performed a Two-Way 1926 

Repeated Measures ANOVA (One Factor Repetition), after data passed both Normality 1927 

Test (Shapiro-Wilk) and Equal Variance Test (Brown-Forsythe) in SigmaPlot. For signifi-1928 

cant different groups, all pairwise comparisons were done using Bonferroni t-test. Differ-1929 

ences in EPN preferences were assessed by One sample t tests on the difference of EPN 1930 

numbers on  BX (MBOA-Glc) treated well side to control side containing just water, using 1931 

GraphPad (https://www.graphpad.com/quickcalcs/oneSampleT1/). For the mortality 1932 

assays, mortality effect of the compounds (HDMBOA-GLc or MBOA) were tested using a 1933 

t-test which compared mortality of nematodes in BXs and control treatments of just 1934 

nematodes in water in R and since we didnt observe the toxicity effect, no interaction 1935 

tests were done. 1936 

https://www.r-project.org/
https://www.r-project.org/
https://www.graphpad.com/quickcalcs/oneSampleT1/
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Results 1937 

Benzoxazionoids supressed infectivity success of some EPN isolates 1938 

 A total of Six (DE6, 09_43,EN01,MG618b,TT01 and RW14) out of 26 worldwide screened 1939 

EPN strains suffered infectivtiy suppressions against BX-containing (W22-fed) larvae 1940 

(Table 1). Infectivity phenotype was determined after comparing infectivity success 1941 

perecentage towards BX-containing larvae (W22-fed) to that of against BX-free 1942 

larvae(bx1::W22-fed) for each strain 6 days post infection (T-tests or Wilcox tests, 1943 

P<0.05). All strains with a significantly infectivity supresssion againsts W22-fed larvae 1944 

[Figure S1. (red bars)] as compare to that of bx1::W22 [Figure S1. (orange bars)] were later 1945 

termed susceptible isolates (S) while the unsupressed ones were termed the resistant 1946 

isolates (R) throughout this research work. After statistical tests (4 out of 6) showed 1947 

much significant differences 6 days post infection (Figure S1.A.). Remaining two, 1948 

MG618b and and TT01 showed susceptibilty 3 (Figure S1.B.)  and 4 (Figure S1.C)  days 1949 

post infection respectively to finally make a total of all 6 out of 26 screened strains (Table 1950 

1).  1951 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

71 
 

 

Table 1. Summary table showing benzoxazinoids resistance phenotype of 26 screened IPS nematode. In the 1952 
table, the first column iis the name of the tested isolate followed by its country of origini in the seconf colum. 1953 
The third column is the statistical test comaprison of BX-fed-d to BX-free larave infectivity the correspondin strain, 1954 
were, (*) denotes that the coresponding strain showed significant BX-fed-larvae to BX- free-larvae infectivity 1955 
diffrences. Thus these strains all these strain with an asterik were termed susceptible isolates. The sympol (ns) 1956 
denotes no infectictivity differences and thus these strains were termed resistant isolates. 1957 

Strain Origin bx1::W22 vs W22 fed infectivity  

 

 Phenotype 
 

Hb17 Turkey ns resistant 
 

Hbbio USA ns resistant 
 

S5P8 United States ns resistant 
 

S12 United States ns resistant 
 

S14 United States ns resistant 
 

S15 United States ns resistant 
 

MEX23 Mexico ns resistant 
 

MEX32 Mexico ns resistant 
 

MEX37 Mexico ns resistant 
 

TT01 Trinidad and Tobago * Susceptible 
 

MG618b  Switzerland * Susceptible 
 

RM102 Spain ns resistant 
 

VM1 Spain ns resistant 
 

EN01 Germany * susceptible 
 

IT6 Italy ns resistant 
 

IR2 Iran ns resistant 
 

DE2 Germany ns resistant 
 

PT1 Portugal ns resistant 
 

HU2 Hungary ns  resistant 
 

IL9 Australia ns resistant 
 

DE6 Germany * susceptible 
 

09-43 Turkey * susceptible 
 

Boj Iran ns resistant 
 

RW14 Rwanda * resistant  
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Susceptible EPN isolates evolved resistance to benzoxazinoids within 1958 

three growth cycles in BX-fed WCR larvae  1959 

In average, F0 resistant isolates showed a similar infectivity rate of BX+-fed and bx--fed 1960 

WCR larvae, even though individual differences were noted during the assay.In 1961 

particular, HU2 was more successful in infecting BX+-fed WCR larvae, DE2 and VM1 in 1962 

infecting bx--fed larvae, and IT6 showed no difference (Figure S2). However, no difference 1963 

could be noted between infectivity rates of BX+ and bx--fed WCR larvae within any of the 1964 

recording days. As expected, F0 susceptible isolates displayed a higher infectivity in bx--1965 

fed WCR larvae than in BX+-fed ones at all timepoints, a pattern that was consistently 1966 

observed for each of the four isolates (Figure S2). These observations confirmed the 1967 

categorization of HU2, IT6, VM1, and DE2 as resistant isolates and of DE6, 0943,MG618b, 1968 

and EN01 as BX susceptible isolates (Table1).  1969 

After three host cycles (F3) in BX+-fed WCR larvae, BX-resistant and BX-susceptible 1970 

isolates did show non-significant differences in infecting BX+ or bx--fed WCR larvae 1971 

(Figure 1), a behaviour that was consistently observed through all individual isolates 1972 

except for 09_43 and EN01 (Figure S3) suggesting the adaptation has already been at 1973 

least partly successful. As expected, after five host cycles (F5), BX-resistant and BX-1974 

susceptible isolates similarly infected BX+ or bx--fed WCR larvae (Figure 1), a behaviour 1975 

that was consistently observed through all individual isolates (Figure S5). Overall, three 1976 

host cycles in BX+-fed WCR larvae were sufficient to clear the initial differences observed 1977 

between BX-resistant and BX-susceptible isolates (F0) (Figure 1).  1978 
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Figure 1. Comparing the infectivity of susceptible and resistant isolates in benzoxazinoid-containing larvae (BX+-1979 
fed) over several generations (F0s (A), F3s(B) and F5s (C)) Asterisk (*) indicate significant difference in infectivity 1980 
between resistant and susceptible nematode isolates at a time point between day 3 and 7 post exposure (P<0.05). The 1981 
legend on the right of each Figure shows the significance of the contribution the factors phenotype and time have in 1982 
determining these differences.,**:0.001<p<0.01,*: 0.01<p<0.05, Error Bars: MSe.  1983 

 

The results showed that generation F0 started with significant infectivity differences 1984 

(P<0.05) between susceptible (black line) and resistant isolates (red line, Figure 1A). 1985 

However, at F3 as well as F5 (Figures 1B and 1C), infectivity differences between resistant 1986 

and susceptible isolates disappeared for all data points (P>0.05).Thus, the difference be-1987 

tween susceptible and resistant isolates in benzoxazinoid tolerance disappeared after 1988 

continuous exposure to benzoxazinoids, suggesting that adaptation to BXs has taken 1989 

place within these few generations 1990 
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Entomopathogenic nematodes benzoxazinoid infectivity success 1991 

linked to their behavioral resistance but not on their metabolic 1992 

resistance 1993 

Our results revealed that, given a choice, non-adapted (F0s), susceptible isolates signif-1994 

icantly moved away from MBOA-Glc treated well side and preferred water treated side 1995 

more (P>0.05), while resistant isolates move randomly to either side (Figure 2A). Individ-1996 

ual isolates preferences statistical tests revealed that 3 out 4 susceptible isolates, 1997 

strongly moved away from MBOA-glc treated wells (Figure S4A.), meaning MBOA-Glc 1998 

may exert some repelling effect mostly on non-adapted susceptible isolates than re-1999 

sistant ones. Thus, the infectivity differences of the F0s resistant and susceptible strain 2000 

may be linked to this phenomenon. The MBOA-Glc effect on these susceptible isolates, 2001 

however, get shifted after benzoxazinoid adaptation (F5) as the susceptible isolates 2002 

reared in benzoxazinoids (W222-fed larvae) show significant preference to the MBOA-Glc 2003 

treated wells [Figure 2B, (F5)], which may also mean that due to continuous exposure, 2004 

sensitive isolates may have evolved adaptation to this compound. This shift of MBOA-2005 

Glc effect was not observed in strains selected in benzoxazinoid-free larvae (Figure 2B). 2006 

Surprisingly, no benzoxazinoid toxicity effects were observed from both compound 2007 

(MBOA and HDMBOA-Glc) tested in this experiment as all t-test comparison show no dif-2008 

ference in mortality between treatments (BXs) and control (water) (P>0.05) for all strains 2009 

Figure S5B-C, and within each phenotype (Figure 2C-F).  2010 
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Figure 2. The relationship between EPN infectivity success with EPN behavioural and metabolic resistance. 2011 
Comparison of the choice of isolated groups between BX (MBOA-Glc) or and control (Water) treated wells of the re-2012 
sistant and susceptible isolates was compared before [F0(A.)] and after [F5(B.)] adaptation. Nematode isolates were 2013 
adapted in either benzoxazinoid- fed (W22) or benzoxazinoid -free larvae (bx1::W22-fed). An asterisk (*) and positioning 2014 
(left or right) indicates significant preference of the compound contained in that well side (P<0.05). Survival potential 2015 
of isolated EPN groups after 48 hrs exposure to before [F0(C)] or [F0(E)] and after [F5(D)] or [F0(F)] benzoxazinoid 2016 
(HDMBOA-Glc or MBOA) adaptation respectively. Error Bars: Mse. For all graphs, red border lines indicate susceptible 2017 
isolates group (S) while black indicate resistant isolates group (R) to match the selection lines in Figure 1. 2018 
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Discussion 2019 

In this work, we discovered 6 Heterorhabditis bacteriophora strains which are  suscepti-2020 

ble (infectivity suppressed) to WCR larvae sequestered BXs. This shows that, these 2021 

strains effectiveness is compromised against WCR and or in soils with benzoxazinoids 2022 

as some  benzoxazinoids are  actively released to the environment in relatively large 2023 

quantities through root exudation (Belz & Hurle, 2005; Wouters et al., 2016b; Wouters et 2024 

al., 2016a; Robert & Mateo, 2022). EPN infectivity suppression against WCR been re-2025 

ported before (Zhang et al., 2019; Bruno et al., 2020).This infectivity suppression towards 2026 

WCR may be due to  sequestered benzoxazinoids in WCR (Robert et al., 2017). Also, in 2027 

general most benzoxazinoids are reported have  allelopathic and biocidal effects on mi-2028 

croorganisms (Gerber & Lechevalier, 1964; Gagliardo & Chilton, 1992; Kumar et al., 1993; 2029 

Neal et al., 2012). However, some other defense maize metabolite may also be ingested 2030 

from maize by larvae which may also be in different concentrations between the two 2031 

maize lines we used  as maize  also produce chlorogenic acid (Cortés-Cruz et al., 2003), 2032 

maysin (Rector et al., 2003), protease inhibitors (Tamayo et al., 2000), cysteine protease 2033 

(Pechan et al., 2000), ribosome-inactivating proteins (Chuang et al., 2014) as well as non-2034 

protein amino acid; 5-hydroxynorvaline (Yan et al., 2015) in response to herbivory. An-2035 

other interesting observation was EN01 which is a commercial strain was also among 2036 

these 6 identified susceptible strains. Thus, there is need to think of all possible ways of 2037 

maintaining infectivity in benzoxazinoid environments. 2038 

Our adaptation experiment results revealed a rapid adaptation of these susceptible 2039 

EPNs strains to benzoxazinoid environments. The significant differences in infection 2040 

rates between susceptible and resistant EPN isolates, which were evident at the start of 2041 

the experiment (F0), disappeared after only three generations of exposure to BX-seques-2042 

tering WCR larvae. The rapid adaptation to BXs highlights the remarkable plasticity and 2043 

adaptability of EPNs. Thus, artificial selection is one useful  tool in superior EPN engi-2044 

neering. In the past, experimental attempts to improve EPNs stress tolerance like ben-2045 

zoxazinoids (Zhang et al., 2019), desiccation (Strauch et al., 2004), temperature (Griffin 2046 

& Downes, 1994; Grewal et al., 1996; Ehlers et al., 2005) through continuous stress ex-2047 

posure has been successful. This has been previously hypothesized to be due to EPNs 2048 

have short generation time, small genome size and are also ease of culture (Hiltpold et 2049 
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al., 2010)  and also showing that EPNs, can quickly adjust diverse situations. Interest-2050 

ingly, EPN endosymbionts bacteria alone can also be selected under stressful conditions 2051 

to be become more infectious (Machado et al., 2020). Proving again, that still artificial 2052 

selection is a useful tool for engineering superior EPNs. 2053 

We later observed that before adaptation (F0s), susceptible isolates infectivity suppres-2054 

sion was linked to their  behaviour  in BXs. Our results show significant repulsion effect 2055 

of MBOA-Glc towards the susceptible strains group but not the resistant one. Meaning 2056 

that maybe infectivity suppression of susceptible strains may be driven by  repellent  2057 

forces of BXs against EPNs. Repulsion effect of this WCR larvae sequestered plant me-2058 

tabolite (MBOA-Glc) we used in these assays against EPNs has been reported (Robert et 2059 

al., 2017; Zhang et al., 2019). Not only BXs impacts EPNs, but also other plant metabo-2060 

lites too with effects ranging from attractants, repellents, hatching stimulants or inhibi-2061 

tors have been reported  (Sikder & Vestergård, 2019; Mathesius & Costa, 2021; Sikder et 2062 

al., 202). For  example of such plant compound is the plant signal, (E)-beta-caryophyllene 2063 

attracts EPNs (Rasmann et al., 2005) and exudates from green pea induced reversible 2064 

quiescence in EPN (Hiltpold et al., 2015). Thus, plant metabolites are of economic im-2065 

portance as the compromise EPN potential.  2066 

In conclusion, in this study, we observed the supressive effect of WCR benzoxazinoid  2067 

againsts some susceptible Heterorhabditis bacteriophora strains. We later 2068 

demonstrated a remarkable ability of these suceptible strains to rapidly adapt to the 2069 

host-sequestered plant defense compounds benzoxazinoids within as few as three 2070 

generations of selection. These findings highlight potential targets for enhancing the 2071 

efficacy of EPNs in biocontrol strategies and provide insights into mechanisms by which 2072 

organisms adapt benzoxazinoid toxins. This work provides material which can used to 2073 

make before(F0) and after(F5)  adaptation genomic comparison useful in  development of 2074 

genetic markers that may explain benzoxazinoid tolerance in EPNs. 2075 
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Comparison of the choice of isolated groups between BX (MBOA-Glc) or and control (Water) treated wells of the re-2107 
sistant and susceptible isolates was compared before [F0(A.)] and after [F5(B.)] adaptation. Nematode isolates were 2108 
adapted in either benzoxazinoid- fed (W22) or benzoxazinoid -free larvae (bx1::W22-fed). An asterisk (*) and positioning 2109 
(left or right) indicates significant preference of the compound contained in that well side (P<0.05). Survival potential 2110 
of isolated EPN groups after 48 hrs exposure to before [F0(C)] or [F0(E)] and after [F5(D)] or [F0(F)] benzoxazinoid 2111 
(HDMBOA-Glc or MBOA) adaptation respectively. Error Bars: Mse. For all graphs, red border lines indicate susceptible 2112 
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Table S1: List with nematode strain names, origin and suppliers of nematode used in this study. 2127 

Strain Origin Donator 

Hb17 Turkey Ismael Susurluk 

Hbbio USA Bruce Hibbard 

S5-P8 United States BIN-CE collection 

S12 United States BIN-CE collection 

S14 United States BIN-CE collection 

S15 United States BIN-CE collection 

MEX23 Mexico Ted Turlings (FARCE) 

MEX32 Mexico Ted Turlings (FARCE) 

MEX37 Mexico Ted Turlings (FARCE) 

TT01 Trinidad and Tobago David Clarke  

MG618b  Switzerland Raquel Campos Herrera  

RM102 Spain Raquel Campos Herrera 

VM1 Spain Raquel Campos Herrera 

EN01 Germany (Commercial) Ralf Udo Ehlers (e-nema) 

IT6 Italy Ralf Udo Ehlers (e-nema) 

IR2 Iran Ralf Udo Ehlers (e-nema) 

DE2 Germany Ralf Udo Ehlers (e-nema) 

PT1 Portugal Ralf Udo Ehlers (e-nema) 

HU2 Hungary Ralf Udo Ehlers (e-nema) 

IL9 Australia Ralf Udo Ehlers (e-nema) 

DE6 Germany Ralf Udo Ehlers (e-nema) 

09-43 Turkey Ralf Udo Ehlers (e-nema) 

Boj Iran Ralf Udo Ehlers (e-nema) 

RW14 Rwanda Stefan Toepfer 
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 2128 

Fig S1. Infectivity of 21 Heterorhabditis bacteriophora isolates on WCR larvae fed on BX+ or bx- maize. Figure S1A. 2129 
Comparison of Infectivity success towards WCR larvae fed on WT (red bar) to that of bx::W22 mutant maize line (orange 2130 
bar) by each strain after 6 days of infection. A. comparison of Infectivity success towards WCR larvae fed on WT (red 2131 
bar) to that of bx::W22 mutant maize line (orange bar) by nematode strain MG618b (Figure S1.B) and strain TT01 (Figure 2132 
S1.C) from 3 to 7 days after infection. An asterisk (*) indicate significant differences between infections of a bx::W22 2133 
and W22 fed larvae (P < 0.05) by same strain. Error Bars: MSe. 2134 
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 2135 
Figure S1: F0 infectivity rates of individual entomopathogenic nematode (EPN) isolates (F0) in western corn root-2136 
worm larvae (WCR) fed on wild type plants containing benzoxazinoids (BX+) and bx mutant plants (bx-). EPN in-2137 
fectivity rate (Mean ± SEM) was recorded by adding 50 EPNs to 5 WCR larvae and visually inspecting the larvae for 2138 
colour change daily between day 3 and day 7 after EPN addition (n=5). Red panel (left): BX-resistant EPN isolates. Yel-2139 
low panel (right): BX susceptible EPN isolates. Solid line: EPN infectivity in BX+-fed WCR. Dotted line: EPN infectivity in 2140 
bx--fed WCR. Diet: Diet of the WCR larvae used for infectivity. Two-Way ANOVA on repeated measured were con-2141 
ducted. Stars indicate significant differences between EPN infectivity on BX+ and bx--fed WCR larvae within the day of 2142 
observation. *: p<0.05; **: p<0.01; ***: p<0.001.  2143 
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Figure S3: F3 infectivity rates of individual entomopathogenic nematode (EPN) isolates (F0) in Western Corn Root-2144 
worm larvae (WCR) fed on wild type plants containing benzoxazinoids (BX+) and bx mutant plants (bx-). EPN in-2145 
fectivity rate (Mean ± SEM) was recorded by adding 50 EPNs to 5 WCR larvae and visually inspecting the larvae for 2146 
colour change daily between day 3 and day 7 after EPN addition (n=5). Red panel (left): BX-resistant EPN isolates. Yel-2147 
low panel (right): BX susceptible EPN isolates. Solid line: EPN infectivity in BX+-fed WCR. Dotted line: EPN infectivity in 2148 
bx--fed WCR. Diet: Diet of the WCR larvae used for infectivity. Two-Way ANOVA on repeated measured were con-2149 
ducted. Stars indicate significant differences between EPN infectivity on BX+ and bx--fed WCR larvae within the day of 2150 
observation. *: p<0.05; **: p<0.01; ***: p<0.001.   2151 
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 2152 

Figure S4: F5 infectivity rates of individual entomopathogenic nematode (EPN) isolates (F0) in Western Corn Root-2153 
worm larvae (WCR) fed on wild type plants containing benzoxazinoids (BX+) and bx- mutant plants (bx-). EPN in-2154 
fectivity rate (Mean ± SEM) was recorded by adding 50 EPNs to 5 WCR larvae and visually inspecting the larvae for 2155 
colour change daily between day 3 and day 7 after EPN addition (n=5). Red panel (left): BX-resistant EPN isolates. Yel-2156 
low panel (right): BX susceptible EPN isolates. Solid line: EPN infectivity in BX+-fed WCR. Dotted line: EPN infectivity in 2157 
bx--fed WCR. Diet: Diet of the WCR larvae used for infectivity. Two-Way ANOVA on repeated measured were con-2158 
ducted. Stars indicate significant differences between EPN infectivity on BX+ and bx--fed WCR larvae within the day of 2159 
observation. *: p<0.05; **: p<0.01; ***: p<0.001.  2160 
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 2161 

Figure S5. Comparison of characteristics of benzoxazinoid adapted and non-adapted nematode isolates in ben-2162 
zoxazinoid environments. (Figure S4A.) show the non- adapted (F0S) individual isolate preference difference between 2163 
well treated with BX(MBOA-Glc) and control well with water. Asterisk (*) and the side where its placed indicate signifi-2164 
cant preference of the compound contained in that well side compared to the other side (P<0.05). The individual test 2165 
on BX survival potential of each individual isolate before (F0s) and after adaptation in either BX-fed (W22) or BX-free 2166 
larvae for 5 generation (F5s) (Figure S4B-C). red border lines, indicate susceptible isolates while black indicate re-2167 
sistant isolates 2168 
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Abstract 2321 

One of the endogenous stressful factors of entomopathogenic nematodes (EPNs) inside 2322 

the western corn rootworm (WCR) host are the benzoxazinoids toxins accumulated in 2323 

the body of the host. Our previous Chapter 2 of this work, have revealed that these can 2324 

significantly suppress infectivity of some EPN strain including the commercial strains 2325 

EN01. This gives researchers homework on how to maintain and or enhance infectivity 2326 

even in fields with plants which produce these toxic defense compounds. One stepping-2327 

stone in tackling such challenges is assessing EPNs response in stressful situation and 2328 

link responses to some biological processes then later use the information in EPN breed-2329 

ing and manipulation programs. Here, we assessed the response of EPN strains to all 2330 

three benzoxazinoids (HDMBOA-Glc, MBOA-Glc and MBOA) accumulated in WCR body. 2331 

To do this, we incubated nematodes in benzoxazinoids for some specified time and the 2332 

monitor the stability of the initially added compound over time. Our results revealed that, 2333 

EPNs can biodegrade all three WCR accumulated benzoxazinoids to their breakdown 2334 

derivates in a strain specific manner. These results revealed that EPNs can fight back 2335 

benzoxazinoid toxin effects by biodegrading them to their breakdown derivates, thus, 2336 

showing EPNs ability to respond in stressful situations. This work findings will be helpful 2337 

in elucidation mechanistic bases of inter-strain benzoxazinoid tolerance variation. Addi-2338 

tionally, this will make predictions of benzoxazinoid effect on various other strains pos-2339 

sible. Furthermore, this paves way for nematode breeders for development of genetic 2340 

markers linked to benzoxazinoid tolerance.  2341 

 

Keywords: Benzoxazinoids, entomopathogenic nematodes, biodegradation or 2342 

biotransformation 2343 
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Introduction  2344 

Organisms encounter biotic as well as abiotic stressful environments, which in turn, 2345 

compromise their lifestyle and or lifespan. In response to stress, organisms employ var-2346 

ious resistance and tolerance strategies. Entomopathogenic nematodes (EPNs) face nu-2347 

merous stresses, which compromise their efficacy as pest biological control agents 2348 

(Kaya, 2002; Maushe et al., 2023). A clear understanding of stress mitigation strategies 2349 

of EPNs, may help to breed EPNs that perform better as biological control agents under 2350 

variable biotic and abiotic conditions.  2351 

EPNs encounter biotic stressors such as viruses and phages, bacteria, nematophagus 2352 

fungi, insects, mites (Kaya, 2002; Maushe et al., 2023) and abiotic factors such as heat, 2353 

cold, starvation, desiccation, hypoxic conditions, oxidative stress, and ultraviolet radia-2354 

tion (Robert et al., 2017; Sharmila et al., 2018; Maushe et al., 2023). Previous research 2355 

showed that in response to stress, EPNs have adopted unique structural, biochemical, 2356 

and behavioral stress adaptations (Glazer, 2002; Perry & Wharton, 2011; Perry et al., 2357 

2012). Natural variation in stress resistance can be leveraged through selection or ge-2358 

netic engineering of EPNs and or their endosymbiotic bacteria to improve their perfor-2359 

mance (Lu et al., 2016; Machado et al., 2020; Maushe et al., 2023) 2360 

 When they invade their host, EPNs can be exposed to toxic plant secondary metabolites 2361 

such as benzoxazinoids (BXs). Benzoxazinoids are indole- derived plants herbivory de-2362 

fence metabolites, store as stable glucosides conjugates (Frey et al., 2003; Jonczyk et 2363 

al., 2008; Wouters et al., 2016a). Upon tissue maceration these stable BX glucosides can 2364 

be hydrolysed by endogenous β-glucosidases enzymes, resulting in the liberation of un-2365 

stable and more toxic to plant herbivore aglucones(Czjzek et al., 2000; Oikawa et al., 2366 

2004; Glauser et al., 2011; Marti et al., 2013; Handrick et al., 2016; Wouters et al., 2016a). 2367 

BXs are reported to have allelopathic and anti-herbivory effects against plant herbivores 2368 

and pathogenic fungi and bacteria in cereal plants (Sicker et al., 2000; Sicker & Schulz, 2369 

2002; Bruijn et al., 2018).  2370 

The western corn rootworm (WCR), or Diabrotica virgifera virgifera LeConte, a special-2371 

ised maize root feeder and target of EPN biological control, can tolerate and sequester 2372 
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benzoxazinoids. In studies of BX effects on WCR, no negative effect on growth and devel-2373 

opment has been reported of these ingested BX to WCR (Alouw & Miller, 2015). This ob-2374 

servation was later explained by the revelation that WCR has evolved resistance to BXs. 2375 

WCR larvae accumulates two BXs: HDMBOA- Glc and MBOA- Glc. In addition, WCR lar-2376 

vae can hydrolyze HDMBOA-Glc, to produce MBOA. HDMBOA- Glc and MBOA have a 2377 

toxic effect on EPNs, while MBOA- Glc, repels EPNs (Robert et al., 2017).  2378 

Interestingly, EPNs from the natural range of WCR are resistant to BXs (Zhang et al., 2379 

2019). However, the mechanism underlying this phenomenon are unclear. EPNs may re-2380 

sist BXs either by resistance or tolerance. Tolerance encompasses processes such as 2381 

avoidance,exclusion, compensation, insensitivity as well as enzyme inhibition (Jeckel et 2382 

al., 2022) and resistance includes processes like metabolization, excretion and seques-2383 

tration (Jeckel et al., 2022).  2384 

 To gain deeper insights into potential resistance strategies of EPNs to BXs, we investi-2385 

gated their potential to metabolize BXs. We hypothesized that BX resistant strains may 2386 

have a higher ability to metabolize and/or degrade BXs than non-resistant strains. To as-2387 

sess BX metabolization by EPNs, we incubated them with purified BXs and then meas-2388 

ured the accumulation of breakdown products. We then compared metabolization be-2389 

tween BX resistant and tolerant EPN strains.  2390 
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Material and Methods 2391 

Biological resources  2392 

Maize seeds of the wild type inbred line W22 and benzoxazinoid-deficient mutant 2393 

bx1::W22 (gene identifier GRMZM2G085381; Ds, B.W06.0775 for bx1 and Ds) on the bx1 2394 

gene (Tzin et al., 2015) were kindly provided by Georg Jander (Boyce Thompson Institute, 2395 

Ithaca, NY; USA). Western corn rootworm (WCR, Diabrotica virgifera virgifera) eggs were 2396 

obtained from USDA-ARS-NCARL (North Central Agricultural Research Laboratory, US 2397 

Department of Agriculture, Agriculture Research Service, Brookings, SD, USA). WCR eggs 2398 

were incubated at room temperature and hatching larvae were raised on either bx1::W22 2399 

or W22 seedlings. WCR larvae fed on bx1::W22 are hereafter referred to as bx--fed WCR. 2400 

WCR larvae fed on W22 are hereafter referred to as BX+-fed WCR. Second and third instar 2401 

larvae were used for infectivity assays. 2402 

A total of 21 isolates of the EPN Heterorhabditis bacteriophora were obtained from col-2403 

laborators and commercial providers as described in Supplementary Table 1 (Zhang et 2404 

al., 2019) and maintained in the Biotic Interactions and Chemical Ecology groups (Uni-2405 

versity of Bern, Switzerland). The EPN isolates (09_43, DE2, DE6, EN01, Hb 17, Hb bio, 2406 

HU2, IL9, IR2, IT6, MEX-17, MEX-21, MEX-33, MG618b, PT1, S12, S14, S15, S5-P8, S7 and 2407 

VM1) were chosen according to the following criteria: (i) known genomes (Ogi et al., un-2408 

der review ), (ii) know susceptibility level to BXs (Ogi et al., 2024), and (iii) diverse geo-2409 

graphic origins including regions where EPNs have co-evolved with western corn root-2410 

worms (WCR), and regions where WCRs are absent or introduced less than 50 years ago 2411 

(Miller et al., 2005; Zhang et al., 2019). All isolates were multiplied in greater wax moth 2412 

(Galleria mellonella) larvae, bought from local fish store (Fischereibedarf Wenger AG, 2413 

Bern, Switzerland) and kept at 8 °C until use. EPN amplification was performed following 2414 

a previous protocol by (White 1927)  with some modifications. Briefly 400 µl of nema-2415 

todes were added to about five G. mellonella larvae place in a 5 cm diameter petri dish 2416 

(Greiner Bio-One, Frickenhausen, Germany) on filter paper (55 mm diameter, Whatman, 2417 

China). The infected larvae were then incubated at 24 ± 2℃ in an incubator. After seven 2418 

days infected G. mellonella larvae were transferred to white traps and incubated in dark-2419 

ness at 24 ± 2℃. Hatching EPNs (infective juveniles, IJs) were collected and concentrated 2420 

using a 25 µm pore diameter sieve (Rentsch GmbH, Germany) and poured with tap water 2421 
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into cell culture flasks (160 mL, Thermo Fisher scientific, Switzerland). All collected EPNs 2422 

were stored at 8°C in a fridge until use.  2423 

Benzoxazinoids metabolization assays  2424 

Benzoxazinoid metabolization by different EPN isolates was tested by adding 2-O-β-D-2425 

glucopyranosyl-2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one) (HDMBOA- 2426 

Glc), 6-methoxy-benzoxazolin-2(3H)-one (MBOA), or 3-β-D-glucopyranosyl-6-methoxy-2427 

benzoxazolin-2(3H)-one (MBOA- Glc) to an EPN-containing solution in 6 independent ex-2428 

periments. HDMBOA-Glc was isolated from maize plants in our laboratory and resulted 2429 

in a >99% purity (Mateo et al.; Unpublished). MBOA was bought MBOA were purchased 2430 

from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland). MBOA-Glc were synthesized in 2431 

our laboratory directly from or adapting published protocols, (Sicker et al., 2001; Macías 2432 

et al., 2006; Li et al., 2013). Preliminary assays demonstrated that (i) these BXs are stable 2433 

in water solution under ambiant conditions for 10 days (Supplementary Figure S1), (ii) 2434 

none of the 21 H. bacteriophora isolates produce these BXs (Supplementary Figure S2), 2435 

and (iii) EPNs can transform some of these after one day (Supplementary Figure S3), sug-2436 

gesting that longer periods of incubation might highlight conversion products.  2437 

 2438 

In a first series of three experiments, BX metabolization was tested in the commercial H. 2439 

bacteriophora strain EN01 after 1, 2, 3, and 7 days (HDMBOA- Glc assay) or 1, 3, 7, and 2440 

10 days (MBOA- Glc assays) and 1, 3 and 10 days (MBOA assays). In a second series of 2441 

two experiments, HDMBOA- Glc and MBOA- Glc metabolization was tested in 21 H. bac-2442 

teriophora strains after 3 days. In all assays, approximately 10’000 EPNs were placed in 2443 

1 mL tap water. HDMBOA- Glc, MBOA, or MBOA- Glc, were added to half of the tubes to 2444 

reach a final concentration of 150 µg/mL, 100 µg/mL, 50 µg/mL respectively (n=5). These 2445 

concentrations correspond to BXs concentrations reported in WCR (Robert et al., 2017). 2446 

All samples were incubated at 25 ± 2 ℃. After incubation, 500 µL aliquots were collected 2447 

from the samples and mixed with 500 µL methanol (MeOH, Fisher Chemica). The sam-2448 

ples were then centrifuged at 10 °C at 13’500 RPM for 10 min. The supernatant were col-2449 

lected into 1.5 mL HPLC-glass vials (VWR International, UK)). The pellets, containing EPN 2450 

bodies, were rinsed three times adding distilled water and centrifuging. The final pellet 2451 

mass was measured, and 10 µL extraction buffer (50% MeOH with 0.1% formic acid (FA, 2452 
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Fisher Chemical, Waltham, MA, USA) was added per 1 mg pellet. 1.4 mm zirconium oxide 2453 

beads (Precellys, Bertin Technologies, France) were added to the tubes for grinding in a 2454 

bead-beater at 30 X speed for 3 minutes before centrifugation at 13’500 RPM at 10 °C for 2455 

15 min. The supernatant was collected in 1.5mL glass vials (VWR International, UK) for 2456 

benzoxazinoid analyses.  2457 

Benzoxazinoid analyses 2458 

All the collected analytic glass vials were later sent for accurate quantitation of most 2459 

known benzoxazinoids and their breakdown products and conjugates. This was done us-2460 

ing an ultra-high performance liquid chromatography-mass spectrometry system 2461 

equipped with an electrospray source (UHPLC-QDA) to detect, quantify, and identify 2462 

known new structures through exact mass and fragmentation analysis by MSE as ana-2463 

lytic methods. Briefly, for detection and identification of recovered benzoxazinoid recov-2464 

ered breakdown derivatives after their incubation with EPNs, using UHPLC-MS system 2465 

equipped with an electrospray source (Waters i-Class UHPLC-QDA, USA). Recovered 2466 

benzoxazinoids and their breakdown derivates were separated on a BEH C18 column 2467 

(2.1 × 100 mm i.d., 1.7 μm particle size). Mobile phase A and B of Water (0.1% FA) and 2468 

acetonitrile (0.1% FA) respectively were set with respective elution profiles of: 0–9.65 2469 

min, 97–83.6% A in B; 9.65–13 min, 100% B; 13.1–15 min 97% A in B which equivalate to 2470 

0.4 mL/min. A stable column temperature of 40°C was maintained, as well as an injec-2471 

tion volume of 5μL. The MS was set to operate in a negative reverse mode, and data ac-2472 

quisition scan range of (m/z 150–650) using a cone voltage of 10V. default setting were 2473 

maintained for all other MS parameters as suggested by the manufacturer. Absolute BX 2474 

concentrations were determined using standard curves obtained from purified benzoxa-2475 

zinoid compounds. Briefly for the synthesis of the standards: - BOA (benzoxazolin-2(3H)-2476 

one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) were purchased from Sigma-Al-2477 

drich Chemie GmbH (Buchs, Switzerland). HMPMA (N-(3-methoxy-2-hydroxyphenyl) ma-2478 

lonamic acid) was received as a gift from Prof. Dr. Francisco A. Macías (University of Cá-2479 

diz, Spain). DIMBOA-Glc (2-O-β-D-glucopyranosyl-2,4-dihydroxy-7-methoxy-2H-1,4-2480 

benzoxazin-3(4H)-one) and HDMBOA-Glc (2-O-β-D-glucopyranosyl-2-hydroxy-4,7-di-2481 

methoxy-2H-1,4-benzoxazin-3(4H)-one) were isolated from maize plants in our labora-2482 

tory. DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), MBOA-Glc (3-β-2483 
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D-glucopyranosyl-6-methoxy-benzoxazolin-2(3H)-one), HMBOA (2-hydroxy-7-methoxy-2484 

2H-1,4-benzoxazin-3(4H)-one), APO (2-amino-3H-phenoxazin-3-one), AMPO (9-meth-2485 

oxy-2-amino-3H-phenoxazin-3-one), AAMPO (9-methoxy-2-acetylamino-3H-phenoxa-2486 

zin-3-one), were synthesized in our laboratory directly from or adapting published proto-2487 

cols. 2488 

Infectivity assays 2489 

The infectivity of the selected subpopulations was tested in WCR larvae fed on either 2490 

W22 (maize plants which produces benzoxazinoids) or bx::W22 mutant plants (benzoxa-2491 

zinoids -free plants). Briefly, 5 WCR larvae were placed into solo cups (30 mL; Frontier 2492 

Scientific Services, Newark, USA) containing 3.5 g of moist, autoclaved, sand (Sel-2493 

materra, Bigler Samen AG, Steffisburg, Switzerland). Approximately 100 EPNs sus-2494 

pended in 700 μL tap water were added into the solo cups and incubated at 25 ± 0.5 °C 2495 

for 7 days. As infected larvae with a reddish or yellowish colour phenotype were consid-2496 

ered infected by nematodes and the infectivity rate was recorded visually 3-7 days post 2497 

exposure (n=5 per each of the strain).  2498 

Screening for homologous enzyme corresponding to benzoxazinoid 2499 

biodegradation in EPNs and their endosymbiont bacteria.  2500 

The benzoxazinoid pathway is not yet fully known but some of the enzymes responsible 2501 

for benzoxazinoids degradation have been reported in past studies. Deglucosylating of 2502 

benzoxazinone glucosides like HDMBOA-Glc and MBOA-Glc to benzoxazinone aglucone 2503 

like MBOA and HMBOA by β-glucosidases enzyme like maize reported ZmGLU1 and 2504 

ZmGLU2 (Sue et al., 2011; Schulz et al., 2016) while further breaking down of aglucones 2505 

has been also reported to involves microbe enzymes like BxdA (Thoenen et al., 2024) as 2506 

well as CbaA and Mbl1 (Saunders & Kohn, 2008). Using this information from past re-2507 

ports, we were curious to explore presence of these five enzymes (Table 1, 1st column) in 2508 

either or both, the EPNs or their endosymbiont bacteria genomes. For this, the potential 2509 

presence of reported sequence of genes known to be involved in the degradation of ben-2510 

zoxazinoids has been used in a blast search both against a blast database built on a ref-2511 

erence genome for Heterorhabditis bacteriophora ((Ogi et al., 2024) as well as a blast 2512 

database built on the genome of Photorhabdus luminescens ( (Thoenen et al., 2023).The 2513 
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blast sear was run as a blastn, with a maximum E-value of 1e-1 and a gap cost of 5 2. The 2514 

resulting hits were evaluated based on the length of the match, the percentage of the 2515 

query sequence that showed a match to the reference and the percentage of the match 2516 

between the sequences.  2517 

Statistical analyses  2518 

All statistical analyses were conducted in R (https://www.r-project.org/, version 4.4.2) ). 2519 

Effect of different isolates as well as differently treated nematode on benzoxazinoids 2520 

recovery after degaradation was tested using One-way ANOVA if all parametric test 2521 

requirements were meet. For non parametric data, its alternative Kruskal-Wallis was 2522 

used. Whenever there was a significant effect (P<0.05), post hoc pairwise comparisons 2523 

between treatments or isolates was carried out by extracting "estimated marginal 2524 

means" using “emmeans multicomp” package in R 2525 

(https://doi.org/10.32614/CRAN.package.emmeans ). 2526 
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Results 2527 

Entomopathogenic nematode (isolate EN01) metabolizes 2528 

benzoxazinoids 2529 

HDMBOA-Glc, MBOA-Glc and MBOA were stable over the course of the experiments,  2530 

and were not endogenously produced by EPNs. (Supplementary Figure S1) (Supplemen-2531 

tary. Figure S2). However, the presence of EPNs resulted in their rapid transformation. A 2532 

slightly lower recovery of HDMBOA-Glc, MBOA-Glc and MBOA at the beginning was ob-2533 

served in presence of EPNs as compared to the benzoxazinoid only control, suggesting 2534 

potential matrix effects in EPN samples ( Supplementary Figure S3C. and Supplementary 2535 

Figure S4A.). At day 2, a significant reduction in all three BXs was observed in the super-2536 

natant (Figure 1A-C). No BXs were detected in the EPN bodies, suggesting rapid metab-2537 

olization. (Supplementary Figure S4). Incubating EPNs in HDMBOA-Glc resulted in a 2538 

complete disappearance of the compound after four days of incubation (Figure 1A). Sim-2539 

ilarly, the traces of HMBOA-Glc present in the original HDMBOA-Glc standard decreased 2540 

over time (Figure 1A). The decline was accompanied by an increase in MBOA and HMBOA 2541 

(Figure1A). A similar profile was observed after 10 days, where MBOA was dominant in 2542 

the matrix (Supplementary Figure S5).  2543 

Whether the formation of HMBOA arose from a direct deglucosylation of HMBOA-Glc 2544 

and/or from a demethylation of HDMBOA-Glc to HMBOA-Glc prior deglucosylation could 2545 

not be established at this stage. However, the mass balances between HDMBOA- Glc 2546 

and MBOA, as well as between HMBOA-Glc and HMBOA corresponded to each other and 2547 

would suggest that these two pathways were independent, with HDMBOA- Glc being first 2548 

deglucosylated to HDMBOA, a rapid and highly unstable compound (Czjzek et al., 2000)), 2549 

itself spontaneously hydrolyzed to MBOA (Figure 1B); and HMBOA- Glc being deglucosyl-2550 

ated to HMBOA. Adding MBOA-Glc to EPNs showed a steep decrease in initial MBOA- Glc 2551 

concentrations with total disappearance after 7 days (Figure1C). The disappearance of 2552 

MBOA-Glc was accompanied by a sharp increase in MBOA and AMPO concentrations 2553 

(Figure1C, D). Thus, in the presence of EPNs, MBOA was slowly converted to AMPO and 2554 

AAMPO (Figure1D,E).  2555 
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 2556 

Figure.1 Metabolisation pattern of benzoxazinoids (BXs) by entomopathogenic nematodes (EPNs). Biotransfor-2557 
mation of HDMBOA-Glc (A), MBOA-Glc (C) and MBOA (E) over time (Mean ±SEM). Recovered BXs compounds and their 2558 
derivates were measured from a matrix of about 10 000 nematodes of starin EN01 incubated in BXs suspended in 1mL 2559 
water over a period of time ranging from 1-10 days. Broken lines are the initially added compound while solid lines 2560 
represent derivative compounds from the intialy added compound measure after the stipulated time. Benzoxazinoid 2561 
full names and structures can be found in Supplementary Table SX. The proposed breakdown pathways and proposed 2562 
responsible enzymes (using past reports) in HDMBOA-Glc (Figure 1B.), MBOA-Glc (Figure 1D) biotransformation. The 2563 
statistical comparison of the benzoxazionoids and the dreakdown derivates of HDMBOA-Glc (Figure Fi.), MBOA-Glc 2564 
(Figure Fii.), ) as well as MBOA (Figure Fiii.), ) at each point of data collection and different letters (a,b etc) indicates 2565 
statistical concentration differences of the measured compound for that specific day. 2566 
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Benzoxazinoid metabolization is widespread among EPN 2567 

(Heterhabdtis bacteriophora) isolates 2568 

The conversion of HDMBOA-Glc and of MBOA-Glc to MBOA after 3 days was observed in 2569 

all 21 tested isolates (Figure 2). The metabolization of HDMBOA-Glc seemed to be faster 2570 

than of MBOA-Glc (Figure 2). The rate of metabolization of each compound was different 2571 

between isolates (Figure 2A and Figure 2B). In particular, AMPO was only detected in 9 2572 

out of 21 isolates after the addition of MBOA- Glc, suggesting either different metaboli-2573 

zation rates or capabilities among strains (Figure 2B). Additionally, for some isolates, 2574 

such as MG618b, during HDMBOA-Glc metabolization experiment and 09_43 in the 2575 

MBOA-glc experiment, the recovered compounds were far much less that the initial con-2576 

trol concentration which may be due to undetected compound production or isolate-2577 

specific matrix effects. Interestingly, the metabolization of HDMBOA-Glc after those 3 2578 

days was possible for all strains while only 11 isolates had significant degradation of 2579 

MBOA-Glc.  2580 
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                                 2581 

Figure.2. Benzoxazinoid metabolization is widespread among Heterorhabditis bacteriophora isolates. Assessing 2582 
the potential of different EPN isolate to metabolise HDMBOA-Glc (Figure 2A.) and MBOA-Glc (Figure 2B.) after 3 2583 
days of incubations. Each bar represent a unique EPN isolate and the colour and height of each bar rer represent the 2584 
different kinds of recovered benzoxazinoids derivates and their concentrations in the matrix respectively. The legend 2585 
table below show the statistical comparison for each recovered derivative after transformation and are represented 2586 
by their respective colour on the graphs. Different lettters in the table (a,b,c,etc) denotes significant concentration 2587 
diffrence among strains for the respective compound and columns with compond color in a raw show strains 2588 
signnificantly different from controls treatment of just compound [HD= HDMBOA-Glc and MG= MGBOA-Glc] without 2589 
nematodes. The first coloured column represent colour of all recovered derivatives as in the transformation graphs 2590 
shown on top of each table. acronomy HD and MG respectively.Error Bars: MSe  2591 
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Benzoxazinoid metabolization is independent from WCR co-evolution 2592 

and benzoxazinoid susceptibility 2593 

 To test whether EPNs share an evolutionary history with WCR show differential metabo-2594 

lization, we used the data we compiled on origin of these 21 tested strains (supplemen-2595 

tary table S2., second column). From the table nine out of the 21 tested strains shared a 2596 

common origin with the WCR (USA and Mexico) while the rest do not. We compared the 2597 

average percentage of remaining initial compound (HDMBOA-Glc or MBOA-Glc) be-2598 

tween these two groups of strains. We did not see any statistically significant differences 2599 

(P>0.05) between the two groups of WCR origin in both cases (Figure 3.A and Figure 3B.) 2600 

In the previous chapter 2, infectivity assays demonstrated that 6 of the 21 isolates were 2601 

susceptible to benzoxazinoids sequestered by WCR (Supplementary Figure S6 and Sup-2602 

plementary Table S2.). As previously stated, these 6 isolates showed significant infectiv-2603 

ity suppression towards BX-containing (W22 maize line fed) WCR larvae as compared to 2604 

their benzoxazinoid -free (bx1::W22 maize line- fed) WCR larvae. Two of these 6 BXs sus-2605 

ceptible strain (TT01 and RW14) could not be recovered during the time of the metaboli-2606 

zation experiment, thus the average of the benzoxazinoid degradation rate of remaining 2607 

4 isolates was compared to that of the remaining isolates. No significant relationships 2608 

between EPN BX resistanceand BX metabolization rate were found (Figure 3C. and Figure 2609 

3D.). 2610 
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 2611 

Figure 3. The relationship between EPN geographical distance of where the host (WCR) originated as well as in-2612 
fectivity success towards BXs- accumulating host (WCR) to EPN response in benzoxazinoid environments. Com-2613 
parison of degradation rate of HDMBOA-Glc and MBOA-Glc between isolates which share evolutionary history (Yes 2614 
group) with the WCR pest to that of those isolates which do not share evolutionary history (No group) with the WCR 2615 
pest Figure 3A. and Figure 3B.). Comparison of degradation rate of HDMBOA-Glc and MBOA-Glc between isolates with 2616 
infectivity resistant (R group) to that of those isolates with infectivity suppression [susceptible isolates, (S group)] 2617 
against benzoxazinoid-Fed WCR (Figure 3C. and Figure 3D). In both case the 2 resultant groups of relationship with 2618 
WCR and benzoxazinoid infectivity success were also compared to “control group” of treatments with no nematodes 2619 
but just benzoxazinoid (HDMBOA-Glc or MBOA-Glc) which obviously had 100% of initial compound remained as their 2620 
was no biotransformation of compound there. The letters (“ns”) of each of the 2 bars denotes not statistical dif-2621 
frefences in comapraison of any of the indicated groups as demarcated by the start and end point of each small bar 2622 
on top. (P>0.05) after some pairwise t.test. All cyan colloured bars represent group comparison of HDMBOA-Glc deg-2623 
radation while all sky blue bars represent MBOA-Glc degradation comparisons. 2624 
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A benzoxazinoid biodegrading enzyme is present in EPN endosymbiont 2625 

bacteria 2626 

To gain first insights into the mechanisms of benzoxazinoid metabolization in EPNs, we 2627 

screened for homologous sequences of reported responsible benzoxazinoid degrading 2628 

enzymes in the genome of (Heterorhabditis bacteriophora) and their endosymbiont (Pho-2629 

torhabdus luminescens). We discovered two of the bacteria sequences shared more 2630 

than 70 % homology with the BdxA: - an enzyme recently discovered soil bacteria to be 2631 

responsible for the conversion of MBOA to AMPO (Table 1). No strong candidates were 2632 

found for the other candidate enzymes. This may mean there are other enzymes, not yet 2633 

reported in literature,  are responsible for benzoxazinoid biodegradation in EPNs.  2634 

Table1. Output of sequence holomology search of reported benzoxazinoid degrading enzymes to nematode (Het-2635 
erorhabidtis bacteriophora) and endosymbiont bacteria (Photorhabdus luminescens) genomes. The first column 2636 
is the name of the reported protein followed by the organism where the protein homology was searched, third from 2637 
last column reports length of match between the sequences, second from last column report how perfect the match 2638 
within those bits of sequence and last column report how much of the sequence we wanted blast against the genome 2639 
is actually represented in the match. 2640 

Protein  Organism  scaffold length of 
match 

%match within 
residual sequence 

query 
coverage 

BdxA Photorhabdus NA 586 63.70% 72.85% 

BxdA Photorhabdus NA 710 63.00% 87.88% 

Mbl1 Photorhabdus NA NA NA NA 

PhsA Photorhabdus NA NA NA NA 

CbaA Photorhabdus NA 24 NA NA 

ZmGlu1 H. bacteriophora HiC_scaffold_3 26 96.20% 1.31% 

ZmGlu2 H. bacteriophora HiC_scaffold_3 26 100% 1.33% 

 2641 
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Discussion 2642 

 This study, revealed that, EPNs, when exposed to BXs in WCR such as HDMBOA- Glc. 2643 

MBOA- Glc and MBOA (Robert et al., 2017), they will metabolize them. However, as we 2644 

did not observe a direct correlation between BX metabolization and infectivity success 2645 

of a BX-sequestering insect herbivore, in which context BX metabolization may be adap-2646 

tive is unclear.  2647 

BX glucosides were deglycosylated by EPNs. Although HDMBOA- Glc is known to be toxic 2648 

to EPNs and MBOA- Glc is also known to repel EPNs (Robert et al., 2017), degrading them 2649 

to unstable benzoxazinone aglucones and benzoxazolinone might not be a smart move, 2650 

as past observations have reported that benzoxazinone aglucones and their degradation 2651 

products are more reactive and may cause enzyme or protein activity modification (Nie-2652 

meyer et al., 1982; Atkinson et al., 1991; Niemeyer, 2009). BX activation upon disturb-2653 

ances work in a similar pattern like compounds such as glucosinolates and cyanogenic 2654 

and iridoid glycosides ((Morant et al., 2008; Pentzold et al., 2014). An example being the 2655 

observed increased activity of oat cell wall peroxidase enzyme which resulted in en-2656 

hanced rate of H2O2 production from the oxidation of NADH (González & Rojas, 1999; 2657 

Niemeyer, 2009) due to presence of BX aglucones  (Wouters et al., 2016a). DIMBOA also 2658 

causes enzymes such as papain (Pérez & Niemeyer, 1989; Niemeyer, 2009) and aphid 2659 

cholinesterase’s (Cuevas & Niemeyer, 1993; Niemeyer, 2009) to be inactivated. This may 2660 

be due the reported reaction of benzoxazinone aglucone with thiols and with amines (At-2661 

kinson et al., 1991; Wouters et al., 2016a). This may also be the reason behind the dis-2662 

covered toxicity effect of MBOA to EPNs (Robert et al., 2017). Past studies reported im-2663 

paired growth of Arabidopsis thaliana through inhibiting histone deacetylase (HDAC) ac-2664 

tivity (Venturelli et al., 2015) due to AMPO presence. However, further tests need to be 2665 

done on the specific effects of HMBOA and AMPO and other derivatives on EPNs to un-2666 

derstand whether metabolization is beneficial or harmful to EPNs.  2667 

 EPNs slowly degrade MBOA to the benzoxazolinones AMPO and AAMPO. This conver-2668 

sion also happens in soil environments (Macías et al., 2004, 2005; Hussain et al., 2022). 2669 

Past reports stated that the instability of aglucones will lead to spontaneously further 2670 

break down to benzoxazolinones which are even more toxic to herbivores (Oikawa et al., 2671 
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2004; Glauser et al., 2011; Marti et al., 2013; Handrick et al., 2016; Wouters et al., 2016b). 2672 

However, we did not observe the spontaneous part in our work as benzoxazinoid biodeg-2673 

radation was only observed were we added nematodes and not in the control treatment 2674 

with just benzoxazinoids. This is in line with work showing that benzoxazolinone produc-2675 

tion is facilitated by specific enzymes.  2676 

Some of the reported enzymes for this step of MBOA to AMPO conversion include CbaA 2677 

and Mbl1 from Pigmentiphaga spp and Fusarium Verticillioides (Saunders & Kohn, 2008) 2678 

respectively. As well as the recently reported enzyme namely BxdA enzymes in Micro-2679 

bacterium spp. (Thoenen et al., 2024), which we also discovered to be present in EPN 2680 

endosymbionts bacteria in our work. Our search for other benzoxazinoid degrading en-2681 

zymes like endogenous β-glucosidases (ZmGLU1 and ZmGLU2 )previously reported (Sue 2682 

et al., 2011; Schulz et al., 2016) to hydrolyse the glucose moiety from benzoxazinone glu-2683 

cosides liberating resulting in the liberation of aglucones (Czjzek et al., 2000) did not re-2684 

sult in any hits. How EPNs deglycosylate BXs, thus, remains unclear. One possibility is 2685 

that surface microbes may contribute to this reaction as EPNs have them (Jiménez-Cor-2686 

tés et al., 2016; Goda et al., 2020; Ogier et al., 2020; Ogier et al., 2023). This hypothesis 2687 

requires further testing.  2688 

Our hypothesis that EPN resistance to WCR sequestered BXs may be related to their abil-2689 

ity to metabolize BXs could not be confirmed, as we did not observe any associations 2690 

between these two traits across different EPN isolates. In accordance with earlier work 2691 

(Zhang et al., 2019), EPN resistance may be more strongly related to behavior, and pos-2692 

sibly BX uptake. Further work is required to assess these mechanisms.  2693 

 In conclusion, this work shows that EPNs can metabolize BXs in their environment in a 2694 

strain-specific manner. This may influence BX toxicity and microbial as well as plant in-2695 

teractions. To what extent the ability of EPNs to metabolize BXs is currently unclear, but 2696 

it seems unlikely that metabolization is a major factor that contributes to EPN BX re-2697 

sistance and biocontrol success against BX sequestering insects such as the western 2698 

corn rootworm.  2699 
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parison of degradation rate of HDMBOA-Glc and MBOA-Glc between isolates which share evolutionary history (Yes 2746 
group) with the WCR pest to that of those isolates which do not share evolutionary history (No group) with the WCR 2747 
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 2776 

Abbreviation Full name Class Mass 
[g/mol] 

Formula 

AAMPO 2-acetylamino-7-meth-
oxy-phenoxazin-3-one 

Amino phenoxazine 284.27 C15H12N2O4 

AMPO 2-amino-7-methoxy-phe-
noxazin-3-one 

Amino phenoxazine 242.23 C13H10N2O3 

HMBOA 2-Hydroxy-7-methoxy-
2H-1,4-benzoxazin-
3(4H)-one 

Benzoxazinone 195.17 C9H9NO4 

HDMBOA-Glc 2-O-Glucosyl-7-meth-
oxy-1,4(2H) benzoxazin-
3-one 

Benzoxazinone glucoside 357.31 C15H19NO9 

MBOA 6-methoxybenzoxazolin-
2(3H)-one 

Benzoxazolinone 165.15 C8H7NO3 

HMBOA-Glc 4,7-dimethoxy-2-{[3,4,5-
trihydroxy-6 (hydroxyme-
thyl) oxan-2-yl]oxy}-3,4-
dihydro-2H-1,4-benzoxa-
zin-3-one 

Benzoxazinone glucoside 387.34 C16H21NO10 

MBOA-Glc 3-β-D-Glucopyranosyl-6-
methoxy-2 

Benzoxazolinone glucoside 195.17 C14H18NO8 
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Table S2. Summary table showing benzoxazinoids resistance phenotype of 26 screened IPS nematode. In the 2777 
table, the first column iis the name of the tested isolate followed by its country of origini in the seconf colum. 2778 
The third column is the statistical test comparison of BX-fed-d to BX-free larave infectivity the correspondin strain, 2779 
were, (*) denotes that the coresponding strain showed significant BX-fed-larvae to BX- free-larvae infectivity 2780 
diffrences. Thus these strains all these strain with an asterik were termed susceptible isolates. The sympol (ns) 2781 
denotes no infectictivity differences and thus these strains were termed resistant isolates. 2782 

Strain Origin bx1::W22 VS W22 fed comparisons (t-tests) 
 

Phenotype 
 

Hb17 Turkey ns resistant  

Hbbio USA ns resistant  

S5P8 United States ns resistant  

S12 United States ns resistant  

S14 United States ns resistant  

S15 United States ns resistant  

MEX23 Mexico ns resistant  

MEX32 Mexico ns resistant  

MEX37 Mexico ns resistant  

TT01 Trinidad and Tobago * Susceptible  

MG618b Switzerland * Susceptible  

RM102 Spain ns resistant  

VM1 Spain ns resistant  

EN01 Germany * susceptible  

IT6 Italy ns resistant  

IR2 Iran ns resistant  

DE2 Germany ns resistant  

PT1 Portugal ns resistant  

HU2 Hungary ns resistant  

IL9 Australia ns resistant  

DE6 Germany * susceptible  

09-43 Turkey * susceptible  

Boj Iran ns resistant  

RW14 Rwanda * resistant  

 2783 
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 2784 

Figure S1. BXs are stable in water solution under ambient conditions for 10 days. Comparison of quantified BXs 2785 
concentarations in the control tretaments. Figure S1.A. Comparisons of HDMBOA-Glc concentrations in control treat-2786 
ments with just HDMBOA-Glc from the start (day1) to the end (day 10) of the experiment. Figure S1.B. Comparisons of 2787 
MBOA-Glc concentrations in control treatments with just MBOA-Glc from the start (day1) to the end (day 10) of the 2788 
experiment. Figure S1.C. Comparisons of MBOA concentrations in control treatments with just MBOA from the start 2789 
(day1) to the end (day 10) of the experiment. The bars of top any 2 points show the points or day being compared and 2790 
the sympol on to reperent the statistical results after a two sample t-test analysis. Sympol “ns”denotes a non sugnif-2791 
icant difference in benzoxazinoid concentration between the two compared time points. Error Bars: MSe 2792 
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                   2793 

Figure S2. EPNs do not produce BXs. Figure S2.A. The concentration of benzoxazinoids recovered inside EPN bod-2794 
ies strain EN01 over a period of 7 days. Figure S2.B. The concentration of benzoxazinoids recovered inside EPN bod-2795 
ies of 21 different strains after 3 days of incubation. 2796 
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  2797 

 Figure S3. EPNs can transform some BX after 3 days. The comparison of recovered BXs concentration of and their 2798 
breakdown derivates in samples with EN01 and BXs to their control treatments with just the BXs. Figure S3.A. was 2799 
treatments with MBOA (orange bars) while Figure S3.B. were treatments with MBOA-Glc (skyblue bars) while Figure 2800 
S3.C. were treatments with HDMBOA-Glc (cyan bars). Letters “a” and or “b” denotes significant benzoxazinoid con-2801 
centrations difference between treatment of EPN+ BXs ((T) and control of BXs only (C) for that respective BX. Different 2802 
bar colors represent different BX compound recovered after 24 hrs incubation time. Error Bars: MSe.  2803 
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 2804 

Figure S4. BXs do not penetrate EPN bodies and are metabolized on the EPN surface. Figure S4.A. The concentra-2805 
tion of HDMBOA-glc (light green), and its derivatives: MBOA (orange) HMBOA-Glc (yellow) and HMBOA (purple) recov-2806 
ered on the supernatant as well as inside EPN bodies of 10 EPN strain after 3 incubation time. Figure S4.B. The con-2807 
centration of MBOA-glc (lskyblue), and its derivatives: MBOA (orange) AMPO (green) recovered on the supernatant as 2808 
well as inside EPN bodies of EPN strain EN01 after 3 incubation time. Error Bars: MSe 2809 



Chapter 3 

116 
 

  2810 

Figure S5. HDMBOA- Glc metabolization by EN01 after 10 days. The concentration of HDMBOA-glc (light green), and 2811 
its derivatives: MBOA (orange), and HMBOA (purple) recovered IN three different treatments of just EN01 in water, 2812 
HDMBOA-Glc in water and EN01 with HDMBOA-Glc also suspended in water after 3 incubation time. Error Bars: MSe 2813 
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 2814 

Figure S6. Infectivity of 21 Heterorhabditis bacteriphora isolates on WCR larvae fed on BX+ or bx- maize. Figure 2815 
S6.A. Comparison of Infectivity success towards WCR larvae fed on WT (red bar) to that of bx:W22 mutant maize line 2816 
(orange bar) by each strain after 6 days of infection. A. comparison of Infectivity success towards WCR larvae fed on 2817 
WT (red bar) to that of bx:W22 mutant maize line (orange bar) by nematode strain MG618b (Figure S6.B) and strain TT01 2818 
(Figure S6.C) from 3 to 7 days after infection. An asterisk (*) indicate significant differences between infections of a 2819 
bx::W22 and W22 fed larvae (P < 0.05) by same strain. Error Bars: MSe. 2820 
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Abstract  3008 

Entomopathogenic nematodes and microorganisms have evolved some association re-3009 

lationships ranging from the well-known mutual symbiosis relationship with their endo-3010 

symbiotic bacteria to some unknown but constant association with other microbes both 3011 

inside their bodies and on their surface cuticle. While their mutualistic relationship with 3012 

their endosymbionts bacteria during host infectivity has been well documented, the im-3013 

pacts of other endosymbionts as well as surface-associated microbiome on other nem-3014 

atode biological, physiological and biochemical processes is an area that still needs sci-3015 

entist attention and resource investment. In our previous chapter we observed benzoxa-3016 

zinoid biotransformation to their breakdown derivates by incubated nematodes. Since 3017 

nematodes live in association with other living microbes both outside and inside its body, 3018 

we were curious to know which among the three factors (the EPNs, endogenous mi-3019 

crobes or surface cuticle associates) carry enzymes responsible for this EPN-benzoxa-3020 

zinoid biotransformation phenomenon. Laboratory incubation of nematodes with ma-3021 

nipulated microbe content, in benzoxazinoids revealed that nematode-surface associ-3022 

ated microbes play a very significant role in benzoxazinoid biotransformation by EPNs. 3023 

These findings indicate cooperative acts between EPN and some of its associates in 3024 

times of trouble which may in turn benefit EPN to grow, develop and survive in stressful 3025 

situations. These findings will motivate nematologists to study and understand other 3026 

symbiosis relationships between EPNs from their associates. Understanding the influ-3027 

ences of such EPN associations in EPN biological, physiological and biochemical pro-3028 

cess may give crucial information for EPN-contents manipulations programs, which may 3029 

be used in maximizing EPN-control potential and protection. Additionally, the occur-3030 

rence of commonly used biocontrol organisms (microbes and EPNs) in a single entity 3031 

gives hope for future integrated/combined biocontrol agents programs for additive/syn-3032 

ergistic entomopathogenecity. 3033 

 

Keywords: Benzoxazinoids, entomopathogenic nematodes (EPNs), EPN-associated 3034 

microbes, biotransformation 3035 
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Introduction  3036 

Interactions between organisms range from predation, competition, commensalism, 3037 

parasitism to mutualism and symbiosis (Sheehy et al., 2022). The type of relation be-3038 

tween these organisms may differ according to environmental situation, age of and de-3039 

velopmental stage of an organism, among other factors. Filarial nematodes (helminth 3040 

parasites) for instance dependent on their symbiotic intracellular bacterium, Wolbachia 3041 

for their fertility and development (Taylor et al., 2005); Stilbonematinae and Desmodori-3042 

dae marine nematode families depend on cuticle associated sulphur-oxidizing bacteria 3043 

(Robbea spp.) for food (Bayer et al., 2009); Phasmarhabditis hermaphrodita nematode 3044 

spp use Moraxella osloensis bacteria to achieve their malacopathogenic (kills slugs and 3045 

snails) behaviour (Tan & Grewal, 2001; Sheehy et al., 2022).  3046 

Entomopathogenic nematodes (EPNs), which are successful crop insect biological 3047 

agents live in symbiosis with entomopathogenic bacteria, which they carry in their intes-3048 

tines (Boemare et al., 1993; Kaya & Gaugler, 1993; Forst et al., 1997; Grewal & Georgis, 3049 

1999; Tomar et al., 2022). In addition, EPNs harbour more complex bacterial communi-3050 

ties, whose role is less clear(Jiménez-Cortés et al., 2016; Goda et al., 2020; Ogier et al., 3051 

2020; Ogier et al., 2023). 3052 

Most EPN-associated microbes are found on their outer surface. In third stage infective 3053 

juveniles (J3s), the surface includes a second cuticular sheath as a result of incomplete 3054 

molt of the second stage juveniles (J2s). This sheath may play a role in environmental 3055 

stress tolerance (Timper & Kaya, 1989; Campbell & Gaugler, 1992; Donald L. Lee, 2002). 3056 

Exsheathment of the J3 second cuticle, which is usually stimulated by the host, marks 3057 

the transition of these J3s from free -living to parasitic stage (J4s) (Campbell & Gaugler, 3058 

1992; Donald L. Lee, 2002). Thus, it will be interesting to assess changes in EPN biologi-3059 

cal process in the presence or absence of this surface cuticle as this affect EPN-associ-3060 

ated surface microbe abundance. 3061 

In our previous work, we observed metabolization of benzoxazinoids (BXs) by EPNs only 3062 

occur on their surface cuticle. Microbes are also well known to be able to metabolize 3063 

benzoxazinoids, similar to what we observed with EPNs (Friebe et al., 1998; Fomsgaard 3064 

et al., 2004; Kettle et al., 2015; Glenn et al., 2016; Schütz et al., 2019; Thoenen et al., 3065 
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2024). Thus, it is possible that microbes on the surface of EPNs contribute to benzoxa-3066 

zinoid metabolization.  3067 

Here, we aimed at understanding the role of microbes in benzoxazinoid metabolization 3068 

by EPNs. We used different approaches to manipulate the presence and activity of en-3069 

dogenous and surface microbes. We then incubated the manipulated EPNs with benzox-3070 

azinoids and measured metabolization. We found that surface microbes contribute to 3071 

benzoxazinoid metabolization, and that the second cuticular sheath acts as a physical 3072 

barrier that prevents the entry of benzoxazinoids into the nematode bodies.  3073 
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Material and methods 3074 

Biological Resources  3075 

All benzoxazinoid metabolization experiments of this work were conducted with the 3076 

commercial Heterorhabditis bacteriophora strain EN01 (e-nema GmbH, Germany). Each 3077 

experiments was done using nematode concentartion of about 10.000 nematodes per 3078 

mL per replicate. Nematodes were multiplied in greater wax moth (Galleria mellonella) 3079 

larvae (Fischereibedarf Wenger AG, Bern, Switzerland) and kept at 8 °C until use. EPN 3080 

amplification was performed following a previous protocol by (White 1927) with some 3081 

modifications. Briefly, 400 µl of nematodes were added to about five G. mellonella larvae 3082 

place in a 5 cm diameter petri dish (Greiner Bio-One, Frickenhausen, Germany) on filter 3083 

paper (55 mm diameter, Whatman, China). The infected larvae were then incubated at 3084 

24 ± 2℃ in an incubator. After seven days infected G. mellonella larvae were transferred 3085 

to white traps and incubated in darkness at 24 ± 2°C. Hatching EPNs (infective juveniles, 3086 

IJs) were collected and concentrated using a 25 µm pore diameter sieve (Rentsch GmbH, 3087 

Germany) and poured with tap water into cell culture flasks (160 mL, Thermo Fisher 3088 

scientific, Switzerland). All collected EPNs were stored at 8°C in a fridge until use. 3089 

 

To study benzoxazinoid degradation by nematodes, endosymbiont bacteria and surface 3090 

associated microbes, different approaches were used.  3091 

i.  EPN_wash treated and washed-EPNs: Briefly, for these two linked treatments, 3092 

about 10000 nematodes were incubated 1mL of added fresh tap water for 24hrs at room 3093 

temperature. The next day, the liquid part of the mixture (“EPN-wash”) was separated 3094 

from the nematodes (“washed-EPNs”).  3095 

ii. Bleached_EPNs:- Nematodes were treated with 0.05% of bleach (Migros, Bern). 3096 

The mixture was left to incubate for 15 mins at room temperature. The bleach was 3097 

washed away by pouring the mixture with nematode-bleach mixture in a nematode col-3098 

lection (retaining) sieve and running tap water over the sieve for 3 min.  3099 

iii. Streptomycin + EPNs:- The antibiotic streptomycin, was added to 50ml falcon 3100 

tube containing concentrated nematodes at a concentration of 200 mg/ml. The antibiotic 3101 
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was left to act for 4 hrs and after that, the nematodes were washed under running water 3102 

through a nematode collecting sieve for 2 min.  3103 

iv. Filtered wash:- For this, the EPN wash (see point (i) above) was filtered with 0.2 3104 

µm filters to filter out microbes and the collected filtrate was taken for further tests.  3105 

v. Boiled_EPNs:- About 10 000 nematodes in in 1mL of water were heated for 5 3106 

minutes in a heating block at 100oC.  3107 

The different extracts above where then tested separately for their capacity to metabolize 3108 

benzoxazinoids. The extracts were incubated with 2-O-β-D-glucopyranosyl-2-hydroxy-3109 

4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one) (HDMBOA-Glc) and 3-β-D-glucopyra-3110 

nosyl-6-methoxy-benzoxazolin-2(3H)-one (MBOA-Glc) in separate experiments. 3111 

HDMBOA-Glc was isolated from maize plants in our laboratory and resulted in a >99% 3112 

purity (Mateo et al.; Unpublished). MBOA-Glc was synthesized in our laboratory directly 3113 

from or adapting published protocols, (Sicker et al., 2001; Macías et al., 2006; Li et al., 3114 

2013). Benzoxazinoid metabolization was assessed in the incubation water (EPN super-3115 

natant) or inside the EPN bodies. In all assays, approximately 10’000 EPNs were placed 3116 

in 1 mL tap water. HDMBOA-Glc or MBOA-Glc, were added to reach a final concentration 3117 

of 150 µg/mL, 50 µg/mL respectively (n=5). These concentrations correspond to BXs con-3118 

centrations reported in WCR (Robert et al., 2017a). Control solutions with benzoxa-3119 

zinoids or nematodes only in water were also included. All samples were incubated at 25 3120 

±2°C. After incubation, 500 µL aliquots were collected from the samples and mixed with 3121 

500 µL methanol (MeOH, Fisher Chemica). The samples were then centrifuged at 10 °C 3122 

at 13’500 RPM for 10 min. The supernatant was collected into 1.5 mL HPLC-glass vials 3123 

(VWR International, UK)). The pellets, containing EPN bodies, were rinsed three times 3124 

adding distilled water and centrifuging. The final pellet mass was measured, and 10 µL 3125 

extraction buffer (50% MeOH with 0.1% formic acid (FA, Fisher Chemical, Waltham, MA, 3126 

USA) was added per 1 mg pellet. 1.4 mm zirconium oxide beads (Precellys, Bertin Tech-3127 

nologies, France) were added to the tubes for grinding in a bead-beater at 30 X speed for 3128 

3 minutes before centrifugation at 13’500 RPM at 10 °C for 15 min. The supernatant was 3129 

collected in 1.5mL glass vials (VWR International, UK) for benzoxazinoid analyses.  3130 
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Benzoxazinoid analyses 3131 

 All the vials were later sent for accurate quantitation of most known benzoxazinoids and 3132 

their recovered breakdown products and conjugates. This was done using an ultra-high 3133 

performance liquid chromatography-mass spectrometry system equipped with an elec-3134 

trospray source (UHPLC-QDA) to detect, quantify, and identify known new structures 3135 

through exact mass and fragmentation analysis by MSE as analytic methods. Briefly, for 3136 

detection and identification of recovered benzoxazinoid recovered breakdown deriva-3137 

tives after their incubation with EPNs isolates EN01 and or its associated microbes, we 3138 

used an UHPLC-MS system equipped with an electrospray source (Waters i-Class 3139 

UHPLC-QDA, USA). Recovered benzoxazinoids and their breakdown derivates were sep-3140 

arated on a BEH C18 column (2.1 × 100 mm i.d., 1.7 μm particle size). Mobile phase A 3141 

and B of Water (0.1% FA) and acetonitrile (0.1% FA) respectively were set with respective 3142 

elution profiles of : 0–9.65 min, 97–83.6% A in B; 9.65–13 min, 100% B; 13.1–15 min 97% 3143 

A in B which equivalate to 0.4 mL/min. A stable column temperature of 40°C was main-3144 

tained, as well as an injection volume of 5 μL. The MS was set to operate in a negative 3145 

reverse mode, and data acquisition scan range of (m/z 150–650) using a cone voltage of 3146 

10V. default setting were maintained for all other MS parameters as suggested by the 3147 

manufacturer. Absolute BX concentrations were determined using standard curves ob-3148 

tained from purified benzoxazinoid compounds. Briefly for the synthesis of the stand-3149 

ards: - BOA (benzoxazolin-2(3H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) 3150 

were purchased from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland). HMPMA (N-(3-3151 

methoxy-2-hydroxyphenyl) malonamic acid) was received as a gift from Prof. Dr. Fran-3152 

cisco A. Macías (University of Cádiz, Spain). DIMBOA-Glc (2-O-β-D-glucopyranosyl-2,4-3153 

dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) and HDMBOA-Glc (2-O-β-D-gluco-3154 

pyranosyl-2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one) were isolated from 3155 

maize plants in our laboratory. DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3156 

3(4H)-one), MBOA-Glc (3-β-D-glucopyranosyl-6-methoxy-benzoxazolin-2(3H)-one), 3157 

HMBOA (2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), APO (2-amino-3H-phe-3158 

noxazin-3-one), AMPO (9-methoxy-2-amino-3H-phenoxazin-3-one), AAMPO (9-meth-3159 

oxy-2-acetylamino-3H-phenoxazin-3-one), were synthesized in our laboratory directly 3160 

from or adapting published protocols. 3161 
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Statistical analyses 3162 

Influences and comparisons of different nematode treatments on biotransformation po-3163 

tential and rate in all this work experiments, were tested using One-way ANOVA. When-3164 

ever there was a significant effect (P<0.05), post hoc pairwise comparisons between 3165 

treatments was carried out by extracting "estimated marginal means" using “emmeans 3166 

multicomp” package in R (https://doi.org/10.32614/CRAN.package.emmeans ). And for 3167 

data that was not normal, Comparison of concentration of different recovered com-3168 

pounds between different nematodes treatments was done using Kruskal-Wallis test 3169 

computed with R software again. Later if significant difference (p<0.05) between sam-3170 

ples was observed, a post hoc analysis was done using Dunn test again in R software. 3171 
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Results  3172 

Bleach treatment enhances permeability, but abolishes benzoxazinoid 3173 

metabolization 3174 

We previously observed that benzoxazinoid metabolization is restricted to the superna-3175 

tant of EPN solutions and does not occur in EPN bodies. Our experiments here confirmed 3176 

this observation (Figure 1A. and Figure 1C, left panels) and (Figure 1A. and Figure 1S right 3177 

panels) as of EPN + benzoxazinoid (HD=HDMBOA-Glc or MG= MBOA-Glc). We hypothe-3178 

sized that this may be due to the fact that EPN third stage infective juveniles are pro-3179 

tected through the second outer cuticle (Timper & Kaya, 1989; Campbell & Gaugler, 3180 

1992; Donald L. Lee, 2002). To test this hypothesis,, we removed this cuticle by a short 3181 

bleach treatment.  3182 

Removal of this outer second cuticle by bleaching resulted in the loss of benzoxazinoid 3183 

transformation in the supernatant. [Figure 1B. and Figure 1 D right panels, (bleached_ 3184 

EPN treatment)]. At the same time, the EPNs became permeable to HDMBOA-Glc [Figure 3185 

1B. left panel). Although, HDMBOA-Glc could now enter the nematodes body, we didn’t 3186 

observe any metabolization (only HDMBOA-Glc but not breakdown derivates). The en-3187 

trance of benzoxazinoid into nematode bodies after removal of the outer cuticle was not 3188 

observed with MBOA-Glc [Figure 1D. left panel). Past studies with the western corn root-3189 

worm has also reported that MBOA-Glc is mostly concentrated on the larvae cuticle 3190 

(Robert et al., 2017b). This work shows that bleach-susceptible factors determine ben-3191 

zoxazinoid metabolization and nematode permeability.  3192 
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 3193 

Figure1. Metabolization of benzoxazinoids by nematode (EN01) from both inside its body and on its surface. Bio-3194 
transformation of HDMBOA-Glc (cyan-colored bar portion) to its breakdown derivatives as analyzed on nematode sur-3195 
face cuticle (Supernatant) as well as from inside nematode bodies of nematode with (Figure 1A.) and without (Figure 3196 
1B.) second cuticle. Biotransformation of MBOA-Glc (skyblue-coloured bar portion) as analyzed on nematode surface 3197 
cuticle(Supernatant) as well as from inside nematode bodies of nematode with (Figure 1C.) and without (Figure 1D.) 3198 
second cuticle. For surface metabolization analyses were made on only the supernatant obtained after incubation of 3199 
nematodes in benzoxazinoids for a stipulated time. And for assessment of benzoxazinoids inside the nematodes, the 3200 
benzoxazinoid incubated nematodes were first crushed and analyzed done from nematode contents. Removal of sec-3201 
ond cuticle was done by soaking nematodes in 5% for about 15 minutes. Each bar represents uniquely treated EPNs 3202 
(EN01), and the colors and height of each bar represent the different kinds of recovered benzoxazinoids derivates and 3203 
their concentrations in the matrix respectively. Acronomy HD and MG respectively.Error Bars: Mse. The red line on 3204 
Figure 1B. represent an omitted bar for that treated for a control treatment so as to put emphasis on the treatments of 3205 
interest as they had so much differences in concentration. 3206 

 



Chapter 4  

133 
 

EPN surface content manipulations influence benzoxazinoid 3207 

metabolization 3208 

Past studies reported presence of other microbes on the nematode surface (Jiménez-3209 

Cortés et al., 2016; Goda et al., 2020; Ogier et al., 2020; Ogier et al., 2023). Both nema-3210 

tode-derived factors as well as surface microbes may mediate these effects. We thus 3211 

investigated the effects of modulating the composition and condition of the EPN surface. 3212 

The first manipulation was to heat the nematodes to kill surface microbes and degrade 3213 

heat-labile factors. Boiled nematodes no longer metabolized HDMBOA-Glc (Figure 2A). 3214 

We then assessed washed EPNs and the EPN-wash separately. We observed that 3215 

washed EPN can still metabolise HDMBOA-Glc (Figure 2A), albeit with slightly lower effi-3216 

ciency (Figure 2B.). The EPN-wash was also able to metabolize HDMBOA-Glc to MBOA 3217 

(Figure 2A., last bar in the graph, though, at a significantly lower rate (Figure 2B.).  3218 
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                      3219 

Figure 2. Metabolization of benzoxazinoids by nematode (EN01) from differently manipulated EPN surfaces. 3220 
Graphical presentation of the biotransformation of HDMBOA-Glc from nematodes with double- cuticle (third bars),, 3221 
nematode-cuticle wash (l5th bars) water washed cuticle nematodes (4th bars), nematodes with boiled cuticle (2nd bars) 3222 
as well as in control treatments (HD) with just HDMBOA-Glc in tap water. Each bar represents uniquely treated EPNs 3223 
(EN01), and the colors and height of each bar represent the different kinds of recovered benzoxazinoids derivates and 3224 
their concentrations in the matrix respectively. Error Bars: Mse. A legnd table at the bottomof the graph, represent a 3225 
statistical comparison of recovered HDMBOA-Glc and its breakdown derivates among differently treated nematodes. 3226 
And treatments with different letters (a, b, c etc) had different concentration for the respective compound with the one 3227 
shaded with the color that represents that respective compound in this work being compound concentration differ-3228 
ence from the control treatments of just HDMBOA-Glc in water without nematodes 3229 
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EPN surface microbes métabolise HDMBOA-Glc  3230 

To further investigate the potential contribution of microbes to benzoxazinoid metaboli-3231 

zation, we filtered them (microbes) from the wash. The HDMBOA-Glc breakdown product 3232 

MBOA was no longer present in filtered extracts (Figure 3B-C.). We then surface-steri-3233 

lized nematodes. This resulted in a significant reduction of HDMBOA-Glc metabolization, 3234 

although residual activity was still observed (Figure 3A.). Thus, surface microbes are 3235 

likely to play a significant role in benzoxazinoid metabolization by EPNs.  3236 
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 3237 

Figure 3. Metabolization of HDMBOA-Glc from nematodes (EN01) with different quantities surfaces associated 3238 
microbes. Assessing and comparing biotransformation of HDMBOA-Glc from untreated, washed, and antibiotic 3239 
treated nematodes after 3 incubation days (Figure 3A.) comparing biotransformation of HDMBOA-Glc by nematodes 3240 
wash collected after incubating nematodes for 24hrs to the same nematode wash but after filtering out microbes 3241 
collected (Figure 3C.). zooming in with a smaller scaled graph into the different concentration of MBOA recovered 3242 
from HDMBOA-Glc biotransformation from nematodes wash (Figure 3B.). Different lettters in the table (a,b,c,etc) 3243 
denotes significant concentration diffrence among EPN treatments. Each bar represents uniquely treated EPNs 3244 
(EN01), and the colors and height of each bar represent the different kinds of recovered benzoxazinoids derivates 3245 
and their concentrations in the matrix respectively. Acronomy HD represent the control treatments with just 3246 
HDMBOA-Glc.Error Bars: Mse. 3247 
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Discussion 3248 

Our work provides insights into the uptake and metabolization of plant secondary me-3249 

tabolites by nematodes.  3250 

The observation that desheathed (EPNs whose outer second cuticle has been removed) 3251 

nematodes are permeable to HDMBOA-Glc indicates that the nematodes second cuticle 3252 

is a barrier that partially impedes benzoxazinoid entry. EPN infective juveniles (the third 3253 

stage (J3) duer juveniles) are ensheathed with a second cuticle which result from incom-3254 

plete molt of the second stage juveniles (J2). This cuticle thus influences toxin uptake 3255 

from the environment, as suggested previously (Timper & Kaya, 1989; Campbell & 3256 

Gaugler, 1992; Donald L. Lee, 2002). Additional barriers are present, as even desheathed 3257 

nematodes did not take up the other benzoxazinoid, MBOA-Glc. 3258 

Benzoxazinoids are metabolized exclusively on the outside of the nematodes. We ob-3259 

served a significant decrease in EPN biotransformation rate of washed EPNs compared 3260 

to the unwashed one, indicating that surface elements play a role in this process. This 3261 

was further confirmed by the fact that the EPN-wash alone collected after washing nem-3262 

atodes also showed benzoxazinoid biotransformation activity, albeit at a lower level. The 3263 

second cuticle surface contains a diverse community of microbes, including Pseudo-3264 

chrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., 3265 

and Leucobacter spp was also observed  (Jiménez-Cortés et al., 2016; Goda et al., 2020; 3266 

Ogier et al., 2020; Ogier et al., 2023), and also, a total of more than 200 nematode-derived 3267 

proteins (Mendy, 2019). Both these 2 factors (surface proteins and microbes) may have 3268 

a role in benzoxazinoid metabolization. 3269 

Surface microbes play a significant role in benzoxazinoid metabolization. Antibiotic 3270 

treatment with streptomycin significantly reduced HDMBOA-Glc metabolization, and fil-3271 

tering the microbial wash led to the disappearance of MBOA accumulation. In recent 3272 

years detoxification of benzoxazinoids by enzymes from fungi such as Gaeumannomy-3273 

ces graminis var. tritici, G. graminis var. graminis, G. graminis var.avenae, and Fusarium 3274 

culmorum has also been reported (Friebe et al., 1998; Fomsgaard et al., 2004; Kettle et 3275 

al., 2015; Glenn et al., 2016). To add on to that, benzoxazinoid glycosides were com-3276 
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pletely degraded to benzoxazinoid aglycones in a wheat- yeast enzyme fermentation ex-3277 

periment (Savolainen et al., 2015). Other scientists revealed that, exposing glucosylated 3278 

benzoxazinones, benzoxazinones benzoxazolinones and several downstream products 3279 

to microbes (both fungi and bacteria) resulted in strain- and or species-specific com-3280 

pound modification, and degradation (Schütz et al., 2019). Recently, a collection of na-3281 

tive maize bacteria such including Sphingobium LSP13 and Microbacterium LMB2,, re-3282 

vealed that these bacteria degraded MBOA and formed AMPO (Thoenen et al., 2024). 3283 

Whether microbes are solely responsible for benzoxazinoid metabolization by EPNs, or 3284 

whether nematode-derived proteins also play a role, requires further study.  3285 

In conclusion, we show that nematodes are protected from benzoxazinoid uptake 3286 

through their cuticle. At the same time, surface microbes efficiently metabolize benzox-3287 

azinoids and thereby modulate the biochemical environment of infective juveniles as 3288 

they come into contact with these compounds as they infect sequestering insects. The 3289 

consequences of this metabolization remain to be investigated but are likely important 3290 

in shaping the nematode surface microbiome as well as the host infection process.  3291 
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Figures and tables information 3304 

List of figures 3305 

Figure1. Metabolization of benzoxazinoids by nematode (EN01) from both inside its body and on its surface. Bio-3306 
transformation of HDMBOA-Glc (cyan-colored bar portion) to its breakdown derivatives as analyzed on nematode sur-3307 
face cuticle (Supernatant) as well as from inside nematode bodies of nematode with (Figure 1A.) and without (Figure 3308 
1B.) second cuticle. Biotransformation of MBOA-Glc (skyblue-coloured bar portion) as analyzed on nematode surface 3309 
cuticle (Supernatant) as well as from inside nematode bodies of nematode with (Figure 1C.) and without (Figure 1D.) 3310 
second cuticle. For surface metabolization analyses were made on only the supernatant obtained after incubation of 3311 
nematodes in benzoxazinoids for a stipulated time. And for assessment of benzoxazinoids inside the nematodes, the 3312 
benzoxazinoid incubated nematodes were first crushed and analyzed done from nematode contents. Removal of sec-3313 
ond cuticle was done by soaking nematodes in 5% for about 15 minutes. Each bar represents uniquely treated EPNs 3314 
(EN01), and the colors and height of each bar represent the different kinds of recovered benzoxazinoids derivates and 3315 
their concentrations in the matrix respectively. Acronomy HD and MG respectively.Error Bars: Mse. The red line on 3316 
Figure 1B. represent an omitted bar for that treated for a control treatment so as to put emphasis on the treatments of 3317 
interest as they had so much differences in concentration. 3318 

Figure 2. Metabolization of benzoxazinoids by nematode (EN01) from differently manipulated EPN surfaces. 3319 
Graphical presentation of the biotransformation of HDMBOA-Glc from nematodes with double- cuticle (third bars),, 3320 
nematode-cuticle wash (l5th bars) water washed cuticle nematodes (4th bars), nematodes with boiled cuticle (2nd bars) 3321 
as well as in control treatments (HD) with just HDMBOA-Glc in tap water. Each bar represents uniquely treated EPNs 3322 
(EN01), and the colors and height of each bar represent the different kinds of recovered benzoxazinoids derivates and 3323 
their concentrations in the matrix respectively. Error Bars: Mse. A legnd table at the bottomof the graph, represent a 3324 
statistical comparison of recovered HDMBOA-Glc and its breakdown derivates among differently treated nematodes. 3325 
And treatments with different letters (a, b, c etc) had different concentration for the respective compound with the one 3326 
shaded with the color that represent that respective compound in this work being compound concentration difference 3327 
from the control treatments of just HDMBOA-Glc in water without nematodes 3328 

Figure 3. Metabolization of HDMBOA-Glc from nematodes (EN01) with different quantities surfaces associated 3329 
microbes. Assessing and comparing biotransformation of HDMBOA-Glc from untreated, washed, and antibiotic 3330 
treated nematodes after 3 incubation days (Figure 3A.) comparing biotransformation of HDMBOA-Glc by nematodes 3331 
wash collected after incubating nematodes for 24hrs to the same nematode wash but after filtering out microbes 3332 
collected (Figure 3C.). zooming in with a smaller scaled graph into the different concentration of MBOA recovered 3333 
from HDMBOA-Glc biotransformation from nematodes wash (Figure 3B.). Different lettters in the table (a,b,c,etc) 3334 
denotes significant concentration diffrence among EPN treatments. Each bar represents uniquely treated EPNs 3335 
(EN01), and the colors and height of each bar represent the different kinds of recovered benzoxazinoids derivates 3336 
and their concentrations in the matrix respectively. Acronomy HD represent the control treatments with just 3337 
HDMBOA-Glc.Error Bars: Mse. 3338 
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General discussion 3446 

This thesis explores the impact of plant toxins (benzoxazinoids) that are sequestered by 3447 

an insect herbivore (the western corn rootworm) on its natural 3448 

enemies(entomopathogenic nematodes, EPNs). We determined the infectivity success 3449 

phenotype of different EPN strains from all over the world then later adapted the 3450 

susceptible strains to benzoxazinoids in a laboratory evolutionary experiment. This 3451 

involved continuous exposure of EPNs to WCR larvae that contain benzoxazinoids for 5 3452 

successive generations. We then explored the metabolization of benzoxazinoids by 3453 

different EPNs and the possible correlation between EPN infectivity and benzoxazinoid 3454 

breakdown. Lastly, we explored the role played by entomopathogenic nematode 3455 

associated microbes in benzoxazinoid metabolization.  3456 

The following paragraphs will give a more general discussion of the results we got, more 3457 

specifically on the success of artificial selection in improving EPN effectiveness, EPNs 3458 

adaptation mechanisms to plant toxins as well as the impact of EPN symbiosis 3459 

relationships. I will also discuss the limitations and future perspectives of this work. 3460 

Engineering benzoxazinoid tolerant EPNs: Artificial selection 3461 

Our research work started with screening the infectivity success of different strains from 3462 

all over the world. We found that some strains are more, and others are less virulent 3463 

towards WCR . Previous studies have also reported variation in infectivity towards WCR 3464 

(Zhang et al., 2019; Bruno et al., 2020). The sequestration of benzoxazinoids, which are 3465 

known to be toxic and also repel EPNs, likely contributed to this variation (Robert et al., 3466 

2017). One of the interesting discoveries of this work was strain EN01, a well-known 3467 

commercial strains, was also among the list of benzoxazinoid-sensitive strains.  3468 

Now the question is how EPN efficacy can be improved or maintained in the presence of 3469 

benzoxazinoid-sequestering WCRs. So, through this work we managed to show that in 3470 

such a situation, we can select for resistant EPNs through continually exposing the 3471 

initially susceptible strains to benzoxazinoids (artificial selection) for at least 3 3472 

generations. Besides benzoxazinoid adaptation, artificial selection has also been 3473 
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successfully used to improve EPN performance under stress in the past, including 3474 

benzoxazinoid resistance (Zhang et al., 2019), desiccation tolerance (Strauch et al., 2004) 3475 

and temperature tolerance (Griffin & Downes, 1994; Grewal et al., 1996; Ehlers et al., 3476 

2005). This form of forward revolution is effective, as EPNs have short generation time, 3477 

small genome size and can be cultured easily (Hiltpold et al., 2010). A comparison of 3478 

genome and transcriptomes before and after selection can be done as further steps to 3479 

elucidate the genetic pathways/markers involved in benzoxazinoid tolerance or 3480 

resistance. 3481 

Natural selection comes with limitations which need attention. These include the 3482 

selected trait heritability (h2) which measures the probability of the selected trait being 3483 

passed to the next generation (Falconer, 1960). One other set back in selection programs 3484 

is deterioration of selected trait after removal of the stress (Chaston et al., 2011; Anbesse 3485 

et al., 2013). And lastly, sometimes a change in some trait may also come with a loss/ 3486 

cost of some other desirable trait(s), therefore, proper testing and careful consideration 3487 

must be done before taking any further steps. 3488 

Nematode mechanisms of adapting to plant toxins  3489 

Besides scientific approaches like artificial selection (Chapter 1) and genetic 3490 

engineering, EPNs themselves have evolved inherent unique structural, biochemical, 3491 

and behavioral adaptations (Glazer, 2002; Perry & Wharton, 2011; Perry et al., 2012). 3492 

Adaptation strategies to plant metabolites such as benzoxazinoids have been explored 3493 

and classified into tolerance and resistant mechanisms (Jeckel et al., 2022). In this work 3494 

we have explored some of the putative mechanisms employed by EPNs to avoid the 3495 

negative effects of benzoxazinoids. 3496 

Avoidance 3497 

In this work observed that, EPNs have evolved some behavioural tolerance in 3498 

benzoxazinoid environments. We managed to use MBOA-Glc, a reported EPN repellent 3499 

(Robert et al., 2017), to show that some strains (resistant isolates) have naturally evolved 3500 

behavioural tolerance to this repellent compound even before the section experiment 3501 

(chapter 2). This may mean that, benzoxazinoid infectivity success may be linked to 3502 
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nematode behaviour. However, correlation does not mean causation. Thus, further tests 3503 

need to be done first to confirm this observation. 3504 

Metabolization 3505 

We found that EPNs metabolise benzoxazinoids (chapter 3 and chapter 4) irrespective of 3506 

the infectivity success phenotype in chapter 2 and geographical origin. Metabolization 3507 

can help to detoxify plant toxins into harmless products and, is normally accompanied 3508 

by either sequestration or excretion of the  metabolization products (Jeckel et al., 2022). 3509 

However, in the case of benzoxazinoid, metabolization may result in the formation of 3510 

equally active or even more active products, similar to what is known from other 3511 

compartmentalized defense metabolites ((Morant et al., 2008; Pentzold et al., 2014). 3512 

Thus, further work is required to determine whether the observed metabolization is 3513 

beneficial for the EPNs.  3514 

Exclusion 3515 

Another additional mechanism to resist plant toxins is exclusion, i.e. the avoidance of 3516 

uptake. We observed that all EPN strains are impermeable to benzoxazinoid entry 3517 

(chapter 3 ) but become permeable after removal of the outer cuticle (Chapter 4). This 3518 

reveals to us that IJs are structurally protected from benzoxazinoids. It has been reported 3519 

that IJs second cuticle likely plays a role in environmental stress tolerance (Timper & 3520 

Kaya, 1989; Campbell & Gaugler, 1992; Donald L. Lee, 2002). This may mean that outside 3521 

their host, EPNs are well protected from most benzoxazinoids impacts but will be 3522 

challenged inside their host as they remove this outer protective cuticle upon host entry. 3523 

Activation/inhibition of responsible enzymes 3524 

The last mechanism we intended to explore but didn’t conclude was the upregulated or 3525 

down regulated of responsible proteins.  We are aware that benzoxazinoid degradation 3526 

involve enzymes  from microbes (Friebe et al., 1998; Fomsgaard et al., 2004; Kettle et al., 3527 

2015; Glenn et al., 2016) and also  some other plant enzymes were also reported (Sue et 3528 

al., 2011; Schulz et al., 2016). Our attempt to explore this was inconclusive due to some 3529 

of the following reason. Firstly, no reported benzoxazinoid degradation nematode enzyme 3530 

yet.  we had to search for plant enzymes in the nematodes genomes. Secondly,  some 3531 

responsible factors like surface microbes genomic data were missing to. We only had 3532 
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EPN and endosymbiont bacteria genome. Though, we found some hit in the 3533 

endosymbiont genome it’s difficult to conclude from this point, as we didn’t observe 3534 

metabolization inside the nematode. Further studies with all necessary information and 3535 

data may help to understand EPN survival mechanisms in benzoxazinoid stressful 3536 

environment.  3537 

Influence of EPN-associated microbes 3538 

We found that, EPN surface associated microbes also play a role in EPN benzoxazinoid 3539 

metabolization  . Past report have most reported the mutual benefits with the 3540 

endosymbiotic bacteria which serve as their pathogenic weapons as well as food during 3541 

host infection (Boemare et al., 1993; Kaya & Gaugler, 1993; Forst et al., 1997; Grewal & 3542 

Georgis, 1999; Tomar et al., 2022). Some researchers have also shown that some of the 3543 

associated microbes on the surface are also entomopathogenic (Ogier et al., 2020). To 3544 

what extent benzoxazinoid metabolization by surface microbes is beneficial for EPNs 3545 

remains to be elucidated.   3546 

Limitations and future perspectives 3547 

Injective juveniles are morphologically and biologically different from parasitic ones 3548 

Most of the experiment of chapter 3 and 4 and some parts of chapter 2 were done using 3549 

dauer juveniles which are the free-living form of EPNs. The answers here may be only 3550 

relevant to outside host environments and may not apply inside the host where we have 3551 

different stage and/or state of EPNs. Infective juveniles are quite different from their 3552 

parasitic state. Some of the differences include the already discussed covering sheath. 3553 

Other differences include that the infective juveniles are in a dauer state (developmental 3554 

arrest) with a closed digestive system while the parasitic ones have an open and working 3555 

digestive system (Timper & Kaya, 1989; Bedding et al., 1993; Kaya & Gaugler, 1993). 3556 

 3557 

Natural environments vs laboratory experiments 3558 

We worked with one compound at a time, which allows for controlled results. However, 3559 

in nature, diverse forms of benzoxazinoids can occur at the same time and place, For 3560 

example, in one benzoxazinoid extraction study, 15 unique benzoxazinoids ranging from 3561 



General Discussion  

   

147 
 

hydroxamic acids, lactams, benzoxazolinones to aminophenoxazinones (Mwendwa et 3562 

al., 2021) were reported. Even the study by (Robert et al., 2017)of sequestered 3563 

benzoxazinoid detected a total of 2-3 unique benzoxazinoids accumulated in WCR. Thus, 3564 

it will be interesting to have experiments which start with more than one compound in 3565 

one sample and study their interactions. 3566 

Time and resources 3567 

If time and resources were infinite, the following tests would improve the conclusions  3568 

o Do infectivity assays of my F0s and F5s from my Chapter 1 selection experiment 3569 

at the same time. And then compare the two from one experiment. 3570 

o Do mortality assay from hatching juvenile from WCR to be closer to the natural 3571 

situation. 3572 

o Asses alternative methods to surface sterilize EPNS without removal of the 3573 

sheath. 3574 

o Asses other effects of EPN associated microbes on nematode biological and 3575 

biochemical processes (health, life span etc.). 3576 

o Asses benzoxazinoid metabolization by individual endogenous and surface 3577 

microbes alone. 3578 

o Continue searching for tolerance and resistance mechanisms underlying the 3579 

infectivity differences between resistant vs susceptible or adapted vs non-3580 

adapted nematode groups, excluding the already tested hypothesis 3581 

(metabolism, exclusion, avoidance, enzyme activation or inhibition). Start by 3582 

testing excretion, sequestration, insensitivity or compensation differences etc 3583 

Conclusion 3584 

In conclusion, this thesis highlights the capacity of EPNs to rapidly adapt to and 3585 

metabolize plant chemical defenses, thus providing new insights into enhancing the 3586 

efficacy of biocontrol strategies against BX-sequestering pests like WCR. To what extent 3587 

the ability of EPNs to metabolize BXs affects their performance and fitness is currently 3588 

unclear, but it seems unlikely that metabolization is NOT a major factor that contributes 3589 

to EPN BX resistance and biocontrol success against BX sequestering insects such as the 3590 
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western corn rootworm. We additionally showed that nematodes are protected from 3591 

benzoxazinoid uptake through their cuticle. At the same time, surface microbes 3592 

efficiently metabolize benzoxazinoids and thereby modulate the biochemical 3593 

environment of infective juveniles as they come into contact with these compounds as 3594 

they infect sequestering insects. The consequences of this metabolization remain to be 3595 

investigated but are likely important in shaping the nematode surface microbiome as well 3596 

as the host infection process. EPNs encounter benzoxazinoid stressful situation both 3597 

outside and outside their host but have or can evolve mechanisms to avoid 3598 

benzoxazinoid toxicity.  3599 
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