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Abstract

Antimicrobial resistance is a growing threat to public health as therapies designed to
treat pathogenic infections lose their efficacy over time. This loss in the efficacy is due
to pathogenic evolution which is inherently stochastic. Hence, estimating the times at
which pathogens will develop drug resistances is an important quantity to study since
it is equivalent to the time that a therapy will fail. Common strategies to mitigate
drug resistance development are combination therapies, where two or more therapies
are administered simultaneously, and therapy switching, where therapies are replaced or
cycled out. This thesis aims to develop a model of drug resistance development within
a patient infected with a chronic infection by modelling the within-host infection rate as
a bounded and multidimensional Brownian motion with stochastic resetting. Features
of this stochastic process reflect therapy administration strategies: multidimensionality
represents combination therapies, while stochastic resetting, where a stochastic process
returns to its initial position at random times, represents therapy switching. The bound-
aries of the model are either reflecting or absorbing. Reflecting boundaries prohibit the
full recovery of the host as it is under chronic infection, while absorbing boundaries
signify the failure of the therapy. The times at which the stochastic process reaches the
absorbing boundary is of interest as this also symbolizes the time that drug resistance
has emerged. Two scenarios will also be studied in detail: single therapy and multiple
therapy protocols. In single therapy protocols, the analytical probability distribution of
the resistance development time will be derived in Laplace space, and novel methods
in approximating its inversion and in obtaining simulated values with a controllable er-
ror. In multiple therapy protocols, analogous stochastic processes will be proposed that
are optimized for either combination therapy or therapy switching. This will allow for
a thorough investigation of optimal choices of the number of therapies and switching
rates, and also the imposition of constraints in terms of the maximum allowed switching
rate, total number of therapies available, and costed therapy switching.
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Chapter 1

Introduction

Pathogens such as viruses or bacteria cause infections by rapidly multiplying within a
host. This rapid multiplication often leads to genetic errors, or mutations, that change
certain traits of the offspring of the pathogen [1–3]. While specialized therapies are
designed to eliminate these pathogens, mutations can sometimes result in offspring with
a natural resistance to the therapies, thereby reducing their efficacy. This phenomenon,
known as drug resistance, poses a global threat to modern medicine and public health.

This thesis aims to mathematically model the fluctuations in the level of drug resis-
tance caused by the mutation of an infecting pathogen and how different strategies of
administering antimicrobial therapies impact drug resistance development.

1.1 Mutation and evolution

The evolution of any organism, including pathogens, requires diversity in terms of genetic
traits within its population [1]. This diversity is crucial since it provides a range of
genetic traits that may be advantageous when exposed to changing environments. This
evolutionary pressure may be due to the presence of natural predators or diminishing
sources of food and nutrients.

Genetic diversity is typically generated through mutations that occur when organisms
replicate theor genetic material to produce their offspring. The process of transferring
or copying the genetic material is not always perfect and at times, errors known as
mutations occur. Mutations have the potential to change certain traits of the offspring.
Mutations are typically either neutral having no effect, or deleterious which hinder the
chances of survival of an organism [1, 4]. Advantageous or adaptive mutations, though
rare, increase the chances of survival of a organism. These mutations are often preserved
and propagated through the population through mechanisms like natural selection and
genetic drift [5].

Organisms with advantageous mutations are selected since they have the potential
to reproduce or replicate further, while organisms with neutral and deleterious muta-
tions are removed as the threat from external factors continue to grow. Over time, the
mutations compound and the organism deviates from its ancestors, successfully evolving.
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1.2 Drug resistance development

Pathogens must replicate quickly since they are vulnerable to the immune system of a
host and external pressure such as antimicrobial treatments accelerate this further. Be-
cause of this rapid replication, errors in the genetic material vary by orders of magnitude
[4] and different pathogen strains emerge. The increase of pathogen strains with advan-
tageous mutations lead to drug resistance development, a phenomenon that causes an
antimicrobial therapy to lose efficacy over time. The presence of resistant strains make
treating infections significantly more difficult as conventional treatments gradually be-
come ineffective.

The growing burden of drug resistant pathogens is increasingly becoming a public
health crisis, especially in the global south. In 2019, of the 1.27 million deaths directly
attributable to drug-resistant infections, the majority come from sub-Saharan Africa
and South Asia [6]. In the worst case scenario, forecasts of up to 8.22 million deaths
associated to antimicrobial resistant infections have been predicted in the year 2050 [7].
These deaths were primarily due to resistant strains of widespread infections such as
HIV, malaria, and tuberculosis, which are especially prevalent in these regions [8].

Since mutations occur during treatment, it can be argued that antimicrobial thera-
pies themselves contribute to the emergence of drug resistance. Hence, it has been sug-
gested that the complete eradication of drug resistance is unrealistic as modern medicine
continues to rely on antimicrobial therapy [9]. Antimicrobial stewardship is the most
practical way to mitigate the development of drug resistance. This entails the improve-
ment of surveillance of the prevalence of drug resistance, alternative therapies such as
vaccines, and the proper and strategic administration of antimicrobial drugs of which
will be studied in detail [8, 10].

1.3 Mechanisms of drug resistance

The emergence of drug resistance is accelerated by misuse and mismanagement of an-
timicrobial drugs in agricultural, environmental, and medical use [11, 12]. Resistant
pathogens that have developed within a single host may also have the potential to
spread to other hosts, thereby increasing its risk to public health [13, 14]. Drug-resistant
pathogens are known to spread through water and airborne transmission, and vectors
such as insects potentially transmit pathogens across vast areas [14, 15].

At a cellular level, pathogens evolve different mechanisms to escape treatment and
develop drug resistance. However, these mutations commonly have evolutionary trade-
offs that reduce other traits in order to increase resistance, this is also called collateral
sensitivity [16–18]. Examples of mechanistic trade-offs are with bacteria such as E. coli.
These mutate to survive while taking in less extracellular material including nutrients
since it consequently takes in less of the drug [19]. Similarly, viruses such as HIV-1 can
increase their latency period within their hosts cells to avoid being affected by treatment
but results in a slower reproduction rate [20].

Trade-offs also occur in terms of the therapies being administered. These are due
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to mutations changing the susceptibility of the pathogen to certain drugs. It has been
found that when Pseudomonas develops a resistance to the antibiotic ciprofloxacin, it
develops a sensitivity to another antibiotic tobramycin [21]. Likewise, Klebsiella that
is found to be resistant to either colistin or fosfomycin individually, are found to be
sensitive to combinations of these two drugs [22].

1.4 Therapy administration strategies

To manage and reduce the emergence of drug resistance, physicians use different strate-
gies when administering antimicrobial drugs. These strategies exploit therapeutic trade-
offs that pathogens undergo after mutation. Common methods that are used are com-
bination therapy [22–24] or through therapy switching [16, 25]. Combination therapy is
the use of two or more drugs at the same time, while therapy switching replaces a drug
being used with a different one but with the same class.

These strategies come with risks as therapies may interact for both combination ther-
apy and therapy switching. These interactions may be classified as synergistic, suppres-
sive, or additive [26] and are dependent on the cellular targets of the drugs within a host
during treatment. Synergistic interactions are beneficial to the host as it improves the
antimicrobial efficacy non-linearly. On the other hand, suppressive interactions worsen
the situation for the host as the therapies counteract each other, resulting to an inef-
fective therapy. Finally, additive therapies are null models of drug interaction, where
therapies are assumed to not interact with each other [27, 28].

There are also various physiological and economical limitations to switching or adding
a therapy [29–31]. Changing treatments for resistant infections may also lead to increases
in complications, as there have been cases where switching drugs would lead to adverse
outcomes for patients with certain comorbidities [32]. These constraints highlight the
complexity of managing drug resistance development and the importance of modelling
optimal strategies that mitigate the impact of drug resistance given the potential limi-
tations is a critical area of research in the field.

1.5 Mathematical modelling of drug resistance

Analytical approaches such as mathematical models are valuable tools in studying drug
resistance development since they can simulate epidemiological and physiological events
such as transmission dynamics of resistant strains, co-infection of different strains, and
introduction of alternative pharmaceutical interventions, without the need of experimen-
tal procedures [13].

Mathematical models have been used to study drug resistance development in a
variety of diseases with pathogenic origins such as AIDS [33–38], tuberculosis [39], pneu-
monia [40], and malaria [41]. These models have been used to study mechanisms of
evolutionary trade-offs to develop drug resistance [19, 20, 36, 37], stochastic viral evo-
lution [38, 42] and competition between resistant strains [43, 44]. In larger scales, the
epidemiological impact of drug resistant infections have been modelled [11, 13], along
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with estimates to the economic burden due to hospitalizations and costs of treatment [45].
Furthermore, these models have shown to have significant applications to public health,
as mathematical models have been used to study the effectiveness of non-pharmaceutical
public health interventions such as hygiene and surveillance [11].

1.6 Goals and overview of the thesis

The combination of mechanisms of mutation, collateral sensitivity, and therapy admin-
istration strategies shows the complex interactions that comprise drug resistance devel-
opment. Given the dynamic nature of these interactions, stochastic processes provide an
ideal modelling framework as they capture the inherently noisy pathogenic mutations
that occur while undergoing treatment. This thesis will feature reports of models of the
level drug resistance, and consequently, the efficacy of therapy as a multidimensional and
bounded Brownian motion. This aims to quantify the distributions of the resistance de-
velopment time (RDT), which is important in characterizing the amount of time needed
for a therapy to fail. This will be done in two scenarios: single therapies and multiple
therapies.

1.6.1 Single therapies

The mean RDT for a single therapy model had been analytically defined previously
[42]. However, the mean does not represent the entire distribution since features such
as uncertainty, median, and quantiles are unavailable. Indeed, having knowledge of
the full distribution provides a robust description of the model which has potential
applications to biology and medicine. However, only the Laplace transform of the full
RDT distribution is known in literature [42] and straightforward methods to invert this
expression are currently not known [46, 47].

The inversion of the distribution is instead approximated using the proposed Padé-
partial fraction (PPF) method, which approximates the RDT distribution as ratio of
polynomials that can then be decomposed and inverted. Furthermore, a novel simulation
method called the multiresolution algorithm (MRA) is also proposed, that generates finer
values of a given process up to an arbitrary error.

The goal of the PPF method is to obtain an approximant with a Laplace inversion
that can be solved using standard methods. As mentioned previously, the Padé approxi-
mation is used to obtain a fraction of polynomials with degrees equal to the order of the
approximation. This method is known to be more robust than the typical Taylor series
approximation and can converge even when the Taylor series does not [48]. Furthermore,
the rational expression obtained from Padé is ideal since it can be decomposed into a
sum of fractions with binomial denominators through partial fraction decomposition.
Fractions with binomial denominators have a known inverse Laplace transform.

On the other hand, the MRA is an algorithm that yields a sample RDT by simulating
a stochastic trajectory that passes through the absorbing boundary. The MRA exploits
the property of Wiener processes that the intermediate point among three consecutive
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points is normally-distributed with a mean given by the average of the two other points
[49]. Points of the trajectory that pass through the absorbing boundary can be made
finer through the MRA, yielding sample RDTs that are closer to the actual RDT. The
MRA can also be combined with the standard Euler-Maruyama algorithm [50], which
increases the computational efficiency of the algorithm while keeping the accuracy.

1.6.2 Multiple therapies

The Laplace transform of the RDT distribution found in [42] is limited only to a stochas-
tic process in one dimension, i.e. only one therapy. However, combination therapy has
been proven to mitigate drug resistance development which can be modeled as stochastic
processes in higher dimensions. Straightforward methods to derive the RDT distribution
for a higher dimension model do not work due to the unique boundary conditions of this
model [51–53].

We instead introduce two phenomenological models that pattern the fluctuations
of the therapy efficacy given two or more therapies with switching. The first model,
called the coupled continuous model, is a rotationally-invariant stochastic process with
dimensions that can be increased freely. The second model, called uncoupled discrete
model, is a discrete-space stochastic process comprised of a lattice of states that explicitly
accounts for the efficacy of each therapy individually.

The coupled model is a continuous-space stochastic process in polar coordinates that
is rotationally-invariant. As a phenomenological model, a continuous-space scheme is
considered since it models the small, incremental mutations of the infecting pathogen
over short time scales [54]. The coupled model allows for the investigation of the behavior
of the RDT at higher dimensions since it reduces the efficacies of all therapies being
simultaneously administered to a single value, as a consequence, stochastic resetting
occurs simultaneously for all dimensions.

On the other hand, the uncoupled model allows for independent resetting for all
dimensions. The uncoupled model is a Markov chain of states arranged as a lattice and
is controlled by a master equation. The discrete-space scheme models significant changes
of the therapy efficacy over longer periods of time [3]. The statistics of the RDT for this
model can be obtained by manipulating the transition matrix of the Markov chain [55],
however it is computationally expensive.

1.6.3 Overview of the thesis

This thesis is organized as follows: A discussion on the different mathematical techniques
that have been used to approximate the RDT from both reports, along with the full
description of the drug resistance model is first presented in Chapter 2. This is followed
by the two reports that discuss the single and multiple therapy scenarios in Chapters 3
and 4, respectively. Finally, a discussion of possible extensions to the work are presented
in Chapter 5.
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Chapter 2

Mathematical framework

The previous chapter has discussed how mutations that lead to drug resistance are ran-
dom and unpredictable [1, 5]. To account for the complexity of this process, stochastic
processes may be used as models for the fluctuations of the level of drug resistance [38,
42]. These processes can also be extended to model therapy administration strategies
such as combination therapy and therapy switching. This chapter will discuss the math-
ematical background of the different elements that will be used to build the final model
for drug resistance development with therapy administration strategies.

2.1 Stochastic processes

For a probability space (Ω,F ,P), a measurable state space S, and a set T called an index
set, a collection of random variables {Xt}t∈T defined on the probability space that maps
onto the state space is called a stochastic process [56, 57],

X :T × Ω → S

(t, ω) 7→ Xt(ω). (2.1)

Common choices for the state space is over the real numbers S = R or a multivariate
case S = RN . The index set is typically interpreted as time and the choice of the index
set further classifies stochastic processes into two common types: The first is for a choice
T = N and are called discrete-time stochastic processes. The second is for T = R, called
continuous-time stochastic processes.

An important property that certain stochastic processes possess is called the Markov
property, where for a state of a stochastic process Xtn+1 at time tn+1, a stochastic process
has the Markov property if it satisfies the conditional probability

P(Xtn+1 |Xtn , Xtn−1 , . . . , Xt1) = P(Xtn+1 |Xtn), (2.2)

for tn+1 > tn > . . . > t1. The Markov property implies that the future states of the
stochastic process only depends on the present state, and disregards the past states
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hence, Markov processes are also called memoryless processes. All of the stochastic
processes considered in this thesis follow the Markov property.

An example of a stochastic process is a random walk on a discretized state space.
Consider a real-valued state space partitioned into equally-spaced sub-intervals with
length 1/M , thus S = {i/M | i ∈ Z}. The stochastic process {Xt} now evolves within this
space that may be visualized as a discrete chain of states. The process only transitions
from a state xi = i/M to its adjacent states xi±1 = (i ± 1)/M . A differential equation
that describes the time evolution of the random walk is called the master equation.

Proposition 2.1.1 (Master equation). Let x0 be the initial state of the random walk on
a chain of states. The probability that gives the position x of a random walk at any time
t conditioned to the initial state is given by the master equation

d

dt
P (x, t|x0) = pP

(
x− 1

M
, t

∣∣∣∣x0
)
+ q P

(
x+

1

M
, t

∣∣∣∣x0
)
− (p+ q)P (x, t|x0), (2.3)

for x ∈ {i/M | i ∈ Z}. The rates p and q are called transition rates, and rate −(p + q)
is also called the escape rate from state x. The probability distribution P (x, t|x0) is also
called the propagator.

The proof is outlined in Appendix A.1. Consider a finite and bounded state space
partitioned into M equally-spaced states, e.g. S = {a+ (b− a)(i/M) | i = 1, . . . ,M} for
a < b and a, b ∈ R bounding the state space in an arbitrary interval [a, b]. The transition
rates and dynamics of the random walk still follow eq. (2.3) away from the boundaries,
but the transition rates may now be written as an M ×M transition matrix W, with
elements Wij denoting transitions from state xj to xi. The corresponding representation
of the master equation will be

d

dt
P (x, t|x0) = WP (x, t|x0), (2.4)

The propagator is now a column vector of probabilities for all M states. Solving for
the propagator in Equation (2.4) is possible, however it will almost always be in terms
of matrix operations [55, 58, 59]. Obtaining an analytic form of the propagator without
matrix operators is challenging, but the system may be approximated to have a form
that results to a propagator that is easier to solve.

The Kramers-Moyal expansion is a second-order Taylor expansion of the master
equation [60, 61] that results into a partial differential equation. This expansion also
transforms the state space from sub-intervals of R to the entire set S = R. The result-
ing partial differential equation is called the Fokker-Planck or the forward Kolmogorov
equation.

Proposition 2.1.2 (The Fokker-Planck equation). Let x ∈ R be a position in the con-
tinuous space approximated from the Kramers-Moyal expansion. The Fokker-Planck
equation reads

∂

∂t
P (x, t|x0) = −v

∂

∂x
P (x, t|x0) +D

∂2

∂x2
P (x, t|x0), (2.5)
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where v is called the drift parameter and D is called the diffusion parameter, dependent
on the transition rates p and q taken from the master equation,

v =
p− q

M
, D =

p+ q

2M2
. (2.6)

The proof is outlined in Appendix A.2. The Fokker-Planck equation has a propagator
that may be solved given appropriate boundary conditions [51, 62]. These conditions
define the limits at which the stochastic process is allowed to evolve. Some common
boundary conditions that have been considered are absorbing and reflecting boundaries
and the theory of stochastic processes with these boundaries is a classical topic in prob-
ability theory [62]. Reflecting boundaries are regions where diffusing particles cannot
permeate [63]. On the other hand, absorbing boundaries are regions where diffusing
particles can enter but cannot leave.

The Fokker-Planck equation describes the probability distribution of the process at a
certain position, however it neglects the dynamics of the stochastic trajectory itself [64].
The equation that captures the dynamics of the trajectory as it fluctuates through a
continuous space is controlled by the stochastic differential equation (SDE). Let {Xt}t≥0

be a stochastic process, the SDE of this process described in eq. (2.5) is given by

dXt = −v dt+
√
2D dWt, ∀t ≥ 0, (2.7)

where v is the drift constant, and D is the diffusion constant, and Wt is called the Wiener
process or the standard Brownian motion [53, 56, 57].

Definition 2.1.3 (Wiener process). The Wiener process {Wt}t≥0 is a stochastic process
that has the following properties,

1. At t = 0, W0 = 0.

2. Independent increments: Let ti, tj , tk ∈ T with ti > tj > tk. The increments of the
Wiener process follows

P((Wti −Wtj )∩ (Wtj −Wtk)) = P(Wti −Wtj )P(Wtj −Wtk), ∀ti, tj , tk ∈ T. (2.8)

3. Stationary Gaussian increments: Let ti, tj ∈ T . The increments of the Wiener
process follows

Wti −Wtj ∼ N (0, ti − tj), ∀ti, tj ∈ T (2.9)

where ∼ denotes that the increment is normally distributed with mean 0 and
variance ti − tj . It is emphasized that any increment of the Wiener process is
identically distributed or is distributed in the same manner.

The Fokker-Planck equation (2.5) may be obtained from the SDE (2.7) using Itô’s
formula. The derivation is outlined in Appendix A.3. Itô’s formula states that for a
twice differentiable test function g(x, t),

dg(x, t) =
∂

∂t
g(x, t)dt+

∂

∂x
g(x, t)dx+

1

2

∂2

∂x2
g(x, t) (dx)2 (2.10)

This formula is obtained from the second-order Taylor expansion of a general function,
and then setting dt2 = 0 since this term is now negligibly small.
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2.2 Generalizations

Stochastic processes may be generalized to consider stochastic resetting [65, 66] which
allows the process to return to its initial position at random times and intrinsically
exhibit non-equilibrium stationary distributions [65, 67, 68]. This introduces an auxiliary
process χ, which is the set of arrival times of a homogeneous Poisson process.

Definition 2.2.1 (Arrival times of a homogeneous Poisson process). A homogeneous
Poisson process {Nt}t≥0 is a counting process that counts the number at which a random
event occurs up to time t. The set of arrival times χ = {t∗|t∗ ≥ 0} is the set of all times
at which the Poisson process increases.

1. Independent increments: Let t∗i , t
∗
j , t

∗
k ∈ χ with t∗i > t∗j > t∗k. The increments t∗i −t∗j

and t∗j − t∗k are independent as defined in eq. (2.8).

2. Exponentially-distributed increments: Let t∗i , t
∗
i+1 ∈ χ for i ≥ 1 be consecutive

arrival times. The time in between two arrival times, also known as the waiting
time, is distributed as a random variable

t∗i+1 − t∗i ∼ Exp (r) (2.11)

where Exp(r) denotes an exponential distribution with rate r and mean 1/r.

The set of arrival times is used to write an appropriate SDE for the process with
stochastic resetting,

dXt = (1− 1χ(t))
(
v dt+

√
2D dWt

)
+ 1χ(t)(x0 −Xt) dt, ∀t ≥ 0. (2.12)

The function 1χ(t) is an indicator function dependent on the set of arrival times,

1χ(t) =

{
1, t ∈ χ

0, t /∈ χ
where χ = {0, t∗1, t∗2, . . .}, (2.13)

where the increments of the arrival times t∗i+1 − t∗i , i ≥ 1, or the waiting times, are
characterized by a rate r, called the resetting rate, as introduced in eq. (2.11).

Note that in [65, 66], an SDE-type equation was written in terms of the position of
the stochastic process at the next infinitesimal time step,

Xt+dt =

{
x0, with probability r dt

Xt + (v dt+
√
2D dWt), with probability (1− r dt).

(2.14)

This is equivalent to the SDE in eq. (2.12) since the set of arrival times χ has an
underlying Poisson counting process {Nt} and has a known mean of events within an
interval of time dt equal to E{Nt} = r dt.

With the formulation of the process in eq. (2.14), it has been shown in [66] that it
is possible to write the equivalent Fokker-Planck equation with resetting by averaging
over events in the interval t+ dt.
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Proposition 2.2.2 (The Fokker-Planck equation with resetting). The appropriate Fokker-
Planck equation with stochastic resetting reads

∂

∂t
P (x, t|x0) = −v

∂

∂x
P (x, t|x0) +D

∂2

∂x2
P (x, t|x0)− r P (x, t|x0) + rδ(x− x0), (2.15)

where δ(x − x0) is a Dirac delta function centered at the displacement from the initial
position x0, and r is the resetting rate.

One other generalization of the stochastic process is higher dimensions and with time
and position-dependent drift and diffusion parameters [69]. An N -dimensional stochastic

process is denoted as a vector by XXXt = {X(1)
t , X

(2)
t , . . . , X

(N)
t }t≥0. Without stochastic

resetting, the Itô SDE for this process is

dXXXt = µµµ (XXXt, t) dt+ σσσ (XXXt, t) dWWW t, (2.16)

where µµµ is a drift vector that affects all components of XXXt individually, and σσσ is a
diffusion matrix which accounts for the interactions of each component ofXXXt. A diffusion
matrix with zero nondiagonal elements is called isotropic diffusion and assumes that the
components of the stochastic process are independent of each other. From this SDE, an
appropriate Fokker-Planck equation in higher dimensions may also be derived using the
known multivariate version of Itô’s formula for the SDE in eq. (2.16) [53]

Proposition 2.2.3. For a multivariate SDE, Itô’s formula gives the following for a test
function g(xxx, t)

dg(xxx, t) =


 ∂

∂t
g(xxx, t) +

N∑

i=1

µµµ(xxx, t)
∂

∂xi
g(xxx, t) +

N∑

i=1

N∑

j=1

Dij
∂

∂xi

∂

∂xj
g(xxx, t)


dt

+
N∑

i=1

N∑

j=1

σij(xxx, t)
∂

∂xi
g(xxx, t) dW

(j)
t ,

(2.17)

where W
(j)
t is the jth component of the multivariate Wiener process WWW t and Dij refers

to the elements of the tensor DDD = σσσσσσ⊤, and is given by

Dij =
1

2

N∑

k=1

σik(xxx, t)σjk(xxx, t). (2.18)

The proof is outlined in Appendix A.4. Hence, the multivariate Fokker-Planck equa-
tion is given by the following.

Proposition 2.2.4 (The N-dimensional Fokker-Planck equation). The appropriate Fokker-
Planck equation in N dimensions reads

∂

∂t
P (x, t|x0) = −

N∑

i=1

∂

∂xi
µµµ(xxx, t)P (xxx, t|xxx0) +

N∑

i=1

N∑

j=1

∂

∂xi

∂

∂xj
DijP (xxx, t|xxx0), (2.19)

where Dij refers to elements of the diffusion tensor defined in eq. (2.18).
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This equation is obtained using the procedure shown in Proof A.2 for the 1-dimensional
case where the expectation of both sides of Itô’s formula is taken.

Boundary conditions in higher dimensions are no longer points or levels, but now
span curves and surfaces. This makes solving for the propagator a challenge since con-
ventional methods such as Laplace transforms, solving the Greens function, method of
images, and the like [42, 51–53, 70] are no longer straightforward to perform. As an
alternative, phenomenological models that patterns the fluctuations of the stochastic
process in Equation (2.16) in higher dimensions may be used which are reducible and
exploit certain symmetries of the boundary conditions. Symmetries are easier to exploit
when the process is transformed, for example, into polar coordinates using Itô’s rule [53]
and then considering SDEs such as Rayleigh and Ornstein-Uhlenbeck processes [71, 72].

2.3 First passage times and distributions

Absorbing boundaries can be used as a stopping condition, and the time at which the
process has reached the stopping condition is called the first passage time (FPT) [51].

Definition 2.3.1 (First passage time). Suppose that the absorbing boundary is at
X(t) = a, then formally, the FPT is written as a stopping time

T = inf{t ≥ 0 |X(t) ≤ a}. (2.20)

Since the first passage time is dependent on a stochastic process, it is also a ran-
dom variable with a probability distribution f(t). To obtain the FPT distribution, the
propagator of the Fokker-Planck equation must be solved first. An important quantity
from the Fokker-Planck equation is the probability flux or probability current. For the
1-dimensional Fokker-Planck equation (2.5), the probability flux is defined as follows.

Definition 2.3.2 (Probability flux). The probability current J(x, t) is the rate of influx
of trajectories of the stochastic process at the position x given by

J(x, t) = v P (x, t|x0)−D
∂

∂x
P (x, t|x0) . (2.21)

For an absorbing boundary at x = a, it is known that [51, 73]

f(t) = J(a, t) = v P (a, t|x0)−D
∂

∂x
P (a, t|x0). (2.22)

Hence, the FPT distribution may be obtained provided that the propagator is solved.
This is related to the derivation of the inverse Gaussian distribution using the method
of images [74, 75]. The propagator also allows for the computation of another important
quantity called the survival probability [51].

Definition 2.3.3 (Survival probability). The survival probability is the probability that
the process does not reach the absorbing boundary, given by

S(t) =

∫ b

a
P (x, t|x0) dx, (2.23)
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for a process bounded, for example in [a, b] with a as the absorbing boundary.

This quantity is important for extending the process to stochastic resetting as re-
newal equation methods that computing for the FPT distributions with resetting may
be obtained [66].

In general, solving for the propagator may be a challenging process, however methods
such as solving for the Greens function and method of images [51–53] have been used
successfully for certain configurations of the boundary conditions. One more standard
method of solving for the propagator involves taking the Laplace transform.

Definition 2.3.4 (Laplace transform of f(x, t)). The Laplace transform with respect
to t is given by

f̃(x, s) = L{f(x, t)}(x, s) =
∫ ∞

0
f(x, t) exp(−st) dt, (2.24)

where f̃(s) is the Laplace transform of f(t).

Given the appropriate boundary conditions, e.g. reflecting and absorbing boundary
conditions at certain positions in space, the Laplace transform of the propagator may be
solved using standard techniques such as the separation of variables and undetermined
coefficients [42, 51]. With this, the FPT distribution in Laplace space may be obtained.

However, inverting this Laplace transform back to the time domain is difficult and
is not always possible to obtain analytically. There are numerical methods that are
available for inversion [76, 77], such as the Gaver-Stehfest algorithm [78, 79] and the
Talbot method [80]. However, since these are numerical algorithms, analytical quantities
such as derivatives will be not as straightforward to obtain.

The straightforward inversion of the Laplace transform necessitates that f̃(x, s) be in
a form that can be found in standard tables of conversion for the Laplace transform, see
e.g. [81]. This form may be obtained by either algebraic manipulation or approximation.
The Padé approximation is a method used to obtain a fraction of polynomials with
degrees equal to the order of the approximation.

Definition 2.3.5 (Padé approximation). Let m,n be nonnegative integers and let g(s)
be a real-valued, n+m times differentiable function. The Padé approximation of orders
m and n to g is the rational function

gm,n(s) =
pm(s)

qn(s)
=

a0 + a1s . . . amsm

b0 + b1s . . . bnsn
(2.25)

where the coefficients a0, . . . , am and b0, . . . , bn−1 are obtained by solving the m+ n+ 1
linear equations





i∑

j=0∨(i−n)

g(j)(0)

j!
bi−j = ai, for i = 0, . . . ,m,

i∑

j=0∨(i−n)

g(j)(0)

j!
bi−j = 0, for i = m+ 1, . . . ,m+ n.

(2.26)
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The notation g(j)(0) denotes the jth derivative of the function g(s) evaluated at s = 0.

This method is known to be more robust than the typical Taylor series approxi-
mation and can converge even when the Taylor series does not [48]. Furthermore, the
rational expression obtained from Padé is ideal since it can be decomposed into a sum
of fractions with binomial denominators through partial fraction decomposition or the
residue method. Fractions with binomial denominators have a known inverse Laplace
transform, hence providing an analytical approximation to the FPT distribution that
can be inverted.

2.4 Numerical simulations

Simulation methods provide numerical results of the FPT distribution without the need
of approximations and alternative formulations. These methods are also versatile, al-
lowing for different simulation conditions such as stochastic resetting and non-trivial
boundary conditions for higher dimensions.

A widely used simulation algorithm for generating stochastic processes is the Euler-
Maruyama algorithm [82]. This algorithm is extended to consider stochastic resetting
as well.

Definition 2.4.1 (Euler-Maruyama algorithm with resetting). A stochastic process gen-
erated by the Euler-Maruyama algorithm has values of time given by t = {n∆t|n ≥ 0},
where ∆t > 0 is a fixed time increment. The stochastic process is generated recursively
for n ≥ 0

X(n+1)∆t =

{
x0, with probability r∆t

Xn∆t + v∆t+
√
2D∆W, with probability 1− r∆t

(2.27)

where x0 is the initial position of the stochastic process and ∆W ∼ N (0,∆t) is a finite
Wiener increment.

While the Euler-Maruyama is simple to implement, it has several limitations, espe-
cially when it comes to computing for the FPT.

Proposition 2.4.2. Let T be the FPT generated by a Brownian SDE (2.12) and TEM

be the FPT generated by the Euler-Maruyama algorithm, hence TEM ≥ T .

Proof. At an absorbing boundary at a, the stopping condition of the Euler-Maruyama
algorithm is defined as

TEM = ∆t · inf{n ≥ 0|Xn∆t ≤ a}. (2.28)

It can also be written that TEM = n′∆t for an n′ that satisfies the condition above.
By Definition 2.3.1 for the true FPT, it is implied that T ∈ [(n′ − 1)∆t, n′∆t] but the
Euler-Maruyama algorithm is defined to take the FPT at n′∆t. Thus, TEM ≥ T , almost
surely.
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This shows that the Euler-Maruyama algorithm will overestimate the true FPT due
to the finite time increment ∆t. It is possible to still numerically simulate an FPT
with a variable error. Wiener processes have a property following from the formula for
conditioning the multivariate normal distribution [50],

Wt+h | [Wt = a,Wt+2h = b] ∼ N
(
a+ b

2
,
h

2

)
, h > 0, (2.29)

where N (µ, σ2) denotes a normally-distributed random variable with expectation µ and
variance σ2. Following this property recursively, one may obtain a new points on the
stochastic process in between t ∈ (t, t + h) and t ∈ (t + h, t + 2h). This creates finer
points while still keeping the same stochastic trajectory. Hence, using this to compute
for the FPT allows for arbitrary accuracy as long as new intermediate points are being
generated.

For simulating the master equation formulation of the stochastic process in Equation
(2.4), the Gillespie algorithm or the stochastic simulation algorithm [83] is a classic
approach. This algorithm returns a possible stochastic solution of the master equation
and gives an exact stochastic trajectory. However, the computational cost increases
significantly the more connected each state is to one another on the graph.

2.5 Stochastic models of physical phenomena

Stochastic processes are widely used as scale-free models that describe a wide range of
physical phenomena. The mathematical framework of stochastic processes allows one to
obtain insights from systems despite undergoing fluctuations over time. By analyzing
these processes, one may measure behavior such as phase transitions and rare events.
Stochastic processes in both discrete and continuous state spaces have been widely used
as models of search strategies [84], synchronization of complex phenomena [85], predator-
prey behavior [86] and epidemiology [87, 88].

First passage times have also been used as models in various fields such as solid
state physics [89], cosmology [90], economics [91] and finance [92–94]. Specifically in
biology, FPTs have been used to study how fast two DNA segments in the genome have
physical contact [95], coordinated cell migration [96], and in cellular channel transport
and receptor binding [97].

As an extension to FPT problems, stochastic resetting problems have also been
used as models for biological systems. It has been used to model hunting behavior
in animals, where animals return to specific sites to look for food [98], cellular focal
adhesions [99], and backtrack recovery in RNA polymerization [100]. Stochastic resetting
has also developed new experimental models, where in a colloidal diffusion, particles are
reset [101, 102].

However, analytical solutions to these models have been challenging due to the rea-
sons presented in the previous sections. Solutions to the Fokker-Planck equation with
resetting have been previously investigated for systems with a specific configurations of
absorbing boundaries [66, 103–105]. Analytical properties of random walks on discrete
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state spaces have also been widely studied [58, 106, 107]. Finally, stochastic resetting
has been generalized further to power-law distributed resetting [108], time-dependent
resetting [109], resetting with costs [110, 111], as well as with Lévy flights [112] and
Ornstein-Uhlenbeck processes [113].

2.6 Stochastic model of drug resistance

This thesis aims to model drug resistance development with therapy switching using a
bounded and biased diffusion process with stochastic resetting [42]. The process aims
to quantify the change in therapy efficacy of a drug given to a host over time as it
treats an infection. The efficacy of the therapy being administered to a host is inversely
proportional to drug resistance development of the infecting pathogen.

This parameter of therapy efficacy η is coupled to the infection rate of a host-pathogen
model for chronic infection, such as HIV-1 [36, 37]. The host-pathogen model tracks three
cell populations: healthy cells H, latently-infecting cells L, and actively-infecting cells
I:

dH

dt
= α− λHH − βHI

NT∏

i=1

(1− ηi), (2.30a)

dL

dt
= ϵβHI

NT∏

i=1

(1− ηi) + pL

(
1− L

K

)
− aLL− λLL, (2.30b)

dI

dt
= (1− ϵ)βHI

NT∏

i=1

(1− ηi) + aLL− λII. (2.30c)

Healthy cells are generated with a constant rate of α and die at a rate of λHH, where
λH is a death constant for healthy cells. Furthermore, these healthy cells are turned into
either latently-infecting or actively infecting cells with a rate βHI

∏NT
i=1(1− ηi), with β

as a constant of infection and η as the therapy efficacy. Constant ϵ is a probability that
infection will yield a latently-infected cell, which means 1 − ϵ will give the probability
that the infection will yield and actively-infecting cell. Latently-infecting cells proliferate
with a rate pL, with p as a constant of proliferation, limited by a carrying capacity K
with a rate (pL2)/K, and die off with a rate λLL. Finally, latently-infecting cells can
transform to actively-infecting cells with a rate aL, with a as a constant of activation.
Actively-infecting cells die off with a rate of λII.

The therapy efficacy is used to scale the base rate of infection in the model βHI.
Based on how Equations (2.30) are written, therapy efficacy is bounded: ηi ∈ [0, 1).
A therapy efficacy of ηi = 1 signifies a perfect therapy, as it removes the term for
the infection rate. On the other hand, ηi = 0 signifies a failure of the therapy, which
maximizes the infection rate.

Let ηηη be a vectorial representation of NT dimensions of a stochastic process, i.e.
ηηη(t) = {η1(t), . . . , ηNT

(t)}. This vector represents all NT simultaneous therapy effica-

18



cies that are being administered. The stochastic differential equation that controls this
process is written as

dηηη =diag (III −IIIχχχ(t))
[
µµµ(ηηη, t)dt+

√
2D dWWW (t)

]

+ diag (IIIχχχ(t)) (ηηη0 − ηηη),
(2.31)

where vvv is a drift vector and ηηη0 is a vector of initial positions of the NT therapies.
The operator diag(·) refers to transforming the vector argument into a square diagonal
matrix and the vector III refers to a vector of ones with length NT . Function IχIχIχ(t) is
a vector of indicator functions dependent on NT independent Poisson processes, i.e.
χχχ(t) = {χ1(t), . . . , χNT

(t)}. As such, IχIχIχ has elements 1i(χi(t))

1i(χi) =

{
1, t ∈ χi

0, t /∈ χi

where χi(t) = {0, t∗1, . . .}i, for i = 1, . . . , NT . (2.32)

These elements represent stochastic resetting, reminiscent of the SDE in Equation
(2.12). Stochastic resetting represents switching the therapies that are being adminis-
tered to a patient, which is a common strategy used by physicians to avoid the devel-
opment of drug resistance [16, 25, 114]. Changing the therapy exposes the pathogen to
a new stimulus, which resets the resistance back to its initial value and in terms of the
corresponding stochastic process, the process resets to its initial position.

The model includes NT simultaneous therapies being administered to the patient,
each having a therapy efficacy ηi, i = 1 . . . NT . This models combination therapies which
is one of the therapy strategies that will be studied. Note the form of the infection rate∏

i(1−ηi) changes non-linearly as each of the ηi changes over time. The effective therapy
efficacy of all NT simultaneous therapies is considered to be multiplicative of each other,
assuming an additive model of drug interaction, as discussed in Section 1.4.

It has been observed that solving for the equilibrium points of eq. (2.30) in terms
of the therapy efficacies ηi reveal regions greater than ηi > 0,∀i where the population
of healthy cells are below a critical threshold, signifying that the host has reached a
critical status due to the low therapy efficacy without reaching complete therapy failure
at ηi = 0. Let ηηη∗ be the set of therapy efficacies that make the population of healthy cells
go below the aforementioned threshold. Since ηηη is a stochastic process that fluctuates
over time, this set may now be used as a new absorbing boundary, with the FPT

T = inf{t ≥ 0 |ηηη ∈ ηηη∗}. (2.33)

Therefore, the final model of drug resistance development within a host experiencing
a chronic infection is given by eq. (2.30) with an infection rate that is coupled to a
stochastic process, following the SDE (2.31). The model then follows two time scales:
the first is the slower scale of host-pathogen dynamics assumed to be at equilibrium,
and the second is the faster scale of fluctuating pathogenic evolution. As such, the SDE
then drives the dynamics of the host-pathogen model.
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Chapter 3

Analytic and Monte Carlo
Approximations to the
Distribution of the First Passage
Time of the Drifted Diffusion
with Stochastic Resetting and
Mixed Boundary Conditions

The contents of this chapter are available on arXiv as:
Magalang, J., Turin, R., Aguilar, J., Colombani, L., Sanchez-Taltavull, D., & Gatto,
R. (2024). Analytic and Monte Carlo Approximations to the Distribution of the First
Passage Time of the Drifted Diffusion with Stochastic Resetting and Mixed Boundary
Conditions. arXiv. https://doi.org/10.48550/ARXIV.2311.03939
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1. Introduction

Drift-diffusion processes represent a cornerstone in the mathematical modeling of systems
whose evolution includes stochastic components. The central one is Brownian motion and it
finds frequent applications in most scientific fields, such as physics [1, 2, 3, 4], biology [5, 6, 7,
8], insurance mathematics [9, 10, 11] and it builds the basis of mathematical finance. Through
this work, we will focus on a drifted and bounded Brownian motion for which the particle
returns to its original position at random times following the Poisson process. Such stochastic
resetting has gained importance in the past decade [12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
Particularly, in the context of biology, stochastic resetting has been used to model hunting
behavior in animals, where animals return to specific sites to look for food [22]. At the
cellular level, this scheme can model cellular focal adhesions [23]. At the biomolecular level,
it has been applied to model backtrack recovery in RNA polymerization [24]. In our previous
work, we have shown that stochastic resetting can be used to model the role of changes in
therapies to palliate drug resistance development [25]. As new models and experimental
realizations of processes with stochastic resetting continue to emerge [26, 27], there is a
growing need for more refined approximation and simulations techniques to comprehensively
characterize real-world resetting protocols [15], which we tackle to some extent in this study.

By means of the Laplace transform and of the underlying stochastic differential equation
(SDE) [28, 29], we are able to derive an analytic and a Monte Carlo technique for computing
the distribution of the first passage time (FPT) to the null level of the process [30, 31, 32, 33,
34, 35, 36, 37]. With other methods existing in the literature the mean FPT can be obtained
analytically. However, this first moment does not provide sufficient information the entire
FPT distribution: quantities such as standard deviation, median, and upper quantiles are
often relevant in applications to biology and medicine, for example.

In this context, this article introduces two computational methods for obtaining the prob-
ability distribution of the FPT of the drifted Brownian motion subject to Poisson resetting
times and to upper hard wall barrier. The first of these two techniques makes use of the
Laplace transform of the FPT [25]. It is difficult to find a general and accurate method
for inverting Laplace transforms. Moreover, most methods are purely numerical. Accurate
analytical approximation formulae are however useful in various situations, for example for
computing sensitivities of the approximated probabilities. Our method uses the Padé approx-
imation and partial fractions decomposition to approximate the Laplace transform inversion.
We call it Padé-partial fraction (PPF) approximation. Besides high computational speed, it
provides a simple closed-form expression for the distribution of the FPT. The second method
is a Monte Carlo algorithm that exploits a bridge property of the Wiener process, which al-
lows to obtain trajectories at increasing level of detail [38, 39]. We call it multiresolution
algorithm (MRA), following the terminology of wavelet analysis. The MRA allows for very
high accuracy. We introduce two versions of the MRA: the standard MRA (SMRA), which
directly exploits the bridge property of the Wiener process to our model, and the hybrid
MRA (HMRA), which starts with the classical Euler-Maruyama algorithm to generate the
initial approximation of the FPT and which improve it further by using the MRA.

This article has the following structure. We first derive the Laplace transform of the FPT

3
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(Section 2). Then we introduce the PPF approximation (Section 3). This section presents
also a simple expression of the mean FPT. Next, we present the SMRA and HMRA (Section
4). These methodological sections are followed by an intensive numerical study, aiming to
show the accuracy of our techniques (Section 5). A short summary of the methodological and
numerical results followed by a discussion on future research concludes the article (Section 6).

Notation
• f (k)(x) = (d/dx)kf(x), for k = 0, 1, . . ., where f : R → R.
• ∂tf(t, x) = (∂/∂t)f(t, x), f ′(t, x) = (∂/∂x)f(t, x) and f ′′(t, x) = (∂/∂x)2f(t, x), where
f : [0,∞)× R → R.
• f̃(s) =

∫∞
0

e−stf(t) dt is the Laplace transform of f : [0,∞) → R.
• δ(x) is the Dirac delta function, which assigns mass 1 at x = 0 and is null ∀x ̸= 0.
• X ∼ Y means that the random variables X and Y have same distribution.
• f(x) = o (g(x)), as x → a, means that limx→a

f(x)
g(x)

= 0, where f, g : R → R.2

2. Laplace transform of propagator and mean FPT

The distribution of FPTs is often the essential element in the study of absorption phe-
nomena. This distribution crucially depends on the drift-diffusion processes, the number of
dimensions of the diffusion space, and the boundary conditions [30, 40, 41, 42]. Of partic-
ular interest are problems with absorbing or reflecting boundaries. Absorbing boundaries
are regions in the diffusion space where diffusing particles can enter but cannot leave [43].
Reflecting boundaries are regions in which diffusing particles cannot permeate [44]. In the
following, we will focus on problems with mixed boundary conditions, meaning that the
process is bounded between one absorbing and one reflecting boundary.

Obtaining the closed-form expression for the distribution of the FPT is in general difficult,
because it involves solving a Fokker-Planck equation with absorbing boundaries [30, 41, 42].
Nonetheless, we are still able to characterize the FPT through the Laplace transform. In this
section, we derive the Laplace transform of the FPT distribution and obtain a novel formula
for its expectation. Starting with the process without resetting, we obtain the Laplace
transform of the propagator by solving the Laplace transform of the Fokker-Planck equation
with boundary conditions [43] (Section 2.1). From the propagator, we obtain the Laplace
transform of the FPT distribution [30, 25] that will relate to the process with resetting
through the survival function [16, 17] (Section 2.2). Finally, by using the aforementioned
expressions, we show that the expected FPT with resetting can be expressed in terms of the
Laplace transform of the FPT distribution without resetting.

2It is mplicitely assumed that g is nonnull over some neighborhood of a, if |a| < ∞, or for all extreme
large (small) values, if a = ∞ (−∞).
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2.1. Laplace transform of the propagator

The underlying stochastic process is the basic Brownian motion or Wiener process with
drift, here denoted Y = {Yt}t≥0, which solves the SDE

dYt = v dt+
√
2DdWt, ∀t ≥ 0 , (2.1)

with fixed initial condition Y0 = x0 ∈ (0, 1], where the drift v and the volatility D are
respectively real and nonnegative real constants. We then impose that the paths of this
process are bounded between 0 and 1 and use the same name Y for the bounded process.
The level 1 is a reflecting boundary of type hard wall [30]. On the one hand, the definition
of this reflecting boundary at the level of the Fokker-Planck equation requires the concept of
probability current and will be given in Eq. (2.4). On the other, the action of the reflecting
boundary at the level of sample path will be provided along with its discretization scheme
in Section 4.3. We refer to [45] for a detailed discussion of SDEs with reflecting boundaries.

We note that this process is neither the formal reflection of a trajectory, as would be
the absolute value of a diffusion, nor the regulated Brownian motion. These two cases are
described in the introduction of [46]. Regarding the null level, it is an absorbing state and
our goal is precisely to evaluate the probability of reaching this state.

Our prior work [25] showcases the practical relevance of the model in describing biological
phenomena. Specifically, we utilized a drift-diffusion process with mixed boundary conditions
in order to model drug resistance development resulting from mutation – a stochastic process
biased towards the survival of the infecting pathogen [47, 48]. Our approach employed a
bounded drift-diffusion process to quantify changes in therapy efficacy against the mutating
infecting pathogen. The reflecting boundary represented perfect therapy, while the absorbing
boundary denoted drug failure, since infecting pathogens develop complete resistance to
therapies due to mutation [49].

Denote by p(·, t) the probability density of Yt, ∀t > 0, and p(·, 0) = δ(· − x0), called
propagator. Let x ∈ R and t ≥ 0. The forward Kolmogorov or Fokker-Planck equation
determines the probability distribution of the process Y and it is given by the PDE

∂tp(x, t) + vp′(x, t)−Dp′′(x, t) = 0. (2.2)

We refer e.g. to [43] for the construction of Eq. (2.2).
The propagator is indeed a defective probability density, viz. with total mass below 1,

because it does not account for the probability mass at the absorption state. This reflects
the physical interpretation of Y as the location of a particle moving between two boundaries
that as soon as touches the absorbing boundary gets immediately removed from the system.

Let us further introduce the probability current

J(x, t) = vp(x, t)−Dp′(x, t) . (2.3)

The two boundary conditions that are absorption at 0 hard wall at 1 can be weakly defined
in terms of the propagator and the probability current in the following way,

p(0, t) = 0 and J(1, t) = 0, (2.4)
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respectively; see e.g. Chapter 4 of [28] or [30].
Thus we study the solution of the following system of equations,





∂tp(x, t) + vp′(x, t)−Dp′′(x, t) = 0,
p(0, t) = 0,
J(1, t) = 0,
p(x, 0) = δ(x− x0),

(2.5)

in which the last equation provides the initial condition. No closed-form solution to Eqs.
(2.5) is available. Lemma 2.1 provides a closed-form expression for the Laplace transform of
the propagator, viz. for p̃(x, s) =

∫∞
0

e−stp(x, t) dt, ∀s ≥ 0.

Lemma 2.1 (Laplace transform of propagator). Let x0 ∈ (0, 1], v ∈ R, D > 0 and consider
p solution to Eqs. (2.5). Let s > −v2/(4D) and define

ρ =
v

2D
, ω(s) =

√
v2 + 4Ds, θ(s) =

ω(s)

2D
=

√
v2 + 4Ds

2D
(2.6)

and

α±(s) =
v ±

√
v2 + 4Ds

2D
=

v ± ω(s)

2D
= ρ± θ(s). (2.7)

Then the Laplace transform of the propagator is given by

p̃(x, s) = p̃(x0, s)×





eα+(s)x−eα−(s)x

eα+(s)x0−eα−(s)x0
, ∀x ∈ [0, x0),

α+(s) eα+(s)(x−1)−α−(s) eα−(s)(x−1)

α+(s) eα+(s)(x0−1)−α−(s) eα−(s)(x0−1) , ∀x ∈ (x0, 1],
(2.8)

with p̃(x0, s) given by

p̃(x0, s) =
2 sinh(θx0) {ω cosh[θ(x0 − 1)] + v sinh[θ(x0 − 1)]}

ω2 cosh(θ)− v ω sinh(θ)
. (2.9)

The ratio ρ is currently called Péclet number.

2.2. Stochastic resetting and stopping condition

We now modify the dynamics of the stochastic process Y by putting stochastic resetting.
More explicitly, we assume that at random times T0 = 0 < T1 < T2 < . . ., a.s., the value
of the process Y is reset to its initial value x0. Following [15], this is expressed through the
addition of a new term to the SDE, giving

dXt = (1− χt) · (v dt+
√
2DdWt) + χt · (x0 −Xt), ∀t ≥ 0, (2.10)

where

χt =
∞∑

n=1

1{Tn = t}, ∀t ≥ 0,
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where 1 denotes the indicator. We assume that the stochastic process χ = {χt}t≥0 is an
independent homogeneous Poisson process with rate or intensity r > 0. Thus Tn the sum of
n independent exponential random variables with expectation r−1, for n = 1, 2 . . ..

We can now define the FPT (also called absorption time) by

τr = inf{t ≥ 0 |Xt ≤ 0}. (2.11)

It admits a proper probability density function denoted fr, where the subscript r ≥ 0
highlights the dependence on the Poisson rate r. When r = 0, we retrieve the dynamic
without resetting.

3. Laplace transform of FPT distribution and PPF

Although the mean FPT E[τr] properly characterizes typical absorption times, this quan-
tity alone does not quantify the uncertainty inherent to the first passage phenomenon. Often,
high-order quantiles are more relevant. Thus, besides the expectation we want to obtain the
entire probability distribution of τr. Its Laplace transform is available, but there is no ob-
vious and general way of inverting it. The well-known fast Fourier transform (FFT) is a
purely numerical method and it does not necessarily provide accurate results, in particular
for approximating upper tail quantiles, that are useful in many applications. We refer for
example to [11] for a numerical comparison of methods for computing a FPT probability for
the compound Poisson process perturbed by diffusion.

In this section, we propose and implement a particular method for our FPT problem.
We obtain the Laplace transform of the FPT (Section 3.1), PPF approximation whose in-
version will be approximated numerically. The approximated inversion begins with the Padé
approximation of the Laplace transform, followed by a partial fraction decomposition of the
Padé approximation and then by the simple inversion of the sum of partial fractions (Sec-
tion 3.2). This is the PPF approximation. One can find some references, in particular in
the engineering literature, on the problem of obtaining approximate Laplace inversions by
rational approximations: some early references are [38], [50], [51], [52] and [53].

3.1. Laplace transform of FPT distribution with resetting

In this section we first provide the Laplace transform of the FPT distribution, τr, and
then we give a simplified formula for its expectation.

Proposition 3.1 (Laplace transform of FPT distribution with resetting). Assume that X
solves the SDE with resetting of Eq. (2.10), with X0 = x0 ∈ (0, 1], v ∈ R, D > 0 and r > 0.
Denote by fr the probability density of the absorption time τr, defined in Eq. (2.11). Then
its Laplace transform is given by, ∀s > −r,

f̃r(s) =
(s+ r)f̃0(s+ r)

s+ rf̃0(s+ r)

= (s+r){ω(s+r) cosh[θ(s+r)(x0−1)]+v sinh[θ(s+r)(x0−1)]}
seρx0{ω(s+r) cosh[θ(s+r)]−v sinh[θ(s+r)]}+r{ω(s+r) cosh[θ(s+r)(x0−1)]+v sinh[θ(s+r)(x0−1)]} , (3.1)
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where f̃0 is given by, ∀s > −v2/(4D),

f̃0(s) = e−ρx0
ω(s) cosh{θ(s)(x0 − 1)}+ v sinh{θ(s)(x0 − 1)}

ω(s) cosh{θ(s)} − v sinh{θ(s)} . (3.2)

Proof. We obtain from Eq. (A.4) the Laplace transform of fr as f̃r(s) = 1 − sS̃r(s), for all
s ∈ R. We combine it with Eq. (A.7) and it yields the first expression,

∀s > −r, f̃r(s) =
(s+ r)f̃0(s+ r)

s+ rf̃0(s+ r)
.

This last expression holds ∀s < −r under the assumption f̃0(s+ r) ̸= −s/r.
We deduce the closed-form expression in Eq. (3.1) by combining the first expression with

f̃0 in Eq. (3.2). Note that, for the function ω to be defined, we need s+ r ∈ (−v2/(4D),∞),
viz. s ∈ (−r − v2/(4D),−r).

We can make two short remarks on Proposition 3.1. First, because the Laplace transform
exists over a neighborhood of the origin, all moments of τr exist and determine its distribution
unambiguously. In contrast with this, the FPT of the driving drifted Brownian motion
without hard wall reflecting boundary and resetting has infinite moments: it is known that
although the FPT of the Brownian motion is finite with probability one, its expectation is
infinite [30].

We also note the distribution of the model without resetting is obtained continuously,
because limr→0 f̃r(s) = f̃0(s), ∀s > 0.

We end this section with the following novel closed-form expression for the mean absorp-
tion time with resetting.

Proposition 3.2 (Mean FPT). Assume that the process X solves the SDE with resetting
of Eq. (2.10), with X0 = x0 ∈ (0, 1], v ∈ R, D > 0 and r > 0. The expectation of τr in
Eq. (2.11) is given by

E[τr] =
1

r

(
eρx0 (ω(r) cosh{θ(r)} − v sinh{θ(r)})

ω(r) cosh{θ(r)(x0 − 1)}+ v sinh{θ(r)(x0 − 1)} − 1

)
, (3.3)

where ρ, ω and θ are given in Eq. (2.6).

The proof of Proposition 3.2 is in Appendix A.

3.2. PPF approximation to FPT distribution with resetting

Because we cannot invert the Laplace transform f̃r in Eq. (3.1) analytically, we now pro-
pose to approximate f̃r by a specific rational function, which is the ratio of two polynomials
with degree in denominator higher than in numerator. The type of rational approximation
considered here is the one suggested by Henri Padé thesis in 1892 and called Padé approxima-
tion. It has shown practical relevance in many problems of theoretical physics where power
series expansions occur, as already stressed by [54]. Introductions can be found in various
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books, such as in Section 4.6 of [55], in which it is mentioned that for given computational
time, the Padé approximation is typically more accurate than the Taylor approximation. It
has a local error of order smaller than the sum of the two degrees of the two polynomials of
the ratio. We note that available tables do not provide the analytical form of the Laplace
inverse of a Taylor approximation and, under some assumptions, they provide the Laplace
inverse of many rational functions.

Let m,n be nonnegative integers, let I be an interval of R with 0 ∈ I and let g : I → R
be a n +m times differentiable function. Then the Padé approximation of orders m and n
to g is the rational function

gm,n(s) =
pm(s)

qn(s)
, (3.4)

where

pm(s) =
m∑

j=0

ajs
j ,and qn(s) =

n∑

j=0

bjs
j, ∀s ∈ I,

and which satisfies g(k)(0) = g
(k)
m,n(0), for k = 0, . . . , n + m.3 It can be shown that these

conditions imply that the coefficients a0, . . . , am and b0, . . . , bn−1 are obtained by solving the
m+ n+ 1 linear equations





i∑

j=0∨(i−n)

g(j)(0)

j!
bi−j = ai, for i = 0, . . . ,m,

i∑

j=0∨(i−n)

g(j)(0)

j!
bi−j = 0, for i = m+ 1, . . . ,m+ n.

(3.5)

It can also be shown that

g(s)− gm,n(s) = o(sm+n), as s → 0 .

The PPF considers the restriction m < n. It allows for exact inversion of the Laplace
transform in Eq. (3.1) approximated by Padé and re-expressed in terms of partial fractions.
This leads to a simple and practical approximate closed-form expression for the density of
the FPT τr. Precisely, let gm,n(s) = pm(s)/qn(s) be the Padé approximation of orders m < n
to the Laplace transform f̃r. If all roots of qn are real and negative, then there exists a
Laplace inversion of gm,n, which we denote fm,n. Thus, fm,n provides an approximation to
the density of τr, namely to fr on [0,∞). Thus the density fm,n can be obtained by the
following steps, under the above condition on roots of qn.

Algorithm 3.3 (PPF approximation to FPT density).
Step 1. Padé approximation

• Select the orders m < n of the Padé approximation to f̃r, which we denote gm,n.

3Note that these same equations hold for the Taylor approximation of order m+ n.
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• Compute f̃
(k)
r (0), for k = 0, . . . , n+m.

• Find the coefficients a0, . . . , am and b0, . . . , bn−1 by solving them+n+1 linear equations
in Eqs. (3.5).

Step 2. Partial fraction decomposition

• Decompose the Padé approximation in the partial fractions as follows,

gm,n(u) =
pm(u)

qn(u)
=

k∑

j=1

lj∑

i=1

γj,i
(u− αj)i

, (3.6)

where α1, . . . , αk are the distinct roots of the denominator qn, whose multiplicities
respectively are l1, . . . , lk (with l1 + . . .+ lk = n).

• Compute the real coefficients γj,i, for j = 1, . . . , k and i = 1, . . . , lj. Typically, qn has
n distinct roots α1, . . . , αn. In this case,

pm(u)

qn(u)
=

n∑

j=1

γj
u− αj

,

gives us

γj =
pm(αj)∏n

k=1,k ̸=j(αj − αk)
, for j = 1, . . . , n .

Should not all roots of qn be distinct, the coefficients γj,i, for j = 1, . . . , k and i =
1, . . . , lj, could be obtained by the residue method.

Step 3. Inversion
This step is possible only under the restriction α1, . . . , αk < 0.

• Invert the Padé approximation gm,n to f̃r by exploiting its re-expression in Eq. (3.6)
so to obtain the linear combination of gamma or exponential densities

fm,n(t) =
k∑

j=1

lj∑

i=1

γj,i
i!

ti−1eαjt , ∀t > 0. (3.7)

Step 4. Corrections
The following corrections to Eq. (3.7) generally improve its accuracy. In order to keep
notation simple, the same name fm,n is used for the original approximation of Eq. (3.7) and
for the corrected version.

• Truncation of negative parts
Negative values are equated to null, viz.

fm,n(t) = max{fm,n(t), 0}, ∀t > 0.
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• Smoothing near to origin
Oscillations near to the origin are removed. Find s > 0 the abscissa point of the last
local minimum of fm,n. If it does not exist, then no correction is required. Consider

fm,n(t) =

{
0, if t ≤ s,

fm,n(t), if t > s.
(3.8)

• Normalization
Give integral value one, viz. consider

fm,n(t) =

(∫ ∞

0

fm,n(s)ds

)−1

fm,n(t), ∀t > 0.

• Recentering to expectation
Give expected value µ = E[τr]. Compute µ, through its closed-form expression in
Eq. (3.2), and compute µm,n, the mean of the approximate density fm,n. Obtain the
recentered approximated FPT density by

fm,n(t) = fm,n(t+ µm,n − µ), ∀t > max{0, µ− µm,n}.

Let us now provide some further and more precise justifications to the PPF Algorithm
3.3. The PPF approximation fm,n to the FPT density fr is implicitly defined through its
Laplace inversion formula gm,n(u) =

∫∞
0

e−utfm,n(t) dt, ∀u ≥ 0. If α1, . . . , αk < 0, we have
∫ ∞

0

ti−1

i!
e(αj−u)t dt =

1

(u− αj)i
, ∀u > max{α1, . . . , αk},

for i = 1, . . . , lj and j = 1, . . . , k, This and the partial fractions decomposition of gm,n in
Eq. (3.6) give Eq. (3.7), in Step 3.

Next, the two corrections regarding truncation to nonnegative values and smoothing near
the origin concern only small neighborhoods of the origin. The corrections are due to the fact
that the PPF approximation can display undesirable oscillations over these neighborhoods.
However, we know that the true FPT density must vanish at the origin. Indeed, the process
starts above zero. In addition to this, repeated Monte Carlo experiments have confirmed
that the FPT density is smooth close to the origin and overall unimodal. Based on this
theoretical or empirical evidence, the above smoothing correction assumes that the domain
of the density is cut in two parts: the region where it increases from null to the maximum
of the density, followed by the region where it decreases to null. Accordingly, we correct
near to the origin by finding the set of points t > 0 such that f ′

m,n(t) = 0. We assume
that the largest value in this set is mode of the approximate density and so all other values
of the set must be local extrema. If this set has one element only, then no correction is
needed. Otherwise, we denote t‡ to be the second largest value in this set (which is either
the last local minimum before the mode of or the last point of inflection): we remove the
non-monotonic part around the origin through Eq. (3.8).

We conclude with the next remarks.
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Remarks 3.4. 1. As mentioned, fm,n is not necessarily a probability density: as γ1, . . . , γn
can be negative, fm,n can be negative over some regions. However,

∫ ∞

0

fm,n(t)dt =
k∑

j=1

lj∑

i=1

γj,i
(−αj)i

= gm,n(0) −→ f̃r(0) = 1, as m,n → ∞,

so the sequence of PPF approximations has the correct normalization in the limit of
large m, n.

2. If the PPF approximation fm,n is a proper probability density, then its expectation is
given by

µr,m,n =
k∑

j=1

lj∑

i=1

(i+ 1)γj,i
(−αj)i+1

.

3. If the function fm,n has a Laplace transform of the form of the Padé approximation
Eq. (3.4), i.e. if fm,n = pm/qn for some polynomials pm and qn, then fm,n is character-
ized as the solution of the homogeneous linear ordinary differential equation (ODE)

f (k)
m,n(t) + ck−1f

(k−1)
m,n (t) + . . .+ c1f

′
m,n(t) + c0 = 0,

for some coefficients c0, . . . , ck−1 ∈ R with c0 ̸= 0 and for some positive integer k. Thus,
the closeness of gm,n, obtained in Step 3, to fr, the true density, can be re-expressed
in terms of closeness of the solution of the above ODE to the true density. This may
give another way for analyzing the error of the PPF approximation.

• If we consider the process without hard wall and without resetting (Y ), then the FPT
follows a simple distribution, which is the inverse Gaussian. In this case, the PPF
becomes meaningless. If we consider the process without either hard wall or resetting
(Y ), but not without the two together, then it remains interesting to compute the FPT
distribution and the PPF can be adapted accordingly. This remarks extends to the
Monte Carlo MRA of Section 4.

4. MRAs

We will see that, although the PPF approximation is efficient and provides analytical
formulas, it is only valid for specific combinations of the models parameters. Monte Carlo
methods are in general a good alternative to compute the distribution of any FPT, however,
they are computationally intensive. In this section we propose a Monte Carlo method that
we call the multiresolution algorithm (MRA), which leads to arbitrary accuracy and a com-
bination of the MRA and the Euler-Maruyama algorithm, which reduces its computational
time while keeping the accuracy.
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4.1. MRA for the Wiener process
We describe a particular strategy for generating trajectories of Wiener processes, yielding

the SMRA. We provide an algorithm that allows the generation of a single sample path of
the Wiener process with arbitrary resolution. The algorithm is directly obtained from the
following well-known property of the Wiener process,

P
[
Wt+h ∈ (x, x+dx)

∣∣∣Wt = a,Wt+2h = b
]
=

1√
πh

exp

{
−
(
x− a+b

2

)2

h

}
dx, ∀t, h > 0, a, b ∈ R.

(4.1)
Therefore, given the knowledge of the state of the process at two times (Wt = a and

Wt+2h = b), Eq. (4.1) allows to sample the process at intermediate time (Wt+h). This
property can be iterated to access arbitrary small temporal scales, as sketched in Figure 1,
and we will use it to obtain estimations of FPTs at arbitrary accuracy. Indeed, consider the
stopping time equivalent to Eq. (2.11) but for this simpler diffusion,

T = inf{t ≤ 0 | Wt ≤ 0},
where we slightly alter the standard definition of the Wiener process to have some initial
condition X0 > 0 that makes T non-trivial. Let us assume that a discretization {Wnh}n=1,2,...

of {Wt}t≥0 is available, for some h > 0 small. Then,

Th = inf{t ≥ 0 | Wnh ≤ 0}
is an overestimation of T (i.e. Th ≥ T ) that converges to T , as h → 0. This tells us that
applying the MRA at increasing resolutions allows us to approximate the stopping time at
any desired precision.

Given a certain time-interval, for example t ∈ [0, 1], we will note the k-th resolution level
of the sample path in that interval as Wk = {Wk,j}, for k = 0, 1, . . ., and j = 0, 1, . . . , 2k.
Both indices allows to evaluate the process at a particular time in [0, 1], Wk,j = Wt=2−kj.
While the first index informs about the level of refinement of the path, the secondary index,
j, refers to the ordinal of each element given a certain k. Therefore, at initial level k = 0,
we have

W0 = {W0,0,W0,1}, where W0,0 = 0 and W0,1 ∼ N (0, 1). (4.2)

Here N (µ, σ2) stands for a Gaussian random variable with mean µ and variance σ2. Then,
consecutive levels of refinement, k ≥ 1, are obtained by

Wk,2j = Wk−1,j, for j = 0, 1, . . . , 2k−1 (4.3a)

Wk,2j+1 ∼ N
(
Wk−1,j +Wk−1,j+1

2
,
1

2k

)
, for j = 0, 1, . . . , 2k−1 − 1. (4.3b)

For k > 0, the even indices of j are copied over as the resolution increases as in Eq. (4.3a).
The odd indices of j are generated randomly using two consecutive variables from the pre-
vious resolution, as in Eq. (4.3b). Proceeding in this way, the overestimation of the FPT of
Wk decreases as k increases.

Further details about the MRA can be found at p. 277-279 of [39]. In the Appendix B.1
we show a pseudocode with the implementation of the MRA for the process {Wt}t≥0.
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Figure 1: Upper table: Resolution level k and corresponding number of generated variables 2k + 1 (first two
columns); generated variables Wk,j (last column). Equal signs indicate copying a variable from a previous
resolution; see Eq. (4.3a). Arrows indicate generating of a new variable from a previous resolution; see Eq.
(4.3b). Lower graphs: Illustrations of the trajectory generated subsequently by the MRA.

4.2. MRA with resetting

This section describes the application of the MRA to a process with resetting, similar to
the one of Section 2.1, but without considering the reflecting boundary for now. Let us call
{Bt}t≥0 the drifted Brownian motion without hard wall and without resetting,

dBt = v dt+
√
2DdWt, ∀t ≥ 0, (4.4)

where B0 = x0 > 0. Let us call t† the sequence of times at which the process experiences a
reset

t† = {t†0, t†1, t†2, . . .}, where t†0 = 0, (t†i+1 − t†i ) ∼ Exponential(1/r).

Let us define reset intervals from pairs of consecutive reset times: {(0, t†1), (t†1, t†2), . . .}.
The main idea to exploit is that Bt is a normally distributed random variable with mean
µ = x0 + vt and variance σ2 = 2Dt within any reset interval. Therefore, we can build
Brownian bridges connecting the extremes of reset intervals with arbitrary precision. We
first consider the process in the first reset interval, t ∈ [0, t†1], and, similar to what we did
with the Wiener process in Section 4.1, we define the k-th resolution level of the sample
path in that interval as B

(1)
k . In the first resolution level, the process starts at the initial

position, B0,0 = x0, with initial time 0, and ends at the final position, B0,1, with final time

t†1. Therefore,

B
(1)
0 = {B(1)

0,0 , B
(1)
0,1}, where B

(1)
0,1 ∼ N (x0 + vt†1, 2Dt†1). (4.5)
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Then, similar to Eq. (4.3), the generation of the process at the next resolution k is
obtained by

B
(1)
k,2j = B

(1)
k−1,j, for j = 0, 1, . . . , 2k−1, and (4.6a)

B
(1)
k,2j+1 ∼ N

(
B

(1)
k−1,j +B

(1)
k−1,j+1

2
,
2Dt†1
2k

)
, for j = 0, 1, . . . , 2k−1 − 1. (4.6b)

The precise meaning of Eq. (4.6b) is that the conditional distribution of B
(1)
k,2j+1 given B

(1)
k−1,j

and B
(1)
k−1,j+1 is Gaussian. The same steps can be used to generate the Brownian trajectory

in the second reset interval, B
(2)
k , simply replacing t†1 by t†2 − t†1 in Eqs. (4.5) and (4.6b). In

general, the Brownian trajectory in the ith reset interval, i.e. (t†i , t
†
i−1), and at refinement

level k is obtained through

B
(i)
0 = {B(i)

0,0, B
(i)
0,1}, where B

(i)
0,1 ∼ N (x0 + v(t†i − t†i−1), 2D(t†i − t†i−1)), (4.7)

and

B
(i)
k,2j = B

(i)
k−1,j, for j = 0, 1, . . . , 2k−1, and (4.8a)

B
(i)
k,2j+1 ∼ N

(
B

(i)
k−1,j +B

(i)
k−1,j+1

2
,
2D(t†i − t†i−1)

2k

)
, for j = 0, 1, . . . , 2k−1 − 1. (4.8b)

Since B
(i−1)

k,2k
̸= B

(i)
k,0 = x0, the procedure described so far generates a multivalued pro-

cess when consecutive reset intervals are concatenated. Therefore, once the multiresolution
algorithm has been applied until the desired level of resolution, we obtain the proper dis-
cretization of the process setting B

(i)

k,2k
= x0, for i = 0, 1, . . . .

4.3. Reflecting boundary

We now add the hard wall reflecting boundary [30] to the previous developments. The
hard wall reflections that bound the process below level 1 annihilate the Gaussian nature of
the process, which is essential to the multiresolution method. To solve this issue, we first
generate an unbounded trajectory with the multiresolution method B

(i)
k , at some resolution

level k ≥ 1. Then, by using the increments of B
(i)
k , we define the reflected process R

(i)
k

starting as follows:

R
(i)
k,j+1 =

{
R

(i)
k,j +∆B

(i)
k,j, if R

(i)
k,j +∆B

(i)
k,j ≤ 1,

2− (R
(i)
k,j +∆B

(i)
k,j), if R

(i)
k,j +∆B

(i)
k,j > 1

= min
{
R

(i)
k,j +∆B

(i)
k,j, 2− (R

(i)
k,j +∆B

(i)
k,j)
}
,

(4.9)

where ∆B
(i)
k,j = B

(i)
k,j+1 −B

(i)
k,j, for j = 0, . . . , 2k+1, and R

(i)
k,0 = x0.
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4.4. Stopping condition

Every resolution k will provide a value for the first time at which the trajectory Rk is
observed to go below the absorbing boundary, which is the null line,

τr,k = inf{t(i)k,j ∈ (t†i−1, t
†
i ) |R(i)

k,j ≤ 0, i = 1, 2, . . . }. (4.10)

This time provides an approximation to the target FPT at resolution k. Increasing the
resolution yields finer sample paths and therefore finer estimations according to Eq. (4.10).
However, we note that estimations using Eq. (4.10) are always upper bounds to the real
FPT. Furthermore, if k > k′, then

τr ≤ τr,k ≤ τr,k′ .

This inequality has important consequences for our simulation schemes. Basically, every
estimation induces an effective time horizon for our Monte Carlo method. Given the esti-
mation at some resolution k, τr,k, it makes no sense to simulate the process on times t > τr,k
since τr ≤ τr,k.

An explicit condition at which we may stop the simulation can be defined by using
an error threshold ϵ > 0. We define the maximum resolution level k† such that the time
increment is below ϵ,

k† = −
⌈
log(ϵ)

log(2)

⌉
,

where ⌈x⌉ denotes the smallest integer ≥ x.
We finally defined all elements required to use the MRA to sample the FPT, we denote this

version of the algorithm as the standard MRA (SMRA). We start generating the unbounded
motion from Eq. (4.4) in the first reset interval (i = 1) for a target resolution k† using
Eq. (4.8). Once the Brownian trajectory has been generated in the first reset interval, we
compute the reflected process in this interval [through Eq. (4.9)]. If the stopping condition
in the first interval is reached [Eq. (4.10)], then the simulation stops and we can sample an
estimation for the FPT at resolution k†. Otherwise, we will draw the next reset time, t†2, and
proceed similarly in the second reset interval (i.e. generating the Brownian trajectory using
the multiresolution scheme, then reflecting the trajectory and lastly checking if the reflecting
trajectory reach the stopping criteria). This procedure is iterated until the stopping condition
is reached.

Once the above process has been used to get an estimation of the FPT with resolution
k†, τr,k† , it can be further refined to reach a new resolution level k > k†. In this second phase,
there are no further sampling of reset times, and the multiresolution scheme is iterated on a
fixed interval [0, τr,k† ]. This is because τr,k† is an upper bound for the true FPT.

4.5. HMRA

Stochastic resetting can strongly increase the computational requirements of the SMRA.
This is because it requires applying the multiresolution method in multiple reset intervals
with a high resolution k†, which is especially costly when 1/r ≪ τr because it results in a
large number of resets.
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Figure 2: Illustrations of trajectories generated from HMRA. Time increments of the Euler-Maruyama algo-
rithm (∆t) are sketched as the separation of vertical dashed lines.

The Euler-Maruyama algorithm partially overcomes these limitations, however it tends
to overestimate the FPT and it does not have an arbitrary accuracy. We propose the hybrid
MRA (HMRA) that refines the Euler-Maruyama trajectories with the MRA (Figure 2). In
doing so, first we produce a trajectory of the Euler-Maruyama (Algorithm B.3), with a time
step ∆t. Close to the absorbing boundary, i.e. X < λ, for some small λ > 0, we use the MRA
to refine the approximation. The details are included in Appendix B.5. Note finally that
with our process the higher order Milstein scheme reduces to the Euler-Maruyama, because
the coefficient of dWt in Eq. (2.1),

√
2D, does not depend on Xt.

5. Numerical results

In order to illustrate the effectiveness of the PPF and the SMRA and HMRA, we analyse
their performance in terms of accuracy, memory requirements, and speed. Source codes and
Python packages of the PPF and MRA are available on the links provided in Appendices A
and B.

5.1. PPF

The results of the approximation at order m = 2 and n = 3 are shown in Figures 3a and
3b which are compared with simulated results of the HMRA. In Figure 3 and Table 1 we
observe that the PPF method is a good approximation of the entire distribution obtained by
Monte Carlo, for multiple values of v, except for the percentile p = 0.1, for negative values
of v.

For a valid result from the PPF method, we need to identify all the roots of the denom-
inator of the Padé approximation, and ensure that they are real and negative, cf. Step 3
of Algorithm 3.3. Having at least one positive root, implies that no Laplace inverse of fm,n

exists. On the other hand, if there is at least one non-real root, the result yields a damped
sinusoidal, i.e. a signed function. Varying the parameters for drift and diffusion reveals
regions at which the PPF method will not work based on these criteria, as shown in Figure
4.
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Figure 3: Results of PPF approximation, parameters are D = 5× 10−4, r = (3× 365)−1 and approximation
orders m = 2, n = 3. (a)-(b) Histograms obtained from 106 generated values and continuous curves obtained
from PPF with varying drift v = −3× 10−3 and v = 0. (c) Comparing quantiles close to the tails, medians,
and means generated from PPF and 106 simulations for a varying drift.

t PHMRA[τr > t] PPPF [τr > t]

342.140 0.25000 0.24918
379.322 0.19937 0.19800
416.503 0.15806 0.15718
453.685 0.12593 0.12470
490.866 0.10099 0.09891
528.047 0.07981 0.07843
565.229 0.06382 0.06219
602.410 0.05082 0.04931
639.592 0.04064 0.03910
676.773 0.03234 0.03100
713.955 0.02555 0.02458
751.136 0.02020 0.01949
788.317 0.01591 0.01545
825.499 0.01253 0.01225
862.680 0.01000 0.00971

t PHMRA[τr > t] PPPF [τr > t]

1445.966 0.25000 0.25089
1664.281 0.19842 0.19894
1882.596 0.15738 0.15775
2100.911 0.12428 0.12508
2319.225 0.09894 0.09919
2537.540 0.07823 0.07865
2755.855 0.06189 0.06236
2974.170 0.04967 0.04945
3192.485 0.03972 0.03921
3410.800 0.03117 0.03109
3629.115 0.02444 0.02465
3847.430 0.01964 0.01955
4065.745 0.01589 0.01550
4284.060 0.01255 0.01229
4502.375 0.01000 0.00975

Table 1: Upper tail probabilities of HMRA and PPF in Figures 3a (left table) and 3b (right table).

Figure 4: Regions of the parametric space (v,D) of validity of the PPF with orders m = 2, n = 3, r =
(1/3)× (1/365).
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5.2. SMRA and HMRA

When comparing the accuracy of SMRA and HMRA by comparing their simulated mean
FPT with the analytical mean FPT, we observe that as error threshold ϵ decreases, both
algorithms converge to the analytical solution, whilst very small step sizes are necessary for
Euler Maruyama to reach the same level of accurarcy (Figure 5). In terms of computational
requirements, when we decrease ϵ, we observe a linear increase in ⟨k⟩, that would lead to an
exponential increase in memory requirements as it is proportional to the number of points
generated for each trajectory. Therefore, HMRA outperforms SMRA since it needs lesser
points to reach the same accuracy (Figure 6a). Finally, in terms of speed, the HMRA
outperforms the MRA by 2 to 4 orders of magnitude (Figure 6b).

Figure 5: SMRA and HMRA results with different Euler-Maruyama time steps ∆t, with changing threshold
ϵ. v = −10−2, D = 10−4, r = (3 · 365)−1, x0 = 0.8, 106 simulations.

Although HMRA outperforms the SMRA, HMRA requires two parameters to be set, ϵ and
∆t. For this reason, we study the impact of either parameters in terms of computational time.
For all the values of ∆t, we identify where reducing ϵ does not correspond to a significant
increase in computational time. However, as ϵ is further decreased, the computational time
rapidly increases by orders of magnitude. This behavior describes a Pareto front, suggesting
the existence of a critical value of ϵ which yields the best trade-off between accuracy and
speed (Figure 6c).

6. Discussion

We have addressed the problem of computing the FPT distribution to the null level of
the drifted Brownian motion with upper hard wall barrier and Poisson resetting times. In
doing so, we have first introduced the PPF approximation, which is an analytical formula
that can be immediately evaluated. We have then introduced the SMRA and HMRA, that
are purely numerical but give arbitrary accuracy, and we have shown how they overcome
the limitations of some other available methods in terms of accuracy and speed. Moreover,
by using the survival function of the FPT, we have found a more compact expression of
the mean FPT with resetting, which only uses the Laplace transform of the FPT without
resetting [15, 16]. We have provided an easier derivation than one in [25].
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Figure 6: Speed and accuracy comparisons between the SMRA (•), HMRA with ∆t = 1 (•), HMRA with
∆t = 0.1 (•), and HMRA with ∆t = 0.01 (•). (a) Mean resolution per iteration. (b) Mean runtime per
iteration. Dashed lines refer to the mean runtimes of the corresponding first Euler-Maruyama estimates for
HMRA. (c) Comparisons between the mean FPT and the mean runtime per iteration of different simulation
schemes. SMRA and HMRA simulations taken from Figure 5, Euler-Maruyama (•) plotted simulations with
varying ∆t, vertical red dashed line is the analytical mean FPT.

Precisely, with the PPF we have proposed an approximation of the Laplace transform
by taking the Padé approximation and its partial fraction decomposition [38]. These steps
followed by exact inversion yield our PPF approximation. It is accurate and, given that it
does not rely on numerical integration, as do most methods, like the Talbot approximation
[56, 57], it yields an instantaneous numerical evaluation. The disadvantage of the PPF is
that the region of the parametric space where the approximation is limited. But we have
identified the region where it is valid.

To overcome this limitation, we have presented the MRA. Given two consecutive points
on a trajectory, a property of Wiener processes is that the intermediate of the two points is
Gaussian with mean given by the average of the first and last points [58]. The MRA exploits
this bridge property by generating intermediate points between intervals of the trajectory.
Hence, the MRA can generate finer values up to any threshold of error, compared to other
methods for which the level of resolution is fixed in advance [39], making the control of the
error difficult.

We have introduced two versions of the MRA, namely the SMRA and HMRA. Either
simulation algorithm has shown high accuracy and convergence, this with respect to the
exact analytical mean FPT and with respect to the simulation results of the standard Euler-
Maruyama algorithm, which is based on a single and very small time increment. It is known
that compute the FPT by Euler-Maruyama gives overestimation proportional to the time
increment [39]. Thus, both the SMRA and HMRA correct this overestimation through the
construction of Brownian bridges. Because the SMRA computes the entire sample path over
a large time horizon, (in order to obtain the FPT to an arbitrary accuracy), it requires
substantial computational resources. To increase speed and memory efficiency, the HMRA
proceeeds as follows: it first approximates the FPT with Euler-Maruyama and then it refines
locally the resolution through MRA. This yields a more efficient Monte Carlo technique than
either the Euler-Maruyama or the SMRA individually.

Our Monte Carlo methods can readily be used with other Gaussian processes, such as
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the Ornstein-Uhlenbeck process (see e.g. p. 229-230 of [59, 60]). Beyond the FPT, our
method could be used to estimate the first passage area, namely the area enclosed between
the null line and the path of the process up to the FPT, that has recently received substantial
attention, cf. e.g. [61]. We envisage that it would be possible to extend our results to non-
Gaussian α-stable Lévy processes using generalizations of the Brownian bridge [62, 63, 64].
Lastly, future work could focus on characterizing the optimal parameter choices that balance
CPU time consumption and precision, as has been done for jumping processes [65].

7. Code availability statement

The source code (in Python) for the PPF, SMRA and HMRA is available on Github
through the following links:

PPF: https://github.com/jarmsmagalang/ppf approx

SMRA and HMRA: https://github.com/jarmsmagalang/multires

Furthermore, corresponding Python packages can be installed from PyPI at:

PPF: https://pypi.org/project/ppf-approx

SMRA and HMRA: https://pypi.org/project/multires
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Appendix A Proofs

Proof of Lemma 2.1. We begin by taking the Laplace transform of Eq. (2.2) with respect
to t and proceed to solve for the propagator using a procedure similar to the method of
undetermined coefficients. Denote by L the operator of Laplace transform. First, note that
swapping integral and derivative operation over different variables yields

L (vp′(x, ·)) (s) = vp̃′(x, s) and L (Dp′′(x, ·)) (s) = Dp̃′′(x, s) .

The first term is the only term in the equation that has a derivative dependent on t,
which yields

∂tp(x, t) = sp̃(x, s)− p(x, 0) = sp̃(x, s)− δ(x− x0)

where p(x, 0) = δ(x − x0), taken from the initial condition in Eqs. (2.5). Therefore, the
transform of Eq. (2.2) for p̃(x, s) is given by a nonhomogeneous differential equation

sp̃(x, s)− δ(x− x0) + vp̃′(x, s)−Dp̃′′(x, s) = 0 , s ≥ 0 , (A.1)

for x ∈ [0, x0) ∪ (x0, 1]. Rearranging the equation to have the nonhomogeneous term on the
right-hand side, we obtain

Dp̃′′(x)− vp̃′(x)− sp̃(x) = −δ(x− x0). (A.2)

In order to find a solution to Eq. (A.1), let us fix s, denote p̃<(x) = p̃(x, s) for x ∈ [0, x0),
p̃>(x) = p̃(x, s) for x ∈ (x0, 1] and search an analytic solution to the associated homogeneous
differential equation to Eq. (A.2)

Dp̃′′(x)− vp̃′(x)− sp̃(x) = 0,

over these two intervals. The characteristic equation is Dα2−vα−s = 0, with roots, defined
in Eq. (2.7),

α± =
v ±

√
v2 + 4Ds

2D
=

v ± ω(s)

2D
= ρ± θ(s) ,

where the constants are defined by Eq. (2.6). Therefore,

p̃>(x) = Aeα+x +Beα−x and p̃<(x) = aeα+x + beα−x ,

for some constants a, b, A and B to be determined. From the boundary conditions Eq. (2.4)
we obtain

p̃<(x) = a(eα+x − eα−x)

and
v(Aeα+ +Beα−) = D(α+Ae

α+ + α−Beα−) .

The latter equation may be rewritten as

(Dα+ − v)Aeα+ = (v −Dα−)Beα− = C(s) ,
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implying

p̃>(x) = C

(
eα+(x−1)

Dα+ − v
+

eα−(x−1)

v −Dα−

)
.

The continuity of p(·, t) (see [29], Chapter 15, Section 5) yields p̃<(x0) = p̃>(x0), hence one
can write

C

(
eα+(x0−1)

Dα+ − v
+

eα−(x0−1)

v −Dα−

)
= a (eα+x0 − eα−x0) = c(s).

Consequently, we obtain

p̃<(x) = c(s)
eα+x − eα−x

eα+x0 − eα−x0
and p̃>(x) = c(s)

eα+(x−1)

Dα+−v
+ eα−(x−1)

v−Dα−

eα+(x0−1)

Dα+−v
+ eα−(x0−1)

v−Dα−

.

Noticing
v −Dα− = Dα+ and v −Dα+ = Dα−,

we have

p̃>(x) = c(s)
α+e

α+(x−1) − α−eα−(x−1)

α+eα+(x0−1) − α−eα−(x0−1)
.

Our goal is now to determine the function c(s) = p̃(x0, s).
We proceed to examine conditions involving the derivative of p following standard pro-

cedures (see e.g. p. 16 of [30] or p. 449 of [66]). We now return to the nonhomogeneous
differential equation in Eq. (A.2). Integrating the above equation on a segment around x0,

∫ x0+ϵ

x0−ϵ

{Dp̃′′(x, s)− vp̃′(x, s)− sp̃(x, s)} dx = −
∫ x0+ϵ

x0−ϵ

δ(x− x0) dx , s ≥ 0 , ϵ > 0

then,

Dp̃′(x, s)
∣∣∣
x0+ϵ

x0−ϵ
− vp̃(x, s)

∣∣∣
x0+ϵ

x0−ϵ
−
∫ x0+ϵ

x0−ϵ

(sp̃(x, s)) dx = −1.

In the limit ϵ → 0, the last two terms at the left-hand side tend to zero due to continuity of
p̃(x, s) at x = x0. While the first summand can be rearranged and evaluated in terms of p̃′<
and p̃′>,

D (p̃′<(x0)− p̃′>(x0)) = 1 . (A.3)

Let us compute the first derivative

p̃′<(x) = c
α+e

α+x − α−eα−x

eα+x0 − eα−x0
,

and evaluate it at x0

p̃′<(x0) = c
α+e

α+x0 − α−eα−x0

eα+x0 − eα−x0

= c
α+e

θx0 − α−e−θx0

eθx0 − e−θx0
.

30

50



Analogously,

p̃′>(x) = c
α2
+e

α+(x−1) − α2
−e

α−(x−1)

α+eα+(x0−1) − α−eα−(x0−1)
,

leads to

p̃′>(x0) = c
α2
+e

α+(x0−1) − α2
−e

α−(x0−1)

α+eα+(x0−1) − α−eα−(x0−1)

= c
α2
+e

θ(x0−1) − α2
−e

−θ(x0−1)

α+eθ(x0−1) − α−e−θ(x0−1)
.

Therefore, by inserting Eq. (A.3)

1 = Dc

(
α+e

θx0 − α−e−θx0

eθx0 − e−θx0
− α2

+e
θ(x0−1) − α2

−e
−θ(x0−1)

α+eθ(x0−1) − α−e−θ(x0−1)

)

= Dc
e−θ(α2

+ − α+α−) + eθ(α2
− − α+α−)

α+eθ(2x0−1) + α−e−θ(2x0−1) − α+e−θ − α−eθ

= 2Dc
e−θθ(θ + ρ) + eθθ(θ − ρ)

α+eθ(2x0−1) + α−e−θ(2x0−1) − α+e−θ − α−eθ

= 2Dc
θ(θ cosh(θ)− ρ sinh(θ))

ρ cosh[θ(2x0 − 1)] + θ sinh[θ(2x0 − 1)]− ρ cosh(θ) + θ sinh(θ)

= c
ω(ω cosh(θ)− v sinh(θ))

v cosh[θ(2x0 − 1)] + ω sinh[θ(2x0 − 1)]− v cosh(θ) + ω sinh(θ)
,

which gives

c(s) = p̃(x0, s) =
v cosh[θ(2x0 − 1)] + ω sinh[θ(2x0 − 1)]− v cosh(θ) + ω sinh(θ)

ω2 cosh(θ)− vω sinh(θ)

=
2 sinh(θx0) {ω cosh[θ(x0 − 1)] + v sinh[θ(x0 − 1)]}

ω2 cosh(θ)− v ωsinh(θ)
,

where ω and θ are defined in Eq. (2.6). All in all, we obtain the expression Eqs. (2.8) and
(2.9) for the Laplace transform of the propagator.

Proof of Proposition 3.2. Let us define the distribution function of τr by Fr(t) =
∫ t

0
fr(s)ds

and its survival function by Sr(t) = 1 − Fr(t) = P(τr > t), t ≥ 0. In view of the known
relation

fr(t) = −∂tSr(t) , (A.4)

we may re-express the expectation of interest in the following way:

E[τr] =
∫ ∞

0

tfr(t) dt = −
∫ ∞

0

t∂tSr(t) dt =

∫ ∞

0

Sr(t) dt = S̃r(0) , (A.5)

where the tilde always denotes the Laplace transform of a function. In order to find an ex-
pression for the latter term, we use a renewal equation that connects the survival function in
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the resetting case to the survival function for the evolution without resetting. The following
equation is well-known in the literature relative to stochastic resetting and can be found e.g.
in [15, 16, 17]

Sr(t) = e−rtS0(t) + r

∫ t

0

e−ruS0(u)Sr(t− u) du .

By taking Laplace transform on both sides we obtain

S̃r(s) = S̃0(s+ r) + rS̃0(s+ r)S̃r(s) ,

hence, for all s such that S̃0(s+ r) ̸= r−1,

S̃r(s) =
S̃0(s+ r)

1− rS̃0(s+ r)
. (A.6)

The link between S̃0(s) and f̃0(s) is provided by the Laplace transform of Eq. (A.4), which
for r = 0 yields, for all s ̸= 0,

S̃0(s) =
1− f̃0(s)

s
.

Plugging the latter into Eq. (A.6) gives for all s ̸= −r such that f̃0(s+ r) ̸= −s/r,

S̃r(s) =
1− f̃0(s+ r)

s+ rf̃0(s+ r)
, (A.7)

and by Eq. (A.5) we finally obtain

E[τr] =
1

r

{
1

f̃0(r)
− 1

}
. (A.8)

All that remains to do is expressing f̃ in terms of what we explicitly know, that is p̃. This
is done by evaluating the Laplace transform of the probability current (Eq. (2.3)) at the
absorbing boundary x = 0

f̃0(s) = J̃(0, s) = Dp̃′(0, s)− vp̃(0, s) = Dp̃′(0, s) . (A.9)

The probability current J(x, t) is the rate of influx of Brownian particles at the position x,
and since x = 0 is an absorbing boundary, J(0, t) will give the FPT distribution [30]. This
is related to the derivation of the inverse Gaussian distribution using the method of images
[67, 68]. Therefore, from Eq. (A.9) we obtain Eq. (3.2) for
s > −v2/(4D)

f̃0(s) = e−ρx0
ω(s) cosh{θ(s)(x0 − 1)}+ v sinh{θ(s)(x0 − 1)}

ω(s) cosh{θ(s)} − v sinh{θ(s)} , (A.10)

as it has been previously shown in [69] and plugging the latter into Eq. (A.8) yields an
explicit analytic expression for the mean absorption time

E[τr] =
1

r

{
eρx0 (ω(r) cosh{θ(r)} − v sinh{θ(r)})

ω(r) cosh{θ(r)(x0 − 1)}+ v sinh{θ(r)(x0 − 1)} − 1

}
,

where ρ, ω and θ have been defined in Eq. (2.6).
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Appendix B Implementation of SMRA and HMRA

B.1 MRA

We first consider a simple case of the MRA in the time interval [0, 1]. In the algorithm,
the discretized Wiener process, {Wk,j}, with k, j nonnegative integers, is obtained through
Eqs. (4.2) and (4.3).

Algorithm B.1: Basic MRA

Input: initial position W0

Output: W = {W0, . . . ,W2k−1}, t = {0, . . . , t†}
1 k := 0 ;
2 W1 := W ∼ N (0, 1) ;
3 W := {W0,W1} ;
4 t := {0, 1} ;
5 while W has not reached a stopping condition do
6 k := k + 1 ;
7 W∗ := ∅; t∗ := ∅ ;
8 for j ∈ [0, 2k] do

9 j′ :=

⌊
j

2

⌋
;

10 if j is even then
11 W ∗

j := Wj′ ; ▷ note: Wj′ is j′-th element of W

12 t∗j := tj′ ; ▷ note: tj′ is j′-th element of t

13 else

14 µint :=
Wj′ +Wj′+1

2
;

15 σ2
int :=

1

2k
;

16 W ∗
j := W ∼ N (µint, σ

2
int);

17 t∗j :=
tj′ + tj′+1

2
;

18 W := W∗;
19 t := t∗ ;

This pseudocode will generate the two arrays W and t, the positions and times respec-
tively of the trajectories. The final resolution level k can be arbitrarily obtained with a given
stopping condition.
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B.2 Euler-Maruyama trajectory for HMRA

This method is similar to the Euler-Maruyama algorithm described in Algorithm B.3,
but modified for use in the hybrid algorithm. This code will output two arrays XE and
tE which are Euler-Maruyama trajectories but below a position threshold λ > 0. This is
because above this certain threshold in the position, an absorption is unlikely to happen.
Note that reflection and resetting occur in this algorithm.

Algorithm B.2: euler: Generate Euler trajectory below threshold λ

Input: X0, t0, v,D, r,∆t, λ
Output: XE, tE

1 X := X0 ;
2 t := t0 ;
3 XE := ∅ ;
4 tE := ∅ ;
5 t† := tr ∼ Exp(1/r) ;
6 while X > 0 do
7 if t ≥ t† then ▷ resetting condition

8 X := X0 ;
9 t := t† + tr, where tr ∼ Exp(1/r);

10 else
11 X := X +∆X, where ∆X ∼ N (v∆t, 2D∆t) ;
12 t := min{t+∆t, t†} ;
13 if X ≥ 1 then ▷ reflection condition

14 X := 2−X ;

15 if X < λ then
16 append X to array XE ;
17 append t to array tE ;
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B.3 Euler-Maruyama algorithm

Algorithm B.3: Euler-Maruyama algorithm for FPT

Input: X0, v,D, r,∆t
Output: τr

1 X := X0;
2 t := 0 ;
3 t† := tr ∼ Exp(1/r) ;
4 while X > 0 do
5 if t ≥ t† then ▷ resetting condition

6 X := X0 ;
7 t := t† + tr, where tr ∼ Exp(1/r) ;

8 else
9 X := X +∆X, where ∆X ∼ N (v∆t, 2D∆t) ;

10 t := min{t+∆t, t†} ;
11 if X ≥ 1 then ▷ reflection condition

12 X := 2−X ;
13 else if X ≤ 0 then ▷ first passage/stopping condition

14 τr := t ;
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B.4 SMRA

This code uses the multires function found in Appendix B.1. This algorithm generates a
Brownian trajectory Xk, tk and outputs its corresponding FPT with the absorbing boundary
up to an error threshold ϵ.

Recall the simulation parameters k† discussed in Section 4.2. Parameter k† is the min-
imum resolution that the trajectory must have before resetting is allowed, while k∗ is the
maximum resolution before the FPT is recorded and the algorithm is stopped. Note that
k∗ > k†.

Algorithm B.4: SMRA

Input: x0, v,D, r, ϵ, k∗

Output: τr
1 t0 := 0 ;
2 t† := t′ ∼ Exp(1/r) ;

3 k† := −
⌈
log(ϵ)

log(2)

⌉
;

4 while δk > ϵor k < k∗ do
5 k := 0 ;
6 Bf := B′ ∼ N (x0 + v(t† − t0), 2D(t† − t0)) ;
7 B := {B0, Bf} ;
8 t := {t0, t†} ;
9 X := {x0} ;

10 while all X ∈ X > 0or k < k† do
11 k := k + 1 ;

12 δk :=
t†

2k
;

13 B, t := multires(B, t, D, k, t†) ;
14 for j = 0 to 2k do ▷ reflection condition

15 ∆Bj := Bj+1 −Bj ;
16 Xj+1 := min {Xj +∆Bj, 2− (Xj +∆Bj)} ;

17 if any X ∈ X < 0 and (δk < ϵor k > k∗) then ▷ stopping condition

18 τr = inf{t ∈ t |Xt < 0} ;
19 break loops in lines 3 and 9

20 else if k > k† then ▷ resetting condition

21 t0 := t† ;
22 t† := t† + t′, t′ ∼ Exp(1/r) ;
23 break loop in line 9 and return to line 3

24 else ▷ increase resolution

25 return to line 9
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B.5 HMRA

This code uses both the multires function from Appendix B.1 and the euler function
from Appendix B.2. The algorithm begins by generating an Euler-Maruyama trajectory XE

and tE below the position threshold λ. Note that the reflections and resets have occurred in
the initial Euler-Maruyama trajectory already.

Algorithm B.5: HMRA

Input: X0, v,D, r, ϵ,∆t, k∗, λ
Output: τr

1 t0 := 0 ;
2 k := 0 ;
3 XE, tE := euler(X0, t0, v,D, r,∆t, λ) ;
4 XL := ∅ ;
5 tL := ∅ ;
6 for i = 0 to length of array XE do
7 if (tEi+1 − tEi ) ≤ ∆t then
8 XL

i := {XE
i , X

E
i+1} ;

9 tLi := {tEi , tEi+1} ;

10 while δk < ϵ do
11 k := k + 1 ;

12 δk :=
t†

2k
;

13 for ℓ = 0 to length of array XL do
14 X ′ := XL

ℓ ; ▷ note: XL
ℓ = {XE

i , . . . , X
E
i+1}ℓ

15 t′ := tLℓ ; ▷ note: tLℓ = {tEi , . . . , tEi+1}ℓ
16 XL

ℓ , t
L
ℓ := multires(X ′, t′, D, k, t†) ;

17 XM := flattened array of XL ;
18 tM := flattened array of tL ;
19 if any X ∈ XM < 0 and (δk < ϵ or k > k∗) then ▷ stopping condition

20 τr = inf{t ∈ tM |XM
t < 0} ;

21 break loop 10

22 else ▷ increase resolution

23 return to line 10

The loop at line 6 splits both XE and tE into an array of arrays XL consisting consecutive
elements of the original array, e.g. for XE: XL = {{XE

0 , X
E
1 }, {XE

1 , X
E
2 }, . . .}. Each array

element of both XL and tL is passed through multires and afterwards, the array of arrays
is flattened back to a 1D array which is called XM and tM , to check for the first passage and
the stopping condition.
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Chapter 4

Optimal switching strategies in
multi-drug therapies for chronic
diseases
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Antimicrobial resistance is a threat to public health with millions of deaths linked to drug resistant
infections every year. To mitigate resistance, common strategies that are used are combination
therapies and therapy switching. However, the stochastic nature of pathogenic mutation makes
the optimization of these strategies challenging. Here, we propose a two-scale stochastic model
that considers the effective evolution of therapies in a multidimensional efficacy space, where each
dimension represents the efficacy of a specific drug in the therapy. The diffusion of therapies within
this space is subject to stochastic resets, representing therapy switches. The boundaries of the space,
inferred from coarser pathogen-host dynamics, can be either reflecting or absorbing. Reflecting
boundaries impede full recovery of the host, while absorbing boundaries represent the development
of antimicrobial resistance, leading to therapy failure. We derive analytical expressions for the
average absorption times, accounting for both continuous and discrete genomic changes using the
frameworks of Langevin and Master equations, respectively. These expressions allow us to evaluate
the relevance of times between drug-switches and the number of simultaneous drugs in relation
to typical timescales for drug resistance development. We also explore realistic scenarios where
therapy constraints are imposed to the number of administered therapies and/or their costs, finding
non-trivial optimal drug-switching protocols that maximize the time before antimicrobial resistance
develops while reducing therapy costs.

I. INTRODUCTION

Antimicrobial resistance has been recognized as a ma-
jor threat to public health, with estimates of 4 million
deaths associated with resistant bacterial infection in
2019 [1]. This resistance is a consequence of pathogenic
evolution, affecting multiple diseases such as tubercu-
losis [2], HIV/AIDS [3, 4], cancer [5–7], among others.
Drug resistant pathogens are more difficult to treat since
conventional treatment procedures can no longer be used.
This increases the risk of complications due to more ag-
gressive drugs and the economic burden, estimating ex-
cess costs of one hundred thousand US dollars per case of
multi-drug resistant tuberculosis in 2013 [8]. The extent
and severity of drug resistance is expected to increase in
the coming years [9, 10], creating the need to determine
optimal treatment strategies to minimize the problem.

A common strategy that physicians use to avoid drug
resistance is by combining multiple drugs [11, 12]. Com-
bination therapies target multiple biological mechanisms
of a pathogen, reducing the likelihood of developing re-
sistances to all drugs combined. When resistances oc-
cur, physicians typically replace the therapy [4, 13, 14].

∗ edgar@ictp.it
† daniel.sanchez@unibe.ch

However, stochastic effects can play a role in either the
detection of resistance [15, 16], managing adverse effects
[17, 18], or the appearance of new drugs in the market
[19] which is relevant for chronic illnesses. Therefore, to
fully understand the problem we need to simultaneously
account for the stochastic effects in therapy switching
and the multiple components of combination therapy.

Mathematical models have been used to model drug
resistance at different scales, from the biological mecha-
nisms within a pathogen [20, 21], within-host dynamics
[22–25], to its epidemiological and economic impact [26–
28]. These models have been used to study the effective-
ness of public health strategies that mitigate resistance,
such as improving hygiene protocols, increasing surveil-
lance, and regulating the use of antimicrobial drugs [26].

Our goal is to develop a mathematical model that
can identify optimal strategies of therapy administration
and therapy switching rates. In doing so, we present
a two-scale mathematical model that describes the ef-
ficacy of therapies administered to a host. The first
scale accounts for pathogenic evolution which results in
changes to the therapy efficacy. This evolution is a direct
consequence of pathogenic mutation which is inherently
stochastic [29, 30]. The second scale accounts for host-
pathogen dynamics of a chronic infection, such as HIV-1
[23, 24] and is linked to the first scale via the infection
rate which is determined by the therapy efficacy.

Pathogenic evolution is modeled as a diffusion process

59



2

in multiple dimensions where the position represents the
therapy efficacy and therapy changes are modeled using
the framework of stochastic resetting [31, 32], which has
found applications in biology since very recently [33–36].
While a faithful representation of evolutionary dynam-
ics should bear the discreteness of genomic changes [30],
continuous approximations of evolutionary pathways are
also used [37] to ease the analysis. The efficacy space also
includes a region representing therapy failure. Hence,
drug resistance development becomes a first passage time
problem [38]. Typically, stochastic resetting problems
aim to minimize the first passage time [39–42], but the
need to maximize this time emerges naturally in this
problem, as it is equivalent to the drug resistance de-
velopment time [43].

The paper is organized as follows: We first discuss the
specifications of the model (Section II). Then we study
the dependence of the model on its parameters (Section
III) and the effect of imposing restrictions to the amount
of administered therapies (Section IV). Finally, we sum-
marize and discuss our results (Section V).

II. MULTI-DRUG STOCHASTIC MODELS

We are interested in modelling a host infected with a
pathogen that accounts for the development of drug re-
sistance in two time scales: pathogenic evolution and the
host-pathogen dynamics. These two scales are linked by
an infection rate, which determines the number of in-
fected cells in the host-pathogen model, and it is reduced
with the therapy efficacy, similar to previous models [23–
25]. It is known that pathogenic evolution is influenced
by more stochastic effects and has slower dynamics than
the host-pathogen interactions [29, 30]. Hence, we choose
to focus on the scale of evolution and the host-pathogen
dynamics are assumed to be at the steady state. By mod-
elling the fluctuation of therapy efficacy due to evolution,
we aim to obtain approximations to the time at which
drug resistance occurs, which we define as the resistance
development time (RDT). This quantity is synonymous
to the first passage time, defined as the time at which a
stochastic process reaches a certain state [38].

Our model considers NT ≥ 1 simultaneous and inde-
pendent therapies, of which the ith therapy efficacy ηi
undergoes evolution as a stochastic process. The therapy
efficacy scales an infection rate, e.g.

∏NT

i=1(1 − ηi)βHI,
where β is a constant of infection and at a given time,
H is the population of healthy, susceptible cells, and I is
the population of actively-infecting cells. The form of the
infection rate implies that therapy efficacy is bounded:
ηi ∈ [0, 1)∀i. A therapy efficacy of ηi = 1 signifies a
perfect therapy, as it removes the term for the infection
rate. On the other hand, ηi = 0 refers to an absorbing
boundary and signifies a complete failure of the therapy
as it maximizes the rate. Figure 1 provides a sketch of
the stochastic process being used to model how therapy
efficacy changes over time. Further details of the host-

pathogen model are given in Appendix A.

Note that it is not necessary for all NT therapies to
reach complete failure for the host to be in a critical
state due to an infection of a drug-resistant pathogen.
In fig. 1c, we begin to see a decrease in the number of
healthy cells even with ηi > 0. Hence, we consider that
the therapy efficacy is below a certain threshold for drug

resistance to occur. In this work, we choose
√∑NT

i=1 η
2
i ≤

ηmin as the condition for drug failure, with ηmin = 0.4.

An essential ingredient of our model is the inclusion of
therapy switching at stochastic times. When a therapy
is switched out with a different one, the pathogens are
exposed to a new stimulus and therefore have to restart
the drug resistance development process; we model such
switches as a stochastic resetting process [31, 32]. Since
we describe the evolution of the multi-therapy efficacy as
a stochastic process, we may use the following multivari-
ate stochastic differential equation (SDE)

dηηη =diag (111−IIIχχχ(t))
[
µµµ(ηηη, t)dt+

√
2D dWWW (t)

]

+ diag (IIIχχχ(t)) (ηηη0 − ηηη),
(1)

where ηηη = {η1, η2, . . . , ηNT
} is a vector containing the

NT therapy efficacies, µµµ(ηηη, t) is a drift vector affecting
each of the therapies, D is the diffusivity (assumed to be
isotropic), and WWW (t) a NT−dimensional Wiener process.
Pathogenic evolution tends towards mutating stronger re-
sistances to improve its survival [29], as such we assume
that the drift vector is biased towards therapy failure,
µµµi < 0. The operator diag(·) transforms a vector argu-
ment into a square diagonal matrix.

The quantity IIIχχχ(t) is a vector of indicator func-
tions coupled with χχχ that controls the return of the
therapy efficacies to its corresponding initial value ηηη0.
This vector has elements Iχi

(t) = 1 for t ∈ χi, and
Iχi

(t) = 0 for t /∈ χi, where χi = {0, t∗i,1, t∗i,2, . . .} for
all 1 ≤ i ≤ NT . Here, χi is a sequence of partial sums
of i.i.d. exponentially-distributed random numbers, i.e.
t∗i,j− t∗i,j−1 ∼ Exp(τi), with mean 1/τi, which is the ther-
apy switching rate for the ith therapy.

Solving the RDT statistics associated with the SDE (1)
is rather challenging given the geometry of the bound-
ary conditions ηmin and standard techniques to solve this
equation are not known to work [38, 44, 45]. We in-
stead propose two models of an NT -dimensional fluctu-
ating therapy efficacy with therapy switching that are
analogous to eq. (1) that exploits several symmetries and
approximations in the space spanned by the therapy ef-
ficacy. The first method is a continuous-space model
that reduces the dynamics of the multidimensional SDE
which allows for the calculation analytical expressions of
the mean RDT. The second method is a discrete-space
model that explicitly shows the dynamics of the model
and produces all the statistical quantities of the RDT.
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FIG. 1. Schematic representation of the two-scale mathematical model of drug resistance development in terms of the efficacy
of an antimicrobial therapy. (a) A diagram showing the host-pathogen scale for two therapies, illustrating how drug resistance
emerges and the impact of therapy changes. (b) Illustration of a stochastic trajectory of the efficacies of two therapies (in blue
and red) and the normalized number of healthy cells (H/H0, in green), showing the events described displayed in panel (a):
(1) The initial value of therapy efficacy is shown as a black horizontal dashed line. (2) The therapy efficacy is bounded by a
reflecting boundary at η = 1. (3) Healthy cells drop due to a decreases in efficacy of both therapies. (4) Switching one of the
therapies. (5) Partial absorption due to one of the therapies failing, and does not decrease the healthy population due to the
effect of the other therapy. (6) Switching the failed therapy. (7) Failure of both therapies leading to a decrease in the healthy
cells down to a critical level. (c) Normalized number of healthy cells at equilibrium as a function of the therapy efficacies,
showing the existence of a critical region when both efficacies are low. The analytical expression for the equilibrium of H is
computed in Appendix A.

A. Coupled Continuous Model

In our first model of drug resistance development, we
assume that the discrete changes in pathogen’s genome
are small enough to be considered continuous [37]. Fur-
thermore, we consider that the behavior of the multi-
drug therapy efficacy is expressed as a single parameter:

η =
√∑NT

i=1 η
2
i . This choice for the overall therapy effi-

cacy is motivated by the absorbing boundary described
in fig. 1c. We find that η evolves following the SDE:

dη = (1− Iχ(t))
[
ṽ

η
dt+DdW (t)

]
+ Iχ(t)(η0 − η), (2)

where ṽ = D[NT − 1 − (v/D)] is an effective drift.
Even if the process is one dimensional, the effective drift
still depends explicitly on the number of dimensions NT .
Equation (2) also imposes a rotational symmetry in the
efficacy space. This symmetry respects the absorbing
boundary in fig. 1c, while allowing us to study the effi-
cacy evolution of a therapy with an arbitrary number of
drugs. A schematic of this model is found in fig. 2a for
NT = 2 and see the detailed derivation of eq. (2) in Ap-
pendix B. Using the formalism of the backward Fokker-
Planck equation, We derive an analytical expression for
the mean RDT conditioned to an initial efficacy η [45, 46],
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(a) (b)

FIG. 2. Sketch of the coupled and uncoupled models for NT = 2 for the efficacy of two drugs. (a) The coupled continuous
model, with rotational symmetry and η as the distance from the origin. The trajectories start at the initial efficacy (dot),
upon a therapy switch (square) the therapy efficacy goes back to the initial position, and the process stops when it reaches the
absorbing region (star). (b) The uncoupled discrete model forms a lattice of M ×M states, with each state corresponding to a
value of the efficacy. Changes in therapy efficacy are transitions from one state to an adjacent state. Red states represent the
absorbing states of the model. Upon a therapy switch in ith therapy, the system returns to the points labelled in white, ηi;0.
Efficacy ηi = 1 represent reflecting boundaries and ηi = 0 represents partially absorbing boundaries.

⟨T |η⟩ = τ
Yd(−iηmax)

[
Jd−1 (−iη)− (η/ηmin)

d−1
Jd−1(−iηmin)

]
+ Jd(−iηmax)

[
Yd−1 (−iη)− (η/ηmin)

d−1
Yd−1(−iηmin)

]

Jd(−iηmax)Yd−1(−iη)− Yd(−iηmax)Jd−1(−iη)
.

(3)

Here, Jn, Yn are the Bessel functions of order n of the
first and second kind respectively, and d = 2[(v/D)+NT ],
where (v/D) + NT can be interpreted as an effective
dimension of the efficacy space. We also introduced
rescaled efficacies η = λη, ηmin = ληmin, with λ =
(Dτ)−1/2 and ηmax = ληmax, with ηmin and ηmax as
the scaled radial locations of the absorbing and reflect-
ing boundary respectively. The characteristic scale λ is
an effective therapy switching rate proportional scaled by
genetic diffusion. See Appendix B for the derivation of
eq. (3) and further mathematical details.

B. Uncoupled Discrete Model

In the second model of drug resistance, we model the
discrete phenotypic changes of a pathogen undergoing
mutation [30] as chain of states. We assume that the
chain of states is equally-spaced with M states, such that
ηi = j/M , for j = 0, . . . ,M − 1 and i = 1, . . . , NT . Tran-
sition rates control the evolution of ηi on the chain: rate
pi refers to an increase ηi → ηi +1/M , rate qi refers to a
decrease ηi → ηi−1/M , and rate 1/τi refers to a therapy
switch ηi → ηi;0. This model independently evolves and
switches the therapy efficacy for all NT therapies.

For simultaneous therapies, we form a vector of ther-
apy efficacies ηηη = (η1, . . . , ηNT

)⊤, which is interpreted as
an ordered coordinate, generalizing the chain of M states
to an NT -dimensional lattice of MNT ×MNT states. A
sketch of how this model is constructed is in fig. 2b for

NT = 2. Transitions between states on this lattice can
be written as a transition matrix W, and the evolution
of the vector ηηη is controlled by a master equation

dp(ηηη, t)

dt
= Wp(ηηη, t), (4)

where p(ηηη, t) is a column vector of probabilities tracking
all NT therapy efficacies at each time. The details for the
construction of the transition matrix W can be found in
Appendix C. This formulation of the model also allows
us to utilize simulation methods such as the Gillespie
algorithm to generate the trajectories of ηηη [47].

To compare the change in state space from continu-
ous to discrete, we obtained an approximate SDE for
the uncoupled model, via a Kramers-Moyal expansion
[46, 48] that relates the discrete transition rates pi and
qi to the continuous parameters vi and Di. The approx-
imated SDE is a version of the general SDE in eq. (1)
but where each NT therapies evolving independently of
one another,

dηi =(1− Iχi
(t)) (−vidt+DidWi(t))

+ Iχi(t)(ηi;0 − ηi),
(5)

for 1 ≤ i ≤ NT . The details of the approximation and
how vi and Di relates to the discrete transition rates pi
and qi are found in Appendix C.

We recall that the RDT is computed by taking the time

at which the overall therapy efficacy
√∑NT

i=1 η
2
i reaches
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below ηmin = 0.4. For this model, this condition is im-
posed by removing states and transitions on the lattice
that fall below this condition. Consequently, the transi-
tion matrix W is modified as follows:

Let a and b be any two states on the lattice, i.e.
a ≡ (η1;a, . . . ηNT ;a)

⊤ and b ≡ (η1;b, . . . ηNT ;b)
⊤. Matrix

element Wba will then refer to a transition from state a to
state b. The absorbing boundary condition is written for
any state on the lattice a and b as Wba = 0 and Waa = 0,
if
√∑NT

i=1 η
2
i;a ≤ ηmin.

The full statistics of the RDT for a discrete space of
states, e.g. the RDT distribution, mean RDT, and higher
moments are known [49]. Let η, ηa, and ηi refer to states
on the lattice, ηa is a state along the absorbing boundary,
η is the initial state η0 ≡ (η1;0, . . . , ηNT ;0), and ηi is any
state on the lattice that is neither η nor ηa. The mean
time at which the therapy efficacy reaches an absorbing
state ηa starting from the initial state η at time t is

⟨T |η⟩ =
∑

∀(ηi→ηa)

[
W⊤]

ηa,ηi

[
(S−1)2

]
ηi,η

, (6)

where we sum over all single-step transitions that lead to
the absorbing boundary (ηi → ηa),∀ηi ̸= ηa. The matrix
S is called the survival matrix equal to W with transition
elements (η → ηa) set to zero, as discussed in [49].

III. RESISTANCE DEVELOPMENT TIME AS
A FUNCTION OF THERAPY

ADMINISTRATION STRATEGIES

First, we aim to determine the impact of multiple ther-
apies on the overall dynamics, since it is known to induce
non-linear effects in the overall efficacy [50]. In this sec-
tion we investigate parameter regions to see how multiple
therapies affect the mean RDT.

A. Switching rates and number of therapies may
lead to detrimental effects

In fig. 3, we plot the mean RDT conditioned to the
initial therapy efficacy ⟨T |η⟩ using the coupled model
for therapies with and without drug switching. Figures
3a.1 and 3a.2 show that there is an increase in the over-
all differences between the curves of switching and non-
switching as τ decreases. Similarly, figs. 3a.3 and 3a.4
show an increase in the difference between the two curves
as NT increases. This increase is consistent for any τ or
NT , as shown by the analytical results in figs. 3b.1 and
3b.2.

These differences between the curves quantify how
much therapy switching may be beneficial or detrimen-
tal, as certain initial therapies yield a higher mean RDT
for switching and non-switching. This is illustrated in
fig. 3c. We also identify the intersection between the
two curves ηth that marks the transition between the

beneficial and detrimental regions. To quantify this dif-
ference, the area between the two curves is computed for
ηth ≤ η < 1, which we call S+, and 0 ≤ η < ηth, S−. Fig-
ures 3d.1 and 3d.2 show that S+ and S− decrease with
increasing τ , but the opposite happens for increasing NT ,
however S− increases faster with increasing NT than with
τ . This means that if a patient starts NT therapies with
a low initial efficacy, then the detrimental effect is much
greater if they choose to switch therapies, in terms of the
decrease in the mean RDT.

The remaining parameters of the coupled model, v and
D, do not introduce any new phenomenology beyond
what is already present in τ and NT . These parameters
are discussed further in Appendix B 2.

B. Determining the probability of detrimental
therapy change protocols

Areas where mean RDT is higher for a therapy with
or without switching are also observed for the uncoupled
model. However, uncoupling means that the therapies
evolve independently of one another. The difference of
the mean RDT with and without resetting is calculated
for all the possible combinations of initial therapy efficacy
for NT = 2 in fig. 4. In this figure, the explicit beneficial
and detrimental regions is illustrated in 2D space.

Figure 4a is consistent with the results in fig. 3, where
the region where therapy switching is greater dominates
when it is farther from the absorbing boundary. The
same is observed in fig. 4b but for the uncoupled model
solved using eq. (6). The uncoupled model allows for
switching to be done for only one of the two therapies,
as shown in fig. 4c, and the beneficial or detrimental
regions now yield a non-trivial gradient. This gradient
allows us to obtain insights of where the beneficial and
detrimental regions are by using the initial efficacy of the
non-switching therapy.

Figure 4d shows that the percentage of space occupied
by the beneficial region. This quantity is of interest be-
cause it refers to the probability that the therapy design
is beneficial for patients if the initial therapy efficacies ηηη
are uniformly distributed. The beneficial region does not
vary much as the switching rate is increased for both the
coupled model and for the case of the uncoupled model
where both therapies have equal switching rates. This is
however not the case for switching only one of the two
therapies. The symmetry of the therapy efficacy space is
relevant to estimate a priori the probability that a ther-
apy design put patients at risk.

IV. LIMITING THERAPIES REVEALS
OPTIMAL STRATEGIES

With the current form of the model, a trivial solution
to maximizing the RDT would be an infinite reset rate.
However, this infinite switching is not feasible in a re-
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FIG. 3. (a) Mean RDT as a function of initial therapy efficacy for (a.1) τ = 10 yrs and NT = 2, (a.2) τ = 1 yr and NT = 2,
(a.3) NT = 1 and τ = 3 yrs, and (a.4) NT = 6 and τ = 3 yrs. (b) Mean RDT as a function of initial therapy efficacy for
(b.1) different values of τ and (b.2) different values of NT . (c) An illustration of the curves for the mean RDT as a function
of initial therapy efficacy with and without therapy switching, highlighting the intersection of the curves ηth, which define the
boundaries of S+ and S−. (d) Differences between the areas under the curve before (red) and after (blue) ηth (d.1) as a function
of τ with NT = 2 and (d.2) as a function of NT and τ = 3 yrs. Parameters: v = −8 · 10−5 days−1 and D = 10−4 days−1.

alistic clinical scenario because the number of therapies
available to a patient is limited. For this reason, in this
section we study the effects of imposing limits or costs to
a therapy switch. Additionally, we consider differences
in the initial therapy efficacy for different therapies.

A. Impact of stochasticity in the initial efficacy

Our first approach to model limited resources in ther-
apies is to include a minimum frequency between ther-
apy switches (τmin). Also we consider that the efficacy
right after therapy switches is a random variable with a
complex behavior reflecting the interplay drug-drug and
patient-drugs. For simplicity, we assume that the ther-
apy efficacy after switching is sampled from a uniform
distribution on the entire therapy efficacy space. Thus
we may define an unconditional mean RDT ⟨T ⟩, which is
the conditional mean RDT for the coupled model in eq.
(3) integrated over all possible values that the therapy

efficacy will take after switching,

⟨T ⟩ = 1

ηNT
max − ηNT

min

∫
dη ηNT−1 ⟨T |η⟩. (7)

This expression is averaged over the total effective vol-
ume of the efficacy space ηNT

max − ηNT

min for the coupled
model, and the ηNT−1 term in the integral accounts for
the Jacobian of the change form Cartesian to spherical
coordinates. See Appendix E for further details.

Within this setting, and for fixed number of simulta-
neous drugs NT , there is an optimal value for the aver-
age frequency between drug switches τ that maximizes
the mean RDT. Furthermore, this optimal value for τ
changes abruptly depending on NT and τmin. Indeed, we
can define a phase S1 in which the optimal strategy is to
apply as many therapy changes as possible since τ = τmin.
On the contrary, S2 is another optimal strategy in which
no therapy changes are applied, since τ → ∞.

Figures 5a and 5b show mean RDT curves that corre-
spond to the two phases S1 and S2. The curves transi-
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(a) (b)

(c) (d)

FIG. 4. Difference between the mean RDT with therapy
switching and without therapy switching as a function of ini-
tial therapy efficacy for (a) the coupled continuous model,
(b) uncoupled discrete model with switching allowed for both
therapies, and (c) uncoupled discrete model with switching al-
lowed only for 1 therapy η1. Dashed lines indicate the region
where the mean RDTs coincide. (d) The fraction occupied by
the initial therapy states that the mean RDT with switching
is higher than without switching as a function of τ . Param-
eters: τ = 3, NT = 2, v = −8 · 10−5 days−1 and D = 10−4

days−1.

(a)

(b)

FIG. 5. Unconditional mean RDT as a function of τ for (a)
a representative trajectory where the maximum RDT is at
τmin (S1) for NT = 5, τmin = 1 and (b) a representative
trajectory where the maximum RDT is not at τmin (S2) for
NT = 8, τmin = 6. Solid dots correspond to the maximum
RDT on each curve. (c) Phase diagram separating the regions
for cases where the maximum RDT is and is not at τmin as
a function of NT and τmin. Solid dots on the phase diagram
correspond to the representative curves in (a) and (b). (d) A
transect of the phase diagram for NT = 4, corresponding to
the horizontal dotted line in (c).

tion from S1 in fig. 5a to S2 in fig. 5b by increasing the
allowed minimum average therapy switching frequency
from τmin = 1 and NT = 5 to τmin = 6 and NT = 8.
In fig. 5c we show the boundary separating the phases
as a function of NT and τmin, with a transect of this
phase diagram is shown in fig. 5d. Therapy strategies in
the phase S2 may be more economic than those in S1,

since no drug switches are needed. Hence, for fixed τmin,
increasing the number of simultaneous therapies NT to
enter the phase S2 could result in a more efficient strat-
egy regarding both the maximization of the mean RDT
and the minimization of the therapy costs.

B. Fixing limits and costs to switching therapies

Our next step is to simulate an explicit limit to the
amount of therapy switches, let ℓ be the number of al-
lowed switches and switching is no longer allowed after
the ℓth switch. We can identify two methods of optimiz-
ing the mean RDT: first by varying the therapy change
rate, and second by varying the number of simultaneous
therapies.

First, we fix the number of simultaneous therapies to
NT = 2. We study the mean RDT as a function of the
therapy switching rate for different numbers of allowed
switching ℓ. The mean RDT is obtained using simula-
tions of the uncoupled discrete model with the Gillespie
algorithm using the transition matrix W as defined in eq.
(4). In fig. 6a, we see a non-monotonic behavior for the
mean RDT as the switching rate is varied. This suggests
that given a limited number of therapies available, there
is an optimal therapy switching rate that will maximize
the mean RDT.

Next, we fix the reset rate τ while varying the number
of simultaneous therapies NT . We further constrain this
by considering a total number of therapies AT and that
the number of therapies consumed at the ℓth switch is
equal to the number of simultaneous therapies NT . For
example, given AT = 12 total therapies available, for
NT = 1 simultaneous therapies then ℓ = 11 switches
are possible, for NT = 2 we have ℓ = 5, and so on. In
general, for any number of NT and AT , the number of
allowed switches is

ℓ =
AT

NT
− 1. (8)

The mean RDT for this version of limited resetting is
computed using simulations of the coupled continuous
model using the Euler-Maruyama algorithm of the SDE
in eq. (2). Here we see for two orders of magnitude in D,
we see a change in the behavior of the mean RDT from
an increasing behavior for a larger D and a decreasing
behavior for a smaller D. In the model, the diffusion
constant D controls how much therapy efficacy fluctuates
over time and is proportional to the mutation rate of the
infecting pathogen. Figure 6b suggests that pathogens
that mutate slower (i.e. smaller D) benefit from fewer
simultaneous therapies and more limited resets, while the
opposite is true for faster mutating pathogens.

Next, we consider that the therapy switching rate in-
creases with the number of switches, which could reflect
a cost [51, 52]. Suppose the number of therapies that
have been administered at a certain time is γ, we replace
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(a)

(b)

(c)

(d)

FIG. 6. Mean RDT with limited switching (a) as a function of τ and ℓ using the uncoupled discrete model, and (b) as a
function of NT , two values of D, AT = 12 and ℓ according to eq. (8) using the coupled continuous model. Mean RDT with
costed switching (c) as a function of τ and c using the uncoupled discrete model, and (d) as a function of NT and two values
of D using a cost function shown in eq. (10) using the coupled continuous model. Parameters: v = −8 · 10−5 days−1 and 106

simulations.

the therapy switching rate with a function,

C(γ) =
1

τ
exp

(
− c

τ
γ
)
, (9)

where c is a cost parameter that is proportional to the
average time taken for new therapies to be made available
to the host and τ is the therapy switching rate without
cost. This function ensures that successive switches in
the therapy γ → ∞ diminishes the therapy switching
rate 1/τ → 0.

We see parallels in the simulations of fig. 6a to fig. 6c
for the uncoupled discrete model and fig. 6b to fig. 6d
for the coupled continuous model. Lower cost parameters
c allow for more switching in a shorter amount of time
emulating a limit in the therapies. Fixing the number
of simultaneous therapies to NT = 2, this results to an
existence of an optimal switching rate that maximizes the
RDT, as shown in fig. 6c taken from simulations using
the Gillespie algorithm.

Furthermore, in fig. 6d, we see the RDT for two val-
ues of D for the coupled model. The cost function is
altered for the coupled model, since we must consider
that each therapy switch changes all NT therapies at the
same time. Lastly, we assume that increasing the number
of simultaneous therapies in the coupled model becomes
much costlier for each therapy switch, hence we assume
that the cost parameter is dependent on NT , suppose

c = 10NT−1. This yields a modified cost function for the
coupled model

C(γ) =
1

τ
exp

(
−10NT−1

τ
γ

)
. (10)

Figure 6d suggests that more simultaneous therapies, al-
though costlier, are beneficial for more volatile infections,
i.e. higher D, with the opposite being true for lower
D. These simulations are performed using the Euler-
Maruyama algorithm.

V. DISCUSSION

In this work, we have presented and characterized a
stochastic model to study therapy administration strate-
gies that aim to reduce drug resistance development. In
particular, we have identified how therapy switches and
the combination of therapies impact the resistance devel-
opment time with and without restrictions on the drug
availability.

Our model has extended previous results on stochas-
tic models of therapy administration [43] by accounting
for multiple therapies administered to the host, which
induce non-linear changes in the overall therapy efficacy
[50]. We considered a therapy efficacy that scales the rate
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of infection in a host-pathogen model of HIV-1 dynamics
allowing us to study chronic diseases [23, 24]. Typically,
therapy efficacy is included in the models as a constant
rate or functional form for the rate of infection and mu-
tation [20, 23–25, 53]. However, drug resistance can be
modelled as a stochastic process [54], allowing our model
to account for temporal changes in the therapy efficacy
due to the noisy effects of pathogenic evolution.

Our first model is a continuous model that expresses
the overall therapy efficacy of combination therapies in
a single quantity and therapies are switched simultane-
ously. The second model, is a discrete model which ex-
plicitly accounts for each therapy efficacy independently,
allowing for independent therapy switching. Given that
therapy switching returns the efficacy to its original
value, we were able to use stochastic resetting theory
to study the process [32, 39]. The continuous coupled
model eases the analytical study, but it has more limita-
tions. On the other hand, the discrete uncoupled model
allows for a more realistic study of the process, but it is
computationally expensive.

Both models have shown that either increasing the
number of simultaneous therapies or the switching rate
increases the mean RDT, consistent with the literature
on combination and sequential therapies [13, 21, 55–
60]. These strategies exploit evolutionary trade-offs that
pathogens develop after mutating. The models identified
conditions in terms of initial efficacy, for therapy switch-
ing to be beneficial or detrimental to patient outcomes.
The detrimental effect is observed in case studies where
adverse effects have resulted from drug switching [19, 61].
When the switching rates are equal for all therapies, both
models show similar results. However, with the discrete
model, asymmetries in the switching rates are possible
to study and yield qualitative differences in the benefi-
cial and detrimental regions. This shows that using the
uncoupled discrete model is necessary when each therapy
have different impacts on the patient.

To make the models more realistic, we included restric-
tions in therapy switching. The different restrictions that
we have considered are: a maximum therapy switching
rate, limitations in the available therapies, and costs to
therapy switching. These restrictions avoid unrealistic
strategies such as an infinite therapy switching rate.

Imposing a maximum allowed therapy switching rate
allowed us to study the uncertainty in the therapy effi-
cacy after a switch. In this scenario, we identified two
strategies: switch therapies as fast as allowed or to not
switch at all. A phase diagram for these two strategies in
terms of the number of therapies and maximum switch-
ing rate have been constructed, suggesting that increas-
ing the number of simultaneous therapies may result to

a state where switching therapies is no longer necessary.
Next, we introduced a limitation to the available of

therapies by imposing either a finite number or a cost
to therapy switching. This allowed us identify optimal
values of therapy switching rates. This optimal rate sug-
gests the existence of optimal clinical protocols. In par-
ticular, if the stochastic uncontrollable effects lead to the
patient to be to the right of the maximum, it is possible
to determine the frequency of clinical visits necessary to
maximize the mean RDT while minimizing the cost for
each visit. Moreover, we characterized the effect of vary-
ing the diffusion constant which determines the noise of
the process and is correlated to the mutation rate of the
infecting pathogen. We have seen that this leads to non-
monotonic behavior in the mean RDT as a function of
the number of therapies used.

Currently our work only considers a model of drug in-
teraction where drugs are considered to be independent,
hence the overall therapy efficacy in the infection rate
is expressed as a product

∏NT

i=1(1 − ηi) [62, 63]. How-
ever, different modes of drug interactions may also sup-
press or amplify the overall therapy efficacy [21], chang-
ing the form of this expression. These interactions may
also be simultaneous or sequential [50], potentially lead-
ing to changes in the optimal reset rates we identified.
Furthermore, data obtained from empirical models of
drug resistance maybe used to inform the model [64, 65].
While our work aims to study antimicrobial resistance,
the model can easily be adapted to study drug resistance
and drug switching in chronic or long-term illnesses with-
out a pathogenic vector, such as diabetes [66], COPD
[67], and hypertension [68–70].

Taken together, we have provided a mathematical
scheme to the study of therapy administration strate-
gies. We have shown and quantified how optimal therapy
strategies in terms of therapy switching rates and num-
ber of therapies can significantly delay the occurrence of
drug resistance within a host.
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Appendix A: Steady states of the host-pathogen
model

The host-pathogen considered in this paper is a model
of chronic infection, specifically HIV-1 [23, 24]. This
model is modified to consider NT simultaneous and inde-
pendent therapies, each with an efficacy ηi. Each ther-
apy efficacy is multiplied to one another, following the
framework for independently-acting therapies [50, 62, 63].
This model tracks three cell populations: healthy cells H,
latently-infecting cells L, and actively-infecting cells I:

Ḣ = α− λHH − βHI

NT∏

i=1

(1− ηi),

L̇ = ϵβHI

NT∏

i=1

(1− ηi) + pL− pL2

K
− aLL− λLL,

İ = (1− ϵ)βHI

NT∏

i=1

(1− ηi) + aLL− λII.

(A1)

The rates and parameters of the model are described
as follows: Healthy cells are generated with a constant
rate of α and die at a rate of λHH, where λH is a death
constant for healthy cells. Furthermore, these healthy
cells are converted into either latently-infecting or ac-
tively infecting cells with a rate βHI

∏NT

i=1(1− ηi), with
β as a constant of infection and η as the therapy efficacy.
Constant ϵ beside the infection rate in L̇ is the prob-
ability that infection will yield a latently-infected cell.
Conversely, 1−ϵ beside the infection rate in İ is the prob-
ability that the infection will yield and actively-infecting
cell.

Latently-infecting cells proliferate with a rate pL, with
p as a constant of proliferation, limited by a carrying ca-
pacity K with a rate (pL2)/K, and die off with a rate
λLL. Finally, latently-infecting cells can transform to
actively-infecting cells with a rate aL, with a as a con-
stant of activation, and actively-infecting cells die off with
a rate of λII.

We assume that the host-pathogen model is at equilib-
rium, hence we solve for the fixed points of the model by
setting each equation in (A1) equal to zero and solving for
H,L, and I, which we now denote as H̃, L̃, and Ĩ. We first
obtain a trivial fixed point at H̃ = α/λH , L̃ = 0, Ĩ = 0
and a non-trivial fixed point given by the following:

H̃ =
α

λH + bĨ
,

L̃ =
[λIbĨ + (λIλH − (1− ϵ)bα)]Ĩ

aL(bĨ + λH)
,

Ĩ = S + T − x2

3x1
.

(A2)

Where,

S =
3

√
R+

√
Q3 +R2,

T =
3

√
R−

√
Q3 +R2,

Q =
3x1x3 − x2

2

ax2
1

,

R =
9x1x2x3 − 27x2

1x4 − 2x2
2

54x3
1

,

x1 = −pλ2
Ib

2,

x2 = −(2pλIbc− dKaLλIb
2),

x3 = ϵb2αKa2L − pc2 + dKaLλH − λIb,

x4 = ϵbαKa2LλH + dKaLλHc,

b =

NT∏

i=1

(1− ηi)β,

c = λIλH − (1− ϵ)bα,

d = p− aL − λL.

(A3)

The fixed point H̃ is used to compute the diagram in
fig. 1c, where H̃ is computed for NT = 2 and varying
η1 and η2. This maps the amount of healthy cells at
equilibrium to the space of therapy efficacy.

The parameter values used to generate the diagram in
fig. 1c are as follows:

Parameter Description Value Unit
H0 Initial H population 599326 cells/mL
L0 Initial L population 45 cells/mL
I0 Initial I population 11 cells/mL
α Rate of H recruitment 6000 cells/(mL day)
λH H death rate constant 0.01 1/day
ηi Efficacy of the ith

therapy
varies

NT Number of therapies varies
β Infection rate constant 5 · 10−6 mL/day
ϵ Fraction of infections

yielding H → L
0.01

1− ϵ Fraction of infections
yielding H → I

0.99

p L proliferation rate
constant

0.2 1/day

K Carrying capacity of L
cells

100 cells/mL

aL Activation rate
constant of L cells

0.1 1/day

λL L death rate constant 0.01 1/day
λI I death rate constant 1 1/day

The values for H0, L0, and I0 on the table have been
calculated using eq. (A2) with NT = 2 and η1 = η2 =
0.8.
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Appendix B: Coupled model

1. Model derivation

In this section we derive eq. (2) from the main text.
We will elaborate without including the possibility of ex-
ecuting stochastic resets, since the SDE with resets is
readily obtained from the equation without resets adding
the indicator functions with the process χ, as explained
in the main text. Consider a general time-homogeneous
multidimensional SDE in the Îto sense,

dηηη = µµµ(ηηη)dt+ σσσ(ηηη)dWWW (t). (B1)

The Fokker-Planck representation of such process reads

∂tρt(ηηη) = −∇ · [ρt(ηηη)µµµ(ηηη)] +∇2 [σσσ(ηηη)σσσ⊺(ηηη)ρt] . (B2)

The above equation is invariant under orthogonal trans-
formations of the diffusion matrix. Indeed, let SSS be an
orthogonal matrix such that SSSSSS⊺ = III, then the process

dηηη = µµµ(ηηη)dt+SSSσσσ(ηηη)dWWW (t), (B3)

is statistically indistinguishable from the process in
eq. (B1) as both of them have the same associated
Fokker-Planck equation.

Let us reduce the generality of the equations presented
so far to adapt to the kind of models studied in the main
text. In particular, we study isotropic and constant dif-
fusion matrices,

σσσ =
√
2DIII. (B4)

Also, for the case of the coupled model we consider that
therapies interact in such a way that the drift in the
efficacy space is rotationally invariant,

µµµ(ηηη) = ηηηf(η), (B5)

with η =
√
ηηη · ηηη. Thus, the resulting rotationally invari-

ant SDE reads

dηηη = ηηη f(η) +
√
2D dWWW (t). (B6)

The idea now is to do a change of variables to spher-
ical coordinates with one radius η and NT − 1 angles
ϕ1, . . . , ϕNT−1 using Îto’s rule [45, 46]. By doing so, we
find that the radial drift only depends on η,

NT∑

i=1

∂ηi
η dηi +D∂2

ηi
η dt =

(
ηf(η) +D

NT − 1

η

)
dt.

(B7)
The radial diffusion will, in principle, depend both on the
radial and angular variables. However, it can be shown
that there is always an orthogonal transformation SSS mak-
ing the evolution for the radial component independent
of the angular variables,

dη =

(
ηf(η) +D

NT − 1

η

)
dt+

√
2D dW (t). (B8)

So far we did not make an explicit choice for the ro-
tational invariant drift function f . Evolution will tend
to make nocive agents more resistent to the therapy and
with a velocity increasing as the therapy is less effec-
tive. A minimal choice of f reproducing such mechanisms
reads

f(η) = − v

η2
. (B9)

Introducing this choice for f in eq. (B8) together with
the possibility of experience stochastic resets we obtain
eq. (2) of the main text.

2. Effect of parameters

In the main text we analyzed in detail the effect of the
number of simultaneous drugs in the therapy (NT ) and
the average frequency between therapy switching, τ , in
the average RDT (see Fig. 3 in the main text). Nev-
ertheless, the coupled model depends on two more pa-
rameters: the diffusion constant D and the constant v
tuning the radial drift. On the one hand, v only appears
in our coupled model as a subtraction to the the num-
ber of simultaneous drugs. Therefore, we can analyze
changes in the drift as effective changes in the number
of therapies NT , which was properly analyzed. Indeed,
our model with parameter choice v = v0 +∆v, NT = n0

produces the same results that realizations with v = v0
and NT = n0 −∆v/D. Thus, no new phenomenology is
expected when varying v. On the other hand the last free
parameter D is also not relevant as it can be absorbed
through a change of variables of the time. Thus choices
on D can be seen as choices of time units.

3. Mean first passage times

The equation for conditioned mean RDT, ⟨T |η⟩, can be
obtained using the backward Fokker-Planck equation for-
malism (see e.g. [45, 46]). In particular, from the adjoin
Fokker-Planck operator associated to the coupled model
[eq. (2)] follows the equation

D
d− 1

η

d

dη
⟨T |η⟩+D

d2

dη2
⟨T |η⟩

+
1

τ
(⟨T |ηr⟩ − ⟨T |η⟩) = −1.

(B10)

Where d = v/D + NT , η is the initial efficacy of the
therapy and ηr is the efficacy right after therapy switch.
See further details on the derivation of eq.(B10) in [31,
39].

Using the change of variables G(η) = −⟨T |ηr⟩+ ⟨T |η⟩,
eq. (B10) becomes

d2

dη2
G(η) +

d− 1

η

d

dη
G(η) +

1

λ2
G(η) = − 1

D
, (B11)
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with λ =
√
τD. Eq. (B11) has Gp(η) = τ as partic-

ular solution. The changes of variable η = iλ x, and
G(x) = g(x)x− d

2 transform the homogeneous part of the
equation for G in a Bessel equation,

x2 d2

dx2
g(x) + x

d

dx
g(x) + (x− β2)g(x) = 0, (B12)

with β = d
2 − 1. Therefore, the general solution for

eq. (B10) reads

⟨T |η⟩ = ηβ [c1Jβ(−iη̄) + c2Yβ(−iη̄)] + τ + c3. (B13)

With η̄ = η/λ. Two of the three unknown constants of
eq. (B13) are determined through the boundary condi-
tions,

⟨T |η⟩(ηmin) = 0, (B14)
d

dη
⟨T |η⟩|η=ηmax

= 0, (B15)

where ηmin and ηmax are the radial locations of the ab-
sorbing and reflecting boundary respectively. The third
equation is provided by the self-consistent relation

⟨T |ηr⟩ = c3. (B16)

The resulting equation for the average absorption time
with initial condition η and resetting state ηr reads

⟨T |η⟩
τ

=
Jβ+1(−iη̄max)

Z(ηr)

((
ηr
ηmin

)β

Yβ(−iη̄min)

+

(
ηr
η

)β

Yβ(−iη̄)

)

−Yβ+1(−iη̄max)

Z(ηr)

((
ηr
ηmin

)β

Jβ(−iη̄min)

+

(
ηr
η

)β

Jβ(−iη̄)

)
,

(B17)

with

Z(η) = Jβ+1(−iη̄max)Yβ(−i
η

λ
)

− Yβ+1(−iη̄max)Jβ(−i
η

λ
),

(B18)

and η̄ = η/λ, η̄max = ηmax/λ, and η̄min = ηmin/λ. Eq. (3)
is obtained from eq.(B17) fixing the resetting state to be
equal to the initial condition of the process, ηr = η.

Appendix C: Derivation of uncoupled model

1. Markov chain transition rates

The transitions outlined in Section II B can be written
as a Master equation:

dp(ηηη, t)

dt
=

NT∑

i=1

1

τi
δ(ηi − ηi;0)

+ pip

(
ηi −

1

M
, t

)

+ qip

(
ηi +

1

M
, t

)

−
(
pi + qi +

1

τi

)
p(ηi, t) ,

(C1)

where ηi;0 is the initial therapy efficacy of the ith ther-
apy and δ(ηi − ηi;0) is a Dirac delta function centered at
the displacement of the current efficacy from the initial
efficacy ηi − ηi;0. We note that this master equation is
similar in form to the master equation presented in [31],
but is generalized by considering a Markov process on a
lattice.

Terms pi and qi are the Markov jump rates to ad-
jacent states that respectively increase or decrease the
therapy efficacy. Taking a Kramers-Moyal expansion to
the above allows us to obtain a Fokker-Planck equation
[46, 48]. This is done by performing a second-order Tay-
lor expansion on the terms in the master equation that
are shifted by 1/M . This expansion is performed such
that the 1/M terms will be factored outside of the prop-
agators, i.e. Expanding p(ηi + (1/M), . . . , ηNT

, t) cen-
tered at ηi + (1/M) = ηi, p(ηi − (1/M), . . . , ηNT

, t) at
ηi− (1/M) = ηi, and so on. Performing these expansions
and simplifying,

dp(ηηη, t)

dt
=

NT∑

i=1

1

τi
δ(ηi − η1;0)−

1

τi
p(ηi, t)

− pi − qi
N

∂p(ηi, t)

∂ηi

+
pi + qi
2M2

∂2p(ηi, t)

∂η21

(C2)

with the following effective drift and diffusion parame-
ters:

vi =
pi − qi
M

, Di =
pi + qi
2M2

. (C3)

Inverting these parameters,

pi =
1

2

(
2DiM

2
i + v1Mi

)

qi =
1

2

(
2DiM

2
i − viMi

)
.

(C4)

We obtain the jump rates in the discrete space in terms
of parameters used by the continuous space. As such, we
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are able to use the master equation formulation by con-
structing a transition matrix as discussed in the following
section.

2. Generating the transition matrix

Sums of transition rates pi and qi, and therapy switch-
ing rate 1/τi occupy the elements of the transition matrix
W in eq. (4). For any two states on the lattice a and b,
W has positive elements Wab referring to the transition
rates from state b to a, and negative diagonal elements
Waa = −∑b ̸=a Wab referring to the escape rates from
state a.

In practice, to make the transition matrix W, it is
simpler to start with the transition matrix from a com-
plete MNT × MNT lattice graph, and add and remove
nodes and edges as needed until we end up with the
desired graph. Adding and removing edges and nodes
from the complete lattice is written as a sum of matri-
ces, W = M + R − C − P, where M is the transition
matrix of the complete lattice, R refers to the transi-
tion matrix of transitions towards the set of reset states,
C refers to transitions that lead towards the completely
absorbing states, and P refers to transitions that lead
towards the partially absorbing states. With this transi-
tion matrix, we may use expressions that are available to
Markov chains [49] in computing for the RDT statistics,
as discussed further in Section II B.

Appendix D: Behavior of ηth

Within the coupled model, ηth is defined as the thresh-
old for the initial therapy efficacy separating detrimental
therapies (η < ηth) from beneficial therapies (η > ηth).
We can use our analytical expression in eq. (3) to com-
pute ηth solving the equation

⟨T |η⟩ − ⟨T |η⟩∞ = 0, (D1)

where ⟨T |η⟩∞ is the average absorption time with no
therapy switches,

⟨T |η⟩∞ = lim
τ→∞

⟨T |η⟩. (D2)

In fig. 7a we show that ηth is not very sensible to changes
in the typical time between resets (τ). Contrary, varia-
tions in the number of simultaneous drugs (NT ) will in
general affect ηth (see fig. 7b).

If we assume that η is a random variable with uniform
distribution, then the probability that η > ηth and the
therapy design results beneficial for the patient reads

p =
ηNT
max − ηNT

th

ηNT
max − ηNT

min
. (D3)

FIG. 7. Intersection of the mean RDT curves with and with-
out resetting ηth (a) as a function of τ with NT = 2, and (b)
as a function of NT with τ = 3 (yr). Intersection ηth com-
puted from the numerical solution of eq. (D2).

Appendix E: Unconditioned mean resistance
development time

The unconditioned mean RDT is obtained from its con-
ditioned version through marginalization,

⟨T ⟩ =
∫

dηηη ρ (ηηη) ⟨T |ηηη⟩, (E1)

where ρ (ηηη) is the distribution of therapy efficacy right af-
ter drug switch. When the distribution ρ (ηηη) is uniform,
eq.(E1) becomes the integral of ⟨T |ηηη⟩ over all possible val-
ues of the therapy efficacy after therapy switch weighted
by the volume of the efficacy space, which we call Ω,

⟨T ⟩ = 1

Ω

∫

Ω

dηηη ⟨T |ηηη⟩, (E2)

In the context of the coupled model, the conditioned
expectation of T only depends on the radial distance
η =

√
ηηη · ηηη, and the volume of the efficacy space reads

Ω = V (NT )
(
ηNT
max − ηNT

min

)
, (E3)

where V (NT ) is the volume of the hipersphere of NT di-
mensions and unit radius. Integrating over angular vari-
ables and bearing in mind the Jacobian of the change of
coordinates from Cartesian to spherical coordinates, the
integral over the efficacy space for the coupled model can
be rewritten as

∫

Ω

dηηη ⟨T |ηηη⟩ = V (NT )

∫ ηmax

ηmin

dη ηNT−1⟨T |η⟩. (E4)

Eq. (7) in the main text is obtained inserting eqs. (E3)
and (E4) in eq. (E2).
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Chapter 5

Discussion and Outlook

This thesis has introduced a model of drug resistance development within a host under-
going a chronic infection using an infection rate that evolves as a bounded Brownian
motion with stochastic resetting in multiple dimensions. One of the boundaries is an
absorbing state indicating the emergence of drug resistance as the infection rate is at
its maximum. The time at which the process reaches this boundary is an important
quantity to characterize as it is equivalent to the time at which a therapy has failed,
which recasts the problem into a first passage time problem [51].

A thorough study of the probability distribution of the first passage time or resistance
development time has been provided in this work, where novel analytical and simula-
tion methods have been introduced to obtain this probability distribution. Methods
to approximate the inversion of the Laplace transform of first passage time have been
proposed to study rare events and long-term drug resistance times. On the other hand,
for early events and short term resistance times, an error-variable simulation algorithm
for Brownian motion has also been developed. Furthermore, the computation of the
first passage time moments of a multidimensional Brownian motion in both continu-
ous and discrete state spaces have also been derived in detail, with either choice in the
state space specialized for clinical interventions that a physician may use to mitigate
resistances. These are therapy switching and combination therapy, represented in the
stochastic process by stochastic resetting and multidimensionality, respectively. Either
strategy targets evolutionary trade-offs that a pathogen develops after mutation [26].

Administering a single therapy is a straightforward intervention to suppress an in-
fection. This also allows for the focused study of the effects of therapy switching, which
has been shown to increase therapy efficacy [16, 25]. The SDE in eq. (2.7) that was
considered for single therapy scenarios is an arithmetic Brownian motion, which imposes
a constant drift and diffusion coefficients. To extend the applicability of the model, other
processes may be considered such as the Ornstein-Uhlenbeck process [53] with the SDE:

dXt = −vXt dt+
√
2D dWt. (5.1)

Stochastic resetting in Ornstein-Uhlenbeck processes have also been studied, where a
Laplace transform for the propagator of this process is known [113]. Ornstein-Uhlenbeck
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processes are characterized by a position-dependent drift. In terms of the model, the drift
parameter dictates how potent each mutation is in developing resistances and bringing
the therapy efficacy to a minimum. The inclusion of a position-dependent drift will
represent an effect in which mutations will tend to develop resistances faster since the
therapy is creating a stronger selective pressure towards mutations with higher levels of
resistance [1, 43].

Furthermore, closed-form approximations to the inversion of the Laplace transform of
the FPT distribution have been derived in Chapter 3 called the PPF method, however
it has a limited region of validity in the space of parameters due to strict conditions
in the method that have been imposed. However, these conditions may be relaxed
to consider a larger space of parameters. Recall that the first step of the PPF is to
approximate a function gm,n(u) using the Padé approximation yielding a numerator
pm(u) =

∑m
j=0 = ajs

j and denominator qn(u) =
∑n

j=0 = bjs
j . This is followed by

partial fraction decomposition (PFD) where the set of roots of qn(u) along with PFD
coefficients are obtained. These are used in the last step which is the inversion. These
last two steps may be generalized to include cases where the roots obtained from the
denominator of the PFD are complex.

Proposition 5.0.1 (Laplace inversion with complex roots and coefficients obtained from
PFD). The inversion with complex partial fraction decomposition roots and coefficients
is given by

fm,n(t) =

n1∑

j=1

lj∑

i=1

γj,i
(i− 1)!

ti−1 exp(αjt) +

n2∑

j=1

l†j∑

i=1

2Rj,i

(i− 1)!
ti−1 exp(ϕj,i σjt) cos(ωjt+ ϕj,i),

(5.2)
for t > 0. The first sum of the expression corresponds to the n1 real roots of the denom-
inator, with roots αj, multiplicities lj, and coefficients γj,i. The second sum corresponds
to the complex roots of the denominator, of which will always come in n2 conjugate pairs
α†
j , α

†
j with coefficients γ†j,i, γ

†
j,i. The coefficients of the complex sum are as follows:

σj = Re(α†
j), ωj = Im(α†

j), Rj,i = |γ†j,i|, ϕj,i = tan−1

(
Im(γ†j,i)

Re(γ†j,i)

)
(5.3)

The proof is outlined in Appendix A.5.
On the other hand, the usage of multiple therapies or combination therapies are

also used to improve the efficacy of a therapy and have shown to have a nonlinear
effect in the therapy efficacy as it changes over time [22, 23]. For example, highly
active antiretroviral therapies for HIV-1 are a combination of two or more drugs that
target different replication mechanisms of the virus [34]. Optimal choices between the
number of therapies involved in combination therapy and therapy switching rates were
discussed extensively in Chapter 4. However, it has been assumed that the therapies
act independently of one another, this is called a null model of drug interaction and
hence the efficacies for all therapies are multiplicative [27, 28]. To model synergistic
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or antagonistic drug interactions, the fluctuation of each therapy must influence one
another. In terms of the model, the multidimensional Brownian SDE is isotropic which
means that the diffusion parameter D is constant. Anisotropic diffusion assumes the use
of a diffusion matrix σσσ(XXXt, t) with nonzero diagonals that account for the interaction of
each component of the Wiener process with one another.

Limited and costed resetting were also introduced in this chapter as a constraint to
therapy switching. The inclusion of this constraint revealed optimal therapy switching
rates that maximize the mean time to develop resistances. This optimal rate suggests the
optimal time for a patient to receive a regular check-up by their physician as well, which
can be modeled with deterministic resetting. Deterministic resetting is a predetermined
and periodic reset of the stochastic process back to its initial position. The inclusion of
deterministic resetting in the constrained stochastic resetting problem is hypothesized
to show nontrivial optimal behavior among therapy administration strategies in terms
of stochastic and deterministic therapy switching rates.

The distribution of times at which a therapy may fail within a host may be used
in larger scales of infection as well. Agent-based models of an infectious disease that is
prone to develop resistances may be used to model how fast drug resistant pathogens
spread among populations of hosts. The agents, representing hosts, may sample from
the resistance development time distribution to represent the time at which their within-
host infection rate is at a maximum, increasing their individual pathogenic load, which
also increases the probability to infect another host. With this model, the effectiveness
of pharmaceutical interventions may be quantified such as the therapy administration
strategies at epidemiological scales, as demonstrated similarly in [11, 13].

To conclude, this work has provided an extensive framework of a mathematical model
of drug resistance in terms of the inherently noisy fluctuations caused by pathogenic
mutation and therapy administration strategies that mitigate the development of resis-
tance. Several mathematical techniques that compute for the probability distribution of
the time at which drug resistance has emerged have been derived that highlight different
scenarios and therapy administration strategies. These techniques have been used to
demonstrate how optimal therapy administration strategies mitigate the development of
drug resistance.
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S. Chiurchiù, F. Chowdhury, R. Clotaire Donatien, A. J. Cook, B. Cooper, T. R.
Cressey, E. Criollo-Mora, M. Cunningham, S. Darboe, N. P. J. Day, M. De Luca,
K. Dokova, A. Dramowski, S. J. Dunachie, T. Duong Bich, T. Eckmanns, D. Eibach,
A. Emami, N. Feasey, N. Fisher-Pearson, K. Forrest, C. Garcia, D. Garrett, P. Gast-
meier, A. Z. Giref, R. C. Greer, V. Gupta, S. Haller, A. Haselbeck, S. I. Hay, M.
Holm, S. Hopkins, Y. Hsia, K. C. Iregbu, J. Jacobs, D. Jarovsky, F. Javanmardi,
A. W. J. Jenney, M. Khorana, S. Khusuwan, N. Kissoon, E. Kobeissi, T. Kostyanev,
F. Krapp, R. Krumkamp, A. Kumar, H. H. Kyu, C. Lim, K. Lim, D. Limmathurot-
sakul, M. J. Loftus, M. Lunn, J. Ma, A. Manoharan, F. Marks, J. May, M. Mayxay,
N. Mturi, T. Munera-Huertas, P. Musicha, L. A. Musila, M. M. Mussi-Pinhata, R. N.
Naidu, T. Nakamura, R. Nanavati, S. Nangia, P. Newton, C. Ngoun, A. Novotney,
D. Nwakanma, C. W. Obiero, T. J. Ochoa, A. Olivas-Martinez, P. Olliaro, E. Ooko,
E. Ortiz-Brizuela, P. Ounchanum, G. D. Pak, J. L. Paredes, A. Y. Peleg, C. Perrone,
T. Phe, K. Phommasone, N. Plakkal, A. Ponce-de-Leon, M. Raad, T. Ramdin, S. Rat-
tanavong, A. Riddell, T. Roberts, J. V. Robotham, A. Roca, V. D. Rosenthal, K. E.

77

https://doi.org/10.1016/j.plrev.2005.11.002
https://doi.org/10.1136/bmj.317.7159.660
https://doi.org/10.1136/bmj.317.7159.660
https://doi.org/10.1093/genetics/148.4.1667
https://doi.org/10.1073/pnas.75.6.2868
https://doi.org/10.1073/pnas.75.6.2868


Rudd, N. Russell, H. S. Sader, W. Saengchan, J. Schnall, J. A. G. Scott, S. Seekaew,
M. Sharland, M. Shivamallappa, J. Sifuentes-Osornio, A. J. Simpson, N. Steenkeste,
A. J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong, G. Thwaites, C. Tigoi, C.
Turner, P. Turner, H. R. van Doorn, S. Velaphi, A. Vongpradith, M. Vongsouvath,
H. Vu, T. Walsh, J. L. Walson, S. Waner, T. Wangrangsimakul, P. Wannapinij, T.
Wozniak, T. E. M. W. Young Sharma, K. C. Yu, P. Zheng, B. Sartorius, A. D. Lopez,
A. Stergachis, C. Moore, C. Dolecek, and M. Naghavi, “Global burden of bacterial
antimicrobial resistance in 2019: a systematic analysis”, The Lancet 399, 629–655
(2022).

7M. Naghavi, S. E. Vollset, K. S. Ikuta, L. R. Swetschinski, A. P. Gray, E. E. Wool,
G. Robles Aguilar, T. Mestrovic, G. Smith, C. Han, R. L. Hsu, J. Chalek, D. T.
Araki, E. Chung, C. Raggi, A. Gershberg Hayoon, N. Davis Weaver, P. A. Lindstedt,
A. E. Smith, U. Altay, N. V. Bhattacharjee, K. Giannakis, F. Fell, B. McManigal, N.
Ekapirat, J. A. Mendes, T. Runghien, O. Srimokla, A. Abdelkader, S. Abd-Elsalam,
R. G. Aboagye, H. Abolhassani, H. Abualruz, U. Abubakar, H. J. Abukhadijah, S.
Aburuz, A. Abu-Zaid, S. Achalapong, I. Y. Addo, V. Adekanmbi, T. E. Adeyeoluwa,
Q. E. S. Adnani, L. A. Adzigbli, M. S. Afzal, S. Afzal, A. Agodi, A. J. Ahlstrom,
A. Ahmad, S. Ahmad, T. Ahmad, A. Ahmadi, A. Ahmed, H. Ahmed, I. Ahmed, M.
Ahmed, S. Ahmed, S. A. Ahmed, M. A. Akkaif, S. Al Awaidy, Y. Al Thaher, S. O.
Alalalmeh, M. T. AlBataineh, W. A. Aldhaleei, A. A. S. Al-Gheethi, N. B. Alhaji,
A. Ali, L. Ali, S. S. Ali, W. Ali, K. Allel, S. Al-Marwani, A. Alrawashdeh, A. Altaf,
A. B. Al-Tammemi, J. A. Al-Tawfiq, K. H. Alzoubi, W. A. Al-Zyoud, B. Amos, J. H.
Amuasi, R. Ancuceanu, J. R. Andrews, A. Anil, I. A. Anuoluwa, S. Anvari, A. E.
Anyasodor, G. L. C. Apostol, J. Arabloo, M. Arafat, A. Y. Aravkin, D. Areda, A.
Aremu, A. A. Artamonov, E. A. Ashley, M. O. Asika, S. S. Athari, M. M. W. Atout,
T. Awoke, S. Azadnajafabad, J. M. Azam, S. Aziz, A. Y. Azzam, M. Babaei, F.-X.
Babin, M. Badar, A. A. Baig, M. Bajcetic, S. Baker, M. Bardhan, H. J. Barqawi,
Z. Basharat, A. Basiru, M. Bastard, S. Basu, N. S. Bayleyegn, M. A. Belete, O. O.
Bello, A. Beloukas, J. A. Berkley, A. S. Bhagavathula, S. Bhaskar, S. S. Bhuyan, J. A.
Bielicki, N. I. Briko, C. S. Brown, A. J. Browne, D. Buonsenso, Y. Bustanji, C. G.
Carvalheiro, C. A. Castañeda-Orjuela, M. Cenderadewi, J. Chadwick, S. Chakraborty,
R. M. Chandika, S. Chandy, V. Chansamouth, V. K. Chattu, A. A. Chaudhary, P. R.
Ching, H. Chopra, F. R. Chowdhury, D.-T. Chu, M. Chutiyami, N. Cruz-Martins,
A. G. da Silva, O. Dadras, X. Dai, S. D. Darcho, S. Das, F. P. De la Hoz, D. M.
Dekker, K. Dhama, D. Diaz, B. F. R. Dickson, S. G. Djorie, M. Dodangeh, S. Dohare,
K. G. Dokova, O. P. Doshi, R. K. Dowou, H. L. Dsouza, S. J. Dunachie, A. M. Dziedzic,
T. Eckmanns, A. Ed-Dra, A. Eftekharimehrabad, T. C. Ekundayo, I. El Sayed, M.
Elhadi, W. El-Huneidi, C. Elias, S. J. Ellis, R. Elsheikh, I. Elsohaby, C. Eltaha, B.
Eshrati, M. Eslami, D. W. Eyre, A. O. Fadaka, A. F. Fagbamigbe, A. Fahim, A.
Fakhri-Demeshghieh, F. O. Fasina, M. M. Fasina, A. Fatehizadeh, N. A. Feasey, A.
Feizkhah, G. Fekadu, F. Fischer, I. Fitriana, K. M. Forrest, C. Fortuna Rodrigues,
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visible transitions’ statistics?”, Physical Review X 12, 10.1103/physrevx.12.041026
(2022).

56S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes (Academic
Press, an imprint of Elsevier, 1981).

57R. Gatto, Stationary stochastic models: an introduction, 1st, World Scientific Series
on Probability Theory and Its Applications: Volume 4 (World Scientific Publishing,
Singapore, July 2022).

58N. Zlatanov and L. Kocarev, “Random walks on networks: cumulative distribution of
cover time”, Physical Review E 80, 10.1103/physreve.80.041102 (2009).

83

https://doi.org/10.1016/j.rinp.2022.105181
https://doi.org/10.1080/17513750701775599
https://doi.org/10.1007/s40258-022-00728-x
https://doi.org/10.1137/0124045
https://doi.org/10.1137/0124045
https://doi.org/10.1103/PhysRevE.88.012121
https://doi.org/10.1103/physrevx.12.041026
https://doi.org/10.1103/physrevx.12.041026
https://doi.org/10.1103/physrevx.12.041026
https://doi.org/10.1103/physreve.80.041102
https://doi.org/10.1103/physreve.80.041102


59A. P. Riascos, D. Boyer, P. Herringer, and J. L. Mateos, “Random walks on networks
with stochastic resetting”, Physical Review E 101, 10.1103/physreve.101.062147
(2020).

60D. T. Gillespie, “Approximating the master equation by fokker–planck-type equations
for single-variable chemical systems”, The Journal of Chemical Physics 72, 5363–5370
(1980).

61N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., North-
Holland Personal Library (Elsevier, 2007).

62D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, 1st (Chapman and
Hall/CRC, London, 1965).

63A. V. Skorokhod, “Stochastic Equations for Diffusion Processes in a Bounded Region”,
Theory of Probability & Its Applications 6, 264–274 (1961).

64X. Bian, C. Kim, and G. E. Karniadakis, “111 years of Brownian motion”, Soft Matter
12, 6331–6346 (2016).

65M. R. Evans and S. N. Majumdar, “Diffusion with Stochastic Resetting”, Physical
Review Letters 106, 160601 (2011).

66M. R. Evans, S. N. Majumdar, and G. Schehr, “Stochastic resetting and applications”,
Journal of Physics A: Mathematical and Theoretical 53, 193001 (2020).

67S. N. Majumdar, S. Sabhapandit, and G. Schehr, “Dynamical transition in the tempo-
ral relaxation of stochastic processes under resetting”, Physical Review E 91, 052131
(2015).

68A. Chechkin and I. M. Sokolov, “Random Search with Resetting: A Unified Renewal
Approach”, Physical Review Letters 121, 050601 (2018).

69S. Karlin and H. Taylor, A first course in stochastic processes, First course in stochas-
tic processes / Samuel Karlin; Howard M. Taylor Bd. 1 (Elsevier Science, 1975).

70R. Voituriez and O. Bénichou, “First-Passage Statistics for RandomWalks in Bounded
Domains”, in First-Passage Phenomena and Their Applications (World Scientific,
May 2014), pp. 145–174.

71V. Giorno, A. G. Nobile, L. M. Ricciardi, and L. Sacerdote, “Some remarks on the
rayleigh process”, Journal of Applied Probability 23, 398–408 (1986).

72R. Gutiérrez, R. Gutiérrez-Sánchez, and A. Nafidi, “The stochastic rayleigh diffusion
model: statistical inference and computational aspects. applications to modelling of
real cases”, Applied Mathematics and Computation 175, 628–644 (2006).

73G. A. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker-
Planck and Langevin Equations, 1st, Texts in Applied Mathematics 60 (Springer, New
York, 2014).

74G. A. Whitmore and V. Seshadri, “A heuristic derivation of the inverse gaussian
distribution”, The American Statistician 41, 280–281 (1987).

84

https://doi.org/10.1103/physreve.101.062147
https://doi.org/10.1103/physreve.101.062147
https://doi.org/10.1103/physreve.101.062147
https://doi.org/10.1063/1.439029
https://doi.org/10.1063/1.439029
https://doi.org/10.1137/1106035
https://doi.org/10.1039/C6SM01153E
https://doi.org/10.1039/C6SM01153E
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1142/9789814590297_0007
https://doi.org/10.2307/3214182
https://doi.org/10.1016/j.amc.2005.07.047
https://doi.org/10.1080/00031305.1987.10475503


75R. S. Chhikara and J. Leroy Folks, The inverse gaussian distribution, Statistics: A
Series of Textbooks and Monographs (CRC Press, Boca Raton, FL, Sept. 1988).

76J. Abate and W. Whitt, “A Unified Framework for Numerically Inverting Laplace
Transforms”, INFORMS Journal on Computing 18, 408–421 (2006).

77A. M. Cohen, Numerical Methods for Laplace Transform Inversion, Vol. 5 (Springer
Science & Business Media, 2007).

78D. P. Gaver, “Observing stochastic processes, and approximate transform inversion”,
Operations Research 14, 444–459 (1966).

79H. Stehfest, “Algorithm 368: numerical inversion of laplace transforms [d5]”, Com-
munications of the ACM 13, 47–49 (1970).

80A. Talbot, “The accurate numerical inversion of Laplace transforms”, IMA Journal
of Applied Mathematics 23, 97–120 (1979).

81I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Seventh,
Translated from the Russian, Translation edited and with a preface by Alan Jeffrey
and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX) (Else-
vier/Academic Press, Amsterdam, 2007), pp. xlviii+1171.

82D. E. Knuth, “An algorithm for brownian zeroes”, Computing 33, 89–94 (1984).

83D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions”, The
Journal of Physical Chemistry 81, 2340–2361 (1977).

84O. Bénichou, M. Coppey, M. Moreau, P.-H. Suet, and R. Voituriez, “Optimal search
strategies for hidden targets”, Physical Review Letters 94, 10.1103/physrevlett.
94.198101 (2005).

85A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in
complex networks”, Physics Reports 469, 93–153 (2008).

86P. Romanczuk, I. D. Couzin, and L. Schimansky-Geier, “Collective Motion due to In-
dividual Escape and Pursuit Response”, Physical Review Letters 102, 010602 (2009).

87R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks”,
Physical Review Letters 86, 3200–3203 (2001).
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Appendix A

Proofs

A.1 Proof of Proposition 2.1.1

Proof. Let Xt be the current state of a random walk at time t on a chain of states spaced
apart by 1/M . Let the following probabilities define how the the random walk evolves
in an infinitesimal amount of time ∆t,

Xt+∆t = Xt −
1

M
, with probability p∆t

Xt+∆t = Xt +
1

M
, with probability q∆t

The probability distribution that at the next infinitesimal amount of time ∆t that a
random walk would be at state Xt+∆t = x coming from an initial state x0 is given by

P (x, t+∆t|x0) = p∆t P

(
x− 1

M
, t

∣∣∣∣x0
)
+ q∆t P

(
x+

1

M
, t

∣∣∣∣x0
)

− (p+ q)∆t P (x, t|x0) + P (x, t|x0)
P (x, t+∆t|x0)− P (x, t|x0)

∆t
= pP

(
x− 1

M
, t

∣∣∣∣x0
)
+ q P

(
x+

1

M
, t

∣∣∣∣x0
)

− (p+ q)P (xi, t|x0)

Letting ∆ → 0 turns the fraction in the left hand side into

P (x, t+∆t|x0)− P (x, t|x0)
∆t

≈ d

dt
P (x, t|x0).

From this, the master equation eq. (2.3) is derived,

d

dt
P (x, t|x0) = pP

(
x− 1

M
, t

∣∣∣∣x0
)
+ q P

(
x+

1

M
, t

∣∣∣∣x0
)
− (p+ q)P (x, t|x0).
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A.2 Proof of Proposition 2.1.2

Proof. On the probability terms with states displaced by 1/M on the master equation
(2.3), a second-order Taylor expansion is performed centered on x. For the first term of
the master equation,

pP

(
x− 1

M
, t

∣∣∣∣x0
)

≈ pP (x, t|x0) + p

(
x− 1

M
− x

)
∂

∂x
P (x, t|x0)

+ p

(
x− 1

M
− x

)2 ∂2

∂x2
P (x, t|x0)

= pP (x, t|x0)−
p

M

∂

∂x
P (x, t|x0) +

p2

M2

∂2

∂x2
P (x, t|x0) .

Similarly, for the second term,

q P

(
x+

1

M
, t

∣∣∣∣x0
)

≈ q P (x, t|x0) +
q

M

∂

∂x
P (x, t|x0) +

q2

M2

∂2

∂x2
P (x, t|x0)

The total derivative on the left-hand side of the master equation is now re-written as a
partial derivative with respect to time for consistency. Combining together and collecting
propagator terms by increasing orders of the partial derivative, the master equation is
now written as

∂

∂t
P (x, t|x0) = −

(
p− q

M

)
∂

∂x
P (x, t|x0) +

(
p+ q

2M2

)
∂2

∂x2
P (x, t|x0).

Letting v = (p − q)/M and D = (p + q)/(2M2), the Fokker-Planck equation (2.5) is
derived.

A.3 Derivation of the Fokker-Planck equation from the
SDE

The following products of infinitesimals dt and dWt are important identities in Itô cal-
culus [53]:

dt2 = 0, dWt dt = 0, dW 2
t = dt (A.1)

The first two identities is from the fact that dt and dW are infinitely small, hence
dt2 and dW dt will be negligible. The third identity is from the quadratic variation of
the Wiener process Wt, since the increments of the Wiener process are defined to have a
variance that is linearly proportional to the time increment. Substituting the dx terms
into Itô’s formula (2.10) with dXt in the SDE (2.7) with the identities (A.1),
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dg(x, t) =
∂

∂t
g(x, t) dt+

∂

∂x
g(x, t)

(
−v dt+

√
2D dWt

)

+
1

2

∂2

∂x2
g(x, t)

(
−v dt+

√
2D dWt

)2

dg(x, t) =
∂

∂t
g(x, t) dt+

∂

∂x
g(x, t)

(
−v dt+

√
2D dWt

)

+
1

2

∂2

∂x2
g(x, t)

(
−v2 dt2 − 2v

√
2D dt dWt + 2D dW 2

t

)

Using the identities in eq. (A.1),

dg(x, t) =
∂

∂t
g(x, t) dt+

∂

∂x
g(x, t)

(
−v dt+

√
2D dWt

)
+D

∂2

∂x2
g(x, t) dt

Collecting terms with dt,

dg(x, t) =

(
∂

∂t
g(x, t) dt− v

∂

∂x
g(x, t) dt+D

∂2

∂x2
g(x, t) dt

)
+
√
2D

∂

∂x
g(x, t) dWt

Taking the expectation of both sides of the equation with respect to x,

E [g(x, t)] =

∫ ∞

−∞
g(x, t)P (x, t) dx,

and further noting that by the definition of the Wiener process, the expectation of the
Wiener increment dWt is zero,

dE[g(x, t)] = E
[
∂

∂t
g(x, t)− v

∂

∂x
g(x, t) +D

∂2

∂x2
g(x, t)

]
dt

d

dt

∫ ∞

−∞
g(x, t)P (x, t) dx =

∫ ∞

−∞

[
∂

∂t
g(x, t)− v

∂

∂x
g(x, t) +D

∂2

∂x2
g(x, t)

]
P (x, t) dx

d

dt

∫ ∞

−∞
g(x, t)P (x, t) dx =

∫ ∞

−∞
P (x, t)

∂

∂t
g(x, t) dx

+

∫ ∞

−∞

[
−v

∂

∂x
g(x, t) +D

∂2

∂x2
g(x, t)

]
P (x, t) dx.

By the product rule of derivatives, the lefthand side of the equation must be

d

dt

∫ ∞

−∞
g(x, t)P (x, t) dx =

∫ ∞

−∞
P (x, t)

∂

∂t
g(x, t) dx+

∫ ∞

−∞
g(x, t)

∂

∂t
P (x, t) dx.

Note that the first term of the sum above is equal to the first term of the righthand side
of the preceding equation, hence it can be simplified further to

∫ ∞

−∞
g(x, t)

∂

∂t
P (x, t) dx =

∫ ∞

−∞

[
−v

∂

∂x
g(x, t) +D

∂2

∂x2
g(x, t)

]
P (x, t) dx.
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Since g(x, t) is an arbitrarily smooth test function, we may write

∂

∂t
P (x, t) = −v

∂

∂x
P (x, t) +D

∂2

∂x2
P (x, t),

which is the Fokker-Planck equation in eq. (2.5).

A.4 Proof of Proposition 2.2.3

Given a twice-differentiable function g(xxx, t), take the multivariate second-order Taylor
expansion of its differential dg is

dg(xxx, t) =
∂

∂t
g(xxx, t)dt+

1

2

∂2

∂t2
g(xxx, t)dt2 +

N∑

i=1

∂

∂xi
g(xxx, t)dxxx+

1

2
dxxxHxxxg(xxx, t)dxxx

⊤,

where Hxxx is the Hessian matrix with respect to xxx with elements ∂2/(∂xi∂xj), ∀i, j. Since
dt2 = 0 and dxxx is given by eq. (2.16),

dg(xxx, t) =
∂

∂t
g(xxx, t)dt+

N∑

i=1

∂

∂xi
g(xxx, t) [µµµ (xxx, t) dt+ σσσ (xxx, t) dWWW t]

+
1

2

N∑

i=1

N∑

j=1

[µµµ (xxx, t) dt+ σσσ (xxx, t) dWWW t] [µµµ (xxx, t) dt+ σσσ (xxx, t) dWWW t]
⊤ ∂

∂xi

∂

∂xj
g(xxx, t)

=
∂

∂t
g(xxx, t)dt+

N∑

i=1

∂

∂xi
g(xxx, t) [µµµ (xxx, t) dt+ σσσ (xxx, t) dWWW t]

+
1

2

N∑

i=1

N∑

j=1

[
µµµ (xxx, t)µµµ (xxx, t)⊤ dt2 +µµµ (xxx, t)σ(xxx, t)⊤dtdWWW t

+ σσσ (xxx, t)⊤ dtdWWW⊤
t µ(xxx, t) + σσσ (xxx, t)σσσ (xxx, t)⊤ dWWW 2

t

] ∂

∂xi

∂

∂xj
g(xxx, t).

Since dWWW t dt = 0 and dWWW 2
t = dt,

dg(xxx, t) =
∂

∂t
g(xxx, t)dt+

N∑

i=1

µµµ (xxx, t)
∂

∂xi
g(xxx, t)dt+

N∑

i=1

σσσ (xxx, t)
∂

∂xi
g(xxx, t)dWWW t

+
1

2

N∑

i=1

N∑

j=1

σσσ (xxx, t)σσσ (xxx, t)⊤ dt
∂

∂xi

∂

∂xj
g(xxx, t)

=

[
∂

∂t
g(xxx, t) +

N∑

i=1

µµµ (xxx, t)
∂

∂xi
g(xxx, t)

+
1

2

N∑

i=1

N∑

j=1

σσσ (xxx, t)σσσ (xxx, t)⊤
∂

∂xi

∂

∂xj
g(xxx, t)

]
dt+

N∑

i=1

σσσ (xxx, t)
∂

∂xi
g(xxx, t)dWWW t
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Writing down σσσ in terms of matrix elements σi,j ,∀i, j and defining the product σσσσσσ⊤

to be the diffusion tensor, defined in eq. (2.18), we obtain Itô’s formula solved for the
multivariate SDE in eq. (2.16).

A.5 Proof of Proposition 5.0.1

Let gm,n(u) = pm(u)/qn(u) be a function approximated using the Padé approximation
with a rational function of polynomials, with numerator pm(u) =

∑m
j=0 = ajs

j and

denominator qn(u) =
∑n

j=0 = bjs
j . Given the form of the Laplace transform of the

propagator, the coefficients aj and bj must always be real.
To obtain the partial fraction decomposition, the roots of qn(u) must first be com-

puted. By the fundamental theorem of algebra, qn(u) may be written as

qn(u) = (u− α1)
l1 . . . (u− αn1)

ln1 (u2 − c1u+ d1)
l†1 . . . (u2 − cn2u+ dn2)

l†n2 (A.2)

The trinomial terms in the product may be factored further to yield roots that are
complex conjugate pairs

qn(u) = (u−α1)
l1 . . . (u−αn1)

ln1 (u−α†
1)

l†1(u−α†
1)

l†1 . . . (u−α†
n2
)l

†
n2 (u−α†

n2
)l

†
n2 . (A.3)

Thus, the roots of qn(u) are separated into the real roots αj for j = 1, . . . , n1 and the

complex conjugate roots α†
j , α

†
j for j = 1, . . . , n2, and n1 + 2n2 = n retrieves the degree

of qn(u). The partial fraction decomposition of gm,n(u) is

gm,n(u) =

n1∑

j=1

lj∑

i=1

γj,i
(u− αj)i

+

n2∑

j=1

l†j∑

i=1

[
γ†j,i

(u− α†
j)

i
+

γ†j,i
(u− α†

j)
i

]
, (A.4)

where γj,i, γ
†
j,i, and γ†j,i are coefficients that may be obtained using the residue method

or by cf. e.g. [115] p. 233-234.
Note that regardless of whether the root or coefficient is real or complex-valued, the

partial fractions can still be used to obtain a Laplace inversion, e.g.

L−1

(
γ

(u− α)i

)
=

γ

(i− 1)!
ti−1 exp(αt), (A.5)

for an arbitrary γ and α. Suppose that the complex roots will have the form α† =
σ + iω and complex conjugate αj = σ − iω. These roots will have coefficients γ and
γ that may be expressed into polar coordinates with radius R = |γ†| and angle ϕ =
tan−1(Im(γ†)/Re(γ†)). The inversion of the sum of the partial fractions for these complex
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roots would be

L−1

(
γ†

[u− (σ + ωi)]i
+

γ†

[u− (σ − ωi)]i

)
=
R exp(iϕ)

(i− 1)!
ti−1 exp[(σ + iω)t]

+
R exp(−iϕ)

(i− 1)!
ti−1 exp[(σ − iω)t]

=
Rti−1 exp(σt)

(i− 1)!

[
exp(iϕ) exp(iωt)

+ exp(−iϕ) exp(−iωt)
]

=
2Rti−1 exp(σt)

(i− 1)!

exp[i(ωt+ ϕ)] + exp[−i(ωt+ ϕ)]

2

=
2R exp(σt)

(i− 1)!
ti−1 cos(ωt+ ϕ)

Therefore, taking the sums of the two Laplace transform inversions, we obtain the inver-
sion of the full function gm,n(u) even with complex roots in the denominator from the
partial fraction decomposition step.
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