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Abstract

We present results on the density property of Stein manifolds and on factorization
of holomorphic matrices. A Stein manifold with the density property has an infinite
dimensional group of holomorphic automorphisms.

We generalize a criterion for the density property. As an application, we find new
examples of Stein manifolds with the density property.

We also work with the symplectic density property and the Hamiltonian density
property. We establish these properties for the Calogero–Moser space of n particles
and describe its group of holomorphic symplectic automorphisms. This gives a
new class of Stein manifolds with the symplectic density property besides even
dimensional Euclidean spaces.

The real Calogero–Moser space CR
n is a noncompact, totally real submanifold of

the complex Calogero–Moser space Cn. We prove that every symplectic diffeo-
morphism of CR

n smoothly isotopic to the identity can be approximated in the
fine Whitney topology – the strongest in this context – by holomorphic symplectic
automorphisms of Cn that preserve CR

n . A key ingredient in our proof is a refined
version of the symplectic density property of Cn.

In holomorphic matrix factorization we factor a matrix, which has holomorphic
functions on a Stein space as entries, into a product of specific matrices, e.g.
unitriangular matrices or exponentials. In the final part we analyze bounds for the
number of factors in some holomorphic matrix factorizations.
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Notations

Aut(X) The group of holomorphic automorphisms of X

Autω(X) The group of holomorphic symplectic automorphisms of (X, ω)

Autalg(X) The group of algebraic automorphisms of X

C[X] The algebra of regular functions on X

IVF(X) The set of C-complete holomorphic vector fields on X

GLn(C) The general linear group over C

Lie(X) The Lie subalgebra of VF(X) generated by the set of C-complete
holomorphic vector fields on X

Liealg(X) The Lie subalgebra of VFalg(X) generated by the set of C-complete
algebraic vector fields on X

J k(X) The kth jet space of X

OX,x The ring of germs of holomorphic functions at a point x ∈ X

VF(X) The Lie algebra of all holomorphic vector fields on X

VFalg(X) The Lie algebra of all algebraic vector fields on X

Mn(C) The complex vector space of square matrices of size n

N The natural numbers, 1, 2, . . . .

PGLn(C) The projective linear group over C

SLn(C) The special linear group over C

Sp2n(C) The symplectic linear group over C

X A Stein manifold or a smooth complex affine algebraic variety
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Chapter 1

Introduction

A Stein manifold X (which is a complex manifold admitting a lot of holomorphic
functions, cf. Definition 2.1) is said to have the density property, if the Lie subalgebra
generated by C-complete (cf. Definition 2.14) holomorphic vector fields on X is
dense in the Lie algebra of all holomorphic vector fields on X, with respect to the
compact-open topology. For approximation of local biholomorphic mappings by
global holomorphic automorphisms, the density property plays a role comparable
to cutoff functions for smooth objects. In particular, it says that the holomorphic au-
tomorphism group is very large (cf. Proposition 2.29) and provides great flexibility
in constructing holomorphic automorphisms (cf. Chapter 5). We give a historical
overview for the density property in Section 2.3.

A criterion for the density property
In 2008, Kaliman and Kutzschebauch [KK08a] worked out a strategy to find a
sufficient criterion whether a given Stein manifold X has the density property. The
idea is based on finding sufficiently many so-called compatible pairs of C-complete
holomorphic vector fields. They also established the algebraic density property for
Danielewski surfaces [KK08b] despite the lack of compatible pairs in this particular
case.

The first topic of this thesis, presented in Chapter 3, is a generalization of the notion
of the compatible pair and the Kaliman–Kutzschebauch criterion. Let θ1, . . . , θn
(n ≥ 2) be C-complete holomorphic vector fields on X. Then the ordered n-tuple
(θ1, . . . , θn) is called a compatible n-tuple (of holomorphic vector fields on X) if the
following two conditions are satisfied:

(1) There exists a non-zero ideal I ⊂ O(X) in the ring of holomorphic functions
on X such that

I ⊂ span

(
n

∏
i=1

ker θi

)

(2) There is a graph (G, π, ε), where

(i) G is a rooted directed tree with orientation towards the root

(ii) π : Vert(G) → {θ1, . . . , θn} is a bijection with π(root) = θ1

3



1. Introduction

(iii) ε : Edge(G) → O(X) is a mapping with

ε(v, w) ∈
(
ker π(v)2 \ ker π(v)

)
∩ ker π(w)

for all (v, w) ∈ Edge(G).

Note that this definition actually generalizes the notion of a compatible pair, since
the latter corresponds to the special case n = 2.

The above-mentioned Danielewski surfaces do not admit a compatible pair, but
they admit a compatible 3-tuple according to our new definition. As we will
see below, this enables us to give a conciser proof of the density property for
Danielewski surfaces. Moreover, we have discovered another family of manifolds,
which we call Gromov–Vaserstein fibers, for which we do not know whether there
exist compatible pairs, but which turns out to have the density property thanks to
the existence of a compatible 3-tuple.

Let Aut(X) denote the group of holomorphic automorphisms on X. Then the first
main result can be formulated as follows.

Theorem 1 (Generalized Kaliman–Kutzschebauch criterion) Let X be a homoge-
neous Stein manifold with respect to Aut(X). Assume there exist N = dim(X)
compatible n-tuples {(θ1,i, . . . , θn,i)}N

i=1 of holomorphic vector fields on X such that
the vectors (θ1,1)x, . . . , (θ1,N)x span the tangent space TxX at some point x ∈ X.
Then X has the density property.

In practice it could be difficult to find dim(X) compatible n-tuples. The next result
transforms this condition into another form for an application of Theorem 1.

Theorem 2 Let X be a Stein manifold and (θ1, . . . , θn) a compatible n-tuple of
holomorphic vector fields on X. Assume that there exist C-complete holomorphic
vector fields V1, . . . , VN on X, N ≥ dim(X), which span the tangent bundle TX. If
there exist functions fi ∈ ker Vi such that dx fi(θ1) ̸= 0 for some point x ∈ X and
i = 1, . . . , N, then X has the density property.

The reason for us to develop this new criterion is to prove the density property
for a certain class of affine algebraic manifolds, naturally arising in the solution
to the factorization problems of holomorphic matrices into elementary factors,
namely the solutions to the Gromov–Vaserstein problems for the special linear
groups by Ivarsson and Kutzschebauch [IK12a] and for the symplectic groups by
Schott [Sch25]. These manifolds are the fibers of certain polynomial mappings
P : Cm → Ck, we call them Gromov–Vaserstein fibers. They share the property
that each smooth fiber P−1(y) is biholomorphic to a product G × CM for some
holomorphically flexible Stein manifold G and some natural number M. In [IK12a]
and [Sch25] it is shown that G is elliptic in the sense of Gromov and thus an Oka
manifold. For the notion of Oka manifolds see [For17, Chapter 5]. Our main goal
is to show that G has the density property which is much stronger than being
Oka. We give an introduction with more details on Gromov–Vaserstein problem in
Section 2.2.

Note that it is much easier to prove that the Gromov–Vaserstein fibers G ×CM have
the density property for M ≥ 1 than it is for M = 0. In fact, an application of the

4



original Kaliman–Kutzschebauch criterion shows that products of holomorphically
flexible manifolds with affine spaces have the density property. Since this result is
known in the literature only in a very restricted form (Varolin [Var01] proved that
G × C has the density property when G is a Stein complex Lie group) we include
it here.

Recall that a complex manifold X is called holomorphically flexible at a point x ∈ X
if the values at x of C-complete holomorphic vector fields on X span the tangent
space TxX. The manifold X is flexible if it is flexible at every point x ∈ X.

Theorem 3 Let X be a holomorphically flexible Stein manifold. Then X × C has
the density property.

The reader should compare this theorem to the result of Ugolini and Winkelmann
[UW23], where they prove that the total space of a line bundle π : E → X over a
Stein manifold X with the density property has again the density property, if there
exists a so-called π-incompatible holomorphic automorphism of E.

As mentioned above, the manifolds G from the Gromov–Vaserstein fiber G × CM

are our new examples of manifolds with the density property. We shall encounter
an interesting special case, where G is given by

G =

{
(z2, z3, w1, w2, w3) ∈ C5 :

(
w1 w2
w2 w3

)(
z2
z3

)
=

(
b1
b2

)}
with (b1, b2) ∈ C2 \ {(0, 0)}. We do not know whether there exist compatible
pairs on G. However, there is a compatible 3-tuple and, moreover, there are C-
complete holomorphic vector fields V1, V2 and V3 on G which satisfy the conditions
of Theorem 2. Hence G has the density property.

The symplectic density property
The main subject of Chapter 4 and Chapter 5 is the classical Calogero–Moser space,
which has an origin in mathematical physics as an integrable dynamical system.
Consider the phase space of n identical point-like particles on the real line, pairwise
interacting with a repulsive, inverse square potential. This potential prevents any
two particles having the same location. On the way to understand the connection
between the Calogero–Moser system and the Kadomtsev–Petviashvili system, Wil-
son [Wil98] considered this n-particle problem on a complex line, where collisions
will take place for most initial conditions after finite time. Following an earlier
geometric construction by Kazhdan, Kostant and Sternberg [KKS78], Wilson in-
troduced the following complex space which contains a dense subset where the
particles have distinct locations (cf. Lemma 4.1).

Definition 1.1 Let Ĉn be the subvariety of Mn(C)× Mn(C) given by

rank([X, Y] + id) = 1

where (X, Y) ∈ Mn(C)× Mn(C). The group GLn(C) acts on Ĉn by simultaneous
conjugation in both factors:

g · (X, Y) = (gXg−1, gYg−1)

5



1. Introduction

for g ∈ GLn(C). We define the Calogero–Moser space Cn of n particles to be the
GIT-quotient Ĉn// GLn(C).

It is easy to see that the group action is well defined, since it leaves the condition
rank([X, Y] + id) = 1 invariant.

For n = 1 the matrices are just complex numbers, and we obtain C1 = C2. In higher
dimensions, the structure becomes more complicated. The Calogero–Moser space
Cn is a smooth complex-affine variety of dimension 2n, see Wilson [Wil98, Section
1]. It has also been shown by Popov [Pop14, Section 13, Remark 5] that Cn is a
rational variety.

The Calogero–Moser space is equipped with a holomorphic symplectic form and
in fact carries a hyperkähler structure. Indeed, the Calogero–Moser space with its
symplectic form is obtained as symplectic reduction of the preimage of a coadjoint
orbit under a moment map, see Section 4.1 for more details.

We will make use of the following well-known complete flow maps.

Definition 1.2 The Calogero–Moser flows on Cn are defined as follows:

(X, Y) 7→ (X, Y + tXk)

(X, Y) 7→ (X + tYk, Y)

where k ∈ N0 and t ∈ C.

It is easy to see that these are well-defined maps on Cn since they are invariant
under conjugation and leave the commutator [X, Y] invariant, and that they are
algebraic isomorphisms for each t ∈ C. Moreover, they leave the symplectic form
invariant, see Section 4.1.

It has been established by Berest and Wilson [BW00] that the subgroup of the
automorphism group generated by the Calogero–Moser flows acts transitively on
the Calogero–Moser space Cn. This was later improved to 2-transitivity by Berest,
Eshmatov and Eshmatov [BEE16] and finally to m-transitivity for any m ∈ N

(sometimes called infinite transitivity) by Kuyumzhiyan [Kuy20]. Therefore it is
natural to consider properties of the holomorphic symplectic automorphism group
of Cn.

Definition 1.3 A complex manifold endowed with a holomorphic symplectic form
has the symplectic density property if the Lie algebra generated by C-complete holo-
morphic symplectic vector fields is dense in the Lie algebra of holomorphic sym-
plectic vector fields in the compact-open topology.

For the Hamiltonian density property, replace ”symplectic” by ”Hamiltonian” in
Definition 1.3 or see Section 2.4.

The density property for the Calogero–Moser spaces has been established by An-
drist [And21]. However, for the symplectic or Hamiltonian density property, none
of the known methods from Andersén–Lempert theory can be applied due to
the lack of a module structure over the holomorphic functions for the symplec-
tic/Hamiltonian vector fields: A powerful method for establishing the density

6



property is the use of compatible pairs [KK08a] or compatible tuples [And+23] for
which the module structure of the holomorphic vector fields over the holomorphic
functions is essential.

The main goal of Chapter 4 is to establish the symplectic and the Hamiltonian
density properties for the Calogero–Moser spaces, which is an entirely new class of
examples with a large group of holomorphic symplectic automorphisms.

Theorem 1.4 The Calogero–Moser space Cn, n ∈ N, has the Hamiltonian density prop-
erty.

In fact, we will show that the Hamiltonian density property can be established
using only two complete holomorphic Hamiltonian vector fields that correspond to
the Hamiltonian functions tr Y + tr X3 and (tr X)2 + tr Y2. While establishing the
Hamiltonian density property already turns out to be a highly non-trivial endeavor,
it is even more surprising that it can be achieved with only finitely many generators.
For the density property, this has been established before by Andrist for the case of
Cn [And19] and for SL2(C) as well as xy = z2 [And23] with finitely many complete
polynomial vector fields generating the Lie algebra of all polynomial vector fields.

Since every holomorphic symplectic vector field on Cn is Hamiltonian, see Lemma
4.3, the preceding theorem implies the following.

Theorem 1.5 For any n ∈ N the Calogero–Moser space Cn has the symplectic density
property.

Using the symplectic version of Andersén–Lempert theory in Section 2.4, we can
then establish the following description of the automorphism group.

Theorem 1.6 The identity component of the group of holomorphic symplectic automor-
phisms of Cn, n ∈ N, is the closure (in the topology of uniform convergence on compacts)
of the group generated by the following algebraic symplectic automorphisms:

(X, Y) 7→ (X + t id, Y − 3X2t − 3Xt2 − id t3)

(X, Y) 7→
(
X + 2Yt + f (t) id, Y + f ′(t) id

)
where t ∈ C and

f (t) =
1
n
(
cos(2

√
nt)− 1

)
tr X +

1
n3/2 (sin(2

√
nt)− 2t

√
n) tr Y.

Remark 1.7 Alternatively, we can also use three algebraic families to generate
a group whose closure is the identity component of the group of holomorphic
symplectic automorphisms of Cn:

(X, Y) 7→ (X + t id, Y − 3X2t − 3Xt2 − id t3)

(X, Y) 7→ (X + 2tY, Y)
(X, Y) 7→ (X, Y − 2t tr(X) id).

7



1. Introduction

Actually, it is also possible to use the following four simple families that are linear
in time t:

(X, Y) 7→ (X + t id, Y)

(X, Y) 7→ (X, Y − 3X2t)
(X, Y) 7→ (X + 2tY, Y)
(X, Y) 7→ (X, Y − 2t tr(X) id).

Whether Autω(Cn) has more than one connected component is still an open ques-
tion.

Corollary 1.8 The group generated by the holomorphic symplectic automorphisms in the
preceding theorem acts m-transitively on Cn for any m ∈ N.

Proof This follows from the symplectic density property and Corollary 2.47. □

Holomorphic approximation of symplectic diffeomorphisms
In Chapter 5 we study approximation for symplectic diffeomorphisms from the real
Calogero–Moser space CR

n onto itself by holomorphic symplectic automorphisms
on the complex Calogero–Moser space Cn, n ∈ N.

The real Calogero–Moser space CR
n was constructed by Kazhdan, Kostant and

Sternberg [KKS78] as a real symplectic reduction (cf. Definition 5.4) and two
decades later the complex Calogero–Moser space Cn was introduced by Wilson
[Wil98] in the complex setting as follows.

Let M be the direct sum Mn(C)⊕ Mn(C)⊕ Cn ⊕ (Cn)∗, where Mn(C) is the C-
vector space of square matrices of size n. The space M can be endowed with the
holomorphic symplectic form ω = tr(dX ∧ dY + dv ∧ dw). Moreover, the general
linear group GLn(C) acts on M as

g · (X, Y, v, w) = (gXg−1, gYg−1, gv, wg−1), g ∈ GLn(C)

which preserves the symplectic form. Thus this action induces a complex moment
map

µ : M → Mn(C), (X, Y, v, w) 7→ [X, Y] + vw

which is equivariant with respect to the above action on M and the coadjoint
action on Mn(C) ∼= gl∗n. Take the coadjoint invariant point iIn ∈ Mn(C). By Wilson
[Wil98], the group action is free on the preimage µ−1(iIn).

Definition 1.9 The Calogero–Moser space Cn is the complex symplectic reduction
µ−1(iIn)/ GLn(C).

Remark 1.10 For Carleman approximation, we use a different rank condition from
Definition 1.1. The subvarieties of Mn(C) ⊕ Mn(C) defined by these two rank
conditions are isomorphic to each other, and so are their quotients. For the sake of
simplicity, we abuse the same notation for these Calogero–Moser spaces. Only as
explicit comparisons are called for (later in Chapter 5), more precise notations will
be introduced.

8



Let τ : Cn → Cn be the antiholomorphic involution given by

(X, Y, v, w) 7→ (X∗, Y∗, iw∗, iv∗).

Here, the star stands for complex conjugate transpose. Then the fixed-point set
of τ turns out to be real symplectomorphic to the real Calogero–Moser space CR

n .
In other words, the complex space Cn is a symplectic complexification of CR

n , see
Definition 5.1.

Theorem 1.11 The complex Calogero–Moser space (Cn, ω, τ) is a symplectic complexifi-
cation of the real Calogero–Moser space (CR

n , ωR).

The proof can be found in Section 5.5. The real form CR
n is simply connected, see

Lemma 5.5. Hence we can even approximate any symplectic diffeomorphism from
CR

n onto itself which is smoothly isotopic to the identity in Theorem 5.20 by a
holomorphic symplectic automorphism of Cn.

Our approximation is what complex analysts call the Carleman approximation.
It is an approximation of real objects by holomorphic ones in the fine (Whitney)
topology. Torsten Carleman was the first to obtain such a result. He proved that
smooth functions on the real line can be approximated by holomorphic functions
on the complex plane in the fine topology [Car27]. For the following definition we
fix a norm ∥ · ∥Ck on the jet-space J k(M), cf. Section 5.1.

Definition 1.12 Let (MR, ωR) be a smooth symplectic manifold and (M, ω, τ) a
symplectic complexification of (MR, ωR). For a natural number k, we say that
(M, ω, τ) admits Hamiltonian Ck-Carleman approximation, if for any Hamiltonian
diffeomorphism φ of MR onto itself (cf. Section 5.1) and any positive continuous
function ε on MR, there exists a holomorphic symplectic automorphism Φ of
M such that Φ(MR) = MR and the estimate ∥Φ − φ∥Ck(p) < ε(p) holds for any
p ∈ MR.

The main result of Chapter 5 is:

Theorem 1.13 The Calogero–Moser space (Cn, ω, τ) admits Hamiltonian Ck-Carleman
approximation for all k ∈ N0.

For such an approximation to hold, the complex symplectic manifold M must admit
a large group of holomorphic symplectic automorphisms. A key ingredient in
establishing Carleman approximation for automorphisms is the Andersén–Lempert
theory, which concerns the approximation of biholomorphic mappings between
Runge domains by holomorphic symplectic automorphisms.

A precise way in Andersén-Lempert theory to express the abundance of holomor-
phic automorphisms is Varolin’s density property [Var01]. We need its symplectic
counterpart – the symplectic density property – introduced in Definition 1.3.

Known nontrivial examples of Stein symplectic manifolds satisfying the symplectic
density property include even-dimensional complex Euclidean space [For96] and
the Calogero–Moser space [AH25]. In both cases, the vanishing of the first de
Rahm cohomology reduces the property to the Hamiltonian density property, where
only Hamiltonian vector fields are considered. The Hamiltonian density property

9



1. Introduction

was also established for closed coadjoint orbits of complex Lie groups in [DW22].
This property allows approximation of real Hamiltonian vector fields on compact
subsets by sums of holomorphic Hamiltonian vector fields, whose real parts are
tangent to a given totally real submanifold; see [DW22, Lemma 3.1].

There were only two results on Carleman approximation of smooth diffeomor-
phisms on noncompact totally real submanifolds. Recall that a C1 real submanifold
N of a complex manifold M is called totally real, if at each point p of N the tangent
space TpN contains no complex line. The first result is by Kutzschebauch and Wold
[KW18] who proved Carleman approximation of diffeomorphisms from Rs onto
itself by holomorphic automorphisms of Cn in the fine topology when s < n. Their
proof relies on Andersén–Lempert theory and Carleman approximation by entire
functions. This result generalized earlier works on approximation by holomorphic
automorphisms on compact totally real submanifolds, including Forstnerič–Rosay
[FR93], Forstnerič [For94] and Forstnerič–Løw–Øvrelid [FLØ01]. In particular,
[FLØ01] studied the approximation of certain diffeomorphisms between compact
totally real submanifolds by holomorphic ω-automorphisms of C2n, where ω de-
notes either the standard holomorphic volume form or the holomorphic symplectic
form.

The second result is by Deng and Wold [DW22] who established Hamiltonian
Carleman approximation for closed coadjoint orbits of complex Lie groups. Their
approach not only yields holomorphic symplectic automorphisms preserving the
real part but also addresses the case R2n embedded in C2n with the standard
symplectic form ω = ∑n

j=1 dzj ∧ dwj. The proofs of both results rely heavily on
the density property of Cn or on the symplectic density property of C2n. Even
the result in [DW22] on coadjoint orbits depends on the density property, as it is
obtained by restricting the objects from the coadjoint representation to the coadjoint
orbits.

Our result is the first one where the ambient complex space is much more com-
plicated than affine space. A crucial component of our proof is the fact that the
symplectic density property (see Definition 1.3) of the Calogero–Moser space is
proven using complete holomorphic vector fields, whose real time flows preserve
the real Calogero–Moser space; see Definition 5.10.

Factorization of holomorphic matrices
In the last chapter, Chapter 6, we deduce some algebraic properties for the group
Sp2n(O(X)) of holomorphic symplectic matrices on a Stein space X: Holomorphic
factorization, exponential factorization, and Kazhdan’s property (T). In holomor-
phic factorization we combine a result of Schott [Sch25] and tools from K-theory to
give explicit bounds for the case where X is one-dimensional or two-dimensional.
Then we use them to find bounds for exponential factorization. As a further applica-
tion, we show that the elementary symplectic group Ep2n(O(X)) admits Kazhdan’s
property (T). We give an introduction to the factorization for null-homotopic
holomorphic mapping from a Stein space to SLn(C) in Section 2.2.

10



Chapter 2

Preliminaries

2.1 Stein manifolds

First we set up a sketch of the stage following [For17]. We confine ourselves to the
smooth case, although many classical results in this section are valid over Stein
spaces.

For a compact set K in a complex manifold X, its O(X)-(convex) hull is given by

K̂ = {p ∈ X : | f (p)| ≤ max
x∈K

| f (x)| for all f ∈ O(X)}.

K is called O(X)-convex if K̂ = K. When X = Cn, an O(Cn)-convex compact K is
said to be polynomially convex. A complex manifold X is holomorphically convex, if
for any compact set K ⊂ X the O(X)-hull K̂ is compact.

Definition 2.1 A complex manifold M is called a Stein manifold if

(a) For any two distinct points p, q ∈ M, there is a holomorphic function f ∈
O(M) such that f (p) ̸= f (q).

(b) For every point p ∈ M there exist functions f1, . . . , fn ∈ O(M), n = dim M,
whose differentials d f1, . . . , d fn are linearly independent at p.

(c) M is holomorphically convex.

The first two conditions convey that there are a lot of global holomorphic functions
on a Stein manifold. Condition (c) implies that a Stein manifold M admits an
exhaustion K1 ⊂ K2 ⊂ · · · ⊂ ∪∞

j=1Kj = M by compact O(M)-convex subsets such
that Kj ⊂ K̊j+1 for every j ∈ N.

Example 2.2 We mention the following classes of Stein manifolds

1. A closed complex submanifold of CN . In particular, smooth affine algebraic
varieties.

2. Open Riemann surfaces.

3. The Cartesian product of two Stein manifolds.

11
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4. The total space of a holomorphic vector bundle over a Stein base.

Runge’s approximation theorem in one variable generalizes to the following.

Theorem 2.3 (Oka–Weil) If X is a Stein manifold and K is a compact O(X)-convex sub-
set of X, then every holomorphic function in an open neighborhood of K can be approximated
uniformly on K by functions in O(X).

We turn this property into a definition.

Definition 2.4 A domain Ω in a complex manifold X is called Runge in X if every
holomorphic function f ∈ O(Ω) can be approximated uniformly on compact
subsets in Ω by global functions in O(X).

More precisely, let d be a distance function on X induced by a Riemannian metric.
Let ε > 0 and K a compact subset of Ω. For every f ∈ O(Ω) on the Runge domain
Ω, there exists a holomorphic function g ∈ O(X) such that d( f (x), g(x)) < ε for
every x ∈ K.

Let X be a complex manifold. Denote by OX,x the ring of germs of holomorphic
functions at a point x ∈ X. An analytic sheaf on X is a sheaf F of OX-modules,
namely a sheaf whose stalk Fx over any point x ∈ X is a module over the local ring
OX,x. The sheaf F is locally finitely generated if for every point x0 ∈ X there exist an
open neighborhood U ⊂ X and finitely many sections s1, . . . , sk ∈ F (U) = Γ(U,F )
whose germs at any point x ∈ U generate Fx as an OX,x-module. A simple example
is the direct sum Ok

X of k copies of the structure sheaf OX for any k ∈ N, which is
the sheaf of holomorphic sections of the trivial bundle X × Ck → X.

An analytic sheaf is coherent if it is locally finitely generated and if for any set of local
sections s1, . . . , sk ∈ F (U) the corresponding sheaf of relations R = R(s1, . . . , sk)
is also locally finitely generated. The sheaf R has stalks

Rx = {(g1,x, . . . , gk,x) ∈ Ok
X,x :

k

∑
j=1

gj,xsj,x = 0}, x ∈ U

Thus an analytic sheaf F over X is coherent if and only if each point x ∈ X has an
open neighborhood U ⊂ X such that for every analytic sheaf homomorphism

β : Ok
U → F|U , (g1,x, . . . , gk,x) 7→ ∑

j
gj,xsj,x,

there exist m ∈ N and a homomorphism α : Om
U → Ok

U such that the following
sequence is exact

Om
U

α−−→ Ok
U

β−−→ F
∣∣
U → 0 (2.1)

Note that β maps the basis sections ej of Ok
U onto the generators sj of F|U and

ker β = Im α is the sheaf of relations.

Example 2.5 We list some examples of coherent analytic sheaves on X:

1. The structure sheaf OX = ∪x∈XOX,x, that is the sheaf of germs of holomorphic
functions

12



2.1. Stein manifolds

2. The structure sheaf OA of a closed complex subvariety A in X. Recall that
OA is the quotient sheaf OX/JA, where JA is the ideal sheaf ∪x∈XJA,x of A
and JA,x the ideal in OX,x consisting of all holomorphic function germs at x
vanishing on A.

3. A locally free analytic sheaf i.e. a sheaf of holomorphic sections of a holomor-
phic vector bundle, for example the tangent sheaf TX.

4. If β : F → G is a homomorphism of coherent analytic sheaves, then the kernel
ker β and the image Im β are also coherent.

The two fundamental results in coherent sheaf theory are due to Cartan [Car53].

Theorem 2.6 Let F be a coherent analytic sheaf on a Stein manifold X. Then

(A) The stalk Fx of F at any point x ∈ X is generated as an OX,x-module by global
sections of the sheaf F .

(B) Hp(X,F ) = 0 for all p ∈ N.

The corresponding results hold for every coherent algebraic sheaf over a complex affine
algebraic variety (Serre [Ser55]).

Corollary 2.7 Every holomorphic function on a closed complex subvariety of a Stein
manifold X extends to a holomorphic function on X.

Proof Let A be a closed complex subvariety of X. We have the short exact sequence

0 −→ JA −→ OX −→ OX/JA −→ 0

Then the ideal sheaf JA is coherent and H1(X,JA) = 0 by Theorem B. The claim
follows from the identification of OA with the quotient sheaf OX/JA, and the exact
cohomology sequence O(X) → O(A) → H1(X,JA). □

Corollary 2.8 If F is a coherent analytic sheaf on a Stein manifold X and if s1, . . . , sk ∈
F (X) generate each stalk Fx (x ∈ X), then every section s ∈ F (X) is of the form
s = ∑ gisi for some gi ∈ O(X).

Proof Consider the short exact sequence 0 → R → Ok β−→ F → 0 as in (2.1).
Then the sheaf of relations R = ker β is coherent and H1(X,R) = 0 by Theorem

B. Now the exact cohomology sequence Ok(X)
β−→ F (X) → H1(X,R) yields the

surjectivity of β. □

Theorem 2.9 (Oka–Weil for coherent analytic sheaves) Let F be a coherent analytic
sheaf on a Stein manifold X. If K is a compact O(X)-convex set in X, then any section
of F over an open neighborhood of K can be approximated uniformly on K by sections in
F (X). More precisely, if sections s1, . . . , sm ∈ F (X) generate every stalk Fx, x ∈ K, then
every section of F over an open neighborhood of K can be approximated uniformly on K by
sections of the form ∑ gjsj for some global functions gj ∈ O(X).

Proof Let s be a section of F over a relatively compact open Stein neighborhood
Ω ⊂ X of K. Since a coherent analytic sheaf is locally finitely generated, there are
sections s1, . . . , sm ∈ F (X) which generate every stalk Fx for x ∈ Ω. By Corollary
2.8 we can write s = ∑ hisi for some functions hi ∈ O(Ω). By the O(X)-convexity
of K we can approximate hi by a global function gi ∈ O(X). □

13
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Theorem 2.10 (Parametric Oka–Weil on Cn) Let K be a compact polynomially convex
set in Cn and let U ⊂ Cn be an open set containing K. Assume that P is a compact
Hausdorff space and f : P×U → C is a continuous function such that fp = f (p, ·) : U →
C is holomorphic for every p ∈ P. Given ε > 0 there exists a continuous function
F : P × Cn → C such that Fp = F(p, ·) : Cn → C is holomorphic for every p ∈ P and

sup
z∈K,p∈P

|Fp(z)− fp(z)| < ε.

For a proof see [For17, §2.8].

2.1.1 Holomorphic vector fields

Let M be a complex manifold. Let us recall that a real vector field is a section
of the real tangent bundle TM, while a complex vector field is a section of the
complexified tangent bundle TM ⊗R C. Through the almost complex structure
J on TM, the complex tangent bundle decomposes into the holomorphic and
anti-holomorphic subbundles

TM ⊗R C = T1,0M ⊕ T0,1M.

We can identify the real tangent bundle TM and the holomorphic tangent bundle
T1,0M via the R-linear isomorphism (see e.g. [For17, §1.6])

α : TM ↪→ TM ⊗R C → T1,0M, V 7→ 1
2
(V − i JV)

which has the inverse α−1(W) = 2 Re(W) for W ∈ T1,0M. We have the following
commutative diagram

TM
J−−−→ TM

α

y yα

T1,0M i−−−→ T1,0M
A real vector field V on M is called holomorphic if α(V) is a holomorphic section of
T1,0M.

Definition 2.11 A C1 real submanifold N of a complex manifold M is called totally
real, if at each point p of N the tangent space TpN contains no complex line.

Definition 2.12 Let τ : M → M be an antiholomorphic involution and N be the
fixed point set of τ, which is a totally real submanifold. A holomorphic function
f ∈ O(M) is called τ-compatible if τ∗ f = f . A holomorphic vector field V on M is
τ-compatible if τ∗V = V.

A τ-compatible function is real-valued on the fixed point set N. In the Hamiltonian
setting τ-compatible functions and τ-compatible vector fields are closely related, cf.
Lemma 5.3.

Lemma 2.13 Let V be a holomorphic vector field on M with (N, τ) as above and N ̸= ∅.
The vector field V is τ-compatible if and only if α−1(Vp) = 2 Re(Vp) ∈ TpN for all p ∈ N.
In particular, the R-flow of a τ-compatible vector field preserves the submanifold N.

14



2.1. Stein manifolds

Proof Let x be a point in N. Consider the flow equation of V

V(x) =
∂

∂t
Φ(t, x)

∣∣∣∣
t=0

Under τ∗ it becomes

V(x) = τ∗V(x) =
∂

∂t
τ ◦ Φ(t, x)

∣∣∣∣
t=0

Adding these two equations and writing the complex time as t = u + iv yields

2 Re V(x) =
∂

∂t
(id+τ) ◦ Φ(t, x)

∣∣∣∣
t=0

=
1
2

(
∂

∂u
− i

∂

∂v

)
(id+τ) ◦ Φ(t, x)

∣∣∣∣
t=0

When only flow in real time is taken into account

2 Re V(x) =
1
2

∂

∂u
(id+τ) ◦ Φ(u, x)

∣∣∣∣
u=0

On the other hand, 2 Re V(x) = α−1(V) is the corresponding smooth vector field
for V. The flow equation for this smooth vector field in real time is

2 Re V(x) =
∂

∂u
φ(u, x)

∣∣∣∣
u=0

where φ(u, x) = Φ(j(u), x) with the embedding j : R → C, t 7→ (t, 0). Therefore
τ ◦ Φ(t, x) = Φ(t, x) for t ∈ R and x ∈ N as well as Re V(x) ∈ Tx N.

Backtracking the argument above and using R totally real in C shows τ∗V = V on
N. Since N = Fix(τ) ̸= ∅ has real dimension n = dimC M by [AH77, Proposition
1.3], it is totally real of maximal dimension in M. Then the holomorphicity of
V − τ∗V implies τ∗V = V on M. □

By definition, N being a totally real submanifold means TpN ∩ JTpN = {0} for
any p ∈ N. This together with α(JV) = iα(V) from the above diagram implies
the complex flow of a τ-compatible vector field does not leave the totally real
submanifold N invariant.

Definition 2.14 A vector field V on a manifold M is R-complete if its flow φt(p)
exists for all t ∈ R and p ∈ M. A holomorphic vector field V on a complex
manifold M is called C-complete if V and JV are both R-complete.

For a holomorphic vector field, C-completeness is equivalent to the existence of its
flow for all complex times.

Lemma 2.15 Let M be a complex manifold. Let V be a C-complete vector field on M and
f ∈ ker V, g ∈ ker V2 \ ker V. Then f V and gV are complete.

Proof Let Φt denote the flow map of V. Then the flow map Ψt of f V is given by

Ψt(x) = Φt f (x)(x)

15
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since

d
dt

Ψt(x) = f (x)V(Ψt(x)) = f (Ψt(x))V(Ψt(x))

where the last step is due to f ∈ ker V. As for gV, the flow map is given by

Φε(tVx g)·tg(x)(x), ε(ζ) =
eζ − 1

ζ
,

see e.g. [AK18, Lemma 3.3]. □

2.2 Holomorphic matrix factorization

To understand an invertible square matrix (e.g. representing the linear part of
an automorphism), it is natural to see if it can be written as a finite product of
matrices of simpler forms. Among the many ways of factorization, one that arises
canonically from Gauss elimination process is the unitriangular decomposition. It
means that each factor is unipotent and either in upper or lower triangular form,
with 1’s on the diagonal, and in interchanging order.

In the simple case with complex matrix entries, any matrix in SLn(C) can be written
as a product of 4 unitriangular factors. The same question can be asked for SLn(R),
where R is any commutative ring. Such a decomposition does not always exist, as
demonstrated by Cohn’s counterexample [Coh66]: The matrix(

1 − z1z2 z2
1

−z2
2 1 + z1z2

)
∈ SL2(C[z1, z2])

cannot be written as a finite product of unitriangular matrices in SL2(C[z1, z2]).

When R is the ring of continuous complex-valued functions on a normal Hausdorff
topological space X, it was studied and solved partially by Thurston and Vaserstein
[TV86] and later fully by Vaserstein in 1988.

Theorem 2.16 ([Vas88]) For any natural number n and an integer d ≥ 0 there is a
natural number K such that for any finite-dimensional normal Hausdorff topological space
X of dimension d and null-homotopic continuous mapping f : X → SLn(C), the mapping
can be written as a finite product of no more than K unitriangular matrices in SLn(C(X)).

In his groundbreaking paper for modern Oka theory, Gromov [Gro89, §3.5.G] asked
the following question for the ring of holomorphic functions on Cd

Vaserstein Problem. Does every holomorphic map Cd → SLn(C) de-
compose into a finite product of holomorphic maps sending Cd into
unipotent subgroups in SLn(C)?

This problem was positively answered by Ivarsson and Kutzschebauch [IK12a] by
applying the modern Oka-Grauert-Gromov principle to certain stratified fibrations,
which implies the existence of a holomorphic solution from Vaserstein’s continuous
solution.
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First we need some handy notations. For an odd natural number K we denote
elements in Cn(n−1)/2 as follows

ZK = (zK,21, . . . , zK,kl , . . . , zK,n(n−1)), k > l.

Then we set

MK(ZK) =


1 0 · · · 0

zK,21 1
. . .

...
...

. . . . . . 0
zK,n1 · · · zK,n(n−1) 1

 .

For even K we proceed similarly. We only consider the transposed version, that is,
we write elements in Cn(n−1)/2 as

ZK = (zK,12, . . . , zK,kl , . . . , zK,(n−1)n), k < l,

and we set

MK(ZK) =


1 zK,12 · · · zK,1n

0 1
. . .

...
...

. . . . . . zK,(n−1)n
0 · · · 0 1

 .

Definition 2.17 We consider topological spaces that are Hausdorff and paracom-
pact (thus normal). For a definition of complex spaces, we refer to Grauert and
Remmert [GR84, §1].

A complex space X is called reduced at x, if the local ring OX,x does not contain
nonzero nilpotent elements. We call X a reduced complex space, if X is reduced at
all points. A point x ∈ X is called regular, if OX,x is isomorphic to a C-algebra of
convergent power series. We call a complex space X finite dimensional, if its regular
part as a complex manifold has finite dimension.

Furthermore, a second countable complex space X is called a Stein space if it satisfies
(a), (c) in Definition 2.1 and

(b’) Every local ring OX,x is generated by functions in O(X).

Property (b’) says that there is a holomorphic map X → CN which embeds a
neighborhood of x as a local complex subvariety of CN .

Theorem 2.18 Let X be a finite dimensional reduced Stein space and f : X → SLn(C)
be a holomorphic mapping that is null-homotopic. Then there exist natural number K
and holomorphic mappings G1, . . . , GK : X → Cn(n−1)/2 such that f can be written as a
product of upper and lower unitriangular matrices

f (x) = M1(G1(x)) · · · MK(GK(x)).

Ivarsson and Kutzschebauch’s idea for solving Gromov’s Vaserstein problem goes
as follows. Let ΨK : (Cn(n−1)/2)K → SLn(C) be

ΨK(Z1, . . . , ZK) = M1(Z1)
−1 · · · MK(ZK)

−1.
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The problem amounts to finding a holomorphic map

G = (G1, . . . , GK) : X → (Cn(n−1)/2)K

such that the diagram

(Cn(n−1)/2)K

X SLn(C)

ΨK

f

G

commutes. Vaserstein’s result, Theorem 2.16, yields a continuous map such that
the diagram is commutative.

To apply the Oka-Grauert-Gromov principle for sections of holomorphic submer-
sions over X, one candidate submersion is the pullback of ΨK : (Cn(n−1)/2)K →
SLn(C). The map ΨK is not submersive at all points of (Cn(n−1)/2)K and becomes
a surjective holomorphic submersion if a subset of (Cn(n−1)/2)K is removed. The
difficulty is that the fibers of this submersion turn out to be very complicated. They
chose instead the following candidate

(Cn(n−1)/2)K

X Cn \ {0}

πn◦ΨK

πn◦ f

where πn : SLn(C) → Cn \ {0} is the projection of a matrix to its last row. For K ≥ 2,
the map ΦK = πn ◦ ΨK turns out to be submersive exactly on the complement
of a singularity set SK. The singularity appears when the entries in the last row
of each lower triangular matrix and the entries in the last column of each upper
triangular matrix are all 0, except for the Kth matrix where no conditions are
placed [IK12a, Lemma 2.6]. After showing that the holomorphic submersions
ΦK : (Cn(n−1)/2)K \ SK → Cn \ {0}, K ≥ 3 admit stratified sprays, they applied the
stratified Oka-Grauert-Gromov principle for sections of holomorphic submersions
to the pullback of ΦK under πn ◦ f to obtain the following.

Proposition 2.19 ([IK12a, Proposition 2.8]) Let X be a finite dimensional reduced Stein
space and f : X → SLn(C) be a null-homotopic holomorphic map. Assume that there exists
a natural number K and a continuous map F : X → (Cn(n−1)/2)K \ SK such that

(Cn(n−1)/2)K

X Cn \ {0}

ΦK

πn◦ f

F

commutes. Then there exists a holomorphic map G : X → (Cn(n−1)/2)K \ SK homotopic
to F through continuous Ft : X → (Cn(n−1)/2)K \ SK, such that the above diagram is
commutative for all Ft.
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This proposition was in turn used, via an induction on the size of matrix, to transfer
Vaserstein’s continuous solution to a holomorphic solution, for details see [IK12a].

For the symplectic group Sp2n(C), Ivarsson, Kutzschebauch and Løw showed in
[IKL20] the continuous factorization problem for symplectic matrices in Sp2n(C)
and in [IKL23] the holomorphic factorization problem for Sp4(C). The general case,
namely the holomorphic factorization problem for Sp2n(C) was finished by Josua
Schott [Sch25], see Theorem 6.4.

2.3 Density property

The density property arises as a tool in the study of holomorphic automorphisms
of Stein manifolds.

In their seminal paper [RR88] Rosay and Rudin studied the holomorphic automor-
phism group of Cn and encountered many interesting phenomenons. In particular,
Cn with n ≥ 2 has a very large automorphism group.

Let Aut(Cn) be the group of holomorphic automorphisms of Cn, equipped with
the topology of uniform convergence on compact subsets. Note that this topology
is metrizable, e.g. we can take

d(Φ, Ψ) =
∞

∑
k=1

2−k dk(Φ, Ψ)

1 + dk(Φ, Ψ)
(2.2)

for any Φ, Ψ ∈ Aut(Cn) and

dk(Φ, Ψ) = sup
|z|≤k

(|Φ(z)− Ψ(z)|+ |Φ−1(z)− Ψ−1(z)|)

gives a metric on the space of continuous functions on the closed ball with radius
k. With this metric Aut(Cn) becomes a complete metric space.

For n = 1, Aut(C) consists only of affine linear maps: z 7→ az + b (a, b ∈ C, a ̸= 0).
Let us consider n ≥ 2. Let λ : Cn → Ck be a C-linear map for some k < n and
v ∈ ker λ a vector in the kernel, f ∈ O(Ck) an entire function on Ck. For every
t ∈ C and z ∈ Cn consider the following one-parameter group of holomorphic
automorphisms of Cn

Φt(z) = z + t f (λz)v. (2.3)

Setting t = 1, we call an automorphism of type (2.3) a shear. Denote by S1(n) the
group generated by shears and by Aut1(C

n) the group of holomorphic automor-
phisms with Jacobian one.

In 1990 Erik Andersén [And90] discovered that S1(n) is dense in Aut1(C
n), namely

every holomorphic automorphism of Cn with Jacobian one can be approximated
uniformly on compact subsets by compositions of polynomial shears.

Another type of automorphisms of Cn is given by

Ψt(z) = z +
1
|v|2 (e

t|v|2 f (λz) −1)⟨z, v⟩v, v ̸= 0 (2.4)
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where ⟨z, v⟩ denotes the standard Hermitian scalar product on Cn. We call such
automophism an overshear and denote by S(n) the group generated by shears and
overshears.

In 1992 Andersén and László Lempert [AL92] extended Andersén’s result showing
that S(n) is dense in Aut(Cn), namely every holomorphic automorphism of Cn

can be approximated uniformly on compact subsets by compositions of shears and
overshears.

Remark 2.20 Andersén and Lempert also showed that S(n) is a proper subgroup
of Aut(Cn) for every n > 1 by constructing a holomorphic automorphism that is
not a finite composition of shears and overshears. For example

(z1, z2) 7→ (z1 ez1z2 , z2 e−z1z2)

is not a composition of shears and overshears. Further, they also showed that the
group S(n) is meagre in Aut(Cn).

The above one-parameter groups of holomorphic automorphisms of Cn have the
following infinitesimal generators which are holomorphic vector fields on Cn

Vz =
d
dt

∣∣∣∣
t=0

Φt(z) = f (λz)v = f (λz)
n

∑
k=1

vk
∂

∂zk
(2.5)

Wz =
d
dt

∣∣∣∣
t=0

Ψt(z) = f (λz)⟨z, v⟩v.

For example, when v = en and λ = λn : Cn → Cn−1 is the projection onto the first
n − 1 coordinates, we have

Vz = f (λnz)
∂

∂zn
, Wz = f (λnz)zn

∂

∂zn
.

In particular, the shear vector field Vz points in the nth direction and has a coefficient
depending only on the first n − 1 coordinates z1, . . . , zn−1; while the coefficient of
the overshear Wz is linear in zn.

Andersén and Lempert also showed a Runge type approximation for holomorphic
injections on star-shaped domains in Cn by holomorphic automorphisms. Their
key technical observation is [AL92, Proposition 3.7]:

Let p be a polynomial of n variables. Then there exist a finite number of poly-
nomials q1, . . . , qN of one variable, and linear forms l1, . . . , lN of n variables
such that

p(z) =
N

∑
k=1

qk(lk(z)).

Subsequently, Franc Forstnerič and Jean-Pierre Rosay [FR93; FR94] recast the
above observation explicitly in terms of holomorphic vector fields on Cn: Every
polynomial vector field V on Cn for n > 1 is a finite sum of R-complete polynomial
vector fields V1, . . . , VN whose flows consist of shears and overshears. The flow of
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a R-complete holomorphic vector field is a one-parameter group of holomorphic
automorphisms, while the infinitesimal generator of a one-parameter group of
automorphisms is a R-complete holomorphic vector field, cf. Equation (2.3) and
(2.5). Because the flow of the sum V = V1 + · · · + VN can be approximated by
compositions of the flows of vector fields V1, . . . , VN (cf. Theorem 2.24), the flow of
any holomorphic vector field on Cn can be approximated uniformly on compact
subsets by compositions of shears and overshears.

Since then, the central stage of Andersén–Lempert theory shifts from the automor-
phism group Aut(Cn) to the dynamics in Cn. Taking this new focus, Forstnerič
and Rosay generalized the approximation result to Runge domains in Cn. It is
essentially their interpretation that makes Andersén–Lempert theory an important
tool in complex analysis.

Theorem 2.21 (Andersén–Lempert theorem) Let Ω be a domain in Cn and Φt : Ω →
Cn(t ∈ [0, 1]) be a C1-isotopy of holomorphic injections such that Φ0 is the identity map on
Ω and Ωt = Φt(Ω) is Runge in Cn for every t. Then Φ1 can be approximated uniformly
on compact subsets of Ω by elements of the group S(n).

Proof Here we give a sketch: Consider the time dependent vector field V on the
domain Ω̃ = {(t, z) : t ∈ [0, 1], z ∈ Ωt} given by

V(t, x) = Vt(x) =
d
ds

∣∣∣∣
s=t

Φs(Φ−1
t (x)), x ∈ Ωt.

Choose an integer N ∈ N and subdivide [0, 1] into subintervals Ik = [tk, tk+1] of
length 1/N, where tk = k/N for k = 0, 1, . . . , N. Take the locally constant vector
field V̂t which equals Vtk on Ωtk for t ∈ Ik and denote its flow by φk

t . The flows of
V̂ and of V differ on the interval Ik by a term of order o(N−1). Thus as N → ∞,
the composition

ψt,N = φN−1
t/N ◦ φN−2

t/N ◦ · · · ◦ φ1
t/N ◦ φ0

t/N

converges to Φt uniformly on compact subsets in Ω for all t ∈ [0, 1]. Note that given
a compact subset K ⊂ Ω, for large enough N the orbit of K under the composition
ψt,N for t ∈ Ik remains in Ωtk . Therefore it suffices to approximate the flow φk

t
(chosen such that φk

0(z) = z for z ∈ Ωtk ) of the time independent vector field Vtk

uniformly on compact subset L ⊂ Ωtk , whose trajectory

L̃ = {φk
t (z) : z ∈ L, t ∈ [0, 1/N]}

stays in Ωtk , by holomorphic automorphisms of Cn. Then one makes use of
the Runge property of Ωtk to approximate the holomorphic vector field Vtk by
a polynomial vector field on a compact subset in Ωtk which contains L̃ in its
interior. Here the observation of Andersén–Lempert gives us a sum of R-complete
polynomial vector fields, and correspondingly the flow φk

t may be approximated by
a finite composition of shears and overshears. See [For17, §4.9] for more details.□

Remark 2.22 (i) The Runge condition in Theorem 2.21 is essential: If a biholomor-
phic map Φ : Ω → Ω′ between domains in Cn is a limit of automorphisms of Cn,
then Ω is Runge if and only if Ω′ is.
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(ii) Together with the fact that every holomorphic automorphism of Cn can be
joined by a smooth path to the identity [For17, Lemma 4.9.4], the Forstnerič–Rosay
result implies that the group S(n) generated by shears and overshears is dense in
Aut(Cn).

Next, we introduce the notion of algorithm which is useful for approximating the
flow of Lie combinations of vector fields. To a vector field, an algorithm captures
the linear part of its flow.

Definition 2.23 [AM78] Let V be a continuous vector field on a manifold M, and
At(x) a continuous map from an open set in R≥0 × M containing {0} × M to M
such that its t-derivative exists and is continuous. We say that A is an algorithm for
V if for all p ∈ M

A0(p) = p,
∂

∂t

∣∣∣∣
t=0

A(t, p) = Vp.

Theorem 2.24 [AM78, Theorem 4.1.26] Let V be a Lipschitz continuous vector field
with flow Φt on a manifold M. Let Ω be the fundamental domain of V and Ω+ =
Ω ∩ (R≥0 × M). If A is an algorithm for V, then for all (t, p) ∈ Ω+ the n-th iterate
(At/n)

◦n(p) of the map At/n is defined for sufficiently large n ∈ N (depending on p and
t), and

lim
n→∞

(At/n)
◦n(p) = Φt(p).

The convergence is uniform on compact subsets of Ω+.

The idea of using composition of algorithms to approximate the flow map of a
vector field is essentially the Euler method: First discretize in time, then integrate
time independent vector fields over small intervals, and in the limit the deviation
converges to zero.

Lemma 2.25 [For17, Proposition 4.8.3] For vector fields V and W with flows Φt, Ψt,
respectively.

(i) The composition Φt ◦ Ψt is an algorithm for V + W.

(ii) For t > 0, Ψ−
√

t ◦ Φ−
√

t ◦ Ψ√
t ◦ Φ√

t is an algorithm for [V, W].

Proof (i) Let x = (x1, . . . , xn) be a coordinate map around a point x ∈ M. The
Taylor expansion of the flows is given by

Φt(x) = x + tV(x) + O(t2), Ψt(x) = tW(x) + O(t2)

which gives Φt ◦ Ψt(x) = x + tV(x) + tW(x) + O(t2).

(ii) Similarly use local Taylor expansion of composition of flows, cf. [For17, p.37].□

Combining the preceeding Theorem and Lemma, we have the transition from
Lie-combination of C-complete holomorphic vector fields to composition of holo-
morphic automorphisms.

Corollary 2.26 [For17] Let V1, . . . , Vm be R-complete holomorphic vector fields on a
complex manifold M. Let V be a holomorphic vector field on M that is in the Lie algebra
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generated by V1, . . . , Vm. Assume that K is a compact subset in M and t0 > 0 is such that
the flow Φt(p) of V exists for all p ∈ K and for all t ∈ [0, t0]. Then Φt0 is a uniform limit
on K of a sequence of compositions of time-forward maps of V1, . . . , Vm.

The next major step in the development of Andersén–Lempert theory and the study
of holomorphic automorphism groups was taken by Dror Varolin in his dissertation
and in the papers [Var99; Var00; Var01]. His main observation is

The flow of any holomorphic vector field on a complex manifold M, which is a
Lie combination of complete holomorphic vector fields, is a limit of holomorphic
automorphisms of M.

The notion of density property for complex manifolds conceptualizes the proof of
the Andersén–Lempert theorem and enlarges the possible operations for complete
holomorphic vector fields from linear combinations to Lie combinations. Let

IVF(M) = the set of C-complete holomorphic vector fields on M.

Definition 2.27 A complex manifold M has the density property (DP) if the Lie
algebra Lie(M) = Lie(IVF(M)) generated by IVF(M) is dense (in the topology of
locally uniform convergence) in the Lie algebra of all holomorphic vector fields on
M.

The reason for taking Lie combinations to define DP is that we can find algorithms
for addition and Lie bracket, cf. Lemma 2.25. Varolin also gives a version of
Andersén–Lempert theorem for Stein manifolds with DP [Var00], cf. Theorem 2.46.

Remarks 2.28 (i) DP is a precise tool to say that the holomorphic automorphism
group of a Stein manifold is very big. Intuitively we can compare DP to cutoff
functions in the smooth category, both fulfilling the role of globalizing local objects.
Of course we do not know how a holomorphic automorphism looks like outside a
compact set when applying DP; in practice this lack of control has usually been
compensated by an iterative use of the Andersén–Lempert theorem to enlarge the
compact set to the whole space.

(ii) On compact complex manifolds DP holds trivially because there every vec-
tor field is complete and the Lie algebra of holomorphic vector fields is finite
dimensional, thus DP does not give further information. On noncompact complex
manifolds, DP is a very strong property. For example, a Stein manifold with DP is
Oka and elliptic (see [For17, Proposition 5.6.23]).

(iii) Replacing IVF(M) by holomorphic vector fields which are R-complete turns
out to be the same as DP: In [Rit13, Appendix], Ritter starts with R-complete holo-
morphic vector fields and gives a detailed proof for Andersén–Lempert theorem
for Stein manifolds with density property using R-complete holomorphic vector
fields. Such a manifold is covered by Fatou–Bieberbach domains [Var00] and thus
every bounded plurisubharmonic function is constant. Then by [For96, Corollary
2.2], every R-complete holomorphic vector field is also complete in complex time.

Some geometric properties follow when the holomorphic automorphism group is
big enough to allow DP.

Proposition 2.29 Let M be a Stein manifold with the density property. Then
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(a) Finitely many complete holomorphic vector fields span the tangent bundle of M.

(b) The group Aut(M) of holomorphic automorphisms acts transitively on M.

(c) The group Aut(M) of holomorphic automorphisms acts k-transitively on M for all
k ∈ N.

Proof (a) DP implies that Lie(M) span the tangent space Tp M at any point p ∈
M. Observe that the Lie bracket [V, W] of complete vector fields V, W can be
approximated by a linear combination

[V, W] = lim
t→0

Φ∗
t (V)− V

t

where Φt is the flow generated by W, which in turn can be approximated by
Φ∗

t (V)/t−V/t for small t ̸= 0, uniformly on compact subsets of M. Since Φ∗
t (V)/t

and V/t are complete, the closure of the linear span of IVF(M) equals the closure of
Lie(M). Suppose that at a point p0 ∈ M, there are no finitely many complete vector
fields spanning Tp0 M. Then there exists a nonzero linear functional l : Tp0 M → C

such that l annihilates any complete vector field. But this would imply l is zero on
the closure of the linear span of IVF(M) restricted to Tp0 M, a contradiction to M
being Stein. If finitely many vector fields V1, . . . , Vn span the tangent space at one
point, they span the tangent space at all points outside a proper analytic subset A,
which may consist of countably many irreducible components A1, A2, . . . .

Now it suffices to find a holomorphic automorphism Φ which takes every Ai, i =
1, 2, . . . into the complement of A. Such a Φ induces complete vector fields
Φ∗(V1), . . . , Φ∗(Vn) which span the tangent space at a generic point in each Ai.
Then together with V1, . . . , Vn they span the tangent space at each point outside an
analytic subset B of smaller dimension than A. Then an induction on dimension
gives the result.

To construct Φ consider an exhausting sequence of compact subsets K1 ⊂ K2 ⊂ . . .
in X such that ∪iKi = X and a closed imbedding ȷ : X ↪→ Cm. Replacing the balls
in (2.2) by Ki we get a complete metric on Aut(M), viewing each automorphism Φ
as continuous map from X to Cm via ȷ. For each i = 1, 2, . . . set

Zi = {Ψ ∈ Aut(M) : Ψ(Ai) ∩ (M \ A) ̸= ∅}

which is open in Aut(M). On the other hand, since IVF(M) generates the tangent
space at each point of M we can choose V ∈ IVF(M) transversal to Ai. Then for
any Ψ ∈ Aut(M), its composition with the flow of V lies in Zi, which shows that
Zi is everywhere dense. By the Baire category theorem, the intersection of all Zi is
nonempty, which yields the desired Φ.

(b) At a point p ∈ M, there are complete vector fields V1, . . . , Vn, n = dim M
spanning the tangent space Tp M. The composed map

Φp : Cn → M, (t1, . . . , tn) 7→ Φn
tn
◦ Φn−1

tn−1
◦ · · · ◦ Φ1

t1
(p)

where Φj
tj

is the time-tj flow of the vector field Vj, has full rank at t = 0. By the
inverse function theorem Φp is a local biholomorphism from a neighborhood of 0
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to a neighborhood of p, hence any Aut(M)-orbit is open, which also implies that
each orbit is closed. Restricting to each component of M, we see that there is only
one orbit.

(c) We need

[Var00, Theorem 2] Let M be a Stein manifold with DP, K a compact
set in M, p, q ∈ M two points outside the O(X)-convex hull of K, and
x1, . . . , xm ∈ K. Then there exists Φ ∈ Aut(M) fixing xi, i = 1, . . . , m,
Φ(p) = q, and close to the identity on K.

Choose the compact set K to be a disjoint union of small neighborhoods of x1, . . . , xm
respectively. Then p, q are outside the O(X)-convex hull of K. The Claim says that
we can move one point in a given (m + 1)-tuple to a prescribed position while
keeping other m points fixed. Repeat this. □

The generalization taken by Varolin from Cn to general Stein manifolds enlarges the
scope of Andersén–Lempert theory and begs the question: How big is the family
of Stein manifolds admitting DP? Varolin himself [Var01] and in collaboration
with Tóth [TV00; TV06] came up with the first classes of manifolds enjoying DP,
including semisimple Lie groups and homogeneous spaces of semisimple complex
Lie groups with trivial center. However, a lack of general method persisted.

The methodological breakthrough happened around 2006, when Kaliman and
Kutzschebauch [KK08a] crafted an effective criterion for DP. The point is to find an
O(M)-submodule in VF(M) contained in the closure of Lie(IVF(M)) and then use
transitivity to create more submodules so that their sum coincides with VF(M).

At first they introduced this method in the algebraic setting with an algebraic
analogue of DP.

Definition 2.30 ([Var01; KK08a]) We say that a smooth complex algebraic vari-
ety M has the algebraic density property (ADP) if the Lie algebra Liealg(M) =
Lie(IVFalg(M)) generated by the set IVFalg(M) of C-complete algebraic vector
fields on M is the Lie algebra of all algebraic vector fields on M. In short, ADP
means

Liealg(M) = VFalg(M).

Remark 2.31 Since the flow of a complete algebraic vector field is (holomorphic
but) not necessarily algebraic, ADP is like a bridge connecting smooth affine va-
rieties to DP on the holomorphic side. One can consider a stronger algebraic
property by using only algebraic overshears of locally nilpotent vector fields as Lie
generators, then the algebraic manifold enjoys the so-called algebraic overshear
density property, see [AK24]. In particular, similar to the fact that the holomorphic
density property implies the holomorphic flexibility, the algebraic overshear den-
sity property implies that the tangent space at every point is spanned by locally
nilpotent vector fields [AK24, Proposition 3.1].

Example 2.32 For n ≥ 2 the Euclidean space Cn has ADP: Let z = (z1, . . . , zn) be
complex coordinates of Cn and Vi = ∂/∂zi. For any fi ∈ ker Vi, the vector fields
fiVi and zj fiVi are complete. Hence for i ̸= j

fi f jVj = [ fiVi, zi f jVj]− [zi fiVi, f jVj] ∈ Liealg(C
n).
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Since the linear span of ker Vi · ker Vj equals C[z], Liealg(C
n) contains all polynomial

vector fields proportional to Vj.

Proposition 2.33 For a smooth complex affine algebraic variety M, the algebraic density
property implies the density property.

Proof By Theorem 2.6(A), there are global algebraic sections s1, . . . , sN ∈ VFalg(M)
of the tangent sheaf TM that generate the stalk at every point. For any holomorphic
section s ∈ VF(M) of TM over an O(M)-convex compact set K ⊂ X, by Theorem
2.9, s = ∑ fisi with fi ∈ O(K). Approximating the holomorphic functions fi by
global functions in C[M], we see that VFalg(M) is dense in VF(M). □

Here we explain the criterion for the holomorphic case, which is an adaptation of
the original algebraic case in [KK08a], cf. [Leu16; For17]. The crucial first step is a
way of finding a submodule contained in Lie(M).

Definition 2.34 A holomorphic vector field V in Lie(M) is stable if for every f ∈
O(M) we have f V ∈ Lie(M).

Obviously the submodule of VF(M) generated by any collection of such stable
vector fields is contained in Lie(M). For an automorphism Φ ∈ Aut(M) and a
stable vector field V ∈ Lie(M), the pushforward Φ∗V is in Lie(M) and also stable,
since Φ∗( f V) = ( f ◦ Φ−1)Φ∗V for any f ∈ O(M). The point is that a change of
coordinates preserves the complete integrability of a vector field and commutes
with summation and Lie brackets. Hence Φ∗ preserves IVF(M) and Lie(M). For
any submodule L, Φ∗(L) is again a submodule .

Definition 2.35 (i) A pair (V, W) of complete holomorphic vector fields is a
semicompatible pair if Span(ker V · ker W) contains a nontrivial ideal I ⊂
O(M).

(ii) A semicompatible pair (V, W) is a compatible pair if either (1) there exists
h ∈ ker W such that V(h) ∈ ker V \ {0}, or (2) there exists h such that
V(h) ∈ ker V \ {0} and W(h) ∈ ker W \ {0}.

By Lemma 2.15, the fields hV and hW in Condition (ii) are complete. In case (1)
we have the submodule I · V(h)W of VF(M) contained in Lie(M): Because for
f ∈ ker V, g ∈ ker W, we have f V, f hV, gW, ghW ∈ IVF(X) and thus

Lie(M) ∋ f gV(h)W = [ f V, ghW]− [ f hV, gW].

While in case (2), we have

Lie(M) ∋ f g(V(h)W + W(h)V) = [ f V, ghW]− [ f hV, gW],

hence the submodule is I · (V(h)W + W(h)V) ⊂ Lie(M). Let us denote by Z the
vector field in Lie(M) associated to the compatible pair (V, W), namely

Z =

{
V(h)W for h ∈ (ker V2 \ ker V) ∩ ker W
V(h)W + W(h)V for h ∈ (ker V2 \ ker V) ∩ (ker W2 \ ker W)

Note that for any f ∈ I, the vector field f Z ∈ Lie(M) is stable.

After finding a submodule (that corresponds to a stable vector field), we create
more by first ”rotating it at one point”.
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Definition 2.36 Let M be a complex manifold and p ∈ M. A finite subset S of the
tangent space Tp M is called a generating set if the image of S under the action of
the isotropy subgroup of p (in Aut(M)) spans Tp M as a complex vector space.

Then the transitivity ensures the existence of sufficiently many submodules such
that their sum contains all vector fields.

Proposition 2.37 Let M be a Stein manifold on which Aut(M) acts transitively. Assume
that there are stable holomorphic vector fields V1, . . . , Vm ∈ Lie(M) and a point p ∈ M
such that the vectors V1(p), . . . , Vm(p) form a generating set for Tp M. Then M has the
density property.

Proof We want to see that every holomorphic vector field V on M can be approxi-
mated uniformly on any compact set K ⊂ M by elements of Lie(M). Passing to the
O(M)-convex hull of K we may assume that it is O(M)-convex and let Ω ⊂⊂ M
be a relatively compact Stein Runge neighborhood of K. By a similar argument
as for Proposition 2.29(a), we can add to V1, . . . , Vm finitely many images of these
vector fields by elements of Aut(M) so that Vi(p) span Tp M for every point p ∈ Ω.
Indeed, since Ω is relatively compact, Ω ∩ A is a finite union of irreducible analytic
subsets, where A is the proper analytic subset where Vi(a), a ∈ A do not span Ta M.

Then the enlarged set V1(p), . . . , VN(p) span Tp M for all p ∈ Ω, which implies that
Vi + mpT span the vector space T /mpT for all p ∈ Ω, where T is the tangent
sheaf of M and mp the maximal ideal of p. By Nakayama’s lemma, V1, . . . , VN
generate the tangent sheaf over Ω. Using Theorem 2.9 we can approximate any
global section V uniformly on K by ∑ giVi for some gi ∈ O(M), which is in Lie(M)
since Vi’s are stable. □

There are three ingredients in the recipe: Compatible pair(s), generating set (at a
point), and Aut(M)-transitivity.

Theorem 2.38 Let M be a Stein manifold on which Aut(M) acts transitively. If there
are compatible pairs (Vi, Wi), i = 1, . . . , N, such that there is a point p ∈ M where the
associated vectors Zi(p) form a generating set of Tp M, then M has the density property.

Proof Let Ii be the ideals and Zi the vector fields associated to the compatible pairs
(Vi, Wi). Take a function fi ∈ Ii \ {0} for each i. Since the set of points p ∈ M where
Zi(p) form a generating set is open and nonempty, there exists a point q ∈ M
where fi(p)Zi(p) form a generating set of Tq M. Since fiZi ∈ Lie(M) is stable, the
O(M)-module generated by fiZi is contained in Lie(M). Apply Proposition 2.37.□

Example 2.39 The special linear group SL2(C) has ADP: Since the adjoint action
generates an irreducible representation on the Lie algebra sl2 = TeSL2(C), any
nonzero vector in sl2 is a generating set. Denote a matrix in SL2(C) by(

a1 a2
b1 b2

)
.

Let us consider

V = b1
∂

∂a1
+ b2

∂

∂a2
, W = a1

∂

∂b1
+ a2

∂

∂b2
.
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Note that the time-t flow of V is adding t-times the first row to the second row, and
vice versa for W. Thus V and W are tangent to SL2(C). Clearly, C[a1, a2] ⊂ ker V
and C[b1, b2] ⊂ ker W which implies that Span(ker V · ker W) = C[SL2(C)]. Taking
a1 which is in ker W and V(a1) = b1 ∈ ker V, we see that (V, W) is a compatible
pair. Apply Theorem 2.38.

Using this criterion, Kaliman and Kutzschebauch enlarged the classes of manifolds
with DP substantially [KK08a], cf. Examples 2.40. Also in 2006, they established
ADP for Danielewski surfaces [KK08b] where the criterion does not apply due to
the lack of compatible pairs in this particular case.

Example 2.40 We list some families that are known to enjoy DP or even ADP:

(i) Cn for n ≥ 2 [AL92]

(ii) complex semisimple Lie groups [TV00]

(iii) homogeneous spaces of complex semisimple Lie groups with trivial center
[TV06]

(iv) linear algebraic groups G < GLn(C) where the connected component is
different from C or (C∗)m, m ∈ N [KK08a]

(v) algebraic hypersurfaces in Cn+2 of the form uv = p(z), where u, v ∈ C, z ∈ Cn

and the zero fiber of the polynomial p ∈ C[Cn] is smooth and reduced
[KK08b]

(vi) analytic hypersurfaces in Cn+2 of the form uv = f (z), where u, v ∈ C, z ∈ Cn

and the zero fiber of the holomorphic function f ∈ O(Cn) is smooth and
reduced [KK08b]

(vii) homogeneous spaces of the form X = G/R where G is a linear algebraic
group and R is a closed proper reductive subgroup, and the connected
components of X are different from C or (C∗)m, m ∈ N [DDK10]

(viii) affine homogeneous spaces X = G/H where H < G < GLn(C) and where
the connected components of X are different from C or (C∗)m, m ∈ N [DDK10;
KK17]

(ix) Koras–Russell cubic threefold and related families [Leu16]

(x) Gizatullin surfaces with reduced degenerate fibre [And18]

(xi) Calogero–Moser spaces Cn [And21]

(xii) Gromov–Vaserstein fibers [And+23]

For an overview of the density property and its wealth of applications in solving
holomorphic problems of geometric nature we refer to the overview articles of
Kaliman–Kutzschebauch [KK11], Kutzschebauch [Kut14; Kut20], and Forstnerič–
Kutzschebauch [FK22]. In particular, we have omitted the volume-preserving case
completely, which has an equally impressive development as DP.
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2.4 Symplectic density property

Instead, let us look at the symplectic case. In contrast to holomorphic automor-
phism groups, only very little is known so far about holomorphic symplectic
automorphisms of Stein manifolds that are equipped with a holomorphic sym-
plectic form. Loosely speaking, the technical difficulty lies in the rigidity of the
symplectic condition.

The first example was the cotangent bundle T∗Cn ∼= C2n of the complex Euclidean
space with the standard symplectic form, where the group of holomorphic sym-
plectic automorphisms was described by Forstnerič [For96] in 1996.

Deng and Wold [DW22] deduced from Forstnerič’s result the Hamiltonian density
property for closed coadjoint orbits of complex Lie groups. However, the explicit
examples they gave are surfaces where the symplectic form equals the holomorphic
volume form and hence these examples are already covered by the volume density
property.

Definition 2.41 Let M be a complex manifold with a holomorphic symplectic form
ω.

1. We call a holomorphic vector field V on M symplectic if LVω = 0.

2. We call a holomorphic vector field V on M Hamiltonian if there exists a
holomorphic function H : M → C, called the Hamiltonian function of V, such
that iVω = dH.

Remark 2.42 Since ω is closed, it follows from Cartan’s homotopy formula that V
is symplectic if and only if diVω = 0. Further, this implies that every Hamiltonian
vector field is symplectic. The holomorphic symplectic vector fields and the
holomorphic Hamiltonian vector fields on a complex manifold each form a Lie
algebra.

The holomorphic functions on X form a Lie algebra under the Poisson bracket {·, ·}.
It is defined in such a way that the correspondence between Hamiltonian functions
H and K and their respective Hamiltonian vector fields V and W respects the Lie
algebra structure:

i[V,W]ω = −d{H, K},

see the textbook of Arnol’d [Arn89, §40 Corollary 3, p. 215].

Here we introduce the symplectic density property and the Hamiltonian density
property for Stein symplectic manifolds. The Hamiltonian density property was
also studied by Deng and Wold [DW22, §3.1].

Definition 2.43 Let M be a complex manifold with a holomorphic symplectic form
ω.

1. We say that (M, ω) has the symplectic density property if the Lie algebra gen-
erated by the complete holomorphic symplectic vector fields on M is dense
(in the topology of locally uniform convergence) in the Lie algebra of all
holomorphic symplectic vector fields on M.
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2. We say that (M, ω) has the Hamiltonian density property if the Lie algebra
generated by the complete holomorphic Hamiltonian vector fields on M is
dense (in the topology of locally uniform convergence) in the Lie algebra of
all holomorphic Hamiltonian vector fields on M.

Remark 2.44 We consider the space of functions

O(M) = { f : M → C holomorphic}

as a Lie algebra with the Poisson bracket {·, ·}. Note that the Hamiltonian density
property is equivalent to stating that this Lie algebra contains a dense (in the
topology of locally uniform convergence) Lie subalgebra that is generated by
those functions that correspond to complete Hamiltonian vector fields. To see
this, we only need to observe that for holomorphic functions the locally uniform
convergence implies also the locally uniform convergence of the derivatives due to
Cauchy estimates.

We also emphasize that we only work with the Lie algebra structure, and not with
the Poisson algebra structure, i.e. we are not allowed to multiply functions. The
conclusions of density properties only hold when working with Lie combinations
of the corresponding vector fields, cf. Lemma 2.25.

Lemma 2.45 Let (M, ω) be a complex symplectic manifold and h a holomorphic function
on M which induces a complete Hamiltonian vector field V. Then f ◦ h induces complete
Hamiltonian vector field on M for any entire function f in one variable.

Proof We have
d( f (h)) = f ′(h)dh = f ′(h)iVω = i f ′(h)Vω.

Since V( f ′(h)) = {h, f ′(h)} = 0, the vector field f ′(h)V is complete by Lemma
2.15. □

We state a symplectic version of the Andersén–Lempert theorem, which was
mentioned in [FK22] for C2n.

Theorem 2.46 Let M be a Stein manifold with a holomorphic symplectic form ω. Assume
that (M, ω) has the symplectic density property or the Hamiltonian density property.

Let Ω ⊆ M be a Stein open subset with H1(Ω, C) = 0 and let φt : Ω → M, t ∈ [0, 1], be
a jointly C1-smooth map such that the following holds:

1. The map φ0 : Ω → M is the natural embedding.

2. The map φt : Ω → M is a holomorphic symplectic injection for each t ∈ [0, 1].

3. The set φt(Ω) ⊂ M is Runge for each t ∈ [0, 1].

Then for every compact K ⊂ Ω and every ε > 0 and every choice of metric on M
that induces its topology, there exists a continuous family Φt : M → M of holomorphic
symplectic automorphisms such that

sup
x∈K

d(φ1(x), Φ1(x)) < ε.

Moreover, Φt can be written as a finite composition of flows of complete vector fields that
are generators of the Lie algebra of holomorphic symplectic resp. Hamiltonian vector fields
on M.
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On a Stein manifold M the ordinary cohomology H1(M, C) with coefficients in C

is isomorphic to the holomorphic de Rham cohomology

ker(d
∣∣
Ω1(M)

)/ Im(d
∣∣
O(M)

)

where Ωp(M) denotes the sheaf of holomorphic p-forms on M, see [GR79, p. 155].
Hence the condition H1(Ω, C) = 0 and Ω being Stein ensure that every symplectic
vector field on φt(Ω) is Hamiltonian.

Proof The proof is based on the one for DP, see e.g. [Rit13, Appendix]. The part
where adjustment is needed is basically the same as for the volume preserving case,
namely when the Runge property is used, see Kaliman and Kutzschebauch [KK11,
Remark 2.2]; We only need to replace the n-form by the closed 2-form ω. Since
we require the first holomorphic de Rham cohomology to vanish, we can assume
that any symplectic vector field on Ω is Hamiltonian. This is analogous to the
case of the volume density property where the n-form induces a correspondence
between vector fields and (n − 1)-forms through iVω = η. In that case, n ≥ 2 and
Hn−1(Ω, C) = 0 is required in order to write every closed (n − 1)-form η as the
exterior derivative of an (n − 2)-form ζ, and then Runge approximation is used
for ζ. In our case, this is simply the correspondence between the Hamiltonian
function and its Hamiltonian vector field. Therefore we can directly use Runge
approximation for the Hamiltonian function, which by Cauchy estimate implies
the approximation for its vector field. □

Corollary 2.47 Let M be a Stein manifold with a holomorphic symplectic form ω. Assume
that (M, ω) has the symplectic density property. Then

(a) Finitely many complete holomorphic symplectic vector fields span the tangent bundle
of M.

(b) The group Autω(M) of holomorphic symplectic automorphisms acts transitively on
M.

(c) The group Autω(M) of holomorphic symplectic automorphisms acts k-transitively
on M for all k ∈ N.

Proof For (a) and (b) it is the same as the DP case in Proposition 2.29. Note that
Autω(M) is closed in Aut(M).

(c) Cf. [KK11, Remark 2.2]. We need the symplectic version of [Var00, Theorem 2]:

Let M be a symplectic Stein manifold with SDP, K a compact set in M,
p, q ∈ M two points outside the O(X)-hull K̂ of K, and x1, . . . , xm ∈ K.
Then there exists Φ ∈ Autω(M) fixing xi, i = 1, . . . , m, Φ(p) = q, and
close to the identity on K.

Let γ be a piecewise analytic path connecting p and q such that γ ∩ K̂ = ∅.
Also let K1 = K ∪ U, where U is a small ball around q, and set γ1 = U ∩ γ. In
the construction of the automorphism Φ for DP in [Var00, §3], the step where
adjustment is needed is a global approximation on M of a holomorphic vector
field V on K1 that is identically zero on K̂ and tangent to γ1. In the symplectic
case the global approximation for V must also be symplectic, thus using the Runge
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property directly does not work. However, as mentioned in the proof of Theorem
2.46, such an approximation of vector field is equivalent to an approximation of
the corresponding Hamiltonian function, using H1(U, C) = 0. Since K1 is still
O(M)-convex, the Runge property applies to the Hamiltonian function of V on K1.
Now proceed as in the DP case. □

2.4.1 The standard example

Let (x, y) ∈ Cn ×Cn ∼= T∗Cn and let ω = ∑n
k=1 dxk ∧ dyk be the canonical symplectic

form on T∗Cn. The alternating bilinear form on C2n defined as

ω̃(u, v) =
n

∑
j=1

ujvn+j − un+jvj, u, v ∈ C2n

is the standard linear symplectic form on C2n whose corresponding differential
form is ω.

Forstnerič proved the following algebraic Hamiltonian density property in 1996,
which is the first known example in the symplectic category.

Proposition 2.48 [For96, Proposition 5.2] The Lie algebra of polynomial Hamiltonian
vector fields on (C2n, ω) is generated by complete Hamiltonian vector fields of the form

V(z) = f (ω̃(z, v))
2n

∑
j=1

vj
∂

∂zj
, z, v ∈ C2n, f ∈ C[C2n].

Note that these polynomial vector fields generate the flow

Φt(z) = z + t f (ω̃(z, v))v, t ∈ C, z ∈ C2n

which are polynomial symplectic shears of (C2n, ω).

In combination with Theorem 2.46, this proposition implies the following.

Corollary 2.49 [For96, Theorem 5.1] Every holomorphic symplectic automorphism of
T∗Cn can be approximated uniformly on compacts by compositions of symplectic shears.
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Chapter 3

A criterion for density property

This chapter is organized as follows. In Section 3.1, we prove Theorem 1. The
basic idea is to find a suitable O(X)-submodule L of VF(X), the Lie algebra of all
holomorphic vector fields on X, such that L is contained in the closure Lie(X) of
the Lie algebra Lie(X) generated by the C-complete holomorphic vector fields on
X. In Subsection 3.1.1, we prove an algebraic version of Theorem 1.

In Section 3.2, we turn our attention to the proof of Theorems 2 and 3.

In Section 3.3, we consider applications of Theorems 1 and 2. First, we give a
new proof for the fact that the Danielewski surfaces have the algebraic density
property. And then, we prove the density property for the manifolds arising in the
Gromov–Vaserstein fibration. These manifolds are in the symplectic case given as
the common zero set of an arbitrarily large number of polynomial equations. This
makes it impossible to prove the density property by direct calculation as in the
groundbreaking works of Andersén–Lempert [AL92] and Varolin [Var01].

3.1 Generalization of the Kaliman–Kutzschebauch criterion

Let X be a complex manifold. We let VF(X) denote the Lie algebra of all holomor-
phic vector fields on X. Let Lie(X) denote the Lie subalgebra of VF(X) generated
by the set of C-complete holomorphic vector fields on X.

We now generalize the idea of compatible pairs in [KK08a].

Definition 3.1 Let S ⊂ VF(X) be a finite non-empty set. An S-admissible graph is
a triple (G, π, ε), where

(i) G is a directed graph

(ii) π : Vert(G) → S is a bijective map

(iii) ε : Edge(G) → O(X) such that

ε(v, w) ∈
(
ker π(v)2 \ ker π(v)

)
∩ ker π(w)

for all (v, w) ∈ Edge(G).
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3. A criterion for density property

Convention:
Given S ⊂ VF(X) and an S-admissible graph (G, π, ε), we write θ for both the
vector field θ ∈ S and the vertex π−1(θ) ∈ Vert(G). Moreover, if ε(θ, φ) ∈(

ker θ2 \ ker θ
)
∩ ker φ, we write

θ
aθ−→ φ,

where aθ := ε(θ, φ). And finally, we sometimes write f θ for holomorphic functions
with f θ ∈ ker θ.

Definition 3.2 An ordered n-tuple (θ1, . . . , θn) of complete holomorphic vector
fields on X is called compatible n-tuple (of holomorphic vector fields on X) if

1. there exists a finite rooted S-admissible tree (G, π, ε) with θ1 = π(root) and
S = {θ1, . . . , θn},

2. there exists a non-zero ideal I ⊂ O(X) such that

I ⊂ span

(
n

∏
i=1

ker θi

)
.

The following theorem is an important part of the proof of Theorem 1.

Theorem 3.3 Let θ1, . . . , θn be complete holomorphic vector fields on a Stein manifold X.
If (θ1, . . . , θn) is a compatible n-tuple, then there exists an O(X)-submodule L of VF(X)

with L ⊂ Lie(X).

Lemma 3.4 Let θ be a complete holomorphic vector field on X and φ ∈ Lie(X) such that
aφ ∈ Lie(X) for some a ∈ O(X) with a ∈ ker θ. Then we have

[aθ, φ]− [θ, aφ] = −φ(a) · θ ∈ Lie(X).

Proof For any f ∈ O(X) we get

[aθ, φ]( f ) = aθ(φ( f ))− φ(aθ( f ))
= aθ(φ( f ))− φ(a) · θ( f )− aφ(θ( f ))

and

[θ, aφ]( f ) = θ(aφ( f ))− aφ(θ( f ))
= θ(a)︸︷︷︸

=0

φ( f ) + aθ(φ( f ))− aφ(θ( f ))

= aθ(φ( f ))− aφ(θ( f )).

By assumption, φ and aφ are in Lie(X). Moreover, since θ is complete and a ∈ ker θ,
the vector fields θ and aθ are also in Lie(X). Therefore

[aθ, φ]− [θ, aφ] = aθ ◦ φ − φ(a) · θ − aφ ◦ θ − aθ ◦ φ + aφ ◦ θ

= −φ(a) · θ ∈ Lie(X)

and this proves the claim. □

34



3.1. Generalization of the Kaliman–Kutzschebauch criterion

Lemma 3.5 Let S = S0 ∪ {θ} be a finite set of vector fields on X and (T, π, ε) an
S-admissible rooted tree with π(root) = θ. Assume there is a holomorphic function
aθ ∈ ker θ2 \ ker θ. Then (T, π̃, ε) is S′-admissible, where S′ = S0 ∪ {aθθ} and

π̃(v) =

{
π(v) v ̸= root,
aθθ v = root.

Proof Clearly, π̃ : Vert(T) → S′ is bijective. By definition of π̃, it remains to show
that

ε(v, root) ∈
(
ker π̃(v)2 \ ker π̃(v)

)
∩ ker(aθθ).

And that is true because ker θ = ker(aθθ). □

Let S be a finite non-empty set of vector fields on X and (T, π, ε) an S-admissible
rooted tree. For θ ∈ S, let Tθ denote the subtree of T with root π−1(θ).

Corollary 3.6 Let S be a finite non-empty set of vector fields on X and (T, π, ε) an
S-admissible rooted tree. Then (Tθ , π|Vert(Tθ), ε|Edge(Tθ)) is π(Vert(Tθ))-admissible.

A vertex θ ∈ Vert(T) is called a leaf if Vert(Tθ) = {θ}.

Proposition 3.7 Let S be a finite non-empty set of complete holomorphic vector fields on a
Stein manifold X. Assume there is an S-admissible rooted tree (T, π, ε) with root V. Then ∏

φ∈Vert(T)\{V}
fφ φ(aφ)

 fVV ∈ Lie(X).

Proof The proof is by induction on the depth of the tree. Let’s start with a leaf
θ ∈ Vert(T). Then the subtree Tθ consists of only one vertex and no edges. Hence ∏

φ∈Vert(Tθ)\{θ}
fφ φ(aφ)

 f θθ = f θθ ∈ Lie(X),

since f θθ is complete. This proves the base case.

Now we consider a vertex θ ∈ Vert(T) which is not a leaf. By the induction

hypothesis, the proposition is true for all vertices ψ ∈ Vert(Tθ) with ψ
aψ−→ θ, that is,

we have

ψ̃ :=

 ∏
φ∈Vert(Tψ)\{ψ}

f φ φ(aφ)

 f ψψ ∈ Lie(X)

for all such vertices ψ. By Corollary 3.6, the subtree Tψ is S′ := π(Vert(Tψ))-
admissible with root ψ. Moreover, there is a holomorphic function

aψ ∈
(
ker ψ2 \ ker ψ

)
∩ ker θ

by assumption. We can therefore apply Lemma 3.5 to conclude that the subtree Tψ

is S′′-admissible, where S′′ is obtained by replacing ψ with aψψ. By the induction
hypothesis, we get

aψψ̃ ∈ Lie(X)
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3. A criterion for density property

for all vertices ψ with ψ
aψ−→ θ.

In the next step, we let {ψ1, . . . , ψN} denote the set of vertices ψ ∈ Vert(Tθ) such

that ψ
aψ−→ θ. Define

W1 := [aψ1 ψ̃1, f θθ]− [ψ̃1, aψ1 f θθ] = ψ̃1(aψ1) f θθ,

for an arbitrary holomorphic function f θ with f θ ∈ ker θ. Observe that ψ̃1, aψ1 ψ̃1 ∈
Lie(X) and f θθ, aψ1 f θθ are even complete, since f θ , aψ1 f θ ∈ ker θ. Lemma 3.4
implies therefore W1 ∈ Lie(X) for every f θ ∈ ker θ. In particular, we have f W1 ∈
Lie(X) for all f ∈ ker θ. We continue and define

Wk := [aψk ψ̃k, Wk−1]− [ψ̃k, aψkWk−1]

for 2 ≤ k ≤ N. A repeated application of the same reasoning as for W1 implies that

Wk = ±ψ̃1(aψ1) · · · ψ̃k(aψk) f θθ ∈ Lie(X), 1 ≤ k ≤ N.

It should be mentioned that we can ignore the sign without loss of generality, since
−1 can be absorbed by f θ . In summary, we conclude that

WN =

(
N

∏
k=1

ψ̃k(aψk)

)
f θθ

=

 N

∏
k=1

f ψk ψk(aψk) ∏
φ∈Vert(Tψk )\{ψk}

f φ φ(aφ)

 f θθ

=

 ∏
φ∈Vert(Tθ)\{θ}

f φ φ(aφ)

 f θθ ∈ Lie(X).

Since we chose an arbitrary θ, the proposition follows with θ = V. □

Proof (Proof of Theorem 3.3) Let (θ1, . . . , θn) be a compatible n-tuple of holo-
morphic vector fields on X and write S = {θ1, . . . , θn}. By assumption, there
exists an S-admissible tree (T, π, ε) with π(root) = θ1 and a non-zero ideal
I ⊂ span(∏θ∈Vert(T) ker θ). By Proposition 3.7, we have ∏

φ∈Vert(T)\{θ1}
f φ φ(aφ)

 f θ1 θ1 ∈ Lie(X)

and therefore ∏
φ∈Vert(T)\{θ1}

φ(aφ)

 span

(
∏

θ∈Vert(T)
ker θ

)
θ1 ⊂ Lie(X).

Thus, since I ⊂ span(∏θ∈Vert(T) ker θ),

L :=

 ∏
φ∈Vert(T)\{θ1}

φ(aφ)

 Iθ1 ⊂ Lie(X)

is the desired O(X)-submodule. Recall that the closures are taken w.r.t. to the
topology of locally uniform convergence. □
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Theorem 3.8 (Theorem 1) Let X be a homogeneous Stein manifold with finitely many
compatible n-tuples {(θk,1, . . . , θk,n)}m

k=1 of holomorphic vector fields on X such that for
some x0 ∈ X, {(θk,1)x0}m

k=1 ⊂ Tx0 X is a generating set. Then X has the density property.

Proof By Theorem 3.3, there exist non-zero ideals Ik such that Lie(X) contains the
submodules Lk = Ikθk,1. Hence, there exists a non-zero ideal J ⊂ O(X) such that
Lie(X) contains the submodule

L =

{ m

∑
k=1

αkθk,1 : α1, . . . , αm ∈ J
}

.

Since {(θk,1)x0}m
k=1 remains a generating set under small perturbations of the base

point x0, we can suppose that x0 does not belong to the zero locus of J. For such x0
the set {Vx0 : V ∈ L} contains a generating set, and by Proposition 2.37 it follows
that X has DP. □

3.1.1 Algebraic version of Theorem 1

Let X be a complex affine algebraic manifold. Recall that VFalg(X) denote the
Lie algebra of all algebraic vector fields on X. Also Liealg(X) denotes the Lie
subalgebra of VFalg(X) generated by the set of C-complete algebraic vector fields
on X. Recall that an algebraic manifold X has ADP if Liealg(X) = VFalg(X).

We now recall the following criterion.

Theorem 3.9 [KK08a, Theorem 1] Let X be a homogeneous (with respect to the group of
algebraic automorphisms Autalg(X)) affine algebraic manifold. Assume there is a C[X]-
submodule L of VFalg(X) such that L is contained in Liealg(X). If the fiber Lp = {Vp :
V ∈ L} ⊂ TpX over some point p ∈ X contains a generating set, then X has the algebraic
density property.

Note that the notions of compatible n-tuples and admissible graphs have algebraic
analogues.

Definition 3.10 Let S ⊂ VFalg(X) be a finite non-empty set. An S-admissible graph
is a triple (G, π, ε), where

(i) G is a directed graph

(ii) π : Vert(G) → S is a bijective map

(iii) ε : Edge(G) → C[X] such that

ε(v, w) ∈
(
ker π(v)2 \ ker π(v)

)
∩ ker π(w)

for all (v, w) ∈ Edge(G).

Definition 3.11 An ordered n-tuple (θ1, . . . , θn) of complete algebraic vector fields
on X is a compatible n-tuple (of algebraic vector fields on X) if

(i) there exists a finite rooted S-admissible tree (G, π, ε) with θ1 = π(root) with
S = {θ1, . . . , θn},
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3. A criterion for density property

(ii) there is a non-zero ideal I ⊂ C[X] with

I ⊂ span

(
n

∏
i=1

ker θi

)
.

The following two results are algebraic versions of Proposition 3.7 and Theorem
3.3.

Proposition 3.12 Let S be a finite non-empty set of complete algebraic vector fields on an
algebraic manifold X. Assume there is an S-admissible rooted tree (T, π, ε) with root V.
Then  ∏

φ∈Vert(T)\{V}
fφ φ(aφ)

 fVV ∈ Liealg(X).

Proof Observe that the proofs of Lemma 3.4, Lemma 3.5, Corollary 3.6 and Propo-
sition 3.7 apply in the algebraic setting as well, since we just use that the vector
fields form a Lie algebra and also module over the functions. We therefore simply
replace the Stein manifold by an algebraic manifold X, holomorphic functions
in O(X) by regular functions in C[X] and holomorphic vector fields by algebraic
vector fields. □

Theorem 3.13 Let θ1, . . . , θn be complete algebraic vector fields on an algebraic manifold
X. If (θ1, . . . , θn) is a compatible n-tuple, then there exists C[X]-submodule L of VFalg(X)
with L ⊂ Liealg(X).

Proof The proof is similar to the one of Theorem 3.3. Let (θ1, . . . , θn) be a com-
patible n-tuple of algebraic vector fields on X and write S = {θ1, . . . , θn}. Then
there exists an S-admissible tree (T, π, ε) with π(root) = θ1 and a non-zero ideal
I ⊂ span(∏θ∈Vert(T) ker θ). By Proposition 3.12, we have ∏

φ∈Vert(T)\{θ1}
f φ φ(aφ)

 f θ1 θ1 ∈ Liealg(X)

and as in the proof of Theorem 3.8 we conclude that

L :=

(
∏

θ∈Vert(T)\{θ1}
θ(aθ)

)
Iθ1 ⊂ Liealg(X)

is the desired C[X]-submodule. □

Theorem 3.14 Let X be a homogeneous affine algebraic manifold with finitely many
compatible n-tuples {(θk,1, . . . , θk,n)}m

k=1 such that for some x0 ∈ X, {(θk,1)x0}m
k=1 ⊂ Tx0 X

is a generating set. Then X has the algebraic density property.

Proof By Theorem 3.13, there exist non-zero ideals Ik such that Liealg(X) contains
the submodules Lk = Ikθk,1. Hence, there exists a non-zero ideal J ⊂ C[X] such
that Liealg(X) contains the submodule

L =

{ m

∑
k=1

αkθk,1 : α1, . . . , αm ∈ J
}

.

38



3.2. Holomorphic flexibility and density property

Since {(θk,1)x0}m
k=1 remains a generating set under small perturbations of the base

point x0, we can suppose that x0 does not belong to the zero locus of J. For such x0
the set {Vx0 : V ∈ L} contains a generating set. Therefore X has ADP by Theorem
3.9. □

3.2 Holomorphic flexibility and density property

In this section we prove Theorems 2 and 3. The next lemma can be found in
[Arz+13, Lemma 4.1].

Lemma 3.15 Let V be a complete vector field on a complex manifold X, f ∈ O(X) a
function in the kernel of V and x ∈ X a point with f (x) = 0. Denote the flow of the
complete field f V at time t by φt (fixing x by our assumption). Then the differential dx φt,
which is an endomorphism of TxX, acts on a tangent vector W ∈ TxX as follows

W 7→ W + t · dx f (W) · Vx.

We are ready to prove Theorem 3, which extends a result by Varolin, who proved it
in the special case when X is a Stein complex Lie group [Var01].

Theorem 3 Suppose X is a holomorphically flexible Stein manifold. Then X × C

has the density property.

Proof Let us denote the coordinate on C by t and suppose that V is a complete
vector field on X. Then (V, ∂/∂t) is a compatible pair on X × C (where we
denote the obvious extension of V to X × C again by V). Indeed, ker V contains
all functions of t and ker(∂/∂t) contains all functions on X and the function
a ∈ O(X × C) defined by a := t is of degree 1 with respect to ∂/∂t and in ker V.

If Vi is a spanning set of complete holomorphic vector fields on X, the relevant
vectors in the compatible pairs (Vi, ∂/∂t) span TxX ⊂ T(X × C) at any point x. We
create a new compatible pair by applying α∗ to the pair (V, ∂/∂t) for a suitable
automorphism α ∈ Aut(X × C). We choose a point x ∈ X where V(x) ̸= 0 and a
holomorphic function f ∈ O(X) with f (x) = 0 and dx f (V) ̸= 0, which is possible
on Stein manifolds by a standard application of Cartan’s Theorem B. Now, let α be
the time-one flow of the complete field f · ∂/∂t. By Lemma 3.15 we have

α∗(V)(x, t) = V(x, t) + dx f (V)
∂

∂t

and together with other compatible pairs (Vi, ∂/∂t) we have a spanning set of
T(x,0)(X × C).

Note that X × C is homogeneous under its group of holomorphic automorphisms,
since products of homogeneous manifolds are again homogeneous. Now Proposi-
tion 2.37 implies the claim. □

Lemma 3.16 Let X be a holomorphically flexible Stein manifold and (θ1, . . . , θn) a com-
patible n-tuple. Assume that there are complete holomorphic fields V1, V2, . . . , VN which
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3. A criterion for density property

span the tangent space TxX at a point x ∈ X and admit functions fi ∈ ker Vi with
dx fi(θ1) ̸= 0 for i = 1, . . . , N. Then there is a non-trivial O(X)-submodule L of VF(X)

such that L ⊂ Lie(X) and the fiber Lx = {Vx : V ∈ L} contains a generating set.

Proof Let J ⊂ O(X) be the ideal of the compatible n-tuple (θ1, . . . , θn). We can
assume that the point x is not in the zero locus of J, since spanning the tangent
space is an open condition. Theorem 3.3 implies that the compatible n-tuple
yields a holomorphic function f : X → C such that the submodule L := J · ( f θ1) is
contained in Lie(X).

Without loss of generality, we may assume that fi is zero at x by adding a constant
function to it. Let φi

t denote the flow of the complete holomorphic vector field
fiVi. Then let Li = (φi

t)
∗(L) be the submodules obtained by pulling back L by φi

t.
Observe that the sum L̃ := L1 + . . . + LN is a submodule contained in Lie(X).

By assumption, the point x is fixed by the flow φi
t. Hence the differential dx φi

t as
an endomorphism of TxX acts as

W 7→ W + t · dx f (W)(Vi)x

by Lemma 3.15. For W := (θ1)x, these image vectors span TxX for general t, since
the Vi’s span TxX and dx fi(W) ̸= 0 by assumption. This proves that the fiber L̃x
contains a generating set. □

As a corollary we have

Theorem 2 Let X be a Stein manifold and (θ1, . . . , θn) a compatible n-tuple. As-
sume that there are C-complete holomorphic vector fields V1, . . . , VN on X which
span the tangent bundle TX. If there are functions fi ∈ ker Vi such that dx0 fi(θ1) ̸= 0
for some point x0 ∈ X and i = 1, . . . , N, then X has the density property.

Proof The fact that the complete fields span all tangent spaces implies holomorphic
flexibility. Thus Proposition 2.37 implies the result. □

Corollary 3.17 (Theorem 2 - algebraic version) Let X be an affine algebraic manifold
and (θ1, . . . , θn) a compatible n-tuple of algebraic vector fields. Assume that there are
C-complete algebraic vector fields V1, . . . , VN on X with algebraic flows (so-called LNDs)
such that the collection {θ1, V1, . . . , VN} spans the tangent bundle TX. If there exist regular
functions fi ∈ ker Vi such that dx0 fi(θ1) ̸= 0 for some point x0 ∈ X and i = 1, . . . , N,
then X has the algebraic density property.

Proof The idea of the proof is similar to the holomorphic case (cf. Lemma 3.16).
We only have to show that the flow of fiVi is algebraic. Let φi(x, t) denote the flow
of Vi. Then the flow of fiVi is φi(x, fi(x)t) and thus algebraic. □

3.3 Applications

3.3.1 Danielewski surfaces

Given a polynomial p : C → C with simple zeros, we define the variety

Dp := {(x, y, z) ∈ C3 : xy = p(z)}
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called Danielewski surface. This is an algebraic manifold, since p has only simple
zeros. Furthermore, it is well-known that Dp has the algebraic density property
[KK08b, Theorem 1] despite the lack of compatible pairs of complete algebraic
vector fields. In this section we give a new, shorter proof of this fact. We show the ex-
istence of a compatible 3-tuple and apply the generalized Kaliman–Kutzschebauch
criterion (Theorem 2).

The following three are complete algebraic vector fields tangent to the surface Dp:

θ1 = x
∂

∂x
− y

∂

∂y

θ2 = p′(z)
∂

∂x
+ y

∂

∂z

θ3 = p′(z)
∂

∂y
+ x

∂

∂z
.

Lemma 3.18 The vector fields θ1, θ2 and θ3 form a compatible 3-tuple (θ1, θ2, θ3).

Proof Define the functions fx(x, y, z) = x, fy(x, y, z) = y and fz(x, y, z) = z. We
see that fz ∈ ker θ1 and

fz ∈ ker θ2
i \ ker θi

for i = 2, 3. Hence there exists a {θ1, θ2, θ3}-admissible rooted tree (T, π, ε) with
root θ1. More precisely, the map ε : Edge(T) → C[Dp] can be defined by

ε(θ2, θ1) := fz, ε(θ3, θ1) := fz.

Moreover, we have x ∈ ker θ3, y ∈ ker θ2 and z ∈ ker θ1, which shows the existence
of a non-zero ideal in

span (ker θ1 · ker θ2 · ker θ3)

and this finishes the proof. □

Lemma 3.19 The vector fields θ1, θ2 and θ3 span the tangent bundle TDp.

Proof Let u = (x, y, z) ∈ Dp be a point with p′(z) ̸= 0. Then the vector fields θ2
and θ3 span the tangent space TuDp. It remains to consider v = (x, y, z) ∈ Dp with
p′(z) = 0. Observe that we have p(z) ̸= 0 for such points, since p has only simple
zeros. This implies xy ̸= 0 and, in particular, x ̸= 0 and y ̸= 0. Therefore, the
vector fields θ1 and θ2 span the tangent space TvDp. □

The following is [KK08b, Theorem 1] in the special case where n = 1.

Corollary 3.20 The Danielewski surface Dp has the algebraic density property.

Proof The conditions of Corollary 3.17 are satisfied by Lemmas 3.18, 3.19 and 3.26.
Therefore Dp has ADP. Note that in Corollary 3.17 the algebraic vector field θ1 need
not have algebraic flow. □
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3. A criterion for density property

3.3.2 Preparation for Gromov–Vaserstein fibers

In this section we take a look at two factorization problems or rather, at a by-product
of their proofs. Every holomorphic mapping f : Cl → SLn(C) can be written as a
finite product

f = M1 · · · MK,

where Mi : Cl → SLn(C) is a holomorphic mapping of the respective form1 0
. . .

⋆ 1

 and

1 ⋆
. . .

0 1


for i odd and i even, respectively. This was proved by Ivarsson and Kutzschebauch
[IK12a].

Similarly, every holomorphic mapping

f : Cl → Sp2n(C)

can be factorized into a finite product

f = N1 · · · NK,

where Ni : Cl → Sp2n(C) is a holomorphic mapping of the respective form(
In 0
A In

)
and

(
In A
0 In

)
,

where In denotes the n × n-identity matrix, 0 the n × n-zero matrix and A is a
symmetric n × n-matrix, i.e. AT = A. This result can be found in [Sch25].

Both proofs have in common that a suitable polynomial mapping

P = (P1, . . . , Pk) : Cm → Ck, m > k

satisfies nice enough properties that justify an application of the Oka principle, cf.
Section 2.2 for how to apply the Oka principle in the SLn(C) case. Here we are
only interested in the smooth fibers P−1(y) of these mappings.

Lemma 3.21 Each smooth fiber P−1(y) is biholomorphic to a product G × CL, where

G = {z = (z1, . . . , zm) ∈ Cm : p(z) = 0}

is a smooth variety for some polynomial mapping p = (p1, . . . , pl) : Cm → Cl , m > l, and
some positive integer L.

We have l = n in the symplectic case and l = 1 in the case of the special linear group.

Proof In the case of the special linear group, this statement is implied by the proof
of [IK12a, Lemma 3.7]. And in the symplectic case, it follows by Lemma 3.14 and
Lemma 3.15 in [Sch25]. □
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For 1 ≤ i0 < · · · < il ≤ m, we define the (l + 1)-tuple of variables y = (zi0 , . . . , zil )
and the corresponding vector field

Dy(p) := det


∂

∂zi0
· · · ∂

∂zil
∂

∂zi0
p1(z) · · · ∂

∂zil
p1(z)

...
...

∂
∂zi0

pl(z) · · · ∂
∂zil

pl(z)

 . (3.1)

Lemma 3.22 The vector fields of the form (3.1) are tangent to G.

Proof Observe that Dy(p)(pi) = 0, since the first row equals the (i + 1)-th row. □

Let T = {(zi0 , . . . , zil ) : 1 ≤ i0 < · · · < il ≤ m} be the set of all (l + 1)-tuples and
V = {Dy(p) : y ∈ T } the collection of vector fields of the form (3.1). Furthermore,
let

Γ(V) = {α∗V : α ∈ Aut(X), V ∈ V}

denote the set of vector fields generated by V .

We shall sometimes write Gsp and Gsl for the respective varieties. Moreover, since
we are only interested in smooth fibers and thus only in smooth varieties G, we
refrain from specifying this every time. We will see a classification of the smooth
varieties in the next few subsections.

Proposition 3.23 (i) There are complete holomorphic vector fields V1, . . . , VN ∈ Γ(V)
spanning the tangent bundle TGsl .

(ii) There are complete holomorphic vector fields V1, . . . , VN ∈ Γ(V) spanning the
tangent bundle TGsp.

Proof (i) See Lemma 5.2 and Lemma 5.3 in [IK12a].
(ii) We refer to [Sch25, Theorem 3.36], which is actually a very difficult and technical
proof, since it involves both abstract arguments and many concrete calculations.□

Corollary 3.24 A smooth fiber P−1(y) ∼= G × CL has the density property.

Proof The variety G is holomorphically flexible by the previous lemma. Then, the
claim follows by Theorem 3. □

We show that G also has the density property. The proof is based on an application
of Theorem 2.

Theorem 3.25 (i) There is a compatible m-tuple on Gsl for n ≥ 3. In particular, Gsl
has the density property.

(ii) There is a compatible m-tuple on Gsp for n ≥ 2. In particular, Gsp has the density
property.

Proof In the following subsections we will show the existence of a compatible
m-tuple for each case (Theorem 3.32 for the special linear and Theorem 3.36 for the
symplectic case). Then the claims follow immediately from Theorem 2, Proposition
3.23 and Lemma 3.26 below. □
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3. A criterion for density property

Lemma 3.26 Let x ∈ G and V ∈ Γ(V) with Vx ̸= 0. Given any tangent vector

W ∈ TxG \ span(Vx),

there is a holomorphic function f ∈ ker V with f (x) = 0 and dx f (W) ̸= 0.

Proof Note that it suffices to show the claim for vector fields in V , since the
conclusion of the lemma is invariant under holomorphic automorphisms. Let
V = Dy(p) be a vector field of the form (3.1). Without loss of generality, we may
assume that y = (z1, . . . , zk+1) is the corresponding (k + 1)-tuple, that is, we have

V =
k+1

∑
i=1

αi
∂

∂zi
,

where αi, i = 1, . . . , k + 1, are regular functions given by

αi = V(zi) = det


∂

∂z1
p1(z) · · · ∂

∂zi−1
p1(z) ∂

∂zi+1
p1(z) · · · ∂

∂zk+1
p1(z)

...
...

...
...

∂
∂z1

pk(z) · · · ∂
∂zi−1

pk(z) ∂
∂zi+1

pk(z) · · · ∂
∂zk+1

pk(z)


By assumption, we have Vx ̸= 0. We may therefore assume, again without loss of
generality, that αk+1(x) ̸= 0. Let W ∈ TxX \ span(Vx).

The vector fields Vi := Dyi(p) corresponding to the (k+ 1)-tuples yi = (z1, . . . , zk, zi)
with i = k + 2, . . . , m, are given by

Vi = αk+1
∂

∂zi
+

k

∑
j=1

α̃ij
∂

∂zj

for some regular functions α̃ij, i = k + 2, . . . , m, j = 1, . . . , k. Hence

Vx, (Vk+2)x, . . . , (Vm)x

form a basis of TxX. Then

W = λVx +
m

∑
i=k+2

µi(Vi)x

with µj ̸= 0 for some j ∈ {k + 2, . . . , m}. Let πj denote the projection to the j-th
component. Then we set f (z) := πj(z − x) = zj − xj. Observe that f (x) = 0 and
f ∈ ker V. It remains to show that dx f (W) ̸= 0. By construction, dx f is also the
projection to component j, that is, dx f (W) = µj ̸= 0. □

3.3.3 The special linear case

In this subsection we find two complete holomorphic vector fields V1 and V2 on
G that together form a compatible 2-tuple (V1, V2). For this reason we look more
closely at the polynomial mapping P : Cm → Ck. Recall that for odd K we denote
elements in Cn(n−1)/2 as

ZK = (zK,21, . . . , zK,kl , . . . , zK,n(n−1)), k > l.
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and set

MK(ZK) =


1 0 · · · 0

zK,21 1
. . .

...
...

. . . . . . 0
zK,n1 · · · zK,n(n−1) 1

 .

For even K we proceed similarly and write elements in Cn(n−1)/2 as

ZK = (zK,12, . . . , zK,kl , . . . , zK,(n−1)n), k < l,

and set

MK(ZK) =


1 zK,12 · · · zK,1n

0 1
. . .

...
...

. . . . . . zK,(n−1)n
0 · · · 0 1

 .

Take m = n(n−1)
2 . For a fixed natural number K, the Gromov–Vaserstein fibration

PK = (PK
1 , . . . , PK

n ) : (Cm)K → Cn

is given by
PK(Z1, . . . , ZK) = eT

n M1(Z1)
−1 · · · MK(ZK)

−1.

We now present the definition of the variety G.

Definition 3.27 For L ≥ 2, 1 ≤ i ≤ n and a ∈ C∗, we define

G := GL,i,a = {Z ∈ (Cm)L : PL
i (Z) = a}.

Lemma 3.28 Let K ≥ 3 and a = (a1, . . . , an) ∈ Cn \ {0}. Then we have

(PK)−1(a) ∼= GK−1,i,ai × Cl ,

for some 1 ≤ i ≤ n, and some natural number l.

We illustrate the idea of the proof with a simple example. A full proof can be found
in the proof of [IK12a, Lemma 3.7]. We consider the case K = n = 3 and we assume
that a3 ̸= 0. We have

a = P3(Z1, Z2, Z3) = P2(Z1, Z2)M3(Z3)
−1

if and only if

P2(Z1, Z2) = aM3(Z3) =
(
a1 a2 a3

) 1 0 0
z3,21 1 0
z3,31 z3,32 1


=
(
a1 + a2z3,21 + a3z3,31 a2 + a3z3,32 a3

)
.

We can now express the variables z3,31 and z3,32 in terms of the others, that is,

z3,32 =
1
a3

(
P2

2 (Z1, Z2)− a2
)

z3,31 =
1
a3

(
P2

1 (Z1, Z2)− a1 − a2z3,21
)

.
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3. A criterion for density property

Observe that there are no conditions for z3,21, therefore, the fiber (P3)−1(a) is
biholomorphic to {Z ∈ (C3)2 : P2

3 (Z) = a3} × C.

Proposition 3.29 Let L ≥ 2 and a ∈ C∗. Then

(1) GL,i,a is smooth for 1 ≤ i < n,

(2) GL,n,a is smooth for a ̸= 1.

Proof Let L ≥ 2 and a ∈ C∗. Then we have

GL,i,a × Cl ∼= (PL+1)−1(b) =: F ,

for some natural number l and some b = (b1, . . . , bn) ∈ Cn. In [IK12a, Remark 4.1]
we have a classification of the singular fibers. We distinguish two cases.

For L odd (and obviously L + 1 even), we have b1 = · · · = bi−1 = 0 and bi = a ̸= 0.
Moreover, the fiber F is regular if and only if b ̸= eT

n . And this proves the claim for
odd numbers L.

For L even, we have bn = · · · = bi+1 = 0 and bi = a ̸= 0. Moreover, the fiber F is
regular if and only if bn ̸= 1. And this proves the claim for even numbers L. □

Lemma 3.30 For L ≤ K, we have

∂

∂zL,kl
PK

i = −PL
k · eT

l ML(ZL)
−1 · · · MK(ZK)

−1ei

Proof The product rule implies

0 =
∂

∂zL,kl
(ML(ZL)

−1ML(ZL))

=
∂

∂zL,kl
ML(ZL)

−1ML(ZL) + ML(ZL)
−1 ∂

∂zL,kl
ML(ZL)︸ ︷︷ ︸
=Ekl

,

where Ekl denotes the n × n-matrix having a one at entry (k, l) and zeros elsewhere.
Hence

∂

∂zL,kl
ML(ZL)

−1 = −ML(ZL)
−1Ekl ML(ZL)

−1.

Another application of the product rule implies

∂

∂zL,kl
PK

i = eT
n M1(Z1)

−1 · · · ∂

∂zL,kl
ML(ZL)

−1 · · · MK(ZK)
−1ei

= − eT
n M1(Z1)

−1 · · · ML(ZL)
−1︸ ︷︷ ︸

=PL

Ekl ML(ZL)
−1 · · · MK(ZK)

−1ei︸ ︷︷ ︸
=eT

l ML(ZL)−1···MK(ZK)−1ei ·ek

= −PL
k · eT

l ML(ZL)
−1 · · · MK(ZK)

−1ei

and this finishes the proof. □

Lemma 3.31 For L < K we have ∂
∂zL,kl

PK
i ̸≡ 0 on G. Moreover, we have ∂

∂zK,kl
PK

i ̸≡ 0 on
G if and only if (K is odd and l ≥ i) or (K is even and l ≤ i).
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Proof First consider the case L < K. For a generic point Z ∈ G we have PL
k (Z) ̸= 0

and eT
l ML(ZL)

−1 · · · MK(ZK)
−1ei ̸= 0. Therefore we get ∂

∂zL,kl
PK

i ̸≡ 0 on G.

For L = K and K even, we have eT
l MK(ZK)ei ≡ 0 for l > i and thus

∂

∂zK,kl
PK

i ≡ 0, l > i.

At a generic point Z ∈ G, however, we have PK
k (Z) ̸= 0 and eT

l MK(ZK)ei ̸≡ 0 for
l ≤ i. Therefore ∂

∂zK,kl
PK

i ̸≡ 0 for l ≤ i.

Similarly, for L = K and K odd we can conclude that ∂
∂zK,kl

PK
i ̸≡ 0 on G if and only

if l ≥ i. □

Theorem 3.32 For K ≥ 2, the complete holomorphic vector fields

V1 =
∂PK

i
∂z1,n2

∂

∂z1,n1
−

∂PK
i

∂z1,n1

∂

∂z1,n2

and

V2 =
∂PK

i
∂z2,2n

∂

∂z2,1n
−

∂PK
i

∂z2,1n

∂

∂z2,2n

build a compatible 2-tuple (V2, V1).

Proof Observe that PK
i is (at most) linear in each variable zL,kl . Therefore the two

holomorphic vector fields V1 and V2 are C-complete.

We check the two properties of Definition 3.2. Note that each variable zL,kl is in the
kernel of V1 or V2. Hence we have

span(ker V1 · ker V2) = O(G)

and this implies (1).

For property (2), it remains to find a function f ∈
(
ker V2

1 \ ker V1
)
∩ ker V2. We

show that f = z1,n2 does the job. Clearly, f ∈ ker V2. Moreover,

V1( f ) = −
∂PK

i
∂z1,n1

̸≡ 0

by the above lemma. We prove that

∂

∂z1,nj

∂PK
i

∂z1,n2
= 0, 1 ≤ j ≤ n − 1.

We can write

M1(Z1) =

(
M 0
zT 1

)
=

(
M 0
0 1

)(
In−1 0
zT 1

)
,

for some lower triangular (n − 1) × (n − 1)-matrix M with ∂
∂z1,nj

M = 0 for j =

1, . . . , n − 1, and zT = (z1,n1, . . . , z1,n(n−1)). Since

M1(Z1)
−1 =

(
In−1 0
−zT 1

)(
M−1 0

0 1

)
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we obtain

∂

∂z1,nj

∂

∂z1,n2
M1(Z1)

−1 =
∂

∂z1,nj

∂

∂z1,n2

(
In−1 0
−zT 1

)
︸ ︷︷ ︸

=0

·
(

M−1 0
0 1

)
= 0

for j = 1, . . . , n − 1. By the recursive formula of PK and the product rule, we
conclude that

∂

∂z1,nj

∂PK
i

∂z1,n2
= 0.

This means, in particular, that V1( f ) ∈ ker V1, which was to be proved. □

3.3.4 The symplectic case

Let us start with the definition of a symplectic matrix. Consider the skew-symmetric
2n × 2n-matrix

Ω =

(
0 In

−In 0

)
,

where In denotes the n × n-identity matrix and 0 the n × n-zero matrix. Then

Sp2n(C) = {M ∈ C2n×2n : MTΩM = Ω}

is the symplectic group. As in the previous subsection, we define an elementary
mapping

M : Cm → Sp2n(C),

where m = n(n + 1)/2. For a natural number K we write elements in Cm as follows

ZK = (zK,11, . . . , zK,kl , . . . , zK,nn), 1 ≤ k ≤ l ≤ n.

Observe that

ψ(ZK) =


zK,11 zK,12 · · · zK,1n
zK,12 zK,22 · · · zK,2n

...
...

. . .
...

zK,1n zK,2n · · · zK,nn


defines an isomorphism ψ : Cm → Symn(C), where Symn(C) denotes the vector
space of symmetric n × n-matrices, that is, matrices A ∈ Cn×n with AT = A. By
abuse of notation, we let ZK denote both the vector and the matrix. Then we define
for even K

MK(ZK) =

(
In ZK
0 In

)
and for odd K

MK(ZK) =

(
In 0
ZK In

)
.

Note that MK(ZK) is actually a symplectic matrix.

For a fixed natural number K, the Gromov–Vaserstein fibration

PK = (PK
1 , . . . , PK

2n) : (Cm)K → C2n
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is given by
PK(Z1, . . . , ZK) = eT

2n M1(Z1) · · · MK(ZK).

We introduce the notation

PK
f = (PK

1 , . . . , PK
n ), PK

s = (PK
n+1, . . . , PK

2n).

Definition 3.33 Let a = (a1, . . . , an) ∈ Cn \ {0}. For K ≥ 2 even, we define

G := GK,a := {Z ∈ Cn × (Cm)K−1 : PK
s (Z) = a}.

And for K ≥ 3 odd, we define

G := GK,a := {Z ∈ Cn × (Cm)K−1 : PK
f (Z) = a}.

Lemma 3.34 Let K ≥ 2 and a ∈ Cn \ {0}. Then

GK,a × Cl ∼= (PK+1)−1(y)

for some natural number l and some y ∈ C2n \ {0}.

Proof Without loss of generality, we assume K to be odd (the even case is symmet-
rical). Set y = (a, b) for an arbitrary b ∈ Cn. We have a ̸= 0 by assumption, hence
y ∈ C2n \ {0}. Now observe that(

a b
)
= PK+1(Z1, . . . , ZK+1) = PK(Z1, . . . , ZK)MK+1(ZK+1)

=
(

PK
f PK

s

)(In ZK+1
0 In

)
and thus (

PK
f PK

s

)
=
(
a b

) (In −ZK+1
0 In

)
=
(
a b − aZK+1

)
.

Since we assume a ̸= 0, we can rearrange the equation PK
s = b − aZK+1 in such a

way that n of the variables zK+1,kl can be expressed. This leads to

{Z ∈ (Cm)K : PK
f (Z) = a}︸ ︷︷ ︸

G̃

×Cm−n ∼= (PK+1)−1(y).

Observe that there are no conditions placed on the variables z1,kl for 1 ≤ k ≤ l < n,
by definition of PK+1 (since we project the first factor M1(Z1) to the last row).
Therefore we obtain

G̃ ∼= G × Cm−n

and this finishes the proof. For more details, see [Sch25, Lemma 3.15]. □

Proposition 3.35 Let K ≥ 2 and a ∈ Cn \ {0}. Then GK,a is smooth if one of the following
properties is satisfied

(1) K is odd,

(2) K is even and a ̸= eT
n .
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Proof A classification of the singular fibers of PK can be found in sections 3.1.1
and 3.2.1 in [Sch25].

Suppose K is odd. Then we have

GK,a × Cl ∼= (PK+1)−1(y), (3.2)

with y = (a, b) for some b ∈ Cn. The only singular fiber of PK+1 is the one over
y = (0, eT

n ). Since we assume a ̸= 0, the variety GK,a is smooth.

For K even, we have Equation (3.2) again, but with y = (b, a) for some b ∈ Cn. A
fiber (PK+1)−1(b, a) is singular if and only if a = eT

n . And this proves the claim. □

Theorem 3.36 Let K ≥ 2 and n ≥ 2. Moreover, let G be smooth. Then there exists a
compatible k-tuple on G for some k. In fact, k turns out to be either two or three.

Proof Start with the case n ≥ 3. Consider the n + 1 variables

x = (z1,n1, . . . , z1,nn, z2,11)

Then the corresponding vector field (see (3.1))

V :=

{
Dx(PK

s ) K even,
Dx(PK

f ) K odd

is complete on G, since it is affine.

Moreover, the holomorphic vector field

γ = (z1,n3)
2 ∂

∂z2,22
− z1,n2z1,n3

∂

∂z2,23
+ (z1,n2)

2 ∂

∂z2,33

is complete on G. We claim that (γ, V) is a compatible 2-tuple. Observe that each
variable zk,ij is in the kernel of γ or in the kernel of V. Therefore

span(ker γ · ker V) = O(G).

Furthermore, we have

f = z2,22 ∈ ker V ∩
(
ker γ2 \ ker γ

)
and this proves the claim. Note that this argument works for every K ≥ 2, hence
the theorem is true for n ≥ 3.

It remains to prove it for n = 2. Note that in this case, the vector field γ from the
previous step does not exist. We therefore divide this case into two steps.

First, we consider K ≥ 3. We choose again the vector field V from the previous
case and choose

γ̃ = (P2
n+2)

2 ∂

∂z3,11
− (P2

n+1P2
n+2)

∂

∂z3,12
+ (P2

n+1)
2 ∂

∂z3,22
,

which is also complete on G. Then we conclude that (γ̃, V) is a compatible 2-tuple
with the same reasoning as before.
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Finally, we consider K = 2. We are not able to find a compatible 2-tuple in this
case, instead we have a compatible 3-tuple. Here the variety (in the notation of
[IKL23]) is

G =

{
(z2, z3, w1, w2, w3) ∈ C5 :

(
w1 w2
w2 w3

)(
z2
z3

)
=

(
b1
b2

)}
for some (b1, b2) ∈ C2 \ {0}. The following three vector fields are complete on G:

V1 = −z2w3
∂

∂z2
+ z2w2

∂

∂z3
+ (w1w3 − w2

2)
∂

∂w1

V2 = z2
3

∂

∂w1
− z2z3

∂

∂w2
+ z2

2
∂

∂w3

V3 = z2
3

∂

∂z2
− w1z3

∂

∂w2
+ (w1z2 − w2z3)

∂

∂w3

Then (V1, V2, V3) is a compatible 3-tuple. To prove this, note that z2, z3 ∈ ker V2,
w1 ∈ ker V3 and w2, w3 ∈ ker V1. Hence

span(ker V1 · ker V2 · ker V3) = O(G).

Moreover, we have

w2 ∈
(
ker V2

2 \ ker V2
)
∩ ker V1, w2 ∈

(
ker V2

3 \ ker V3
)
∩ ker V1

which means that there is a {V1, V2, V3}-admissible rooted tree (T, π, ε) with root
V1. More precisely, the map ε : Edge(T) → O(G) can be defined by

ε(V2, V1) := w2, ε(V3, V1) := w2.

This finishes the proof of the theorem. □
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Chapter 4

Symplectic density property for
Calogero–Moser spaces

In Section 4.1 we discuss some properties of the Calogero–Moser space and its
topology. In particular, the symplectic density property is the same as the Hamilto-
nian density property for the Calogero–Moser space. In Section 4.2 we take a close
look at its coordinate ring and draw a smaller set of algebra generators. Then in
Section 4.3 we perform the full computation of Lie-generating all regular functions
from two Hamiltonian functions.

4.1 The Calogero–Moser space

Recall the definition given by Wilson [Wil98] c.f. Definition 1.1: Let Ĉn be the
subvariety of Mn(C)× Mn(C) given by

rank([X, Y] + id) = 1

where (X, Y) ∈ Mn(C)× Mn(C). The group GLn(C) acts on Ĉn by simultaneous
conjugation in both factors:

g · (X, Y) = (gXg−1, gYg−1)

for g ∈ GLn(C). The Calogero–Moser space Cn of n particles is the GIT-quotient
Ĉn// GLn(C).

Lemma 4.1 [Wil98, Proposition 1.10] Let (X, Y) ∈ Mn(C)× Mn(C) such that [X, Y] +
id is of rank one. If X is diagonalizable, then all eigenvalues of X are pairwise different,
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4. Symplectic density property for Calogero–Moser spaces

and there exists g ∈ GLn(C) such that

(gXg−1, gYg−1) =


α1
α2

. . .
αn

 ,


β1 (α1 − α2)−1 . . . (α1 − αn)−1

(α2 − α1)
−1 β2

. . .
...

...
. . . . . . (αn−1 − αn)−1

(αn − α1)
−1 . . . (αn − αn−1)

−1 βn




(4.1)

for α1, . . . , αn, β1, . . . , βn ∈ C with αj ̸= αk for j ̸= k. Moreover, (g([X, Y] + id)g−1)jk =
1 for all j, k = 1, . . . , n.

Note that the order of the eigenvalues α1, . . . , αn is arbitrary, hence we obtain an
n!-to-1 covering of the open and dense subset of Cn where the matrices X are
diagonalizable. Alternatively, we can define the injective mapping

Φ :
(
{(α1, . . . αn) ∈ Cn : αj ̸= αk for j ̸= k} × Cn) /Sn → Cn

that maps ((α1, . . . , αn), (β1, . . . , βn)) to (X, Y) according to Equation (4.1). Here, Sn
denotes the symmetric group that acts by simultaneous permutations on (α1, . . . , αn)
and (β1, . . . , βn).

For the definition of vector- or matrix-valued differential forms, see e.g. the textbook
of Tu [Tu17, Section 21]. The standard conjugation-invariant symplectic form on
Mn(C)× Mn(C) according to Wilson [Wil98, p. 9] is given as

ω̃ = tr(dX ∧ dY) =
n

∑
j,k=1

dXjk ∧ dYkj (4.2)

The form ω̃ is invariant under conjugation. Following Etingof [Eti07], the action of
GLn(C) admits a moment map

µ : Mn(C)× Mn(C) → sln(C), (X, Y) 7→ [X, Y]

where we identify the Lie algebra with its dual using the trace form ⟨M, N⟩ =
tr(MN). This moment map was first given in [Wil98], following the construction
with a unitary group action in Kazhdan, Kostant and Sternberg [KKS78].

Let Oξ be the coadjoint orbit of the matrix

ξ = diag(−1,−1, . . . ,−1, n − 1) ∈ sln(C) ∼= sl∗n(C)

Since the coadjoint action of PGLn(C) on sl∗n(C) is given by conjugation, Oξ consists
of traceless matrices T such that T + id is of rank one. Then Ĉn = µ−1(Oξ) is the
preimage of this orbit, upon which PGLn(C) acts freely.

Lemma 4.2 [Wil98, Corollary 1.5] The group PGLn(C) acts freely on Ĉn.
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4.1. The Calogero–Moser space

Proof It suffices to see that for (X, Y) ∈ Ĉn, X and Y has no nontrivial common
invariant subspace. Since then by Schur’s lemma, the only matrices that commute
with both X and Y must be scalar, hence trivial in PGLn(C). Let W ̸= 0 be an
invariant subspace of Cn for X, Y. Then the eigenvalues of the commutator [X, Y]
on W are part of the n − 1 copies of −1 and one piece of n − 1. The sum of
eigenvalues of [X, Y] on W must be zero, being the trace of a commutator. It can
only be the entire collection of eigenvalues, thus W = Cn. □

The reduction along this orbit

π : µ−1(Oξ) → µ−1(Oξ)//PGLn(C) = Cn

gives the symplectic form ω on Cn which satisfies π∗ω = i∗ω̃, where i : µ−1(Oξ) ↪→
Mn(C)⊕ Mn(C) denotes the inclusion.

The Calogero–Moser space Cn is diffeomorphic to the Hilbert scheme of n points in
the affine plane, Hilbn(C2). This can be shown using the existence of a hyperkähler
structure on Cn, see Wilson [Wil98, Section 8]. For n > 1 the Hilbert scheme is
not affine or Stein, hence this diffeomorphism cannot be an isomorphism in the
algebraic or holomorphic category. The topology of the Hilbert scheme of a plane
is well-known; the Borel–Moore homology of Hilbn(C2) has been calculated by
Ellingsrud and Strømme [ES87, Theorem 1.1, (iii)]. In particular, they obtain that
the odd homology vanishes. This homology had been introduced by Borel and
Moore [BM60] to obtain Poincaré duality for singular cohomology on non-compact
manifolds. Since the real dimension of a complex manifold is even, it follows that
all odd cohomology vanishes. This implies by the universal coefficient theorem that
H1(Hilbn(C2), C) = 0 which is a topological invariant, hence H1(Cn, C) = 0. Since
Cn is an affine manifold, this implies that both the algebraic and the holomorphic
first de Rham cohomology group are trivial, since by the Poincaré lemma they can
be computed using resolutions of the sheaf of locally constant complex-valued
functions, see e.g. [GR79, p. 80]. We conclude the following:

Lemma 4.3 We have that H1(Cn, C) = 0. Hence all holomorphic symplectic vector fields
on Cn are in fact holomorphic Hamiltonian vector fields.

The last two sections of this chapter will contain the main part of the proof for the
Hamiltonian density property. Instead of dealing with the vector fields directly,
we will consider the corresponding Hamilton functions. The following basic
remark is crucial for our calculations. It is a consequence of the construction of the
Calogero–Moser space by symplectic reduction.

Remark 4.4 Let f , h : Cn → C be two (Hamiltonian) regular functions on the
Calogero–Moser space Cn and let F, H : Mn(C)× Mn(C) → C be GLn(C)-invariant
extensions of f ◦ π, h ◦ π : Ĉn → C, respectively. These extensions exist since
Ĉn ⊂ Mn(C)× Mn(C) is a GLn(C)-invariant subvariety of a reductive group, and
thus

C[Mn(C)× Mn(C)]GLn(C) → C[Ĉn]
GLn(C)

is surjective. Then

{F, H}ω̃ ◦ i = { f , h}ω ◦ π
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4. Symplectic density property for Calogero–Moser spaces

and their corresponding vector fields and flows are related in a similar manner. In
this way the symplectic reduction relates the Poisson structure on Cn to the Poisson
structure on Mn(C)× Mn(C), see Marsden and Ratiu [MR86] for an explanation in
the context of Poisson reduction. In other words, to obtain Poisson brackets between
Hamiltonian functions on Cn, it suffices to compute brackets of the corresponding
invariant Hamiltonian functions on Mn(C)× Mn(C).

Given two Hamiltonian functions F and H on Mn(C) ⊕ Mn(C), their Poisson
bracket associated with the symplectic form ω̃ = ∑j,k dXjk ∧ dYkj is

{F, H} =
n

∑
j,k=1

∂F
∂Xjk

∂H
∂Ykj

− ∂F
∂Yjk

∂H
∂Xkj

(4.3)

We recall that the Poisson bracket is antisymmetric and satisfies Leibniz’s rule,
namely

{F, H} = −{H, F}, {F1F2, H} = F1{F2, H}+ F2{F1, H}

By Leibniz’s rule

{Fj, Hk} = jkFj−1Hk−1{F, H}, j, k ≥ 1.

Lemma 4.5 Hamiltonian functions of the form H(X) or H(Y), depending either only on
X or only on Y, and H = tr XY induce complete vector fields.

Proof By definition, given a Hamiltonian function H(X, Y), there is a unique vector
field VH satisfying iVH ω̃ = dH. The Hamiltonian vector field VH is

VH = ∑
j,k

∂H
∂Yjk

∂

∂Xkj
− ∑

j,k

∂H
∂Xjk

∂

∂Ykj

Now if H = H(X) only depends on X, then the first summand vanishes. We obtain

VH = −∑
j,k

∂H
∂Xjk

∂

∂Ykj

and the coefficients depend only on X, which are constant along any trajectory of a
local flow. Hence VH is complete. For H = tr XY the associated vector field is

VH = ∑
j,k

Xkj
∂

∂Xkj
− ∑

j,k
Ykj

∂

∂Ykj

which has coefficients linear in each variable and is complete. □

Example 4.6 We give a few examples of Hamiltonian functions, their correspond-
ing vector fields and flows. In particular, the examples given here are complete, i.e.
their flows exist for all complex times.

Hamiltonian vector field flow map ((X, Y), t) 7→
tr X j −jX j−1 ∂

∂Y (X, Y − tjX j−1)
tr Y j jY j−1 ∂

∂X (X + tjY j−1, Y)
(tr X j)2 −2j(tr X j)X j−1 ∂

∂Y (X, Y − 2tj(tr X j)X j−1)
(tr Y j)2 2j(tr Y j)Y j−1 ∂

∂X (X + 2tj(tr Y j)Y j−1, Y)
tr XY X ∂

∂X − Y ∂
∂Y (exp(t)X, exp(−t)Y)
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4.1. The Calogero–Moser space

Here, we understand terms like X j−1 ∂
∂Y as standard scalar product between the

matrix entries of X j−1 and of ∂
∂Y .

We will need the following two examples in Lemma 4.7 for the proof of Theorem
1.6.

Lemma 4.7 1. The Hamiltonian function tr Y + tr X3 corresponds to the vector field

id
∂

∂X
− 3X2 ∂

∂Y
,

which has the complete algebraic flow, polynomial in t

(X, Y) 7→ (X + t id, Y − 3X2t − 3Xt2 − id t3)

2. The Hamiltonian function tr Y2 + (tr X)2 corresponds to the vector field

2Y
∂

∂X
− 2(tr X) id

∂

∂Y
,

which has the complete algebraic flow, holomorphic in t

(X, Y) 7→
(
X + 2Yt + f (t) id, Y + ḟ (t) id

)
where

f (t) =
1
n
(
cos(2

√
nt)− 1

)
tr X +

1
n3/2 (sin(2

√
nt)− 2t

√
n) tr Y

Proof 1. The vector field id ∂
∂X − 3X2 ∂

∂Y is a locally nilpotent derivation and
finding its flow is a straightforward computation.

2. We rewrite the vector field 2Y ∂
∂X − 2(tr X) id ∂

∂Y as a system of ODEs:{
X′

jk(t) = 2Yjk(t)
Y′

jk(t) = −2 tr X(t)δjk

This implies

(tr Y)′′(t) = −4n tr Y(t) (4.4)
(Yjj − Ykk)

′(t) = 0

(Yjk)
′(t) = 0 for j ̸= k

Solving (4.4) with the initial conditions

(tr Y)(t)|t=0 = tr Y,
(
tr Y)′′(t)

∣∣
t=0 = −2n tr X

yields

(tr Y)(t) = tr Y cos(2
√

nt)−
√

n tr X sin(2
√

nt)

We can now obtain the flow map by integration. □
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4. Symplectic density property for Calogero–Moser spaces

4.2 The ring of invariant functions

Razmyslov [Raz74] and Procesi [Pro76] proved independently the following about
invariant functions of tuples of matrices:

Theorem 4.8 Consider the action of GLn(C) on Mn(C) × Mn(C) × · · · × Mn(C) =
(Mn(C))m by simultaneous conjugation. Then the ring of invariant polynomials on
(Mn(C))m is generated by

tr(F1 · F2 · · · Fk)

where each of the F1, . . . , Fk is a matrix from one of the m factors and k ≤ n2. Moreover, all
relations between the generators are consequences of the Cayley–Hamilton identity.

Remark 4.9 Known as Noether’s conservation law for Hamiltonian systems with
symmetry, see Abraham and Marsden [AM78, Theorem 4.2.2], the flow φt induced
by any Hamiltonian vector field VH associated to an invariant Hamiltonian function
H preserves the fibers of the moment map µ. In our case, one can verify directly
that the commutator [X, Y] is constant along the flow φt for a Hamiltonian function
H(X, Y), which is a product of traces of monomials in X, Y. In particular, the rank
condition rank([X, Y] + id) = 1 is preserved.

So far we have not made use of the rank condition on Ĉn. In fact, it turns out that
this condition is magical in reducing the generating set of the ring of invariant
functions on Ĉn to a much simpler subset. Let

B = [X, Y], A = [X, Y] + id = B + id .

On Ĉn, A is of rank one. The following identity for the trace of a product of
matrices, where one of the matrices has rank one, will be useful for the reduction.

Lemma 4.10 Let M, N, C ∈ Mn(C), and assume that C is of rank one. Then

tr MCNC = tr MC · tr NC.

Proof Since C is of rank one, write C = vwt for some v, w ∈ Cn \ {0}. Then

tr MCNC = tr MvwtNvwt = tr Mv(wtNv)wt

= (wtNv) · tr Mvwt = tr NC · tr MC. □

We also need the following identities concerning the commutator B.

Lemma 4.11 For k, l ∈ N0

tr XkB = 0, tr Yl B = 0.

And tr XYB = (n
2) on Ĉn.

Proof By definition of B

tr XkB = tr Xk(XY − YX) = tr Xk+1Y − tr XkYX = 0
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4.2. The ring of invariant functions

Similarly tr Yl B = 0. For tr XYB, because A is of rank one on Ĉn, we can find
v, w ∈ Cn \ {0} such that A = vwt. Then with tr A = tr([X, Y] + id) = tr id = n,

A2 = vwtvwt = v(wtv)wt = (tr A)A = nA.

This implies that

tr B2 = tr A2 − 2 tr A + tr id
= n tr A − 2 tr A + n
= n(n − 1)

Then from
tr XYB = − tr YXB = − tr XYB + tr B2

it follows that tr XYB = (n
2) on Ĉn. □

Definition 4.12 A matrix monomial is a map M : Mn(C)× Mn(C) → Mn(C) of the
form

(X, Y) 7→ Xp1Yq1 Xp2Yq2 · · · XpmYqm

with p1, . . . , pm, q1, . . . , qm ∈ N0.

The bidegree (i, j) of M is given by

(i, j) = (p1 + p2 + · · ·+ pm, q1 + q2 + · · ·+ qm).

The degree deg M is defined as deg M = i + j. If M = 0, then deg M := −∞. For
a polynomial function in the traces of matrix monomials, its degree is the total
degree of the polynomial in the entries of X and Y.

Lemma 4.13 Let P be a matrix monomial, then on Ĉn the trace tr PB can be written as a
polynomial in traces of matrix monomials whose degree is bounded by deg P − 2.

Proof Use induction on k = deg P. For k = 1, 2, the induction base is given by
Lemma 4.11:

tr XB = 0, tr YB = 0

tr XYB =

(
n
2

)
, tr X2B = 0, tr Y2B = 0.

For the induction step, first consider P1 = MBN with matrix monomials M and N.
By the identities B = A − id and tr MANA = tr MA tr NA in Lemma 4.10,

tr P1B = tr MBNB = tr MANA − tr MNA − tr MAN + tr MN
= tr MA · tr NA − tr MNB − tr MBN − tr MN
= tr MB · tr NB + tr M · tr NB + tr MB · tr N
+ tr M · tr N − tr MNB − tr NMB − tr MN.

By the induction hypothesis, each summand above involves terms of degree
bounded by deg P1 − 2. Hence tr P1B is a sum of products of traces, where each
summand has degree ≤ deg P1 − 2.
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4. Symplectic density property for Calogero–Moser spaces

Next, we show that tr PB − tr XiY jB has degree ≤ deg P − 2, where i + j = deg P.
If P = XiY j, we are done. Otherwise the factor YX appears in P. Let P = MYXN,
with M, N matrix monomials, deg P = k. Then

tr PB = tr MXYNB − tr MBNB. (4.5)

Thus the factor YX can be replaced with XY at the price of adding the trace of a sum
of matrix monomials of degree ≤ deg P − 2 following the computation for P1 above.
Continue swapping YX until we obtain tr XiY jB for some i, j ∈ N0, i + j = deg P.

Now we show that tr XiY jB is a polynomial in traces of matrix monomials whose
degrees are bounded by i + j − 2. Consider the identity tr Xi+1B = 0, which under
the Calogero–Moser flow (X, Y) 7→ (X + tY j, Y) becomes

tr(X + tY j)i+1B = 0

since B = [X, Y] is invariant under the flow by Remark 4.9. The coefficient of t in
this new identity must vanish, which gives

0 = tr XiY jB + tr Xi−1Y jXB + · · ·+ tr XY jXi−1B + tr Y jXiB (4.6)

Continue to swap YX to XY for tr Xi−mY jXmB, m = 1, . . . , i, which yields extra
summands of degree up to i + j − 2 as in Equation (4.5). Then

tr Xi−mY jXmB = tr XiY jB + terms of degree up to i + j − 2

This and Equation (4.6) imply that

0 = (i + 1) tr XiY jB + terms of degree up to i + j − 2

hence tr XiY jB consists of terms of degree bounded by i + j − 2. This in turn
shows that tr PB is a sum of products of traces, with each summand of degree
≤ deg P − 2. □

Corollary 4.14 Let P be a matrix monomial of bidegree (i, j). Then on Ĉn the trace tr P is
equal to tr XiY j up to terms of degree ≤ i + j − 4.

Proof For one factor YX in P = MYXN, we look at

tr MYXN = tr MXYN − tr MBN = tr MXYN − tr NMB (4.7)

By Lemma 4.13, tr NMB consists of terms of degree ≤ i + j − 4. Moving all X to
the left by swapping YX to XY, we see that the claim is true. □

In this manner, any trace of a matrix monomial in X, Y on Ĉn of bidegree (i, j),
can be written as tr XiY j plus a polynomial in traces of matrix monomials in X, Y,
whose degrees are bounded by i + j − 4.

Proposition 4.15 The algebra of invariant polynomials on Mn(C)⊕ Mn(C), restricted
to Ĉn, is generated by Bn = {tr XiY j : i, j ∈ N0, i + j ≤ n2}.
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Proof By the invariant theory of n × n matrices, see [Pro76, Theorem 1.3 and
Theorem 3.4 (a)] and [Raz74, final remark], the ring of invariant functions is
generated by traces of matrix monomials in X and Y with degree ≤ n2. We show
that any such trace of degree D is contained in the subalgebra generated by Bn.
For D ≤ 2, we only have

f ≡ constant, tr X, tr Y, tr X2, tr Y2, tr XY.

Assume that traces of degree ≤ D are generated by Bn. If we consider a trace
function tr MN of degree D + 1 as in Corollary 4.14, we can replace it with tr XiY j

plus terms of degree smaller than or equal to D − 3, which are generated by Bn
according to the induction hypothesis. □

The result of Proposition 4.15 above was also obtained by Etingof and Ginzburg
[EG02, Section 11, p. 322, Remark (ii)] where they make use of the Harish-Chandra
homomorphism. Our computations in Lemma 4.13 are in fact very similar to theirs
in Lemma 12.4 and Lemma 12.5 in [EG02, Appendix A] where they treated the
case of rank[X, Y] ≤ 1 while we are dealing with rank([X, Y] + id) = 1.

4.3 Proof of Hamiltonian density property

We consider the Lie algebra of GLn(C)-invariant polynomials on Ĉn, with the
Poisson bracket { , } as the bracket operation. Let

F = {tr Y2 + (tr X)2, tr Y + tr X3}
F1 = {tr Y2, (tr X)2, tr Y + tr X3}

Theorem 4.16 The Lie algebra generated by the restrictions to Ĉn of the polynomials in F
is the entire Lie algebra of invariant polynomials on Ĉn.

Remark 4.17 Etingof and Ginzburg proved that {tr Y2, tr Xk : k ≥ 0} generates
the ring of function on Cn as a Poisson algebra [EG02, Section 11, p. 321, Equation
(11.33)]. Theorem 4.16 improves this result in two ways: First, we do not use the
associative multiplication of the Poisson algebra but only the Lie algebra structure.
Second, we only need two generators instead of a countable family.

The theorems of the introduction will easily follow from this theorem. Because
of Proposition 4.15, it suffices to prove that products of (restrictions of) functions
of form tr XaYb belong to the Lie algebra generated. In Section 4.3.2 we prove a
preliminary result which holds even before restricting to Ĉn:

Proposition 4.18 The Lie algebra generated by F on Mn(C)× Mn(C) contains products
of arbitrary powers of the five functions tr X, tr Y, tr X2, tr Y2, tr XY.

In Section 4.3.1 we first present a formula for the Poisson bracket of two invariant
polynomials of the form tr XaYb (Lemma 4.20). Then we start with the elements
of F and generate tr XaYb using Lie-combinations (Corollary 4.24). Afterward we
proceed to show Proposition 4.18 in Section 4.3.2 and Theorem 4.16 in Section 4.3.3.
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4. Symplectic density property for Calogero–Moser spaces

Remark 4.19 Since we only need tr X, tr Y, tr X2, tr Y2, tr XY to generate the ring
of invariant functions for n = 2, see [Sib68, Theorem 5], Proposition 4.18 proves
already the Hamiltonian density property for C2. However, all the results in this
section are also valid for n > 2.

4.3.1 Preparations

We need the following formula for our bracket computation.

Lemma 4.20 For a, b, c, d ∈ N0,

{tr XaYb, tr XcYd}
= ∑

1≤p≤a
1≤q≤d

tr Xp−1Yd−qXcYq−1Xa−pYb − ∑
1≤r≤b
1≤s≤c

tr Yr−1Xc−sYdXs−1Yb−rXa.

Proof We make use of the product rule for the Poisson bracket and that {Xij, Ykl} =
δjkδli, {Xij, Xkl} = 0, {Yij, Ykl} = 0:

{tr XaYb, tr XcYd}
=∑{Xi1i2 · · · Xia j1Yj1 j2 · · ·Yjbi1 , Xk1k2 · · · Xkcm1Ym1m2 · · ·Ymdk1}

=∑ ∑
p,q

X̂ipip+1Ŷmqmq+1{Xipip+1 , Ymqmq+1}+ ∑ ∑
r,s

Ŷjr jr+1 X̂ksks+1{Yjr jr+1 , Xksks+1}

=∑ ∑
p,q

X̂ipip+1Ŷmqmq+1 δip+1mq δmq+1ip − ∑ ∑
r,s

Ŷjr jr+1 X̂ksks+1 δjr+1ks δks+1 jr

= ∑
1≤p≤a
1≤q≤d

tr Xp−1Yd−qXcYq−1Xa−pYb − ∑
1≤r≤b
1≤s≤c

tr Yr−1Xc−sYdXs−1Yb−rXa

where X̂ipip+1 stands for the product of all factors X without Xipip+1 , i.e.

X̂ipip+1 = Xi1i2 · · · Xip−1ip Xip+1ip+2 · · · Xia j1 Xk1k2 · · · Xkcm1

and we identify Xia j1 with Xiaia+1 , similarly for other terms. □

For later use, we collect the following special cases of Lemma 4.20:

{tr Xa, tr Xc} = {tr Yb, tr Yd} = 0

{tr Xa, tr Yd} = ad tr Xa−1Yd−1

{tr Xa, tr XYd} = ad tr XaYd−1

{tr Xa, tr XcY} = a tr Xa+c−1

The last two lines remain valid up to a minus sign if we exchange the roles of X
and Y, since the map (X, Y) 7→ (Y, X) is antisymplectic.

Lemma 4.21 We have that

Lie(F ) = Lie(F1) = Lie({tr Y, tr Y2, tr X3, (tr X)2})
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Proof (1) Clearly Lie(F1) ⊂ Lie({tr Y, tr Y2, tr X3, (tr X)2}). Conversely, it suffices
to show tr Y ∈ Lie(F1). We compute

{(tr X)2, tr Y + tr X3} = 2n tr X

{tr X, tr Y2} = 2 tr Y

which yields Lie({tr Y, tr Y2, tr X3, (tr X)2}) = Lie(F1).

(2) Clearly Lie(F ) ⊂ Lie(F1). Conversely, it suffices to show tr Y2 ∈ Lie(F ). We
compute

{tr Y2 + (tr X)2, tr Y + tr X3} = 2n tr X − 6 tr X2Y

{n tr X − 3 tr X2Y, tr Y + tr X3} = n2 − 6 tr XY + 9 tr X4

{n2 − 6 tr XY + 9 tr X4, tr Y + tr X3} = 54 tr X3 − 6 tr Y

which implies tr Y, tr X3 ∈ Lie(F ) since we obtained a linear combination different
from tr Y + tr X3 ∈ Lie(F ). We further compute

{tr X3, tr Y} = 3 tr X2

{tr X2, tr Y2 + (tr X)2} = 4 tr XY

{tr Y2 + (tr X)2, tr XY} = 2(tr X)2 − 2 tr Y2

Therefore tr Y2, (tr X)2 ∈ Lie(F ) since tr Y2 + (tr X)2 ∈ Lie(F ). This completes the
proof that Lie(F1) = Lie(F ). □

Lemma 4.22 {tr X j, tr Y j, (tr X)2, (tr Y)2 : j = 1, 2, 3} ⊂ Lie(F ).

Proof It is straightforward to verify that

{{{tr X3, tr Y2}, tr Y2}, tr Y2} = 48 tr Y3

{{(tr X)2, tr Y2}, tr Y2} = 8(tr Y)2

{tr X3, tr Y} = 3 tr X2

{tr X2, tr Y} = 2 tr X □

Next, we make the following simplification.

Lemma 4.23 For any integer k ≥ 0

tr Xk, tr Yk, tr XkY, tr XYk ∈ Lie({tr X j, tr Y j : j = 1, 2, 3})

Proof We first show tr Xk ∈ Lie(F ) for any integer k ≥ 0. For k ≤ 3 the statement
is trivial, and hence we proceed by induction on k ≥ 3. The induction step follows
from

{tr Xk, tr Y2} = 2k tr Xk−1Y

{tr X3, tr Xk−1Y} = 3 tr Xk+1

Now by tr Xk ∈ Lie(F ) and the first line above, tr Xk−1Y ∈ Lie(F ). Similarly for
tr Yk and tr XYk. □
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Corollary 4.24 tr XkYl ∈ Lie(F ) for any integers k, l ≥ 0.

Proof By Lemma 4.23 tr Xk+1, tr Yl+1 ∈ Lie(F ). It follows from the second line of
the equations listed after Lemma 4.20 with a = k + 1, b = l + 1. □

Lemma 4.25 (tr XY)2, (tr Xk)2, (tr Yk)2 ∈ Lie(F ) for any integer k ≥ 0.

Proof By Lemmas 4.22 and 4.23:

tr X2, tr Y2, tr X3, tr Y3, (tr X)2, (tr Y)2, tr XY2 ∈ Lie(F )

Therefore

{tr X3, (tr Y)2} = 6 tr X2 tr Y

{(tr X)2, tr Y3} = 6 tr X tr Y2

{tr X2, tr X tr Y2} = 4 tr XY tr X

{(tr X)2, tr XY tr X} = 2(tr X)3 (4.8)

{(tr X)3, tr Y3} = 9(tr X)2 tr Y2 (4.9)

as well as

{(tr X)3, (tr Y)2} = 6n(tr X)2 tr Y

{tr XY2, (tr X)2 tr Y} = (tr X)2 tr Y2 − 4 tr XY tr X tr Y

Taking into account (4.9) we get tr XY tr X tr Y ∈ Lie(F ). Moreover, from

{tr X2 tr Y, tr X tr Y2} = 4 tr XY tr X tr Y − n tr X2 tr Y2

we conclude tr X2 tr Y2 ∈ Lie(F ). We proceed with

{tr X2 tr Y2, tr Y2} = 4 tr XY tr Y2

{tr X2, tr XY tr Y2} = 2 tr X2 tr Y2 + 4(tr XY)2

which shows (tr XY)2 ∈ Lie(F ). Hence we can obtain (tr Xk)2 for any k ∈ N from
tr Xk and (tr XY)2 as follows

{tr Xk, (tr XY)2} = 2k tr Xk tr XY

{tr Xk, tr Xk tr XY} = k(tr Xk)2.

By symmetry (tr Yk)2 is also in Lie(F ). □

The C∗-action (see Example 4.6) corresponding to the Hamiltonian e = tr XY
induces a Z-grading on C[Mn(C)× Mn(C)].

Definition 4.26 The weight of a monomial h : Mn(C)× Mn(C) → C is defined to
be its grade w.r.t. the grading induced by e.
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Remark 4.27 Let φt denote the flow map corresponding to e, i.e.

φt(X, Y) = (exp(t)X, exp(−t)Y)

For a monomial, we obtain

φ∗
t (Xj1,k1 · · · Xjm,km · Yj1,k1 · · ·Yjn,kn) =

exp((m − n)t)Xj1,k1 · · · Xjm,km · Yj1,k1 · · ·Yjn,kn ,

and we can read off its weight m − n. In particular, the weight of a trace of a
nonzero matrix monomial M of bidegree (m, n) in (X, Y) equals m − n. Note that

{Xjk, e} = +Xjk and {Yjk, e} = −Yjk

By the Leibniz rule for the Poisson bracket, this implies

{Xj1,k1 · · · Xjm,km · Yj1,k1 · · ·Yjn,kn , e} =

(m − n)Xj1,k1 · · · Xjm,km · Yj1,k1 · · ·Yjn,kn

For a monomial h : Mn(C)× Mn(C) → C this implies

{h, e} = wh (4.10)

where w ∈ Z is the weight of h. Moreover, let h1, h2 be traces of matrix monomials
in X, Y. Then

wh1h2 = wh1 + wh2 = w{h1,h2}, (4.11)

where the last relation holds when {h1, h2} ̸= 0.

Lemma 4.28 Let h ∈ Lie(F ) with weight wh ̸= 0, let k ∈ N, p ∈ N0. Then hkep ∈
Lie(F ).

Proof First we show that hep ∈ Lie(F ) by induction. For p = 0 it is obvious.
From Lemma 4.25 we have e2 ∈ Lie(F ). The induction step is given by {hep, e2} =
2whhep+1. Next we show hkep ∈ Lie(F ) by induction on k. The case k = 1 is clear.
The induction step is given by {hkep, h} = −pwh hk+1ep−1. □

4.3.2 Proof of Proposition 4.18

Let

a = tr X, b = tr Y, c =
1
2

tr X2, d =
1
2

tr Y2, e = tr XY

and A = {a, b, c, d, e}. Notice that A ⊂ Lie(F ) since e = {c, d}.

We consider only products of a, b, c, d, e and show that these products are contained
in the Lie algebra generated by F . We make good use of the grading induced
by e = tr XY and its consequence Lemma 4.28. We generate the products of any
powers in a, b, c, d, e in (4.12), Lemmas 4.29, 4.30 and 4.31 in the following order

a, b → a, b, c → a, b, c, e → a, b, c, d, e.
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4. Symplectic density property for Calogero–Moser spaces

The brackets of elements in A are:

{a, b} = n, {a, c} = 0, {a, d} = b, {a, e} = a, {b, c} = −a,
{b, d} = 0, {b, e} = −b, {c, d} = e, {c, e} = 2c, {d, e} = −2d.

These elements form a Lie subalgebra of Lie(F ).

Since the only element of A with weight 0 is e, we obtain

ai, bj, ck, dl ∈ Lie(F ), i, j, k, l ∈ N

by applying Lemma 4.28 to h ∈ {a, b, c, d}. Hence

{ai+1, bj+1} = n(i + 1)(j + 1) aibj ∈ Lie(F ) (4.12)

Now we raise the power of c.

Lemma 4.29 aibjck ∈ Lie(F ) for any i, j, k ≥ 0.

Proof By (4.12) we have aibj+1, ck ∈ Lie(F ). Considering

{aibj+1, ck+1} = (j + 1)(k + 1)ai+1bjck

we get any monomial in a, b, c when the power of a is positive. To obtain bjck we
use

{abjck, b} = nbjck − jka2bj−1ck−1

Since the second term is in Lie(F ) we have bjck ∈ Lie(F ) as well. □

Next, we raise the power of e.

Lemma 4.30 aibjckep ∈ Lie(F ) for any integers i, j, k, p ≥ 0.

Proof By Lemma 4.29 we have in Lie(F ) any monomial in a, b, c, thus

Lie(F ) ∋ {aibj+1ck, ae} = −n(j + 1)aibjcke + (i − j − 1 + 2k)ai+1bj+1ck

which yields aibjcke ∈ Lie(F ). To raise the power of e consider

{aibj+1ckep, ae}
= −n(j + 1)aibjckep+1 − pai+1bj+1ckep + (i − j − 1 + 2k)ai+1bj+1ckep

which inductively yields any monomial in a, b, c, e. □

Finally we generate all monomials in a, b, c, d, e.

Lemma 4.31 aibjckdlep ∈ Lie(F ) for any integers i, j, k, l, p ≥ 0.

Proof We proceed by induction on l. Lemma 4.30 gives the base case l = 0. The
induction step follows from

{aibjckep, dl}
={ai, dl}bjckep + {ck, dl}aibjep + {ep, dl}aibjck

= il ai−1bj+1ckdl−1ep + kl aibjck−1dl−1ep+1 + 2pl aibjckdlep−1 □

This finishes the proof of Proposition 4.18.
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4.3.3 Proof of Theorem 4.16

To prove Theorem 4.16, we need to prove that for all integers m ≥ 1 and pk, qk ≥ 0
(k = 1, 2, . . . , m)

m

∏
k=1

tr XpkYqk ∈ Lie(F ) (∗)

on Ĉn.

We will do this by multiple inductions on m, on the degree D of the product, and
on another index that will occur in the course of the proof. The various induction
proofs will be formulated as separate lemmas. When D = 0, (∗) represents the
constant function 1, which is in Lie(F ) by {tr X, tr Y/n} = 1. The overall inductive
assumption is then that with some D = 0, 1, 2, . . .

(∗) holds when ∑
k
(pk + qk) ≤ D (∗∗)

We use the notation
f ∼ g

if f and g are of the same degree and are identical up to terms of degree ≤ deg f − 4.
When deg f ≤ D + 4, then by (∗∗) the difference f − g is in Lie(F ). Furthermore,
in this notation Corollary 4.14 and Proposition 4.20 imply

{tr XaYb, tr XcYd} ∼ (ad − bc) tr Xa+c−1Yb+d−1

The proof of Theorem 4.16 starts with the generating set F . Corollary 4.24 provides
the first step for tr XpYq. Here, we continue with taking in factors of the form tr Xi.

Lemma 4.32 Assume that the inductive assumption (∗∗) holds, and let

p, q, m ∈ N0, i1, . . . , im ∈ N

with p + q + ∑ ik ≤ D + 4. Then

tr XpYq
m

∏
k=1

tr Xik ∈ Lie(F ).

Proof By induction on m; the case m = 0 is Corollary 4.24. Assume the lemma
holds for some m ≥ 0, and consider a product with (m + 1) factors of the form
tr Xi

f = tr XpYq
m

∏
k=0

tr Xik , where p + q +
m

∑
k=0

ik ≤ D + 4

Since i0 ≥ 1 we have

p + q + 1 +
m

∑
k=1

ik ≤ D + 4 + 1 − i0 ≤ D + 4 (4.13)
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4. Symplectic density property for Calogero–Moser spaces

then by the induction assumption on m

tr XpYq+1
m

∏
k=1

tr Xik ∈ Lie(F ).

We now use Lie(F ) ∋ {(tr X)2, tr Xi0Y} = 2 tr X tr Xi0 to compute

Lie(F ) ∋ {tr X tr Xi0 , tr XpYq+1
m

∏
k=1

tr Xik} (4.14)

= (q + 1) tr XpYq tr Xi0
m

∏
k=1

tr Xik + i0(q + 1) tr Xp+i0−1Yq tr X
m

∏
k=1

tr Xik

+ i0 · (terms of degree ≤ p + q + i0 − 5) · tr X
m

∏
k=1

tr Xik

By the induction assumption

tr Xp+i0−1Yq+1
m

∏
k=1

tr Xik ∈ Lie(F )

since p + q + ∑m
k=0 ik ≤ D + 4. Applying Lemma 4.20 and Corollary 4.14 we then

obtain

Lie(F ) ∋{(tr X)2, tr Xp+i0−1Yq+1
m

∏
k=1

tr Xik}

= 2(q + 1) tr Xp+i0−1Yq tr X
m

∏
k=1

tr Xik (4.15)

On the other hand, since p + q + ∑m
k=0 ik ≤ D + 4, the last term of (4.14) is in Lie(F )

by (∗∗). Together with (4.14) and (4.15) this implies f ∈ Lie(F ) and the proof is
complete. □

Next we aim for more factors of the form tr XpYq.

Lemma 4.33 Assume that the inductive assumption (∗∗) holds, and let l ∈ N, m ∈ N0,
i1, . . . , il ∈ N, p1, . . . , pm, q1, . . . , qm ∈ N0 with ∑a ia + ∑b(pb + qb) ≤ D + 4. Then(

l

∏
a=1

tr Xia

)
m

∏
b=1

tr XpbYqb ∈ Lie(F ).

Proof By induction on m; Lemma 4.32 is the induction base m = 1. Suppose the
lemma holds for some m ≥ 1, and consider a product with m + 1 factors of the
form tr XpYq

f =

(
l

∏
a=1

tr Xia

)
m

∏
b=0

tr XpbYqb

where

l

∑
a=1

ia +
m

∑
b=0

(pb + qb) ≤ D + 4. (4.16)
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If qc = 0 for some c ∈ {1, . . . , m}, then it follows from the induction assumption on
m that

f =

(
l

∏
a=1

tr Xia

)
tr Xpc

m

∏
b=0
b ̸=c

tr XpbYqb ∈ Lie(F )

It remains to consider the case qb ≥ 1 for all b = 1, . . . , m. By (4.16)

p0 + 1 +
m

∑
b=1

(pb + qb) ≤ D + 4, q0 + 1 +
l

∑
a=1

ia ≤ D + 4

Hence by the induction assumption on m

tr Xp0+1
m

∏
b=1

tr XpbYqb , tr Yq0+1
l

∏
a=1

tr Xia ∈ Lie(F )

Therefore

Lie(F ) ∋ {tr Xp0+1
m

∏
b=1

tr XpbYqb , tr Yq0+1
l

∏
a=1

tr Xia} (4.17)

∼ (p0 + 1)(q0 + 1)

(
l

∏
a=1

tr Xia

)
tr Xp0Yq0

m

∏
b=1

tr XpbYqb

+ (q0 + 1) tr Xp0+1

(
l

∏
a=1

tr Xia

)
m

∑
b=1

pb tr Xpb−1Yqb+q0 ∏
c ̸=b

tr XpcYqc

− tr Xp0+1 tr Yq0+1
l

∑
a=1

m

∑
b=1

iaqb tr Xpb+ia−1Yqb−1

(
∏
d ̸=a

tr Xid

)
∏
c ̸=b

tr XpcYqc

Each summand on the third line of Equation (4.17) has m factors tr XpYq, is in
Lie(F ) by the induction assumption and its degree satisfies the condition (4.16).

Next, for (q1, . . . , qm) = (1, . . . , 1) each summand on the last line of Equation
(4.17) has m factors tr XpYq (including tr Yq0+1) and is in Lie(F ) by the induction
assumption on m. This implies that f ∈ Lie(F ) with this choice of qb = 1, b =
1, . . . , m.

Suppose that f ∈ Lie(F ) for all (q1, . . . , qm) ≺ (s1, . . . , sm) in lexicographic order.
Then also f ∈ Lie(F ) with (q1, . . . , qm) = (s1, . . . , sm), since the terms on the last
line of Equation (4.17) have (q1, . . . , qm) ≺ (s1, . . . , sm) as exponents in the powers
of Y. An induction on (q1, . . . , qm) in lexicographic order shows f ∈ Lie(F ) for any
choice of qb satisfying (4.16), and the proof is complete. □

Lemma 4.34 Assume that the inductive assumption (∗∗) holds, and let m ∈ N0, p1, . . . ,
pm, q1, . . . , qm ∈ N0 with ∑k(pk + qk) ≤ D + 4. Then

m

∏
k=1

tr XpkYqk ∈ Lie(F ).
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4. Symplectic density property for Calogero–Moser spaces

Proof By induction on m; m = 1 follows from Corollary 4.24. Suppose the lemma
holds for some m ≥ 1, and consider an (m + 1)-fold product

f =
m

∏
k=0

tr XpkYqk , where
m

∑
k=0

(pk + qk) ≤ D + 4

Lemmas 4.32 and 4.33 imply that tr Yq0+1, tr Xp0+1 ∏m
k=1 tr XpkYqk ∈ Lie(F ). There-

fore

Lie(F ) ∋{tr Xp0+1
m

∏
k=1

tr XpkYqk , tr Yq0+1}

∼ (p0 + 1)(q0 + 1) tr Xp0Yq0
m

∏
k=1

tr XpkYqk

+ (q0 + 1) tr Xp0+1
m

∑
k=1

pk tr Xpk−1Yq0+qk ∏
a ̸=k

tr XpaYqa

The summands on the third line have degree ≤ D + 4 and are in Lie(F ) by Lemma
4.33. Hence f ∈ Lie(F ) and the proof is complete. □

Proof (Proof of Theorem 4.16) Lemma 4.34 gives the induction step from degree
D up to degree D + 4 and hence finishes the proof. □

Proof (Proof of Theorem 1.4) Proposition 4.15 and Theorem 4.16 established that
all algebraic invariant functions on Ĉn are contained in the Lie algebra that is
generated by the Hamiltonian functions in

F = {tr Y2 + (tr X)2, tr Y + tr X3}

Hence, on Cn we obtain all holomorphic Hamiltonian functions by taking limits:
Since Cn is an affine variety, we may assume that it is a closed subvariety inside
some CN . Every holomorphic function on Cn extends to a holomorphic function on
CN , and thus its extension can be approximated uniformly on compacts of CN by
polynomials which in turn restrict to regular functions on Cn that approximate the
holomorphic function uniformly on compacts of Cn. This proves the Hamiltonian
density property. □

Proof (Proof of Theorem 1.5) This follows from the preceding Theorem 1.4 and
Lemma 4.3. □

Proof (Proof of Theorem 1.6) We apply the Andersén–Lempert Theorem, i.e. The-
orem 2.46 and the fact that Cn has the Hamiltonian density property with F as
above being the generators. The flows of F are complete according to Lemma 4.7.
Then the corresponding flow maps generate the identity component of the group
of holomorphic symplectic automorphisms: In Theorem 2.46, choose Φt to be a
path that connects any given holomorphic symplectic automorphism to the identity
and use the conclusion in the last paragraph of said theorem. □

Alternatively, we can use F1 with three generators whose flows are algebraic.
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Chapter 5

Holomorphic approximation of symplectic
diffeomorphisms for CR

n in Cn

This chapter is organized as follows: Section 5.1 introduces the setup. In Section 5.2,
we prove Theorem 1.11, which claims that the real Calogero–Moser space CR

n has the
complex one as a symplectic complexification. Section 5.3 applies the symplectic
density property of Cn to express real algebraic symplectic vector fields as Lie
combinations of complete symplectic vector fields (Proposition 5.9). This allows
for local approximation of real vector fields on CR

n by real Lie combinations of
complete vector fields whose real-time flows preserve CR

n (Proposition 5.12). Section
5.4 extends this local approximation to automorphisms on Saturn-like subsets of
Cn. This step is crucial in the push-out method, which constructs a holomorphic
automorphism that is close to the identity inside a complex ball (Theorem 5.16).
Section 5.5 combines local approximation with the push-out method to obtain global
approximation of symplectic diffeomorphisms by holomorphic automorphisms
(Theorem 5.20). Section 5.6 examines an alternative totally real submanifold for
which the complex Calogero–Moser space serves as a complexification.

5.1 Preparation

5.1.1 Hamiltonian diffeomorphism

The objects to be approximated are symplectic diffeomorphisms which are isotopic
to the identity.

Let (M, Ω) be a smooth symplectic manifold without boundary. A symplectic isotopy
is a jointly smooth map φ : [0, 1]× M → M such that φt is symplectic for every
t in [0, 1] and φ0 = id. The isotopy φt is generated by a smooth family of vector
fields Vt with dφt/dt = Vt ◦ φt, φ0 = id. As φt is symplectic, the vector fields Vt
are symplectic by Cartan’s formula

0 =
d
dt

φ∗
t Ω = φ∗

t LVt Ω = φ∗
t d(ι(Vt)Ω)
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where LVt is the Lie derivative with respect to Vt. A Hamiltonian isotopy is a
symplectic isotopy such that the closed one-form ι(Vt)Ω is exact, namely Vt is
Hamiltonian, for all t. If the manifold M is simply connected, then every symplectic
isotopy is Hamiltonian (the smooth t-dependence of the Hamiltonian functions
can be achieved by fixing a reference point p0 in M and choosing Ht(p0) = 0 for
all t in [0, 1]). Moreover, we call a symplectomorphism which is the endpoint of a
Hamiltonian isotopy a Hamiltonian diffeomorphism. Hamiltonian diffeomorphisms
form a normal subgroup of the group of symplectic diffeomorphisms, see [MS17,
§3.1].

5.1.2 Pointwise seminorm

Next, we explain the notation ∥ · ∥Ck(·), k ≥ 1, following Manne–Wold–Øvrelid
[MWØ11, §2.2] and refer to [GG73, Ch. II] for details. Let V ⊂ M be a subset and
p ∈ V. Consider the equivalence relation on germs of Ck-smooth complex-valued
functions at p: fp ∼ gp if and only if f − g vanishes to k-th order at p. Denote by
J k

p the set of equivalence classes, which forms a finite dimensional vector space.
The union

J k(M, V) =
⋃

p∈V

J k
p

can be endowed with the structure of a complex vector bundle over V. Each
Ck-smooth function f on M induces a continuous section J k( f ) of J k(M, V)
by J k( f )(p) = [ fp]. Choose fiberwise a norm |·| on J k(M, V) which varies
continuously with respect to p. The pointwise seminorm ∥ · ∥Ck(·) for f is simply
the norm of the induced k-jet

∥ f ∥Ck(p) := |J k( f )(p)|

For a compact K ⊂ M, we set

∥ f ∥Ck(K) := sup
p∈K

∥ f ∥Ck(p)

For a smooth mapping Φ : M → M the pointwise seminorm with respect to a local
smooth chart α = (α1, α2, . . . , αm) : U → α(U) ⊂ Rm is

∥Φ∥Ck(p) :=
m

∑
j=1

∥αj ◦ Φ∥Ck(p)

Similarly we have ∥Φ∥Ck(K) by taking the supremum over a compact K. A different
local chart β : U′ → β(U′) yields another pointwise seminorm ∥ · ∥′Ck(·) satisfying

C(p)−1∥Φ∥Ck(p) ≤ ∥Φ∥′Ck(p) ≤ C(p)∥Φ∥Ck(p)

where C is a positive continuous function on U ∩ U′, therefore preserving the
approximation on compact subsets (up to rescaling).
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5.1.3 Complexification

We will need the notion of complexification in the symplectic context.

Definition 5.1 [DW22] Let (MR, ωR) be a smooth symplectic manifold of dimen-
sion 2n, n ≥ 1. A symplectic complexification (M, ω, τ) of (MR, ωR) is a holomorphic
symplectic manifold M of complex dimension 2n, together with a holomorphic
symplectic form ω, an antiholomorphic involution τ : M → M and a smooth map
ȷ : MR → M, satisfying

(i) The map ȷ is a proper embedding.

(ii) The image of MR is the fixed-point set of τ.

(iii) The pullback ȷ∗ω coincides with ωR.

(iv) The pullback τ∗ω is the complex-conjugated ω.

Remark 5.2 (a) Property (i) implies that ȷ(MR) is closed in M, thus we may identify
MR with ȷ(MR) as a totally real submanifold of maximal dimension in M.

(b) We also refer to MR as the real form of M (with respect to τ).

Let Autω(M) be the group of holomorphic symplectic automorphisms of M and
DiffωR

(MR) the group of symplectic diffeomorphisms from MR onto itself. Also
denote by τAutω(M) the group of holomorphic symplectic automorphisms of M
which preserve the real form, i.e.

τAutω(M) = {Φ ∈ Autω(M) : Φ(MR) = MR}

By property (iii), Φ|MR
lies in DiffωR

(MR). Moreover, (iii) implies the real parts
of τ-compatible (cf. Definition 2.12) ω-symplectic vector fields V, W are real ωR-
symplectic on CR

n :

ω(V, W) = ȷ∗ω(α−1(V), α−1(W)) = ωR(α
−1(V), α−1(W))

where α : TM → T1,0M is the R-isomorphism connecting smooth vector fields with
holomorphic vector fields.

Let H ∈ O(M) be a holomorphic function and V the holomorphic Hamiltonian
vector field associated to H, namely dH = iVω. One may compare the following
lemma with [AF24, Theorem 1.3].

Lemma 5.3 Under the settings of Definition 5.1, H is τ-compatible up to a constant if
and only if V is τ-compatible.

Proof Applying τ∗ to dH = iVω yields

dτ∗H = τ∗dH = τ∗(iVω) = iτ∗Vω

where the last equality follows from (iv). □

As at the beginning of Section 5.1.1, the notion of Hamiltonian isotopy can be
defined for holomorphic symplectic manifold as well. If such a holomorphic
isotopy Φt is in τAutω(M) for every t, then their restriction Φt|MR

= ȷ∗Φt is a
Hamiltonian isotopy on the real form (MR, ωR) because τ-compatible Hamiltonian
vector fields have τ-compatible Hamiltonian functions.
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5.2 The real Calogero–Moser space

Now, we choose a real form for the Calogero–Moser space Cn by taking the
conjugation τ on M = Mn(C)⊕ Mn(C)⊕ Cn ⊕ (Cn)∗

τ(X, Y, v, w) = (X∗, Y∗, iw∗, iv∗)

The fixed-point set of τ is

Mτ = {(X, Y, v, w) ∈ M : X∗ = X, Y∗ = Y, v = iw∗}

In particular, the first two components consist of Hermitian matrices.

It is straightforward to check for g ∈ GLn(C),

τ(g · (X, Y, v, w)) = g′ · τ(X, Y, v, w) (5.1)

where g′ = (g∗)−1. Thus the GLn(C)-orbit through z ∈ M is being taken to an orbit
through τ(z). On the other hand, if (X, Y, v, w) lies in µ−1(iIn) then τ(X, Y, v, w) is
contained in µ−1(iIn)

[X∗, Y∗] + (iw∗)(iv∗) = X∗Y∗ − Y∗X∗ − w∗v∗ = iIn

Therefore the conjugation on M induces a conjugation on Cn, which we also denote
by τ.

The original setup in [KKS78] is actually compatible with this conjugation. The real
Calogero–Moser space was constructed as symplectic reduction over the unitary
group in [KKS78, pp. 491–494], started with

Mh = h(n)⊕ h(n)⊕ Cn

where h(n) denotes the R-vector space of Hermitian square matrices of size n. As
a real vector space, Mh is of dimension 2n(n + 1) and is isomorphic to Mτ ⊂ M
under (A, B, a) 7→ (A, B, a, ia∗).

The unitary group U(n) acts on Mh as

u · (A, B, a) = (uAu∗, uBu∗, ua), u ∈ U(n)

which is the restriction of the GLn(C)-action on Mτ ∼= Mh.

Let u(n) be the Lie algebra of the unitary group U(n), which consists of skew-
Hermitian matrices. Take the real moment map

µR : Mh → u(n), (A, B, a) 7→ [A, B] + iaa∗

which is the restriction of µ on Mτ. Denote by ωR the pullback of the holomorphic
form ω to Mτ under the inclusion Mτ ↪→ M, which is a real symplectic form in
the following real coordinates on Mτ

Xjj, Yjj, Re(vj), Im(vj), j = 1, . . . , n,

Re(Xjk), Re(Ykj), Im(Xjk), Im(Ykj), j < k
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5.2. The real Calogero–Moser space

On the fixed-point set Mτ

dvj ∧ dwj = i dvj ∧ dvj = 2 d Re(vj) ∧ d Im(vj)

Then for (A, B, a, ia∗) ∈ Mτ the real symplectic form ωR is

ωR =∑
j

(
dAjj ∧ dBjj + 2d Re(aj) ∧ d Im(aj)

)
+ 2 ∑

j<k

(
d Re(Ajk) ∧ d Re(Bkj)− d Im(Ajk) ∧ d Im(Bkj)

)
The GLn(C)-invariance of ω implies the U(n)-invariance of ωR, which induces a
real symplectic form on the quotient over U(n). With the symplectic form ωR and
the moment map µR, we have the following.

Definition 5.4 The real Calogero–Moser space (CR
n , ωR) is the real symplectic reduc-

tion µ−1
R (iIn)/ U(n).

In Lemma 4.2 it is shown that A, B have no nontrivial common invariant subspace.
If u ∈ U(n) fixes (A, B, a) ∈ µ−1

R (iIn), then u is a scalar and by u · a = a must be
the identity. We see that U(n) acts freely on µ−1

R (iIn) and the quotient is smooth.

Lemma 5.5 The real Calogero–Moser space CR
n is simply connected.

Proof Since any Hermitian matrix is diagonalizable by conjugation of the uni-
tary group, we can consider A in diagonal form with decreasing diagonal entries
x1, x2, . . . , xn. Recall that (A, B, a) ∈ C̃R

n satisfies [A, B] + iaa∗ = iIn. As the commu-
tator has zeros on the diagonal, a is of the form (eiθ1 , . . . , eiθn). Use

u = diag(e−iθ1 , . . . , e−iθn)

to reduce all components of a to one. Then the off-diagonal entry bjk of B satisfies

bjk(xj − xk) + i = 0

making xj ̸= xk and bjk = −i/(xj − xk), while the real diagonal entries y1, . . . , yn
of the Hermitian matrix B remain free. We have

(x1, . . . , xn, y1, . . . , yn)

with x1 > x2 > · · · > xn is a system of global coordinates for CR
n , which is a convex

open set in R2n. □

With the notation C̃R
n = µ−1

R (iIn), C̃n = µ−1(iIn) we have

C̃n
τ−−−→ C̃ny y

Cn
τ−−−→ Cn

C̃R
n

j−−−→ C̃ny y
CR

n
ȷ−−−→ Cn

The map ȷ takes an orbit U(n) · z with z ∈ C̃R
n to the orbit GLn(C) · z, and j is the

inclusion map. The first diagram commutes due to Equation (5.1), while the second
commutes naturally. To simplify the notation we use U = U(n) and G = GLn(C).
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5. Holomorphic approximation of symplectic diffeomorphisms for CR
n in Cn

Remark 5.6 In general, cf. [AF24, Remark 2.1], the image of the real symplectic
quotient space is only one connected component of the conjugation-fixed part of the
complex symplectic quotient. For the Calogero–Moser space, we have ȷ(CR

n ) = Cτ
n ,

which is equivalent to the connectedness of Cτ
n .

Next, we show that the complex Calogero–Moser space (Cn, ω, τ) is a symplectic
complexification of the real Calogero–Moser space (CR

n , ωR).

Proof (of Theorem 1.11) We verify the conditions of Definition 5.1. Condition (iii)
follows from the definition of ωR as the pullback of ω under ȷ.

For (iv), the pullback τ∗ω is the complex conjugated form

τ∗ω = τ∗ tr(dX ∧ dY + dv ∧ dw)

= tr(dX∗ ∧ dY∗ + i2dw∗ ∧ dv∗)

= tr(dX ∧ dY + dv ∧ dw)

= ω

To show (ii) that ȷ(CR
n ) is the fixed-point set of τ, let g ∈ G, z ∈ C̃R

n . By Equation
(5.1)

τ(g · z) = g′ · τ(z) = g′ · z ∈ G ·z

thus the orbit G ·z is stable under τ and ȷ(CR
n ) is a subset of Cτ

n .

Conversely, we show that when a G-orbit in C̃n is stable under τ, then it meets C̃R
n

at one U-orbit. Let z0 be a point in a τ-stable G-orbit. Take the U-invariant function

pz : G → R≥0, g 7→ ∥g · z∥2

where

∥(X, Y, v, w)∥2 = ∥X∥2 + ∥Y∥2 + ∥v∥2 + ∥w∥2

= tr XX∗ + tr YY∗ + tr vv∗ + tr w∗w

Clearly ∥τ(z)∥ = ∥z∥. By geometric invariant theory, see [Nak99, §3.1], pz is convex
on the double coset U \G / Gz and attains minimum exactly when µ1(g · z) = 0,
where

µ1(X, Y, v, w) =
1
2
{[X, X∗] + [Y, Y∗] + vv∗ − w∗w}

Since the G-action is free, the isotropy group Gz is trivial. Recall from [Wil98, §8]
that the complex space Cn is homeomorphic to the hyperkähler quotient

Cn = µ−1(iIn)/ G ∼= (µ−1
1 (0) ∩ µ−1(iIn))/ U

Thus each orbit G ·z meets the U-stable set µ−1
1 (0) at exactly one U-orbit, where pz

attains minimum.

By C̃R
n ⊂ µ−1

1 (0), we consider z0 = (X, Y, v, w) ∈ µ−1
1 (0) ∩ C̃n. Since the orbit G ·z0

is τ-stable, there exists h0 ∈ G such that

τ(z0) = h0 · z0
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5.2. The real Calogero–Moser space

By the convexity of pz0 on U \G, µ1(z0) = 0, and ∥τ(z0)∥ = ∥z0∥, it follows that
h0 ∈ U. Then

z0 = τ(τ(z0)) = τ(h0 · z0) = h0 · τ(z0) = h2
0 · z0

where the third equality is due to Equation (5.1) and h′0 = (h∗0)
−1 = h0. By [Wil98,

Corollary 1.4] (cf. Lemma 4.2), if g ∈ G fixes a point z ∈ C̃n, then g is the identity.
This implies that h2

0 = In. In combination with h0 ∈ U, we see that h0 is also
Hermitian. Hence h0 is of the form uDu∗ for some u ∈ U, and D = diag(d1, . . . , dn)
with entries either 1 or −1. Replacing z0 by u∗ · z0, we may assume that h0 = D.
Then from τ(z0) = D · z0 we have

X∗ = DXD, Y∗ = DYD

which implies that X and Y are normal. Hence there exists u1 ∈ U which diagonal-
izes X.

Move to the point z1 = u1 · z0 = (X1, Y1, v1, w1) on the same U-orbit. Because
z1 ∈ C̃n

iIn = [X1, Y1] + v1w1 = [X1, Y1] + iv1v∗1u1Du∗
1 (5.2)

where the second equality follows from h1 = u1Du∗
1 and

τ(z1) = h1 · z1 =⇒ iv∗1 = w1u1Du∗
1

Thanks to X1 being diagonal, the commutator [X1, Y1] has zeros on the diagonal.
Comparing the j-th diagonal entry of Equation (5.2) yields

i = i dj|(u∗
1v1)j|2

which implies that dj = 1. Therefore, h0 = In and τ(z0) = z0. Since τ commutes
with the U-action, the entire orbit U ·z0 is contained in C̃R

n . This shows that
Cτ

n ⊂ ȷ(CR
n ).

For (i): The injectivity of ȷ : CR
n → Cn is equivalent to that each G-orbit through

a point z ∈ C̃τ
n meets C̃R

n at exactly one U-orbit. By Equation (5.1), this condition
implies that the G-orbit is τ-stable. Thus the injectivity follows from the above
discussion, but we also give a direct proof: We show that for z1, z2 ∈ C̃R

n if their
U-orbits have empty intersection, then their G-orbits have empty intersection.
Suppose otherwise, that g · z1 = z2 for some g ∈ G. Equation (5.1) and τ-invariance
yield g′ · z1 = z2. By [Wil98, Corollary 1.4], g−1g′ = In. It follows that g ∈ U and
ȷ is injective. Note that in the more general setting of [AF24, Theorem 3.2], the
injectivity of ȷ is also a consequence of the free G-action on C̃R

n .

To check that ȷ is an immersion, we refer to [AF24, Theorem 3.2].

The properness of ȷ follows from CR
n = Cn ∩ Rq, see Remark 5.8. This shows (i) of

Definition 5.1. □
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5. Holomorphic approximation of symplectic diffeomorphisms for CR
n in Cn

5.3 τ-symplectic density property

It is well-known that instead of the moment map µ : M → Mn(C) and the preimage
µ−1(iIn) of a coadjoint-invariant point, it is equivalent to consider the moment map

µ̂ : Mn(C)⊕ Mn(C) → sl∗n
∼= sln, (X, Y) 7→ [X, Y]

and take the complex Calogero–Moser space as the symplectic reduction

µ̂−1(G ·ξ)/ G

along a coadjoint orbit G ·ξ, where any off-diagonal entry of ξ is −i and diagonal
entries 0. For the real counterpart, the real Calogero–Moser space CR

n is the
quotient µ̂−1

R (U ·ξ)/ U along the coadjoint orbit U ·ξ where the real moment map
is the restriction of µ̂

µ̂R : h(n)⊕ h(n) → u(n), (A, B) 7→ [A, B]

Let

Ĉn = µ̂−1(G ·ξ) ⊂ Mn(C)⊕ Mn(C), ĈR
n = µ̂−1

R (U ·ξ) ⊂ h(n)⊕ h(n)

Then Ĉn is the variety of Mn(C)⊕ Mn(C) ∼= C2n2
consisting of pair of matrices

(X, Y) such that rank([X, Y]− iIn) = 1. We also take the conjugation τ on Ĉn as
τ(X, Y) = (X∗, Y∗). This induces a conjugation on the C-algebra C[Ĉn] of regular
functions such that on scalars it is the complex conjugation. As mentioned in
Section 5.1, of special interest are the τ-compatible functions, namely holomorphic
functions F : Ĉn → C satisfying F ◦ τ = F. A τ-compatible function is in particular
real-valued on the real Calogero–Moser space.

Lemma 5.7 The R-algebra of real-valued U-invariant algebraic functions on ĈR
n can be

generated by {tr AjBk : j + k ≤ n2}.

Proof Let f be a real-valued U-invariant algebraic function on ĈR
n . Then f is a real

polynomial in the entries of X and Y. Extend f to a real complex algebraic function
F on Ĉn

(X, Y) 7→ 1
2
( f (X, Y) + f (τ(X, Y)))

The unitary group U is a totally real submanifold of maximal dimension in G
and elements of C[Ĉn] are holomorphic, hence F is G-invariant. By Etingof and
Ginzburg [EG02, §11, p. 322, Remark (ii)], the C-algebra C[Ĉn]G of G-invariants on
Ĉn can be generated by {tr X jYk : j + k ≤ n2}. Write F in terms of these generators
over C. Separating the scalars into real and imaginary parts and collecting terms,
we get F = F1 + iF2, where Fl , l = 1, 2 are in the R-algebra generated by these trace
functions. From Equation (5.3), the generators tr X jYk are real, thus Fl is real-valued
on CR

n . Thus f = F|CR
n
= F1|CR

n
. □

Remark 5.8 Since the C-algebra C[Ĉn]G of G-invariants on Ĉn can be generated by
{tr X jYk : j + k ≤ n2}, we choose a minimal generating set G. Denote by q the
cardinality of G, then the Calogero–Moser space Cn is a smooth affine variety in

Cq ∼= Spec C[G]
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5.3. τ-symplectic density property

On the generating set G, the conjugation τ(X, Y) = (X∗, Y∗) on Ĉn acts as complex
conjugation due to the cyclicity of the trace

τ∗(tr X jYk) = tr(X∗)j(Y∗)k = tr YkX j
= tr X jYk (5.3)

Hence τ descends to the complex conjugate on the coordinates of Cq. The real
Calogero–Moser space CR

n , being the fixed-point set of τ in Cn, is indeed the
intersection of Cn with Rq. This also shows that CR

n is totally real in Cn.

Proposition 5.9 On the real Calogero–Moser space (CR
n , ωR) every real algebraic Hamil-

tonian vector field can be written as real Lie combination of complete algebraic Hamiltonian
vector fields, each of them associated to a G-invariant function from

F = {tr Y, tr Y2, tr X3, (tr X)2}

Proof It suffices to consider the Hamiltonian functions. Since CR
n is a symplectic

reduction, an algebraic Hamiltonian function f corresponds to a U-invariant f̂ on
ĈR

n and by Lemma 5.7 the algebraic U-invariants as a R-algebra are generated by
{tr AjBk : j + k ≤ n2}. The computation in Chapter 4 shows that any algebraic
G-invariant is contained in the complex Lie algebra generated by the four functions
in F . We point out that in Chapter 4 all formulae come with real coefficients,
where the condition is that [X, Y] + In has rank one. However we have a different
condition, namely [X, Y]− iIn has rank one, which introduces an imaginary factor.

For a real-valued algebraic U-invariant f̂ on ĈR
n , we can first extend it to a G-

invariant polynomial F on Ĉn as in the proof of Lemma 5.7. Then write it as a
complex Lie combination of invariant polynomials in F and separate it into real
and imaginary parts F = F1 + iF2. Fortunately, since F and the generating functions
tr X jYk are real-valued on CR

n , F2 is zero on ĈR
n . Hence f̂ is in the real Lie algebra

generated by F . □

Let M be a complex manifold with a real form (N, τ). Recall from Lemma 2.13
that a holomorphic vector field V on M is τ-compatible if τ∗V = V, which implies
α−1(Vp) = 2 Re(Vp) ∈ TpN for all p ∈ N, where

α : TM ↪→ TM ⊗R C → T1,0M, V 7→ 1
2
(V − i JV)

is the R-isomorphism between TM and T1,0M (Definition 2.12). In particular the
R-flow of V preserves the submanifold. In fact, the following version of density
property is appropriate for Carleman approximation.

Definition 5.10 Let (MR, ωR) be smooth symplectic manifold and (M, ω, τ) a
symplectic complexification of (MR, ωR). We say that (M, ω, τ) admits the τ-
symplectic density property, if the complex Lie algebra generated by C-complete
τ-compatible holomorphic symplectic vector fields is dense in the Lie algebra of
holomorphic symplectic vector fields with respect to the compact-open topology.

For the purpose of approximation in the next section, it suffices for Cn to have this
density property with respect to τ.

Lemma 5.11 The Calogero–Moser space Cn admits the τ-symplectic density property.
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5. Holomorphic approximation of symplectic diffeomorphisms for CR
n in Cn

Proof Since the Lie generators in F are all τ-compatible with respect to τ by (5.3),
the claim follows from Lemma 5.3 and the symplectic density property of Cn. □

The following is a parametric approximation on compacts for real symplectic vector
fields on the real Calogero–Moser space. Apart from details, proofs in Chapter 5
starting from the following proposition are inspired by those in [DW22].

Proposition 5.12 Let Z be a compact subset of RN for some natural number N, Vz a
continuous family of smooth Hamiltonian vector fields on the real Calogero–Moser space CR

n .
For any ε > 0, k ∈ N, and compact K ⊂ CR

n , there exists a continuous family of complete
holomorphic Hamiltonian vector fields Wz,1, . . . , Wz,m on the complex Calogero–Moser
space Cn, and a real Lie combination L(Wz,1, . . . , Wz,m), all having real-time flows that
preserve CR

n , such that

∥Vz − α−1(L(Wz,1, . . . , Wz,m))∥Ck(K) < ε

where α : TM → T1,0M is the R-isomorphism between TM and T1,0M.

Proof Fix z ∈ Z. In order to approximate Hamiltonian vector fields in the Ck-norm,
by dH = ωR(VH, ·) it suffices to approximate the Hamiltonian function fz of Vz in
the Ck+1-norm.

On the compact subset K ⊂ CR
n we approximate the smooth function fz in the

Ck+1-norm by a τ-compatible polynomial Pz, using the Weierstrass approximation
theorem for compact subsets in Rq (see e.g. [Nar85, §1.6.2]). Since Cn is a submani-
fold in Cq, approximation of functions on Cq in the Ck+1-norm on Cq implies the
corresponding approximation on Cn. By Proposition 5.9 the lift of Pz corresponds
to a real Lie combination of finitely many U-invariants from F on ĈR

n , hence we
can approximate fz in the Ck+1-norm by a real Lie combination L(gz,1, . . . , gz,m) of
functions gz,1, . . . , gz,m which correspond to complete vector fields.

Next consider the extensions of the U-invariant functions to Ĉn by requiring G-
invariance. Let Wz,1, . . . , Wz,m be the corresponding complete Hamiltonian vector
fields on Cn. For each j, Wz,j is the Hamiltonian vector field of a Hamiltonian
function in F . Since ωR = ȷ∗ω where ȷ : CR

n ↪→ Cn, the real-valued U-invariant
functions induce, after being extended by G-invariance to Ĉn, τ-compatible Hamil-
tonian vector fields. The τ-compatibility is stable under real scalar multiplication,
summation and taking Lie brackets, thus the real Lie combination L(Wz,1, . . . , Wz,m)
remains τ-compatible. □

5.4 Local approximation

To transfer the approximation in Proposition 5.12 for vector fields to one for
symplectic diffeomorphisms, we need some preparation.

From vector fields to flow maps

A parametric version of Theorem 2.24 with extra uniform condition can be found
in [DW22, Theorem 3.3], while the same statement with approximation in the
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5.4. Local approximation

Ck-norm was proved in the unpublished Diplomarbeit of B. Schär [Sch07] and cited
in [DW22, Theorem 3.4].

To apply the (symplectic) density property for approximation of holomorphic
automorphisms, a further ingredient is that the nearness of vector fields in the
Ck-norm implies the nearness of their flows in the Ck-norm. This is the content of
[DW22, Lemma 3.2].

Mergelyan approximation on admissible sets

Recall that a Stein compact is a compact subset which admits a basis of open Stein
neighborhoods. A compact O(X)-convex subset Z in a Stein space M admits a
basis of open Stein neighborhoods of the form

{p ∈ M : | f1(p)| < 1, . . . , | fN(p)| < 1}

for some f1, . . . , fN ∈ O(M), hence it is Stein compact.

Definition 5.13 A compact set S in a complex manifold M is called admissible, if
it is of the form S = K ∪ Z, where K is a totally real submanifold (possibly with
boundary), S and Z are Stein compacts.

The next theorem is a parametric version of [FFW20, Theorem 20]. An inspection
of the proof in [FFW20, pp. 29-31] shows that the same proof enhanced with
parameter works with the following adjustment: For the case when the function
has support in S \ K, apply [Car58, Lemma 3] to the linear continuous operator
in the additive Cousin problem to find a solution which depends continuously
on the parameter; for the general case, use the parametric Oka-Weil theorem.
Furthermore, in Proposition 2 of [FFW20, §6.1], the approximation is obtained by
taking convolution with the Gaussian kernel. Thus the continuous dependence on
the parameter also holds for the approximation.

Actually, this parametric version was mentioned already in [For20, §5] with the
hint that it can be obtained from the nonparametric case by applying a continuous
partition of unity (similar to the proof of the parametric Oka-Weil theorem), which
was carried out in detail in [GA23, Lemma 4.10].

Theorem 5.14 [FFW20, Theorem 20] Let S = K ∪ Z be an admissible set in a complex
manifold M, with K a totally real submanifold (possibly with boundary) of class Ck. Then
for any f : [0, 1]× S → C with ft ∈ Ck(S) ∩O(Z) for t ∈ [0, 1] and f continuous in t,
there exists a t-family of sequences f j,t ∈ O(S) such that

lim
j→∞

sup
t∈[0,1]

∥ f j,t − ft∥Ck(S) = 0.

Sublevel sets in Cn

For p0 in CR
n , the mapping

Cq → Cq, p 7→ ∥τ(p)− p0∥2
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5. Holomorphic approximation of symplectic diffeomorphisms for CR
n in Cn

has a strictly positive definite Levi form, because by Remark 5.8 the conjuga-
tion τ interchanges a coordinate of Cq with its complex conjugation and is thus
antiholomorphic. Next, an easy computation shows that the composition of a
smooth strictly plurisubharmonic exhaustion function with an antiholomorphic
diffeomorphism is strictly plurisubharmonic.

Definition 5.15 We take the strictly plurisubharmonic exhaustion function

ρ : Cn → R≥0, p 7→ ∥p − p0∥2 + ∥τ(p)− p0∥2

where the norm ∥ · ∥ is the restriction of the standard norm of Cq. Consider the
closed sublevel set

ZR = {p ∈ Cn : ρ(p) ≤ R} (5.4)

Denote by

ZR
R = ZR ∩ CR

n

the intersection of ZR with the real part.

With these tools at hand, we show an approximation of Andersén-Lempert type
for symplectic diffeomorphisms of CR

n onto itself locally on Saturn-like sets.

Theorem 5.16 Let φ : [0, 1]× CR
n → CR

n be a Hamiltonian isotopy and R ≥ 0 such that
φt|ZR

R
= idZR

R
for all t in [0, 1]. Then for any k ∈ N, any b ∈ (0, R) and any a > b, there

exists a sequence of holomorphic Hamiltonian isotopies Φj : [0, 1]× Cn → Cn such that
Φj,t ∈ τAutω(Cn) for all t in [0, 1] and

∥Φj,t − φt∥Ck(ZR
a )

j→∞−−→ 0 (5.5)

∥Φj,t − id∥Ck(Zb)

j→∞−−→ 0 (5.6)

uniformly for t in [0, 1].

Proof Let K ⊂ CR
n be a compact subset of class Ck+1 such that⋃

t∈[0,1]

φt(ZR
a ) ⊂⊂ Int(K)

This condition suffices for our purpose of approximating φt. In Step 1 we switch
to the smooth family of vector fields Vt generating φt and approximate Vt on K.
By Equation (5.7), to obtain approximation of flows from approximation of vector
field, it suffices to impose the inclusion that the image of ZR

a under φt for all t is
contained in K. On this compact K we invoke Proposition 5.12 to approximate
smooth vector fields by Lie combinations of complete τ-compatible vector fields.

Step 1: By assumption φt is a Hamiltonian isotopy, thus there exist a family of
Hamiltonian functions Pt and the corresponding family of Hamiltonian vector
fields Vt such that

d
dt

φt = Vt ◦ φt, t ∈ [0, 1] (5.7)
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5.4. Local approximation

By the second assumption on φt we can extend Vt to be identically zero in an open
neighborhood of Zb.

For a fixed m ∈ N, fixed t ∈ [0, 1], and j ∈ {0, 1, . . . , m − 1}, denote by φ
(j)
s the

time-s flow map of the time independent vector field Vjt/m. We can choose m large

enough so that φ
(j)
t/m is well-defined. Now we take

φm
t := φ

(m−1)
t/m ◦ φ

(m−2)
t/m ◦ · · · ◦ φ

(1)
t/m ◦ φ

(0)
t/m

By [DW22, Corollary 3.5] the composition φm
t of flow maps converges to φt uni-

formly in the Ck-norm in p and uniformly in t as m tends to infinity. Therefore
for a large enough m, it will be enough to show that each t-parameter family of
flow maps φ

(j)
s can be approximated in the Ck-norm in p by a t-parameter family

of holomorphic automorphisms in τAutω(Cn) uniformly in (t, s). Then by [DW22,
Lemma 3.2], that approximation for vector field implies approximation for its flow,
we may simply approximate the t-parameter family of Hamiltonian vector fields
Vjt/m uniformly in the Ck-norm in p and uniformly in t, by complete τ-compatible
vector fields.

Step 2: Here we will use Proposition 5.12 to approximate the real vector field Vjt/m
on K with the extra requirement from (5.6) that the approximation is uniformly
close to zero on ZR

b . Let Pj,t = Pjt/m denote the Hamiltonian function for Vjt/m on
CR

n and extend Pj,t to be zero on Zb. This extension is allowed since φt|ZR
R
= idZR

R

for all t in [0, 1] and b < R.

To find a τ-compatible function on Cn approximating Pj,t, we recall (from Remark
5.8) that

CR
n = Cn ∩ Rq ⊂ Cq

Since Cn is an affine variety in Cq, the O(Cn)-convex subset Zb ⊂ Cn is polynomially
convex in Cq by Cartan’s Theorem B. By a result of Chirka and Smirnov [SC91,
Theorem 2], the union of a compact set in Rq and a polynomially convex compact
set in Cq, which is symmetric with respect to Rq, is polynomially convex. This
yields the polynomial convexity of K ∪ Zb, and therefore its Stein compactness.

Since K is a totally real submanifold of class Ck+1 and K ∪ Zb is an admissible set
in Cq (cf. Definition 5.13), we can use the above parametric version of [FFW20,
Theorem 20] to approximate Pj,t

∣∣
K∪Zb

in the Ck+1-norm by a function P′
j,t which is

holomorphic in a neighborhood of K ∪ Zb ⊂ Cq. Then by the Oka-Weil theorem
with parameters (c.f. Theorem 2.10), there is a t-parameter family of holomorphic
polynomials Qj,t which approximates P′

j,t on K ∪ Zb. Replacing Qj,t by

1
2
(
Qj,t + τ∗Qj,t

)
makes it real-valued on CR

n . By Theorem B, restricting Qj,t to the affine variety Cn
yields the desired τ-compatible function. Therefore, the associated Hamiltonian
vector field Vj,t for Qj,t approximates the real Hamiltonian vector field Vjt/m for
Pj,t on K and zero on Zb. As in the proof of Proposition 5.12, there are com-
plete τ-compatible Hamiltonian vector fields Wt,1, . . . , Wt,M on Cn, such that a Lie
combination L(Wt,1, . . . , Wt,M) of them approximates Vj,t.
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5. Holomorphic approximation of symplectic diffeomorphisms for CR
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Step 3: Finally, let ψt,a
s be the time-s flow map of Wt,a for a = 1, . . . , M. Let Ψt,j

s be an
algorithm consistent with (cf. Lemma 2.25) the Lie combination L(Wt,1, . . . , Wt,M).
To see how the approximation operates on the level of automorphisms and to keep
the notation manageable, we consider the simple case when L(Wt,1, . . . , Wt,M) is
the sum. Then

Ψt,j
s = ψt,M

s ◦ · · · ◦ ψt,1
s

is an algorithm consistent with the sum Wt = ∑a Wt,a, whose time-(t/m) flow map
can be approximated by

(Ψt,j
t/(ml))

l , l → ∞

in the Ck-norm according to [DW22, Theorem 3.4]. Since Wt approximates Vj,t,
which in turn approximates Vjt/m on K and zero on Zb. By [DW22, Lemma 3.2] we

have that on ZR
a the flow of Wt approximates the flow φ

(j)
t/m of Vjt/m. Therefore

(Ψt,j
t/(ml))

l l→∞−−→ φ
(j)
t/m

which is the missing link in Step 1. □

Remark 5.17 There is constraint only on b since it needs to be smaller than R for
which φt is already the identity on the real part ZR

R . However we may choose
a, which determines where the automorphisms approximate the given family of
diffeomorphisms, as large as the situation requires.

5.5 Global approximation

5.5.1 Interlude

We digress, and take a close look at the classical Carleman approximation for
functions, see e.g. [FFW20, Theorem 8].

Theorem 5.18 (Carleman 1927 [Car27]) Given continuous functions f : R → C and
ε : R → R+, there exists an entire function F ∈ O(C) such that

|F(x)− f (x)| < ε(x)

for all x ∈ R.

Proof Set ∆ = {z ∈ C : |z| ≤ 1} and take for j ∈ N0 the union of a disc and an
interval

Kj = j∆ ∪ [−j − 2, j + 2], ε j = min{ε(x) : |x| ≤ j + 2}

We have ε j ≥ ε j+1 > 0 for all j. Next we construct a sequence of continuous
functions f j : (j + 1/3)∆ ∪ R → C which satisfies the following conditions for all
j ∈ N

(aj) the function f j is holomorphic on (j + 1
3 )∆

(bj) for x ∈ R with |x| ≥ j + 2
3 : f j(x) = f (x)
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5.5. Global approximation

(cj) on Kj−1: | f j − f j−1| <
ε j−1

2j+1

To start the induction base j = 0, take a smooth cutoff function χ : R → [0, 1]
such that χ(x) = 1 for |x| ≤ 1/3 and χ(x) = 0 for |x| ≥ 2/3. Apply Mergelyan’s
theorem to the function f |K0

on the compact K0 = [−2, 2] to obtain a holomorphic
polynomial h approximating f |K0

on K0. Now set

f0(x) =

{
h(x), x ∈ 1

3 ∆
χ(x)h(x) + (1 − χ(x)) f (x), x ∈ R

Roughly speaking, it amounts to glue the function h on the disc and f on the real
line outside [−2/3, 2/3] together continuously. By construction we have (a0) and
(b0).

For the induction step (j − 1) → j, apply Mergelyan’s theorem for f j−1
∣∣
Kj−1

and
Kj−1 to get a holomorphic polynomial hj such that

|hj − f j−1| <
ε j−1

2j+1

on Kj−1. Then choose a smooth cutoff function χj : R → [0, 1] such that χj(x) = 1
for |x| ≤ j + 1/3 and χj(x) = 0 for |x| ≥ j + 2/3. Again we glue by setting

f j(x) =

{
hj(x), x ∈ (j + 1

3 )∆
χj(x)hj(x) + (1 − χj(x)) f j−1(x), x ∈ R

By construction (aj) and (bj) are fulfilled. It thus remains to check (cj) that f j

approximates f j−1 on Kj−1 = (j − 1)∆ ∪ [−j − 1, j + 1]:

• On (j + 1/3)∆ by definition of hj.

• For x ∈ R with |x| ≥ j + 2/3 we have χj(x) = 0, which implies that f j(x) =
f j−1(x).

• When x ∈ R with j + 1/3 ≤ |x| < j + 2/3, we have

| f j(x)− f j−1(x)| = |χj(x)hj(x)− χj(x) f j−1(x)| ≤ |hj(x)− f j−1(x)|

Finally, by virtue of (bj) we have f0 = f1 = · · · = fk−1 on {|x| ≥ k} for any
k ∈ N. Combining this with (cj) we can see that { f j} converges to an entire
function F ∈ O(C) such that for any k ∈ N0 the following estimate holds on
{k ≤ |x| ≤ k + 1}

|F(x)− f (x)| ≤
∞

∑
j=0

| f j+1(x)− f j(x)| <
∞

∑
j=k−1

ε j

2j+1 ≤ εk−1 ≤ ε(x).
□

The local approximation is delivered by the following.

Theorem 5.19 (Mergelyan’s theorem) If K is a compact set in C with connected com-
plement, then every function, which is continuous on K and holomorphic in the interior
Int(K), can be approximated uniformly on K by holomorphic polynomials.

From a bird’s eye view, Theorem 5.16 is the analogue of Mergelyan’s theorem,
while ideas of gluing and pushing out present in the next section are analogous to
the classical Carleman approximation.
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5.5.2 From local to global approximation

The next statement is the counterpart of [DW22, Theorem 1.2] and likewise is a
consequence of Theorem 5.16. Namely we will construct the global approximation
by applying local approximation successively.

Theorem 5.20 Let φ ∈ DiffωR
(CR

n ) be a symplectic diffeomorphism which is smoothly
isotopic to the identity. Then for any positive continuous function ε on CR

n , there exists a
holomorphic symplectic automorphism Φ ∈ τAutω(Cn) such that

∥Φ − φ∥Ck(p) < ε(p)

for all p in CR
n .

Remark 5.21 (i) The key idea parallels the proof of the classical Carleman approx-
imation on R ⊂ C by entire functions, see Theorem 5.18. Theorem 5.16 ensures
the local approximation and requires the holomorphic convexity of Saturn-like
sets, and a combination with the push-out method in [For99] delivers the wanted
holomorphic automorphism in the limit.

(ii) To use Theorem 5.16, we need an isotopy ψt of Hamiltonian diffeomorphisms
equal to the identity on a compact subset K ⊂ CR

n . In the proof to follow, we usually
end up with an isotopy φt only approximating the identity on K. Thus an extra
interpolation is necessary. The goal is to construct a family ψt which is equal to
φt on the complement of an open neighborhood containing K. To achieve this, we
multiply the time dependent Hamiltonian function Ht of φt with a cutoff function
γ, which is 0 inside K and 1 outside a neighborhood U1 of K. The new Hamiltonian
function γHt induces a slightly different vector field Wt with flow map ψt.

Moreover, we assume that φt is close to the identity on U2, equivalently Vt is close
to zero on an open set U2 containing U1. This additional buffer zone U2 \ U1 is
used to secure that the new flow ψt is equal to φt on the complement of U2: A
point p close to U2 might flow along Vt into U2, but since Vt is by assumption small
on U2, the trajectory will stay outside U1, where the function γ is 1 and the flow is
simply φt. Inside K, ψt is the identity by the definition of γ.

The Hamiltonian vector field Wt for γHt is associated to the 1-form

d(γHt) = γdHt + Htdγ

The flow map ψt exists for time t ∈ [0, 1] since Ht is close to 0 on U1 \ K.

Proof (of Theorem 5.20) 1 By Lemma 5.5 every symplectic isotopy in DiffωR
(CR

n )
is a Hamiltonian isotopy. Thus there exists a smooth Hamiltonian isotopy αt in
AutωR

(CR
n ), t ∈ [0, 1] with α0 = id and α1 = φ.

Assume that we have a holomorphic symplectic automorphism Φj with Φj(CR
n ) =

CR
n , a Hamiltonian isotopy ψj,t of CR

n , real numbers Rj, Sj with Rj ≥ j− 1, Sj ≥ Rj + 1
such that

1For automorphisms, uppercase greek letters denote holomorphic symplectic automorphisms,
while lowercase symplectic diffeomorphisms.
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5.5. Global approximation

(1j) The image of ZRj under Φj is contained in ZSj .

(2j) For j ≥ 2
∥Φj − Φj−1∥Ck(ZRj−1 )

< ε j

(3j) At time zero ψj,0 : CR
n → CR

n is the identity.

(4j) On ZR
Sj

we have ψj,t is the identity for t in [0, 1].

(5j) For all p in CR
n

∥ψj,1 ◦ Φj − φ∥Ck(p) < ε(p)

The induction hypothesis is that given any positive ε j, (1j)− (5j) can be realized.

Induction base: For j = 1 take R1 = 0. In this case we have

Z0 = ZR
0 = {p0} ⊂ CR

n

from (5.4) and by the choice of the strictly plurisubharmonic exhaustion function.
Choose S1 so that

α1

(
ZR

1

)
⊂⊂ ZR

S1
(5.8)

Choose r > S1. Then by (5.8)

ZR
0 ⊂ ZR

1 ⊂⊂ (α1)
−1
(

ZR
S1

)
⊂ (α1)

−1
(

ZR
r

)
(5.9)

Using Theorem 5.16 we get a holomorphic Hamiltonian isotopy At ∈ τAutω(Cn)
approximating αt on the compact subset⋃

t∈[0,1]

(αt)
−1
(

ZR
r+3

)
of CR

n . Since At approximates αt on this compact, we have

(At)
−1
(

ZR
r+2

)
⊂⊂ (αt)

−1
(

ZR
r+3

)
(5.10)

In particular, A1 approximates α1 on A−1
1

(
ZR

r+2
)
, hence αt ◦ A−1

t

∣∣∣
CR

n

is close to the

identity on ZR
r+2. Choose Φ1 = A1.

To construct a Hamiltonian isotopy ψ1,t we interpolate between the identity on ZR
r

and αt ◦ A−1
t

∣∣∣
CR

n

outside ZR
r+2. More precisely, let Qt be the Hamiltonian function

associated to the Hamiltonian isotopy αt ◦ A−1
t

∣∣∣
CR

n

. Fix ψ1,t to be the identity on ZR
r

by multiplying Qt with a cutoff function γ, which is zero on ZR
r and one outside

ZR
r+1. Namely, we take ψ1,t to be the isotopy of symplectic diffeomorphisms which

comes from the Hamiltonian function γQt.

By the choice of r we have that ZR
S1

is contained in ZR
r , which implies that ψ1,t is

the identity on ZR
S1

for all t in [0, 1]. This shows (41).

To see that (51) is satisfied, let p ∈ CR
n and consider separately
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(i) p ∈ A−1
1

(
ZR

r
)
: ψ1,1 is the identity at A1(p) and A1 approximates α1 by (5.10).

(ii) p /∈ A−1
1

(
ZR

r+2
)
: ψ1,1 is equal to α1 ◦ A−1

1 at A1(p) by the choice of γ.

(iii) p ∈ A−1
1

(
ZR

r+2 \ ZR
r
)
: A1 approximates α1 by (5.10) and ψ1,1 ◦ α1 is the interpo-

lation between id ◦ α1 and α1 ◦ A−1
1 ◦ α1. Here α1 ∼ A1 implies A−1

1 ◦ α1 ∼ id.

Last, let us check that (11) holds. By the choice of At, we may assume that there
exists a small positive δ which is less than one, such that

Φ1

(
ZR

0

)
⊂ α1

(
ZR

δ

)
⊂ α1

(
ZR

1

)
⊂⊂ ZR

S1

The first inclusion follows from the fact that Φ1 = A1 approximates α1 by (5.9) and
the last inclusion is due to the choice of S1 in (5.8). This concludes the induction
base.

Induction step: Take Rj+1 = Sj + 1 and choose a > max{Rj + 1, Rj+1} such that

Φj(ZRj+1) ⊂⊂ Za (5.11)

By Theorem 5.16 there exists a holomorphic Hamiltonian isotopy Ψj,t in τAutω(Cn),
which approximates the identity near ZSj and ψj,t near ZR

a+2. Thus

σj,t = (Ψj,t
∣∣
CR

n
)−1 ◦ ψj,t

approximates the identity on ZR
a+2. Being the composition of two Hamiltonian

isotopies, σj,t is also a Hamiltonian isotopy.

Moreover take a cutoff function χ on CR
n such that it is zero on ZR

a and equal to
one outside ZR

a+1. Let Pt be the Hamiltonian function associated to the Hamiltonian
isotopy σj,t and let σ̃j,t be the flow map of the vector field whose Hamiltonian
function is χPt. Then σ̃j,t is the identity on ZR

a , close to the identity on ZR
a+2, and

equal to σj,t outside ZR
a+2.

Then we have on CR
n

Ψj,t ◦ σ̃j,t ∼ ψj,t (5.12)

(Ψj,t ◦ σ̃j,t)
−1 ∼ (ψj,t)

−1 (5.13)

by the choices of Ψj,t, σj,t, σ̃j,t. Next, choose Sj+1 > a so that

Ψj,1(Za) ⊂⊂ ZSj+1 (5.14)

Set b = Sj+1 + 1 and pick c and d so that

ZR
b+2 ⊂⊂ φ

(
ZR

c

)
(5.15)

Φj

(
ZR

c

)
⊂⊂ ZR

d (5.16)

ZR
c ⊂⊂ ψj,1

(
ZR

d

)
(5.17)
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Next, apply Theorem 5.16 to obtain an isotopy Σj,t ∈ τAutω(Cn), which approx-
imate σ̃j,t on ZR

d and the identity on Za. Set Φj+1 = Ψj,1 ◦ Σj,1 ◦ Φj. The above
choices of c and d allow us to approximate on ZR

c

φ ∼ ψj,1 ◦ Φj ∼ Ψj,1 ◦ σ̃j,1 ◦ Φj ∼ Ψj,1 ◦ Σj,1 ◦ Φj = Φj+1 (5.18)

where the first approximation comes from (5j), the second by (5.12), and the third
due to (5.16). Combining this with (5.15) we have

ZR
b+2 ⊂⊂ Φj+1

(
ZR

c

)
(5.19)

Furthermore take the Hamiltonian isotopy

σ̂j,t = ψj,t ◦ (Ψj,t ◦ Σj,t)
−1
∣∣∣
CR

n

and let P̂t be the corresponding Hamiltonian function for σ̂j,t. Moreover let λ

be a cutoff function on CR
n such that it is zero on ZR

b and equal to one outside
ZR

b+1. Finally let ψj+1,t denote the flow map of the vector field whose Hamiltonian
function is λP̂t.

We go through the five conditions for the induction step:

(1j+1) By the definition of Φj+1 we have that

Φj+1(ZRj+1) = Ψj,1 ◦ Σj,1 ◦ Φj(ZRj+1)

The claim follows from the fact that Σj,t approximates the identity on Za and from
the choices of a, Sj+1 in (5.11), (5.14) respectively.

(2j+1) Here we want to estimate

∥Φj+1 − Φj∥Ck(ZRj )
= ∥Ψj,1 ◦ Σj,1 ◦ Φj − Φj∥Ck(ZRj )

By (1j) we have
Φj(ZRj) ⊂ ZSj

The estimate follows from the fact that Ψj,1 and Σj,1 approximate the identity on
ZSj .

(3j+1) A flow map at time zero is the identity.

(4j+1) Because ψj+1,t is obtained by interpolating between the identity on ZR
b and σ̂j,t

outside ZR
b+2, it follows that ψj+1,t(p) = (p) for p near ZR

Sj+1
because b = Sj+1 + 1.

(5j+1) To see that
∥ψj+1,1 ◦ Φj+1 − φ∥Ck(p) < ε(p)

for all p in CR
n we consider separately:

(i) On the complement of (Φj+1)
−1 (ZR

c
)
, we have λ = 1 at Φj+1(p) thanks to

(5.19). Then ψj+1,1 is
σ̂j,1 = ψj,1 ◦ (Ψj,1 ◦ Σj,1)

−1

which together with Φj+1 = Ψj,1 ◦ Σj,1 ◦ Φj reduces this case to (5j).
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(ii) On Φ−1
j

(
ZR

d

)
, we have by the choice of Σj,1 that

Φj+1 = Ψj,1 ◦ Σj,1 ◦ Φj ∼ Ψj,1 ◦ σ̃j,1 ◦ Φj ∼ ψj,1 ◦ Φj (5.20)

which approximates φ by the induction hypothesis (5j). Moreover, this
implies that Ψj,1 ◦ Σj,1 ∼ ψj,1 on ZR

d . Then on

Φj+1 ◦ Φ−1
j

(
ZR

d

)
= Ψj,1 ◦ Σj,1

(
ZR

d

)
we have

σ̂j,1 = ψj,1 ◦
(
Ψj,1 ◦ Σj,1

)−1

∼ ψj,1 ◦
(
ψj,1
)−1

= id

Since
ZR

b+2 ⊂ Φj+1(ZR
c ) ⊂ Φj+1 ◦ Φ−1

j (ZR
d )

this justifies our interpolation ψj+1,t between the identity on ZR
b and σ̂j,t

outside ZR
b+2. Hence ψj+1,1 is either close to the identity (reducing to the

above (5.20)) or equal to

σ̂j,1 = ψj,1 ◦ (Ψj,1 ◦ Σj,1)
−1
∣∣∣
CR

n

which composed with Φj+1 again reduces it to (5j).

(iii) It suffices to consider the above two cases, because by the choice of d in (5.17)
and the approximation ψj,1 ∼ Ψj,1 ◦ σ̃j,1 in (5.12)

ZR
c ⊂⊂ Ψj,1 ◦ Σj,1

(
ZR

d

)
= Φj+1 ◦ Φ−1

j

(
ZR

d

)
it follows

(Φj+1)
−1
(

ZR
c

)
⊂⊂ (Φj)

−1
(

ZR
d

)
This completes the induction step.

Concluding, to see that limj→∞ Φj exists, we underline the connection between
the above induction and the push-out method, see e.g. [For99, Proposition 5.1].
The holomorphic symplectic automorphism Φj+1 ◦ Φ−1

j = Ψj,1 ◦ Σj,1 approximates
the identity on ZRj . Since Rj ≥ j − 1, the sublevel set ZRj exhausts Cn in the limit.
Additionally we have Rj+1 = Sj + 1 > Rj + 2. Choose {ε j}j∈N ⊂ R>0 to have finite
sum such that

0 < ε j+1 < dist(ZRj , Cn \ ZRj+1)

where dist(·, ·) is the distance function on Cq restricted to Cn. Therefore the limit

lim
j→∞

Φj+1 ◦ Φ−1
j

exists uniformly on compacts on

∞⋃
j=1

(
Φj+1 ◦ Φ−1

1

)−1
(ZRj) = Cn
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and
Φ = ( lim

j→∞
Φj+1 ◦ Φ−1

j ) ◦ Φ1 = lim
j→∞

Φj

is a holomorphic symplectic automorphism of Cn with Φ(CR
n ) = CR

n . Moreover, (1j)

and (4j) guarantee that ψj,1 ◦ Φj is Φj on ZR
Rj

. Then (5j) says that Φj approximates

φ on ZR
Rj

and thus in the limit Φ approximates φ. □

5.6 A different real form

Let us consider another antiholomorphic involution σ on M

σ(X, Y, v, w) = (X̄, Ȳ, v̄, w̄)

and the corresponding subgroup Gr = GLn(R) acting on

MR = Mn(R)⊕ Mn(R)⊕ Rn ⊕ (Rn)∗

by the restriction of the G-action. This gives the moment map

µr : MR → Mn(R), (X, Y, v, w) 7→ [X, Y] + vw

Since the complex quotient Cn is Hausdorff and all G-orbits in Ĉ ′
n are closed, the

G-action is proper. Thus Gr also acts properly and freely on Ĉr
n = µ−1

r (−In). Notice
that we consider here the complex Calogero–Moser space C ′

n with a different rank
condition [X, Y] + vw = −In, which is isomorphic to Cn in the main text.

Moreover, the real symplectic form on MR is given by ωr = ω|MR
. Then the real

symplectic reduction Ĉr
n/ Gr is a real symplectic manifold Cr

n equipped with an
induced symplectic form also denoted by ωr.

The above conjugation maps a G-orbit to another G-orbit

σ(g · z) = ḡ · σ(z)

for g ∈ G and z ∈ M. Hence it induces a conjugation on Cn. It is clear that the
conjugation commutes with the Gr-action. From the above we have Ĉr

n = (Ĉ ′
n)

σ, the
fixed-point set of the conjugation on Ĉ ′

n = µ−1(−In). The map ȷ′ : Cr
n → C ′

n takes a
Gr-orbit to the G-orbit containing it.

Ĉ ′
n

σ−−−→ Ĉ ′
ny y

C ′
n

σ−−−→ C ′
n

Ĉr
n

j′−−−→ Ĉ ′
ny y

Cr
n

ȷ′−−−→ C ′
n

Lemma 5.22 The map ȷ′ is surjective.
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Proof Take a σ-stable G-orbit G ·z. We show that it meets Ĉr
n at one point. As

in the proof of Theorem 1.11 using GIT, we see from ∥σ(z)∥ = ∥z∥ that for
z0 ∈ µ−1

1 (0) ∩ Ĉ ′
n there exists h0 ∈ U such that

σ(z0) = h0 · z0

Then
z0 = σ(σ(z0)) = σ(h0 · z0) = h̄0 · σ(z0) = h̄0h0 · z0

which implies that h̄0h0 = In. This in turn gives h−1
0 = h∗0 = h̄0. Then h0 is also

symmetric, thus there exists another symmetric unitary matrix s such that h0 = s2.
Replace z0 by s · z0

σ(s · z0) = s̄s2 · z0 = s · z0

Namely s · z0 ∈ Ĉr
n. □

The rest of the proof for the following is similar to the one for Theorem 1.11.

Theorem 5.23 The complex Calogero–Moser space (C ′
n, ω, σ) is a symplectic complexifi-

cation of the smooth symplectic manifold (Cr
n, ωr).

The computation in [AH25] shows that any algebraic G-invariant on Ĉ ′
n is contained

in the complex Lie algebra generated by the four functions tr Y, tr Y2, tr X3, (tr X)2,
and all formulae appearing in the calculation leading to it come with real coeffi-
cients. This implies the τ-symplectic density property of C ′

n with respect to Cr
n. On

the other hand, the antiholomorphic involution σ induces the complex conjugation
on the algebra generators tr X jYk. Hence the real form Cr

n is the intersection of
the complex Calogero–Moser space C ′

n with Rq (observe that Ĉ ′
n = µ−1(−In) and

C̃n = µ−1(iIn) are different sets in M), where q is the cardinality of a minimal
generating set G for the C-algebra C[Ĉ ′

n]
G with generators of the form tr X jYk.

Therefore the same construction of holomorphic Hamiltonian automorphisms to
approximate Hamiltonian diffeomorphisms on Cr

n stays intact. However we do not
know whether Cr

n has trivial first de Rham cohomology, hence we approximate
only Hamiltonian diffeomorphisms.

Theorem 5.24 Let φ be a Hamiltonian diffeomorphism of the symplectic manifold (Cr
n, ωr).

Then for a positive continuous function ε on Cr
n, there exists a holomorphic symplectic

automorphism Φ ∈ τAutω(C ′
n) such that

∥Φ − φ∥Ck(p) < ε(p)

for all p in Cr
n.
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Chapter 6

Bounds for holomorphic matrix
factorization

The main theme of this chapter is Linear Algebra questions when the matrices are
not “constant” matrices with entries in the field of complex numbers but rather
holomorphic functions. These interesting problems of holomorphically depending
Linear Algebra can be formulated as the study of algebraic properties of the general
linear groups GLn(O(X)), the special linear groups SLn(O(X)) and the symplectic
groups Sp2n(O(X)) over the ring of holomorphic functions O(X) on a reduced
Stein space X. In this setting of matrix groups over rings our results can be viewed
as results in K-theory, just for the special ring R = O(X).

Our first result is concerned with the classical K-theoretic question about the
K1 groups of the ring R = O(X) and bounded generation of the corresponding
elementary subgroups with concrete bounds. Since we assume that the Stein
space X has finite dimension n (defined as the complex dimension of the manifold
X \ Sing(X), called the smooth part of X), these rings are interesting rings since
they have finite Bass stable rank bsr(O(X)) = ⌊ 1

2 dim X⌋ + 1 as established by
Alexander Brudnyi in [Bru19].

Theorem 6.1 (Holomorphic Factorization) Let n, d be natural numbers. Then

(a) there exists a minimal upper bound t = t(n, d) ∈ N such that every null-
homotopic holomorphic mapping f : X → Sp2n(C) from a d-dimensional
reduced Stein space X factorizes into a product of at most t unitriangular
factors. Moreover, we have

t(n, d) ≤ t(1, d).

(b) t(n, 1) = 4 and t(n, 2) ≤ t(1, 2) ≤ 5 for all n ≥ 1.

The straightforward generalizations of our results to non-reduced Stein spaces can
be achieved as in the aforementioned paper by Brudnyi. Here we consider only
reduced Stein spaces. Our results rely on a combination of K-theoretic methods
(Theorem 6.8) and deep results from complex analysis, the solution to the so-called
Gromov-Vaserstein problem (see Theorem 6.4), about unitriangular (either upper
triangular with 1 along the diagonal or lower triangular with 1 along the diagonal)
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6. Bounds for holomorphic matrix factorization

factorization of holomorphic matrices. Since Theorem 6.8 is formulated in [VSS11]
only for the so-called UL factorization, i.e., for one with even number of factors,
we give a complete proof for any (also odd) number of factors in section 6.1.3.

Next we consider our first application: The product of exponentials for the above
mentioned groups GLn(O(X)), SLn(O(X)), Sp2n(O(X)). We give a simple lower
bound for all of these cases, prove the existence of an upper bound for the sym-
plectic case, and give new upper bounds for the symplectic case for Stein spaces of
dimension 1 and dimension 2.

Theorem 6.2 (Product of Exponentials) Let n, d be natural numbers. Then

(a) there exists a minimal upper bound e = eSp(2n, d) ∈ N such that every
null-homotopic holomorphic mapping f : X → Sp2n(C) from a reduced Stein
space X of dimension d is a product of at most e exponentials, that is, there
exist A1, ..., Ae : X → sp2n(C) such that

f (x) = exp(A1(x)) · · · exp(Ae(x)).

(b) 2 ≤ eSp(2n, 1) ≤ eSp(2n, 2) ≤ 3.

We give another result in this direction, namely (Proposition 6.14) that the number
of exponentials for the general linear group over the ring O(X) of holomorphic
functions on a Stein space X is at least 2. For 2 × 2 matrices this has been proved
before by Kutzschebauch and Studer in [KS19].

Our second application of the existence of uniform factorization is the fact that
the path-connected component of the group Sp2n(O(X)), which is equal to the
elementary symplectic group Ep2n(O(X)), admits Kazhdan’s property (T) for
n ≥ 2. The corresponding result for the path-connected components of the groups
SLn(O(X)), n ≥ 3 is due to Ivarsson and Kutzschebauch [IK14].

Theorem 6.3 (Kazhdan’s Property (T)) Let n ≥ 2 and let X be a Stein manifold
with finitely many connected components. Then Ep2n(O(X)) = (Sp2n(O(X)))0
has Kazhdan’s property (T).

Since the solution to the Gromov-Vaserstein problem involves the so-called Oka
principle, called the most beautiful principle in analysis by René Thom, it is natural
to compare the K-theoretic questions for the ring O(X) with the corresponding
questions for the ring C(X) of continuous complex-valued functions on the Stein
space X. More precisely, the Oka principle vaguely stated says that under cer-
tain conditions, the existence of a continuous solution implies the existence of
a holomorphic solution. Let t(n, d, C,O) (see [IK12b]) be the minimal number
such that all null-homotopic holomorphic mappings, from a Stein space of dimen-
sion d into SLn(C), factorize as a product of t(n, d, C,O) continuous unitriangular
matrices (starting with a lower triangular one) and let t(n, d,O) be the minimal
number that all null-homotopic holomorphic mappings, from Stein spaces of
dimension d into SLn(C), factorize as a product of t(n, d,O) holomorphic unitrian-
gular matrices (starting with a lower triangular one). In [IK12b] it is proved that
t(2, 1, C,O) = t(2, 1,O) = 4 and that if a fixed holomorphic matrix A ∈ SL2(O(X))
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factorizes as a product of N continuous unitriangular matrices, then it factor-
izes as a product of N + 2 holomorphic unitriangular matrices. Moreover, it is
proved that the famous Cohn example [Coh66] A0 ∈ SL2(O(C2)) factorizes as
a product of 4 continuous unitriangular matrices, but not less than 5 holomor-
phic unitriangular matrices. Thus the question remained whether t(2, 2, C,O) is
equal to 4 or to 5. In the last section of this paper, we give an answer by proving
t(2, 2, C,O) = t(2, 2,O) = 5.

For matrices of bigger size it follows from [IK12a], bsr(O(X)) = 1 when dim X = 1
and [VSS11] that t(n, 1, C,O) = t(n, 1,O) = 4 for all n ≥ 3. Note that 4 ≤
t(n, 2, C,O) ≤ t(n, 2,O) ≤ 5 (see [Bru19, Remark 1.2]). Also if we denote the
corresponding numbers for the symplectic group Sp2n with the subscript symp,
one has by Theorem 6.8

4 ≤ tsymp(2n, 2, C,O) ≤ tsymp(2n, 2,O) ≤ 5

for all n ≥ 2.

6.1 Preparation

6.1.1 Elementary Generators

Consider n × n matrices with entries in a commutative ring R with 1. Let Eij, i, j =
1, . . . , n be the matrix with 0 everywhere except at the (i, j) entry with 1. Let I be
the n × n identity matrix. Then I + rEij is upper diagonal with 1 along the diagonal
for i < j, r ∈ R, and lower diagonal with 1 along the diagonal for i > j, r ∈ R. A
product of matrices I + rEij for i < j, r ∈ R is upper triangular with 1 along the
diagonal, similarly for i > j lower triangular. These upper and lower triangular
matrices with 1 along the diagonal are called unitriangular. Let En(R) be the group
generated by I + rEij, i ̸= j, r ∈ R, and let SLn(R) be the set of matrices with
determinant 1. Over the complex numbers, En(C) = SLn(C).

Next, the symplectic group Sp2n(C) can be represented as isometries of C2n with
respect to a nondegenerate, skew-symmetric bilinear form. A convenient choice for
the Gramian matrix of this bilinear form is

J =
(

0 I
−I 0

)
, (6.1)

where 0 denotes the n × n zero matrix. We index rows and columns by 1, 2, . . . , n,
−1,−2, . . . ,−n. In the block notation

M =

(
A B
C D

)
∈ Sp2n(C),

the symplectic condition MJMT = J gives rise to three simple types of J-symplectic
matrices:

• (i):
(

I B
0 I

)
, upper triangular with symmetric B = BT.
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6. Bounds for holomorphic matrix factorization

• (ii):
(

I 0
C I

)
, lower triangular with symmetric C = CT.

• (iii):
(

A 0
0 D

)
, block diagonal with invertible A ∈ GLn(C) and D = (A−1)T.

If block A in type (iii) is upper triangular, then D = (A−1)T is lower triangular. In
fact, A and D are simultaneously upper or lower triangular in another basis. This
new basis can be obtained from the old one by reversing the order of the last n
basis elements, giving a Gramian matrix

J̃ =
(

0 L
−L 0

)
, (6.2)

where L is the n × n matrix with 1 along the skew-diagonal. Notice that symplectic
matrices of type (i) and (ii) remain upper or lower triangular with respect to J̃,
respectively.

Over the ring R, the elementary J-symplectic generators for the elementary sym-
plectic group Ep2n(R) are similar to those for the special linear group. For example,
type (i) corresponds to I2n + r(Ei,−j + Ej,−i), i ̸= j and I2n + rEi,−i, while type (iii)
corresponds to I2n + r(Eij − E−j,−i), i ̸= j [Car72, p. 186]. The subgroup U of upper
unitriangular J-symplectic matrices are generated by(

I r(Eij + Eji)
0 I

)
,
(

I rEii
0 I

)
,
(

I + rEij 0
0 I − rEji

)
, i < j, r ∈ R.

Notice that the last form has upper triangular counterpart as J̃-symplectic matrices.
Similarly one finds the generators for the subgroup U− of lower unitriangular J-
symplectic matrices. From now on, we shall abbreviate J-symplectic as symplectic.
Over the complex numbers, Ep2n(C) = Sp2n(C).

6.1.2 Factorization of holomorphic mappings into Sp2n(C)

Let X be a finite-dimensional Stein space and let O(X) be the ring of holomorphic
functions on X. Then Sp2n(O(X)) denotes the symplectic group with entries in
O(X). Interpreting this group as holomorphic mappings from X to Sp2n(C), we
denote by (Sp2n(O(X)))0 the path-connected component containing the identity.
From [Sch25, Theorem 1.1] we cite the following

Theorem 6.4 Let n, d be natural numbers and let X be a reduced Stein space of di-
mension d. Then Ep2n(O(X)) = (Sp2n(O(X)))0. Moreover, there is a natural num-
ber K(n, d), depending only on n and d, such that each null-homotopic matrix M, i.e.
M ∈ (Sp2n(O(X)))0, can be written as a product of no more than K(n, d) symplectic
matrices of type (i) and (ii).

Remark 6.5 Observe that elementary matrices in Ep2n(O(X)) of type (i) and (ii)
are null-homotopic, since we can multiply the off-diagonal entries by t, that is,(

In tB
0 In

)
and

(
In 0
tC In

)
.
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Therefore null-homotopy of M ∈ Sp2n(O(X)) is a necessary condition. In the
case where X is contractible, every matrix is null-homotopic. The same is true
if X is a Stein space of dimension d ∈ {1, 2}: On the one hand, π1(Sp2n(C)) =
π2(Sp2n(C)) = 0 (see [Hal15]) and on the other, X is homotopy equivalent to a CW
complex of real dimension d (see [For17, Corollary 3.11.2]).

Remark 6.6 When dim X = 1 (or dim X = 2), we will see in Theorem 6.11 that 4
(or 5) factors are sufficient for the unitriangular factorization, that is, factoring into
the unipotent subgroups U±. However, the set of elementary factors in Theorem
6.4 are taken from type (i) and (ii), and only the existence of an upper bound
depending on d and n is guaranteed. For the same factorization over a field, 5
factors are optimal [JLX22]. Thus we find it natural to ask the following question.

Problem 6.7 Let X be a Stein space of dimension d. Is there a bound for the optimal
number K(n, d) of factorizing a null-homotopic holomorphic mapping from X to
Sp2n(C) into factors of type (i) and of type (ii), such that K(n, d) is independent of
n?

6.1.3 Reduction to smaller matrices

To obtain factorization estimates for holomorphic matrices of arbitrary size, we
will make use of the Tavgen reduction. This appears in the setting of elementary
Chevalley groups, see [VSS11] and references therein for notation and a background
on Chevalley groups. Let Φ be a reduced irreducible root system of rank l ≥ 2
and let R be a commutative ring with 1. We choose an order on Φ and a system of
fundamental roots Π = {α1, α2, . . . , αl}. Each root α ∈ Φ is an integral sum of the
fundamental roots

α =
l

∑
i=1

ki(α)αi,

where the integer coefficients ki(α) are either all ≥ 0 or all ≤ 0. For r = 1 and r = l,
we define the following subsets of Φ

∆r = {α ∈ Φ : kr(α) = 0},
Σr = {α ∈ Φ : kr(α) > 0}, Σ−

r = {α ∈ Φ : kr(α) < 0}.

∆r is itself a root system of rank l − 1. On the level of Dynkin diagram, we obtain
∆r from Φ by taking away the first (r = 1) or the last (r = l) fundamental root.
The elementary Chevalley group E(Φ, R) of type Φ over R is generated by root
subgroups Xα, α ∈ Φ

E(Φ, R) = {xα(r) | α ∈ Φ, r ∈ R}.

The positive unipotent subgroup U(Φ, R) is generated by the root subgroups of
positive roots

U(Φ, R) = {xα(r) | α ∈ Φ+, r ∈ R}.

97



6. Bounds for holomorphic matrix factorization

Similarly, U−(Φ, R) = {xα(r) | α ∈ Φ−, r ∈ R}. The following theorem was
originally proved by Oleg Tavgen and adapted in [VSS11], where the number of
factors is even. For our estimates, we need the same result allowing odd number
of factors. We remark that the shape of the starting factor, upper or lower, is also
immaterial.

Theorem 6.8 (Tavgen-VSS) Let Φ be a reduced irreducible root system of rank l ≥ 2
and let R be a commutative ring with 1. Suppose that for subsystems ∆ = ∆1, ∆l of rank
l − 1 the elementary Chevalley group E(∆, R) admits a unitriangular factorization with L
factors

E(∆, R) = U−(∆, R)U(∆, R) · · ·U±(∆, R).

Then the elementary Chevalley group E(Φ, R) admits a unitriangular factorization with
the same number of factors

E(Φ, R) = U−(Φ, R)U(Φ, R) · · ·U±(Φ, R).

Proof We take

Y = U−(Φ, R)U(Φ, R) · · ·U±(Φ, R).

Y is a nonempty subset of E(Φ, R), in particular it contains 1. Since the group
E(Φ, R) is generated by the following root elements X = {xα(r) | α ∈ ±Π, r ∈
R} ⊂ E(Φ, R). Notice that the generating set X is symmetric, i.e. X−1 = X. We
claim that xα(r)Y ⊂ Y for α ∈ ±Π: Since l ≥ 2, α lies in at least one of the
subsystems ∆1, ∆l . Suppose that α belongs to ∆ = ∆r, then we consider the Levi
decomposition

U(Φ, R) = U(∆, R)⋉ E(Σ, R), U−(Φ, R) = U−(∆, R)⋉ E(Σ−, R),

where Σ = Σr and E(Σ, R) = ⟨xα(r) | α ∈ Σ, r ∈ R⟩. Since U±(∆, R) normalizes
E±(Σ, R) [Car72, Theorem 8.5.2], we can rewrite Y as

Y = U−(Φ, R)U(Φ, R) · · ·U±(Φ, R)
= U−(∆, R)E(Σ−, R)U(∆, R)E(Σ, R) · · · U±(∆, R)E(Σ±, R)
=
(
U−(∆, R)U(∆, R) · · ·U±(∆, R)

)
E(Σ−, R)E(Σ, R) · · · E(Σ±, R)

= E(∆, R) E(Σ−, R)E(Σ, R) · · · E(Σ±, R),

where the last step follows from the assumption. For α ∈ ∆, xα(r) is an element in
E(∆, R), hence xα(r)Y ⊂ Y.

Lemma 6.9 shows that Y = E(Φ, R). □

The proof of the following lemma is an easy exercise.

Lemma 6.9 Let G be a group and Y ⊂ G be a nonempty subset. Given a symmetric,
generating subset X of G, if XY ⊂ Y, then Y is the group G.
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6.2 Number of unitriangular factors

In this section, we prove Theorem 6.1. The first part of (a) is Theorem 6.4 and the
second part of (a) follows from Theorem 6.8.

Before we prove part (b), we restate a result from [IK12b].

Theorem 6.10 Let X be a two-dimensional Stein space and let f : X → SL2(C) be a
holomorphic mapping. Then there exist holomorphic mappings g1, . . . , g5 : X → C such
that

f (x) =
(

1 0
g1(x) 1

)(
1 g2(x)
0 1

)(
1 0

g3(x) 1

)(
1 g4(x)
0 1

)(
1 0

g5(x) 1

)
.

Let us formulate part (b) of Theorem 6.1 in more detail.

Theorem 6.11 Let X be a reduced Stein space of dimension 1 or 2, and let f be a holomor-
phic mapping from X to Sp2n(C). Then there exist holomorphic mappings

g1, g2, . . . , gt : X → Cn(2n−1)

such that

f (x) = M1(g1(x))M2(g2(x)) · · · Mt(gt(x)),

where t = 4 for dim X = 1 and t ≤ 5 for dim X = 2.

Here Mj, j ∈ N, is respectively defined as

Mj(gj(x)) =

 1 0
. . .

gj(x) 1

 and Mj(gj(x)) =

1 gj(x)
. . .

0 1

 ,

for j odd and j even, respectively.

Proof According to the above theorem from [IK12b], Theorem 6.1 (a) and Remark
6.5, we have

t(n, 2) ≤ t(1, 2) ≤ 5.

The ring O(X) has Bass stable rank 1 if X is a one-dimensional Stein space (see e.g.
[Bru19, Theorem 1.1]). Then t(n, 1) = 4 by [VSS11, Theorem 1]. □

6.3 Number of exponential factors

Let A be a m-convex Fréchet algebra with 1 (see [Mic52]). The exponential of a
n× n matrix A is given by the exponential series. Let Expn(A) denote the subgroup
of GLn(A) generated by exponentials and e(n,A) be the minimal number such
that any matrix in Expn(A) factorizes as a product of e(n,A) exponentials. Let
t(n,A) be the minimal number such that any element in the elementary Chevalley
group E(Φ,A) ⊂ GLn(A) factorizes as a product of t(n,A) unitriangular matrices.
When no such number exists, set t(n,A) = ∞.
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Proposition 6.12

e(n,A) ≤ ⌊1
2

t(n,A)⌋+ 1.

Proof Observe that for a nilpotent matrix N,

log(I + N) =
∞

∑
k=1

(−1)k

k
Nk

is a finite sum. Thus every unipotent matrix A can be written as the exponential of
log A. Also under conjugation an exponential remains an exponential, since

BAB−1 = exp(B · log A · B−1)

for any invertible n × n-matrix B. To estimate the number of exponential factors,
we use a trick presented in [Bru22, Lemma 2.1]. Let K be an odd natural number
and U1U2 · · ·UK is a product of K unitriangular factors, where the factors with
odd (respectively even) indices are upper (respectively lower) unitriangular. Let
Ψ2k+1 := U1U3 · · ·U2k+1 denote the product of the first 2k + 1 ≤ K upper unitrian-
gular factors and note that Ψ2k+1 is upper unitriangular, thus exponential as well.
We prove the following formula

K

∏
i=1

Ui =

 K−1
2

∏
i=1

Ψ2i−1U2iΨ−1
2i−1

ΨK

by induction on K. For K = 1, this is trivially true. Let K > 1 be an odd natural
number. By the induction hypothesis, we may assume that the formula is true for
K − 2. Therefore

K

∏
i=1

Ui =

(
K−2

∏
i=1

Ui

)
UK−1UK

=

 K−3
2

∏
i=1

Ψ2i−1U2iΨ−1
2i−1

 ΨK−2UK−1UK︸ ︷︷ ︸
=(ΨK−2UK−1Ψ−1

K−2)ΨK−2UK

=

 K−1
2

∏
i=1

Ψ2i−1U2iΨ−1
2i−1

ΨK,

and the last equality is true, since ΨK = ΨK−2UK.

By the introducing paragraph of the proof, the formula implies the estimate for
odd K. If K is even, then we simply have an additional lower unitriangular factor
and thus an additional exponential and this yields the estimate for even K. □

Proof (Proof of Theorem 6.2) Part (a) follows from part (a) of Theorem 6.1 and
the fact, that every unitriangular matrix can be written as an exponential.

For part (b), we set A = Sp2n(O(X)) and apply part (b) of Theorem 6.1 and
Proposition 6.12 to obtain the upper bounds.
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The lower bound follows from the fact, that the exponential map exp : sp2n(C) →
Sp2n(C) is not surjective.

Finally, note that eSp(n, d) ≤ eSp(n, d + 1) for every n, d ∈ N, since a mapping
f : X → Sp2n(C) can be considered as a mapping X × C → Sp2n(C), (x, z) 7→ f (x).
Hence eSp(n, 1) ≤ eSp(n, 2). □

Note that Theorem 6.2, part (a) has an analogue for the special linear group SLn(C)
(cf. [DK19]), that is, there exists a natural number e = eSL(n, d) such that every
null-homotopic holomorphic mapping X → SLn(C) from a d-dimensional Stein
space is a product of at most e exponentials. Let eSL(n,O(X)) denote the minimal
number such that every null-homotopic holomorphic map X → SLn(C) from a
fixed d-dimensional Stein space X is a product of at most eSL(n,O(X)) exponentials.
Clearly, we have eSL(n,O(X)) ≤ eSL(n, d).

Corollary 6.13 Let n be a natural number and X a finite-dimensional reduced Stein space.
Then

e(n,O(X)) ≤ eSL(n,O(X)).

Proof For f ∈ GLn(O(X)) null-homotopic, composition with the determinant
det ◦ f : X → C∗ is also null-homotopic. Thus there exists a holomorphic function
g : X → C such that exp ◦g = det ◦ f . Since exp(− g

n In) f is in SLn(O(X)) and for
every matrix A the following equation is satisfied

exp
( g

n
In

)
exp(A) = exp

( g
n

A
)

the claim follows. □

Proposition 6.14 Let X be a Stein space with dim X > 0 and let n ≥ 2. Then
e(n,O(X)) ≥ 2.

Proof The proof is essentially the same as in [Bru22]. Let X′ ⊂ X be an irreducible
component with dim X′ > 0. Then there exist two distinct points x1, x2 ∈ X′,
we choose a holomorphic function h ∈ O(X) and x1, x2 ∈ X′ such that h(x1) =
0, h(x2) = 2πi. Set g = exp h. Let

T =

(
g 1
0 1

)
.

The same argument in [Bru22] shows that there does not exist S ∈ M2(O(X)) with
S2 = T and in particular, T does not have a logarithm. So e(2,O(X)) ≥ 2. For
n > 2, fix M ∈ C \ {0, 1} and set

Tn =

(
MIn−2 0

0 T

)
.

Suppose that Tn had a logarithm, then there would exist

Sn =

(
L1 L2
L3 L4

)
∈ Mn(O(X))
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with the same block partition as Tn and such that S2
n = Tn. Then we have SnTn =

TnSn, which implies that

L2(T − MI2) = 0 and (T − MI2)L3 = 0.

On X′ \ (exp h)−1(M), T − MI2 is invertible, so L2 = L3 = 0. By the identity
theorem, L2 and L3 vanish on X′. But this would imply that L2

4 = T, a contradiction.
Hence e(n,O(X)) ≥ 2 for all n ≥ 2. □

6.4 Kazhdan’s property (T)

Let G be a topological group, K ⊂ G, ε > 0, H a Hilbert space, and (π, H) a
continuous unitary G-representation. A vector v ∈ H is called (K, ε)-invariant if
∥π(g)v − v∥ < ε∥v∥ for all g ∈ K. We say that G has Kazhdan’s property (T), if there
exist compact K ⊂ G and ε > 0 such that every continuous unitary G-representation
with a (K, ε)-invariant vector contains a nonzero G-invariant vector. (K, ε) is called
a Kazhdan pair for G. The symplectic group Sp2n(R) over commutative ring R is
called boundedly elementary generated, if there exists an integer ν such that every
element is a product of at most ν elementary symplectic matrices. Theorem 6.3 is a
symplectic version of [IK14, Theorem 2.6].

Proof (Proof of Theorem 6.3) According to Theorem 6.4 and the fact that each
factor of type (i) or (ii) is a product of at most n(n + 1)/2 elementary symplectic
generators, Ep2n(O(X)) is boundedly elementary generated. A finite set of holo-
morphic functions which generates a dense subring of O(X) can be constructed as
follows. First, embed X into CN using Remmert’s embedding theorem. Next, the
set S = {z1, z2, . . . , zN ,

√
2, i} generates a dense subring of C[z1, z2, . . . , zN ]. Then,

C[z1, z2, . . . , zN ]|X is dense in O(X) by the Oka-Weil theorem. Hence, S generates
a dense subring of O(X). Now [Neu03, Theorem 1.1] gives a Kazhdan pair for
Ep2n(O(X)). □

From its definition, Kazhdan’s property (T) is preserved under closure. As in [IK14,
Theorem 3.1], we can relate Kazhdan’s property (T) of Sp2n(O(X)) to that of its
quotient over the closure of the elementary group, with identical proof.

Theorem 6.15 Let n ≥ 2 and let X be a Stein space with finite embedding dimension.
Then Sp2n(O(X)) has Kazhdan’s property (T) if and only if

Sp2n(O(X))/Ep2n(O(X))

has Kazhdan’s property (T).

6.5 Continuous versus holomorphic factorization

In the following we present an example showing that t(2, 2, C,O) = 5. Let X be a
two-dimensional Stein space, and let f : X → SL2(C) be a holomorphic mapping.
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Then f can be written as a product of 5 unitriangular holomorphic matrices by
Theorem 6.11. In [IK12b] one finds an example which factorizes into 5 unitriangular
holomorphic factors and 4 unitriangular continuous factors. Here we aim to give
another example, which factorizes into 5 unitriangular holomorphic factors and 5
continuous factors. To this end, we first study what it means to have a factorization

with 4 factors. Denote f by
(

a b
c d

)
, where a, b, c, d ∈ O(X) and ad − bc = 1. If

there exist mappings g1, g2, g3, g4 : X → C so that f can be decomposed as

f =

(
a b
c d

)
=

(
1 0
g1 1

)(
1 g2
0 1

)(
1 0
g3 1

)(
1 g4
0 1

)
. (6.3)

Bring the first and the fourth factor to the left side, and carry out the multiplications(
a b − ag4

c − ag1 −g4(c − ag1) + d − bg1

)
=

(
1 + g2g3 g2

g3 1

)
.

In case a ̸= 0, the first three equations read

a =1 + g2g3,

g4 =
1
a
(b − g2),

g1 =
1
a
(c − g3),

and the fourth equation follows from the other three. If moreover a ̸= 1, any choice
of g3 : {x ∈ X | a(x) /∈ {0, 1}} → C∗ gives a factorization in this part of X. The
fiber of the fibration f ∗Φ4 (see [IK12b]) over {x ∈ X | a(x) /∈ {0, 1}} is C∗, where

Φ4 : C4 → SL2(C), (z1, z2, z3, z4) 7→
(

1 0
z1 1

)(
1 z2
0 1

)(
1 0
z3 1

)(
1 z4
0 1

)
.

When a = 0, then

1 + g2g3 = 0, g2 = b, g3 = c, 1 = −cg4 + d − bg1.

Notice that g2 and g3 are prescribed as b and c, respectively, and the fiber of f ∗Φ4
here is C. For a = 1, the fiber is the cross of axis.

Consider the following holomorphic mapping f : C2 → SL2(C)

f (z, w) =

(
(zw − 1)(zw − 2) (zw − 1)z + (zw − 2)z2

h1(z, w) h2(z, w)

)
,

where the functions in the second row are chosen such that f (z, w) has determinant
1. The existence of such polynomial functions follows from Hilbert’s Nullstellensatz,
or if one is looking for holomorphic functions from a standard application of
Theorem B. For this observe that the functions in the first row have no common
zeros.

Suppose that there were continuous g1, g2, g3, g4 : C2 → C such that f factorizes
as in Equation (6.3). Then on zw = 1, g2(z, w) = −z2 and on zw = 2, g2(z, w) = z.
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6. Bounds for holomorphic matrix factorization

Denote by ξ1, ξ2 the roots of (D − 1)(D − 2) = 1, and choose a continuous curve
γ : [0, 1] → C \ {ξ1, ξ2} such that γ(0) = 1 and γ(1) = 2. Then g2 induces a family
of continuous self-maps of C∗

F : [0, 1]× C∗ → C∗, (t, θ) 7→ g2(θ,
1
θ

γ(t)).

connecting between F(0, θ) = −θ2 and F(1, θ) = θ. But since these two self-maps
of C∗ have different degrees, we find a contradiction.
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(EMS), Zürich, 2007, pp. x+92.

[FFW20] John Erik Fornæss, Franc Forstnerič, and Erlend F. Wold. “Holomor-
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