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Introduction

As economic data becomes more abundant and diverse, and new technologies grow more power-

ful and capable, economic analysis increasingly relies on the application of innovative method-

ologies to enhance our understanding of complex questions across various economic topics. In

the following three chapters, I contribute to these developments by implementing innovative

approaches in the fields of policy evaluation, income mobility, and monetary policy analysis,

employing advanced statistical techniques, distributional modeling, and Natural Language Pro-

cessing. All three studies emphasize the importance of moving beyond traditional aggregate

metrics to capture more granular distributional dynamics and to improve upon past measures.

The first chapter introduces an extension to the synthetic control method, which was orig-

inally proposed by Abadie and Gardeazabal (2003) and Abadie, Diamond, et al. (2010), to

evaluate effects across the distribution. Traditional synthetic control methods focus on average

treatment effects, even when the treated and control units comprise a sizable number of individ-

ual entities. This chapter proposes a distributional synthetic control utilizing information that

is available on a finer granularity and capturing heterogeneous effects across different thresholds

of the cumulative distribution function.

The second chapter, which is joint work with Jonas Meier, proposes a new estimator of

the conditional distribution of multivariate outcomes given covariates. The estimator builds on

the Local Gaussian Representation from Chernozhukov, Fernández-Val, and Luo (2023) and

employs distribution regression and a conditional copula with a copula parameter that is local

in the value of the outcome. The proposed method allows for flexible, semi-parametric control

of covariates, enabling the analysis of multivariate counterfactual distributions.

The third chapter is joint work with Alexandra Piller and Larissa Schwaller. The chapter

explores the increasingly critical role of central bank communication in monetary policy using

state-of-the-art Natural Language Processing techniques. In recent years, high-frequency mon-

etary policy surprise series have been used as external instruments to identify monetary policy

effects. This chapter improves upon these surprise series by employing a Natural Language

Processing model that is based on transformers, an architecture introduced in a groundbreak-
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ing paper by Vaswani et al. (2017). The model is trained to isolate the component of the

surprises driven solely by central bank communication. This further required the creation of a

text dataset comprising statements and speeches issued by the Federal Reserve Board through

web scraping.

As mentioned before, the first chapter builds on the pioneering work by Abadie and Gardeaz-

abal (2003), Abadie, Diamond, et al. (2010), and Abadie, Diamond, et al. (2015). In their

seminal papers, the synthetic control method was introduced, a straightforward and intuitive

tool for policymakers to analyze policy interventions. Typically, the interventions of interest

address a particular region, which are then defined as the units. With the synthetic control

method, a synthetic control unit is constructed that replicates the treated unit and its behavior

in the absence of treatment. Specifically, the synthetic control unit is created using a weighted

average of other control units that are never treated. Comparing the synthetic control unit to

the observed behavior of the treated unit yields an estimate of the average treatment effect.

Traditional applications of synthetic control methods typically focus on the aggregate unit

level and its outcomes (e.g., GDP for regions). However, treated and control units potentially

comprise a sizable number of individual entities, and the outcome of interest might be measured

at the individual level as opposed to an aggregate, regional level (e.g., the income of households

within a region). In such cases, the variable is often aggregated to employ the synthetic control

method, which may obscure interesting distributional effects. The proposed method addresses

this by computing effects across the entire distribution rather than relying on a single aggregate

measure, thereby providing a more granular understanding of policy impacts and enabling the

study of heterogeneous effects.

The suggested approach naturally extends the synthetic control method to such a distribu-

tional setting. The weights of the synthetic control unit are estimated at different thresholds of

the cumulative distribution function, offering a flexible approach to replicate the distribution

of the treated unit. For estimation, the existing and well-established theoretical results and

estimation procedures from the vast synthetic control literature can still be relied on, making

the proposed method versatile and straightforward to implement.

The proposed approach further contributes to new literature on distributional synthetic

control methods, such as those proposed by Chen (2020) and Gunsilius (2023). Crucially, the

estimator proposed in this chapter, like that of Chen (2020), allows the weights of the synthetic

control unit to vary across different thresholds of the outcome of interest. Results from the

application and a simulation study presented in the chapter provide evidence that allowing

for this flexibility is essential for the synthetic unit to accurately capture the treated unit’s
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underlying distribution.

The proposed method is applied to a policy intervention in Switzerland, analyzing the

effects on the distribution of wages. In particular, the chapter examines the introduction of

the minimum wage in Neuchâtel, a canton in Switzerland. Consistent with the past findings

of Berger and Lanz (2020), the analysis reveals a positive effect at the lower part of the wage

distribution without notable changes in work hours or unemployment.

In the second chapter, another estimator for analyzing distributions is proposed. Specifically,

a new method for the analysis of multivariate counterfactual distributions is introduced, build-

ing on the idea of the Local Gaussian Representation suggested in Chernozhukov, Fernández-

Val, and Luo (2023) and extended by Fernández-Val et al. (2024). The method involves a

two-step procedure. In the first step, the univariate conditional distributions of the outcomes

are estimated via distribution regression. In the second step, we estimate a conditional cop-

ula of the outcomes, imposing a copula parameter that varies locally with the outcome value.

Thereby, covariates can be incorporated flexibly to control for different factors, allowing for the

estimation of conditional multivariate distributions.

As a result, the estimated conditional multivariate distribution becomes a valuable tool

for gaining deeper insights into intergenerational income mobility, a key determinant of long-

term economic equality. Many commonly used measures in the intergenerational mobility

literature are a direct function of the joint distribution and, thus, can be directly computed

from the estimated conditional joint income distribution. In particular, this chapter focuses

on rank-based measures like rank-rank correlations, conditional expected ranks, and transition

matrices.

Various socioeconomic factors influence intergenerational income mobility (see, for exam-

ple, Cholli and Durlauf (2022) and Mogstad and Torsvik (2023) for a detailed discussion).

Traditional approaches often face limitations when accounting for covariates because they rely

on a vast number of observations or strong parametric assumptions. The proposed approach

overcomes these challenges by employing a flexible, semi-parametric model to account for co-

variates, computing different conditional mobility measures from the conditional multivariate

distributions.

The method is further applied to analyze intergenerational income mobility using Swiss and

U.S. data. The analysis primarily focuses on the Swiss case due to better data availability

and fewer existing studies compared to the U.S. Findings indicate that mobility differs with

the share of income contributed by the father. For sons, the probability of moving upwards

increases with the father’s income share, but for daughters, this probability of moving upwards
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tends to decrease with the father’s income share. In general, we find great differences in income

mobility between sons and daughters, and average hours worked play an important role in

driving these results.

The third and final chapter improves upon traditional monetary policy surprise measures by

extending available text data and employing Natural Language Processing methods. Since the

seminal work by Gertler and Karadi (2015), high-frequency price changes within a narrow time

window around monetary policy announcements, referred to as market-based surprises, have

been frequently used as an instrument to identify causal effects of monetary policy. However,

recent research has raised concerns about their suitability, demonstrating that these market-

based surprises suffer from weak relevance and endogeneity issues. The last chapter addresses

these issues, constructing an alternative surprise series.

The weak relevance is addressed by creating a comprehensive text data set that incorporates

not only the Federal Open Market Committee announcements but also policy-relevant speeches

by the Federal Reserve Board chair and vice chair. To identify speeches that discuss monetary

policy issues and are therefore relevant, the words in each speech is analyzed using the dictionary

from Gardner et al. (2022).

The endogeneity issue is tackled by employing new Natural Language Processing techniques

to filter out the component of surprises driven solely by central bank communication. Specifi-

cally, a large language model is trained to predict the monetary policy surprises using the text

from Federal Open Market Committee announcements and Federal Reserve speech transcripts.

As mentioned earlier, the language model is based on the transformer architecture introduced in

the seminal paper by Vaswani et al. (2017). Following this process, a language-driven surprise

series for the analysis of monetary policy effects is constructed. The findings demonstrate that

language-driven surprises mitigate endogeneity concerns and produce impulse responses that

align more closely with conventional economic theories than traditional market-based measures.

In conclusion, the three studies collectively advance our understanding of complex economic

debates through innovative analytical approaches. From distributional synthetic control meth-

ods and copula regression to natural language process-driven monetary policy analysis, the

three chapters demonstrate the potential of these novel analytical tools in addressing challeng-

ing economic questions. By leveraging these advanced methodologies, the research bridges gaps

in existing literature and offers insights for policymakers, academics, and practitioners.



Chapter 1

A Synthetic Control Method for the
Analysis of Effects across the Distribution

Abstract

This paper extends the synthetic control method to evaluate distributional effects. Synthetic
control methods are commonly employed for policy interventions on an aggregate unit level,
where the treated and control units typically comprise a sizable number of individual entities.
If interest lies in a variable measured at the individual level, there is the opportunity to analyze
the effects across the distribution and uncover heterogeneous treatment effects. The proposed
synthetic control method introduces a novel approach for deriving such distributional effects.
Crucially, the weights of the synthetic unit depend on the position within the distribution, such
that the weighted sum of control units is allowed to vary across the distribution. Furthermore,
the proposed method modifies how individual values are aggregated, enabling the usage of well-
established estimation procedures from the synthetic control literature. The method is applied
to analyze the impact of the introduction of the minimum wage in the canton of Neuchâtel
in Switzerland. Furthermore, the application and simulations compare four distributional syn-
thetic control methods. Results show an improved fit of the targeted distributions if weights
are allowed to vary across the distribution.

Acknowledgment: I thank Costanza Naguib, Blaise Melly, Martin Huber, Kaspar Wüthrich, Guillaume
Pouliot, Mirco Rubin, Roger Koenker, Bo Honoré for helpful comments and suggestions. Further, I am grateful
for helpful comments by seminar and conference participants at the Young Swiss Economists Meeting 2024,
the 5th Workshop of the SNoPE, the SSES Annual Congress 2024, the IAAE 2024, the Cookie Seminar at
the Department of Economics at the University of Fribourg and the Brown Bag Seminar at the Department of
Economics at the University of Bern.



2 A Synthetic Control Method for the Analysis of Effects across the Distribution

1.1 Introduction

The literature on synthetic control methods has been strongly growing since the pioneering work
by Abadie and Gardeazabal (2003), Abadie, Diamond, et al. (2010), and Abadie, Diamond, et
al. (2015). The aim of these methods is to estimate the average treatment effect in a setting
with only a few units observed over a certain time range. Typical applications comprise a
policy intervention that is implied in one region, the treated unit, but not in other regions, the
control units. To find the treatment effect, the key question is what the outcome of the treated
unit would have been were it not treated. Synthetic control methods answer this question by
building a synthetic control unit that replicates the treated unit in the case of not being treated.
This synthetic control unit is constructed as a weighted average of control units. As a result,
one advantage of synthetic control methods lies in their ability to enable policy evaluation in
settings where several control units are available, but there is no single comparable control unit
for the treated unit.

Traditionally, the units and the outcome of interest are thought of as aggregates, e.g., regions
and their GDP. However, the treated and control units potentially comprise a sizable number
of individual entities, and the outcome of interest might initially be measured individually.
The simplest way to conduct a synthetic control analysis in such a setting is to aggregate the
variable to unit averages. However, depending on the underlying question, interest might lie in
other outcomes than average treatment effects. For example, Peri and Yasenov (2019) conduct
a minimum wage analysis and use values aggregated to the 15th and the 20th wage percentiles
to analyze the impact on lower wages. Stepanyan and Salas (2020) compute the Gini-coefficient
and the ratio between the top and bottom 20 percent as aggregate outcome values to analyze
distributional effects. I argue that in such cases, it might be much more insightful to compute
the effects over the whole distribution instead of using one single aggregate value. The proposed
method captures the impact of the policy intervention across the distribution and enables us
to study the heterogeneity of the effects in detail.

The novel approach proposed in this paper naturally extends the synthetic control method to
a distributional setting. The new distributional synthetic control method estimates the weights
of the synthetic control unit at different thresholds of the cumulative distribution function.
Estimating weights such that the distribution of the synthetic control unit closely replicates
the distribution of the treated unit at a specific threshold and assuming these weights to stay
constant across the pre- and post-treatment periods allows us to estimate a treatment effect at
a specific threshold of the cumulative distribution function. As a result, the treatment effects,
as well as the weights of the synthetic control units, can change across these thresholds and
thus provide a flexible approach to estimating distributional effects employing synthetic control
methods. Additionally, because estimation is done at different thresholds of the cumulative
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distribution function, existing and well-established theoretical results and estimation procedures
from the synthetic control literature still apply, making the proposed method versatile and
straightforward to implement. As later findings will reveal, allowing for varying weights is of
particular importance. This feature has so far been addressed differently by other distributional
synthetic control methods proposed by Chen (2020) and Gunsilius (2023). In the work by Chen
(2020), varying weights are imposed but not discussed. Conversely, Gunsilius (2023) emphasizes
analysis on the aggregate unit level and implicitly assumes constant weights. However, as the
results in the empirical application and simulation study will show, accounting for varying
weights is crucial.

To illustrate the proposed method in an empirical application, the minimum wage intro-
duction in Neuchâtel, a canton in Switzerland, is chosen. To the best of my knowledge, the
paper by Berger and Lanz (2020) is the only paper that analyzed the effect of the introduction
of the minimum wage in Neuchâtel. In their work, they conducted a two-wave survey focusing
on restaurants, one of the sectors especially affected by the new law, and used a Difference-in-
Difference as well as a distribution-based approach. They find a significant increase in workers
paid just above the minimum wage level. Additionally, wages slightly above the minimum wage
level tended to increase, and in the short run, neither employment nor product pricing was
used as a margin of adjustment. My application will also focus on the effect on wages, but
the analysis will not be restricted to a specific sector. Consistent with their findings, I find a
positive effect at the lower part of the wage distribution, but no apparent reaction is observed
in work hours or unemployment.

Several other extensions to the classic synthetic control method have been made. Some
extensions improve the classic model proposed by Abadie and Gardeazabal (2003) and Abadie,
Diamond, et al. (2010). For example, Ben-Michael et al. (2021) and Ferman and Pinto (2021)
suggested improvements regarding the perfect fit assumption that is made in the classic model.
Robbins et al. (2017) or Abadie and L’Hour (2021) extend the classic model to specific settings
where the outcome of interest is observed on an individual level as opposed to the aggregate
treated unit. Other papers extend the idea and link it to related methods. Doudchenko
and Imbens (2016) develop a general framework that nests many different methods, including
synthetic control. Arkhangelsky et al. (2021) and Athey, Bayati, et al. (2021) extend the classic
method by focusing on relations across time for the control units and not only on relations across
groups in the post-treatment period. Other papers like, Firpo and Possebom (2018), Li (2020),
Chernozhukov, Wüthrich, et al. (2021), and Cattaneo et al. (2021) proposed new approaches to
improve inference, which in the classic synthetic control case is done via permutation methods.
For a more in-depth recent discussion of the synthetic control method, its advantages and
disadvantages, data requirements, and recent extensions, see, for example, the recent work by
Abadie (2021).
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Other methods to conduct distributional analysis in a setting with few units have been
proposed already. Athey and Imbens (2006), Callaway and Li (2019) and Biewen et al. (2022)
introduce different methods, which extend the difference-in-difference approach to a distribu-
tional setting. Compared to these approaches, embedding the synthetic control method into a
distributional setting brings the main advantage of doing distributional policy evaluation even
if a single similar comparison group is absent, but several other untreated units are available.
To the best of my knowledge, there are only a few closely related papers that try to estimate
distributional effects using a synthetic control method.

A distributional synthetic control method was first proposed by Chen (2020). He decom-
poses the distribution into bins and obtains weights for each unit and each bin to replicate the
distribution. Additionally, he augments the factor model from Abadie, Diamond, et al. (2010)
to control for the bias from poor matches of the treated and synthetic unit in pre-treatment
periods. The main difference to my approach is, that he replicates the distribution via quantile
function, whereas my approach uses the cumulative distribution function. One possible advan-
tage of using the quantile function is that it does not rely on the support of the distribution
when estimating weights. However, using units with much different support compared to the
treated unit raises the question of whether these should be included as control units, as one
might end up with a synthetic control unit that is constructed from units that are dissimilar
from the treated unit. In that case, it might be advisable not to use quantile functions since
it could hide these differences. Furthermore, I argue that the cumulative distribution function
is a more natural approach, as it is no different from applying the synthetic control method
to a specific type of aggregate of the variable of interest. Additionally, it avoids estimation
problems from mass points, which are a potential issue when using quantile functions. As a
result, the proposed method works without modification, even if the underlying distribution is
discrete or mixed. Finally, if the outcome is continuous and the researcher is more interested
in quantile treatment effects, then it is straightforward to construct these effects by inverting
the cumulative distribution functions via interpolation.

A second distributional synthetic control method is proposed by Gunsilius (2023), which
uses the 2-Wasserstein measure as a notion of distance between two distributions. The main
method proposed in his paper relies on quantile functions as well. This results from the fact
that the optimal transportation problem solved by the 2-Wasserstein distance directly relates
to the distance between values of the quantile functions of two distributions. Weights are
chosen such that the 2-Wasserstein distance between the synthetic control and the treated unit
is as small as possible. Thereby, a single weight for each unit for the whole distribution is
computed. The synthetic control unit then forms a Barycenter in the 2-Wasserstein space that
preserves the underlying distributional structure of the control units chosen. Following this
approach avoids dependence on a specific choice of bins and allows the focus to remain on the
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aggregate level of the unit. For the case that the distribution of the treated unit is expected to
be a mixture of distributions, Gunsilius (2023) suggests an alternative method using differences
between values of the cumulative distribution functions. This alternative approach is closely
related to the method suggested in this paper. One main difference between the two methods
lies in the estimation of the optimal weights. Instead of Wasserstein distances, the proposed
method relies on conventional synthetic control methods. Furthermore, the proposed method
allows weights to change flexibly across the distribution and does not restrict them to staying
constant, such that the underlying distribution is better captured.

A recent working paper by Kato et al. (2023) proposes another method with constant weights
across the distribution. Using a GMM estimator, they replicate the density of the treated with
the synthetic control unit. Their paper is based on the work by Shi et al. (2022), in which
the authors motivate the underlying linear factor model commonly assumed in the synthetic
control literature. They show that the average outcome for a unit and time period has a factor
model structure, assuming an independent causal mechanism and a stable distribution.1

The remainder of the paper is organized as follows. Section 1.2 recaps the basic synthetic
control theory and introduces the proposed method as well as the implementation. The appli-
cation and related data are described in detail in section 1.3, and the results are presented in
section 1.4, which additionally includes simulations and a comparison of different distributional
synthetic control methods. Finally, section 1.5 summarizes the findings.

1.2 Methodology

This section first recaps the classic synthetic control estimator and then introduces the proposed
method. Whenever possible, the setup and notation are kept similar to the work by Abadie,
Diamond, et al. (2010) and Abadie (2021). Additionally, I will abstract from additional covari-
ates. A brief discussion on this topic is given in section 1.5. Let j ∈ 1, . . . , J + 1 denote the
units, where j = 1 is the treated unit and j = 2, . . . J + 1 are the control units. Further, let
t ∈ 1, . . . , T denote the time periods, where T0 marks the last period before treatment. Hence,
t ≤ T0 belongs to the pre-treatment period and t > T0 to the post-treatment period. Potential
outcomes of a variable Y are denoted by Y I if treated and Y N if not treated.

1.2.1 Synthetic Control Model: The Classic Case

In the classic setting by Abadie and Gardeazabal (2003) and Abadie, Diamond, et al. (2010),
the goal is to estimate the average treatment effect from a policy intervention on the treated

1Another paper by Zhang et al. (2023) utilize the result from Shi et al. (2022) to extend the synthetic control
method to an RCT setting, where they estimate the outcome in a target population only having control group
data and information from other RCTs.
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unit. That is, we are interested in:
τ1t = Y I

1t − Y N
1t (1.2.1)

i.e., the difference between the outcome of unit 1 if it is treated, Y I
1t, and if it is not treated,

Y N
1t , where Yjt denotes the outcome of interest. Naturally, the former is only observed in the

post-treatment periods, while the latter is only observed in the pre-treatment periods.

Y1t =

Y N
1t if t ≤ T0

Y I
1t if t > T0

By assuming that the control units remain unaffected by the treatment, it follows that Yjt = Y N
jt

for all t and j ̸= 1. Furthermore, estimating the effect in 1.2.1 then boils down to estimating
the unobserved Y N

1t for t > T0.
The synthetic control method estimates Y N

1t as a weighted average over several control units:

Y N
1t =

J+1∑
j=2

wjY
N
jt (1.2.2)

If this relation between the control units and the treated unit is assumed to remain constant
across time, the pre-treatment periods can be used to estimate this relation and to estimate
Y N
1t . For this reason, a good fit in the pre-treatment periods between the synthetic and the

treated unit is crucial for the approach to be valid. The treatment effect for t > T0 is then
computed as:

τ1t = Y I
1t − Y N

1t = Y1t −
J+1∑
j=2

wjYjt

where wj are the weights chosen to minimize the difference between the synthetic and treated
unit in the post-treatment periods.

1.2.2 Proposed Method

Relation to Conventional Methods

Typically, the outcome of interest, Yjt, is an aggregated value. An easy way to think about
this is to let each unit j represent a different region. Then, the outcome of interest could be
an aggregate variable of the region, for example, GDP or population growth, or it could also
be a variable observed only for individuals living in that region, such as income or educational
attainment. In this latter case, observed individual variables are aggregated depending on the
underlying research question. For example, Jardim et al. (2022) use administrative data of
individual employers and take simple averages over different variables to analyze the impact of
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minimum wages on the labor market in Seattle. Another study on minimum wages by Peri and
Yasenov (2019) uses averaged values of the CPS data for their analysis.

Formally, let Yijt be the observed variable of interest for individual i in unit j at time t.
To analyze the policy effect for the region, a researcher might use the mean as an aggregated
outcome of interest, E[Yjt]. Then, the estimated treatment effect is:

τ1t = E[Y I
1t]− E[Y N

1t ] and E[Y N
1t ] =

J+1∑
j=2

wjE[Yjt]

The proposed estimator takes advantage of exactly this setting to derive distributional ef-
fects. Instead of the simple mean, I suggest using the mean of an indicator variable, E [1(Yjt ≤ y)].
The variable observed on an individual level is 1 whenever an individual exhibits a value of Yijt

lower than or equal to some specified value y and 0 otherwise. The aggregate variable is thus
the probability that Yjt takes on values below or equal to y for the unit j in the period t, which
by definition is the cumulative distribution function, Fjt(y). Then, the treatment effect at a
specific point y is:

τ1t(y) = E
[
1(Y I

1t ≤ y)
]
− E

[
1(Y N

1t ≤ y)
]
= F I

1t(y)− FN
1t (y) (1.2.3)

where the first equation follows the same argument as for the common mean case, and the
second equation follows by definition.

The same idea applies to derive the treatment effect as in the classic synthetic control. For
t > T0, F I

1t(y) is observed and FN
1t (y) is unobserved. The unobserved outcome is then estimated

using a weighted average of control units, such that for a specific point y, the synthetic unit
and the estimated effect are:

FN
1t (y) =

J+1∑
j=2

wj(y)F
N
jt (y) (1.2.4)

τ1t(y) =F1t(y)−
J+1∑
j=2

wj(y)Fjt(y) for t ≥ T0 (1.2.5)

To estimate a distributional effect, the described procedure is repeated over different values
of y. However, it is important to note that for a specific point y, the suggested method does
not strongly deviate from those in the current literature. The crucial difference is to define the
outcome of interest observed on the individual level in a specific way. As a result, one advantage
of the suggested method is its reliance on the well-established field of synthetic control methods.
Properties that hold when applying a synthetic control estimator to the simple mean of a
variable extend to the mean of the indicator variable. To capture the distributional effect, the
y values can be chosen as a fine grid over the support of the treated unit across all periods. In
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general, the choice of the specific y values has no strong impact on the analysis, except if the
y values altogether lie outside of the support of the control units, such that it is impossible to
construct a synthetic control unit.

Locally Varying Weights

Similar to the alternative method suggested by Gunsilius (2023), the proposed method works
with cumulative distribution functions to estimate distributional effects. One important dif-
ference is that in the paper by Gunsilius (2023), a single weight is estimated for the whole
distribution, while the proposed method allows them to vary across the distribution.

It follows that the relevant setting for the proposed method is when the observed distribu-
tions, Fjt(y), are mixtures of distributions, with mixture weights varying across the distribution.
Formally, this yields the following underlying model:

Fjt(y) =
D∑

d=1

γj,d(y)Ft,d(y) (1.2.6)

where γj,d are the mixture weights and Ft,d are some unobserved underlying distributions.
Additionally, let γj,d ≥ 0 and

∑D
d=1 γj,d(y) = 1 for all j and y. With this specification, the

distribution of unit j at time t is a mix of D other distributions. The underlying distributions
Ft,d are common across all units but vary with t. Each unit exhibits distinct weights, γj,d, which
remain constant across time. This specification is related to the factor model, commonly used
to model the outcome of interest in the synthetic control literature. There, the loadings vary
across groups but stay constant over time, and the factors vary across time but stay constant
across groups.

Using equation 1.2.4, we obtain the following relation for the treated group:

F1t(y) =
J+1∑
j=2

wj(y)
D∑

d=1

γj,d(y)Ft,d(y)

=
D∑

d=1

Ft,d(y)
J+1∑
j=2

wj(y)γj,d(y)

where the first equation follows from equation 1.2.6. This result shows that a solution exists
if the last part replicates the weights of the treated unit, i.e., γ1,d(y) =

∑J+1
j=2 wj(y)γj,d(y).

Given that γj,d could be equal to zero, this condition requires that for a specific point y, the
treated unit and some control units are related to the same underlying distributions. Another
interesting implication is that the weights γj,d cannot change arbitrarily. The size in which
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weights can change across y is linked to the properties of the underlying distributions.2

Intuitively, allowing the weights to change across the distribution relaxes the assumption
of them being constant. A heuristic argument for this point can be formulated by considering
the related papers by Athey and Imbens (2006) and Gunsilius (2023). These papers motivate
their model by specifying a function h(.) that maps an unobserved variable u into an observed
variable y. The function is also allowed to change across t, i.e., y = h(u, t). For simplicity of the
argument, assume that u stays constant across t.3 Importantly, h(.) applies to all values of u,
which results in the weights of the synthetic control unit being constant across the distribution
as well.

Consider as an example h(u, t) = at+btu with bt > 0, i.e. it is strictly increasing in u. Then
equation 1.2.4 can be rewritten as:

P (Y1t ≤ y) =
J+1∑
j=2

wj(y)P (Yjt ≤ y)

P (U1 ≤ (y − at)/bt) =
J+1∑
j=2

wj(y)P (Uj ≤ (y − at)/bt)

where the second equation follows from plugging in y = h(u, t) and rearranging. Other than
bt ≥ 0, there are no restrictions on the behavior of at and bt. Thus, the weights wj(y) have to
hold across the whole distribution of U and hence must be constant across different values of
y.4 So, if the underlying model is described by y = h(u, t), then the weights are constant across
the distribution. However, my method should exhibit constant weights across y in such a case.

1.2.3 Implementation

As described earlier, the basic idea of the suggested method is to define a grid of different y

values and to iteratively apply a well-established synthetic control method using an indicator
variable as an outcome of interest. In general, there is no restriction on the specific synthetic
control method adopted. In the following, I will again focus on the classic case by Abadie and
Gardeazabal (2003) and Abadie, Diamond, et al. (2010).

For the classic synthetic control method to be feasible, the weights must be chosen such
that the synthetic unit replicates closely the behavior of the treated unit. In the classic setting,

2Further remarks are provided in appendix 1.C.
3As described in Gunsilius (2023) one can also relax from the assumption that ut = u ∀t. However, ut needs

to be a linear function of its past, and hence the argument is straightforward to extend to that case.
4The same result can be derived for bt < 0. The only difference is an additional step that uses the property

P(X > x) = 1− P(X ≤ x) and the fact that the weights sum up to one.
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the weights are chosen such that the sum of the squared distances between the treated and
synthetic unit across different predictors is minimized. In the case without covariates, the
predictors correspond to the outcome of interest from different pre-treatment periods, and the
weights are chosen to solve the following minimization problem:

Ŵ = min
W

(∑
t∈T0

(Y1t − w2Y2t − . . .− wJ+1YJ+1t)
2

)1/2

(1.2.7)

where T0 ⊂ {1, . . . , T0} and W = (w2, . . . wJ+1).5 Additionally, the weights are assumed to be
non-negative, wj ≥ 0 for all j and sum up to one,

∑J+1
j=2 wj = 1.

For the proposed method, the first step is to estimate the aggregate variable of interest,
E [1(Yjt ≤ y)]. The corresponding sample analog is N−1

jt

∑Njt

i=1 1(yit ≤ y), where Njt is the total
number of observations in unit j at time t.

Then, applying the normal synthetic control method once to the mean of an indicator
variable allows us to derive the treatment effect for one point in the distribution. Relying on
the classic approach, the weights for the specific point at y are chosen to solve the following
minimization problem:

Ŵy = min
W

(∑
t∈T0

(F1t(y)− w2(y)F2t(y)− . . .− wJ+1(y)FJ+1t(y))
2

)1/2

(1.2.8)

where y is a specific value from the grid and hence Wy = (w2(y), . . . wJ+1(y)). The weights are
also assumed to be non-negative and sum up to one.

The above procedure is applied to multiple parts of the distribution to derive a distributional
effect. Thereby, the weights are allowed to change flexibly across the distribution. Hence,
weights are chosen by minimizing:

Ŵ = min
W

(∑
t∈T0

(F1t(y)− w2(y)F2t(y)− . . .− wJ+1(y)FJ+1t(y))
2

)1/2

(1.2.9)

where y represent different grid-points and W can now be thought of as a matrix with a
different Wy in each row. That is, W is a matrix with J columns and a number of rows equal
to the number of grid points chosen.

Importantly, by specifying the weights in each row to be non-negative and sum up to one, the
support of F1t must lie within the joint support of the control units. Otherwise, the distribution

5In the classic setting, an additional weighting vector, v is included in the objective function. These weights
capture the importance of the single predictors and impact the resulting synthetic control unit. Methods in
choosing these v are discussed in Abadie and Gardeazabal (2003), Abadie, Diamond, et al. (2010), and Abadie,
Diamond, et al. (2015) For the case without covariates, the predictors relate to each period and v = (v1, . . . , vT0

).
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of the treated unit cannot be replicated at these points. To avoid this issue, one can trim the
y-grid in the exceptional case, where y-values are defined, which only lie once or never in the
support of the control distributions in the pre-treatment period.

1.2.4 Inference and Evaluation

To test the statistical significance of the estimated treatment effect, I adjust the placebo permu-
tation method suggested by Abadie, Diamond, et al. (2010), following the notation by Abadie
(2021).6 They suggest assigning the treatment separately for each unit and estimating the
placebo treatment effect by applying the synthetic control method. The estimated effect of the
treated unit is then compared with the effects from the placebo runs. For this comparison, it
is crucial to take into account the overall performance of the synthetic control unit for each
run. If the synthetic control unit produces large differences in the pre-treatment period, then a
large effect in the post-treatment is likely not related to the treatment. The estimated effect is
considered significant when the size of the effect of the treated unit is among the most extreme
values relative to the placebo runs.

For each unit to which the treatment is assigned, i, the resulting squared distance between
the treated and synthetic unit for each period t and each grid point y can be computed. That
is:

SEy
it =

(
Fit(y)− F̂it(y)

)2
, where F̂it(y) =

∑
j ̸=i

ŵj(y)Fjt(y)

For the synthetic control methods to be valid, a small SEy
it is required for the pre-treatment

periods t ≤ T0 and each point y. Large differences indicate that the synthetic unit cannot
replicate the potential outcome well. For the post-treatment periods t > T0, a larger difference
indicates the presence of a treatment effect, especially when the value is much larger compared
to pre-treatment values. To control for the overall performance of the synthetic control unit, the
difference in the post-treatment period is set in relation to the difference in the pre-treatment
period. For our case, this ratio is computed for each point of the distribution:

ryi =
Ry

i (T0 + 1, T )

Ry
i (1, T0)

, where Ry
i (t1, t2) =

(
1

t2 − t1 + 1

t2∑
t=t1

SEy
it

)1/2

(1.2.10)

As a last step, the results of the treated unit are compared to the placebo runs. Furthermore,
we can compute a p-value, py1 = 1−Ry

1/J +1, where Ry
1 is the rank of ry1 in all runs ryi . Please

6Despite the various improvements in inference in recent years, I refrain from following a new approach, as
it is above this project’s scope and the approach by Abadie, Diamond, et al. (2010) remains popular. The same
holds true for the fact that the results depend on an assumed underlying distribution of treatment assignment.
Here, the assignment is assumed to be uniform across units, i.e., each unit has the same probability of having
the treatment assigned. This could be questioned in practice, and there are extensions to address this issue.
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note that the metric is referred to as p-value out of convenience. It is not the same metric
as the p-value normally used for significance testing. The metric only refers to the same idea,
which is to measure how likely we were to observe a similar effect if there was no effect at all.

The above results are straightforward to calculate for the quantile values via interpolation,
assuming that the underlying variable is continuous. Chen (2020) outlines the same idea using
the quantile function. The approach by Gunsilius (2023) is motivated by the same idea, but he
compares the results of the treated unit to the placebo runs for each period and thereby focuses
on the overall difference in distributions. In contrast, the metric above is intentionally chosen to
depend on a specific point in the distribution. The reason is that the size of the effect potentially
differs across the distribution, while the performance of the synthetic control unit also does. As
we will see later, the results suggest that, especially in the tails of the distribution, the synthetic
control unit does a poorer job of replicating the treated unit well. Consequently, a metric
capturing the overall difference in distributions might not properly indicate the presence of a
treatment effect. Large variations in the tails might hide a sizable treatment effect located away
from the tails of the distribution. The difference from the treatment effect appearing in the post-
treatment period becomes negligible compared to the overall variation across periods. While
the above metric provides the benefit of capturing a significant effect at a specific threshold,
the increased likelihood of finding a significant effect due to repeated testing is not accounted
for. Hence, a careful interpretation of the results is essential.

For the comparison of methods, however, an aggregate metric is employed. In that setting,
our focus lies less on evaluating the significance of an effect but on assessing the overall precision
with which the unobserved distribution as a whole is replicated. Additionally, the comparability
of methods is improved since the estimator by Gunsilius (2023) minimizes the Wasserstein
distance between distributions to keep the analysis on the aggregate unit level. Therefore, I
will use:

RMSEt =

(
1

G

G∑
g=1

(
F−1
1t (τg)− F̂−1

1t (τg)
)2)1/2

where τg ∈ (0, 1) represents a grid point, F−1
1t (τg) is the quantile value of interest at τg and

F̂−1
1t (τg) is the quantile value estimated by the synthetic control unit. Note that the finer the

grid values taken, the closer the performance measure is to the 2-Wasserstein distance between
the synthetic and treated unit.
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1.3 Application and Data Description

This section introduces the application and describes the variables used. As an application, I
analyze the impact of the minimum wage introduction in Neuchâtel, a canton in Switzerland.
The data used for the analysis is from the Swiss Earnings Structure Survey (ESS) provided by
the Federal Statistical Office in Switzerland. The ESS provides repeated cross-sectional data on
firms and their employees, where the variables contain mostly but not exclusively information
about the employees. The survey has been carried out every second year since 1994, and I have
access until 2018. Unfortunately, the ESS is not constructed to be representative on a cantonal
level. Hence, the results in this and the following section have to be interpreted with caution.

1.3.1 Minimum Wages in Neuchâtel, Switzerland

Neuchâtel was the first canton in Switzerland to introduce a minimum wage in 2017. Other
cantons followed in the years after. The canton of Jura in 2018, Geneva in 2020, and Ticino and
Basel-city in 2021. For the analysis, the canton of Jura is therefore excluded from the pool of
control units. In 2011, the people living in the canton of Neuchâtel voted for the introduction of
a minimum wage. The cantonal government passed the corresponding law in 2014, setting the
minimum wage to 20 CHF, pegged to inflation with a basis in August. The case of Neuchâtel
is of special interest, given the enforcement. When the law was passed in May 2014, firms had
time to adjust their wages until the end of the year. However, several entities, e.g., industry
associations, companies, and private individuals, appealed against the new law to the Federal
Supreme Court. The law then immediately came into force on the 4th of August 2017, when
the Federal Supreme Court rejected the appeal. Given the uncertainty on how the Federal
Supreme Court will decide, the time of treatment can be pinned down closely.

1.3.2 Variables

Units of Interest

To tackle how the minimum wage introduction affected people in Neuchâtel, a potential first
approach is to identify all individuals affected by the minimum wage law and aggregate them as
the treated unit. However, note that one political motivation for the introduction of the min-
imum wage was to prevent wage dumping, which is a highly debated topic in border cantons
with many guest workers. Hence, the minimum wage law was specified to affect all employment
relationships, where employees commonly work within the canton of Neuchâtel. Additionally,
the introduced law allows for exceptions. To name a few, employees in training or on holiday
contracts are excluded from the law, or employees in the agriculture, viticulture, and horti-
culture sectors face a lower minimum wage. As a result, it is impossible to identify exactly
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which individuals are affected by the introduced law and which are not. Therefore, I refrain
from focusing on individuals directly affected by the MW and turn my interest to individuals
generally being employed in the canton of Neuchâtel. Thus, the units j = 1, . . . J +1 represent
the cantons where individuals work.

This implies that my results could also be interpreted as a lower bound of the treatment
effect on the employees targeted by the minimum wage. That is, people employed in other
cantons, especially cantons closer to Neuchâtel, still might generally work within the canton
of Neuchâtel and hence would be directly affected by the introduction of the minimum wage.
However, a significant amount of individuals generally working within the canton of Neuchâtel
and being employed in another canton are needed to distort the estimation of the distributional
effects. Additionally, if the results are affected by the described spillover effect, then they are
likely to be downward biased; that is, the synthetic control suggests wages that are too high.

The ESS comprises different regional variables of which two are important to identify the
canton individuals are employed in. The first variable assigns all employees of a private firm
to the canton in which most employees of the firm are working. The second assigns employees
to regions in which their workplace is located. Unfortunately, these regions exhibit a finer
granularity than cantonal borders, and sometimes these regional and cantonal borders do not
coincide. Of the three regions covering Neuchâtel, one also covers the canton of Bern. For
the analysis, a new cantonal variable is created. Employees with a workplace in a region that
consistently lies within a canton are also assigned to this canton. An employee with a workplace
in a region that overlaps multiple cantons is only assigned to a specific canton if the firm in
which the employee is working has most of the employees working in that canton. If the firm
has most employees working in a canton not covered by the region, I exclude the observation
from the analysis. This new variable gives the best approximation for the canton an individual
is actually employed in and avoids losing too many observations from regions not consistently
lying within a canton.

I will only keep control units large enough to estimate distributional effects for the analysis.
Cantons with, on average, less than 10′000 individuals per year in the post-treatment periods
are excluded, leading to J = 17. Individuals above the age of 65 and below the age of 25,7

as well as individuals employed in the public sector, are dropped. Lastly, unrealistically high
or low values for wages and working hours are excluded by trimming the lowest and highest
values.

7A robustness check in which individuals with an age of 18 or older are kept in the sample is presented in
appendix 1.B.
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Outcome of Interest

The focus of the analysis lies on the impact on hourly wages, which are conducted by combining
working hours and wages. Typically, the ESS takes the month of October as a reference point
when measuring these variables. For working hours, two variables are available, measured
monthly or weekly, depending on the employee’s contract. To construct a single monthly
variable, weekly working hours are multiplied by 52/12. The reason is that while monthly
work hours are recorded for individuals employed on an hourly basis, weekly work hours are
recorded for individuals with a regular contract and fixed income for a year. The ESS further
comprises three different variables for wages. A standardized wage, a gross wage, and a net
wage. However, each has been altered differently and includes different additional payments.
For example, the standardized wages additionally include social payments, or gross wages don’t
consider the 13th monthly salary. The analysis will focus on net wages as it also takes into
account additional payments like the 13th monthly salary or Sunday supplements and hence
displays the available money to the individual. Further, payments for overtime and other special
payments are excluded, and wages are deflated using the consumer price index provided by the
Federal Statistical Office.

1.3.3 Descriptives

The total number of observations used in the analysis is around 11.4 million and 13 waves.
In earlier years, fewer observations were available. Until the year 2000, each wave covered
approximately between 400 and 450 thousand observations, in the years after, each wave had
between 0.9 and 1.3 million observations.8

From tables 1.1 and 1.2, we see that changes over time are relatively similar for Neuchâtel
and Switzerland. One exception is in 2000, where wages for Neuchâtel are slightly higher across
the distribution. Additionally, it looks as if in 2018 wages also tend to decrease a bit less for

Table 1.1: Hourly Wages for Neuchâtel

min 25% med. mean 75% max obs.
1994 4.82 18.56 23.22 25.78 29.90 106.44 9357
2000 6.82 20.35 25.75 28.27 32.78 109.84 6512
2006 4.41 19.92 24.12 26.79 30.55 108.87 25003
2012 3.51 18.04 22.00 24.70 28.26 108.94 22373
2018 3.49 21.78 26.43 29.30 33.50 109.83 26590
total 3.49 19.84 24.28 26.94 30.80 109.84 264150

8See appendix 1.A.1 for more detailed description tables across all years.
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Neuchâtel compared to Switzerland. The results also indicate that the wage distribution of
Neuchâtel is comparable to that of Switzerland, such that it seems feasible to find weights that
allow the synthetic control unit to replicate the distribution of Neuchâtel closely.

Table 1.2: Hourly Wages for Switzerland

min 25% med. mean 75% max obs.
1994 3.58 20.49 26.07 28.58 33.22 109.99 394959
2000 3.70 20.12 25.56 28.32 33.23 109.90 449940
2006 3.50 20.97 26.06 28.95 33.52 109.99 1038001
2012 3.48 19.29 24.18 26.78 31.11 109.99 1046126
2018 3.48 22.23 27.75 30.63 35.76 109.95 1249239
total 3.48 20.93 26.21 28.98 33.75 110.00 11386093

1.4 Results

1.4.1 Application: Neuchâtel

In this section, the proposed method is applied to the minimum wage introduction in the canton
of Neuchâtel. The minimum wage policy was introduced in 2017 when the Federal Supreme
Court rejected the appeal. Given the coverage of our data, the post-treatment period ranges
up to T0 = 12, which is the wave of 2016. The only post-treatment period, T = 13, is the wave
of 2018.

Figure 1.1 plots the CDF of the treated unit, Neuchâtel, and of the synthetic control unit.
Results indicate a small improvement for individuals with a wage of around 18 to 25 CHF per
hour and 35 CHF per hour. Otherwise, the introduction of the minimum wage has no visible
impact on the distribution of hourly wages. The difference at the bottom of the distribution
is as expected and is consistent with the results from Berger and Lanz (2020). Introducing
a minimum wage for employees who generally work in Neuchâtel should also increase wages
for the lower part of individuals employed in Neuchâtel. The difference in the upper half of
the distribution is less expected; however, it seems smaller in absolute terms and relative to
the hourly wages. Hence, the difference potentially captures an inaccuracy resulting from the
synthetic unit being unable to replicate the treated unit well.

Additionally, some individuals earn an hourly wage less than the minimum wage. This has
several reasons. First, as described in section 1.3, we look at individuals working in Neuchâtel,
which does not necessarily mean that most of their work is done in Neuchâtel and, hence,
that they are affected by the minimum wage law. Second, the minimum wage law allows for
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exceptions from the law. Thus, some individuals are only affected by a lower minimum wage
or not at all.

Figure 1.2 gives insights into the economic significance of the effect as well as the performance
of the synthetic control unit. To improve readability, the more common quantile treatment
effect (QTE) is chosen to display distributional effects rather than the difference between the
cumulative distribution functions. Computing the QTE is straightforward by first inverting the
cumulative distribution function to get the corresponding quantile functions and then taking
the difference across different τ .

The gray lines in figure 1.2 are the computed differences in the quantile functions between
the treated and the synthetic unit for pre-treatment periods. Hence, they show how well the
synthetic control unit was able to replicate the distribution of the treated unit in periods before
the treatment. With the exception of two years, the synthetic control unit is able to replicate
the distribution of Neuchâtel closely. The first exceptional year is 2000 when the synthetic unit
generates wages that are too low to replicate the true distribution well. Tables 1.6 and 1.7 from
the appendix 1.A.1 reveal that in the year 2000, wages in Neuchâtel are higher relative to other
years compared to wages in Switzerland, which is why the synthetic control underestimates
wages in that year. The second exception is 2014, for which the QTE starts to drop around
τ = 0.6. This observed difference in 2014 is highly unlikely to be a reaction to the minimum

Figure 1.1: CDFs of the Treated and Synthetic Unit
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wage. The minimum wage was communicated at the end of May 2014, and wages in the ESS
are collected for the month of October. Within less than five months, a significant share of firms
would have needed to react by lowering wages. However, lowering wages is mostly possible when
hiring new employees; otherwise, it is more difficult. Hence, it is more likely that the observed
effect results from having an exceptional year for which the synthetic unit cannot capture the
treated unit well for the upper half of the distribution. Again, consulting tables 1.6 and 1.7 in
the appendix 1.A.1 support this argument. In the year 2014, the decrease in wages in the upper
part of the distribution compared to other years was relatively stronger in Neuchâtel than in
the rest of Switzerland. From figure 1.2, we further see that in the tails and notably in the
upper part of the distribution, volatility in estimated QTEs becomes larger. This results from
the wage distribution being left skewed. For the upper part of the distribution, the numeric
range of hourly wages becomes larger, moving from one percentile to another.

For the post-treatment period, displayed as a red line in figure 1.2, the QTE stays overall
positive, which means that at each point of the distribution, the hourly wage of the synthetic
Neuchâtel is lower. As seen in the figure before, there are two visible differences in the lower
and upper part of the distribution, whereas this effect seems to be a bit higher for the lower
part of the distribution.

Figure 1.2: QTE Compared to Pre-Treatment Periods
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To gain insights into whether the effect is statistically significant, I follow the placebo per-
mutation test outlined in section 1.2. To preserve consistency with the results above, differences
between the treated and synthetic units are computed between quantile values. That is, my
suggested method is applied to each control unit, and the resulting QTE is computed. These
effects are then utilized as placebo treatment effects. Figure 1.6a in appendix 1.A.2 displays the
QTE for the post-treatment period for units that were actually not treated. For some placebo
runs, the estimated effect in the post-treatment is sizable. However, those effects are likely to
be of similar size in the pre-treatment periods, i.e., we cannot construct a valid synthetic con-
trol unit for these placebo runs. Compared to units with more reasonable placebo effects, the
positive QTE in the lower part of the distribution potentially indicates a weak significant effect.
For a more formal comparison, figure 1.3 displays the p-values as described earlier. Taking into
account the performance of the synthetic control unit in each run, each p-value indicates how
exceptional the treatment effect at point τ for Neuchâtel is compared to the placebo runs. The
results indicate a weakly significant effect at the lower part of the distribution. Some p-values
of 1/9 are barely above 10%. For our case with J = 17, a value of 1/9 implies that next
to Neuchâtel, there was one other control canton with a higher ratio between post- and pre-
treatment differences at the bottom of the distribution. Further, the results clearly rule out the

Figure 1.3: Placebo Permutation Results
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smaller difference in the upper part of the distribution to be a significant effect. Thus, evidence
suggests a weakly positive effect at the bottom of the distribution, which is also expected for
the introduction of the minimum wage. It follows that for individuals with a lower wage who
are employed in Neuchâtel, the introduction of the minimum wage seems to have increased the
hourly wages. The effect lies mostly between 0.5 and 1 CHF per hour, a small but notable
change for individuals with an already low hourly wage.9

It remains to point out that the small effect at the bottom extends across a broader range
of the distribution. This supports the findings by Berger and Lanz (2020), indicating that not
only individuals with an income below the minimum wage level benefit from the new policy but
also individuals with an income slightly above. Furthermore, Berger and Lanz (2020) find no
significant effect on employment or product pricing. Hence, employers do not use these channels
to adjust for the higher wages. Following this idea, I further analyze the potential impact of the
minimum wage intervention on various outcomes (see appendix 1.A.3 for further details). First,
the proposed method is applied to work hours, which are also available in the ESS, to analyze if
the number of hours decreases following the minimum wage intervention. The findings suggest
no strong reaction in work hours. If anything, there would be a slight shift from part-time to
full-time employment. The conventional synthetic control method is applied without covariates
for the remaining additional variables. Consistent with the findings in Berger and Lanz (2020),
results do not suggest a significant effect on unemployment rates. Additionally, there seems
to be no impact on the fraction of closing firms. For the number of workers from abroad as
well as the number of registered open job positions, a significant difference between the treated
and synthetic units in post-treatment periods is apparent. While the number of workers from
abroad decreases, the number of open job positions increases. The introduction of the minimum
wage could explain these findings to some degree. However, the observed effects are very likely
influenced by another national policy intervention occurring around the same time. The policy
was initially aimed at reducing the number of workers from abroad, and when implemented,
it certainly increased the number of registered job positions. Hence, it remains uncertain how
much of the observed differences in the post-treatment periods for the two variables can be
attributed to the minimum wage policy.

Finally, figure 1.4 shows the weights used for the synthetic Neuchâtel. Results suggest that
allowing weights to change across the distribution is important. The canton of Fribourg is
the only control unit that persistently contributes to the synthetic unit with a positive weight.
Other cantons like Ticino contribute only to the lower part of the distribution, while other
cantons like Aargau contribute to the upper part. Furthermore, the weights are relatively
smooth along y for the large part of the distribution. Large jumps are only visible in the

9Additional robustness checks regarding anticipation effects, the inclusion of young employees, as well as
the choice of pre-treatment periods are reported in appendix 1.B. Results point towards the same finding as in
the main analysis.
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tails, especially in the lower tail. This could be related to the multiple solutions issue. For
many units, the values in the tails of the CDF are close to either 0 or 1, i.e., differences across
units are rather small. As a result, the potential for many different combinations of weights
to yield a good fit becomes larger. That is, the solution is no longer unique, which leads to
the jumping results from one y-value to another. Furthermore, stronger changes in the lower
tail are theoretically feasible since the cumulative distribution function goes to 0. Given the
unstable choice of weights in the tails, a potential disadvantage of the method is that the treated
unit cannot be matched well in the tails of the distribution. Especially for the case where the
true weights are constant across the whole distribution, it is likely that my method fails to
estimate the weights in the tails well, while another method that assumes constant weights
across the distribution yields better results in the tails. This imposes some sensibility on the
specific choice of bins, which could be addressed by smoothing the weights or assuming some
functional form. In appendix 1.B an analysis using smoothed weights is conducted.

Figure 1.4: Weights Across the Distribution
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1.4.2 Comparison to Other Approaches

In the following, the performance of four different approaches is compared. The first approach
will be denoted as CSC, which is the suggested method in this paper. The second approach
will be denoted as QSC. It is the quantile equivalent to the suggested method, which is also
mentioned in Chen (2020).10 The last two approaches are both methods suggested in Gunsilius
(2023) and are based on optimal transportation theory. The main method, which relies on the
quantile function, will be denoted as QOT, and the alternative method, which relies on the
cumulative distribution function, will be denoted as COT.

For the approaches using quantile values, a grid with values between zero and one is required.
For the approaches using the cumulative distribution functions, a y-grid is chosen to cover the
support of the distributions of the treated unit over all periods. Note that all four approaches
discussed base their estimation of the synthetic control weights on several grid points that span
across the distribution. My approach and the quantile equivalent use a fixed pre-specified grid,
while the approaches by Gunsilius (2023) randomly draw points. As a result, the computation of
the weights is not based on the exact same positions in the distribution. However, a fine grid for
estimation is chosen, and the distribution of the treated and the synthetic units are compared
at the same thresholds. Thus, employing estimation at slightly varying grid points should not
change overall results. This is especially the case if one uses a performance measure, like the
RMSEt introduced earlier in section 1.2, that takes an average over the whole distribution.

Accordingly, I will use the RMSEt as a simple measure of how well the synthetic control
unit replicates the distribution of the treated unit. For comparability, the performance mea-
sure is computed in terms of quantile values over the same grid. Hence, the results from the
approaches using cumulative distribution functions are inverted. This ensures the same scale
in the outcome, i.e., in each case, we compare differences in the value y at specific percentiles.

Application Results

In the following, my proposed method and the main method suggested by Gunsilius (2023) are
applied for the analysis of the minimum wage in Neuchâtel.

Figure 1.5 contains the same results as in figure 1.2, but also adds the results when using
the estimator by Gunsilius (2023) in blue and brown. As expected, the latter exhibits a less
flexible behavior. This is of advantage, e.g., when looking at the pre-treatment period from
2014. Instead of a strong drop between τ ∈ (0.6, 0.7), the QTE exhibits a rather constant,
slightly negative slope across the distribution. However, as seen for 2018, the estimator also
reduces differences that are likely to be local effects.

Table 1.3 compares the 2-Wasserstein distance between the synthetic and the treated unit for

10see equation 35
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Table 1.3: Comparison of 2-Wasserstein Distances

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
CSC 0.70 0.47 0.22 1.63 1.03 0.24 0.47 0.54 0.26 0.70 0.76 0.42 0.65
QOT 0.39 1.27 1.20 3.08 1.68 0.72 1.14 1.39 0.82 1.22 0.91 0.65 0.46

each year and both methods. The 2-Wasserstein distance is an integral over squared differences
in quantile functions. However, neither method imposes a functional form on the distribution,
and hence, the integral is computed using the RMSEt with F−1

1t being equal to the observed
pre-treatment quantile values and a fine grid for G. With the exception of the year 1994, the
synthetic unit from my approach performs better in replicating the treated unit. Additionally,
it provides evidence for the issue discussed above, that the standard permutation methods are
unsuitable when the treatment only affects one part of the distribution. The table shows that
the computed 2-Wasserstein distance for the post-treatment period is still very small, even with
a larger difference in one part of the distribution.

Figure 1.5: Comparison of QTE Compared to Pre-Treatment Periods
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Simulation Results

For the simulation part, different combinations of T0 = {5, 10, 50, 100} and J = {5, 10, 50}
with one treated unit and one post-treatment period are considered. For each combination, I
repeatedly draw a new sample of Njt = 4000 observations from a data generating process (DGP)
and estimate the resulting RMSEt between the estimated and true quantile values if not treated
for the post-treatment period. The number of total repetitions is 1000. Furthermore, I use two
different DGPs, and the treatment effect is specified to negatively affect the lower tail of the
distribution and to fade off towards the upper tail.

The first DGP is based on my approach and proceeds in three steps: Following equation
1.2.6, in the first step, pools of underlying distributions and mixture weights are constructed.
Ten underlying gamma distributions with different combinations of shape and scale parameters
are used for the distributions. For the mixture weights, five different patterns across y are
defined. Then in the second step, the underlying distributions and mixture weights are ran-
domly sampled. For each period, three distributions, Ft,d, are drawn from the pool, i.e., D = 3.
For each unit, one to three weighting patterns, γj,d(y) are randomly drawn and assigned to a
distribution. Hence, γj,d(y) is allowed to be zero for some d, but at least for one distribution,
we have non-zero values. The weights are then rescaled to sum up to 1. Additionally, a check
is run to ensure that the resulting CDFs are increasing. If the check fails, the mixture weights
are smoothed. In the last step, we compute the distribution, Fjt(y) for each unit and period
according to equation 1.2.6 and generate random draws from it. Furthermore, the treatment
effect is added for t > T0.

The second DGP is based on the approach by Gunsilius (2023). Here, the relation between
the underlying unobserved variable and the observed variables, as well as future unobserved
variables, is assumed to be linear. I will further assume the underlying unobserved variable
is normally distributed, which allows me to compute the resulting normal distribution of the
observed variable directly. The DGP proceeds in three steps. First, the underlying distribution
of the unobserved variables is defined. For the variance-covariance matrix, I specify two different
settings. In the first, small correlation values between the groups are randomly drawn. In the
second, we don’t have any correlation between the groups, and the relations among them result
from the linear functions that depend on time and are shared across groups. In the second step,
we iterate through time and compute the resulting unobserved and observed variables. In the
final step, observations are drawn from these distributions, and a treatment effect is added for
t > T0.

Table 1.4 displays results from the first DGP for different combinations of the number of
pre-treatment periods, T0, and control groups, J . The results show that the methods using
varying weights perform the best, with the proposed method achieving the best pre-treatment
fit between synthetic and treated units. The two approaches working with Wasserstein distances
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and constant weights achieve worse results. This is as expected, given the underlying DGP.
Additionally, the methods using cumulative distribution functions perform better than their
counterparts using quantile functions. This is also as expected since the underlying mixture
model imposes the relations between the treated and control unit depending on y and not the
percentiles. Overall, the results improve as the number of control groups and the number of
pre-treatment periods increases. The longer the pre-treatment period, the better the synthetic
control captures the underlying structure, and the more control units are drawn, the more likely
some of the control units are close to the treated unit, such that a better synthetic unit can be
constructed.

So far, results have confirmed the importance of the proposed method. To check the perfor-
mance of the proposed method in more detail, the simulation study is repeated with the second
DGP that is closer to the approach by Gunsilius (2023). Table 1.5 displays the post-treatment
RMSEt for different combinations of T0 and J . Overall, results indicate that the four methods
perform similarly well. Hence, even if the DGP imposes constant weights across the distri-
bution, the methods using varying weights capture the underlying structure well. The results
also show that the methods using quantile functions perform slightly better than those using
cumulative distribution functions. Overall, these findings further strengthen the importance of
varying weights.

Table 1.4: Average Performance for the Post-Treatment Periods

T0 J CSC COT QSC QOT
5 5 2.1245 2.5618 2.4881 2.7212
5 10 1.0914 1.7679 1.5586 1.9986
5 50 0.3813 0.9274 0.8442 1.2766
10 5 2.1933 2.631 2.4443 2.7635
10 10 1.0254 1.6671 1.3966 1.9075
10 50 0.2766 0.8274 0.5645 1.2105
50 5 2.1329 2.481 2.3645 2.6596
50 10 0.862 1.2888 1.1644 1.6485
50 50 0.1864 0.6032 0.3532 1.0068
100 10 0.8841 1.2875 1.1753 1.6413
100 50 0.1625 0.5718 0.3159 0.9822

Notes: Results display the RMSEt averaged over all t > T1 for
different combinations of the number of control units, J , and pre-
treatment periods, T0. The abbreviations describe the underlying
methods. The first letter indicates whether the cumulative distri-
bution function (C) or the quantile function (Q) is used, and the
last two letters indicate whether the traditional synthetic approach
(SC) or the 2-Wasserstein distance (OT) is implemented.
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Table 1.5: Results with Alternative DGP

Uncorrelated Correlated
T0 J CSC COT QSC QOT CSC COT QSC QOT
5 5 0.111 0.143 0.059 0.118 0.112 0.143 0.059 0.117
5 10 0.056 0.06 0.034 0.046 0.056 0.06 0.033 0.045
5 50 0.04 0.03 0.03 0.027 0.044 0.033 0.035 0.031
10 5 0.068 0.092 0.037 0.076 0.067 0.091 0.035 0.073
10 10 0.031 0.037 0.02 0.029 0.03 0.036 0.019 0.027
10 50 0.021 0.018 0.018 0.016 0.023 0.02 0.02 0.019
50 5 0.008 0.007 0.003 0.006 0.008 0.007 0.003 0.006
50 10 0.003 0.003 0.002 0.002 0.003 0.003 0.001 0.002
50 50 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002
100 10 0.019 0.018 0.006 0.009 0.018 0.017 0.005 0.009
100 50 0.013 0.012 0.005 0.005 0.011 0.011 0.006 0.005

Notes: Results display the RMSEt averaged over all t > T1 for different combinations of the
number of control units, J , and pre-treatment periods, T0. ’Uncorrelated’ refers to the case
where the underlying unobserved variables from each unit are uncorrelated. ’Correlated’ refers
to the opposite case where they are correlated. The abbreviations describe the underlying
methods. The first letter indicates whether the cumulative distribution function (C) or the
quantile function (Q) is used and the last two letters indicate whether the traditional synthetic
approach (SC) or the 2-Wasserstein distance (OT) is implemented.

1.5 Conclusion

This paper contributes to the growing literature on synthetic control methods by formalizing
an intuitive extension that allows for the estimation of effects across the distribution. In a
setting where the variable of interest is observed at a lower level than the aggregate unit, the
researcher decides how to aggregate the observed values to analyze the effect on the treated
unit. The proposed method takes advantage of this setting by aggregating individual values
as the mean over an indicator function, which represents a specific point in the cumulative
distribution function. The effect across the distribution is then derived by repeatedly applying
a synthetic control estimator while varying the indicator function specification. Thereby, the
method relies on well-established synthetic control methods. Compared to the existing distri-
butional synthetic control methods, the proposed extension is not only natural but avoids other
issues like mass points and allows weights to vary across the distribution.

The suggested method is applied to the introduction of the minimum wage in Neuchâtel,
Switzerland. Crucially, the estimated weights of the synthetic control unit provide evidence
that allowing these weights to change across the distribution is essential to replicate the distri-
bution of the treated unit. Results further support the finding that for individuals employed
in Neuchâtel, there is a positive effect on labor income in the lower part of the distribution,
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and the results from the permutation test indicate that the estimated effect is weakly signifi-
cantly different from zero. These findings, together with further results on various outcomes,
like unemployment rates, are in line with past findings by Berger and Lanz (2020). Still, it
remains to point out that given the limitations of the available survey, it would be interesting
and important to conduct further analysis on that matter.

To compare the various distributional synthetic control methods, the application is repeated
using a second method, and the simulation study compares four different methods. Findings
suggest that the proposed method and its quantile equivalent, which both use varying weights,
yield the best results, as their synthetic control unit replicates the target distribution of the
treated unit in the post-treatment periods the closest. Hence, these results further strengthen
the finding that allowing for varying weights across the distribution is important.

For simplicity, I refrained from including covariates in the model. However, other variables
might be of importance as well to find a synthetic control unit that matches the characteristics
of the treated unit well. For the proposed method, including covariates is possible in different
ways. On the one hand, when a synthetic control method is iteratively applied over different
points in the distribution, additional covariates can be added to each estimation. However, the
choice of these covariates for different thresholds of the distribution has to be discussed. On
the other hand, a two-step procedure can be used. In the first step, the cumulative distribution
functions conditional on covariates are estimated using distribution regression, and counterfac-
tual cumulative distribution functions conditional on the characteristics of the treated unit are
constructed for each unit (see Chernozhukov, Fernández-Val, and Melly (2013) for details).11

In the second step, the suggested method is applied using the counterfactual instead of the
observed cumulative distribution functions.

Further, this paper strongly focuses on the relationship between the proposed method and
the classic synthetic control method. However, other extensions of the synthetic control method
could be used as well for estimation. For future research, it would be interesting to assess the
relation to other extensions theoretically and empirically. Of special interest are extensions that
address the poor-matching problem in pre-treatment periods; see, for example, Doudchenko and
Imbens (2016), Ferman and Pinto (2021), and Ben-Michael et al. (2021). In the classic case,
Abadie, Diamond, et al. (2010) and Abadie and Gardeazabal (2003) advice against using the
synthetic control method if the pre-treatment fit between the synthetic and the treated unit
is poor. Neither this paper nor the paper by Gunsilius (2023) discuss this issue. However,
Chen (2020) augments his model and uses estimated residuals, which allows him to address the

11It is important to think carefully about the relations between covariates and outcome of interest and
how the distribution regression should be modeled. The point in using different covariates for the outcome of
interest, Y , is that one suspects these to have an impact on Y and that this impact is the same across units,
but not necessarily across time. Hence, one probably would want the coefficients for different covariates from
the distribution regression to be the same across units but to be able to vary across periods.



28 A Synthetic Control Method for the Analysis of Effects across the Distribution

poor-matching problem using observable heterogeneity in the pre-treatment periods. Hence, it
might be interesting to see whether combining the proposed method with one of the extensions
addresses the issue properly.

Finally, I followed standard permutation methods to do inference in this paper. As discussed
in section 1.2 there are likely to be disadvantages if a single average measure of the distance
between distributions is used. A local treatment effect could be missed. The approach to
account for this issue suggested in the paper is very heuristic, and therefore, it would be
interesting to improve inference to convincingly identify significant treatment effects along the
distribution.
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1.A Appendix I - Supplementary Insights and Results

1.A.1 Detailed Descriptives

In this section, the tables 1.1 and 1.2 are displayed in more detail. The columns for the 1st,
5th, and 10th percentile at the bottom and top of the wage distribution are added as well as
all available years. Overall, wages for individuals employed in the canton of Neuchâtel are not
very different compared to Switzerland. However, as described in section 1.4, we observe small
differences that potentially explain some of the observed results. First of all, we observe a less
strong decrease in wages for the year 2018 for Neuchâtel compared to Switzerland. Additionally,
we see that for the year 2000, wages in Neuchâtel are higher relative to other years compared
to wages in Switzerland. Finally, for the year 2014, wages in Neuchâtel from the 75th percentile
upwards are lower relative to other years compared to the same part of the distribution of
Switzerland.

Table 1.6: Hourly Wages over Years for Neuchâtel

min 1% 5% 10% 25% med. mean 75% 90% 95% 99% max obs.
1994 4.82 12.49 15.03 16.07 18.56 23.22 25.78 29.90 38.24 45.59 65.70 106.44 9357
1996 6.60 12.30 13.97 15.10 17.91 23.26 25.69 30.18 38.29 46.01 67.67 109.50 8963
1998 6.26 12.98 15.00 15.83 18.87 24.26 26.62 31.25 39.42 47.17 68.60 104.71 8318
2000 6.82 13.12 15.06 16.54 20.35 25.75 28.27 32.78 42.43 51.24 73.50 109.84 6512
2002 4.57 12.64 14.89 16.31 19.19 23.33 25.78 29.13 37.50 45.17 68.50 109.57 29363
2004 6.74 13.56 15.84 17.20 20.06 24.34 27.09 30.71 39.69 48.29 71.90 109.41 24867
2006 4.41 12.08 15.81 17.19 19.92 24.12 26.79 30.55 38.96 47.05 68.46 108.87 25003
2008 5.08 12.97 15.79 17.12 19.86 24.07 26.66 30.33 38.88 46.64 68.63 109.73 27028
2010 4.45 12.87 15.88 17.56 20.55 24.98 27.82 31.71 41.47 49.74 71.70 107.23 28550
2012 3.51 6.55 13.37 15.35 18.04 22.00 24.70 28.26 37.22 45.43 66.97 108.94 22373
2014 3.56 11.52 15.07 16.49 18.76 22.42 24.67 27.81 35.00 41.82 62.26 109.42 22675
2016 4.54 14.68 17.56 19.11 22.13 26.79 29.80 33.94 44.00 53.05 74.71 108.81 24551
2018 3.49 12.53 17.28 18.91 21.78 26.43 29.30 33.50 43.22 51.74 73.80 109.83 26590
total 3.49 12.35 15.35 16.87 19.84 24.28 26.94 30.80 39.87 47.89 70.10 109.84 264150
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Table 1.7: Hourly Wages over Years for Switzerland

min 1% 5% 10% 25% med. mean 75% 90% 95% 99% max obs.
1994 3.58 12.13 15.17 16.72 20.49 26.07 28.58 33.22 43.16 51.56 73.01 109.99 394959
1996 4.17 12.62 15.31 16.61 19.92 25.30 27.73 32.17 41.62 49.44 69.75 109.92 414349
1998 4.67 12.68 15.58 16.95 20.64 26.17 28.64 33.44 42.75 50.67 71.95 109.92 382800
2000 3.70 12.15 15.15 16.69 20.12 25.56 28.32 33.23 43.19 51.23 72.41 109.90 449940
2002 3.65 13.12 15.63 17.28 20.89 26.06 28.82 33.41 43.46 51.66 73.02 109.98 928850
2004 3.48 13.50 15.96 17.54 21.04 26.19 29.04 33.63 43.82 52.14 73.58 110.00 1010126
2006 3.50 12.80 15.83 17.50 20.97 26.06 28.95 33.52 43.89 52.20 73.57 109.99 1038001
2008 3.48 12.71 15.86 17.49 20.88 26.09 28.92 33.61 43.85 51.91 72.70 109.97 1094337
2010 3.49 12.54 15.79 17.55 21.11 26.58 29.41 34.37 44.73 52.85 73.87 109.99 1227273
2012 3.48 6.13 13.95 15.98 19.29 24.18 26.78 31.11 40.49 48.49 74.03 109.99 1046126
2014 3.48 11.49 15.32 16.91 19.99 24.68 27.17 31.49 40.14 46.95 68.39 109.98 1022063
2016 3.71 14.42 17.69 19.37 23.01 28.65 31.51 36.91 47.19 55.06 75.00 109.98 1128030
2018 3.48 13.77 17.19 18.81 22.23 27.75 30.63 35.76 45.93 53.94 74.99 109.95 1249239
total 3.48 12.28 15.75 17.41 20.93 26.21 28.98 33.75 43.83 51.87 73.26 110.00 11386093

1.A.2 Details Related to the Main Analysis

Figure 1.6 captures the result from the placebo permutation test outlined in section 1.2. The
gray lines in figure 1.6a display the QTE for the post-treatment period for units that were
actually not treated, i.e., the placebo QTE. Some placebo units exhibit differences far away
from zero. However, this is not because we expect there to be an effect but simply because
these units don’t have a fitting synthetic counterpart. The two cantons with very high QTE are
Basel and Zug, which have exceptionally high GDP per capita compared to all other cantons.
Consequently, the two cantons exhibit higher wages compared to other control units, and,
combined with the restrictions on the weights, the constructed synthetic units are unable to
replicate the two placebo-treated units well. The canton with a very low QTE is Ticino, which is
a result of a similar reason as before. Ticino exhibits very low wages compared to other control
units and, hence, cannot be replicated well by its synthetic counterpart. Compared to units
with more reasonable placebo effects, the positive QTE in the lower part of the distribution
for Neuchâtel, displayed by the red line, is just above other placebo effects. Also, compared
to negative placebo effects in the lower part, the QTE for Neuchâtel seems slightly larger in
absolute size. This is not the case for the smaller effect in the upper part of the distribution.
Hence, there is some evidence that the effect on lower wages is significant, but it is rather weak.
Importantly, figure 1.6a does not provide any information regarding the pre-treatment fit of
the placebo runs. The lines in figure 1.6b display the difference between CDF values across
different points of y. The interpretation of the results is the same as for figure 1.6a.
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Figure 1.6: Placebo Permutation Results
(a) Quantile Treatment Effects
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Notes: The figures display the QTE and the percentile treatment effect for different cantons in 2018.
The colored line displays the effect for the treated unit, Neuchâtel, in the post-treatment year. Lines
in gray display the effect of the post-treatment year if we apply the synthetic control method to
other units.
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1.A.3 Minimum Wage Impact on Various Outcomes

In addition to the hourly wages, this section analyses the impact of the minimum wage introduc-
tion in Neuchâtel on the following outcomes: Work hours, unemployment, exiting and entering
behavior of firms, number of workers from abroad, and registered available job positions. For
work hours, the distributional synthetic control method, as suggested in the paper, is applied.
For the other variables, the conventional synthetic control method is used. The information on
work hours is available in the ESS used for the main analysis. Information on the remaining
outcomes is publicly accessible on the website of the Federal Statistical Office or on Amstat.ch,
a website provided by the State Secretariat of Economic Affairs.

Work Hours

The variable work hours is clearly discrete since most people are employed in a contract with
fixed work hours. The standard working time in Switzerland is around 40 to 42 hours per
week, and a large share of individuals are employed full-time. As a result, the variable is not
continuous with sizable mass points, especially around the standardized work time for full-time
employment. Nevertheless, with the proposed method, it is straightforward to implement a
distributional synthetic control analysis for work hours.

Figure 1.7 captures the results from the permutation analysis. In subfigure 1.7a, the red
line displays the estimated effect of the minimum wage introduction on work hours. Results
suggest that there could be a small shift in the number of part-time workers, visible by a
decrease in probabilities in the lower part of the distribution, towards a higher number of full-
time workers, visible through the higher probabilities in the upper part of the distribution at
the mass point. It could be argued that with the increase in the minimum wage, there might
be an incentive for individuals in lower-paid jobs who profited from the policy intervention
to increase their workforce participation. However, compared to other placebo runs, the effect
estimated for Neuchâtel does not seem to be among the most extreme cases. The corresponding
p-values displayed in subfigure 1.7b are also further away even from 10% for the most part of
the distribution. There are two exceptions, but given the overall picture, they seem more likely
to result from repeated testing and not from a significant effect. Hence, results point more
towards no effect on work hours due to the minimum wage introduction.

Unemployment Rates

The variable captures the number of registered unemployed for each canton. Data is available
monthly since 1993, and all periods are used up to the year 2020. I refrain from including
the years from 2020 and onwards due to the Covid-19 global pandemic. This holds true for
unemployment rates as well as all other subsequent variables. The data further allows for

https://www.bfs.admin.ch/bfs/de/home.html
https://www.amstat.ch/v2/amstat_de.html
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Figure 1.7: Placebo Permutation Results for Work Hours
(a) Quantile Treatment Effects
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Notes: The results are constructed by applying the proposed distributional synthetic control method
on work hours. In figure 1.7a, the red line displays the difference between CDF values of work hours
of Neuchâtel, the treated unit, and the synthetic control unit. In gray, the same differences for
each of the placebo runs are displayed. In figure 1.7b, the p-values related to the placebo runs are
displayed.
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distinguishing between youth unemployment, including individuals between the ages of 15 and
24, and regular unemployment, including individuals with an age of 25 or older. For the analysis,
the monthly percentage changes are computed, and an average for each year is constructed.
The last pre-treatment period is then T0 = 2016.

The results of the conventional synthetic control method are displayed in subfigures 1.8a
and 1.8b. The synthetic control unit does manage to replicate the treated unit fairly well in the
pre-treatment period. The positive difference in the post-treatment period observed for both
variables seems not to be larger than observed differences in the pre-treatment periods; hence,
a treatment effect is not apparent.

Exiting and Entering Behavior of Firms

The variable captures the number of active, closing, and newly founded firms for each canton.
Data is available yearly since 2013, and all periods are used up to the year 2020. For the analysis,
the fraction of closing firms relative to the number of active firms for each canton is constructed.
The same fraction is constructed for the newly founded firms. The last pre-treatment period
is set to T0 = 2016.

The resulting findings when applying the conventional synthetic control method are dis-
played in the subfigures 1.8c and 1.8d. Note that we only have four pre-treatment periods;
hence, interpretation should be conducted with care. For the fraction of closing firms, the
synthetic control method is able to closely replicate Neuchâtel in the pre-treatment period.
However, there seems to be no clear treatment effect in the post-treatment periods. For the
fraction of new firms, the method fails to provide a close match and, hence, cannot be used to
get reliable estimates.

Workers from Abroad

The variable captures the number of workers with foreign residences coming from abroad to work
within the canton. These individuals need to have permanent residence in a country neighboring
Switzerland, within a closer region to the canton in which they are working. Furthermore, they
typically return to their residence every day and are obliged to do so by law at least once per
week. Data is available quarterly since 1999, and all periods are used up to the year 2020.
For the analysis, yearly sums are computed to get rid of seasonalities. The last pre-treatment
period is again T0 = 2016.

The results of the conventional synthetic control method are displayed in subfigure 1.8e.
Throughout the pre-treatment period, the synthetic control unit replicates Neuchâtel very well.
Additionally, we see a clear negative difference for the post-treatment period. Strikingly, this
difference already appears before T0, namely around 2014. There are two possible explanations
for this observation. First the minimum wage law was first presented in May 2014, and the
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enforcement was set to January 2015. Hence, the result could be explained by anticipatory
reactions from either employers or workers abroad. Second, in February 2014, the initiative
“against mass immigration” (Eidgenössische Volksinitiative “Gegen Masseneinwanderung” in
German) was accepted, which, among other things, aimed to reduce the number of workers
from abroad. Even though it takes time for new laws to come into force (until July 2018
for the specific case), employers and workers could have again reacted earlier. Conclusively,
even though there is a negative impact on the number of workers from abroad, it is hard to
disentangle how much of the effect can be attributed to the new minimum wage policy.

Registered Available Job Positions

The variable measures the number of registered open positions at the public job placement
centers. Regional assignment to specific cantons is done depending on the location of the
firm with the open position rather than the center. Data is available monthly since 2004,
and all periods are used up to the year 2020. Furthermore, information on full- and part-
time employment is available separately. For the analysis, full- and part-time employment is
combined and summed up over the year to smooth the series. The last pre-treatment period is
T0 = 2016.

The results after applying the conventional synthetic control method are displayed in subfig-
ure 1.8f. Again, the synthetic control unit replicated the treated unit well in the pre-treatment
periods. After the intervention, there is a very strong increase in the number of registered open
positions for both the treated and the synthetic control unit, whereas, for the treated unit, the
effect is stronger. Especially for the year 2017, Neuchâtel already exhibits a strong increase,
while the synthetic control unit remains at the same level. It could be that the positive effect
is driven to some extent by the new minimum wage law. However, similar to the number of
workers from abroad, interpreting these results must account for the initiative “against mass
immigration.” The federal law implementing the initiative was designed to prioritize national
workers, which was a softer intervention than demanded by the initiating party. The new law
required employers to register open job positions in certain fields with higher unemployment
rates. The Swiss parliament agreed upon the new law in December 2016. The final law came
into force in July 2018. Thus, the large increase starting in the post-treatment periods for
both the treated and synthetic control unit is almost surely due to the new law. It is unclear
to which degree the increase for Neuchâtel for the year 2017 is driven by the minimum wage
policy or the fact that employers in Neuchâtel reacted earlier to the new law compared to other
cantons in Switzerland.
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Figure 1.8: Synthetic Control Estimation Results for Various Outcomes
(a) Change in Unemployment Rates
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(b) Change in Youth Unemployment Rates
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(c) Closing Firms
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(d) New Firms
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(e) Workers from Abroad
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(f) Open Employment
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Notes: Each figure displays the results from applying the conventional synthetic control method to different
outcome variables. The red line displays the observed values of the treated unit, and the blue line displays
the estimated values of the synthetic control unit. The black vertical line marks the last pre-treatment period,
T0 = 2016.
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1.A.4 Comparison to the Standard Synthetic Control Method

In this section, the suggested method is compared to the standard Synthetic Control Method by
comparing the average treatment effect (ATE) and the control units used to build the synthetic
control unit. Note that for this section, the term ATE refers to the difference between the
treated and the synthetic unit unrelated, regardless of whether we are examining the pre- or
post-treatment periods. Overall, the two methods yield similar results, which speaks in favor
of the proposed method.

To derive the ATE from the suggested method, the observed empirical CDF of the treated
unit and the estimated CDF of the synthetic control unit are used. For each year, the average
income is approximated by treating income as a discrete and truncated variable, which takes
values lying in the middle of the available CDF grid values. Figure 1.9 comprises the estimated
ATE for the post- and pre-treatment periods of both methods. In general, the two methods
exhibit very similar results. For each pre-treatment year the average income of the treated and
the synthetic control unit are, with the exception of some points, close to each other, that is,
the ATE is close to 0. Further, both methods suggest an ATE of around 0.6 CHF per hour
following the minimum wage introduction.

Figure 1.9: Comparison of the ATE
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denotes the suggested method and SC denotes the classic Synthetic control methods.
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To compare the control units used in the synthetic control unit for each method, a single
weight for each control unit from the suggested method is created by averaging the weights
across the distribution. In table 1.8, the weights of all control units with a nonzero weight
in one of two methods are displayed. For both methods, almost the same control units are
used. The weights from the proposed method are less scarce, with smaller weights being put
on additional units.

Table 1.8: Weights

ZH SZ FR SO AG TI VD VS
DSC 0.01 0.01 0.34 0.24 0.20 0.13 0.02 0.08

SC 0.00 0.00 0.21 0.31 0.31 0.17 0.00 0.00

1.A.5 Inclusion of an Intercept

In this section, the proposed method is extended to include an intercept to replicate the treated
unit following the discussion in Doudchenko and Imbens (2016). The advantage of including an
intercept is that the treated unit can be closely matched, even if the CDF of the treated unit
does not lie within the convex hull of the CDF values of the control units at a specific point of
the distribution.

Overall, the results point towards the same direction as the main analysis. However, as vis-
ible in subfigure 1.11a, the estimated effect remains relatively constant across the distribution.
Additionally, the estimated effect is less exceptional compared to other placebo runs. Subfigure
1.11b exhibits p-values, which are mostly over 20%, with the lowest values reaching 16.7%.

Consulting subfigure 1.11c together with figure 1.10 provides some further insights. Note
that even though Neuchâtel belongs to one of the poorer cantons, it is not the poorest. Hence,
it is possible to find weights for the synthetic control unit, which span the unit simplex and
replicate the treated unit. However, the estimated intercept is clearly nonzero, reaching values
higher than 8%. The estimated weights indicate that, in general, there is a dominant control
unit with a high weight of around 0.7− 0.8. For the bottom of the distribution, the dominant
control unit is Fribourg, followed by the cantons Solothurn and Aargau. Hence, by including
an intercept, the method seems to pick a control unit that behaves similarly to the treated unit
at a specific point of the distribution and adds the difference between this control unit and the
treated unit as a coefficient. For example, Fribourg is a canton with low incomes, i.e., very high
CDF values. To match the treated unit, Neuchâtel, at the bottom of the distribution, a lot of
weight is assigned to Fribourg, and a negative coefficient is added.

Results suggest that extending the proposed method might be critical and interesting. To
assess whether or not this behavior is desired to estimate effects across the distribution, a more
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in-depth analysis would be necessary, but this is beyond the scope of this paper.

Figure 1.10: Estimated Intercept
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Figure 1.11: Results Including an Intercept
(a) QTE Compared to Pre-Treatment Periods

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4

τ

Q
T

E

pre−treatment
2018

(b) P-Values

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

p−
va

lu
e

(c) Weights
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1.B Appendix II - Robustness Checks

Anticipation Effects

As described in section 1.3.1, the level of the minimum wage was communicated by the cantonal
government in 2014, hence some firms could have already adopted the new policy in 2016 even
if it was not into force yet. Therefore, the analysis is repeated with T0 set to 2014. Results
displayed in figure 1.12 are reassuring that no such early adoption took place. The green line
showing the QTE for the year 2016 is close to zero except for the tails, where volatility in
general is higher. Additionally, the positive effect for the year 2018 remains unchanged.

Figure 1.12: Magnitude of the QTE Compared to Pre-Treatment Periods
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Notes: The colored line displays the QTE for the post-treatment year. Lines in gray
display the QTE for the pre-treatment years.

Including Young Workers

Employees at a young age have sometimes not yet fully entered the labor market. The transition
from education to employment is a lengthy process, especially for individuals with a tertiary
education. Therefore, individuals below the age of 25 were excluded from the main analysis.
As an additional robustness check, the analysis is repeated, including individuals aged between
18 and 25. Overall, the results displayed in figure 1.13 for the QTE, the significance across the
distribution, and the weights of the synthetic control unit do not change heavily. However, the
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p-values never drop 10% across the whole distribution but stay slightly above it. The reason is
likely related to how the unit of interest is defined. We can expect that some individuals in the
lower part of the distribution employed in Neuchâtel will also commonly work within Neuchâtel
and hence are directly affected by the minimum wage. By including individuals under the age of
25, the sample contains more individuals who are not yet fully integrated into the labor market
and who are likely employed in settings excluded from the minimum wage law. Hence, it seems
that for this sample, not enough people employed in Neuchâtel are impacted by the minimum
wage law. Therefore, the positive effect at the bottom is still apparent, but the number of
people affected is not large enough for the effect to be significant.

Exclude Early Pre-Treatment Years

For the years from 1994 to 2000, the waves are much smaller compared to the years after.
Therefore, an additional robustness check is employed to make sure that the results are not
affected by structural changes in the underlying cross-sectional data. Overall, results in fig-
ure 1.14 point towards the same findings as in the main analysis. Nevertheless, changes are
stronger compared to the other robustness checks. The QTE exhibits a sharp drop after the
0.5-quantile, and the p-values change correspondingly. This result is driven by an increase in
the weights for Ticino around the median, followed by a sharp drop to zero, slightly above the
median. In general, the weights seem to be more volatile in the upper half of the distribution,
suggesting that reducing the number of pre-treatment periods also weakens the performance of
the synthetic control unit.
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Figure 1.13: Results Including Employees Below the Age of 25
(a) QTE Compared to Pre-Treatment Periods
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Figure 1.14: Results using a Reduced Pre-Treatment Period from 2002-2016
(a) QTE Compared to Pre-Treatment Periods
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Smoothed Weights

The smoothed weights w̃j(y) are a weighted average of weights positioned before and after
y, mathematically: w̃j(y) =

∑k
i=−k miwj(y + i), where mi are the weights in position i. In

other words, w̃j(y) is a rolling average. In the underlying case, I choose k such that around
5% of the number of weights of a unit are used. Furthermore, weights are chosen to create a
triangular shape and sum up to one. Using this specification and the fact that the total number
of weights used for the rolling average is always odd (which results directly from the rolling
average covering weights at points y − k up to y + k), one obtains s = [(k + 1)/2]−2 as slope
coefficient. It follows that:

mi =

(k + 1 + i)s for i ≤ 0

(k + 1− i)s for i > 0

Following this basic approach leads to the loss of observations in the tail, namely the lowest and
highest 2.5%. However, as seen in section 1.4 estimated weights in the tails are quite volatile.
To deal with this case, it might be advisable to assume some parametric form, which would be
an interesting question for future research.

Figure 1.15 displays the result if we smooth the weights following the approach outlined
above. Figure 1.16 displays the QTE when using smoothed weights. Overall, results remain
very similar to the ones shown in section 1.4.
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Figure 1.15: Smoothed Weights Across the Distribution
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Figure 1.16: QTE Compared to Pre-Treatment Periods
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1.C Appendix III - Remarks on Mixture Weights

The size in which mixture weights can change across y is linked to the properties of the un-
derlying distributions. Taking derivatives with respect to y, equation 1.2.6 can be written
as:

D∑
d=1

γ′
d(y)Fd(y) + γd(y)F

′
d(y) ≥ 0 (1.C.1)

where subscripts j and t are dropped for visibility. Since the weights are restricted to sum up
to one, any change in mixture weights imposes γ′

d(y) < 0 for at least one distribution. Let the
distribution for which weights are decreased be denoted as d∗, and let d−∗ be any distribution
that has positive weights at y but is not d∗. Further, we can think of three cases. First, if
the decrease occurs for a distribution with lower CDF values, i.e., Fd∗(y) < Fd−∗(y) for all
d−∗, then the inequality 1.C.1 is always satisfied. The decrease in weights must be matched
by other weights with higher CDF values. As a result, the first term of inequality 1.C.1 must
be positive, and thus, the weights can change strongly. However, note that a strong decrease
implies a strong increase in weights of distribution(s) with higher CDF values. As a result,
for values of y larger than the current point, the weights are restricted from reverting to d∗.
The reason is the following second case. If the decrease occurs for a distribution with higher
CDF values, i.e., Fd∗(y) > Fd−∗(y) for all d−∗, then the first term of the above inequality
1.C.1 becomes negative. To avoid a violation of the inequality above, the second term has to
compensate. The higher the density, i.e., the steeper the CDFs of the distributions with positive
weights, the more likely the negative term can be compensated. Hence, if the decrease happens
for the distribution with higher CDF values, then the change in weights becomes more strongly
bounded as the CDFs become flatter. Importantly, for y values in which the distributions are
equal, that is Fd∗(y) = Fd−∗(y), the first term of the above inequality is always zero, and hence
weights can change arbitrarily. It follows that the weights, γd(y), are to some degree bounded by
the underlying properties of the distributions that have positive weights at y. There exist cases
for which stronger changes in weights could occur. However, if the underlying distributions are
not identical, we should not expect to observe these strong changes across all values of y.





Chapter 2

Intergenerational Income Mobility: A
Copula Regression Approach

Abstract

We propose a new estimator of the conditional distribution of multivariate outcomes given
covariates. In the first step, the univariate conditional distributions of the outcomes are es-
timated via distribution regression. In the second step, we estimate a conditional copula of
the outcomes, imposing a copula parameter that is local in the value of the outcome. Without
covariates, the estimator reduces to the empirical distribution function. We apply the estimator
to study intergenerational income mobility in Switzerland and the U.S. We estimate the joint
cumulative distribution of children’s and parents’ income, controlling for different explanatory
variables. Derivation of specific mobility measures from the joint distribution is straightforward,
and taking covariates into account during the estimation of the joint distribution enables us to
gain deeper insights into drivers of intergenerational income mobility. Further, this innovative
approach allows us to decompose structural from compositional differences. Results focus on
mobility differences between sons and daughters. Specifically, we find that a higher father’s
income share for sons is related to higher upward mobility. However, this relationship does
not hold for daughters. We further analyze differences in mobility outcomes between sons and
daughters and conduct a decomposition analysis. The decomposition shows that average hours
worked are crucial in explaining the differences between sons and daughters. Nevertheless, a
large part of these observed differences remains unexplained.
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2.1 Introduction

This paper introduces a new estimator for the analysis of multivariate counterfactual distribu-
tions, providing deeper insights into intergenerational income mobility. Income mobility is an
essential economic concept since it is strictly connected with the level of long-term inequality
(see, e.g., Arellano et al., 2017, Bonhomme and Robin, 2009) and is a crucial issue in both
academic research and the current political debate. Our results have clear implications for
policymaking: If the degree of association between parent and child income is low in the bot-
tom part of the income distribution, then individuals can climb the income ladder from one
generation to the next. Hence, income inequality would be a transitory phenomenon, which
reduces itself over time and disappears eventually. Other recent developments in intergener-
ational mobility studies include the analysis of the intergenerational transmission of wealth
(Adermon et al., 2018), consumption (Waldkirch et al., 2004), and occupational choice (Boar
and Lashkari, 2021). Specific aspects of intergenerational income mobility, such as differences
between family structures (Björklund and Chadwick, 2003) or father-daughter degree of income
persistence (Chadwick and Solon, 2002) have also been put under scrutiny.

Intergenerational income mobility is affected through different channels. The early model by
Becker and Tomes (1979) and Becker and Tomes (1986) suggests that labor market outcomes
are directly linked to human capital, e.g., knowledge, skills, and attitudes, valued by the labor
market. As past research has shown, the human capital a child brings to the labor market
results from a complex process involving endowments and investments into human capital. A
typical example of an investment is education provided by the parents or the government.1

Past research has emphasized various factors to be of importance. For example, Björklund,
Roine, et al. (2012) and Blanden et al. (2007) attributed a significant role in determining the
degree of father-son income persistence to education. Bhattacharya and Mazumder (2011) as
well as Chetty, Hendren, Jones, et al. (2020) find that race determines intergenerational income
transmission and Abramitzky et al. (2021) show that children of immigrants have higher rates
of upward mobility. Carneiro et al. (2021) find that investments when children are between 6
and 11 years old are relatively less important compared to investments made during the early
and later stages of childhood. Additionally, studies like Chetty, Hendren, Kline, et al. (2014),
Chetty and Hendren (2018a), Chetty and Hendren (2018b), and Corak (2020) find significant
regional differences within a country underscoring the influence of neighborhood effects. Our
approach allows us to explicitly account for such factors when estimating the joint distribution of
children’s and parent’s income. Differences in mobility across characteristics were traditionally
addressed mainly by estimating different mobility measures for different groups, e.g., high- or
low-educated individuals. However, such an approach either requires a very large dataset or

1For a more in-depth discussion, see appendix 2.C.
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limits the analysis to a smaller set of variables. Additionally, categorizing a continuous variable
typically involves defining arbitrary thresholds to group the data. Our approach simplifies
controlling for multiple variables, even when they are continuous.

The proposed method incorporates covariates in a semi-parametric way during the estima-
tion of the joint income distribution. From there, multiple mobility measures are computable.
As a result, different conditional measures can be computed even with a smaller data set. There-
fore, the crucial first step in our approach relies on estimating the joint income distribution.
There is some related research on this topic. For example, Bhattacharya and Mazumder (2011)
analyze differences in intergenerational income transmission for race in the U.S. However, they
adopt a fully nonparametric model that is hence prone to the well-known problems of a slow
rate of convergence, the curse of dimensionality, and bandwidth choice, to name only a few.
Additionally, they consider a single parameter, whereas we provide a method that works with
all functionals of the joint distribution of parent’s and children’s income. Similar to our paper,
Richey and Rosburg (2018) suggest a decomposition of the transition matrix. They use the fact
that transition matrices are built up by the children’s distribution conditional on the parents’
rank and a number of covariates. However, for their estimation, they rely on parametric copulas
to estimate the distributional structure of the covariates. With our method, we avoid these
strong parametric assumptions. Instead, we employ a copula with a copula parameter that is
modeled via a parametric link function (e.g., a logistic function) and local in the value of the
outcome. This allows for a flexible specification of the multivariate distribution while ensuring
efficient estimation.

In our paper, we will analyze Swiss data from the Economic well-being of the working-
and retirement-age population (WiSiER) as well as U.S. data from the Panel Study of In-
come Dynamics (PSID). Given the limited number of studies on intergenerational mobility in
Switzerland and the comparatively richer dataset available compared to the PSID, this analysis
will primarily focus on Switzerland. Previous research on intergenerational mobility in Switzer-
land examined the mobility of education. Bauer and Riphahn (2006) use data from the Swiss
population census to study intergenerational mobility of education. Jann and Seiler (2014) use
a combination of different surveys to study intergenerational mobility of education and social
class. Favre et al. (2018) analyze intergenerational mobility in occupations for the City of Zurich
in the 19th century. Recently, with the new WiSiER database available, other aspects of mo-
bility have been analyzed. Chuard and Grassi (2020) are the first to analyze intergenerational
income mobility in Switzerland. A working paper by Kalambaden and Martınez (2021) studies
intergenerational mobility of income, wealth, education, and occupation status. Both papers
investigate intergenerational income mobility in Switzerland but use traditional approaches.
The explanatory variables are included by dividing the data into subgroups, thereby estimating
the measures for each subgroup separately. Our paper contributes to this literature by applying
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a more sophisticated method, which avoids subsampling and allows us to gain deeper insights
into the driving factors of mobility. We find that mobility differs with the share of income con-
tributed by the father. For sons, the probability of moving upwards increases with the father’s
income share, but for daughters, this probability of moving upwards tends to decrease with the
father’s income share. In general, we find great differences in income mobility between sons
and daughters and that average hours worked play an important role in driving these results.

2.1.1 Motivational Example

Our approach combines two very convenient features. First, we estimate the whole joint dis-
tribution of the outcomes of interest, which allows us to easily construct different types of
intergenerational mobility parameters. Second, when estimating the joint distribution, we can
account for other variables that influence the outcomes of interest and construct a counterfac-
tual distribution.

In figure 2.1, we plot 25 points of the conditional expected ranks – one of several possible
mobility measures – for sons and daughters. The light-colored lines result from our approach
when only the sex of children is included as an explanatory variable. In line with previous
findings, the relationship between the conditional expected rank of children and parents is
rather linear. The relationship seems a bit steeper for children with parents in the highest
ranks. As previously found in papers by Chuard and Grassi (2020) and Kalambaden and
Martınez (2021), the relationship for Switzerland is relatively flat compared to the U.S. For
example, if the slope of the relationship is modeled as linear, Chetty, Hendren, Kline, et al.
(2014) find the slope to be around 0.3 for the U.S., while we estimate a value of 0.158 for
Switzerland. There are apparent differences between daughters and sons. On average, sons
have an income rank of around 0.55, and daughters’ rank is around 0.4. This result is driven by
the fact that, in general, daughters are on lower ranks in the child distribution. However, we
want to investigate how much of this difference can be explained by observable characteristics.

To do so, we estimate conditional expected ranks of sons and daughters, conditioning for
other observed factors. The blue dotted lines in figure 2.1 are estimated, including several
covariates in addition to the sex of a child. In this case, the gap between the two lines narrows.
The variable with the strongest impact is likely to be working hours due to the fact that
in Switzerland, women more often work part-time compared to males. Controlling for these
covariates reduces the influence of daughters being on lower ranks in the overall distribution.
However, a large part of the gap remains unexplained.2

2Note that working hours itself is potentially endogenous and part of the relation between parents’ and
children’s incomes. Hence, it is debatable whether it should be included as a control or not.
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Figure 2.1: Conditional Expected Ranks of Sons and Daughters
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Notes: Each dot displays the expected income rank of a child, conditional on the parent’s
income rank, estimated as outlined in section 2.2.2. Lines in lighter colors display results
without controlling for covariates (wo/C). The ones in darker colors display results if we
control for covariates (w/C).

The outline of the paper is as follows: In section 2.2, we introduce our method and link it
to some parameters of interest from the intergenerational mobility literature. In section 2.3,
we present the data and variables used for the analysis. Section 2.4 presents the results, and
section 2.5 concludes.

2.2 Model and Estimator

2.2.1 Copula Regression

In this section, we propose an extension to the local Gaussian representation (LGR), which was
introduced in Lemma 2.1 of Chernozhukov, Fernández-Val, and Luo (2023). They show that
for a bivariate case with variables Y1 and Y2, the joint distribution, FY1,Y2 can be represented
via a Gaussian copula with local correlation parameter that depends on (y1, y2). The LGR has
also been utilized as a variation by Fernández-Val et al. (2024), who use a general link function
to model the marginal distributions rather than the Gaussian.
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We propose a generalization of the LGR that allows for different copula families and improves
estimation efficiency. The new estimator is a semi-parametric method that aims to weaken the
assumptions compared to fully parametric copula-type approaches while maintaining accuracy.
At the same time, it reduces the risk of dimensionality issues compared to fully nonparametric
approaches. Additionally, by moving beyond the Gaussian specification used in the LGR,
significant computational speed improvements are achieved.

For simplification and given the focus of the application on joint income distributions, we
focus on the bivariate case. However, the extension to the multivariate case is conceptually
straightforward. The starting point is the estimation of the joint conditional distribution of
the variables Y1 and Y2 given a vector of covariates X using a two-step procedure. By Sklar’s
Theorem (see also Theorem 2.3.3. in Nelsen (2006)):

FY |X(y1, y2|x) = CU |X
(
FY1|X(y1|x), FY2|X(y2|x)|x

)
(2.2.1)

where FY |X is the conditional joint CDF of Y = (Y1, Y2) given X. Similarly CU |X is the
conditional copula function of U = (U1, U2) given X, where, U1 and U2 correspond to the
conditional marginal distributions FY1|X and FY2|X of Y1 and Y2 given X.

In the first step, the conditional marginal distribution functions FY1|X(y1|x) and FY2|X(y2|x)
are estimated using distribution regression. For instance, by estimating a probit regression of
1(Y1 ≤ y1) on X and another probit regression of 1(Y2 ≤ y2) on X.3

In the second step, the joint distribution FY |X(y1, y2|x) is estimated using the estimated
values for F̂Y1|X(y1|x) and F̂Y2|X(y2|x) from the first step. To do so, a copula family is chosen
to model the conditional copula, where the copula parameter depends on thresholds of the
distribution and X. The conditional copula is then written as:

CU |X (u1, u2|x) = CU |X (u1, u2, θ(y1, y2, x)) (2.2.2)

where the θ is the local copula parameter and CU |X denotes a parametric specification for the
conditional copula depending on the chosen copula family. Note that given the local copula
parameter, the specification remains flexible despite choosing a specific copula family. Since
ud = FYd|X(yd|x) for d ∈ (1, 2), we could equivalently let the correlation coefficient be a function
of u1 and u2 instead of y1 and y2. For practical and computational reasons, we assume that the
copula parameter is a known transformation of a linear function of X:

θ(y1, y2, x) = Λ(x′β(y1, y2)) (2.2.3)

The function Λ is useful to impose the support constraints on the parameter θ. For example,

3X may be a transformation of the original variables.
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in the Gaussian case, θ corresponds to the correlation coefficient and is restricted to lie within
[−1, 1]. For example, Chernozhukov, Fernández-Val, and Luo (2023) set Λ(x) = tanh(x) =

(ex − e−x)/(ex + e−x) to impose this support. For the Frank copula, we can use the identity
function because the parameter is unbounded, or for the Plackett copula, we can use the
exponential function.

For estimation, note that FY |X(y1, y2|x) = P (Y1 ≤ y1∩Y2 ≤ y2|x). It follows that equations
(2.2.1), (2.2.2), and (2.2.3) imply a binary choice model for the variable Ỹi(y1, y2) = 1(Y1i ≤
y1) · 1(Y2i ≤ y2) with

P (Ỹi(y1, y2) = 1|X = x) = CU |X(FY1|X(y1|x), FY2|X(y2|x),Λ(x′β(y1, y2)))

When using the estimates from the first step, we obtain

Pi(y1, y2, β(y1, y2)) = CU |X(F̂Y1|X(y1|x), F̂Y2|X(y2|x),Λ(x′β(y1, y2)))

The MLE is

β̂(y1, y2) = argmax
β∈RK

n∑
i=1

Ỹi(y1, y2) ln(Pi(y1, y2, β)) + (1− Ỹi(y1, y2)) ln(1− Pi(y1, y2, β))

The estimator is implemented in R using the method by Nelder and Mead (1965). The
method is neither based on first nor second-order derivatives and is hence suitable for the
different copula families implemented.

2.2.2 Parameters of Interest

Intergenerational mobility is a versatile concept that cannot be grasped with a single measure.
Today’s researchers are equipped with a large toolbox to measure intergenerational mobility
(see Deutscher and Mazumder, 2023 for an in-depth analysis of different mobility measures),
and most of these measures are functions of the joint distribution. An advantage of the pro-
posed approach is that it delivers direct results for all these functions of the joint distribution.
In general, predominant measures are the so-called intergenerational elasticity (IGE) and inter-
generational correlation (ICE), the rank-rank slope (RRS), and transition matrices. The IGE,
ICE, or RRS capture mobility in a single parameter that results from a simple linear regres-
sion. While these measures are easy to interpret and simplify comparison, e.g., cross-country
comparisons, they bear the risk of missing crucial aspects of mobility. Transition matrices pro-
vide a more detailed picture of mobility but are harder to interpret. The cells of the matrix
display the probability for the child to transit in a children’s income bracket, given the parents’
income bracket. Transition matrices are commonly displayed with a restricted number of cells
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or even single cells of particular interest (for example, the “rags-to-riches” measure) to simplify
interpretation. While very insightful, the results depend on the number of brackets specified
by the researchers, which is somewhat arbitrary.

Further note that while the IGE and ICE are log-income-based measures, the other measures
presented above are rank-based. Nybom and Stuhler (2017) find the attenuation bias from
using annual income instead of true lifetime income to be weaker for rank-based measures.
Additionally, the life-cycle bias, which arises when lifetime income is measured using income
at a young age, is smaller for rank-based measures. However, in the tails of the distribution,
rank-based measures can be inaccurate due to these biases. As a general pattern, transition
probabilities are found to be understated along the diagonal and overstated off the diagonal.

In this paper, we resort to rank-based measures to capture different aspects of mobility.
In particular, we will derive the following measures from the estimated joint distribution: The
Rank correlations, transition matrices, and the conditional expected ranks. Additional measures
can be derived if needed, though they are not addressed in the following. For simplicity, all
measures are presented without considering covariates. Once the conditional distributions are
estimated, incorporating covariates for the mobility measures is straightforward. However, it
remains important to point out that the specific approach taken affects the interpretation of
the computed values.

Rank Correlations (Rank-Rank Slope)

The RRS is a very popular measure, especially since Chetty, Hendren, Kline, et al. (2014)
favored the RRS over the more traditional IGE, as the RRS proved to be more robust. The
measure is the slope coefficient obtained from regressing the children’s ranks on the parent’s
rank.

The RRS is based on the famous Spearman’s rho or Spearman’s correlation. When measur-
ing the dependency between two variables, measures like Spearman’s rho or Kendall’s tau are
often preferred over Pearson’s correlation. Unlike Pearson’s correlation, which captures only
linear dependencies, Spearman’s rho can capture a broader range of dependencies and is robust
to nonlinear transformations of the underlying variable. Spearman’s rho is defined as Pearson’s
correlation of the ranks of the underlying variable.

ρS =
Cov(RY1 , RY2)

sd(RY1)sd(RY2)
(2.2.4)

where RYd
are the ranks of the outcome Yd for d ∈ (1, 2). Note that if ranks are normalized to lie

within 0 and 1, an individual’s rank corresponds to the marginal CDF value of that individual.
Consequently, the ranks follow a uniform distribution over the interval [0, 1], and the standard
deviation for both ranks is the same. As a result, the denominator equals the variance, ρS =
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Cov(RY1 , RY2)/V ar(RY2), which is the slope coefficient of a simple OLS regression of children’s
ranks on parent’s ranks, i.e., the RRS. Given the uniformity of the ranks, V ar(RY2) = 1/12,
and Spearman’s rho can equivalently be rewritten as:

ρS = 12E[(RY1 − 0.5)(RY2 − 0.5)] (2.2.5)

or alternatively as

RRS = 12

∫ 1

0

∫ 1

0

RY1RY2dC(RY1 , RY2)− 3 (2.2.6)

where CR(·) represents the copula describing the joint distribution of the ranks.
It is crucial to emphasize that the equivalence between the RRS and Spearman’s rho holds

only as long as ranks are uniformly distributed, meaning they are derived from a well-defined
univariate distribution. As pointed out by Deutscher and Mazumder (2023), describing the
measure as a slope is, in many applications, more accurate than a correlation. Once the ranks
are computed based on an external benchmark rather than the underlying population for which
the measure is computed, the measure no longer exactly corresponds to Spearman’s Rho. An
in-depth discussion is also provided in Chernozhukov, Fernández-Val, Meier, et al. (2024). For
the analysis below, we will focus on the correlation measure and the estimation procedure as
described in Chernozhukov, Fernández-Val, Meier, et al. (2024). Their approach requires only
the estimation of univariate distributions, which corresponds to the first step of our two-step
procedure.

Transition Matrices

Transition matrices are one of the most commonly used methods to assess the degree of income
mobility within an economy (see, e.g., Shorrocks, 1978, Fields and Ok, 1999, Dickens, 2000,
Bonhomme and Robin, 2009). The transition matrix captures the transition probabilities of
children conditional on parents’ rank. More precisely, it is the probability of having an income
rank within some interval, conditional on having parents with an income rank within some
interval. Using again the marginal distribution to represent the ranks, a cell in the transition
matrix is:

TP (u, v) = P (u1 ≤ FY1(y1) ≤ u2|v1 ≤ FY2(y2) ≤ v2) (2.2.7)

where u = (u1, u2), v = (v1, v2) are grid points between 0 and 1. FY1 and FY2 denotes the rank
of the children and parents. Equivalently, the transition probability can be expressed as:

TP (t, s) = P (t1 ≤ y1 ≤ t2 | s1 ≤ y2 ≤ s2)

=
FY (t2, s2)− FY (t2, s1)− FY (t1, s2) + FY (t1, s1)

FY2(s2)− FY2(s1)
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where t = F−1
Y1

(u) and s = F−1
Y2

(v). All terms in the expression are directly estimated using the
new approach. Consequently, the transition probability can be readily obtained by plugging
these estimates into the formula.4

Typically, the intervals are defined by quantiles, e.g., quintiles. Combining these transition
probabilities into a single matrix yields the transition matrix. In this paper, rows capture
children’s ranks, and columns parents’ ranks. Stayers, i.e., individuals who occupy the same
part of the distribution as their parents, are displayed along the main diagonal of the transition
matrix. Upward movers, i.e., individuals who occupy a higher part of the distribution than
their parents, are in the lower triangle, and downward movers are in the upper triangle of the
transition matrix. For example, the last cell of the first column of a quintile transition matrix
contains the probability of a child reaching the highest quintile of the children’s distribution,
conditional on having parents in the lowest quintile of the parents’ distribution. Symmetric
transition matrices that use quantiles and ranks of the underlying distribution as intervals have
rows and columns that sum up to one. This no longer holds for the rows whenever ranks are
computed using another distribution than the underlying one. For example, a transition matrix
for sons that uses the whole population, i.e., sons and daughters, to compute ranks will not
necessarily have rows that sum up to one. A limitation of the transition matrix approach is
that all intra-quintile transitions are not shown.

Conditional Expected Rank

Another insightful measure is the expected rank of a child, given the rank of the parent. Again,
by defining ranks to take values between 0 and 1, the conditional expected rank can be written
as:

CER(v) = E [FY1(y1) | v1 ≤ FY2(y2) ≤ v2)] (2.2.8)

Note that this measure is closely related to the RRS. Using the slope coefficient together with the
coefficient of the constant yields an estimate for the same conditional average rank. However,
this assumes the conditional average rank to be linear, while with our approach, this assumption
is relaxed. Furthermore, instead of the average rank of the child, it is straightforward to derive
measures of the conditional distribution of the children’s ranks given the rank of the parents,
e.g. to estimate the median rank of a child given the rank of the parent (or at any desired
quantile).

4Note that FY2
(y2) = lim

y1→∞
FY (y1, y2), hence all terms can be derived from the joint distribution.
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2.2.3 Decomposition

The proposed estimator further allows for a decomposition analysis by constructing counter-
factual distributions. Extending the idea of Chernozhukov, Fernández-Val, and Melly (2013)
to our case, we can define the counterfactual joint distribution as:

FY ⟨1|0⟩(y1, y2) =

∫
X0

FY1|X1(y1, y2|x)dFX0(x) (2.2.9)

where 0 and 1 represent different groups of individuals, e.g., educated and uneducated. Thus,
equation 2.2.9 represents the joint distribution for individuals with characteristics of group 0
if they faced the distributional structure of group 1. The subscript ⟨·|·⟩ is used to indicate to
which group the structure and characteristics correspond to. Using the counterfactual joint
distributions allows us to compute the counterfactual for mobility measures explained earlier.
In the following, we will focus on the transition probabilities as an example, as they provide a
very detailed picture of mobility.5

To compare the results from two transition matrices from different subgroups, the difference
between each cell, i.e., total difference can be computed:

TE(t, s) = TP⟨1|1⟩(t, s)− TP⟨0|0⟩(t, s)

Similar to Richey and Rosburg (2018), this total difference can be decomposed into two parts: a
compositional and a structural difference. Since the transition matrix results directly from the
joint distribution, we can decompose the total difference using the counterfactual joint distribu-
tion FY ⟨0|1⟩(y1, y2). Then, TP⟨1|0⟩(t, s) is a transition matrix for individuals with characteristics
of group 0 if their conditional joint distribution had the structure of that from group 1. The
compositional difference can then be defined as:

CE(t, s) = TP⟨1|1⟩(t, s)− TP⟨1|0⟩(t, s)

The compositional difference captures how much of the total difference between groups 0 and
1 results from differences in observed characteristics. The structural difference is:

SE(t, s) = TP⟨1|0⟩(t, s)− TP⟨0|0⟩(t, s)

and captures how much of the total difference between groups 0 and 1 results from differences
in the structure of the joint distribution.

5Once the counterfactual distribution is estimated, the decomposition of other measures is straightforward.
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2.3 Data

We use data from two different sources. The first is the WiSiER data from Switzerland, and
the second is the well-known PSID from the United States. Both sets of data allow us to
capture the family relations of individuals and provide important control variables. For the
analysis, we focus on labor income as our outcome variable. However, it is beneficial to have
these control variables at hand since our approach allows us to control for additional variables
when estimating the multivariate distribution of income.

2.3.1 WiSiER

The WiSiER is a combination of many different sets of data capturing different characteristics
of the individuals. Our data includes individuals from eight Cantons from 1982 to 2016. The
main outcome variable is insured labor income, which is aggregated on a yearly basis. Basic
covariates are available for all years (e.g., age, gender, marital status, number of children, place
of birth, years worked), whereas others are only available from 2011-2016 (e.g., education,
company size, company sector, hours worked, nationality). Based on a unique ID, parents and
children can be matched, and some of the covariates are imputed backward. For the analysis,
each observation corresponds to a child-parent combination with corresponding values averaged
over the observed years relevant to the analysis. We restrict the sample to children born in 1968
or later to approximate work experience as described below and drop observations for which
the father or mother was below 14 when the child was born.

Variable of Interest

Labor income is measured as yearly income insured by the mandatory old-age and survivors’
insurance in Switzerland. Following the literature, income is measured over several years for
individuals between 30 and 50 years old to reduce potential attenuation and life-cycle biases.
We deflate income using the Consumer Price Index provided by the Federal Statistical Office.
We also drop unrealistic values by trimming the data, dropping the highest 1%, and excluding
the few negative values6. Thereby, only the information for the specific year is removed and not
all years for which the individual is observed. The final measure of income is a simple average
over all years observed, filtering out noise from single years. For the parent’s labor income, the
sum of the father’s and mother’s average labor income is taken.

6About 0.05% of the observed years contained negative values. Also, note that trimming the data is not
necessary for the underlying estimator. However, it excludes unrealistic high values.
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Explanatory Variables

Table 2.1 gives an overview of the control variables included in the analysis. We will especially
focus on two crucial variables: the father’s income share and the sex of the child. Income share
captures the share of income contributed by the father. The father’s income share captures
several aspects impacting income mobility. For example, the father’s income share is likely to
be linked to the decision of whether one parent works part-time and thus to the time parents
dedicate to their children. Additionally, a higher father’s income share is associated with
traditional family settings and hence captures family culture and role model effects. For the
analysis, the variable is modeled as a polynomial of order two to allow for more flexibility.
Furthermore, distinguishing the sex of the children allows us to analyze differences in mobility
between sons and daughters.

For individuals born in Switzerland, the place of birth is known on a communal level.
For individuals born outside of Switzerland, the place of birth is known at the country level.
Given the eight cantons participating, the number of observations varies across regions. For
the children born in Switzerland, we include the place of birth on a cantonal level, as cantons
tend to be an important factor in Switzerland. For children born abroad, we create six broad
regions. For the parents, the mother’s and father’s place of birth is included separately, but it
is only distinguished if they are born abroad or in Switzerland.

Table 2.1: Control Variables WiSiER

Variable Child Parents Type
Income share x continuous
Sex x binary
Place of birth (CH) x binary
Place of birth (regions) x categorical
Age x x continuous
Age at measurement x continuous
Number of children x categorical
Education x x categorical
Wealth x continuous
ISEI x continuous
Hours worked per week x categorical
Years worked x categorical

Notes: The columns child and parents indicate for who the control variable is
typically included. The column type shows how we included the variable in the
analysis.
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We additionally control for the average age of children and parents by taking averages over
the years when income is observed. The age of the parents is included as an average of the
mother’s and father’s age. Since the timing of investments is essential, we additionally control
for the age of the children when parents’ income is measured. All variables related to age are
modeled as a polynomial of order two to allow for more flexibility.

The number of children of both children and parents is also included, which might capture
the available resources of the parents for one child.

Further, the WiSiER contains a categorical variable on the highest education completed.
We construct five categories, low education, vocational training and education, high school
degree, degree from a higher specialization school (HF), or some higher education (FH, PH,
Uni), to control for education. Parents’ education is defined as the highest observed education
of the father and mother to capture the highest education available within the family.

We also include the net wealth of the parents measured in thousands of CHF. The variable
is trimmed on both ends, such that observations that belong to the lowest or highest 1% are
dropped. As for income, net wealth is deflated using the Consumer Price Index. Parents’
wealth is defined as the sum of the net wealth of both parents. Observations for which the
wealth of only one parent is observed are dropped.

The ISCO numbers of the occupations of parents and children are available between 2012
and 2016. The occupation most frequently observed within these years is defined as occupation.
Our interest lies in the status attached to certain occupations, which might impact children’s
income. Thus, we construct the international socio-economic index of occupational status
(ISEI) from the ISCO numbers using the iscogen package from Jann (2019). For the analysis,
the parent’s ISEI is defined as the highest observed ISEI of the father and mother.

Another important variable is the average working hours per week for children. Again, the
average is taken over the years when income is observed. The variable is categorized into eight
categories (between 0 to 59.5 in steps of 8.5 and one category for values > 59.5).

Finally, we also include years worked as the total number of years for which an income has
been observed since 1982. To capture all years worked, we restrict the sample to children born
after 1968. It is noteworthy that we still observe an income during absences like maternity
leave or military service due to the insurance system. Furthermore, the variable does not
differentiate years of full-time or part-time work, and we can only capture years worked in
Switzerland. Hence, the variable presents the number of years an individual has been in the
Swiss labor market and provides a proxy for work experience. In the analysis, we include years
worked for children, averaged over the years when income is observed. We include years worked
as a categorical variable with six categories ([0, 5], (5, 7.5], (7.5, 10], (10, 12.5], (12.5, 15], (15,∞)).
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Descriptive Statistics

The data used for the analysis includes 12,641 pairs of children and parents with complete in-
formation on all variables.7 Table 2.2 displays some descriptive statistics for these observations.
We observe that mothers and fathers are recorded mostly between the years 1988 and 2001,
while children are observed mostly from 2008 to 2015. The count variables display the number
of years the children or parents are observed. Parents are observed for 16 years on average,
which is most of the time span between 30 and 50. Unlike their parents, we observe each child
for about 8.19 years, with the median being also at 8. This is a result of excluding years when
the child is below 30. Furthermore, note that the average age of children when their income
is measured is mostly between 30 and 38. The average age of parents when their income is
measured is between 40 and 45. A majority of the children are between the ages of 10 and 20
when the income of the parents is measured. The median and mean are around 15, which, as
described above, is a crucial stage of childhood. Finally, in general, the fathers provide most of
the parent’s income. The median for the father’s income share is at 1, and a value below 0.4 is
rarely observed.8

2.3.2 PSID

The PSID is a longitudinal household survey dataset that started in 1968 and was conducted
every year until 1997 and biannually afterward. The basic survey captures many different
aspects of individuals and families, and the same data has been used previously to study
intergenerational mobility by Callaway and Huang (2018). The PSID collects information for
individual units as well as the family unit. As a result, variables collected for the family unit
and the related roles like ’head’ and ’spouse’ are subject to change if the family composition
changes. In these cases, the observed individual’s information in a specific year depends on
the family role of that individual for the given year, which must be taken into account. Basic
covariates like age, gender, marital status, and more are available for all years. Other variables
like employment status, occupation, and education are not covered for all years. Moreover, the
survey is continuously being updated such that variables and the information they capture are
added, removed, or adapted across the years.9

In the following, an observation is equivalent to a child-parents relationship. Parents exclu-
sively refer to biological mothers and fathers, and we only keep observations if each parent is

7Table 2.6 in the appendix displays the same statistics for all observations. The results are very similar.
Hence, the observations used in the main analysis are similar to those of the people we are interested in. The
only exception is the place of birth, for which the composition changes, as shown in table 2.7 in the appendix.
Variables only observed from 2011 to 2016 (e.g., education, occupation, working hours) lead to this quite reduced
number of observations.

8Details are displayed in figure 2.8 in the appendix.
9Whenever possible, adjustments were made guided by the codebook to allow for consistency across years.
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Table 2.2: Descriptive Statistics WiSiER

Mean SD Median Q5 Q95
Child’s inocme 45,356.67 21,670.40 45,184 10,399.13 82367.92
Parents’ income 77,170.27 30,940.47 71,368 39,865.00 134753.81
Income share 0.75 0.16 1 0.48 0.97
Son 0.51 0.50 1 0.00 1.00
Child’s age 33.68 2.03 34 30.50 37.50
Parent’s age 41.76 1.91 41 39.76 45.40
Income measurement age 14.76 3.04 15 9.95 20.00
Parents no. of children 2.57 0.85 2 1.00 4.00
Child’s education 8.24 2.54 8 6.00 12.00
Parents education 6.72 2.57 6 3.00 12.00
Parents’ wealth 598.07 798.62 343 0.00 2192.75
Parents’ ISEI 45.49 17.35 42 18.00 71.00
Child’s work-hours 35.79 12.59 41 9.00 50.00
Years worked 14.62 2.85 15 9.50 19.17
Child year 2,012.31 2.00 2,013 2,008.50 2015.50
Parents year 1,993.71 3.98 1,993 1,988.00 2001.25
Child count 8.19 3.92 8 2.00 15.00
Parents count 16.40 3.84 17 9.00 21.00

observed at least once.
In the following, the variables and the most important preprocessing steps are briefly de-

scribed. A more detailed description of the variables and the construction of the data is given
in Appendix 2.A.2. In general, variables are constructed as averages across the observed years.

Variable of Interest

To compare the results to the WiSiER data, we will focus on total yearly labor income, which is
available starting from 1968. Following the same argument as before, we consider only income
earned between the ages of 30 and 50 years old. For the head of the family unit, total labor
income, comprised of wage income plus others like farming, business, bonuses, and overtime, is
available for all years. Unfortunately, a similar labor income variable for the spouse was only
recorded until 1993. After 1993, the spouse’s labor income is measured excluding farm income
and the labor portion of business income. While business income remains easily accessible after
1993, farming income does not. To ensure consistency across years, all families with income
from farming are excluded. Finally, we deflate labor income using the Consumer Price Index
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provided by the U.S. Bureau of Labor Statistics, trim the highest and lowest yearly values, and
take the average over all observed years. The parent’s labor income is then constructed as a
sum over the father’s and mother’s labor income.

Explanatory Variables

The number of available control variables is smaller for the PSID compared to the WiSiER.
However, since the number of observations is also smaller for the PSID, including a smaller
number of control variables is desirable. Table 2.3 displays an overview of the control variables.
The variables income share and sex capture the same information as for the WiSiER case. Most
variables are available starting from 1968. The only exceptions are college degree, available only
since 1975, and urbanization of birthplace for the spouse, which is available from 2009 on, and
the years 1976 and 1985. Time-varying variables are only considered for years in which the
individual is between 30 and 50 years old, ensuring that only the relevant data from those years,
in which income is also measured, are captured.

The race of the children is included as a control variable. We work with the race information,
which was first mentioned by the individuals and carried forward in time by the PSID. The
majority of children belong either to the group “white” or “black”. Accordingly, a categorical
variable with three categories “white”, “black” and “others” is created for the analysis.

Furthermore, urbanization captures the size of the area in which an individual grew up. As
shown in past research, the location in which a child grew up impacts mobility (see for example
Chetty, Hendren, and Katz (2016), Chetty and Hendren (2018a), and Chetty and Hendren

Table 2.3: Control Variables PSID

Variable Child Parent Type
Income share x continuous
Sex x binary
Race x categorical
Urbanization x categorical
Age x x continuous
Age at measurement x continuous
Number of children x continuous
College degree x binary
Hours worked x continuous, mothers

Notes: The columns child and parents indicate for who the control variable is
typically included. The column type shows how we included the variable in the
analysis.
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(2018b)). The variable available comprises the categories “rural area”, “small town, suburb”,
“large city” and “other”.

The variables age and age at measurement capture the same information as for the WiSiER
case.

The number of children captures the number of individuals below 18 living in the parents’
family unit averaged over the years when income is observed. Note that these must not nec-
essarily be the actual children. Since this number potentially varies across the years in which
income is measured, the variable is continuous. We model the relationship to be linear.

Further, we include college degree as a binary variable, indicating if the parents completed
college when we measure their income. To construct the parents variable, the maximum of the
father and the mother is taken, capturing if at least one of the parents obtained a college degree
to focus on the highest available education within the family.

The PSID also includes information on the total annual working hours on all jobs for money.
For the analysis, only the working hours of the mothers are included as control. For fathers,
a large majority works 1600 hours or more per year, which is close to full-time, leaving little
variation for the analysis. The impact of the variable is approximated using a linear specifica-
tion.

Descriptive Statistics

Table 2.4 displays some descriptive statistics for the observations with no missing values, which
are subsequently used in the analysis.10 In total, 5,777 observations are available. Some im-
portant observations should be noted. First, parents’ information, in general, was captured
in earlier years, around 1984, while children’s information was captured in more recent years,
around 2006. Additionally, parents are observed later in their lives, mostly between the ages of
36 and 48, while children are observed earlier between the ages of 30 and 40. Given the strong
relationship between age and labor income, controlling for these differences is crucial for the
analysis. The age at measurement exhibits the age of the child when the income of the parents
is observed. The average age at measurement is 16, and a majority of the children are between
the ages of 8 and 23 when the income of the parents is measured. The count variables display
the number of years an individual was observed in the PSID. In general, parents are observed
for longer periods, around 14 years, and children are observed for shorter periods. On average,
children are observed for 7.5 years in a right-skewed distribution, whereas 556 children are only
observed for one year. As for the WiSiER data, this is a result of excluding years when the
child is below 30. We further see that for a majority, the father contributes the main part to
the total labor income of the parents.

10Table 2.9 in the appendix displays the same statistics for all observations.



2.4. Results 67

Table 2.4: Descriptive Statistics PSID

Mean SD Median Q5 Q95
Child’s Income 16,306.92 11,944.17 14,242 333.42 40394.15
Parents’ Income 28,926.52 14,544.21 27,553 7,516.67 55522.46
Income share 0.75 0.21 1 0.38 1.00
Daughter 0.53 0.50 1 0.00 1.00
Race 1.44 0.88 1 1.00 2.00
Child Urbanization 2.36 0.65 2 1.00 3.00
Child’s age 35.55 3.40 36 30.33 40.05
Parent’s age 41.10 3.53 40 36.14 47.50
Income measurement age 15.80 4.58 16 8.00 23.00
Parents’ no. of children 2.44 1.56 2 0.66 5.76
Parent’s college degree 0.25 0.42 0 0.00 1.00
Mother’s work-hours 1,030.64 706.70 1,042 0.00 2053.67
Child year 2,005.53 10.54 2,009 1,988.55 2019.00
Parents’ year 1,983.96 10.24 1,984 1,970.50 2000.62
Child count 7.55 5.19 6 1.00 17.00
Parents’ count 13.51 5.03 14 4.50 21.00

2.4 Results

In the following sections, we will demonstrate the capabilities of our approach through some
illustrative examples. We first compare mobility measures constructed using the proposed
estimator to those constructed via traditional estimation. Afterward, we examine how mobility
is related to a continuous variable, the father’s income share, which is straightforward to analyze
using our approach. In the last part, we focus on differences in mobility between sons and
daughters, thereby showing the potential of decomposition.

If not stated differently, we specify the link function for the first step in the estimation
procedure as a Probit. For the second step, the copula is specified to be Gaussian, with the
local copula parameter being θ(x) = Λ(x) = (ex − 1)/(ex + 1).

Figure 2.2 compares the CER computed by traditional estimation to the CER computed
using our new approach and including all covariates. The results are computed for Switzerland,
in red, and the U.S., in blue. As expected, estimated values from the suggested approach
are very much the same as if we would take a more traditional approach. Furthermore, the
estimates for the U.S. are more volatile compared to the ones for Switzerland, which is likely
due to the smaller sample size. For Switzerland, the CER shows a slightly increasing relation
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to parents’ rank. A child with parents in the lowest income rank has an expected rank of a
bit more than 0.4. A child with parents in the highest income rank, on the other hand, has
an expected rank of 0.6. The results are also similar to the ones of Chuard and Grassi (2020).
Small differences likely arise from different sample definitions. For the U.S., the slope of the
estimated CER is steeper compared to Switzerland, which indicates higher persistence. A child
with parents in the lowest income rank has an expected rank of around 0.3, while a child with
parents in the highest rank has an expected rank of a bit more than 0.6.

Figure 2.3 shows four decile transition matrices. For the first transition matrix, (a), transi-
tion probabilities for Switzerland are estimated as the fraction of children in the mth decile of
the children’s income distribution, conditional on having parents in the nth decile of the parents’
income distribution. The second transition matrix, (b), is estimated for Switzerland using our
new approach and a Gaussian copula. The third transition matrix, (c), is equivalent to (b),
except that a Gumbel copula was specified. The last transition matrix, (d), is again estimated
using a Gaussian copula but with data from the U.S. For the estimation, only a constant is
included. Hence, we don’t expect the results from the different estimation procedures to differ.
Figure 2.3 underlines this result. All three matrices displaying results for Switzerland are al-

Figure 2.2: Sample Conditional Expected Ranks
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the average of children’s rank conditional on parents’ rank. The lighter dots are estimated using the

traditional approach. The darker dots are estimated using the suggested approach as outlined in section 2.2.2.
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most identical. Since we split the matrix into deciles, each cell of the matrices should contain
transition probabilities of 10% if the parents’ rank has no relation to the child’s rank. Overall,
the estimated transition probabilities for Switzerland are not far off from 10%. They are a bit
higher around the diagonal, especially for the tails. That is, for children with parents in a high
(low) income rank, the probability of ending up in a high (low) income rank is clearly larger
than 10%. This effect is more pronounced for the upper tail, where a probability of 22% is
observed. Hence, there is some persistence in income mobility. For the U.S., a similar pattern
is observed, but as already observed for the CER, persistence tends to be higher compared to
Switzerland. Transition probabilities along and close to the diagonal are generally higher than
10% and become much smaller moving off the diagonal. Furthermore, values at and around
the tails increase to around 15%.
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Figure 2.3: Transition Matrices
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Notes: Each cell, (m,n), contains a transition probability, which is the probability of children to end up in the mth decile of the children’s income distribution,
conditional on having parents in the nth decile of the parents’ income distribution. The transition matrix (a) is estimated via traditional methods. All other

matrices are estimated using the new approach as outlined in section 2.2.2.
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Father’s Income Share

The father’s income share, which is the fraction of the total income contributed by the father,
has various potential channels to impact the labor market outcomes of the child. Firstly, it is
more likely that the mother will work part-time if the father’s income share is higher, which
leaves more time to invest in the child.11 Hence, we expect higher upward mobility for children,
with fathers contributing a higher share of total parental income. Furthermore, the main
earner in families at the top of the parental income distribution must have an exceptionally
high income. The position related to such a high income is likely to be linked with better labor
market information and connections, which is expected to further enhance upward mobility.
Secondly, a higher father’s income share may also capture the influence of social norms and role
models. Families where the father is the main earner embody more traditional gender roles,
whereby fathers are responsible for providing for the family, and mothers look after children
and the home. If this family culture is adopted by the children, we may expect the trend in
upward mobility to be more pronounced among sons than daughters.

Traditional methods involve categorizing the continuous variable into subgroups to analyze
differences in intergenerational mobility across the father’s income share. The suggested es-
timator enables us to directly include the father’s income share as a continuous variable and
estimate mobility at any desired point along the father’s income share. To analyze the effect of
the father’s income share on mobility for sons and daughters, we specify a model that excludes
the children’s education, average working hours, and the years worked. These variables are
likely endogenous, as they are all chosen by the children and hence likely influenced by the
parents’ income or the father’s income share. Figure 2.4 presents the results, where the tran-
sition matrices display the mobility of daughters and sons within their respective groups. The
daughter’s (sons’) ranks are computed relative to the daughter’s (sons’) income distribution.12

This allows us to look past the great differences in mobility between sons and daughters, as
analyzed below, and enables a clearer assessment of mobility differences with respect to the
father’s income share.

Mobility conditional on fathers’ income share clearly differs between sons and daughters.
For daughters, values in the lower triangle and the lower tail tend to increase, and values in
the upper triangle and the upper tail tend to decrease as the father’s income share grows.
These results indicate that for daughters, upward mobility decreases, and downward mobility
increases as the fathers’ income share grows. This effect is especially pronounced in the tails.
For daughters with parents in the lowest income quintile, the probability of ending up in the
lowest quintile of the daughter’s income distribution increases from 21% to 28%. Conversely,

11Some descriptive statistics supporting this relation can be found in appendix 2.A.1.
12Additional transition matrices for other values of the father’s income share are presented in appendix 2.B.1.

Results for variations in the included covariates and transition matrix brackets are discussed in appendix 2.B.2.
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Figure 2.4: Mobility Conditional on Father’s Income Share using the WiSiER Data
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Notes: The left column displays results for daughters, and the right column displays results for sons. The
ranks are computed by the respective subsample, i.e., the brackets from the transition matrices in the left

column result from the daughter’s income distribution. Each row displays results for different father’s income
share. For example, the first row displays results if the father’s income share is 50%.
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for the upper tail, the probability decreases from 33.4% to 29.4%. For sons, we observe the
opposite effect. Values in the lower triangle and the lower tail tend to decrease, while values in
the upper triangle and the upper tail tend to increase as the father’s income share grows. Thus,
upward mobility increases and downward mobility decreases as the father’s income share grows.
Hence, even with fathers as the main earners and potentially more time and other resources
available, daughters are more likely to move downward in their respective income distributions.
A potential driver of this pattern is social influence, i.e., the second channel described earlier.
While daughters from households where the father is the main earner might choose to live
in a household where the partner is the main earner, daughters from households where the
mother contributed a significant share of the household income might aim to contribute a
significant share to their own household. For sons, we don’t have this counteracting effect but
an enforcing one. While for daughters, the positive effect of a higher father’s income share on
upward mobility is counteracted and actually reversed due to the second channel, the positive
effect is enhanced due to the second channel for sons.

Figure 2.5 displays a summary of the results repeating the analysis of the father’s income
share for the U.S. PSID data.13 Transition matrices are reduced to 4 × 4 given the smaller
sample size. The model includes only the dummy for sons, a polynomial of order two for the
father’s income share, and the interaction terms of the two. We further include controls for the
age of parents and sons to reduce life-cycle biases. Further, variables are not included, given
the smaller sample size.14 Overall, we see that the effect goes in a similar direction for the
U.S. compared to Switzerland. An interesting difference is that the transition probabilities in
the very tails for sons and daughters in their respective income distribution are similar if the
father’s income share is high, at 90%. Otherwise, the results are very similar. For daughters,
probabilities in the upper triangle tend to increase, i.e., downward mobility increases, and the
lower triangle tends to decrease, i.e., upward mobility decreases, as the father’s income share
increases. For sons, we observe the opposite effect. To give some examples, for daughters, the
probability of reaching the highest quartile of the daughter’s income distribution decreases from
46.8% to 42.8%, while for sons, the probability increases from 36.1% to 50.5%. For the lower
tail, the probability increases from 30.2% to 35.7% for daughters, while for sons, it decreases
from 50.3% to 40.2%. Consequently, the interpretation remains the same as that of Switzerland.

13Additional transition matrices for other values of the father’s income share are presented in appendix 2.B.1
14Appendix 2.B.2 contains the results from the analysis, including all covariates.
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Figure 2.5: Mobility Conditional on Father’s Income Share using PSID Data
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Notes: The left column displays results for daughters, and the right column displays results for sons. The
ranks are computed by the respective subsample, i.e., the brackets from the transition matrices in the left

column result from the daughter’s income distribution. Each row displays results for different father’s income
share. For example, the first row displays results if the father’s income share is 50%.
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Daughters and Sons

In section 2.1.1, we observed that daughters tend to have lower average ranks than sons in
the overall children’s income distribution. Additionally, the CER for daughters appeared to
increase slightly with higher parents’ rank. This pattern is further reflected in the higher
estimated RRS for daughters compared to sons, as shown in table 2.5. The table presents
the RRS in the first row, computed using rank-rank regression with ranks derived from the
children’s income distribution. The second row displays the results of the conditional rank-rank
regression approach presented in section 2.2.2. Estimating the RRS for the entire population
yields an estimate of 0.158. Given normalized ranks ranging from 0 to 100, this implies that
an increase of ten ranks for the parents relates to an average increase of 1.58 ranks for the
child. For daughters, the RRS is 0.172, while for sons, it is 0.16, indicating a slightly higher
persistence for daughters. The findings are in line with previous research for Switzerland.
Kalambaden and Martınez (2021) find an RRS of 0.138 for the whole population, 0.161 for
daughters, and 0.119 for sons. Chuard and Grassi (2020) find an RRS of 0.151 for the whole
population and an RRS of 0.152 for sons and daughters when using the rank of family income.
The average conditional correlation for both sons and daughters is slightly lower. As explained
in Chernozhukov, Fernández-Val, Meier, et al. (2024), these values can be interpreted as within-
group persistence, that is, the mobility persistence of sons and daughters within their respective
groups. The correlation is slightly lower for daughters at 0.061 compared to the sons’ correlation
at 0.102.

The transition matrices allow for an even closer look into the mobility of daughters and
sons. Figure 2.6 shows two transition matrices that capture transition probabilities for different
quintiles. The first displays results for sons and the second results for daughters. Matching
previous findings, transition probabilities in the lowest two quintiles are very high for daughters.
For the sons, it is the opposite, as they have higher probabilities in the last two quintiles. Clearly,
this results from the fact that, in general, sons obtain higher ranks in the children’s income
distribution compared to daughters. For example, sons with parents in the lowest bracket have
an estimated probability of 6.1% to end up in the lowest bracket as well. For daughters, this
probability is 41.4%. On the other end of the distribution, Sons with parents in the highest
income bracket have an estimated transition probability of 45% to end up in the highest bracket.
For daughters, the probability is 12.6%. It is interesting to notice that these results even hold

Table 2.5: Rank-Rank Relations by Sex

Daughters Sons
Rank-Rank Slope 0.172 0.160

Conditional Correlation 0.061 0.102
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for extreme movements. For example, daughters with parents in the highest income quintile
still face a probability of 28.1% to end up in the lowest income quintile. For sons, the same
probability is at 5.5%. Hence, even if transition probabilities for daughters in the lowest two
quintiles tend to decrease as parents’ rank increases, it still remains quite high.

To analyze the main drivers of these results, we follow the decomposition outlined in section
2.2.3. Figure 2.7 shows the compositional, the structural, and the total difference. The total
difference is largest in the first and last quintile of the children’s income distribution. The
compositional difference displays the difference between sons with their characteristics and
sons if they had the same characteristics as daughters, and the structural difference shows the
difference between sons if they had the same characteristics as daughters and daughters. Hence,
it gives an idea about the difference in transition probabilities due to unobserved characteristics
or the part that remains unexplained. We observe that part of the total differences between
sons and daughters in transition probabilities are explained by the given characteristics of the
two groups. However, a part of the difference seems to result from differences in the structure
of the joint income distribution of children and parents, so even if a daughter exhibited the
same observed characteristics as sons, they would find themselves on lower ranks with a higher
probability.

Clearly, these results strongly depend on the explanatory variables included in the analysis.
Depending on the observed characteristics, the compositional and structural differences change.
As described in section 2.3, income is not restricted to the result of a specific type of job, such
as a full-time job. As a result, income depends very strongly on the average working hours.
Furthermore, females in Switzerland tend to work part-time. Therefore, a large part of the
differences between sons and daughters is expected to result from the fact that daughters very
often work less than sons.

Figure 2.6: Transition Matrices by Sex
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Notes: For both transition matrices, the ranks are given by the entire sample. Sons, in general, obtain higher
ranks compared to daughters. Hence, transition probabilities for sons are higher in the upper quintiles. The

opposite is true for daughters.
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Figure 2.7: Decomposition Results
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Notes: For all transition matrices, the ranks are given by the entire sample.

2.5 Conclusion

Intergenerational income mobility is a critical concept in addressing questions of inequality. We
suggest a flexible semi-parametric approach to estimate the joint income distribution of parents
and children using distribution regression and a copula with a copula parameter that is local
in the value of the outcome. The new estimator allows us to control for different explanatory
variables and gain deeper insights into drivers of intergenerational income mobility. The ap-
proach achieves this without imposing strong parametric assumptions and reduces the risk of
dimensionality issues when compared to nonparametric approaches. Furthermore, decompos-
ing the total difference into structural and compositional differences provides a more nuanced
understanding of the drivers of intergenerational mobility.

The method is applied for two different countries, Switzerland, using the WiSiER data, and
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the U.S., using the PSID data. The advantages of the new method are illustrated by focusing
on differences in mobility outcomes between sons and daughters and the role of the income
share contributed by fathers. We observe that sons experience higher upward mobility when
the father contributes a larger share of the total parental income, whereas no such relation is
detected for daughters. In family settings, where fathers are the main contributor to parents’
income and mothers are working part-time, both the available time resources, as well as family
culture and role models, are potential drivers of the observed differences in upward mobility.
Furthermore, our findings indicate that the slope between parents’ and children’s ranks is
similar, but daughters generally exhibit lower transition probabilities into higher ranks of the
children’s income distribution. The decomposition gives insights into the factors that drive
these differences. We find that differences in observed characteristics, such as hours worked per
week, explain some of the observed disparities between sons and daughters. However, a large
part remains unexplained by observed traits. In summary, the suggested approach is well-suited
to address key questions related to intergenerational mobility, allowing us to analyze mobility
across various characteristics of individuals or groups.
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2.A Appendix I - Supplementary Data Description

2.A.1 Additional Descriptives of the WiSiER Data

Descriptive Statistics for All Observations

Table 2.6: Descriptive Statistics

Mean SD Median Q5 Q95 N
Child’s inocme 42,066.40 23,323.11 42,046 5,578.06 81999.06 767,222
Parents’ income 75,936.36 31,986.47 69,975 36,575.75 134538.30 767,222
Income share 0.76 0.17 1 0.48 0.98 767,221
Son 0.51 0.50 1 0.00 1.00 767,222
Child’s age 33.76 2.66 34 30.00 38.21 767,191
Parent’s age 42.41 2.38 42 39.57 46.75 767,191
Income measurement age 13.83 3.68 14 7.50 19.50 767,222
Parents no. of children 2.56 0.89 2 1.00 4.00 755,778
Child’s education 8.06 2.63 7 5.00 12.00 174,928
Parents education 6.33 2.67 6 2.00 12.00 323,077
Parents’ wealth 629.70 798.93 389 0.00 2249.78 320,469
Parents’ ISEI 45.83 17.34 44 18.00 71.00 135,939
Child’s work-hours 36.38 12.11 41 10.00 50.00 182,402
Years worked 14.21 3.56 14 8.00 20.00 754,596
Child year 2,012.14 2.70 2,013 2,007.50 2016.00 767,222
Father year 1,990.84 4.09 1,990 1,985.00 1999.00 767,222
Mother year 1,993.83 5.31 1,993 1,986.00 2003.00 767,222
Child count 8.11 5.02 7 1.00 17.00 767,222
Father count 16.02 4.86 17 6.00 21.00 767,222
Mother count 13.51 6.07 14 2.00 21.00 767,222

Notes: The table displays the same statistics as table 2.2, but keeps all observations disregarding missing
values.



80 Intergenerational Income Mobility: A Copula Regression Approach

Descriptives for Place of Birth

Table 2.7: Place of Birth

All Observed

Mother Father Child Mother Father Child

ZH 90919 90177 126217 717 614 611

(11.96) (11.85) (16.51) (5.67) (4.86) (4.83)

BE 111358 112386 118208 2708 2790 3061

(14.64) (14.77) (15.46) (21.42) (22.07) (24.21)

LU 40922 40769 39260 1806 1869 2084

(5.38) (5.36) (5.13) (14.29) (14.78) (16.48)

UR 5621 5435 4033 35 34 6

(0.74) (0.71) (0.53) (0.28) (0.27) (0.05)

SZ 12742 12652 9883 97 68 27

(1.68) (1.66) (1.29) (0.77) (0.54) (0.21)

OW 4488 4622 3403 59 44 9

(0.59) (0.61) (0.45) (0.47) (0.35) (0.07)

NW 5146 4988 4394 85 75 33

(0.68) (0.66) (0.57) (0.67) (0.59) (0.26)

GL 5760 5733 4187 39 32 13

(0.76) (0.75) (0.55) (0.31) (0.25) (0.10)

ZG 7619 7473 13329 75 87 111

(1.00) (0.98) (1.74) (0.59) (0.69) (0.88)

FR 26541 27104 23294 117 114 41

(3.49) (3.56) (3.05) (0.93) (0.90) (0.32)

SO 26300 25985 23613 369 287 213

(3.46) (3.41) (3.09) (2.92) (2.27) (1.68)

BS 25162 25188 29056 412 413 436

(3.31) (3.31) (3.80) (3.26) (3.27) (3.45)

BL 8899 8971 15093 173 178 293
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(1.17) (1.18) (1.97) (1.37) (1.41) (2.32)

SH 8250 8397 8670 52 60 15

(1.08) (1.10) (1.13) (0.41) (0.47) (0.12)

AR 7319 7417 4650 79 52 36

(0.96) (0.97) (0.61) (0.62) (0.41) (0.28)

AI 2612 2612 1525 19 15 1

(0.34) (0.34) (0.20) (0.15) (0.12) (0.01)

SG 55209 54262 53864 867 872 945

(7.26) (7.13) (7.04) (6.86) (6.90) (7.48)

GR 23722 24811 23501 145 114 74

(3.12) (3.26) (3.07) (1.15) (0.90) (0.59)

AG 49597 49087 51619 1851 1998 2318

(6.52) (6.45) (6.75) (14.64) (15.80) (18.34)

TG 21051 21431 19017 192 129 62

(2.77) (2.82) (2.49) (1.52) (1.02) (0.49)

TI 14434 15333 22156 35 32 25

(1.90) (2.01) (2.90) (0.28) (0.25) (0.20)

VD 34798 37070 49605 177 183 170

(4.58) (4.87) (6.49) (1.40) (1.45) (1.34)

VS 30638 31778 30348 589 597 568

(4.03) (4.18) (3.97) (4.66) (4.72) (4.49)

NE 13125 13748 16856 123 133 103

(1.73) (1.81) (2.20) (0.97) (1.05) (0.81)

GE 11836 12549 25164 369 395 864

(1.56) (1.65) (3.29) (2.92) (3.12) (6.83)

JU 9688 9946 7684 68 81 32

(1.27) (1.31) (1.00) (0.54) (0.64) (0.25)

SouthEastern EU 19008 18947 9986 226 217 115

(2.50) (2.49) (1.31) (1.79) (1.72) (0.91)

Africa 4969 5167 2836 83 95 39
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(0.65) (0.68) (0.37) (0.66) (0.75) (0.31)

America 4940 2630 4120 71 60 42

(0.65) (0.35) (0.54) (0.56) (0.47) (0.33)

Canada/USA 1851 1066 2285 30 17 30

(0.24) (0.14) (0.30) (0.24) (0.13) (0.24)

Asia/Australia 7825 5780 6204 93 63 75

(1.03) (0.76) (0.81) (0.74) (0.50) (0.59)

NortWestern EU 68143 67438 10627 880 924 190

(8.96) (8.86) (1.39) (6.96) (7.31) (1.50)

Total 760492 760952 764687 12641 12642 12642

(100.00) (100.00) (100.00) (100.00) (100.00) (100.00)

Notes: The table displays the total number of observations with frequencies in brackets. “All”
includes all observations regardless of missing values in some covariates used in the analysis.
“Observed” includes only observations for which all covariates are non-missing and hence are
included in the analysis. Since not all cantons participated in the WiSiER, frequencies in place
of birth do not represent the Swiss population.
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Descriptives for Father’s Income Share

The findings shown in figure 2.8 reveal a traditional pattern in family structures, where the
majority of fathers provide a higher share of the total parental income. Only for a few observa-
tions, the father’s income share falls below 50%, and only about 2% exhibit a share below 40%.
Additionally, a large number of mothers work part-time. (A typical full-time employment in
Switzerland amounts to around 40-45 working hours per week.) Figure 2.9 illustrates that, on
average, the father’s income share is higher when mothers work fewer hours.

It is worth mentioning that observations used to create these figures only partly cover
those included in the main analysis above. This is because average hours worked are sparsely
observed, thus only included for children. Nevertheless, it can be expected that the findings
remain the same for the observations included in the main analysis. There is no reason why
the hours worked by parents would not be systematically (un-)observed.

Figure 2.8: Histograms
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Figure 2.9: Boxplot
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Notes: Average hours worked per week for mothers is categorized into eight categories. The x-axis displays the
borders of these categories. The dark blue squares indicate the average father’s income share for each category.
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2.A.2 Detailed Description of the PSID Data

Construction of the PSID Data

Summary of Available Variables
Table 2.8 summarizes most variables available in the PSID, which are used to construct the
PSID data. Further, it lists important properties of the variables and specific cleaning steps.
Variables used for the identification of individuals or the assignment of roles in the family are
not included in the table.

Table 2.8: Variable Descriptions, Availability, and Notes

Type Variable Description Availability Notes & Cleaning steps

Wage in-
come

Head’s wage income (no
bonuses, overtime, etc.)

1968 to 2019

Labor
income

Head’s Labor Income
(Wages plus other
income, e.g., farm-
ing, business income,
bonuses, overtime, tips)

1968 to 2019 The variable was capped, and 0 means no in-
come.

Spouse’s Labor Income
(Labor income from
work)

1968 to 1993 A value of 0 means either no Spouse/Wife or
no income from Spouse/Wife.

Spouse’s labor income
excluding farm income
and the labor portion of
business income

1993 to 2019 A value of 0 means either no Spouse/Wife or
no income from Spouse/Wife.

Family
Income

Total family money in-
come (Taxable income
plus other transfer in-
come)

1968 to 2019 The variable was capped at the bottom at 1
until 1993. Values of 0 are coded as missing.

Other
income

Spouse’s business in-
come (Labor portion of
business income)

1993 to 2019 A value of 0 means either no Spouse/Wife, no
or negative business income, or the business
was incorporated.

Head’s and Spouse’s In-
come from Farming (La-
bor and asset portions)

1993 to 2019 Values are sometimes capped. A value of 0
means a broke even or not a farmer.

Head’s labor part of
farm income

1970 to 1993 In the first years, reported as bracketed val-
ues.
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Education Indicator for college
completion (head and
spouse)

1975 to 2019 A value of 0 means no college or educated
outside the US. From 2011 on, a value of 0
was also used if ”NA, RF where head received
education (ER51912=9)” and ”NA, DK, RF
whether attended college (ER51924=8 or 9)”.
Missings were replaced as follows: If an indi-
vidual had no college degree in a certain year,
then for all years prior missings are replaced
as no college degree until a non-missing is
met. If an individual had a college degree in
a certain year, then for all years after, miss-
ings are replaced as a college degree until a
non-missing is met. Values of 0 are kept as
no college degree even though for later years,
they started to mix other things in it, e.g.,
educated only outside of the US.

Highest degree obtained
(head and spouse)

1985 to 2019 A value of 0 means no college or educated
outside the US. 2011, also ”NA, RF where
Head received education (ER57668=9)” and
”DK, NA, or RF whether attended college
(ER57680=8 or 9)”. Missings were replaced
as follows: If an individual had no college de-
gree in a certain year, then for all years prior
missings are replaced as no college degree un-
til a non-missing is met. If an individual had
a college degree or higher in a certain year,
then all years after missings are replaced with
that particular value until a non-missing is
met. Values of 0 are kept as no college de-
gree even though for later years, they started
to mix other things in it, e.g., educated only
outside of the US.
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Father’s education
(head)

1968 to 2019 Different coding schemes over time. 968; 1 is
0-5 grades, or DK, and could not read or write
(Sidenote: Only a small fraction is coded as
0 in 1970. From 1970 - 2019; 0 is ”Could
not read or write, DK grade and could not
read or write”, 1 is 0-5 grades; illiterate. Fur-
thermore, 0 sometimes denotes ”Inap.: could
not read or write; NA, DK grade and could
not read or write”. However, 0 is taken as
”could not read or write” in those cases since
there is always a category for NA (e.g. 9 or
99). The error of changing values across time
was addressed by replacing values with each
individual’s mode. In the case of ties, the av-
erage between the smallest and largest mode
was taken if they were no further apart than
2 categories. Otherwise, missings are gener-
ated.

Mother’s education
(head)

1974 to 2019 Same coding scheme as father’s education.
Same cleaning as for father’s education.

Food
expendi-
tures

Food at home, eating
out, delivered food, food
stamps (yearly)

Various years All variables regarding food expenditures are
constructed following the work by Blundell et
al. (2008).

Age The actual age at inter-
view

1968 to 2019 Missing values were addressed by creating a
new age variable as the difference between the
interview year and the cleaned year of birth.

The actual age of the
reference person

1968 to 2019

Year of birth 1983 to 2019 The error of changing values across time was
addressed by replacing values by the mode of
each individual. In the case of ties, the av-
erage between the smallest and largest mode
was taken if they were no further apart than
2 years. Otherwise, missings are generated.

Month of birth 1983 to 2019

Other Year of first child’s birth All years Missings are addressed by using the mode.



88 Intergenerational Income Mobility: A Copula Regression Approach

Marital status (head) 1968 to 2019 No distinction between legally married and
cohabiting.

Race (head and spouse) 1968 to
2019 (head),
1985 to 2019
(spouse)

The error of changing values across time was
addressed by replacing values by the mode of
each individual. In the case of ties, the value
is set to missing.

Sex All years Missings are addressed by using the mode.

Employment status (in-
dividual)

1979 to 2019

Father’s occupation
(head)

1970 to 2019 Variable changes frequently in 4-digit census
occupation codes. It has been very compli-
cated to compare over the years, and inter-
pretations might remain unclear.

Working hours as total
annual working hours
on all jobs for money
(head and spouse)

1968 to 2019 A value of 0 means either no work or no
spouse.

Living state at the time
of interview

1968 to 2019

Grewup location as ur-
banization categories of
the place where the in-
dividual grew up

1968 to
2019 (head);
1976, 1985,
2009-2019
(spouse)

The error of changing values across time was
addressed by replacing values by the mode of
each individual. In the case of ties, the value
is set to missing.

Household size (actual
number of persons in
the family unit)

1968 to 2019

Number of children
(individuals below 18
within the family unit,
not necessarily actual
children)

1968 to 2019
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Detailed Steps
In the first step, an indicator variable is created using the fims-data provided by the PSID.
The variable links children to their (biological or adoptive) parents such that for each child
identification number, a biological or adoptive father and/or mother identification number is
created. The fims-data was chosen to be balanced, meaning that Individuals for which no such
linkage was possible, i.e., for which no parents are in the data, are dropped. The number of
observations is 71,241. These indicators are stored in a separate file. In a second step, all
variables described in table 2.8 are downloaded from the PSID and loaded using the psidtools
by Kohler (2023).

With all information available, the food expenditure variables are constructed following
Blundell et al. (2008). Then, the data is restructured using the child and parents linkages
indicator variables, such that one row comprises the information of one child and its parents
within a specific wave. From the approximately 70,000 children for which a parent linkage
indicator was created, about 19,000 could not be matched to any observation with any of the
variables chosen, leaving us with about 51,000 children to start with. This is likely a result of
the specific variables used. The PSID provides further variables and supplement data for which
both children and a parent would be observed.

Some further data cleaning steps are similar across multiple variables and hence not listed in
table 2.8. As suggested by the PSID, the sequence number is used to assign the correct values
from the variables to the individuals. Except for the year 1968, the sequence number is always 1
if the individual is the head of the family unit and 2 if the individual is the spouse. For the year
1968, the variable “relation to the head” was used. For variables that record information about
the head or spouse, the sequence number is used to assign values to an individual whenever
the individual takes on the corresponding position. Other examples are adjustments to the
relatively frequent changes in the PSID values. Categories or capped thresholds are frequently
adjusted over the years, altering the same variable across years. Whenever possible, adjustments
were made to allow for consistency across years. Details of these changes are openly accessible
on the PSID website.

Ultimately, income variables need to be constructed for the analysis. The easiest accessible
income variable is total family income, which is available across all years. Two additional
variables were created to scale total family income according to the household size. The two
equivalence scaling approaches implemented are the Oxford equivalence scaling and the Root
scaling. However, total family income does not allow for the analysis of income for mothers
and fathers separately. In order to conduct such an analysis, the focus was set on labor income,
which in general is highly available too. For the head of a family unit, wage income and labor
income, comprised of wage income plus other things like farming, business, bonuses, overtime,
etc., are available for all years. Unfortunately, a similar labor income variable for the spouse
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was only recorded until 1993. After 1993, the spouse’s labor income is measured excluding
farm income and the labor portion of business income. While business incomes continue to
be easily available, the information on farming income is not. Thus, a comparable total labor
income variable for the spouse over all years has to be constructed first. We proceed in two
steps. First, a new variable for the spouse is created using total labor income until 1993 and
the sum between labor income without farming and business income plus business income after
1993. In the second step, values from this new variable and the head’s total labor income
are set to missing whenever the family potentially generates farming income. Using the two
variables on farm income, a new indicator variable is constructed, which is one for the whole
family and all years whenever farming income within the family is detected for at least one
year. That is, families for which farming income variables of the head or spouse for any year
were nonzero are excluded, which amounts to about 760 individuals from the sample. Finally,
it is important to note that for most income variables, income is only measured for those years
in which the individual is the head or spouse in a family unit. However, total family income is
also recorded for individuals who are still children living with their parents. Hence, the family
income information of an individual of a particular year has to be dropped if the individual’s
sequence number does not indicate whether the individual is a head or spouse. For the other
income variables, the property is held by the construction of the PSID. Lastly, all income
variables are deflated using the CPI.

Consequently, we end up with a second data file that contains information for individuals
across some years. If all years for which no sequence number is available are dropped. The
number of individuals is 82,573, which is slightly less than if we used the unbalanced fims-data
85,542. Since each individual is potentially observed over multiple years, the total number of
observations then is 904,796. However, the number of observations drastically vanishes once
we focus on income information for parents and children. Of all individuals, 52,138 are at least
once either the head or the spouse, and of those, 29,906 are children of parents available in
the identifiers data from the PSID. However, for 10,308 children for which a link to parents is
available in the identifiers data, no information is available regarding the chosen values, i.e., the
parents are not recorded in the downloaded PSID data. Furthermore, for 7,373 children, only
one parent is recorded, leaving us with 12,225 children for which we have at least two parents’
information available.

Preprocessing the PSID Data

For the analysis, we focus on total labor income excluding farming as an outcome of interest,
and in the following, total labor income excluding farming is simply referred to as income.
Furthermore, we focus on biological parents.

Regarding the outcome of interest, we drop the highest and lowest 1% of yearly income to
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avoid unrealistic values. Given the focus on biological parents and if we drop further missing
values in the income variable, we end up with 10,258 child-parents observations. However,
these include many children of young age with an income of 0. If we restrict the sample to only
include income from individuals with age 30 to 50, the number of child-parents observations
for which income is available drops to 6,041.

Regarding the covariates, some variables specific to the PSID interview, like sequence num-
bers or family relations, are dropped. Further, the information regarding the occupation of the
father was dropped as well. Even though the variable is available across multiple years, the
corresponding index changed four times, such that information is not comparable across years.

For time-invariant variables, the mode was applied to extend the information across all
years to ensure that no information is lost. For most covariates, we are only interested in
values resulting from the years for which income is measured as well. This is particularly the
case for variables varying across time for example, working hours. Hence, we set all values to
missing for those years in which no income is available.

Finally, the information of the biological mother and father is aggregated to a parent vari-
able, if sensible. Variables for which creating a parent aggregate may not be particularly
meaningful are sex, residence at the time of the interview, employment status, marital status,
the location where the individual grew up, and race. For income as well as hours worked, the
values are summed up. For all educational variables, the maximum was taken to focus on the
highest education available within a family. For all other parent variables, the average values
of the father and mother are used.
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Descriptive Statistics for All Observations

Table 2.9: Descriptive Statistics for All Observations

Mean SD Median Q5 Q95 N
Child’s Income 15,960.58 12,024.99 13,917 0.00 40173.50 6,041
Parents’ Income 28,723.65 14,549.10 27,388 7,383.73 55415.29 6,041
Income share 0.75 0.21 1 0.38 1.00 6,031
Daughter 0.53 0.50 1 0.00 1.00 6,041
Race 1.44 0.88 1 1.00 2.00 5,912
Child Urbanization 2.36 0.65 2 1.00 3.00 5,814
Child’s age 35.55 3.45 36 30.00 40.13 6,041
Parent’s age 41.14 3.55 40 36.11 47.50 6,041
Income measurement age 15.82 4.61 16 8.00 23.00 6,041
Parents’ no. of children 2.45 1.57 2 0.66 5.78 6,041
Parent’s college degree 0.24 0.41 0 0.00 1.00 6,029
Mother’s work-hours 1,027.89 708.63 1,041 0.00 2053.67 6,041
Father’s work-hours 2,086.34 608.26 2,112 853.33 2955.86 6,041
Child’s year 2,005.45 10.60 2,008 1,988.55 2019.00 6,041
Mother’s year 1,984.94 10.49 1,985 1,971.00 2001.77 6,041
Father’s year 1,982.86 10.36 1,982 1,969.00 2000.00 6,041
Child count 7.47 5.20 6 1.00 17.00 6,041
Mother count 14.22 5.26 15 4.00 21.00 6,041
Father count 12.67 6.06 13 2.00 21.00 6,041

Notes: The table displays the same statistics as table 2.4, but keeps all observations disregarding missing
values.
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2.B Appendix II - Supplementary Mobility Results

2.B.1 Extended Values for Father’s Income Share

WiSiER

Figure 2.10: Daughters’ Detailed Results of Father’s Income Share (WiSiER)
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Notes: The ranks are computed using the income distribution of daughters. Each matrix displays results for
different father’s income share. For example, the first matrix displays results if the father’s income share is

40%.
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Figure 2.11: Sons’ Detailed Results of Father’s Income Share (WiSiER)
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Notes: The ranks are computed using the income distribution of sons. Each matrix displays results for
different father’s income share. For example, the first matrix displays results if the father’s income share is

40%.
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PSID

Figure 2.12: Daughters’ Detailed Results of Father’s Income Share (PSID)
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Notes: The ranks are computed using the income distribution of daughters. Each matrix displays results for
different father’s income share. For example, the first matrix displays results if the father’s income share is

40%.



96 Intergenerational Income Mobility: A Copula Regression Approach

Figure 2.13: Sons’ Detailed Results of Father’s Income Share (PSID)
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Notes: The ranks are computed using the income distribution of sons. Each matrix displays results for
different father’s income share. For example, the first matrix displays results if the father’s income share is

40%.
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2.B.2 Exploring Covariate Variations and Transition Matrix

Adjustments

WiSiER

In this section, we analyze how the choice of covariates and definition of the brackets
for the transition matrices alter the appearance of the results. Thereby, we follow
the analysis regarding the father’s income share using the WiSiER data from section
2.4.

Figure 2.14 displays the results, including all covariates. The transition matri-
ces display transition probabilities for Sons and Daughters in their different income
distribution. By controlling for variables like working hours, the estimated counter-
factual distributions become more similar to the population’s distribution, including
all children. Hence, transition matrices based only daughters income distribution,
exhibit higher probabilities at the top. The opposite is true for sons. Consequently,
even though patterns from the main findings are still present, they are less visible.
Figure 2.15 captures the results if, instead, transition matrices are based on the
population’s distribution. Compared to figure 2.14, the results are reverted but less
strongly skewed. The reversal stems from the fact that, as seen in section 2.4, some
part of the income gap between sons and daughters is not captured by the available
covariates. The results from the main analysis are better visible now. However,
for daughters (sons), higher probabilities are estimated for the bottom (top) of the
children’s income distribution regardless of the parents’ income.

Figures 2.16 and 2.17 display transition matrices that are based on the estimated
counterfactual distributions. For example, the first transition matrix represents mo-
bility among daughters whose fathers contribute half to the total parents’ income
and not among daughters in general. In both cases, there is no noticeable difference
in mobility between sons and daughters or between distinct values of the father’s
income share. This suggests that the father’s income share does not affect mobility
within subgroups. While different income shares may lead to advantages or disad-
vantages compared to children with other experiences, mobility remains unchanged
when comparing children with identical characteristics.
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Figure 2.14: Mobility Results including Endogenous Variables
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Notes: Compared to the main results in section 2.4, the endogenous variables for children’s Education, Hours
worked per week, and Years worked are included for estimation. Everything else remains the same. The left

column displays results for daughters, and the right column displays results for sons. The ranks are computed
by the respective subsample, i.e., the brackets from the transition matrices in the left column result from the
daughter’s income distribution. Each row displays results for different father’s income share. For example, the

first row displays results if the father’s income share is 50%.
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Figure 2.15: Mobility Results based on Population Distribution including Endogenous
Variables
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Notes: Compared to the main results in section 2.4, the endogenous variables for children’s Education, Hours
worked per week, and Years worked are included for estimation. Additionally, brackets in the transition

matrices represent the overall income distribution of children (daughters and sons). Everything else remains
the same. The left column displays results for daughters, and the right column displays results for sons. The
ranks are computed by the respective subsample, i.e., the brackets from the transition matrices in the left

column result from the daughter’s income distribution. Each row displays results for different father’s income
share. For example, the first row displays results if the father’s income share is 50%.
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Figure 2.16: Mobility Results based on Counterfactual Distribution
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Notes: Compared to the main results in section 2.4, the brackets in the transition matrices represent the
counterfactual income distribution. For example, the first transition matrix represents mobility among

daughters whose fathers contribute half to the total parents’ income. Everything else remains the same. The
left column displays results for daughters, and the right column displays results for sons. The ranks are

computed by the respective subsample, i.e., the brackets from the transition matrices in the left column result
from the daughter’s income distribution. Each row displays results for different father’s income share. For

example, the first row displays results if the father’s income share is 50%.
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Figure 2.17: Mobility Results Based on Counterfactual Distribution including Endogenous
Variables
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Notes: Compared to the main results in section 2.4, the endogenous variables for children’s Education, Hours
worked per week, and Years worked are included for estimation. Additionally, the brackets in the transition
matrices represent the counterfactual income distribution. For example, the first transition matrix represents
mobility among daughters whose fathers contribute half to the total parents’ income. Everything else remains
the same. The left column displays results for daughters, and the right column displays results for sons. The
ranks are computed by the respective subsample, i.e., the brackets from the transition matrices in the left

column result from the daughter’s income distribution. Each row displays results for different father’s income
share. For example, the first row displays results if the father’s income share is 50%.
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PSID

Figure 2.18 displays the same results as figure 2.5 presented in section 2.4, if all covariates
described in section 2.3 are included in the analysis. Furthermore, the grid used to estimate
the marginal and joint distributions is reduced to eleven points. Using a higher grid results in
more volatile results, likely due to the smaller sample of the PSID.

The results in figure 2.18 yield the same interpretation and similar transition probabilities
as presented above. One smaller difference is the transition probability for sons with parents in
the second lowest bracket to reach the top of their income distribution. In contrast to the results
presented above, the probability of reaching the cell decreases with a higher father’s income
share. However, the shift seems to result from a movement from the highest child bracket to
the second highest child bracket. Summing up, the two cells still point to an increase in upward
mobility with the father’s income share.

2.C Appendix III - Remarks on Intergenerational Mobility

The following section summarizes the theoretical framework developed to explain intergenera-
tional mobility. The summary builds on work by Corak (2020), Björklund and Jäntti (2011),
Corak (2013), Mogstad and Torsvik (2023), and Cholli and Durlauf (2022). As described in
Corak (2020), the model by Becker and Tomes (1979) and Becker and Tomes (1986) has been
the “workhorse model” providing the theoretical foundation of intergenerational mobility. It
captures the broad idea that labor market outcomes of children, and hence mobility, are driven
by human capital. Human capital, as defined in Mogstad and Torsvik (2023), is knowledge,
skills, and attitudes that are acquired and that labor markets value. The Becker and Tomes
model directly imposes a relationship between human capital and labor market outcomes, and
both inherited endowments and investments in human capital. Endowments, encompassing
cultural and genetic attributes passed from one generation to the next, are assumed to be
immutable. However, recent research challenges this assumption, highlighting that while inher-
ited genes impose a limit on the amount of human capital, other aspects of endowments are
acquirable, such as cognitive and non-cognitive skills. Hence, the human capital a child brings
to the labor market is less the result of a simple combination of endowments and investments
and more a process where endowments and investments complement and determine each other.

The main driver of the human capital of a child is the investments in it. Investments in
human capital are either made by parents or the public. Typically these investments have been
thought of as education. However, the labor market also values other non-cognitive skills which
are less related to educational achievements.

Investments by parents are constrained by the available resources, including both monetary
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Figure 2.18: Mobility Results including All Variables
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Notes: Compared to the main results in section 2.4, all covariates are included for the analysis. Everything
else remains the same. The left column displays results for daughters, and the right column displays results for
sons. The ranks are computed by the respective subsample, i.e., the brackets from the transition matrices in
the left column result from the daughter’s income distribution. Each row displays results for different father’s

income share. For example, the first row displays results if the father’s income share is 50%.
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and non-monetary resources. Typically, parents with high incomes have more resources and,
hence, are more likely to invest. Non-monetary resources are typically linked to socioeconomic
status, encompassing factors such as parental age or experience, the amount of time parents
can invest in their children, educational attainment of parents, whether both biological parents
live together or not, access to labor market information and networks, and more. According
to the Becker-Tomes model, parents invest optimally in their children if they are not credit-
constrained. However, if parents face a budget constraint, their investment level is below the
optimal amount. This can result in nonlinearities, especially in the extremes of the income
distribution. Poorer parents lack the income necessary to invest optimally, while richer parents
have children with very high optimal investment levels that may not be feasible to attain.

Parents’ decision on how much to invest in their children is not solely dependent on the
availability of resources. A crucial determinant for parents making investment decisions is the
returns on investments, as they want to invest an optimal amount. These returns can be thought
of in two ways. Firstly, as the amount of additional human capital generated by each unit of
investment, i.e., marginal return of investments. Secondly, as the amount of additional income
generated by each unit of human capital, i.e., marginal return of human capital. For example, if
a child possesses superior endowments, the marginal return on investments is higher. Assuming
parents with a higher income have children with superior endowments leads to richer parents
investing more, resulting in further persistence. Moreover, refined models, as proposed by
Becker, Kominers, et al. (2018) and Solon (2004), suggest that higher labor market inequalities
within a region incentivize parents to invest more, as the return on human capital is higher.
High-income parents have more resources at their disposal to invest in their children’s human
capital, which in turn leads to greater persistence.

There are two aspects to consider. Firstly, the first example introduces a novel channel
in which inherited endowments impact the marginal return of investments, creating a self-
reinforcing cycle. Superior inherited endowments increase marginal returns of investments,
leading to higher investments. However, this, in turn, enhances the part of endowments that can
be altered, further increasing marginal returns. The literature on child development describes
this channel in more detail. Socioeconomic status is recognized as an important factor that
influences the labor market outcomes of children. The influence starts early in life, as it affects
the endowments, for example, health or cognitive and non-cognitive skills, a child is born with.
These endowments determine the returns on investments, which in turn affects investments.
Available resources and the quality of the neighborhood and schools further shape early school
outcomes, which then again determine later educational outcomes. (For an extensive review of
the child development literature, see, for example, Knudsen et al., 2006 or Heckman and Mosso,
2014) Secondly, labor market inequalities are closely intertwined with the marginal return of
human capital. This creates yet another circular relationship. Higher market inequalities
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incentivize parents to invest more in their children, resulting in richer parents investing more,
leading to a decline in mobility. This, again, leads to an increase in market inequality, which
completes the circle.

Several other factors have been argued to impact intergenerational mobility. For example,
public investments, social influences or timing of investments. Public Investments in human
capital describe a pool of programs and opportunities to foster human capital available for
everybody. How much the public is able to invest depends to some degree on the resources
available to the parents living in the region. Choice-theoretical models, as proposed by Durlauf
(1996) and Durlauf and Seshadri (2018) assign a critical role to social influences in shaping labor
market outcomes, also describing ’poverty traps’. Labor market outcomes and the acquisition
of human capital are directly affected by social influences, such as peer effects, role models,
formation of personal identity, and more. Influential work by Chetty and Hendren (see, e.g.,
Chetty, Hendren, Kline, et al., 2014; Chetty and Hendren, 2018a; Chetty, Hendren, and Katz,
2016) has pushed differences in intergenerational mobility across regions within a country into
focus. Possible contributing factors are differences in families’ available resources and social
influences, divergent public investments, and distinct labor market structures across regions.
Recent literature highlights that not only the total amount invested but the timing of invest-
ments is crucial. Investments have varying effectiveness depending on the stage of childhood.
For example, research by Carneiro et al. (2021) indicates that investments when children are
between 6 and 11 years old are relatively less important compared to investments made during
the early and later stages of childhood.

Embedded in this theoretical framework are the frequent discussions of Nature vs. Nurture
and Family vs. Environment. The first discussion addresses the question of to what extent
labor market outcomes are determined by inherited factors that can’t be altered by investments.
While results in this area are mixed and highly discussed, they suggest that the circumstances
a child grows up in play an important role. The second discussion then debates how strongly
labor market outcomes are determined by family circumstances or other circumstances. This
interplay between family and environment is a crucial driver of intergenerational mobility, which
has already been addressed above. The resources available, inherited endowments, and social
influences are all characteristics associated with a family and affect the final labor market
outcomes. For example, Lindbeck et al. (1999) discuss how social norms impact labor market
attachment or Dahl et al. (2014) find that children reduce their labor market participation if
their parents received disability benefits. To summarize, the family culture and the parent’s
own outcomes and goals have a notable impact on labor market outcomes. The environment,
comprising public investments, available resources, returns to investments, and social influences
as characteristics, also plays a vital role in intergenerational mobility. For instance, Havnes and
Mogstad (2015) finds that the provision of high-quality childcare programs increases educational
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and labor market attainment of children from low- and middle-income families in the long run.
It is important to note that parents often have some control over the environment in which
they raise their children, which can then result in neighborhood sorting.



Chapter 3

Using Natural Language Processing to
Identify Monetary Policy Shocks

Abstract

Identifying the causal effects of monetary policy is challenging due to the endogeneity of pol-
icy decisions. In recent years, external instruments – particularly high-frequency monetary
policy surprises – have been increasingly used for identification. However, market-based sur-
prises around Federal Open Market Committee announcements often suffer from weak relevance
and endogeneity. This paper improves upon these measures by incorporating policy-relevant
speeches from Federal Reserve Board members and improving the relevance. Using state-of-the-
art Natural Language Processing techniques, we predict changes in market expectations based
on the text of Federal Open Market Committee statements and Federal Reserve speeches, iso-
lating the component of surprises driven solely by central bank communication. Our results
suggest that these language-driven monetary policy surprises mitigate endogeneity concerns
and align more closely with economic theory than traditional market-based measures.
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3.1 Introduction

Identifying the causal effects of monetary policy is challenging due to the difficulty of isolat-
ing exogenous variations in policy indicators. Monetary policy decisions, such as interest rate
adjustments, are endogenous — they both influence and are influenced by prevailing economic
conditions. These decisions respond to economic expectations, such as anticipated slowdowns,
economic activity accelerations, or projected inflation changes, to shape future economic out-
comes. Because this bidirectional relationship complicates efforts to evaluate the causal impacts
of monetary policy, economists increasingly rely on data-implied methods, particularly external
instruments, to identify monetary policy shocks and disentangle these complex effects.

Over the last decade, much of the literature has thus moved away from using zero or sign
restrictions to strategies employing external instruments.1 The seminal work by Gertler and
Karadi (2015) uses high-frequency price changes of futures contracts within narrow time win-
dows around monetary policy announcements to construct so-called monetary policy surprises.
These monetary policy surprises serve as external instruments to identify the effects of mon-
etary policy decisions.2 They are appealing proxies for monetary policy shocks because they
focus on a narrow time window (typically 30 minutes) around Federal Open Market Commit-
tee (FOMC) announcements. The idea is that within these short windows, causality runs from
monetary policy news to futures prices and not the other way around. Additionally, the short
window helps to eliminate confounding factors, such as other news releases on the same day.

Despite their advantages, recent studies have highlighted that market-based monetary pol-
icy surprises still suffer from two issues: weakness of the instrument and endogeneity problems.
Ramey (2016) points out that market-based monetary policy surprises are typically weak instru-
ments, meaning they have limited relevance. Moreover, Cieslak and Schrimpf (2019), Miranda-
Agrippino and Ricco (2021), Bauer and Swanson (2023a), and Bauer and Swanson (2023b)
report substantial correlations between the surprises and publicly available macroeconomic or
financial data preceding FOMC announcements.

To address the relevance issue, we propose enhancing the existing market-based monetary
policy surprises observed around FOMC announcements. Building on Bauer and Swanson
(2023a), we extend the dataset of surprises by including policy-relevant speeches by the Federal
Reserve Board chair and vice chair. Compared to the existing work, we employ a different
method to determine the relevance of these speeches for monetary policy. Specifically, we
analyze the language used in each speech and retain only those that mention both the topics
of inflation and labor, reflecting the dual mandate of the Federal Reserve. To identify words

1The important advantage of using external instrument strategies is that they impose less theoretically
motivated restrictions.

2A positive surprise indicates that the monetary policy announcement shifted the expected path of short-
term interest rates upwards, serving as a proxy for a contractionary monetary policy shock.
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related to these categories, we utilize the dictionary published by Gardner et al. (2022). Our
findings show that incorporating speeches we label as policy-relevant substantially enhances
the strength of the surprises as instruments.

Moreover, we address the exogeneity problem by isolating the portion of market-based
monetary policy surprises that can be predicted from the text of FOMC statements or Federal
Reserve speech transcripts. It is well documented that central bank communication has become
an increasingly important aspect of monetary policy (see, e.g., Woodford, 2005, Blinder et al.,
2008, Gardner et al., 2022, and Kerssenfischer and Schmeling, 2024), especially since the Great
Financial Crisis. From 2008 to 2015, the policy rate was at the zero lower bound, restricting the
scope for traditional policy measures. Consequently, the importance of policy communication
has grown, with FOMC statements becoming more detailed and extensive and Federal Reserve
Board chair and vice chair speeches more frequent. Given the Federal Reserve’s meticulous
choice of language in its statements and speeches, these communication events play a crucial
role in shaping market expectations. As a result, markets react not only to specific policy actions
but also to the language used in Federal Reserve communications. This suggests that part of
the market-based monetary policy surprises is likely influenced by the language employed and
policy action communicated by the Federal Reserve. Our approach leverages this relationship
by mapping the text of policy communications to market-based monetary policy surprises using
state-of-the-art Natural Language Processing (NLP) methods. Specifically, we train a neural
network to predict the market-based surprises from FOMC statements and Federal Reserve
speech transcripts. For the training, we use a random subsample of the data. Using our trained
model, we predict changes in market expectations based on all FOMC statements and speech
transcripts. By doing so, we extract the component of market-based surprises solely resulting
from FOMC statements or speech transcripts. The surprises are cleansed of any effects not
directly related to the specific statement or speech. Factors such as market momentum or trader
sentiment are filtered out. Additionally, since the communication texts do not systematically
include raw economic and financial data, our approach significantly mitigates the endogeneity
issue. The predicted values for all statements and speeches form our new series of language-
driven monetary policy surprises, i.e., our new instrument for the analysis.

For the text analysis part, we employ a language model based on the transformer architec-
ture. In their groundbreaking paper, Vaswani et al. (2017) have introduced transformer models,
which utilize a simple network architecture based solely on attention mechanisms. Since then,
models for NLP tasks such as information extraction, document classification, text genera-
tion, and translation have significantly improved. One such model is XLNet. It builds on the
transformer architecture and is pre-trained on a vast amount of textual data. This extensive
pre-training provides the model with a robust understanding of different languages and the
relationships between words. XLNet can be trained for specific applications, a process called
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fine-tuning on a downstream task. In our study, we fine-tune the basic XLNet model to predict
high-frequency asset price changes from policy communication text.

First, we demonstrate that the endogeneity problem predominantly affects FOMC an-
nouncements and is of limited significance for speeches by the Federal Reserve Board chair
and vice chair. Nonetheless, we advocate for cleansing these speeches using text analysis meth-
ods to filter out other issues related to financial market phenomena, such as market momentum
or trader attitude. Second, our findings indicate that the language-driven monetary policy sur-
prises are considerably less correlated with economic and financial indicators available before
the respective policy announcement event. Therefore, our NLP approach substantially miti-
gates the endogeneity problem. Finally, we observe that the monetary policy shocks identified
with our language-driven surprises produce impulse responses that align more closely with con-
ventional economic theories compared to those obtained using purely market-based surprises
as instruments.

Related Literature.

Our paper relates to two strands of the literature. First, it contributes to the vast line of
research on the identification of monetary policy shocks using high-frequency futures data
(see e.g. Gürkaynak, Sack, and Swanson, 2005b, Nakamura and Steinsson, 2018, Cieslak and
Schrimpf, 2019, Miranda-Agrippino and Ricco, 2021, Bauer and Swanson, 2023a, and Bauer
and Swanson, 2023b). Second, our work contributes to the rapidly growing literature on text
analysis in monetary policy.

Miranda-Agrippino and Ricco (2021) is one of the papers pointing out that market-based
monetary policy surprises suffer from an endogeneity problem. They argue that the issue
arises because of information asymmetries between the central bank and the public. When
the Federal Reserve makes an announcement, it not only releases information about monetary
policy actions but also private information about the current state of the economy. To clean
this so-called “Fed information effect” from the market-based monetary policy surprises, they
project the surprises on Greenbook forecasts and forecast revisions for real output growth,
inflation, and the unemployment rate.

Bauer and Swanson (2023a) and Bauer and Swanson (2023b) present evidence challenging
the Fed information effect and propose a “Fed response to news” channel as the alternative
explanation. The effect related to this channel is also based on information frictions, but
not regarding the state of the economy but rather the responsiveness of the Federal Reserve.
Specifically, the public does not know the true response intensity of the U.S. central bank and
updates its estimate of the response intensity with every policy communication. Bauer and
Swanson (2023a) create a new, orthogonalized series of monetary policy surprises by removing
components correlated with pre-announcement economic and financial data. This new series
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improves upon previous measures. However, concerns remain that other factors, such as market
momentum or trader attitudes, influence federal funds futures prices even within narrow win-
dows (see, e.g., Lucca and Moench, 2015 and Neuhierl and Weber, 2018). Additionally, Bauer
and Swanson (2023a) only correct for a limited set of economic and financial variables, leaving
the possibility that other pre-announcement data might still be correlated with the monetary
policy surprises.

We contribute to this part of the literature by proposing an alternative approach to refining
market-based monetary policy surprises. Recognizing the significant role of language in Federal
Reserve communications, we suggest extracting the component of existing surprises that is
predictable from FOMC statement text or Federal Reserve speech transcripts. By leveraging
the relationship between Federal Reserve communication texts and changes in interest rate
expectations, we develop a new surprise series that substantially mitigates the endogeneity
problem.

Bauer and Swanson (2023a) address the weak instrument problem by expanding the set
of surprises from FOMC announcements to policy-relevant speeches by the Federal Reserve
Board chair or vice chair. They demonstrate that speeches by the chair contain important pol-
icy information and that incorporating these additional policy-relevant communication events
improves the relevance of monetary policy surprises as proxies for monetary policy shocks. In
their selection process, they first include post-FOMC press conferences, the semiannual mon-
etary policy report testimonies to Congress, and the speeches by the Federal Reserve Board
chair at the Jackson Hole Symposium. Second, from the remaining speeches by the Federal
Reserve Board chair, they label those as policy-relevant that led to a substantial (3 basis points
or more) reaction in the two-quarter-ahead Eurodollar futures contract and that had moved
markets according to their reading of the market commentary in the The Wall Street Journal
or New York Times that afternoon or the following morning. We perceive this labeling as
somewhat subjective. The choice of a 3 basis points threshold in the two-quarter-ahead Eu-
rodollar futures rate, along with the judgment of the market commentary for policy relevance,
introduces non-negligible elements of discretion in their classification method.

Other studies, such as Jayawickrema and Swanson (2023) and Kerssenfischer and Schmeling
(2024), also emphasize the importance of speeches by the Federal Reserve Board chair. Jayaw-
ickrema and Swanson (2023) find that speeches by the chair are more important than FOMC
announcements for Treasury yields, stock prices, and all but the very shortest-maturity interest
rate futures. They conclude that including these speeches is key to capturing the primary source
of variation in U.S. monetary policy. Kerssenfischer and Schmeling (2024) analyze which types
of news mainly drive asset prices, finding that chair speeches rank among the most important
scheduled releases. Similar to Bauer and Swanson (2023a), they also filter out policy-relevant
speeches. However, they employ an automatic approach to identify relevant speeches and count
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the number of news reports mentioning each speech. Depending on the sample period, they
retain speeches mentioned at least twice before 2010, at least three times between 2010 and
2019, and at least four times since 2020.

Our paper builds on previous work by implementing a slightly different method for labeling
policy-relevant speeches. Utilizing the dictionary from Gardner et al. (2022), we analyze the
words used in speech transcripts by the Federal Reserve Board chair and vice chair. We classify
a speech as policy-relevant if it mentions at least one word related to inflation and one word
related to labor. Given the Federal Reserve’s dual mandate of price stability and maximum
employment, checking the content for these two categories effectively indicates policy relevance.
This method of word counting introduces fewer discretionary elements than some of the existing
methodologies.

Our paper also connects to a new strand of literature that employs text analysis to con-
struct monetary policy surprise series. For example, Ochs (2021) generates different sentiment
measures for the FOMC minutes, which are issued with a slight lag after each meeting. Inspired
by the approach taken by Romer and Romer (2004), he constructs a type of monetary policy
surprise from the residuals of the regression of the change in the federal funds rate on the senti-
ment measure. His sentiment analysis, however, is based on pre-specified word combinations to
which a sentiment class is assigned. In a similar paper, Aruoba and Drechsel (2024) generate a
sentiment measure for the FOMC statements. Their sentiment analysis is based on a dictionary
by Loughran and McDonald (2011). In contrast to these two papers, we use transformers as a
tool to capture relations and nuances in communication, which might be missed otherwise and
which have become an important part of policy implementation.

In another example, Doh et al. (2022) construct a new measure of monetary policy surprises
based on the Universal Sentence Encoder algorithm, designed to capture contextual nuances
in FOMC statements. Specifically, they exploit cross-sectional variations across alternative
FOMC statements to identify the statement’s tone and compare current and previous FOMC
statements to obtain the novelty. They then combine the statement’s tone and novelty to
measure the monetary policy stance and extract its unexpected component to construct a new
monetary policy surprise series.

Handlan (2022) uses the XLNet model to predict intraday changes in FFF contracts from
FOMC statement text. To address the issue of the Fed information effect, Handlan (2022)
additionally cleans her text shocks using alternative statements.

Our paper is most closely related to the work of Handlan (2022). However, our approach
differs by not correcting for the information effect. As discussed earlier, Bauer and Swanson
(2023a) challenge the notion that the Fed information effect is responsible for the exogeneity
issues of monetary policy surprises. They demonstrate that market-based monetary policy
surprises can be forecasted using publicly available macroeconomic and financial data pre-dating



3.2. Data 113

the policy announcement. Furthermore, unlike Handlan (2022), our analysis also incorporates
speech transcripts by Federal Reserve Board members, broadening the scope of our study to
include more comprehensive central bank communications.

The remainder of this paper is structured as follows. Section 3.2 describes the data. Section
3.3 extends the dataset of market-based monetary policy surprises by incorporating speeches
from the Federal Reserve Board chair and vice chair, assessing their impact on instrument
strength. Section 3.4 details the text analysis methodology, including the NLP model and
training process, and evaluates the newly constructed language-based monetary policy surprises.
Finally, Section 3.5 concludes.

3.2 Data

In our analysis, we utilize three types of data: high-frequency financial data, text data, and
monthly macroeconomic data. With the high-frequency financial data, we construct a dataset
of market-based monetary policy surprises around FOMC announcements and Federal Reserve
Board chair and vice chair speeches. To apply our text analysis approach and derive our
language-driven monetary policy surprise series, we match these surprises with the correspond-
ing FOMC statements or speech transcripts. The different monetary policy surprise series are
evaluated by using each series as an instrument to identify the monetary policy shock and then
assess the shock’s impact on a selection of key macroeconomic variables.

It is important to distinguish between the terms we use: “FOMC announcements” or “Federal
Reserve Board speeches” refer to the policy communication events, while “FOMC statements”
and “speech transcripts” refer to the corresponding text documents published at these events.

3.2.1 FOMC Announcements

We consider FOMC announcements from January 1996 to December 2019, encompassing eight
regularly scheduled meetings per year, typically spaced six to eight weeks apart. Occasionally,
the FOMC also holds unscheduled meetings if unexpected action is required before the next
scheduled meeting. We include both types of meetings in our analysis, resulting in a sample
of 200 announcements. For the text analysis part of our study, we have to exclude 22 of these
announcements as the corresponding statements are not available. The Federal Reserve began
consistently publishing a press statement after each meeting starting in May 1999. Prior to
that, from 1996 to 1998, the Federal Reserve only issued an explicit statement when there
was a change in the federal funds rate target. Thus, our final sample consists of 178 FOMC
announcements with press statements. These statements not only communicate the interest
rate decision but also provide information on the future economic outlook, forward guidance,



114 Using Natural Language Processing to Identify Monetary Policy Shocks

and other unconventional policy measures. Over the years, the length of these statements has
significantly increased, ranging from approximately 75 to 780 words during our sample period.
All statements, including the announcement dates, are from the website of the Federal Reserve
Board.

3.2.2 Federal Reserve Board Chair and Vice Chair Speeches

Building on Bauer and Swanson (2023a), we expand the set of policy events beyond FOMC
announcements to include speeches by the Federal Reserve Board chair and vice chair. Our
sample period aligns with that of the FOMC announcements, spanning from 1996 to 2019. The
dataset covers a range of events, such as remarks at the Jackson Hole Economic Symposium,
testimonies to Congress, and other chair and vice chair speeches. The number of speeches held
each month varies greatly over time, ranging from none to as many as nine. During the Great
Financial Crisis, the frequency of speeches was particularly high.

At the annual Jackson Hole Economic Policy Symposium, the Federal Reserve Board chair
typically delivers an opening speech to an audience including central bankers, economists,
financial market participants, academics, U.S. government representatives, and the media. This
speech provides a comprehensive overview of the Federal Reserve’s perspectives on the current
state of the U.S. and global economies, highlighting key trends and important policy directions.
The chair’s address often outlines future policy trajectories and the challenges associated with
the conduct of monetary policy. During our sample period, the chair delivered 22 speeches at
Jackson Hole. However, because precise time stamps are unavailable for eight of these speeches,
our dataset includes only 15. These symposium speeches range in length from approximately
1,850 to 7,750 words, reflecting the depth and breadth of the topics covered.

The Federal Reserve Board chair also gives semiannual testimonies to Congress. During
these testimonies, the chair provides an overview of the current economic conditions and the
rationale behind recent monetary policy decisions. He or she discusses issues such as inflation,
employment, and economic growth, and addresses concerns related to financial stability and
regulation. The testimony includes an introductory statement followed by a question-and-
answer session, allowing for further clarification and discussion. These testimonies aim to
ensure accountability and transparency of the Federal Reserve’s actions and policies. The
testimonies are held twice a year. Each time, the chair presents the testimony once to the
Senate and once to the House of Representatives within a few days. Since the introductory
statement remains unchanged, we only include the earlier date in our dataset. We assume
that the question-and-answer session does not significantly impact interest rate expectations.
Moreover, including the question-and-answer part would widen the event window considerably,
increasing the risk of capturing effects unrelated to Federal Reserve communications. Given the
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sample considered, the Federal Reserve Board chair gave 48 testimonies to Congress between
1996 to 2019. However, not all of the transcripts are available, reducing the number to 39. The
testimonies contain between 1,200 to 5,700 words.

Additionally, we consider 582 other speeches, out of which 465 were given by the Federal
Reserve Board chair and 117 by the vice chair. The length of these speeches varies from around
150 to 20,900 words.

Some policy communication events, such as FOMC announcements or testimonies to Congress,
occur in well-defined settings, making it easy to determine when their information reaches fi-
nancial markets. However, for some speeches, pinpointing this moment is less straightforward.
In these cases, we used the timestamps provided on the documents to establish when the speech
became publicly available. If no such information was available, the speech was excluded. Addi-
tionally, speeches by the Federal Reserve Board chair and vice chair are delivered across various
locations in the U.S. and internationally. To ensure consistency, we converted all speech times
to U.S. Central Time, aligning with the time zone of the financial market where Eurodollar
futures contracts are traded. Similarly, timestamps for FOMC announcements were converted
from U.S. Eastern Time to U.S. Central Time. Speech dates and transcripts are from the
websites of the Federal Reserve Board and the Federal Reserve Bank of St. Louis.

3.2.3 High-Frequency Monetary Policy Surprises

To measure shifts in market expectations caused by central bank communication, we extract
the high-frequency changes in the price of futures contracts around each announcement or
speech. These price changes are often referred to as monetary policy surprises. The rationale
for using changes in futures prices is based on the forward-looking nature of financial markets.
The federal funds futures (FFF) market allows participants to hedge against fluctuations in
the federal funds rate. On any given day, the FFF market continuously reflects the market’s
expectations of the average federal funds rate over the remainder of the month. Thus, upward
or downward revisions in FFF rates following an FOMC announcement or a Federal Reserve
Board chair or vice chair speech indicate that market participants were surprised by the policy
announcement and had to adjust their expectations.

As highlighted by Nakamura and Steinsson (2018), financial markets are forward-looking
and react only to unexpected components of policy decisions, not to anticipated changes. The
construction of monetary policy surprises builds on this idea, measuring intraday price changes
in FFF contracts within a narrow time window around Federal Reserve communication events.
This approach aims to eliminate reverse causality, ensuring that any observed changes in the
FFF rate are attributable solely to the policy announcement rather than any other economic
event.
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We use Eurodollar futures contracts instead of FFF contracts due to data availability.3

Nonetheless, Eurodollar futures rates are a reasonable choice. According to Gertler and Karadi
(2015), they are the best predictors of future federal funds rate values at horizons beyond six
months and are as good as FFF at horizons of less than six months.

We purchased historical intraday financial market data from Tick Data, LLC, covering
Eurodollar futures contracts from December 1981 to June 2023. Eurodollar futures settle based
on the spot 90-day Eurodollar deposit rate at expiration, and we focus on contracts that expire
approximately one quarter ahead.4 We convert the raw data, which reports individual trades,
into minute-by-minute data, recording the high and low prices for each minute.5

For the FOMC announcements, we follow Gürkaynak, Sack, and Swanson (2005b) and
measure the change in the Eurodollar futures rate using a 30-minute window, starting 10
minutes before the announcement and ending 20 minutes after. To account for multiple trades
within one minute, we use the midpoint between the high and low prices for the minutes marking
the beginning and the end of the window. To calculate the surprises, we take the difference
between the average price at the end of the window and the average price at the beginning of
the window, and then multiply this difference by minus one. This scaling is necessary because
we want the surprises to reflect changes in interest rate expectations: a decrease in the futures
price indicates an increase in interest rate expectations.

For speeches by the Federal Reserve Board chair and vice chair, we consider a time window of
50 minutes, starting 10 minutes before the speech and ending 40 minutes after. These commu-
nications tend to be more extensive than FOMC statements and contain broader information,
which may require investors more time to process. Although some speeches or testimonies can
last over an hour, we avoid extending the window too much to minimize the risk of capturing
fluctuations in futures rates unrelated to the monetary policy communication. Additionally,
the transcript is typically uploaded to the Federal Reserve’s website at the start of the speech,
providing market participants immediate access to the entire document without the need to
listen to the speech in real-time. Thus, we believe the 50-minute window is a reasonable choice.
As with the FOMC announcements, we calculate the midpoint between the high and low prices
for the minutes marking the beginning and end of the window and scale the change within the
50-minute time window by minus one.

Some of the speeches partially occur when markets are closed.6 To address closed markets,
we consider three scenarios. First, if the entire speech window falls outside trading hours, we

3Federal funds futures are not available in Tick Data until 2010, while Eurodollar futures are.
4Eurodollar futures expire on the International Monetary Market dates: the third Wednesday of March,

June, September, and December.
5If there is only one trade in a given minute, or if all trades occur at the same price, then the high and low

prices for that minute will be identical.
6Starting from July 2003, Tick Data includes almost around-the-clock electronic trading data, meaning

these instances mainly occur in earlier years.
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exclude the speech from our dataset as we cannot measure the corresponding change in market
expectations. Second, if the speech begins outside trading hours but markets open while the
speech is ongoing, we retain the data point if 70 percent7 of the speech window falls within
trading hours. Similarly, if the speech starts during trading hours but ends after markets have
closed, we apply the same 70 percent rule, retaining the speech if at least 70 percent of the
speech window occurs within trading hours.

Table 3.1 presents summary statistics for the surprises associated with the different types
of U.S. monetary policy announcements: FOMC announcements, chair speeches at the Jackson
Hole Symposium, chair testimonies to Congress, other chair speeches, and vice chair speeches.
The table includes data for surprises based on the one-quarter-ahead Eurodollar futures rate
(ED2) – the primary focus of our analysis – as well as surprises constructed from current-
quarter, two-quarter-ahead, and three-quarter-ahead Eurodollar futures rates (ED1, ED3, and
ED4, respectively). First, we observe that the statistics are relatively similar across all four
horizons of the futures. The biggest differences are seen for surprises associated with the current-
quarter Eurodollar futures rate. For this very short-term horizon, changes in the futures rate
predominantly reflect surprises related to the effective change in the policy rate. For the other
horizons, surprises capture additional elements such as forward guidance. Given our interest in
capturing not only the effect of policy rate changes but also other effects transmitted through
language, we focus on a different horizon. We have chosen the one-quarter-ahead Eurodollar
futures rate (ED2) for our analysis, as it balances the immediate impact of policy decisions with
anticipatory elements. Second, the standard deviations and the range of changes (minimum and
maximum) indicate that chair speeches and, to a slightly lesser extent, testimonies to Congress
are as impactful as FOMC announcements. The other two announcement types, Jackson Hole
speeches, and vice chair speeches are considerably less important. Lastly, the mean changes
for all five announcement types are close to zero, as expected. FOMC announcements show a
slight easing bias of about 1 basis point, but this is relatively small compared to the standard
deviations of these changes.

3.2.4 Macroeconomic Data

When evaluating the effects of FOMC announcements or Federal Reserve Board speeches on
macroeconomic variables, we use monthly data on industrial production, the consumer price
index, the excess bond premium8, and the two-year Treasury yield. Industrial production and

7The 70 percent threshold was selected as it provided a balance between ensuring that a large part of the
time window fell within trading hours and keeping a majority of the speeches. There are 28 speeches where
the time window only partially overlaps with trading hours. Employing the threshold, 12 of these speeches are
dropped.

8Gilchrist and Zakrajšek (2012) construct a corporate bond credit spread index – the so-called GZ credit
spread, which is based on a large micro-level dataset. They then decompose the GZ credit spread into two parts:
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the consumer price index are taken from the FRED database. The two-year Treasury yield is
from Bauer and Swanson (2023a), who took it from the Gürkaynak, Sack, and Wright (2007)
database on the Federal Reserve Board’s website. The excess bond premium from Gilchrist and
Zakrajšek (2012) is available on the Federal Reserve’s website. The sample goes from January
1973 to December 2019. The start is determined by the earliest availability of the excess bond
premium, while the end is chosen such as to exclude the dramatic swings of the COVID-19
pandemic and its aftermath.

Table 3.1: Summary Statistics for U.S. Monetary Policy Surprises

FOMC Jackson Hole Testimonies Chair Vice chair
announcements speeches to Congress speeches speeches

Number 200 15 39 465 117

Standard dev. (bp)
ED1 4.9 0.6 2.3 1.4 0.8
ED2 5.2 1.3 4.2 2.3 1.3
ED3 5.8 2.1 5.8 2.7 1.5
ED4 5.8 2.7 6.4 3.0 1.6

Min. change (bp)
ED1 -32.5 -2.0 -7.0 -13.0 -3.5
ED2 -27.3 -2.3 -8.3 -17.0 -4.0
ED3 -29.0 -2.5 -9.5 -19.0 -4.0
ED4 -24.0 -3.0 -12.5 -20.5 -4.5

Max. change (bp)
ED1 18.3 0.8 4.3 6.5 4.3
ED2 12.0 2.5 9.0 18.0 8.0
ED3 17.8 5.0 15.5 22.3 7.8
ED4 24.3 7.3 15.0 26.3 9.3

Mean change (bp)
ED1 -0.8 -0.1 -0.1 0.0 0.0
ED2 -1.0 0.1 0.5 0.0 0.2
ED3 -1.0 0.2 0.7 0.0 0.2
ED4 -1.0 0.4 0.7 0.0 0.1

Notes: Changes for ED1 to ED4 are in basis points. Sample period is 1996 to 2019.

one part capturing the systematic movements in default risk of individual firms and a residual component – the
excess bond premium. The excess bond premium can be interpreted as the variation in the pricing of default
risk, meaning it is a measure of the tightness of financial conditions.
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3.3 Market-Based Monetary Policy Surprises

Most existing series of monetary policy surprises focus exclusively on the reactions of market
participants to FOMC announcements (Gürkaynak, Sack, and Swanson, 2005a, Gertler and
Karadi, 2015, Miranda-Agrippino and Ricco, 2021, Handlan, 2022). However, several studies
have demonstrated that speeches by the Federal Reserve Board chair and vice chair also contain
significant policy information that influences interest rate expectations (Bauer and Swanson,
2023a, Bauer and Swanson, 2023b, and Kerssenfischer and Schmeling, 2024). Additionally,
Bauer and Swanson (2023a) show that including monetary policy surprises around Federal Re-
serve Board chair or vice chair speeches enhances the relevance of these surprises as instruments
for identifying monetary policy shocks. Following Bauer and Swanson (2023a), we expand the
set of existing market-based surprises to include relevant speeches. To identify the relevant
speeches, we utilize a dictionary approach to analyze the content of the speech transcripts and
include only those that contain policy-relevant topics.

3.3.1 Identification of Policy-Relevant Speeches

The Federal Reserve Board chair and vice chair deliver speeches on a wide range of topics,
many of which extend beyond monetary policy. These can include ceremonial addresses or
discussions on subjects such as bank regulation, securities market regulation, fiscal policy, and
various other economic and financial issues. As shown by Bertsch et al. (2024), Federal Reserve
communication often addresses topics such as financial stability, establishing it as a prominent
and recurring theme for these speeches. For our analysis, we focus exclusively on central bank
communications that have potential implications for U.S. monetary policy. To identify the
speeches relevant to our study, we employ a dictionary-based approach. Specifically, we utilize
the dictionary developed by Gardner et al. (2022), which includes lists of words related to
inflation, labor, output, and financial topics. For instance, words in the inflation category
include “inflation”, “price”, and “cost”, while words in the labor category include “employment”,
“job losses”, and “hiring”. We count the occurrences of words related to these topics in each
speech.

Figure 3.1 illustrates the evolution of the average frequency with which words from each
category are mentioned per speech transcript. We see that around the Great Financial Crisis,
financial topics were discussed more frequently than in other years. Additionally, inflation
topics peaked right before the Great Financial Crisis and in 2018, while labor topics appeared
more often starting from around 2011.

To determine the relevance of a speech for our application, we focus on the inflation and
labor categories. If a speech transcript contains at least one word related to inflation and one
word related to labor, we classify it as policy-relevant. Otherwise, it is labeled as non-relevant.
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Given the Federal Reserve’s dual mandate to promote maximum employment and stable prices,
we assume that these two topics are always addressed when the speech pertains to monetary
policy. Using these classification criteria, we identify a subset of 441 policy-relevant speeches.

Figure 3.2 presents a histogram comparing the distribution of monetary policy surprises
for all speeches against those based solely on policy-relevant speeches. By excluding non-
policy-relevant speeches, we observe a significant decrease in the number of surprises centered
around zero. This indicates that our classification method, which relies solely on input text,
effectively filters out speeches lacking substantial monetary policy information, thereby refining
our dataset to predominantly include those speeches that impact market expectations.

3.3.2 Monetary Policy Effects on Macroeconomic Variables

The primary objective of broadening the set of considered monetary policy communication
events is to enhance the strength of the surprises as instruments for identifying monetary
policy shocks. We evaluate this in a Proxy-Structural Vector Autoregression (Proxy-SVAR)
framework, closely following Gertler and Karadi (2015). Additionally, we aim to assess how the
identified monetary policy shock impacts key macroeconomic variables.

Following Bauer and Swanson (2023a), our VAR specification includes the log of industrial
production, the log of the consumer price index, the Gilchrist and Zakrajšek (2012) excess
bond premium, and the two-year Treasury yield. We include the excess bond premium because
Caldara and Herbst (2019) find it to be necessary to identify monetary policy shocks correctly.

Figure 3.1: Chair and Vice Chair Speeches: Categories Sampled by Year
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Furthermore, as discussed in Gertler and Karadi (2015) and Bauer and Swanson (2023a), we
use the two-year Treasury yield instead of the federal funds rate as the policy rate variable.9

Unlike the federal funds rate, the two-year Treasury yield was largely unconstrained during the
U.S. zero lower bound period from 2009 to 2015, making it a better measure of the stance of
monetary policy. Moreover, an important advantage of using a government bond rate as the
policy indicator is that its innovations do not only capture traditional monetary policy shocks,
i.e., surprises related to the current federal funds rate, but also shocks to forward guidance.
Swanson and Williams (2012) and Hanson and Stein (2015) argue that the Federal Reserve’s
forward guidance strategy operates with a roughly two-year horizon, which makes the two-year
Treasury yield the preferred government bond rate.10 Additionally, the speeches do not convey

Figure 3.2: Speech Distributions, All versus Policy Relevant
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Notes: Distributions of market-based surprises from Federal Reserve Board chair and vice chair speeches
considering all (blue) or only policy-relevant speeches (red).

9Although Gertler and Karadi (2015) advocate for the two-year Treasury yield, they use the one-year
Treasury yield in their VAR due to an insufficiently large F -statistic for their first-stage instrumental variables
regression with the two-year yield as the policy indicator.

10The Federal Reserve’s forward guidance strategy, focusing on managing expectations of the path of the
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information about changes in the current federal funds rate; rather, they influence market
participants’ expectations regarding future policy rate changes. Hence, employing the two-year
Treasury yield in conjunction with our expanded market-based surprises as an instrument is a
natural choice.

Proxy-SVAR Methodology

We start by considering the following structural VAR:

AYt =

p∑
j=1

CjYt−j + εt, (3.3.1)

where Yt is a vector of observables, A and Cj ∀j ≥ 1 are conformable coefficient matrices, and
εt is an n× 1 vector of white noise structural shocks. When multiplying both sides with A−1,
the reduced-form VAR representation follows:

Yt =

p∑
j=1

BjYt−j + ut, (3.3.2)

with ut being the reduced-form VAR residuals, Bj = A−1Cj, and E[utu
′
t] = Σ for some positive

definite matrix Σ. The VAR residuals are modeled as linear combinations of the underlying
structural shocks, namely

ut = Sεt. (3.3.3)

It follows that S = A−1 and E[utu
′
t] = E[SS′] = Σ.

Let us then define Y p
t ∈ Yt to be the monetary policy indicator, i.e., the variable for which

the exogenous variation is due to the monetary policy shock εpt . To estimate the impulse
responses to a monetary policy shock, we need to estimate the equation

Yt =

p∑
j=1

BjYt−j + sεpt , (3.3.4)

where s is the column of S associated with the effects of εpt . Because we are only interested
in the impulse responses to a monetary policy shock, it is sufficient to identify s and not the
entire matrix S. We use an external instruments strategy to obtain s.

We define mt as the k × 1 vector of instruments. εqt is a vector of structural shocks other
than the monetary policy shock. For mt to be a valid set of instruments, the exogeneity and

short rate two years into the future, supports the use of the two-year Treasury yield.
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relevance conditions must be satisfied:

E[mtε
p
t ] ̸= 0

E[mt(ε
q
t )

′] = 0,
(3.3.5)

meaning that the instruments are correlated with the monetary policy shock εpt but orthogonal
to any other structural shock εqt , where q ̸= p. In the following application, we will always
focus on a single instrument: some version of the monetary policy surprises. Notice that the
market-based surprises or the language-based surprises in the next section are all intradaily
changes in Eurodollar futures prices. To use them as an instrument in the Proxy-SVAR, we
convert them to a monthly series by summing over all the high-frequency surprises within each
month.11

The identification of s works as follows: First, we estimate the VAR using least squares
estimation and get the reduced-form residuals ut. These residuals can then be split up into up

t ,
the residual associated with the equation of the policy indicator, and uq

t , the residuals of all
other variables. Moreover, we define sp ∈ s to be the response of up

t to a unit increase in εpt .
Similarly, sq ∈ s is the response of uq

t to an increase of εpt by one unit. Second, we perform
a two-stage least squares regression. In the first stage, we regress up

t on the instrument mt.
Consequently, the variation in the fitted value ûp

t is only due to the monetary policy shock εpt .
In the second stage, we regress uq

t on ûp
t :

uq
t =

sq

sp
ûp
t + ξt. (3.3.6)

This regression yields a consistent estimate of sq

sp
because ûp

t is uncorrelated with the error term
ξt. An estimate for sp can be obtained from the estimated variance-covariance matrix Σ. In
the next step, sq can be computed. Based on the estimates of sp, sq, and the VAR coefficients
(Bjs), we can calculate the impulse responses of all variables in yt to a monetary policy shock
εpt .

We estimate the VAR using frequentist methods. To obtain confidence bands around the
point estimates, we employ bootstrapping methods, with 10,000 bootstrap replications.12 More-
over, we choose a lag order of p = 12. Based on the Ljung-Box Q-test, this lag order is the
smallest for which the VAR residuals are no longer serially correlated. Additionally, this lag or-
der is in line with Gertler and Karadi (2015), Ramey (2016) and Bauer and Swanson (2023a).13

11In months for which no surprise occurs, i.e., without FOMC announcements or Federal Reserve Board chair
and vice chair speeches, the monthly surprises are equal to zero.

12We are using the wild bootstrap procedure of Mertens and Ravn (2013) and Gertler and Karadi (2015).
13The results remain qualitatively and quantitatively very similar if we choose a lag order of p = 6.
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Results

We identify the monetary policy shock using three different surprise series as instruments. The
first series includes only FOMC announcements. The second series expands to include surprises
from both FOMC announcements and all speeches by the Federal Reserve Board chair and vice
chair. The third series refines upon the second by incorporating only those speeches labeled as
policy relevant.

Table 3.2 reports the F -statistics of the first stage regression for each of the three surprise
series. When considering only FOMC announcements, the F -statistic is 5.78. Including all
speeches raises the F -statistic to 13.70. Finally, when adding only policy-relevant speeches
to the FOMC announcements, the F -statistic further increases to 16.5014. This indicates
that broadening the set of market-based monetary policy surprises significantly improves their
strength as instruments for identifying the monetary policy shock.

Figure 3.3 depicts the corresponding impulse responses, normalized to reflect a 25 basis
point increase in the two-year Treasury yield. The responses are shown for the same three
sets of surprises discussed above. The impulse responses obtained with the surprise series that
include speeches differ markedly from those based solely on FOMC announcement surprises.
The latter responses align with conventional wisdom: a monetary policy shock leads to a decline
in the consumer price index and a contraction in industrial production. Additionally, the excess
bond premium rises, indicating tighter financial conditions. In contrast, the impulse responses
derived from the other two surprise series, which contain speeches, reveal notable deviations.
The consumer price index responds positively, exhibiting the so-called “price puzzle”. While
industrial production still decreases, as expected, the excess bond premium shows little to no
significant reaction, a finding that contradicts traditional economic theories.

To sum up, we find that adding Federal Reserve Board chair and vice chair speeches to the
surprise dataset improves the F -statistic substantially. However, the dynamic responses to a
monetary policy shock also change. When considering speeches in the instrument series, the
identified monetary policy shock gives rise to a price puzzle. This finding is counterintuitive
according to standard economic theory.

Table 3.2: F -statistics for Market-Based Surprise Series

F -statistic

FOMC announcements 5.78
FOMC announcements and all speeches 13.70
FOMC announcements and policy-relevant speeches 16.50

14Stock and Watson (2012) propose a rule of thumb according to which the instrument is weak if the first-stage
F -statistics in the two-stage least squares regression is smaller than 10.
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3.4 Language-Based Monetary Policy Surprises

In this section, we address the predictability of market-based monetary policy surprises using
central bank communication texts. Advances in NLP enable us to directly link central bank
statements and speech transcripts to financial market reactions. In particular, we map policy
communication texts to market-based monetary policy surprises, isolating the portion of the
surprises driven exclusively by FOMC statements and speech transcripts15. This approach
allows us to construct language-based monetary policy surprises that capture solely the impact
of central bank communication while abstracting from other influencing factors. We assess
the exogeneity of our newly constructed language-based monetary policy surprises using past
economic information.

Figure 3.3: Impulse Responses to a Monetary Policy Shock (Market-Based Surprises)
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15Appendix 3.A.4 presents the results only using FOMC statements for training.
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3.4.1 Natural Language Processing

To construct the language-based surprises, we follow a four-step process. First, we select a pre-
trained neural network capable of understanding English. We opt for the XLNet-Base model.
Second, we pre-process the central bank communication texts to create structured inputs for
our NLP model. Third, we fine-tune the pre-trained model on our specific task. That is, we
train the model to understand the relationship between central bank communication texts and
market-based high-frequency policy surprises. Finally, using the trained model, we predict
the changes in interest rate expectations associated with each FOMC statement or speech
transcript. These predictions are what we call the language-driven monetary policy surprises.

Select Pre-Trained Neural Network for Text Processing

To capture the semantics of central bank communications, we use XLNet-Base, a state-of-the-
art Natural Language Understanding algorithm developed by Yang et al. (2020).16 XLNet
combines two techniques – autoregressive language modeling and auto-encoding – to learn tex-
tual content. Both methods involve predicting missing words, but while autoregressive modeling
predicts words at the end of a sequence, auto-encoding predicts missing words from anywhere
within a sentence. Consequently, XLNet not only understands individual words but also cap-
tures sentence structure and longer textual contexts. Because XLNet learns representations
through different approaches, it is highly versatile, making it suitable for tasks beyond simple
word prediction. The model can be fine-tuned to map text to other text, categories, or contin-
uous numbers. In our case, we want to teach the model to link central bank communication
texts to changes in market expectations, which is a continuous financial market variable. We
start from the base version’s pre-trained network architecture and word representations, which
have been trained on a vast corpus of text to acquire general English language skills.17 Such
off-the-shelf pre-trained models are widely used in NLP because training them from scratch
requires substantial computational power and vast amounts of text data.

Pre-Processing Text Data

In the pre-processing step, we format the text of FOMC statements and speech transcripts in
such a way that the language model can process it. For the FOMC statements, we make only
minimal modifications to preserve the original wording. We replace long word combinations
with abbreviations18, standardize the formatting of numbers, and remove repetitive words,

16The base model consists of 12 attention heads/layers with 768 dimensions and two feed-forward layers with
768 and 3072 dimensions, resulting in approximately 117 million parameters.

17The model was trained on a text corpus from five sources: The Book Corpus and English Wikipedia
(13GB), Giga5 text (16GB), Clue Web 2012-B (19GB), and a Common Crawl (110GB).

18We only use abbreviations that the Federal Reserve itself uses in at least one of the other statements.
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dates, and committee member names to prevent the model from drawing incorrect conclusions
during training. A full list of modifications is provided in Appendix 3.A.1.

The speech transcripts require additional adjustments. As described in Section 3.2, they
tend to be significantly longer than FOMC statements, often spanning multiple pages. While
neural networks can process long text inputs, their performance can deteriorate when exceed-
ing a certain length – especially for smaller models like XLNet, which were trained on short
sequences. To address this, we need to reduce the length of the speech transcripts. One possi-
bility is to truncate each speech transcript at the model’s recommended token19 length, which is
512 tokens for the XLNet model. However, this approach risks omitting important information
mentioned toward the end of the speech. Instead, we opt for summarization, ensuring that the
most relevant content is preserved while keeping the input length manageable.

Summarization helps discipline the model by directing its focus toward the policy-relevant
parts of a speech transcript. Unlike FOMC statements, which are short, well-structured, and
carefully worded, speeches exhibit greater variability in both structure and phrasing. As a
result, market participants are likely to focus on the key takeaways rather than the precise
wording. By summarizing speech transcripts, we replicate this process, ensuring that our
dataset better reflects how financial markets extract and interpret central bank communica-
tion. Furthermore, given the varying length and structure of speeches, summarization enhances
consistency, reduces noise, and improves the model’s ability to learn from these text documents.

We use the Mistral Large 2 model, a state-of-the-art language model with 123 billion pa-
rameters, for the summarization task. This model can process inputs of up to 128,000 tokens
and outperformed alternative approaches,20 making it the most suitable choice for our applica-
tion. To ensure that the most relevant content is preserved, we instruct the model to: generate
fluent, first-person summaries that maintain the speaker’s voice rather than third-person bullet
points; and (ii) focus on monetary policy topics, using a predefined dictionary from Gardner et
al. (2022) along with additional key terms such as accommodative, contractionary, stance, and
federal funds rate. The dictionary includes terms frequently appearing in FOMC statements
from 2000 to 2020 related to labor markets, output, inflation, and financial conditions. While
our classification criteria ensure that selected speeches are relevant to monetary policy, these
topic-based instructions further refine the summaries to highlight the most pertinent content.
Each summary is limited to a maximum of 15 sentences. In the end, we pre-process every
summary in the same way as we pre-processed the FOMC statements.

19Tokens are the input feed to the language model. They capture the text and its words, where, as a rule of
thumb, one token corresponds to 4 characters on average.

20We also tested Falcon-7B-Instruct, GPT-4, BART fine-tuned on CNN/Daily Mail, and a smaller variant
of T5 fine-tuned for summarization.
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Fine-Tune the Neural Network

As described earlier, every NLP model is associated with a specific vocabulary, a collection of
distinct words, it was initially trained on. Through this initial training, the XLNet model has
already gained an understanding of the words and their relationships among each other. In
more technical terms, as part of the training, the words are converted into tokens so a computer
can easily process them. The XLNet model has already mapped the tokens in an N -dimensional
space where similar tokens lie closer together. For example, the tokens for apples and oranges
lie closer together than the tokens for apples and inflation. To use the model by Yang et al.
(2020), we convert the FOMC statements and the summaries of the speech transcripts into
tokens used in the XLNet vocabulary.

Moreover, we want our model to learn the mapping from FOMC statements and speech
transcripts to marked-based surprises. The objective is for the model to predict the surprises
based on an unknown statement or speech. The model provided by Yang et al. (2020) can not
yet execute this task. Thus, we add layers to their neural network structure that are suitable
for obtaining continuous predictions. Specifically, we break down the text using convolutional
layers so that the model can extract the relevant information and appropriately predict the
surprises.21 Appendix 3.A.2 presents our model architecture, and Appendix 3.A.3 explains the
training algorithm in further detail.

As it is standard in the machine learning literature, we apply k-fold cross-validation. We
split our dataset, consisting of the FOMC statements and speech transcripts, together with the
respective marked-based surprise, into different parts. Notably, we always have a training set
that the model adapts its parameters on and a test set that it runs the model on but does not
adapt its parameters to. Such train and test splits are important in machine learning because
the models are prone to overfitting, i.e., to learn too much from the training data, thereby
being unable to predict data it has not yet seen. To train our model, we apply five-fold cross-
validation. Thus, we always have 80 percent of our data in the training set and 20 percent
in the test set. This procedure also implies that for the same hyperparameter described in
Appendix 3.A.3, we have five different parameter values, depending on the data the model was
trained on.

To find the optimal hyperparameters for our model, we experiment with different com-
binations of the number of epochs22 and the learning rate.23 During these experiments, we
monitor the mean squared error (MSE) on the training (in-sample) and test (out-of-sample)
data. The MSE is the mean squared difference between the prediction and the corresponding

21This procedure adds roughly 4 million parameters to the model. Thus, the final model counts around 221
million parameters. Training these additional parameters typically requires around three days, though the exact
duration may vary depending on the specifications.

22The number of epochs defines how often the model sees the same data set to adapt its parameters.
23The learning rate defines by how much the neural network adapts its parameters after each iteration.



3.4. Language-Based Monetary Policy Surprises 129

true marked-based surprise. Based on these test runs, we fix the learning rate of our model to
1e-5 and the number of epochs to 10. The MSE for this set of hyperparameters for the five-fold
cross-validation is displayed in Table 3.3.

Table 3.3: MSE of 5-Fold Cross-Validation after 10 Epochs

Number of Split In-Sample MSE Out-of-Sample MSE
1 5.040045e-05 0.0023990888
2 0.00016885748 0.0015901675
3 0.00068839284 0.0011396597
4 0.0014133948 0.0010364184
5 0.00012260459 0.0022924726

Predict Surprises using Text Data

The predicted surprises for each FOMC statement or speech transcript are generated using
the model parameters from the first split of the cross-validation after ten epochs, as described
above.

Figure 3.4 presents the out-of-sample MSE for this split, focusing on the test set of FOMC
statements and speech transcripts. While the model captures changes in market-based surprises
to some extent, it does not achieve a perfect fit. This result is unsurprising since the number
of data points is small for a machine-learning task. However, considering the limited number
of available texts, along with their length and complexity, the model performs remarkably well
on the test set. Moreover, market-based surprises are expected to be influenced not only by the
content of central bank communications but also by other factors such as market momentum
and trader sentiment. As a result, some degree of deviation between predicted and actual
surprises is both expected and even desirable. Overall, the results indicate that the model
successfully learns patterns from the training data that allow it to predict market reactions.

3.4.2 Relation to Past Economic Information

The primary objective of our NLP task is to isolate the component of market-based surprises
that stems solely from central bank communication. By doing so, we aim to remove the corre-
lation between market-based surprises and past economic and financial data. To verify whether
our language-based surprises are indeed uncorrelated to economic and financial information
available before an announcement or speech, we conduct a regression analysis following Bauer
and Swanson (2023a).

To capture past economic and financial conditions, we construct the following variables: (1)
the most recent nonfarm payroll surprises (NFP_SURP), (2) the 12-month employment growth
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Figure 3.4: Predictions and Marked-Based Surprises
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Remark: Marked-based surprises and out-of-sample model predictions of the surprises are displayed in black
and in blue, respectively.

in total nonfarm payrolls (NFP_12M), (3) the three-month growth in the S&P 500 stock market
index (SP500_3M), (4) the three-month change in the slope of the yield curve (SLOPE_3M),
(5) the three-month growth in the Bloomberg Commodity Spot Price index (BCOM_3M), and
(6) the average skewness of the ten-year Treasury yield over the past month (TR_SKEW).24

Except for nonfarm payroll surprises, constructing these variables is straightforward; further
details can be found in Bauer and Swanson (2023a). For nonfarm payroll surprises, we take
the difference between the actual nonfarm payroll release and the median forecast from a
survey of financial market participants conducted before the release. Since we lack direct
access to this survey (owned by Haver Analytics), we approximate the series as follows: first,
we construct a time series of median expectations for months with FOMC meetings, where
complete data is available. Then, for months without meetings, we estimate missing values
using linear interpolation. This approach ensures that our series matches Bauer and Swanson
(2023a) for FOMC statement dates while providing an approximation for speech dates.

Table 3.4 presents the regression results. The second column reports estimates for market-
based surprises associated with FOMC announcements and Federal Reserve Board chair and

24The S&P 500 stock market index and the Bloomberg Commodity Spot Price index are from Datastream,
provided by LSEG Data & Analytics and accessible via a University of Bern license. The implied skewness is
based on the paper by Bauer and Chernov (2024) and obtained from the website of the Federal Reserve Bank
of San Francisco. Total nonfarm payrolls and the yield curve slope are from the St. Louis FRED database.
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vice chair speeches. Consistent with concerns raised in the literature, we find evidence that
these surprises may capture factors beyond monetary policy shocks. Specifically, half of the
coefficients on past economic or financial variables are statistically significant at the 5 per-
cent level, suggesting that market-based surprises are correlation with economic and financial
information available prior to the announcements or speeches.

In contrast, the first column displays results for our language-based surprise series. Here,
with the exception of the ten-year Treasury yield skewness, we find no statistically significant
relationships with past economic and financial information, which indicates an improvement
over the market-based series. A similar pattern emerges in columns three and four, which
repeat the analysis but restrict the sample to surprises associated with only FOMC statements.
The last two columns, which focus solely on speech transcripts, show no big differences between
market-based and language-driven surprises.

These results suggest that our language-driven approach provides a cleaner measure of
monetary policy surprises by filtering out influences from prior economic information. Unlike

Table 3.4: Regression on MPS

All Statements Speeches
LD MB LD MB LD MB

NFP_SURP 0.0304 0.0280 0.0986 0.0875 0.0019 -0.0040
(0.0914) (0.1493) (0.0393) (0.0821) (0.8957) (0.7699)

NFP_12M 0.0010 0.0020 0.0024 0.0055 0.0007 0.0009
(0.1686) (0.0156) (0.2893) (0.0296) (0.3065) (0.1987)

SP500_3M 0.0309 0.0528 0.0334 0.1214 0.0206 0.0221
(0.1570) (0.0362) (0.6211) (0.0871) (0.2198) (0.2073)

SLOPE_3M -0.0037 -0.0042 -0.0115 -0.0115 -0.0005 -0.0013
(0.2847) (0.2462) (0.2475) (0.2358) (0.8195) (0.5829)

BCOM_3M -0.0139 0.0094 -0.0105 0.0623 -0.0147 -0.0082
(0.4492) (0.6633) (0.8504) (0.3445) (0.3446) (0.5867)

TR_SKEW 0.0118 0.0123 0.0302 0.0305 0.0033 0.0029
(0.0162) (0.0138) (0.0171) (0.0272) (0.3987) (0.3814)

N 619 619 178 178 441 441
R2 0.03 0.05 0.10 0.19 0.01 0.01
Notes: p-values in parenthesis. The abbreviations MB and LD stand for
Market Based and Language Driven monetary policy surprise series, respec-
tively. In the former case, the raw changes in market prices within the tight
time window around the communication is used as surprise series. In the
latter case, our predicted market reactions from the language model are uses
as surprise series.
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the market-based series, the language-driven surprises exhibit no systematic relationship with
past economic conditions. Moreover, the few remaining significant coefficients likely stem from
extreme events or outliers, to which OLS is particularly sensitive.

To control for such potential outliers, the same regression exercise is conducted using median
regression.25 The results again show an improvement for the language-driven surprise series.
During crises, such as the dot-com bubble burst or the 2008 financial crisis, markets tend to
underestimate the Federal Reserve’s actions, leading to larger negative surprises in periods of
heightened uncertainty and volatility. This increases the likelihood of influential outliers.26

To address this concern, we repeat the regression analysis using median regression, which
is less sensitive to outliers.27 The findings confirm that the language-driven series exhibit a
weaker correlation with past economic and financial data, enhancing their properties regarding
exogeneity.

3.4.3 Monetary Policy Effects on Macroeconomic Variables

Analogous to the market-based monetary policy surprises, we assess the dynamics of the mon-
etary policy shock identified when using language-driven surprises as instruments. First, we
report the F -statistics of the first-stage regression for two instrument series: the language-
driven surprises related to the FOMC statements and the language-driven surprises related to
the FOMC statements and policy-relevant Federal Reserve Board chair and vice chair speech
transcripts.

Table 3.5 reports the F -statistics for both surprise series. These values are only marginally
lower than those obtained using market-based surprises, indicating that the application of our
text analysis method has minimal impact on the strength of the instruments.

Table 3.5: F -statistics for Language-Driven Surprise Series

F -statistic

FOMC statements 5.77
FOMC statements and policy-relevant speech transcripts 16.30

25The results are in Appendix 3.A.5
26Scatterplots for the two coefficients with the lowest p-values are shown in Appendix 3.A.5.
27Results are presented in Appendix 3.A.5.
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Figure 3.5 displays the impulse responses to a monetary policy shock when using either
market-based surprises or language-driven surprises as instruments for the identification. First,
if we consider surprise series containing only FOMC announcements for identification, the
dynamic responses of the macroeconomic variables differ only slightly.28 Second, if we use the

Figure 3.5: Impulse Responses to a Monetary Policy Shock (Language-Driven Surprises)
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Treasury yield. Horizontal axis: time horizon in months.

28For the market-based surprises, we include only those dates for which a corresponding FOMC statement
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surprises containing both FOMC announcements and Federal Reserve Board chair and vice
chair speeches, the differences are bigger. With the language-based surprises, we no longer
observe a price puzzle. The consumer price index does not react significantly on impact, but
decreases below zero in the medium to long run. Moreover, industrial production decreases
faster and stays negative for a prolonged period. Lastly, the excess bond premium increases
(instead of decreasing), which is economically more intuitive.

3.5 Conclusion

This paper improves the identification of monetary policy shocks by combining NLP techniques
with an expanded set of central bank communications. We extend the traditional market-
based surprise measures—typically derived solely from FOMC announcements—to also include
policy-relevant speeches by the Federal Reserve Board chair and vice chair. This expansion
significantly improves the relevance of these surprises as instruments for identifying monetary
policy shocks.

By leveraging a neural network trained on FOMC statements and speech transcripts, we
construct a language-driven surprise series that isolates the component of market reactions
driven purely by central bank communication. This approach mitigates endogeneity concerns
inherent in traditional market-based surprises by filtering out confounding factors such as trader
sentiment and market momentum. Our empirical findings confirm that language-based surprises
produce impulse responses to monetary policy shocks that align more closely with economic
theory.

Our results underscore the increasing importance of central bank communication as a mone-
tary policy tool and demonstrate the potential of NLP in macroeconomic research. Future work
could further refine our approach by incorporating additional forms of policy communication
or testing alternative machine-learning architectures.

is available. This approach ensures that both surprise series are based on the same set of observations.
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3.A Appendix I - Supplementary Material

3.A.1 Text Cleaning

We perform basic text cleaning by replacing repetitive and technical words with an abbreviation.
Table 3.6 provides an overview of the abbreviations used. We use one word for the abbreviation
except the Federal Open Market Committee is replaced with Committee (FOMC) because the
FOMC statements usually refer to the Committee in their statements, whereas the Federal
Reserve Board Chair and Vice Chair Speeches usually refer to the FOMC. However, both refer
to the Federal Open Market Committee. Additionally, we restructure percentage numbers to
match the following format: X.XX percent. Especially in the FOMC announcements, rate
changes are sometimes marked in fractions, e.g. 1/4, making it hard to interpret for an NLP
model. Thus, we similarly restructure all percentage numbers to facilitate comprehension.
Finally, in the FOMC statements, we replaced the introductory sentence Information received
since the Committee (FOMC) met in January with Information received for every month to
prevent the model from learning from the timeline.

Table 3.6: Text Cleaning

Words Abbreviation
Federal Open Market Committee Committe (FOMC)
federal funds rate FFR
Board of Governors BOG
Federal Reserve FR
basis points bps
basis point bps
-basis-point bps
mortgage-backed securities mbs
Term Asset-Backed Securities TABS

3.A.2 Neural Network Architecture

As mentioned, we use a pre-trained language model, XLNet-Base, developed and trained by
Yang et al. (2020) and provided by the platform Hugging Face. The backbone neural network
consists of 12 layers and 768 hidden states. On top of this, to train the model on our specific
task, we add another six layers. A graphical representation of our additional structure is shown
in figure 3.6. First, we increase the number of hidden states to match the length of our texts
(number of tokens). Every token has a hidden state and associated weights in our first layer.
Second, we add three convolutional layers, simultaneously breaking down the number of notes
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and tokens. Convolutional neural networks (CNNs) were first proposed by Fukushima (1980)
but gained greater attention in machine learning when Lecun et al. (1998) presented LeNet,
an algorithm that detected handwritten numbers. CNNs learn via filter optimization and
thus symmetrically reduce the number of notes and tokens. The notes remain fully connected
using this procedure, making it prone to overfitting. Nonetheless, since we work with a small,
heterogeneous text data set, we profit from the connectivity but must check that our model is
not overfitting. Third, we add two linear layers, including activation functions, to decrease the
number of notes to a single prediction. As an activation function, we use the Rectified Linear
Unit (ReLU). In a neural network, the activation function transforms the summed weighted
input from the node into the node’s activation or output. ReLU is a piecewise linear function
that will output the input directly if it is positive. Otherwise, it will output zero. It has become
the default activation function for many types of neural networks because a model that uses it
is easier to train and often performs better.

Figure 3.6: Neural Network Architecture

Remark: The graph presents the architecture of our neural network, taking as input the pre-trained XLNet
and the FOMC statement. The input runs through different linear and convolutional layers, adapting its size

to condense the information to a single number.



3.A. Appendix I - Supplementary Material 137

3.A.3 Overview of the Training Algorithm

1. Scale the continuous labels, i.e., the changes in the federal funds futures, removing the
median and scaling the data according to the quantile range.

2. Define the hyperparameter:

2.1. Learning rate: Defines how much the neuronal network should adapt its parameter
after each iteration. We chose a rather low learning rate.

2.2. Number of epochs: Defines how often the model sees the same data set to adapt its
parameters.

2.3. Loss function: Defines how the model should penalise its results compared to the
true label. Since we work with linear prediction, we take the mean squared error.

2.4. Batch size: Defines the number of statements we show to the model simultaneously.

3. Split the statements into training and test data. We use a 5-fold cross-validation, splitting
the data set into five different subsets, always taking one of the splits as a test split and
letting the model train with the other four splits.

4. Set the model to training mode to adapt its parameters.

5. Train the model by adapting its parameters such that the loss becomes decreases.

6. Stop updating the parameters

7. Evaluate the model using the test data.

8. Repeat from step four until the number of epochs (defined before) is reached. If the model
is already overfitting, but the number of epochs is not yet reached, we should stop before.

9. Repeat from step three until all splits are tested.

10. Unscale the results.

3.A.4 Fine-Tune the Neural Network using FOMC statements

In this section, we map policy communication text to market-based monetary policy surprises,
isolating the portion of the surprises driven exclusively by the FOMC statements. In contrast
to Section 3.4, we abstain from using speech transcripts as part of the training set and use
these only for predicting changes in market expectations. Truly, the statements are relatively
short but comprise vocabulary that is highly policy-relevant.
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Natural Language Processing

To obtain the prediction, we follow the same four steps explained in Section 3.4.1 with the
only difference that we use a different dataset for fine-turning the neural network. We want
our model to learn the mapping from FOMC statements to market-based surprises and apply
this mapping to the speech transcripts. To train our model, we apply again a five-fold cross-
validation using solely the FOMC statements. Thus, we have 80% of our FOMC statements
in the training set and 20% in the test set. We use the same hyperparameters and algorithm
as described in Appendix 3.A.2 and 3.A.3, respectively. Based on our test runs, we fixed the
learning rate of our model to 1e-5 and the number of epochs to 8. The MSE of this set of
hyperparameter for the five-fold cross-validation is displayed in Table 3.7.

Table 3.7: MSE of 5-Fold Cross-Validation after 8 Epochs

Number of Split In-Sample MSE Out-of-Sample MSE
1 0.0012598837 0.0012116632
2 0.0004515733 0.003678869
3 0.002779334 0.0034142113
4 0.0028541489 0.0032873761
5 0.0012911019 0.0020300713

After training our neural network, we obtain predictions from the FOMC statements and
speech transcripts. In other words, we obtain a monetary policy surprise series that contains
largely out-of-sample predictions.

Relation to Past Economic Information

After obtaining our predictions, we verify again whether our language-based surprises are un-
correlated to economic and financial information available before the announcement or speech.
We conduct the same regression as in Section 3.4. The results are presented in Table 3.8 and
are similar to the ones presented earlier in the paper. The only exception is the coefficient
of nonfarm payroll surprises (NFP_SURP) that is here significant on the 5% level, for our
combined results.

Similar to before, these results suggest that our language-driven approach exhibits no sys-
tematic relationship with past economic data. Hence, also using a limited training sample help
to improve the surprise series to capture only the reaction to the central bank communication
and abstract for other past information.
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Table 3.8: Regression on MPS

All Statements Speeches
LD MB LD MB LD MB

NFP_SURP 0.0091 0.0280 0.0214 0.0875 0.0026 -0.0040
(0.0259) (0.1493) (0.0434) (0.0821) (0.2913) (0.7699)

NFP_12M 0.0002 0.0020 0.0010 0.0055 -0.0001 0.0009
(0.3470) (0.0156) (0.1353) (0.0296) (0.4183) (0.1987)

SP500_3M 0.0083 0.0528 0.0255 0.1214 0.0026 0.0221
(0.1438) (0.0362) (0.1419) (0.0871) (0.4490) (0.2073)

SLOPE_3M -0.0003 -0.0042 -0.0036 -0.0115 0.0010 -0.0013
(0.6716) (0.2462) (0.0707) (0.2358) (0.0248) (0.5829)

BCOM_3M 0.0001 0.0094 0.0139 0.0623 -0.0048 -0.0082
(0.9829) (0.6633) (0.3641) (0.3445) (0.1001) (0.5867)

TR_SKEW 0.0023 0.0123 0.0052 0.0305 0.0007 0.0029
(0.0099) (0.0138) (0.0327) (0.0272) (0.3539) (0.3814)

N 619 619 178 178 441 441
R2 0.04 0.05 0.20 0.19 0.03 0.01
Notes: p-values in parenthesis. The abbreviations MB and LD stand for
Market Based and Language Driven monetary policy surprise series, respec-
tively. In the former case, the raw changes in market prices within the tight
time window around the communication is used as surprise series. In the
latter case, our predicted market reactions from the language model are uses
as surprise series.

Monetary Policy Effects on Macroeconomic Variables

Analogous to the Section 3.3 and 3.4, we assess the dynamics of the monetary policy shock
identified when using language-driven surprises as instruments. First, we report the F -statistics
of the first-stage regression for two instrument series: the language-driven surprises related to
the FOMC statements and the language-driven surprises related to the FOMC statements and
policy-relevant Federal Reserve Board chair and vice chair speech transcripts.

Table 3.9 reports the F -statistics for both surprise series. These values, especially for
the FOMC statements and policy-relevant speeches, are drastically lower compared to the
results obtained in Section 3.3 and 3.4. This indicates that the model, trained only on FOMC
statements, retrieves less information from the policy-relevant speeches.

Figure 3.7 displays the impulse responses to a monetary policy shock when using either
market-based surprises or language-driven surprises as instruments for identification. First, for
the results using only FOMC announcements for identification, we observe marginally different
results. With the language-based surprises, we obtain a negative impact on the CPI only after
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Table 3.9: F -statistics for Language-Driven Surprise Series

F -statistic

FOMC statements 3.31
FOMC statements and policy-relevant speech transcripts 2.97

some years. However, the reaction of industrial production is much stronger using our series.
Second, for the results using both FOMC announcements and Federal Reserve Board chair and
vice chair speeches, the deviation is even bigger. Using the language-driven surprises, the two-
year treasury yield mean-reverts much quicker. Moreover, the CPI reacts negatively on impact
and remains negative for all periods. In contrast, industrial production decreases some months
after impact but reverts shortly after. Similar to the results obtained in Section 3.4, the excess
bond premium increases in reaction to the monetary policy shock. In essence, the results are
similar to the ones obtained in Section 3.4 with the big difference that our instrument remains
weak even when adding the speech transcripts.
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Figure 3.7: Impulse Responses to a Monetary Policy Shock (Language-Driven Surprises)
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Notes: The blue shaded areas represent the 5-95 percentiles of the impulse responses identified with
market-based surprises and the red shaded areas the 5-95 percentiles of the impulse responses identified with
language-driven surprises. The impulse responses are normalized to a 25 basis point increase in the two-year

Treasury yield. Horizontal axis: time horizon in months.
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3.A.5 Robustness to Outliers

This section comprises the additional results described in section 3.4. Table 3.10 displays the
results from the median regression, using the same specifications as for the OLS regression in
section 3.4. Figures 3.8 and 3.9 plot the outcomes, the language-driven surprises, on the two
covariates with the lowest p-values, the nonfarm payroll surprises and the average skewness
of the ten-year treasury yields. Dates during times of crisis are plotted in blue, other dates
are plotted in red. Times of crisis include the dot-com bubble burst between 1.1.2020 and
31.12.2002 and the financial crisis between 1.7.2007 and 1.1.2010.

Table 3.10: Median Regression on MPS

All Statements Speeches
LD MB LD MB LD MB

NFP_SURP 0.0049 -0.0013 0.0120 -0.0049 0.0010 -0.0000
(0.5508) (0.8398) (0.7818) (0.9002) (0.9038) (0.9998)

NFP_12M 0.0003 0.0004 0.0035 0.0035 0.0001 0.0000
(0.5536) (0.2395) (0.1281) (0.0913) (0.7897) (0.9994)

SP500_3M 0.0037 0.0016 -0.0140 0.0538 0.0071 0.0000
(0.7184) (0.8426) (0.7820) (0.2429) (0.4955) (0.9999)

SLOPE_3M -0.0002 -0.0007 -0.0030 -0.0119 -0.0006 -0.0000
(0.9058) (0.5335) (0.6497) (0.0519) (0.6782) (0.9995)

BCOM_3M -0.0069 0.0007 0.0042 0.0368 -0.0070 -0.0000
(0.4230) (0.9133) (0.9174) (0.3164) (0.4239) (1.0000)

TR_SKEW 0.0037 0.0005 0.0129 0.0148 0.0025 0.0000
(0.1297) (0.8011) (0.2375) (0.1370) (0.3234) (0.9999)

N 619 619 178 178 441 441
Notes: p-values in parenthesis. The abbreviations MB and LD stand for
Market Based and Language Driven monetary policy surprise series, respec-
tively. In the former case, the raw changes in market prices within the tight
time window around the communication is used as surprise series. In the
latter case, our predicted market reactions from the language model are uses
as surprise series.
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Figure 3.8: Language driven surprises on nonfarm payroll surprises
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Notes: The graph presents the surprises used in the analysis on the y-axis and the most recent nonfarm
payroll surprises on the x-axis.

Figure 3.9: Language driven surprises on average skewness of the treasury yield
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Notes: The graph presents the surprises used in the analysis on the y-axis and the average skewness of the
ten-year treasury yield in the last month on the x-axis.
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