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Introduction

Climate change represents one of the most pressing and complex challenges, reshaping economies, ecosys-
tems, and human behavior. Its far-reaching consequences extend across various sectors, with agriculture
being particularly vulnerable to the associated impacts. Rising temperatures coupled with increasing fre-
quency and intensity of extreme events pose severe threats to agricultural productivity, leading to economic
instability and threatening food security (IPCC 2022). These disruptions further shape adaptation capabil-
ities and international policy. To effectively address climate change, a comprehensive understanding of its
various dimensions is required.

First, it is essential to understand the physical impact of climate change on natural systems. Agriculture is
one of the sectors most vulnerable to climate variability, as agricultural land is directly exposed to changing
weather. While significant progress has been made in assessing these impacts, considerable uncertainty re-
mains regarding the estimates of climate change on agricultural yields. This uncertainty presents significant
challenges for policymakers and farmers alike as they attempt to devise appropriate strategies for mitiga-
tion and adaptation in the face of evolving climate conditions. Second, interdependencies between climate
and economic agents are becoming increasingly complex. The relationship between climate and human
behavior is circular in nature: Climate impacts, such as frost, heavy rainfall, and temperature variability,
are critical factors, and agricultural productivity is directly impacted by it. Farmers are increasingly facing
challenges, such as shifting growing seasons, spring frost, drought impacts, and heavy precipitation, all of
which threaten both individual livelihoods and the global food supply. These climate impacts, however,
not only shape the environment that we must adapt to but also influence human behavior. Climate per-
ceptions and climate beliefs define our scope of action. Where past behavior has shaped the conditions we
must now adapt to. Moreover, climate change is a global issue that demands international cooperation to
mitigate its effects. Despite the success of the Paris Agreement, we observe little progress in climate change
mitigation in almost all countries. Current emissions levels exceed those pledged by nations, and even full
compliance with existing commitments is unlikely to prevent a global temperature increase of more than
2◦C, the threshold widely regarded as critical for avoiding the most catastrophic consequences of climate
change.

This thesis comprises three chapters, each addressing one of the different obstacles outlined before. The first
project focuses on assessing climate impacts on agricultural yield, with the goal of further understanding
the physical impacts of climate change. The second chapter examines the adaptive behavior of farmers,
investigating through survey data how they respond to perceived climate risks and the extent to which
they are willing to adopt adaptive measures. The third chapter explores the strategic behavior of agents in
the context of international cooperation, using a principal-agent framework experiment to test theoretical
predictions. Together, these chapters explore key themes related to uncertainty, the interaction between
natural and human systems, and decision-making under constraints.
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More precisely, in the first chapter of my thesis, I analyze climate impacts on agricultural yields, with a
particular focus on perennial crops. Perennial crops present unique challenges for climate modeling due
to their sensitivity to weather conditions throughout the year and their long-term cultivation cycles (Lobell
and Field 2011). Perennial crops are both of very high nutritional and economic value (Leisner 2020; Siegle
et al. 2024). Despite the importance of perennial crops to global food production, studies examining the
climate impacts on these crops are relatively scarce (Gunathilaka et al. 2018). To address this gap, I use a
unique longitudinal orchard-level dataset from Switzerland to investigate the effects of climate change on
apple yields. In doing so, I pay particular attention to the impact of frost during different phenological
development stages. I model different phenological stages based on temperature, introducing a dynamic
component into the impact assessment. The model very accurately predicts past yield. Furthermore, I use
the estimated relationship to then project future yield risk till the end of the century. The results show
that spring frost, increasing heat days, and changes to winter chilling have a significant negative impact
on apple productivity. I find a shift in the growing season, where temperature changes will cause earlier
blooming dates, particularly pronounced under higher-emission scenarios. Additionally, I find future yield
gains under various climate models and emission scenarios. However, climate and model uncertainty limit
the extent of anthropogenic climate change for which reliable predictions are possible.

Building on the insights from the first chapter, the second chapter shifts focus to the adaptive behavior of
farmers in response to climate risks. The perennial crop sector faces unique challenges due to its path de-
pendencies as plants are grown for up to 30 years. In light of this, understanding the adaptation behavior of
perennial crop farmers and having this long-term perspective are crucial for effective adaptation. Adapta-
tion, however, does not occur in a vacuum. Effective adaptation requires a willingness to change behavior,
which in turn is dependent on climate change belief, climate change perception, economic consideration,
and the perceived costs and benefits of potential adaptation measures (Chatrchyan et al. 2017; Niles and
Mueller 2016; Fishbein and Ajzen 2011). I investigate the role of farmers’ adaptation behavior by eliciting
factors such as climate impact, perceptions, and beliefs through an online survey directed at fruit farmers in
Switzerland. I find larger past climate impacts due to frost compared to drought. This, however, does not
translate to farmers’ concerns, as they are more concerned about future drought impact compared to frost.
Results show that farmers are more skilled at identifying temperature trends than frost and precipitation
patterns, with the accuracy of precipitation perception varying based on the irrigation systems in use. In
addition to farmers’ main concerns being of a regulatory nature, the majority of them exhibit concerns about
climate change. Farmers exhibiting climate skepticism display lower policy support for climate mitigation
compared to those who believe in anthropogenic climate change. Interestingly, skeptics display a higher
willingness to adapt, highlighting the complex nature of adaptation behavior in the agricultural sector.

The third chapter moves beyond the agricultural focus to consider the broader question of international
cooperation in mitigating climate change. Symbolically, I transition from single-author papers to my first
co-authored chapter, which includes a collaboration with the University of Bologna, also furthering inter-
national cooperation. Climate policies are often governed by a principal-agent dynamic, where one party
(the agent) acts on behalf of another (the principal), particularly in the context of domestic and international
policy interactions. Theoretical models through the lens of economic policy and game theory predict that
under specific circumstances, it is optimal for the principal to delegate strategically, meaning to delegate
to an agent who exhibits different preferences with regard to public goods than they do themselves. This
stands in contrast with the experimental literature, hinting at the concept of conditional cooperation. We
test these theoretical predictions through laboratory and online experiments. We find that principals dele-
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gate to agents with a higher evaluation of the public good if they expect that the other principal does the
same, contrasting theoretical predictions that follow when players only care about their own payoffs: in
this scenario, delegating to agents with a higher evaluation of benefits is never in the best interest of the
principals. Our results suggest that the race to the bottom caused by strategic delegation in public goods
contexts may be considerably less severe than what is discussed in the theoretical economic literature.

The overarching goal of this thesis is to enhance our understanding of the mechanisms driving climate
change impacts, both in terms of natural systems and human behavior. By employing diverse analytical
methods, this research seeks to inform the development of more effective adaptation strategies and inter-
national policy frameworks. Understanding the interplay between nature and human systems, as well as
the decision-making processes of various actors, will prove necessary in order to provide instructive policy
guidance for the design of effective adaptation policies as well as international policy frameworks.
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Chapter 1

Yield Risks for Perennial Crops
under Changing Climate Conditions

Abstract
Agriculture is among the sectors most vulnerable to climate change, with perennial crops like apple orchards particu-
larly at risk due to their long growth cycles and limited adaptive capacity. This study examines future yield risks using
a unique orchard-level dataset and the Phenoflex model to predict phenological stages. We develop phenology-specific
frost indicators and evaluate temperature effects while calibrating different chilling models. Our findings indicate a
trend toward earlier flowering stages, higher average temperatures, fewer total spring frost days but more frost days
dependent on specific phenological phases, and an increase in extreme heat events. Frost and extreme heat events show
significant negative impacts on productivity, with frost effects during full bloom having the greatest effect. Overall, we
find yield increases rather than losses over time, driven by warmer temperatures and reduced frost damage. However,
uncertainties in climate projections and model assumptions limit the precision of these yield predictions, especially
over long timescales. Under future climate scenarios, yield gains vary based on emissions pathways: the high-emission
RCP8.5 scenario shows the largest yield increases, likely due to fewer frost days and a warmer growing season, while
the lower-emission RCP2.6 scenario is associated with smaller yield gains.

Keywords: climate impact, yield risk, panel analysis, agriculture, phenology, spring frost

JEL-codes: Q15, Q54
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1.1 Introduction

Weather effects such as frost, heavy rainfall, and temperature variability are critical factors and can have a negative
impact on agricultural productivity, consequently affecting farmers’ livelihoods. The agriculture sector is one of the
most vulnerable to the effects of climate change. While studies on the impact of climate on major annual crops such
as wheat, soybeans, rice, and maize are prominent (Schlenker and Roberts (2009); Welch et al. (2010); Deschênes and
Greenstone (2007); Schlenker and Lobell (2010); Asseng et al. (2015)), there are few comprehensive assessments of the
impact of climate on perennial crops. Perennial crops are of high nutritional and economic value. While crops like
wheat, soybeans, rice, and maize provide essential calories, most fruits are rich in micro-nutrients, playing a vital role
in addressing the challenges of maintaining a healthy diet in today’s agri-food landscape (Leisner 2020). Economically,
perennials are high-value crops, and their international trade has surged in recent years, making them an important
source of income for developing countries (Siegle et al. 2024). In addition, perennial crops are especially susceptible to
climate change, as individual plants are grown for up to 30 years, limiting adaptability in the short term. Unlike annual
crops, perennial crops are affected by weather at any time of the year, not just during the growing season and climate
effects can transfer to the following years. Furthermore, fruit trees are very susceptible to the effects of frost. The future
effects of changes in flowering times in the growing season in relation to climate change have not yet been sufficiently
investigated.

In this paper, we assess the potential yield risks for fruit trees due to climate change. Beyond commonly considered
variables, we examine yield risk due to spring frost by quantifying phenology-specific frost events. Additionally, we
account for factors outside the traditional growing season, such as winter chilling requirements. By modeling the
historical relationships, we use the most accurate predictive model to project future yields and assess changes under
different emission scenarios and climate models.

The lack of studies investigating the effects of climate change on perennial crops poses a particular challenge for sta-
tistical modeling of these effects. This paper advances the existing literature on climate impacts on agricultural yields
by focusing specifically on perennial crops, addressing a critical research gap in modeling climate effects – particularly
spring frost risk. Unlike previous studies, we incorporate frost indicators based on a phenology model, providing a
more detailed understanding of the relationship between crop developmental stages and frost exposure. To address
this, we use a unique orchard-level panel dataset on apple production in Switzerland covering over 440 orchards for
the years 1997 to 2019. To model the impact of spring frost, we predict the flowering stage using the Phenoflex model
and incorporate non-linear temperature effects with growing degree days and growing degree hours. We capture the
influence of winter chilling and control for all time-invariant unobserved heterogeneity. Additionally, we control for
perennial-specific dynamics such as biennial bearing, which has been neglected in the literature so far. Subsequently, we
build different models based on both biophysical processes and variable selection using random forests and evaluate
their predictive power through various out-of-sample validations, selecting the best-performing model. The estimated
yield-climate relationship is then used with climate change scenarios from the EURO-CORDEX ensemble to assess po-
tential impacts through 2099. As the choice of climate model can strongly influence the yield projection, we project
future yield development based on nine different climate models. We model percentage changes in yields for three
different time horizons and for three possible emission scenarios.

We observe a general increase in average temperatures and a rise in the frequency of extremely hot days, accompanied
by an overall reduction in frost days. However, phenology-dependent frost days are, on average, more frequent than
in the reference period, though they decline across future time horizons and emissions scenarios (RCPs), with a par-
ticularly notable reduction under RCP8.5. Precipitation patterns show no clear trend. Predicted changes in the bloom
stage indicate that flowering is likely to occur earlier on average, particularly under high-emission scenarios. We ob-
serve a positive effect of increased temperatures on yields, the effect, however, being bound by an upper limit. Heat
stress has a significant negative impact on agricultural productivity, as trees shift into “survival mode” slowing down
production. We also observe large, significant negative impacts from phenology-specific frost events, with the most
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severe impacts occurring during full bloom. Our projections based on the climate-yield relationship suggest an overall
increase in future yields, with the degree of gain varying across different climate and emission scenarios but showing
a consistently positive trend. Notably, yield gains are more pronounced under high-emission scenarios, likely due to a
reduction in frost risks and a warmer growing season that outweighs the negative effects of increased heat stress and
shifts in blooming dates.

This paper proceeds as follows: In Section 2.2, we review the relevant literature. Section 1.3 describes the data sources
we use for the analysis, including temperature, precipitation, agricultural, and phenological data. In Section 1.4, we
outline our methodology, covering data preparation, PhenoFlex model specifications, winter chill models, and climate
variable derivation. We also detail our statistical modeling approach, variable selection, and out-of-sample predictions.
In Section 1.5, we present the climate scenario data and yield projections. Finally, we conclude with a discussion of our
key findings in Section 2.5.

1.2 Related Literature

Given the numerous challenges associated with assessing climate impacts on agriculture using only cross-sectional
data, a variety of different approaches are being discussed. According to Maharjan and Joshi (2013), there are at least
four different methodologies to assess the impact of climate change on agriculture: crop simulations from agronomic
research, the hedonic approach, time series, and panel models. Since the early 2000s, a large literature on panel data
has emerged (Kolstad and Moore 2020). They use panel methods and high-frequency (e.g., year-to-year) variations in
temperature, precipitation, and other climatic variables to determine the economic impact of these variables. Blanc and
Schlenker (2020) provide an overview of the usage of panel data for the assessment of the impact of climate change on
agricultural products. Dell et al. (2014) state, that by harnessing exogenous variation over time within a given spatial
unit, these studies help to credibly identify the breadth of channels linking weather and the economy, heterogeneous
treatment effects across different types of locations, and nonlinear effects of weather variables.1

Panel models can be used not only to evaluate the impacts of past climate but also to project future yield. Research
by Asseng et al. (2015) shows that statistical models performed equally well or even better than elaborate agronomic
models in predicting yield. One key advantage is that panel models can assess prediction performance using out-of-
sample validation. As mentioned before, panel data allows for the use of fixed effects (Blanc and Schlenker 2020).
This is commonly done when assessing the impact of climate on agriculture (e.g., Deschênes and Greenstone (2007);
Schlenker et al. (2006); Schlenker and Roberts (2008); Schlenker and Roberts (2009); Seo (2013); Fisher et al. (2012);
D’Agostino and Schlenker (2016)). Most of the studied panel units are country, state or district level. An exception is
the work by Welch et al. (2010), which uses farm-level data to examine opposing sensitivities of rice yield to minimum
and maximum temperatures. They highlight the importance of having such fine-scaled data to analyze the complex
relationship between weather, climate, and agricultural yield.

While studies of the effects of climate on major annual crops such as wheat, soybeans, rice, and maize have been
prominent, comprehensive assessments of the effects of climate on perennial crops are rare, especially when focused
on panel data analysis. Lobell and Field (2011) state that modeling climate impact on perennial crops presents unique
challenges, due to the slow growth complicating experimental warming trials. Furthermore, there are far fewer models
to describe perennial growth. In addition, perennial crops are affected by climate throughout the year and not just
during the growing season. There are additional variables, such as winter chilling, which should be taken into account
as perennial crops have to satisfy a certain chilling requirement to kick off bud break. These chilling requirements are
cultivar-specific. Atkinson et al. (2013) suggest that winter chilling has declined and is predicted to continue to do so,
which is a potential factor for yield risk.

1They summarize various studies, out of which we included the ones focusing on crop yields or agricultural output in Table 5 in
the Appendix.
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There are some studies on perennial crops: Gunathilaka et al. (2017) use monthly panel data from 40 different tea
estates in Sri Lanka over a 15-year period to assess weather impacts on production. Their predictions show a negative
proportional impact from increased rainfall and increased average temperature and up to a 12% decline in annual tea
production for the highest emission scenario. Lobell and Field (2011) analyze perennial crops in a changing climate
in California. After analyzing 20 of the most valuable perennial crops using a combination of statistical crop models
and down-scaled climate model projections, they find clear weather responses for only four models, with another four
yielding significant but less robust relationships. However, perennial crops such as apples and pears are not included
in this analysis. Deschenes and Kolstad (2011) also focus on climate impacts in the State of California. They assess
the impacts on agricultural profits. Their preferred estimates show a negative impact on profits by the end of the
century. Hong et al. (2020) analyze the impact of climate change and ozone on perennial crops. They focus on almonds,
grapes, and nectarines. They find significant negative responses to ambient ozone, where ozone reduction could even
overpower the effects of warming, leading to a net gain in yield for some crops. However, future warming could then
potentially lead to yield losses in the future. They do not include apples or phenological variables. Parker et al. (2020)
discuss potential impacts and stress induced by more frequent, intense, and longer duration heat extremes on perennial
crops. They state that perennial crop sensitivity can vary widely across crops.

In Switzerland, Dalhaus et al. (2020) analyze the effect of extreme weather on apple quality. They use regression analysis
to estimate the impact of temperature changes during apple flowering on apple price and yield. They find that spring
frost events lead to a dip in farm gate price and thus revenue reductions of up to 2% per hour of exposure. There is,
however, still much uncertainty when it comes to the future risk of spring frost on apple production. We build upon
their work by incorporating dynamic predictions of bloom dates and frost measurements. Additionally, unlike Dalhaus
et al. (2020), which focuses solely on the quantification of past impacts, our approach extends to forecasting potential
future developments. The shift in blooming dates to earlier dates could result in an increased spring frost risk (Lhotka
and Brönnimann 2020). Eccel et al. (2009) find that spring frost risk has already declined at present and is likely to be
constant or slightly lower in the future. Unterberger et al. (2018) also analyze how climate change affects the spring
frost risk for apple farmers. Combining a phenological model with climate projections in Austria, they predict a mean
advance of blooming of 1.6 ± 0.9 days per decade. They further note that the overall frost risk for apples will remain,
even in warmer climates. Hence, there is still uncertainty about the degree of future spring frost risk. With continuing
uncertainty about spring frost risk, the uncertainty of yield risk for apple farmers remains.

In conclusion, this paper builds on and complements the existing literature on climate impact evaluation on agricultural
yields. Firstly, it addresses a research gap in the analysis of climate impacts on perennial crops, which are arguably more
susceptible to future climate changes due to path dependencies and short-term adaptation challenges. We include
perennial-specific factors, such as lagged frost and winter chilling. Second, this study is based on a unique orchard-
level dataset, allowing a much finer-scaled analysis. Additionally, contrasting prior research, this project introduces
phenology-dependent frost indicators based on a phenology model.

1.3 Data

We integrate multiple data sources, including temperature records, agricultural data, and climate scenario projections
to conduct our analysis.

1.3.1 Temperature and Precipitation Records

We use daily temperature measurements from ground stations provided by MeteoSwiss, the Swiss Federal Office of
Meteorology and Climatology. Limitations in ground station data typically arise when networks are sparse, or records
are inconsistent, challenges that are often more pronounced in low- and middle-income countries. However, Switzer-
land exhibits a dense network of ground stations that offer highly accurate, location-specific climate data, making them

22



a reliable source. After cleaning and selecting suitable stations, based on data availability and elevation, we have a
dataset consisting of 37 temperature measurement sites as well as 82 precipitation measurement sites. We restricted the
data to years 1997–2019 to match the farm-level yield data. Daily minimum and maximum temperature over the years
1997–2019 averaged across all stations has approximately increased by 1◦C.

Figure 1: Temperature Over Time

Notes: Daily minimum (blue) and maximum (red) temperature averaged across all stations from 01/01/1997–
31/12/2019.

1.3.2 Orchard-Level Data

We rely on orchard-level panel data on apple production provided by the Swiss Federal research station Agroscope.
As the data contains sensitive economic data, access is restricted and needs to be granted by the Swiss Confederation’s
Center of Excellence for Agricultural Research Agroscope. To our knowledge, there is no comparable dataset giving the
same fine-scaled (orchard-level) assessment of apple production. The dataset contains more than 4,098 observations on
53 different apple varieties for over 440 orchards in 12 cantons. The yearly observed variables include yields (kg/ha),
yield per effort (kg/h), revenue (CHF/kg and CHF/ha), farm-gate prices (CHF/kg), area (ha), a binary indicator for
organic, and age of the particular trees (year after planting). Each farm has its own Swiss area code. This dataset was
matched with an area code dataset2, matching each area code with its respective village or city and canton information.
Due to an implausibly high revenue per ha, we dropped one of the 4,098 observations. The most common apple
varieties are Golden Delicious (14.4%), Gala (14.3%), and Braeburn (8.6%).3 The cantons with, on average, the highest
revenue (CHF/ha) are the cantons Vaud (13.1%), Geneva (11.9%), and Valais (9.91%).

2The area code dataset contains all names, perimeters, and postcodes of all localities in Switzerland and the Principality of Liecht-
enstein and is provided by the Federal Office of Topography Swisstopo.

3We combined all different Gala varieties into one common variety called “Gala”.
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Table 1: Descriptive Statistics of Orchard Data

Variable Mean Min Max Sd

Revenue (CHF/ha) 27,981.24 469.56 156,493.17 17,680.33
Farm gate price (CHF/kg) 0.98 0.02 15.99 0.71
Yield/effort (kg/h) 130.76 3.05 15,224.91 339.04
Yield (kg/ha) 32,584.92 220.51 173,143.54 18,008.82

Notes: Summary statistics of orchard-level data, including revenue (in Swiss Francs per hectare and per kilogram, yield
per labor effort (kilograms per hour), and yield (kilograms per hectare)

For each orchard, we restricted the dataset to the apple variety with the longest time series.4 The most prevalent
varieties are still Gala, Golden Delicious, and Braeburn. Furthermore, we removed duplicate entries to enhance data
accuracy and consistency. Throughout our time series 1997–2019, there are clear annual fluctuations in yield. Part of
this is attributable to “biennial bearing”, that is, the fluctuation of fruit yield in a biennial rhythm, often triggered by
weather influences. In apples, this leads to the so-called “apple years”, which alternate directly with years of very
low yield. If the tree has many or too many flowers, then little or no flowers are produced in the following year. In
contrast, if the tree has no or hardly any flowers in a year, a relatively large amount of flower buds will be created in
the following year. Among other determinants, it is because there is a limit to the biomass a tree can produce from the
assimilates (i.e., energy sources) available through its metabolism (Friedrich et al. 2000).

1.3.3 Phenology Records

The BBCH5 scale describes the unique growth stages of development of many cultivated plants. Figure 2 illustrates the
visual transition between the different growth stages (Meier et al. 2009) that are most relevant for our analysis.

Apple phenology data was obtained by Agrometeo, an Agroscope project that contains information on the phenology
and maturity of crops. This information is made available to Swiss producers free of charge on the website www.

agrometeo.ch. The dataset contains variables on 22 measuring sites across ten cantons. It provides partial information
on the BBCH development stages of 18 different apple varieties from 1997–2019. The data is gathered by farmers,
who visit their fields regularly and record the developmental stages of the crops. Consequently, multiple dates may be
associated with the same developmental stage for a particular station, variety, and year. This occurs because farmers
tend to collect data more frequently than the actual transitions between growth stages. For example, a farmer might
record observations twice during the BBCH53 stage, resulting in two separate dates being associated with that stage
for a given year and location. In cases where multiple dates were recorded for the same stage, we kept only the earliest
date, as this marks the point when the crop first reached that developmental stage.

Blooming dates, defined as the onset of BBCH65, vary from year to year. The data reveals both annual fluctuations and
an overarching trend. We observe a negative trend, indicating that blooming dates have shifted to earlier dates over
the years. Figure 14 in the Appendix illustrates the blooming dates for the most common apple varieties, as recorded
in our orchard-level data, averaged across all measurement sites.

4We performed additional analyses by averaging data across varieties within each orchard, finding that model estimates for
key climatic variables remained comparable. Phenology-dependent frost variables are negative and significant, though the negative
impact of earlier spring frost events is less pronounced. Precipitation estimates are negative. The direction of the spline estimates for
chill portions remains consistent, though the magnitude shifts slightly. The R-squared, AIC, and BIC values for the model using only
a single variety per orchard were notably higher. The resulting predictions are presented in Figure 17 in the Appendix. Predictions
remain robust across time horizons under RCP2.6 and RCP4.5. However, under RCP8.5, predictions start to diverge from the second
time horizon onward, with variability across climate scenarios becoming much more distinct.

5The abbreviation BBCH derives from Biologische Bundesanstalt, Bundessortenamt and CHemical industry (Meier et al. 2009).
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Figure 2: BBCH Stages

Silver tip → Green tip → Half-inch green → Right cluster
(BBCH51) (BBCH53) (BBCH54) (BBCH56)

Pink → First bloom → Full bloom → Post bloom
(BBCH59) (BBCH61) (BBCH65) (BBCH69)

Notes: Phenological stages with corresponding BBCH numbers, ranging from silver tip to post-bloom.

1.3.4 Station Selection

The aforementioned stations were then geocoded using the Google Geocoding API, thereby assigning each station
its corresponding latitude and longitude coordinates. Figure 3 illustrates the spatial distribution of these geocoded
stations, encompassing various farms, temperature measurement sites, precipitation measurement sites, and phenology
observation sites.

Figure 3: Geographical Locations

Notes: Map of temperature measuring stations, precipitation measuring stations, phenology measuring stations, farm-
ers’ locations, and the stations providing the CH2018 scenario data.
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There are, in total, 192 stations providing scenario data, 37 unique farm locations, 22 phenology observing sites, 82
precipitation measurement stations, and 60 temperature measurement stations. Some of these stations may not be
distinctly visible on the corresponding map due to spatial overlap. Specifically, 28 stations serve dual roles by collecting
both temperature and precipitation data. The same subset also provides scenario data. There are 35 stations that overlap
between temperature and scenario data collection, while 78 stations overlap between precipitation and scenario data
collection.

To identify the nearest temperature and precipitation station for each farm, we implemented a function to compute
the Vincenty distance, which accounts for the Earth’s ellipsoidal shape, between a given farm location and all available
weather stations. Subsequently, the weather dataset was constrained to include only the geographically closest stations.
We did the same for the selection of stations of our 2018 scenario data. Table 6 in the Appendix lists all chosen stations.

1.4 Methods

We first carried out several data preparation processes to construct the necessary climate variables. Following this, we
implemented and evaluated various models using out-of-sample selection techniques.

1.4.1 Data Preparation

Temperature Measurement Interpolation

We applied several transformations and adjustments to the temperature data. First, we interpolated the few missing
temperature measurements. Among the over 140,000 daily temperature observations collected across various years and
stations, 13 days of daily minimum and maximum temperature data were missing for station “GOE”. Additionally, 15
days of daily minimum temperature and 17 days of daily maximum temperature data were missing for station “RAG”.
These gaps were closed through linear interpolation (Luedeling et al. 2013).

The PhenoFlex model for predicting blooming dates requires hourly temperature data as input. We employed daily
temperature measurements to estimate hourly temperatures using a daily temperature curve, which applies a sine
function for daytime warming and a logarithmic decay function for night-time cooling as described by Linvill (1990).
The scenario data CH2018 has no missing values, so hourly temperature data was created without first having to
interpolate linearly.

The PhenoFlex Model and BBCH Approximation

To predict the spring phenology of apple trees based solely on temperature, we use the PhenoFlex model (Luedeling
et al. 2021). PhenoFlex is an integrated model combining the dynamic model for chill accumulation with the Growing-
Degree-Hours (GDH) model for heat accumulation through a flexible transition. Luedeling et al. (2021) evaluated
the predictive performance of PhenoFlex using 60 years of apple and pear data, comparing the results to benchmark
models. Their findings indicated that PhenoFlex outperformed all other models, including the StepChill6 model and
a machine-learning approach. The most prominent driver of growth is temperature. There are two critical phases
for the growth of the trees: the endodormancy (also called chilling) phase and the ecodormancy (also called forcing)
phase. Trees need a sufficient amount of cooling in order to transition to the next phase where the biggest driver of
growth is an accumulation of heat. The dynamic model is employed for chill accumulation in the endodormancy phase,
followed by the GDH model for forcing. The transition between the two models is achieved using a sigmoid function,
which effectively translates chilling into heat effectiveness. A critical chilling requirement, yc, must be met for heat

6The StepChill model is a simplified version of the Unified model proposed by Chuine et al. (2016).
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accumulation to begin. Below this threshold, heat does not accumulate; beyond it, heat becomes increasingly effective
until it reaches full effectiveness. The end of heat accumulation is defined by zc.

The model was calibrated using different combinations of chill and heat accumulation thresholds, while other model
parameters were held constant. Calibration was performed using the aforementioned phenological measurements
from Agrometeo. The average bloom date per variety over the years 1997–2019 was calculated (see Figure 14), selecting
the three most prevalent varieties in the orchard-level data. “Gala” was chosen as the calibrating variety due to the
smaller uncertainties in blooming dates and the availability of phenological measurements. The default values for the
parameters yc and zc are yc = 40, zc = 190. The resulting bloom dates per station were averaged to obtain a measure
of the average bloom date per year. These values were then compared with the actual average yearly bloom date of
“Gala” from the measurement data. Over 6,300 different combinations of chill and heat parameters were tested within
the intervals yc ∈ [25, 45] and zc ∈ [150, 450], minimizing the mean squared difference in days between the observed
and the predicted bloom date. In addition, there were also some tests far outside the bounds of these intervals. The
selected model with the resulting parameters being yc = 36 and zc = 287 exhibits the lowest error of 2.154 days.7

Figure 4 presents the observed average bloom dates and the predicted bloom dates for the years 1997–2019.

Figure 4: Observed vs. Predicted Bloom Dates

Notes: Observed average bloom date (BBCH65) from the phenological data per variety over the years 1997–2019 and
predicted average bloom date (BBCH65) using the calibrated model parameters.

We use PhenoFlex to predict the bloom dates for all selected temperature measurement stations (see Figure 15 in the
Appendix) for both the past temperature data and the future scenario data. Based on the bloom predictions generated
using PhenoFlex, we approximated the other phenological stages (BBCH). For this, we calculated the average temporal
advancement among different BBCH stages using phenological measurements from Agrometeo. We selected the three
largest varieties: Golden Delicious, Gala, and Braeburn. For each combination of station, variety, and BBCH stage, we
determined the average number of days between stages. This dataset was then summarized to calculate the average
day differences across all stations for each variety and BBCH stage. Finally, the overall average day difference for each
BBCH stage was calculated across all varieties. This approximation provided the ’time between phenological stages’
for the following BBCH stages: 51, 53, 54, 56, 57, 59, 61, 65, and 69. Based on the approximated phenological stages we
created phenology-specific frost variables, as susceptibility to frost varies according to phenology. Based on chamber
studies, critical temperatures were identified below which at least 10% of the flowers are killed. These numbers are
based on the FAO report on frost protection (Snyder and Melo-Abreu 2005).

7Square root of 4.6397 days2
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Table 2: Critical Frost Temperatures

BBCH Stage Critical Temp Tc

51
53
54
56
57
59
61
65
69

Silver tip
Green Tip
Half-inch green
Cluster
Pink bud
Pink ball
First bloom
Full bloom
Post bloom

−11.9 ◦C
−7.5 ◦C
−5.6 ◦C
−3.9 ◦C
−2.8 ◦C
−2.7 ◦C
−2.3 ◦C
−2.9 ◦C
−1.9 ◦C

Notes: Critical frost temperatures Tc, below which at least 10% of the flowers are killed, corresponding to the BBCH
stages mentioned before. The numbers are based on the FAO report on frost protection (Snyder and Melo-Abreu 2005).

Chilling models and growing degree hours

In addition, we created different measures for the capturing of chill units and growing degree hours. We created
chilling hours according to the Weinberger model (aka Chilling Hours model) (Weinberger et al. 1950; Bennett et al.
1949), chill units based on the Utah model, as suggested by Richardson et al. (1974) and chill portions according to
Fishman (Fishman et al. 1987a,b). In the Weinberger model, temperatures between 0◦C and 7.2◦C have a cooling
effect and each hour within that interval is counted as one chilling hour. Chilling hours are then summed up during
the dormant season. Warm temperatures, however, can negatively impact chill accumulation. This insight led to the
development of the Utah model, which assigns differential weights to various temperature ranges (Richardson et al.
1974). Every hour within the 1.4◦C to 12.4◦C range contributes variably to chill accumulation based on temperature.
For instance, an hour at 1.5–2.4◦C contributes 0.5 chill units, while an hour at 2.5–9.1◦C contributes one chill unit.
Additionally, the Utah model accounts for the negative impact of higher temperatures by incorporating negative chill
units, such as subtracting 0.5 chill units for each hour at 16–18◦C. The third common modeling approach is the Dynamic
model, developed by Fishman et al. (1987a,b). This model proposes that chill accumulates through a two-step process.
In the first step, an intermediate chill product is formed. This product is produced most efficiently at low temperatures.
But this process is reversible, as this intermediate chill product can be destroyed by heat. However, when exposed to
moderate temperatures, this intermediate product undergoes a transformation, which is then irreversible, into a chill
portion. Chill portions accumulate and contribute to fulfilling chilling requirements. The Dynamic model accounts for
the negative impact of high temperatures, the limit to how much chill can be reversed, and the chill-enhancing effect
of moderate temperatures when cycled with cooler conditions. A significant distinction of the Dynamic model from
earlier approaches is the emphasis on the sequence of temperatures during the cold season. Unlike the Chilling Hours
model and Utah model, where similar temperatures have the same effect regardless of timing, the Dynamic model
considers the interaction of multiple processes. The production of a chill portion depends on the presence of a certain
quantity of the intermediate product, leading to varying effects of similar temperatures at different times in the season
on chill accumulation (Luedeling 2012).
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In addition to the three different chill indicators, chilling hours, chill units, and chilling portions, we created growing
degree hours (GDH) according to Anderson et al. (1986), using the default values they suggest. The calculation of the
GDH was as follows:

GHD =
FA
2

{1 + cos [π + π(TH − TB)(TU − TB)]}

where:

TH = the hourly temperature

TB = the base temperature (4◦C for fruit trees)

TU = the optimum temperature (25◦C for fruit trees)

TC = the critical temperature (36◦C for fruit trees)

A = TU − TB (the amplitude of the growth curve) and

F = a stress factor which can be used to represent various forms of plant stress

The different winter chill indicators, as well as the growing degree hours, were created for both the past hourly tem-
perature data and the future hourly scenario data.

Other Climatic Variables and Data Combination

To better capture the underlying relationship between the climate impact and the agricultural yield, additional climatic
variables on the basis of the growing season were built. As a control measure, a basic frost indicator was established,
defined as the incidence of minimum temperatures falling below 0◦C. Furthermore, we calculated growing degree days,
which are a modification of the daily mean temperature (T). The construction thereof is suggested in the agronomic as
well as in the economic literature (e.g., Schlenker et al. 2006; Deschênes and Greenstone 2007; D’Agostino and Schlenker
2016), since they capture beneficial heat. Apple growing degree days were formed by taking the difference of the daily
mean temperature to a lower threshold of 5◦C for each day and then aggregating it over the growing season.

DD5(T) =


0 if T ≤ 5

T − 5 if 5 < T ≤ 30

25 if T > 30

For example, a day with a mean temperature of 12◦C would account for seven growing degree days. If the temperature
is below 5◦C, the day is not counted, resulting in zero degree days. We imposed an upper bound to the growing
degree days at 30◦C, where days with a higher temperature each count the maximum of 25 growing degree days. In
addition, hot degree days were created to capture the impact of heat stress (> 30◦C). As heavy rainfall can damage
crops, three different precipitation indicators were built. MeteoSwiss categorizes precipitation from 10–30 mm over 24
hours as high, 30–50 mm as very high, and >50 as profuse.8 The daily precipitation data, however, does not allow us to
distinguish whether the 50 mm fell over one, five, or 24 hours.

Agricultural outcomes are reported on an annual basis. Hence, the weather data has to be aggregated over the same
time scale. The standard approach is to sum weather variables across all days of the growing season (Blanc and
Schlenker 2020). In line with the standard approach, the weather data, including the created climate indicator, was

8www.meteoswiss.admin.ch/weather/weather-and-climate-from-a-to-z/precipitation.html
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summed over the growing season for individual years for each station to create yearly data. The yearly temperature,
phenological, and precipitation indicators were then merged with the orchard-level dataset according to the geograph-
ically closest location.

1.4.2 Statistical Model

Climate impacts on agriculture are increasingly relying on panel models. Blanc and Schlenker (2020) point out several
advantages of panel models compared to cross-sectional models and other types of models. First of all, panel models
have the ability to uncover causal relationships and provide more degrees of freedom allowing out-of-sample forecasts
for model validation. Furthermore, they allow the use of fixed effects that will absorb all time-invariant confounding
variation and account for omitted variables. They can also account for short-term adaptation. On the other hand, there
are some limitations to this approach. One concern is the source of variation: for sufficiently small climate changes,
panel variation yields the correct effect, while the relationship revealed by non-marginal climate changes (global warm-
ing) may be inaccurate. As opposed to short-term adaptation, panel models inaccurately deal with long-term adap-
tation, assuming the relationship between yields and weather remains unchanged as the climate changes (Blanc and
Schlenker 2020). If adaptation plays a significant role, the impact of yearly fluctuations is an insufficient proxy for cli-
mate change. However, this concern is mitigated when studying perennial crops, as farmers managing these crops tend
to exhibit more path-dependent behaviors compared to those dealing with annual crops. Nevertheless, this limitation
cannot be fully addressed within the current model. Another possible concern is measurement errors and homogeneity
effects across seasons. Measurement errors can occur because weather is measured at the station level and must be
spatially interpolated to match regional/national agricultural data. In addition, agricultural data and weather data are
reported on different time scales, where weather data has to be aggregated to yearly data.

We estimate the effect of frost events and other climate variables on orchard-level apple yield per hectare using panel
data and quantify the effect using the following general model:

Yit = X′
itβ + z′tδ + ci + ϵit, i = 1, ..., n t = 1, ..., T

Yit denotes the dependent variable, orchard-level apple yield (kg/ha). They are observed for each orchard i and each
year t and Xit is the regressor matrix that contains all the independent climate variables. We use different specifications
and then choose the most appropriate model in terms of prediction capability. Orchard fixed effects (ci) are included.
These group fixed effects will absorb any confounding effect caused by unobserved factors that are constant over time
within each group. Including group fixed effects will jointly demean the dependent and independent variables. This
will transform weather variables into weather shocks, as they will be deviations from the mean (Blanc and Schlenker
2020). Variation over time in Xit is needed to estimate β consistently. We include a quadratic year trend (zt), as year-
fixed effects absorb most of the variation. Given that the error terms are likely heteroskedastic and correlated in the
group dimension, we apply orchard-clustered heteroskedasticity-robust standard errors.

Model Selection

We built several models to capture the underlying relationships between climate variables and crop yield. Focusing on
the impact of different frost and chilling conditions, we chose a standard baseline model to control for other variables.
Temperature effects were incorporated through growing degree days, while we accounted for heat stress by introducing
the heat degree variable. Precipitation variables, including squared precipitation, were also included as well as a
quadratic time trend to capture technological change. To address biennial bearing effects linked to frost events, we
included a one-year lag of the spring frost variable. We estimated frost effects in the baseline model using all our
phenology-dependent variables. Further, we used a spline of chill portions using four degrees of freedom. We focused
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on chill portions, as the dynamic model is more complex and the use thereof is recommended (Luedeling 2012).

First, we incorporated various chill model combinations. We estimated the model using the chilling hours and chill
portions, as well as the chill units from the Utah model and chill portions, as the Utah model was built on the chilling
hours model and should, therefore, be substitutable. Next, we tested different combinations of phenology-dependent
frost variables using the baseline model, including the spline of chill portions. As we are able to most accurately
predict the time of full bloom, we estimated the model just using spring frost at full bloom. We also estimated a model
including our simplest frost measure, as previously described. These different combinations led to models M1 through
M5.

In addition to this bio-physical approach, we constructed a model that incorporates variable selection using random
forests (RF) (Genuer et al. 2010). There is a growing research literature on the estimation and prediction of crop yields
using RF algorithms (Prasad et al. 2021). The random forest algorithm ranks explanatory variables based on their
importance scores. As an ensemble learning method for classification and regression, random forests build multiple
decision trees using bootstrapped samples, combining their predictions to enhance accuracy. Variable importance in
RF measures how much each feature contributes to model accuracy.

Figure 5: Variable Importance using RF

Notes: Quantification of variable importance using RF. On the left is the permutation-based importance, and on the
right is the impurity-based importance.

Two primary measures were used to assess variable importance (VI), see Figure 5. The left panel presents the permutation-
based importance. For each tree, the prediction error, mean squared error (MSE), on the out-of-bag (OOB) data is
recorded. Then, the same process is repeated after permuting each predictor variable. Through permutations, the re-
lationship to the target variable is broken, helping to assess the importance of this variable. The difference between
the original and permuted prediction errors is averaged across all trees and normalized by the standard deviation of
the differences. The right panel of Figure 5 illustrates the impurity-based importance. In decision trees, data is split at
different nodes based on specific features. This is done to make the data more homogeneous with respect to the target
variable. A variable is considered important if it consistently helps to split the data in a way that reduces impurity (i.e.,
improves predictions). Impurity is measured by the residual sum of squares, the difference between the predicted and
actual values. However, as noted in the literature, the impurity-based importance measure is often biased (Gregorutti
et al. 2017). We included the ranking here for completeness but dropped the variables lower than 20% focusing on the
permutation-based importance measure.9 The regression results for this model can be found in M6.

9As can be seen in Figure 5, the results would not change if we focused on the impurity-based importance instead. The eight least
important variables are identical for both the permutation-based and the impurity-based importance measure.
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As an additional control, we also applied a step-wise model selection, a modified version of the backward variable
elimination procedure as described by Fox et al. (2017). In the first step, the full model is estimated on the training set
(70% of the data), and the performance of the model is measured using the root-mean-squared error (RMSE) of their
predictions on the test set (30%). All predictors are ranked according to their VI. In the next step, the variable with the
lowest VI is dropped from the sample, and the model is estimated again. This process is repeated until there are no
variables left. The model with the lowest RMSE is chosen. This led to model M7.

To select and validate our best model, we examine the RMSE of out-of-sample predictions, as well as the Akaike
information criterion (AIC) and Bayesian information criterion (BIC). AIC and BIC are commonly used model selection
criteria: AIC is better suited for prediction-focused models, while BIC is preferable when the goal is to identify the
correct model (Chakrabarti and Ghosh 2011).

Table 3: Selection Criteria

Model RMSE (70/30 split) RMSE (Year split) AIC BIC

M1 11 225.33 11 275.85 48 064.24 50 325.64
M2 11 335.96 11 445.93 48 106.58 50 356.58
M3 11 229.30 11 300.56 48 069.22 50 319.22
M4 11 693.57 11 854.44 48 231.79 50 441.92
M5 11 722.81 11 882.03 48 240.87 50 451.00
M6 12 114.35 12 098.20 58 128.72 60 809.85
M7 12 393.28 12 433.79 58 235.71 60 893.32

Notes: Model comparison showing RMSE from the out-of-sample predictions using the 70% training set/30% test set
split and the year split, alongside AIC and BIC values.

We calculated the RMSE for out-of-sample predictions using two different approaches. First, we divided the data into
a training set (70% of the data) and a test set (30%). The model is then run on the training set with the estimated
parameters used to predict yield in the test set. The RMSE is computed by comparing the actual yield values with
the predicted yield values from the test set. This process was repeated 50 times, and RMSE values were averaged.10

Table 3 presents the root-mean-squared error (RMSE) of the out-of-sample predictions over the 50 repetitions alongside
the AIC and BIC for each model. Second, we split the data along the time dimension. The regression models were
run on data from the years 1997 to 2017 and then used to predict yields for 2018 and 2019. The RMSE was calculated
by comparing the actual yields from these years with the predicted values. In the next step, we randomly took out
single years, ran the regression model on the sample of remaining years, and then predicted the left-out year. We then
averaged the RMSE over each year’s prediction; see again Table 3. In both our metrics, M1 outperforms all other models
based on the RMSE. It is also the model with the lowest AIC. As mentioned before, AIC is better suited for prediction-
focused models compared to BIC. Based on these considerations, we opted to proceed with M1. Models including
phenology-dependent frost measurements consistently outperformed those limited to frost around full bloom or a
simplified frost model. Furthermore, models built on biophysical relationships outperformed those using random
forest variable selection.

10The results are robust to repeating the process 5000 times.
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Figure 6: Out-of-sample Predictions (70/30 Split)

Notes: Out-of-sample predictions generated using the selected model with a 70/30 data split. The regression model was
trained on 70% of the data and used to predict the average yield over time for the remaining 30%. The plot displays the
predicted yield (kg/ha) alongside the actual yield (kg/ha) for the 30% test data.

Figure 6 illustrates the out-of-sample predictions produced by M1. This model was trained using 70% of the data,
and the estimated parameters were subsequently applied to predict the average yield on the remaining 30%. Due to
the inclusion of a lagged frost variable in the model, the first prediction begins one year after the observed yield data.
Figure 7 presents the performance of additional out-of-sample predictions, where we split the dataset into the years
1997–2017 and then predicted both the years 2018 and 2019. Furthermore, Figure 16 in the Appendix displays the
observed and predicted yields for all years, predicting each year as an individual out-of-sample prediction.

Figure 7: Out-of-sample Predictions (Year Split)

Notes: Out-of-sample predictions were generated using the selected model, with the data split into the years 1997–2017
for training and predictions made for the years 2018 and 2019. The predicted yield (kg/ha) is compared to the actual
yield (kg/ha) for these years.
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Table 4: Regression Outputs

Dependent Variable: Yield (kg/ha)
Model: (M1) (M2) (M3) (M4) (M5) (M6) (M7)

GDD 22.56∗∗∗ 12.85∗∗ 18.20∗∗∗ 20.07∗∗∗ 21.68∗∗∗ 62.72∗∗∗

(4.786) (5.322) (4.034) (4.958) (4.837) (11.04)
HDD -381.2∗∗∗ -285.2∗∗∗ -198.3∗∗∗ -426.7∗∗∗ -456.8∗∗∗ -188.1∗∗ -143.3∗∗

(47.79) (59.76) (55.28) (49.38) (57.71) (86.31) (65.47)
Precipitation 9.559 1.167 -6.819 14.19 14.64 -9.216∗ -11.92∗∗∗

(19.36) (20.12) (19.16) (19.79) (19.59) (5.078) (3.957)
Precipitation2 -0.0101 -0.0054 -0.0017 -0.0121 -0.0122

(0.0089) (0.0092) (0.0088) (0.0091) (0.0090)
Frost BBCH53 -7,699.4∗∗∗ -7,750.1∗∗∗ -7,855.4∗∗∗

(1,668.8) (1,718.4) (1,777.6)
Frost BBCH54 -4,882.4∗∗∗ -5,204.2∗∗∗ -5,613.3∗∗∗

(1,420.0) (1,466.7) (1,444.4)
Frost BBCH57 -3,500.8∗∗∗ -4,984.9∗∗∗ -4,744.3∗∗∗

(833.2) (852.7) (852.8)
Frost BBCH59 -5,588.7∗∗∗ -4,776.3∗∗∗ -4,378.4∗∗∗

(1,014.4) (1,033.7) (1,055.1)
Frost BBCH65 -28,242.3∗∗ -28,045.1∗∗ -27,828.8∗∗ -26,485.6∗∗

(10,987.9) (10,922.1) (10,888.0) (10,719.8)
Frost BBCH69 -8,600.6∗∗∗ -8,833.5∗∗∗ -9,383.1∗∗∗

(2,662.2) (2,560.7) (2,490.6)
Frostt−1 24.81 -20.42 -64.15 33.30 46.39

(42.04) (44.28) (43.97) (43.68) (47.62)
Spline(Chill portions)[1] -5,618.7∗∗∗ -6,125.6∗∗∗ -5,689.8∗∗∗

(2,058.1) (2,022.2) (2,002.0)
Spline(Chill portions)[2] -13,411.9∗∗∗ -13,381.6∗∗∗ -12,746.8∗∗∗

(1,805.7) (1,800.3) (1,966.7)
Spline(Chill portions)[3] -21,192.3∗∗∗ -23,647.5∗∗∗ -22,954.8∗∗∗

(4,552.7) (4,252.6) (4,768.5)
Spline(Chill portions)[4] 6,142.9∗∗ 7,122.7∗∗∗ 7,654.2∗∗∗

(2,546.8) (2,616.8) (2,893.1)
Year 33,416.5 17,449.8 7,360.0 51,565.6 57,874.7

(71,082.5) (70,499.3) (70,164.2) (68,915.1) (69,609.7)
Year2 -8.096 -4.143 -1.625 -12.62 -14.19

(17.69) (17.54) (17.46) (17.14) (17.32)
Chilling hours 5.617∗∗ 3.893 9.543∗∗∗

(2.194) (2.646) (2.518)
Chill portions -320.6∗∗∗ -535.1∗∗∗ -533.6∗∗∗ -377.8∗∗∗

(78.56) (83.18) (94.18) (57.51)
Utah model 9.189∗∗∗ 17.68∗∗∗

(1.492) (2.393)
Frost days 31.64 156.8∗ 3.280

(52.47) (88.94) (52.00)
Precipitation (10mm) 65.11 156.1∗

(91.18) (82.12)
Precipitation (30mm) -389.6

(240.7)
GDH 0.2518

(0.2429)
Tmin 81.65∗∗∗ 14.85∗∗

(13.28) (6.502)
Tmax 66.93∗∗∗ 15.06∗∗

(13.52) (6.769)
Tmean -183.0∗∗∗ -31.76∗∗∗

(29.98) (6.508)

Orchard Fixed-effects Yes Yes Yes Yes Yes Yes Yes

Observations 2,200 2,200 2,200 2,200 2,200 2,643 2,643
R2 0.58340 0.57453 0.58169 0.56223 0.55958 0.53139 0.51055
Within R2 0.17407 0.15649 0.17070 0.13211 0.12686 0.09998 0.05996

Clustered (orchard) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 4 presents the regression results for all models. In M1, estimates indicate a significant positive non-linear effect of
temperature, which is captured by the growing degree days variable. As expected, days with maximum temperatures
exceeding 30◦C have a significant negative effect on yield. Coefficients for precipitation estimate a small positive effect
with a negative second-order term, however, neither effect is statistically significant. The effects of our phenology-
dependent variables are all negative and significant. Frost during full flowering (BBCH65) has the largest significant
negative effect on yield. Given an average yield of approximately 30,000 kg/ha, a severe frost event occurring at full
bloom could result in near-total harvest loss. The lagged frost variable shows a positive coefficient, which aligns with
the expected relationship. Among chill models, chilling hours have a positive effect on yield, while chill portions show
a negative effect.

The three models demonstrating the best predictive performance are M1, M3, and M2. Phenology-dependent vari-
ables remain negative and significant, displaying consistent effect sizes and significance across models. The non-linear
impact of chill portions, captured by the spline function, is also significant. The lagged frost variable is positive, as
expected in M1, M4, and M5, and negative in M2 and M3 indicating a potential interaction with chill portions.

1.5 Scenario Analysis

For the scenario analyses, we used the relationships estimated from our panel model based on historical climate data
from 1997 to 2019. We then built projections of the impact of different climate scenarios and emission pathways on
yield for the years 2025 to 2099.

1.5.1 Climate Change Scenarios CH2018

For our scenario data, we used the Climate Change Scenarios from MeteoSwiss, i.e., the localized CH2018 datasets.
This dataset provides transient daily time series for the period 1981–2099 for several Swiss stations and for several
climate variables. The Swiss climate scenario CH2018 are projections derived from the EURO-CODEX ensemble of
climate change simulations with different combinations of global (GCMs) and regional climate models (RCMs). RCMs
are most advantageous in regions with complex topography such as Switzerland. EURO-CORDEX involves more than
30 European modeling centers, applying more than 10 different RCMs on a pan-European model domain (CH2018
2018).

The daily time series were generated using a statistical bias-correction and downscaling method to the original output
of all EURO-CORDEX climate model simulations. It includes 68 simulations, of which a subsample will be used for
this analysis. Some of these 68 simulations show problematic values, such as unrealistic snow accumulations in the
Alps. The simulations are conditioned on different Representative Concentration Pathways (RCPs). The three RCPs,
RCP8.5, RCP4.5, and RCP2.6, are different scenarios of anthropogenic forcing (greenhouse gases, aerosols, and land
use). They can be understood as emission scenarios. They imply a range between a significant reduction of global
emissions (RCP2.6) and growth of emissions that continues until the end of the century (RCP8.5). For each RCP, four
climate variables are available: minimum temperature, maximum temperature, mean temperature, and precipitation.
These scenarios cover 37 different stations in Switzerland. Out of the 68 available, we selected the nine simulations for
which all RCPs are available. They are a representation of different RCMs, GCMs, and spatial resolutions.11

We then restricted the dataset to the years 2025–2099 and limited the set of stations to those below 700 meters above sea
level. Next, we transformed the daily measurements into hourly temperature data, which were then used to predict
blooming dates, chill indicators, and growing degree hours.

11The nine chosen simulations are the following: DMI-HIRHAM-ECEARTH-EUR11 (DMI), KNMI-RACMO-HADGEM-EUR44
(KNMI), MPICSC-REMO1-MPIESM-EUR11 (MPICSC), MPICSC-REMO2-MPIESM-EUR11 (MPICSC2), SMHI-RCA-ECEARTH-
EUR11 (SMHI ECEARTH), SMHI-RCA-HADGEM-EUR44 (SMHI HADGEM), SMHI-RCA-MIROC-EUR44 (SMHI MIROC), SMHI-
RCA-MPIESM-EUR44 (SMHI MPIESM), SMHI-RCA-NORESM-EUR44 (SMHI NORESM)

35



Figure 8: Bloom Stages across Scenarios

Notes: Development of full bloom stage BBCH65 across various climate change scenarios, emission scenarios, and time
horizons. Positive values on the y-axis indicate days the full bloom occurs earlier (e.g., a value of 5 means full bloom
occurs 5 days earlier on average), while negative values indicate a shift to a later bloom date.

Full bloom generally shifts to earlier dates across time horizons, RCP scenarios, and climate models. Higher emis-
sion scenarios and projections further into the future predict an increasingly earlier occurrence of the full bloom stage
(BBCH65). Specifically, under RCP8.5 around 2075–2099, full bloom is predicted to occur on average up to 15 days
earlier. Figure 8 presents the development of bloom stages compared to the period 2025–2049. We already observe vari-
ability across climate scenarios; while the overall trend is evident, individual scenario predictions show a considerable
spread.

Figure 9: Predicted Bloom Dates – DMI

Notes: Average predicted bloom date (BBCH65) across temperature measurement sites from 2025 to 2099 for three
different RCP scenarios of the DMI climate model, modeled using PhenoFlex.
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Exemplary, Figure 9 illustrates the predicted bloom dates (BBCH65), averaged across all temperature measurement
sites derived from the DMI climate model. Bloom dates are modeled for each RCP for the years 2025–2099. The trend
lines indicate that under RCP2.6, the bloom dates remain stable on average, moving from the beginning to the end of
the century. RCPs 4.5 and 8.5, on the other hand, show a negative trend which means that the flowering period occurs
earlier over time.

We calculated changes in climate variables across all climate scenarios, RCPs, and time horizons, using the historical
period 1997–2019 as the baseline. Percentage changes for all climate variables, excluding phenology-dependent frost
days, are presented in Tables 7 and 8 in the Appendix. Absolute changes in phenology-dependent frost variables are
provided in Tables 9 and 10. Additional summary statistics for all climate variables, based on nine different simulations,
can be found in Tables 11 to 13 in the Appendix. The timeline is divided into three periods: 2025–2049, 2050–2074, and
2075–2099. Notably, several climate trends emerge. Average temperatures increase across all scenarios, with the rate
of increase intensifying over time and across emission scenarios. This trend is consistent for all three temperature
indicators: mean temperature (Tmean), growing degree days (GDD), and growing degree hours (GDH). Additionally,
extreme heat events, measured by heat degree days (HDD), are projected to occur more often. Some scenarios, such as
MPICSC and MPICSC2, display a more moderate rise in heat degree days compared to others, while SMHI HADGEM,
KNMI, SMHI ECEARTH, and SMI MPIESM show the highest increase. Frost days generally decrease across scenarios,
with more pronounced reductions under emission scenario RCP8.5, whereas phenology-dependent frost days increase
relative to the reference period but decrease over later time horizons and higher RCPs. Certain scenarios predict an
initial rise in frost days, followed by a decline in subsequent periods, with very few phenology-specific frost days
occurring overall. For the chill indicators – chill hours (Chillhrs), the Utah model (Utah), and chill portions (Chillprt) –
distinct patterns emerge over time. Summary statistics in Tables 11 to 13 show a general decline beginning in the 2025–
2049 period, with the most significant reduction under RCP8.5. Percentage changes from the reference period reveal
considerable volatility in these variables over time. Precipitation, on average, decreases relative to the reference period;
however, no consistent trend appears across RCPs, time horizons, or climate scenarios. In some cases, precipitation
increases under RCP2.6 and decreases under RCP8.5, while the reverse trend is seen in other scenarios, underscoring
the considerable uncertainty in the temporal development of precipitation.

Figure 10: Climate Variables Percentage Changes – DMI

Notes: Projected percentage changes in climate variables relative to the historical baseline period (1999–2019) for three
future time horizons (2025–2049, 2050–2074, 2075–2099) under three emissions scenarios (RCP2.6, RCP4.5, and RCP8.5),
based on the DMI climate model projections.
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Exemplary, Figure 10 illustrates the percentage changes of the climate variables for climate scenario DMI, relative to
the baseline period, over the different time horizons and emission scenarios. There is a steep increase in heat degree
days. For RCP8.5 for the time horizons 2050–2074 and 2075–2099 we observe a percentage increase larger than 100
percent, visualized by a dot at 100 percent, in order to maintain a better visibility of the percentage changes of the other
variables. Similarly, Figure 11 presents the absolute changes in frost variables relative to the baseline period. In general,
only a limited number of phenology-dependent frost days were observed during the baseline period, with few frost
days per phenological stage across the climate change scenarios. Notably, the RCP8.5 scenario shows a lower number
of frost days compared to RCP2.6. Even when accounting for an earlier shift in the date of full bloom, a clear reduction
in frost days is evident across emission scenarios, suggesting a beneficial impact on yield.

Figure 11: Changes in Frost Variables – DMI

Notes: Projected absolute changes in frost variables relative to the historical baseline period (1999–2019) for three future
time horizons (2025–2049, 2050–2074, 2075–2099) under three emissions scenarios (RCP2.6, RCP4.5, and RCP8.5), based
on the DMI climate model projections.

1.5.2 Model-Based Yield Projections

We applied the estimated relationship from the panel model, derived from climate data from 1997 to 2019, to predict
the impact of future climate conditions on crop yield under various climate scenarios and emission pathways for the
period 2025 to 2099. We excluded the year trend, to isolate the effects of climate variables from temporal trends, and
did not allow for negative future yield. To assess the relative change in yield, we calculated the percentage change
from a historical reference yield, which was determined as the average yield for each orchard from 1997 to 2019. We
then generated annual yield estimates for each orchard across the projected time horizon and calculated the annual
percentage change in yield for each orchard.

To summarize the results, we aggregated the average percentage change in yield across three distinct time periods
within the projection window. Additionally, we computed confidence intervals for these estimates to assess the uncer-
tainty associated with the projections. This approach enabled us to examine how projected yield changes vary across
different future time periods and climate scenarios. Figure 12 presents the percentage change in yield relative to the ref-
erence yield across all nine climate scenarios under three RCPs for the three distinct time horizons. The figure displays
the mean percentage change in yield alongside the corresponding 95% confidence intervals (CI). The CIs are indicative
of uncertainty in the mean percentage change in yield, coming from year-to-year variability and variability in yield
across orchards.
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Figure 12: Percentage Changes in Yield – M1

Notes: Predicted percentage changes in yield relative to the reference period (1999–2019) for nine climate simulations,
time horizons (2025–2049, 2050–2074, 2075–2099) under three emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) using
M1. A point indicates the point estimate and whiskers show the 95% confidence interval.

The percentage change in yield varies to a large extent across emission scenarios, with differences between scenarios
becoming more pronounced over time, particularly under the highest-emission pathway, RCP8.5. Interestingly, RCP8.5,
representing the scenario with the most intense climate change, exhibits the highest yield increases, whereas RCP2.6,
the scenario with the lowest emissions, results in substantially lower yield increases (and potential losses). This trend
aligns with the observed reduction in frost days under RCP8.5, suggesting that the positive impact of fewer frost days
outweighs the negative effects of increased heat stress in this scenario. It is clear that uncertainty in climate predictions
increases as we look further into the future and as climate change intensifies. Predictions across climate scenarios
are much more accurate for the 2025–2049 time horizon. The widest spread in predictions across climate scenarios is
observed for RCP8.5 in the 2075–2099 time horizon.

Nevertheless, model uncertainty remains in these projections. To address this, we present additional yield projections
based on the second-best (M3) and third-best (M2) performing models, as shown in Figure 13. The primary differences
between the models lie in their estimation of winter chilling. Initially, the yield projections from the three models –
M1, M2, and M3 – show relatively small differences, indicating minimal influence of the chill model selection on early
estimates. However, as we look further into the future, to horizons 2050–2075 and 2075–2099, the divergence between
models increases, highlighting the growing importance of chill model choice in accurately forecasting yield outcomes.
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Figure 13: Percentage Changes in Yield – Across Models

Notes: Predicted percentage changes in yield relative to the reference period for models M1, M2, and M3. Point es-
timates for M1 are displayed with a dot, for M2 with a square, and for M3 with a triangle. Whiskers show the 95%
confidence interval.

Additionally, we explored the variability in yield projections for individual orchards. Most orchards are anticipated
to experience yield increases in the future, with only a small proportion expected to incur yield losses. Notably, the
number of orchards with yield gains increases across time horizons and RCP scenarios. Interestingly, the horizon
2050–2074 under RCP2.6 exhibits the highest proportion of yield loss among orchards. This may be due to the shift in
blooming dates aligning with spring frost occurrences, as the earlier start to the growing season has not yet been fully
offset by a warmer climate. Further analysis is needed to confirm this hypothesis. Figure 19 in the Appendix presents
the projected average percentage yield change for each orchard across various time horizons under the three RCPs for
the DMI climate scenario.

1.6 Discussion and Conclusions

There is a large body of research on the impact of climate on agricultural yields in different disciplines and using
different methods. The growing literature on panel models to assess these impacts has contributed significantly to the
understanding of climate impacts. However, there remains a gap in the literature regarding impacts on perennial crops.
Furthermore, the effects of frost in the context of climate change are not yet fully understood.

Our work contributes to this topic by using a unique longitudinal dataset of apple yields over the time horizon 1999–
2019. We use this past climate data to assess past impacts using panel models and then select the most appropriate
model for predicting future yield impacts. The effects of frost depend strongly on the developmental stage of the
tree, the BBCH stage, which has been neglected in previous studies. We use the PhenoFlex model to predict the full
flowering stage based solely on temperature. We trim two parameters of the Phenoflex model based on phenological
observation data provided by Agrometeo. Using a model that predicts full bloom based on temperature introduces a
dynamic component to our predictions. Rather than making fixed assumptions about the timing of full flowering, we
can dynamically adjust flowering dates in response to future temperature variations, as both the shift in the growing
season and the timing of full bloom are temperature-dependent. And if the climate changes, these dates will also
change. In calibrating the model, we focus on what we consider the two most critical parameters: cooling demand and
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heat accumulation. However, this approach is a simplification, as the PhenoFlex model includes a total of 12 parameters
that could be adjusted to optimize model accuracy. Additional validation and sensitivity analyses could be undertaken,
and the model could be calibrated by parameterizing all 12 factors.

Using the date of full bloom as a reference date, we approximated the other phenological stages using the phenological
observation data. By creating an average time span between the different developmental stages, we were able to fully
define the development of the tree and, hence, estimate frost days across the whole phenological development of the
tree. However, it is very likely that the length of each phenological stage will adapt in the future according to climatic
changes. A potential improvement would be to dynamically model all the different BBCH stages, which could lead to
more accurate predictions of plant development. We then use the defined BBCH stages to create phenology-specific
frost variables. Depending on how far the bud or flower is developed, the plant is susceptible to frost to varying
degrees. By introducing phenology-dependent frost days, we are able to better absorb the effects of frost, compared to
earlier studies. The death of buds or flowers, however, is not binary. There is no clear temperature threshold above
which there is no flower death and below which it is one hundred percent. In future research, we aim to incorporate
this by introducing a range of freezing temperatures that result in varying degrees of flower mortality. In addition to
the frost indicators, we create several climate variables, such as growing degree hours, growing degree days, various
cold indicators, and precipitation measures. Since we are dealing with perennial crops, the yield of the current year
depends on the yield of the previous year. We partially take this effect into account by creating a delayed frost variable.
After years with severe frost effects, the yield of the following year is higher, as the tree saves resources that are stored
and can be used the following year.

Alongside models based on biophysical relationships, we also relied on Random Forest (RF) for variable selection. Our
out-of-sample predictions and model validation indicate that models grounded in climate-yield relationships consis-
tently outperform those relying on RF-based variable selection. Our findings show that models including the full set of
phenology-dependent frost measures outperformed those using simpler frost measures or reduced forms. This high-
lights the importance of detailed frost measures in the analysis of perennial fruit crops. The selected model estimates a
significantly positive, non-linear relationship between yield and temperature. Precipitation effects are positive with a
slightly negative quadratic term, though not statistically significant. In contrast, frost variables exhibit large, negative,
and significant impact on yield, with the largest yield risk due to frost during full bloom. Additionally, heat days lead
to a decrease in yield.

Based on the past climate-yield relationship modeled by our chosen model, we project future yield changes under
various climate scenarios. These scenarios are driven by different GCMs and RCMs. We selected a range of climate
models to account for the considerable variation often observed between scenarios, which could otherwise introduce
substantial biases in yield estimates. Our analysis indicates a projected yield increase across the different time horizons
(2025–2049, 2050–2074. 2075–2099), consistently observed over all nine climate simulations. Notably, RCP8.5, the high-
emission scenario, leads to the highest yield gains. We conjecture that this is the result of the combined effects of
fewer frost days and a warmer climate. At this stage, heat stress does not significantly offset this positive impact.
Currently, our heat stress variable is a binary indicator capturing occurrences of temperatures exceeding 30◦C; however,
the relationship between heat stress and yield is likely more complex. Further analysis could improve accuracy by
capturing increasing harm through temperature rise exceeding the threshold of 30 degrees C.

On average, the spread of predicted yields under different emission scenarios is increasing over time. A significant
portion of the variability can be explained by differences in climate scenarios. Predictions for the upcoming time
horizon are much more consistent across scenarios compared to the following two horizons. In particular, forecasts for
the most extreme emission scenario, projected far into the future, show a considerable spread. Predictions that reach
far into the future, especially for extreme emission scenarios, exceed the limits of predictability. Alongside variability
in climate scenarios, there remains considerable model uncertainty, as already mentioned by Lobell and Field (2011).
When projecting future yield using M1, M2, and M3, the projected percentage change in yield is similar for the initial
time horizon, yet the divergence among models grows in later time periods. The model structure is thus critical in
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determining future yields. The three best-performing models differ mainly in their methods for estimating winter
chilling, raising the question of which approach provides the most accurate estimation. Further research in this area
is needed to enable more robust long-term estimations. Our study contributes to the existing literature by enabling a
comparison of various chilling estimation methods across different climate scenarios.

There is potential for future research in other areas using this unique longitudinal dataset. For example, our orchard-
level data observes different varieties over time. This data would allow us to utilize the varietal differences over time,
which could potentially lead to insights into which varieties perform better in future scenarios and which do not.

In summary, this study takes an important step in quantifying climate impacts on perennial crops, using a unique
orchard-level dataset and incorporating bloom stage predictions and phenology-specific frost indicators. By incor-
porating the PhenoFlex model and adjusting for phenology-specific frost risks, we provide a nuanced view of how
climate variability interacts with crop development stages. Our analysis shows that climate yield models outperform
commonly used methods, highlighting the value of detailed frost and phenology data in predicting yield impacts.
However, there remains some uncertainty in accurately capturing extreme heat impacts, winter chilling requirements,
and optimal model selection, as research on these factors for perennial crops is still emerging. These areas offer valu-
able opportunities for further refinement and exploration, especially as climate patterns become increasingly variable.
Overall, this study lays a foundation for advancing the estimation of yield risk in perennial crop production, providing
actionable insights on frost impact.
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Appendix

Figure 14: Average Bloom Dates

Notes: Bloom dates for the three apple varieties (Braeburn, Gala, and Golden Delicious) averaged across all stations.
Data for Gala and Golden Delicious is available from 1997 to 2019, while data for Braeburn spans from 2006 to 2019.

Figure 15: Predicted Bloom Dates

Notes: Predicted bloom date (BBCH65) over temperature measurement sites over the years 1997–2019 using PhenoFlex
based on the calibrated parameters yc = 36 and zc = 287.
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Figure 16: Predicted and Observed Yield (Year Split over all Years)

Notes: Predicted average yield and observed yield from out-of-sample predictions using M1. For each prediction, one
year was excluded, the model was trained on the remaining years, and the yield for the excluded year was predicted.

Figure 17: Percentage Changes in Yield - Single and Averaged Varieties

Notes: Projected percentage changes in crop yield relative to the baseline period (1999–2019) based on nine climate
models, evaluated across three future time periods (2025–2049, 2050–2074, 2075–2099) under three emissions pathways
(RCP2.6, RCP4.5, and RCP8.5). Points represent point estimates, with whiskers indicating the 95% confidence intervals.
The “M1_single” model shows yield changes when orchards are restricted to single varieties, whereas “M1_avg” illus-
trates yield changes averaged across multiple varieties within each orchard.
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Figure 18: CH2018 Data
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Notes: Overview of the CH2018 climate scenario data availability. For each of the nine climate simulations, data are
available for three Representative Concentration Pathways (RCPs), representing distinct emissions scenarios. For each
RCP, data include four climate variables: maximum temperature, minimum temperature, mean temperature, and pre-
cipitation. These measurements are collected from various stations distributed across Switzerland.

Figure 19: Percentage Changes in Yield over Orchards

Notes: Predicted percentage changes in yield relative to the reference period for each individual orchard over the dif-
ferent RCPs and time horizons for the climate scenario DMI.
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Table 6: Weather Stations and Their Coordinates

Code Canton Station Latitude Longitude Dataset

AIG VD Aigle 46.31903 6.970566 Temp
BAS BL Basel / Binningen 47.53787 7.570988 Temp/CH2018
BUS AG Buchs / Aarau 47.39106 8.079827 Temp/CH2018
CGI VD Nyon / Changins 46.39893 6.232703 Temp/CH2018
EBK SG Ebnat-Kappel 47.26548 9.123547 Temp
GOE SO Gösgen 47.37294 7.992262 Temp
GUT TG Güttingen 47.60356 9.287589 Temp/Prec/CH2018
GVE GE Genève / Cointrin 46.20990 6.144073 Temp/Prec/CH2018
KOP BE Koppigen 47.13372 7.601787 Temp
LUZ LU Luzern 47.05017 8.309307 Temp/Prec/CH2018
NEU NE Neuchâtel 46.98999 6.929273 Temp/CH2018
PAY VD Payerne 46.82203 6.940566 Temp/Prec/CH2018
PUY VD Pully 46.50927 6.665495 Temp/CH2018
RAG SG Bad Ragaz 47.00341 9.501106 Temp/CH2018
TAE TG Aadorf / Tänikon 47.47957 8.907980 Temp
WAE ZH Wädenswil 47.22969 8.671819 Temp/CH2018
ABE BE Aarberg 47.04206 7.275101 Prec
AMW TG Amriswil 47.54497 9.300241 Prec
BEX VD Bex 46.24998 7.014266 Prec
BIE VD Bière 46.53738 6.333969 Prec
BIZ TG Bischofszell / Sitterdorf 47.50367 9.247592 Prec
CGI VD Nyon / Changins 46.39893 6.232703 Prec
CHU GR Chur 46.85078 9.531986 Prec
EGO LU Egolzwil 47.18471 8.007183 Prec
ESZ TG Eschenz 47.64815 8.873392 Prec
FLW SG Flawil 47.41337 9.187030 Prec
HEK SO Hessigkofen 47.14130 7.466060 Prec
KUE ZH Küsnacht, ZH 47.31892 8.584471 Prec
LSN VD Lausanne 46.51965 6.632273 Prec
MOE AG Möhlin 47.55913 7.844253 Prec
MUR AG Muri, AG 47.27358 8.341557 Prec
SAX SG Salez / Saxerriet 47.22666 9.481674 Prec
UBB AG Bözberg 47.49706 8.154698 Prec
BER BE Bern / Zollikofen 46.99826 7.451339 CH2018
HAI TG Salen-Reutenen 47.65029 9.015740 CH2018
SIO VS Sion 46.23312 7.360626 CH2018
STG SG St. Gallen 47.42448 9.376717 CH2018
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Table 7: Percentage Changes in Climate Variables [1]

Model RCP Time Horizon Metrics
Prec Tmean GDD Frost HDD Chillhrs Utah Chillprt GDH

DMI

RCP26
2025-2049 -30.7 0.3 0.7 -0.2 -18.7 0.3 38.3 4.5 -0.6
2050-2074 -30.7 0.6 2.7 12.0 29.4 0.2 26.8 5.0 -1.4
2075-2099 -29.3 3.6 5.3 -5.0 2.2 0.5 28.7 4.4 1.5

RCP45
2025-2049 -29.8 4.0 6.9 -0.1 53.6 -1.8 7.4 0.4 3.8
2050-2074 -27.6 6.8 9.2 -16.0 81.9 -2.0 11.3 1.9 5.3
2075-2099 -23.0 8.6 11.2 -26.5 86.4 -4.0 4.3 0.2 7.1

RCP85
2025-2049 -27.0 5.2 7.1 -14.2 62.3 -3.3 11.4 1.0 5.6
2050-2074 -22.5 12.8 17.2 -27.7 124.4 -9.7 -28.1 -4.4 12.7
2075-2099 -20.9 23.4 31.5 -56.4 276.3 -20.2 -86.5 -11.5 22.6

KNMI

RCP26
2025-2049 -28.6 4.0 6.5 -6.4 41.1 -8.0 6.9 -0.6 4.9
2050-2074 -25.3 4.2 5.8 -16.5 -4.7 -10.4 3.8 -2.6 7.4
2075-2099 -30.2 5.5 8.1 -14.4 30.6 -10.3 -4.4 -3.8 7.5

RCP45
2025-2049 -33.6 7.4 10.0 -20.0 90.0 -7.7 -0.7 -2.5 6.1
2050-2074 -32.6 13.6 18.2 -31.7 116.7 -16.1 -40.9 -8.1 15.8
2075-2099 -23.4 12.4 16.8 -23.6 103.5 -21.1 -44.6 -8.3 16.5

RCP85
2025-2049 -22.5 6.5 8.7 -24.2 36.2 -10.3 -6.9 -3.1 10.2
2050-2074 -20.9 15.8 21.5 -40.7 103.1 -23.5 -76.5 -12.8 22.2
2075-2099 -26.5 32.5 44.6 -59.5 369.7 -38.9 -176.0 -24.9 33.8

MPICSC

RCP26
2025-2049 -25.8 2.2 2.5 -19.1 11.7 0.2 47.6 5.2 1.0
2050-2074 -26.4 0.6 0.8 -13.1 20.5 -0.9 50.6 6.0 -0.1
2075-2099 -29.0 1.9 1.5 -23.1 23.8 2.2 60.0 7.9 -1.8

RCP45
2025-2049 -26.1 1.6 2.9 -7.3 57.0 2.6 45.1 6.4 -1.4
2050-2074 -18.2 2.2 2.2 -18.3 29.5 0.0 52.9 7.9 -0.3
2075-2099 -27.7 7.4 10.1 -25.2 99.8 -5.0 14.4 2.8 5.0

RCP85
2025-2049 -24.1 1.6 1.6 -13.8 10.5 -1.4 48.1 6.1 1.5
2050-2074 -21.5 7.9 9.4 -36.3 70.1 -6.4 21.0 2.8 8.2
2075-2099 -26.1 18.1 23.0 -59.2 187.0 -18.7 -30.3 -4.4 17.9

MPICSC2

RCP26
2025-2049 -23.6 -0.7 0.2 8.3 -2.7 3.7 49.1 6.4 -1.6
2050-2074 -28.6 2.5 3.3 -5.7 26.8 1.5 38.1 4.9 0.5
2075-2099 -32.1 4.3 5.8 -7.8 31.3 0.0 22.1 2.1 2.8

RCP45
2025-2049 -29.7 1.5 3.0 7.5 18.6 0.9 33.0 3.2 1.9
2050-2074 -30.2 7.3 10.0 -10.6 71.5 -0.8 16.2 1.4 7.0
2075-2099 -26.3 7.8 10.2 -24.3 42.2 -5.9 6.3 0.2 8.9

RCP85
2025-2049 -23.5 4.2 6.2 -1.4 50.2 -1.1 16.4 3.0 3.7
2050-2074 -28.8 12.6 16.8 -27.3 120.5 -9.8 -28.2 -4.8 14.5
2075-2099 -20.4 18.5 24.6 -48.3 186.6 -18.1 -49.1 -5.6 18.6

SMHI
ECEARTH

RCP26
2025-2049 -25.7 4.0 5.6 -16.8 6.5 -3.7 24.2 1.9 4.0
2050-2074 -25.1 4.5 6.2 -21.4 -9.2 -5.8 20.5 0.4 5.2
2075-2099 -23.1 4.6 5.6 -21.2 -31.6 -3.7 22.3 0.9 5.3

RCP45
2025-2049 -29.8 6.4 8.9 -17.5 55.7 -3.5 8.1 -0.2 5.5
2050-2074 -30.2 13.1 17.0 -37.3 100.3 -9.9 -14.3 -3.2 12.0
2075-2099 -27.3 14.7 18.6 -47.2 123.6 -13.6 -23.6 -4.1 13.7

RCP85
2025-2049 -26.7 7.2 8.8 -25.2 29.5 -5.5 8.0 -0.8 9.7
2050-2074 -31.2 20.1 27.1 -44.9 203.6 -19.1 -69.7 -9.9 19.3
2075-2099 -31.8 32.7 43.9 -67.4 370.3 -29.8 -140.8 -19.6 29.5
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Table 8: Percentage Changes in Climate Variables [2]

Model RCP Time Horizon Metrics
Prec Tmean GDD Frost HDD Chillhrs Utah Chillprt GDH

SMHI
HADGEM

RCP26
2025-2049 -29.5 3.8 6.7 -7.1 95.6 -5.6 5.4 -1.2 3.0
2050-2074 -19.0 2.9 4.7 -10.9 48.0 -9.2 14.1 -0.3 3.7
2075-2099 -22.0 3.5 5.7 -12.5 79.4 -8.8 8.9 -1.9 4.5

RCP45
2025-2049 -22.5 4.8 6.8 -21.8 87.7 -6.1 17.2 -0.7 3.4
2050-2074 -26.7 10.9 14.2 -37.8 121.9 -12.4 -10.5 -5.0 11.2
2075-2099 -18.6 13.2 18.2 -33.5 189.8 -17.0 -33.8 -6.9 12.5

RCP85
2025-2049 -14.4 6.8 9.6 -25.0 82.0 -9.5 -4.4 -2.5 8.2
2050-2074 -15.9 15.8 21.6 -43.2 202.2 -18.3 -64.7 -11.5 16.8
2075-2099 -20.2 30.3 41.4 -65.4 424.9 -33.7 -151.6 -22.8 28.1

SMHI
MIROC

RCP26
2025-2049 -22.5 5.4 7.8 -15.3 36.4 -2.4 19.5 1.9 3.5
2050-2074 -18.4 5.1 6.8 -13.2 -3.0 -4.7 21.4 0.9 6.6
2075-2099 -20.0 1.2 2.5 -0.6 8.0 -3.8 33.4 2.8 2.3

RCP45
2025-2049 -20.0 5.7 6.9 -24.8 32.5 -1.7 29.3 3.4 3.1
2050-2074 -22.8 8.6 10.8 -29.8 55.0 -8.3 10.2 0.0 8.9
2075-2099 -14.8 9.5 12.9 -25.1 74.7 -8.8 -2.7 -1.7 10.5

RCP85
2025-2049 -18.5 8.3 10.5 -34.6 11.4 -9.1 1.1 -1.5 11.2
2050-2074 -16.9 14.8 19.3 -42.7 75.5 -17.3 -37.5 -6.7 18.9
2075-2099 -26.1 30.9 41.2 -75.1 251.2 -33.8 -133.8 -20.9 32.8

SMHI
MPIESM

RCP26
2025-2049 -27.8 4.8 5.8 -20.0 40.2 -2.1 28.3 2.2 3.9
2050-2074 -30.9 4.4 5.8 -16.1 59.4 -3.1 28.0 2.6 3.1
2075-2099 -28.5 5.3 6.1 -25.3 51.7 -0.3 36.0 4.5 1.4

RCP45
2025-2049 -28.9 5.5 7.7 -15.2 83.7 0.6 30.3 3.7 1.5
2050-2074 -22.8 6.3 7.8 -22.8 97.7 -3.5 30.6 4.2 2.9
2075-2099 -28.7 10.7 14.3 -29.6 148.0 -7.7 -2.1 -0.7 7.8

RCP85
2025-2049 -22.7 2.9 3.8 -14.0 29.1 -3.4 31.4 3.3 4.2
2050-2074 -24.3 14.1 17.7 -46.0 177.0 -12.6 -14.5 -3.1 12.0
2075-2099 -32.7 27.1 35.6 -67.9 326.5 -26.4 -84.9 -13.0 22.6

SMHI
NORESM

RCP26
2025-2049 -27.4 2.1 3.3 -8.2 34.9 -1.3 43.9 6.0 -0.4
2050-2074 -27.9 3.2 3.7 -13.0 12.5 -2.9 45.0 4.6 2.0
2075-2099 -30.9 4.2 5.4 -16.7 0.7 -5.0 22.2 1.0 3.9

RCP45
2025-2049 -30.3 5.6 7.4 -14.6 53.9 -3.5 24.9 2.9 3.3
2050-2074 -31.0 8.5 11.2 -26.0 82.4 -8.4 11.8 1.1 7.3
2075-2099 -28.9 11.2 14.0 -38.5 61.6 -10.3 3.2 -1.6 11.6

RCP85
2025-2049 -32.3 6.1 7.8 -16.6 31.3 -5.4 15.4 1.0 6.8
2050-2074 -29.2 12.3 17.2 -22.3 100.6 -14.9 -32.2 -5.2 14.0
2075-2099 -28.5 23.0 30.8 -50.5 241.9 -24.2 -81.7 -12.4 21.9

Notes: Percentage changes in climate variables across scenarios, RCPs, and time horizons (2025–2049, 2050–2074, 2075–
2099) relative to the baseline period (1999–2019). The table presents percentage changes for multiple variables: precip-
itation (Prec), mean temperature (Tmean), growing degree days (GDD), frost days (FrostD), heat degree days (HDD),
chilling hours (Chillhrs), Utah model chilling units (Utah), chill portions (Chillprt), and growing degree hours (GDH).
Data are aggregated across nine climate simulations, grouped by scenario, RCP, and time horizon.
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Table 9: Absolute Change of Frost Variables by Scenario, RCP, and Time Horizon [1]

Model RCP Time Frost Metrics
Horizon Frost51 Frost53 Frost54 Frost56 Frost57 Frost59 Frost61 Frost65 Frost69

DMI

RCP26
2025-2049 0.1 0.8 0.6 0.6 0.3 0.1 0.0 0.0 0.0
2050-2074 0.2 1.2 1.1 0.8 0.4 0.3 0.1 0.0 0.1
2075-2099 0.2 0.3 0.3 0.9 0.6 0.5 0.1 0.0 0.1

RCP45
2025-2049 0.2 0.7 0.3 0.8 0.1 0.1 0.1 0.0 0.0
2050-2074 0.1 0.3 0.2 0.7 0.4 0.2 0.0 0.0 0.0
2075-2099 0.0 0.4 0.3 0.3 0.3 0.0 0.1 0.0 0.0

RCP85
2025-2049 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0
2050-2074 0.0 0.2 0.1 0.1 0.0 -0.1 0.0 0.0 0.0
2075-2099 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0

KNMI

RCP26
2025-2049 0.3 0.6 0.6 0.5 0.7 0.5 0.4 0.1 0.2
2050-2074 0.1 0.5 0.9 1.3 0.7 0.5 0.2 0.0 0.3
2075-2099 0.1 0.5 0.9 1.2 1.0 0.4 0.6 0.0 0.2

RCP45
2025-2049 0.1 0.5 0.4 0.3 0.3 0.2 0.1 0.0 0.2
2050-2074 0.0 0.3 0.4 0.7 0.7 0.4 0.2 0.0 0.0
2075-2099 0.1 0.4 0.9 0.7 1.0 0.8 0.4 0.0 0.3

RCP85
2025-2049 0.1 0.2 0.4 0.6 0.2 0.1 0.1 0.0 0.0
2050-2074 0.0 0.3 0.4 0.5 0.4 0.2 0.2 0.0 0.0
2075-2099 0.0 0.0 0.1 0.4 0.8 0.0 0.0 0.0 0.0

MPICSC

RCP26
2025-2049 0.1 0.8 1.0 0.4 0.2 0.2 0.0 0.0 0.0
2050-2074 0.2 1.1 0.7 0.5 0.1 0.2 0.0 0.0 0.1
2075-2099 0.4 0.5 0.3 0.2 0.2 0.6 0.3 0.0 0.1

RCP45
2025-2049 0.3 0.8 1.2 0.8 0.2 0.0 0.1 0.0 0.0
2050-2074 0.2 0.4 0.3 0.2 0.2 0.2 0.2 0.0 0.1
2075-2099 0.3 0.5 0.6 0.2 0.4 0.4 0.3 0.0 0.0

RCP85
2025-2049 0.2 0.6 0.4 0.4 0.0 0.0 0.0 0.0 0.0
2050-2074 0.0 0.2 0.2 0.3 0.0 0.0 0.0 0.0 0.0
2075-2099 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0

MPICSC2

RCP26
2025-2049 0.1 0.5 0.6 1.0 0.8 0.1 0.0 0.0 0.0
2050-2074 0.1 0.3 0.6 0.5 0.4 0.2 0.1 0.0 0.1
2075-2099 0.3 0.2 0.3 0.6 0.4 0.3 0.3 0.0 0.2

RCP45
2025-2049 0.1 0.3 0.4 0.3 0.1 0.1 0.1 0.0 0.1
2050-2074 0.1 0.3 0.3 0.6 0.2 0.2 0.2 0.0 0.0
2075-2099 0.1 0.2 0.3 0.1 0.6 0.1 0.1 0.0 0.0

RCP85
2025-2049 0.2 0.4 0.1 0.2 0.2 0.0 0.0 0.0 0.0
2050-2074 0.0 0.3 0.1 0.2 0.2 0.0 0.0 0.0 0.0
2075-2099 0.0 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0

SMHI
ECEARTH

RCP26
2025-2049 0.4 0.4 0.2 0.5 0.4 0.3 0.1 0.0 0.0
2050-2074 0.2 0.9 1.3 0.7 0.3 0.0 0.1 0.0 0.0
2075-2099 0.0 0.4 0.4 1.2 1.2 0.7 0.6 0.0 0.1

RCP45
2025-2049 0.2 0.4 0.4 0.2 0.2 0.1 0.2 0.0 0.0
2050-2074 0.1 0.0 0.2 0.3 0.4 0.5 0.5 0.0 0.0
2075-2099 0.0 0.3 0.4 0.2 0.3 0.1 0.2 0.0 0.0

RCP85
2025-2049 0.1 0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0
2050-2074 0.0 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.0
2075-2099 0.0 0.1 0.1 0.0 0.0 -0.1 0.0 0.0 0.0
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Table 10: Absolute Change of Frost Variables by Scenario, RCP, and Time Horizon [2]

Model RCP Time Frost Metrics
Horizon Frost51 Frost53 Frost54 Frost56 Frost57 Frost59 Frost61 Frost65 Frost69

SMHI
HADGEM

RCP26
2025-2049 0.6 0.5 0.6 0.4 0.2 0.5 0.8 0.1 0.1
2050-2074 0.0 0.4 0.9 0.6 0.5 0.6 0.6 0.0 0.1
2075-2099 0.2 0.5 0.6 1.1 0.8 0.3 0.3 0.0 0.0

RCP45
2025-2049 0.1 0.1 0.3 0.5 0.5 0.2 0.1 0.0 0.1
2050-2074 0.0 0.3 0.3 0.2 0.3 0.2 0.2 0.0 0.0
2075-2099 0.0 0.3 0.2 0.6 0.7 0.3 0.3 0.0 0.1

RCP85
2025-2049 0.1 0.5 0.2 0.4 0.4 0.0 0.0 0.0 0.0
2050-2074 0.2 0.2 0.1 0.2 0.0 -0.1 0.1 0.0 0.0
2075-2099 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0

SMHI
MIROC

RCP26
2025-2049 0.2 0.3 0.6 0.8 1.2 0.4 0.2 0.0 0.1
2050-2074 0.0 0.4 0.6 0.9 0.9 0.4 0.3 0.0 0.1
2075-2099 0.1 0.5 0.5 1.4 2.0 1.6 0.9 0.0 0.6

RCP45
2025-2049 0.0 0.2 0.4 0.3 0.8 0.6 0.4 0.0 0.0
2050-2074 0.0 0.2 0.4 0.8 0.5 0.1 0.3 0.0 0.2
2075-2099 0.0 0.3 0.5 0.7 1.0 0.8 0.2 0.0 0.6

RCP85
2025-2049 0.1 0.3 0.3 0.6 0.5 0.0 0.1 0.0 0.2
2050-2074 0.0 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0
2075-2099 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

SMHI
MPIESM

RCP26
2025-2049 0.0 0.6 0.3 0.2 0.3 0.1 0.1 0.0 0.0
2050-2074 0.2 0.7 0.3 0.5 0.9 0.1 0.1 0.0 0.1
2075-2099 0.0 0.6 0.4 0.8 0.5 0.7 0.2 0.0 0.2

RCP45
2025-2049 0.3 0.8 0.5 1.1 0.3 0.0 0.1 0.0 0.0
2050-2074 0.1 0.3 0.2 0.7 0.2 0.3 0.1 0.0 0.2
2075-2099 0.1 0.5 0.7 0.7 0.4 0.6 0.6 0.0 0.1

RCP85
2025-2049 0.3 0.6 0.7 0.4 0.3 0.0 0.0 0.0 0.0
2050-2074 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0
2075-2099 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0

SMHI
NORESM

RCP26
2025-2049 0.4 0.7 1.0 0.7 0.3 0.2 0.3 0.0 0.1
2050-2074 0.1 0.3 0.5 0.6 0.6 0.4 0.3 0.0 0.1
2075-2099 0.3 0.5 0.9 0.9 0.9 0.7 0.3 0.0 0.3

RCP45
2025-2049 0.2 0.4 0.4 1.0 0.6 0.5 0.3 0.0 0.2
2050-2074 0.2 0.3 0.5 0.5 0.9 0.1 0.4 0.0 0.1
2075-2099 0.0 0.3 0.4 0.4 0.5 0.6 0.1 0.0 0.1

RCP85
2025-2049 0.2 0.3 0.4 0.6 0.5 0.3 0.1 0.0 0.0
2050-2074 0.1 0.5 0.7 0.3 0.6 0.1 0.1 0.0 0.1
2075-2099 0.0 0.1 0.1 0.5 0.2 0.1 0.2 0.1 0.0

Notes: Absolute changes in phenology-dependent frost variables across scenarios, RCPs, and time horizons (2025–2049,
2050–2074, 2075–2099), compared to the baseline period (1999–2019). The table presents absolute changes for specific
frost days across phenological stages, labeled as Frost51, Frost53, Frost54, Frost56, Frost57, Frost59, Frost61, Frost65,
and Frost69, where Frost51 is a frost event based on the critical temperatures defined in Table 2 in BBCH stage 51. Data
are averaged across nine climate simulations and organized by scenario, RCP, and time horizon.
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Chapter 2

To Adapt or Not to Adapt:
How Swiss Fruit Farmers Respond to
Climate Change

Abstract
Climate change presents a significant threat to global agricultural livelihoods, with the perennial crop sector
facing unique challenges due to its inherent path dependencies. Using survey data from the year 2022, this
paper examines the effects of severe droughts and spring frost over the past decade, adaptation strategies,
climate perceptions, and beliefs of perennial crop farmers in Switzerland. Key findings include significant
harvest losses, particularly from frost; however, there is a greater concern about future drought impacts.
Farmers’ estimates of temperature trends align more closely with projected trends than their assumptions
about frost and precipitation, with those using fixed irrigation systems notably more accurate in recogniz-
ing precipitation trends than those without irrigation. Most farmers express concern about climate change
and acknowledge the rise in global average temperatures. Climate skeptics demonstrate lower support for
climate mitigation policies compared to believers but show a greater willingness to adapt. The study un-
derscores the complexity of agricultural adaptation and the need for tailored solutions to enhance resilience
against climatic changes.

Keywords: farmers’ perception, farm adaptation, climate change, perennials

JEL-codes: Q12, Q15, Q54
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2.1 Introduction

In agricultural landscapes, the effects of anthropogenic climate change are manifested not only through
extreme weather events but also through more gradual changes such as shifts in temperature regimes,
altered precipitation patterns, and prolonged or altered growing seasons, all of which pose significant chal-
lenges to farmers. Documented consequences in Switzerland highlight the significant effects of warming
(MeteoSchweiz 2018) and projected alterations in the frequency and intensity of extreme weather events
increase agriculture’s vulnerability (CH2018 2018). Past severe heat waves and droughts in Europe under-
score the need for proactive adaptation measures involving key stakeholders like farmers and policymakers
(Büntgen et al. 2021). Furthermore, in 2021 we witnessed widespread damage to various crops, including
fruit trees, across Europe due to frost and freezing temperatures. Late frost events have become more fre-
quent over the past four decades (Lamichhane 2021).

Adaptation does not occur in an institutional vacuum (Agrawal and Perrin 2009). These climate impacts
influence the complex dynamics of human-environment systems, in which past actions shape the very con-
ditions we must then adapt to. The adoption of adaptation measures depends on the social and economic
endowments of the subjects in question. A deeper understanding of these dynamics is essential to making
informed decisions that avoid increasing vulnerabilities and diminishing our capacity to adapt. Effective
adaptation and mitigation strategies require not only an understanding of the causes and consequences of
climate change but also a willingness to modify behavior (Niles and Mueller 2016). The decision-making
process in this context is multifaceted, involving factors such as farmers’ beliefs, knowledge, economic con-
siderations, and the perceived risks and opportunities associated with various adaptation and mitigation
strategies (Chatrchyan et al. 2017). According to Fishbein and Ajzen (2011), behavior is shaped by numer-
ous background factors that influence beliefs, which in turn shape attitudes, intentions, and ultimately,
behavioral changes.

Understanding farmers’ behavior is critical for maintaining food production under the diverse pressures
faced by local agricultural systems. This understanding is essential for identifying areas where interven-
tions are needed and for developing effective policies that promote socio-technical change and innovation
(Feola et al. 2015). For example, in response to these risks, cropping system changes have demonstrated
substantial adaptation benefits, including increased net farm income in the United States (Prato et al. 2010).
Similarly, in Europe, improving irrigation scheduling, crop mix changes, use of new crop varieties, and
improving irrigation efficiency, among other measures, have significantly contributed to drought adapta-
tion (Kahil et al. 2015). With respect to frost adaptation, frost protection sprinkling has proven to be very
effective as an adaptation measure (Unterberger et al. 2018).

Despite the heightened vulnerability of perennial crops to climate change due to their long life span, path
dependencies, and the challenges associated with switching crops – primarily due to the high costs in-
volved – there is a notable gap in the literature regarding the uptake of climate adaptation options within
the perennial crop sector. Furthermore, farmers often face inadequate access to information and knowledge
about climate change adaptation. Therefore, the goal of this paper is to examine the relationship between
climate perceptions and adaptation behaviors among Swiss fruit farmers. In addition, we explore climate
impacts on these perennial crops, focusing on frost and drought events. Farmers, as key stakeholders, face
these challenges, necessitating adaptive strategies. Emphasis is on the long-term perspective of farmers
dealing with perennial crops, recognizing the intricate nature of their decision-making and addressing a
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current gap in evidence related to factors influencing adaptation choices for perennials (Gunathilaka et al.
2018). To bridge this gap, we conducted a comprehensive survey to explore farmers’ perceptions and ex-
pectations concerning climate change.

This paper contributes to the literature on climate perception and adaptation by examining the under-
researched area of perennial crops and the role of personal beliefs in shaping farmers’ responses to climate
change. By addressing both drought and frost impacts, farmers’ climate perceptions, beliefs, and expecta-
tions, alongside analyzing farmers’ willingness to adapt and their policy support, we provide a cohesive
analysis of farmers’ behavior. This nationwide study offers unique insights into Swiss farmers’ perceptions
and adaptive strategies.

We observe that frost has a more pronounced impact on farmers’ yields compared to drought. Interestingly,
drought conditions can lead to some beneficial side effects, such as a reduction in fungal infestations and
decreased pest pressure. Established mechanisms for preventing the effects of drought and frost are al-
ready very effective; however, there is room for improvement. Moreover, our findings indicate that farmers
are generally more adept at identifying temperature trends than at correctly recalling frost or precipitation
trends. Those farmers with fixed irrigation systems demonstrate significantly better accuracy in recogniz-
ing shifts in precipitation patterns. The majority of respondents express concerns about climate change,
acknowledging a rise in global average temperatures. As expected, farmers categorized as climate change
skeptics are less inclined to support government policies and environmental regulations than those who
believe in anthropogenic climate change; however, unexpectedly, skeptics demonstrate a higher willing-
ness to adapt. There are several possible explanations: farmers who believe that climate change is real and
human-induced may feel disillusioned, leading to a lower willingness to adapt. Alternatively, they may
have already implemented substantial adaptations in the past, which could reduce their current willing-
ness to adopt further measures.

This paper is structured as follows: in Section 2.2 we provide a review of the relevant literature; Section 2.3
presents the survey content and results, including analyses of farm and farmer characteristics, the effects
of drought and frost, adaptation behaviors, farmers’ climate perceptions, expectations, and beliefs, their
willingness to adapt, and their level of policy support. Finally, in Section 2.5, we discuss the findings and
offer concluding remarks.

2.2 Related Literature

Existing research on the impact of climate change on agriculture highlights significant challenges to farm-
ers’ livelihoods. Intense summer heat waves and drought events of 2003, 2015, and 2018 had profound
impacts on Europe’s agricultural sector. These climatic extremes resulted in reduced harvests, increased
insect outbreaks, and plant mortality (Büntgen et al. 2021). In addition to the challenges due to drought,
certain sectors of agriculture, i.e., horticulture, are significantly threatened by spring frost. For instance, the
unprecedented spring frost event in late April 2017 caused considerable damage to crops (Vitasse and Re-
betez 2018). Similarly, in April 2021, late spring frost and freezing caused severe damage to fruit trees and
other perennials (Lamichhane 2021). Farmers are directly affected by these events, often facing immediate
yield losses and crop damage. Broomell et al. (2015) note that personal experiences with climate change
strongly influence the endorsement of specific mitigation efforts, distinguishing between impact-oriented
actions and general intentions to act, finding higher agreement with regard to engagement in general ac-
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tions as opposed to specific impact-oriented actions.

The literature on farmers’ perceptions of climate change and their adaptive behaviors is extensive and
growing. Studies such as Fosu-Mensah et al. (2012) analyze farmers’ climate perception and identify key
factors for adaptation strategies of farmers in Ghana. They find strong climate awareness among farmers.
Furthermore, they find that access to extension services, credit availability, soil fertility, and land tenure
positively impact adaption. Despite recognizing the need for adaptation, a lack of funds often impedes
the necessary adjustments. Similarly, research in the Sahel region highlights farmers’ awareness of climate
variability, particularly regarding the damaging effects of wind and excess rainfall, aligning with findings
in Ghana (Mertz et al. 2009). Further studies, like Abid et al. (2019), reveal that farmers are generally more
adept at recognizing temperature trends than precipitation changes, with accuracy in perception correlating
positively with adaptive measures. Additionally, farming experience significantly increases the likelihood
of adopting adaptation strategies. Arbuckle Jr et al. (2015) directly link climate perception and adaptation
behavior and found that a majority of corn and soybean farmers in the U.S. believe in climate change; those
holding such beliefs are more likely to support both adaptive and mitigative actions, including government
intervention to reduce greenhouse gas emissions. In California, Haden et al. (2012) found that local climate
concerns primarily motivate adaptation among farmers, while climate beliefs have a more substantial im-
pact on the intention to adopt mitigation practices. Niles et al. (2016) concur, suggesting that these beliefs
may influence the intended rather than actual adoption of climate practices.

Despite a growing body of research on climate-related risks, the literature on farmers’ perceptions and
adaptive behaviors remains uneven. While numerous studies have examined climate perceptions and
adaptation strategies in the context of annual crops, fewer studies have addressed these issues in peren-
nial crop systems. Perennial crop farmers face unique challenges and exhibit greater path dependency
in adaptation practices, such as crop switching, compared to annual crop farmers (Nguyen et al. 2016).
Gunathilaka et al. (2018) emphasize that adaptation practices for perennial crops often require more trans-
formative changes, yet studies focusing on the intersection of climate perception and adaptation among
these farmers remain limited. Our paper addresses this gap by examining farmers cultivating perennial
crops.

Farmers’ climate perceptions are not exogenous. Diving into a broader context, studies in New Zealand
provide additional insights into how farmers’ climate beliefs influence their perceptions and adaptation
behaviors. Niles et al. (2015) observe that farmers who believe in human-induced climate change are more
likely to perceive temperature increases, suggesting that personal and environmental factors play a signifi-
cant role in shaping perceptions and following adaptation decisions. They highlight the importance of local
context, with water scarcity and temperature variability emerging as critical factors in regions like Hawke’s
Bay and Marlborough, affecting adaptation strategies in viticulture and other sectors. Recent studies specif-
ically on drought adaptation, such as the work by Zappalà (2024) in Bangladesh, reveal that prior beliefs
significantly influence irrigation decisions in response to dry shocks, though the author cautions that these
findings may be spurious. As these effects are dependent on the geographical context, the relationship
between climate beliefs, perceptions, and adaptive behavior requires further exploration. We add to this
by further including another geographical dimension, which will contribute to identifying similarities or
discrepancies across different locations.

There is limited research in Switzerland examining the impact of climate change on farmers’ adaptation
strategies. Kruse et al. (2015) surveyed fruit growers in northeastern and northwestern Switzerland, finding
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that while drought-related damage has been limited, there is an expectation of more frequent and intense
droughts in the future. A majority of farmers have already started implementing adaptive measures, like
irrigation and mulching, which could be a reason why drought-related damages have been negligible. The
study focuses primarily on drought, neglecting other extreme events like frost. More on the behavioral side,
Kreft et al. (2021) explored the role of non-cognitive skills in adopting climate-mitigation practices, finding
that traits such as self-efficacy and locus of control are crucial in determining the extent of such adoption
among Swiss farmers. These studies underscore the importance of understanding regional variations in
climate change impacts and the role of psychological factors in shaping adaptation strategies.

In summary, this paper adds to the existing literature on climate perception and adaptation behavior by ex-
ploring under-researched geographical dimensions, and the role of personal beliefs in influencing farmers’
responses to climate change. A key contribution of this study is its focus on perennial crops, an area that has
received limited attention in prior research. Additionally, by addressing both the impacts of drought and
frost, as well as investigating farmers’ climate perceptions and willingness to adapt, we are able to integrate
several strands of literature, creating a more cohesive image. A significant contribution of our work is the
development of a new “Willingness to Adapt Index” and a “Policy Support Index”, which measure farm-
ers’ readiness to implement adaptive measures and their support for climate-related policies. To the best of
our knowledge, there is no nationwide study in Switzerland that examines farmers’ views and adaptation
decisions related to climate change, particularly with a focus on perennial crops. Our research fills this
gap, offering valuable insights into the perceptions and adaptive strategies of Swiss farmers in response to
climate variability.

2.3 Survey

An essential approach to extract otherwise invisible factors, such as perceptions and beliefs are surveys
(Stantcheva 2022). Hence, to elicit farmers’ individual characteristics, farm infrastructure, climate percep-
tions, and beliefs, we conducted an online survey using the Qualtrics platform. Online surveys have many
advantages such as the flexibility of the target group to complete the survey at their convenience. As farm-
ers in Switzerland are required to fill out administrative documents received by e-mail, the coverage error
will be minimal.12

The creation of the survey was implemented in several feedback loops. A first draft of the survey was
created including parts of the surveys conducted by Kruse et al. (2015) and by Niles and Mueller (2016).
Feedback in multiple rounds was gathered by local producers, employees of the Swiss Fruit Association
SOV, Agroscope, the Swiss Confederation’s center of excellence for agricultural research, and Agridea, the
center for Agricultural Advisory and Extension Services. Upon completion, the survey was translated into
French, ensuring availability in both German and French. The survey was then distributed via e-mail to
approximately 1800 fruit farmers, more precisely all fruit farmers in Switzerland, cultivating more than 20
acres of orchards. The survey period extended from May to December 2022. To encourage participation,
respondents were offered the chance to win one out of 15 Landi13 vouchers in the amount of CHF 100.14 In

12The coverage error is the difference between the potential pool of respondents and the target population (Stantcheva 2022). Hence,
an online survey can only be filled out by people having a phone/computer and internet access.

13Landi being one of the largest agricultural retailers in Switzerland
14There is still some risk of a selection bias in the respondents. People responding to the survey might share some specific charac-

teristics.
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total, we received 547 responses, which equals a response rate of 28.9%. From those, 127 responses were
dropped due to insufficient data, leaving 420 responses (22.2%).

Table 14: Survey Content and Structure

Thematic block Questions aimed at

A Questions about the farm Type of fruit, acreage, distribution, irrigation system and
amount of irrigation, source of water

B Questions about the effects
of drought on fruit
growing

Impact due to drought in the last 10 years (+/−), financial
loss, adaptation measures, effect of years 2015 and 2018, will-
ingness to adopt new measures if extreme years occur more
often

C Questions about the effects
of frost on fruit growing

Impact due to frost in the last 10 years (+/−), financial loss,
adaptation measures, effect of years 2017 and 2021, willing-
ness to adopt new measures if extreme years occur more often

D Questions about their
assessment (climate
perception, beliefs)

Agreement/disagreement (agree | somewhat agree | some-
what disagree | disagree | don’t know) with several state-
ments regarding drought, frost, and climate change, per-
ception of weather change over time, concern about sev-
eral climate-related risks and future impacts, general opinion
about the government, public policy, and agriculture, risk-
averse/loving

E Closing questions
(individual characteristics)

Gender, age, experience, education, category of farm (full-
time farm, etc.), membership of SOV

Notes: The survey begins with a section covering standard farm characteristics. This is followed by two nearly identical
sections focused on the effects of drought and frost, respectively, on fruit growing. The subsequent section includes
assessment questions, primarily using agreement/disagreement and Likert scales, to elicit respondents’ climate per-
ceptions, beliefs, and opinions on policy and government. The survey concludes with questions about individual
characteristics.

The content of the survey consists of 5 different question blocks A–E (see Table 14). The first section con-
tained questions about farm characteristics. This was followed by two nearly identical sections that focused
on the impact of drought respectively frost on fruit cultivation. These sections included inquiries about fi-
nancial losses, current adaptation measures, and willingness to adopt new strategies. The next section
explored the farmers’ perceptions, expectations, and beliefs regarding climate change, as well as their gen-
eral views on the government, environmental regulations, and risk preferences. Risk perception is assessed
following the methodology outlined by Dohmen et al. (2011). The last section concluded with questions
about individual characteristics.

2.4 Methods and Results

2.4.1 Farms’ and Farmers’ Characteristics

From the 420 responses, the largest group (27%) originated from the canton Thurgau. The second biggest
contributor (10%) is the canton Aargau. The distribution over the different cantons in percentages can be
found in Figure 29 in the Appendix. The average age of the respondents is around 50 years, where the
oldest respondent was born in 1922 and the youngest in 1998. The majority of respondents are between
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45 and 60 years old. Years of experience range from 1 to 97 years, with a mean of 28 years. 95% of the
respondents are male. Most of the farmers grew up in agriculture and then proceeded by either doing an
apprenticeship, going to farm management school, and doing a master’s, or a combination of those. Almost
half of the respondents went on to get further qualifications in fruit growing, such as taking a tree pruning
course, courses in organic farming, or specialty courses for stone fruit and pomes. Additionally, as can be
seen in Figure 31 in the Appendix, farmers have a tendency to be more risk-loving than risk-averse.

Regarding the farm category, 81% of farmers run a full-time farm, meaning that the non-farm income of
the farm manager is less than 10%. About 10% run a part-time farm with 10–50% non-agricultural income
and 8% with non-agricultural income above 50%. Only 1% operate a “recreational farm”, in which the farm
income is an insignificant part of total income. 86% of the respondents are members of the Swiss Fruit
Association (SOV). When asked about the percentage of fruit growing as part of their agricultural income,
around 40% of the farmers attribute more than 50% of their agricultural income to fruit growing.

The average farm size is 1,579 ares, equivalent to 157,900 m2. Farm sizes range from 24 to 120,000 ares,
with 75% of respondents managing farms smaller than 678 ares. 43% distribute their products through
wholesalers such as Fenaco and Tobi, and 34% through direct sales, farm stores, market stalls, or the like.
About 5% of the farmers sell through wholesalers such as Migros, Aldi, Lidl or similar. 9% use a local or
regional distributor such as Landi and the remaining 5% use other distribution logistics.

Of the 420 respondents, 341 grow pome fruit, 311 stone fruit, 87 berries, 34 nuts, and 22 other fruits. The
majority of fruit growers plant not only one crop but several. It follows that both pome and stone fruit are
the crops that produce the greatest economic yield for the farmers.

When planting crops, 65% of the respondents take site-specific characteristics into account, like soil condi-
tions, topography, and geographic targeting. Those who consider site-specific characteristics mostly evalu-
ate soil conditions, frost vulnerability, and, in general, resistance of crop, the closeness of water source, and
topography (often gradient and geographical targeting).

2.4.2 Effect of Drought and Frost on Agricultural Yield

When examining the impact of drought and frost on the orchard over the past decade, it becomes evident
that frost has inflicted more significant damage compared to drought. Figure 20 illustrates the harm caused
by both dry spells and frost. Across all damage categories, a larger proportion of farmers have reported
damage attributed to frost compared to damage caused by dry spells.

Consequently, financial losses over the last 10 years are larger because of frost than because of drought,
where the mean loss as a percentage of the average agricultural income from the fruit-growing branch of
the business over the last 10 years is 7.5% from drought and 20.7% from frost. Potential measures against
drought are irrigation, soil cultivation (e.g., hoeing, loosening), ground cover (e.g., mulching, overgrowth),
shading, and cultivation of drought-resistant fruit crops, whereby in Switzerland mainly irrigation and
ground cover are used (Kruse et al. 2015). We observe in our sample that the majority (64%) uses irrigation
as a measure against drought. Around 43% use ground cover to protect against drought, 15% use tillage,
and 8% use shading. The aforementioned countermeasures have demonstrated significant effectiveness in
mitigating the impacts of drought. On average, they enabled 60% of the respondents to prevent 20% of the
losses over the past 10 years that would have occurred in the absence of such measures.
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Figure 20: Climate Damages

Notes: Occurrences of several potential damages as a result of dry spells (top) or frost events (bottom) on the farmers’
orchards over the last 10 years. Farmers were given the possibility to answer with respect to each potential damage,
and answer options were “Never”, “Once”, or “Several times”.

In terms of potential measures, the literature shows that there is a wide range of potential on-farm mitiga-
tion strategies (e.g., increasing productivity and efficiency, specific technology, adapting farm management
(Kreft et al. 2021)). Regarding fruit production, irrigation infrastructure is arguably the most important mea-
sure that farmers use to protect against climate impacts, as it is used to address both frosts and droughts. In
theory, irrigation can be divided into two broad groups, total surface irrigation, and local irrigation, which
in turn can be divided into two groups (see Figure 30 in the Appendix). Whole surface irrigation can be
either overcrown irrigation or undercrown irrigation, while local irrigation is either microjet irrigation or
drip irrigation (Monney and Bravine 2011).

Of the fruit growers surveyed, 140 do not irrigate their crops, while 218 use a fixed irrigation infrastructure,
though fewer than half of these irrigate all of their fruit crops. Those who irrigate part of their crops with
a fixed infrastructure irrigate, on average, 55% of the crops. 78 growers irrigate with a mobile device or by
hand and do not have a permanently installed irrigation system. Overall, around two-thirds of the respon-
dents irrigate. The average size of farms that irrigate is more than twice as large compared to farms that
do not irrigate. From our survey data, the majority of participants with fixed-installed irrigation systems
(188) irrigate their crops with drip irrigation. 43 participants use a microjet irrigation system, 41 rely on an
overcrown irrigation infrastructure, and 41 use sprinklers. Some participants rely on more than one sys-
tem. Most participants get water from either groundwater or water reservoirs. Fewer rely on water supply
from lakes or rivers. Almost 90% of the respondents do not have contracts with the municipality to secure
water supplies from the drinking water network. The minority that has a contract is spread over most of
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the cantons and not concentrated in one canton.

In our case, there is no significant difference in the effectiveness of the irrigation systems used by the farmers
in preventing yield loss attributed to drought. This does not necessarily mean that they all perform similarly
but that the farmers are good at selecting the system that works best in their respective environments. The
mean financial percentage loss of yield does not show statistically significant differences. The losses are
slightly higher for partial irrigation and hand irrigation as opposed to complete and fixed irrigation and
are the highest for farmers who do not irrigate at all.

In response to late spring frost, potential measures are overhead irrigation15, heating (frost candles)16 and
air circulation (wind and blower machines)17. Out of the chosen answers, most farmers respond to frost by
using frost candles (39%). Only 13% of respondents use irrigation as frost protection and about the same
percentage have insurance against frost damage. In addition, many farmers use foil coverage of the crops.

Irrigation is more frequently employed as a countermeasure in response to drought compared to frost. On
average, farmers use irrigation for 30 days during drought conditions, with 90% of cases requiring fewer
than 82 days of irrigation. Conversely, for frost events, farmers typically irrigate for only one day, with 90%
of occurrences necessitating fewer than 5 days of irrigation. Protective measures against frost have proven
effective in at least a third of instances, resulting in an average prevention of 30% of financial losses.

Regarding positive effects, the majority of farmers (57%) expressed the view that drought periods have
had a beneficial impact on fruit growing. This positive effect is primarily attributed to reduced fungal
infestations, diminished requirements for pest management, and lowered disease pressure.

As mentioned, the years 2015 and 2018 were particularly challenging for farmers due to drought, while
intense spring frost events in 2017 and 2021 presented additional threats. To explore the impact of these
specific years, farmers were surveyed and asked to indicate which of these years had the most detrimental
effect on their operations. When comparing the impact of extensive drought over two years (2015 vs. 2018),
2018 had a more substantial influence. Approximately two-thirds of respondents reported experiencing
greater losses in 2018. Nonetheless, the majority of them still incurred no more than a 10% reduction in
their harvest. Regarding frost, 2017 was a more challenging year compared to 2021 for over two-thirds
of all farmers, with nearly 50% of them losing more than half of their yield. As a response to April 2017,
immediate measures were implemented by federal and cantonal authorities, as well as agricultural organi-
zations, including deferrals on loan repayments, interest-free loans, and investment credits. There was also
the option of direct payments for frost-damaged areas, and Fondssuisse18 provided additional support for
severe cases. Eligibility for short-time work compensation was clarified. In our sample, 20% of the farmers
received direct payments as a result of this particular frost event. The average total payment (not per ha) in
2017 was just short of 60,000 Swiss francs, whereas in 2021, it was around 25,000 Swiss francs.

15Water releases heat to its surroundings when it freezes. As water freezes directly on the plants, the heat benefits the plant parts.
The system must be switched on before the wet bulb temperature falls below the critical plant temperature.

16The air is heated with fire. Tin buckets with kerosene are distributed in the plant area before the frost night and lit with a burner
before the temperature falls below the critical temperature.

17By circulating the air layers, warm air from higher layers enters the system.
18Fondsuisse is a foundation that provides financial support for damages caused by unforeseeable natural events, for which no

insurance coverage can currently be obtained.
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2.4.3 Climate Perceptions, Expectations, and Beliefs

In order to evaluate the accuracy of climate perceptions, we compare historical weather data to farmers’
perception of changes in summer temperature, winter temperature, annual precipitation, number of heat
days per year, number of frost days per year, frequency of drought, and frequency of heavy precipitation
events. MeteoSchweiz, the Federal Office of Meteorology and Climatology, provides weather data such as
precipitation and temperature (daily average, daily minimum, daily maximum) from ground monitoring
stations across Switzerland spanning the years 1980–2022. Geocoding, using Google Geocoding API, was
employed to match longitude and latitude to all farmers’ locations as well as weather stations (see Figure
21). Subsequently, we assigned to each farm location the geographically closest weather station. All 37
weather stations were chosen and matched by a minimum distance.

Figure 21: Geographical Locations

Notes: Map of Switzerland showing the location of all geocoded farmer survey respondents (blue) and weather moni-
toring stations (red).

Table 16 in the Appendix shows the climate trend over the years 1981–2019 per station for the variables
winter temperatures (DJF), summer temperatures (JJA), precipitation, spring frost days (≤ −1◦C in MAM),
and heat degree days (number of days above 30◦C). Overall, summer temperatures, winter temperatures,
yearly mean temperatures, and heat degree days have increased. The trend over the years per station for
frost days and precipitation is not as clear. Averaging over all the stations, these two variables have slightly
decreased.

Subsequently, we constructed individual climate trends for these same variables based on the time frame
relevant to each farmer’s agricultural career. Farmers provided perceptions of changes in various climatic
variables over their agricultural careers, indicating whether these variables increased, remained constant,
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decreased, or were uncertain. The weather trend was either positive or negative, significant or insignificant.
By juxtaposing weather trends with farmers’ perceptions within each canton, individual true and false val-
ues were derived. If the individual weather trend for the respective climate variable was insignificant, the
farmers were correct (getting a “true” value) by either identifying the right trend or if they were uncertain.
If the trend was significant, however, the farmers were only correct by identifying the increase or decrease
over time.

Climate Perceptions

We can see in Figure 22, that farmers are more accurate in their assessment regarding temperatures and
heat degree days. They are, however, more often wrong than right when it comes to spring frost and
precipitation. This could be due to the fact that the climate trends for temperatures and heat degree days
are, in fact, clearer and have been discussed in the media to a large extent. An additional factor could be
that the potentially large impact of spring frost on yield may contribute to an inflated perception of their
frequency, whereas the comparatively easier adaptability to droughts leads to an underestimation of their
occurrence. The mean frost damage reported by farmers who accurately perceived the spring frost trend is
slightly higher than that of farmers whose perceptions were incorrect. However, this difference in means is
not statistically significant.

Figure 22: Farmers’ Perceptions of Past Trends

Notes: Visualization of farmers’ perception of the development of spring frost, heat degree days, precipitation, summer
temperatures, and winter temperatures in their region over time, categorized by perceived accuracy. The figure shows
the proportion of respondents who were right (True) or wrong (False) in their individual perception of each weather
trend.

With respect to other environmental perceptions, a significant majority of farmers have reported an increase
in pest infestations over time. In contrast, water availability is generally perceived as stable. These findings,
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along with farmers’ responses to various climate and environmental perceptions, are illustrated in Figure
34 in the Appendix.

To further explore farmers’ perceptions of precipitation, we categorized respondents according to their ir-
rigation methods. Initially, we divided farmers into two groups: those using fixed irrigation systems and
those with no irrigation systems. Farmers using fixed irrigation systems, either fully or partially on their
crops, and those using mobile irrigation systems were clustered together. We then matched these groups
with the logical variable of their precipitation trend estimation (TRUE/FALSE), as previously described.
Combining these two TRUE/FALSE variables, we get the count of correct estimations within each group to
assess the accuracy of their predictions. Subsequently, a statistical comparison was conducted, employing a
Chi-squared to determine whether significant differences existed among the three groups (p = 4.582e−06).
We find that farmers employing an irrigation system are significantly more accurate in detecting the pre-
dominantly negative trend in yearly precipitation. Subsequently, we divided the farmers into three distinct
groups: fixed irrigation, mobile irrigation, and no irrigation system. Significant differences between these
three groups persisted (p = 4.606e−07), with the fixed-irrigation group achieving the highest accuracy. In-
terestingly, the group without any irrigation infrastructure outperformed the group with a mobile or hand
irrigation infrastructure. These results become even more pronounced when restricting the analysis to full-
time farmers, who made up the majority of survey participants. Among full-time farmers, the group with
fixed irrigation infrastructure has more than twice as many correct precipitation perceptions compared to
the group with no irrigation infrastructure, and more than five times as many correct perceptions compared
to the group with mobile irrigation infrastructure.

Climate Expectations

In addition to providing meteorological data from its network of weather stations, MeteoSwiss developed
the Swiss Climate Scenarios CH2018, which are climate projections derived from regional climate simula-
tions. These projections are based on various emission scenarios known as Representative Concentration
Pathways (RCPs), which model different potential climate futures. Among the most significant projected
changes are those related to extreme weather events. Notably, the frequency, intensity, and duration of
heatwaves and extremely hot days are expected to increase. Summer temperatures are projected to rise by
approximately +2.5◦C to +4.5◦C, with the longest dry periods in summer extending by up to +9 days. The
number of very hot days, currently averaging one per summer, could increase by 3 to 17 days. Additionally,
the temperature of the hottest day of the year is likely to increase by +2◦C to +5.5◦C. Winter temperatures
are also expected to rise, with projections indicating an increase of +2◦C to +3.5◦C. Consequently, there
will be fewer and less intense cold waves, frost days, and ice days. These absolute changes will be more
pronounced at higher elevations and are expected to be substantially larger in scenarios without climate
change mitigation measures (CH2018 2018). However, these changes do not necessarily translate to a re-
duction in spring frost risk for fruit trees, as the projected climate changes lead to an earlier onset of spring.
As Lhotka and Brönnimann (2020) indicate, this could result in increased exposure of vegetation to spring
frosts in Switzerland. Furthermore, heavy precipitation events are anticipated to become more frequent
and intense in all seasons, with a more pronounced effect during the winter months. The changes in sum-
mer precipitation are less certain, with projections indicating a range from a 25% decrease to a 10% increase
(CH2018).
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As depicted in Figure 33 in the Appendix, respondents were asked to share their views on statements
related to drought and frost. The analysis indicates a widespread agreement among farmers regarding
the expectation that “Drought will occur more often in Switzerland in the future compared to the past”.
When it comes to the same statement about frost, they only somewhat agree. Hence, farmers expect more
droughts than frost events in the future, which is in line with climate projections, not taking into consid-
eration that frost risk could still increase through a shift in the growing season. Furthermore, a significant
number of farmers believe that future drought periods will be longer, and they anticipate adverse effects
on their farms due to drought. Despite these concerns, farmers remain hesitant to invest in infrastructure
such as irrigation ponds or wastewater reuse facilities. There is relatively less reluctance when it comes to
investing in fixed irrigation systems, though farmers are still generally unwilling to take out loans for such
investments. This hesitation is even more pronounced in the case of frost adaptation, with the majority of
farmers expressing no willingness to invest in irrigation systems, heat, and fan machines, or to take out
loans to finance frost-related infrastructure. Nevertheless, farmers are open to enhancing their knowledge
of appropriate management strategies should the frequency of frost or drought increase in the future.

Climate Beliefs

In line with assessing climate expectations, farmers were surveyed about their general opinions on climate
change. They were asked to agree or disagree with statements regarding whether climate change presents
more risks than benefits, whether it poses a threat to global agriculture, whether it is anthropogenic, and
their overall stance on global warming. As illustrated in Figure 23, a significant majority of respondents
expressed concerns about climate change, acknowledging the rise in global average temperatures and the
shifting global climate. Many perceive climate change as a potential threat to agriculture.

Using the respondents’ view on climate change, we created the following four farmers typologies based on
Niles and Mueller (2016): (1) belief that climate is changing and humans are contributing; (2) belief that the
climate is changing but humans are not contributing; (3) belief that climate is not changing and humans do
not contribute; (4) belief the climate is not changing, but humans contribute to climate change. We excluded
belief Type 4 from the analysis due to its limited representation with only one observation. Farmers were
categorized into these groups based on their responses to the specific statements previously outlined and
shown in Figure 23. Those affirming either “The global climate is changing” or “Global average tempera-
tures are rising” alongside agreement with the statement “Human activities such as the burning of fossil
fuels are an important cause of climate change” were assigned to Type 1. The first two statements serve
as indicators of climate change belief, while the third statement proxies human contribution perceptions.
Farmers who endorsed the first two statements but not the third were categorized as Type 2, and so forth.
Farmers who didn’t fit any of the categories or answered with neither agreement nor disagreement but with
“Don’t know” were classified as missing. We hypothesize that farmers who acknowledge climate change
are expected to be more attuned to climate patterns than those who deny or attribute climate change to
non-human factors.

The correlation matrix, seen in Table 15, reveals associations between belief typologies and weather percep-
tions. Notable findings include the moderate positive correlations between Type 1 beliefs and being right
in their climate perception. Being of Type 1 and having a better climate perception seems to be associated
more than with the other types. These results underscore potential patterns in how individual belief sys-

70



Figure 23: Farmers’ Perceptions on Climate Change

Notes: Farmers’ views on global climate trends, causes, and impacts on agriculture, and opportunities and risks posed
globally and locally. The legend indicates the percentage of farmers selecting the individual response possibilities.

tems may be linked to their perceptions of specific weather conditions, providing insights into the interplay
between cognitive frameworks and environmental interpretations. Type 2 and Type 3 are similar in their
correlations with respect to having correct perceptions. They differ in their view of climate change but
agree that humankind is no major cause. However, the correlational nature of the analysis cautions against
inferring causation or complex dependencies. These results are robust when using regional weather data
instead of weather station data as a basis for the perception indicator.

Table 15: Correlation Matrix

Type 1 Type 2 Type 3

Summer Temperature 0.251 -0.179 -0.224

Winter Temperature 0.089 -0.042 -0.147

Precipitation 0.094 -0.100 -0.027

Heat Days 0.175 -0.090 -0.246

Frost Days -0.028 0.073 0.094

Notes: Correlation matrix illustrating the relationships between having a correct climate-related perception (Summer
Temperature, Winter Temperature, Precipitation, Heat Days, and Frost Days) and the three belief types (Type 1, Type 2,
Type 3).
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Further inquiry is needed to explore additional underlying character traits that may influence this context.
Additionally, it is crucial to examine whether experiences with frost or drought have had an impact on the
observed patterns.

2.4.4 Policy Support

To assess the perceived urgency of climate-related issues among farmers, we surveyed them regarding their
concerns about climate risks and other factors that could potentially affect their farming operations over the
course of their careers. Our findings indicate that farmers in Switzerland are primarily concerned with in-
creased government regulations and heightened political influence, rather than the potential exacerbation
of severe droughts or the increased frequency of frosts. Figure 24 visually depicts a ranking of respondents’
concerns related to climate risks and future impacts. The data reveal that the two issues eliciting the highest
levels of concern – where most respondents indicated they were “very concerned” – are increased govern-
ment regulations and the growing influence through political decisions. High on the list of concerns are
also rising input costs, including higher fuel and energy prices. Pests and diseases emerge as significant
concerns, alongside governmental and economic factors. This concern may be diminishing, as many re-
spondents have reported a decline in pests and diseases attributed to droughts and generally drier climate
conditions. Among climate-related issues, the most pressing concern for farmers is the potential for more
frequent frosts, followed by more frequent heat waves. Overall, the survey results suggest that climate risks
are relatively low on the list of priorities for the respondents.

Figure 24: Farmers’ Concerns

Notes: Farmers’ concerns about climate-related and other risks that could impact their farming operation during their
careers. The level of concern ranges from “Not concerned” to “Very concerned”. On the bottom is the issue that most
farmers are “very concerned” about.

Along these lines, we included a question to assess the level of policy support among farmers. Responses
to several statements concerning environmental regulation, government incentive programs, and the en-
vironmental responsibilities of farmers are presented in Figure 25. These responses were quantified on a
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scale from 1 (strong agreement) to 4 (strong disagreement), with an additional option for uncertainty. The
statements were broadly formulated to address environmental policy in general, without referencing spe-
cific incentive programs or regulations, as our primary interest was in eliciting overall policy support.

Figure 25: Farmers’ Policy Perspectives

Notes: Farmers’ answers to a question aimed at understanding their perspective on agricultural policies. Assessing
attitudes towards farmers’ knowledge, environmental regulations, and the impact of regulations on farm efficiency
and climate adaptation.

We chose four different statements to analyze policy support, namely “Government regulations will make
it more difficult to adapt to climate change risks”, “I would participate in government incentive programs
for climate change mitigation or adaptation”, “Environmental regulations make it difficult for me to run my
farm efficiently or profitably”, and “Environmental regulations are effective to protect natural resources”.
To accurately capture the sentiment of positively worded items reverse coding was applied. This ensured
that higher scores uniformly indicated a greater endorsement of policy measures across all items. The
cumulative scores from these four questions formed the Policy Support Index (PSI), calculated for each
respondent. With four statements, each scored from one to four, the possible PSI values range from four
to 16, with a mean of 9.52, a minimum of four, and a maximum of 16. Linking the PSI to belief typology
reveals that Type 1 respondents exhibit the highest level of policy support with an average PSI of 9.96.
Type 2 respondents show slightly lower support, with a mean PSI of 8.19, reflecting a less favorable view
towards environmental regulations. Type 3, although the smallest group, demonstrated the lowest aver-
age support (mean PSI of 7.8), suggesting that this group is the least positively inclined towards policies
aimed at environmental guidance. This result is to be expected as Type 3 is the more climate skeptic group
compared to Type 1 and Type 2. When disaggregating the different statements, Type 1 remains the most
policy-supportive group across all four statements.
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Looking at the last two statements of Figure 25, both statements reveal strong positive attitudes among
farmers regarding their responsibilities and the importance of their knowledge in agricultural policy-making.
The high levels of agreement suggest that farmers are not only aware of their environmental responsibilities
but also believe that their practical insights are vital for informed policy development.

2.4.5 Adaptation Behaviour

Following our insights into policy support, we examined how farmers’ beliefs and attitudes shape their
adaptive responses to climate events. In addition to the question about the impact in the years 2015/2018,
and 2017/2021, as discussed in Section 2.4.2, the farmers were asked about how they would react if those
events (droughts in 2015 and 2018, and frost events in 2017 and 2021) occurred at varying intervals: every 2
years, every 5 years, and every 10 years. There were several adaptation answer possibilities as well as two
answer possibilities with exit strategies (give up the orchard, give up the farm). The adaptation possibilities
for drought were to invest in insurance, switch crops, or install a fixed irrigation infrastructure. For frost,
possible adaptation strategies were to invest in insurance, to switch crops, to invest in either a wind blower
or in candles or to install a fixed irrigation infrastructure. We expect to see linear patterns, meaning that
as the frequency of the drought/frost event increases, more farmers would choose adaptation options, and
fewer farmers would just want to write off their losses. The same pattern was expected when looking at
exit options. We expect that with increasing frequency of events, more farmers would be willing to either
give up their orchards or give up their farms. The effects were expected to be more pronounced for frost, as
frost impacts are larger and harder to adapt to. What is striking, however, is that there seem to be different
preference patterns regarding adaptation versus exit strategies.

Figure 26: Adaptive Behavior

Notes: Farmers were asked to consider the scenario that a year resembling the conditions of 2015/2018 (for drought) or
2017/2021 (for frost) occurs with increased frequency in the future. The scenarios specified the frequency of occurrence
as every 2, 5, or 10 years. They were then asked for each frequency of occurrence and which measures they would
implement to combat drought (left) or frost (right). The selection of multiple measures simultaneously was allowed.
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What we can see in Figure 26 is that farmers are consistent in their answers when it comes to adaptation
strategies. If the frequency of heavy drought events increases from 10 to 5 and then to 2 years, farmers
are continuously more likely to switch crops, want insurance, and install fixed irrigation infrastructure,
and a decreasing fraction would simply write off their losses with no measures. As the frequency of frost
events increases, more farmers would want to switch crops, invest in wind blowers, install fixed irrigation
infrastructure, want insurance, invest in candles, and a declining fraction would want to write off their loss
and not use any measures. These linear patterns are as expected. This linearity does not carry over to exit
strategies. There seem to be U-shaped preferences. Farmers are more likely to exit (give up orchard/give
up farm) when the frost or drought event occurs at either 2-year or 10-year intervals. As explained above,
this result is unexpected. This result is more pronounced when looking at frost.

We examined the same question by dividing the sample into different age groups, as the age of the farmer
could influence their long-term perspective. A farmer nearing retirement might choose to exit or adapt at
certain time intervals rather than respond with a long-term strategy. We analyzed different age groups,
specifically, ≤ 50 and > 50; ≤ 40 and > 60. The pattern, however, remained consistent across all groups.
Therefore, age does not account for this particular pattern. We have explored other explanatory paths, but
so far we have not been able to explain that phenomenon.19 Further research is needed to understand the
discrepancies between adaptation and exit strategies.

Willingness to Adapt

Using the same survey question (Figure 26), we categorized respondents’ answers to the adaptation mea-
sures numerically, assigning a value of one to the two-year interval, two to the five-year interval, and three
to the ten-year interval.20 Based on individual answers to the adaptation measures, excluding exit options,
we created an index reflecting the willingness to adapt (WTA).

We identified the critical year for each farmer as the specific time threshold (2, 5, or 10 years) at which the
farmer expressed readiness to implement adaptive measures. For instance, a farmer might be willing to
invest in fixed irrigation infrastructure if a severe drought occurred every 5 years but would not make the
same investment if this drought occurred only every 10 years. However, the farmer would also invest if
it occurred every 2 years, making the “critical year” in this case 5 years. To quantify this willingness to

19Farmers who responded with a “13” (indicating both “every 2 years” and “every 10 years”) were minimal, with only one farmer
selecting this for both frost and drought, and these responses did not extend to the exit questions. Specifically, one farmer answered
“13” for drought insurance and another for wind blower due to frost, indicating that this unusual response pattern is not driving
the overall results. When focusing on farmers who consistently chose “3” (every 10 years) without selecting “1” (every 2 years), a
more significant number of respondents followed this pattern. For instance, 22 farmers answered “3” at least twice for drought and
41 for frost, with 16 farmers overlapping between these two samples. Narrowing the focus to those who selected “3” at least three
times reveals 17 farmers for drought and 23 for frost, with 11 overlapping. Among those who responded “3” exclusively to the exit
questions, 16 farmers did so for both drought and frost, though only 8 overlapped. The number of missing responses per sub-question
varied, indicating that while there are many missing data points, they are not systematically skewed toward any particular exit option.
Regarding the belief typology of the overlapping farmers (see Section 2.4.3), among the 8 who answered “3” exclusively to the exit
questions, 6 were of type 1, and 2 were of type 2. For the 11 farmers who chose “3” at least three times across all questions, 7 were type
1, 3 were type 2, and 1 was uncategorized. In the broader group of 16 farmers who selected “3” at least twice, 10 were type 1, 5 were
type 2, and 1 was uncategorized. Interestingly, these farmers did not select multiple responses simultaneously, which might indicate
a misunderstanding of the questions. To explore further, a filter was applied to identify farmers who chose “3” at least once, revealing
a subset who also selected combinations like “123”, “23”, or single values. This broader group included 44 farmers for drought and
69 for frost, with 28 overlapping. Their typology was distributed as follows: 15 type 1, 10 type 2, 1 type 3, and 2 uncategorized.
Additionally, the Willingness to Accept (WTA) among the 16 overlapping farmers showed an average WTA of 2.5 for drought and
2.56 for frost, with slightly higher averages of 2.58 for drought and 2.65 for frost among the 11 overlapping farmers.

20We also conducted the analyses using the original interval values (two, five, and ten years) instead of the assigned numerical
values (one, two, and three), and the results remained consistent.
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adapt, we calculated the average across all potential adaptation measures for each farmer, individually for
both drought and frost conditions (excluding responses that involved giving up their farm or orchard). This
average yielded a numerical value between 1 and 3, indicating the individual’s overall willingness to adapt.
A higher value suggests a greater willingness to adapt, as it indicates a readiness to implement measures
even when extreme events occur less frequently. The average WTA to drought among all farmers is 1.56. In
comparison, the average WTA for frost is slightly higher, at 1.65.

Figure 27: WTA and Yield Loss

Notes: Farmers willingness to adapt (WTA) to drought or frost, dependent on the specific yield losses caused by drought
(left) or frost (right) occurrences, categorized into distinct intervals. The y-axis represents the willingness to adapt, with
higher values indicating a greater willingness to adapt.

We can then contextualize the willingness to adapt by examining its relationship with yield loss and the
belief typologies. Figure 27 illustrates a trend in individuals’ WTA concerning varying levels of losses. Ini-
tially, WTA decreases with diminishing losses, followed by an increase at minimal to zero loss levels. De-
spite this trend, mean WTA values across distinct groups show no statistically significant differences. This
trend remains consistent when the sample is limited to full-time farmers (see Figure 35 in the Appendix).
One hypothesis is that farmers experiencing high losses exhibit a strong inclination to adapt, driven by
necessity, while those with minimal losses retain a sense of adaptability if required. Intermediate loss levels
appear to correlate with the lowest willingness to adapt.

When we compare the WTA values across belief typologies (see Figure 28), Type 3 exhibits the highest mean
WTA value, indicating greater readiness to adapt. Type 3, characterized by the belief that climate change is
not occurring and lacks human influence, demonstrates the highest propensity for adaptation. Conversely,
respondents of Type 1 and Type 2 display a lower willingness to adapt to future climate changes despite
acknowledging climate change.21 This observation challenges the intuition and findings of other studies,
suggesting that disbelief in climate change correlates with higher adaptation readiness. This phenomenon
cannot be explained by differences in irrigation infrastructure, see Figure 32 in the Appendix. A plausi-
ble hypothesis is that farmers who believe in climate change may have adopted adaptive measures earlier,

21When the sample is restricted to full-time farmers, the effect for drought becomes more pronounced, while the effect for frost is
no longer observed (see Figure 36 in the Appendix).
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Figure 28: WTA and Belief Type

Notes: Farmers’ willingness to adapt (WTA) to drought or frost, dependent on the belief typology. A higher WTA value
is an indication of a higher willingness to adapt. The left relates to WTA Drought and the right to WTA Frost.

whereas climate skeptics might have delayed such actions. Interestingly, Type 3 has the highest propor-
tion of fixed irrigation infrastructure; however, fixed irrigation systems are just one of several adaptation
measures. One other plausible explanation is that non-believers in climate change may exhibit greater op-
timism, contrasting with the potential resignation among those who acknowledge climate change. Further
research in this area is needed to fully grasp the underlying mechanisms and interplay between farmers’
WTA and their climate beliefs.

It is observed that in the case of drought, respondents with fixed irrigation systems demonstrate a higher
average WTA than those with either no irrigation or mobile irrigation infrastructure. In contrast, under frost
conditions, the average WTA is relatively consistent across all three categories of irrigation infrastructure.

We conducted a regression analysis testing the effect of individual characteristics – such as age, sex, and
experience – along with the impact of losses due to drought and frost and the capacity to mitigate these
losses on the willingness to adapt. However, the resulting coefficients were not statistically significant and
rather small. Additionally, the R-squared values were very low, indicating that the explanatory variables
account for only a small portion of the variance in WTA. We conclude that the overall explanatory power
of the models is limited, highlighting the complexity of factors influencing individual WTA.

Another survey question assesses the degree of concern among farmers regarding specific climate risks
and their potential impacts on agricultural operations. We posit that heightened worry among farmers
regarding drought, water scarcity, or frost correlates with an increased willingness to adapt to respective
climatic challenges. To investigate this hypothesis, we construct two distinct metrics for drought concern:
one focusing solely on worry related to severe drought events, and the other encompassing apprehension
towards warmer summer temperatures and heightened occurrences of heat waves. Our analysis shows
minimal positive correlations, suggesting almost no linear relationship between farmers’ concerns and their
willingness to adapt. The level of worry exhibited by farmers appears to have no significant influence on
their willingness to adapt.
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2.5 Discussion and Conclusions

This paper examines the impacts of frost and drought on perennial crop farmers in Switzerland, addressing
a gap in the existing literature related to research on this specific group of farmers. We conducted a nation-
wide survey, collecting information on the characteristics of the farm, on both the climate impacts of frost
and drought, on the farmer’s individual assessment with regard to climate perceptions, expectations, and
beliefs, and on their individual characteristics. Additional questions were aimed at their attitudes towards
environmental policies and incentive programs, as well as their perceived responsibilities towards the en-
vironment. Based on these survey questions we developed three different measures for data analysis. First,
we built climate belief typologies, following the approach of Niles and Mueller (2016). Additionally, we
created a policy support index, indicating the level of support towards policy measures and governmental
incentive programs. Finally, we constructed a willingness to adapt index, a measure of how quickly farmers
would respond if extreme climate events were to become more frequent.

Our findings reveal significant average harvest losses exceeding 20 percent due to frost over the last decade,
with losses from frost being notably higher than those from drought. However, this does not reflect farmers’
future concerns, as more farmers anticipate that their farm operations will be more affected by drought
than frost in the future. Interestingly, farmers express a slightly higher willingness to adapt to drought
than to frost, which may be influenced by the fact that drought adaptation strategies are more widespread
and easier to implement. For instance, irrigation has proven to be a highly effective mechanism against
drought. When including other adaptation measures such as soil cultivation, ground cover, shading, and
the cultivation of drought-resistant crops, farmers were able to prevent, on average, 20 percent of the losses
in 60 percent of cases. While this is substantial, it raises the question of whether further improvements
could be made. In contrast, adaptation measures against frost, such as overhead irrigation, heating, and air
circulation, have been effective in reducing losses by up to 30 percent in at least a third of instances over
the past 10 years.

Exposure to specific climatic shifts influences farmers’ perceptions of these events. Our study finds that
farmers are more adept at detecting trends in temperature – particularly winter temperature, summer tem-
perature, and heat days – than they are at detecting trends in frost and precipitation. Consistent with
existing literature, we also find that farmers with fixed irrigation systems have significantly better recogni-
tion of precipitation trends compared to those without such systems or with no irrigation at all. Farmers
expect more droughts than frost events in the future, which is in line with climate projections. They also
anticipate more intense droughts in the future.

In terms of climate beliefs, the majority of farmers express concerns about climate change, acknowledging
an increase in global average temperatures, which aligns with the broader literature. However, fewer farm-
ers agree on the human contribution to climate change. When analyzing different climate belief types, we
observe a positive correlation between belonging to Type 1 (belief in climate change and human contribu-
tion) and having more accurate climate perceptions. Climate change believers also tend to have a higher
policy support index, reflecting greater support for environmental regulations and a higher likelihood of
participating in government incentive programs for climate change mitigation and adaptation, as expected.
Surprisingly, this does not translate into a greater willingness to adapt. Contrary to expectations and prior
research, we find that climate skeptics exhibit a higher willingness to adapt, which cannot be explained
by the already implemented infrastructure. Acknowledging climate change does not necessarily lead to
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adaptive behavior. Climate change believers may experience frustration or disillusionment, which could
manifest in resistant behavior. Or this behavior could also be linked to either the specific geographic lo-
cation where this research was conducted or to the fact, that we analyzed perennial crop farmers. These
hypotheses highlight the need for further research to fully understand these complex inter-dependencies.
Moreover, our findings suggest that farmers currently prioritize concerns about government regulations
over climate impacts, expressing more concern about rising costs and regulatory issues than the effects of
frost and drought.

Overall, this study contributes to a deeper understanding of farmers’ adaptation mechanisms, perceptions,
and beliefs, which are crucial for addressing future climatic changes. The complex process of adaptation in
agriculture requires ongoing research, reinforcing the conclusion that there is no one-size-fits-all solution
for enhancing agricultural resilience. Effective climate adaptation in agriculture will depend on stakeholder
involvement and collaboration among researchers, advisers, and policymakers.

Further research could also explore the implications of these results for aggregate agricultural productivity
in Switzerland as climate change intensifies, according to the percentages of farmers believing vs. not
believing in climate change.
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Appendix

Figure 29: Cantonal Distribution of Survey Respondents

Figure 30: Irrigation Systems

Irrigation
System

Total
Surface

Overcrown
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Undercrown
irrigation

Local

Microjet
Irrigation
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Notes: Overview of different irrigation systems, starting with the differentiation between local or total surface irrigation.
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Figure 31: Farmers’ Willingness to Take Risks

Notes: Distribution of farmers self-reporting on their willingness to take risks on a scale of zero to ten, where zero means
“not at all willing to take risks” and ten means “very willing to take risks”. Farmers tend to be more risk taking on
average.

Figure 32: Infrastructure and Belief Type

Notes: Distribution of irrigation infrastructure equipment across the three belief typologies shows minimal variation.
Type 3 has a slightly higher presence of fixed irrigation infrastructure compared to Type 1 and Type 2, while Type 2
exhibits the highest percentage of mobile irrigation infrastructure.
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Table 16: Trends in Climate Variables

Station Canton Summertemp Wintertemp Temp Prec Frost days Heat Days

BER BE 0.0452* 0.028 0.0331* -0.007 0.098 0.1956*
KOP BE 0.0311* 0.0364* 0.0292* -0.0135* 0.110 0.172
LAG BE 0.0258* 0.029 0.0261* -0.0223* -0.064 -0.039
WYN BE 0.0514* 0.0377* 0.0405* -0.002 0.010 0.2723*

BAS BL 0.0551* 0.0423* 0.0435* -0.000 0.000 0.2958*

GVE GE 0.0500* 0.032 0.0420* -0.003 -0.1735* 0.217

GLA GL 0.0496* 0.0383* 0.0418* -0.001 -0.103 0.1955*

CHU GR 0.0669* 0.0464* 0.0555* -0.001 -0.130 0.4094*
GRO GR 0.020 -0.027 0.003 -0.022 0.1310* 0.5289*

DEM JU 0.0407* 0.038 0.0345* -0.0139* 0.012 0.2395*
FAH JU 0.0508* 0.0437* 0.0443* -0.010 -0.084 0.1599*

LUZ LU 0.0463* 0.034 0.0379* 0.006 -0.108 0.2409*

NEU NE 0.0383* 0.031 0.0343* -0.004 -0.075 0.1979*

EBK SG 0.0348* 0.022 0.0256* -0.017 0.120 0.120
RAG SG 0.0523* 0.0532* 0.0498* 0.001 -0.140 0.2822*
STG SG 0.0493* 0.038 0.0400* 0.0137* -0.084 0.039

HLL SH 0.0332* 0.0410* 0.0333* -0.0187* 0.067 0.2000*
SHA SH 0.0563* 0.0436* 0.0408* 0.005 -0.085 0.2979*

GOE SO 0.0582* 0.014 0.0269* 0.003 0.177 0.4146*

EIN SZ 0.0474* 0.033 0.0391* -0.0223* -0.061 0.020

GUT TG 0.0605* 0.0460* 0.0492* 0.000 -0.130 0.2564*
HAI TG 0.0496* 0.0448* 0.0455* -0.0113* -0.2350* 0.065
TAE TG 0.0518* 0.0441* 0.0424* -0.001 -0.010 0.1819*

MAG TI 0.0376* 0.022 0.0343* -0.012 -0.003 0.4876*
OTL TI 0.0534* 0.0369* 0.0473* -0.013 -0.016 0.4399*

ALT UR 0.0393* 0.0337* 0.0343* 0.001 -0.010 0.098

AIG VD 0.0469* 0.0364* 0.0400* -0.008 0.009 0.1791*
CGI VD 0.0407* 0.029 0.0356* -0.005 -0.097 0.180
PAY VD 0.0467* 0.0371* 0.0376* -0.005 -0.037 0.2664*
PUY VD 0.0477* 0.033 0.0408* -0.004 -0.060 0.1868*

SIO VS 0.0728* 0.0416* 0.0576* -0.005 -0.1951* 0.6190*
VIS VS 0.0583* 0.033 0.0464* -0.002 -0.037 0.4228*

CHZ ZG 0.0539* 0.003 0.014 -0.008 0.067 0.137

KLO ZH 0.0476* 0.0407* 0.0397* 0.005 0.134 0.2976*
REH ZH 0.0525* 0.0454* 0.0444* -0.002 -0.029 0.2754*
SMA ZH 0.0482* 0.035 0.0392* -0.006 -0.028 0.2232*
WAE ZH 0.0507* 0.0422* 0.0440* -0.005 -0.118 0.2378*

Notes: Linear trends in various climate variables across different weather stations and cantons in Switzerland, calculated
through linear regression. The variables include trends in summer temperatures (Summertemp), winter temperatures
(Wintertemp), overall average temperature (Temp), precipitation (Prec), frost days (Frost days), and heat degree days
(Heat Days). Asterisks (⋆) next to the values indicate statistically significant trends. The trends reflect changes over
time, showing either positive or negative shifts in climate variables at each station.
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Figure 33: Farmers’ Perspectives on Drought and Frost

Notes: Farmers’ perspectives on the potentially growing occurrence and duration of droughts and frost events, their
preparedness for investment in water management and frost protection, and strategies for adaptation and resilience.
Farmers Agreement is captured by a Likert scale. The percentage amount of farmers choosing each option is denoted
in the color scale on top of the graph.
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Figure 34: Perceived Trends in Climate and Environmental Factors

Notes: Farmers’ observations on summer and winter temperatures, annual precipitation, water availability, heat and
frost days, drought occurrence, heavy rainfall events, and pest and disease incidences in their canton over time. The
percentage amount of farmers’ answers is denoted in the color scale on top of the graph.

Figure 35: WTA and Yield Loss (Farm Type)

Notes: Farmers’ willingness to adapt (WTA) in response to yield losses from drought (left) and frost (right), shown for
both the full-time farmer subsample and the combined sample of all farmers.

86



Figure 36: WTA and Belief Type (Farm Type)

Notes: Farmers’ willingness to adapt (WTA) to drought or frost, dependent on the belief typology. A higher WTA value
is an indication of a higher willingness to adapt. The left relates to WTA Drought and the right to WTA Frost, shown
for both the full-time farmer subsample and the combined sample of all farmers.

Figure 37: WTA and Infrastructure

Notes: Farmers’ willingness to adapt (WTA) to drought or frost, dependent on them having a fixed irrigation infrastruc-
ture, a mobile one, or no irrigation infrastructure at all. A higher WTA value is an indication of a higher willingness to
adapt.

87



88



Chapter 3

Strategic Delegation in a
Standard Public Goods Game

Anna Schmid†, Alessandro Tavoni‡ and Ralph Winkler†

† Department of Economics and

Oeschger Centre for Climate Change Research, University of Bern
‡ Department of Economics, University of Bologna

Abstract
We provide the first experimental evidence of strategic delegation in the context of public good provision.
In a two-stage game, we investigate whether and to what extent two principals delegate the public good
choice to agents who hold a different valuation of the public good than their own (strategic delegation).
According to theoretical predictions, delegating to an agent with a lower valuation of the public good than
the principals themselves is only in their best interest when public good choices are strategic substitutes.
To explore this, we conduct two different treatments, one with linear benefits from public good provision
(rendering contribution choices dominant strategies) and one with strictly concave benefits (rendering con-
tribution choices strategic substitutes). We find strong evidence for conditional cooperation, i.e., principals
delegate to agents with higher benefits from public good provision if they expect the other principal to
do the same. However, we observe no significant difference in delegation patterns between the two treat-
ments. This may stem from principals’ limited expectations regarding changes in agent behavior relative to
the agents’ valuation of the public good. Our findings suggest that the “race to the bottom” due to strategic
delegation in public good provision may be less severe than predicted by economic theory.

Keywords: strategic delegation, public goods game, lab experiment, conditional cooperation

JEL-codes: D72, P48
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3.1 Introduction

The provision of public goods often faces significant challenges due to free-riding incentives, a well-
documented issue in economic literature and beyond. Mitigating climate change is a prime example: as
each country’s contribution will benefit all countries in a non-exclusive and non-rival manner, all countries
will provide inefficiently low levels of greenhouse gas (GHG) emission abatement. This example, however,
also reveals the complexity of real-world governance: there is no one person who decides on the climate
policy of each individual country. Instead, representative democracies operate through a chain of delega-
tion from voters to policymakers (Strøm 2000): (i) from voters to elected representatives, (ii) from legislators
to the executive branch (head of government), (iii) from the head of government to the heads of different
executive departments, and (iv) from these heads to civil servants. In each step, one party (the agent) acts
on behalf of another (the principal). Delegation occurs because the principal may lack the information,
skills, or time that the agent possesses. Additionally, selecting an agent with specific preferences can signal
the principal’s intentions, thus, credibly committing to certain actions (e.g., Ludema and Olofsgård 2008;
Tavoni and Winkler 2021). This form of delegation, i.e., delegation as a commitment device, is called strate-
gic delegation.

In this paper, we analyze the extent to which principals strategically delegate to agents, who then decide
on behalf of the principals on the contributions to a public good. To the best of our knowledge, we are the
first to analyze this question in an experimental setting.

The simplest form of a delegated public goods provision game, which we employ in our experimental
set-up, involves two principals who are identical with respect to the benefits and costs of public good pro-
vision. In the first stage, these principals simultaneously choose one agent from identical pools of available
agents who vary in their valuation of the public good and, thus, have different incentives to provide the
public good. In the second stage, the two chosen agents simultaneously decide on their contribution to the
public good. Under conditions of complete information, i.e., costs and benefits of public good provision
of all involved parties are common knowledge, principals can credibly commit to high or low public good
provision by selecting an agent with either a high or low valuation of the good.

Delegating to agents who have a different valuation of the public good than the principal themselves typ-
ically results in different contribution decisions from what the principal would have otherwise chosen.
This can be beneficial, if this changed action triggers a favorable best response from the other principal’s
agents. More precisely, strictly concave benefits from public good provision render public good contri-
butions strategic substitutes. Put differently, an agent’s best response to a decrease in the public good
provision by the other agents is to increase its own provision of the public good. Thus, principals commit
to lower public good provision by delegating to agents with a lower valuation of the public good than they
hold themselves, prompting the other agents to increase their own contributions in response.

This incentive to strategically delegate disappears if public good provisions are dominant strategies, i.e., the
best response is independent of the other agent’s actions. Accordingly, we conduct two different treatments
of a delegated public goods provision game. In the first treatment, benefits from the public good are linear
in the total provision of the public good for both principals and agents, thus eliminating any incentive to
delegate strategically. In the second treatment, however, benefits from public good provision are strictly
concave, rendering the public good provision choices strategic substitutes. Consequently, this treatment
creates an incentive for principals to delegate to agents who have a lower valuation of the benefits than
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they have themselves.22 Comparing the principals’ choices of agents across treatments allows us to isolate
the effect of strategic delegation due to the strategic substitutability of public good contributions.

Non-linear public goods games are inherently complex, and more so in the case of an additional delegation
stage. Due to the non-linearity, public good contributions are no longer dominant strategies, which requires
participants to form beliefs about the other agent’s contribution choices. Additionally, calculating payoffs
becomes more challenging. The situation is even more intricate for the principals, who not only have to
form beliefs about the other principal’s choice of agent but also how these choices will influence the agents’
public good provisions in the second stage. To facilitate comprehension and belief formation, we embedded
an intuitive payoff calculator in the experiment, which allowed subjects to input hypothetical choices for
all players and automatically computed the ensuing payoffs for all.23 To avoid nudging individuals with
specific choices, no default option was presented, and subjects needed to pick an initial value before the
slider appeared.

Another challenge is implementing the two-stage game in an experimental setting, particularly in an online
environment. We leverage the game’s sequential structure for a novel implementation protocol. Restricting
the choice of agents in the first stage to five potential candidates (significantly lower, lower, same, higher,
and significantly higher evaluation of the public good than the principals have themselves) results in a
total of 25 different second-stage games. Thus, to derive the information on public good contributions
in the second stage, we recruit players who play all potential 25 second-stage games in a random order,
without feedback on other players’ choices after each game. Since contributions in the second stage are
made simultaneously, we do not require both agents to participate simultaneously. Instead, each player
completes the sequence of 25 games and is matched to a prior subject for payoff calculation. Once we have
gathered sufficient data from the second stage, we run the first stage, in which principals select an agent.
Again, every player in the first stage of the experiment is matched to the prior subject to determine the
combination of agents who decide on public good contributions. For both principals, a second-stage player
is randomly chosen from the second-stage dataset, and the contribution this agent made in the respective
second-stage game determines the public good contribution, which is payoff-relevant for the principal. This
implementation protocol is particularly suited to online experiments, as it eliminates the need for all four
players to be available at the same time.

The experimental literature on public goods games has established that players are motivated by more than
just their own payoffs. Specifically, most players can be classified as “conditional cooperators”, i.e., they are
willing to deviate from the inefficient under-provision Nash equilibrium if they believe that other players
will do the same. Consequently, public good experiments find that average contributions are significantly
higher than the Nash equilibrium contributions of purely self-interested players, though they still fall short
of the level required for efficient public good provision. We observe the same behavior in the second stage
of our strategic delegation public goods game. Average contributions are significantly above the levels
predicted by the Nash equilibrium when players are solely motivated by their own payoffs. Additionally,
agents contribute significantly more when they expect higher contributions from the other agent. As antic-
ipated, this effect is smaller in the quadratic treatment.

22As we use a linear benefit function in the first and a concave quadratic benefit function in the second treatment, we consistently
refer to the two treatments as the “linear” and “quadratic” treatments.

23A screenshot of the game interface, including the payoff calculator, is provided in Figure 40.
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Our expectation that conditional cooperation significantly influences the first stage is supported by our
findings. We find that principals delegate to agents with a higher valuation of the public good if they believe
the other principal will do the same. This is in stark contrast to the theoretical prediction when players only
care about their own payoffs: in such cases, delegation to agents with a higher than own valuation of
benefits is never in the best interest of principals. However, our hypothesis that conditional cooperation
would not entirely override strategic delegation incentives is not supported by the experimental results.
Specifically, we observe no significant difference in the choice of agents across our two treatments. While
we have to be careful to extrapolate from the very specific set-up of our delegation public goods game to
delegation in public goods contexts in general, our results indicate that the “race to the bottom” induced by
strategic delegation may be substantially less severe than indicated in the theoretical economic literature.

The remainder of the paper is structured as follows: In Section 3.2 we discuss how our paper contributes to
the theoretical and experimental literature on strategic delegation, in particular with respect to public good
provision. Then, we briefly explore the incentives for strategic delegation in the simple model framework
that also informs our experimental set-up in Section 3.3. In Section 3.4 we introduce our experimental
design, state and discuss our hypotheses regarding the results of our experiment, and explain in detail the
particular implementation protocol of our experiment. We report the results for the second and first stages
of our experiment in Section 3.5. Finally, in Section 3.6 we discuss our results and conclude.

3.2 Related Literature

The theoretical literature on strategic delegation emerged in the Industrial Organization literature analyzing
the delegation of managerial decisions from shareholders to chief executive officers (see Kopel and Pezzino
2018). Subsequently, the concept of strategic delegation found its way into the literature on negotiation and
cooperation (e.g., Burtraw 1992, 1993; Crawford and Varian 1979; Jones 1989; Segendorff 1998; Sobel 1981),
where it has been utilized in various contexts with inter-agent spillovers, such as environmental policy or
the provision of public goods more generally.24

More related to the provision of public goods, Siqueira (2003), Buchholz et al. (2005), Roelfsema (2007) and
Hattori (2010) analyze strategic voting in the context of environmental policy. Siqueira (2003) and Buch-
holz et al. (2005) both find that voters’ selection of agents is biased toward politicians who are less green
than the median voter. By electing a more “conservative” politician, the home country commits itself to a
lower tax on pollution, shifting the burden of a cleaner environment to the foreign country. By contrast,
Roelfsema (2007) accounts for emissions leakage through shifts in production and finds that median voters
may delegate to politicians who place greater weight on environmental damage than they do themselves,
whenever their preferences for the environment relative to their valuation of firms’ profits are sufficiently
strong. However, this result breaks down in the case of perfect pollution spillovers, such as the emission
and diffusion of greenhouse gases. Hattori (2010) allows for different degrees of product differentiation
and alternative modes of competition, i.e., competition on quantities but also on prices. His general finding
is that when the policy choices are strategic substitutes (complements), a less (more) green policymaker is
elected in the non-cooperative equilibrium.

24Strategic delegation is often called “strategic voting” when the principal is the electorate or, more precisely, the median voter and
the elected government is the agent (e.g., Persson and Tabellini 1992).
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Strategic delegation in the provision of public goods with cross-border externalities more generally has
been examined by Kempf and Rossignol (2013) and Loeper (2017). The authors of the former paper show
that any international agreement that is negotiated by national delegates involves higher public good pro-
visions than in the case of non-cooperative policies, taking feasibility, efficiency, and equity constraints into
account. In their model, the choice of delegates is highly dependent on the distributive characteristics of
the proposed agreement. Loeper (2017) proves that whether cooperation between national delegates is ben-
eficial only depends on the type of public good considered and, more specifically, on the curvature of the
demand for the public good but not on voters’ preferences, the magnitude of the cross-border externalities,
nor the size, bargaining power or efficiency of each country in providing the public good.

There is extensive experimental economic literature on linear public goods games.25 The early literature
till the mid-1990s found two main results: (i) In one-shot public goods games, participants contributed on
average approximately half their endowment to the public good, which is halfway between the socially op-
timal contribution and the non-cooperative Nash equilibrium contribution predicted by non-cooperative
game theory. However, individual contributions covered the full range from 0% to 100%. (ii) In environ-
ments, where the one-shot public goods game was played repeatedly, average contributions to the public
good started at approximately 50% (as in the one-shot game) and declined with increasing number of rep-
etitions.26

To explain the deviations from theoretical predictions, different behavioral theories have been proposed:
Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) focus on agents’ inequity aversion. According to
these theories, agents contribute more if others also contribute more due to their concerns for equity in pay-
offs. Building on Rabin (1993), Dufwenberg and Kirchsteiger (2004) and Falk and Fischbacher (2006) show
that explicitly incorporating the players’ beliefs about other players’ strategies together with reciprocal mo-
tivations, public goods games can turn from a prisoner’s dilemma game to a coordination game, in which
both the non-cooperative Nash equilibrium and the social optimum, together with other outcomes in be-
tween, constitute stable equilibria. Both strands of literature allow for conditional cooperation. Sonnemans
et al. (1999), Fischbacher et al. (2001), Keser and van Winden (2000), among others, report experimental ev-
idence for such tendency in public goods games. In an effort to test the robustness of conditional coopera-
tion behavior, Burlando and Guala (2005), Fischbacher and Gächter (2010) and Kurzban and Houser (2005)
consistently find that players can be classified into three different groups: (i) unconditional cooperators,
(ii) conditional cooperators and (iii) free-riders. While the shares of these groups vary with experimental
design, the group of conditional cooperators usually has the highest share. These findings are robust to
variations in the cultural and educational characteristics of participants (e.g., Brandts et al. 2004; Hermann
and Thöni 2008; Kocher et al. 2008).

An important question with respect to our paper is whether and to what extent delegation can foster pub-
lic goods provision within and across groups. In fact, the experimental literature on delegation and public
goods provision is surprisingly sparse.27 Several studies report that the free-riding incentives in public

25In linear public goods games, n players simultaneously split a given endowment between a private and a public account. Players’
pay-offs are their private accounts plus the total sum over all players to the public account multiplied by some fraction α (marginal
per capita return) with 0 < α < 1 < nα. Under these circumstances, non-cooperative game theory predicts that, if players only care
about their own pay-offs, all players assign the full endowment to the private account, while the Pareto dominating social optimum
would be that all players allocate their full endowment to the public account.

26See Ledyard (1995) and Chaudhuri (2011) for authoritative surveys on linear public goods experiments.
27There exists also a small literature testing strategic delegation in other experimental contexts, such as the ultimatum game (e.g.,

Fershtman and Gneezy 2001; Choy et al. 2016), the dictator game (e.g., Hamman et al. 2010; Bartling and Fischbacher 2012) and
bargaining (e.g., Schotter et al. 2000).
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goods provision within groups can at least be alleviated by different institutions of delegation. For exam-
ple, Güth et al. (2007) find that “leading by example”, i.e., one player appointed as a leader (either by
election or randomly assigned) first contributes, then all other players, after observing the leader’s contri-
bution, decide about their own contribution, significantly increases public goods provisions. However, this
leading-by-example effect is drastically reduced if players’ endowments are heterogeneous across players
or private information (Levati et al. 2007). Another institutional design for leadership is that leaders make
non-binding contribution suggestions to players prior to the players’ contribution choices. Levy et al. (2011)
show that leaders’ contribution suggestions indeed have a significant effect on players’ contributions. They
find that leader suggestions act as an upper bound to the player’s contribution schedules. While, on av-
erage, leadership has a positive effect on public goods provision, it is detrimental in cases where leaders
suggest low contributions. Kroll et al. (2007) investigate whether a non-binding vote on the provision of
a public good prior to the contribution stage can increase public goods provision. They find that voting
alone does not yield substantially higher public goods contributions. If, however, voting is combined with
a costly punishing mechanism, in which players who deviate from the majority proposal can be punished,
significantly decreases free-riding incentives.

Another strand of literature studies institutions in which leaders have more formal power over the other
players’ contributions. Oxoby (2013) investigates a one-shot public goods game in which players can either
directly mandate the contributions of others or at least limit their feasible choice set. He finds that dictated
contribution levels are significantly higher and even approximate socially efficient levels. Interestingly, if
players can dictate different contribution levels for themselves and all other players, almost 70% of play-
ers manage to resist the temptation to free-ride on the mandated contributions of the others. Bolle and
Vogel (2011), however, report that this altruistic behavior deteriorates over time in repeated public goods
provision games. In addition, players voluntarily submit to an institution in which one leader dictates the
contributions of all group members (Fleiß and Palan 2013; Hamman et al. 2011).28

To the best of our knowledge, the only paper analyzing delegation in a linear public goods game across
groups is Kocher et al. (2018). In their set-up, nine players are divided into three groups consisting of three
players each. Each group elects a group leader who mandates contributions to the public good for all
members of their group. Public good provision, however, depends on the contributions of all nine players
across all three groups. This setup is most closely related to the theoretical literature on strategic delegation
and public goods provision. However, due to the linear public goods technology, there are no incentives
to strategically delegate to exploit the strategic substitutability of public goods provision choices. In line
with similar experiments of delegation within groups the authors find that (i) delegation increased public
good provision compared to the case of non-delegation,29 (ii) delegates mainly refrain from exploiting their
group members, and (iii) contributions within groups decline over time, although slower than in the case
of non-delegation. Two further related papers are İriş et al. (2019, 2022). They also feature experiments on
hierarchical decision-making, respectively to study the provision of a threshold and standard public good.
Both find a negative effect of delegation in terms of reduced contributions with respect to the traditional
case of self-representing individuals choosing independently how much to invest in the public good.

28Another possible delegation institution is to delegate punishment. Andreoni and Gee (2012) find that a “hired gun” that exhibits
a non-exclusive power to punish often results in full compliance in which no punishment is exerted. In addition, punishment – in case
it is exerted – is relatively small and, therefore, cost-effective.

29However, this effect is exclusively due to alleviating the common action problem within each group, free-riding incentives across
groups remain.
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All the aforementioned experimental literature has in common is that it restricts attention to linear public
goods games.30 As already hinted at in the introduction and formally shown in the next section, there is no
incentive to strategically delegate in the case of a linear public goods technology; public good contributions
are dominant strategies. Thus, our paper is the first to analyze strategic delegation in the case of non-linear
benefits from public goods provision.

3.3 Strategic Delegation in the Provision of Public Goods

In the following, we analyze how agents behave with respect to contributing to a public good if each of them
can delegate the decision on the public good contribution to another agent. More precisely, we consider a
two-stage principal-agent framework in which two principals select agents, which in turn then decide on
the provision of a public good.

3.3.1 Timing and Information Structure

In the first stage, each of the two principals simultaneously chooses an agent to whom they delegate the
decision on the public good provision. Principals can choose from a set of agents, which differ with respect
to the benefits they obtain from the provision of the public good. In the second stage, the delegated agents
decide simultaneously and non-cooperatively on behalf of the principal about the public good provision.

Thus, the timing of the game can be summarized as follows:

1. Delegation Stage:
Principals simultaneously and non-cooperatively choose agents.

2. Public Good Provision Stage:
Agents simultaneously and non-cooperatively decide on public good contributions xi.

The payoff functions of all principals and agents are common knowledge. In particular, this implies that
principals in the first stage know the payoff functions of the other principal before they choose an agent,
and agents in the second stage know the payoff of the other agent before they decide on public good
contributions.31

30There exists a small literature analyzing public goods provision games with smooth non-linear public good technologies. They
employ either a concave or convex public goods technology, implying that public goods provision choices are either strategic substi-
tutes or complements. Results consistently show that public goods provision is (i) higher than predicted by theory (like in the linear
public goods games) and (ii) significantly higher in case of strategic complementarity compared to strategic substitutability (e.g., Pot-
ters and Suetens 2009; Lappalainen 2018).

31Note that while the monetary payoffs are indeed common knowledge also in our experimental setting, the game theoretical payoff
functions of principals and agents, i.e., their preferences, do not necessarily coincide with their monetary payoffs. We shall further
discuss this issue in Section 3.4.2.
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3.3.2 Payoffs

Payoffs decrease with individual contributions xi (i = 1, 2) to the public good and increase with the benefits
of total provision x = x1 + x2. Principals are identical with respect to their payoff functions Πi (i = 1, 2):

Πi = B(x)− C(xi) , i = 1, 2 . (1)

We assume that the benefit function B(x) is strictly increasing and concave, i.e., B′ > 0, B′′ ≤ 0, and the
cost function is strictly increasing and strictly convex, i.e., C′ > 0, C′′ > 0.

In the first stage of the game, each principal can choose from a set of agents j. The agents’ payoffs π
j
i differ

with respect to the benefits of the public good in the following way:

π
j
i = θ

j
i B(x)− C(xi) , i = 1, 2 , (2)

where θ
j
i is a parameter that identifies agent j’s type and scales their benefits from public good provision

relative to the benefits of their principal i. We assume that θ
j
i ∈ [θmin, θmax] with θmin < 1 < θmax. Thus,

both principals are able to choose an agent that benefits less, equally, or more from public good provision
than they do themselves.

3.3.3 Strategic Delegation

In the following, we illustrate how and when principals have an incentive to delegate strategically, i.e.,
they delegate public good provision to agents who have a different payoff from public good provision than
they have themselves, which in our model framework amounts to θ

j
i ̸= 1. To this end, we assume that all

principals and agents make decisions such as to maximize their own payoffs and characterize the subgame
perfect Nash equilibrium of the game by backward induction.

In Stage 2, agents have already been chosen by the principals in the first stage. In addition, the agents’
payoffs are common knowledge. As agents only differ in their payoff parameter θ

j
i , principals in the first

stage de facto decide on a payoff parameter. Thus, we denote the outcome of the first stage by Θ = (θ1, θ2),
where θi (i = 1, 2) is the payoff parameter chosen by principal i.

Then, agents in the second stage choose individual contributions xi to maximize

max
xi

θiB(xi + x−i)− C(xi) , i = 1, 2 . (3)

given x−i, where x−i is the public good contributions of the other agent, i.e., i,−i ∈ {1, 2} and −i ̸= i.
As the maximization problems 3 are strictly concave, there exists a unique best response of agent i for any
given contributions x−i of the other agent, which is implicitly given by the first-order condition:

θiB′(xi + x−i) = C′(xi) , i = 1, 2 . (4)

The Nash equilibrium of the second stage is the simultaneous solution of Equations (4) for both agents
i = 1, 2. It is well known (and shown in Appendix A.0.1) that there exists a unique Nash equilibrium
of this second stage. We denote the total and individual public good contributions of this unique Nash
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equilibrium of the second stage by x(Θ) and xi(Θ) (i = 1, 2). Note that public good provision choices are
either strategic substitutes (B′′ < 0) or dominant strategies (B′′ = 0).

In addition, we investigate how individual and total public good provision choices in the Nash equilibrium
of the second stage depend on the payoff parameters θi (see Appendix A.0.1):

dxi(Θ)

dθi
> 0 ,

dx−i(Θ)

dθi
≤ 0 ,

dx(Θ)

dθi
> 0 , i = 1, 2 .

We find that an increase in θi increases the public good provision of agent i and in total. However, it also
decreases the public good provision of agent −i in case of a strictly concave benefit function B(x), or does
not affect it if B(x) is linear.

Assuming that principals anticipate the Nash equilibrium outcome of the second stage, i.e., xi(Θ) and
x(Θ), when deciding on the agent to which they delegate public good provision, principal i’s first stage
optimization problem is given by:

max
θi

B
(

x(Θ)
)
− C

(
xi(Θ)

)
, i = 1, 2 . (5)

for a given θ−i of the other principal.

Taking the first-order conditions (4) of the second stage into account, we can write the principals’ first-order
conditions in the following way:

(1 − θi)B′(x(Θ)
)dx(Θ)

dθi
= −C′(xi(Θ)

)dx−i(Θ)

dθi
, i = 1, 2 . (6)

Note that the right-hand side of equation (6) is either positive (if dx−i/dθi < 0) or equal to zero (if dx−i/dθi =

0). As a consequence, also the left-hand side has to be positive or equal to zero, which implies that θi ≤ 1.

The intuition for this result is straightforward. The left-hand side denotes the principal’s costs of delegating
to an agent who values the public good less than they do, i.e., θ < 1, which is given by the payoff loss
resulting from the fact that a lower θi leads to a lower total provision of the public good. The right-hand
side captures the benefits from strategic delegation, which accrue because the public good provision of
all other agents increases in equilibrium with a decrease in θi. Thus, the incentive for strategic delegation
stems from the fact that the principals can free-ride on the public good provision of all other agents due to
its strategic substitutability by delegating to an agent with a lower valuation for the public good. In case
public good provision choices are dominant strategies, this incentive vanishes, and principals delegate to
agents with θi = 1.

At least for the functional forms we employ in the experiment (i.e., quadratic or linear benefit function
and quadratic cost function), there exists a unique Nash equilibrium of the two-stage game (see Appendix
A.0.2). In addition, also the principals’ choices of the payoff parameters θi are either strategic substitutes
(in case of a strictly concave benefit function) or dominant strategies (if the benefit function is linear).
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3.4 A Symmetric Strategic Delegation Public Goods Experiment

Our theoretical analysis of the subgame perfect Nash equilibria in the previous section showed that princi-
pals have an incentive to delegate to agents who benefit less than they do themselves if the benefit function
is strictly concave, while they choose agents who exhibit the same benefits as themselves in case of a linear
benefit function.

The reason is that in the case of strictly concave benefits, public good provision choices in the second stage
are strategic substitutes (while they are dominant strategies in the case of linear benefits). This means that
an agent’s best response to a – ceteris paribus – lower provision of the public good by the other agent is to
increase the own provision of the public good. Anticipating this incentive in the second stage, principals can
– again, ceteris paribus – induce higher public good provision of the other principal’s agent by choosing an
agent that benefits less from the public good and, hence, also provides less of it in equilibrium. Obviously,
this incentive is absent in the case of linear benefit functions, as public good provision choices are dominant
strategies, i.e., they are independent of the choice of the other agent.

However, as this incentive to free-ride on the public good provision of the other party by strategically
delegating to an agent with lower benefits from the public good provision is mutual, the subgame perfect
Nash equilibrium is a two-stage Prisoners’ Dilemma: on top of the Prisoners’ Dilemma in the second stage,
which is due to the positive externality from public good provision, we also have a Prisoners’ Dilemma in
the first stage in the sense that both principals would be better off if they chose agents that exhibit the same
preferences as they hold themselves (self-representation), but self-representation is not a Nash equilibrium
(due to the free-riding incentives discussed above).

3.4.1 Experimental Design

In our experiment, we test whether and to what extent we can replicate the results of our theoretical consid-
erations in Section 3.3. In particular, we are interested in whether the principals delegate more strategically
if the benefit function is strictly concave instead of linear. As a consequence, we run two sets of experi-
ments (treatments). In the first treatment, the benefit function B(x) is linear, while it is quadratic and, thus,
strictly concave in the second treatment. As a consequence, we shall often refer to the two treatments as the
“linear” and the “quadratic” treatment.

More precisely, we employ the following functional forms for the benefit function:

Bl
i (x) = bix , Bc

i (x) = bi

(
x̄ − 1

2
x
)

, i = 1, 2 . (7)

where bi > 0 are the so called “benefit parameters”. The benefit parameters are set to bi = 8 for the prin-
cipals in both treatments. Principals can delegate to agents that differ in their benefit parameters. In both
treatments, principals have the choice between five agents with benefit parameters bi ∈ {4, 6, 8, 10, 12}.32

Thus, principals can delegate to agents who have either a lower, the same, or a higher benefit from public
good provision than they have themselves. x̄ > 0 is the “bliss point” in public good provision in the case
of our quadratic and strictly concave benefit function Bc

i (x).33 We set x̄ = 1.89, which implies that public

32Benefit parameters bi ∈ {4, 6, 8, 10, 12} correspond to the payoff parameters θi ∈ {0.5, 0.75, 1, 1.25, 1.5} introduced in Section 3.3.
33As Bc

i (x) is a concave quadratic function, Bc
i (x) is increasing for public good provision levels 0 < x < x̄ and decreasing for levels

x > x̄.
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good provision in the Nash equilibrium of the second stage of the game is equal to xi = 0.44 in both treat-
ments given that all agents have a benefit parameter of bi = 8 and agents only care about own payoffs. This
renders public good provisions across treatments as comparable as possible.

The cost of public good provision is the same for all principals and agents across both treatments and given
by:

C(xi) = cx2
i , i = 1, 2 . (8)

with some positive constant c > 0, which we set to c = 9.

For these functional forms, we obtain in the subgame perfect Nash equilibria, as discussed in Section 3.3,
the following equilibrium outcomes. In the case of the linear treatment, both principals delegate to agents
with benefit parameters bi = 8, i.e., they delegate to agents that exhibit the same benefits from public
good provision as they have themselves. Both agents in the second stage choose public good provisions of
xi = 0.44. In the quadratic treatment, both principals delegate to agents with benefit parameters bi = 6, i.e.,
they delegate to agents that exhibit lower benefits from public good provision than they have themselves.
Both agents in the second stage choose public good provisions of xi = 0.38.

3.4.2 Hypotheses

Our theoretical predictions in Section 3.3 rest on the assumption that both principals and agents are only
motivated by their own payoffs. However, empirical evidence in the context of public goods games sug-
gests that most players can be classified as so-called “conditional cooperators”, i.e., players contribute more
than suggested by their own payoff maximization if they observe or believe that other players contribute
more, too (e.g., Burlando and Guala 2005, Fischbacher et al. (2001), Fischbacher and Gächter 2010, Keser
and van Winden 2000, Kurzban and Houser 2005 and Sonnemans et al. 1999).

Conditional cooperation in the case of our delegation public goods game has two different implications: In
the second stage, which resembles a standard one-shot public goods game, conditional cooperation implies
that agents contribute more to the public good as suggested by their own payoff maximization if they
believe that the other agent also contributes more. Note that for the quadratic treatment, this is in stark
contrast to the expected behavior if players maximize their own payoff: due to the strategic substitutability
of public good provision choices, a player would contribute the less, the higher the expected contribution
of the other player.

In the first stage, conditional cooperation implies that they delegate to an agent with higher benefits from
public good provision than suggested by their own payoff maximization Nash equilibrium if they expect
the other principal to also delegate to an agent with higher benefits. The reasoning is that delegating to
an agent with higher benefits of public good provision results – ceteris paribus – in higher public good
outcomes, as agents with higher benefits of public good provision contribute – ceteris paribus – more to
the public good, independently of whether they are motivated by own payoffs only or are conditional
collaborators.
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Unconditional Choices

We hypothesize that despite conditional cooperation free-riding incentives with respect to the principals’
choices of agents in the first stage cannot be fully overcome (analogously to public good provision in the
standard public goods game). This is the underlying reasoning for our first hypothesis:

Hypothesis 1 (Strategic Delegation beats Conditional Cooperation).
Principals delegate more often to agents who have . . .

(H1a) . . . the same payoff from the public good as they have themselves in the linear treatment.

(H1b) . . . a lower payoff from the public good as they have themselves in the quadratic treatment.

Thus, we conjecture that the Prisoners’ dilemma situation of the first stage with respect to the selection of
agents is robust to conditional cooperation.

Conditional Choices

According to our analysis in Section 3.3, principals never have an incentive to delegate to agents who ben-
efit more from the public good than they do themselves if they are solely motivated by their own payoffs.
However, this may not hold true if players are conditional cooperators. In this case, principals might dele-
gate to agents who have a higher benefit from the public good than they have themselves if they expect the
other principal to do the same in order to increase public good provision above the inefficiently low provi-
sion in the subgame perfect Nash equilibrium. As conditional cooperation is dependent on the expectation
of players about other players’ actions, we also elicit in our experiment the principals’ expectations about
the other principal’s choice of agent and about the agents’ public good contributions. Figure 38 shows the
best-response functions in the case of linear and quadratic benefit functions depending on whether players
are mostly motivated by their own payoffs or whether they are conditional cooperators. This leads to the
following two hypotheses.

Hypothesis 2 (Best Responses when Delegating to Low Benefit Agents).
If principals expect the other principal to delegate to an agent with an equal or lower payoff from the public
good than they have themselves, principals delegate more often to agents who have . . .

(H2a) . . . the same payoff from the public good as they have themselves in the linear treatment.

(H2b) . . . a lower payoff from the public good as they have themselves in the quadratic treatment.

Hypothesis 3 (Best Responses when Delegating to High Benefit Agents).
If principals expect the other principal to delegate to an agent with a higher payoff from the public good
than they have themselves, principals delegate more often to agents who have . . .

(H3a) . . . either the same or a higher payoff from the public good as they have themselves in the linear
treatment.

(H3b) . . . lower, the same or higher payoff from the public good as they have themselves in the quadratic
treatment.
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Figure 38: Best Responses

Notes: Best responses θi contingent on the other principal’s choice θj in the linear (left) and quadratic (right) treatment
depending on whether principal i only cares about own payoffs (red) or is a conditional cooperator (green).

As mentioned before, we elicit the principals’ expectations of their and the other principals’ agents’ public
good provision. Higher benefits from public good provision increase the agents’ incentives to contribute to
the public good, irrespective of whether agents are only motivated by their own payoffs or whether they
are conditional cooperators. This reasoning leads to the final hypothesis.

Hypothesis 4 (Correct Anticipation of Agents’ Public Good Provisions).
Principals expect higher public good contributions in both treatments . . .

(H4a) . . . from their own agent if they delegate to agents with higher payoffs from the public good.

(H4b) . . . from the other principal’s agent if they expect the other principal to delegate to an agent with
higher payoffs from the public good.

3.4.3 Implementation

The typical lab setup to conduct a two-stage delegation public goods game involves inviting participants
in multiples of four, grouping them, and randomly assigning roles. Principals then select benefit functions
for their agents, who must wait until these choices are made before deciding on public good contributions.
While straightforward, this approach incurs considerable overhead cost and time. Labs must overbook
sessions to account for no-shows, often paying show-up fees to dismissed participants. The sequential
decision process creates waiting times, as principals and agents await each other’s choices yet require com-
pensation. Limited lab capacity – typically 40 participants or ten groups per session – means obtaining 100
observations per treatment would require at least 20 sessions or more for smaller labs.

Our experiment consists of two simultaneous one-shot games, i.e., in which both the principals in Stage
1 and the agents in Stage 2 make decisions without knowing the decision of the respective player. As a
result, these decisions can be collected consecutively rather than requiring simultaneous, in-lab interactions.

101



By departing from the traditional lab approach, this novel method effectively mitigates the majority of
standard setup inefficiencies.

Second Stage

Our implementation strategy can be best described as “backward implementation”, i.e., we first gather data
on the second stage of the game. Principals have a limited choice set in the first stage. Each of them can
choose between five different benefit parameters for the benefit function of the agent. This gives rise to a
total of 25 different second-stage games. We let agents play all 25 possible second-stage one-shot games.34

For each agent, this generates a complete set of 25 public good contribution decisions, covering all possible
scenarios that could result from principals’ delegation choices. To be more precise, participants in both
treatments of the second stage first get detailed instructions on gameplay. They are informed that they will
participate in 25 rounds of one-shot public goods games with another agent, with varying benefits from the
public good for themselves and the other agent in each round. After a brief tutorial to introduce the game
interface, participants proceed to the actual game; agents who fail the tutorial five times are removed from
the game. Participants then play all 25 possible combinations of benefit parameters in a random sequence.
In each round, they are shown their own and the other agent’s benefit function and are asked to choose a
public good contribution between 0% and 100% in 1% increments. Additionally, we ask them about their
expectation regarding the other agent’s contribution. To simplify payoff calculations for participants, we
provide them with a payoff calculator, in which they can set any combination of their own and the other
agent’s public good contribution and directly view their resulting payoff for both agents, along with the
total sum of payoffs (see Figure 39).35

Players complete all 25 rounds without receiving feedback on the decisions of the other agent. We include
two attention checks after Round 8 and Round 16 to keep the player attentive over the 25 rounds. Agents are
removed from the game if they fail the attention checks five times. After completing the game, players fill
out a questionnaire that collects information such as age, gender, education level, degree of mathematical
literacy, as well as their attitudes toward trust, risk, and donations.

To calculate payoffs, we match each participant with the most recent participant who finished the game
prior to them. Specifically, each of the 25 rounds played by the current player is paired with the respective
“mirror” game of the last finishing player. For example, a round where the current payer has a benefit
parameter of bi = 4 and the other player has bj = 10 is matched with the round, where the previous
player had a benefit parameter of bi = 10 and their other player had bj = 4. The first participant of each
experimental session has no previous participant to be matched to. This first participant is paired with
a “seed player” randomly chosen from the pilot stage.36 The payoffs for the current player across all 25
rounds are calculated and displayed, with the average payoff being paid out.

34In the initial pilot study, no sequence effects were detected, thereby justifying the application of this methodology in the main
experiment. Consistent with the pilot findings, the experimental results also show no evidence of sequence effects. Contributions
across all 25 game iterations remain stable (see Figure 48 in the Appendix). The ANOVA results were not statistically significant
(p = 0.475), indicating that there is no evidence for a significant difference in average contributions across the 25 games.

35To avoid priming participants with a reference point, no “default value” was preset in the payoff calculator. Participants were
required to actively select input values to initiate the calculator’s functionality.

36In the pilot stage, the seed player was an artificial player who strictly played the contributions in the Nash equilibrium if players
only cared for their own payoffs.
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Figure 39: Game Interface – Stage 2

Notes: Screenshot of the game interface in one of the 25 rounds in the second stage of the game (screenshot shows the
linear treatment, the game interface is analogous in the quadratic treatment). Via sliders, players can enter hypothetical
public good contributions in the payoff calculator to calculate the resulting payoffs and submit their own contribution
choice and their expectations about the other agent’s contribution.
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As previously noted, we calibrated both the linear and quadratic treatments so that the public good pro-
vision in the Nash equilibrium, if both agents have a benefit parameter of bi = 8, equals xi = 0.44 in both
treatments. However, this calibration results in considerably higher payoffs in the quadratic treatment than
in the linear treatment (i.e., πi = 5.33 in the linear treatment and πi = 8.49 in the quadratic treatment
when both agents choose xi = 0.44). To account for this difference, we use an “in-game currency” called
“monetary units” (MU), which is converted to EUR or GBP at different rates: 2:1 in the linear and 3:1 in the
quadratic treatment (e.g., an in-game payoff of π = 12 would be converted into an actual payoff of 6 EUR
in the linear and 4 EUR in the quadratic treatment).

First Stage

In the first stage, participants take on the role of the principal, i.e., they select an agent who decides on the
public good contribution on their behalf. They can choose from five different agents who differ only in the
benefit parameter that determines their payoffs from the total public good provision. As before, we conduct
two treatments, where the benefits from the sum of public good contributions are either linear or quadratic.
First-stage experiments follow a similar structure as second-stage experiments. First, participants receive
detailed instructions on the game. Next, they complete a tutorial that introduces them to the game interface.
The tutorial is particularly designed such that participants can learn that agents’ incentives for public good
provision increase (decrease) with increasing (decrease) benefit parameters specifying their payoff from
public good provision without directly telling them. After successfully completing the tutorial, players
are forwarded to the actual game page. They have access to a payoff calculator, that shows the resulting
payoffs for all principals and agents for hypothetical choices of agents and their contribution decisions (see
Figure 40).37 Finally, participants are required to select an agent and state their expectations about the other
principal’s choice of agent and the agents’ public good provisions (see Figure 41).

After the game, players complete a questionnaire that gathers demographic information – including age,
gender, education level, and degree of mathematical literacy – as well as their attitudes toward trust, risk,
and donations. Additionally, we ask them about their hypothetical decisions in a dictator game with the
other principal and an ultimatum game with their chosen agent. To calculate payoffs, each participant is
first matched with the most recent player who completed the game before them (analogous to the second
stage). Then, each of the two first-stage players is paired with a randomly chosen player from the second
stage. Based on the principals’ chosen agent, we identify the corresponding second-stage game and deter-
mine the agents’ contributions in that specific game. For example, suppose the current player (referred to as
“Principal 1”) delegates to an agent with benefit parameter b1 = 4, while the previously completed player
they are matched with (called “Principal 2”) delegated to an agent with benefit parameter b2 = 10. We then
randomly pair both principals with agents from the second-stage treatment. We call the second stage player
matched to Principal 1 (2) “Agent 1 (2)”. We then retrieve the contribution that Agent 1 made in the second
stage of the game, where their own benefit parameter was bi = 4, and the other agent’s benefit parameter
was bj = 10. Similarly, we identify Agent 2’s contribution in the “mirror” game, i.e., the game in which her
benefit parameter was bi = 10, and the other player’s benefit parameter was bj = 4. On the final page of
the session, we inform players of the choices made by the other principal and both agents, displaying the
respective payoffs for all four players. The in-game currency is measured in MU and converted to EUR or
GBP at a rate of 2:1 in the linear and 3:1 in the quadratic treatment.

37Analogous to Stage 2, we did not provide “default parameters” (see Footnote 35).
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Figure 40: Game Interface – Stage 1 (a)

Notes: Screenshot of the upper half of the game interface in the first stage of the game (screenshot shows the linear
treatment, the game interface is analogous in the quadratic treatment). Via buttons and sliders, players can enter hypo-
thetical agents, to which they and the other principal delegate, and hypothetical agents’ public good contributions in
the payoff calculator to calculate the resulting payoffs and submit their own contribution choice and their expectations
about the other agent’s contribution.
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Figure 41: Game Interface – Stage 1 (b)

Notes: Screenshot of the lower half of the game interface in the first stage of the game (screenshot shows the linear
treatment, the game interface is analogous in the quadratic treatment). Via buttons and sliders players can submit their
own choice of agent and their expectations about other principal’s delegation choice and the agents’ contribution.

Execution

The experiment was programmed as a browser-based application by Expilab Research and hosted on their
servers. Both second-stage treatments were conducted online through Prolific’s UK participant pool screen-
ing for fluent English proficiency on May 30, 2023 (linear treatment) and June 29, 2023 (quadratic treatment).
Participants received a flat participation fee of 4 GBP, in addition to their payoffs from the experiment. For
the linear treatment, 145 subjects started the second stage, 38 participants returned the assignment, and
two were rejected for not completing the experiment, resulting in 105 completed observations. The me-
dian completion time was 26:04 minutes, and the average payoff was 2.79 GBP, implying a total payoff of
6.79 GBP. For the quadratic treatment, 160 subjects began the experiment, 52 returned the assignment, two
participants timed out, and one was excluded for incomplete participation, summing up to 105 completed
observations. The median time for completion was 27:29 minutes, and the average payoff amounted to 4.09
GBP, implying a total average payoff of 8.09 GBP.
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For the second stage, we first conducted an extensive online pilot via Prolific on February 12, 2024, (linear
treatment) and February 13, 2024 (quadratic treatment). As before, participants were restricted to Prolific’s
UK subject pool. Participants received a flat participation fee of 4 GBP in addition to their payoffs from the
experiment. Out of 457 subjects starting the linear second-stage treatment, 202 returned the assignment, and
two timed out, resulting in 253 completed observations. The median time for completion was 16:17 minutes,
and the average payoff amounted to 2.66 GBP, leading to a total payoff of 4.66 GBP. The quadratic second-
stage treatment was started by 550 subjects; 291 returned the assignment, six were timed out, and four were
rejected because they did not complete the experiment. This resulted in 249 completed observations. The
median time for completion was 14:55 minutes, and the average payoff amounted to 2.72 GBP, implying a
total average payoff of 4.72 GBP.

Scrutinizing the log data revealed that the large drop-out numbers were mainly due to participants failing
the tutorial, as they were kicked out after five mistakes. Since passing the tutorial simply requires careful
reading and following instructions, this suggests that the complexity of our first-stage treatment may be
ill-suited for online platforms like Prolific. On such platforms, a notable portion of participants may be less
engaged with the task compared to those in lab-based experiments.

As a consequence, we ran the first stage treatments as lab experiments from May 22, 2024, to May 24, 2024,
in the Bologna Laboratory for Experiments in Social Sciences (BLESS) at the University of Bologna.

3.5 Results

While our primary focus is on the first-stage results, where strategic delegation may occur, we briefly report
the results of the second-stage games, which are essentially standard one-shot public goods games.

3.5.1 Second Stage Results

The average contribution across all 25 games in the linear treatment was 0.522 compared to the Nash equi-
librium average of 0.444 if agents only care about their own payoffs. In the quadratic treatment, we observe
an average contribution of 0.496 compared to a Nash equilibrium contribution of 0.437 (see Panel (a) in
Figure 42).38 The statistically significant deviation from the Nash equilibrium contributions (one-sided
Mann-Whitney test, p = 4.84e−16 in linear treatment and p = 7.12e−19 in quadratic treatment) aligns with
expectations if at least some participants are conditional cooperators.

As conditional cooperation is based on a notion of reciprocity, we expect agents to contribute more if they
expect higher contributions from the other player. To test this, we divide the sample for each treatment into
two subsamples: one where agents have below or equal to the median expectation of the other player’s
contributions, and one in which agents have above the median expectations (see Panel (b) in Figure 42).
In the linear treatment, we find an average deviation of 0.7 percentage points for the low and 14.94 per-
centage points for the high-expectation group. For the quadratic treatment, the deviations are 3.68 and 8.17
percentage points, respectively. According to one-sided Mann-Whitney tests the mean deviation is in both
treatments significantly lower in the low expectation than in the high expectation subsample (p = 2.18e−62

for the linear treatment and p = 1.73e−09 for the quadratic treatment). Notably, the difference between

38For detailed boxplots of contributions and deviations of contributions from the Nash equilibrium of all 25 games in both treat-
ments see Figures 49 and 50 in Appendix A.0.3.
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Figure 42: Contributions and Deviations from NE

(a) Contributions and Deviations from NE (b) Deviations from NE in Subsamples

Notes: Boxplots of (a) contributions and deviations from the Nash equilibrium pooled over all 25 games in the linear
(lin), and quadratic (quad) treatment and (b) deviations from the Nash equilibrium pooled over all 25 games for the
two subsamples of below (low) and above (high) median expectation in the linear (lin) and quadratic (quad) treatment.
In addition to the median, we indicate means using wider blue lines. In (a) on the left, the red line represents the Nash
equilibrium average.

the two subsamples is much larger in the linear compared to the quadratic treatment.39 This difference
arises because, in the quadratic treatment, best responses are strategic substitutes, while they are dominant
strategies in the linear treatment. This implies that agents who primarily consider their own payoffs have
an incentive to lower their contributions if they anticipate the other agent’s contribution to increase. In
contrast, in the linear treatment, the best response is independent of the other player’s contribution. Con-
sequently, in the high-expectation group, conditional cooperators contribute more than those in the low-
expectation subsample, while self-interested players choose lower contributions in the high-expectation
subsample than their counterparts in the low-expectation group. This second effect, induced by strategic
substitutability in the quadratic treatment, is absent in the linear treatment. When pooled across all 25
games, the impact of conditional cooperation outweighs the effect of strategic substitutability. Our results
support previous findings that a significant fraction of players can be classified as conditional cooperators.
If this were not the case, we would expect no statistically significant difference in contributions between
expectation groups in the linear treatment and a significantly lower level of contributions in the high ex-
pectation group in the quadratic treatment.

Additionally, we elicit the accuracy of players’ expectations about other players’ contributions.40 To do
this, we calculate the absolute differences between each player’s expectations and the actual contributions
of the other players (left panel in Figure 43). While individual expectation errors can be large (standard
deviation sd = 33.62 percentage points in the linear and sd = 27.83 percentage points in the quadratic
treatment) the mean expectation error is significantly positive (two-sided Mann-Whitney test, p = 1.40e−05

for the linear and p = 0.0266 for the quadratic treatment) but small: 2.75 percentage points in the linear
and 1.61 percentage points in the quadratic treatment. This implies that players are, on average, slightly

39This can also be seen in the individual games. Detailed boxplots for all 25 games in both treatments are shown in Figure 51
in Appendix A.0.3 We find significantly higher deviations from the NE in the higher expectation subsample in 17 out of the total 25
games in the linear and 8 out of 25 games in the quadratic treatment.

40We deliberately did not provide monetary incentives for the elicitation of expectations, based on findings of Gächter and Renner
(2010), who show in a repeated public goods game that non-incentivized beliefs were only mildly (but significantly) less accurate
than incentivized beliefs, yet incentivized beliefs significantly changed the own contribution choice, while non-incentivized belief
elicitation did not.
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Figure 43: Contribution Expectation Errors – Stage 2

Notes: Boxplots of the absolute difference between expectations and (i) the other players’ actual contributions (left) and
(ii) the own contribution choice in the mirror game (right) pooled over all 25 games in the linear (lin) and quadratic
(quad) treatment.

too optimistic about other players’ contributions.41

As all participants of the second stage experiments play all 25 games, we can compare their expectations
of the other player’s contribution to the contribution they make in the “mirror” game, where they play
from the other player’s perspective (right panel in Figure 43). Although individual differences between
expectations and actual contributions in the mirror game can be large (standard deviation sd = 26.15 in the
linear and sd = 21.33 in the quadratic treatment, the average difference is close to zero with 2.21 percentage
points in the linear and −0.31 percentage points in the quadratic treatment. However, these differences
are statistically significant according to a two-sided Mann-Whitney test: p = 4.29e−05 for the linear and
p = 0.0113 for the quadratic treatment.42

3.5.2 First Stage Results

In the first stage of the game, players decide on the benefit parameter of the agent to whom they delegate
the provision of the public good. In the linear treatment, the average benefit parameter chosen was 8.742
compared to the Nash equilibrium choice of 8 for players focused solely on their own payoffs. In the
quadratic treatment, the average benefit parameter was 8.687 compared to the Nash equilibrium choice of
a selfish player (see Figure 44). In both treatments the deviation from the predicted Nash equilibrium is
statistically significant (one-sided Mann-Whitney test for actual choices being greater than predicted Nash
equilibrium choice, p = 0.00124 in the linear and p = 2.35e−27 in the quadratic treatment). However, the
difference in benefit parameter choices across treatments is not significant (one-sided Mann-Whitney test
for choice in linear treatment to be greater than in quadratic treatment, p = 0.474). Additionally, when
conditioning the choice of the benefit parameter on the expected benefit parameter choice of the other

41Detailed boxplots for all 25 games and both treatments are given in Figure 52 in Appendix A.0.3.
42Detailed boxplots for all 25 games and both treatments are given in Figure 53 in Appendix A.0.3.
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Figure 44: Choice of Benefit Parameter

Notes: Boxplots of the benefit parameter choice (left) and its deviation from the predicted Nash equilibrium (right) in
the linear (lin) and quadratic (quad) treatment.

player, we do not find significant differences between the benefit parameter choices across both treatments
(see Figure 54 and Table 22 in the Appendix). In summary, we have to reject Hypothesis 1, as there is no
evidence that players in the quadratic treatment delegate to agents with lower benefit parameters than in
the linear treatment. However, we do observe evidence for strategic delegation in both treatments: players
choose benefit parameters significantly higher than their own benefit parameters.

To assess whether the evidence for strategic delegation we observe in both treatments is consistent with
conditional cooperation, we examine the extent to which players deviate from the best responses of purely
self-interested players, given their expectations about the other player’s choice of benefit parameter (see
Figure 45). Table 17 presents the mean and median deviation for the linear and quadratic treatment. A
two-sided Mann-Whitney test indicates that the deviation is significant only for an expected benefit of the
other player of 10 and 12 in the linear and for 6–12 in the quadratic treatment. These findings largely sup-
port Hypotheses 2 and 3. If players are conditional cooperators, they should deviate from the best response
only when they expect the other player to choose a benefit parameter that is above the best response of a
selfish player. Accordingly, we would expect the chosen benefit parameter to show a positive deviation
from the best response in case of an expected benefit parameter of 10 and 12 in the linear and from 8–12 in
the quadratic treatment. Additionally, we expect the deviation to increase with higher expected benefit pa-
rameters. Apart from a significant positive deviation for an expected benefit parameter of 6 in the quadratic
treatment, our observations exactly align with our expectations regarding conditional cooperation.43 Thus,
our Hypotheses 2 and 3 are confirmed. Our findings clearly indicate that players act as conditional coop-
erators even in their delegation choices, opting to delegate to agents with higher benefit parameters than
they have themselves if they expect the other payer to do the same.

43The deviation for an expected benefit parameter of 10 in the linear treatment is significant only at the 10%-significance level.
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Figure 45: Deviations Conditioned on Expectation About Other Player

Notes: Boxplot of deviations from best responses conditional on expectations of other player’s choice of benefit param-
eter in linear (left) and quadratic (right) treatment.

Table 17: Deviation of Benefit Parameters

Exp. ben. Mean (l) Median (l) P-val (l) Mean (q) Median (q) P-val (q)

4 −1.20 −4 0.396 −0.33 −1 0.527
6 −0.63 −2 0.227 1.65 −2 0.005
8 0.39 0 0.108 2.35 2 1.21e−08

10 0.71 2 0.074 3.36 4 6.55e−05

12 2.62 4 3.76e−05 6.92 8 3.87e−06

Notes: Mean and median deviation of benefit parameters from best responses of selfish players conditional on the
expected benefit parameter of the other player for the linear (l) and quadratic (q) treatment. Two-sided Mann-Whitney
tests are performed to test whether the deviation is significantly different from zero (p-val).

Hypothesis 4 states that we expect a rise in the expectation of one’s own agent’s contribution as the cho-
sen benefit parameter increases (H4a) and that the expectation of the other player’s agent’s contribution
increases with a higher expected benefit parameter chosen by the other principal (H4b). Given the rela-
tively few observations of players choosing or expecting benefit parameters below 8, we pool the data into
two groups – benefit parameters below 8 and above 8 – to investigate the expectations about their own
agents’ contributions. Similarly, for expected contributions by the other player’s agent, we pool data by
the expected benefit parameters of the other player below and above 8. Figure 46 shows the corresponding
boxplots.
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Figure 46: Expectation of Agents’ Contributions

Notes: Boxplots of the expected contributions in the linear (lin) and quadratic (quad) treatment of the own agent (left)
conditioned on whether the choice of the benefit parameter is below (low) or above (high) the own benefit parameter
of 8 and the expected contributions of the other agent (right) conditioned on whether the expected choice of the other
player’s benefit parameter is below (low) or above (high) 8.

We find that the mean and median of expected contributions are consistently higher for benefit parameters
or expected benefit parameters above 8 compared to those below 8 (see Table 18). Differences between
groups across mean and median in the linear treatments are more pronounced than in the quadratic treat-
ments. This is to be expected, as contributions in the Nash equilibrium for selfish players also increase
more steeply with rising benefit parameters in the linear compared to the quadratic treatment. A one-sided
Mann-Whitney test on whether the mean of the low benefit parameter subset is lower than the mean of the
high subset reveals that only two of the four differences are statistically significant (see column ‘p-value’ in
Table 18). Thus, we find some, though not overwhelming, evidence for Hypothesis 4.

Table 18: Contribution Expectations

Mean (l) Median (l) Mean (h) Median (h) P-value

Cont. own agent (lin) 52.78 50 58.21 59 0.157
Cont. own agent (quad) 41.85 40.5 46.58 50 0.0836
Cont. other agent (lin) 51.88 52 68.68 68.5 0.00455
Cont. other agent (quad) 52.66 50 54.25 56.5 0.188

Notes: Mean and median expectations of the contributions of own and the other players’ agents in the linear (lin) and
the quadratic (quad) treatment for the subsets where (expected) benefit parameters were below 8 (l) or above 8 (h).
One-sided Mann-Whitney tests are performed to test whether the high subset mean is significantly higher than the low
subset mean (p-value).

We also examine the accuracy of players’ expectations regarding the choice of other players’ benefit pa-
rameters and the contributions of their own and the other players’ agents. Figure 47 displays the absolute
expectation errors (i.e., the difference between the expected and actual values) for each of the three expec-
tations players were asked to report.44 We observe that expectation errors are small on average across all
three variables and statistically insignificantly different from zero in four out of the six cases, according to
a two-sided Mann-Whitney test (see Table 19).

In particular, with respect to the expectation of the other player’s choice of benefit parameter, we observe
unbiased expectations. Thus, players generally form correct expectations about the benefit parameters

44We did not provide monetary incentives for the elicitation of expectations for the same reasons as in Stage 2. See Footnote 40.

112



Figure 47: Expectation Errors – Stage 1

Notes: Boxplots of the absolute expectation errors in the linear (lin) and quadratic (quad) treatment with respect to
other players’ choice of benefit parameter (left), own agents’ contributions (middle), and contributions of other players’
agents (right).

Table 19: Expectation Errors

Mean (l) Median (l) P-val (l) Mean (q) Median (q) P-val (q)

Ben. param. 0.437 0 0.236 −0.269 0 0.337
Cont. own agent −0.960 4 0.984 −7.16 −9.5 0.00099
Cont. other agent 8.38 9 0.00784 1.81 0 0.409

Notes: Mean and median expectation errors with respect to other players’ choice of benefit parameter, own agents’
contributions, and contributions of other players’ agents in the linear (l) and quadratic (q) treatment. Two-sided Mann-
Whitney tests are performed to test whether expectation errors are significantly different from zero (p-val).

chosen by the other players. However, evidence is less definitive for expectations about the public good
contributions from their own and the other players’ agents. While we observe a slight underestimation of
their own agents’ contributions (significant only in the quadratic treatment), players slightly overestimate
the contributions of the other players’ agents (significant only in the linear treatment). In particular, the
low average expectation error with respect to the contributions of the other players’ agents is somewhat
surprising, as it relies on “second-order beliefs”. Players have to form expectations about the other players’
choice of benefit parameters, which in turn strongly influence the incentives for the other players’ agents
to contribute to the public good. In summary, the observed expectation errors provide no indication that
players misunderstood or failed to anticipate the motivations guiding other players’ actions in the first and
second stages.

In addition, we run several linear regression models to explore the correlations between dependent vari-
ables: the own chosen benefit parameter, the expected benefit parameter of the other agent, the expected
contribution of the own agent, and the expected contribution of the other agent alongside other observed
data from the experiment, in particular data from our post-experiment questionnaire.45 The results are
shown in Table 20 for the linear and Table 21 for the quadratic treatment.

45Screenshots of the post-experiment questionnaire are shown in Figures 55–57 in the Appendix.
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In the post-game questionnaire, we specifically asked people about their contribution in a hypothetical
(i.e., unincentivized) dictator game and the minimum offer they would accept in a hypothetical ultimatum
game.46 The intention behind these questions was to explore behavioral tendencies related to conditional
cooperation and fairness preferences. The level of contribution in the hypothetical dictator game could be
an indication of conditional cooperation, i.e., the higher the contribution, the more likely the participant
would choose – ceteris paribus – a higher benefit parameter. Similarly, a higher minimum acceptable offer
in the hypothetical ultimatum game is an indicator of a participant’s aversion to unequal payoffs and the
extent to which the participant is willing to forego their own payoff in order to “punish” the other player
(as both players receive a payoff of zero in the ultimatum game if the offer is rejected). We hypothesize
a negative correlation between the ultimatum game’s minimum acceptable offer and the chosen benefit
parameter.

Our findings show that that in the linear treatment the correlation between the chosen benefit parameter
and the dictator game contribution is positive, while it is negative for the minimum offer in the ultimatum
game. In the quadratic treatment, however, both correlations are negative, though none of these effects
are statistically significant. Additionally, we find that neither the dictator game contribution nor the mini-
mum acceptable ultimatum game offer significantly explains the expectation about the other players’ ben-
efit parameters and the expectations about their own and other agents’ contributions in both treatments.
Regarding other variables from the questionnaire, we rescale ordinal variables in average, below-average,
and above-average values and report the effects of deviations from the average. We excluded age and ed-
ucation, as we did not see sufficient variation in these variables among our lab participants. We observe
minimal effects from other demographics. Neither gender nor mathematical literacy are significant in any
of the regressions over both treatments. For the other variables, we find occasional effects, which are nei-
ther consistent across treatments nor dependent variables. Specifically, we find that in the linear treatment,
participants who found the experiment easy to understand chose significantly lower benefit parameters
and expected significantly higher benefit parameters from the other player, while in the quadratic treat-
ment participants who found the experiment difficult to understand significantly expected lower benefit
parameters from the other player. Further, in the quadratic treatment, participants who reported donating
more than the average selected significantly higher benefit parameters, while risk-prone participants ex-
pected significantly lower benefit parameters from the other player, and participants with above-average
trust expected significantly lower contributions from the other player’s agent.47 However, donation fre-
quency, risk preferences, and trust did not exert a significant influence on the dependent variables in the
linear treatment.

We also asked participants about their ideal contribution to the public good if they could directly determine
this amount (referred to as ideal own cont.). This ideal own contribution exhibits a significant positive effect
on the chosen benefit parameter in the linear treatment and a significant positive effect on the expected con-
tributions of both their own and the other player’s agent in both treatments. Moreover, we observe a strong
and highly significant effect between the expected benefit parameter and the chosen benefit parameter and
vice versa, aligning with the behavior of conditional cooperators (see Hypothesis H3). Additionally, the ex-
pected benefit parameter of the other player has a significantly positive effect on the expected contribution
of the other player’s agent in both treatments, which is in line with Hypothesis (H4b). However, we do not

46Screenshots of the questions related to the ultimatum and dictator games are provided in the Appendix, Figure 58.
47The results remained robust concerning donation frequency, however, the effects were no longer significant for different catego-

rizations of trust or whether participants are risk-averse.
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find a significant positive effect of the participant’s chosen benefit parameter on the expected contribution
of the own agent in both treatments, which is unexpected. Notably, only the ideal own contribution shows
a highly significant effect on the expected contribution of the participant’s own agent in both treatments.

Table 20: Regression Analysis - Linear Treatment

Dependent Variable: Own ben. param. Other ben. par. Cont. own agent Cont. other agent
Model: (1) (2) (3) (4)

Own ben. param. 0.301∗∗∗ −0.292 −1.147
(0.071) (0.859) (0.823)

Other ben. param. 0.423∗∗∗ 1.196 2.728∗∗∗

(0.099) (1.013) (0.951)
Cont. own agent −0.003 0.009 0.033

(0.009) (0.008) (0.087)
Cont. other agent −0.013 0.023∗∗∗ 0.035

(0.010) (0.008) (0.093)
Ideal own cont. 0.048∗∗∗ −0.0002 0.302∗∗∗ 0.371∗∗∗

(0.010) (0.009) (0.104) (0.098)
Dictator game 0.093 0.036 0.288 −0.724

(0.200) (0.169) (1.920) (1.851)
Ultimatum game −0.134 0.106 0.617 −0.553

(0.236) (0.199) (2.264) (2.184)
Female 0.276 0.096 −0.871 3.102

(0.401) (0.339) (3.845) (3.700)
Trust – high 0.275 −0.206 −1.125 3.898

(0.542) (0.457) (5.190) (4.995)
Trust – low −0.384 0.328 4.096 −1.888

(0.572) (0.483) (5.473) (5.289)
Math. lit. – high 0.382 0.016 −0.103 5.781

(0.445) (0.376) (4.269) (4.085)
Math. lit. – low −0.302 −0.166 −4.783 3.338

(0.522) (0.441) (4.983) (4.816)
Risk – prone −0.152 0.503 0.524 −0.669

(0.557) (0.468) (5.328) (5.140)
Risk – averse −0.384 0.242 0.436 −2.821

(0.744) (0.628) (7.131) (6.875)
Donations – high 0.508 −0.018 7.226 3.767

(0.554) (0.469) (5.282) (5.123)
Donations – low 0.112 0.377 −8.865 −1.116

(0.703) (0.593) (6.687) (6.496)
Difficulty – high 0.221 −0.224 −1.838 −7.606

(0.554) (0.468) (5.306) (5.076)
Difficulty – low −1.283∗∗∗ 0.694∗ 3.924 −7.289∗

(0.449) (0.387) (4.426) (4.233)
Constant 3.435∗∗∗ 3.506∗∗∗ 23.050∗∗ 23.334∗∗

(1.094) (0.906) (10.679) (10.282)

Observations 142 142 142 142
R2 0.340 0.293 0.212 0.245
Adjusted R2 0.250 0.196 0.103 0.142

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: Regression Analysis - Quadratic Treatment

Dependent Variable: Own ben. param. Other ben. par. Cont. own agent Cont. other agent
Model: (1) (2) (3) (4)

Own ben. param. 0.532∗∗∗ −0.282 −1.139
(0.071) (0.663) (0.762)

Other ben. param. 0.670∗∗∗ 0.772 1.514∗

(0.089) (0.741) (0.851)
Cont. own agent −0.006 0.014 0.017

(0.015) (0.013) (0.115)
Cont. other agent −0.019 0.020∗ 0.013

(0.013) (0.011) (0.085)
Ideal own cont. 0.013 −0.015 0.399∗∗∗ 0.159∗

(0.012) (0.011) (0.072) (0.094)
Dictator game −0.022 −0.043 −0.467 −0.901

(0.194) (0.173) (1.300) (1.506)
Ultimatum game −0.044 −0.003 −1.468 0.749

(0.218) (0.194) (1.453) (1.693)
Female 0.111 0.416 −1.049 2.368

(0.424) (0.376) (2.844) (3.293)
Trust – high −0.604 0.618 −1.417 −9.539∗∗

(0.536) (0.476) (3.612) (4.086)
Trust – low −0.075 0.388 −2.068 −1.294

(0.501) (0.445) (3.354) (3.897)
Math. lit. – high 0.456 −0.403 0.420 3.209

(0.501) (0.447) (3.374) (3.901)
Math. lit. – low 0.426 −0.110 −1.603 6.114

(0.505) (0.451) (3.391) (3.892)
Risk – prone 0.548 −0.976∗ −2.275 0.440

(0.560) (0.492) (3.767) (4.378)
Risk – averse −0.092 −0.747 4.461 7.232

(0.663) (0.586) (4.422) (5.106)
Donations – high 0.991∗ −0.610 −1.769 0.629

(0.530) (0.476) (3.610) (4.193)
Donations – low −0.519 −0.305 −0.956 1.135

(0.837) (0.746) (5.619) (6.520)
Difficulty – high 0.806 −0.925∗ −3.546 7.740

(0.612) (0.542) (4.122) (4.738)
Difficulty – low 0.237 −0.366 4.270 −0.191

(0.442) (0.393) (2.940) (3.446)
Constant 2.842∗∗ 3.726∗∗∗ 25.164∗∗∗ 36.010∗∗∗

(1.358) (1.179) (8.959) (10.182)

Observations 120 120 120 120
R2 0.409 0.444 0.333 0.154
Adjusted R2 0.311 0.351 0.222 0.013

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6 Discussion and Conclusions

We presented – to the best of our knowledge – the first experimental evidence of whether and to what extent
principals strategically delegate the provision of a public good to agents who hold a different valuation of
the public good than they do. In our experimental setting, characterized by complete information, delegat-
ing the decision on public good provision to an appropriate agent enables principals to credibly commit to
either a higher or a lower level of public good provision than they would select themselves. When benefits
from public good provision are strictly concave, public good provision choices are strategic substitutes. In
this case, principals who solely care about their own payoff have an incentive to delegate to agents with a
lower valuation of the public good than their own. This incentive, however, is absent when public good
provision choices are dominant strategies.

Thus, we conducted two treatments of a delegation-based public good experiment: one where benefits
from public good provision were linear (rendering public good contributions dominant strategies), and
another where the benefits were strictly concave (rendering public good choices strategic substitutes). Con-
sistent with findings in the experimental literature, we observe that both principals and agents are not only
motivated by their own payoffs; rather, their actions align with conditional cooperation. Specifically, they
contribute more to the public good if they expect the other agent to do the same, and they delegate to an
agent with a higher valuation of the public good if they expect the other principal will do likewise.

We observe significant differences in conditional cooperation behavior across treatments in the public good
provision stage (Stage 2), attributable to the strategic substitutability of public good choices in the quadratic
treatment. However, we do not observe these differences in the delegation stage (Stage 1). In both treat-
ments, principals choose, on average, agents that have a higher valuation of the public good than they do
themselves. Although the difference between the linear and quadratic treatment shows the expected sign
(higher in the linear treatment), it remains statistically insignificant. This suggests that conditional cooper-
ation is overriding the incentive to strategically delegate to agents with lower public good evaluation. One
hypothesis that may explain the result is based on the following observation. Contrary to Hypothesis H4,
we find, at most, weak evidence that principals expect higher public good contributions if they delegate to
agents with a higher public good valuation (see Tables 18, 20 and 21). However, the incentive for strategic
delegation is inherently linked to the expectation that agents with a higher public good valuation, ceteris
paribus, contribute more. If principals do not anticipate a significant change in the agent’s contribution
with varying valuation of the public good, there is also no incentive to strategically delegate. Additionally,
it is noteworthy that principals’ expectations regarding agent’s public good provisions are – at least on av-
erage – mostly accurate (see Figure 47 and Table 19). While our Stage 2 data clearly demonstrates increasing
public good provisions with increasing benefit parameters (see Figure 49), it is interesting that the positive
deviation from the Nash equilibrium contribution of selfish players is more pronounced for low than for
high benefit parameters (see Figure 50).

Non-linear public goods games introduce complexity, as public good contributions are no longer domi-
nant strategies, requiring players to form expectations about the contributions of others. The complexity
increases for principals during the delegation stage, as they have to form beliefs not only about the other
principal’s choice of agent but also about how these choices will influence the agents’ public good provi-
sion in the second stage. To facilitate comprehension, our experiments began with an extensive tutorial to
familiarize players with the game interface. Additionally, the interface included a payoff calculator, allow-
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ing players to compute their own payoffs and those of all other players for any hypothetical action profile.
Despite these measures, we cannot rule out that principals did not fully comprehend the complete ramifi-
cations of their choice of agents, particularly with respect to strategic delegation.

In terms of implementation, we leveraged the game’s sequential structure for a novel implementation pro-
tocol that allows us to (i) execute the two game stages independently and (ii) collect data within each stage
sequentially, eliminating the need for the two agents, respectively two principals, competing against each
other to be present simultaneously. Importantly, this implementation design is not limited to our particular
delegation public goods game; it is, in principle, adaptable to all multistage games where decisions at each
stage are made simultaneously by all players (i.e., without observing the decision of the other players).

While we are cautious about generalizing our findings from the specific set-up of our delegation-based
public goods game to delegation in public goods contexts in general, our results suggest that inefficiencies
due to strategic delegation may be less problematic, as individuals in real-world settings are less prone to
strategic delegation than economic theory predicts. Future research could, therefore, explore to what extent
our results hold in other experimental set-ups involving delegation in public good provision contexts, as
well as investigate the underlying drivers for the (lack of) incentive to strategically delegate.
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Appendix

A.0.1 Subgame Perfect Equilibrium of Delegation Public Goods Game

The Nash equilibrium of the second stage is given by the simultaneous solution of the first-order conditions
(4) for both agents i = 1, 2. By assumption, C′ is strictly increasing. As a consequence, the inverse function
exits and we can re-arrange the first-order condition (4) to yield:

xi = C′−1(
θiB′(x)

)
, i = 1, 2 . (A.1)

Summing up equations (A.1) for both agents yields an implicit equation for the amount of total public good
provision in the Nash equilibrium:

x = C′−1(
θ1B′(x)

)
+ C′−1(

θ2B′(x)
)

. (A.2)

Due to the inverse function theorem, we obtain:

d
dx

(
C′−1(

θiB′(x)
))

=
θiB′′(x)

C′′
(

C′−1(θiB′(x)
)) ≤ 0 . (A.3)

Thus, the right-hand side of equation (A.2) is decreasing in x, while the left-hand side is strictly increasing.
As a consequence, there exists a unique level of x in the Nash equilibrium of the second stage of the game,
which via equations (A.1) translate into unique individual good contributions x1 and x2. We denote the
total and individual public good contributions of this unique Nash equilibrium of the second stage by x(Θ)
and xi(Θ) (i = 1, 2).

Public good provision choices are either strategic substitutes (B′′ < 0) or dominant strategies (B′′ = 0), as
the implicit function theorem yields:

dxi
dx−i

=
θiB′′(x)

C′′(xi)− θiB′′(x)
≤ 0 , i = 1, 2 . (A.4)

To derive the comparative statics of second stage NE with respect to θi, we re-arrange the first-order condi-
tions (A.1):

Fi = xi − C′−1(
θiB′(xi + x−i)

)
= 0 , (A.5)

F−i = x−i − C′−1(
θ−iB′(xi + x−i)

)
= 0 , (A.6)

where i, j = 1, 2 and j ̸= i. Total differentiation yields:

dFi =
∂Fi
∂θi

dθi +
∂Fi
∂xi

dxi +
∂Fi

∂x−i
dx−i = 0 , (A.7)

dF−i =
∂F−i
∂θi

dθi +
∂F−i
∂xi

dxi +
∂F−i
∂x−i

dx−i = 0 . (A.8)

Thus, we obtain:

dxi
dθi

= −
∂Fi
∂θi

∂F−i
∂x−i

− ∂F−i
∂θi

∂Fi
∂x−i

∂Fi
∂xi

∂F−i
∂x−i

− ∂Fi
∂x−i

∂F−i
∂xi

=
B′ (C′′ − θ−iB′′)

C′′ (C′′ − θ−iB′′)− θiB′′C′′ > 0 , (A.9)

dx−i
dθi

=

∂Fi
∂θi

∂F−i
∂xi

− ∂F−i
∂θi

∂Fi
∂xi

∂Fi
∂xi

∂F−i
∂x−i

− ∂Fi
∂x−i

∂F−i
∂xi

=
θ−iB′B′′

C′′ (C′′ − θ−iB′′)− θiB′′C′′ < 0 . (A.10)
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In addition, it holds:

dx
dθi

=
dxi
dθi

+
dx−i
dθi

=
B′C′′

C′′ (C′′ − θ−iB′′)− θiB′′C′′ > 0 . (A.11)

Assuming that the cost and benefit functions are at least “almost quadratic”, i.e. B′′′ ≈ 0 and C′′′ ≈ 0, we
obtain:

d2x
dθ2

i
=

B′B′′ (C′′)2

[C′′ (C′′ − θ−iB′′)− θiB′′C′′]2
< 0 , (A.12)

d2xi

dθ2
i
=

B′B′′ (C′′ − θ−iB′′)C′′

[C′′ (C′′ − θ−iB′′)− θiB′′C′′]2
< 0 , (A.13)

d2x−i

dθ2
i

=
θ−iB′ (B′′)2 C′′

[C′′ (C′′ − θ−iB′′)− θiB′′C′′]2
> 0 . (A.14)

In the first stage, the principals’ first-order conditions are given by:

B′(x(Θ)
)dx(Θ)

dθi
− C′(xi(Θ)

)dxi(Θ)

dθi
= 0 , i = 1, 2 . (A.15)

Taking the first-order condition (4) of the second stage into account, we can simplify equation (A.15) to
yield:

(1 − θi)B′(x(Θ)
)dx(Θ)

dθi
= −C′(xi(Θ)

)dx−i
dθi

, i = 1, 2 . (A.16)

Inserting the formulae for dxi(Θ)/dθi, dxi(Θ)/dθi and dx−i(Θ)/dθi into equation (6), we can explicitly
solve for the reaction function of principal i:

θi(θ−i) =
C′′(x−i(Θ)

)
C′′(x−i(Θ)

)
− θ−iB′′(x(Θ)

) . (A.17)

Assuming that the cost and benefit functions are almost quadratic, i.e. B′′′ ≈ 0 and C′′′ ≈ 0, we obtain:

dθi(θ−i)

dθ−i
=

B′′(x(Θ)
)
C′′(x−i(Θ)

)[
C′′(x−i(Θ)

)
− θ−iB′′(x(Θ)

)]2 ≤ 0 . (A.18)

Thus, also the principals’ choices of the payoff parameters θi are either strategic substitutes (in case of a
strictly concave benefit function) or dominant strategies (if the benefit function is linear).

A.0.2 Particular Functional Forms

In the following, we explore the SPE for the two special cases where benefits are either linear or quadratic
in the provision of the public good.

Liner Benefit Function

We assume the following functional forms:

B(x) = bx , C(xi) =
1
2

cx2
i . (A.19)
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Defining a = b/c, the first-order condition of the second stage implies that public good provision choices
are dominant strategies:

xi = θia . (A.20)

In addition, we obtain:

dxi
dθi

= a ,
dx−i
dθi

= 0 ,
dx
dθi

= a . (A.21)

The first-order condition of the first stage implies that self-representation, i.e. θi = 1, is a dominant strategy:

(1 − θi)ab = 0 ⇒ θi = 1 . (A.22)

As a consequence, the outcome in the unique SPE of the game is given by:

θi = 1 , xi = a , i = 1, 2 . (A.23)

Quadratic Benefit Function

We assume the following functional forms:

B(x) = bx
(

x̄ − 1
2

x
)

, C(xi) =
1
2

cx2
i , (A.24)

where x̄ denotes the bliss point of public good provision. Employing, again, the definition a = b/c, the
first-order condition of the second stage yields:

xi = aθi(x̄ − x) , (A.25)

which implies the following best response of agent i

xi(x−i) =
aθi(x̄ − x−i)

1 + aθi
, (A.26)

given the public good provision of the other agent, x−i. Obviously, public good provision choices are
strategic substitutes:

xi(x−i)

dx−i
= − aθi

1 + aθi
. (A.27)

Summing up the first-order conditions (A.25) of both agents i = 1, 2, yields the total public good provision
in the second stage of the game:

x = x̄
a(θ1 + θ2)

1 + a(θ1 + θ2)
. (A.28)

Inserting back into the first-order condition yields the public good provision of agent i:

xi = x̄
aθi

1 + a(θ1 + θ2)
. (A.29)
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In addition, we obtain the comparative statics with respect to θi:

dxi
dθi

= x̄
a (1 + a(θ1 + θ2))

[1 + a(θ1 + θ2)]
2 > 0 , (A.30a)

dx−i
dθi

= −x̄
a2(θ1 + θ2)

[1 + a(θ1 + θ2)]
2 < 0 , (A.30b)

dx
dθi

= x̄
a

[1 + a(θ1 + θ2)]
2 > 0 . (A.30c)

The first-order condition of the first stage yields:

(1 − θi)a(x̄ − x)
dx
dθi

= −xi
dx−i
dθi

, (A.31)

which implies the following best response function of principal i

θi(θ−i) =
1

1 + aθ−i
, (A.32)

for a given θ−i of the other principal. Also, the preference choice parameters in the first stage are strategic
substitutes:

dθi
dθ−i

= − a

(1 + aθ−i)
2 (A.33)

Solving, for the subgame perfect θi yields:

θi =

√
1 + 4a − 1

2a
, i = 1, 2 . (A.34)

Thus, we obtain for the outcome in the subgame perfect equilibrium:

θ⋆i =

√
1 + 4a − 1

2a
, x⋆i = x̄

aθ⋆i
1 + 2aθ⋆i

, i = 1, 2 . (A.35)
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A.0.3 Additional Results for Stage 2

Figure 48: Contribution Sequence

Notes: Boxplots illustrating contributions across the 25 one-shot games for both the linear treatment (upper panel) and
quadratic treatment (lower panel). In each plot, the mean contribution is indicated by a blue line for comparative
reference.
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Figure 49: Players’ Contributions

Linear Treatment Quadratic Treatment

Notes: Boxplots of players’ contributions in the 25 second stage games in the linear (left) and quadratic (right) treatment.
Red lines indicate contributions in the Nash equilibrium if agents only care about their own monetary payoffs.
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Figure 50: Players’ Contributions (Difference to NE)

Linear Treatment Quadratic Treatment

Notes: Boxplots of the difference between players’ contributions and the contributions in the Nash equilibrium if agents
only care about own monetary payoffs in the 25 second stage games in the linear (left) and quadratic (right) treatment.
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Figure 51: Players’ Contributions (Expectation Subsamples)

Linear Treatment Quadratic Treatment

Notes: Boxplots of the difference between players’ contributions and the contributions in the Nash equilibrium if agents
only care about their own monetary payoffs for the two subsamples of below (low) and above (high) median expecta-
tion in the 25 second stage games in the linear (left) and quadratic (right) treatment.
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Figure 52: Players’ Expectations and Contributions (Actual Games)

Linear Treatment Quadratic Treatment

Notes: Boxplots of difference between players’ expectations and other player’s actual contributions in the 25 second
stage games in the linear (left) and quadratic (right) treatment.
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Figure 53: Players’ Expectations and Contributions (Mirror Games)

Linear Treatment Quadratic Treatment

Notes: Boxplots of difference between players’ expectations and their own contribution in the corresponding “mirror
game” in the 25 second stage games in the linear (left) and quadratic (right) treatment.

131



A.0.4 Additional Results for Stage 1

Figure 54: Benefit Parameter Conditioned on Expectation About Other Player

Notes: Boxplot of benefit parameters conditioned on expectations of other player’s benefit parameter in linear (left) and
quadratic (right) treatment.

Table 22: Benefit Parameter Conditioned on Expectation About Other Player

Exp. ben. Mean (lin) Median (lin) Mean (quad) Median (quad) P-value

4 6.80 4 5.67 5 0.7300
6 7.37 6 7.65 8 0.5953
8 8.39 8 8.35 8 0.8676

10 8.71 10 9.36 10 0.2418
12 10.62 12 10.92 12 0.8840

Notes: Mean and median benefit parameters conditional on the expected benefit parameter of the other player for the
linear (lin) and quadratic (quad) treatment. The difference between the means in linear and quadratic treatment is not
significant according to a two-sided Mann-Whitney test.
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Figure 55: Questionnaire [1]

Notes: Screenshot of the first page of the post-experiment questionnaire, which includes questions regarding gender,
English proficiency, age, and level of education.
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Figure 56: Questionnaire [2]

Notes: Screenshot of the second page of the post-experiment questionnaire, containing questions regarding trust, math-
ematical literacy, risk preferences, donation behavior, guiding principle, and their own ideal contribution.
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Figure 57: Questionnaire [3]

Notes: Screenshot of the third page of the post-experiment questionnaire, featuring questions on the perceived difficulty
of understanding the experiment, the rationale behind the participants’ choices, scenario envisionment, and an open
question for feedback.
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Figure 58: Questionnaire [DG, UG]

Notes: Screenshot of the fourth page of the post-experiment questionnaire, presenting the two questions on the hypo-
thetical ultimatum and dictator games.
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