
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
6
5
2
9

|

d
o
w
n
l
o
a
d
e
d
:

2
2
.
8
.
2
0
2
5

Novel Techniques for Robust and Generalizable

Machine Learning

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Abdelhak Lemkhenter
von Morocco

Leiter der Arbeit:

Prof. Dr. P. Favaro

Institut für Informatik

Novel Techniques for Robust and Generalizable

Machine Learning

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Abdelhak Lemkhenter
von Morocco

Leiter der Arbeit:

Prof. Dr. P. Favaro

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 22.08.2023
Der Dekan:
Prof. Dr. M. Herwegh

3

This work is licensed under a cb Creative Commons Attribution 4.0 International

License, except for Chapters 3, 4, 5, 6.

https://creativecommons.org/licenses/by/4.0/

4

Contents

Abstract 13

Acknowledgments 15

1 Introduction 17

1.1 Neural Networks as Universal Approximators 17

1.2 Cases of Overfitting . 18

1.2.1 Learning Spurious Correlation 18

1.2.2 Learning under Label Noise . 19

1.2.3 Learning Domain Specific Features 19

1.2.4 Memorization in Deep Neural Networks 20

1.3 Learning to Generalize . 20

1.3.1 Learning to Ignore Noise . 20

1.3.2 Learning to Generalize . 21

1.3.3 Learning to Propagate Labels 21

1.3.4 Learning to Generate Additional Data 21

1.4 Thesis Contributions . 22

1.4.1 Thesis Outline . 23

2 Background 25

2.1 Polysomnography . 25

2.1.1 PSG Recordings . 25

2.1.2 Sleep Scoring . 27

2.1.3 Domain Shifts . 29

2.1.4 Deep Learning for Bio-signals. 30

2.1.5 Automatic Sleep Scoring . 30

2.2 Self-Supervised Learning . 30

2.2.1 Overview . 30

2.2.2 Learning to be invariant . 31

2.2.3 Learning to solve pseudo-tasks 33

5

6

2.2.4 Self-Supervised Learning as a Scalable learning paradigm . . . 33

2.3 Meta-Learning . 34

2.3.1 Problem Formulation . 34

2.3.2 Gradient-based Meta-Learning 34

2.3.3 Applications of Meta-Learning 35

2.4 Semi-Supervised Learning . 35

2.4.1 Problem Formulation . 36

2.4.2 Graph-based Semi-Superived Learning 36

2.4.3 Self-training . 37

2.5 Generative Adversarial Networks . 37

2.5.1 Overview . 38

2.5.2 Applications . 38

2.5.3 Limitations . 38

3 Boosting Generalization in Bio-signal Classification by Learning the

Phase-Amplitude Coupling 41

3.1 Related Work . 43

3.2 Learning to Detect the Phase-Amplitude Coupling 43

3.3 Experiments . 45

3.3.1 Data Sets . 45

3.3.2 Training Procedures and Models 46

3.3.3 Evaluation Procedures . 47

3.3.4 Generalization on the Sleep Cassette Data Set 48

3.3.5 Generalization on the ISRUC-Sleep Data Set 48

3.3.6 Comparison to the Relative Positioning Task 49

3.3.7 Results on the Sleep Telemetry and CHB-MIT Data Sets . . . 50

3.3.8 Impact of the Window Size . 51

3.3.9 Frozen vs Fine-tuned Encoder 52

3.3.10 Architecture . 52

3.4 Discussions . 53

4 Towards Sleep Scoring Generalization Through Self-Supervised Meta-

Learning 55

4.1 Related Works . 57

4.2 Methods . 57

4.2.1 Datasets . 57

4.2.2 Data Preprocessing . 58

4.2.3 Data Split . 58

4.2.4 Notation . 59

4.2.5 Self-Supervised MAML (S2MAML) 59

Contents 7

4.2.6 PhaseSwap . 60

4.2.7 Architecture Choice . 61

4.2.8 Baselines and Training Hyper-parameters 62

4.2.9 Evaluation Metrics . 62

4.3 Results . 63

4.3.1 Generalization to Novel Databases: 3 vs 5 63

4.3.2 Generalization in a Data Abundant Setting: All vs All 64

4.3.3 Disparity Between Datasets: One vs All 65

4.3.4 Effect of λin . 65

4.4 Discussions . 66

5 Distribution-Aware Label Refinement for Imbalanced Semi-Supervised

Learning 69

5.1 Related Works . 71

5.2 SemiGPC . 72

5.2.1 Consistency-based Semi-Supervised Learning 72

5.2.2 Gaussian Processes-based Label Refinement 74

5.2.3 Efficient GP update . 76

5.3 Experimental Settings . 78

5.3.1 Implementation details . 78

5.3.2 Datasets . 78

5.4 Experimental Results . 80

5.4.1 Imbalanced Semi-Supervised Learning 80

5.4.2 Semi-Supervised FGVC Benchmarks 82

5.4.3 Standard CIFAR10/CIFAR100 84

5.5 Ablations . 85

5.5.1 Semi-Supervised Learning Algorithms 85

5.5.2 Pre-training Strategy . 85

5.5.3 CReST experiments . 86

5.5.4 Class Imbalance . 87

5.6 Discussions . 87

6 Generative Adversarial Learning via Kernel Density Discrimination 89

6.1 Related works . 91

6.2 Kernel Density Discrimination . 92

6.2.1 Improving KDE through Data Augmentation 94

6.2.2 Loss Analysis . 95

6.2.3 Class-Conditioning Extension 96

6.2.4 Regularization of the Feature Mapping 97

6.2.5 KDD GAN Formulation . 97

8

6.3 Implementation . 97

6.4 Experiments . 98

6.4.1 Ablation Results . 99

6.4.2 Generative Learning on CIFAR10 101

6.4.3 Generative Learning on ImageNet 101

6.5 Examples of Generated Images . 103

6.6 Limitations and Future Work . 104

7 Conclusions 111

List of Figures

1.1 Bias-variance trade off . 18

2.1 Structure of a neuron . 26

2.2 The 10-20 EEG system . 27

2.3 EEG sleep patterns . 28

2.4 Outline of DINO . 32

2.5 Outline of a Masked Auto Encoder . 33

3.1 Illustration of the phase-swap operator 43

3.2 Visualization of a phase-swaped sample. 44

3.3 Training Outline . 45

5.1 SemiGPC pseudo-labeling with class imbalance. 70

5.2 SemiGPC Outline . 72

5.3 Comparison of confidence maps of different classifier in the class imbal-

anced setting. 75

6.1 Illustration of the difference between the hinge loss and KDD loss during

the generator update. 90

6.2 Sample images generated using KDD GAN on ImageNet 64× 64 . . . 99

6.3 Qualitative results on CIFAR10 . 104

6.4 Qualitative results on Tiny ImageNet using the Hinge loss 105

6.5 Qualitative results on Tiny ImageNet using the KDD loss 106

6.6 Qualitative results on ImageNet64× 64 using the Hinge loss 107

6.7 Qualitative results on ImageNet64× 64 using the Hinge loss 108

6.8 Qualitative results on ImageNet 64× 64 using the KDD loss 109

6.9 Qualitative results on ImageNet 64× 64 using the KDD loss 110

9

10

List of Tables

3.1 Comparison of the performance of the Phase Swap model on the SC

dataset . 49

3.2 Comparison of the performance of the Phase Swap model on the ISRUC-

Sleep dataset . 49

3.3 Comparison between the PS and RP pre-training on the SC dataset. . 50

3.4 Evaluation of the Phase Swap model on the ST and CHB-MIT datasets 51

3.5 Analysis of the effect of the window size WSelf 51

3.6 Comparison of the four training variants. 52

3.7 Evaluation of the Phase Swap model using the ResNet architecture on

the SC dataset . 53

4.1 Diagram illustrating our evaluation sets 59

4.2 Cross-validation MF1 Scores for the 3 vs 5 setting on seen subjects. . 63

4.3 Cross-validation MF1 Scores for the 3 vs 5 setting on unseen subjects. 63

4.4 Cross-validation MF1 Scores for the All vs All setting. 64

4.5 Cross-validation MF1 Scores for models trained on one dataset 66

4.6 Analysis of the effect of λin for unseen subjects 67

4.7 Analysis of the effect of λin for seen subjects 67

5.1 Complexity Comparison of GP updates 77

5.2 SemiGPC training hyper-parameters. 79

5.3 Top1 Accuracy obtained on CIFAR100-LT 81

5.4 Top1 Accuracy obtained on CIFAR10-LT 82

5.5 Top1 Accuracy obtained on the SemiFGVC benchmarks 83

5.6 Top1 Accuracy obtained on CIFAR10 and CIFAR100 84

5.7 Impact the chosen semi-supervised method 85

5.8 Pretraining strategy. 86

5.9 Top1 Accuracy when using CReST [153] 86

5.10 Comparison of class balancing strategies. 87

11

12

6.1 KDD GAN Ablations on CIFAR10 . 100

6.2 KDD GAN kernel and dimensionality choice 100

6.3 Experimental results on CIFAR10. 101

6.4 Experimental results on Tiny ImageNet. 102

6.5 Experimental results on ImageNet 64× 64. 103

Abstract

Neural networks have transcended their status of powerful proof-of-concept machine

learning into the realm of a highly disruptive technology that has revolutionized many

quantitative fields such as drug discovery, autonomous vehicles, and machine transla-

tion. Today, it is nearly impossible to go a single day without interacting with a neu-

ral network-powered application. From search engines to on-device photo-processing,

neural networks have become the go-to solution thanks to recent advances in com-

putational hardware and an unprecedented scale of training data. Larger and less

curated datasets, typically obtained through web crawling, have greatly propelled the

capabilities of neural networks forward. However, this increase in scale amplifies cer-

tain challenges associated with training such models. Beyond toy or carefully curated

datasets, data in the wild is plagued with biases, imbalances, and various noisy com-

ponents. Given the larger size of modern neural networks, such models run the risk of

learning spurious correlations that fail to generalize beyond their training data.

This thesis addresses the problem of training more robust and generalizable ma-

chine learning models across a wide range of learning paradigms for medical time series

and computer vision tasks. The former is a typical example of a low signal-to-noise

ratio data modality with a high degree of variability between subjects and datasets.

There, we tailor the training scheme to focus on robust patterns that generalize to new

subjects and ignore the noisier and subject-specific patterns. To achieve this, we first

introduce a physiologically inspired unsupervised training task and then extend it by

explicitly optimizing for cross-dataset generalization using meta-learning. In the con-

text of image classification, we address the challenge of training semi-supervised models

under class imbalance by designing a novel label refinement strategy with higher local

sensitivity to minority class samples while preserving the global data distribution.

Lastly, we introduce a new Generative Adversarial Networks training loss. Such

generative models could be applied to improve the training of subsequent models in the

low data regime by augmenting the dataset using generated samples. Unfortunately,

GAN training relies on a delicate balance between its components, making it prone

mode collapse. Our contribution consists of defining a more principled GAN loss whose

gradients incentivize the generator model to seek out missing modes in its distribution.

13

14

All in all, this thesis tackles the challenge of training more robust machine learning

models that can generalize beyond their training data. This necessitates the devel-

opment of methods specifically tailored to handle the diverse biases and spurious

correlations inherent in the data. It is important to note that achieving greater gen-

eralizability in models goes beyond simply increasing the volume of data; it requires

meticulous consideration of training objectives and model architecture. By tackling

these challenges, this research contributes to advancing the field of machine learning

and underscores the significance of thoughtful design in obtaining more resilient and

versatile models.

Acknowledgments

“He who travels alone travels fastest, but in the company of friends you go farther.”

I am deeply grateful to my exceptional supervisor, Prof. Dr. Paolo Favaro, for his

invaluable support, expertise, and mentorship throughout this thesis. His guidance

and feedback have shaped my research and academic skills. Prof. Dr. Favaro’s

commitment to my growth and his passion for research have inspired me to strive

for excellence and innovation.

A special thanks goes to Prof. Dr. Friedemann Zenke and Prof. Dr. David

Bommes for serving as thesis examiners. I appreciate their valuable feedback.

I would like to thank all the members of the Computer Vision Group (CVG) in

Bern: Dragana Heinzen, Simon Jenni, Givi Meishvili, Xiaochen Wang, Adrian Wälchli,

Adam Bielski, Josué Page, Tomoki Watanabe, Riccardo Fantinel, Llukman Çerkezi,

Aram Davtyan, Alp Eren Sari, Sepehr Sameni, Hamadi Chihaoui, Luigi Fiorillo, Re-

nato Maria Prisco, Viktor Shipitsin, and Athanasios Charisoudis. They have greatly

contributed to fostering a great working environment where we support each other and

help each other break through roadblocks and see problems from a completely new

perspective. I am also grateful to the research groups member under the IRC Decoding

Sleep umberalla, especially to Prof. Dr. Athina Tzovara, Alnes Florence Aellen, and

Sigurd Lerkerød from Cognitive Computational Neuroscience (CCN) group in Bern

for the many valuable interaction and collabrations.

I would like to also thank Davide Modolo, Manchen Wang, Luca Zancato, Guru-

murthy Swaminathan, Yanbei Chen, Abhay Mittal, Joe Tighe, Kaustav Kundu, and

Zhenlin Xu for their mentorship during my internship at AWS.

I am also grateful to my friends for their support and encouragement throughout

this journey. I appreciate their presence in my life and the moments of respite they

have provided during challenging times.

Most importantly, I am most grateful to my family. Pursuing my education on

a continent different from them has been an arduous journey, but their unwavering

support, their sacrifices, and love have been a constant source of strength, and I am

truly fortunate to have such a caring and loving family by my side. Making them

proud has been and will always be one of my biggest driving forces and joys in life.

15

16

Chapter 1

Introduction

Over the last few years, machine learning models have been rapidly increasing in scale

due to larger datasets and more powerful computational resources that have enabled

training such models. Works such as Fedus et al. [37] can train a trillion-parameter

model on corpora such as C4 [117]. For reference, a large computer vision dataset,

such as JFT [141] contains 700 million images. Despite these impressive figures, they

pale in comparison to the amount of data posted daily on the Internet. An estimated

400 hours of video are uploaded every minute to YouTube and around 100 million new

images are posted on Instagram daily1. Therefore, the reliability and generalizability

of machine learning models is an important issue to tackle, especially when one cannot

hope that the scale of training data will one day catch up to the data generation rate.

Indeed a useful machine learning model is one such that it is able to handle various

distributions shifts present in the wild and capture robust features and patterns across

settings.

1.1 Neural Networks as Universal Approximators

The Universal Approximation Theorem states that one can approximate a given func-

tion between two Euclidean spaces up to an arbitrary level of precision using feedfor-

ward neural networs [52]. It was later shown that this result holds for a three-layer

multilayer perceptron (MLP) [92]. This has propelled neural networks to the forefront

of machine learning since they are able to learn complex mappings between various

modalities. However, this function approximation capability is a double-edge sword,

as the neural network could learn arbitrary spurious correlations. This is called over-

fitting. Addressing this failure mode requires a careful design of the training scheme

and the benchmarks used to evaluate such models.

1https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/

17

https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/

18 Chapter 1

1.2 Cases of Overfitting

Figure 1.1: Bias-variance trade off. Illustration of bias-variance trade off in terms

of the model capacity when comparing the training and validation errors2.

The classic machine learning literature tackles the risk of overfitting as a bias-

variance trade-off. This interpretation is rooted in the literature of statistical estima-

tors and is often illustrated using Figure 1.1. Nevertheless, overfitting is not a one-note

phenomenon, but rather a combination of different training failure cases such as:

1.2.1 Learning Spurious Correlation

Given a finite set of training data, it is often possible to solve the training task without

the model learning a robust set of features. Let us consider an example of a data set

that contains images of cats and dogs. Depending on how the dataset was collected,

it might be enough for the model to learn to detect whether the photo was taken

indoor or outdoor to solve the classification task. In fact, if the training set is not

carefully curated, images of dogs tend to be taken in parks, while images of cats are

predominantly taken inside the house. Obviously, a model that relies solely on this

spurious correlation is not a robust cat/dog detector. Such spurious correlations are

always present in the training data to various degrees and can be easily captured by

neural networks. Beyond biases present in the training data, the per-sample noise

component, such as JPEG compression artifacts or additive noise, could be used as a

2https://learnopencv.com/bias-variance-tradeoff-in-machine-learning/

https://learnopencv.com/bias-variance-tradeoff-in-machine-learning/

Introduction 19

unique sample identifier, allowing the neural network to simply memorize the train-

ing data. To address this risk, different image augmentation strategies have become

standard practice in computer vision [23, 24].

1.2.2 Learning under Label Noise

Outside of synthetic datasets, data labels are obtained using human annotators. Ser-

vices such as Amazon Mechanical Turk3 have allowed for an unprecedented scale of

data annotation. However, human annotations are not perfect. Due to the focus

on efficiency and the ambiguity associated with more complex tasks, the agreement

between different human annotators is almost always below 100%. This setting is

referred to as label noise (LN). A common workaround to this issue is to use multiple

annotators and use the majority vote as the ground-truth label. However, this is not

a perfect solution. The source of disagreement between annotators can be systematic;

e.g. the image contains multiple objects, but only one class label can be selected, or

the dataset was acquired over an extended period of time during which the annotation

protocol changed, e.g. medical recordings. Therefore, a proper model should learn the

more robust label mapping instead of perfectly memorizing the noisy labels present in

the training set, i.e. it should prioritize generalization over perfectly solving the train-

ing task. Indeed, under random label noise, the best performing model on a properly

designed test set is the one able to capture the underlying robust label mapping.

1.2.3 Learning Domain Specific Features

As stated previously, the scale of the data used to train a model is significantly smaller

than the data available in the wild, which it will be deployed on. This difference in

scale is not just a difference in the quantity of data but also a difference in the diversity

of the data. The data in the wild may belong to a different domain; i.e. there is a

distribution shift between the training and test data. Examples of such domain gaps

include:

• medical datasets where the patterns differ slight from subject to subject;

• differences in the data acquisition setting, e.g. low light setting vs. well lit

setting;

• Sim2Real where the training data was obtained using a simulation, e.g. a 3D

rendering engine, and the model is deployed on real data.

Similarly to the previous two cases, the model could learn to solve the training task

by relying on features specific to the training domain that do not generalize beyond

it, e.g. textures specific to the 3D rendering engine.

3https://www.mturk.com/

https://www.mturk.com/

20 Chapter 1

1.2.4 Memorization in Deep Neural Networks

Although overfitting is often depicted as a training failure mode, building more gener-

alizable models does not imply eliminating overfitting completely. Arpit et al. [5] has

shown that sample memorization is an intrinsic part of neural network training, where

the network first focuses on the easier samples than switches to memorizing the more

challenging ones. Carlini et al. [19] further shows that even if these challenging sam-

ples are removed from the training data, the network will identify another set of the

next inline challenging samples to memorize. Therefore, generalizable models should

account for this phenomenon during their training.

1.3 Learning to Generalize

This thesis addresses the problem of building more robust and generalizable mod-

els. Under this broad umbrella, each chapter tackles the generalization problem in a

different context.

1.3.1 Learning to Ignore Noise

As noted in Section 1.2, a given training dataset contains a mixture of spurious and

robust features. Differentiating these features is a non-trivial task. In the super-

vised setting, one can rely on a diverse and large enough collection of samples. The

model can learn to extract robust features based on the assumption that annotations

and spurious features are not causally related. Even then, such spurious correlations

might still be learned by the model, especially in the presence of hidden confounding

variables; i.e. scaling up the training data does not necessarily solve this issue. For

example, [42] showed that CNN models trained on ImageNet tend to focus on texture

information. Identifying robust features is even more challenging in the unsupervised

setting, where no label information is available to serve as a source of counterexam-

ples for spurious correlations. Instead, an alternative approach is to incorporate prior

knowledge of some properties of the robust features into the unsupervised training

method. For instance, works such as Caron et al. [20] and Chen et al. [21] make the

assumption that the robust image feature should be invariant w.r.t. image augmen-

tations such as color jittering, blur, etc. In Chapter 3, we introduce an unsupervised

training method for medical time series. The type of medical time series we work with

is often characterized by a low signal-to-noise ratio and a high degree of interpatient

and intercohort variability, both being two major challenges for training robust mod-

els as stated before. The main intuition behind our proposed method is that robust

patterns are more structured than spurious ones. By incentivizing our model to fo-

cus on such patterns and ignore the noisier part of the signal, we greatly improve its

Introduction 21

generalization to new subjects across different data regimes.

1.3.2 Learning to Generalize

When no additional source of information is available, the previous approach that relies

on prior knowledge can be the most that can be done to extract features that generalize

well across settings. However, one often has access to more information for each

sample in the form of ground-truth labels and/or meta-data. This is especially true

for sequential data, where each sequence could be considered as a separate domain. On

top of leveraging prior knowledge, as described above, one can also explicitly constrain

the model to learn features that generalize well to other sequences in the dataset.

In other words, our model is tasked with identifying patterns that are considered

robust not only for the current sequence, but also for other sequences w.r.t. a defined

supervised training task. One way to go about imposing such a constraint is to cast the

training scheme as a meta-learning problem where the goal is to learn robust features

that generalize well across settings. We explore this paradigm for sleep scoring in

Chapter 4 where the goal is to learn to generalize across datasets.

1.3.3 Learning to Propagate Labels

When aiming to learning robust data representation, in the supervised setting spurious

correlation can be more easily identified thanks to the access to the label information,

while in the unsupervised setting the model has access to a significantly larger collec-

tion of training samples as unlabeled data is usually cheaper to acquire and overall

more readily available. In between lays the semi-supervised setting where both unla-

beled and labeled training sets are available. Semi-supervised learning is a great fit for

tackling model generalization, as it can benefit from both unlabeled data to learn useful

data representation while leveraging the labeled data to identify potential erroneous

correlations. Not only that, but model generalization and robustness is an important

consideration to take into account when designing semi-supervised methods. Indeed,

semi-supervised training relies mostly on propagating the annotation information from

the labeled set to the unlabeled counterpart. Doing so is prone to propagating dif-

ferent biases and arbitrary correlations or introducing new ones, especially since the

labeled set is often very restricted in size, e.g. 2 samples per class. Thus a robust

semi-supervised method should be carefully designed to minimize failure cases such as

confirmation bias when incorporating the unlabeled set into the training scheme.

1.3.4 Learning to Generate Additional Data

An alternative approach to learning robust feature representations when training sam-

ples are scarce is to learn to generate additional data. For certain tasks, synthetic

22 Chapter 1

annotated data is easier to obtain. One such example is the FlyingChairs dataset [31]

for optical flow which consists of 3D chair models moving against a static image back-

ground. The FlyingChairs has been a standard inclusion in most modern optical flow

training schemes [142, 136]. However, such synthetic processes are not always avail-

able. Instead, in the more general case, one can train a generative model as a means

to sample more observations from the data distributions. One such model is Genera-

tive Adversarial Networks (GANs)[44], which have seen great success in augmenting

training data with high-quality generated samples and thus improving the overall per-

formance of subsequent trained models, especially in the computer vision [53] and

medical imaging literature [15]. However, training GANs remains a challenging task

and an open research question, as they often suffer from failure modes such as mode

collapse where the data distribution is learned partially.

1.4 Thesis Contributions

This thesis tackles the challenge of training more robust models in multiple settings

and under different interpretations of the term robustness. In the unsupervised set-

ting, we derive a biologically inspired self-supervised learning task for training robust

feature representations for physiological time series. Robustness here is interpreted as

the ability to generalize to new subjects. We then extend such features to the more

challenging task of cross-dataset generalization using meta-learning. When comparing

recordings from different datasets, many factors can differ, such as data acquisition

hardware and protocol and the demographic of the subjects. By tackling such vari-

ability that has a direct impact on the performance of trained deep learning models,

we provide an important step forward towards building more reliable deep learning

models for medical time series. In the semi-supervised setting, we tackle the problem

of training a semi-supervised model under different degrees of class imbalance. Ro-

bustness in this setting refers to the ability of the model to avoid being biased towards

the majority class when the class imbalance is present in either the labeled or the

unlabeled sets, or both. To fulfill this goal, we design a new label propagation strat-

egy based on Gaussian Processes that is locally sensitive to nearby minority samples

while remaining faithful to the global structure of the data distribution. Lastly, we

introduce a new generative loss inspired by the contrastive learning literature. On

top of providing a more principled loss that takes the form of a statistical divergence

regardless of the optimality of the discriminator, our loss has better gradients that

allow it to actively seek missing mode in the distribution of the generated data.

Introduction 23

1.4.1 Thesis Outline

Chapter 2: Background We provide an overview of key topics that are relevant for

the later chapters. First, we introduce the polysomnography data used in Chapters 3

and 4, its applications, properties, and relevant deep learning methods. We then

introduce the different learning paradigms we touch upon in this thesis, including:

Self-supervised learning, Meta-learning, and Semi-Supervised Learning. Lastly, we

introduce Generative Adversarial Networks along with their applications and current

limitations.

Chapter 3: Learning the Phase-Amplitude Coupling We introduce Phase

Swap a new biologically inspired self-supervised task for physiological time series. By

training a model to detect whether the phase and amplitude information of a given

signal match or not, we are able to extract deep features that generalize well to new

subjects for different downstream classification tasks. The robustness of our Phase

Swap features is especially prominent in the low data regime, where only a few subjects

are available for training.

This work is associated with the publication: Lemkhenter, Abdelhak, and Paolo

Favaro. Boosting generalization in biosignal classification by learning the phase-amplitude

coupling. Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020,

Tübingen, Germany, September 28–October 1, 2020, Proceedings 42. Springer Inter-

national Publishing, 2021.

Chapter 4: Self-Supervised Meta-Learning for Sleep Scoring We extend our

Phase Swap method beyond generalizing to new subjects. Using meta-learning, we

are able to explicitly constrain our new training scheme S2MAML to generalize better

across datasets. Our formulation favors self-supervised features extracted on a given

dataset and that also generalize well to another randomly sampled dataset w.r.t. to

a given supervised task. We show that S2MAML outperforms other approaches for

different data splits and configurations.

This work is associated with the publication: Lemkhenter, Abdelhak, and Paolo

Favaro. Towards Sleep Scoring Generalization Through Self-Supervised Meta-Learning.

2022 44th Annual International Conference of the IEEE Engineering in Medicine &

Biology Society (EMBC). IEEE, 2022.

Chapter 5: Imbalanced Semi-Supervised Learning Using Gaussian Pro-

cesses Self-learning based semi-supervised methods are prone to confirmation bias.

This risk is more prominent when training data is skewed and contains significant

class imbalances. To address this issue, we introduce SemiGPC, a drop-in extension

for existing semi-supervised methods derived from the posterior mean of a Gaussian

24 Chapter 1

Process (GP). Our GP-based label refinement allows our method to better deal with

class imbalances by showing a better local sensitivity to minority class samples while

preserving the global structure of the data distribution. We show that our method

SemiGPC produces state-of-the-art results on standard artificially imbalanced datasets

such as CIFAR-LT as well as on other more challenging semi-supervised fine-grained

visual classification benchmarks.

Chapter 6: Kernel Density Discrimination GAN GAN training requires a del-

icate balance between the discriminator and the generator networks and is often prone

to converging to suboptimal solution due to mode collapse. To address these issues,

we introduce a novel GAN loss based on kernel density discrimination (KDD GAN).

By defining our loss as statistical divergence between the kernel density estimates of

the real and generated distributions in feature space regardless of the optimality of

the discriminator, we obtain better training gradients that encourage the generator to

seek missing modes in its distribution. This results in quantitatively better generative

models.

Chapter 2

Background

In this chapter, we provide an overview of the polysomnography (PSG) and Electroen-

cephalography (EEG) data used in both Chapter 3 and Chapter 4. We present the

acquisition and formatting of this data modality, as well as the different applications in

which it is used, and the domain shifts associated with it. We also introduce relevant

elements of the Self-Supervised Learning, Semi-Supervised Learning, Meta-Learning,

and Generative Modeling literatures.

2.1 Polysomnography

2.1.1 PSG Recordings

Polysomnography [59] is a study of sleep that involves multiple physiological measure-

ments over time. These signals include:

Electroencephalograms (EEG) which measure the synchronized postsynaptic ex-

citation of a population of cortical neurons [58]. Each neurons can be seen as a dipole

due to extracellular voltage caused by the negative charge near the neural dendrites,

cf. Figure 2.1.

These measurements of brain activity are obtained using different electrodes placed

on the surface of the head following the 10-20 system as shown in Figure 2.2. Elec-

trode placements require an exact measurement of the dimensions of the skull and

are generally laid out to cover five main regions, each associated with a specific pre-

fix: pole (FP), frontal (F), central (C), parietal (P), and occipital (O). Electrodes on

the right/left side of the head are designated with an even/left number, respectively.

Not all sleep studies include all electrodes, but all sample at least the frontal, central,

and occipital regions, as they exhibit K complexes, sleep spindles, and delta activity

(0.5Hz-4Hz)[59] respectively, which are specific patterns of brain activity associated

25

26 Chapter 2

Figure 2.1: Structure of a neuron. Diagram representing the structure a neuron

and its components1.

with different stages of sleep, cf. Figure 2.3.

EEG measurements are computed relative to the average electrode or computed

as the difference between two specific electrodes, i.e. a derivation. Recommended

derivations are F4-M1, C4-M1, O2-M1 or alternatively, FZ-CZ, CZ-OZ and C4-M1

with FPZ, C3, O1, and M2 as backup electrodes according to the American Academy

of Sleep Medicine (AASM) manual [13].

Electro-oculograms (EOG) which measure eye movements. This relies on the

dipole formed by the cornea and retina which results in eye movements being recorded

as deflections in the electric signal. The presence of eye movements is one of the factors

used to distinguish different stages of sleep.

Electromyograms (EMG) which measure muscle activity. EMG electrodes are

typically placed on the submental triangle and on the leg during PSG. The former

allows for characterizing muscle tone for sleep staging, while the latter can be used to

detect disorders such as periodic limb movement (PLM).

Airflow which is measured using a nasal pressure monitor or an oronasal thermal

sensor. PSG can also include a measurement of respiratory effort by tracking the

movement of the rib cage using inductance plethysmography. These signals can be

used to detect disorders such as sleep apnea.

Electrocardiograms (ECG) which measure the electical activity associated with

cardiac cycles. This signal can be used to derive the heart rate and detect different

1https://en.wikipedia.org/wiki/Neuron

https://en.wikipedia.org/wiki/Neuron

Background 27

Figure 2.2: The 10-20 EEG system. Illustration of the 10-20 EEG system with a

10% and 20% distance between electrodes [128].

arrhythmias.

Oxygenation which measure the oxygen level in the blood using pulse oximetry.

2.1.2 Sleep Scoring

According to the AASM Manual for the Scoring of Sleep and Associated Events [13],

sleep scoring focuses on assigning epochs defined as 30 second segments into one of

the following stages:

Wakefulness (Stage W) which is characterized by the presence of alpha activity

(8-12Hz) in the posterior regions on the EEG for more than 50% of the epoch. However,

when the alpha rhythm is not discernible, which is the case in 10% to 20% of healthy

subjects, wakefulness can be detected using the EOG through: Blinking (0.5-2Hz),

Reading eye movement consisting of a slow phase followed by a rapid movement in the

opposite direction, and irregular eye movement with high muscle tone.

Stage NREM1 Sleep which is characterized by slow eye movement, lower muscle

tone compared to stage W, and low-amplitude activity focused in the 4-8Hz range.

Detecting this stage can be challenging in subjects who do not exhibit an alpha rhythm.

Stage NREM2 Sleep which is characterized by the presence of K complexes, i.e. a

specific biphasic pattern lasting more than 0.5 seconds, without arousals, i.e. the

subject wakes up or the presence of a train of waves longer than 0.5 seconds within

the 11-16Hz or 12-14Hz frequency bands called sleep spindles. This stage ends when

28 Chapter 2

Figure 2.3: EEG sleep patterns. Illustration of the EEG patterns associated with

the different sleep stages. alpha, theta, and delta waves correspond to the 8-12 Hz,

4-8 Hz, and 0.5-4 Hz frequency bands.

Stage W, REM, or N3 are detected. Sleep apnea can induce K complexes due to

frequent arousals that should not be scored as N2.

Stage NREM3 Sleep which is characterized by a predominant slow wave activity

for more than 20% of the epoch. Slow waves have a frequency between 0.5Hz and 2 Hz

and a peak-to-peak amplitude greater than 75mV. Detecting these waves is of great

relevance in the context of cognitive neuroscience [155].

Background 29

Rapid Eye Movement Sleep (REM) which is characterized by an EEG activity

similar to N1, a low muscle tone and irregular and fast eye movements with deflections

shorter than 0.5 seconds. Once REM sleep is detected, all subsequent epochs should

be scored as such until a specific of transition criteria is met.

Detecting the different stages is useful both in clinical and research settings. Through

analyzing the sleep patterns of a given subject, healthcare professionals can detect dif-

ferent abnormalities and pathologies of sleep [58]. In research, studying the brain

dynamics during specific stages of sleep sheds light on different cognitive processes

such as memory consolidation [70] or creative thinking [33]. Currently, the golden

standard for sleep staging requires physicians to manually annotate each 30 seconds

epoch in a recording of PSG 8 hours. In order to make this process more efficient,

different automatic sleep scoring methods have been proposed [8, 113, 114]. However,

such methods are still not widely adopted due to the challenging nature of the PSG

data and the different sources of variability that a reliable automatic scoring method

should account for.

2.1.3 Domain Shifts

In order to automate the detection of the different sleep stages, one needs to design

an algorithm that accounts for the variability present in the PSG data due to various

factors including:

Electrode Choice: This is most prominent for the EEG data, but also for EMG,

EOG where different PSG recordings contain different EEG electrodes within the

PSG database. Depending on the condition of the subject in a clinical setting or the

experimental design in a research setting, a set of electrodes may be adopted, and it

is often impractical and/or redundant to record all possible electrodes in the 10-20

system. Therefore, an automated algorithm should not overspecialize for a specific

choice of input electrodes and instead be flexible in that regard.

Physiological Differences: PSGs can be recorded from subjects with different con-

ditions and states. Many factors can affect brain activity. For example, as mentioned

above, 10-20% of the population do not exhibit an alpha rhythm. Electrical activity is

also known to decrease with age [3]. Furthermore, different diseases can have a direct

impact on the EEG signal such as the presence of legions or epilepsy [135].

Imperfect annotation: When following the guidelines specified in the AASM [13],

different experts are reported to achieve an average agreement of 82%. Certain epochs

are ambiguous making the detection of the exact onset of different sleep stages a non-

trivial task. Furthermore, the PSG database considered may contain recordings that

30 Chapter 2

use a different set of sleep scoring criteria if they were processed before the AASM was

issued.

To account for these factors, a reliable automatic sleep scoring method should

not overfit to the different noise sources in its training database and instead capture

features that generalize the most.

2.1.4 Deep Learning for Bio-signals.

Similarly to many other fields, biosignals analysis has also seen the increase in popu-

larity of deep learning methods for both classification [54] and representation learning

[9].The literature review [123] showcases the application of deep learning methods to

various EEG classification problems such as brain computer interfaces, emotion recog-

nition and seizure detection.

2.1.5 Automatic Sleep Scoring

Recent methods, such as SeqSleepNet [114], have focused on exploiting the context

of the data by staging sequences rather than single epochs, or aimed at reducing the

model parameters and introducing an estimate of the prediction uncertainty [39]. An

important limitation that has emerged is the lack of generalization, i.e. , the drop in

performance when trained models are applied to new data. As mentioned in the In-

troduction, this phenomenon is currently attributed to the large diversity of the data

across subjects/patients and sessions. To address this problem, U-Sleep [113] intro-

duces a u-net architecture for high-frequency sleep staging. However, generalization

across datasets remains an open problem.

Beyond supervised methods, the work by Banville et.al. [9] leverages self-supervised

tasks based on the relative temporal positioning of pairs/triplets of EEG segments to

learn a useful representation for a downstream sleep staging application.

2.2 Self-Supervised Learning

In this section, we introduce self-supervised learning and present two main classes of

methods in this field: Invariance-based methods and equivariant-based methods.

2.2.1 Overview

Self-supervised learning is a machine learning paradigm in which one learns to extract

a useful feature representation of the data by solving a pretext task. Such pretext

tasks are defined without using human annotations. The utility of the learned feature

representation and the patterns it captures are determined by the choice of the pretext

Background 31

task. Therefore, one can influence the robustness and generalizability of the learned

features by carefully designing the pseudo-task.

Self-supervised learning has become the goto practice in recent years for extracting

useful feature representation from a growing amount of available unlabeled data and

for training machine models that generalize to a large set of downstream tasks based

on different data modalities including, but not limited to: images, videos, natural

language, medical recordings, graphs, audio, etc.

In the following sections, we cover two main classes of tasks used in the self-

supervised learning literature. At a high level, both classes of methods can be sum-

marized using Equation (2.1)

Lssl(x) = d(t(x), y(x)) (2.1)

that defines the training loss for a sample x, where t, y and d are two transforma-

tions and a metric or loss function, respectively. In invariance-based methods, y and t

are independent while y(x) is determined by the choice of t for the equivariance-based

ones.

2.2.2 Learning to be invariant

The first class of self-supervised learning tasks is designed to encourage the obtained

feature representation to be invariant with respect to a known noise factor. One

of the most prominent paradigms that falls under this definition is self-supervised

contrastive learning. Contrastive learning methods aim to maximize the similarity

between pairs of positive samples, e.g. , different augmentations of the same image,

while minimizing the similarity between pairs of negative samples, e.g. , augmentations

of different images, with applications ranging from metric learning to self-supervised

training [77]. One of the most commonly used losses in this context is the Normalized

Temperature-scaled Cross Entropy Loss (NT-Xent) [21], also referred to as Informa-

tion Noise Contrastive Estimation loss (InfoNCE). [148] shows that this loss can be

split into two terms: an alignment term and a uniformity term. The former encourages

the alignment of positive pairs of samples, whereas the latter encourages the feature

representation to be uniformly distributed on the unit-sphere. The uniformity con-

straint stems from maximizing the entropy of the distribution of the features, which

is computed through kernel density estimation using the von Mises-Fisher kernel on

the unity sphere. This interpretation of the uniformity constraint is experimentally

validated by replacing the entropy term with other statistical divergences between the

features distribution and a uniform one [22].

Other works such as Caron et al. [20] and Oquab et al. [109] forgo the need for

negative samples relying solely on augmentation-based positive samples in what is

referred to as non-contrastive methods.

32 Chapter 2

Figure 2.4: Outline of DINO self-supervised training. Given two random aug-

mentations x1 and x2 of the same image x, the student network is tasked with matching

its output p1 given x1 to that of the teacher p2 obtained after a centering operation

given x2. The teacher model is defined as a exponential moving average of the student.

We illustrate this using DINO [20] as an example. The general outline of the

method is shown in Figure 2.4. It consists of two models, a student network and a

teacher network defined as the exponential moving average (EMA) of the student.

Two image augmentations x1 and x2 are generated from the same original image

x, the student network learns to match the prediction of the teacher network. For

DINO, the matching criterion is defined as the cross-entropy between the softmax

predictions of the student and teacher networks. The feature representation obtained

using DINO generalizes extremely well to computer vision tasks such as segmentation,

depth estimation, image classification, etc.

Other self-supervised methods define different criteria, such as the Euclidean dis-

tance or the InfoNCE[108] loss, where the model is trained in contrastive fashion,

i.e. to distinguish between augmentations of the same image (positive samples) and

augmentations of other images (negative samples). Contrastive methods include works

such as Chen et al. [21] and He et al. [47]. The main underlying hypothesis of such

methods is that random augmentations do not alter the unknown label. [126] argues

that a stronger assumption can be made where they postulate the existence of intra-

class connectivity, i.e. there exists a path consisting in a sequence of augmentations

that connect two samples from the same class.

Background 33

For temporal data such as time series or videos, one can use temporal jittering as

data augmentation. By learning to encode temporal neighbors using similar features,

the model is able to learn a state-like representation of the signal. Works such as Lorre

et al. [90] follow this approach.

2.2.3 Learning to solve pseudo-tasks

The second major class of self-supervised tasks consists of defining pseudo-tasks for

which labels can be generated automatically. The model learns the underlying con-

cepts present in the data by solving the pretext task, and thus the design of the

task should be carefully considered. Let us consider the example of RotNet [72].

Given an image x, t in Equation (3.2) is defined as a random rotation with an angle

θ ∈ {0◦, 90◦, 180◦, 240◦}. The network is trained to predict θ from t(x). For example,

if the image x is that of a dog, the model needs to learn what a dog is to determine

whether the image is upright or rotated. Another example of such methods is masked

auto-encoders (MAE) [48] where t randomly masks patches in x and the model is

training to inpaint the missing patches, cf. Figure 2.5. Due to the high masking ratio,

the model is forced to learn to extract the objects present in the image in order to

generate the missing patches.

Figure 2.5: Outline of a Masked Auto Encoder. The decoder network is tasked

with reconstructing the random masked patches in the input to the encoder.

2.2.4 Self-Supervised Learning as a Scalable learning paradigm

One of the main advantages of self-supervised learning is its scalability to larger unla-

beled datasets. Indeed, with the gradual shift towards larger and more diverse training

34 Chapter 2

sets such as ImageNet-21k [26] and towards larger models, self-supervised methods ex-

hibit a promising scaling trend. A recent example of this is apparent when comparing

DINO [20] to DINOv2 [109] where one of the main differences was the dataset scale

and quality that allowed DINOv2 to achieve impressive results in a wide range of

downstream tasks.

2.3 Meta-Learning

In this section, we will cover the concept of meta-learning. First, we formalize it as a

bilevel optimization procedure. We then introduce MAML [38], a pioneering work in

the field, as well as other meta-learning methods derived from it.

2.3.1 Problem Formulation

Meta-Learning is defined as learning to learn. For a parametric modelM(.,Θ), where

Θ represents its set of parameters, and a learning objective L, the meta-learning

problem can be formalized as a bilevel optimization

Θ∗ = argmin
Θ
L(Dval, Θ̂) (2.2)

s.t. Θ̂ = argmin
Θ′

L(Dtrain,Θ
′) (2.3)

and Θ = Θ̂.

Dtrain and Dval denote the meta-training and meta-validation sets respectively.

Note that the upper optimization is in Θ. In other words, the meta-learning objective

aims at finding the optimal set of parameters on the meta-training set while ensur-

ing that they generalize to the meta-validation set. Different meta-learning methods

have been proposed to solve Equation (2.2), each adopting a different link between the

outer optimization loop in Equation (2.2) and the inner optimization loop in Equa-

tion (2.3). Gradient-based methods such as MAML [38] rely on the alignment between

the gradients the two optimization problems while Prototypical Networks [132] and

memory-based models such as Neural Turing Machine [45] cast it as a metric learning

problem where the decision on the meta-validation set is based on the most similar

samples in the meta-training set, the set of prototypes and/or the memory bank. In

the context of this thesis, we focus on the literature on gradient-based meta-learning.

2.3.2 Gradient-based Meta-Learning

In gradient-based meta-learning, the generalization from meta-training to meta-validation

sets is characterized by the alignment between the gradients of Equation (2.2) and

Equation (2.3). In other words, the optimal meta-parameters are such that they

Background 35

can be quickly adapted to new task using a limited set of the new data. One promi-

nent gradient-based methods is Model Agnostic Meta-Learning (MAML) [38] in which

Equations (2.2) and (2.3) are rewritten as

Θ∗ = argmin
Θ
L(Dval, Θ̂) (2.4)

Θ̂ = GradientDescent(L,Dtrain,Θ, k, λ) (2.5)

where k and λ are the total number of gradient descent steps and the learning rate

respectively. When k = 1, Equation (2.5) is given by

Θ̂ = Θ− λ∇ΘL(Dtrain,Θ). (2.6)

In other words, a gradient step w.r.t. to the outer optimization problem requires

computing the gradient of the GradientDescent operation w.r.t. Θ, i.e. computing the

second-order derivatives of the model. To address the computational overhead asso-

ciated with higher-order derivative, different approximations such as FOMAML [38]

and REPTILE [104] have been proposed. FOMAML or First-Order MAML consists

in a first-order approximation of MAML where the second-order term is neglected,

while REPTILE defines the meta-gradient as the difference Θ̂ − Θ. Other works

such as COMLN [25] replace the iterative gradient descent in Equation (2.5) with a

continuous-time process that allows for a more exact formulation.

Most variants of MAML are based on the same underlying principle that consists

of re-weighting the contribution of each sample in the outer optimization level based

on the alignment of its gradient with the gradients of the inner optimization, i.e. for

x ∈ Dval its weight is a function of < ∇ΘL({x},Θ),∇ΘL(Dtrain,Θ) > where < ., . >

is the dot product [118].

2.3.3 Applications of Meta-Learning

The general purpose nature of meta-learning makes it applicable to a large range

of tasks. One such task is few-shot learning where the model is presented with a

limited set of examples, through the meta-training set, in order to solve a novel task,

represented by the meta-validation set. Meta-learning can also be used for Domain

Adaptation [116] and efficient Reinforcement Learning [51].

2.4 Semi-Supervised Learning

In this section, we provide an overview of the semi-supervised literature. This in-

cludes the general principle of propagating the label information using the learned

data structure as well as introducing the paradigm of self-learning.

36 Chapter 2

2.4.1 Problem Formulation

Given a labeled dataset D = {(xi, yi)}nl
i=1 and an unlabeled set U = {xj}nu

j=1, the goal

of semi-supervised learning is to learn a representation of p(x) using both D and U
that enables the propagation of the label information p(y|x) from D to U . In practice,

unlabeled data is significantly less costly to acquire and more readily available, re-

sulting in nl being significantly smaller than nu. This makes semi-supervised learning

a more cost-effective and scalable learning paradigm. Moreover, partial annotations

allow for greater flexibility. Let us consider the following scenario describing the scala-

bility of the annotation cost of an object detection dataset both in the supervised and

semi-supervised settings when samples from new classes are added. Given an image

dataset D1 of 1000 different objects/classes each annotated using a bounding box if

present in a given image and D2 a set of new samples pertaining to 100 new classes

not present in D1. We consider the annotation cost of combining D1 and D2 into a

superset D3 with 1100 classes. In the supervised setting, combining D1 and D2 would

require the reannotation of D1 and D2 completely. Indeed, given an image from D1,

its corresponding original annotation only takes into account the original 1000 classes

and contains no information on the presence or absence of any of the new 100 classes

from D2. Merging D1 and D2 without a reannotation effort will introduce many false

negatives to the data. On the other hand, creating D3 in the semi-supervised learning

setting is trivial, as both D1 and D2 can be considered as partially annotated datasets

w.r.t. to all 1,100 classes. Indeed, partial annotations offer more flexibility and can be

used to specify new tasks in a scalable fashion. In the rest of this section, we provide

an overview of graph-based semi-supervised learning in order to build an intuition of

the label propagation principle, then we introduce consistency-based semi-learning in

the context of the modern semi-learning literature.

2.4.2 Graph-based Semi-Superived Learning

Based on the key smoothness assumption that similar samples should have similar

labels, e.g. belong to the same class, graph-based semi-supervised methods aim to

learn a meaningful representation of the data distribution p(x) in the form of a graph

structure G = (N , E) where N and E are the set of nodes and edges, respectively, and

each node represents a data point. The goal is to take advantage of the geometric

structure of the graph in order to propagate the label information from the labeled

set D to the unlabeled set U .

Earlier works such as Belkin et al. [11] focused on regularizing the label propagation

process through a fixed graph structure, while more recent works such as Dornaika

et al. [30] jointly learn the graph structure and solve the semi-supervised learning

problem.

Background 37

2.4.3 Self-training

An orthogonal approach for semi-supervised learning to the one presented above is

self-learning, where a model is trained using the labeled set D and as it gets better,

a subset of its own predictions is used a pseudo-labels on the unlabeled set. The

key assumption is that a fraction of the model predictions on the unlabeled set U are

correct, so by deriving a reliable heuristic to identifying them, one expands the labeled

set and trains the model further.

Naturally, using the model predictions as pseudo-labels introduces confirmation

bias as an inherent risk of such training procedures. To mitigate this risk, various

methods have been proposed that introduce additional regularization, e.g. consis-

tency across augmentations, or refine the predicted pseudo-labels. Semi-supervised

learning methods such as FixMatch [133], ReMixMatch [14], SimMatch [167] and

FreeMatch [151] share the common design choice of enforcing the consistency of the

model predictions across augmentations of different strength levels on the unlabeled

samples. FixMatch [133] enforces this consistency as a cross-entropy loss applied us-

ing the one-hot encoding of the model predictions on weakly augmented unlabeled

samples as pseudo-labels for their strongly augmented counterpart. Weak augmen-

tations consist of random image flipping and translation while strong augmentation

combine AutoAugment [23] and Cutout [28]. The consistency loss is only applied

on high confidence predictions where the predicted probability value is higher than

a fixed threshold. ReMixMatch [14] instead opts for using temperature sharpened

model predictions as pseudo-labels for its consistency regularization in addition to a

rotation prediction regularization loss. FreeMatch [151] introduces a per-class confi-

dence threshold update rule based on model predictions combined with an entropy-

based diversity loss, making it more suitable for imbalanced settings. Methods such

as CoMatch [84] and SimMatch [167] choose to enforce consistency across additional

data representations. In particular, CoMatch [84] encourages consistency between

pseudo-labels and embeddings obtained using similarity graphs, while SimMatch [167]

encourages consistency between semantic-level and instance-level pseudo-labels. Both

methods choose to smooth the predicted pseudo-labels based on a similarity-based

aggregate of a memory buffer of samples in order to mitigate confirmation bias. How-

ever, these pseudo-label refinement strategies fail to eliminate data biases w.r.t. the

class balance.

2.5 Generative Adversarial Networks

Generative modeling refers to a family of machine learning methods in which the goal

is to learn to sample from the data distribution. Broadly speaking, given a data

distribution pD(x, y), where x is the random variable that represents each sample

38 Chapter 2

and y its corresponding label, generative modeling can be cast as learning the joint

distribution pD(x, y) while discriminative modeling aims at learning pD(y|x). In the

context of this thesis, we provide an overview of Generative Adversarial Networks as

our generative method of choice and briefly discuss their potential applications to the

incomplete data setting.

2.5.1 Overview

Generative Adversarial Networks (GANs) [44] are a prominent generative learning

method in which a generator network is used to map samples from a known dis-

tribution, typically a multivariate Gaussian, to samples from the data distribution.

Training is based on an adversarial min-max game, where a discriminator is trained

to distinguish real samples from fake ones while the generator is trained to fool the

discriminator. The link to the data distribution is implicitly defined through the sad-

dle points of the min-max optimization, where the loss of the generator corresponds

to a known statistical divergence, e.g. the Jensen-Shannon Divergence (JSD) [44].

2.5.2 Applications

GANs have been widely adopted across a wide range of fields. In addition to their

ability to generate high-quality samples [63], GANs can be especially useful in various

incomplete data settings. Generated samples can be used as data driven augmen-

tations [53], to upsample minority classes [125] or to generate paired samples across

modalities. e.g. Sim2Real [120], 2D to 3D [85]. Furthermore, discriminative losses

adopted by GANs can be used beyond generative modeling. For example, adversar-

ial domain adaptation methods [165] leverage adversarial losses to ensure invariance

across domains, resulting in more generalizable features.

2.5.3 Limitations

Despite their many advantages, GANs in general and adversarial losses in particular

can be challenging to train. Due to the two-player game, GAN training is often

unstable and sensitive w.r.t. to various training hyperparameters. Moreover, they

are susceptible to mode collapse where the model converges to a partial version of

the data distribution and is unable to cover all its modes. Lastly, the evaluation

of such models is still an ongoing research area. Different metrics such as FID [50]

for images or the BLUE Score [111] for natural language can only provide a partial

view of the performance of such generative models given that the underlying data

distribution is often restricted to a low-dimensional manifold embedded in a high-

dimensional space [115].

Background 39

Ever since their inception, GANs have gone through various iterations and improve-

ments. Works such as Arjovsky et al. [4] and Nowozin et al. [107] focus on training the

generator to minimize other statistical divergences that exhibit better properties com-

pared to the JSD in the original work. One complementary line of research explores

additional regularization terms such as using a gradient penalty for the discriminator

[96], consistency regularization [162], or differentiable augmentations [164] to various

degrees of success. A recent addition to this list are methods that capture more struc-

ture into the latent representation of the discriminator through the use of Contrastive

Learning [62, 60, 159]. One such example is ContraGAN [62], where the authors in-

troduce a new regularization term, called 2C loss, based on the NT-Xent loss [21] used

commonly in Contrastive Learning. The introduced loss term aims at capturing the

data-to-data and data-to-class relations in the dataset.

Instance Selection for GANs. Training GANs on large scale datasets remains a

challenging task. State-of-the-art models such as BigGAN [17] require a substantial

amount of compute resources and many of them require post hoc processing to reduce

spurious samples. [29] proposes to address both issues by filtering the dataset using

instance selection. They argue that the model’s capacity is wasted on low density

regions of the empirical distributions of the data. Their results show that instance

selection allows to train better GAN models using substantially fewer parameters and

training time.

40 Chapter 2

Chapter 3

Boosting Generalization in

Bio-signal Classification by

Learning the Phase-Amplitude

Coupling

This chapter was published as Lemkhenter, A., Favaro, P. (2021). Boosting

Generalization in Bio-signal Classification by Learning the Phase-Amplitude

Coupling. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recogni-

tion. DAGM GCPR 2020. Lecture Notes in Computer Science, vol 12544.

Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_6. ©2021

Springer Nature Switzerland AG.

Various hand-crafted feature representations of biosignals rely primarily on the

amplitude or power of the signal in specific frequency bands. The phase component

is often discarded, as it is more sample specific and thus more sensitive to noise than

the amplitude. However, in general, the phase component also carries information

relevant to the underlying biological processes. In this chapter we show the benefits

of learning the coupling of both phase and amplitude components of a biosignal. We

do so by introducing a novel self-supervised learning task, which we call Phase Swap,

that detects if biosignals have been obtained by merging the amplitude and phase from

different sources. In our evaluation, we show that neural networks trained on this task

generalize better across subjects and recording sessions than their fully supervised

counterparts.

Biosignals, such as electroencephalograms and electrocardiograms, are multivariate

time series generated by biological processes that can be used to assess seizures, sleep

disorders, head injuries, memory problems, heart diseases, just to name a few [102].

41

https://doi.org/10.1007/978-3-030-71278-5_6

42 Chapter 3

Although clinicians can successfully learn to correctly interpret such biosignals, their

protocols cannot be directly converted into a set of algorithmic rules that yield com-

parable performance. Currently, the most effective way to transfer this expertise into

an automated system is to gather a large number of examples of biosignals with the

corresponding labels provided by a clinician and to use them to train a deep neu-

ral network. However, collecting such labeling is expensive and time consuming. In

contrast, biosignals without labeling are more readily available in large numbers.

Recently, self-supervised learning (SelfSL) techniques have been proposed to limit

the amount of required labeled data. These techniques define a so-called pretext task

that can be used to train a neural network in a supervised manner on data without

manual labeling. The pretext task is an artificial problem where a model is trained to

output the transformation that was applied to the data. For example, a model could

be trained to output the probability that a time series had been time-reversed [154].

This step is often called pre-training and it can be carried out on large datasets as

no manual labeling is required. The pre-trained neural network is then adapted with

a smaller learning rate on the small target dataset, where labels are available. This

second step is called fine-tuning, and it produces a substantial boost in performance

[105]. Thus, SelfSL can be used to automatically learn physiologically relevant features

from unlabeled biosignals and improve classification performance.

SelfSL is most effective if the pretext task focuses on features that are relevant to

the target downstream task. Typical features work with the amplitude or power of

biosignals, but, as shown in the literature, the phase carries information about the

underlining biological processes [18, 103, 89]. Thus, in this chapter, we propose a new

pretext task to learn the coupling between the amplitude and the phase of biosignals,

which we call Phase Swap (PS). The objective is to predict whether the phase of

the Fourier transform of a multivariate physiological time-series segment was swapped

with the phase of another segment.

We show that features learned through this task help classification tasks generalize

better, regardless of the neural network architecture.

Our contributions are summarized as follows

• With phase swap, we demonstrate experimentally the importance of incorporat-

ing the phase in biosignal classification;

• We show that the learned representation generalizes better than current state of

the art methods to new subjects and to new recording sessions;

• We evaluate the method on four different datasets and analyze the effect of

various hyper-parameters and of the amount of available labeled data on the

learned representations.

Learning the Phase-Amplitude Coupling 43

ℱ−1
𝑥1 ∈ ℝ𝐶×𝑇 ො𝑥1 ∈ ℂ𝐶×𝐹

ℱ

𝑥2 ∈ ℝ𝐶×𝑇 ො𝑥2 ∈ ℂ𝐶×𝐹

𝑥𝑃𝑆 ∈ ℝ𝐶×𝑇

∡

| ⋅ |

ℱ

Figure 3.1: Illustration of the phase-swap operator Φ. The operator takes two

signals as input and then combines the amplitude of the first signal with the phase of

the second signal in the output.

3.1 Related Work

We provide an overview of the relevant deep learning applications to PSG in gen-

eral and EEG recordings in particular, the signals they include, and the related self-

supervised literature in Sections 2.1, 2.1.4 and 2.2. Different prior works have analyzed

the phase component of biosignals. Busch et.al. [18] show a link between the phase of

the EEG oscillations, in the alpha (8-12Hz) and theta (4-8Hz) frequency bands, and

the subjects’ ability to perceive flashes of light. The phase of the EEG signal has also

been shown to be more discriminative for determining the firing patterns of neurons

in response to certain types of stimuli [103]. López et al. [89], highlights the potential

link between the phase of the different EEG frequency bands and cognition during

proactive control of task switching.

3.2 Learning to Detect the Phase-Amplitude Coupling

In this section, we define the Phase Swap operator and the corresponding SelfSL task,

and present the losses used for pre-training and fine-tuning.

Let DW
i,j = {(xi,j,k, yi,j,k)}Nk=1 be the set of samples associated with the i-th sub-

ject during the j-th recording session. Each sample xi,j,k ∈ RC×W is a multivariate

physiological time series window where C and W are the number of channels and the

window size, respectively. yi,j,k is the class of the k-th sample. Let F and F−1 be

the Discrete Fourier Transform operator and its inverse, respectively. These operators

will be applied to a given tensor x. In the case of multivariate signals, we apply these

operators channel-wise.

For the sake of clarity, we provide the definitions of the absolute value and the phase

44 Chapter 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1

0

1

2
x1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1

0

1

2

x2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1

0

1

2
(x1, x2)

Time in seconds

Figure 3.2: Visualization of a phase-swaped sample. Illustration of the PS

operator on a pair of 1.25 seconds segments taken from the Fpz-Cz channel in the SC

dataset [100]. The amplitude and phase information are taken from the signals and

x1 and x2, respectively.

element-wise operators. Let z ∈ C, where C denotes the set of complex numbers.

Then, the absolute value, or magnitude, of z is denoted |z| and the phase of z is

denoted ∡z. With such definitions, we have the trivial identity z = |z|∡z.

Given two samples xi,j,k, xi,j,k
′ ∈ DW

i,j , the Phase Swap (PS) operator Φ is

Φ
(
xi,j,k, xi,j,k

′
)

.
= F−1

[∣∣F (
xi,j,k

)∣∣⊙ ∡F
(
xi,j,k

′
)]

= xi,j,kswap, (3.1)

where ⊙ is the element-wise multiplication (see Figure 3.1). Note that the energy

per frequency is the same for both xi,kswap and xi,k and that only the phase, i.e. ,

the synchronization between the different frequencies changes. An example of phase

swapping is shown in Figure 3.2. Notice how the shapes of the oscillations change

drastically when the PS operator is applied, and no trivial shared patterns seem to

emerge.

The PS pretext task is defined as a binary classification problem. A sample belongs

to the positive class if it is transformed using the PS operator, otherwise it belongs

to the negative class. In all of our experiments, both inputs to the PS operator are

sampled from the same patient during the same recording session. Because the phase

is decoupled from the amplitude of white noise, our model has no incentive to detect

noise patterns. In contrast, it will be encouraged to focus on the structural patterns

in the signal in order to detect whether the phase and magnitude of the segment are

coupled or not.

We use the FCN architecture proposed by Wang et.al. [152] as our core neural

network model E : RC×W → RH×W/128. It consists of 3 convolutional blocks using a

Batch Normalization layer [55] and a ReLU activation followed by a pooling layer. The

output of E is then flattened and fed to two Softmax layers CSelf and CSup, which are

trained on the self-supervised task and the supervised task, respectively. Instead of a

global pooling layer, we used an average pooling layer with a stride of 128. This allows

us to keep the number of weights of the supervised network CSup ◦ E constant when

Learning the Phase-Amplitude Coupling 45

𝑥𝑆𝑢𝑝/𝑆𝑒𝑙𝑓 ∈ ℝ𝐶×𝑊𝑆𝑢𝑝/𝑆𝑒𝑙𝑓

h𝑆𝑢𝑝/𝑆𝑒𝑙𝑓 ∈ ℝ𝐻× 𝑊𝑆𝑢𝑝/𝑆𝑒𝑙𝑓
128

𝑦𝑆𝑢𝑝/𝑆𝑒𝑙𝑓 ∈ ℝ𝐾𝑆𝑢𝑝/𝑆𝑒𝑙𝑓

𝐶
𝑆

𝑢𝑝/𝑆𝑒𝑙𝑓

𝐸

Average
Pooling

Figure 3.3: Training Outline. The encoder network is first E is trained with CSelf

using the self-supervised loss. CSelf is then replaced with CSup for the supervised

training.

the self-supervised task is defined on a different window size. The overall framework is

illustrated in Figure 3.3. Note that the encoder network E is the same for both tasks.

The loss function for training on the SelfSL task is the cross-entropy

LSelf
(
ySelf , E, CSelf

)
= − 1

N

∑N
i=1

∑KSelf

k=1 ySelfi,k log (CSelf ◦ E(xi))k , (3.2)

where ySelfi,k and (CSelf ◦E(xi))k are the one-hot representations of the true SelfSL

pretext label and the predicted probability vector, respectively. We optimize Equa-

tion (3.2) with respect to the parameters of both E and CSelf . Similarly, we define

the loss function for the (supervised) fine-tuning as the cross-entropy

LSup
(
ySup, E, CSup

)
= − 1

N

∑N
i=1

∑KSup

k=1 ySupi,k log (CSup ◦ E(xi))k , (3.3)

where ySupi,k denotes the label for the target task. The vectors ySupi,k and ySelfi,k are in

RN×KSup and RN×KSelf , where N , KSup and KSelf are the number of samples and

classes, respectively. In fine tuning, E is initialized with the parameters obtained from

the optimization of Equation (3.2) and CSup with random weights, and then both

networks are updated to minimized Equation (3.3), but with a smaller learning rate.

3.3 Experiments

3.3.1 Data Sets

In our experiments, we use the expanded SleepEDF datasets [100, 64, 43], CHB-

MIT [127] and ISRUC-Sleep [66] datasets as they contain recordings from multiple

patients. This allows us to study the generalization capabilities of the learned feature

representation for new recording sessions and new patients. The Expanded SleepEDF

database contains two different sleep scoring datasets.

Sleep Cassette Study (SC) [100]. Collected between 1987 and 1991 to study

the effect of age on sleep. It includes 78 patients with two recording sessions each (3

recording sessions were lost due to hardware failure).

46 Chapter 3

Sleep Telemetry Study (ST) [64]. Collected in 1994 as part of a study of the

effect of Temazepam on sleep in 22 different patients with 2 recordings sessions each.

Both datasets define sleep scoring as a 5-way classification problem. The 5 classes

in question are the sleep stages: Wake, NREM 1, NREM 2, NREM 3/4, REM. NREM

3 and 4 are merged into one class due to their small number of samples (these two

classes are often combined in sleep studies).

The third dataset that we use in our experiments is the CHB-MIT dataset [127]

recorded at the Children’s Hospital Boston from pediatric patients with intractable

seizures. It includes multiples recording files for 22 different patients. We retain the

18 EEG channels that are common to all recording files. The sampling rate for all

channels is 256 Hz. The target task defined in this dataset is to predict whether a

given segment is a seizure event or not, i.e. , a binary classification problem.

The last dataset that we use is ISRUC-Sleep [66], for sleep scoring as a 4-way

classification problem. We use the 14 channels extracted in the Matlab version of the

dataset. This dataset consists of three subgroups: subgroups I and II contain, respec-

tively, recordings from 100 and 8 subjects with sleep disorders, whereas subgroup III

contains recordings from 10 healthy subjects. This allows us to test the generalization

from diagnosed subjects to healthy subjects.

For all datasets, the international 10-20 system [93] was adopted for the choice

of the position of the EEG electrodes. For the SC, ST, and ISRUC-sleep datasets

we resample the signals to 102.4Hz. This resampling allows us to simplify the neural

network architectures we use, because in this case most window sizes can be represented

by a power of 2, e.g. , a window of 2.5sec corresponds to 256 samples. We normalize

each channel per recording file in all datasets to have a zero mean and a standard

deviation of one.

3.3.2 Training Procedures and Models

In the supervised baseline (respectively, self-supervised pre-training), we train the

randomly initialized model CSup ◦ E (respectively, CSelf ◦ E) on the labeled dataset

for 10 (respectively, 5) epochs using the Adam optimizer [68] with a learning rate

of 10−3 and β = (0.9, 0.999). We balance the classes present in the dataset using

resampling (no need to balance classes in the self-supervised learning task). In fine-

tuning, we initialize E with the weights obtained from the SelfSL training and then

train CSup◦E on the labeled dataset for 10 epochs using Adam [68], but with a learning

rate of 10−4 and β = (0.9, 0.999). As in the fully supervised training, we also balance

the classes using resampling. In all training cases, we use a default batch size of 128.

We evaluate our self-supervised framework using the following models

• Phase Swap: The model is pre-trained on the self-supervised task and fine-tuned

on the labeled data;

Learning the Phase-Amplitude Coupling 47

• Supervised: The model is trained solely in a supervised fashion;

• Random: CSup is trained on top of a frozen randomly initialized E;

• PSFrozen: We train CSup on top of the frozen weights of the model E pre-

trained on the self-supervised task.

3.3.3 Evaluation Procedures

We evaluated our models using different train/validation/test splits in our experiments.

In total we use at most 4 sets, which we refer to as the training set, the Validation

Set, the Test set A and the test set B. The validation set, test set A, and training

set share the same patient identities, while B contains recordings from new subjects.

The validation set and test set A use distinct recording sessions. The validation set

and the training set share the same patient identities and recording sessions with a

75% (for the training set) and 25% (Validation Set) split. We use each test set for the

following purposes:

• Validation Set: this set serves as a validation set;

• Test set A: this set allows us to evaluate the generalization error on new record-

ing sessions for patients observed during training;

• Test set B: this set allows us to evaluate the generalization error on new record-

ing sessions for patients not observed during training.

We use the same set of recordings and patients for both self-supervised and super-

vised tasks training. For the ST, SC and ISRUC datasets we use class re-balancing only

during the supervised fine-tuning. However, for the CHB-MIT dataset, the class im-

balance is much more extreme: The dataset consists of less than 0.4% positive samples.

Because of that, we undersample the majority class both during the self-supervised

and supervised training. This prevents the self-supervised features from completely

ignoring the positive class. Unless specified otherwise, we use WSelf = 5sec and

WSup = 30sec for the ISRUC, ST and SC datasets, WSelf = 2sec and WSup = 10sec

for the CHB-MIT dataset, where WSelf and WSup are the window size for the self-

supervised and supervised training, respectively. For the ISRUC, ST and SC datasets,

the choice of WSup corresponds to the granularity of the provided labels. For the

CHB-MIT dataset, although the labels are provided at a rate of 1Hz, the literature in

neuroscience generally defines a minimal duration of around 10 seconds for an epileptic

event in humans [40], which motivates our choice of WSup = 10sec.

48 Chapter 3

Evaluation Metric. As an evaluation metric, we use the balanced accuracy

AccBalanced(y, ŷ) =
1

K

K∑
k=1

∑N
i=1 ŷi,kyi,k∑N
i=1 yi,k

, (3.4)

which is defined as the average of the recall values per class, where K, N , y and ŷ are

respectively the number of classes, the number of samples, the one-hot representation

of true labels and the predicted labels.

3.3.4 Generalization on the Sleep Cassette Data Set

We explore the generalization of the self-supervised trained model by varying the

number of different patients used in the training set for the SC dataset. rtrain is the

percentage of patient identities used for training, in the Validation Set and in the Test

Set A. In Table 3.1, we report the balanced accuracy on all test sets for various values

of rtrain. Self-supervised training was carried out using a window size of WSelf = 5sec.

We observe that the Phase Swap model performs the best for all values of rtrain. We

also observe that the performance gap between the Phase Swap and Supervised models

is narrower for larger values for rtrain. This is to be expected since including more

identities in the training set allows the Supervised model to generalize better. For

rtrain = 100%∗, we use all recording sessions across all identities for the training set

and in the Validation Set (since all identities and sessions are used, the test sets A

and B are empty). The results obtained for this setting show that there is still a slight

benefit with the Phase Swap pre-training even when labels are available for most of

the data.

3.3.5 Generalization on the ISRUC-Sleep Data Set

Using the ISRUC-Sleep dataset [66], we aim to evaluate the performance of the Phase

Swap model on healthy subjects when it was trained on subjects with sleep disor-

ders. For self-supervised training, we use WSelf = 5sec. The results are reported in

Table 3.2. Note that we combined the recordings of subgroup II and the ones not

used for the training from subgroup I into a single test set since they are both from

subjects with sleep disorders. We observe that for both experiments rtrain = 25% and

rtrain = 50%, the Phase Swap model outperforms the supervised baseline for both test

sets. In particular, the performance gap on subgroup III is greater than 10%. This can

be explained by the fact that sleep disorders can drastically change the sleep structure

of affected subjects, which in turn leads the supervised baseline to learn features that

are specific to the disorders/subjects present in the training set.

Learning the Phase-Amplitude Coupling 49

Table 3.1: Comparison of the performance of the Phase Swap model on the

SC dataset. We evaluate both models for various values of rtrain. For rtrain = 100%∗

we use all available recordings for the training and the Validation sets. Results with

different rtrain are not comparable.

rtrain Experiment Validation Set Test set A Test set B

20% Phase Swap 84.3% 72.0% 69.6%

20% Supervised 79.4% 67.9% 66.0%

50% Phase Swap 84.9% 75.1% 73.3%

50% Supervised 81.9% 71.7% 69.4%

75% Phase Swap 84.9% 77.6% 76.1%

75% Supervised 81.6% 73.7% 72.8%

100%* Phase Swap 84.3% - -

100%* Supervised 83.5% - -

Table 3.2: Comparison of the performance of the Phase Swap model on the

ISRUC-Sleep dataset. We evaluate both models for various values of rtrain.

rtrain Model Validation set
Test set B

(subgroup I + II)

Test set B

(subgroup III)

25% Phase Swap 75.8% 67.3% 62.8%

25% Supervised 75.9% 63.1% 47.9%

50% Phase Swap 76.3% 68.2% 67.1%

50% Supervised 75.5% 68.3% 57.3%

3.3.6 Comparison to the Relative Positioning Task

The Relative Positioning (RP) task was introduced by Banville et.al. [9] as a self-

supervised learning method for EEG signals, which we briefly recall here. Given xt
and xt′ , two samples with a window size W and starting points t and t′, respectively,

the RP task defines its labels as

CSelf (|ht − ht′ |) = 1
(
|t− t′| ≤ τpos

)
− 1

(
|t− t′| > τneg

)
, (3.5)

where ht = E(xt), ht′ = E(xt′). (3.6)

1(·) is the indicator function and τpos and τneg are predefined quantities, while | · |
denotes the element-wise absolute value operator. Pairs with CSelf = 0 are discarded.

We compare our self-supervised task to the RP task [9]. For both settings, we use

WSelf = 5sec and rtrain = 20%. For the RP task, we choose τpos = τneg = 12×WSelf .

We report the balanced accuracy for all test sets on the SC dataset in Table 3.3. We

50 Chapter 3

observe that our self-supervised task outperforms the RP task. This means that the

features learned through the PS task allow the model to perform better on unseen

data.

Table 3.3: Comparison between the PS and RP pre-training on the SC

dataset. The SelfSL Acc is the accuracy of the self-supervised task computed on the

validation set.

Pre-training Validation Set Test set A Test set B SelfSL Acc

Supervised 79.4% 67.9% 66.0% -

PS 84.3% 72.0% 69.6% 86.9%

RP 80.3% 66.2% 65.4% 56.9%

3.3.7 Results on the Sleep Telemetry and CHB-MIT Data Sets

In this section, we evaluate our framework on the ST and CHB-MIT datasets. For the

ST dataset, we use WSelf = 1.25sec, WSup = 30sec, and rtrain = 50%. For the CHB-

MIT dataset, we use WSelf = 2sec, WSup = 10sec, rtrain = 25% and 30 epochs for

supervised fine-tuning / training. As shown in Table 3.4, we observe that for the ST

dataset, the features learned through the PS task produce a significant improvement,

especially on Test Sets A and B. For the CHB-MIT dataset, the PS does not provide

the performance gains observed for the previous two datasets. We believe that this is

due to the fact that the PS task is too easy on this particular dataset: Notice how the

validation accuracy is above 99%. With a trivial task, self-supervised pretraining fails

to learn any meaningful feature representations.

In order to make the task more challenging, we introduce a new variant, which

we call PS + Masking, where we randomly zero out all but six randomly selected

channels for each sample during the self-supervised pretraining. The model obtained

through this scheme performs best on sets A and B and is comparable to the Su-

pervised baseline on the validation set. As for the reason why the PS training was

trivial on this particular dataset, we hypothesize that this is due to the high spatial

correlation in the CHB-MIT dataset samples. This dataset contains a high number of

homogeneous channels (all of them are EEG channels), which in turn result in a high

spatial resolution of the brain activity. At such a spatial resolution, the oscillations

due to brain activity show a correlation in both space and time [57]. However, our PS

operator ignores the spatial aspect of the oscillations. When applied, it often corrupts

the spatial coherence of the signal, which is then easier to detect than the temporal

phase-amplitude incoherence. This hypothesis is supported by the fact that random

Learning the Phase-Amplitude Coupling 51

Table 3.4: Evaluation of the Phase Swap model on the ST and CHB-MIT

datasets. The SelfSL Acc is the accuracy of the self-supervised task computed on the

validation set.

Dataset Experiment Val. Set Test set A Test set B SelfSL Acc

ST Supervised 69.2% 52.3% 46.7% -

ST Phase Swap 74.9% 60.4% 52.3% 71.3%

CHB-MIT Supervised 92.6% 89.5% 58.0% -

CHB-MIT Phase Swap 92.2% 86.8% 55.1% 99.8%

CHB-MIT PS+Masking 91.7% 90.6% 59.8% 88.1%

Table 3.5: Analysis of the effect of the window size WSelf . We compare the

performance of the Phase Swap model on the SC dataset for various values of the

window size WSelf .

WSelf Experiment Validation Set Test set A Test set B

1.25sec Phase Swap 84.3% 72.0% 69.6%

2.5sec Phase Swap 84.6% 71.9% 70.0%

5sec Phase Swap 83.4% 72.5% 70.9%

10sec Phase Swap 83.6% 71.6% 69.9%

30sec Phase Swap 83.9% 71.0% 69.2%

- Supervised 79.4% 68.1% 66.1%

channel masking, which in turn reduces the spatial resolution during self-supervised

training, yields a lower training accuracy i.e. , it is a nontrivial task.

3.3.8 Impact of the Window Size

In this section, we analyze the effect of the window size WSelf used for self-supervised

training on the final performance. We report the balanced accuracy on all our test

sets for the SC dataset in Table 3.5. For all these experiments, we used 20% of the

identities in the training set. The capacity of the Supervised model CSup ◦ E is

independent of WSelf (see Section 3.2), and so is its performance. We observe that

the best-performing models are the ones that use WSelf = 2.5sec for the Validation

Set and WSelf = 5sec for sets A and B. We argue that the features learned by the self-

supervised model are less specific for larger window sizes. The PS operator drastically

changes structured parts of the time series, but barely affects pure noise segments. As

discussed in Section 3.2, white noise is invariant with respect to the PS operator. With

smaller window sizes, most of the segments are either noise or structured patterns, but

52 Chapter 3

as the window size grows, its content becomes a combination of the two.

3.3.9 Frozen vs Fine-tuned Encoder

Table 3.6: Comparison of the four training variants. We report the balanced

accuracy on the SC dataset for the four training variants.

Experiment Validation Set Test set A Test set B

Supervised 79.4% 67.9% 66.0%

Phase Swap 84.3% 72.0% 69.6%

PSFrozen 75.2% 68.1% 67.1%

Random 70.1% 62.1% 63.9%

In Table 3.6, we analyze the effect of freezing the weights of E during supervised

fine-tuning. We compare the performance of the four variants described in Section 3.3.2

on the SC dataset. All variants use WSelf = 5sec, WSup = 30sec, and rtrain = 20%.

As expected, we observe that the Phase Swap variant is the best performing one since

it is less restricted in terms of training procedure than PSFrozen and Random.

Moreover, the PSFrozen outperforms the Random variant on all test sets and is on

par with the Supervised baseline on the Test set B. This confirms that the features

learned during pre-training are useful for downstream classification even when the

encoder model E is frozen during fine-tuning.

The last variant, Random, allows us to disentangle the contribution of the self-

supervised task from the prior imposed by the architecture choice for E. As we can

see in Table 3.6, the performance of the Phase Swap variant is significantly higher

than that of the former variant, confirming that the self-supervised task chosen here

is the main factor behind the performance gap.

3.3.10 Architecture

Most of the experiments in this chapter use the FCN architecture [152]. In this section,

we illustrate that the performance boost of the Phase Swap method does not depend

on the neural network architecture. To do so, we also analyze the performance of

a deeper architecture in the form of the Residual Network (ResNet) proposed by

Humayun et.al. [54]. We report in Table 3.7 the balanced accuracy computed using

the SC dataset for two choices of WSelf ∈ {2.5sec, 30sec} and two choices of rtrain ∈
{20%, 100%∗}. The table also contains the performance of the FCN model trained

using the PS task as a reference. We do not report the results for the RP experiment

using WSelf = 30sec as we did not manage to make the self-supervised pre-training

Learning the Phase-Amplitude Coupling 53

Table 3.7: Evaluation of the Phase Swap model using the ResNet architec-

ture on the SC dataset. Values denoted with a * are averages across two runs.

rtrain WSelf Architecture Experiment Val. Set Test set A Test set B

20% 5sec FCN FCN + PS 84.3% 72.0% 69.6%

20% 5sec ResNet Phase Swap 82.1% 72.5% 69.6%

20% 5sec ResNet RP 72.3% 67.4% 65.9%

20% - ResNet supervised 79.1%* 70.0%* 66.5%*

20% 30sec ResNet Phase Swap 83.6% 70.7% 69.3%

100%* 5sec FCN FCN + PS 84.3% - -

100%* 5sec ResNet Phase Swap 81.2% - -

100%* 5sec ResNet RP 79.1% - -

100%* - ResNet supervised 84.2%* - -

100%* 30sec ResNet Phase Swap 84.2% - -

converge. All ResNet models were trained for 15 epochs for supervised fine-tuning.

For rtrain = 20%, we observe that pretraining ResNet on the PS task outperforms

both supervised and RP pretraining. We also observe that for this setting, the model

pre-trained with WSelf = 30sec performs better on both the validation set and test

set B compared to the one pre-trained using WSelf = 5sec. Nonetheless, the model

using the simpler architecture still performs the best on those sets and is comparable

to the best performing one on set A. We believe that the lower capacity of the FCN

architecture prevents the learning of feature representations that are too specific to

the pretext task compared to the ones learned with the more powerful ResNet. For

the setting rtrain = 100%∗, the supervised ResNet is on par with a model pre-trained

on the PS task with WSelf = 30sec. Recall that rtrain = 100%∗ refers to the setting

in which all recording sessions and patients are used for the training set. Based on

these results, we can conclude that there is a point of diminishing returns in terms

of available data beyond which the self-supervised pretraining might even deteriorate

the performance of the downstream classification tasks.

3.4 Discussions

We have introduced the Phase Swap pretext task, a novel self-supervised learning

approach suitable for biosignals. This task aims to detect when biosignals have mis-

matching phase and amplitude components. Since the phase and amplitude of white

noise are not correlated, the features learned with the Phase Swap task do not focus

on noise patterns. Moreover, these features exploit signal patterns present both in

54 Chapter 3

the amplitude and phase domains. We demonstrate the benefits of learning features

from the phase component of biosignals in several experiments and comparisons with

competing methods. Most importantly, we find that pretraining a neural network with

limited capacity on the Phase Swap task builds features with strong generalization ca-

pabilities between subjects and recording sessions. Indeed, by designing a pretext task

that actively encourages the features to be based on the structured part of the signal

and ignores the noise component that might lead to spurrious correlation, we obtain

a model that generalizes across subjects even in the low data regimes. One extension

of this work that we explore in the next chapter is to incorporate the generalizability

constraint explicitly into the training logic of our model.

Chapter 4

Towards Sleep Scoring

Generalization Through

Self-Supervised Meta-Learning

“In reference to IEEE copyrighted material which is used with permis-

sion in this thesis, the IEEE does not endorse any of the University of

Bern’s products or services. Internal or personal use of this material is

permitted. If interested in reprinting/republishing IEEE copyrighted ma-

terial for advertising or promotional purposes or for creating new collective

works for resale or redistribution, please go to http://www.ieee.org/

publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may sup-

ply single copies of the dissertation.” 1

In this chapter, we introduce a novel meta-learning method for sleep scoring based

on self-supervised learning. Our approach aims to build models for sleep scoring that

can generalize across different patients and recording facilities, but do not require a

further adaptation step to the target data. Towards this goal, we build our method

on top of the Model Agnostic Meta-Learning (MAML) framework by incorporating a

self-supervised learning (SelfSL) stage and call it S2MAML. We show that S2MAML

can significantly outperform MAML. The gain in performance comes from the SelfSL

stage, which we base on a general purpose pseudo-task that limits the overfitting to

1©2022 IEEE Reprinted, with permission, from A. Lemkhenter and P. Favaro, ”Towards Sleep

Scoring Generalization Through Self-Supervised Meta-Learning”, 2022 44th Annual International Con-

ference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, United

Kingdom, 2022, pp. 2961-2966.

55

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

56 Chapter 4

the subject-specific patterns present in the training dataset. We show that S2MAML

outperforms standard supervised learning and MAML on the SC, ST, ISRUC, UCD,

and CAP datasets.

Sleep is known to play an important role in the mental and physical health of an

individual [129] and therefore the development of tools to diagnose sleep quality and

common sleep pathologies is fundamental. Sleep is monitored by polysomnography

(PSG), i.e. , electrical biosignal analysis, such as electroencephalogram (EEG), elec-

tromyograph (EMG), electrooculograph (EOG), and electrocardiograph (ECG). The

recorded biosignals are split into 30-second intervals (epochs) and annotated by clin-

icians into several categories, such as wake (W), non-rapid eye movement (NREM:

N1, N2, and N3), and rapid eye movement (REM). This task is difficult and time-

consuming. Therefore, the ability to do so consistently and on a large scale through

automation has an important impact on medical research and clinical practice [156].

Toward this purpose, machine learning methods have been introduced as a way

to achieve automatic sleep scoring [39, 114, 65]. However, these methods are still not

widely adopted among sleep practitioners. One limitation is that current methods

for sleep stage classification typically experience a decrease in performance on data

obtained from new cohorts of patients. The main reason for this decay is the large

variability of biosignals between subjects and sessions. This variability stems from

experimental factors such as differences in the recording equipment and protocol (e.g.,

the number and placement of the electrodes) or physiological factors such as age, prog-

nosis, and medication. While this problem is commonly known among practitioners

through direct experience, we illustrate it quantitatively in detail in our experimental

analysis.

An approach to overcome this limitation is transfer learning, in which a classifica-

tion model is adapted to the target cohort through further training. This approach

also motivated the recent work MetaSleepLearner [8], which builds on meta-learning

in the case of few-shot adaptation. MetaSleepLearner requires only a small set of

annotations of the target dataset and a limited amount of training when new data

become available.

However, as we show in our experiments, the scheme used in MetaSleepLearner,

i.e. , MAML, still runs the risk of overfitting even if the adaptation is performed on a

large dataset. Moreover, we find the few-shot learning scenario, or more in general, the

transfer learning case, not practical because practitioners would need further training

and/or to provide annotation to adapt a classifier to new target data. Thus, in this

chapter, we propose to build a single sleep staging model and then use it “as is” on new

data. To avoid overfitting, we combine the Model Agnostic Meta-Learning (MAML)

framework with self-supervised learning (SelfSL) [80]. SelfSL has the advantage of not

requiring annotation and it can be designed to train models that overfit less to the

Self-Supervised Meta-Learning for Sleep Scoring 57

training data. With a slight abuse of notation, we refer to the proposed setting as

zero-shot learning, to emphasize that no new training or annotation is needed with

new data. To the best of our knowledge, the zero-shot learning scenario has not been

explored so far in the literature for sleep scoring. We test our proposed method on

several datasets and find that the use of SelfSL with MAML yields state-of-the-art

performance in zero-shot learning.

4.1 Related Works

In Sections 2.2 and 2.3, we introduce useful concepts from the self-supervised learning

and meta-learning literature. Relevant to this work are the deep learning works for

sleep scoring covered in Section 2.1.4, and applications of MAML [38] to EEG clas-

sification tasks such as sleep scoring [8], brain-computer interface [83] and emotion

prediction [97].

Since the main focus of this work is to show the potential of combining the Phase

Swap introduced in Chapter 3 and meta-learning [38], we adopt an existing baseline,

DeepSleepNet-Lite [39], as our network architecture of choice, as it is efficient to train

and acheives competitive performance on the considered benchmark. Indeed, our

proposed S2MAML method is agnostic to the choice of the used architecture, so we

focus our experimental effort on showcasing its generalizability across datasets instead

of performing an exhaustive neural architecture search.

4.2 Methods

4.2.1 Datasets

In this work, we used five different sleep scoring datasets.

Sleep Cassette (SC). It is a subset of the Expanded Sleep-EDF Database [65] . It

contains PSG sleep recordings obtained between 1981 and 1991. It includes recordings

from 78 healthy subjects between the age of 25 and 101, with two recordings per person

for most of them.

Sleep Telemetry (ST). It is another subset of the Expanded Sleep-EDF Database

[65]. It was collected as part of a 1994 study on the effect of temazepam on sleep. It

contains PSG recordings from 22 subjects with one session per individual.

Old datasets like SC & ST allows us to investigate generalization from/to record-

ings with different signal quality.

58 Chapter 4

ISRUC. It is a publicly available sleep dataset [66]. It consists of PSG recordings

obtained at the Sleep Medicine Center of the Hospital of Coimbra University (CHUC)

between 2009 and 2013. This database has three different subsets:

• Subgroup-I contains one recording per subject for 100 individuals with sleep

disorders;

• Subgroup-II contains two recordings per subject for 8 individuals with sleep

disorders;

• Subgroup-III contains one recording per subject for 10 healthy individuals.

University College Dublin Sleep Apnea Database (UCD) It is a 2011 database

collected at St. Vincent’s University Hospital [49]. It contains one PSG recording per

subject for 25 individuals with suspected sleep disorder breathing.

Cyclic Alternating Pattern (CAP) Sleep Database It is a collection of one

recording per subject for 108 individuals with varying conditions. It contains 10

healthy subjects, 40 diagnosed with NFLE, 22 affected by RBD, 10 with PLM, 9

insomniac, 5 narcoleptic, 4 affected by SDB and 2 by bruxism [143]. It was published

in 2001.

4.2.2 Data Preprocessing

Out of all the signals available in each recording, we keep the EEG , EMG and EOG

channels. All signals are re-sampled at 102.4Hz. This allows us to represent a 30sec

epoch with 3072 time points, which is more compact and closer to the original sampling

frequency compared to the commonly adopted 128Hz. This is sufficient since most

spectral features classically used for sleep scoring are at lower frequency bands.

Since the convolutional architecture we adopted in our experiments requires a

constant number of channels as input, we fix that number to 9. If the recording

contains more than 9 channels, which is the case for ISRUC and CAP, we randomly

select a subset of them. Otherwise, if the recording does not have enough channels, we

add dummy ones that are all zeros. The channels are shuffled before being fed to the

model. We normalize each channel to have zero mean and unit standard deviation.

4.2.3 Data Split

To evaluate our models, we choose two different train/evaluation splits. We first split

each dataset by subjects, then we randomly split each recording into samples of 3×30

seconds. This allows us to have an evaluation set that contains subjects that were seen

Self-Supervised Meta-Learning for Sleep Scoring 59

Table 4.1: Diagram illustrating our evaluation sets. In a setting with 4 subjects

and 4 samples per subject, we define 3 sets: Train, Eval. Seen and Eval.Unseen.

Sample 1 Sample 2 Sample 3 Sample 4

Subject 1 Train Eval. Seen Train Train

Subject 2 Train Train Train Eval. Seen

Subject 3 Train Train Train Eval. Seen

Subject 4 - - - Eval. Unseen

during training and another evaluation set containing unseen ones. Both splits follow

a 75%-25% ratio. An illustration of both splits is shown in Table 4.1 (©2022 IEEE).

4.2.4 Notation

We define the mapping E : x 7→ h as the encoding of the input signal x into a feature

vector h. The associated trainable parameters are denoted by ΘE . We denote the

mapping from the feature vector h to the predicted class label ŷ for the supervised and

self-supervised settings as CSL and CSelfSL, respectively. Their associated trainable

parameters are ΘC
SL and ΘC

SelfSL, respectively. The predicted labels of the model are

therefore

ŷSL/SelfSL = CSL/SelfSL(E(x)). (4.1)

In all experiments, models are trained by minimizing the average cross-entropy

loss given by

L(T,ΘE ,ΘC) =
1

|T |
∑
t∈T

1

|t|
∑

(x,y)∈t

−
Nc∑
c=1

yclog(ŷc), (4.2)

where y, ŷ, Nc and T are respectively the true labels, the model predictions, the

numbers of classes and a set of tasks t consisting of signal-label pairs. Note that we

represent the true labels as a one-hot encoding vector. vc refers to the c-th entry in

the vector v ∈ RNc . We frame the sleep scoring problem as a five-way classification

with the five classes being: Wake (W), N1, N2, N3, and REM.

4.2.5 Self-Supervised MAML (S2MAML)

Model Agnostic Meta-Learning (MAML) is a meta-learning algorithm, where a given

model is trained on a large variety of tasks with the goal of generalizing to novel tasks

through fast-adaptation, i.e. few-shot learning or with no adaptation, i.e. zero-shot

learning. In this work, we investigate the benefit of using meta-learning jointly with

self-supervised learning to improve generalization to unseen subjects and datasets.

60 Chapter 4

The problem that our proposed model solves can be described using the following

bilevel formulation

Θ∗E ,Θ∗C = argmin
ΘE ,ΘC

SL

L(TSL, Θ̂
E ,ΘC

SL) (4.3)

s.t. Θ̂E , Θ̂C
SelfSL = argmin

ΘE ,ΘC
SelfSL

L(TSelfSL,Θ
E ,ΘC

SelfSL),

where the model E is optimized to learn useful self-supervised representations of the

set of tasks TSelfSL. The bilevel optimization favors representations that generalize

well to the supervised outer problem on tasks TSL.

Algorithm 1 outlines our adaptation of MAML, which we call S2MAML. Given

K datasets {Dk}Kk=1, we randomly sample ntasks tasks from each one. Each task

t = {(xj , yj)}Ns
j=1 is defined as a set of signal and label pairs belonging to the same

subject in a given dataset. The total set of tasks T is then split into a meta-training

set T tr and a meta-validation set T val. Each MAML iteration consists of an inner

and an outer optimization problem. In the inner problem, ΘE
in is initialized with the

values of ΘE . Both ΘE
in and ΘC

SelfSL are optimized for nin iterations with respect to

the self-supervised loss Lin computed on the meta-training set. To do this, we need to

generate a set of self-supervised tasks TSelfSL based on T tr. The details of this step

are described in Section 4.2.6.

The weights ΘE are then updated in the outer problem by minimizing the super-

vised loss Lout (see Algorithm 1) computed on the meta-validation set. The gradient

for the ΘE update is calculated at ΘE
in, and not at ΘE , because we use the first-order

approximation version of MAML [38].

The goal of this design is to encourage the model to learn self-supervised general

purpose features in the inner problem that would generalize well to the outer supervised

problem computed on novel tasks, i.e. unseen subjects.

4.2.6 PhaseSwap

For our self-supervised training, we choose Phase Swap (PS) introduced in Chapter 3.

Our choice is motivated by two reasons. First, PS has been shown to improve gener-

alization to unseen subjects, making it a strong candidate for our approach. Second,

PS can be defined on the same time scale as the supervised task. In fact, other self-

supervised methods, such as relative positioning (RP) or contrast positional coding

(CPC) [10], require a longer temporal context, which would complicate the training

loop. Since the main focus of this work is to highlight the potential of using self-

supervised learning in a meta-learning setting, we opted for the simplest self-supervised

loss.

Self-Supervised Meta-Learning for Sleep Scoring 61

Algorithm 1 S2MAML (©2022 IEEE)

Require: {Dk}Kk=1,Θ
E ,ΘC

SelfSL,Θ
C
Sup, λin, λout

while not converged do

T ← {}
for k in 1..K do

for i in 1..ntasks do

t ← sample task(Dk)

T ← T ∪ {t}
end for

end for

T tr, T val ← split(T)

ΘE
in ← ΘE

for i in 1..nin do

T tr
SelfSL ← generate ssl task(T tr)

Lin ← L(T tr
SelfSL,Θ

E
in,Θ

C
SelfSL)

ΘE
in ← ΘE

in − λin∇ΘE
in
Lin

ΘC
SelfSL← ΘC

SelfSL − λin∇ΘC
SelfSL

Lin

end for

Lout ← L(T val,ΘE
in,Θ

C
Sup)

ΘE ← ΘE − λout∇ΘE
in
Lout

ΘC
Sup ← ΘC

Sup − λout∇ΘC
Sup
Lout

end while

More specifically, PS is defined as a binary classification problem, where a model

is trained to distinguish between samples x and xPS defined as

xPS = F−1
[
|F (x)| ⊙ ∡F

(
x′
)]

, (4.4)

where x and x′ are two different samples. For a complex scalar z ∈ C∗, the absolute

value |.| and angle ∡ operators are defined such that z = |z|ei∡z.

In Algorithm 1, T tr = {ti}K×ntasks/2
i=1 is a set of supervised tasks. For each task

t ∈ T tr, the function generate ssl task generates a new task tSelfSL to be included

in T tr
SelfSL. For each signal-label pair (x, y) ∈ t, tSelfSL includes (x, ySelfSL = 0) and

its phase-swapped counterpart (xPS , ySelfSL = 1).

4.2.7 Architecture Choice

For our experiment, we use DeepSleepNet-Lite [39] as our architecture of choice. It

consists of two parallel convolutional neural networks using sets of small and large

filters for the first layer, respectively. The output of the two networks is concatenated

62 Chapter 4

into a single vector h and fed into a softmax layer that maps it to the predicted class.

The input x of the network is a segment of 90 seconds, i.e. three consecutive epochs

of 30 seconds each. We chose this architecture for its simplicity, its shorter temporal

context, and the fact that it does not require the power spectrum as input.

4.2.8 Baselines and Training Hyper-parameters

In all experiments, we compare the performance of our S2MAML model to two other

baselines: A supervised classification model without meta-learning and a MAML based

training similar to ours, but where we replace the self-supervised problem in the inner

loop with a supervised one. We refer to these models as SL and MAML respectively.

Unless stated otherwise, each task t contains 8 samples from the same subjects.

ntasks, nin, λout and λin are set to 32, 1, 10−4 and 5 · 10−5 respectively and each

model is trained for 20 full iterations in all databases considered. We use Adam

[69] as our optimizer with its default hyperparameters. Our models are implemented

using Pytorch2 and run on a single NVIDIA 1080Ti GPU. We observe no significant

differences between the computation times of all models both in inference and in

training.

We adopt the same label smoothing regularization as used by [39] with their sug-

gested tuning.

4.2.9 Evaluation Metrics

We use macro F1 (MF1) as an evaluation metric for our experiments. Macro F1 is

defined as

MF1 =
1

Nc

Nc∑
c=1

F1c =
1

Nc

Nc∑
c=1

2Pc × Rc

Pc + Rc
(4.5)

where Nc, Pc and Rc are, respectively, the number of classes, the precision and

recall for the class c. It is the average F1 score per class, where the F1 score is defined

as the harmonic mean of precision and recall. We choose MF1, instead of the classic

F1 score, as it is a better metric when the dataset has a significant class imbalance,

as is the case for sleep scoring. All reported MF1 scores are averaged across a 4-way

cross-validation split.

Self-Supervised Meta-Learning for Sleep Scoring 63

Table 4.2: Cross-validation MF1 Scores for the 3 vs 5 setting on seen sub-

jects. Avg(S) refers to the average MF1 across all seen evaluation sets (©2022 IEEE).

Run CAP ST ISRUC Avg(S)

S2MAML 68.8 74.8 74.7 72.8

MAML 66.4 71.3 73.3 70.3

SL 55.0 75.5 66.7 65.7

Table 4.3: Cross-validation MF1 Scores for the 3 vs 5 setting on unseen

subjects. Avg(U1) and Avg(U2) refer to the averages MF1s for unseen subjects

across seen (CAP, ISRUC, ST) and unseen (UCD, SC) datasets respectively. Avg(U)

is the average MF1 across all unseen sets (©2022 IEEE).

Run CAP ST ISRUC Avg(U1) SC UCD Avg(U2) Avg

S2MAML 56.5 65.2 70.3 64.0 41.1 43.7 42.4 55.4

MAML 55.0 65.3 68.9 63.1 34.4 42.1 38.2 53.1

SL 46.4 63.2 63.0 57.5 30.3 37.9 34.1 48.1

4.3 Results

4.3.1 Generalization to Novel Databases: 3 vs 5

In this set of experiments, we compare the performance of S2MAML to the two base-

lines when training on 3 of 5 of the considered databases. This allows us to evaluate

the performance of our model on completely unseen cohorts of subjects belonging to

different databases (see Section 4.2.3). More specifically, we train using ST, CAP, and

ISRUC and evaluate on all five datasets. We report the performance of all models on

both evaluation sets with seen and unseen subjects in Tables 4.2 and 4.3.

For seen subjects, we observe that our model outperforms the two baselines (su-

pervised and MAML training) on average, as well as on CAP and ISRUC. On average

the performance gap is 2.5% compared to MAML and 7.1% compared to supervised

training. This shows that meta-learning-based methods are generally better suited

for overcoming intra-subject variability, and that self-supervision is a powerful tool to

further reduce that performance gap.

For unseen subjects, we observe that our model outperforms both baselines on most

datasets and on average. We also find that the meta-learning-based models outperform

the supervised baseline, similar to the results on seen subjects. More importantly, the

performance gap between our S2MAML and MAML is wider on held-out datasets.

Although MAML generalizes better to unseen subjects from the databases used for

2https://pytorch.org/

https://pytorch.org/

64 Chapter 4

training compared to the supervised baseline, it generalizes less to held out databases

compared to our model. In other words, our S2MAML is not only better suited to deal

with variability between subjects, but it is also better suited to deal with variability

between cohorts. We discuss the low performance on ST in Section 4.3.3.

4.3.2 Generalization in a Data Abundant Setting: All vs All

In this set of experiments, we compare the performance of S2MAML to our two base-

lines when trained on all databases jointly. This allows us to highlight the benefit

of our algorithm in a setting where a large quantity of labeled recordings are avail-

able. The MF1 scores of all models on both seen and unseen subjects are reported in

Table 4.4.

Table 4.4: Cross-validation MF1 Scores for the All vs All setting. We also

report the average MF1 across all databases (©2022 IEEE).

Run Subjects CAP ST ISRUC SC UCD Avg

S2MAML Seen 82.1 85.0 88.8 86.3 90.4 86.5

MAML Seen 80.2 81.5 86.1 84.1 89.4 84.3

SL Seen 59.3 83.2 71.2 82.1 68.6 72.9

S2MAML Unseen 67.9 73.7 82.7 83.8 70.7 75.8

MAML Unseen 65.7 69.2 80.8 80.8 69.8 73.3

SL Unseen 50.8 70.0 67.2 79.5 55.0 64.5

We observe that our model outperforms both baselines on all datasets as well as

on average for both evaluation settings. This shows that the generalization advantage

of our model does not disappear when scaling up the amount of available data. In

the deep learning literature, scaling up the amount of training data is a common

practice used to improve the generalization of artificial neural networks. This relies

on the implicit assumption that with enough data, one is able to obtain a training

set that is similar in distribution to the evaluation set and contains most sources of

variability that can be encountered. However, in the case of physiological signals, this

assumption may not hold as well. A new individual will always have subject-specific

sleep patterns, and the inter-dataset variability will always remain a challenge as long

as hardware/software recording pipelines keep evolving.

In the previous section, we have split the data by subjects, which is not a common

practice. We did so to illustrate a more extreme setting for generalization. In this

section, we also obtain performance on seen subjects, as done in the literature, so that

it is easier to compare it with prior work. Although the main focus of our work is to

reduce the generalization gap between subjects and datasets, the MF1s reported on

seen subjects are comparable or better than state-of-the-art methods in the literature.

Self-Supervised Meta-Learning for Sleep Scoring 65

Our model achieves an MF1 score of 86.3% and 85.0% compared to 79% and 76%

for U-Sleep [113] in SC and ST, respectively. However, the numbers are not directly

comparable due to the difference in the randomness of the splits. For this reason, and

in order to keep our results focused on the generalization problem, we chose to omit

the numbers reported by other prior works from our tables.

4.3.3 Disparity Between Datasets: One vs All

In this set of experiments, we compare the performance of the different models on

unseen databases when trained only on a single one. This represents a worst-case

scenario, where one has access to a very limited number of subjects, and therefore

learning to generalize becomes much more challenging. Since the different databases

considered in this study have different sizes, we choose to equalize experiments by

training for a fixed number of gradient updates 5000, instead of looping through the

training set 20 times. The goal of these experiments is to gauge how similar or dissim-

ilar the databases considered in this work are. In other words, our goal is to confirm

that generalizing from one set to the others is indeed a challenging task and that each

database has its particularities.

We report the MF1 scores obtained in Table 4.5. For all datasets and the three

models considered, we observe that the performance drops significantly on unseen

datasets. One additional noteworthy observation is that out of all combinations, mod-

els trained on SC/ST and tested on others and vice versa seem to generalize the least.

On the other hand, generalizing between ST and SC seems more feasible. This may be

due to the fact that ST/SC were collected a few decades ago or to the fact that they

include EEG electrodes that are not common in the other three databases. We believe

that this observation may explain why both meta-learning models struggle compared

to the SL baseline on ST as reported in Tables 4.2 and 4.3.

Overall in this setting, the performance across different methods does not indicate

a clear winner. Given the restricted number of subjects per dataset, all methods

struggle to learn features that generalize well to new cohorts. However, on average

across all possible combinations, S2MAML and MAML are slightly above with 29.8%

and 29.9%, respectively, compared to 29.4% for the SL baseline.

4.3.4 Effect of λin

In this section, we study the effect of λin on our model and the MAML baseline.

We train both our model and the MAML baseline in the 3 vs 5 setting described in

Section 4.3.1 for λin ∈ {10−3, 5 · 10−5}. Tables 4.6 and 4.7 report the obtained MF1

scores for seen and unseen subjects, respectively. We observe that while the value

of λin has little effect on the performance of our model, setting it at 10−3 greatly

66 Chapter 4

Table 4.5: Cross-validation MF1 Scores for models trained on one dataset.

Each row block corresponds to models trained on a single dataset and evaluated on

unseen subjects from the same or other datasets (©2022 IEEE).

Train

Test
Model ISRUC SC ST CAP UCD

S2MAML 76.0 27.4 9.7 25.8 12.2

MAML 74.7 24.5 10.3 23.3 15.0ISRUC

SL 71.7 17.7 10.3 21.6 16.1

S2MAML 7.2 74.1 41.5 6.3 7.4

MAML 8.1 75.2 44.3 19.4 7.5SC

SL 10.1 75.5 43.7 6.6 8.2

S2MAML 14.9 28.7 67.7 17.2 20.2

MAML 19.3 28.9 68.2 18.4 19.2ST

SL 21.7 28.3 68.3 18.2 19.6

S2MAML 28.8 27.4 13.9 58.1 48.5

MAML 28.5 24.6 13.2 54.3 46.4CAP

SL 29.8 25.4 14.4 49.0 41.7

S2MAML 23.2 18.6 4.5 24.2 62.2

MAML 20.0 18.5 4.9 20.9 59.4UCD

SL 29.9 18.5 6.1 25.7 57.7

reduces the performance of the MAML baseline. By setting λin to a higher value,

we put more emphasis on the convergence in the meta-train set, i.e. , in the inner

loop. This confirms that using Phase Swap as a self-supervised task in the inner loop,

i.e. , in the meta-train set, is less prone to learning subject-specific features and thus

generalizes better compared to its supervised counterpart. Additionally, this shows

that our method is more robust to the choice of the hyper-parameter λin.

4.4 Discussions

With the increasing popularity of deep learning methods, more and more artificial

neural network architectures have been proposed for automatic sleep scoring. Reliable

automatic sleep scoring models have the potential to speed up sleep research and make

it more accessible by reducing the cost of manual annotations and enabling a more

advanced closed-loop system. However, one important requirement for such mod-

els is that they should maintain their level of performance across sessions, subjects,

and hardware/software recording settings. Our work positions itself as a step for-

ward toward achieving this goal. By leveraging both meta-learning and self-supervised

Self-Supervised Meta-Learning for Sleep Scoring 67

Table 4.6: Analysis of the effect of λin for unseen subjects. We report the cross-

validation MF1 Scores on unseen subjects for models trained in the 3 vs 5 setting for

different values of λin (©2022 IEEE).

Run λin CAP ST ISRUC Avg SC UCD Avg

S2MAML 10−3 60.0 70.2 67.4 65.9 34.3 49.0 41.7

S2MAML 5 · 10−5 61.9 70.1 68.4 66.8 32.6 46.9 39.8

MAML 10−3 23.1 25.4 33.1 27.2 15.9 10.4 13.2

MAML 5 · 10−5 59.2 67.9 65.4 64.2 25.9 49.4 37.7

Table 4.7: Analysis of the effect of λin for seen subjects. We report the cross-

validation MF1 Scores on seen subjects for models trained in the 3 vs 5 setting for

different values of λin (©2022 IEEE).

Run λin CAP ST ISRUC Avg

S2MAML 10−3 68.3 70.8 73.4 71.0

S2MAML 5 · 10−5 68.8 74.8 74.7 72.8

MAML 10−3 16.6 24.5 20.5 20.5

MAML 5 · 10−5 66.4 71.3 73.2 70.8

learning, our S2MAML is able to reduce the performance drop associated with both

intrasubject variability, i.e. unseen subjects from seen datasets, and intra-database

variability, i.e. on unseen datasets. Addressing the generalizability of such models is

an important milestone towards the wider adoption of such models, especially in a

medical context. Training data will always lag behind that of collected patient data

in both scale and diversity. Therefore, it is of the utmost importance to ensure the

robustness and generalizability of such models across settings.

68 Chapter 4

Chapter 5

Distribution-Aware Label

Refinement for Imbalanced

Semi-Supervised Learning

Copyrights of this work remain the property of AWS and reprinted under

the license of the conference where this preprint will appear.

In this chapter, we introduce SemiGPC, a distribution-aware label refinement strat-

egy based on Gaussian Processes where the predictions of the model are derived from

the labels posterior distribution. Unlike other buffer-based semi-supervised meth-

ods such as CoMatch [84] and SimMatch [167], our SemiGPC includes a normal-

ization term that addresses imbalances in the global data distribution while main-

taining local sensitivity. This explicit control allows SemiGPC to be more robust

w.r.t. confirmation bias, especially under class imbalance. We show that SemiGPC

improves performance when paired with different Semi-Supervised methods such as

FixMatch [133], ReMixMatch [14], SimMatch [167] and FreeMatch [151] and different

pre-training strategies including MSN [6] and Dino [20]. We also show that SemiGPC

achieves state-of-the-art results under different degrees of class imbalance on standard

CIFAR10-LT/CIFAR100-LT especially in the low data regime. Using SemiGPC also

results in an increase in the average accuracy of approximately 2% compared to a

new competitive baseline on the more challenging benchmarks SemiAves, SemiCUB,

SemiFungi [140] and Semi-iNat [139].

Semi-Supervised Learning offers a more cost effective alternative to fully super-

vised learning when scaling up the data collection process. Current state the of the

art semi-supervised methods rely on self-learning by generating pseudo-labels for the

unlabeled samples. However, pseudo-labels can also hurt the final performance when

they introduce persistent incorrect predictions, a problem known as confirmation bias.

69

70 Chapter 5

(a) Initial labels (b) Similarity-based predic-

tions

(c) SemiGPC predictions

Figure 5.1: SemiGPC pseudo-labeling with class imbalance. (a) Four-class

dataset containing unlabeled (gray) and labeled samples (in color). (b) and (c) show

the labels propagated according to the similarity-based aggregate [84] and SemiGPC

methods. (c) In A, the initial labels are mixed, so SemiGPC is more conservative there

(many samples are not pseudo-labeled at the current threshold level). In B, SemiGPC

is able to propagate the labels of the minority green class despite being surrounded by

the majority blue class. In C, SemiGPC assigns low confidence to the set of outliers

(labels are not propagated). On the contrary, the similarity-based approach expands

the majority classes at the expense of the minority classes, cf. B and C.

In particular, self-learning can bias the label distribution if the data is imbalanced.

To address this, recent works such as CoMatch [84] and SimMatch [167] rely on a

buffer of samples to refine the predicted pseudo-labels. However, no countermeasure

is adopted to globally balance the data in the memory bank. As such, the resulting re-

fined pseudo-labels are plagued by the class imbalances present in the unlabeled data.

To overcome these limitations, we introduce SemiGPC, a novel semi-supervised learn-

ing method that generates pseudo-labels using a distribution-aware label-refinement

strategy. This distribution awareness stems from the use of Gaussian Processes, which

account for local data concentration disparities and counteracts them. This results

in more robust pseudo-labels especially for minority classes and outliers as shown in

Figure 5.1. In particular, SemiGPC correctly assigns nearby points to the minority

classes despite the larger count of the majority class at a bigger scale, i.e. it has a bet-

ter local sensitivity, while remaining faithful to the global data distribution. SemiGPC

is flexible and can be used on top of previous label-refinement schemes on other semi-

supervised methods. Furthermore, we show that the similarity-based pseudo-labels

heuristics used in SimMatch and CoMatch can be cast as a special case of SemiGPC.

To improve the computational efficiency of our method and allow for fast batched up-

dates essential for Semi-Supervised learning methods, we pair SemiGPC with a batched

online update rule that significantly reduces its forward pass cost (×7.5 speed-up). We

show the benefit of using SemiGPC on top of semi-supervised algorithms such as Fix-

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 71

Match [133], ReMixMatch [14], SimMatch [167] and FreeMatch [151] (∼ 0.8% average

improvement) and different self-supervised pre-training strategies such as MSN [6] and

Dino [20] resulting in a ∼ 1.3% average improvement. This highlights the general pur-

pose nature of SemiGPC as a relevant extension for semi-supervised methods based

on label refinement strategies. We experimentally show that SemiGPC is capable of

achieving state of the art results on CIFAR10-LT (≥ + 7.65%) and CIFAR100LT

(≥ + 1.84%) as well as the more challenging semi-supervised benchmarks SemiAves,

SemiCUB, SemiFungi, and Semi-iNat (∼ +1.92% compared to our baseline and ∼
+20.52% compared to the numbers reported in the literature [139, 140]). We also

show that SemiGPC is able to narrow the gap between the high and low data regimes

with 10/100x fewer labeled samples as we report a 45% and 32% relative improvement

over the baseline across regimes for CIFAR10-LT and CIFAR100-LT, respectively.

5.1 Related Works

We provide an overview of the relevant semi-supervised literature in Section 2.4. Gaus-

sian Processes (GPs) are a class of non-parametric function approximation methods

fully characterized by their mean and kernel functions. Given a set of observations

and their corresponding measurements, GPs define a posterior distribution over the

measurements for new observations. Their ability to explicitly model uncertainty

makes them a natural fit for Semi-supervised learning. Early works such as Lawrence

and Jordan [75] introduce GPs in the context of semi-supervised learning by assum-

ing that the data density in regions between the class-conditional densities should be

low while [130] leverages GPs to model the relationship between labeled and unla-

beled samples by incorporating the geometry of the latter in the construction of the

global kernel function. However, such early works are limited to toy datasets due

to the computational cost of GPs. The more recent UaGGP work [88] proposed to

address uncertainty caused by erroneous neighborhood relationships in the context

of graph-based semi-supervised learning by leveraging the ability of GPs to generalize

well from few samples. NP-Match [146] proposed Neural Processes instead of GPs as a

probabilistic model for uncertainty estimation which, in turn, allows for better compu-

tational efficiency compared to MCDropout [41]. Beyond Semi-Supervised Learning,

Gaussian Processes have been used alongside neural networks in multiple other fields.

DGPNet [61] relies on GPs in the context of dense few-shot segmentation to capture

complex appearance distributions while [79] leverages GPs for fast and accurate un-

certainty estimates in robotics systems. Furthermore, different works draw parallels

between Gaussian Processes and Neural Networks by interpreting the activation func-

tions of the latter as interdomain inducing features [35] or by proving a correspondence

between the two classes of models [157].

72 Chapter 5

5.2 SemiGPC

Figure 5.2: SemiGPC Outline. x, us, uw, h and y are the labeled, strongly/weakly

augmented unlabeled samples, their feature vector and the ground truth labels respec-

tively. The SemiGPC buffer is used to derive the model predictions ŷ.

In this section, we present the basic framework of consistency-based semi-supervised

learning, how it can be extended with a memory buffer, and analyze where confirma-

tion bias comes into play. We then introduce our Gaussian Process-based classifier,

SemiGPC, and highlight its advantages over other classifiers using a toy example. The

general outline of SemiGPC is shown in Figure 5.2. In the following, we denote the

labeled dataset with Dl = {(xi, yi)}nl
i=1 and the unlabeled one with Du = {(xi)}nu

i=1

where x ∈ X are RGB images and y ∈ RC are labels belonging to a fixed set of

concepts C. We indicate a feature extractor with h : X → Z where Z = Rd and d is

the dimension of the feature space, and call the classification head g : Z → RC . The

model predictions are defined as

ŷ(x) = g ◦ h(x). (5.1)

5.2.1 Consistency-based Semi-Supervised Learning

Given labeled and unlabeled datasets Dl and Du, consistency-based semi-supervised

methods [133, 84, 14, 167, 151] rely on the labeled set and high-confidence pseudo-

labels computed on the unlabeled set. Model predictions are computed for strongly

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 73

augs(x) and weakly augw(x) augmented views of a given image x, as follows:

ŷs(x) = ŷ(augs(x)), ŷw(x) = ŷ(augw(x)). (5.2)

We refer to [133, 84, 167] for typical strong and weak data augmentations. In this work,

we adopt those used in FixMatch [133]. More precisely, the labeled and unlabeled losses

are defined as

Ll = H(ŷw(x), y); (x, y) ∈ Dl (5.3)

Lu = 1[conf(x) > τ]H(ŷs(x), f(ŷw(x))); x ∈ Du (5.4)

with conf(x) = max[softmax(ŷw(x))], (5.5)

where H is the cross-entropy loss, τ is the confidence threshold specifying which un-

labeled samples to use and f : RC → RC is a label refinement function (e.g. see [14]).

Model confidence is defined as the maximum of the softmax vector. Different choices of

f include the identity function (no refinement), onehot encoding (hard pseudo-labels

used in FixMatch [133]), temperature sharpening [14], etc. For a linear classification

head, such pseudo-labels are sensitive to outliers in the sense that a new unlabeled

sample located far from the labeled data can have high confidence, cf. Figure 5.3a.

To overcome such limitation, works such as SimMatch [167] and CoMatch [84] pro-

pose to ground their pseudo-labels using a memory buffer during training. The buffer,

(hQ, yQ), is a set of NQ feature vectors of weakly augmented labeled samples using

augw, i.e.

hQ := {h(augw(xl));xl simDl} ∈ Rn×d}, (5.6)

and their associated labels. Then, the smoothed pseudo-label (output of f) for any

given input x is defined as

f(ŷ(x)) = (1− α)ŷ(x) + αŷsim (5.7)

with ŷsim = k(h(x), hQ)yQ (5.8)

where α, k and h(x) are a smoothing factor, a kernel similarity function and the feature

representation of the input x. The pseudo-labels ŷsim introduced in Equation (5.8)

closely reflect the data distribution. However, biases present in the data, if not ad-

dressed, could be amplified due to the unweighted kernel average (e.g. by favoring the

majority classes cf. Figure 5.3b over the minority classes). In this work, we address the

short-comings of previous approaches by introducing a normalization term, computed

leveraging Gaussian Processes, that automatically counteracts class imbalances in the

data.

74 Chapter 5

5.2.2 Gaussian Processes-based Label Refinement

We introduce SemiGPC, our label refinement strategy based on Gaussian Processes

(GPs). Our key motivation is that the normalized kernel similarity used in the GP

posterior mean helps address the class imbalance by equalizing the local contribu-

tion of each sample in the buffer for each class population. Similarly to previous

methods [133, 84, 167], SemiGPC aggregates global information for the refinement of

the input location of each pseudo-label. However, SemiGPC retains local sensitivity

by favoring minority classes when appropriate, despite the global aggregate favoring

majority classes, as shown in Figure 5.1.

Given a memory buffer containing features and labels (hQ, yQ), we define SemiGPC

refined pseudo-labels as

ŷGP = λµGP (h(x)) = λk(h(x), hQ)K−1yQ (5.9)

with K = k(hQ, hQ) + σ2I (5.10)

where µGP is the posterior mean of the GP, λ is the logit scaling factor, σ a regulariza-

tion parameter of the GP which represents how much we trust labels in the memory

bank and k is the GP kernel function (e.g. the RBF kernel). By comparing Eqs. (5.8)

and (5.9) we see that the GP approach aggregates all labels in the memory bank and

reweighs them according to the inverse covariance matrix K−1. Such a normalization

is particularly useful to counteract class imbalance, as we show in Figure 5.3. In the

following, we use the RBF kernel defined as

k(x, y) = η exp(−∥x− y∥2

2l2
) (5.11)

where η and l are the kernel scale factor and length scale respectively. Note that

Equation (5.9) characterizes the posterior mean of a GP whose likelihood function is

Gaussian. Other non-Gaussian options are available and are typically applied to build

GP based classifiers [121]. However, when non-Gaussian likelihoods are used, there is

no closed-form solution and approximation schemes that entail higher computational

costs are required [121]. Thus, we choose to refine pseudo-labels by directly regress-

ing the logits ŷ using a Gaussian likelihood. Connection with other label-refinement

methods. Equation (5.9) can also be rewritten as

µGP (h(x)) = k(h(x), hQ)yK , (5.12)

a similarity-based aggregation of yK , the propagated version of yQ through the graph

defined by K. When η/σ2 → 0,K → σ2I. In this setting, Equation (5.9) becomes

equivalent to Equation (5.8). Thus, we obtain the similarity-based aggregation strat-

egy of works such as SimMatch [167] and CoMatch [84]. Furthermore, clipping the

kernel below a given threshold results in a matrix K equivalent to an epsilon graph.

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 75

(a) Linear classifier confi-

dence

(b) Similarity-based classi-

fier confidence

(c) Gaussian Processes-

based classifier confidence

Figure 5.3: Comparison of confidence maps: (a) a linear model, (b) a similarity-

based classifier [84] and (c) a GP classifier are represented using the contour lines.

The number of samples per class grows clockwise by a factor of 2 starting from the

top right cluster. We gray out regions that are below 80% confidence. The outlier at

(-3,3) is indicated with an ×. (c) Only the GP classifier can define confidence levels

that are not biased toward the majority classes and ignore the outlier.

SemiGPC robustness to class imbalance. We illustrate with a toy example how

SemiGPC is more robust to class imbalance than previous methods. In particular, we

compare SemiGPC with a linear classifier and the similarity-based classifier used in

CoMatch [84] in Figure 5.3. We build a dataset with four normally distributed classes

centered at (1, 1), (1,−1), (−1,−1), and (−1, 1), respectively, and plot the model

confidence as defined in Equation (5.5). To simulate class imbalance, the number of

samples per class grows by a factor of 2 starting from the top right cluster and going

clockwise. First, note how samples far from the data distribution, e.g. (−3, 3), are

assigned very high confidence by the linear model, although such points are isolated

from the others and therefore should not be considered well supported by evidence.

Second, note that the minority class (in blue) is a low-confidence region for both the

linear and similarity-based classifiers, despite locally containing many samples sup-

porting that class. On the other hand, the GP-based classifier defines an appropriate

high-confidence region for each supported class, and its sensitivity to the confidence

threshold is much smaller than the similarity-based classifier used in CoMatch [84] as

highlighted by the contour plots. In summary, thanks to the use of a GP-based label

refinement strategy, SemiGPC is confident if: (1) the considered sample is close to a

subset of hQ regardless of whether it belongs to the majority or minority classes, since

K−1 reweighs the kernel similarity to counteract disparities in class populations while

all samples far from the data are considered outliers, and (2) the sample is located

in a high purity region w.r.t. yQ since the averaged conflicting result in a low model

confidence that is spread between classes.

76 Chapter 5

5.2.3 Efficient GP update

As we mentioned in Section 5.2.2, applying GPs in a classification setting requires

approximation schemes that are, in general, computationally expensive. To reduce

the forward time of SemiGPC we choose to model the refined pseudo-labels using

a Gaussian likelihood. In this way, computing the posterior mean for each input

image only requires solving a quadratic optimization problem available in closed form.

However, computing µGP is still computationally expensive, since we need to update

the set hQ after each update of the model and invert the covariance matrix K that

scales with the cube of the memory bank size (NQ) at each mini-batch forward pass. To

speed up computations, we start from the key observation that at each optimization

iteration, most of the samples in the queue do not change. Therefore, at the t-th

iteration after observing the new batch of data of size B, we update the previously

computed covariance at step t− 1 with an incremental update rule. In the following,

we implement SemiGPC using the well-known matrix inversion lemma [12] (Woodbury

identity), which provides a simple batched iterative rank-B correction to the inverse

of a given invertible matrix.

In particular, for each labeled training mini-batch of size B, we replace the B oldest

samples in the buffer with the features computed using the current mini-batch. Let

Kt−1 and Kt be the covariance matrices in iterations t−1 and t, respectively. We now

show how to compute Kt by updating Kt−1 after having updated the memory bank

with the new samples from the current mini-batch. We write

Kt =

[
k(ho, ho) k(ho, hn)

k(hn, ho) k(hn, hn)

]
=

[
A B

B⊤ C

]
(5.13)

where ho and hn denote the old samples that were kept in the buffer and the new

samples added to the buffer. is the identity matrix. The inverse of Kt is given by

K−1
t =

[
K11 K12

K⊤
12 K22

]
(5.14)

with K22 = (D−1C⊤A−1C)−1 (5.15)

K11 = A−1 + A−1CK22C
⊤A−1 (5.16)

K12 = −A−1CK22. (5.17)

Note that computing K−1
t only requires inverting the two matrices (D−1C⊤A−1C)

and A. The former is of size B×B, while the latter is still a relatively large matrix of

size (NQ−B)× (NQ−B). However, A does not depend on the newly added samples,

and its inverse A−1 can be computed efficiently only by requiring the inverse of a B×B
matrix as follows:

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 77

A−1 = M11 −M12M
−1
22 M21 (5.18)

where K−1
t−1 =

[
M11 M12

M21 M22

]
(5.19)

Proof. In the previous time step t− 1, the kernel matrix is given by

Kt−1 = k([ho, hd], [ho, hd]) + σ2I

=

[
A Cd

CT
d Dd

]
(5.20)

where hd represents the samples that were deleted when hn was added to the buffer.

The inverse of the kernel matrix can be expressed as

K−1
t−1 =

[
M11 M12

MT
12 M22

]
(5.21)

The inverse of matrix A can be derived as follows:

I = Kt−1K
−1
t−1 (5.22)

⇒ AM11 + CdM12 = I (5.23)

and AM21 + CdM22 = 0 (5.24)

⇒ Cd = −AM21M
−1
22 (5.25)

⇒ A(M11 −M21M
−1
22 M12) = I (5.26)

⇒ A−1 = M11 −M21M
−1
22 M12 (5.27)

For simplicity, we assume that the new samples are located at the end of the

buffer; however, the derivation remains true for an arbitrarily ordered buffer up to a

permutation matrix.

Table 5.1: Complexity Comparison of GP updates. We observe a ×7.5 speedup

in practice.

Classic GP update Efficient GP update

O(N3Q + BN2Q) O(B3 + BN2Q + B2NQ)

In summary, using block matrix linear algebra, the cost of inverting Kt can be

reduced to computing the inverse of a couple of B×B matrices, which is in turn much

more efficient when B << NQ as is the case in our setting. For example, for a buffer

size NQ ∼ 16k and a batch size B = 8, using our efficient update rule results in ×7.5

speedup. The exact comparison of complexity is provided in Table 5.1.

78 Chapter 5

Class-balanced SemiGPC. SemiGPC has the additional benefit of allowing us to

explicitly address class imbalance without altering the training scheme. We split hQ
into C class buffers and insert the new samples based on their labels, thus ensuring

a balanced hQ. We compare this approach to the classic class rebalancing in the

supplementary material.

5.3 Experimental Settings

5.3.1 Implementation details

We use the semi-supervised training recipe of USB [150]1. It uses an ImageNet [26]

pre-trained ViT to initialize the student model. This training scheme allows for faster

training time and better overall performance. We use a ViT Small/Tiny with a patch

size of 2 and a resolution of 32 for CIFAR100/10, respectively. For our other ex-

periments, we use a ViT Small with a patch size of 16 and a resolution of 224. All

our experiments can be run on a single V100 GPU. All our models are trained using

AdamW [91] for 200 epochs using a batch size of 8. The detailed set of hyperparam-

eters is provided in Table 5.2. For most of our experiments, we use SimMatch as our

baseline. We include a comparison of SemiGPC across different algorithms in Sec-

tion 5.5.1. For all SemiGPC experiments, we use a buffer size NQ=16300. Following

most works in the literature, we adopt the Top 1 Accuracy as our main evaluation

metric and report the mean and standard deviation across 3 random seeds.

5.3.2 Datasets

CIFAR10-LT, CIFAR100-LT. We evaluate SemiGPC on imbalanced versions of

CIFAR10 and CIFAR100. The class distribution of these datasets can be fully de-

scribed using the imbalance ratio γ and the number of samples in the majority class

N1 . For each class 1 < i ≤ K its number of samples Ni is defined as

Ni = N1γ
i−1
K−1 , γ =

N1

NK
(5.28)

where γ, NK , and K are the imbalance ratio, the cardinality of the minority class and

the number of classes respectively.

FGVC Benchmarks. We also evaluate SemiGPC on the fine-grained semi-supervised

benchmarks introduced in [139, 140]. These challenging benchmarks contain naturally

long-tailed distributions with highly similar class pair. Note that both works [139, 140]

argue that semi-supervised methods struggle on such benchmarks. These datasets in-

clude a labeled set Lin and two unlabeled Uin and Uout with seen and unseen classes.

1https://github.com/microsoft/Semi-supervised-learning

https://github.com/microsoft/Semi-supervised-learning

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 79

Table 5.2: SemiGPC training hyper-parameters. SemiFGVC refers to the Semi-

Aves, SemiCUB, SemiFungi and Semi-iNat benchmarks.

CIFAR SemiFGVC

Backbone (ViT) Small (C100) / Tiny (C10) Small

Patch Size 2 16

Resolution 32 224

NQ 16300 16300

length scale l 10 20

noise variance σ 10 1

scale factor η 1 1

labeled batch size 8 8

unlabeled batch size 8 8

learning rate 5e− 4 1e− 3

layer decay 0.5 0.65

epochs 200 200

steps per epoch 1024 1024

warmup epochs 5 5

temperature T 0.1 0.2

logits scale λ 15 15

confidence threshold τ 0.95 0.95

SemiAves. This dataset [137] is built using the Aves kingdom in iNaturalist 2018

dataset [2]. Lin, Uin and Uout include 200/200/800 species and 5959/26640/122208

images, respectively. The test set is balanced and contains 40 samples per class. Its

reported imbalance ratio is γ = 7.9.

SemiFungi. This dataset is based on the CVPR 2018 FGVCx Fungi challenge

dataset [1]. Lin, Uin and Uout include 200/200/1194 species and 4141/13166/64871

images, respectively. The test set is balanced and contains 20 samples per class. Its

reported imbalance ratio is γ = 10.1.

Semi-iNat. This dataset was introduced at the CVPR 2021 FGVC8 workshop [138].

Lin, Uin and Uout include 810/810/1629 species and 13771/91336/221912 images, re-

spectively. The test set is balanced and contains 100 samples per seen class. Its

imbalance ratio is γ = 8.5.

SemiCUB. This dataset is based on the Caltech-UCSD Birds-200-2011 (CUB) dataset [145].

Lin, Uin and Uout include 100/100/100 species and 1000/3853/5903 images, respec-

80 Chapter 5

tively. Unlike the other three, only the unlabeled sets are imbalanced with γ ∼ 2 for

Uin. The test set is balanced and contains 1000 samples. We use U = Uin as our

unlabeled dataset.

5.4 Experimental Results

In this section, we present the robustness of SemiGPC under various degrees of class

imbalance in different data regimes on CIFAR10-LT and CIFAR100-LT. We then re-

port the performance on the more challenging long-tailed semi-supervised benchmarks

SemiAves, SemiCUB, SemiFungi, and Semi-iNat. Lastly, we benchmark SemiGPC on

the classic balanced semi-supervised splits of CIFAR10 and CIFAR100. For all our im-

balanced experiments, we forgo using techniques such as CReST [153], as they do not

necessarily improve performance when combined with the USB [150] training recipe.

These results can be found in the in Section 5.5.3.

5.4.1 Imbalanced Semi-Supervised Learning

In this section, we evaluate the robustness of SemiGPC under different degrees of

class imbalance on CIFAR10-LT and CIFAR100-LT. More specifically, we explore two

imbalanced settings based on whether one has access to a balanced labeled dataset or

not:

Setting A γl = γu > 1 Both the labeled and unlabeled sets are imbalanced using the

same factor. Following prior works, we use (N l
1, N

u
1) = (150, 500) for the imbalanced

version CIFAR100, i.e. CIFAR100-LT. N l
1 and Nu

1 are the number of samples for the

majority class in the labeled and unlabeled datasets, respectively.

Setting B γl = 1; γu > 1 Only the unlabeled set is imbalanced. For the labeled

setting, we use 4 samples per class resulting in ×100/ × 10 fewer labeled samples

compared to A for CIFAR10-LT and CIFAR100-LT respectively. We argue that this

setting is more challenging and better represents real-world scenarios. Indeed, realis-

tically, a small set of balanced labeled samples can be curated, but one cannot make

any assumptions on the distribution of the unlabeled dataset based on its labeled

counterpart.

CIFAR100-LT (Table 5.3). For setting A, we use the class-balanced version of

SemiGPC. We also include the numbers reported by [36] for CoSSL+ReMixMatch as

a reference since they represent the current state of the art. For setting A, we ob-

serve that SemiGPC outperforms the baseline for all values of γu. This highlights the

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 81

Table 5.3: Top1 Accuracy obtained on CIFAR100-LT. We compared models for

different values of γl and γu. †: A class balanced buffer is used for SemiGPC. *: as

reported by [36]. The difference to the baseline is highlighted in green/red.

Model γl γu nlb Top1 Acc

CoSSL [36]* 20 20 4741 55.80±0.62

SimMatch 20 20 4741 83.38±0.48

w/ SemiGPC † 20 20 4741 83.76±0.26(+0.37)

CoSSL [36]* 50 50 3751 48.90±0.61

SimMatch 50 50 3751 78.82±0.60

w/ SemiGPC † 50 50 3751 79.79±0.08(+0.97)

CoSSL [36]* 100 100 3218 44.10±0.59

SimMatch 100 100 3218 73.90±0.75

w/ SemiGPC † 100 100 3218 74.48±0.98(+0.58)

SimMatch 1 20 400 76.28

w/ SemiGPC 1 20 400 77.799±0.51(+1.53)

SimMatch 1 50 400 72.78±0.29

w/ SemiGPC 1 50 400 75.21±0.53(+2.43)

SimMatch 1 100 400 70.19±0.43

w/ SemiGPC 1 100 400 73.47±0.63(+3.28)

robustness of SemiGPC w.r.t. class imbalance and its inherent ability to address it ex-

plicitly using a balanced buffer. The results obtained for setting B further support the

robustness of SemiGPC w.r.t. class imbalance. Indeed, when provided with balanced

samples that are 10× fewer than setting A, SemiGPC is able to outperform our base-

line for all values of γu by a margin greater than +1.5%. Additionally, for each model

and value γu we measure the gap δ(γu) = Acc(A) − Acc(B) between the accuracies

Acc(A) and Acc(B) in settings A and B, respectively. When comparing ∆ averaged

over all γu values, we observe a gap of 5.62% and 3.85% for SimMatch and SemiGPC,

respectively. In addition to improving performance across both settings, SemiGPC is

better at bridging the gap between the two data regimes by approximately 32%.

CIFAR10-LT (Table 5.4). For setting A, we observe that SemiGPC outperforms

the baseline for different values of γu especially for the more challenging setting γu =

150 where we observe a gap of +1.34%. This highlights the robustness of SemiGPC

w.r.t. class imbalance. SemiGPC also largely outperforms our baseline in the setting

B. We observe an accuracy increase of at least 7.63% across all values of γu with the

gap growing bigger for higher values of γu up to +10.17%. Additionally, we report

an average gap across settings of 17.39% and 9.54% for SimMatch and SemiGPC

82 Chapter 5

Table 5.4: Top1 Accuracy obtained on CIFAR10-LT. We compared models for

different values of γl and γu. †: A class balanced buffer is used for SemiGPC. *: as

reported by [36]. The difference to the baseline is highlighted in green.

Model γl γu nlb Top1 Acc

CoSSL [36]* 50 50 4196 87.70±0.21

SimMatch 50 50 4196 96.48±0.26

w/ SemiGPC † 50 50 4196 96.80±0.12(+0.32)

CoSSL [36]* 100 100 3720 84.10±0.56

SimMatch 100 100 3720 9±.50.59

w/ SemiGPC † 100 100 3720 95.74±0.37(+1.15)

CoSSL [36]* 150 150 3496 81.30±0.83

SimMatch 150 150 3496 94.07±1.46

w/ SemiGPC † 150 150 3496 95.41±0.56(+1.34)

SimMatch 1 50 40 80.59±2.24

w/ SemiGPC 1 50 40 88.22±2.38(+7.63)

SimMatch 1 100 40 76.69±2.13

w/ SemiGPC 1 100 40 86.86±4.48(+10.17)

SimMatch 1 150 40 75.68±4.31

w/ SemiGPC 1 150 40 84.25±8.92(+8.57)

respectively, i.e. a relative improvement of 45%. Thanks to its normalization scheme,

SemiGPC reduces the risk of confirmation bias which is more prominent when the

labeled data is scarce.

5.4.2 Semi-Supervised FGVC Benchmarks

In the section, we evaluate the performance of SemiGPC on the naturally long-tailed

semi-supervised benchmarks such as SemiAves, SemiFungi, and SemiCUB and for

SemiiNat. In addition to class imbalance, these datasets include highly similar classes.

Seen Classes. We report the results obtained for the seen classes i.e. U = Uin in

Table 5.5. For reference, we report the numbers obtained by [140] for SemiAves, Semi-

Fungi, and SemiCUB and by [139] for Semi-iNat. We show that using the USB [150]

training recipe produces a strong semi-supervised baseline compared to the numbers

reported by [139, 140]. Furthermore, SemiGPC outperforms the baseline on all fine-

grained benchmarks. This is especially true for the SemiFungi dataset with the highest

imbalance (γ = 10.1) where SemiGPC improves upon the baseline accuracy by +3.49%.

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 83

Table 5.5: Top1 Accuracy obtained on the SemiFGVC benchmarks. We report

the results on the considered fine-grained semi-supervised benchmarks when training

with or without unseen classes in the unsupervised set. *: as reported by [139, 140].

The difference to the baseline is highlighted in green.

Dataset Model U Top1 Acc

SemiCUB

FixMatch [140]* Uin 53.20

SimMatch Uin 84.53± 0.45

w/ SemiGPC Uin 85.43± 0.67(+0.90)

SemiAves

FixMatch [140]* Uin 57.40± 0.80

SimMatch Uin 68.47± 0.43

w/ SemiGPC Uin 69.59± 0.09(+1.12)

SemiFungi

FixMatch [140]* Uin 56.30± 0.50

SimMatch Uin 68.01± 0.19

w/ SemiGPC Uin 71.50± 0.49(+3.49)

Semi-iNat

FixMatch [139]* Uin 44.10

SimMatch Uin 64.95± 0.11

w/ SemiGPC Uin 66.54± 0.85(+1.59)

SemiCUB

FixMatch [140]* Uin ∪ Uout 52.8

SimMatch Uin ∪ Uout 82.60

w/ SemiGPC Uin ∪ Uout 84.20(+1.60)

SemiAves

FixMatch [140]* Uin ∪ Uout 49.7

SimMatch Uin ∪ Uout 63.32

w/ SemiGPC Uin ∪ Uout 65.03(+1.71)

SemiFungi

FixMatch [140]* Uin ∪ Uout 51.20

SimMatch Uin ∪ Uout 62.98

w/ SemiGPC Uin ∪ Uout 65.57(+2.59)

Semi-iNat

FixMatch [139]* Uin ∪ Uout 38.5

SimMatch Uin ∪ Uout 60.90

w/ SemiGPC Uin ∪ Uout 61.28(+0.38)

Unseen Classes. The considered fine-grained semi-supervised benchmarks contain

two separate unlabeled sets Uin and Uout with seen and unseen classes respectively.

We reported the semi-supervised performance of models training using U = Uout ∪Uin
as the unlabeled set in Table 5.5. Note that the risk of confirmation bias is higher in

this setting compared to the setting where U = Uin. In particular, a model can learn

to assign confident predictions to unlabeled samples from unseen classes, since the

labeled set does not contain any samples to disprove such predictions. This effect is

reflected by the lower accuracy values for all models. However, SemiGPC consistently

84 Chapter 5

outperforms both the baseline and the numbers reported in the literature [139, 140].

Indeed, since the buffer used in SemiGPC only contains samples from the seen classes,

SemiGPC limits the impact of the wrong predictions for the unseen classes on the rest

of the training.

These results show that SemiGPC is not only more robust w.r.t. class imbalance

on artificially skewed benchmarks such as CIFAR10/100-LT but is also better suited

for naturally imbalanced datasets containing fine-grained classes where it establishes

a new state of the art.

5.4.3 Standard CIFAR10/CIFAR100

Table 5.6: Top1 Accuracy obtained on CIFAR10 and CIFAR100. We evaluate

the semi-supervised performance for different numbers of labeled samples. ∗ : reported

by [150, 151].

Dataset Model nlb Top1 Acc

CIFAR100 USB [150]* 200 79.15

CIFAR100 SimMatch 200 79.18

CIFAR100 w/ SemiGPC 200 80.01(+0.83)

CIFAR100 USB [150]* 400 83.20

CIFAR100 SimMatch 400 83.25

CIFAR100 w/ SemiGPC 400 83.87(+0.62)

CIFAR10 FreeMatch [151]* 40 95.10

CIFAR10 SimMatch 40 97.32

CIFAR10 w/ SemiGPC 40 97.14(−0.18)

CIFAR10 FreeMatch [151]* 250 95.12

CIFAR10 SimMatch 250 97.21

CIFAR10 w/ SemiGPC 250 97.39(−0.18)

Lastly, we evaluate our SemiGPC method on different splits of CIFAR100 and

CIFAR10. We report the performance obtained in Table 5.6 when using 200/400 and

40/250 labeled samples for CIFAR100 and CIFAR10, respectively. For reference, we

include the numbers reported by USB [150] and FreeMatch [151] as the current state

of the art. We observe that SemiGPC improves performance for different amounts of

available labeled samples on CIFAR100, with the biggest improvement +0.83% in the

low data regime. However, SemiGPC is simply on par with the baseline on CIFAR10.

We argue that the semi-supervised performance is already saturated on this benchmark

when using the USB training recipe.

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 85

Table 5.7: Impact the chosen semi-supervised method. We compare the Top1

Accuracy on SemiAves when using different Semi-supervised algorithms.

Model Dataset Top1 Acc

FreeMatch SemiAves 66.97

w/ SemiGPC SemiAves 67.93(+0.96)

FixMatch SemiAves 67.36

w/ SemiGPC SemiAves 68.31(+0.95)

ReMixMatch SemiAves 67.9

w/ SemiGPC SemiAves 68.31(+0.41)

SimMatch SemiAves 68.45

w/ SemiGPC SemiAves 69.30(+0.85)

5.5 Ablations

In order to establish the general purpose nature of SemiGPC, throughout this section,

we highlight the impact of SemiGPC on top of different underlying algorithms and/or

pre-training strategies. We also provide empirical results regarding the importance of

class rebalancing and why we forgo the use of CReST in our main experiments.

5.5.1 Semi-Supervised Learning Algorithms

The design of SemiGPC is agnostic to the underlying choice of the semi-supervised

algorithms. We evaluate the impact of our proposed GP-based classifier on different

Semi-Supervised methods including FixMatch [133], ReMixMatch [14], SimMatch [167]

and FreeMatch [151] on the SemiAves benchmark. The obtained results are reported

in Table 5.7. Despite FreeMatch [151] being designed to better deal with class im-

balance, we observe that SimMatch [167] outperforms it when using the USB [150]

training recipe. This justifies why we use SimMatch as our baseline throughout this

work. SemiGPC not only improves performance across all considered methods, but its

performance also improves monotonically with respect to the performance of the base

method. This allows SemiGPC to remain relevant w.r.t. future better semi-supervised

algorithms.

5.5.2 Pre-training Strategy

As stated in Section 5.3.1, we used a pre-trained ViT [32] to initialize our semi-

supervised models. We evaluate the impact of SemiGPC across different pre-training

strategies by training SimMatch on the SemiAves benchmark using supervised pre-

training, Dino [20] and MSN [6] pre-training on ImageNet [26]. Both Dino [20] and

86 Chapter 5

Table 5.8: Pretraining strategy. Comparison of the Top1 Accuracy on SemiAves

when using different pre-training strategies.

Model Pretraining Top1 Acc

SimMatch DINO 64

w/ SemiGPC DINO 65.32(+1.32)

SimMatch MSN 64.7

w/ SemiGPC MSN 67.73(+3.03)

SimMatch Supervised 68.45

w/ SemiGPC Supervised 69.30(+0.85)

MSN [6] are self-supervised methods that produce competitive performance on Ima-

geNet, with MSN being the top performer out of the two. We report the obtained

results in Table 5.8. Not only does the SemiGPC performance scale based on the

performance of the pre-training methods, it also improves performance across all con-

sidered pre-training strategies.

5.5.3 CReST experiments

Table 5.9: Top1 Accuracy when using CReST [153]. We report the performance

of SimMatch and SemiGPC after the second phase of the CReST training.

Dataset γ nlb SimMatch SemiGPC

CIFAR10 50 4196 96.77 96.96

CIFAR10 100 3720 95.27 96.23

CIFAR10 150 3496 94.82 96.05

CIFAR100 20 4741 83.61 83.63

CIFAR100 50 3751 77.25 78.54

CIFAR100 100 3218 72.22 73.64

SemiCUB ∼ 2 1000 83.4 85.7

SemiFungi 10.1 4141 68.02 70.75

Semi-iNat 8.5 13771 66.53 68.77

We explore the effect of combining SemiGPC with CReST [153], a semi-supervised

technique designed for imbalanced classification. In CReST, the semi-supervised train-

ing consists of two phases. In the first phase, the model is trained normally, e.g. using

SimMatch. Then, the labeled set is updated to include pseudo-labeled unlabeled sam-

ples such that each class 1 ≤ i ≤ C is sampled at a rate of

βi =
(N(C + 1− i)

N1

)α
(5.29)

Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning 87

where α, N1 and Nj are the tuning scaler and the number of labeled samples for the

majority and j-th classes respectively. The model is then re-trained during the second

phase using the updated labeled set, which is designed to be more balanced. We did

not observe any improvement when using CReST with the USB [150] training scheme

for almost all settings. In Table 5.9, we observe that SemiGPC+CReST consistently

outperforms SimMatch+CReST. We argue that SemiGPC is better at handling the la-

bel noise introduced in the second phase of the training thanks to its normalized buffer

aggregation. Indeed, noisy labels can only contribute to the SemiGPC predictions if

they are corroborated by the other samples in the buffer.

5.5.4 Class Imbalance

We compare our SemiGPC using a class-balanced memory buffer to the SimMatch

baseline trained using a class-balanced labeled set obtained by weighted re-sampling

on CIFAR100-LT with γl = γu = 100. We report the obtained results in Table 5.10.

Table 5.10: Comparison of class balancing strategies. We compare different

balancing strategies on CIFAR100-LT with γl = γu = 100. † : using a balanced

memory buffer.

Labeled Set Top1 Acc

SimMatch imbalanced 74.00

SimMatch balanced using resampling 74.51

w/ SemiGPC † imbalanced 75.36

The model using SemiGPC performs best. When using weight resampling, some

majority class samples are randomly discarded in favor of over-sampled minority class

samples, which in turn affects the training dynamics. Instead, balancing the memory

buffer used by SemiGPC can be done independently of the sampler used during train-

ing. Furthermore, the noise term +σ2I in Equation (5.9) allows SemiGPC to handle

the presence of near duplicates in the memory buffer, which are otherwise a source of

potential overfitting.

5.6 Discussions

Our method SemiGPC is able to achieve state-of-the-art results across different bench-

marks and settings thanks to its ability to counteract imbalances in the data distribu-

tion. However, SemiGPC still has a few limitations. We observe in Tables 3 and 5 that

SemiGPC shows mixed results when used on top of an already strong baseline (¿ 94%

accuracy) such as on CIFAR10. Also, although our update rule greatly speeds up the

matrix inversion, it does not fully eliminate the additional computational overhead.

88 Chapter 5

Furthermore, the quadratic scaling of the memory cost of this matrix limits the max-

imum buffer size in SemiGPC to around NQ = 16K. However, this limitation can be

addressed using an ensemble of GPs, each using a separate buffer. This would allow

us to scale SemiGPC to NQ ∼ 80K. Furthermore, our update rule is not compatible

with using trainable kernel hyperparameters since it relies on reusing previous values of

the kernel matrix. Leveraging matrix-vector-matrix solvers [147] fixes both these lim-

itations. Indeed, by enabling efficient GP inference with trainable hyperparameters,

SemiGPC would forgo sharing the kernel hyperparameters across classes and adapt

the geometry induced by the kernel function on a per-class basis. We leave deriving

an online update rule using matrix-vector-matrix solvers for future work. Lastly, com-

bining SemiGPC with alternative definitions of confidence to Equation (5.5) by either

using the sample-wise posterior covariance provided by GP or by leveraging recent

advances in efficient Neural Tangent Kernel (NTK) computation [106, 168] remains

an open area of research.

Chapter 6

Generative Adversarial Learning

via Kernel Density

Discrimination

This chapter is under a perpetual, non-exclusive license to distribute granted

to arxiv.org https://arxiv.org/licenses/nonexclusive-distrib/1.0/

license.html.

We introduce Kernel Density Discrimination GAN (KDD GAN), a novel method

for generative adversarial learning. KDD GAN formulates the training as a likeli-

hood ratio optimization problem where the data distributions are written explicitly

via (local) Kernel Density Estimates (KDE). This is inspired by recent progress in

contrastive learning and its relation to KDE. In our approach, features are no longer

optimized for linear separability, as in the original GAN formulation, but for the more

general discrimination of distributions in the feature space. Moreover, we formally

prove that KDD GAN is guaranteed to converge to the real data distribution. We also

analyze the gradient of our loss with respect to the feature representation and show

that it is better behaved than that of the original hinge loss. We perform experiments

with the proposed KDE-based loss, used either as a training loss or as a regularization

term, on both CIFAR10 and scaled versions of ImageNet. We use BigGAN/SA-GAN

as a backbone and baseline, since our focus is not to design the architecture of the

networks. We show a boost in the quality of the generated samples with respect to

FID from 10% to 40% compared to the baseline.

Generative learning finds applications in many computer vision applications such

as image translation [56, 169, 34, 112], image processing [78, 74], image restoration

[144, 110, 163], text-to-image mapping [122, 160, 81, 119] and, more generally, defining

image priors in image-based optimization problems [144, 95]. Generative models based

89

https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html

90 Chapter 6

real
fake

(a) Initial state

real
fake

(b) Hinge loss

real
fake

(c) KDD loss

Figure 6.1: Illustration of the difference between the hinge loss and KDD

loss during the generator update. The blue and orange point clouds represent the

discriminator features of the real and fake samples. The initial positions of the samples

are shown in Fig. 6.1a. The green line in all three sub-figures represents the decision

boundary associated with the optimal linear classifier separating the two distributions

at the initial state. Fig. 6.1b and Fig. 6.1c show the updated positions of the fake

samples using the Hinge loss and KDD loss respectively. The generator update via

the KDD loss leads to a more detailed overlap.

on adversarial learning have been widely successful thanks to several breakthroughs

in the design of the generator and discriminator architectures [17, 161, 63], of the

loss functions [4, 62, 159] and regularization methods [94, 99, 162, 62]. However, the

training of generative models is not straightforward and can still be prone to mode

collapse [134, 158, 87] or the inability to capture long-range statistics in the data,

leading to visible artifacts [161, 86].

One key assumption in the basic formulation of adversarial learning of [44] is that

the generator network should compete with an optimal discriminator, that is, a classi-

fier that can separate real from generated data if any of their statistics does not match.

Thus, the general wisdom is that the more powerful the discriminator is, the better

the generator trains. Given that training models with contrastive losses yields better

performance than training with cross-entropy losses [67], and that contrastive learning

can be seen as introducing Kernel Density Estimate (KDE) approximations of the

data distribution [148], we propose to train the discriminator and generator models

through a KDE approximation of the likelihood ratio loss. Moreover, this approach

ensures that the loss defines a valid statistical divergence between the real and gener-

ated data distributions at all times. In contrast, the loss used to train state-of-the-art

generative adversarial networks corresponds to a known statistical divergence between

distributions of real and fake data only when at the saddle point of the Min-Max game.

Kernel Density Discrimination GAN 91

Our analysis shows that the gradients of the proposed loss are better behaved than

those of the hinge loss (defined, for example, by [98]). We propose a KDE defined

directly in feature space, so that non-invertible features are allowed. Our method in-

cludes a much broader set of discriminator solutions than in the binary classification

task of the original GAN formulation. In fact, in the KDE approach, the features are

no longer optimized for linear separability, but for the more general discrimination of

distributions in the feature space. This can be seen clearly in Fig. 6.1 for 2D point

clouds. We call our method Kernel Density Discrimination GAN (KDD GAN).

Contributions :

• A theoretical proof that KDD GAN converges to the unique equilibrium point,

where the distribution of generated samples matches that of real data;

• KDD GAN outperforms BigGAN [17] (which we use as a backbone) on CIFAR10

[73] and Tiny ImageNet [76] by more than 10% in the FID and IS metrics;

• The proposed KDD loss is flexible and when combined with other methods as

a regularizer improves the training in terms of FID and IS on CIFAR10, Tiny

ImageNet, and ImageNet 64 × 64, which has images scaled to 64 × 64 pixels

(derived from [26]);

• The implementation of KDD GAN is on par with conventional hinge loss training

[98] in terms of the computational load and the memory footprint.

6.1 Related works

In Section 2.5 we introduce Generative Adversarial Networks as well as other relevant

works in generative modeling literature. Of particular interest for our work is Instance

Selection [29] that allows us to train GANs more efficiently.

Similar to our KDD GAN, other kernel-based GANs have been previously pro-

posed. [131] explore the idea of using a nonparametric estimate of the Jensen-Shanon

Divergence and use KDEs for the purpose of training GANs. This idea is very similar

to the one explored in this work. The main differences are that Kernel GAN [131]

computes its KDEs in the image space and for a simpler selection of datasets; it also

requires an additional autoencoding constraint and computing the KDEs in the fea-

ture space for more complex datasets. Alternatively, MMD-GAN [82] and its variants

such as Wang et al. [149] explore the idea of matching the two distributions at hand by

optimizing the Maximum Mean Discrepancy defined by the chosen kernel. Although

the improved MMD introduced in [149] bares a few similarities to our work in terms of

having both attractive and repulsive loss terms, the two frameworks are fundamentally

92 Chapter 6

different. Our KDD-GAN aims at matching the two distributions in the feature space

defined by the discriminator, while MMD-GAN and its variants aim at minimizing the

maximum mean discrepancy in the RKHS defined by the kernel choice.

6.2 Kernel Density Discrimination

Let Sr = {x(1)r , . . . , x
(m)
r } be a dataset of m image samples x

(i)
r ∈ Rd, which we call

real data. They are the instances of a probability density function (pdf) pr, which

we call the real data pdf. We aim to build a generative model that maps zero-mean

Gaussian samples to images and such that they also follow the real data distribution.

To distinguish real from generated samples, we denote the dataset of generated data

by Sg, a generated image sample by xg, and the generated data pdf by pg.

We build our generative model through adversarial learning as in the pioneering

work of [44], and thus work with a discriminator network D and a generator net-

work G. Then, generative adversarial learning can be cast as the following bilevel

optimization problem

min
G
LG(D∗, G) (6.1)

s.t. D∗ = arg min
D
LD(D,G), (6.2)

where the optimization in G and D is implemented as the optimization with respect

to the parameters of the neural networks implementing them. In the case of hinge loss

optimization (see e.g. , [98]), the losses in Equation (6.1) are defined as

LHinge
D (D,G) =

1

|Sg|
∑

xg∈Sg

max {0, 1 + D(xg)}

+
1

|Sr|
∑

xr∈Sr

max {0, 1−D(xr)} (6.3)

LHinge
G (D∗, G) =

1

|Sg|
∑

xg∈Sg

−D∗(xg), (6.4)

which rely on the assumption that the discriminator takes the form of

D∗(x) = log pr(x)− log pg(x). (6.5)

In our approach, we would rather explicitly approximate the form log pr(x)
pg(x)

. The

main advantage of having this form is that it is a well-defined divergence between

distributions. Thus, it defines a valid gradient for the generator at all times, up to the

errors resulting from the chosen approximation.

We propose approximating pr(x) and pg(x) in the definition of D∗(x) with Kernel

Density Estimates (KDE). The kernels are defined in feature space, and the feature

Kernel Density Discrimination GAN 93

mappings are estimated during training. A simple way to ensure that at the conver-

gence of the bi-level optimization (i.e. , when the minima have been reached) the real

and fake pdfs match, is to require the invertibility of the feature mappings. Invertibil-

ity is the same requirement of Normalizing Flows (e.g. [71]) and thus one would have

to follow similar restrictions in the neural architectures used to compute the features.

However, training invertible neural networks is not easy and, as we argue here below,

also not necessary. To simplify the training of the generative model, we instead pro-

pose to use KDEs in the feature space ϕ : Rd → RK defined by the last layer of the

discriminator , and to allow the feature mapping to be non-invertible. Thus, we aim

to match the push-forward measures ϕ∗pr and ϕ∗pg, which we denote by p̂ϕr and p̂ϕg ,

respectively.

We write the losses for KDD GAN explicitly as

LKDD
D (ϕ,G) =

1

|Sg|
∑

xg∈Sg

max

{
0, 1 + log

p̂ϕr (xg)

p̂ϕg (xg)

}

+
1

|Sr|
∑

xr∈Sr

max

{
0, 1− log

p̂ϕr (xr)

p̂ϕg (xr)

}
(6.6)

LKDD
G (ϕ∗, G) =

1

|Sg|
∑

xg∈Sg

− log
p̂ϕ

∗
r (xg)

p̂ϕ
∗

g (xg)
, (6.7)

by approximating the push-forward measures of the pdfs pr and pg via the following

KDEs in feature space

p̂ϕr (ξ) =
1

|Sr|
∑

xr∈Sr

Kτ (ϕ(xr), ξ), (6.8)

p̂ϕg (ξ) =
1

|Sg|
∑

xg∈Sg

Kτ (ϕ(xg), ξ) (6.9)

where

Kτ (ϕ(x), ξ) =
1

Z
e

⟨ϕ(x),ξ⟩
τ (6.10)

is a positive kernel that integrates to 1 in ξ, τ > 0 is a temperature parameter that

relates to the spread of each kernel, |S| is the cardinality of S, and Z is the normaliza-

tion constant (this becomes irrelevant as it cancels out in the ratios in LD(ϕ,G) and

LG(ϕ∗, G)). The features ϕ(x) are L2-normalized through the projection on the unit

hypersphere, i.e. |ϕ(x)|2 = 1. Essentially, we assume that the features are samples of a

mixture of von Mises-Fisher (vMF) distributions, where all concentration parameters

are equal to 1/τ .

As mentioned above, the convergence of KDD GAN does not need the invertibility

of the feature mapping ϕ. We show this result formally in Theorem 1 and address the

invertibility in Lemma 1.

94 Chapter 6

Lemma 1. Let pr and pg be two distributions over Rd. Given a positive integer K,

we have pr = pg ⇔ ∀ ϕ : Rd → RK , p̂ϕr = p̂ϕg .

Proof of Lemma 1. pr = pg ⇒ ∀ϕ : Rd → RK , p̂ϕr = p̂ϕg is trivial since {ϕ(x), x ∼ pr}
and {ϕ(x), x ∼ pg} are the same set when pr = pg.

Assume pr ̸= pg. Then, there exists an optimal binary classifier c, whose accuracy is

above chance level, i.e. , P ({c(x) = 1, x ∼ pr}) > 1
2 . We can define a mapping ϕ(x) :=

c(x)1K where 1K is the vector of ones in RK . In this case, we obtain Ex∼pr [ϕ(x)T1K] =

Ex∼pr [c(x)]K > K
2 and Ex∼pg [ϕ(x)T1K] = Ex∼pg [c(x)]K < K

2 . This implies that the

first moments of p̂ϕr and p̂ϕg are different, thus p̂ϕr ̸= p̂ϕg . Therefore, by contradiction,

∀ ϕ : Rd → RK , p̂ϕr = p̂ϕg ⇒ pr = pg .

Theorem 1. pg = pr is the unique equilibrium point for KDD GAN.

Proof of Theorem 1. Let us assume that there exists an equilibrium point (ϕ,G) such

that pr ̸= pg. Then we have two cases: p̂ϕr = p̂ϕg or p̂ϕr ̸= p̂ϕg . Assume p̂ϕr = p̂ϕg . Then,

according to Lemma 1, there exists a φ such that p̂φr ̸= p̂φg ; i.e. , ϕ is not an equilibrium

point of LKDD
D . Now, let us instead assume that p̂ϕr ̸= p̂ϕg , then G is not an equilibrium

point of LKDD
G .

6.2.1 Improving KDE through Data Augmentation

The KDEs in Equation (6.9) are mixtures of von Mises-Fisher distributions centered

around a set of anchor points. In the KDE approximation, we cannot use the entire

dataset Sr as anchor points, because it would be too computationally demanding.

Instead, at each iteration of the training procedure, we sample a subset (a minibatch)

and use this as anchor points. A fundamental requirement of the KDE approximation

is that these sets should be representative of the true distributions pr or pg. However,

KDE approximations are in general very poor with high-dimensional data, as they

require a very large number of anchor points. This is because only the kernels that

correspond to anchor points that are “similar” to the input sample dominate in the

KDE. However, the likelihood of finding these anchor points through uniform sampling

becomes extremely small as we grow in the dimensionality of the data.

One way around this problem is to enrich the set of anchors using data augmenta-

tions. Provided that the chosen data augmentation does not produce samples outside

the manifold of natural images, this allows us to obtain anchor points that are close

enough to give a meaningful KDE.

For similar reasons, we use a leave one out KDE, where we remove the anchor point

from the set Sr or Sg on which the KDE is evaluated. This avoids a bias towards the

unlikely case where we sample exactly a point in the anchor point set. We experi-

mentally show that these KDE implementation details are indeed quite important in

boosting the effectiveness of the proposed approach.

Kernel Density Discrimination GAN 95

6.2.2 Loss Analysis

We analyze the impact of the proposed loss on the generator training and compare

it to the case of the standard hinge loss discriminator of [98]. For simplicity, let us

consider a discriminator for the standard loss that can be written as the inner product

DSTN(x) = ϕ(x)⊤θ, for some θ vector (this is updated only when we optimize with

respect to the discriminator). In the case of our KDD loss we instead use simply

DKDE(x) = ϕ(x). Suppose that the discriminator is now given and we minimize the

loss LG with respect to the generator G. In the case of a first-order optimization

method, we obtain the updates for the generator parameters through the gradients of

LG,

∂LG
∂G

=
∂LG
∂ϕ

∂ϕ

∂G
. (6.11)

Since in both the standard hinge loss and our loss the term ∂ϕ
∂G is the same, we can

reduce the analysis to the study of ∂LG
∂ϕ . We obtain:

∂LSTN
G

∂ϕ
= θ (6.12)

and
∂LKDD

G

∂ϕ
=

1

|Sg|
∑

xg∈Sg

∂ log p̂ϕg (xg)

∂ϕ
− log p̂ϕr (xg)

∂ϕ
. (6.13)

The formulas above show that in the case of the hinge loss the gradient update results

in a constant shift, i.e. an identical shift for all samples, whereas our KDD loss increases

(resp. decreases) the likelihood of xg under p̂ϕg (resp. p̂ϕr). An illustration of this effect

in 2D is shown in Fig. 6.1.

We also compare our KDD loss to the MMD loss proposed by [149]. Without loss

of generality, for a given sample x ∼ p1 we compare each term Ey∼p2 [k(x, y)] in their

work with its counterpart in ours log(Ey∼p2 [k(x, y)]), where p1, p2 ∈ {pr, pg} and k is

a kernel function. For the vMF kernel, we obtain

KDD:
∑
y

k(x, y)∑
v k(x, v)

ϕ(y), (6.14)

MMD:
∑
y

k(x, y)ϕ(y). (6.15)

In both cases, the gradient is a weighted average of the samples ϕ(y). The key

difference is that the Improved MMD loss has a local weighting, i.e. it only depends

on the current y, and the KDD loss has a global weighting.

96 Chapter 6

Empirical Analysis of the KDD Loss In Figure 6.1, we illustrate the difference

between the Hinge and KDD losses already described in Section 3. We consider two

point clouds in 2D representing the real and fake push-forward distributions. In this

example, the real point cloud is designed to have two Gaussian modes, while the fake

one starts off with one uniformly sampled square mode. We first find the optimal

linear classifier that separates the two point clouds through gradient descent. The

corresponding decision boundary is represented by the green line in Figure 6.1. We

then optimize the features of the fake samples with respect to the Hinge loss and the

KDD loss. In this example, we forgo feature normalization as its main purpose is to

prevent the Discriminator from converging to degenerate solutions where the space

collapses. Thus, for visualization purposes, we work with 2D features. In the setting,

the vMF kernel is equivalent to a Gaussian kernel with σ = 1 for the KDE, i.e. ,

K(ϕ, ξ) ∝ exp− |ϕ−ξ|2
2 .

The minimization of the Hinge loss simply results in translating the fake point

cloud without changing its internal structure as shown in Figure 6.1b. In contrast, the

KDD loss encourages the fake samples to head towards the closest real mode as shown

in Figure 6.1c. For both losses, the optimization was performed using SGD [16] for 200

iterations with a learning rate of 10. 1000 samples were used for both real and fake

point clouds. Note that for a frozen Discriminator, updating the Generator using the

Hinge loss can result in overshooting the real point cloud, since the translation vector

is constant for all subsequent Generator updates. In fact, the optimum is to translate

the fake point cloud to infinity. This makes the Generator update with respect to

the Hinge loss less well behaved than its KDD counterpart since the latter does not

introduce such instability.

6.2.3 Class-Conditioning Extension

We also consider training generative models subject to class conditioning. Let us

denote by y(i) the label corresponding to the real image x
(i)
r . Now, we are interested

in the approximation of the quantity log pr(x,y)
pg(x,y)

, which we can rewrite as

log
pr(y|x)pr(x)

pg(y|x)pg(x)
= log

pr(y|x)

pg(y|x)
+ log

pr(x)

pg(x)
. (6.16)

The second term is exactly what we used in LD(ϕ,G) and LG(ϕ∗, G). Thus, we can

focus on the conditional term log pr(y|x)
pg(y|x) . By following [98], we assume the linear form

log
pr(y|x)

pg(y|x)
= y⊤V D(x), (6.17)

where V is a (learned) matrix that defines the embedding for the label y.

Kernel Density Discrimination GAN 97

6.2.4 Regularization of the Feature Mapping

If ϕ maps many samples to the same feature, the discrimination task would become

less effective. To avoid this scenario, we encourage φ, the feature mapping before the

normalization layer, to be as “responsive” as possible to variations around samples of

pr and pg by introducing the following additional Jacobian regularization term

LJac =
1

|Sr|
∑

x∈Sr
⋃

Sg

∆x∼U(Sd−1)

∣∣∣∣ |φ(x + δ∆x)− φ(x)|2
δ

− 1

∣∣∣∣
1

(6.18)

where δ > 0 is a small scalar and ∆x is a random unitary direction in image space.

φ is defined so that ϕ = φ/|φ|2. This regularization term computes a finite-difference

approximation of the gradient of φ with respect to its input and projects it along

the random direction ∆x. It preserves as much as possible the volume in the feature

space, but only for the data in the image distribution. In addition, this regularization

term prevents the magnification of the output gradient, which is typically associated

with high confidence, and would make the discriminator more susceptible to adversarial

inputs. This is a stronger constraint compared to the classic gradient penalty [46], since

we implicitly require orthonormality for all rows of the Jacobian, i.e. , ∇φ(x)∇φ(x)⊤ =

Id.

6.2.5 KDD GAN Formulation

Finally, we can put all the terms together and define the generator and discriminator

losses via

LG/D = γLKDD
G/D + αLHinge

G/D + λ∇LJac, (6.19)

where γ, α and λ∇ live in R+×{0, 1}× {0, 1e-5}, and where KDD and Hinge refer to

our KDD loss and the classic hinge loss used in BigGAN for both the generator and

discriminator. Training with the lone hinge loss uses α = 1, γ = 0; the training with

the lone KDD loss uses α = 0, γ = 1; the setting where α = 1, γ > 0 is called Joint

training.

6.3 Implementation

Training Details. We evaluate our models on three different datasets: CIFAR10

[73], Tiny ImageNet and ImageNet 64 × 64. The Tiny ImageNet [76] dataset is a

subset of the ILSVRC-2012 ImageNet classification dataset [26] consisting of 200 object

classes and 500 training images, 50 validation images and 50 test images per class.

Unless otherwise specified, we use τ = 1, δ = 1e-3, and λ∇ = 1e-5. Experiments

using data augmentations and the Jacobian regularization are denoted with +DA

98 Chapter 6

and +JacD respectively. All training was run on at most two 2080Ti or one 3090Ti

GPUs. Using KDD-GAN results in around 10% longer training times.

Architectures. The architecture used for our CIFAR10 experiments is the same1

used in the original BigGAN work by [17]. For both Tiny ImageNet and ImageNet

64 × 64, we use the modified SA-GAN [161] architecture adopted by [29] 2. We do

not use instance selection on CIFAR10 and Tiny ImageNet, as we noticed it hurts

performance on smaller datasets. For Instance Selection on ImageNet 64×64, we use a

retention ratio of 50%. We choose to train BigGAN/SA-GAN rather than StyleGAN2-

ADA for their simpler training scheme and their lesser reliance on regularization terms

and implementation tricks. This allows us to isolate the contribution of our KDD loss

without requiring a hyperparameter search for the rest of the moving pieces of the

training.

Evaluation Metrics. Throughout this paper, we evaluate our generative mod-

els using Fréchet Inception Distance (FID) [50], Inception Score (IS) [124], Density

and Coverage [101]. These metrics are computed using the original tensorflow imple-

mentation. As in [29], the real moments used for the FID are computed using the

entire dataset and not the filtered one. For FID and IS we use 50k generated samples,

for Density and Coverage, we use 10k samples for both distributions and 5 nearest

neighbors. Unless specified otherwise, the reported numbers are calculated after 100

k iterations for both CIFAR10 and Tiny ImageNet and after 500k iterations for Im-

ageNet 64 × 64. The batch size used is 64 for Tiny ImageNet and CIFAR10 and 128

for ImageNet 64 × 64. The FID moments are computed on the training set for all

datasets. We report the performance of the best model obtained during training.

Differentiable Augmentations. We use differentiable random brightness, satu-

ration, contrast, translation, and cut-out data augmentations proposed by [164]. For

all our experiments, the loss is computed only on the nonaugmented images. The aug-

mented samples are only used for the Kernel Density Estimation. This is an important

distinction from the work by [164].

6.4 Experiments

In this section, we show the quantitative results obtained in CIFAR10, Tiny ImageNet,

and ImageNet 64×64. The best and second best values per metric are highlighted and

1https://github.com/ajbrock/BigGAN-PyTorch/
2https://github.com/uoguelph-mlrg/instance_selection_for_gans/

https://github.com/ajbrock/BigGAN-PyTorch/
https://github.com/uoguelph-mlrg/instance_selection_for_gans/

Kernel Density Discrimination GAN 99

Figure 6.2: Sample images generated using KDD GAN on ImageNet 64× 64.

These sample images were generated using the Joint†model trained on ImageNet 64×
64.

underlined, respectively. Generated samples from one of our best models are shown in

Figure 6.2. Further qualitative results can be found in the Supplementary Material.

6.4.1 Ablation Results

In Table 6.1, we perform various ablations by training BigGAN [17] on CIFAR10 for

200k iterations each. The three main loss functions used are: the hinge loss [98], the

KDD loss, and the joint loss. We study the effects of the parameters associated with

the new losses. The first set of experiments studies the effect of the temperature τ

used in the KDD loss. We observe that both high and low values of τ are problematic.

When comparing τ = 0.05 to τ = 5.00, we observe a trade-off between Image Fidelity

(FID) and Diversity (IS). The value of τ determines the level of blurriness of the KDE.

Additionally, we explore the effect of the Jacobian regularization. We use a coefficient

of λ∇ = 1e-5. Our KDD GAN using τ = 1 with and without Jacobian regularization

outperforms its BigGAN counterpart in both FID and IS. The performance gap is

bigger when adding Jacobian regularization.

The second set of experiments examines the effect of γ during the joint training. We

observe that all joint models improve on the baseline in terms of IS. This improvement

correlates positively with γ, except for γ = 10 where the IS stagnates. The best joint

model (γ = 1) also outperforms the baseline in terms of FID. This highlights the benefit

of using the KDD loss as a regularization term. Lastly, we train our models without

the class projection head proposed by [98] and/or without a conditional input for the

generator. All models obtained with γ > 0 in the third block in Table 6.1 outperform

the BigGAN baseline in the unconditional setting. This proves that training is not

driven solely by the class projection term in the conditional setting. The difference

in performance between unconditional KDD model and one that only is missing the

projection head can be attributed to the slightly higher number of parameters that

100 Chapter 6

Table 6.1: KDD GAN Ablations on CIFAR10. Comparison of the various Big-

GANs trained on CIFAR10 for different values of τ and γ. UnCond refers to the

unconditional setting, while NoProj refers to removing the class-projection loss term

in ProjGAN [98].

Experiments τ γ FID ↓ IS ↑ D ↑ C ↑
Hinge - - 8.751 8.835 0.966 0.851

KDD 0.05 - 8.753 9.233 0.876 0.832

KDD 1.00 - 8.422 9.155 0.868 0.849

KDD 5.00 - 8.604 8.852 0.970 0.862

KDD + JacD 1.00 - 7.237 9.029 0.932 0.867

Joint 1.00 0.1 9.144 8.767 0.969 0.857

Joint 1.00 0.5 8.795 8.920 0.922 0.855

Joint 1.00 1.0 7.932 9.046 0.968 0.868

Joint 1.00 10.0 8.352 9.102 0.930 0.857

KDD + NoProj 0.05 - 13.668 8.274 0.722 0.711

Hinge (Uncond) - - 17.782 8.120 0.692 0.686

KDD (Uncond) 0.05 - 15.828 8.326 0.620 0.650

Joint (Uncond) 0.05 1.0 14.394 8.532 0.662 0.712

the latter has since it is still using the class label as input to the generator.

We additionally examine the impact of the kernel choice and the dimension of the

features on the KDD-GAN. The results are shown in Table 6.2. We compare the vMF

kernel, which is equivalent to the RBF kernel due to the normalization used, with the

IQ kernel [149]. We observe a similar performance level in CIFAR-10 for both kernel

choices. Regarding K, we compare our default setting on CIFAR-10 (K = 128) to

K = 64 and K = 256. Although increasing K slightly improves the IS, the best model

overall remains the default one. We can conclude from both experiments that our

KDD loss is not too sensitive to the choice of the kernel and dimension of the features

Table 6.2: KDD GAN kernel and dimensionality choice. We evaluate the impact

of Kernel Choice and Feature Dimension on KDD GAN

Kernel Feature Dimension FID IS

vMF K = 128 8.384 8.887

IQ K = 128 8.375 8.901

vMF K = 64 8.842 8.885

vMF K = 128 8.375 8.901

vMF K = 256 9.050 9.058

Kernel Density Discrimination GAN 101

Table 6.3: Experimental results on CIFAR10. The values shown below are ob-

tained after 100k iterations. We show the benefit of adding various augmentation

factors for the KDD setting. We also explore the effect of the Jacobian regularization.
⋆ are numbers reported by [62].

Experiments FID ↓ IS ↑ D ↑ C ↑
ContraGAN⋆ 8.065 9.729 - -

ContraGAN + DiffAug⋆ 7.193 9.996 - -

BigGAN + DiffAug⋆ 7.157 9.775 - -

BigGAN + CR⋆ 7.178 10.380 - -

Hinge loss 8.859 8.814 0.917 0.841

KDD 8.375 8.901 0.875 0.845

KDD + DA 7.089 9.250 0.893 0.860

KDD + DA ×3 6.063 9.280 0.951 0.892

KDD + DA ×7 5.713 9.389 0.968 0.899

KDD + JacD 7.944 8.959 0.895 0.847

KDD + JacD + DA×7 6.713 9.333 0.9000 0.875

as opposed to reported observations for models such as MMD-GAN [131].

6.4.2 Generative Learning on CIFAR10

In Table 6.3, we compare the performance of different variations of our KDD GAN

with a BigGAN baseline and the numbers reported by [62] for a selection of their

best models. The KDD GAN outperforms the BigGAN baseline for IS and FID. Also,

it drastically improves its FID when using augmentations as described in Sec. 6.2.1.

Augmentation × N means that an additional N × batchsize augmented images are

used for the KDE anchor points. We observe that on CIFAR10, the number of aug-

mentations is positively correlated with a significant improvement of the FID. In the

case of the Jacobian regularization, the results are mixed. It seems to improve the per-

formance of the KDD model, but it also negatively impacts performance when used in

combination with data augmentation. The Jacobian regularization may be too strict

a requirement, as the dimension K of the gradient of ϕ is smaller than the dimension

d of the images, and perhaps a more flexible loss term could work better.

6.4.3 Generative Learning on ImageNet

Tiny ImageNet. Table 6.4 shows the performance of our models on Tiny Ima-

geNet compared to the SA-GAN baseline and the best models reported by [62]. The

KDD GAN outperforms the baseline for all settings. On the one hand, similarly to CI-

102 Chapter 6

Table 6.4: Experimental results on Tiny ImageNet. We compare the baseline to

both the KDD and joint trainings. We also explore the effect of adding the Jacobian

regularization on D and show the effect of using more augmentations for the density

estimation. ⋆ are numbers reported by [62].

Experiments γ FID ↓ IS ↑ D ↑ C ↑
ContraGAN⋆ - 27.027 13.494 - -

+ DiffAugment⋆ - 15.755 17.303 - -

Hinge loss - 29.525 11.048 0.520 0.516

KDD - 24.022 13.204 0.658 0.613

KDD+DA - 20.204 14.100 0.673 0.663

KDD+DA ×3 - 18.261 14.943 0.716 0.683

KDD+JacD - 25.504 13.215 0.597 0.595

KDD+JacD+DA - 20.717 13.787 0.630 0.645

Joint 1 25.709 13.124 0.595 0.582

Joint+DA 1 22.854 13.421 0.591 0.613

Joint+JacD 1 26.369 13.169 0.582 0.582

Joint+JacD+DA 1 21.512 13.728 0.639 0.627

Joint 0.5 24.341 13.337 0.626 0.614

Joint+DA 0.5 23.357 12.918 0.619 0.621

Joint+JacD 0.5 23.854 13.251 0.651 0.617

Joint+JacD+DA 0.5 23.928 13.059 0.575 0.594

FAR10, using additional augmented images for the KDE results in a significant boost

in performance. Indeed the KDD GAN with DA ×3 outperforms ContraGAN in terms

of FID and IS. On the other hand, the additional Jacobian regularization is not helpful.

The only exception being the joint training (γ = 0.5) without data augmentation and

the joint training with γ = 1 and data augmentation where Jacobian regularization

introduces a slight performance boost. Note that the ContraGAN+Diff.Aug. numbers

reported by [62] were obtained using twice as many iterations as the rest of the models

(ContraGAN and our experiments), putting it at an advantage.

ImageNet 64× 64. Table 6.5 shows our experimental results on ImageNet 64×64.

We compare our models to the SA-GAN baseline and the numbers reported by [29] and

[166]. For all our trained models, we use Instance Selection [29] with a retention ratio

of 50%. We observe that the baseline outperforms our KDD GAN even with additional

augmentations and regularization. It is also worth noting that, in this setting, although

a small amount of data augmentation seems to help, adding more is not necessarily

beneficial. The high level of diversity in ImageNet both in terms of the number of

Kernel Density Discrimination GAN 103

Table 6.5: Experimental results on ImageNet 64 × 64. We explore the use of

augmentation, Jacobian regularization and Joint training. † refers to a setting where

the feature ϕ(xr) were computed using the weights from the previous discriminator

update step. ⋆ are numbers reported by [29].

Experiments γ FID ↓ IS ↑ D ↑ C ↑
SA-GAN+IS@50%⋆ - 9.63 31.04 1.07 0.88

FQ-BigGAN⋆ - 9.67 25.96 - -

Hinge loss - 10.452 32.869 1.034 0.877

KDD - 12.570 31.404 0.953 0.850

KDD+DA - 12.367 31.069 0.954 0.861

KDD+DA ×3 - 14.680 27.949 0.928 0.810

KDD+JacD - 12.651 31.188 0.938 0.850

KDD+JacD+DA - 79.790 10.603 0.376 0.139

Joint 1 11.387 32.471 0.991 0.872

Joint+DA 1 10.385 33.753 1.048 0.880

Joint+JacD 1 10.320 34.296 1.010 0.868

Joint+JacD+DA 1 9.702 34.619 1.062 0.892

Joint 0.5 10.544 33.447 1.017 0.879

Joint † 0.5 9.450 35.648 1.070 0.897

Joint+DA 0.5 10.111 33.494 1.048 0.891

Joint+JacD 0.5 10.242 35.120 1.072 0.891

Joint+JacD+DA 0.5 10.010 34.074 1.053 0.889

classes and samples might limit the effectiveness of our density estimation given the

relatively small batch size used. However, all joint training models outperform the

hinge-based models in terms of IS and most outperform our SA-GAN baseline in

terms of FID. Interestingly, the best model is the Joint† model where p̂r is estimated

using features computed during the last discriminator step. This suggests that using

a memory bank for the features might be a promising extension of this work.

6.5 Examples of Generated Images

We show non-cherry picked images generated by our Hinge loss baseline and our best

model per dataset in Figures 6.3 to 6.9. The truncation trick was not used [17]. In

all figures, each row represents a different class starting with the first class in the top

row down to the last class in the bottom row.

104 Chapter 6

(a) Hinge loss (b) KDD + Aug ×7

Figure 6.3: Qualitative results on CIFAR10. Samples generated using the Hinge

loss model and the KDD + Aug ×7 model trained on CIFAR10 (one class per row).

6.6 Limitations and Future Work

One of the main challenges in the use of KDD GAN is to ensure that the anchor points

for the KDE are representative of the evaluation points. In our experiments between

Tiny ImageNet and ImageNet 64×64, we observe that the performance of KDD GAN

is sensitive to the size of the set anchor points, the number of augmentations, and

the complexity of the dataset seems to also play a role. Also, with large datasets,

the impact of samples at the tails of the distribution on the KDE approximation is

unclear. In general, it might be necessary to design better sampling strategies for the

anchor points used for the KDE estimation: Some options are to use a memory bank

or to sample using k-NN. Another direction to evaluate is the role of class projection

in the training. We chose to separate the category aspect from the unlabeled problem

not only because it would make KDD GAN suitable for unsupervised learning, but

also because it would not require large minibatches since the current KDE completely

ignores the class labels. It would be interesting to evaluate the performance in the case

where the loss with class labels is entirely based on KDE. Finally, as mentioned in the

introduction, KDD GAN can be combined with other techniques and regularization

methods that are known to improve the performance of the GAN training, such as

Consistency Regularization of [162] and Differentiable Augmentation of [164]. We

leave these investigations to future work.

Kernel Density Discrimination GAN 105

Figure 6.4: Qualitative results on Tiny ImageNet for classes 181-200 using

the Hinge loss. Samples generated using the Hinge loss model trained on Tiny

ImageNet for classes 181-200 (one class per row).

106 Chapter 6

Figure 6.5: Qualitative results on Tiny ImageNet using the KDD loss. Sam-

ples generated using the KDD+Aug×3 model trained on Tiny ImageNet for the classes

181-200 (one class per row).

Kernel Density Discrimination GAN 107

Figure 6.6: Qualitative results on ImageNet64 × 64 using the Hinge loss.

Samples generated using Hinge loss model trained on ImageNet 64× 64 for the classes

141-160 (one class per row).

108 Chapter 6

Figure 6.7: Qualitative results on ImageNet64 × 64 using the Hinge loss.

Samples generated using Hinge loss model trained on ImageNet 64× 64 for the classes

501-520 (one class per row).

Kernel Density Discrimination GAN 109

Figure 6.8: Qualitative results on ImageNet64× 64 using the KDD loss. Sam-

ples generated using Joint† model trained on ImageNet 64× 64 for the classes 141-160

(one class per row).

110 Chapter 6

Figure 6.9: Qualitative results on ImageNet64× 64 using the KDD loss. Sam-

ples generated using Joint† model trained on ImageNet 64× 64 for the classes 501-520

(one class per row).

Chapter 7

Conclusions

This thesis studies the problem of building more robust and generalizable machine

learning in multiple settings. In Chapter 3, we introduce Phase Swap, a biologically

inspired self-supervised learning task for physiological time series. By training the

model to detect correspondence between the phase and amplitude information of a

given signal, we obtain features that learn to focus on the structured parts of the

signal and ignore the noisier ones. Such features are shown to generalize better to

new subjects across different medical time-series classification tasks even when only a

limited number of training subjects is available. In Chapter 4, we combine the Phase

Swap features and meta-learning into a training algorithm S2MAML that explicitly

emphasizes generalization. On top of generalizing better to new subjects, S2MAML

is able to significantly outperform the standard meta-learning baseline in terms of

zero-shot generalization to completely new datasets with electrodes and demographic

properties different from those used for training. We also introduce SemiGPC in

Chapter 5, a semi-supervised label refinement method tailored for imbalanced image

classification. By leveraging a more efficient Gaussian Processes inference logic, we

build a classifier head whose confidence maps are locally sensitive to minority class

samples while preserving the global data distribution structure. This significantly

increases the semi-supervised performance of the considered models across a broad

range of challenging imbalanced semi-supervised benchmarks. Lastly, in Chapter 6,

we define a novel GAN loss based on kernel density discrimination (KDD GAN) as a

statistical divergence between the kernel density estimates of the real and fake data

distribution in the feature space of the discriminator. Unlike standard GAN losses

whose statistical divergence interpretation depends on the optimality of the discrim-

inator, our KDD loss is valid for any discriminator. This results in better training

gradients that encourage the generator to seek missing distribution modes.

As shown throughout this thesis, model robustness can take different meaning,

ranging from overcoming the risk of capturing spurious correlations in noisy setting

111

112 Chapter 7

by learning to identify general purpose patterns that are useful for both unseen subjects

and cohorts, handling class imbalances and other forms of data biases when training

with limited annotations, to addressing mode collapse in generative training. The gen-

eralization and robustness problem is not an artifact of low-data regimes and persists

as the amount of available data scales up. Indeed, collecting more data is rarely a

bias-free process and often introduces more distribution shifts and imbalances while

increasing the complexity of the learning problem. Therefore, as highlighted in this

thesis, tackling the generalization problem requires a careful design of the adopted

training schemes and models. Beyond the content of this thesis, we identify in the

following some extensions and future works based on our contributions.

Extending Phase Swap to spatial-temporal case. On top the temporal aspect

that motivated the design of our Phase Swap task, the brain activity is also known to

exhibit a strong spatial component, where different regions of the brain communicate

using different waves and global patterns. One could extend the Phase Swap task to

this setting by adopting a spatiotemporal Fourrier transform. The features obtained

would be able to capture both local and global brain activity patterns.

Multi-task meta-learning. In Chapter 4, S2MAML is only trained on the sleep

scoring task. However, the design of the various meta-learning mini-batches is com-

pletely modular and could allow for mixing different EEG-based tasks. This way, one

could boost the performance on tasks with more limited data, such as seizure detec-

tion, thanks to the potential feature cross-over from other tasks with more abundant

data, such as sleep scoring.

Incorporating the GP uncertainty estimate into the semi-supervised train-

ing. In addition to the mean function that we used to derive our SemiGPC method,

Gaussian Processes also provide a covariance estimate to quantify their uncertainty.

Provided we can preventing trivial solutions such as variance shrinkage, semi-supervised

training could benefit from a more principled uncertainty/confidence estimate.

Sliced and Mixture of Experts versions of KDD GAN. In Chapter 6, our

KDD loss defines a statistical divergence in feature space. Unlike the input space, the

choice of the feature space is not unique. Indeed, there exist as many feature spaces as

possible discriminator parameter configurations. Therefore, an analog version of our

KDD loss could be designed to the sliced Wasserstein distance [27] where the feature

space is randomly selected per minibatch or adopt a mixture of experts (MoE) [7]

approach with multiple feature spaces.

Bibliography

[1] 2018 fgvcx fungi classification challenge. https://github.com/visipedia/

fgvcx_fungi_comp. 79

[2] inaturalist 2018 competition dataset. https://github.com/visipedia/inat_

comp/tree/master/2018, 2018. 79

[3] Yasunori Aoki, Masahiro Hata, Masao Iwase, Ryouhei Ishii, Roberto D Pascual-

Marqui, Takufumi Yanagisawa, Haruhiko Kishima, and Manabu Ikeda. Cortical

electrical activity changes in healthy aging using eeg-eloreta analysis. Neuroim-

age: Reports, 2(4):100143, 2022. 29

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning, pages

214–223. PMLR, 2017. 39, 90

[5] Devansh Arpit, Stanis law Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel

Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville,

Yoshua Bengio, et al. A closer look at memorization in deep networks. In

International conference on machine learning, pages 233–242. PMLR, 2017. 20

[6] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bor-

des, Pascal Vincent, Armand Joulin, Mike Rabbat, and Nicolas Ballas. Masked

siamese networks for label-efficient learning. In Computer Vision – ECCV 2022,

pages 456–473. Springer, 2022. 69, 71, 85, 86

[7] Tara Baldacchino, Elizabeth J Cross, Keith Worden, and Jennifer Rowson. Vari-

ational bayesian mixture of experts models and sensitivity analysis for nonlin-

ear dynamical systems. Mechanical Systems and Signal Processing, 66:178–200,

2016. 112

[8] Nannapas Banluesombatkul, Pichayoot Ouppaphan, Pitshaporn Leelaar-

porn, Payongkit Lakhan, Busarakum Chaitusaney, Nattapong Jaimchariya,

Ekapol Chuangsuwanich, Wei Chen, Huy Phan, Nat Dilokthanakul, et al.

113

https://github.com/visipedia/fgvcx_fungi_comp
https://github.com/visipedia/fgvcx_fungi_comp
https://github.com/visipedia/inat_comp/tree/master/2018
https://github.com/visipedia/inat_comp/tree/master/2018

114 Chapter 7

Metasleeplearner: A pilot study on fast adaptation of bio-signals-based sleep

stage classifier to new individual subject using meta-learning. IEEE Journal of

Biomedical and Health Informatics, 2020. 29, 56, 57

[9] Hubert Banville, Graeme Moffat, Isabela Albuquerque, Denis-Alexander Enge-

mann, Aapo Hyvärinen, and Alexandre Gramfort. Self-supervised representation

learning from electroencephalography signals. In 2019 IEEE 29th International

Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE,

2019. 30, 49

[10] Hubert Banville, Omar Chehab, Aapo Hyvärinen, Denis-Alexander Engemann,

and Alexandre Gramfort. Uncovering the structure of clinical eeg signals with

self-supervised learning. Journal of Neural Engineering, 18(4):046020, 2021. 60

[11] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A

geometric framework for learning from labeled and unlabeled examples. Journal

of machine learning research, 7(11), 2006. 36

[12] D. Bernstein. Matrix Mathematics. Princeton University Press, 2005. 76

[13] Richard B Berry, Rita Brooks, Charlene E Gamaldo, Susan M Harding, C Mar-

cus, Bradley V Vaughn, et al. The aasm manual for the scoring of sleep and

associated events. Rules, Terminology and Technical Specifications, Darien, Illi-

nois, American Academy of Sleep Medicine, 176:2012, 2012. 26, 27, 29

[14] David Berthelot, Nicholas Carlini, Ekin Dogus Cubuk, Alexey Kurakin, Kihyuk

Sohn, Han Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with

distribution matching and augmentation anchoring. In International Conference

on Learning Representations, 2020. 37, 69, 71, 72, 73, 85

[15] Alceu Bissoto, Eduardo Valle, and Sandra Avila. Gan-based data augmenta-

tion and anonymization for skin-lesion analysis: A critical review. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, pages 1847–1856, June 2021. 22

[16] Léon Bottou. Online algorithms and stochastic approximations. Online learning

and neural networks, 1998. 96

[17] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for

high fidelity natural image synthesis. In International Conference on Learning

Representations, 2018. 39, 90, 91, 98, 99, 103

[18] Niko A Busch, Julien Dubois, and Rufin VanRullen. The phase of ongoing eeg

oscillations predicts visual perception. Journal of Neuroscience, 29(24):7869–

7876, 2009. 42, 43

Bibliography 115

[19] Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas

Terzis, and Florian Tramer. The privacy onion effect: Memorization is relative.

Advances in Neural Information Processing Systems, 35:13263–13276, 2022. 20

[20] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr

Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision

transformers. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9650–9660, 2021. 20, 31, 32, 34, 69, 71, 85

[21] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. In International

conference on machine learning, pages 1597–1607. PMLR, 2020. 20, 31, 32, 39

[22] Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses.

arXiv preprint arXiv:2011.02803, 2020. 31

[23] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V.

Le. Autoaugment: Learning augmentation strategies from data. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 113–123, 2019. 19, 37

[24] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment:

Practical automated data augmentation with a reduced search space. In Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition

workshops, pages 702–703, 2020. 19

[25] Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guil-

laume Lajoie, and Pierre-Luc Bacon. Continuous-time meta-learning with for-

ward mode differentiation. In International Conference on Learning Represen-

tations, 2022. 35

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009. 34, 78, 85, 91, 97

[27] Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling

using the sliced wasserstein distance. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3483–3491, 2018. 112

[28] Terrance DeVries and Graham W. Taylor. Improved regularization of convolu-

tional neural networks with cutout. In arXiv preprint arXiv:1708.04552, 2017.

37

116 Chapter 7

[29] Terrance DeVries, Michal Drozdzal, and Graham W Taylor. In-

stance selection for gans. In H. Larochelle, M. Ranzato, R. Had-

sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-

tion Processing Systems, volume 33, pages 13285–13296. Curran Asso-

ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

99f6a934a7cf277f2eaece8e3ce619b2-Paper.pdf. 39, 91, 98, 102, 103

[30] Fadi Dornaika, Jingjun Bi, and Chongsheng Zhang. A unified deep semi-

supervised graph learning scheme based on nodes re-weighting and manifold

regularization. Neural Networks, 158:188–196, 2023. 36

[31] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,

Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.

Flownet: Learning optical flow with convolutional networks. In Proceedings of

the IEEE international conference on computer vision, pages 2758–2766, 2015.

22

[32] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth

16x16 words: Transformers for image recognition at scale. In ICLR, 2021. 85

[33] Valeria Drago, Debora Aricò, Kenneth Heilman, Paul Foster, John Williamson,

Pasquale Montagna, and Raffaele Ferri. The correlation between sleep and cre-

ativity. Nature Precedings, pages 1–1, 2010. 29

[34] Aysegul Dundar, Karan Sapra, Guilin Liu, Andrew Tao, and Bryan Catanzaro.

Panoptic-based image synthesis. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 8070–8079, 2020. 89

[35] Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin

Ghahramani, and Nicolas Durrande. Deep neural networks as point estimates

for deep gaussian processes. In NeurIPS, 2021. 71

[36] Yue Fan, Dengxin Dai, Anna Kukleva, and Bernt Schiele. Cossl: Co-learning of

representation and classifier for imbalanced semi-supervised learning. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 14574–14584, 2022. 80, 81, 82

[37] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling

to trillion parameter models with simple and efficient sparsity. The Journal of

Machine Learning Research, 23(1):5232–5270, 2022. 17

https://proceedings.neurips.cc/paper/2020/file/99f6a934a7cf277f2eaece8e3ce619b2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/99f6a934a7cf277f2eaece8e3ce619b2-Paper.pdf

Bibliography 117

[38] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In International Conference on Machine

Learning, pages 1126–1135. PMLR, 2017. 34, 35, 57, 60

[39] Luigi Fiorillo, Paolo Favaro, and Francesca Dalia Faraci. Deepsleepnet-lite: A

simplified automatic sleep stage scoring model with uncertainty estimates. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 29:2076–2085,

2021. 30, 56, 57, 61, 62

[40] Robert S Fisher, Helen E Scharfman, and Marco DeCurtis. How can we identify

ictal and interictal abnormal activity? In Issues in Clinical Epileptology: A

View from the Bench, page 7. Springer, 2014. 47

[41] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In International Conference on

Machine Learning, pages 1050–1059, 2016. 71

[42] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Fe-

lix A Wichmann, and Wieland Brendel. Imagenet-trained CNNs are biased

towards texture; increasing shape bias improves accuracy and robustness. In

International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=Bygh9j09KX. 20

[43] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Pla-

men Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang

Peng, and H Eugene Stanley. Physiobank, physiotoolkit, and physionet: com-

ponents of a new research resource for complex physiologic signals. circulation,

101(23):e215–e220, 2000. 45

[44] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial networks. arXiv preprint arXiv:1406.2661, 2014. 22, 38, 90, 92

[45] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv

preprint arXiv:1410.5401, 2014. 34

[46] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. Improved training of wasserstein gans. In Proceedings of the

31st International Conference on Neural Information Processing Systems, pages

5769–5779, 2017. 97

[47] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In Proceedings of the

https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX

118 Chapter 7

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020. 32

[48] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross

Girshick. Masked autoencoders are scalable vision learners. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 16000–16009, June 2022. 33

[49] Conor Heneghan. St. vincent’s university hospital/university college dublin sleep

apnea database, 2011. 58

[50] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. In Proceedings of the 31st International Conference on

Neural Information Processing Systems, pages 6629–6640, 2017. 38, 98

[51] Jie Hong, Pengfei Fang, Weihao Li, Tong Zhang, Christian Simon, Mehrtash

Harandi, and Lars Petersson. Reinforced attention for few-shot learning and

beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 913–923, 2021. 35

[52] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989. 17

[53] Sheng-Wei Huang, Che-Tsung Lin, Shu-Ping Chen, Yen-Yi Wu, Po-Hao Hsu,

and Shang-Hong Lai. Auggan: Cross domain adaptation with gan-based data

augmentation. In Proceedings of the European Conference on Computer Vision

(ECCV), September 2018. 22, 38

[54] Ahmed Imtiaz Humayun, Asif Shahriyar Sushmit, Taufiq Hasan, and Mo-

hammed Imamul Hassan Bhuiyan. End-to-end sleep staging with raw single

channel eeg using deep residual convnets. In 2019 IEEE EMBS International

Conference on Biomedical & Health Informatics (BHI), pages 1–5. IEEE, 2019.

30, 52

[55] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

International Conference on International Conference on Machine Learning -

Volume 37, ICML’15, page 448–456. JMLR.org, 2015. 44

[56] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1125–1134, 2017.

89

Bibliography 119

[57] Junji Ito, Andrey R Nikolaev, and Cees Van Leeuwen. Spatial and temporal

structure of phase synchronization of spontaneous alpha eeg activity. Biological

cybernetics, 92(1):54–60, 2005. 50

[58] Alice F Jackson and Donald J Bolger. The neurophysiological bases of eeg and

eeg measurement: A review for the rest of us. Psychophysiology, 51(11):1061–

1071, 2014. 25, 29

[59] Behrouz Jafari and Vahid Mohsenin. Polysomnography. Clinics in chest

medicine, 31(2):287–297, 2010. 25

[60] Jongheon Jeong and Jinwoo Shin. Training GANs with stronger augmentations

via contrastive discriminator. In International Conference on Learning Repre-

sentations, 2021. URL https://openreview.net/forum?id=eo6U4CAwVmg. 39

[61] Joakim Johnander, Johan Edstedt, Michael Felsberg, Fahad Shahbaz Khan,

and Martin Danelljan. Dense gaussian processes for few-shot segmentation. In

ECCV, 2022. 71

[62] Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional

image generation. In NeurIPS 2020. Neural Information Processing Systems,

2020. 39, 90, 101, 102

[63] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4401–4410, 2019. 38, 90

[64] Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and

Josefien JL Oberye. Analysis of a sleep-dependent neuronal feedback loop: the

slow-wave microcontinuity of the eeg. IEEE Transactions on Biomedical Engi-

neering, 47(9):1185–1194, 2000. 45, 46

[65] Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and

Josefien JL Oberye. Analysis of a sleep-dependent neuronal feedback loop: the

slow-wave microcontinuity of the eeg. IEEE Transactions on Biomedical Engi-

neering, 47(9):1185–1194, 2000. 56, 57

[66] Sirvan Khalighi, Teresa Sousa, José Moutinho Santos, and Urbano Nunes. Isruc-

sleep: a comprehensive public dataset for sleep researchers. Computer methods

and programs in biomedicine, 124:180–192, 2016. 45, 46, 48, 58

[67] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong

Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Su-

pervised contrastive learning. In H. Larochelle, M. Ranzato, R. Had-

https://openreview.net/forum?id=eo6U4CAwVmg

120 Chapter 7

sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-

tion Processing Systems, volume 33, pages 18661–18673. Curran Asso-

ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf. 90

[68] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015. 46

[69] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In ICLR (Poster), 2015. 62

[70] Jens G Klinzing, Niels Niethard, and Jan Born. Mechanisms of systems memory

consolidation during sleep. Nature neuroscience, 22(10):1598–1610, 2019. 29

[71] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normalizing flows: An

introduction and review of current methods. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2020. 93

[72] Nikos Komodakis and Spyros Gidaris. Unsupervised representation learning by

predicting image rotations. In International conference on learning representa-

tions (ICLR), 2018. 33

[73] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009. 91, 97

[74] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and

Jǐŕı Matas. Deblurgan: Blind motion deblurring using conditional adversarial

networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 8183–8192, 2018. 89

[75] Neil Lawrence and Michael Jordan. Semi-supervised learning via gaussian pro-

cesses. Advances in Neural Information Processing Systems, 17, 2004. 71

[76] Ya Le and X. Yang. Tiny imagenet visual recognition challenge. 2015. URL

https://github.com/seshuad/IMagenet. 91, 97

[77] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representa-

tion learning: A framework and review. IEEE Access, 2020. 31

[78] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-

ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, et al. Photo-realistic single image super-resolution using a generative

https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://github.com/seshuad/IMagenet

Bibliography 121

adversarial network. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4681–4690, 2017. 89

[79] Jongseok Lee, Jianxiang Feng, Matthias Humt, Marcus Gerhard Müller, and

Rudolph Triebel. Trust your robots! predictive uncertainty estimation of neural

networks with sparse gaussian processes. In CoRL, 2022. 71

[80] Abdelhak Lemkhenter and Paolo Favaro. Boosting generalization in bio-signal

classification by learning the phase-amplitude coupling. In DAGM German Con-

ference on Pattern Recognition, pages 72–85. Springer, 2020. 56

[81] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS Torr. Manigan:

Text-guided image manipulation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7880–7889, 2020. 89

[82] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás

Póczos. Mmd gan: towards deeper understanding of moment matching net-

work. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, pages 2200–2210, 2017. 91

[83] Denghao Li, Pablo Ortega, Xiaoxi Wei, and Aldo Faisal. Model-agnostic meta-

learning for eeg motor imagery decoding in brain-computer-interfacing. In

2021 10th International IEEE/EMBS Conference on Neural Engineering (NER),

pages 527–530. IEEE, 2021. 57

[84] Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch: Semi-supervised

learning with contrastive graph regularization. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 9475–9484, 2021. 37, 69,

70, 72, 73, 74, 75

[85] Leheng Li, Qing Lian, Luozhou Wang, Ningning Ma, and Ying-Cong Chen.

Lift3d: Synthesize 3d training data by lifting 2d gan to 3d generative radiance

field. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 332–341, June 2023. 38

[86] Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng, Sergey Tulyakov, and Ming-

Hsuan Yang. Infinitygan: Towards infinite-resolution image synthesis. arXiv

preprint arXiv:2104.03963, 2021. 90

[87] Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Di-

vco: Diverse conditional image synthesis via contrastive generative adversarial

network. arXiv preprint arXiv:2103.07893, 2021. 90

122 Chapter 7

[88] Zhao-Yang Liu, Shao-Yuan Li, Songcan Chen, Yao Hu, and Sheng-Jun Huang.

Uncertainty aware graph gaussian process for semi-supervised learning. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

4957–4964, 2020. 71

[89] Maŕıa Eugenia López, Sandra Pusil, Ernesto Pereda, Fernando Maestú, and

Francisco Barceló. Dynamic low frequency eeg phase synchronization patterns

during proactive control of task switching. NeuroImage, 186:70–82, 2019. 42, 43

[90] Guillaume Lorre, Jaonary Rabarisoa, Astrid Orcesi, Samia Ainouz, and

Stephane Canu. Temporal contrastive pretraining for video action recognition. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), March 2020. 33

[91] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In

International Conference on Learning Representations, 2019. 78

[92] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by mlp

neural networks. Neurocomputing, 25(1-3):81–91, 1999. 17

[93] Jaakko Malmivuo, Robert Plonsey, et al. Bioelectromagnetism: principles and

applications of bioelectric and biomagnetic fields. Oxford University Press, USA,

1995. 46

[94] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen

Paul Smolley. Least squares generative adversarial networks. In Proceedings of

the IEEE international conference on computer vision, pages 2794–2802, 2017.

90

[95] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin.

Pulse: Self-supervised photo upsampling via latent space exploration of genera-

tive models. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2437–2445, 2020. 89

[96] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training meth-

ods for gans do actually converge? In International conference on machine

learning, pages 3481–3490. PMLR, 2018. 39

[97] Kana Miyamoto, Hiroki Tanaka, and Satoshi Nakamura. Meta-learning for emo-

tion prediction from eeg while listening to music. In Companion Publication of

the 2021 International Conference on Multimodal Interaction, pages 324–328,

2021. 57

Bibliography 123

[98] Takeru Miyato and Masanori Koyama. cgans with projection discriminator.

arXiv preprint arXiv:1802.05637, 2018. 91, 92, 95, 96, 99, 100

[99] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018. 90

[100] MS Mourtazaev, B Kemp, AH Zwinderman, and HAC Kamphuisen. Age and

gender affect different characteristics of slow waves in the sleep eeg. Sleep, 18

(7):557–564, 1995. 44, 45

[101] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and

Jaejun Yoo. Reliable fidelity and diversity metrics for generative models. In

International Conference on Machine Learning, pages 7176–7185. PMLR, 2020.

98

[102] Amine Näıt-Ali. Advanced biosignal processing. Springer Science & Business

Media, 2009. 41

[103] Benedict Shien Wei Ng, Nikos K Logothetis, and Christoph Kayser. Eeg phase

patterns reflect the selectivity of neural firing. Cerebral Cortex, 23(2):389–398,

2013. 42, 43

[104] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning

algorithms. CoRR. 35

[105] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations

by solving jigsaw puzzles. In European Conference on Computer Vision, pages

69–84. Springer, 2016. 42

[106] Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast finite

width neural tangent kernel. In International Conference on Machine Learning,

pages 17018–17044, 2022. 88

[107] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: training genera-

tive neural samplers using variational divergence minimization. In Proceedings

of the 30th International Conference on Neural Information Processing Systems,

pages 271–279, 2016. 39

[108] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. 32

[109] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,

Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin

124 Chapter 7

El-Nouby, et al. Dinov2: Learning robust visual features without supervision.

arXiv preprint arXiv:2304.07193, 2023. 31, 34

[110] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, and Ping

Luo. Exploiting deep generative prior for versatile image restoration and manip-

ulation. In European Conference on Computer Vision, pages 262–277. Springer,

2020. 89

[111] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th

annual meeting of the Association for Computational Linguistics, pages 311–

318, 2002. 38

[112] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive

learning for unpaired image-to-image translation. In European Conference on

Computer Vision, pages 319–345. Springer, 2020. 89

[113] Mathias Perslev, Sune Darkner, Lykke Kempfner, Miki Nikolic, Poul Jørgen

Jennum, and Christian Igel. U-sleep: resilient high-frequency sleep staging.

NPJ digital medicine, 4(1):1–12, 2021. 29, 30, 65

[114] Huy Phan, Fernando Andreotti, Navin Cooray, Oliver Y Chén, and Maarten

De Vos. Seqsleepnet: end-to-end hierarchical recurrent neural network for

sequence-to-sequence automatic sleep staging. IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 27(3):400–410, 2019. 29, 30, 56

[115] Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Gold-

stein. The intrinsic dimension of images and its impact on learning. In 9th In-

ternational Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021, 2021. 38

[116] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain

generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 12556–12565, 2020. 35

[117] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits

of transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/

20-074.html. 17

[118] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-

learning with implicit gradients. Advances in neural information processing sys-

tems, 32, 2019. 35

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Bibliography 125

[119] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.

arXiv preprint arXiv:2102.12092, 2021. 89

[120] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and Mohi

Khansari. Rl-cyclegan: Reinforcement learning aware simulation-to-real. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2020. 38

[121] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for

Machine Learning, volume 1. Springer, 2006. 74

[122] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,

and Honglak Lee. Generative adversarial text to image synthesis. In Interna-

tional Conference on Machine Learning, pages 1060–1069. PMLR, 2016. 89

[123] Yannick Roy, Hubert Banville, Isabela Albuquerque, Alexandre Gramfort,

Tiago H Falk, and Jocelyn Faubert. Deep learning-based electroencephalogra-

phy analysis: a systematic review. Journal of neural engineering, 16(5):051001,

2019. 30

[124] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Proceedings of the

30th International Conference on Neural Information Processing Systems, pages

2234–2242, 2016. 98

[125] Rick Sauber-Cole and Taghi M Khoshgoftaar. The use of generative adversarial

networks to alleviate class imbalance in tabular data: a survey. Journal of Big

Data, 9(1):98, 2022. 38

[126] Kendrick Shen, Robbie M Jones, Ananya Kumar, Sang Michael Xie, Jeff Z

HaoChen, Tengyu Ma, and Percy Liang. Connect, not collapse: Explaining

contrastive learning for unsupervised domain adaptation. In International Con-

ference on Machine Learning, pages 19847–19878. PMLR, 2022. 32

[127] Ali Hossam Shoeb. Application of machine learning to epileptic seizure onset

detection and treatment. PhD thesis, Massachusetts Institute of Technology,

2009. 45, 46

[128] Revati Shriram, M Sundhararajan, and Nivedita Daimiwal. Eeg based cognitive

workload assessment for maximum efficiency. Int. Organ. Sci. Res. IOSR, 7:

34–38, 2013. 27

126 Chapter 7

[129] Jerome M Siegel. Clues to the functions of mammalian sleep. Nature, 437(7063):

1264–1271, 2005. 56

[130] Vikas Sindhwani, Wei Chu, and S Sathiya Keerthi. Semi-supervised gaussian

process classifiers. In IJCAI, pages 1059–1064, 2007. 71

[131] Mathieu Sinn and Ambrish Rawat. Non-parametric estimation of jensen-shannon

divergence in generative adversarial network training. In International Confer-

ence on Artificial Intelligence and Statistics, pages 642–651. PMLR, 2018. 91,

101

[132] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-

shot learning. Advances in neural information processing systems, 30, 2017. 34

[133] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang,

Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fix-

match: Simplifying semi-supervised learning with consistency and confidence. In

Advances in Neural Information Processing Systems, volume 33, pages 596–608,

2020. 37, 69, 71, 72, 73, 74, 85

[134] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles

Sutton. Veegan: Reducing mode collapse in gans using implicit variational learn-

ing. arXiv preprint arXiv:1705.07761, 2017. 90

[135] Carl E Stafstrom and Lionel Carmant. Seizures and epilepsy: an overview for

neuroscientists. Cold Spring Harbor perspectives in medicine, 5(6):a022426, 2015.

29

[136] Austin Stone, Daniel Maurer, Alper Ayvaci, Anelia Angelova, and Rico Jon-

schkowski. Smurf: Self-teaching multi-frame unsupervised raft with full-image

warping. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 3887–3896, 2021. 22

[137] Jong-Chyi Su and Subhransu Maji. The semi-supervised inaturalist-aves chal-

lenge at fgvc7 workshop. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2021. 79

[138] Jong-Chyi Su and Subhransu Maji. The semi-supervised inaturalist challenge at

the fgvc8 workshop. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2021. 79

[139] Jong-Chyi Su and Subhransu Maji. Semi-supervised learning with taxonomic

labels. In British Machine Vision Conference (BMVC), 2021, 2021. 69, 71, 78,

82, 83, 84

Bibliography 127

[140] Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji. A realistic evaluation of

semi-supervised learning for fine-grained classification. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

12966–12975, 2021. 69, 71, 78, 82, 83, 84

[141] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting

unreasonable effectiveness of data in deep learning era. In Proceedings of the

IEEE international conference on computer vision, pages 843–852, 2017. 17

[142] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical

flow. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part II 16, pages 402–419. Springer, 2020.

22

[143] Mario Giovanni Terzano, Liborio Parrino, Adriano Sherieri, Ronald Chervin,

Sudhansu Chokroverty, Christian Guilleminault, Max Hirshkowitz, Mark Ma-

howald, Harvey Moldofsky, Agostino Rosa, et al. Atlas, rules, and recording

techniques for the scoring of cyclic alternating pattern (cap) in human sleep.

Sleep medicine, 2(6):537–553, 2001. 58

[144] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 9446–9454, 2018. 89

[145] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd

birds-200-2011 dataset. Technical report, California Institute of Technology,

2011. 79

[146] Jianfeng Wang, Thomas Lukasiewicz, Daniela Massiceti, Xiaolin Hu, Vladimir

Pavlovic, and Alexandros Neophytou. Np-match: When neural processes meet

semi-supervised learning. In International Conference on Machine Learning,

pages 22919–22934, 2022. 71

[147] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger,

and Andrew Gordon Wilson. Exact gaussian processes on a million data points.

In Advances in Neural Information Processing Systems, volume 32, 2019. 88

[148] Tongzhou Wang and Phillip Isola. Understanding contrastive representation

learning through alignment and uniformity on the hypersphere. In International

Conference on Machine Learning, pages 9929–9939. PMLR, 2020. 31, 90

[149] Wei Wang, Yuan Sun, and Saman Halgamuge. Improving mmd-gan training with

repulsive loss function. In International Conference on Learning Representations

2019, 2019. 91, 95, 100

128 Chapter 7

[150] Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie

Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li,

Satoshi Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki,

Bernt Schiele, Jindong Wang, Xing Xie, and Yue Zhang. Usb: A unified semi-

supervised learning benchmark for classification. In Thirty-sixth Conference on

Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

78, 80, 82, 84, 85, 87

[151] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong

Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, and

Xing Xie. Freematch: Self-adaptive thresholding for semi-supervised learning.

2023. 37, 69, 71, 72, 84, 85

[152] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from

scratch with deep neural networks: A strong baseline. In 2017 International

joint conference on neural networks (IJCNN), pages 1578–1585. IEEE, 2017. 44,

52

[153] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. Crest: A

class-rebalancing self-training framework for imbalanced semi-supervised learn-

ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 10857–10866, 2021. 11, 80, 86

[154] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learn-

ing and using the arrow of time. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 8052–8060, 2018. 42

[155] Kristine A Wilckens, Fabio Ferrarelli, Matthew P Walker, and Daniel J Buysse.

Slow-wave activity enhancement to improve cognition. Trends in neurosciences,

41(7):470–482, 2018. 28

[156] Katharina Wulff, Silvia Gatti, Joseph G Wettstein, and Russell G Foster. Sleep

and circadian rhythm disruption in psychiatric and neurodegenerative disease.

Nature Reviews Neuroscience, 11(8):589–599, 2010. 56

[157] Greg Yang. Wide feedforward or recurrent neural networks of any architecture

are gaussian processes. In NeurIPS, 2019. 71

[158] Ning Yu, Ke Li, Peng Zhou, Jitendra Malik, Larry Davis, and Mario Fritz.

Inclusive gan: Improving data and minority coverage in generative models. In

European Conference on Computer Vision, pages 377–393. Springer, 2020. 90

Bibliography 129

[159] Ning Yu, Guilin Liu, Aysegul Dundar, Andrew Tao, Bryan Catanzaro, Larry

Davis, and Mario Fritz. Dual contrastive loss and attention for gans. arXiv

preprint arXiv:2103.16748, 2021. 39, 90

[160] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei

Huang, and Dimitris N Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 5907–5915, 2017. 89

[161] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-

attention generative adversarial networks. In International conference on ma-

chine learning, pages 7354–7363. PMLR, 2019. 90, 98

[162] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency

regularization for generative adversarial networks. In International Conference

on Learning Representations, 2019. 39, 90, 104

[163] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization.

In European conference on computer vision, pages 649–666. Springer, 2016. 89

[164] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable

augmentation for data-efficient gan training. Advances in Neural Information

Processing Systems, 33, 2020. 39, 98, 104

[165] Sicheng Zhao, Xiangyu Yue, Shanghang Zhang, Bo Li, Han Zhao, Bichen Wu,

Ravi Krishna, Joseph E Gonzalez, Alberto L Sangiovanni-Vincentelli, Sanjit A

Seshia, et al. A review of single-source deep unsupervised visual domain adap-

tation. IEEE Transactions on Neural Networks and Learning Systems, 33(2):

473–493, 2020. 38

[166] Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and Changyou Chen. Feature

quantization improves gan training. In International Conference on Machine

Learning, pages 11376–11386. PMLR, 2020. 102

[167] Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu.

Simmatch: Semi-supervised learning with similarity matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

14471–14481, 2022. 37, 69, 70, 71, 72, 73, 74, 85

[168] Yufan Zhou and Zhenyi Wang. Meta-learning with neural tangent kernels. In

The International Conference on Learning Representations (ICLR), 2021. 88

[169] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. In Proceedings

130 Chapter 7

of the IEEE international conference on computer vision, pages 2223–2232, 2017.

89

	Abstract
	Acknowledgments
	Introduction
	Neural Networks as Universal Approximators
	Cases of Overfitting
	Learning Spurious Correlation
	Learning under Label Noise
	Learning Domain Specific Features
	Memorization in Deep Neural Networks

	Learning to Generalize
	Learning to Ignore Noise
	Learning to Generalize
	Learning to Propagate Labels
	Learning to Generate Additional Data

	Thesis Contributions
	Thesis Outline

	Background
	Polysomnography
	PSG Recordings
	Sleep Scoring
	Domain Shifts
	Deep Learning for Bio-signals.
	Automatic Sleep Scoring

	Self-Supervised Learning
	Overview
	Learning to be invariant
	Learning to solve pseudo-tasks
	Self-Supervised Learning as a Scalable learning paradigm

	Meta-Learning
	Problem Formulation
	Gradient-based Meta-Learning
	Applications of Meta-Learning

	Semi-Supervised Learning
	Problem Formulation
	Graph-based Semi-Superived Learning
	Self-training

	Generative Adversarial Networks
	Overview
	Applications
	Limitations

	Boosting Generalization in Bio-signal Classification by Learning the Phase-Amplitude Coupling
	Related Work
	Learning to Detect the Phase-Amplitude Coupling
	Experiments
	Data Sets
	Training Procedures and Models
	Evaluation Procedures
	Generalization on the Sleep Cassette Data Set
	Generalization on the ISRUC-Sleep Data Set
	Comparison to the Relative Positioning Task
	Results on the Sleep Telemetry and CHB-MIT Data Sets
	Impact of the Window Size
	Frozen vs Fine-tuned Encoder
	Architecture

	Discussions

	Towards Sleep Scoring Generalization Through Self-Supervised Meta-Learning
	Related Works
	Methods
	Datasets
	Data Preprocessing
	Data Split
	Notation
	Self-Supervised MAML (S2MAML)
	PhaseSwap
	Architecture Choice
	Baselines and Training Hyper-parameters
	Evaluation Metrics

	Results
	Generalization to Novel Databases: 3 vs 5
	Generalization in a Data Abundant Setting: All vs All
	Disparity Between Datasets: One vs All
	Effect of in

	Discussions

	Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning
	Related Works
	SemiGPC
	Consistency-based Semi-Supervised Learning
	Gaussian Processes-based Label Refinement
	Efficient GP update

	Experimental Settings
	Implementation details
	Datasets

	Experimental Results
	Imbalanced Semi-Supervised Learning
	Semi-Supervised FGVC Benchmarks
	Standard CIFAR10/CIFAR100

	Ablations
	Semi-Supervised Learning Algorithms
	Pre-training Strategy
	CReST experiments
	Class Imbalance

	Discussions

	Generative Adversarial Learning via Kernel Density Discrimination
	Related works
	Kernel Density Discrimination
	Improving KDE through Data Augmentation
	Loss Analysis
	Class-Conditioning Extension
	Regularization of the Feature Mapping
	KDD GAN Formulation

	Implementation
	Experiments
	Ablation Results
	Generative Learning on CIFAR10
	Generative Learning on ImageNet

	Examples of Generated Images
	Limitations and Future Work

	Conclusions

