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Chapter 1

Introduction

1.1 The Jupiter System

1.1.1 The Jovian environment

Jupiter, by far the largest planet of the Solar System, formed around 4.5 billion years ago
out of the proto-nebula. This gas giant has been confirmed to be orbited by more than 95
moons [Sheppard et al., 2023]. These moons are classified in three groups: the inner moons,
the Galilean moons, and the multitude of irregular moons (which are divided into prograde
and retrograde satellites). The four Galilean moons (lo, Europa, Ganymede and Callisto)
were discovered in 1610 by Galileo Galilei. They formed from the Jovian circumplanetary
disk [e.g., Sasaki et al., 2010], and are located within the magnetosphere of Jupiter, which is
the largest structure within the Solar System, starting at 75 Jupiter radii (R; = 71492 km)
in the direction of the Sun, and stretching beyond the orbit of Saturn.

Jupiter’s magnetic field, about 20 times stronger than the Earth’s magnetic field, is gen-
erated from the rapid rotation of Jupiter, with a period of 9h 55 min, and its conduc-
tive metallic hydrogen outer mantle acting as a massive dynamo. The harshest region of
Jupiter’s strong radiation belts extends slightly beyond Europa’s orbit (< 10R;), thus
including also the orbit of Io. Because of the large difference between the rotation rate
of Jupiter’s magnetosphere, and the much slower revolution period of Io (40h 28 min),
approximately one ton per second of ions is swept from the atmosphere of Io and is accel-
erated because of the magnetosphere. This creates a large plasma torus (IPT), the diameter
of which is equivalent to Jupiter’s diameter. A less important process also affects Europa,
creating a cold gas torus along Europa’s orbit. On the other hand, Ganymede and Callisto
are located in the middle of the magnetosphere (10R;—40R ), and are subjected to a less
radiative environment, but still protected from the solar winds.

The first probe exploring the Jupiter system was Pioneer 10 in 1973, followed by Pio-
neer 11 in 1974 [Fimmel et al., 1977|, witnessing for the first time the unexpected intensity
of the radiation environment. The analysis of the flyby of each probe allowed for a first re-
finement of the mass of the Jovian system. A few years later, the Voyager program allowed
for Voyager 1 and 2 [Morrison and Samz, 1980] flybys Jupiter once each in 1979, discov-
ering Jupiter’s rings [Smith et al., 1979] and the volcanic activity on To. Ulysses [Bame

1



1. Introduction

et al., 1992] followed several years later and performed two flybys of Jupiter in 1992 and
2004, leading to a better characterisation of the magnetosphere of Jupiter. The Sun was,
however, the main focus of this mission, and Jupiter allowed the probe to go into a polar
orbit around its much larger target.

The Galileo mission [Russell, 2012] was the first mission to insert a probe into orbit around
Jupiter in 1995. It enabled ground breaking discoveries despite its limitations (only the
S-band antenna was operative), including the first strong evidence of subsurface oceans
below the icy surfaces of the outer Galilean moons. In the meantime, in its course toward
Saturn, the Cassini-Huygens [Russell, 2005] probe flew by Jupiter in 2000, and several years
later, in 2007, the New Horizons mission [Stern, 2009] passed by the Jovian system. More
recently, the Juno mission [Bolton et al., 2010] was inserted into orbit around Jupiter in
2016 and dedicated most of its investigation to Jupiter. However, after a mission extension,
Juno had the opportunity to fly by the three inner Galilean moons [Hansen et al., 2022].

1.1.2 The Galilean moons

Surface features, geological activity and subsurface ocean

The Voyager and Galileo missions revealed a young, bright and deformed surface at Eu-
ropa. High-resolution images from the Galileo’s imager (see Fig. 1.1, left) showed that the
surface is criss-crossed by lineae, dark cracks and ridges, separated by smooth bands, with
only a few large craters [Greeley et al., 2004]. This surface appears to be renewed through
recent or geologic activity [Howell and Pappalardo, 2020]. On the contrary, Callisto has an
ancient surface covered with craters (see Fig. 1.1, right), it does not appear to have been
modified by internal processes [Greeley et al., 2000], and is thus considered as a record
keeper of the formation and evolution of the Jovian satellites.

Figure 1.1: Europa (left), Ganymede (center) and Callisto (right) surfaces from the Solid-
State Imaging of Galileo orbiter (Credit: NASA/JPL/DLR).

lo, Europa and Ganymede are trapped in a 4:2:1 mean motion resonance, called “Laplace



1.1 The Jupiter System

resonance”, leading to a continuous dissipation of tidal energy, resulting in a source of
internal heating [e.g., Peale and Lee, 2002]. Water plumes emerging from the surface of
Europa have been identified using images from the Hubble Space Telescope [Roth et al.,
2014, Sparks et al., 2017] and in Galileo magnetometer and plasma wave data [Jia et al.,
2018]. Although the origin of these plumes is unclear [Roberts et al., 2023], they suggest
that Europa is geologically active, and they indicate the potential for additional shallow
liquid water reservoirs beneath Europa’s icy surface [Howell and Pappalardo, 2020]. On
the other hand, tidal heating contributes insignificant heat to Callisto.

The detection of induced magnetic fields within the icy Galilean moons from Galileo mag-
netometer data remains the strongest observational evidence of subsurface oceans as they
can be explained by the presence of an electrically conducting fluid layer (i.e., a salty ocean)
beneath the surface [Khurana et al., 1998, Kivelson et al., 2000]. The evidence for an ocean
beneath the surface of Callisto is not as strong as the evidence for oceans in Ganymede
and Europa. Indeed, the observed magnetic field signal may also be explained by induction
within a highly conductive Callisto ionosphere [Hartkorn and Saur, 2017].

Internal structure

The data from Galileo’s flybys of Europa and Callisto allowed the determination of the
degree-2 gravity field coefficients of the Galilean moons. Europa flybys were unfortunately
relatively close to the equator, and the four flybys considered in Anderson [1998] did not
allow for an independent estimation of J, and Cy,. Europa’s interior was thus assumed
to be in hydrostatic equilibrium (see Sect. 2.8.1), which allowed to introduce a constraint
of Jy/Cyy = 10/3. The dimensionless Moment of Inertia factor (Mol) was inferred using
the Radau-Darwin Approximation (RDA, see Sect. 2.8.1), and its value of 0.346 £ 0.005
suggests that Europa’s internal structure is differentiated [Anderson, 1998] into a metallic
core, a silicate mantle and a water ice-liquid outer shell. More recently, a reanalysis of
Galileo data was performed using six Europa flybys with more modern orbit determina-
tion techniques [Casajus et al., 2022]. The degree-2 coefficients were estimated without
assuming a hydrostatic constraint, and the Mol was found to be larger (0.3547 4 0.0024),
suggesting a thinner ice-water shell and a less dense interior. Europa was found statistically
in hydrostatic equilibrium, but because of the coverage of the flybys, the errors are still
large, e.g., regarding the estimation of .J,.

Similarly, the inclinations of the five Callisto flybys considered in Anderson [2001] were
rather low. Assuming hydrostatic equilibrium, the degree-2 gravity coefficients were com-
puted, and the RDA allowed for an estimation of the Mol 0.354940.0042 [Anderson, 2001],
which is too large to comply with a full separation of rock and ice [Anderson et al., 1998,
Anderson, 2001]. Additionally, the lack of an intrinsic magnetic field of Callisto [Khurana
et al., 1997] is consistent with its partial differentiation (no iron core). However, non-
hydrostatic effects could be significant at Callisto [Smith et al., 2020], and because Callisto
is a slowly rotating body, even modest internal mass variations will significantly influence
its Mol [McKinnon, 1997], and would even allow for a fully differentiated interior [Gao and
Stevenson, 2013].
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1.2 Exploration of Europa and Callisto

As suggested in Sect. 1.1.1, Europa and Callisto are privileged destinations for the upcom-
ing phase of Solar System exploration. Indeed, the characterisation of these two moons
will address two of the key science themes of ESA’s Cosmic Vision (2015-2025) [Bignami
et al., 2005): “What are the conditions for planet formation and the emergence of life?”
and “How does the Solar System work?”.

On the one hand, the accumulated clues for Europa’s habitability make this moon one
of the best candidate to search for life. Dedicated missions to Europa would help to ac-
quire a better understanding of this complex system, and of various interactions of Europa
within the Jovian system. On the other hand, Callisto is a celestial record keeper. Its an-
cient surface is particularly suited to learn about the formation and evolution of the Jovian
satellites.

1.2.1 Next decade’s planned missions

Two probes are expected to visit the Jovian system in the 2030 decade: ESA’s mission
Jupiter Icy Moons Explorer [JUICE; Grasset et al., 2013] and NASA’s Europa Clip-
per [Phillips and Pappalardo, 2014].

JUICE

ESA’s JUICE is the first large mission within ESA’s Cosmic Vision program [Bignami
et al., 2005] and was launch on 14-04-2023. Its main focus is to study Ganymede as a
planetary object and a possible habitat [Grasset et al., 2013]. JUICE will insert in orbit
around Ganymede at the end of an extensive tour through the Jupiter system. After two
transitive elliptical phases separated by a 5000 km-altitude circular orbit, the probe will
reach a 500 km-altitude circular orbit around Ganymede.

Among the various instruments on board of JUICE, the GAnymede Laser Altimeter [GALA;
Hussmann et al., 2019] and the Gravity and Geophysics of Jupiter and the Galilean
Moons [3GM; Shapira et al., 2016] radio science experiment are of particular interest for
this work. 3GM will contribute to the characterisation of the interior state of Ganymede,
inform on the presence of a deep ocean and other gravity anomalies, study Ganymede and
Callisto surface properties, and perform atmospheric science at Jupiter, Ganymede, Eu-
ropa, Callisto, and of the Jupiter rings. GALA will characterise the topography and tidal
deformations of Ganymede. Synergies between these two instruments are expected. For in-
stance, the ice crust thickness will be constrained by determining the tidal response using
altimetry [GALA, see Steinbriigge et al., 2015] and gravity potential measurements [3GM,
see Cappuccio et al., 2020], as well as the estimation of the amplitudes of the physical
librations [GALA, see Steinbriigge et al., 2019].

Nevertheless, the study of Callisto and Europa will also be enabled by the Jovian tour.
Indeed, besides reducing the velocity of the probe before Ganymede orbit insertion, the
Jovian tour is the opportunity to fly by other moons to characterise them and their inter-
actions. The objectives of the 2 flybys of Europa, with closest approaches of 400 km, are
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to
o determine the composition of the non-ice material, especially as related to habitabil-
ity,
e search for liquid water under the most active sites,
o study the recently active sites.

During the 21 flybys of Callisto, with closest approaches between 200 km and 400 km,
JUICE will

o characterise the outer shells of Callisto, including the ocean,

o determine the composition of the non-ice material,

o study the past activity via Callisto.

Several studies were performed to evaluate the expected gravity field which can be recov-
ered from Europa [Cappuccio et al., 2022] and from Callisto [Di Benedetto et al., 2021,
Cappuccio et al., 2022, Genova et al., 2022].

Europa Clipper

NASA’s Europa Clipper is expected to be launched in Oct. 2024. Unlike JUICE in the
case of Ganymede, Clipper will not directly orbit Europa, but will stay in orbit around
Jupiter and perform a series of 49 flybys of Europa starting in 2030, with closest ap-
proaches between 25km and 100 km. The probe will thus spend most of its time outside
of the high-radiation environment of Jupiter’s inner magnetosphere that can be damaging
to electronics [Phillips and Pappalardo, 2014].

The Europa Clipper mission will characterize Europa’s potential habitability by [Howell
and Pappalardo, 2020):
o characterizing the ice shell and any subsurface water, including their heterogeneity;,
ocean properties, and the nature of surface—ice-ocean exchange,
o understanding the habitability of Europa’s ocean through composition and chemistry,
« understanding the formation of surface features, including sites of recent or current
activity, and characterizing high science-interest localities.

One important component of this mission is the Gravity and Radio Science (G/RS) investi-
gation [Mazarico et al., 2023] whose primary objective is to measure the tidal Love number
ko, as its precise determination would provide independent evidence for a global subsur-
face ocean. Additionally, an improved estimation of Europa’s static gravity field and of
its orientation parameters from G/RS investigations would provide additional constraints
on the internal structure, together with complementary measurements from the onboard
radar REASON [Steinbriigge et al., 2018a] and the wide angle camera EIS [Park et al.,
2015], allowing for the estimation of tidal deformations.

1.2.2 Recent mission proposals

As it will be done for JUICE in the case of Ganymede, a mission including an orbiter
around FEuropa or Callisto would enable global and uniform mapping of these two Galilean
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moons, as well as recovering their gravity fields and other geodetic parameters to much
higher resolution (see, e.g., Wu et al. [2001], Wahr et al. [2006] for Europa, and Smith
et al. [2020] for Callisto), and complement the investigation initiated by Europa Clipper
and JUICE, respectively. An orbiter would thus achieve a more detailed characterisation
of the presence and the extent of the ocean and its relation to the deeper interior. There
have been several proposed missions to send an orbiter around Europa, e.g., the Jupiter
Europa Orbiter [Clark et al., 2009], HADES [Bottcher et al., 2009], and the Joint Europa
Mission [Blanc et al., 2020a], and to send an orbiter around Callisto, e.g., MAGIC [Smith
et al., 2019] and Gan De [Blanc et al., 2020b], which would then allow for a more direct
comparison with Europa and Ganymede.

Joint Europa Mission

The Joint Europa Mission (JEM) is an ambitious collaborative proposal between ESA and
NASA with the objectives of fully characterising Europa’s habitability from an orbiter,
searching for bio-signatures in the environment of Europa (surface, subsurface and exo-
sphere) by the combination of an orbiter and a lander [Blanc et al., 2020a].

The orbiter’s platform, which represented ESA’s contribution, was foreseen to insert into a
low orbit around Europa after the separation of the lander. Because of the highly radiative
environment and of its effect on the electronics, the mission’s lifetime was foreseen to last
only 3 months after reaching the final science orbit, despite assumptions about reduced
radiation doses. Indeed, complex trajectories traced by charged particles in the combined
Jovian and Europan magnetic fields may offer radiation shielding at low altitude around
Europa [Truscott et al., 2011]. Nevertheless, such an orbiter would be able to study a
broader frequency range of magnetic fluctuations than what Clipper would sense during
its flybys, to increase the accuracy of Europa’s gravity field and tidal Love number recov-
ery as suggested by simulation analyses performed in the framework of JEM [Blanc et al.,
2020a], and overall to complement the investigations of Europa Clipper.

MAGIC

The Magnetics, Altimetry, Gravity, and Imaging of Callisto (MAGIC) mission is a con-
cept dedicated to a full geophysical investigation of Callisto. The three main objectives of
MAGIC are according to [Smith et al., 2019] to

o determine the internal structure of Callisto,

 definitively test for the properties of Callisto’s ocean,

o determine the age and state of Callisto’s ice shell.

To this end, a 50 km-altitude polar orbiter has been proposed, for a nominal duration of 1
year, to characterise Callisto’s induced magnetic field, its topography and gravity, and to
image its surface at unprecedented resolution for an icy moon [Smith et al., 2019].

As it is usual for planetary missions, the telecommunication system could also be used
for gravity and radio science investigations. In this sense, comprehensive numerical sim-
ulations and covariance analyses have been performed for MAGIC mission scenarios by
Genova et al. [2022], showing the expected estimates of Callisto’s gravity field, orientation
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and geophysical parameters, and how they would contribute to the determination of Cal-
listo’s internal structure. An altimeter was also considered to measure tidal deformations,
which, combined to a measurement of the tidal gravitational response, would help inferring
the thickness of the ice-shell (see Sect. 2.8.2). Moreover, the combination of altimetry and
gravity measurements would assess current hypotheses of non-hydrostatic components in
the gravity field [Smith et al., 2020].

Gan De

The Chinese National Science Administration (CNSA) announced that the Tianwen-4 mis-
sion will target both the Jupiter system [Wei et al., 2018] and Uranus. The main probe
will be captured by Jupiter, and after separation, a secondary probe will continue towards
Uranus. The end target of the main probe is Callisto [Wang, 2022]. However, the mission
scenario is not yet fixed. In this sense, the Gan De initiative [Blanc et al., 2020b], named
after the first astronomer to have claimed an observation of a moon of Jupiter four cen-
turies BC, proposed scientific objectives and a mission scenario for the Jupiter component
of Tianwen-4 [Wei et al., 2018], as one of the science inputs feeding the design of that
mission by the CNSA.

Gan De addresses one key scientific question: “How did the Jupiter System form?”. This
question be answered by an extensive characterisation of Callisto as its bulk composition,
interior and surface terrains keep records of its early eons. The ~ 77 or so irregular satel-
lites, orbiting far out beyond the region occupied by the Galilean satellites also contribute
to the answer, and are unique and precious remnants of the populations of planetesimals
which orbited the outer Solar System at the time of Jupiter’s formation.

The mission scenario proposed is a first Jovian orbital tour to fly by and characterize
several irregular satellites [Jing and Li, 2023], followed by an injection into a Callisto orbit
to characterize its surface and interior, investigate its degree of differentiation, and search
for the possible existence of an internal ocean.

1.3 Scope of this work

The measurement of geodetic and geophysical parameters of a celestial body is a key ele-
ment for its global characterisation, as they constitute important constraints on the internal
structure of the body, together with its interactions within its environment. In the case of
planetary bodies, this is commonly done by using radio tracking data from the analyses of
spacecrafts orbiting or passing by the celestial body. Several reference software packages
within the international community (GEODYN, MONTE, GINS ...) have the capability
to process these data and to estimate such global parameters.

We use a development version of the Bernese GNSS Software [BSW; Dach et al., 2015], a
scientific, high precision, multi-GNSS (Global Navigation Satellite System) data processing
software developed at the Astronomical Institute of the University of Bern (AIUB). This
development version was adapted to estimate planetary gravity fields, first in the case of
Earth’s moon [Jaggi et al., 2015, Arnold et al., 2015], using Doppler observables [Bertone
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et al., 2021a], and was later extended for satellite systems [e.g., Desprats et al., 2023,
and this work, for the Jovian system|. In order to process altimetry data, we additionally
combine the BSW with pyXover, a Python suite of altimetry analysis tools for planetary
geodesy [Bertone et al., 2020]. Chapter 2 describes the force models, the observables, and
the estimation process that we use and developed for this work.

As discussed in Sect. 1.2, a low altitude, near polar and quasi circular orbit around one of
the Galilean moons, e.g., Europa or Callisto, would be particularly well suited to drastically
improve our knowledge of these moons, and to answer key scientific questions. However, as
detailed in Sect. 1.2.2, the mission profile can be quite different from one mission proposal
to another, and may also change after the mission selection. The choice of the science orbits
remains thus flexible, despite being one of the key elements of mission design. Moreover,
candidate orbits have to fit all mission science requirements and to satisfy multiple mission
and instrument constraints. An orbit meeting all these additional requirements might be,
e.g., less suited for gravity field recovery. Quantifying the accuracy to which geodetic pa-
rameters can be recovered based on different orbits is thus of great importance for a proper
orbit selection.

In this regard, Chapter 3 describes the implementation of an orbit design tool, which
we use to generate extensive sets of orbits suitable for global characterisation purposes
in Jupiter’s complex environment, and the strategy we followed to systematically assess
their sensitivity to the estimation of geodetic and geophysical parameters. While the per-
formance of different mission scenarios is usually assessed by covariance analyses, in this
work we perform extensive full closed-loop simulations, in order to precisely asses how well
the orbit and the geodetic parameters can be recovered. We study low-altitude orbiters
around Europa and Callisto for a typical mission duration of three months duration. How-
ever many results of this work can also be applied to other planetary bodies.

In Chapter 4, we discuss the orbit determination and the estimation of geodetic parameters
such as the gravity field, the Love number £, and the rotation parameters when using only
Doppler observables. We also explore strategies to recover gravity field parameters with
a very limited a priori knowledge of the gravity field (as it is currently the case for the
Galilean moons), and explore mitigation strategies for poorly modelled non-gravitational
accelerations. Finally, in Chapter 5, we study the benefit of combining altimetry crossovers
with Doppler data, including potential improvements in terms of orbit and geodetic pa-
rameter estimations, but also for the estimation of the the Love number h, and inferred
internal properties.



Chapter 2

Models and observables

The modelling of the spacecraft trajectory is central to a mission aiming at characterizing
the celestial body around which it orbits. It is needed to provide a precise knowledge of the
position of the spacecraft (Sect. 2.1), which is also of interest for the other components of
the mission, e.g., for the geolocation of images or other measurements. However, the deter-
mination of the orbit (Sect. 2.3) can also indirectly improve the considered models, such
as the background force model (Sect. 2.2) and rotation model (Sect. 2.4) which describe
the environment of the spacecraft. Indeed, the generalized orbit determination consists of
adjusting model parameters based on a given set of observations (described in Sects. 2.5,
2.6 and 2.7). Moreover, the improvement of the knowledge of geodetic parameters leads
to better constraints on the internal structure of the celestial body (Sect. 2.8), providing
answers to the scientific questions described in Chapter 1.

2.1 Orbit modelling

In the framework of the two-body problem, where the spacecraft is only subject to the
gravitational pull of the central body modelled as a point mass, the trajectory of a space-
craft in orbit around a celestial body is entirely described in terms of its initial conditions,
or, equivalently, in terms of six Keplerian orbital elements. The motion of the spacecraft is
restricted to a fixed plane, called the orbital plane. The conic section within this plane, i.e.,
the shape of the orbit, is characterized by the semi-major axis a and the eccentricity e. The
orientation of the orbital plane with respect to a reference frame is given by the inclination
7 and the longitude of the ascending node €. The angle between the ascending node line
and the periapsis of the orbit is called the argument of pericenter w. We characterize the
position of the spacecraft along its orbit at any epoch by its angle with respect to the
ascending node, called the argument of latitude u. There is a mathematical equivalence
between the position vector r and the velocity vector r at every epoch and the 6 Keplerian
elements [Beutler, 2005].

In the two-body problem, all orbital elements are constant in time, expect for the ar-
gument of latitude u. However, in the case of additional external forces acting on the
spacecraft (as described in Sect. 2.2), the orbit is “perturbed”; and the previously defined
constant orbital elements vary with time. An example of the variation of the inclination 4
and longitude of the ascending node €2 due to perturbing forces is given in Sect. 3.3. The
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six previously mentioned orbital elements are then called “osculating” orbital elements and
refer to an osculating epoch (Fig. 2.1).

Figure 2.1: Osculating orbital elements (a, e, i, 2, w, u).

In general, the orbit of the spacecraft is governed by the equations of motion, which can
be written, in a quasi inertial frame, as

. r .
r= _MGT_S + fp(t7r7T7Q17 ;qcl) - f7 (21)

where 7 is the position vector of the spacecraft center of mass with respect to the center of
mass of the central celestial body, r its absolute value, a dot denotes time derivative, p is
the standard gravitational parameter of the celestial body and f,, collects all perturbation
accelerations beyond the central term (acceleration due to central point mass only). The g;,
t =1,..,d, denote the parameters used to represent different kinds of orbit perturbations
(e.g., empirical orbit parameters or gravity field parameters described in Sect. 2.2).

The orbit of the spacecraft is the result of the integration of the equations of motion (2.1),
which we performed using two different software packages. A relatively simple force model
was used for the orbit design (see Chapter 3), which was entirely performed in MATLAB.
For the rest of the simulation study, we used the Bernese GNSS Software [BSW; Dach
et al., 2015] to integrate the equations of motion, by using the collocation method de-
scribed in Beutler [2005]. The orbits are stored in terms of a polynomial representation.
Within each integration interval, the orbit position can be evaluated as

r(t) = kioak (t _hto)k , (2.2)
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with g the degree of the polynomial, a;, the 3 dimensional vector containing the coetf-
ficients of degree k, h the interval size on which the polynomial is defined and ¢, the
midpoint of the interval. The size of each interval h is constant, as well as the degree ¢
of the different polynomials. However, ¢, is different for each interval. In order to access
the orbit in terms of position r(¢) and velocity 7(¢) at different steps of our simulation,
the integration coefficients are stored using the BSW internal standard binary format STD.

Nevertheless, we also considered other file formats to read the propagated trajectory in
different software packages. We chose the SPK format (type 2) [see SPK required reading;
Semenov, 2021] from NAIF (Navigation and Ancillary Information Facility), which can be
easily read using the SPICE toolkit [Acton Jr, 1996]. We implemented a direct conversion
from the STD format to the SPK format by changing the orbit representation. The orbit
from an SPK file is described using Chebyshev polynomials of the first kind (7},),c, which
fulfil

T, (cos @) = cos kb, Vke N, VOeR. (2.3)

Using these polynomials, the orbit is written similarly to Eq. (2.2) as

T@%ZZ?%JM%@% (2.4)

assuming the same order g as in Eq. (2.2) and with the associated sets of 3 dimensional
coefficients ¢, and with

t—t,

s(t) =2 —1e[-1;1]. (2.5)
The conversion from the BSW polynomial representation to Chebyshev polynomial rep-
resentation, i.e., the relation between the two sets of coefficients a; and ¢, relies on the
discrete orthogonality of the Chebyshev polynomials, which can be derived as follows. The
nodes of a Chebyshev polynomial of degree N, i.e., the values s;, for which Ty(s;) = 0, are
deduced from the definition (2.3) so that

2k -1
= _— =1..N. 2.
Sk cos( 57 77), k (2.6)

It can be easily shown that for alli =1.. Nand j=1.. N,

N 0 ifi#j
> Ty(sp)Ti(s,) =S N/2 ifi=j#0 . (2.7)
k=1 N ifi=j=0

In particular, for N = g+ 1, we can derive a relation between the Chebyshev coefficients
and the trajectory evaluated at times t;, corresponding to the nodes s,

1 & .
—g t fl=0
B qulk: r(ty) 1
¢ = 9 q—}-% ’ (28>
— r(t,. )T (s ifl#£0
T 2 TITils) i1
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with

2k—1
S =cos | ———7 |, ty =1ty + (1 +5s,)=, k=1..q+1. 2.9
k (2(q+1)> k 0o+ ( k) q (2.9)

N S

Once the Chebyshev coefficients are computed, the orbit can be written to a binary SPK
file using dedicated SPICE routines. This newly implemented conversion tool facilitates
the interface between the different software packages used in this work, which can thus
make use of SPICE routines to access stored orbits.

2.2 Force model of an orbiter at the Galilean moons

In this section, we describe the different forces acting on the spacecraft in our integration
of the equations of motion (2.1). They are summarized in Fig. 2.2 for a Europa orbiter,
and in Fig. 2.3 for a Callisto orbiter.

100 [

i Europa (central term)
Europa (d/o > 2)
Jupiter (central term)
Solid Tides

Jupiter (zonals)

i Other Jovian moons
10-10 L Sun

—— Other Planets

—
9
=
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Days since 01-May-2031

Figure 2.2: Magnitude of accelerations considered in this study for a 134 km orbiter around
Europa during one Europa day (= 3.55 Earth days)

The positions of Solar System planets were retrieved from the DE430 JPL ephemerides [Folkner
et al., 2014], and the position of the bodies within the Jovian system from the ephemerides
JUP310 [Jacobson, 2013].

2.2.1 Synthetic gravity field

The gravity field of a celestial body is determined by its internal mass distribution. In the
case of a spherical homogeneous body, it can be reduced to the central term (see Eq. 2.1).
Otherwise the acceleration a, acting on a spacecraft, resulting from non-homogeneities,
can be computed from the gradient of the gravitational potential V as

a,=VV, (2.10)
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Figure 2.3: Magnitude of accelerations considered in this study for a 197 km orbiter around
Callisto during one Callisto day (= 16.67 Earth days).

where V can be decomposed in spherical harmonics such that [Kaula, 1966]

W(r, A, ¢) = 'uG ia:IZ( ) P...(sing)(C,,, coomA+ S, sinm)), (2.11)

n=2 m=0

where A and ¢ are longitude and latitude in a central body-fixed reference frame, R is the
equatorial radius of the celestial body [Ry = 1562.6 km for Europa and R~ = 2410.3km
for Callisto; Archinal et al., 2018]. P,,, are the fully normalized Legendre functions of
degree n and order m, and C,, and S, . are the fully normalized spherical harmonic
coefficients, which are derived from the unnormalised Legendre functions and spherical
harmonic coefficients as

with
_J(n=m)!(2n +1)(2 - dp,n) [ 1 ifm=0
Ny = \/ ' , and Oom = 0 ifm£0 (2.13)

(n+m)!

The degree-0 coefficient C_oo corresponds to the central term and is already included in
Eq. (2.1). The degree-1 coefficients relate to the coordinates of the center of mass. They
are zero when considering a coordinate system with the origin at the center of mass. The
coefficients Cy; and S, are connected to the mean spin pole, and are zero if the coordinate
axes of the body-fixed frame we consider (see Sect. 2.4) coincide with the principal axes of
inertia. An ellipsoidal potential of a synchronous rotating moon can then be defined from
Cyo and Cyy [Van Hoolst et al., 2008], which relate to a reference triaxial ellipsoid approx-
imating the equilibrium figure of the moon, as detailed in Sect. 2.8.1. The geoid height
above the reference ellipsoid can be computed from the spherical harmonic coefficients
(Eq. 2.11) so that [Ilk et al., 2005]

Nmax

9re = Re - Z Z P, (sing)(C",, cosmA+ S, sinm)), (2.14)

n=2 m=
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with C', = C,,, —C and where C¢! are the coefficients of the ellipsoid normal poten-
tial. Because we define the reference ellipsoid from the degree-2 coefficients of the reference

gravity field (see Sect. 2.8.1), we have C54 = C,,., and C%}, =0 for n > 2.

The most recent field estimates of Callisto rely on the data analysis of the Galileo probe,
which only performed a limited number of flybys. Consequently, only the degree-2 gravity
field coefficients have been estimated for Callisto under hydrostatic assumption [Ander-
son, 2001]. More recently, Juno flew by Europa, providing more data to possibly improve
the knowledge of Europa’s gravity field, as it was done for Ganymede by Casajus et al.
[2022]. To our knowledge, Europa’s gravity field has not been improved using Juno’s recent
flyby [29 Sept. 2022, see, e.g. Hansen et al., 2022]. Galileo data were recently reprocessed
by Casajus et al. [2021] to update Europa’s gravity field model. However, these new esti-
mates would not change the scope of this work. We thus based our analysis on estimates
by Anderson [1998].

In any case, since the higher degree gravity field coefficients of the Galilean moons are
not yet known, we generated a synthetic gravity field from degree 3 to n,,,, = 100 for
each of the considered moons. The gravity field coefficients were thereby derived from the
Earth Moon’s gravity field model GRGM900C [Lemoine et al., 2014], appropriately scaled
by the squared ratio of the surface gravity of Callisto or Europa and of the Moon, so that

_ _ 2 /RAN\Y _
(Crims Som)a = <M—M) <—G) (Crmms Spm) s, With n>2,m >0, (2.15)
Ha Ry,

where M stands for the Moon. It is important to note that the Moon’s gravity field has a
rather large dynamic range, much more, e.g., than Venus, and also has mass concentrations
(mascons). The strong power resulting from Moon-derived gravity fields may rise the signal
to noise in comparison to a weaker field, which may affect some conclusions discussed in
Chapter 4, such as the maximum gravity field degree which can be recovered in a given
scenario. In the following, we label these two synthetic reference gravity field models as
CALGLMo (Fig. 2.4, left) and EURGLMo (Fig. 2.4, right), for Callisto and Europa, respec-
tively. It is important to note that the mass distribution is not unique to a single gravity
field model. The characterization of the internal structure relies on additional constraints,
which are discussed in Sect. 2.8.

EURGLMo

T

-600 -400 -200 0 200 400 600

Figure 2.4: Geoid height (Aitoff projection) of Callisto (left) and Europa (right) above their
reference ellipsoid, derived from the synthetic gravity fields CALGLMo and EURGLMo.
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2.2.2 Solid tides

Jupiter’s gravitational force produces a deformation of the Galilean moons. The amplitude
of the radial deformation induced by tides is parametrised by the Love number h, (see
Sect. 2.7.1). The tidal secondary potential induced by the mass redistribution, is instead
modelled via a change of the degree-2 gravity field coefficients [Petit and Luzum, 2010], as

_ - k R-\?2 - ,

where k5, is the Love number for degree 2 and order m, r ;, A ; and ¢ ; denote the spherical
coordinates of Jupiter in a Callisto or Europa-fixed reference system, and p; denotes the
gravity constant of Jupiter.

The mean corrections on the Cy, Cys and Sy coefficients are not zero. Indeed, for degree
2 and orders 0 and 2, Eq. 2.16 can be written as

k Ra\?
ACy, = 2% Lat) (—G) (3sin*¢;— 1),

2V ke \ Ty
5 koo [3 1y (R 5 .
ACy, = - EE T—J (1 — sin? gbj) cos 2\, (2.17)
— k22 3 Hy RG 3 . .
A522:T 5@ /r-_J (1—Sln2¢J) Sln?)\J-

The time independent part of these corrections produces a permanent deformation, smaller
in the case of Sy5. We chose to separate the permanent tidal corrections on Cyo and Cy,
so that

AC‘perm — k20 ﬂ (E)S
20 2V5 Ha \ ag

Sperm k22 3 My RG s
80" =55 \ae )
G G

(2.18)

with ag the mean semi-major axis of the orbit of the Galilean moon around Jupiter [ap
= 671261 km for Europa and a, = 1883134km for Callisto; Lainey et al., 2006]. Per-
manent tides can be included in the Cy, and C, coefficient of gravity field model of the
Galilean moons. In this case, the gravity field is labelled “zero tide”, similarly to the Earth’s
geopotential conventions (see Petit and Luzum [2010]). If the permanent deformation is
not included, the gravity field model is then “conventional tide free”. The gravity field
models considered in this work are zero tide. Thus, before applying the corrections from
Eq. (2.16), the ACY™™ must be removed from C,,,, with m = 0,2, so that the permanent
tide is counted only once.

In this study, we assumed ks,,, = ky for m = 0, 1,2, and chose ky = 0.257 for Europa [Wahr
et al., 2006, Mazarico et al., 2015] and k, = 0.3 for Callisto. The position of Jupiter with re-
spect to the Galilean moons is given by the ephemerides JUP310 [Jacobson, 2013] and can
be obtained using SPICE routines. We neglected the tides induced by the other Galilean
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2. Models and observables

satellites. Indeed, if we assume similar values for the Love numbers of the different tidal
contributions between the Galilean moons, the largest contribution to the correction on
the degree-2 gravity field coefficients of Callisto and Europa would come from Ganymede
and it would be < 1.5 x 1073 times the correction due to Jupiter-induced tides.

2.2.3 Third-body perturbations

The gravitational pull of other planetary bodies also perturbs the spacecraft. We considered
the perturbation of all Solar System planets as point masses, in addition to the other
Galilean moons. The acceleration of the spacecraft caused by a 3" body b is then given

by

r—r r
asp = —Hy ), (2.19)
’ e S R LA

where (i, is the gravity constant of the body b, and r, is the position vector of the body b
with respect to the central body.

Being the largest planet in the Solar System, Jupiter’s perturbation is undoubtedly the
most important in the Jovian system. Its influence is even more important in the case of
Europa, being closer to Jupiter than Callisto. We thus decided to take into account the
mass distribution of Jupiter by also considering its zonal gravity field coefficients up to
degree 6 [Jacobson, 2013]. Similar to Eq. (2.11), the gravity potential of Jupiter can be

written as
Hy = (R\" - -
Vilr) = Vol 0. 0) = =52 57 (22) ", Puofsin), (2:20)
n=2
where J, = _C_nO is Jupiter’s normalised zonal gravity field coefficient of degree n and R

the equatorial radius of Jupiter [R; = 71492 km; Archinal et al., 2018]. The full third-body
perturbation of Jupiter can then be expanded so that

Az ;= —Hs + +VV(r—r;) = VV,(=r,). (2.21)
’ r—=mr,® el

We did not consider the latest gravity field model obtained from Juno [Durante et al.,
2022], but the change of the induced accelerations of probes orbiting around Europa and
Callisto is negligible with acceleration differences below 1 x 10~ m/s2.

The next most important third-body perturbations come from the other Galilean moons,
which show distinctive important time variations (see Fig. 2.3), due to their different or-
bital periods. Despite being at 5 AU from Jupiter, the Sun still has a considerable influence
in the Jovian system, exceeding the influence of the other planets.

2.2.4 Non-gravitational accelerations

The interaction of emitted photons from the Sun on a given surface results in an exchange
of momentum, which is characterized by the flux density of solar radiation. For our purpose,
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2.2 Force model of an orbiter at the Galilean moons

we considered a constant value S, = 1362 W/m? at 1 AU. The flux density ® at a distance
r from the Sun, expressed in AU, is then given by scaling the solar constant as

1AU)2

: (2.22)

@@y=%<

Radiation pressure generates a force on the surface of the spacecraft. In this work, the
spacecraft is modelled as a cannonball, with a cross-section A, = 85m?, a mass m =
1800 kg, and a diffusion coefficient § = 0.12, corresponding to the fraction of diffusely
reflected photons. The force due to the direct Solar Radiation Pressure (SRP) can then be
expressed as an acceleration as [Milani et al., 1987]

P(r) A, 4
-E(1+§®ewn, (2.23)

agspp(r) = —f5

with ¢ being the speed of light in vacuum, eg,,, the unit vector pointing from the center
of the cannonball to the Sun, and f, a geometric shadow function computed according
to Doornbos [2012], considering only eclipses from the central body.

We additionally considered indirect radiation pressure such as Planetary Radiation Pres-
sure (PRP) due to reflected and emitted radiation from a planetary body. The reflected
radiation pressure is produced by reflection and scattering of incident solar radiation from
the moon’s surface on the daylight side which is described by the albedo factor. The emit-
ted radiation pressure is produced by thermal IR re-emission of the direct solar radiation
absorbed by the moon from its entire surface. Because there are currently no maps for
the moons’ albedo and thermal emission, we use a uniform albedo coefficient o = 0.68 for
Europa and o = 0.2 for Callisto [Morrison and Morrison, 1977]. For a cannonball, PRP
can be expressed as [Rodriguez-Solano, 2009]

d(r,) (&)2 A, <2a

. l—« 4
- . - g((w—\ll)cos\lf+sm\1/)+ 1 ><1+§5>€r, (2.24)

Qprp =

with r, the distance between the Sun and the moon, a the albedo of the moon, ¥ the
angle between the Sun, the moon and the satellite, and ey the unit vector pointing from
the center of mass of the moon to the center of the cannonball.

2.2.5 Empirical accelerations and pseudo-stochastic parameters

Under certain circumstances, considering empirical accelerations helps improving orbits
and reducing observation residuals. These are accelerations with parameters that can be
arbitrarily chosen. Usually, these parameters are then estimated to compensate unmodelled
or mismodelled forces in the generalized orbit determination process (Sect. 2.3). However,
using such parameters is tricky and risks over-parametrising the problem. In this work, we
made use of constant and once-per-revolution accelerations, which can be expressed as

Qepmp = by + €y cOSU+ 8y sinu, (2.25)

where u is the argument of latitude of the spacecraft. by, ¢; and s; are 3-dimensional
vectors for a total of 9 parameters that we express in the Local Orbital Frame (RSW), i.e.,
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2. Models and observables

in the radial (R), along-track (S) and cross-track (W) direction, defined as

e, =—, € = rxr and e, =€, Xe,. (2.26)
[[r < 7]

<

Another means to absorb modelling deficiencies are pseudo-stochastic orbit parameters,
e.g., pseudo-stochastic pulses (instantaneous velocity changes), as additional empirical pa-
rameters (see Beutler [2005] and Jaggi [2007] for more details). However, these parameters
must be carefully constrained. We set them evenly (e.g., every 60 minutes) in all 3 directions
(radial, along-track and cross-track) and estimate their amplitudes.

2.3 Generalized orbit determination

In order to estimate orbit and geodetic parameters, we considered the CMA [Beutler et al.,
2010], which has been successfully applied to planetary probes in Arnold et al. [2015],
Bertone et al. [2021a] and Desprats et al. [2023]. This approach is recapitulated in the
following section.

2.3.1 Non-linear least-squares adjustment

Let us assume that a set of model parameters « can be mapped to the observations I by
using an functional model g. We can write

l+e=g(x), (2.27)

with e being the residuals. If our functional model g is linear, we can directly use a least-
squares adjustment to estimate the model parameters @ by minimizing e’e. However,
because our observation model g is generally not linear, we linearise g around a priori
model parameters x, so that

Jg
g(x) ~ g(g) + - (@) (x — x) (2.28)
where g—i(wo) is the Jacobian of g evaluated at x,. We note this set of derivatives as the
first design matrix A, so that
9g

The observation equations (2.27) can then be rewritten in their linearised form as

e=A(x—xy) —(I—g(x))

(2.30)
=A Ix — ol ,

where dl is often referred to as O-C (observed - computed) term, dz is the solved for cor-
rection of the parameters with respect to their a priori values. To represent the observation
error, we introduce the weight matrix as

P=Q,'=0,C;", (2.31)
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2.3 Generalized orbit determination

with Qy; the a priori cofactor matrix of observations, o, the a priori standard deviation of
unit weight and Cj; the a priori covariance matrix of observations. In case of uncorrelated
observations, the weight matrix P is diagonal with P, = 0(2) / a?, with a? the a priori vari-
ance of the observation .

The solution of Eq. (2.30) is obtained by minimizing e’Pe, which gives
(ATPA)Sx — ATPSl = Néx — b= 0, (2.32)

where N = ATPA is usually called “normal equation” matrix and b = ATP6l is the
right-hand side of the normal equation system.

In case N is regular, the solution vector is obtained via the inverse of N:
x=x,+N"'b. (2.33)
The estimated a posteriori sigma of unit weight is computed as

eTPe

)
n—u

mg = (2.34)
with n being the number of observations, and u the number of adjusted parameters. The
covariance matrix of the adjusted model parameters is given by

where Q,, is the cofactor matrix of the adjusted model parameters. The a posteriori

standard deviation of the adjusted model parameters is then given by

My =V C:cw =mgyV me : (236>

In some cases, it is useful to confine parameters to a restricted range, i.e., to constrain them
to a given reference value. This is particularly helpful to prevent singularities of the matrix
N. Constraints are realized by adding artificial observations such as p; = 0, with the weight
ag / 0'?, where o; is the standard deviation of the estimated parameter p,. This translates
into the addition of these weights to the diagonal elements of the normal equation matrix
N corresponding to the parameters to constrain.

Because we approximated the functional model g by truncating the Taylor series to the
first order, the process has to be iterated until convergence to minimise the error of the
full non-linear observation equation (Eq. 2.27).

2.3.2 Variational equations

In this section, we describe how the Jacobian of our functional model g, needed in the
linearisation of g (Eq. 2.28), is computed. The observations considered in this work depend
on the model parameters @, and on the spacecraft position at two different epochs, i.e., the
position 7, at epoch t; and the position r, at epoch t, (see Sects. 2.6 and 2.7). However,
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2. Models and observables

the spacecraft position also depends on the model parameters. The functional model g is
thus a composite function, which we explicitly denote g*:

9(x) = g"(ry(x), m5(z), 7). (2.37)

The partial derivatives of the functional model g with respect to a model parameter p, € x
are obtained using the chain rule, so that

dg Og*or, 0g*0r, Og*
— = ) 2.38
dp;  Ory Op; " ory Op; " Op; ( )

The composition is usually only implicit in the literature, and g* is assimilated to g. g is

then a mixed function, i.e., a function for which at least one variable appears both implicitly
and explicitly (z in Eq. (2.37)). In this case, the derivatives of such a mixed function are

referred to as total derivatives, and noted j;, in contrast to the partial derivatives noted
spg_ which refers to the explicit variable only. For more concision, we adopted this convention

in the following. Equation (2.38) can thus be rewritten as

dg ag 67'1 (9g 87'2 ag
_ N L Y9 2.39
dp. " O op, O 0p O, (2:39)

which is another expression for the chain rule with direct and indirect dependencies. Note

that if p; is not explicitly in the formulation of the observable, the partial derivative 88—; is

zero. The expression of the partial derivatives of the observation model with respect to the
position % depends on the considered observable type, and will be detailed in Sect. 2.6.1
and in Sect. 2.7.3.

The partial derivatives of the position vector r with respect to any parameter p; are the

result of the integration of the variational equations. By differentiating the equations of

motion (2.1) with respect to a parameter p; and by using the chain rule, we get
o Of or  Of or _ Of

Y AT 2.40
o orop, orom, | op, (2:40)

which can be rewritten as

. of I (‘9_fz. 8fp __Or

= —Zz -_—, =
P 87“ P a,r. P api 2 api

In the BSW, the variational equations related to the six initial orbital elements 0,,7 = 1...6,

3 with 2 (2.41)

are integrated together with the primary equations. The partial derivatives with respect to
the other parameters g;, ¢ = 1...ng, are computed as a linear combination of z, , where the
coefficients are computed using Gaussian quadrature [Beutler, 2005]. For more efficiency,
z,, are stored as degree-20 polynomial coefficients on 180s intervals, so that they can be
later evaluated. However, when estimating a large number of parameters the number of
polynomial coefficients can be quite large, and since we usually need the partials sequen-
tially in time, we only store the coefficients related to one interval, and overwrite them for

the next interval when needed.
Once the partials derivatives z,, are computed for all parameters p,, and once the deriva-
tives of the observation model are computed for each observation, the design matrix A can

be assembled following Eq. (2.39).
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2.3 Generalized orbit determination

2.3.3 Stacking Normal Equation Systems

In case of a large number of observations, it becomes interesting to consider separated
observation blocks and to process them in parallel. Normal Equation Systems (NEQ, see
Sect. 2.3.1) can then be worked on with an observation subset, and later assembled to form
a global NEQ containing all the observations. For K independent observation blocks, the
equation system (2.30) and (2.31) can be rewritten with

ol A o P, -~ 0
Sl = 2 A — 2 P= 2 2.42
: ’ : ’ O 0 - 0 ( )
0l A 0 0 -« Pp

Because the observation blocks are assumed to be independent, the weight matrix P is
block diagonal. The contribution to the full NEQ can be consequently computed according
to

As mentioned in Sect. 2.3.1, each observation can be weighted with respect to its a priori
variance via the weight matrix P,. However, the weighting step can also be performed at the
level of the NEQs. This is particularly useful, for instance, to weight a group of observations
with respect to another. With o, the variance of unit weight of the observation block £,
and 0(2) the a priori variance of unit weight, the full NEQ is assembled as

K 0_2 K 0_2
N=> 2N, b=> —b. (2.44)
k=1 k=1

Observations can be grouped by observation type or by time span (e.g., daily NEQs or
monthly NEQs). This is particularly useful to process batches of observations in parallel.
Moreover, parameters can be constrained after the individual NEQs related to the true
observations have been computed. Indeed, since constraints can be seen as artificial obser-
vations (see Sect. 2.3.1), “constraining” NEQs can be defined and combined to the true
observations as Eq. (2.44) [see also Lasser, 2023].

Weights can be set manually or determined by more advanced techniques such as Vari-
ance Component Estimation [VCE; see e.g., Kusche, 2003]. We used VCE to determine
the relative weight between observation types, and to obtain reliable constraints for some
parameters. In both cases, VCE provides optimal weights between sets of NEQs. This

iterative process computes the variance of unit weight of block £ as
T
9 ekPkek
k nk — tT(NkN_l) ’

where n,, is the number of observations of block k and ¢r is the trace operator. Notice that

(2.45)

o

the full normal equation matrix N has to be inverted at each iteration.

2.3.4 General processing scheme

In this work, we followed different procedures to estimate orbit and geodetic parameters,
depending on the type of the parameter estimated, and the type of observations included.
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2. Models and observables

In this section, we describe the primary processing scheme, adopted in Desprats et al.
[2023], which is divided into an initial arc-wise orbit determination, followed by a general-
ized orbit improvement.

[ Arc initialisation ]

— Compute observable 4 ¢

l

Integration/Evaluation of 2., = 1..n

i

[ Balg AP } [ Update NEQ with observation i,

q

i

no

Last observation?

[ iter ++ ] [iter = last]

Only local
parameters?

[ Solve NEQ ]
[ Update parameters ]
l yes

ARMS > 0.5%
or iter < 4

Last iteration?
no

4{ Save NEQ and exit ]

Figure 2.5: GRAVDET?2 flowchart for one arc.

The initial arc-wise orbit determination is performed in GRAVDET?2, a program from a
development branch of the BSW (see Fig. 2.5). As discussed in Sect. 4.1, the length of an
arc is not fixed, and is between 24 h and 30 h. The equations of motion (2.1) are numeri-
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2.3 Generalized orbit determination

cally integrated as described in Sect. 2.1 with the variational equations (2.41) for the six
initial Keplerian osculating elements, based on the fixed background force models detailed
in Sect. 2.2. Each observable is computed according to our model (see Sect. 2.6.1). Then
the partial derivatives of the orbit with respect to each local (or arc-specific) parameter are
obtained following Sect. 2.3.2. This allows for a first least squares adjustment of arc-specific
parameters (e.g., the six initial Keplerian osculating elements, see Tab. 2.1) to minimize
the observation residuals (see Sect. 2.3.1). This process is repeated for at least 4 iterations,
and until the relative Root Mean Square (RMS) change of residuals between one iteration
and the previous one is below 0.5%.

Observations

every arc

GRAVDET?2
Orbit fit

GRAVDET?2
NEQ setup

A priori orbits

ADDNEQ?2

A priori
force model

Figure 2.6: Generalized orbit determination flowchart.

Table 2.1: List of estimated parameters.

Parameter Number Type
Osculating orbital elements 6  (at the start of each arc) | local
Pseudo-stochastic pulses 3 (= twice per orbit rev.) | local
Constant acceleration 3 (stacked on n arcs) local/global
Once-per-revolution acc. coefficients | 6  (stacked on n arcs) local /global
ko Love number 1 (kg = kg = kg = ko) global

ho Love number 1 global
Gravity field coefficients 8278 (up to d/o 100) global
Rotation parameters 4 global

Based on the updated orbits, the equations of motion and the variational equations are
once more integrated in GRAVDET2 to compute the partial derivatives with respect to
both arc-specific and global parameters (Tab. 2.1), thus allowing us to set up the NEQs
for all parameters and for all arcs separately. However, the arc-wise NEQs are not solved
separately. They are stacked for the whole mission span (e.g., 26 Europa days), as described
in Sect. 2.3.3 using the BSW program ADDNEQ2 (Fig. 2.6). Arc-specific parameters may
be pre-eliminated [see, e.g., Dach et al., 2015] prior to NEQ stacking and the accumulated
NEQ is inverted to retrieve corrections to the global parameters as well as to the local
parameters which have not been pre-eliminated. The complete procedure is iterated until
convergence is observed.
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2. Models and observables

The different parameters considered in this work are summarized in Tab. 2.1. Empirical pa-
rameters are treated either as local parameters, i.e., constant during one arc, or semi-global,
i.e., constant during n arcs. In the latter case, the procedure depicted in Fig. 2.6 is slightly
modified (e.g., Fig. 4.30), to first improve the orbit with stacked empirical parameters,
before solving for global parameters (see Sect. 4.5).

2.4 Rotation model

2.4.1 TAU Conventions

We followed the recommendations of the International Astronomical Union (IAU) to model
the rotation of Jupiter, Callisto and Europa. The position of the north pole is defined by
its right ascension o™, and declination 0", and the position of the prime meridian is defined
by its longitude W in the International Celestial Reference Frame (ICRF) (see Fig. 2.7).
Based on the latest report of the TAU working group on cartographic coordinates and
rotation elements [Archinal et al., 2018] in the case of Europa and Callisto, these rotation
parameters take the following form

8
a" =ay + o T+ ZAi sin J*

=4

8
0" =0y + 6,17+ Z D, cos J', (2.46)
i—4

8
W =w, +w1d—|—ZWisinJi,
i=4
with J* = JE) + J’iT ., T the interval in Julian centuries from the standard epoch J2000
(2000-01-01, 12:00 TT) and d the interval in days from the standard epoch (J2000). The
polynomial coefficients of the rotation model (offsets and rates) of Callisto and Europa are
given in Tab. 2.2. The arguments of the trigonometric functions J* (for 4 < i < 8) are
related to the proper modes in longitudes of the pericenters of the Galilean moons [Lieske,
1979], and are given in Tab. 2.3, with the associated amplitudes for Callisto and Europa.

Table 2.2: Polynomial coefficients (offsets and rates) of the right ascension and declination
of the north pole, and of the location of the prime meridian of Europa and Callisto [Archinal
et al., 2018].

ao(®) | ay(°/cent.) | 64(°) | 01(°/cent.) | wy(°) | wq(°/day)
Furopa | 268.08 -0.009 64.51 0.003 36.022 | 101.3747235
Callisto | 268.72 -0.009 64.83 0.003 259.51 | 21.5710715

The transformation from the ICRF to the body-fixed frame (BF) is performed via the

rotation matrix R?J\If , which can be decomposed into elementary rotation matrices for each

of the Euler angles as

R7y = R3(VV>R1(g - 5”)R3(g +a"), (2.47)

24



2.4 Rotation model
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Figure 2.7: Orientation of the planets and their satellites from the IAU Reports [Archinal
et al., 2018].

Table 2.3: Arguments of the trigonometric functions for the orientation of the Galilean
moons in the Jovian system and their amplitude for the right ascension and declination of
the north pole, and for the location of the prime meridian of Europa and Callisto [Archinal
et al., 2018].

(°) | 355.80 | 119.90 | 229.80 | 352.25 | 113.35
(°/cent.) | 1191.3 | 262.1 | 64.3 | 2382.6 | 6070.0
A, () 1.086 | 0.060 | 0.015 | 0.009

Europa | D,(°) 0.468 | 0.026 | 0.007 | 0.002
W,(°) | -0.980 | -0.054 | -0.014 | -0.008
A (°) -0.068 | 0.590 0.010
Callisto | D,(°) -0.029 | 0.254 -0.004
W, (°) 0.061 | -0.533 -0.009

with R, (6) the 3 x 3 elemental rotation matrices about the i*® coordinate axis, defined for
any angle 6 as

1 0 0 cosf sinf 0O
R,(0) =10 cosf sinf |, R;(0) = | —sinf cosf 0] . (2.48)
0 —siné cosf 0 0 1
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2. Models and observables

2.4.2 Updated models and librations

Discussion on updated models

The TAU models for the rotation of the satellites of Jupiter rely on a few key assumptions.
First, the angle between the orbit pole (i.e., the normal to the satellite orbital plane in
motion around Jupiter) and the spin pole, or the obliquity, is expected to be very small
for theses bodies. Because the orbit pole orientations are much more constrained by ob-
servations than the spin poles, the IAU models explicitly assume zero obliquity, i.e., that
the spin poles and the orbit poles are aligned. Moreover, the forced librations are ignored,
and finally the orientation of the prime meridians of the satellites of Jupiter is fixed, and
oriented toward Jupiter at periapse. In other words, because of current observational limits,
the TAU rotation models of Jupiter’s satellites stem from the study of the orbital motion
of the satellites around Jupiter.

There have been several improvement over the recent decades on the modelling of the
orbital motion of the Galilean moons [see, e.g., Lainey et al., 2006]. However, none of the
subsequent updates to the rotation models of Jupiter’s satellites was adopted by the IAU
conventions, which haven’t changed since TAU 1994 [Davies et al., 1995]. Thus, the rota-
tion model that we use is inconsistent with the orbital model that we consider [Jacobson,
2013], as for instance the orbit pole has changed, and is not aligned with the spin pole any
more. In other words, the obliquity computed from the estimated spin pole coefficients is
expected to be non-zero.

Because the current rotation models that we use do not reflect the improved knowledge
of the orbital motion in the Jupiter system, Steinbriigge et al. [2019] decided to use more
recent ephemerides to update the values from the TAU models, but following the same
assumptions. In doing so, the rotation and orbit models would be more consistent, but the
obliquity would be zero. Bills and Scott [2022] also updated the orbit pole model according
to the latest ephemerides. However, instead of assuming zero obliquity, they computed fully
damped spin pole trajectories, and estimated forced librations.

Nevertheless, we decided to remain consistent with the TAU convention in this simula-
tion study, but with a minor modification to add forced librations as discussed below.

Forced librations

The gravitational attraction of Jupiter creates an equatorial bulge on its moons (see
Sect. 2.2.2). Moreover, since the orbit of the moons are eccentric, the orbital speed is
variable and the static equatorial bulges are not oriented toward Jupiter (see Fig. 2.8 in
case of Europa, assuming zero obliquity). Therefore, Jupiter exerts a time-variable gravita-
tional torque on the satellites, modifying their rotation angle (not represented in Fig. 2.8).

These periodic variations of the rotation angle are called forced longitudinal librations
and have not been detected so far for Jupiter’s icy satellites, and thus are not given by
the current TAU rotation model. In order to investigate how well the forced librations
could be detected, we extended the IAU convention and added a forced libration at the
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Figure 2.8: Geometry of Europa’s libration. The long axis of Europa makes an angle 6 with
the major axis of the orbit and f is the true anomaly [from Van Hoolst et al., 2008].

orbital period. We used an additional term for Furopa’s and Callisto’s short term libra-
tion in longitude W;, corresponding to the main libration from Rambaux et al. [2011],
with Ji = 222.825° and J\ = 102.1142°/day for Europa and with J, = 311.189° and
Ji1 = 21.5692° /day for Callisto. The a priori amplitude of the main longitudinal libration
W, is set to 0°, so that the evaluation of the a priori rotation model remains consistent
with TAU models. The amplitude W, can therefore be estimated using our rotation model,
together with other rotation parameters as described in the following section.

2.4.3 Partial derivatives of rotation model

In this work, we focus on the estimation of a subset of the rotation parameters, namely
g, 0g, w; and W;. In order to estimate these rotation parameters, we have to solve the vari-
ational equations related to these parameters (see Sect. 2.3.2), which rely on the computa-
tion of the partial derivatives of the force model, with respect to the mentioned parameters
(see Eq. (2.41)). Only the accelerations related to the gravitational potential of the central
body (a, in Eq. (2.10)) depend on the rotation model, as they are first computed in the
body-fixed frame, and then converted to the inertial frame. We then have

of, B ORBE
op,  op

(2.49)

The partial derivatives of the rotation matrix Rgg with respect to each rotation parameter
can be derived from Eq. (2.46). In particular, for ay, §y, w; and W, the partial derivatives
are

ORPL _ ORPL ORPL _ ORPL

day  Oan 95, oon (2.50)
ORPL _ daR?]\f ORPL _ Sin(J)aRg@ '
ow, ow oW, Voow
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2. Models and observables

The partial derivatives of the rotation matrix with respect to o™, 6™ and W can be computed
from Eq. (2.47) so that

BF
OR 7y

80[” = R3(W) Rl(g - n) 80[” (g + an) )
IR OR; 1 7T

— mT_ sn n n 2.51
ORPY  OR,

_ T ¢ s n

with the derivatives of the elementary rotation matrices, which are derived for any angle
from Eqs. (2.48) as

0 0 0 —sinf cosf O

OR OR

(9_91<9) =10 —sinf cosf |, 8_03(9) =|—cosf —sinf 0] . (2.52)
0 —cosf —sind 0 0 0

2.5 Accelerometer model

A precise modelling of non-gravitational accelerations is a challenging task affected by
multiple error sources. Radiation pressure accelerations depend on the mass and on the
geometry of the spacecraft, but also on the properties of the materials composing it (see
Eqgs. 2.23 and 2.24). Even if these properties are well calibrated before flight, they can
change during the mission time, e.g., because of material ageing. In addition, errors in
the reconstruction of the spacecraft attitude also directly affect their modelling. Moreover,
the movement of the fuel within the tank of the spacecraft during attitude manoeuvres
generates non-gravitational acceleration which are difficult to model (fuel sloshing).

For all of these reasons, it can be interesting to have an accelerometer on board of the
spacecraft. In this work, we studied the benefit of an on-board accelerometer to measure
accelerations induced by direct SRP and PRP. Depending on the mass of the probe, and
the amplitude of the attitude manoeuvres, the magnitude of fuel sloshing-induced accel-
erations can be significant. However, modelling sloshing to simulate the accelerations is
beyond the scope of this work, but was done in other studies (see e.g., Cappuccio and
Cascioli [2018], Cappuccio et al. [2020] in case of JUICE).

The accelerations a,,.. measured by the on-board accelerometer are affected by uncer-

acc
tainties which can be modelled as

Agee = )‘(aSRP+ a’PRP) + bO + €ace (253>

with A a scale factor, b, biases expressed in the accelerometer reference frame, and €.
the measurement noise. In our setup, we simulated accelerometer measurements by eval-
uating the SRP and PRP affecting the spacecraft, as described in Sect. 2.2.4. We thus
set the scale factor A = 1, and we considered the biases constant over the entire mission,
with by, = 42nm/s? in radial, along-track and cross-track directions [see, e.g., Cappuc-

cio and Cascioli, 2018], together with a Gaussian white noise €., of standard deviation

acc
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04ee = 10nm/s? in all three directions.

a
In reality, the biases of the accelerometer change during the mission duration, e.g., af-
ter desaturation manoeuvres. We thus do not consider them as global parameters, which
are estimated over the entire mission, but we rather consider them constant on shorter
time spans, typically several days. The biases are estimated as constant accelerations (see
Sect. 2.2.5), and the length of the time span on which they are estimated has been inves-
tigated in Sect. 4.5.2. The estimation of the scale factor was discarded in this study.

2.6 Doppler observables

One of the most common tracking methods for deep space probes is radiometric track-
ing. In this work, we consider Doppler observables, which correspond to Doppler shifts of
microwave signal exchanges between one or two ground antennas and the spacecraft, de-
pending on the spacecraft transmitter mode. In one-way mode, the signal is emitted from
the spacecraft and rececived by a ground station. In case of two-way tracking, an uplink
signal is first sent from a ground station, received by the spacecraft and coherently sent
back to the same ground station. If the downlink signal is sent to a different ground sta-
tion, we talk about three-way Doppler observables. In this work, we only consider two-way
Doppler observables.

2.6.1 Formulation of the two-way Doppler observables

The frequency of a radio signal exchanged between the spacecraft and ground stations on
Earth changes between emission and reception of the signal. At first order, the change of
frequency is proportional to the velocity of the spacecraft along the line of sight. Doppler
observables, which are collected at the receiving station, are the average values of this
Doppler shift over a period of time called count interval T, or integration time. In this work,
we considered two-way Doppler observables emitted and received from ground stations of
either the NASA Deep Space Network [DSN, Asmar and Renzetti, 1993] or from the Chinese
Deep Space Network [He et al., 2022]. The coordinates of the three ground stations from
each network are given in Tabs. 2.4 and 2.5.

Table 2.4: NASA Deep Space Network

Name Coordinates Band
Goldstone, USA | 35°25’36"N  116°53/24"W S and X band
Madrid, Spain 40°25'53"N  4°14'53"W | S, X and Ka-band
Canberra, Australia | 35°24'5”S  148°58'54"E | S, X and Ka-band

Radioscience observables are computed in the BSW following the formulation of Moyer
[2003] for unramped two-way Doppler observables:

My fr(ty)
T

C

F (Pe = Ps) (2.54)
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Table 2.5: Chinese Deep Space Network

Name ‘ Coordinates Band
Jiamusi, China 46°29'36"N  130°46'13"E S and X band
Kashgar, China 38°25'24"N  76°42'44"E | S, X and Ka-band

Neuquén, Argentina | 38°11'29”S  70°8’59"W | S, X and Ka-band

with M, the spacecraft transponder turnaround ratio (see Tab. 2.6), fr the constant trans-
mitter frequency at emission time ¢;, and p, and p, the precision round-trip light times
between the ground station and the spacecraft antenna.

Table 2.6: Spacecraft turnaround ratio M, [Moyer, 2003].

Uplink | Downlink Band
Band S X Ka

g | 240 880 3314
221 221 221
X | 20 880 3344
749 749 749
Ka 240 880 3344

3599 3599 3599

The computation of the round-trip light times at the start (s) or at the end (e) of the
Doppler count interval 7 can be separated between the first leg py5 /. from the transmit-
ting station 1 to the spacecraft antenna 2, and the second leg pos , /. from the spacecraft
antenna 2 to the receiving station 3, such that

Ps/e = P12,s/e + P23,s/e

T'12,s/e T'23,s/e (255)
= C + T12,s/e + + T23,5/e

with r the Euclidean distance between point ¢ at time ¢; ;. and point j at time ¢; , /,,
and 7;; ./, the sum of the signal delays for each leg. We included the Shapiro gravitational
delay [Shapiro, 1964] on light propagation due to the gravity fields of the Sun, Earth and

Jupiter. The delays due to Earth’s troposphere and Earth’s ionosphere were not considered

ij,s/e

in our simulations. They are assumed to be fully calibrated, and the residual noise due to
the media which the signal travels through will be discussed in Sect. 2.6.3. For similar
reasons, we have not considered delays due to the Io Plasma Torus (IPT) and of Europa’s
ionosphere [Kliore et al., 1997]. Current and future models of the IPT (see, e.g., Phipps
[2019]) and of Europa’s ionosphere would help to at least partially calibrate the signal
delay [Casajus et al., 2022, Mazarico et al., 2023].

Doppler observables are then simulated under the following conditions: minimum space-
craft elevation of 10° above the horizon and no occultations of the spacecraft line of sight

by the Sun, Jupiter and the Galilean moon around which the spacecraft is orbiting.

The total derivatives of computed two-way Doppler observables with respect to the con-
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sidered parameters p, are

dF _ OF Or, N OF Or, +@
dp; Org Op; ore Op; Op;
— M2fT(t1) <8pe 8’rza 8/)3 8’)”3) + 8F

T a{r‘e apz B ar.s apz 8_]72"

(2.56)

where r, and 7, are the position vectors of the spacecraft at the start and the end of
the integration interval, respectively. The partial derivatives of the round-trip light-times
with respect to the considered parameters are described in Moyer [2003], together with the

observational partial derivatives a—F_, e.g., for frequency or range biases (which we do not

Op;
consider in this study).

2.6.2 Assessment of numerical errors in Doppler observables

The computation of Doppler observables is very sensitive to numerical noise, because
of finite floating-point arithmetic in the representation of times and distances. Indeed,
a floating-point number represented in double-precision (64-bits) has a maximum absolute
value of the relative error, or machine epsilon, of 1.11 x 10~ !¢, corresponding to ~ 0.08 mm
range error at 5 AU. A floating-point number can also be represented in quadruple pre-
cision (128-bits), decreasing the machine epsilon to 9.63 x 10735, However, this precision
improvement comes at the cost of increased computational load. Therefore, the computa-
tion has to be handled with care.

Already for the GRAIL data analysis in the BSW presented by Bertone et al. [2021a],
the handling of observation epochs was treated by separating the fractional part of the day
from its integer part to increase numerical precision with double precision floats. However,
when dealing with the tracking of planetary probes in the outer Solar System, the light
time between the probe and a ground antenna is increased from a few seconds at the Moon
to 30 — 50 minutes in the case of the Jupiter system. This consequently increases the nu-
merical error when computing the difference between the round-trip light times, which can
be written as

Pe = Ps = P1a.e T P23 — (P12.5 T P23.s)

= P12,e — P12,s T P23.e — P23,s (2.57)

T12,e 7 T12,s  T23,e — T23,s
— 9 b b b
= . + . T T2 = Ti2,s T T23,e — T23,s -

The different terms of Eq. (2.57) have similar values at the start and at the end of the
integration interval. The precise computation of their differences can lead to round-off
errors. Since the geometric distance between the ground station and the antenna spacecraft
has the largest contribution to the light times, computing their difference between the end
and the start of the integration interval causes the largest loss of numerical precision. In
the following steps, we focus on p;4 ¢, but the same consideration can be done with pys .,
pa3.s and py3 .. The geometric distance between the ground station at ¢, and the antenna
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spacecraft at ¢, is decomposed as shown in Fig. 2.9 so that

T19s = |Tpos(ta) + 7 a(te) +7(ts) + Toni(ta) — [P p(ty) + T sia(t)]]
=|rp_ (t) +risa(ts) —Teopt) + 1) + Ten(ts) — Tesa(t)]]

6 3

_ 2

= § :§ :$12kl,s’
k=1 1=1

(2.58)

where

- Tygp, 18 the I component of the position vec-
Spacecraft tor of the k' term of the leg 12, at the start
of the Doppler count interval T,

- rp_, g is the position vector of the Earth with
respect to the Solar System barycentre,

Galilean moon - ;¢ is the position vector of the Galilean

moon with respect to the barycentre of the Jo-
vian system,

- rp_,; is the position vector of the Jovian sys-
Ground station tem’s barycentre with respect to the solar sys-

tem barycentre,

- Tp_,ea 18 the position vector of the emitting
station with respect to the center of the Earth,

- 7 is the position vector of the spacecraft cen-
ter of mass with respect to the center of the

Solar System barycenter Galilean moon,

- T, 1S the position vector of the antenna with
Figure 2.9: Computation of the geo- respect to the center of mass of the satellite.

metric distance.

We followed the approach from Zannoni and Tortora [2013] to formulate a numerical error
model to assess the numerical noise introduced by our orbit determination software for the
tracking of probes in the Jovian system. This model takes into consideration the maximum
absolute value of the relative error, and the effect of the numerous operations introducing
further errors, by assuming a statistical model to represent the numerical error. As shown
in Fig. 2.10 when using only double precision (64-bit), there are significant variations of
noise with time, related to the distance between Earth and Jupiter, which is the largest
contributor to the geometric distance, and thus to the numerical noise when computing
Doppler observations.

We investigated two solutions to minimize the occurrence of numerical errors. The first
one is to use quadruple (128-bit) precision to compute and store the distances, and then
compute the round-trip light times difference also in quadruple precision, before going back
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Figure 2.10: Numerical error model on Doppler observables computation(r = 60s).

to double precision (64-bit). By only using quadruple precision at specific locations in the
code, the performance was not heavily affected. The numerical noise was then reduced by a
factor of 2.5, from an upper bound of 7.4 x 103 mms~! to0 2.9 x 103 mms ™!, for two-way
Doppler.

We also compared the RMS of the Doppler residuals for an orbit fitted around Europa
by two-way Doppler observables with only double precision, and with localized quadruple
precision, without any additional source of error (zero-tests). In our controlled simulation
environment, the RMS of the Doppler residuals was reduced by several orders of magnitude
(from 8.0 x 10~*mms~! to below 4.0 x 10~ mms™1).

We additionally considered another solution, i.e., to rewrite the distance differences as

2
Tije ~Tijs = T 1 = (2.59)

Z], + TZ] S
allowing us to circumvent the difference of square roots by working directly with the dif-
ferences of each component and each term of Eq. (2.58). If z,;, . and = are the ("
component of the position vector of the k*" term of the leg ij, respectively at the end and

ijkl,s

the start of the Doppler count interval 7, we can then write

6 3 _ 2
Z Z zgkl e ajijkl s
/r.7“.77 7‘]5 — — + r.
k=11=1 "ije T Tijs (2.60)
6 3 ’
B ( . (Tijkte T Tijrrs)
- Tijkl,e = Lijkl,s )
k=1 1=1 '5.77 + TZ] S

which is numerically more stable when x,;; ; & ;. .. By doing so, we could reduce

the numerical noise slightly more in comparison to localized quadruple precision (below
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3.3 x 1072 mms~1). This is also visible when adapting the numerical error model of Zan-
noni and Tortora [2013] (see Fig. 2.10). Equation (2.60) can then be computed using double
precision only, since quadruple precision does not visibly reduce the numerical error.

It should be noted that the RMS of the Doppler residuals given in this section do not
represent the level of accuracy that can be reached using realistic data, which will be dis-
cussed in Chapter 4. However, they illustrate the improvement we introduced in treating
numerical errors within the BSW. After adopting the presented solutions, the numerical
error is negligible with respect to other important sources of physical noise, which are
discussed in Sect. 2.6.3.

2.6.3 Noise model

The Doppler observations are affected by various sources of noise [Asmar et al., 2005, Tess
et al., 2014al, which we discuss in this section. We describe a noise model in which each
contribution is characterised by its Allan deviation o, (7) [Barnes et al., 1971], where 7is the
Doppler integration time (see Fig. 2.11). For a given 7 the Allan deviation can be converted
to an equivalent noise on the line-of-sight velocity o, or a more practical equivalent noise
which we directly add to the Doppler observable o such as

v =coy,(7), and o= fro,(7). (2.61)

The propagation of the signal through media with variable refractive index causes frequency
fluctuations. Random refractive index fluctuations in interplanetary media, such as the
solar plasma and the IPT, are proportional to f;Z [Asmar et al., 2005]. It means that
K-band signals (=~ 32GHz) will be less affected by this dispersive noise than X-band
(= 8.4 GHz) or S-band (=~ 2.3 GHz) signals. The noise due to solar plasma highly depends
on the distance of the line of sight between the Earth and the probe with respect to the
Sun, which is characterized by the solar elongation vgpp (angle between the Sun, the Earth
and the spacecraft, also called Sun-Earth-Probe angle). We modelled the solar plasma noise
for two-way X-band Doppler observations at 7= 60s as [Iess et al., 2012]

1.76 sin(ygpp) 1% 4+ 6.25sin(vszp) % if ygpp € [0°,90°]

G = 107 % ¢ (1.76 + 6.25) sin(ygpp) % if vspp €]90°,170°]
o7 if ygpp €]170°,1807]
(2.62)

Since plasma noise is proportional to f;Q [Asmar et al., 2005], the solar plasma noise model
has to be scaled accordingly when using S-band or Ka-band signals.

The refractive index is also fluctuating in the troposphere, mainly due to water vapour
fluctuations [Asmar et al., 2005]. The noise induced by the “wet component” of the tro-
posphere is, however, not dispersive. We adopted a noise model with a seasonal variation,
similar to Iess et al. [2012], which can be written as

oy P = [6.5 — 3.5 cos(2m(t — ty))] x 1074, (2.63)

with ¢ in years and t; = 2010years for a station in the northern hemisphere, and ¢; =
2010.5 years for a station in the southern hemisphere, so that the noise coming from the
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wet troposphere is maximum in summertime, and minimum in wintertime. Wet troposphere
noise depends highly on the ground station location, but we decided that this model is a
sufficient approximation for our simulation.

Because of wind, gravitational loading, and thermal deformation, the antennas of the
ground stations are also a source of noise which can be evaluated as crg S=1.6x10"" at
7=60s [Iess et al., 2014a]. We assumed 05 /¢ = 1.8x 10~ for all the spacecraft electron-

ics, which are generally dominated by noise from the Deep Space Transponder (DST) [less
et al., 2014al].
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Figure 2.11: Noise model for two-way Ka-band Doppler received at a station in the northern
hemisphere at 7= 60s.

It is important to note that the noise induced by the radio signal propagation in a dispersive
medium (e.g., solar plasma) can be cancelled using multi-frequency radio systems [Bertotti
et al., 1993]. Additionally, the use of water vapour radiometers at the ground stations would
allow the calibration of the wet tropospheric noise. However, since these considerations de-
pend on the mission architecture and on the ground station considered, we decided to follow
a more conservative approach in this work. We simulated realistic Doppler observations by
applying a Gaussian white noise of variance
tot\2 lasmay2 tropoy2 GS\2 S/C\2

(o) = (o ") + (0 ) + (0°)* + (03, ). (2.64)
For some investigations in this work presented in Chapter 4, we also considered a fixed
level of Gaussian white noise, o, = 0.10mms~! (one-way) at 7= 60s integration time, to
encompass the major relevant noise sources.

2.7 Laser altimetry data

Besides Doppler tracking data, laser altimetry data were simulated for a probe orbiting Cal-
listo using pyXover, a Python suite of altimetry analysis tools for planetary geodesy [Bertone
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et al., 2020]. Realistic laser altimeter measurements are simulated from the spacecraft to
the surface of Callisto by considering a synthetic topography model (Sect. 2.7.1).

Although our formulation is valid regardless of the altimeter pointing, in this work we
only assumed nadir pointing measurements to avoid the additional complexity of defining
an attitude law for the spacecraft or the instrument. In Sect. 2.7.2; we follow the same for-
mulation previously which has been used for crossover analyses of the MESSENGER probe
at Mercury [Bertone et al., 2021b], to compute crossover discrepancies at Callisto. In order
to combine the crossover analysis with our generalized Doppler orbit determination, we
extract the crossover discrepancies and their partial derivatives from pyXover (Sect. 2.7.3)
and set-up an interface to the BSW routines, as detailed in Chapter 5.

2.7.1 Altimetric range simulation

The laser altimeter range LA(t) is modelled as the distance between the spacecraft and
the topography T(¢, \) of the moon at the sub-satellite point,

LA(t) = T’(t) - T(¢7 )‘) - ur(r7 t) + Erange (265>

where ¢ and A are the latitude and longitude of the probe at ¢, respectively. u,. is the radial
deformation due to Jupiter-induced tides, which can be expressed as [see, e.g., Van Hoolst
and Jacobs, 2003]

hyGM;RE,
u,(r,t =5 2 d—g(Bcos Y—1), (2.66)

with 1 being the angle between r and the direction from the center of the moon to Jupiter,
g the gravitational acceleration at the surface, d; the distance between the centres of mass

of the Jupiter and Callisto, and h, the Love number of degree 2. ¢ represents the

range
white noise contributions we add to simulate realistic altimetric ranges. ']Q_Lhe main sources
of errors for an altimeter are: the instrument intrinsic errors 6%%’;, which are below 0.2m
in the case of BELA [Steinbriigge et al., 2018b, HosseiniArani, 2020] and GALA [Hussmann
et al., 2019], errors in pointing, and alignment which depend on the altitude h, spacecraft

pointing uncertainties A®, and surface slope S, so that [see, e.g., Steinbriigge et al., 2015]

553219?”9 = htan Stan A® . (2.67)
We get 55’3;”;?"9 ~ 1m for a probe orbiting at h = 200 km by assuming in average S = 6°
and A® = 10" [see, e.g., Villamil et al., 2021].

The absence of highly accurate topographic models for the Galilean moons prevents using
altimetric ranges as direct measurements [Mazarico et al., 2018, Goossens et al., 2020].
Nevertheless, the topography can be cancelled at crossover locations by defining differen-
tial measurements between ranges to the same surface location at different epochs (i.e.,
crossover discrepancies, see Sect. 2.7.2). However, an important source of uncertainty in the
processing of altimetry crossover is related to interpolating between the bouncing points
of the laser altimeter ranges and the crossover location on the surface. These uncertainties
can be taken into account as part of the altimetric ranges noise budget (see, e.g., Villamil
et al. [2021]) as they depend on topography, the velocity of the probe with respect to the
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surface of Callisto, and on the sampling rate of the altimeter instrument. We compare this
approach with the interpolation error we get by considering a detailed topography model
(see Chapter 5).

Since no Digital Elevation Model (DEM) for the Galilean moons is currently available,
we consider a global DEM of Mercury for the similar-sized Callisto [Becker et al., 2016].
However, the chosen global DEM presents only large scale features with an effective reso-
lution down to several km/pixel. In order to also take into account smaller-scale features,
we simulate a small-scale topography, based on a tile of 0.25° x 0.25° (i.e., 10km x 10km),
which periodically and continuously repeats on the surface of Callisto over the longitudes
and latitudes. This texture is computed following Bertone et al. [2021b] by using a fractal
noise map composed by five superposed levels (see Fig. 2.12): the main noise level has an
amplitude of 30 m on a 600 m baseline, while for each of the following ones the amplitude
is divided by v/2 and the baseline is halved. The total topography T considered for the
Galilean moon when simulating our altimetry dataset is then the sum of the large scale
topography Th gy, and of the small-scale topography 7Tj,.,;, so that

T()‘, ¢) = TDEM()‘v ¢) + Czjlocal()‘7 (b) : (268>

It is important to note that we defined 7j,.,; based on past analyses at Mercury, which
might not represent the actual (currently unknown) small-scale topography of Callisto.
The magnitude of small-scale topography has a direct impact on the interpolation error
for the crossover analysis. For instance, a smoother small-scale topography would yield a
lower interpolation error.

Simulated small-scale topography
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Figure 2.12: Small-scale topography [Bertone et al., 2021b].

We simulate altimetric ranges using pyAltsim, a program of the pyXover software library,
based on spacecraft orbits integrated in the BSW (see Sect. 2.1), converted from STD to
SPK format, and read in pyXover using SPICE routines [Acton Jr, 1996]. We mainly con-
sidered a 10 Hz sampling, consistent with BepiColombo Laser Altimeter [BELA; Thomas
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et al., 2021], but we also performed a few tests at 30 Hz, the nominal sampling rate of the
GAnymede Laser Altimeter [GALA; Hussmann et al., 2019] on board of JUICE. However,
such a higher sampling increases the amount of data, and thus the computational load and
related challenges.

2.7.2 Crossover discrepancy

A crossover point is a location at which two distinct ground-tracks, i.e., the projections of
the orbit on the ground surface along the line-of-sight of the altimeter, intersect. The search
for the location of all crossovers during the mission duration is central to this analysis, as all
combinations between all ground-tracks have to be analysed. This is efficiently performed
in pyXover, as detailed in Bertone et al. [2021b]. Differential measurements at crossover
locations (Fig. 2.13) are particularly interesting [Shum et al., 1990, Rowlands et al., 1999,
as they are due to a combination of errors in the spacecraft orbit and attitude, interpolation
errors of the surface topography between the altimeter footprints, and geophysical signals
(e.g., mismodellings in orientation or vertical tides model).

_Orbit
Differences,
ORBIT CROSS-OVER
LOCATION
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A
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Figure 2.13: Schematic illustration of altimeter crossover approach [Neumann et al., 2001].

The search and the computation of the crossover observables starts with the geolocation
of the laser altimetry bouncing points on the surface of the moon (see Fig. 2.14). Each
altimetry measurement gets assigned a set of latitude ¢, longitude A and elevation n,
corresponding to the radial component of the geolocalised range measurements. Then, the
partial derivatives with respect to the orbit parameters, the rotation parameters oy, 6y, wy
and W, and the tidal parameter h, are computed along each track by finite differencing
(except for hy, whose derivatives are computed analytically, see Bertone et al. [2021b]). In
pyXover, the orbit parameters are orbit corrections modelled as 3 constant offsets estimated
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on each track in the Local Orbital Frame (TVN), defined as

e, = S e, = TX—T_‘, and e, =¢€,xXe,. (2.69)

|17 |7 > 7]
The Local Orbital Frame (TVN) considered in pyXover is different from the Local Orbital
Frame (RSW) used in the BSW (see Sect. 2.2.5). e,. and e are close to e, and e,,, respec-
tively, but they are only equal when the probe is at one of the two apsides, or if the orbit

is perfectly circular. However, e,, and e,, are both in the direction of the normal to the
orbital plane.
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Figure 2.14: Workflow of the pyXover code: (1) geolocation of altimetry data and (2)
crossovers location, adapted from Bertone et al. [2021b].

Finally, the intersections between the ground tracks are identified, and the crossover dis-
crepancy v between two tracks A and B is computed as the difference in elevation at the
crossover point, such that

V="aA—TB- (2.70)

The crossover observables and their partial derivatives computed in pyXover, can either
be processed as in Bertone et al. [2021b] within pyXover to find corrections to the consid-

ered parameters, or they can be exported to the BSW for a joint analysis with Doppler
observables (see Chapter 5).

2.7.3 Crossover partial derivatives

The crossover discrepancy is modelled as a function of errors in the a priori orbit, devia-
tions from the rotation model, and mismodelling of tidal deformations. In an ideal case,
we would expect v = 0. As mentioned in Sect. 2.7.2, the orbit parameters in pyXover are
parametrised as offsets in the Local Orbital Frame (TVN). Since the BSW uses a differ-
ent orbit parametrisation, i.e., initial osculating orbital elements for each arc, the partial
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derivatives have to be adapted accordingly.

For each parameter p;, the total derivative of the crossover discrepancy v; can be writ-
ten as

dv;
dp;

o 8V,L 8Ai,1 + 8V’i 8Ai72 + ayi
0A; 1 Op, 04,5 Op; op.’

J

(2.71)

with A; ; and A, 5 the orbit offsets of respectively the first and second track of the crossover
7. Using chain rule, we can then derive

dyi ayz aAi’l a’rl 81/1 aA'ti 8”°2 (91/1-
- -

dp] N 8Ai,1 87'1 8])] (9Ai,2 8T2 8p] ap]7

(2.72)

with r, = r(¢;). The position of the spacecraft is reconstructed from the orbit offset
according to r, = ro . + R A, ., with R, denoting the rotation matrix from the Local
Orbital Frame (TVN) to the inertial frame at t;, and 7 ; being the a priori value of 7.
We then have

04,, ORT »  OR] T
or, oy, (i = Tox) + . = WkRkAi’k e 27

We compute the total derivatives by evaluating Eq. (2.73) with all the parameters set to
their a priori value, i.e., in particular by setting 4, , = 0, so that

dy; _ oy, R{arl N oy, Rgé?'rQ n oy, '
dpj 8Ai,l 8173' aAi,z 8pj apj

(2.74)

ov;

04, i

are computed in pyXover, as mentioned in Sect. 2.7.2, together
oy,
Op;
of the crossovers, the crossover discrepancies, and their partial derivatives are exported

from pyXover to XOVNEQ), a program within the BSW developed in the frame of this
work. XOVNEQ reads the observation files from pyXover, and then uses the previously
integrated STD orbit to compute the total derivatives according to Eq. (2.74) to set up
NEQs which can then be combined with other observables within the BSW (see Sect. 2.3.3).
See Sect. 5.1.1 for a more detailed description of the combination.

The partial derivatives

with the partials % forp; € {ag, 0y, wy, hy} and = 0 for other parameters. The epochs
i

2.8 Internal structure modelling

The gravity field of a celestial body can be computed directly from the internal mass distri-
bution, but the gravity field alone is not enough to unambiguously determine the internal
structure of a celestial body. This is even true if one assumes radial density profiles. One
can nevertheless rely on a number of reasonable assumptions to help constraining possible
internal structure models, such as fixing the number of layers, the chemical composition
of the body or the equation of state. Other quantities, such as the rotational state, the
moments of inertia, and the tidal deformations can further constrain the internal structure.
In the following, we briefly describe some key constraints which can be derived from the
geodetic parameters we estimate in this work.
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2.8 Internal structure modelling

2.8.1 Moment of Inertia

The Moment of Inertia (Mol) of a body b with respect to a given axis A is defined as the
integral over the body so that

I\ = ///prQAdV, (2.75)

where p is the density of the of the infinitesimal volume dV, and r, its perpendicular
distance to the axis A. It is is an indicator of the internal mass distribution of the moon,
as it gives information on the density profile of the body. For instance, a sphere of mass
M and radius R, with a homogeneous density has a mean Mol I of 0.4MR?. However, in
case of an ellipsoid of revolution, we distinguish the polar principal moment of inertia C'
with respect to the rotational axis, and the equatorial principal moments of inertia A and
B. I and C can be determined from the degree-2 gravity field coefficient and with several
assumptions, which we describe in the following.

Hydrostatic equilibrium

A body has reached hydrostatic equilibrium if the forces due to gravity and to pressure
gradient cancel out. In addition, if there is no large density variation inside the body and
if the perturbations arising from tides and from rotation are small [Gao and Stevenson,
2013], the normalized mean Moment of Inertia (Mol) of a synchronous rotating moon can
be determined from the Radau-Darwin Approximation (RDA) [Radau, 1885, Hubbard and
Anderson, 1978], so that

4—ky
1+ k; ’

;I _A+B+C_2(, 2
MR2 3MR2 3 5

(2.76)

with k¢ the fluid (or secular) Love number, which describes the reaction of the moon to a
perturbing potential after all viscous stresses have relaxed [Munk et al., 1977]. The fluid
Love number k¢ should not be confused with the tidal Love number k. Strictly speaking,
k is only related to the short-period tides, and k is related to the static tides [Van Hoolst
et al., 2013].

For a synchronously rotating body (such as the Galilean moons) deformed by rotation
and tides, the fluid Love number k; can be inferred from the degree-2 gravity zonal (zero
tide) coefficient by noting that [Rappaport et al., 1997]

2 p3
L
" GMg

Iy = gqur, with (2.77)
where the rotation parameter g,. is the ratio between the centrifugal and gravitational forces
at the moon’s equator. Note that in case of hydrostatic equilibrium, there is a relation be-
tween the degree-2 sectorial and zonal coefficients. This hydrostatic relation, which is a
necessary but not sufficient condition for hydrostatic equilibrium of synchronous satellites,
can be approximated by J,/Cyy = 10/3 for slow rotators. For Europa, a higher order ap-
proximation is instead necessary, so that J,/Cyy = 3.324 [Tricarico, 2014].
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The hydrostatic relation J,/Cy, = 10/3 has been considered to estimate the degree-2
coefficients of Europa [Anderson, 1998] and Callisto [Anderson, 2001] from Galileo data.
Indeed, J, and Cy, could not be estimated independently because the flybys (four at Eu-
ropa and five at Callisto) were located around the equator, and because equatorial flybys
are not well suited to estimate zonal coefficients.

Hydrostatic equilibrium was also assumed by Anderson [2001], and the Mol of Callisto
has been computed using the RDA (I = 0.3549 + 0.0042). This tells us that Callisto is
probably not fully differentiated. Indeed, if Callisto would be fully differentiated, the Mol
would be 0.38 [McKinnon, 1997]. In the case of Europa, its measured Mol [Anderson,
1998, I = 0.346 £ 0.005], also assuming hydrostatic equilibrium, suggests that the moon is
fully differentiated into a metallic core surrounded by a rock mantle and a water outer shell.

However, hydrostatic equilibrium is not guaranteed for Callisto or Europa. Deviation from
hydrostatic equilibrium has been identified for several moons of the Solar System, e.g.
Titan [Iess et al., 2010, Durante et al., 2019] and Ganymede [Casajus et al., 2022]. As
Callisto is a slow rotator, even small internal mass variations would significantly influ-
ence its Mol [McKinnon, 1997]. The non hydrostatic effects would then be more critical
than for Europa. Indeed, if Callisto is not in hydrostatic equilibrium, the Mol estimated
by Anderson [2001] would be too large. The existence of non-hydrostatic effects could then
disprove an incomplete differentiation of Callisto’s internal structure [Gao and Stevenson,
2013]. However, additional topographic data could be used to infer the non-hydrostatic
components [less et al.; 2014b, Hemingway et al., 2018].

With a low altitude polar orbiter, the gravity field can be estimated without assuming
hydrostatic equilibrium. In case this equilibrium is a posteriori valid, we can evaluate the
mean Moment of Inertia of the moon.

Triaxial ellipsoid

As briefly mentioned in Sect. 2.2.1, the degree-2 gravity field coefficients can also be used
to define a triaxial ellipsoid as a quadrupole equipotential surface in the frame of the
hydrostatic equilibrium assumption [Van Hoolst et al., 2008]. The equation of the triaxial
ellipsoid can be written as

T@ll()\a ¢) =

abe
v/ (becos psin A)2 + (casin ¢sin \)2 + (absin ¢)2 7
with a > b > c the principal axes, ¢ the latitude and A the longitude. The principal axes can

be approximated by the degree-2 gravity field coefficients and the rotation parameter g,..
Indeed, r,;; can expressed to first order with the flattening coefficients (see e.g., Van Hoolst

(2.78)

and Dehant [2002]) and by using associated Legendre polynomials, as

ren( AN @) =19 <1 - %aPQO(Sin o) + %BPQQ(sin ¢) cos 2/\) ) (2.79)

with 7y the mean radius of the ellipsoid surface and with the polar flattening and the

equatorial flattening, respectively, defined as
(a+b)/2—c a—b

o= W , and B = — - (2.80)
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Van Hoolst et al. [2008] expressed the flattening in terms of J,, Cyy and g,., so that

o= §J2 + §qr, and B =6C5, + §qr. (2.81)
2 4 2
If the reference frame coincides with the principal axes of inertia, we also have Sy, = Cy; =

S51 = 0. The principle axes can be reconstructed from the flattening coefficients as

)
b=rq (1—1—%&—%6) , (2.82)
2
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Figure 2.15: Precession of the instantaneous orbit pole n around an invariable pole k and
of the rotation pole (or spin pole) s of the moon around the orbit pole n. In a Cassini
state, n, s and k remain coplanar [extracted from Nimmo and Pappalardo, 2016].

The polar Mol C of synchronous moons can be derived from the obliquity € indepen-
dently from the above-mentioned hydrostatic equilibrium hypothesis. The obliquity € is the
angle between the orbit pole n and the spin pole s, the latter computed from the estimates
of its right ascension o, and its declination 0™ (see Sect. 2.4.1). If the obliquity is tidally
damped, and if the moon occupies a classical Cassini state [Bills and Nimmo, 2008], then
the orbit pole n and the spin pole s remain coplanar as they circle a third (invariable) pole
k (Fig. 2.15). The orbit pole precesses then at a uniform rate Q) about the invariant pole.
The normalised polar Mol can then be obtained as [Eq. 10 of Bills and Nimmo, 2011]

C _2n (Cys/2 4 (Jy + Coyy) cose) sine (2.83)
MR 30 sini — o) | |

with ¢ the inclination of the orbit pole with respect to the invariant pole, with s -k =
cos (i —€), and n the mean motion of the moon around Jupiter. The obliquity of the
Galilean moons is expected to be small, thus difficult to measure. Chen et al. [2014] pre-
dicted obliquities of 0.05° for Callisto and 0.00014° for Europa.
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2.8.2 Putative subsurface ocean and ice-shell

The presence of a subsurface ocean on each of the icy moons of Jupiter can be confirmed
through three main geophysical approaches [Nimmo and Pappalardo, 2016]: magnetic in-
duction [Khurana et al., 2002], radar sounding [Blankenship et al., 2009], and geodetic
approaches. Moreover, the ocean and the ice-shell thickness can be constrained from a
combination of several measurement techniques (see Fig. 2.16). In this section we will
briefly describe several geodetic measurements contributing to the characterisation of the
ice-shell and of the putative ocean, which are of prime interest in this work.

Hice— 3.5 GPa 1 GPa
H Measurement
Technique:

Hypothetical l:l Static gravity

p—
L
(=]
T

range of (Density structure)

' allowable e
100 |- . values - Tidal deformation

| . (Love number)

Dual-frequency
Magnetic induction

Ocean thickness, km

[,
(=3
|

Radar penetration
; (lower bound)

L} 1 1
1 10 100
Ice shell thickness, km

Figure 2.16: Overlapping measurements combination to constrain the ice shell and ocean
thickness of Europa [extracted from Roberts et al., 2023].

Tidal response

A precise measurement of the body’s tidal response is the first element which can provide
evidence of a subsurface ocean [Wu et al., 2001]. The tidal response of a celestial body
is composed of vertical surface displacements (characterised by the h, Love number, see
Sect. 2.7.1), and of time-variable gravity related to the tidal bulge (characterized by the k,
Love number, see Sect. 2.2.2). The analysis of laser altimetry crossovers makes the estima-
tion of h, possible, and k, is estimated together with the static gravity field, using radio
tracking.

The precise estimation of either ky or h, would unambiguously confirm the presence of
a subsurface ocean. Indeed, with an ocean that decouples the surface ice from the rocky
interior, the amplitude of the semi-diurnal tide on Europa is roughly 30 m, while it is ap-
proximately 1m in the absence of an ocean [Moore and Schubert, 2000]. Because of the
larger distance to Jupiter, the amplitude of the tides on Callisto are expected to be smaller.
They could nevertheless exceed 5m in presence of a global ocean, but would be limited to
maximum 0.3m in absence of an ocean [Moore and Schubert, 2003].

The thickness of the ice is instead more difficult to infer from h, or k, alone. However, the
quantity 1+ ky — h, would provide a better estimate of the ice thickness, even though the
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precise determination of the thickness is highly dependent on the rigidity of the shell [Wahr
et al., 2006].

Librations

The determination of the amplitude of the longitudinal librations (see Sect. 2.7.1) can pro-
vide additional constraints on the putative ocean, even though it would not be sufficient
by itself to assess its existence.

In this work, we did not distinguish the libration of the ice-shell from the libration of
the interior. However, in the presence of a global ocean, the ice shell is decoupled from the
interior and may librate separately [Wu et al., 2001]. In addition, if the shell is assumed
to be rigid, accurate measurements of the amplitude of the ice-shell librations from the
orbit could be used to constrain the thickness and density of the shell [Rambaux et al.,
2011, Baland and Van Hoolst, 2010]. Both the presence of an elastic shell and the viscosity
of the ice [Jara-Orué and Vermeersen, 2014] reduce the sensitivity of the librations to the
thickness of the icy shell. However, the librations amplitude can still constrain the density
and the rigidity of the ice-shell [Van Hoolst et al., 2013].

The libration of the inner layers is expected to be at least one order of magnitude smaller
than the libration of the outer-shell [Van Hoolst et al., 2013|. Therefore, even if the gravity
field measurement is sensitive to its effect [Baland and Van Hoolst, 2010], the latter would
be difficult to measure.

Obliquity

Measuring the obliquity € can provide additional evidences on the existence of a putative
ocean below the icy shell. An outer ice-shell decoupled from the interior would be a rea-
sonable explanation for a measured obliquity different from the obliquity predicted for an
entirely solid moon, thus suggesting a global subsurface ocean. In addition, a decoupled
shell would induce different obliquity measurements at the surface and from gravity, be-
cause of differently oriented solid interior, as it is the case of Titan [Bills and Nimmo, 2011,
Baland et al., 2011].

In the presence of a subsurface ocean, accurate obliquity measurements can improve con-
straints on the ice thickness and coupling processes in the interior of the Galilean moons [Ba-
land et al., 2012].

Static gravity field

The knowledge of the static gravity field may be used to study the properties of the
hydrosphere of the Galilean moons. For instance, as mentioned in Genova et al. [2022],
the comparison of gravity and topography helps to characterise the ice shell. The gravity
computed from the topographic relief (i.e., Bouguer correction) can be compared to the
observed gravity field to determine the Bouguer anomalies, which can be used to provide
constraints on the lateral variation of the ice-shell [Wieczorek, 2015]. Moreover, the gravity
field is expected to correlate with topography at high degrees, whereas the signal from the
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lithosphere and the mantle-ocean interface is attenuated [Genova et al., 2022]. In the case of
Callisto, Genova et al. [2022] computed the gravity/topography admittance profiles with
several internal structure models. At high degrees, the admittance become independent
from the elastic thickness of the lithosphere (Fig. 2.17a). On the contrary, the admittance
highly depends on the ice-shell density (Fig. 2.17b). This means that estimating the gravity
field of Callisto up to d/o 80 allows for a full characterisation of the ice-shell.
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Figure 2.17: Admittances for ice shell thickness = 200km, when fixing (a) the ice shell
density p = 1200kg/m? or (b) the lithosphere elastic thickness of TE=100km [extracted
from Genova et al., 2022].

2.8.3 Summary
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Figure 2.18: From the estimation of geodetic and geophysical parameters to the character-
isation of the interior of the icy moons.

The determination of the internal mass distribution (via the Mol) and the characteri-
sation of the putative subsurface ocean and the surrounding ice-shell of the icy moons of
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Jupiter are key objectives for the future exploration of the Jovian system (see Sect. 1.2),
and can be achieved by estimating geodetic and geophysical parameters, as discussed in
the previous sections and summarised in Fig. 2.18. In this work, we focus on the estimation
of the gravity field and rotational parameters, and of the tidal Love numbers k, and hs,
but one may note that the combination of complementary techniques and measurements,
such as radar sounding and topography would provide tighter constraints on the interior
of the icy moons.
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Chapter 3

Low altitude orbit design around
Jovian moons

The design of orbits suitable for scientific investigations is the entry point of our study.
In general, we consider low altitude, high inclination and near circular orbits to provide
a global mapping of the moon to the extent possible, but this procedure can be applied
also for other type of orbits, such as elliptic orbits. The spacecraft orbits we considered are
designed in a restricted three-body system consisting of Jupiter, one of the Galilean moons
(Europa or Callisto), and a spacecraft with negligible mass. We derive in this chapter
a set of orbits for the massless spacecraft according to parameters of interest associated
with different orientations of the orbital plane with respect to other celestial bodies of
interest, e.g., the Earth or the Sun. The orbit design procedure was implemented during
this work in MATLAB, using in particular odel13 solver for the integration of Ordinary
Differential Equations [ODE; Shampine and Reichelt, 1997], and the orbits generated have
been afterwards introduced in the Bernese GNSS Software [BSW; Dach et al., 2015].

3.1 Repetitive Ground Track Orbits

Repetitive Ground Track Orbits (RGTO) are beneficial for the observation of time varying
phenomena on the ground, as repeated observations of a given point of the surface of the
celestial body are ensured. RGTO are commonly used for Earth observation missions [see,
e.g., Colombo, 1984, Donlon et al., 2021] and are, e.g., also considered for the Jupiter Icy
Moons Explorer mission (JUICE) around Ganymede [Ortore et al., 2015, Boutonnet and
Varga, 2020]. It is important to note that we can still study non-repetitive orbits in the
framework of RGTO if we set the repetition cycle duration to be larger or equal to the
mission duration.

The ground tracks of an m:R RGTO repeat after m revolutions of the moon around itself.
In the case of Europa, m = 1 and m = 26 correspond to cycle duration of 3.55 and 92.33
Earth days, respectively. For Callisto, m = 1 and m = 6 corresponds to cycle duration
of 16.67 and 100.02 Earth days, respectively. Within this period the probe completes R
revolutions around the moon. This translates into

mD, = RIT,

n

(3.1)

n
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where D,, is the nodal day of the moon, and T, is the nodal period of the probe. m and R are
two integers prime to each other, i.e., every m nodal days ground tracks return to the same
position. In order to study non-repetitive orbits with RGTO, we have to set the repetition
cycle duration to be larger or equal to the mission duration. For instance, if we consider
such RGTO with m = 26 for Europa, and m = 6 for Callisto, the ground tracks would
only repeat after 26 Europa days and 6 Callisto days, longer than a 3 months mission. The
whole set of associated orbit tracks defines a grid in the moon-fixed reference frame (see
Fig. 3.1). We limit the investigation to low altitude (100 —200km) and high inclination
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Figure 3.1: 3:118 RGTO (i = 89°, h = 135 km) in Europa-fixed frame. After 118 revolutions
around Europa and 3 Europa days (10.65 Earth days), the probe will follow the same ground
track.

(80°-100°) orbits, because they ensure a high global coverage and are thus relevant for
forthcoming mission such as JUICE [Grasset et al., 2013] and for mission proposals such
as Blanc et al. [2020a]. In the fame of the two body problem, the sidereal period T,, is given

by
T, =2m\/a3/pe , (3.2)

with a being the semi-major axis of the probe’s orbit (see Fig. 2.1) and pg the standard
gravitational parameter of the Galilean moon. Hence, if a is bounded, so is the nodal period
T,. For a considered revisit time m, there is then a finite number of integers R satisfying
the ground track repetition condition given by Eq. (3.1) (see Tab. 3.1).

These orbits provide a homogeneous ground track coverage. We can define the spatial

resolution by the equatorial distance between the ground tracks. We call this constant

distance “cycle intertrack”, which is given by
27TRG

eq = .I% Y

5 (3.3)
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Table 3.1: m:R RGTO with their altitude and cycle intertrack fulfilling the orbit require-
ments for Europa (left) and Callisto (right). The two numbers in the 2" column denote the
minimum and maximum possible values of R for an altitude between 100 km and 200 km.

m R Altitude Cycle intertrack m R Altitude Cycle intertrack
(at equator) (at equator)
1 38 181km 258km (9.47°) 1 146 196km 104km (2.47°
40 123km  245km  ( ) 154  105km 98km (
2 75 197km 131km ( ) 2 293 190km  52km (
81 109km  121km (4.44°) 307 110km  49km (
3 113  192km 87km (3.19°) 5 729 198km 21km (0.49°
(2.95%) (
(0.37°) (
(0.34°) (

122 104 km 80 km 772 100 km 20 km
6 875 198km 17 km
925 103 km 16 km

26 973  199km 10 km
1061  101km 9km

with Rs being the equatorial radius of the Galilean moon [Ry = 1562.6 km for Europa
and Ro = 2410.3km for Callisto; Archinal et al., 2018]. This gap depends only on the
number of orbit revolutions between repetitions, noted as R. Large cycle intertracks, i.e., a
lower spatial resolution of the ground tracks, can be detrimental to the recovery of global
geodetic or geophysical parameters, like, e.g., parameters describing the gravity field (see
Sect. 4.3.1). Table 3.1 shows the cycle intertrack for different RGTO. A lower R corre-
sponds to a higher altitude, and to a larger cycle intertrack (see Eq. 3.3).

The design of an RGTO is initiated by the search for a first guess orbit which satisfies
approximately Eq. (3.1), followed by the refinement of this orbit using a differential cor-
rector (Sect. 3.2.2). Using the polynomial approach detailed in Cinelli et al. [2015], we
compute a set of initial guess orbital elements (semi-major axis a, eccentricity e, inclina-
tion ¢ and argument of periapsis w), describing a given m:R RGTO. This approach is based
on the ground track repetition condition given by Eq. (3.1). The semi-major axis a then
satisfies Eq. (10) of Cinelli et al. [2015]

dra” + dya®® 4+ dra* + dya® +dy, =0, (3.4)

where dp is related to third body perturbations, d; is related to characteristics of the
moon’s orbit, dj is related to the Keplerian motion of the spacecraft around the moon,
d, and d, are related to perturbations due to Jy. Eq. (3.4) is obtained by fixing the other
orbital elements (e, i, w), and is a function of the ratio R/m, of the physical parameters
of Europa or Callisto, and of the mean motion of Europa or Callisto around Jupiter.

For each pair (m, R), we solve the degree-14 polynomial equation obtained by squar-
ing Eq. (3.4) for the semi-major axis a while fixing e, ¢ and w. In this study, we choose
to focus on near-circular orbits. We thus fix e and w to 0. From the multiple solutions
obtained from the degree-14 polynomial equation, we verify that they satisfy Eq. (3.4),
and select those falling within the range of studied altitudes. Usually, only the altitude of
one of them is between 100 km and 200 km.
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As Eq. (3.4) was derived by approximating third body perturbations, it only provides
a first guess orbit. Such an orbit then needs to be refined according to a more realistic
force model to ensure ground track repetition. In addition, the initial longitude of the as-
cending node, €2, has yet to be defined at this stage, which completes the characterization
of the geometry of the orbital plane with respect to the third body Jupiter and with respect
to other perturbing bodies.

3.2 Orbit refinement

3.2.1 The Hill model

The first guess orbits described in the previous section do not meet precisely the condi-
tion for ground track repetition Eq. (3.1) because of approximations in the derivation of
Eq. (3.4). We considered the Hill model [Lara and Russell, 2007] to refine these orbits. This
model takes into account the influence of Europa or Callisto and Jupiter as point masses,
plus the effect of the J, and C,, gravity field coefficients of the central Galilean moon.
We define the Jupiter-moon rotating frame with the z-axis pointing from Jupiter to the
moon, the y-axis in direction of the velocity vector of the moon around Jupiter, and the
z-axis perpendicular to the orbital plane of the moon around Jupiter (see Fig. 3.2). In this
frame centered around the moon, the spacecraft equations of motion are

P4 2ny x b=V U, (3.5)

with

n2
U = 5 (2% +4%) + Ug + Uy, (3.6)

and where r = (x,y, z) is the spacecraft position in the rotating frame, n; is the angular
velocity vector of the moon around Jupiter, n; its magnitude (2.0483 x 10~ 5rads™! for
Europa, and 4.3575 x 10 %rads™! for Callisto), and U; and U; are the gravitational
potentials of the Galilean moon and Jupiter, respectively. For r < r;, where r = ||r|| and
r 7 is the distance of the moon to Jupiter, the gravitational potential of Jupiter as a point
mass can be approximated by

| S

U, =—=>(3z2 —1r?). (3.7)
Assuming hydrostatic equilibrium (Sect. 2.8.1) for Europa and Callisto (J, = %022), their
gravitational potential U, can be separated into two contributions: the potential due to

the central point mass and the degree-2 gravity field coefficients potential U, defined so
that

RZ J, 702 — 2% — 522
Vg =0y, = ta 4 bofo h 1ot 2t 52 (35)

r r2 5 r2

where pi; is the standard gravitational parameter of the Galilean moon [j1 5 = 3202.72 km?s ™2,
Anderson, 1998] and [uo = 7179.292 km3s~2, Anderson, 2001].
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3.2 Orbit refinement

3.2.2 Differential correction

For convenience, we decided in the following steps to fix the longitude of the ascending
node € at the initial epoch ¢, so that the initial position vector of the probe 7(t,) lies
on the axis from Jupiter to the Galilean moon, opposite to Jupiter, and that the initial
velocity in z-direction vanishes. In the rotating frame, the initial state vector can then
be written as X(t;) = (x4,0,0,0,7y, %) (see Fig. 3.2). We subsequently performed a
differential correction to refine the orbit to ensure its periodicity in a two-step iterative
process adapted from Russell [2006] and Pavlak [2013].

Earth at
ref. epoch
X(to)
”1 X(t,)
z X Galilean moon

Jupiter

Figure 3.2: Orbital plane of the probe (in red) at ¢, and ¢, with respect to Jupiter and
Earth. The red dots represent crossing points with respect to the Galilean moon equatorial
plane (z5 =z, = 0).

The equations of motion of the Hill model provided by Eq. (3.5) are invariant under the
transformation t — —t,y — —y, 2z — —z. Indeed when applying this transformation to
r = (z,y, z) and to its time derivatives, we obtain

(l',y, Z) - ( L, =Y, _Z) ’

(jjayv Z) - (_jjv y? ;73), (39>

(%,9,2) = (&, —9,—2).
If 7 and its time derivatives verify Eq. (3.5), we see that the right side of Eq. 3.9 also verifies
Eq. (3.5), proving the invariance the Hill model under this transformation. It means that
the trajectory of a probe starting at r(¢y) = (g, Yo, 2¢) is a 180° rotation around the x-axis

of a backward integrated trajectory of a probe starting at (xq, —yy, —2o). This property is
called axi-symmetry (around the z-axis).

Because of this symmetry, if an orbit starts on the z-axis, and if there, the orbit is perpen-
dicular to the z-axis, i.e.,

r(tg) = (20,0,0), and 7(¢5) = (0,90, Z9) (3.10)

the resulting propagated orbit and its image (180° rotation around the z-axis) will form
one continuous trajectory. Enforcing the condition

Y1y, =210, = j:Tl/2 =0 (3.11)
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3. Low altitude orbit design around Jovian moons

ensures that the trajectory crosses perpendicularly the z-axis at t = ¢, + % Here, e.g.,
yr, ,, denotes the spacecraft y-coordinate after having it propagated from ¢ = t; and dur-

ing Ty /5 = % . Then, the trajectory and its image will result in an orbit which closes after
the period T.

We consequently decided to look for such axi-symmetric m:R RGTOs, with the initial
conditions (3.10). In order to find these orbits, we performed a differential correction,
which we derived by means of the Newton-Raphson method. Let us define the free variable
Y as

Lo
y- yTl/Q
Y= 730 , and the function F(Y) = [ 27, , | , (3.12)
0 .
Iy T2

The constraint (3.11) can then be enforced by F(Y) = 0, which can be solved iteratively,
so that for every iteration k and for Y¥*! = Y* + 6Y* we get

FY*) = —-DF(Y*) - §Y*, (3.13)
with,
o,
sy— | %% (3.14)

0%,
6T /5

and

OF
DEY) =55
Oy 9y Oy Oy
Oy  0Yyg 0Zg 0Ty,
Oz Oz 0z 0z

=| o o 2 71
ob  ob 0i _of

oz, Oy 0% 0Ty,

Py Dys Py Yt
= | P31 P35 Dsg 2Ty /o

(3.15)

Py Pys Dy Ty,

where we omitted the k indices, and with @(¢,¢,) the State Transition Matrix (STM). The

latter maps an initial perturbation of (r(¢,), 7(ty)) at ¢, to the resulting perturbation at ¢,

such that

Oz 9z Oz Oz Oz Ox

Oxrg Oyg 0Ozy Oxy 0Oy, 0%
z z

R S C R
_ ox oy, 0z oz o, 0z
Ptto) = [ aof o2 a2 ‘of of of |- (3.16)

ox oy Oz o oy 02
ox oy, 0z oz o, 0z
0r  oF 9f o ai  of

dzy  Byo Dz Oig Dy O
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3.2 Orbit refinement

The STM is integrated along the orbit with the initial condition @(ty,t,) = I.

Since Eq. (3.13) is under-determined, we decided to add a constraint by fixing the in-
clination i, at ty. Using Eq. (3.10) the inclination can be written as

Zo

tan(zy) = —m —.
(io) Yo + M 5T

(3.17)
We first reduced the problem by fixing the half-period T} /o by numerically integrating the
trajectory until the orbit crosses R times the equatorial plane at ¢ = ¢, + T} /5, to then
enforce the constraint 27, = 0. Introducing 21, = 0 into Eq. (3.13) and considering
(3.14) and (3.15) then yields

!
ATy 9 = ®310xg + P35000 + P360Z0 + 2T1/Q5T1/2 =0, (3.18)
so that
1 . .
5T1/2 = _T (Pg16x + P3507) + PagdZy) -
1/2

We can then rewrite Eq. (3.13), always omitting the k indices, with a reduced function

F(Y) = (ﬁ“)
T2

) d 0] ] ox

_ 21 25 26) 1 Yry, 70
d.. & —— | ) ( Py Dy P &

<( 41 45 ®46 ZT1/2 le/Q ( 31 35 36) 0

5%,

(3.19)

We further reduce the number of free variables by using Eq. (3.17) to compute ¢, so that
Yo = 2o cot(ig) — nyzg - (3.20)
By introducing Eq. (3.20) into Eq. (3.19), we finally get
FY)=—-A-6Y (3.21)

with
i} i} P
A— 21 26>+( 25) —n. cot(i
<(D41 D6 Py ( J (0))

= <?T1/2> (51 Pap) + 35 (—ny cotliy))) »

ZTl/z xT1/2

and the correction to the reduced free variable vector f’given by

< o (Sxo
v ()

To summarize, at every iteration the orbit and the STM are propagated until the or-
bit crosses the equatorial plane R times, defining the half-period T} ,,. The resulting
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3. Low altitude orbit design around Jovian moons

D(ty + T /9:t0), T(tg + T1)2) and #(ty + Ty ,9) are used to compute corrections on z
and Z, based on Eq. (3.21), while g, is recomputed using Eq. (3.20). This procedure is
repeated until convergence to the desired level.

During the differential correction, the semi-major axis a can move by a few meters from the
solution of Eq. (3.4). The orbits are also not precisely circular anymore, but their eccen-
tricity remains below 0.003. One can note that the differential correction can be adapted
to refine the orbit in more complex force models, for example by taking into account higher
degrees and orders of the moon gravity fields model.

Once the initial state vector X(¢,) is corrected, the resulting propagated orbit defines
our reference orbit. It is important to note that these orbits do not have a reference epoch
at this point: by fixing one, we get an orbital plane configuration with respect to the other
bodies of interest in this study (e.g., Jupiter, Earth, Sun).

3.3 Evolution of the orbital elements

The inclination of the orbit plays a crucial role in the estimation of global geodetic or
geophysical parameters, like the gravity field. First, a significant polar gap in the ground
coverage of the central body, induced by an inclined orbit, would limit the recovery of zonal
and near-zonal spherical harmonic coefficients (see Sect. 4.3.4). Additionally, the inclination
influences the evolution of the probe’s orbital plane geometry due to orbit perturbation
and hence its visibility from Earth. This geometry is characterized by the angle between
the orbital plane of the probe and the Earth direction (5g,.5)-

When neglecting the obliquity of the Galilean moons (< 0.1°) and the inclination of their
orbital planes with respect to the ecliptic (< 2°), Bgarn 1S related to the longitude of the
Earth with respect to the relevant moon in the ecliptic plane (Qg,,.+1), to the longitude of
the ascending node of the probe around the moon €2 and to its inclination ¢ (see Fig. 3.3)
by

Sin(ﬁEarth) = SiIl(Q - QEarth) ’ Sln(l) ’ (322>

where Qg+, depends on the Solar System geometry at the mission date.

In this section, we investigate the evolution of the longitude of the ascending node of the
designed orbits to quantify the variation of Sg,,,, and of the inclination to fix the mean
inclination based on the inclination at ¢.

3.3.1 Perturbing equations in the local orbital frame

We analyse the evolution over time of the inclination ¢ and of the longitude of the ascending
node 2 using the Gaussian perturbation equations [e.g., Beutler, 2005] to express their time
derivatives as a function of the forces perturbing the Keplerian motion. In our case, the
perturbing forces are the third-body attraction of Jupiter, and the force induced by the
degree-2 gravity field of the central body. The time derivatives of both the inclination and
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3.3 Evolution of the orbital elements

Earth

Vernal point

Figure 3.3: Geometry of the orbital plane of the probe with respect to the Earth charac-
terised by the S, angle.

the longitude of the ascending node only depend on the cross-track component of these
perturbing forces, such that

di 7 cos(u)

F7i— (N;+ Np), (3.23)
dQ  rsinu '
@ _rsmu o4y

dt hsinz'( 7+ Ne),

where 7 is the distance of the probe to the central body, u is the argument of latitude of
the probe, h = ||r x 7|| is the norm of the angular momentum and

NJ = V:):(UJ)IOC "€y and NP = Va:<UP)loc €

w

where loc indicates the RSW (i.e., in the radial (R), along-track (S) and cross-track (W),
defined in Eq. 2.26) and U; and Up are potentials in the rotating frame rot, which are
given by Eqgs. (3.7) and (3.8) and can be rewritten as

3z2 — r?
e (320
2 .
U, = N_GEﬁg(rrot)
p=

rr2 5 r2 7
with g(r,.,) = 72 — 2y* — 52% and 7., = (z,, 2).
Relation between the rotating frame, the inertial frame and the local orbital
frame

Let us neglect once again the obliquity of the moons (< 0.1°) and the inclination of the
moon’s orbital plane with respect to the ecliptic (< 2°). The rotating frame is then obtained
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3. Low altitude orbit design around Jovian moons

by a rotation around the z-axis from the inertial frame. Assuming that at epoch ¢t = 0,

Jupiter and its chosen moon lie on the z-axis of the inertial frame, we can write
Trot = R3 (th) “Tin s

where 7, and 7;, are the components of the position vectors in the rotating frame and
in the inertial frame, and R,(#) is the 3 x 3 matrix representing a rotation about the i-th
coordinate axis by an angle 6.

Additionally, the transformation between the inertial frame and the local orbital frame
can be written as

Tloc = R3(u) ’ Rl (Z) ’ RS(Q) *Tin s
which yields

Tloc = Rtot(“’? i, U’J) “Trot (325>
with R, (u,i,u;) = Rg(u) - Ry (i) - R3(—uy) and uy = n t — € the argument of latitude

of Jupiter around the moon.

Once the gradients of the potentials are computed in the rotating frame, they need to
be converted to the local orbital frame, so that

V:I:(UJ + UP)loc = Rtot(u7 i, UJ) ’ Vm(UJ + UP)rot :
Additionally, it follows from Eq. (3.25) that r,. is

x=r (cosucosuy+ sinucosisinuy),
y=r (—cosusinu;+sinucosicosuy), (3.26)
2

=7 (sinwusini).

The perturbing accelerations

In the rotating frame, the accelerations due to the third body and to the degree-2 gravity
field are respectively

2x
VwUJ = n?] -y ,
—Z
x 59(xz,y,z 3.27
o B2 ;(—9({;’ ) 14) (3.27)

r2 r2 5 | r. o7
£(5g(i;yvz) +10)

T

In the local orbital frame of the probe around the Galilean moon, the cross-track compo-
nents of these accelerations are computed using Eqgs. (3.25) and (3.26) in Eq. (3.27), so
that

Njy= — Nj;gsini (3cosusin2uJ—|—BSinucosi (1 —cos2uy)

bl

).
(3.28)
)

Np= — Npgsini (3cosusin2uj+sinucosi (5 —3cos2uy)
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3.3 Evolution of the orbital elements

with

since n?a® =y, with n the mean motion of the probe around the moon, and a the semi-

major axis of the probe’s orbit.

The cross track component of all the perturbing forces considered in the Hill model is
obtained by summing N; and Np from Eq. (3.28), so that

N;+ Np=—sini (3(]\7‘]’0 + Npg) cosusin2u,,
+sinucosi (3N, +5Npg) —3(N; o+ Npg) cos 2u J)> :

and which we can finally substitute into Eq. (3.23).

3.3.2 Choice of inclination

The Bpqrn angle changes during a 3 months mission, but this change can be limited
with a careful choice of the orbit inclination, in order to precisely study the impact of
BEartn on the parameter estimation (see, e.g., Sect. 4.3.2). For a mission mid-2031, the
time variation Earth 1S approximately 0.1°/day. Q is caused by the Jy coefficient of the
moon’s gravity field and by the influence of Jupiter as a third body, and it depends on
the orbital characteristics of the probe, mainly the inclination, see Cinelli et al. [2015].
Indeed, following Sect. 3.3.1 for near polar and quasi circular orbits, the time-derivative of
the longitude of the ascending node can be written as
% =— %(3(NJ70 + Npg) sinu cos usin 2u,
+sin®ucosi ((3N; 9+ 5Npg) —3(Ny o+ Npg) cos 2uJ)) .

The argument of latitude of the probe w and the argument of latitude of Jupiter around
the Galilean moon w are respectively T, -periodic and D, -periodic. If we consider an m:R
RGTO, we can use the periodicity condition from Eq. (3.1), to isolate the secular term
relevant for the long term evolution so that

df) 1 To d0
Gl = E
( dt )secular RT dt

= 2h(3NJ0+5NPO)cosz

3 (L, o (Fa -
5 (2 ns+n (a) JQ)COSZ.

The orbits investigated in this work result in Q € [—0.74°,0.74°] /day in case of Europa and
in Q € [—0.045°,0.045°]/day in case of Callisto. For instance, we obtain 2 = —0.1°/day
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3. Low altitude orbit design around Jovian moons

~ —Q Eartn, fOr an 88.6%-inclined orbit around Europa. This implies ] Earen, = 0°/day, i.e., a
quasi-fixed geometry of the probe orbital plane with respect to Earth, which is particularly
useful to study the impact of Bg,,., on the parameter estimation (see Sects. 4.1 and 4.3.2).

The inclination of an orbit designed according to Sect. 3.2.2 can be chosen via the in-
clination 7, at t,, which is different from the mean inclination ,,. The relation between 7,
and ¢,, can be derived from the Gaussian perturbation equation for the inclination ¢. Sim-
ilarly to Q, for near-polar orbits (cosi =~ 0) and quasi circular orbits, the time-derivative
of the inclination (3.23) can be expressed as

di

7 —4K, cos®> usin2u, (3.29)

with
K; :%rS}iLni(NLo + Npy) (3.30)
:%% (%n?]aQ n %”2R2GJ2> ‘ (3.31)

Considering @; = n; — Q ~ n; < n, Bq. (3.29) can be integrated via the first order
perturbation calculation method (i.e., by setting K, = K im)7 which yields

2
it) =i, + K, M
m nJ

(3.32)

with 7,, the mean inclination. Because the initial conditions of the probe’s orbit are fixed
at (z,0,0,0, 9, Zy) in the rotating frame (see Fig. 3.2 with 2, > 0), we also have wu ;(t,) =
180°, providing a simple relation between the mean inclination 7,, and the inclination i
at the initial time ¢, such that

K.

7

™ (3.33)

g =1, +
0 m n;

Equation (3.33) thus allows us to choose the mean inclination during the refinement of
the orbit detailed in Sec. 3.2. For example, in order to get a 117 km altitude orbit around
Europa with a mean inclination of 89°, the orbit design should target an orbit with an
initial inclination of 89.9°.

3.4 Orbit propagation in an extended force model

The design of the orbits considered in this work assumes several simplifications. First,
Callisto and Europa are in a circular orbit around Jupiter, and only the forces related to the
two primary bodies (Jupiter and its relevant moon) are considered. All the other perturbing
forces described in Sect. 2.2 are discarded. Moreover, the gravitational attraction of Jupiter
is approximated in the Hill model, and only the low degree coefficients of the gravity field
of Callisto or Europa are taken into account. Finally, the obliquity of the Galilean moons is
assumed to be zero, as discussed in Sect. 2.4.2. In this section, we focus on the discrepancies
between the designed orbit and the orbit propagated in a higher fidelity model in the BSW.
We also define a procedure to use the designed orbit by accounting for these discrepancies.
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3.4 Orbit propagation in an extended force model

3.4.1 Reference plane of the Hill model

In the Hill model, the orbital plane of the secondary body (Europa or Callisto) around the
primary (Jupiter) coincides with the equatorial plane of the secondary (see Sect. 3.2.1). In
other words, the orbit pole is identical to the spin pole. However the rotation model used
in the BSW does not enforce that the angle between the two poles, or obliquity, is zero
(see Sect. 2.4.2). As a result, when converting the orbit from the rotating frame to the
inertial frame, we have to specify whether the “reference plane” of the Hill model refers to
the equatorial plane of the secondary, or to the osculating orbital plane of the secondary
around Jupiter at the starting epoch.

—— orb plane —— eq plane —— Hill model
300 ¢ 0.1
250 ¢ 0.08 -
200
. 0.06 t
i 150 -
N8}
= 0.04 |
100 |
50 t 0.02 +
Ot 0
90.5 ¢ 80 .
90 ¢
89.5
°. 89
88.5
88
87.5 : : : : : : : :
0 20 40 60 80 0 20 40 60 80

Days since 01-May-2031 Days since 01-May-2031

Figure 3.4: Comparison between the altitude h, eccentricity e, inclination ¢ and longitude
of the ascending node €2 of a 5:197 Europa RGTO propagated in the Hill model, against
a full ephemeris force model starting on the equatorial plane or the orbital plane, but
considering only the gravity field of Europa up to d/o 2 (i = 89°, t, = 2031 — 05 — 01).
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3. Low altitude orbit design around Jovian moons

We investigated the evolution of the orbital elements of a given 5:197 RGTO around Eu-
ropa, designed following the Hill model with A = 134km and ¢ = 89°. We converted the
initial state vector from the rotating frame to the inertial frame on 2031-05-01, assuming
that the reference plane is either the equatorial plane or the osculating orbital plane. We
then propagated the orbit in the BSW using the complete set of forces described in Sect. 2.2
for 90 days, until the spacecraft would crash on the surface of Europa (see Fig. 3.4). We
only included the degree-2 gravity field of Europa for this test, since higher degree and
order gravity field coefficients play a more decisive role, which we discuss in Sect. 3.4.3. In
both cases, the eccentricity of the orbit starts to rapidly increase after a bit less than one
month. The differences between the two approaches are quite small, but we can see that
the eccentricity increases slightly faster when starting from the orbital plane than when
starting from the equatorial plane, resulting in a crash on the surface after 89 days and
after 90 days, respectively. When thus decided to assume in the rest of the study that the
reference plane in the Hill model is the equatorial plane of the secondary body.

In Sect. 2.4.2, we decided to not enforce the zero-obliquity in our rotation models for
our study. We analysed the impact of this decision on the stability of the orbit designed
assuming zero-obliquity. In order to do this, we created an updated rotation model sim-
ilarly to the work of Steinbriigge et al. [2019] by enforcing zero-obliquity. However, the
differences with respect to the previously assumed rotation model are negligible.

It is important to note that propagation in a full ephemeris force model results in an
orbit degradation after a while (see Fig. 3.4), even without considering higher degree and
order gravity field coefficients neither in the force model nor in model used for the orbit
design. The orbit at the start of the mission can be very different than the orbit at the end
of the mission, thus not fulfilling the mission requirements anymore. Moreover, the orbit
will inevitably crash on the surface of the moon at some point, unless regular corrections
are applied. In this sense we developed a scheme to use these designed orbits taking into
account regular manoeuvres.

3.4.2 Definition of an orbit scenario

A reference orbit designed in this section is characterized by its initial state vector at an
arbitrary reference starting epoch. As previously described in Sect. 3.4.1, this initial state
vector can be converted from the rotating frame to the inertial frame at the reference
epoch, assuming that the orbit starts on the equatorial plane of Callisto or Europa. But
in principle, any state vector from the reference orbit propagated in the Hill model can be
used, at the chosen reference epoch.

For practical reasons, we restrict the possible initial locations to the equatorial plane of the
moon (see Fig. 3.2). Since an m:R RGTO completes R orbit revolutions before overlap-
ping, there are R distinct ascending crossing points on the equatorial plane, as depicted in
Fig. 3.5. Therefore, we get a list of state vectors X (t;) = (, Yy, 0, T, Yj, Z5,) from the ref-
erence orbit propagated in the rotating frame following the Hill model, with £k = 0, ..., R—1.

We define an “orbit scenario” by selecting one of these state vectors with ¢, = k and
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Figure 3.5: Distribution of the ascending orbit crossing points with respect to the equatorial
plane for a 1:40 RGTO (top) and a 3:118 RGTO (bottom). The larger red dots denote the

locations ¢; of the probe (I =0,1,2) at the start of the first three propagation arcs in the
case of ¢y = 1.

assigning a reference epoch to ¢, , which fixes the initial longitude of the ascending node
Q, as well as B, (see Eq. 3.22). We thus have a direct relation between ¢, and Sgg.4n,
meaning we can choose ¢, to get a given 5,4, as shown in Fig. 3.6.

100

ﬂEarth (o)

Figure 3.6: Bg,+n as a function of the initial location number ¢, on the equatorial plane
for a 1:40 RGTO around Europa starting on 2031-05-01.

Once the scenario is defined, the state vector X(t, ) is converted from the rotating frame
to the inertial frame, and the orbit can be propagated in a full ephemeris force model in the
BSW (see Sect. 2.2). As shown in Sect. 3.4.1, the orbit perturbations shorten the lifetime
of the mission. Thus, we can address this by applying periodic orbit corrections, which we
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3. Low altitude orbit design around Jovian moons

generate by, after a defined duration, resuming the orbit propagation from the reference
orbit at another crossing point with the equatorial plane.

More precisely, if the orbit starts at crossing point ¢, and it is propagated in arcs with a
length of approximately one nodal day D,, (= 3.55 Earth days for Europa, ~ 16.67 Earth
days for Callisto), then for an m:R RGTO the probe orbits R/m times during D,,.

This number is an integer only for m = 1, i.e., after one nodal day and R revolutions the
probe will be at the same position on the equatorial plane again, see Fig. 3.5 (top). For
m # 1 the length of the propagated arc is either shortened or increased with respect to
one nodal day, implying that the probe ends up on the equatorial plane at a (different)
crossing point ¢;. In Fig. 3.5 (bottom), the example of a 3:118 RGTO is shown, where the
first arc is propagated for 41 revolutions. Then, for the second arc, the initial conditions at
c¢; from the reference orbit are used for further propagating the orbit for an integer number
of times close to R/m. In the example of the 3:118 RGTO the second arc was chosen to
have 39 revolutions to end up at the equatorial plane at the crossing point ¢, (Fig. 3.5,
bottom). In general, we choose a new arc [ to end at the crossing point

Cl = CO + lyl . R/m] y (334)
where [-] is the ceiling function.

This is repeated in total m times until the probe has performed a total of R revolutions
and ends at the same crossing point ¢, again. This in turn is repeated to cover the entire
assumed mission duration of 3 months. Using new initial conditions from the reference orbit
for each arc guarantees that the orbit remains stable and an approximate RGTO for the
entire mission duration and this procedure thus mimics an orbit maintenance manoeuvre
approximately every nodal day.

On the other hand, our approach introduces orbit discontinuities between the different
arcs. These discontinuities are small enough to not be considered critical for geodetic pa-
rameters estimation at our target resolution. We discuss them in detail, and how they can
be reduced in the following section.

3.4.3 Reducing the orbit discontinuities

In this work, we considered mission durations of several months. Propagating our designed
orbits (issued from a simple model, see Sect. 3.2.1) within the BSW (with a full model,
see Sect. 2.2) thus requires regular orbit corrections, as shown in Sect. 3.4.2. The velocity
difference between two arcs can be seen as an orbit maintenance manoeuvre characterized
by its Av. We computed the total Av for a 3-months mission, and verified whether it is
compatible with a realistic Av budget. Discontinuities in position are clearly not physical,
but they are a direct consequence of our approach to maintain the ground track repetitivity
of an RGTO. Even though we consider that orbit discontinuities are not critical for the
scope of our investigations, they can be reduced if we use a force model in the orbit design
with higher fidelity and closer to the model used in the BSW, at the expense of simplicity
and short computation time. We decided to extend the Hill model (Sect. 3.2.1), by taking
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3.4 Orbit propagation in an extended force model

into account the largest orbit perturbations, i.e., the influence of the higher degree and or-
der gravity field coefficients of the central body [see Russell and Lara, 2006]. The potential
U, in Eq. (3.8) is then replaced by its extended form V' (see Eq. 2.11).

The differential correction (Sect. 3.2.2) is then adapted according to the new force model,
which is no longer axi-symmetric around the z-axis. We still look for orbits starting on the
x-axis, but without enforcing that the velocity is perpendicular to the z-axis. The initial
conditions are thus

(to) = (20,0,0) and  7(ty) = (&0, Yo, Z0) - (3.35)

Additionally, the periodicity of an m:R RGTO is constrained in a more general way than
Eq. (3.11), so that the orbit closes after the complete cycle duration T, i.e., after R orbit
revolutions, by enforcing

r(ty+ 1) =7r(ty) and *#(ty+T) =7(ty). (3.36)

The differential correction from Sect. 3.2.2 is then rewritten with the free variable Y as

T — Ty I — To
Lo
& Yr— Yo Yr
Y= |4, |, and the function FY) = | T~ %0 | = | *T |, (3.37)
f T — T Tp— T
0 . . . .
T yg - ?{o 3{2 - y_o
2T — 2o 2T~ 20

where r(ty + 1) = (zp, yp, 2p) and 7(ty + 1) = (Zp, Yp, Z7) are obtained by propagating
(3.35) to t =ty + 1. The constraint (3.36) can then be enforced by F(Y) = 0, which can
be solved iteratively, identically to Eq. (3.13), but with the more general form

oz
5y
5Y= | 59, (3.38)
5%,
orT
and
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with @,; the elements of the STM defined in Eq. (3.16). Unlike in Sect. 3.2.2, we did not
constrain the inclination, but similarly to Eq. (3.18), we reduced the problem by numerically
enforcing the constraint z = 0 after the numerically integrated trajectory crosses 2R times
the equatorial plane at ¢ = t; + T Introducing zp = 0 into Eq. (3.13) and considering
Egs. (3.38) and (3.39) then yields

|
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3. Low altitude orbit design around Jovian moons

so that
or = —Z;i (Pg10z0 + P3y0ig + P35070 + P3sd2p) -
T

We can rewrite Eq. (3.13), again by omitting the k indices, with a reduced function

F(Y)=—A.05Y, (3.40)
where
¢y, —1 D,y Q5 Q6 T
Dy Doy Qo5 Do 1 Yr
A= D4y Py —1 Dy Q6 _ZF T (‘1)31 Qs Py @36)- (3.41)
5y 5y Pyr — 1 R Yp
gy Py D5 P — 1 Zy

In the following, we analyse a 5:197 RGTO around Europa and a 1:146 RGTO around Cal-
listo. We first compute the two RGTOs in the original Hill model following Sect. 3.2, i.e.,
with a degree and order (d/o) 2 gravity field. Then, we consecutively update these orbits in
force models with increasing maximum degree of the gravity field (n,,,, = 5, 10, 20, 30, 40).
Each designed orbit is then propagated in the BSW over 26 Europa days and 6 Callisto
days, respectively, to assess orbit discontinuities. The orbital characteristics of the resulting
updated RGTOs slightly differ in the case of Europa (Tab. 3.2). The inclination is reduced
by 2°, and the eccentricity increases to from 0.0009 to 0.0024. Such a difference is expected,
because of the different force models and because we did not constrain any orbital elements
to a reference value (in contrast to Sect. 3.2.2). With increasing maximum degree n,,,, of
the gravity field of Europa, the distance between the orbits of two different arcs is reduced.
A d/o 10 gravity field is enough to reduce the distance by a factor 2.4. A gravity field with
a higher maximum degree is needed to visibly reduce the total Av (Fig. 3.7 left).

Table 3.2: Mean orbital elements and maximum orbit discontinuities for a 5:197 RGTO
around Europa designed with higher fidelity force model.

Gravity field max. degree 2 10 20 30
Semi-major axis altitude | 134 km 133 km 133 km 133 km
Eccentricity | 0.0009 0.0014 0.0020 0.0024
Inclination 89.1° 87.3° 87.2° 87.3°
Maximum position gap 4.4 km 1.8 km 1.4km 1.2km
Accumulated velocity change | 38.7ms™! 34.6ms™! 13.1ms ! 7.9ms™!

In the case of Callisto, the inclination also changes by a few degrees. However, the eccen-
tricity is more severely affected (Tab. 3.3). The eccentricity of a 200km altitude RGTO
around Callisto can increase to more than 0.06 when considering a gravity field with coef-
ficients of degree higher than 2. This behaviour is expected for very low altitude satellites
(see Russell and Lara [2006]), depending on the gravity field considered. For instance, by
deriving the degree 3 and 4 coefficients of our synthetic gravity field from a smoother
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3.4 Orbit propagation in an extended force model
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Figure 3.7: Amplitude of the orbit discontinuities for improved force-models for a 5:197
RGTO around Europa (left) and for a 1:146 RGTO around Callisto (right) when consid-
ering increasing degree gravity fields in the force model of the orbit design.

field such as Titan’s [Iess et al., 2010] instead of from the Moon’s (Sect. 2.2.1), we obtain
lower values for these coefficients, similarly to Mazarico et al. [2015], which results in orbits
designed with lower eccentricities for similar altitudes. Because Europa has a lower mass
and a smaller radius, this effect is less pronounced for low altitude RGTO around Europa,
despite the fact that we derived d/o > 3 of the synthetic gravity field of the two moons
by rescaling the same gravity field model (see Sect. 2.2.1). The fact that using a higher
d/o for the gravity field increases the eccentricities to a larger extend for Callisto can also
be seen as an explanation for the larger orbit discontinuities (Fig. 3.7 right). In addition,
less frequent manoeuvres (every 16.67 days instead of 3.55 days) also cause larger orbit
corrections, i.e., larger manoeuvres and larger gaps between the consecutive arcs. We had
to consider a gravity field up to degree and order 40 to reduce the distance between the
ground tracks below 4 km. Because we are considering a 1:146 RGTO for Callisto, each ma-
noeuvre occurs at the same location on the orbit cycle, similarly to Fig. 3.5 (top), leading
to comparable orbit corrections, as opposed to the 5:197 RGTO around Europa, leading
to a larger variability of the corrections magnitudes.

Using a higher degree gravity field for the design of the orbit increases the computational
time required by the differential correction. In the rest of the study, we decided to con-
sider only reference orbits designed in the original Hill model, i.e., with a degree-2 gravity
field, despite the larger orbit discontinuities, as they remain small enough for the level of
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3. Low altitude orbit design around Jovian moons

Table 3.3: Mean orbital elements and maximum orbit discontinuities for a 1:146 RGTO
around Callisto designed with higher fidelity force model.

Gravity field max. degree 2 10 20 30 40
Semi-major axis altitude 197 km 198 km 198 km 200 km 200 km
Eccentricity | 0.00007 0.01676 0.06500 0.06169  0.06183
Inclination 88.8° 89.0° 87.4° 86.8° 86.8°
Maximum position gap | 12.8km 9.5km 9.9km 7.7km 3.3km
Accumulated velocity change | 42.0ms™! 36.2ms™! 12.7ms™! 3.5ms™! 44ms!

precision we expect to recover the geodetic parameters. However, the extended approach
can be used for final selected orbits. Additionally, this allows us to focus on near circular

orbits only.
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Chapter 4

Orbit determination and geodetic
parameter recovery using Doppler
observations only

In this chapter, we focus on the determination of a probe’s orbit around Europa or Cal-
listo and the estimation of the body’s global geodetic parameters exclusively from Doppler
observations. The first analyses of this work were dedicated to the study of a probe in
orbit around Europa, and we later included the study of a probe around Callisto. For this
reason, there are a few differences between the simulation set-ups considered for Europa
and Callisto, the latter being more comprehensive. The probe in orbit around Europa is
assumed to be continuously tracked by the NASA DSN at X-band, with a fixed Doppler
noise (0.1 mms~! 1-way at 60s integration time). In the case of Europa, we focused on
the gravity field estimation, leaving aside rotation parameters estimation. We considered X
and/or Ka-band at 60s integration time from the Chinese DSN for Callisto’s orbiter, and
analysed different tracking strategies, making use of the observation noise model described
in Sect. 2.6.3. Non-gravitational accelerations were taken into account for orbits around
Callisto, and we analysed different strategies on how to mitigate them in Sect. 4.5.

Irrespective of whether the probe is in orbit around Callisto or Europa, the simulation
starts with the choice of an orbit scenario as detailed in chapter 3. The orbit is then prop-
agated in the planetary extension of the Bernese GNSS Software [BSW; Dach et al., 2015,
Arnold et al., 2015, Bertone et al., 2021a, Desprats et al., 2023], usually for 3 months start-
ing from 1-May-2031, based on a reference force model (see Sect. 2.2). Both propagated
orbits and reference force model will constitute our ground truth for later comparisons.
Then, realistic two-way Doppler tracking measurements are generated along the orbit (see
Sect. 2.6).

These measurements are used to reconstruct the orbit and to estimate geodetic parameters
in a standard multi-arc least-squares process following the Celestial Mechanics Approach
[CMA; Beutler et al., 2010], as described in Sect. 2.3. We add uncertainties with a standard
deviation of 0,,,, = 50m, 0, = 1 mm s~1 to the initial position and velocity of the a priori

orbits for each estimation arc of length between 25h and 400 h.
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4. Orbit determination and geodetic parameter recovery using Doppler observations only

The recovered orbit and geodetic parameters are finally compared to the true orbit, and the
reference force and rotation models, to assess the quality of our solution. The gravity field
solution is compared to the reference gravity field (EURGLMo or CALGLMo) in terms of
difference degree amplitudes A,,,

A, = \/ LS (AG+ AR, (4.1)

2n+1 —

and difference order amplitudes A,,,,

1 Nax _ lnmam _
A = —— A A =4/= AS? 4.2
o S8, = [L S s, 12)

where AC,,,, and AS,,,  are the differences of the respective spherical harmonic coefficients
of degree n and order m. Furthermore, we evaluate the error degree amplitudes, which are
obtained from Eq. (4.1) by replacing the coefficient differences with the formal errors of
the estimated coefficients. We also use the weighted RMS of the geoid height differences
with respect to the reference gravity field as a global quality assessment. It is defined as

Z¢,>\ COS(@AQ(%’)\
qu,,\ cos(¢)

where Ag, , is the difference of the geoid height at latitude ¢ and longitude A between a
given gravity field solution and the reference gravity field (see Eq. 2.14). When comparing
high-degree gravity field models, a filter is usually applied to the geoid height differences
Agy », to reduce the noise in the high-degree gravity field coefficients. However, in this

(4.3)

(Ag)wrms = J

work, we only compute the geoid height differences considering the gravity field up to a
given degree and order (d/o) m, usually the maximum degree for which the difference de-
gree amplitude A, is lower than the degree amplitude of the reference gravity field.

In a first section, we analyse the quality of the orbit solution and its weakness, which
is a central prerequisite to consider the estimation of global parameters. The non-linear
least-squares adjustment of orbit and geodetic parameters requires a priori values for the
parameters. In case of the gravity field parameters, we then demonstrate that high-degree
models can be estimated irrespective of whether the currently very limited knowledge of
gravity fields of the Galilean moons or the true gravity field is introduced as a priori infor-
mation. The latter strategy allows for more efficient subsequent analyses since iterations
can be avoided. In Sect. 4.3, we focus on the quality of the recovered gravity field based on
the considered orbit, taking Europa as an example, and highlight the importance of certain
parameters. We then look at how the estimation of rotation parameters fits in our global
estimation in the case of Callisto. Finally, we investigate non-gravitational accelerations
mitigation strategies for a probe in orbit around Callisto.

4.1 Orbit determination quality

The first step of the CMA is to fit an orbit using only arc-specific parameters (see Tab. 2.1).
Once the orbit is converged, we use this orbit as a priori information to estimate the com-
plete set of parameters. In principle, arc-wise and global parameters can be estimated in a
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4.1 Orbit determination quality

common fit, at the expense of more computational resources.

In this section, the arc-specific parameters are estimated from a perturbed a priori or-
bit using a perfect a priori force model, i.e., the complete gravity field model which was
used for the simulation. This first orbit recovery is repeated for at least 4 iterations un-
til convergence is achieved, i.e., until the relative RMS of the residuals is below 0.5%,
and for a maximum of 8 iterations. The simulation environment allows us to compare the
reconstructed orbits with the true (simulated) orbits and to obtain a direct quality mea-
sure of our achievable orbit recovery. We furthermore estimate gravity field parameters in
Sects. 4.1.3 and 4.1.4, once the arc-specific parameters are estimated, still using a perfect a
priori force model. The corrections on these parameters are thus expected to be minimal,
and this will be discussed in more depth in Sect. 4.2.

In the case of Europa, considering a fixed level of Doppler noise, the observations are
weighted equally. For Callisto, since the Doppler observations were generated using the
noise model described in Sect. 2.6.3, we applied a fixed ground station-based weight,
corresponding to the expected level of noise. For a station in the northern hemisphere
operating at Ka-band, we considered 3.5 mHz (corresponding to an Allan deviation of
0,(60s) =1.02 x 10~ 13), for a station operating at X-band in the northern hemisphere, we
instead considered a level of noise of 3.6 mHz (0, (60s) = 1.04 x 10~13). Finally, for a south-
ern station at Ka-band, we considered 1.35mHz (o, (60s) = 4 x 10~1), as the tropospheric
noise is expected to be less important for a mission mid-2031 (see Sect. 2.6.3).

4.1.1 Orbit deficiencies

The determination of a probe’s orbit around a celestial body using radio tracking from
Earth is known to have degeneracies [Wood, 1986, Russell and Thurman, 1989], which can
be explained by geometrical symmetries in the system. Bonanno and Milani [2002] pointed
out that in the ideal case where the central body is spherically symmetric, and where the
central body does not move with respect to the Earth, there is a symmetry around the
line of sight from Earth to the central body. A rotation of the orbit of the probe around
e;, the unit vector from the central body to the Earth, would yield the same range-rate
and range observations, resulting in indeterminate orbit components. In reality, the central
body slightly moves with respect to the Earth during the estimation arc. This means that
the rotation of the system around the line-of-sight is no longer a strict symmetry, but still
leads to a poorly conditioned orbit.

The weakly determined components of the position r and velocity 7, with respect to the
central body, are contained in a plane orthogonal to the line of sight from Earth to the
central body. More precisely, the orbit is weakly determined in the directions e, and e,
respectively, given by

TpXT T XT
L2 and e =L (4.4)

€y =
i [l > 7|

lrg x vl

where rg is the position vector of the Earth with respect to the central body [Cicalo et al.,
2016]. We thus consider the two following plane-of-sky frames (e;,e,,e3) and (eq,e;,e5) to
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4. Orbit determination and geodetic parameter recovery using Doppler observations only

analyse the orbit differences, with
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Figure 4.1: RMS of orbit differences for each arc in the (eq, e, e3) frame for a 5:197
(1 =89° h =134km, Bg,,4, = —6°), using EURGLMo as gravity field model.
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Figure 4.2: RMS of velocity differences for each arc in the (e, e}, e}) frame for a 5:197

RGTO (i =89° h = 134km, Bga.p =

—6°), using EURGLMo as gravity field model.

As an example, we fit six osculating orbital elements of 78 arcs of ~28h to Doppler data
which have been simulated from a 5:197 RGTO around Europa (i = 89°, h = 134 km,
BEartn = —6°), using EURGLMo up to degree and order (d/o) 90 as a priori gravity field
model, resulting in a best case orbit in the absence of any mismodelling. We freely estimate

one set of orbital elements per arc and we show in Fig. 4.1 and Fig. 4.2 the differences
between the true orbit and the fitted orbit in the plane-of-sky frames, in terms of RMS
of the differences between the position and velocity vectors. In the (e, eq, e5) frame, the
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4.1 Orbit determination quality

e, direction, perpendicular to the line of sight and to the position vector, ends up being
the worst determined direction (up to 100 times worse than along e; and e, see Fig. 4.1).
The same goes for the velocity differences in the (eq,e5,e}) frame, the differences in the e,
direction are several orders of magnitude worse than in the other directions. However, the
quality of the recovery (< 1.3m in position and < 1mms™ in velocity) is still at a level
acceptable for most mission goals.

Indeterminate components of the orbit increase the correlation between the estimated
initial orbital elements. By describing the orbit using orbital elements with respect to the
plane-of-sky, Wood [1986] showed that some orbital elements are indeterminate. Some con-
figurations proved to be worse than others, in particular when the velocity of the celestial
body is along the line-of-sight, or when the angle of the orbital plane with respect to the
plane-of-sky is 0° or 180° (corresponding to Bg,,., = £90°). Russell and Thurman [1989]
quantified the influence of Sg,,,;, and showed that orbit errors increase with the inclina-
tion, i.e., with decreasing Bg,,+,- Since we use a different parametrisation related to an
inertial frame, the poor determination of the orbital elements discussed in Wood [1986] and
Russell and Thurman [1989] is reflected in all the orbital elements we estimate, leading to
significant correlations.

ﬂEarth =3° BEaMh, =12° BEarth, =32° ﬁEarth = 48°

ﬂEarth =57 ﬁEarth = 66° ﬁEarth =75 ﬁEa'rth = 84°

Correlation []
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Figure 4.3: Correlations between orbital elements for different values of 8g,,.,. Each value
corresponds to the maximum correlation over all ~ 28h arcs for a 5:197 RGTO around
Europa with ¢ = 89°, h = 134 km.

In Fig. 4.3, we plot the maximum correlation existing between the orbital parameters
estimated in all the 78 estimation arcs, and for several values of Bg,,.;,- This synthetic
representation corresponds thus to a hypothetical worst case, and not to the most corre-
lated arc. We can clearly see that the overall correlations increase with a smaller Sg,,..h,
as suggested by Russell and Thurman [1989], especially visible in case of the correlations
including the eccentricity e and the argument of periapsis w. However, the correlation be-
tween orbit accuracy and By, is less conspicuous, as shown in Fig. 4.5a.
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4. Orbit determination and geodetic parameter recovery using Doppler observations only

There are several approaches to reduce the error of the indeterminate component of the or-
bit. This usually amounts to introducing external information, such as constraining poorly
determined orbital elements to some a priori values, or constraining the rotation around
the e; axis to zero [Bonanno and Milani, 2002]. Another possibility is to consider longer
estimation arcs, so that the amplitude of the relative motion of the probe with respect to
the Earth is more important, thus reducing the symmetries.

4.1.2 Length of the estimation arc

In order to decrease the correlations between the different orbit parameters of one arc,
we increased the length of the estimation arc. In practice, the duration of an arc is often
limited by manoeuvres of the satellite. These can be desaturation manoeuvres, e.g., every
12h for BepiColombo [lafolla et al., 2011], or orbit corrections, whose frequency can be
quite variable. In our simulation setup, we are limited by our manoeuvre handling (see
Sect. 3.4.2), preventing us to consider estimation arcs longer than one Europa day or one
Callisto day.

In the case of Europa, extending the arc length by a factor of 3 from ~ 28h to ~ 86h,
allows for a significant reduction of the correlation, compare Fig. 4.3 and Fig. 4.4. The
correlations including e are still decreasing with increasing Bg,,+,, but the w correlations
are less dependent on Bg,,4,- The orbit parameters are the least correlated with each other
for Braren = 48°, especially the semi-major axis a. However, the inclination ¢ and the lon-
gitude of the ascending node €2 are still highly correlated with each other, with a and with
the argument of latitude u in case of a near face-on orbit.

The impact is also significant regarding the orbit differences. As shown in Fig. 4.1, the
different RMS values of orbit differences can vary significantly from one arc to another.
We thus considered the 0.95-quantile gg5 of the arc-wise 3D RMS of orbit differences as a
conservative measure of the orbit quality, which is less optimistic as the mean of the RMS
values, but not as pessimistic as the maximum of the RMS values. Using this metric, one
can see that 3 times longer estimation arcs can reduce the RMS of the orbit differences by
a factor of at least 2 (Fig. 4.5a).

In case of Callisto, we increased the length of the estimation arc from ~25h to ~400h,
corresponding approximately to 1 Callisto day. Figure 4.5b shows increasing accuracies
with increasing duration of the estimation arc, for several values of Bg,,+,- The determina-
tion of near face-on orbits (Bg,n = 83.6 £ 3.2°) is visibly worse than near edge-on orbits
(Bgartn = 1.0 £4.2°) regardless of the length of the estimation arcs (Fig. 4.5b), whereas in
the case of Europa, the difference between this two extreme cases, Bg,¢p = 84.6£1.1° and
Bartn = 3-110.5° is less significant (Fig. 4.5a). In case of Callisto, the near edge-on orbits
are even more accurate than the intermediate orbit configuration Bg,,., = —40.6 £ 4.3°,
and we notice that for the near edge-on case, the correlations between the inclination ¢ and
both the longitude of the ascending node €2 and the argument of latitude u, are signifi-
cantly lower, below 0.5, compared to values higher than 0.9 in the other two cases. Such
low correlations are not visible in the case of Europa (Fig. 4.4), but may explain why the
orbit accuracy is better for Bg,+, ~ 1.0° in case of Callisto. In the best and very ideal
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Figure 4.4: Correlations between orbital elements for different values of 5g,,+;,- Each value
correspond to the maximum correlation for all ~86 h arcs for a 5:197 RGTO around Europa
with ¢ = 89°, h = 134 km.

case, the orbit can reach centimetre-level accuracy for a near edge-on orbit, considering
~400h estimation arcs (see blue curve in Fig. 4.5b).
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Figure 4.5: 0.95-quantile for the 3D RMS of orbit differences for different Bp,,;, and arc
lengths in the case of a 5:197 RGTO around Europa (a) and a 5:731 RGTO around Callisto

(b).

However, estimating very long arcs is not necessarily possible. The impact of any mismod-
elling would increase with longer arcs, and even if mismodellings could be absorbed by
other parameters, their impact on the orbit would need to be carefully assessed (see e.g.,
Sect. 4.5). Additionally, as mentioned above, any unmodelled orbit manoeuvres would also
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4. Orbit determination and geodetic parameter recovery using Doppler observations only

prevent the estimation of long arcs. It is a common orbit determination practice to split the
arc around the manoeuvres epochs. However, some other approaches allow to decorrelate
orbit parameters, such as the one briefly discussed in Sect. 4.1.1.

4.1.3 Importance of the ground station tracking

The Chinese and NASA Deep Space Networks are distributed on the surface of the Earth
in a way that if a deep space probe is visible from Earth, then it can be tracked at nearly
any time. However, not all DSN ground stations contribute equally to the observation of
deep space probes, because of their location, and because of their capabilities or schedule.
For instance, due to Earth’s inclination with respect to the ecliptic, a probe in the Jovian
system might be observed less by a station in the northern hemisphere compared to one in
the southern hemisphere or vice versa. In case of a mission in mid-2031, such a probe would
be visible for a longer part of the day in the southern hemisphere than in the northern
hemisphere. Figure 4.6a shows the coverage of the three stations of the Chinese DSN (with
a 10°-elevation threshold), and the ground track of a probe in the Jovian system for 90
days starting on 2031-05-01. A station in the southern hemisphere, e.g., Neuquén, will have
the possibility to observe the probe longer than a station in the northern hemisphere (e.g.,
Jiamusi).
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Figure 4.6: Coverage (a) and daily tracking time (b) for the 3 stations of the Chinese DSN.
The red band correspond to the trajectory of the probe as seen from Earth.

The location of the station plays a role not only in the quantity of observables generated,
but also in their quality. One of the most important contributions to our Doppler noise
model is constituted by the wet troposphere, which is larger during summer (see Sect. 2.6.3).
This means that for a mission in mid-2031, the tropospheric noise is more important for
a station in the northern hemisphere than in the southern hemisphere. Moreover, Jiamusi
ground station does not operate at Ka-band, but only at X-band, for which the plasma
noise contribution is more important (see Sect. 2.6.3).

In this section, we investigate the influence of the ground station tracking on the qual-
ity of orbit determination, and on the subsequent gravity field solution. We limit our
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4.1 Orbit determination quality

investigation to the choice of the set of tracking stations for the whole mission, and we
assume that when the probe is visible by the chosen set of stations, one (and only one) of
them is tracking the probe. We consider a 5:731 RGTO around Callisto, with h = 197 km
and i = 89°. We set Bp,,n € [67°,76°] so that the probe is not occulted by Callisto for
most of the mission duration. Figure 4.6b, shows the maximum tracking time per day and
per station. The shorter tracking passes at the beginning of the mission are due to partial
occultation of the probe’s orbit by Callisto.

We tested different combinations of observing stations from the Chinese DSN resulting
in average daily tracking time between 5h50 and 22h25 (Tab. 4.1). We estimated one set of
orbital elements for each arc, using a perfect a priori force model, but a perturbed a priori
orbit, and computed the 3D RMS of the orbit differences for each arc. In order to focus on
the general quality of the orbit, we computed the 0.95-quantile gg5 to discard outliers. We
afterwards estimated the gravity field up to d/o 100, and show in Tab. 4.2 the maximum
degree of the gravity field which can be resolved, i.e., the maximum degree n for which the
difference degree amplitude with respect to CALGLMo A,, (Eq. 4.1) is smaller than the
CALGLMo degree-amplitude. We additionally computed the weighted RMS of the geoid
height differences (Ag)wrmg of the gravity field solution up to d/o 90 with respect to
CALGLMo (Tab. 4.2).

Table 4.1: Average daily tracking time and gg5 RMS of orbit differences after fitting only
orbit parameters, for different station schedules.

, Freq. | Average daily | gg5 RMS orbit
Ground stations band | tracking time differences
Jiamusi X 5h50 11.4m
Kashgar Ka 7h14 7.78m
Neuquén Ka 12h18 1.51m
Jiamusi & Kashgar | X/Ka 10h06 6.09m
Jiamusi & Neuquén | X/Ka 18h23 1.66 m
Kashgar & Neuquén | Ka 19h34 1.46 m
All CDSN stations | X/Ka 22h25 1.30m

The orbit fitted considering only observations from Jiamusi station is about ten times
worse than an orbit fitted using the complete set of ground stations from the Chinese
DSN, because Jiamusi ground station provides the least amount of observations, because
these observations are limited to X-band, i.e. more sensitive to plasma noise, and because
we considered a mission span during summer in the northern hemisphere. This is also vis-
ible in terms of gravity field solution, with the resulting (Ag)wrums being about 5 times
larger than in case of Neuquén. The orbit and gravity field solutions are slightly better in
case of tracking from Kashgar only, thanks to the Ka-band capability, and due to ~ 25%
more observations. However, the noise due to the wet summer troposphere is still dominant.

The inclusion of Neuquén in our selection of tracking ground stations significantly improves
the solutions. A tracking from Neuquén provides more than twice as many observations
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Table 4.2: Number of observations, geoid height weighted RMS and maximum degree re-
covered, after solving for all parameters, for different station schedules.

) Freq. | Number of Max
Ground stations band | observations (Ag)wrats degree
Jiamusi X 29236 22.0m 78
Kashgar Ka 36313 16.6 m 81
Neuquén Ka 62181 4.7m 92
Jiamusi & Kashgar | X/Ka 50649 15.0m 81
Jiamusi & Neuquén | X/Ka 92622 4.6 m 90
Kashgar & Neuquén | Ka 98 548 4.5m 92
All CDSN stations | X/Ka 112884 4.5m 92

than a tracking from Jiamusi alone. Because Neuquén operates during winter times in the
considered scenario, the noise on each observation is in average 2.3 times smaller than
the noise on observations from ground stations in the northern hemisphere, for the same
frequency band. For all these reasons, considering tracking from Neuquén is necessary to
achieve the level of accuracy of a “best case scenario” orbit and gravity field solution ob-
tained by tracking the probe from all the ground stations of the Chinese DSN.

It is important to note that these results depend heavily on the mission’s time span, and on
the observation noise we assumed in Sect. 2.6.3. Indeed, if the residual noise due to the wet
troposphere delay can be calibrated, and if multi-link is possible to cancel the dispersive
noise sources, then the contribution of each ground station is expected to change.

4.1.4 Orbit and global parameters

Once the orbit is fitted for every arc, the second step of the CMA is to set up the NEQs
for all parameters to estimate, i.e., the arc-wise and the global parameters, and to solve
for them (see Sect. 2.3). In this section, we address the quality of the orbit after global
parameters are co-estimated, as opposed to a solution including only arc-wise parameters.
We consider a 26:1023 RGTO around Europa, with ¢« = 89°, h = 134km, and 8g,,., = 69°.
We fit the orbit in 78 arcs covering 3 months, using a perfect a priori force model. In this
ideal case, we reduce the Doppler residuals below 5 mHz (blue dots in Fig. 4.7a), when freely
estimating only osculating elements for each of the ~28h-long arcs, which corresponds to
the applied Doppler white noise (0.1 mms~! 1-way). The orbit, estimated using only arc-
wise parameters, can be recovered with a precision better than 2 m, similarly to the 5:197
RGTO discussed in Sect. 4.1.1.

However, when co-estimating gravity field parameters up to d/o 90, the quality of the
orbit is degraded (see magenta dots in Fig. 4.7b). The main orbit differences are still
in the ey direction, but the RMS differences increase to a maximum of 5.3m. On the
other hand, the Doppler residuals are reduced, which is a consequence of enlarging the
parameter space by estimating gravity field parameters (see Fig. 4.7a). Insight can be gained
by inspecting the correlations between gravity field parameters and orbit parameters of
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Figure 4.7: RMS of Doppler residuals (a) and orbit differences (b) for a 26:1023 RGTO
around Europa (i = 89°, h = 134 km, B, = 69°) for all 78 arcs, estimating only orbital
parameters (blue) and estimating also gravity field parameters up to d/o 90 (magenta).

previously independent arcs. Figure 4.8 shows high correlations between orbit parameters of
every 3" arc, which corresponds to every 1 Europa day. The ground tracks of these arcs on
Europa’s surface are close to each other. This likely explains correlations when estimating
the gravity field coefficients, as the tracks are then affected by the same components of
the gravity field. In general, stronger correlations are visible every m Europa days for an
m:R RGTO. These new correlations between the orbit parameters explain why the orbit
quality is degraded. Appropriate constraints on the orbit parameters can help to reduce
these correlations, improving the overall orbit quality, and consequently the global solution.

4.2 Gravity field recovery strategies

In our two-step procedure, the arc-wise parameters are first iteratively estimated for every
arc, while fixing the global parameters (e.g., gravity field coefficients) to their a priori
value (see Fig. 2.6). However, the current knowledge of Europa and Callisto’s gravity field
is limited to the degree-2 coefficients only [Anderson, 1998, 2001, Casajus et al., 2021]. If
such a low-degree a priori gravity field is introduced, in order for the orbit fit to converge,
additional parameters are needed on top of the initial conditions to compensate for the
significant lack of information on the a priori force model. For the example of Europa, two
solutions are considered in this section: using pseudo-stochastic pulses (Sect. 2.2.5) in our
estimation or co-estimating in a first iteration the low-degree coefficients of the gravity field
together with the orbital parameters. These solutions are compared to the true gravity field
model EURGLMo, and we verify how well this comparison matches to the comparison of
a reference solution with respect to EURGLMo, computed using a perfect a priori force
model (up to d/o 90) and labelled EURSOLO1 (Fig. 4.9).
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Figure 4.8: Correlations between initial osculating orbital elements of the first 30 arcs
among the total 78 arcs for a 26:1023 RGTO around Europa.
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Figure 4.9: Difference degree amplitudes of the unconstrained reference solution EUR-
SOLO01, obtained from a 5:197 RGTO, i = 89°, By =~ —6°.
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4.2.1 Using pseudo-stochastic pulses

Pseudo-stochastic pulses are instantaneous velocity changes (see Sect. 2.2.5). They are very
useful additional parameters, e.g., to absorb modelling errors. We estimate a set of pulses
every 60min, corresponding to roughly twice per revolution, in all 3 directions (radial,
along-track and cross-track) while constraining their amplitude to o, =1mm s,

With the help of such pulses, the data fit for all the arcs converged within 8 iterations
when starting with a degree-2 a priori gravity field. The level of convergence in terms of
Doppler residuals is still very far from the precision one could expect with a better a pri-
ori force model (Sect. 4.1), but this is to be expected from the limited knowledge of the
gravity field. The orbits are also quite far (tens of kilometers) away from the true orbit.
However, after this first step the nominal procedure can be pursued. The global parameters
are successfully estimated after stacking the 3 months arc-wise NEQs, pre-eliminating all
the arc-wise parameters (orbital elements and pseudo-stochastic pulses) and finally solving
for the gravity field coefficients up to d/o 90.

The complete procedure is then iterated using the new gravity field as a priori information.
The arc-wise parameters (initial osculating elements and pseudo-stochastic pulses) are not
updated from one global solution to the other. They are instead re-estimated for each arc
from their initial a priori value. Within a few iterations of the full process, the gravity field
can be estimated to the same level of precision as when starting from the reference gravity
field EURGLMo. In the first iteration, the RMS values of the pulses in radial, along-track
and cross track direction are (35,46,1) mm/s. The magnitude of the pulses decreases at
each iteration. They reach the level of (1,2,0.1) mm/s after a few iterations. At this point,
pulses are not needed anymore to help the first orbit fit to converge, and we either apply
tight constrains to 0 or fully omit them in order to preserve the low-degrees of our gravity
field solution.

Considering a near edge-on orbit impacts the visible ground coverage as the probe van-
ishes behind the central body as seen from Earth (see Sect. 4.3.2 for more details). When
considering an orbit for which no observations are lost because of occultations by Europa,
only 3 to 4 iterations are needed to achieve the level of precision of EURSOLI1 solution
(Fig. 4.9) computed by starting from a perfect a priori gravity field.

However, when considering a near edge-on orbit, more iterations are needed to converge.
This is due to the reduced visible ground coverage. As an example, 5 more iterations are
needed for a nearly edge-on orbit (see Fig. 4.10 a) than for an orbit with 5,4, = 67°. The
effect of the reduced observed ground coverage can already be seen in the first iteration.
The coefficients with a degree larger than 40 are not well estimated, which is in agreement
with the results shown in Sect. 4.3.2.

An increase in convergence speed can be obtained by estimating gravity field coefficients
up to d/o 90 but re-introducing the estimated gravity field solutions only up to d/o 40 as
a priori information for the following iteration (see Fig. 4.10 b). Doing this for the first 2
iterations, within a total of 5 iterations, the gravity field parameters converge to the same
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Figure 4.10: Difference degree amplitude of gravity field solutions estimated up to d/o 90
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every iteration (a) or reintroducing the gravity field parameters only up to d/o 40 for the
first two iterations (b). 5:197 RGTO, i = 89°, Bgyrn ~ —6°.

level of precision than when using a perfect a priori gravity field.

One drawback of this approach is that estimating pulses every 60 min during 3 months
significantly increases the total number of parameters to be estimated to 15131 (1.73 times
more than with only orbit and gravity field parameters, see Tab. 2.1). Here, pulses are only
considered as a useful tool to temporarily compensate for force model deficiencies.

4.2.2 Co-estimation of the low-degree gravity field coefficients

Another solution to cope with inaccurate a priori gravity information is to estimate low-
degree gravity field coefficients along with the orbital elements in one common adjustment.
Contrary to our nominal procedure, the orbital elements are thus never estimated alone.
Normal equation systems (NEQs) including both orbit and gravity field parameters are set
up for each arc but not solved, i.e., we do not compute an intermediate arc-wise orbit-only
fit. The arc-wise NEQs are then stacked, the orbit parameters are again pre-eliminated,
and the 3-months NEQ is inverted to compute the gravity field solution.

Co-estimating gravity field coefficients up to d/o 20 results in a total of 8746 parameters,
which is approximately half the 15131 parameters estimated when employing pseudo-
stochastic pulses, as detailed in Sect. 4.2.1. With this method, one can estimate a reason-
able medium-degree gravity field solution, in a single iteration, without using pulses (see
Fig. 4.11). After this first iteration, the nominal procedure can be resumed until conver-
gence: a first estimation of arc-wise parameters in an arc-wise fit, and then stacking all the
NEQs to solve for a global orbit and gravity field solution.
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Figure 4.11: Difference degree amplitudes of gravity field solution recovered from a 5:197
RGTO with © = 89°, Br,rn &~ —6°, without pulses and estimating gravity field coefficients
up to d/o 20 in the first iteration, and up to d/o 90 in the following iterations.

4.2.3 Comparison

The two methods presented in sections 4.2.1 and 4.2.2 converge to the same level towards
the gravity field reference solution EURSOLO01, which is computed using a perfect a priori
force model, as shown in the previous sections. Because of the larger number of parameters,
the use of pulses increases the total processing time. The differences in processing time us-
ing one CPU (core) per job (AMD EPYC microprocessor) on the current aiub-nodes at
the UBELIX cluster are presented in Tab. 4.3.

Table 4.3: Number of iterations and computation time for all 3 methods for a 3-months
d/o 90 gravity field recovery, starting with a d/o 2 a priori gravity field, considering that
arc fits can be processed in parallel (par.) or not (seq.).

Method Number of Time
iterations seq. par.
Pulses (A) 11 66h12 | 5h10
Pulses (B) (remove d/o > 40) 8 44h50 | 3h33
Low-degree co-estimation 8 39h17 | 2h26

In the very first iteration, one can see that pulses are more efficient in reducing the RMS of
Doppler residuals (Fig. 4.12a). This is to be expected due to the higher number of parame-
ters to absorb model deficiencies. On the other hand, the differences with respect to the true
orbits are larger when estimating pulses than when co-estimating gravity field coefficients
(Fig. 4.12b). Re-injecting only the gravity field up to d/o 40 when using pulses markedly
increases the convergence speed. Pulses (A) refers to the use of pulses (up to 5 iteration)
and to consistently re-inject the 90-degree gravity field solution for each iteration. Pulses
(B) refers to re-injecting only coefficients up to d/o 40 and using pulses until the 3" itera-
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tion. The dashed line represent the RMS reached when using a perfect a priori gravity field.

One can also note that when not estimating pulses anymore (6 iteration for (A) and
4th iteration for (B)) the Doppler residuals can temporarily increase, but then decrease
even faster in the next iterations. This is not the case for the orbit differences: the RMS
does not increase and the convergence is also faster after the pulses are not estimated
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Figure 4.12: RMS of Doppler residuals (a) and orbit differences (b) with respect to iteration
number for different methods.

It is important to emphasize that both methods converge to the same level of precision
toward the reference solution EURSOLO1. Convergence seems nevertheless faster when
co-estimating the low-degree coefficients in the first iteration.

4.3 Low orbit design for gravity field recovery: case of
Europa

In this section, we investigate the quality of gravity field recovery for multiple orbit scenar-
ios defined in Sect. 3.4.2. We carefully analyse the influence of a set of parameters on the
gravity field recovery, by isolating each of them as much as possible from the influence of
the others. In particular, we treat the eclipses by Jupiter separately in Sect. 4.3.5, as their
impact on the gravity field recovery can be critical. This also allows us to generalise our
results to other celestial bodies which are not subject to such regular eclipses, e.g., Callisto.

We consider here the tracking of all three NASA DSN stations (Tab. 2.4) as baseline,
and we confirmed that reducing the coverage to only one station does not significantly
affect our results for the scope of this section. Non-gravitational forces were not considered
in this section. We investigate their impact later in Sect. 4.5.
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For computational time reasons, we use a perfect force model (i.e., the unperturbed simu-
lated d/o 90 field) as a priori information for all our tests, to avoid iterating on the gravity
field solution. As shown in Sect. 4.2, the gravity field can be recovered to a comparable
level also when starting from a degree-2 a priori gravity field (corresponding to our current
knowledge), albeit for the price of more iterations.

In all cases presented here, the Love number k, is co-estimated, resulting in uncertainties
< 1.3x 1077 (< 0.005% relative to the expected signal), which would allow to distinguish
between an ocean-bearing and ocean-free Europa [Wu et al., 2001, Wahr et al., 2006]. How-
ever, we found that the different scenarios investigated in this section only have a marginal
impact on the recovery of ky, so that we will not further discuss this parameter.

4.3.1 Ground tracks repetition

The repetition cycle of an RGTO directly impacts the ground surface coverage, as men-
tioned in Sect. 3.1. The shorter the repetition cycle, the larger the cycle intertrack (see
Tab. 3.1), resulting in a lower spatial resolution of the ground tracks, which limits the
resolution of the estimated gravity field solution.

For a given gravity field degree n, the surface wavelength is given by the Jeans relation
[see, e.g., Wieczorek, 2015]

2rRp  _ 2mRp

—=~= (4.6)

According to the Nyquist criterion, a sampling of )\TE allows to recover down to the shortest

wavelength of %. In other words, to avoid aliasing [Sneeuw, 2000] when estimating a

degree-n gravity field, the spatial resolution (or cycle intertrack d,,) of the ground tracks of
A
2

of a

an m:R RGTO (see Eq. 3.3), must be smaller than this minimum sampling, i.e., d,, <
Hence, from an m:R RGTO we can expect the maximum resolvable degree n,,,
recovered gravity field to be given by

T

n =—. (4.7)

It can be deduced from this equation that for R > 180, a degree-90 gravity field can be es-
timated without any aliasing. For an orbiter with an altitude between 100 km and 200 km,
this corresponds to m > 5. There are other limiting factors on the quality of the recovered
gravity field coefficients, e.g., the observation noise, and other parameters which we will
discuss in the following sections. If we fix these parameters, and consider an orbit with an
altitude h ~ 134km and fBg,,4, ~ 67°, the gravity field can be estimated unconstrained
up to d/o 62 for every m > 5 (see when the curves for m =5 and m = 26 cross the signal
line in Fig. 4.13). Indeed, decreasing the repetition rate so that the ground tracks coverage
becomes denser does not improve the quality of the gravity field solution.

On the other hand, when estimating the gravity field up to d/o 90 from an m:R RGTO
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Figure 4.13: Difference degree amplitudes of Europa gravity fields recovered from different

m:R RGTO. i =89°, Bpyren ~ 67°.

with R < 180, one expects an aliasing of the gravity field solution, increasing with decreas-
ing values of R (see m = 1,2,3 in Fig. 4.13), meaning that some frequencies of the gravity
field signal become indistinguishable. For the orbits considered in this study, aliasing is
indeed visible as soon as one tries to estimate coefficients of degree larger than 20 x m. For
m=1,2, a severe aliasing is visible over the entire spectrum.

A first approach to avoid aliasing would be to solve only for a gravity field solution up
to d/o 20 x m. However, this necessarily induces an omission error, meaning that the sig-
nal from the higher degree coefficients (which are not estimated) leaks into the estimated
gravity field coefficients (e.g., green curve in Fig.4.14, left, for m = 3). To prevent this, one
can still estimate the gravity field up a higher degree (d/o 90 in our simulation scenario),
while constraining all coefficients of the gravity field to zero using a Kaula law [Kaula,
1963] such that the constraint on each coefficient of degree n is

SOEE S (4.8)

with K being a positive constant. This results in tighter constraints on the high degree
coefficients (which might diverge due to the limited data coverage) than on the low-degree
coefficients. Here, K was empirically set to 0.5 to only prevent the high degree gravity field
coefficients from diverging, and in principle depends on the celestial body. We were careful
not to constrain the estimated parameters to their expected value.

In order to validate this approach, we also compute an “artificial” solution, for which
the omission error is removed by estimating the gravity field up to d/o 20 x m, but as-
suming a perfect knowledge of the higher degree coefficients (magenta curve in Fig. 4.14,
left). Fig. 4.14, left then confirms that the Kaula-constrained gravity field (yellow curve)
solution tends towards the “artificial” solution (magenta curve).

When using a Kaula constraint, the gravity field can be estimated up to d/o 62 with
m = 3,4 with the same precision as with m > 5 (Fig. 4.14, right). A Kaula constraint
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Figure 4.14: Difference degree amplitudes of several gravity field solutions from a 3:118
RGTO showing the benefit of a Kaula constraint (left) and from different m:R RGTO
with m <5 using a Kaula constraint (right) with ¢ = 89° and S, =~ 67°.

also improves the solution for m < 2, but the solution is still degraded in the low degrees.
A tighter constraint could in principle further improve the results, but it would also risk
biasing our solution.

4.3.2 Earth (g-angle

The angle Bg,.+, between the orbital plane of the probe and the Earth direction plays
a significant role in gravity field recovery. When this angle is below a certain threshold
BEarth.c> the probe vanishes behind Europa as seen from Earth for a portion of the orbit,
which is is thus not covered by observations collected from stations on Earth. In Europa
fixed frame, these missing observations correspond to a latitude band around the equator
on the far side of Europa with respect to Earth (Fig. 4.15). We define the critical latitude
®. > 0 as the latitude of the first observation missed so that for a near-circular and quasi-
polar orbit

cos(64) o5 Bgarin) ~ \/ () (19)

The line of sight from Earth is then blocked if the probe is on the far side of Europa, and
if its latitude is between +¢,. and —¢,. As shown in Fig. 4.15, there are still observations
between +¢,. and —¢, when the probe is on the front side of Europa, as Europa rotates
with respect to Earth. Larger 8,4, limit this effect to a narrower set of latitudes around
the equator. The threshold B4y ., below which the line of sight can be occulted, is de-
duced from Eq. (4.9) by setting ¢. = 0°, and is a function of the probe’s altitude h, and
the radius of Europa R (see Fig. 4.16).

At worst, the probe cannot be observed from Earth for ~ 40% of the orbit with a com-
pletely edge-on orbit (S, = 0°) with an altitude between 100 km and 200 km. This
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Figure 4.16: Critical latitude ¢, for which the line of sight is blocked on the far side of
Europa with respect to Earth as a function of 8g,,;,- A near-circular and quasi-polar orbit
is assumed.

highly affects the visible ground coverage. On the other hand, a completely face-on orbit
(Bgartn, = 90°) will always be visible from Earth, but it is also much less suited to probe
the gravity signal, as it will induce only relatively small velocity variations along the line of
sight direction best sensed by Doppler measurements. To investigate the impact of different
values of Bg,,.4, on gravity field recovery, we focus in the following an 89°-inclined orbit,
for which S, 1s quasi constant during the 3 months mission period (see Sect. 3.3.2).
We select a 26:1023 RGTO which does not repeat in 3 months and with an altitude of
h = 135km. According to Eq. (4.9), Bgamn. = 67.0° for this orbit. We considered several
initial positions of the orbital plane, i.e., several different 8, values, to investigate the
influence of this parameter.

A high Sgun degrades the estimation of the low-order gravity field coefficients (zonal and
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Figure 4.17: Difference with respect to EURGLMo of the freely estimated Europa gravity
field coefficients recovered from a 26:1023 RGTO for several 8y, values, with h = 135km
and ¢ = 89°.
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Figure 4.18: Difference degree amplitude of unconstrained recovered Europa gravity field
solutions for different Sy, angles (a) without and (b) with a Kaula constraint (K = 0.5),
for a 26:1023 RGTO with h = 135km and 7 = 89°.

near zonal) as shown in Fig. 4.17. On the other hand, for very small g, values the
higher degree coefficients are not well determined (see Fig. 4.18a) because of the reduced
ground surface coverage. Estimating the gravity field to a lower d/o would introduce an
omission error, as shown in Sect. 4.3.1. A relatively loose Kaula constraint (Eq. 4.8) can be
considered instead, to avoid a large omission error, affecting the lower-degree coefficients.
Fig. 4.18b shows that the d/o > 35 are visibly improved in case of a near edge-on orbit
(Bgartn = 0°), and that for all degrees, the gravity field coefficients are better recovered
from a near edge-on orbit than from a more face-on orbit (8,4, = 90°).

In conclusion, despite the reduced number of observations, a lower Sg,,, improves the
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quality of the estimated gravity field when using an appropriate Kaula constraint, as shown
in Fig. 4.19. The shown geoid height differences are computed from gravity field solutions
up to d/o 60, estimated using a Kaula constraint. One can note a small improvement of
the overall quality of the recovered gravity field from an orbit with B, slightly larger
than g0, With respect to Bg,,., slightly smaller than Bg,.p, . (€.8., Bgaren € [66°,75°
for h = 135km), as soon as the line of sight with respect to Earth is not occulted. For
BEartn < 75°, the weighted RMS of the geoid height differences (Ag)yrarg is at most 1.6
times larger in comparison to the case Bgg, 4 = 0°.
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Figure 4.19: Weighted RMS of geoid height differences (Ag)wrmg of Kaula-constrained
solutions (up to d/o 60) with respect to EURGLMo and half latitude band ¢, for which
the probe is not observed on the far side of Europa as a function of Bg,,, for 26:1023

RGTOs with h = 135km and 7 = 89°.

In a more general case, where By, is not fixed, a combination of low Sg,,+n, and Bgaren
close to Bggpipn . Would be optimal to increase the precision of the recovered gravity field
without relying on constraints to mitigate aliasing.

4.3.3 Altitude

We analyse the impact of the probe’s altitude on gravity field recovery for 5:R RGTOs.
For m > 5, the impact of ground track repetition on the studied m:R RGTO is negligible
(see Sect. 4.3.1), i.e., these results are valid for any m > 5. We analyse orbit altitudes h
between 100 km and 200 km. With an inclination ¢ = 89° we fixed Bg,,4, to 69°, which is
larger than B, . for all considered altitudes (see Fig. 4.16), to avoid any aliasing due
to ground coverage issues (see Sect. 4.3.2). We thus show only unconstrained solutions in
this section.

Under these assumptions, the best gravity field solution can be obtained up to d/o 70
from a 5:202 RGTO, corresponding to an altitude of h = 105km (Fig. 4.20a). For higher
altitudes, i.e., lower values of R, high-degree gravity field coefficients cannot be properly es-
timated to the same extent. This behaviour is expected and a consequence of the spherical
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Figure 4.20: Europa gravity field solutions for orbits with different altitudes with m=>5 and
Brartn, = 69°. Difference degree amplitudes (a) and weighted RMS of geoid height differ-
ences computed up to d/o 50 (b) with respect to the reference gravity field (EURGLMo).

harmonics decomposition given by Eq. (2.11): the coefficients of degree n are attenuated
n
by a factor (% . As a result, the higher the probe is, the less sensitive it is to the high

degrees of the gravity field. For the same reason the impact of a higher altitude orbit is
not the same for all degrees, e.g., for R = 187, at an altitude of h = 194 km, gravity field
coefficients can only be estimated up to d/o 50.

Figure 4.20b illustrates the overall dependency of the gravity field quality with respect
to the altitude of the orbit. Because [g,,+, is not precisely 69° for all these tests, the
weighted RMS is not rigorously monotonous. Indeed, as discussed in Sect. 4.3.2, the grav-
ity field solution is very sensitive to 8., when the latter is close to Bg,.p . (see Fig. 4.19).
Nevertheless, the impact of Bg,,+, is minor at this scale, in comparison with the impact
of altitude.

One should also note that stronger orbital perturbations from Europa’s gravity field would
be experienced from very low altitude orbits, e.g., 50 km altitude in case of the MAGIC
mission proposal for Callisto (see Sect. 1.2.2). The number and magnitude of manoeuvres
needed to maintain the orbit would instead be reduced with higher altitude orbits. As
a consequence, from a mission point of view, a compromise has to be reached between
the target resolution of the gravity field and what an acceptable number of manoeuvres
is (which impacts the number of clean observations, and the total fuel consumption) to
ensure a sufficient lifetime of the mission.

4.3.4 Inclination

As mentioned in Sect. 3.4.2, the choice of inclination impacts the variation of the Sg,,4h
angle. For a mission mid-2031, a 89°-inclined orbit would enable a low variation of Sg,,¢p-
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4. Orbit determination and geodetic parameter recovery using Doppler observations only

This is very convenient in the frame of this study (as it allows to separate the impact of
Bartn, from the impact of other parameters), but it is not imperative from a mission point
of view. On the other hand, the variation of 8g,,;, of a probe on a 80°-inclined orbit would
reach up to 60° in 3 months. A combination of several orbital plane configurations with
respect to Earth would actually be beneficial to take advantage of both high and low values
of Brartn- As mentioned in Sect. 4.3.2, high values of 8,4, enable a denser coverage of
Europa, while lower values of 8, would improve the estimation of the lower degrees of
the gravity field.

50 + —_— = 89°

— i = 80°

45 - - -
May Jun Jul Aug
2031

Figure 4.21: By, 4, angle variation over 3 months for a polar orbit around Europa, starting
at Bpartn,o = 70°, and for an 80°-inclined orbit, starting at Sgg,..p 0 = 47°.

We analyse two orbits, a polar orbit (i = 89°), and an orbit with a 10° polar gap (i = 80°).
Variations of the B, angle make a proper comparison of gravity field solutions recovered
from the two differently inclined orbits a delicate matter. We decided to fix the mean value
of Braren to 70° for these two orbits. In case of the polar orbit, we start with a Bg,, e
value of 70° and only have a small variation. In case of the 80°-inclined orbit, we start with
Barth, = 47° and observe a large variation (Fig. 4.21).

The consequence of a non-polar orbit is an unobserved set of latitudes, a “gap”, in the
polar regions of the celestial body. The probe will then be less sensitive to the zonal and
near-zonal gravity field coefficients [van Gelderen and Koop, 1997]. In terms of gravity field
recovery, this means that the estimates of these coefficients will be degraded in comparison
with the use of a polar orbit (Fig. 4.22). The impact on higher order gravity field coefficients
is negligible. Some differences can also be seen in the near sectorials of high degrees, but
this is a marginal effect due to the slightly lower altitude of the 5:196 non-polar RGTO
with respect to the polar 5:197 RGTO.

4.3.5 Eclipses by Jupiter

The investigations in Sect. 4.3 have been so far performed without taking into account
the eclipses of Jupiter, in order to assess the influence of each parameter as separately as
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i = 89°, Brarn € [70,71]° i = 80°, Brarn € [47,79]°

degree

Figure 4.22: Differences with respect to EURGLMo of the Europa gravity field coefficients
recovered from an 5:197 polar RGTO with A = 134km (left) and from an 5:196 RGTO
with a 10° polar gap and h = 132km (right).

possible. However, as seen from Earth, Europa passes generally once per revolution behind
Jupiter. As a result, a probe in a low altitude orbit around Europa cannot transmit to
Earth for a short time, resulting in regular Doppler data gaps.

Moreover, because Europa is synchronously rotating, the missing data of consecutive or-
bits correspond to two unobserved small longitude bands on the surface, corresponding to
the ascending and descending part of the orbit of the probe, i.e., approximately separated
by 180° (see Fig. 4.23). If the orbit is near face-on, e.g., Bp,n = 87° in Fig. 4.23, the
unobserved longitude band corresponding to the ascending part of the probe’s orbit is cov-
ered by the descending part of the orbit half a Europa revolution later, when Europa is
in front of Jupiter as seen from Earth, and vice-versa for the unobserved longitude band
corresponding to the descending orbit. In the end, the two longitude bands corresponding
to Jupiter’s eclipses only have fewer associated Doppler observations.

However, for B8g..1n < Bgartn., the probe is additionally passing behind Europa with re-
spect to the Earth, as discussed in Sect. 4.3.2, resulting in an unobserved latitude band
on either the ascending or descending part of the probe’s orbit. As a result, some sur-
face regions are not covered at all by Doppler data (see Bgyrn = 3° and Bgyren = 59°
in Fig. 4.23). This is of critical importance for a relatively short mission, for which the
Earth-Jupiter-Europa configuration has not enough time to naturally evolve, and for low
altitude probes.

Indeed, the gravity field recovered from orbits with Bg,,. = 3° and Bg,. = 59° suf-
fers from a significant aliasing (see Fig. 4.24a) due to the data gaps, similarly to RGTOs
with high repetition (see Sect. 4.3.1), as soon as we try to recover a gravity field whose
resolution is smaller than the coverage gap. However, unlike high repetition RGTOs, the
gap is not evenly distributed along the equator, but very confined in a longitude range.
This means that there is overall more information to exploit from this ground coverage,
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Figure 4.23: Ground coverage of Europa from a polar 5:197 RGTO with h = 134km
occulted by Europa and by Jupiter for 90 days, for different constant Sp,,.,. The 60 s-
sampled Doppler observations are grouped in bins of 1.8° in longitude and 2.8° in latitude.

than from evenly distributed coverage gaps of same cumulative width.

One way to mitigate the effect of this coverage gap is to constrain the gravity field coef-
ficients, e.g., considering a Kaula law (Eq. 4.8) to constrain each coefficient to zero based
on its degree, similarly to Sect. 4.3.2. We also investigate constraining the coefficients
order-wise, using

ox(m) =—, (4.10)

where m is the order of the associated gravity field coefficient. We found that for o = 1,
this law fitted well the order amplitude A,,, of our reference gravity field.

In both cases, the scaling factor of the Kaula constraint is determined using Variance Com-
ponent Estimation (see Sect. 2.3.3), leading to K ~ 2.5 for degree-wise Kaula constraint
and K = 0.002 for order-wise Kaula constraint. Both approaches significantly reduce the
aliasing for Bgq,in < Brartn,c = 67° with an order wise constraining allowing for the best
solution (see Fig. 4.25). As in Sect. 4.3.2, we can say that Bp,,., close to Bp, ., . is optimal
to obtain an unconstrained gravity field solution. However, contrary to Sect. 4.3.2, an exces-
sively small Bg,,+;, is not beneficial for the low degree gravity field coefficients, even when
constrained by a Kaula law, as they are highly affected by an equatorial gap in the coverage.
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Figure 4.24: Difference degree amplitudes (a) and difference order amplitudes (degree < 60)
of unconstrained recovered gravity field solutions for 5:197 RGTO with different 5,41
angles, h = 135km and 7 = 89°.
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Figure 4.25: Difference degree amplitude of gravity field solutions for 5:197 RGTOs with
h = 135km, ¢ = 89° and different 8p,,,, angles with (a) a degree-wise Kaula constraint
(K =~ 2.5) and (b) an order-wise Kaula constraint (K ~ 0.002).

The eclipses of Callisto by Jupiter are rather rare compared to Europa, because of the
non-zero inclination of Callisto’s orbital plane with respect to the ecliptic, and especially
because of the larger distance of Callisto with respect to Jupiter. For instance, we do not
observe any eclipse in the three months considered in this work starting in 2031-05-01.
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4.4 Estimation of rotation parameters

In the case of Callisto, we investigated the estimation of orientation and rotation parame-
ters, as described in Sect. 2.4. We estimate a constant correction to the right ascension and
declination of the north pole, parametrised by the coefficients o and d,. In addition, the
rotation of Callisto is characterized by the location of the prime meridian and by its rate of
change. The initial location at J2000 (2000-01-01, 12:00 T'T) is fixed by the IAU working
group [Archinal et al., 2018] and changing its value would translate in a rotation of our
gravity field model. We thus estimated only time variable components, i.e., the rotation
rate w; and the main longitudinal libration W,;. Since we only consider a 3 month mission,
longer period variations of the orientation and rotation parameters are expected to be more
challenging to estimate.

Table 4.4: Constraints o, true errors A and formal errors f

.- Of Totation parameters

estimated freely or using constraints determined empirically or via VCE.

Constraning method apl®] | 0o[°] | wy[°/day] | Wi[°]
No constraints A (x10%) | 68.5 | 1.09 0.028 0.696

forr  (x10%) | 40.5 | 3.67 0.021 2.49
Constraints of rotation | o  (x10°) | 73.0 | 0.38 0.021 0.080
parameters estimated A (x10%) | 57.9 | 0.026 0.012 0.001
using VCE forr  (x10°) | 31.0 | 0.344 | 0.014 | 0.072
VCE-derived o (x10%) | 70.0 | 0.62 - 0.060
constraints while A (x10% | 55.2 | 0.071 - 0.001
not estimating w, forr  (x10%) | 30.7 | 0.552 - 0.054
VCE-derived o (x10° | 70.0 | 0.60 | 0.005 | 0.061
constraints while A (x10%) | 55.5 | 0.066 0.001 0.001
fixing o, fo (x10) | 30.7 | 0.537 | 0.005 | 0.055

We consider in this section a 5:731 RGTO around Callisto, with ¢ = 89°, h = 200 km, and
BEartn, = 72°, and we first freely estimate oy, 0y, w,, and W, as global parameters together
with the gravity field coefficients up to d/o 100, resulting in the true and formal errors
presented in Tab. 4.4. We observe a high correlation of the rotation rate w; with non-zonal
gravity field coefficients, especially for degrees larger than 3 (see Fig. 4.27 right). This
results in a degradation of the low-degree gravity field coefficients in comparison to a solu-
tion for which the true rotation parameters were considered but not estimated (Fig. 4.26).
The rotation rate w; is the most problematic parameter to estimate here. Indeed, when
estimating only oy, d, and W;, the correlations between the gravity field coefficients are
significantly reduced, although they are still moderately correlated with the orientation
parameters (Fig. 4.27 left). Moreover, one can still see a high correlation between o and

5o-

In order to reduce the correlations between the orientation and rotation parameters, we
constrained them to their (true) a priori values. We used Variance Component Estima-
tion to estimate constraints on all rotation and orientation parameters, which are given in
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Figure 4.26: Difference (solid) and error (dashed) degree amplitude of Callisto gravity field
solutions with respect to CALGMo, considering different constraints on rotation parame-
ters.
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Figure 4.27: Correlations between the rotation parameters and the-low degree gravity field
coefficients estimating all considered rotation parameters (right) and estimating all param-
eters but the rotation rate w, (left) in case of Callisto. All parameters are freely estimated.

Tab. 4.4. The formal errors of the estimated rotation parameters are significantly reduced,
together with their true error. The formal errors are a bit larger than the true errors, except
for . However, it is difficult to draw definitive conclusion from the true errors of a lim-
ited set of tests. The gravity field solution also improves with such constraints, as seen in
Fig. 4.26. However, w is still highly correlated with the gravity field coefficients (Fig. 4.28,
left), because of the short mission duration. A VOE-derived constraint of 2.1 x 1078 °/day
reduced the correlations in comparison to an unconstrained solution, but they are still
large.

In absence of other types of measurement or a longer mission duration to improve the
sensitivity to w;, we increase the constraint on w; to 5 x 107 °/day and applied VCE to
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Figure 4.28: Correlations between the low-degree gravity field coefficients and the rotation
parameters constrained using VCE for the constraints of all rotation parameters (left) or
of all but the rotation rate w; (right) in case of Callisto.

determine the constraints on the other orientation and rotation parameters. The overall
correlations are visibly reduced (Fig. 4.28, right), and the very low degrees of the gravity
field are slightly improved (Fig. 4.26, light blue curve). With the exception of the declina-
tion of the north pole §,, the formal errors of the rotation parameters are smaller when
empirically constraining the rotation rate w;. The formal error of ¢, is instead further
reduced when using VCE to estimate all the constraints.

As discussed in Sect. 2.8.1, the Mol can be computed from degree-2 gravity field coef-
ficients (Eq. 2.76), if we assume that Callisto is in hydrostatic equilibrium, or from the
pole obliquity e if we assume that Callisto is in a Cassini state (Eq. 2.83). We compute the
uncertainty on e from the uncertainties on the orientation of the north pole, i.e., on o and
g, assuming the orientation of the orbit pole is perfectly known. We compare in Tab. 4.5
the formal errors of the degree-2 gravity field coefficients and the rotation parameters we
estimate with the formal uncertainties expected from JUICE with its 21 Callisto flybys,
and foreseen by the MAGIC proposal with a 50 km orbiter extracted from covariance anal-
yses in Genova et al. [2022]. First of all, we do not estimate the same set of parameters as
in Genova et al. [2022]. We include in this work the estimation of the rotation rate w; and
the main longitudinal libration W;. However, we have not considered the estimation of the
tidal phase lag ¢, for the moment.

As expected, the benefit of a low altitude orbiter rather than a limited number of fly-
bys is clear. In general, we observe comparable results to MAGIC [Genova et al., 2022] for
the estimations presented in Tab. 4.5, if not better, despite the shorter mission (3 months
compared to 1 year), and higher altitude orbiter (200 km compared to 50 km). These dif-
ferences can be explained by our very conservative tracking schedule. Indeed, we consider
Ka-band tracking from the 3 Chinese DSN ground stations, contrary to X-band tracking
from only one DSN station. In addition, the estimation of the Love number k£, yields formal
uncertainties comparable to MAGIC.
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Table 4.5: Formal uncertainties of the geophysical parameters of Callisto from JUICE and
MAGIC simulations extracted from Genova et al. [2022] and completed with our results.
Jy and Cy4 refer to the unnormalised degree-2 gravity field coefficients.

Geophysical Current knowledge JUICE ‘ MAGIC ‘ This work
parameter Value | Uncertainty forr

Jy (x1077) 327 8.0 1.5 0.002 0.002
Chy (x1077) 102 3.0 0.6 0.005 0.0003
Vl\fl(i ‘Eﬁmmed 0.3549 - 8x 1074 | 7x 1070 | 5x 1077
ag [°] 268.72 026 |6x107°| 3x107°
5o [°] 64.83 008 |7x107°%| 5x 1077
e [°] -0.3 0.1 6x107°| 7x107*
w, [°/day] 21.57 - - 5x 1077
W, [°] 0 - - 6 x 1078
Mol determined

with pole obliquity i 0.07 4x 107 | 2x107°
ko 008 |1x107*| 1x107*
O, [°] - < 0.05 -

4.5

Mitigation strategies for non-gravitational accel-

erations: case of Callisto

The modelling of non-gravitational accelerations (NGA) is a critical and challenging com-
ponent of orbit determination. In this work, we have not included them in our Europa
analyses (Sects. 4.1, 4.2 and 4.3). For Callisto, considering solar and planetary radiation
pressure as described in Sect. 2.2.4, the accelerations reach up to 10nm/s? (see Fig. 4.29).
However we assumed that these accelerations were perfectly modelled so far. In this section,
we evaluate several ways to handle these non-gravitational accelerations over a 3 months
mission with pseudo-stochastic pulses, realistic accelerometer data, or empirical accelera-
tions.

For this, we consider a 5:731 RGTO with A = 200 km and ¢ = 89° with different 8p,,+, and
Bsun angles, i.e., angles between the orbital plane and the Earth and the Sun directions,
respectively. We investigated two scenarios: a near edge-on orbit with Bg,,..;, = 1.0° £4.2°
(and Bg,,, = —1.2°£4.2°), and a more face-on orbit, with no occultation by Callisto as seen
from Earth (8g,., = 71.8° £4.7°) and no eclipses from the Sun (8g,,, = —71.6° £ 3.6°).
These two configurations yield different non-gravitational acceleration profiles, as the probe
happens to be regularly in shadow in case of (g,,, ~ —1°. Moreover, as discussed in
Sect. 4.1.1, Bg,rn also plays a significant role in the quality of the orbit recovered. For

the Doppler data simulation we assumed continuous tracking of all three stations of the
Chinese DSN.

As we will see in the following, the mitigation strategies that we consider here may require
careful parameter constraining. Moreover, we studied how dependent some parameters are
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Figure 4.29: Non-gravitational accelerations in radial, along-track and cross-track direction
for a 5:731 RGTO around Callisto with h = 200km, ¢ = 89° and with fg,, ~ —72° (a)
and BSun ~—1° (b)

with respect to how long we consider them constant. For these reasons, we revised our
processing scheme from Fig. 2.6 to Fig. 4.30. In particular, we restrict GRAVDET2 to
the orbit propagation and NEQ-setup, while we extensively use ADDNEQ2 to manipulate
NEQs, apply VCE to estimate constraints on sets of parameters, and to compute solutions.

Observations
E . 1 AADDNEQ.J

GRAVDET?2 parameters? , .AHHGHII_)]G \EQb :
Orbit integration Write constraint NEQs

NEQ-setup

priori
orbits

ADDNEQ2
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Update STD
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Figure 4.30: Orbit determination flowchart for non-gravitational acceleration handling.

4.5.1 Pseudo-stochastic pulses

As discussed in Sect. 2.2.5, pseudo-stochastic pulses (instantaneous velocity changes) can
be used to absorb any mismodelling. In particular, we used them to empirically model non-
gravitational accelerations, without any other means to model them. We set one pulse in
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each direction (radial, along-track and cross-track) every 80 min, i.e., twice per orbit. How-
ever, pseudo-stochastic pulses have to be properly constrained. Indeed, if the constraints
are too loose, the pulses may absorb more than the expected signal, leading for instance to
a degradation of the orbit or gravity field solution. On the other hand, if the constraints
are too tight, residual modelling errors might remain.

VCE allows to estimate constraints on collections of pulses, e.g., pulses contained within a
given time interval. Constraints in different directions are estimated separately, and we vary
the time span ?.,,,,; on which we estimate these constraints, while continuing to estimate
a set of orbital elements every ¢,,. ~ 25h arcs. We evaluate the VCE-derived constraints
on 25 h to 400 h intervals corresponding to 18 and 301 pulses in each direction, respectively
(see Fig. 4.31). In average, for a 5:731 RGTO with h = 200km, i = 89° and Bg,,., ~ 72°,
the VCE-determined constraints are 20 pms~! in radial, 11pms~! in along-track, and
5pms~! in cross-track direction. However, the constraints vary significantly from one arc
to the other, when they are estimated in ~25h arcs and in ~50h arcs. Constraints esti-
mated on arcs longer than 100 h are more stable, as expected from the larger number of
parameter per VCE-derived constraint. For Sg,,., = 1°, constraints are also more stable

when applying VCE on longer time spans, with average constraints of 34 pms~! in radial,

25 pms ! in along-track, and 3mms~! in cross-track direction.
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Figure 4.31: Pulses constraints estimated on different time spans t.,,,, using VCE for
BEarth A 720

As shown in Fig. 4.32, the orbit accuracy slightly improves when considering longer time
spans to estimate constraints on the pulses (see blue and green curves for .. = 25h), sug-
gesting that VCE-derived constraints are more beneficial when estimated on long enough
time spans. However, this improvement is less significant than the improvement related
to considering longer arcs to estimate orbital elements (see magenta and yellow curves for
tare = teonst)s Similarly to what was discussed in Sect. 4.1.2. Contrary to Fig. 4.5b, the or-
bit accuracy of a near edge-on orbit is significantly worse than for Sg,,;, ~ 72°. This may
be due the different non-gravitational accelerations profiles (Fig. 4.29). A shorter spacing
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of the pulses might be able to account for higher frequency changes in these acceleration, at
the expense of a larger number of parameters and a higher computational load and higher
correlations with low gravity field coefficients (see Sect. 4.5.4). On the other hand, we also
saw in Sect. 4.1.1 that a larger (g, decreases correlations between the orbital elements
(see also Fig. 4.4). In case of unaccounted force model mismodelling, this might be more
critical than in Sect. 4.1, where non-gravitational accelerations were considered.
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Figure 4.32: RMS of orbit differences for Sg,,4, = 72° and Bg,4, ~ 1°, estimating con-
straints using VCE on several time spans ¢, and several arc lengths ¢,,..

In practice, on could still use an approximate model for non-gravitational accelerations
(Sect. 2.2.4), and pseudo-stochastic pulses would rather be used to absorb residual mis-
modellings. Additionally, pulses are often complemented by more “physical” empirical ac-
celerations, such as the ones discussed in Sect. 4.5.3.

4.5.2 On-board accelerometer

An accelerometer on board of the probe measures the non-gravitational accelerations act-
ing on the probe and would in principle solve most issues from Sect. 4.5.1. However, errors
on these measurements (Eq 2.53) also need to be accounted for. As discussed in Sect. 2.5,
we simulated realistic accelerometer measurements with a scale factor A = 1, a Gaussian
white noise € of standard deviation ¢ = 10nm/s? in all three directions, and constant
biases over the entire mission. We considered equal biases in radial, along-track and cross-
track direction, with a magnitude of 42nm/s?.

In this work, we only addressed the estimation of accelerometer biases, and discarded
the study of the accelerometer scale factor. In the reconstruction, we did not assume any
a priori knowledge on the biases, and considered a zero a priori value. The estimation of
biases proved to be very sensitive to the duration on which we consider them constant, but
also to the constraint applied on these parameters. We thus investigated the stability of
our solution depending on the bias validity time span, and estimated variance components
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of global constraints in radial, along-track and cross-track directions. We considered here
again two cases, a 5:731 RGTO with h = 200km, ¢ = 89° and either S, = 72° or
BEgaren, = 1°. For different arc lengths t,,., we stacked the biases on 1 to 5 arcs, result-
ing in biases estimated on arcs lasting from 25h to 400 h. For each case, we compute the
RMS of the estimation errors for the entire mission duration, separately in each direction

(Fig. 4.33).
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Figure 4.33: RMS error of estimated accelerometer biases and true biases (dashed line) for
Bartn, = 72° (a) and Bggp = 1° (b) for a 5:731 RGTO with h = 200km and ¢ = 89°.

Biases in along-track direction are in all cases well estimated with errors below 1nm/s?
and constraining is in principle not necessary. We also get that, in general, stacking biases
on several arcs with a fixed arc length, improves their estimation. This may be less visible
in case of arcs longer than ~100h, but this is likely because of the error representation
in Fig. 4.33. Indeed, we estimate only 5 biases per direction when estimating them every
~400 h, as opposed to 80 biases per direction when estimating them every ~25h. Comput-
ing the RMS error of the estimated biases is then less representative in terms of statistics
for long arcs (see, e.g., radial biases in Fig. 4.33a).

However, in the case of Bg,,;, = 72°, increasing the arc length does not improve the radial
bias, when estimating one set of orbital elements and one different set of biases for each
arc. Indeed, radial biases are highly correlated to the semi-major axis, and stacking biases
on longer time spans than the estimation arc helps reducing correlations. This correlation
can be also reduced by a tighter constraint on the radial bias. Estimates based on shorter
arcs are also beneficial for the cross-track biases (see Fig. 4.33), leading to a more accurate
orbit (see Fig. 4.34). Nevertheless, stacking biases does not significantly improve the orbits.
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Figure 4.34: RMS error of orbit differences for Bgy,qn = 72° (a) and Bgy,e, = 1° (b) for a
5:731 RGTO with A = 200km and ¢ = 89°, when estimating accelerometer biases.

In case of a near edge-on orbit (84,4, = 1°), the estimation of cross-track biases (Fig. 4.33b)
is more challenging. Indeed, in this configuration the cross-track component of the orbit
is weakly determined (see Sect. 4.1.1). As a result, the estimated bias errors can be sev-
eral orders of magnitude larger then the true bias. However, these errors do not lead to
significantly larger orbit errors (see Fig. 4.34b).

4.5.3 Empirical accelerations

In our study, we considered a cannonball for the spacecraft model, and a uniform albedo
for Callisto (see Sect. 2.2.4), therefore Planetary Radiation Pressure (PRP) is a sinusoidal
function with an offset (see, e.g., the radial and along-track components in Fig. 4.29a).
Similarly, Solar Radiation Pressure (SRP) can be approximated by a piecewise constant
function, equal to zero when the spacecraft is in the shadow of Callisto (see, e.g., Fig. 4.29b
in cross-track direction).

Empirical parameters such as constant and once-per-revolution accelerations are partic-
ularly appropriate to model non-gravitational accelerations considered in this study. We
thus considered once-per-revolution accelerations (cosines ¢; and sines s;) and biases b,
in radial, along-track and cross-track direction to absorb the non-gravitational accelera-
tions, leading to 3 empirical parameters per axis (see Sect. 2.2.5). In order to assess the
estimated values of these parameters, we fitted directly the true acceleration signal with
the same parameters (see Eq 2.25), and summarized the values of the bias magnitudes

b, and the amplitudes of the once-per-revolution accelerations (4/ c? + s?) in Tab. 4.6 for
BEarth =T72° and BEarth =1°

Then, similarly to Sect. 4.5.2, we estimated the empirical accelerations for each estimation
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Table 4.6: Empirical parameters fitting the true non-gravitational accelerations.

Radial | Along-track | Cross-track
no/s?) | [m/s? | [om/s?)
BEarth = 12° Bias acc. 24 0.0 -11.2
Once-Per-Rev. 2.7 2.9 0.0
BEarth = 1° Bias acc. -0.9 0.0 0.4
Once-Per-Rev. 5.1 8.3 0.3

arc (from ~25h to ~400h) or stacking them for several arcs, while estimating six global
constraints using VCE (one per direction and per parameter type). The RMS of the esti-
mated parameters deviations with respect to the values from Tab. 4.6 are given in Fig. 4.35
for Bperen = 72° and in Fig. 4.36 for B4, = 1°. Here again, the biases in the along-track
direction are very well estimated. However, the estimation of the radial biases is more chal-
lenging, whatever the arc length, because of the high correlation with the semi-major axis.
The expected magnitude of the radial biases is at least 20 times smaller than the biases
considered for the accelerometer in Sect. 4.5.2, which we were able to estimate, e.g., by
stacking them on several estimation arcs. In conclusion, it seems that using only Doppler
observations, in the analysed cases we cannot resolve biases lower than a few nm/s? in

radial direction.
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Figure 4.35: RMS error of estimated biases (a) and once-per-revolution amplitude (b) for
BEartn, = 72° for a 5:731 RGTO with A = 200km and ¢ = 89°.

Although the amplitude of the radial and along-track once-per-revolution accelerations are
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also a few nm/s?, they can be reliably estimated since they do not correlate significantly
with other orbital elements. The arc length and the number of stacked arcs do not seem
to significantly influence their estimation error.
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Figure 4.36: RMS error of estimated biases (a) and once-per-revolution amplitude (b)
BEaren, = 1° for a 5:731 RGTO with A = 200 km and 7 = 89°.

As discussed in Sect. 4.5.2, the cross-track components of the empirical acceleration are
not well estimated for Bg,,.;, = 1°. However, since the magnitudes of these accelerations
are relatively small in this configuration (fg,,, ~ —1°), the impact on the orbit quality is
not significant (see Fig. 4.37b), which might not be the case for larger non-gravitational
acceleration in cross-track direction (e.g., for larger fSg,,,, but still with an edge-on orbit).
In the case of Bg,,4p = 72°, the estimation of the cross-track biases is less problematic,
and the estimation error is unambiguously reduced when increasing the arc length, or when
stacking the biases over several arcs (see Fig. 4.35a). Although the estimation of the am-
plitude of the cross-track once-per-revolution accelerations appears to have larger errors
for estimation arcs longer than 100 h, the expected value is below 1 nm/s?, about the same
level of error as in the other directions (Fig. 4.35b).

The general orbit accuracy is better than when using pseudo-stochastic pulses (Sect. 4.5.1)
which is expected, as pulses do not physically represent the signal to be absorbed. Here
again, the orbit differences generally get smaller when considering longer estimation arcs,
as already discussed in Sect. 4.1.2. There is a significant improvement when stacking 2
arcs of 25 h with respect to estimating only one set of empirical parameters per arc. Other
than that, there is no significant improvement when only stacking empirical parameters
for several arcs without increasing the length of the estimation arc.
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Figure 4.37: RMS error of orbit differences for Bgy,qn = 72° (a) and Bgy,e, = 1° (b) for a
5:731 RGTO with h = 200km and ¢ = 89°, when estimating empirical accelerations.

The orbit differences are also smaller with respect to our investigation when consider-
ing an on-board accelerometer (Sect. 4.5.2). However, it is necessary to put in perspective
this conclusion. The non-gravitational accelerations we considered are relatively small, of
the same order of magnitude as the considered accelerometer white noise. Additionally, our
simulated non-gravitational accelerations are relatively simple, which is why they can be
efficiently absorbed by a few empirical parameters. In case of larger accelerations, e.g., fuel
sloshing, an accelerometer would be more relevant [see e.g., Cappuccio and Cascioli, 2018].
Additionally, an actual spacecraft would likely be very different from a simple cannonball
model. The difficulty to model such a satellite, e.g., using an appropriate macro-model and
attitude law, would result in non-gravitational accelerations more challenging to model by
simple empirical parameters.

4.5.4 Comparison and impact on gravity field recovery

In this section, we compare the three different approaches we considered in this work to
mitigate the impact of mismodelled non-gravitational accelerations. We estimate one set
of orbital elements every ~25h arcs for ~ 83 days. As discussed in the previous sections,
stacking constant accelerations (accelerometer biases in Sect. 4.5.2 and empirical bias accel-
erations in Sect. 4.5.3) significantly improved their estimation, which results in improved
orbits. However, stacking these parameters on long time spans may not be possible in
practice because of manoeuvres, as already mentioned in Sect. 4.1.2. We thus stack ac-
celerometer biases and empirical parameters on two arcs, so that we estimate them every
~50h, already visibly improving the orbit (see Figs. 4.34 and 4.37). Additionally, we es-
timate one global constraint on each parameter type, in RSW using VCE, and after 7
iterations, we plot the orbit differences in Fig. 4.38.
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Figure 4.38: RMS of orbit differences of each arc with t,,.. = 25h for Bg,,+, = 1° and
Baun = —1° (a) and for Bgy.p = 72° and fg,,, = —72° (b) considering pseudo-stochastic
pulses every 80 min, accelerometer measurements with 50 h biases or empirical parameters
with 50 h biases and once-per-revolution accelerations.

The orbits fitted using pseudo-stochastic pulses are generally worse irrespective of whether
BEarth = 1° 0T Brarn = 72°. Indeed, pulses are less representative of the physical signal
to absorb, in comparison to accelerometer biases for realistic accelerometer measurements,
and to empirical parameters for simple non-gravitational accelerations. The difference is
more pronounced in case of B, = 72°. First, the orbits fitted with pulses are slightly
worse for a larger Sg,,.n, but the the orbits fitted following the two other strategies are
visibly better. Indeed, the empirical parameters chosen to model the non-gravitational pa-
rameters are more adequate when the probe remains illuminated by the Sun and is never
in the shadow of Callisto. The non-gravitational accelerations then result in a constant
acceleration and a sinusoid (see Fig. 4.29), leading to reduced orbit differences in average.
However, a higher sampling of the pulses may further improve the orbit, and also help to
absorb other model deficiencies. This would come at the price of more parameters, and it
is an interesting topic for future investigations.

Each strategy discussed in this section was found to efficiently improve the orbit in case of
mismodelled non-gravitational accelerations. We now investigate how each of them affects
the estimation of a full d/o 100 gravity field in a subsequent iteration in addition to the
previously discussed parameters, for which we continue to estimate constraints using VCE.
The strategies differ from each other mainly in the low degrees of the unconstrained grav-
ity field parameters (see Fig. 4.39). The accelerometer performs similarly to the empirical
modelling, and even slightly better in case of 55+, = 72°, for which the pseudo-stochastic
pulses give only a slightly worse solution.

However, in the near edge-on case (8ggn = 1°), the pseudo-stochastic pulses significantly

108



4.5 Mitigation strategies for non-gravitational accelerations: case of Callisto

1070 ¢ 1107°

—— P.s. pulses
—— Accelerometer
—— Empiricals

10710 L 11010

—— P.s. pulses
—— Accelerometer
—— Empiricals

Difference degree amplitude
Difference degree amplitude

0 5 10 15 20 25 30 0 10 20 30
Degree n of spherical harmonics Degree n of spherical harmonics

Figure 4.39: Difference degree amplitude of Callisto gravity field solutions with respect to
CALGMo with t,,. = 25h for B, = 1° (a) and Bg,.en = 72° (b) considering pseudo
stochastic pulses every 80 min, accelerometer measurements with 50 h biases or empirical
parameters with 50 h biases and once-per-revolution accelerations.

deteriorate the gravity field solution as they seem to absorb the gravity field signal. This
can be due to unobserved pulses when the probe is located behind Callisto with respect
to Earth. One solution would be to remove these pulses, or to apply a tight constraint to
them. However, the non-gravitational acceleration would not be properly mitigated without
a higher sampling of the pulses. Another solution may be to consider a uneven distribution
of pulses, making sure that all pulses are observed.
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Chapter 5

Combination of altimetry crossover
and Doppler observables

In Chapter 4, we studied the orbit determination of a probe around a celestial body, Cal-
listo or Europa, using Doppler observables only. We highlighted several challenges inherent
to this type of observations, such as in the orbit deficiencies and the necessity to establish
a link between the spacecraft’s antenna and a ground station on Earth to collect obser-
vations. This link is indeed subject to the availability of the station and to the absence
of line-of-sight occultations. In this chapter, we discuss the advantages of an on-board
laser altimeter which would have the benefit of providing observations regardless of these
conditions. Its observations are still subject to other limitations such as pointing accuracy
and power budget. In particular, we focus on the use of altimeter ranges in the form of
crossovers (see Sect. 2.7.2), which may be seen in simplified terms as an observation of
the spacecraft’s radial position in the generalised orbit determination process [Shum et al.,

1990].

Altimetry crossovers have already been used in the framework of planetary orbiters such
as Mars Global Surveyor [MGS; Rowlands et al., 1999, Neumann et al., 2001], Lunar
Reconnaissance Orbiter [LRO; Rowlands et al., 2009, Mazarico et al., 2012, 2018], and
Kaguya [Goossens et al., 2011], for which the crossover formulation is described in Row-
lands et al. [1999]. Each track is projected on a sloped terrain and fitted using three-
dimensional polynomials. The computed distance between the polynomials corresponding
to two intersecting ground tracks is thus the quantity to minimise, providing sensitivity to
directions other than the radial one [Goossens et al., 2011].

The inclusion of altimetry crossovers in the orbit determination of MGS allowed to im-
prove the spacecraft trajectory and attitude [Rowlands et al., 1999, Neumann et al., 2001],
but also the low-degree gravity field coefficients of Mars [Lemoine et al., 2001]. For LRO,
the five distinct altimetry tracks from the multibeam altimeter allowed to significantly
increase the number of crossovers [Rowlands et al., 2009], which resulted in an improved
orbit during the first mission phases [Mazarico et al., 2012], and improved solutions for the
lunar tides and gravity field [Mazarico et al., 2014]. However, Mazarico et al. [2018] did not
include the crossovers for the orbit determination of LRO, as the improved gravity field
model from GRAIL and the better-than-expected accuracy of the radio tracking lowered
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the presumed benefit of crossovers with respect to the high computational effort needed to
include them. Finally, the higher-altitude Kaguya orbiter benefited from the inclusion of
crossover in the orbit determination procedure [Goossens et al., 2011].

Previous simulation studies combining altimetry crossovers and Doppler observations com-
bination for planetary orbiters have been carried out by, e.g., Marabucci [2013], Hos-
seiniArani [2020] for BepiColombo around Mercury, and by Villamil et al. [2021] for JUICE
around Ganymede. Marabucci [2013] concluded that because of the high accuracy of the
radio tracking of BepiColombo, the inclusion of altimetry crossover does not improve the
orbit enough to justify the increase of computational complexity inherent to this observa-
tion type. On the other hand, Villamil et al. [2021] showed significant orbit improvements
thanks to the inclusion of altimetry crossovers, especially when the probe’s line-of-sight
is occulted from Earth (by Jupiter or by the Sun), or when the orbital plane is close to
perpendicular to the Earth direction (8g,,¢, = 90°). Moreover, they found that tidal Love
number k, and the low degrees of Ganymede’s gravity field benefit from the inclusion of
crossovers, and so does the estimation of accelerometer biases.

In this chapter, we investigate the benefits of a combination of altimetry crossovers and
Doppler observables in terms of orbit determination and of geodetic parameters recovery,
considering a 5:731 RGTO around Callisto, with an altitude A = 200 km, an orbital period
of 2h45min, and an inclination ¢ = 89°, for 5 Callisto days (i.e., 83 days). We assume that
the probe is tracked only by the Jiamusi ground station of the Chinese DSN, in X-band.
As discussed in Sect. 4.1.3, this station tracking schedule is not very favourable, with at
maximum 6h/day availability. We analyse three different orbit configurations. The first
orbit is nearly edge-on with Sg,,., = 1.0° £ 4.2°. In such a configuration, the probe is
passing regularly behind Callisto with respect to Earth, which prevents the probe to be
directly tracked by ground stations on Earth (see Sect. 4.3.2). In the two other scenarios
the probe is never occulted by Callisto as seen from Earth with 5z, 2 67°. The second
scenario’s orbit is at the limit, with Sg,,., = 71.8° £ 4.7°, while in the last scenario we
have Bg,.n, = 84.0° £ 2.6°, corresponding to a near face-on configuration.

After a description of the search for altimetry crossovers and of their combination with
the Doppler-only procedure in Sect. 5.1, we investigate the added value of altimetry in
terms of orbit quality (Sect. 5.2), estimation of accelerometer biases (Sect. 5.3), and the
recovery of geodetic parameters such as rotation, orientation and gravity field coefficients,
and also the estimation of ky and hy Love numbers (Sect. 5.4).

5.1 Combination procedure and search for crossover
discrepancies

5.1.1 Description of the combination

Our combination of altimetry crossovers and Doppler observables relies on two software
packages: the planetary extension of the Bernese GNSS Software [BSW; Dach et al., 2015],
written in Fortran, and pyXover, a Python suite of altimetry analysis tools for planetary
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geodesy [Bertone et al., 2020]. We established two interface points between these two soft-
ware packages, as depicted in Fig. 5.1. First, the orbits generated in the BSW are stored
in STD format. They are converted to SPK format using a new program STD2SPK de-
veloped for this project, and written following Sect. 2.1. This program provides orbit files
which can be read by pyXover, using the SpiceyPy Python library [Annex et al., 2020],
to simulate altimetry data in the pyAltsim program (see Sect. 2.7), and to geolocate the
altimetry bouncing point in the pyGeoloc program. Second, all the relevant information
concerning the crossovers computed in the pyXover program (location, discrepancies, par-
tial derivatives ...) is exported to an ASCII file which is then read by XOVNEQ), another
addition of this project to the BSW.

Doppler
observations

GRAVDET?2
Orbit fit
NEQ-setup

A priori
force model
A priori
orbits

ADDNEQ?2
Assemble NEQs

ADDNEQ2
Assemble NEQs

STD2SPK
Rotation
model

Altimetry
data

ADDNEQ?2
Apply VCE
Update STDs

XOVNEQ

every combination

every arc

Figure 5.1: Flowchart for Doppler and altimetry crossovers combination.

The generalised orbit determination, based on a non-linear least-squares adjustment, is an
iterative process (see Sect. 2.3.1). At every iteration, the probe’s orbit is integrated once
more. Unlike Doppler observations, the crossover discrepancies and their locations change
with respect to the orbit and the rotation model. Additionally, ground tracks may no longer
intersect from one iteration to the other, or vice-versa, new intersections might be found. In
every iteration, a computationally heavy search for crossovers is thus in principle required,
which can be eased by leveraging crossover locations from the previous iteration. For these
reasons, we first fit orbits using 83 days (80 arcs of ~25h) of Doppler observables within
the GRAVDET?2 program (see detailed flowchart in Fig. 2.5), which constitute our baseline
for the results presented in this chapter. We thereby reduce the number of iterations which
require the computation of crossovers, as suggested, e.g., in Villamil et al. [2021].

Considering only a maximum tracking time of 6 h/day from Jiamusi ground station, we
acquire 18413, 29305 and 29 429 two-way Doppler X-band observations, for Bg,..n = 1°,
for Braren = 72° and for Bp,,., = 84°, respectively. In the final iteration of GRAVDET?2,
a NEQ is generated for each arc, containing all the parameters to be estimated (local and
global). At the same time, the fitted orbit is exported to SPK format using the STD2SPK
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program in order to be read by the pyGeoloc program of the pyXover package, using SPICE
routines.

In pyGeoloc, the orbit is divided into several segments, called gtracks. Each gtrack cor-
responds to one revolution of the probe around Callisto. The gtracks are separated into
two hemispheres, so that pyXover can later search for crossovers between each gtrack sepa-
rately in the northern hemisphere and in the southern hemisphere. In the end, each gtrack
is the projection of a part of the orbit, up to half a period long, onto the Callisto reference
ellipsoid. One of the advantages offered by this splitting is the possibility to perform this
geolocation step for each gtrack in parallel. In our work, we grouped the altimetry data
in batches of 7 days, therefore our 83 days of data are splitted in 12 weeks, resulting in
760 gtracks in each hemisphere (because of the weekly division, one orbit revolution cor-
responds to up to 2 gtracks per hemisphere). For each altimetry observation in the gtrack
object, pyGeoloc computes the latitude ¢, longitude A and elevation 7 of the laser spot
bouncing point on the surface, based on the input SPK orbit and on light-time modelling.
Additionally, the partial derivatives of ¢, A and n with respect to the estimated parameters
are computed by finite differencing (except for hy, see Sect. 2.7.2).

Once the gtracks are processed, combinations between the week batches are formed. In
our case, the 12 weeks of data result in a total of 78 combinations. pyXover therefore
searches for crossovers within each of these combinations, and for each hemisphere. The
search for crossovers is divided into two steps. A first rough search employs sub-sampled
altimetry data points to limit the computational load. In case of a 10 Hz altimeter sampling
rate operating at 200 km altitude above Callisto, we consider 1 observation for every 20.
The distance between two sub-sampled points is then 0.076°, which corresponds to 3.2 km
on the surface of Callisto. For the crossover search, the altimetry bouncing points are pro-
jected onto the surface, using a polar stereographic projection adapted for each hemisphere.

The second step is a fine search based on the results of the rough search. The neighbouring
fully sampled data points are projected around each “roughly guessed” crossover to more
precisely locate the crossover by interpolating between these points using a cubic spline.
The crossover’s ¢ and A result from the interpolation, while the crossover discrepancy v is
computed from the difference between the interpolated surface elevation n along each of
the two tracks. The partial derivatives of v with respect to all the estimated parameters
are computed in a similar manner by finite differences. More details on the entire pro-
cess can be found in Bertone et al. [2021b]. The search for crossovers results in ~ 522000
crossovers for Sg, . = 1°, ~ 520500 crossovers for Sg,n = 72° and ~ 521000 crossovers
for Bru,en = 84°. As the orbit is quasi-polar, most of the crossovers are located at latitudes
> 70° (see Fig. 5.2).

5.1.2 Distribution of the crossover discrepancies

Crossover discrepancies can be due to several factors: orbit modelling errors, a geophysical
signal (e.g., tidal deformation), but also, as discussed in Sect. 2.7, intrinsic errors in the in-
struments and pointing errors. Moreover, a potentially significant error is introduced when
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Figure 5.2: Distribution of the crossovers along latitudes ¢ for Bgy,n = 1°, Brarth = 72°,
and Bggrn = 84°. 95% of the crossovers are located at latitudes > 70°.

interpolating the ground tracks between the altimetry bouncing points and the crossover
coordinates. This interpolation error is strongly dependent on topography. In case of a 10 Hz
sampling rate, the inter-spot distance, i.e., the distance between the bouncing points, is
160 m for the orbits considered in this chapter. The distance between the closest bouncing
point and the crossover is then at maximum 80 m (half the inter-spot distance). However,
we found that this distance is on average 26 m. We present in this section the distribution
of the pre-fit crossover discrepancies for different topography models, different altimeter
frequencies and when considering additive white noise or not. The standard deviations of
the crossover discrepancies are summarized in Tab. 5.1.

We first consider a case without any topography at all, i.e., an ellipsoid, and without
other sources of noise to validate our combination procedure. We found as expected that
the crossover discrepancies are very low in this ideal case, with a standard deviation of
Lem (see Fig. 5.3a). As soon as we introduce a DEM, with maximum effective resolution
of several hundred meters to a few km, the discrepancies increase by an order of magnitude.
This difference is due to the variation of altitude between two bouncing points (i.e., the
slope). For more realistic cases, we additionally consider a simulated small-scale topogra-
phy on top of large scale features modelled by our DEM. The elevation of a given point
on the surface of Callisto is then the sum of both elevations. As a result, because of the
increased surface roughness surface [Steinbriigge et al., 2018a, Bertone et al., 2021b], the
interpolation errors become larger, up to 20m (Fig. 5.3b). It is important to note that
we assume some parameters for this texture based on past analyses at Mercury, which
might not represent the actual unknown small-scale topography of Callisto. For instance, a
smoother small-scale topography would yield a lower interpolation error. We additionally
consider a “control case” where we replace all topography by a simple 12 m-white noise
added to altimetry ranges, to evaluate the impact of a structured topography on the re-
covery of orbit and geodetic parameters. As shown in Fig. 5.3b, the two distributions of
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5. Combination of altimetry crossover and Doppler observables

pre-fit crossover discrepancies are similar but not identical, and the standard deviation of
the white noise case is slightly lower.
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Figure 5.3: Distribution of the crossover discrepancies v without topography or with a
DEM (a), and with small-scale topography or with 12m white noise on the DEM (b) at
]_0 HZ fOI" BEarth = 10.

The interpolation error depends on the topography, on the velocity of the probe with re-
spect to the surface of Callisto, and on the sampling rate of the altimeter. The higher the
probe, or the smoother the topography, the smaller the interpolation error. However, to
test the impact of interpolation error on our solution, we fix the orbit of the probe and the
topography, and increase the sampling rate of the altimeter. Increasing the sampling rate
of the altimeter from 10 Hz [BepiColombo Laser Altimeter (BELA); Thomas et al., 2021]
to 30 Hz [GAnymede Laser Altimeter (GALA); Hussmann et al., 2019] reduces the distance
between the bouncing points, and thus reduces the a priori crossover discrepancies, as ex-
pected (see Fig. 5.4). The standard deviation of the discrepancies was reduced from 8.3 m
to 6.4m. However, because of the larger amount of data and computational burden, we
only performed one test at 30 Hz with small-scale topography, and kept a 10 Hz sampling
for our tests with different topography models.

Once the crossovers have been located, and once their discrepancies and partial derivatives
are computed, these data are exported to XOVNEQ, a new BSW program developed for
this study which uses the STD orbits previously generated by GRAVDET2 to compute
crossover NEQs for each of the 78 week-combinations. In particular, XOVNEQ computes
the partial derivatives according to the parametrization used by the BSW, based on the or-
bit correction parametrization used in pyXover (see Sect. 2.7.2). As of now, each crossover
observation is assigned a unit weight. However, in the future, a more advanced weighting
scheme may be considered, such as assessing the interpolation error based on the distance of
a given crossover with respect to the surrounding altimetry bouncing points as in Bertone
et al. [2021D].
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Figure 5.4: Distribution of the crossover discrepancies v with small-scale topography at
10Hz and 30 Hz for B85, = 1°.

The Doppler NEQ and the crossovers NEQ are then stacked within the ADDNEQ2 program
to form a global NEQ to be solved, as for the Doppler-only case (see Sect. 2.3.3). There
are several ways to stack these multiple NEQs. For the time being, we first stack NEQs
over time for each observation type separately, thus retrieving one “global” Doppler NEQ
and one “global” crossover NEQ, which we then stack together with a given weight. Vari-
ance Component Estimation (VCE) is particularly useful to determine “optimal” weights,
but we also experiment using empirically determined weights, which we discuss in the fol-
lowing section. We thus get orbit and geodetic solutions that we compare among several
configurations.

5.2 Improvement of the estimated orbital elements

In Sect. 4.1, we illustrated the orbit deficiencies inherent to the orbit determination using
Doppler observations. In this section, we investigate how much the orbit parameters can be
improved by the addition of altimetry data on three Doppler-only fitted orbits with different
geometries and different topography models, considering a perfect force modelling. We first
focus on the near edge-on orbit (8,4, = 1.0° +4.2°), and consider different topography
models (no topography at all, only a DEM, and synthetic small-scale topography on top of
a DEM), two different altimeter sampling rates (10 Hz or 30 Hz), or simply 12 m-white noise
added to altimeter ranges. We then fix the topography model to a small-scale topography
on top of a DEM with a 10 Hz sampling rate, and add to the studied scenarios the two
more face-on orbits (B, = 71.8° +4.7° and S, = 84.0° £+ 2.6°).

5.2.1 Impact of topography roughness on orbit parameters

As described in Sect. 5.1.1, the Doppler-only fitted orbits are used to search for crossovers as
well as to compute the associated NEQs for each combination of weekly batches, which are
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5. Combination of altimetry crossover and Doppler observables

then assembled to form a global NEQ for all crossover observations. The global Doppler
NEQ and the global crossover NEQ are subsequently combined, mainly following VCE-
provided relative weights. However, in the less realistic cases for which we considered no
noise on the altimetry data and we applied no topography or only a DEM, we find that
increasing the weight given by VCE to favour the crossover dataset observations reduces
the post-fit orbit differences. We show in Tab. 5.1 the ratio of the weight given to altime-
try crossover discrepancies with respect to the weight given to the Doppler observations,
empirically chosen in the three cases either without topography or with only a DEM, and
derived following VCE in the other cases.

Table 5.1: Observation residuals and orbit differences for g,,., = 1° and for topography
models. The RMS of Doppler residuals is 0.78 mHz with Doppler only, while the RMS of
the differences are 1.9 m.

Topography Weight Stdev v [m] Dop. [mHz] ‘ Orb. [m]
ratio pre-fit | post-fit RMS post-fit

No topography 1x10% | 0.0098 | 0.00026 0.79 0.35

DEM 1 0.12 0.089 0.78 0.85

Small-scale 30Hz | 1.2 x 1072 | 6.4 6.4 0.78 0.93

Small-scale 10Hz | 6.9 x 107* | 8.3 8.3 0.78 1.4

White noise 7.7x107% 7.8 7.8 0.78 1.9

Considering a large scale DEM already limits the orbit improvement given by crossovers
with respect to a Doppler-only fit, from ~80% when not considering topography to ~50%.
It is important to note that these tests are not realistic, since we do not consider any source
of noise, which would further reduce the benefit of altimetry crossovers with respect to more
realistic Doppler observations. However, our results constitute a first necessary validation
of our simulation set-up. Only in the case of no topography or when using only a DEM, the
crossover discrepancies are visibly reduced after the combination, at the price of a slight
increase of the Doppler post-fit residuals.

In the more realistic cases, i.e., with small-scale topography or with additive white noise,
the post-fit Doppler residuals and crossover discrepancies are overall very close to the val-
ues after the Doppler-only fit. However, the orbits are visibly improved (see Fig. 5.5) with
respect to the Doppler-only solution when using a simulated small-scale topography, with
the RMS of post-fit differences being reduced by ~26% (see Tab. 5.1). Increasing the sam-
pling rate by a factor of 3, visibly improves the orbit by 33% with respect to the 10 Hz case.
We note that there is no visible orbit improvement in the near edge-on case when using
white noise instead of a fixed small-scale topography, as expected. Indeed, the discrepancy
of a perfectly modelled crossover located precisely at the bouncing points of two perfect
ground tracks would be affected only by the range noise, as the topography would cancel
(see Eq. 2.65), and there would be no interpolation error. Thus, if the interpolation error is
part of the range noise budget, and not a consequence of the considered small-scale topog-
raphy, it would affect the error on the parameters we estimate by minimising the crossover
discrepancies.
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Figure 5.5: Daily RMS of the orbit differences for Bg,,+, = 1° considering only Doppler
observations (D) and combining with crossovers (X) for different topography models.

Because of the nature of the altimetry crossover observables, one could expect the main
improvement to happen in the radial direction. However, because a Doppler-fitted or-
bit is most weakly determined in the direction perpendicular to the radial direction (see
Sect. 4.1.1), our orbit differences in the radial direction are already smaller, below 5cm,
than in the along-track and cross-track directions. Moreover, even small improvements in
the radial direction induce improvements in the other directions. In particular, when the
orbit is close to an edge-on configuration in these experiments, the direction weakly de-
termined by Doppler observations is the cross-track direction, with some orbit differences
larger than 5m in case of a Doppler-only solution (see Fig. 5.5).

As discussed in Sect. 4.1.1, and as shown in Fig. 5.6 for a Doppler-only solution, the osculat-
ing orbital elements are highly correlated with each other for low g, Correlations are
notably reduced when the altimetry crossovers are combined with Doppler observations.
This is already quite visible even in the case small-scale topography is applied. There is a
general decrease of correlations between every osculating orbital element of all 80 arcs for
the near edge-on orbit as shown in Fig. 5.7.

5.2.2 Orbit improvement and orbit geometries

We discussed in Sect. 4.1 the influence of SBg,,+, on the orbit accuracy in case of only
Doppler observations, and showed that the orbit errors are larger for more face-on orbits.
Indeed, the global 3D RMS of the orbit differences is 1.9m, 4.6 m and 7.0 m for B4, = 1°,
72° and 84°, respectively. Contrary to an edge-on orbit, the error is shared between the
along-track and cross-track directions, as can be seen in Fig. 5.8.

As discussed in Sect. 4.1, there are also large differences between the three orbit configu-
rations in terms of correlations between the estimated initial orbital elements. We already

119



5. Combination of altimetry crossover and Doppler observables

Y i
TN
i T T
e e P

0.2

Correlation [-]

-0.2

TITVLNRY,

EE0 0o e 0880 0880 08800880005 €0 e 0w

SUT3ISTUTGIISTUTIISTUTGISTUTGIISIU T3S TIISTUTIISTUTIISTUTIIS
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Figure 5.8: Daily RMS of the orbit differences for Bg,,4, = 72° and Bg,,e, = 84° consid-
ering only Doppler observations (D) and combining with crossovers (X) considering small
scale topography.

showed in Fig. 5.6 that correlations are distributed over all orbital elements for low Sg,,.41-
We alternatively plot these correlations for the three orbit configurations by representing
the absolute correlations between each orbit parameter within each arc averaged over the
80 arcs (see Fig. 5.9 for Doppler only solutions). We get overall lowest correlations for the
case Brarn = 72°, except for the correlations between inclination ¢ and the argument of
latitude u,. The near face-on orbit suffers from very high correlations between %, u, and
the longitude of the ascending node 2, as already mentioned in Sect. 4.1.2. We notice that
for Bramn = 1° the correlations between the inclination ¢ and both the longitude of the
ascending node 2 and the argument of latitude u are significantly lower, below 0.5, com-
pared to values higher than 0.9 in the other two cases. Such low correlations may explain
why the orbit accuracy is better in this case.

IBEarth =1° /8Earth =T72° ﬁEarth =84°
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Figure 5.9: Absolute correlations between initial osculating orbital elements averaged over
80 arcs for different S8p,,, using only Doppler observables.
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We show in Tab. 5.2 the relative weights between altimetry crossover discrepancies and
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5. Combination of altimetry crossover and Doppler observables

Doppler observations derived following VCE as described in Sect. 5.1.1, along with the
post-fit standard deviation of the crossover discrepancies, and the RMS of the orbit differ-
ences. The post-fit Doppler residuals and crossover discrepancies are overall very close to
the values after the Doppler-only fit. However the orbits are visibly improved with respect
to the Doppler only solution, with the RMS being reduced by ~26% and up to 36% in the
near face-on case (see Tab. 5.2). The higher contribution of altimetry crossovers for Bz,
close to 90° agrees with the findings of Villamil et al. [2021].

Table 5.2: Crossover discrepancy residuals and orbit differences for different orbits. The
RMS of Doppler residuals is 0.78 mHz in the three orbit cases with Doppler only and with
or without adding altimetry crossovers.

BEarth Weight | Stdev v [m] | RMS orb. diff. [m]
avg. [°] ratio post-fit pre-fit | post-fit
1 6.9 x 1074 8.3 1.9 1.4
72 6.5 x 1074 8.5 4.6 3.3
84 [6.5x1074 8.6 7.0 4.5

Correlations are notably reduced when the altimetry crossovers are combined with Doppler
observations (see Fig. 5.10). For the near face-on orbit (8g,n = 84° in Fig. 5.10), the cor-
relations between the osculating orbital elements are visibly reduced, but the correlations
between ¢, {2 and u, remain large. In case Bg,,4, = 72°, the improvement in correlations
between orbital parameters is more moderate. However, the correlations between the semi-
major axis a and 7,  and wu slightly increase.

ﬁEarth =1° IBEarth =72° /BEarth =384°

Figure 5.10: Absolute correlations between initial osculating orbital elements averaged
over 80 arcs for different Bg,,.;, fitted using Doppler observables and altimetry crossover
observations with small-scale topography.

These results show how well the orbit solution can be improved with altimetry crossovers.
However, we want to emphasize that more advanced weighting schemes among the crossover
observations might provide even larger improvements, e.g., a latitude-dependent weight or a
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5.3 Impact on the estimation of accelerometer biases

higher weight when a crossover corresponds to a part of the orbit not observed by Doppler.
This would be an interesting investigation for future work.

5.3 Impact on the estimation of accelerometer biases

We have seen in Sect. 4.5 that non-gravitational accelerations have to be carefully ac-
counted for, or else they may harm the orbit solutions. More specifically, in case of an
on-board accelerometer, the estimation of accelerometer biases can be very challenging
(see Sect. 4.5.2). In this section, we evaluate how the combination of altimetry crossovers
with Doppler observations can improve the estimation of the biases, and thus the overall
orbit quality.

We assume a near edge-on orbit with Sg,,., = 1.0°+£4.2° tracked only by Jiamusi ground
station, and we estimate biases in radial, along-track and cross-track directions every 25 h.
As discussed in Sect. 4.5, the biases have to be carefully constrained. We follow the same
procedure described in Fig. 4.30 to determine a first Doppler-only orbit solution and to
estimate a first set of biases with their global constraints (using VCE). One can see in
Fig. 5.11 that, apart from the along-track direction, the bias estimation error is rather
large, especially in the cross-track direction. We saw in Sect. 4.5.2, that increasing the
length of the estimation arc to more that 25h helps reducing the estimation error, as well
as considering biases constant on larger time spans (see Fig. 4.33b).
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Figure 5.11: True and estimated accelerometer biases using Doppler only, Doppler and
crossovers considering no topography and with small-scale topography, for Bg,..;, = 1.0°.

Nevertheless, we postpone the study of different time spans to future work and thus focus
for the moment only on the added value of crossovers in the case of 25h arcs, and for one
set of 3 biases per arc. We first combine the Doppler NEQ and the crossover NEQ. We use
VCE in case of small-scale topography, while freely estimating all parameters, resulting
in a weight close to the one given in Tab. 5.1. Similarly to Sect. 5.2.1, we tried different
weight between observation types when not considering topography. We then estimate one
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5. Combination of altimetry crossover and Doppler observables

global bias constraint per direction using VCE on the combined VCE, as performed for
the Doppler-only solution. We found that in case no topography is considered, weighting
the crossover observations 10 times more than the Doppler observations resulted in mini-
mal orbit differences, once VCE-derived constraints are applied to the accelerometer biases.

When not considering any topography, and any noise on the altimetry ranges, we can
see a significant improvement on the estimation of the biases in radial direction, as can be
expected from the geometry of the crossover discrepancy observable, but also in along-track
direction (Fig. 5.12). On the other hand, the cross-track biases are visibly degraded. This
behaviour may be explained by the large weight on the altimetry-derived observations, as
they perform poorly in cross-track direction. Nevertheless, the cross-track bias errors are
smaller when considering more realistic crossover observations, i.e., considering small-scale
topography. We also notice improvements in radial and along-track biases estimation with
respect to the Doppler-only solution, albeit less significant than in the no topography case.
The orbit is visibly improved (Fig. 5.12) as the RMS of the differences between the esti-
mated and the true orbit decreases, from 3.16 m in the Doppler-only case to 0.99 m when
not considering topography. Because the improvement on the radial biases estimation is
dampened when a small-scale topography is assumed, the orbit improvement is more mod-
erate, as shown in Fig. 5.12, with the RMS of orbit differences is reduced to 2.25m RMS
of orbit differences.
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Figure 5.12: RMS of orbit differences for each arc using Doppler only, Doppler and
crossovers considering no topography and with small-scale topography, for Bg,,..;, = 1.0°.

These preliminary results show the potential benefit of altimetry crossovers to mitigate the
challenge posed by non-gravitational accelerations. In future work, a more thorough analy-
sis, similarly to Sect. 4.5, would be required to more precisely assess the benefit of Doppler
and altimetry crossover combination with, e.g., a more face-on orbit. For instance, investi-
gating the impact on longer estimation arcs, by stacking biases similarly to Sect. 4.5.2, or
by iterating on the whole combination.
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5.4 Estimation of the complete set of geodetic parameters

5.4 Estimation of the complete set of geodetic param-
eters

After looking at the benefit of a combination between altimetry crossovers and Doppler ob-
servables in terms of orbit parameters, we study in this section its impact on the estimation
of rotation and orientation parameters, and on the estimation of gravity field parameters
and tidal Love numbers. We first focus on the near edge-on case (Bggrn = 1.0° +4.2°),
for which the depleted ground coverage may harm a freely estimated gravity field Doppler-
only solution, as discussed in Sect. 4.3.2, and for which the coverage is even more depleted
when considering Doppler observations from only one tracking station (see Fig. 5.13). We
then extend the range of studied orbits with the two more face-on orbits, considering only
small-scale topography. We estimate gravity field parameters up to d/o 100 and consider
a perfect force modelling.

Number of observations

Figure 5.13: Ground coverage of Callisto from a polar orbiter with A = 200 km occulted by
Callisto for 83 days, for Sggup = 1.0° £ 4.2°. The 60s-sampled Doppler observations are
grouped in bins of 1.8° in longitude and 2.8° in latitude.

5.4.1 Impact of topography roughness on rotation parameters
only

We first evaluate the free estimation of the global parameters as performed in pyXover
with altimetry data only, namely the constant terms of the north pole right ascension «
and declination d,, the rotation rate of Callisto w;, the main longitudinal libration W,
and the tidal Love number h,. Similarly to Sect. 5.2, we use VCE to determine an optimal
weight between Doppler observations and altimetry crossovers, except for the ideal cases
without small-scale topography and where no additional noise is considered, for which we
fixed the weight to the values given in Tab. 5.1.

For each of the cases described in Sect. 5.2, we compare the formal errors (Tab. 5.3) and
the true error (Tab. 5.4) of the previously mentioned parameters when using only Doppler
observations (except for the Love number hy), when using altimetry crossovers only, and
when combining both types of observations (X+4D). We additionally represented the formal
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and true errors in Fig. 5.14, using Doppler only or combining them with crossovers observa-
tions. The combination of altimetry crossover discrepancies and Doppler observables results
in a general improvement of the formal errors with respect to each observation type taken
separately, except for h, in the ideal case of no topography.

Table 5.3: Formal errors of the estimated rotation and orientation parameters and hq
Love number, considering different observation types and different topography models for

BEarth =1°

Topography | Obs. type | aol?] | 6[°] | wy[®/day] | Wi[°] | hy []
x10* | x10% x 109 x10° | x10°
Doppler 5.1 0.23 41 0.58 -

No topography | Crossover | 0.0017 | 0.0012 0.046 0.011 | 0.0018
X+D 0.0045 | 0.0012 0.036 0.0044 | 0.0049

DEM Crossover | 0.024 | 0.041 0.55 0.075 0.17
X+D 0.016 | 0.033 0.13 0.060 0.12
Small-scale Crossover 1.4 3.0 14 5.4 9.5
(30 Hz) X+D 0.074 0.16 0.62 0.43 9.3
Small-scale Crossover 2.2 4.4 27 7.4 14
(10 Hz) X+D 0.089 0.16 0.76 0.46 12
White noise Crossover 2.1 4.1 18 6.9 14
o=12m X+D 0.090 0.16 0.77 0.47 11

Regarding the true errors in Tab. 5.4, the benefit of a combined solution is also generally
visible. In case no topography is considered, the true errors in the estimated parameters
do not necessarily improve, but this may be due to the weight ratio between observation
types, which we derived empirically in Sect. 5.2, without estimating rotation parameters.
We notice that the true error of J,, increases for a few topography cases when including
crossovers to Doppler observations. Moreover, when considering small-scale topography at
10 Hz, the true error on h4 is larger when combining observations than when considering
crossovers only. However, in order to unambiguously analyse the true errors of this small
set of parameters, one would need to repeat the experiment with different initial conditions,
for instance by performing a Markov Chain Monte-Carlo experiment. Considering a 30 Hz
altimeter sampling rate improves the formal errors by ~30% and up to 50% for w, with
respect to a 10 Hz altimeter in case of a crossover only solution, and between 0% and 30%
in case of Doppler and crossover combination. Differences between small-scale topography
and pure white noise in the case of 10 Hz are more subtle. Indeed, as seen in Fig. 5.3b, the
distribution of the crossovers is comparable but not identical. The altimetry-only solution
is worse in the case of small-scale topography, while differences are close when combining
altimetry crossovers with Doppler observations.
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Table 5.4: True errors of the estimated rotation and orientation parameters and Love
number h,, considering different observation types and different topography models for

BEarth =1°

Topography | Obs. type | ap[’] | 6o[°] | wy[?/day] | Wi[] | hy [-]
x10* | x10* x107 | x10° | x10?
Doppler | 0.41 0.21 3.6 0.39 -

No topography | Crossover | 0.15 0.08 0.014 0.17 | 0.0067
X+D 0.46 | 0.0087 3.7 0.014 | 0.0055

DEM Crossover | 0.41 0.59 2.3 0.37 0.7

X+D 0.14 0.34 0.86 0.069 | 0.14
Small-scale Crossover | 1.4 1.2 17 0.023 9.3
(30 Hz) X+D 0.18 0.17 1.7 0.39 8.9
Small-scale Crossover | 2.5 7.7 8.1 04 0.5
(10 Hz) X+D 0.24 0.23 1.9 0.14 5.6
White noise Crossover | 2.5 1.9 13 6.8 1.8
o=12m X+D 0.036 | 0.22 0.28 0.24 1.6

Doppler No topo DEM S-sc 30Hz S-sc 10Hz Wh. noise

101 _ —
10°
107! _ -

1072

1073 |7

aor[m*ad] 0 [prad) wy [nrad/rd]i W, [prad] hy [x10%]

Figure 5.14: True (filled bars) and formal (empty bars and solid line) errors of the estima-
tion of rotation, and orientation parameters and the Love number h,, considering either
only Doppler observations, or combining Doppler and crossover observations with different
topography models, for Sg,,., = 1.0°.

5.4.2 Inclusion of the gravity field coefficients with different to-
pographies

We then repeat the same experiment, but we also freely estimate the gravity field pa-
rameters and k, Love number. Altimetry crossover discrepancies alone did not allow for
an estimation of the gravity field up to d/o 100. We thus compare the case of Doppler
only (except for hy Love number) and the different cases of combination between altimetry
crossovers and Doppler observations, in terms of formal errors in Tab. 5.5 and true errors
in Tab. 5.6, which we represented in Fig. 5.15.

127



5. Combination of altimetry crossover and Doppler observables

Table 5.5: Formal errors of the estimated rotation, and orientation parameters and of the h,
and ky Love numbers, estimated with gravity field parameters when considering different
observation types and different topography models, for 8z, = 1.0°.

Topography ao[’] | 60l°] | wil?/day] | Wi°] | ho [} | Ky []
Obs. type x10* | x10% %106 x10° | x10% | x103
Doppler only 14 0.81 24 21 - 4.2
No topography 0.015 | 0.01 0.0013 | 0.043 | 0.015 | 0.0046
DEM 0.16 | 0.12 0.017 0.88 | 0.37 | 0.012
Small-scale (30Hz) | 1.2 | 0.53 0.77 7.5 9.8 0.19
Small-scale (10Hz) | 1.3 | 0.54 1 8.6 13 0.52
White noise 1.3 | 0.54 0.98 8.4 12 0.64

Table 5.6: True errors of the estimated rotation, and orientation parameters and h, and
ks Love numbers, considering different observation types and different topography models,
estimated with gravity field parameters, for Bg,,., = 1.0°.

Topography ao?] | 6o[°] | wi[?/day] | W] | hg [-] | ko []
Obs. type x10* | x10* x 108 x10° | x10® | x103
Doppler only 22 1.7 23 11 - 6.5

No topography 0.12 | 0.083 | 0.0027 0.22 | 0.057 | 0.053
DEM 0.90 | 0.19 0.038 3.7 0.6 0.22
Small-scale 30Hz | 1.1 0.81 0.68 5.3 6.7 0.20
Small-scale 10Hz | 1.4 | 0.91 0.69 5.6 10 0.13
White noise 1.1 0.94 1.6 16 6.2 1.5

As already mentioned, the ground coverage available from Doppler observations is limited
in the case of a near edge-on orbit, which can lead to an aliasing of the gravity field solu-
tion, unless properly constrained. Additionally, the rotation rate is highly correlated with
the non-zonal coefficients of the gravity field and its unconstrained estimation proved to be
challenging (see Sect. 4.4). Nevertheless, we chose to analyse only unconstrained solutions
in this section, to highlight the contribution of altimetry crossovers to make up for the de-
pleted ground coverage and to reduce correlations between parameters in this challenging
scenario.

The estimation of all the rotation and orientation parameters is improved in all the con-
sidered combinations with respect to a Doppler-only estimation, whether we look at the
formal errors or the true errors. The only exception is the true error of the main longi-
tudinal libration amplitude W, when considering white noise only. However, as previously
discussed, the true errors of a limited set of parameters of one test are indicative but not
conclusive. The formal errors of the constant term of the right ascension of the north pole
o are reduced by at least one order of magnitude, thanks to the correlation between «
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5.4 Estimation of the complete set of geodetic parameters

Doppler No topo DEM S-sc 30Hz S-sc 10Hz Wh. noise
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Figure 5.15: True (filled bars) and formal (empty bars and solid line) errors of the estimation
of rotation, and orientation parameters and h, and k, Love numbers, considering different
observation types and different topography models, estimated with gravity field parameters,

for Bgyren = 1.0°

and 0, being reduced by a factor of minimum 4.8 (Figs. 5.16 and 5.17). §, is more moder-
ately improved as the formal errors are reduced only by 30% in the small-scale topography
case, and white noise case alike.
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Figure 5.16: Correlations between the low-degree gravity field coefficients and rotation
parameters using only Doppler observations (left) and combining with crossovers (right)
without considering any topography, for 85, = 1.0°.

Overall, the ideal cases without topography or with only the DEM drastically reduced the
errors in all the considered parameters, but also the correlations between the rotation rate
w, and the gravity field coefficients (Fig. 5.16). The correlation between o, and J; is still
largely reduced when considering small-scale topography, from —0.63 to —0.08 (Figs. 5.16
and 5.17). w; remains highly correlated with the gravity field coefficients, pointing that
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Figure 5.17: Correlations between the low-degree gravity field coefficients and rotation
parameters estimated considering Doppler and crossovers observables with a DEM and
without (left) or with (right) small-scale topography, for Bg,,., = 1.0°.

the benefits of altimetry are weakened when considered small-scale topography. However,
we still note lower correlations with respect to a Doppler-only solution. For instance the
correlations between w; and Cy, Sy, or Cy are reduced by a factor of at least 4, lead-
ing to lower correlations between these coefficients and the other gravity field coefficients
(Fig. 5.17).

Formal errors on estimates of the Love number k, are also reduced, e.g., by a factor of
8 in case of small-scale topography at 10 Hz. The gravity field solution is significantly im-
proved in the ideal cases (Fig. 5.18). In the case of small-scale topography with a 10 Hz
sampling rate, the gravity field solution is still improved with respect to a Doppler-only
solution. Unlike the orbit differences discussed in Sect. 5.2.1, we do not see a large differ-
ence on the estimates of the geodetic parameters when considering small-scale topography
or an equivalent white noise.

We find that the gravity field and the rotation parameters, in particular, benefit from
a combination of altimetry crossovers and Doppler observations in these cases. The de-
pleted ground coverage is at least partially mitigated, and the correlations arising from
the estimation of rotation and orientation parameters are reduced. Orbit improvements
discussed in Sect. 5.2 clearly contribute to the improved estimates of these parameters. In
this chapter, we estimated all the rotation parameters freely. However, constraining the
rotation parameters as discussed in Sect. 4.4 may further reduce the correlations between
the rotation rate w; and the gravity field parameters.

5.4.3 Contribution of altimetry for different orbit configurations

We present in this section the results for a Doppler only solution and a combination with
altimetry crossovers, for the three different orbit geometries considered in this chapter, only
considering small-scale topography on top of a DEM, with a 10 Hz altimeter sampling rate,
We estimate gravity field parameters up to d/o 100, in addition to the Love number ks,
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Figure 5.18: Difference degree amplitude of gravity field solutions considering different
topography models, using only Doppler observations (Dop) or a combination of crossovers
and Doppler (X+4D) observations, for By, = 1.0°.

the right ascension «; and declination ¢, of the north pole and the amplitude of the main
longitudinal libration ;. We decided to not estimate the rotation rate w, in this section,
because of the high correlations with the gravity field parameters, as discussed in Sect. 5.4.2.

As discussed in Sect. 4.3.2; the observation geometry from Earth is critical for gravity field
recovery using radio tracking observations. A near edge-on orbit (8g,,., = 1°) provides a
better gravity field sensitivity, as most of the gravity signal is along the the line-of-sight
from Earth. However, this benefit needs to be balanced with occultations of the line-of
sight by the Callisto for a part of the orbit as seen in Fig. 5.13. This effect, combined with
the limited number of Doppler observations (only one tracking station) results in a gravity
field solution suffering from aliasing. When estimating gravity field coefficients up to d/o
100, the signal from the high degree coefficients leaks into the lower degree coefficients (see
Fig. 5.19a).

Constraining the coefficients to zero using, e.g., a Kaula law, limits aliasing due to the
ground coverage as shown in Sect. 4.3.2. We thus apply a Kaula constraint as in Sect. 4.3.5,
using VCE to derive the constant K = 0.018 for the Doppler-only solution. We note that
the other parameters benefit from the suppressed aliasing due to the Kaula constraint (see
Tab. 5.7). On the other hand, a near face-on orbit (8g,,.;, = 84°) is detrimental in terms
of gravity field recovery, as the gravity signal acting on the probe is mostly perpendicu-
lar to the line-of-sight, resulting in a lower Doppler sensitivity. However, despite using a
Kaula-constraint in the case Bg, 4, = 1°, the gravity field solution for the near face-on case
performs better in the low degrees than in the near edge-on case. This may be explained
by the relatively low number of observations for 5g,,.;, = 1°, and may change, e.g., in case
of the probe would be tracked by more than one tracking station. The intermediate case
BEartn = 72° benefits from the absence of occultations of the line-of-sight from Callisto,
and of better sensitivity to the gravity signal than a face-on orbit, resulting in a better
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Figure 5.19: Difference degree amplitudes of gravity field solutions for different SBgy,4p,
using only Doppler observations (solid line in (a), dotted line in (b)) and formal errors
(dashed line in (a)) or combining with altimetry crossovers (solid line in (b)). A Kaula
constraint was considered in case of a near edge-on orbit (magenta in (a), dark blue in

(b))-

unconstrained gravity field solution.

Using VCE, we combine Doppler and altimetry crossovers observations to estimate the
gravity field coefficients together with the rotation parameters. Because the gravity field
solution still suffers from aliasing in case g, = 1°, we derived a Kaula-constraint us-
ing VCE, to bring the gravity field solution to a level comparable with the more face-on
orbit configurations, similarly to the Doppler-only solution. The Kaula-constant K was
estimated after the observations NEQs have been combined, resulting in K = 0.00057.

The freely estimated rotation parameters improve in all cases with respect to a Doppler-
only solution (Tab. 5.7). The right ascension of the north pole « significantly improves
when adding crossover to Doppler observations as the formal errors are reduced by one
order of magnitude in case 8g,,+, = 1°, and divided by at least 7 in case of more face-on
configurations. The improvement of the declination J, is more moderate, but still apprecia-
ble, around 30%. We note more significant improvements in the main libration amplitude
W, and Love number ks, in the near edge-on case, with an improvement of ~ 50% and
~ 85%, respectively, in comparison with ~ 30% and ~ 40% in case Bp,,4, = 72° and
BEartn = 84°. The formal errors on h, are overall 0.013, regardless of the 8y, angle.

Moreover, the correlations between the rotation and the gravity field parameters decrease
with the addition of altimetry data (Fig. 5.21). In the case of Bp,,., = 1°, we can still see
correlations between the gravity field parameters only (Fig. 5.20), but this is due to the
poor coverage previously discussed. The Kaula constraint helps to reduce these residual
correlations, bringing the formal errors of the low degree gravity field coefficients in the
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5.4 Estimation of the complete set of geodetic parameters

Table 5.7: True (A) and formal (f,,,) errors of rotation, and orientation parameters and
Love numbers h, and k,, estimated together with gravity field parameters.

Bgartn | Obs aol’] | So[°] | Wil] | ho [F] | Ko [F]
x10° | x10° | x10° | x10% | x103
D A | 220 | 17.2 11 - 6.34
1o forr | 144 | 813 | 214 - 4.2
D+ X A | 138 | 917 | 6.31 | 10.1 | 0.127
forr | 134 | 542 | 854 | 12.9 | 0.518
D A | 151 | 142 | 2.12 - 10.436
1° fore | 122 | 7.29 | 12.6 - 3.42
Kaula A | 11.2 | 8.13 9.5 | 4.33 |0.176
D+ X
forr | 12 | 525 | 691 | 12.6 | 0.48
D A | 38.8 | 0.32 | 0.864 - 2.56
790 forn | 464 | 292 | 2.32 - 1.45
D+ X A | 278 | 0.67 |0.0366 | 8.14 | 0.272
forr | 5.89 | 222 | 1.91 | 12.7 | 0.568
D A | 348 | 0.738 | 4.04 - 1 0.564
840 forr | 39.7 | 254 | 1.82 - 10.333
D+ X A | 113 | 15 3.03 | 29.6 | 0.473
forr | 5.7 | 17T | 1.38 13 | 0.189

range of the combined solution for a more face-on orbit.
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Figure 5.20: Correlations between the freely estimated low-degree gravity field coeffi-
cients and rotation parameters using only Doppler observations (left) and combining with
crossovers (right) for Sgu.n = 1°

The results presented in this chapter indicate a general improvement of orbit, rotation and
gravity field parameters, thanks to the addition of altimetry crossovers in case the probe
is poorly tracked. All orbit geometries benefit from the presence of an on-board altimeter,
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Figure 5.21: Correlations between the freely estimated low-degree gravity field coeffi-
cients and rotation parameters using only Doppler observations (left) and combining with
crossovers (right) for Bggen = 72°.

even though the benefit is higher for more face-on orbits in terms of orbit accuracy or for
more edge-on orbits in terms of rotation parameters. Additional analyses will be needed in
order to conclude on the improvement of the gravity field solution even in the case of more
favourable station schedule.
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Chapter 6

Summary and conclusions

The Jupiter system is one of the highest priority targets for current and future space ex-
plorations, as many questions in a multitude of domains are still to be answered. The four
Galilean moons, each interesting and unique worlds embedded in the complex Jovian en-
vironment, are going to be explored in detail by the JUICE and Europa Clipper missions.
Like all other past missions to Jupiter, these missions are going to explore and investigate
on the Galilean moons by means of multiple fly-bys, and JUICE will, for the first time ever,
even enter into an orbit around Ganymede. Undoubtedly, a mission including a probe that
enters a low orbit around a Galilean moon has the potential to explore and characterize
the moon to a significantly higher degree, be it in terms of surface characterizations or the
measurement of global geodetic parameters characterizing the interior of the moons or its
tidal interaction with the Jupiter system.

The planned Chinese mission Tianwen-4 to the Jovian system aims to send an orbiter
around Callisto, the outermost and most preserved of the four Galilean moons. This is a
very exciting opportunity to have a detailed look at this moon that best reflects the origin
of the Jovian and Solar Systems and which, like in case of Europa and Ganymede, poten-
tially harbours a global ocean of liquid water below an ice crust. Data gathered by a probe
that orbits Callisto for an extended time span will offer a much better characterization of
the celestial body compared to data of a limited number of fly-bys.

In view of future missions including orbiters around Galilean moons it is then of vital
importance to address questions related to sensitivity of different kind of data with respect
to parameters of interest. This is the framework and context of the present PhD thesis. The
main goal was to perform realistic closed-loop simulations for probes around Europa and
Callisto to investigate the impact of a multitude of orbit and mission scenarios, observa-
tion types and processing strategies on the determination of orbit and geodetic parameters.

In a first stage, we developed an orbit design package to generate Repetitive Ground
Track Orbits in the frame of the three-body problem extended with low degrees of the
central body gravity field, allowing to set a large variety of orbit characteristics (altitude,
inclination, ground surface coverage, orientation with respect to Earth direction). Based on
designed orbits, realistic Doppler observables (from NASA’s DSN and the Chinese DSN),
accelerometer measurements and laser altimeter ranges were simulated by means of the
high-fidelity ephemeris and force models in the planetary branch of the Bernese GNSS
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Software (BSW) and pyXover. These data were used to reconstruct orbit and geodetic
parameters in global least-squares adjustments, using different orbit parametrization and
processing strategies. Comparison to the simulation truth then allowed to assess the impact
of numerous details on the sensitivity with respect to parameters of interest.

The current knowledge of gravity field for Europa and Callisto is restricted to degree 2
in spherical harmonics expansion. We demonstrated that we can start our procedures with
a degree-2 gravity field as a priori information and are able to estimate a full degree-90 grav-
ity field model within a few iterations from Doppler measurements, either co-estimating the
low degrees gravity coefficients in the first iterations, or making use of pseudo-stochastic
pulses. The so-derived gravity field solution has the same accuracy as a solution obtained
using the true gravity field model as a priori information within only one iteration. This
validates the latter, more efficient strategy for all remaining tests.

In the case of Europa, we showed how critical the choice of an orbit is with respect to
the quality of gravity field recovery. It is no surprise that the sensitivity of the probe with
respect to the gravity field is reduced as the altitude increases, and that the polar gap
widens as the orbit is less inclined, resulting in a reduced ground coverage. The ground
coverage density, which we characterise by the ground track repetitions, is of natural im-
portance as the short wavelengths of the gravity field cannot be resolved if the ground
coverage is too sparse. However, depending on the expected resolution of the gravity field,
it is not necessary to avoid ground track repetitions, which can be beneficial for other
components of the mission, as they allow for repeated observations of the same point on
the surface.

Observation geometry from Earth is also critical. In particular, the angle between the
orbital plane and the Earth direction, 85,4, iS paramount to consider. Indeed, an edge-
on orbit (B, = 0°) provides a better gravity field sensitivity, as most of the gravity
signal is along the the line-of-sight from Earth. However, this benefit needs to be balanced
with a few drawbacks: higher correlations between the estimated orbital elements within
one arc, occultations of the line-of sight by the central body for a part of the orbit (which
is larger the lower the altitude of the probe is), and the combination of the occultations by
the central body and by Jupiter. The latter are more crucial in the case of Europa than for
Callisto, and may result in large gaps in the ground coverage. On the other hand, a face-on
orbit (Bggrn = 90°) is detrimental in terms of orbit recovery because of increasing orbit
deficiencies, and in terms of gravity field recovery, as the gravity signal acting on the probe
is mostly perpendicular to the line-of-sight, resulting in a lower Doppler sensitivity. We
also analysed the benefit of Kaula-constrained gravity field solutions to mitigate ground
coverage related problems.

We introduced in the BSW the estimation of planetary orientation parameters and Love
numbers, which can provide additional constrains on the internal structure of the celestial
body. However, because we only considered a 3 months mission, we observed large corre-
lations between the rotation rate of Callisto, and the gravity field parameters estimated
using Doppler observations only. The Variance Component Estimation of rotation param-
eter constraints allowed for a small reduction of such correlations.
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Because an accurate modelling of non-gravitational accelerations is a challenging com-
ponent of orbit determination, we investigated several approaches to model them, using
either pseudo-stochastic pulses, realistic accelerometer measurements, or empirical param-
eters. We found that a precise estimation of accelerometer biases is in general difficult to
achieve on a daily basis, and requires proper constraining which we performed using VCE.
Empirical parameters and pseudo-stochastic pulses can efficiently absorb such model de-
ficiencies, but we found pulses to have a more negative impact on the orbit and on the
gravity field estimation. However, this highly depends on the nature of the mismodelled
signal.

Finally, we studied the benefits of extending Doppler-only solutions with altimetry crossovers
using the pyXover software library. We focused on a scenario for which the probe is poorly
tracked by Doppler measurements, and found that the estimation of orbit and geodetic
parameters improved with the addition of crossovers. However, the improvement is highly
dependent on the characteristics of our simulation, e.g., the underlying topography rough-
ness. Moreover, the addition of altimetry data allowed for the consistent estimation of the
Love number h, in a global solution, but also for a visible reduction of correlations among
estimated parameters. We also expect the benefit on altimetry crossovers to increase for
longer mission, as the number of crossovers would drastically increase.

In conclusion, during this work we developed an extensive simulation environment for
orbiters visiting the complex environment of satellite systems in the outer Solar System,
which allows for a proper evaluation of mission scenario performances in terms of orbit
determination and estimation of geodetic and geophysical parameters. Our work allows
the BSW to be applied to the analysis of future missions towards the Jovian moons, as
well as other celestial bodies. For instance, the methodology and tools developed in this
work could be applied to the analysis of real data from forthcoming planetary orbiter such
as BepiColombo and JUICE, which carry an accelerometer and a laser altimeter on board,
or even to Uranus exploration, a priority of the latest Decadal Strategy.
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