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Introduction

In this thesis we present the sub-Riemannian affine-additive group AA. We shall analyze

it in the geometric context of sub-Riemannian spaces, explore the associated quasiconformal

mapping theory and eventually establish notions of mean and Gaussian curvature for sur-

faces embedded in it. This introduction is going to contain a description of the context of

our research project together with a presentation of our main results.

History and main results.

Due to work of Heinonen and Koskela, [34] the theory of quasiconformal mappings has been

developed in the setting of general metric measure spaces satisfying some mild regularity

properties. For the related analytic machinery including upper gradients, capacities and

Sobolev spaces we refer to the book of Heinonen, [33], or the book of Heinonen, Koskela,

Shanmungalingam and Tyson [36]. Let us recall that a homeomorphism f : X → Y between

two metric spaces (X, dX) and (Y, dY ) is called quasiconformal if there exists H ≥ 1 such

that

lim sup
r→0

supdX(p,q)≤r dY (f(p), f(q))

infdX(p,q)≥r dY (f(p), f(q))
:= Hf (p) ≤ H, (1)

for all p in X.

An important class of examples where these results apply is the geometric setting of sub-

Riemannian spaces, including Heisenberg groups. Motivated by Mostow rigidity [47], the

theory of quasiconformal mappings in the Heisenberg group has been developed by Pansu [48]

and Korányi and Reimann in [38] and [39]. In our model the first Heiseberg group H is C×R
with coordinates (z = x+ iy, t) and group operation

(z′, t′) ⋆ (z, t) = (z′ + z, t′ + t+ 2ℑ(z′z)) .

The contact form of H is given by

ϑH = dt+ 2(xdy − ydx).
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The horizontal sub-bundle HH := kerϑH of the tangent bundle of H is spanned by the vector

fields

X = ∂x + 2y∂t, Y = ∂y − 2x∂t .

The corresponding Carnot-Carathéodory distance dH is associated to the sub-Riemannian

metric ⟨·, ·⟩H making {X, Y } an orthonormal frame. For further properties of the Heisenberg

group and higher dimensional analogues of this space we refer to the book of Capogna,

Danielli, Scott and Tyson [17].

The theory of quasiconformal mappings in Heisenberg groups is rather advanced, examples

of non-trivial quasiconformal maps acting between these spaces have been constructed as

flows of contact vector fields by Korányi and Reimann [38], [39] and by lifting of planar

symplectic maps by Capogna and Tang [18]. Extremal quasiconformal maps that are similar

to the planar stretch map, acting between Heisenberg groups were found by Balogh, Fässler

and Platis [10]. Using the flow method of Korányi and Reimann, Balogh established in [6]

the existence of quasiconformal maps between Heisenberg groups distorting the Hausdorff

dimension of Cantor sets in a rather arbitrary fashion.

By a theorem of Darboux (see Theorem 18.19 in Lee’s book [41]), every (2n + 1)-

dimensional contact manifold is locally bi-Lipschitz to the n-th Heisenberg group, therefore

one would expect that the results of quasiconformal maps could be transposed from the

Heisenberg setting to general contact manifolds endowed with a sub-Riemannian metric.

However, this turns out not to be the case, as not all contact manifolds are globally qua-

siconformal to the Heisenberg group. Before quoting a remarkable example of this fact we

need to define another three dimensional contact manifold: the roto-translation group RT
is C× R with coordinates (z = x+ iy, t) and group operation

(z′, t′) ⋆ (z, t) =
(
eit

′
z + z′, t′ + t

)
.

The contact form of RT and the horizontal sub-bundle HRT of the tangent bundle of RT
are respectively defined as

ϑRT = sin t dx− cos t dy, HRT = kerϑRT .

A basis for HRT is given by the vector fields

X ′ = cos t ∂x + sin t ∂y, Y
′ = ∂t ,

and the corresponding Carnot-Carathéodory distance dRT is associated to the sub-Riemannian

metric ⟨·, ·⟩RT which makes {X ′, Y ′} orthonormal. In [26], Fässler, Koskela and Le Donne
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proved that the sub-Riemannian roto-translation group is not globally quasiconformal to

the Heisenberg group, in contrast to the fact, that there exists a global contactomorphism

between these spaces.

The main object considered in this thesis is the affine-additive group, a three dimensional

Lie group endowed with a sub-Riemannian metric. We prove that it is also globally contac-

tomorphic to both, the Heisenberg group H and (by [26]) to the roto-translation group RT .

Howewer, the affine-additive group is not globally quasiconformal to neither the Heisenberg,

nor to the roto-translation group. The reason for the non-existence of a global quasiconfor-

mal map between these groups is their behaviour at infinity as formulated by Zorich in [56]

(see also Holopainen and Rickman [37] and Fässler, Lukyanenko and Tyson [28]). We prove

that the affine additive group has a non-vanishing 4-capacity at infinity, thus it is hyperbolic

in the terminology of [56], while both the Heisenberg and the roto-translation groups are

parabolic, having a vanishing 4-capacity at infinity.

To be more precise we define the affine-additive group (AA, ⋆) as the Cartesian product

of R with the hyperbolic right half-plane H1
C := {(λ, t) : λ > 0, t ∈ R} given by:

AA = R×H1
C,

together with the group law

(a′, λ′, t′) ⋆ (a, λ, t) = (a′ + a, λ′λ, λ′t+ t′)

and the contact 1-form

ϑ =
dt

2λ
− da.

From the topological viewpoint it is one of the eight 3-dimensional Thurston geometries,

see Thurston’s book [53]. For a detailed presentation of the geometric structure of the the

affine-additive group AA we refer to Chapter 1 of this thesis. At this point, we can say that

the Carnot-Carathéodory distance dAA will be defined as the sub-Riemannian distance on

AA generated by the horizontal vector fields

U = ∂a + 2λ∂t, V = 2λ∂λ,

and a sub-Riemannian metric making {U, V } an orthonormal frame. The left-invariant Haar

measure on the group AA is given by dµAA = da dλ dt
λ2

.

As a highlight we have Theorem 1.4.5 which offers a description of the sub-Riemmannian

geodesics of AA obtained by methods deriving from Optimal Control Theory.

In the Chapters 2, 3 and 4 we present the main tools to initially compare the contact
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geometries of the spaces AA, H and RT , then distinguish them under quasiconformality.

We summarize Propositions 2.1.2, 3.3, 4.0.1 and Theorems 4.1.1, 4.2.2 as the first main result

of this thesis with the following:

Theorem 0.0.1. The metric measure space (AA, dAA, µAA) is a locally 4−Ahlfors regular

space. It is globally contactomorphic to the first Heisenberg group H. The sub-Riemannian

manifold, (AA, dAA, µAA) is 4 hyperbolic, in particular there is no non-trivial quasiregular

map f : H → AA.

We underline in the last statement the inequivalence under quasiconformality between

the first Heisenberg group H and the affine-additive group AA. This means that maps which

are quasiconformal in H are not compatible with the quasiconfomal maps of AA. Therefore

it becomes interesting to study quasiconformal maps of the affine-additive group as well as

to inquire on further properties of such quasiconformal maps. We are going to introduce the

reader to a mapping problem in the complex plane formulated by Grötzsch in 1928.

The Grötzsch problem can be expressed as follows: let a > 1, consider a square Q and a

rectangle Ra respectively given by

Q = (0, 1) × (0, 1), Ra = (0, a) × (0, 1).

We ask if there is a conformal map which maps the horizontal edges of Q into the corre-

sponding horizontal edges of Ra, and requiring the same condition on the vertical edges. It

turns out that there is no such conformal mapping; however, using complex notation, one

finds that the linear stretch map given by

x+ iy 7→ ax+ iy, (2)

solves the Grötzsch problem and it is the closest to be conformal. The works of Grötzsch

[30], [3], established criteria to measure how to approximate conformality. Now, let again

a > 1, let k > 1 and let us consider the annulus in the complex plane A(1, a) defined as

A(1, a) = {z ∈ C : 1 < |z| < a}.

Grötzsch also formulated the analogous problem between two annuli A(1, a) and A(1, ak)

and he proved that the solution is the radial stretch map given by

z 7→ |z|k−1z. (3)

Via the formal substitution z = eξ+iψ one sees that the radial stretch can be seen as the linear

map given by (ξ, ψ) 7→ (kξ, ψ). It is also worth mentioning that Astala [4], used the radial
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stretch map to prove the sharpness on the optimal Sobolev exponent for K-quasiconformal

mappings in the complex plane.

An extremal quasiconformal map is a minimizer for the mean distortion among some class of

quasiconformal mappings, for details see (6). Methods involving the modulus of curve fam-

ilies were used to identify such extremality between annuli in the complex plane by Balogh,

Fässler and Platis [9]. Balogh, Fässler and Platis constructed appropriate analogues of linear

and radial stretch maps for the first Heisenberg group, [10]. For the latter case the same

authors subsequently proved that the radial stretch map is an essentially unique minimizer

for the mean distortion functional, [11].

In this thesis we search for extremal quasiconformal maps on AA. We implement a suitable

version of the modulus method which is evidently useful for our purposes. As a consequence

we are able to present new examples of self-mappings of the affine-additive group which share

some remarkable features with the linear strecth map (2) and the radial stretch map (3).

Following the work of Balogh, Fässler and Platis [10], we define a mapping having the ”min-

imal stretching property” (MSP) for a given curve family by adapting it to our particular

case in the sub-Riemannian framework.

In Chapter 6 we build a modulus method which relies on the minimal stretching property of

the map for a given curve family foliating the domain of definition.

In Chapter 7 we show that this designed method detects quasiconformal maps between do-

mains of the affine-additive group. The application is that we obtain extremal stretch maps

minimizing the mean distortion functional in the class of all quasiconformal mappings be-

tween two such domains.

In order to be more specific, we recall the preliminary metric notion of a quasiconformal

mapping given in (1) and we consider its source and target spaces as domains in the affine-

additive group. There also exist an analytic as well as a geometric definition for quasiconfor-

mal mappings of AA. It turns out that both are equivalent to the above metric definition.

This fact was already well-known for quasiconformal maps of C and also known for general

sub-Riemannian manifolds; we illustrate the details for the case of AA in Chapter 5. Such

quasiconformal mappings share Sobolev regularity properties and also satisfy the contact

condition, meaning that they preserve the contact form ϑ, i.e.

f ∗ϑ = σϑ (4)

almost everywhere for some non-vanishing smooth function σ : AA → R. Constructions

of diffeomorphisms of AA satysfying the contact condition are given in Theorem 2.2.4 and
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Theorem 2.3.1: such contactomorphisms are presented through the lift of symplectic maps

on the hyperbolic half-plane H1
C or obtained through the Korányi-Reimann flow method.

The contact condition imposes some rigidity on the quasiconformal mappings of smooth

type; on the other hand, the contact condition is a quite straightforward requirement for a

quasiconformal map. To be more precise, let f = (f1, f2 + if3) : Ω → Ω′ be a quasiconformal

mapping between domains in the affine-additive group, and let fI = f2 + if3. By defining

the complex vector fields

Z =
1

2
(V − iU), Z =

1

2
(V + iU), (5)

it turns out that the horizontal derivatives ZfI and ZfI exist both as distributions and al-

most everywhere. From now on, we will consider quasiconformal mappings to be orientation

preserving, i.e., |ZfI(p)| > |ZfI(p)| for almost every p ∈ Ω.

We then define the Beltrami coefficient and the distortion quotient as

µf (p) =
ZfI
ZfI

(p) and K(p, f) =
|ZfI | + |ZfI |
|ZfI | − |ZfI |

(p),

for points p ∈ AA where these expressions exist. In this thesis we shall make an extended

use of the square of the distortion quotient K2(p, f). By letting Kf = ess suppK(p, f), we

underline that any smooth contact transformation f with 1 ≤ Kf <∞ is quasiconformal.

Given two domains Ω,Ω′ ⊆ AA and a certain given class F comprising quasiconformal map-

pings f : Ω → Ω′, we may define the deviation of a quasiconformal map from conformality

as follows. We say that an f0 ∈ F is extremal for a mean distortion functional if
ˆ
Ω

K2(p, f0)ρ
4
0(p) dµAA(p) = min

f∈F

ˆ
Ω

K2(p, f)ρ40(p) dµAA(p), (6)

for a given density ρ0. This ρ0 is extremal for the modulus of a chosen curve family foliating

the domain Ω.

The concept of modulus of a curve family is defined in the general metric measure space

setting by Heinonen and Koskela in [34]. In our case the modulus Mod4(Γ) of a curve family

Γ is defined as follows. Let Adm(Γ) be the set of admissible densities : that is, non-negative

Borel functions ρ : AA → [0,∞] such that
´
γ
ρ dℓ ≥ 1 for all rectifiable curves γ ∈ Γ.

Rectifiability here is understood in terms of the sub-Riemannian distance dAA. Then

Mod4(Γ) = inf
ρ∈Adm(Γ)

ˆ
AA

ρ4(p) dµAA(p), (7)

see Chapter 5 for details.

It is important to mention that the ρ0 used in (6) corresponds to the extremal density
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which attains the infimum for Mod4(Γ). For example, we mention that the modulus of the

curve family connecting the two boundaries of any revolution ring in the first Heisenberg

group has been computed by Platis in [50]. The modulus method and its applications to

extremal problems for conformal, quasiconformal mappings and the extension of moduli onto

Teichmüller spaces is treated in the book of Vasil’ev [54]. Moreover, the notion of modulus of

a curve family has been extended to serve as further quasiconformal invariants in the works

of Brakalova, Markina and Vasil’ev in [15] and in [16].

An orientation preserving quasiconformal map f0 : Ω → Ω′ between domains in AA has the

minimal stretching property (MSP) for a family Γ0 of horizontal curves in Ω if for all γ ∈ Γ0,

γ = (γ1, γI) : [c, d] → AA, one has

µf0(γ(s))
γ̇I(s)

γ̇I(s)
< 0 for almost every s ∈ (c, d) with µf0(γ(s)) ̸= 0.

Note that in the latter definition we require implicitly the expression µf0(γ(s)) γ̇I(s)
γ̇I(s)

to be

real-valued.

Suppose next that ∆ is a domain in R2. Let 0 ≤ c < d and let γ : (c, d) × ∆ → Ω be

a diffeomorphism which foliates a bounded domain Ω in the affine-additive group with the

property that

γ(·, δ) : [c, d] → Ω

is a horizontal curve with |γ̇(s, δ)|H ̸= 0 for all δ ∈ ∆ and

dµAA(γ(s, δ)) = |γ̇(s, δ)|4H ds dν(δ)

for a measure ν on ∆. We consider the curve family Γ0 = {γ(·, δ) : δ ∈ ∆} and it will be

shown that

ρ0(p) =


1

(d−c)|γ̇(γ−1(p))|H
, p = γ(s, δ) ∈ Ω,

0, p /∈ Ω,

(8)

is an extremal density for Mod4(Γ0).

Let f0 : Ω → Ω′ be an orientation preserving quasiconformal mapping between domains in

the affine-additive group. Let γ be a foliation of Ω as described above. Assume as well that

f0 has the MSP for Γ0; we then say that the distortion quotient K(·, f0) is constant along

every curve γ if and only if

K(γ(s, δ), f0) ≡ Kf0(δ) for all (s, δ) ∈ (c, d) × ∆. (9)

The following condition for extremality of the mean distortion integral is the main result

from Chapter 6.
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Theorem 0.0.2. Assume that f0 satisfies the minimal stretching property with respect to Γ0

described as above. Let ρ0 be the extremal density for Γ0 and assume K(·, f0) to be constant

along every curve foliating Ω. Let Γ ⊇ Γ0 be a curve family such that ρ0 ∈ Adm(Γ) and let

F be the class of quasiconformal maps f : Ω → Ω′ such that

Mod4(f0(Γ0)) ≤ Mod4(f(Γ)).

Then ˆ
Ω

K2(p, f0)ρ
4
0(p) dµAA(p) ≤

ˆ
Ω

K2(p, f)ρ40(p) dµAA(p)

for all f ∈ F .

Towards a first application of Theorem 0.0.2, we define certain suitable domains in the

affine-additive group. Let k > 0 and consider two domains Ω and Ωk which shall be defined

in detail in Section 7.1. Further, consider the curve family Γ0 foliating Ω as well as its

extremal density ρ0 given by (8).

The extremal mapping f0 will be a version of the linear stretch map (2) of the form

fk : Ω → Ωk:

fk(a, λ+ it) = (ka, λ+ ikt).

We underline that the distortion K(·, fk) is constant, implying that

ˆ
Ω

K2(p, fk)ρ
4
0(p) dµAA(p) = K2

fk

ˆ
Ω

ρ40(p) dµAA(p). (10)

We next formulate the main result of Section 7.1. Denote by Fk the class of all quasiconformal

maps Ω → Ωk with prescribed boundary conditions which will be rigorously set up in Section

7.1. The equality (10) allows us to formulate the following

Theorem 0.0.3. The linear stretch map fk : Ω → Ωk is an orientation preserving quasicon-

formal map. With the above notation for ρ0, fk minimizes the mean distortion within the

class Fk: for all f ∈ Fk we have that

K2
fk

ˆ
Ω

ρ40(p) dµAA(p) ≤
ˆ
Ω

K2(p, f)ρ40(p) dµAA(p). (11)

Towards another application of Theorem 0.0.2, we can also define some suitable domain

in the affine-additive group, which looks natural, once we have considered a different type of

coordinate system on the affine-additive group. The cylindrical-logarithmic coordinates are

defined as

(a, λ+ it) =
(
a, eξ+iψ

)
, (a, ξ, ψ) ∈ R× R×

(
−π

2
,
π

2

)
.
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Let 0 < k < 1, r0 > 1 and 0 < ψ0 <
π
2
. Consider two truncated cylindric shells: Dr0,ψ0 and

Dk
r0,ψ0

, see for details Section 7.3. Further, consider the curve family Γ0 foliating Dr0,ψ0 as

well as its extremal density ρ0 given by (8).

The extremal mapping f0 will be a version of the radial stretch map (3) of the form

fk : Dr0, ψ0 → Dk
r0, ψ0

, expressed in cylindrical-logarithmic coordinates as

(a, ξ, ψ) 7→
(
a− ψ

2
+

1

2
tan−1

(
tanψ

k

)
, kξ, tan−1

(
tanψ

k

))
.

We point out that the distortion K(·, fk) is no longer constant as in Theorem 0.0.3, neverthe-

less K(·, fk) is constant along the curves foliating Dr0, ψ0 in the sense of equation (9). Finally,

we formulate the main result of Section 7.3. Denote by Fk the class of all quasiconformal

maps Dr0, ψ0 → Dk
r0, ψ0

with prescribed boundary conditions (see Section 7.3 for details).

Theorem 0.0.4. The radial stretch map fk : Dr0, ψ0 → Dk
r0, ψ0

is an orientation preserving

quasiconformal map. With the above notation for ρ0, fk minimizes the mean distortion

within the class Fk: for all f ∈ Fk we have that

ˆ
Dr0,ψ0

K2(p, fk)ρ
4
0(p) dµAA(p) ≤

ˆ
Dr0,ψ0

K2(p, f)ρ40(p) dµAA(p) .

In the remaining part of this introduction we focus on the notion of curvature for sur-

faces in the affine-additive group AA. Thanks to the seminal works of Gauss and Riemann

a full understanding of the notion of curvature has received a main role in differential ge-

ometry. The purpose of Chapter 8 is to provide notions of horizontal mean curvature and

intrinsic Gaussian curvature for Euclidean C2-smooth surfaces in AA, adopting the so called

Riemannian approximation scheme. There are already results in this direction for the roto-

translation group RT by Citti and Sarti [19] and for the Heisenberg group H by Balogh,

Tyson and Vecchi [13] and Diniz and Veloso [22].

The novelty of our approach to this problem is the Riemannian approximation scheme com-

bined with Cartan’s formalism, see Clelland [20]. The method of Riemannian approximants

counts on a result of paramount importance due to Gromov [29], which, in the context of the

affine-additive group, states that the metric space (AA, dAA) can be obtained as the pointed

Gromov–Hausdorff limit of a family of Riemannian manifolds (AA, gϵ), where gϵ is a suitable

family of Riemannian metrics. In detail, let us denote by W = −∂a the Reeb vector field of

AA. In order to make use of the contact structure of AA we consider the sub-Riemannian

metric ⟨·, ·⟩AA which makes U, V an orthonormal basis for HAA. A possible way to define a
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Riemannian inner product is to set W ϵ := ϵW for every ϵ > 0, and then to extend ⟨·, ·⟩AA

to an inner product gϵ which makes {U, V,W ϵ} an orthonormal frame. The family of metric

spaces (AA, gϵ) converges to (AA, dAA) in the pointed Gromov–Hausdorff sense. By means

of Cartan’s method on moving frames (see Section 8.1) we derive formulae for the sectional

curvature K
ϵ

and for the second fundamental form IIϵ. By studying the limit case we provide

formulae for the horizontal mean curvature H0 and the horizontal Gaussian curvature K0.

Following this approach with Propositions 8.2.1 and 8.3.1 we will introduce such curvature

notions away from characteristic points. We shall consider Euclidean C2-smooth surfaces

Σ = {p ∈ AA : u(p) = 0}, whose characteristic set C(Σ) is defined as the set of points p ∈ Σ

where ∇H u(p) := (Uu(p), V u(p)) = (0, 0). The explicit expressions of H0 and K0 are given

in terms of second derivatives of u and read as follows:

H0 = U

(
Uu

∥∇Hu∥

)
+ V

(
V u

∥∇Hu∥

)
− 2

V u

∥∇Hu∥
,

K0 = −2E1

(
Wu

∥∇Hu∥

)
− 4

(
Wu

∥∇Hu∥

)2

,

where the differential operator E1 is defined as E1 = 1
∥∇Hu∥

(−V uU + UuV ).

For both curvatures H0 and K0 we will present a list of examples to illustrate the differential

geometry of surfaces in AA, calling attention on the constant curvature cases.

Structure of the thesis.

In Chapter 1 we present the affine-additive group AA in the context of three dimensional

contact sub-Riemannian Lie groups. In Chapter 2 we analyze AA through the lens of contact

geometry. In Chapter 3 we present metric measure properties of AA towards applications in

quasiconformal and quasiregular mapping theory. In Chapter 4 we examine the aforemen-

tioned applications. In Chapter 5 we elaborate the theory of quasiconformal mappings on

AA. In Chapter 6 we formulate a criterion based on the modulus of curve families estab-

lishing if a quasiconformal map on AA is a minimizer for the mean distortion functional. In

Chapter 7 we define linear and radial stretch maps on AA and use the criterion from the

previous chapter to prove the extremality of stretch maps for the mean distortion functional.

In Chapter 8 we provide notions for the horizontal mean curvature and for the intrinsic

Gaussian curvature for surfaces embedded in AA.

xvi



Chapter 1

The affine-additive group AA

In this chapter we briefly present the background in which this thesis is located. We will

assume a basic level of familiarity with the theory of Lie groups, as presented for instance

in [41], as well with Contact and Symplectic Geometry [14].

1.1 Preliminaries on 3-D contact sub-Riemannian Lie

groups

The metric spaces considered in this thesis are 3-dimensional Lie groups G with group

multiplication ⋆. We shall assume that G is equipped with a left-invariant contact form ϑG.

Using this contact form we define a distribution of planes in the tangent bundle TG of G as

HG = kerϑG. Next, a left-invariant sub-Riemannian metric is constructed on G as follows.

If X and Y are left-invariant vector fields such that HG = span{X, Y }, then a left-invariant

sub-Riemannian metric ⟨·, ·⟩G is considered in HG, making {X, Y } an orthonormal basis of

HG.

An absolutely continuous curve γ : [a, b] → G , γ = γ(s) shall be called horizontal if

γ̇(s) ∈ ker(ϑG)γ(s) for almost every s ∈ [a, b]. Then, the horizontal velocity of γ is

|γ̇(s)|G =
√
⟨γ̇(s), Xγ(s)⟩2G + ⟨γ̇(s), Yγ(s)⟩2G.

The horizontal length of γ is

ℓG(γ) =

ˆ b

a

|γ̇(s)|G ds.

The corresponding sub-Riemannian or Carnot-Carathéodory distance dG associated to the

sub-Riemannian metric ⟨·, ·⟩G is defined in G as follows: let p, q ∈ G and consider the family

1



Γ(p,q) of horizontal curves γ : [a, b] → G such that γ(a) = p and γ(b) = q. Then

dG(p, q) = inf
γ∈Γ(p,q)

{ℓG(γ)}. (1.1)

We remark that the above definition only depends on the values of ⟨·, ·⟩G on HG. Moreover,

since HG is completely non integrable, the distance dG is finite, geodesic, and induces the

manifold topology (see Mitchell [44], Montgomery [45]).

This will make the space (G, dG) a metric space. We consider the measure µX = µG induced

by the contact form ϑG by µG = ϑG ∧ dϑG (up to a multiplicative constant different from 0)

that is also left-invariant. When it will not cause confusion we shall denote by G the metric

measure space (G, dG, µG).

A well-known example of such a structure is the first Heisenberg group H. Its underlying

manifold is C×R with coordinates (z = x+ iy, t) and the group multiplication ⋆ is given by

p′ ⋆ p = (z′ + z, t′ + t+ 2ℑ(z′z))

for every p = (z, t) and p′ = (z′, t′) in C× R.

The contact form of H is given by:

ϑH = dt+ 2ℑ(zdz) = dt+ 2(xdy − ydx).

The horizontal sub-bundle HH of the tangent bundle is spanned by the vector fields

X = ∂x + 2y∂t, Y = ∂y − 2x∂t .

Denote the sub-Riemannian metric in H by ⟨·, ·⟩H making {X, Y } an orthonormal frame.

The horizontal length of a curve γ = γ(s), s ∈ [a, b], γ(s) = (z(s), t(s)) is

ℓH(γ) =

ˆ b

a

|ż(s)| ds.

Denote also the corresponding Carnot-Carathéodory distance by dH. The measure µH is a

bi-invariant Haar measure for H and it coincides with the 3-dimensional Lebesgue measure

in C× R denoted with L3.

The second example is the roto-translation group RT (see Chapter 3 in [17] and [26]). Its

underlying manifold is C×R with coordinates p = (z = x+iy, t) and the group multiplication

⋆ is given by

p′ ⋆ p =
(
eit

′
z + z′, t′ + t

)
∈ C× R

2



for every p = (z, t) and p′ = (z′, t′) in C× R.

The contact form of RT is given by:

ϑRT = sin t dx− cos t dy.

The horizontal sub-bundle HRT of the tangent bundle is spanned by the vector fields

X = cos t ∂x + sin t ∂y, Y = ∂t .

Denote the sub-Riemannian metric in RT by ⟨·, ·⟩RT making {X, Y } an orthonormal

frame. The horizontal length of a curve γ = γ(s), s ∈ [a, b], γ(s) = (z(s), t(s)) is

ℓRT (γ) =

ˆ b

a

|γ̇(s)|RT ds,

where

|γ̇(s)|RT =

√
(ẋ(s) cos t(s) + ẏ(s) sin t(s))2 + ṫ(s)2.

Denote also the corresponding Carnot-Carathéodory distance by dRT . The measure µRT is

again a bi-invariant Haar measure of RT and it is the 3-dimensional Lebesgue measure in

C× R.

1.2 The group structure of AA

The main subject of this thesis is the affine-additive group, which we describe below. In

particular, after introducing the group, we discuss its sub-Riemannian structure.

Our starting point is the hyperbolic plane, defined as

H1
C := {ζ = ξ + iη ∈ C : ξ > 0, η ∈ R}

with the Riemannian metric g = |dζ|2
4ξ2

= dξ2+dη2

4ξ2
.

We consider affine transformations on H1
C, composed by dilations Dλ, λ > 0, defined by

Dλ(ζ) = λζ, and translations Tt, t ∈ R, defined by Tt(ζ) = ζ + it, for ζ ∈ H1
C, resulting in

maps of the form

M(λ, t)(ζ) = (Tt ◦Dλ)(ζ) = λζ + it.

It is clear that H1
C is in bijection with the set of transformations of the above form: to each

point ξ + iη we uniquely assign the transformation M(ξ, η). Therefore we define a group

structure on H1
C by considering the composition of any two transformations M(λ′, t′) and

M(λ, t):

(M(λ′, t′) ◦M(λ, t))(ζ) = M(λ′, t′)(λζ + it) = λ′λζ + i(λ′t+ t′) = M(λ′λ, λ′t+ t′)(ζ).
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To sum up, (compare to Section 4.4.2 in Petersen’s book [49]) the group operation on H1
C is

given by

(λ′, t′) · (λ, t) = (λ′λ, λ′t+ t′). (1.2)

This operation is extended over the space R × H1
C as follows: we take the Cartesian

product of the additive group (R,+) and the group (H1
C, ·), where · is as in (1.2). Then, if

p′ = (a′, λ′, t′) and p = (a, λ, t) are points of R×H1
C we have

p′ ⋆ p = (a′ + a, λ′λ, λ′t+ t′), (1.3)

which is again a point in R×H1
C.

Definition 1.2.1. The pair AA = (R×H1
C, ⋆) shall be called the affine-additive group.

The neutral element of AA is eAA = (0, 1, 0) and for p = (a, λ, t) ∈ AA we have that

p−1 =

(
−a, 1

λ
,− t

λ

)
.

The centre of AA is

Z(AA) = {(a, 1, 0) : a ∈ R} ∼= (R,+).

The subgroup N = {0}×H1
C
∼= H1

C of AA is a normal subgroup of AA, Z(AA)∩N = {eAA}
and we can therefore write

AA = R⋉H1
C.

Proposition 1.2.2. AA is metabelian.

Proof. For p, p′ ∈ AA, a straightforward calculation gives

p−1 ⋆ p′−1 ⋆ p ⋆ p′ ∈ {(0, 1, t) : t ∈ R}.

Now, for some t, t′ ∈ R two elements of the form (0, 1, t) and (0, 1, t′) commute:

(0, 1, t) ⋆ (0, 1, t′) = (0, 1, t+ t′) = (0, 1, t′) ⋆ (0, 1, t).

We define a 1-form on AA as follows:

ϑ =
dt

2λ
− da. (1.4)

Since dϑ = 1
2λ2
dt ∧ dλ we obtain ϑ ∧ dϑ = dt∧da∧dλ

2λ2
and thus (AA, ϑ) is a contact manifold.
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1.3 The sub-Riemannian structure of AA

In what follows we identify the left invariant vector fields and define a left invariant

sub-Riemannian metric on the group AA.

Proposition 1.3.1. The vector fields

U = ∂a + 2λ∂t, V = 2λ∂λ, W = −∂a

are left-invariant and form a basis for the tangent bundle T (AA) of AA. They satisfy the

following Lie bracket relations:

[U,W ] = [V,W ] = 0 and [U, V ] = −2(U +W ); (1.5)

Moreover, a left-invariant measure for AA is dµAA = da dλ dt
λ2

.

Proof. By the definition of U, V and W we have the relations:

∂a = −W, ∂λ =
U

2λ
, ∂t =

U +W

2λ
,

and thus {U, V,W} is a basis for T (AA). Now we are going to verify that U, V and W are

left-invariant. We set e = eAA = (0, 1, 0) and we define the following three tangent vectors

spanning a basis for Te(AA):

Ue = (∂a + 2∂t)|e, Ve = (2∂λ)|e, We = (−∂a)|e .

If we fix a point p′ = (a′, λ′, t′) ∈ AA we can consider the left translation on AA given by

Lp′(p) = p′ ⋆ p = (a′ + a, λ′λ, λ′t+ t′),

where the Jacobian matrix of the derivative (Lp′)∗,p of Lp′ evaluated at p is

(DLp′)p =


1 0 0

0 λ′ 0

0 0 λ′

 .
We construct U , V and W by using (Lp)∗,e : Te(AA) → Tp(AA) and verifying that

(Lp)∗,e (∂a + 2∂t)|e = Up, (Lp)∗,e (2∂λ)|e = Vp, (Lp)∗,e (−∂a)|e = Wp.

This proves the first claim.

The verification of the Lie bracket relations are straightforward for [U,W ] = 0, [V,W ] = 0,

and for [U, V ] we see

[U, V ] = −4λ∂t = −2(U +W ).
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The left-invariance of µAA comes from its construction, indeed for p = (a, λ, t) ∈ AA we

have

dµAA =
da dλ dt

| det(DLp)e|
=
da dλ dt

λ2
.

As a first consequence of the vector fields relation (1.5) we deduce that the Lie algebra

of left invariant vector fields of AA is not nilpotent. Note, that ϑ(U) = ϑ(V ) = 0 and thus,

the horizontal bundle of AA is HAA = Span{U, V }. Further, since dϑ(W, ·) = 0, Proposition

1.3.1 implies that W is the Reeb vector field.

The sub-Riemannian structure in AA is defined by a sub-Riemannian metric on HAA making

{U, V } an orthonormal basis. In order to define the sub-Riemannian or Carnot-Carathéodory

distance on AA let γ : [c, d] → AA, γ(s) = (a(s), λ(s), t(s)) be an absolutely continuous

curve. Its tangent vector at γ(s) is

γ̇(s) =
ṫ(s)

2λ(s)
Uγ(s) +

λ̇(s)

2λ(s)
Vγ(s) +

(
ṫ(s)

2λ(s)
− ȧ(s)

)
Wγ(s).

The curve γ is a horizontal curve if and only if γ̇(s) ∈ kerϑγ(s) for almost every s ∈ [c, d].

This is equivalent to the ODE

ṫ(s)

2λ(s)
− ȧ(s) = 0, a.e. s ∈ [c, d]. (1.6)

It follows that for a horizontal curve

γ̇(s) =
ṫ(s)

2λ(s)
Uγ(s) +

λ̇(s)

2λ(s)
Vγ(s) ∈ (HAA)γ(s).

The horizontal velocity |γ̇|H of γ is now defined by the relation

|γ̇|H =
(
⟨γ̇, U⟩2AA + ⟨γ̇, V ⟩2AA

)1/2
=

√
λ̇2 + ṫ2

2λ
. (1.7)

Here, ⟨·, ·⟩AA is the sub-Riemannian metric on HAA. Let π : AA → H1
C denote the canonical

projection given by π(a, λ, t) = (λ, t), (a, λ, t) ∈ AA, the horizontal length of γ is then given

by

ℓ(γ) =

ˆ d

c

√
λ̇2 + ṫ2

2λ
ds = ℓh(γI), (1.8)

where ℓh(γI) is the hyperbolic length of the projected curve γI = π ◦ γ in H1
C.
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Conversely, if γ̃ is an absolutely continuous curve in H1
C, γ̃(s) = (ξ(s), η(s)), s ∈ [c, d],

passing from a point q0 = γ(s0), then the curve γ : [c, d] → AA given by γ(s) = (a(s), λ(s), t(s)),

where

a(s) =

ˆ s

s0

t(u)

2λ(u)
du+ a0, λ(s) = ξ(s), t(s) = η(s),

is a horizontal curve passing from a point p0 = (a0, q) in the fibre of q.

The corresponding Carnot-Carathéodory distance dAA associated to the sub-Riemannian

metric ⟨·, ·⟩AA is defined for all p, q ∈ AA as follows:

dAA(p, q) = inf
γ∈Γp, q

{ℓ(γ)}, (1.9)

where Γp,q is the following family of horizontal curves:

Γp, q = {γ, γ : [0, 1] → AA horizontal and such that γ(0) = p, γ(1) = q}.

It is straightforward to prove that the horizontal length (1.7) is invariant under left-translations.

The latter fact makes the distance dAA being invariant under left-translations. As discussed

in Section 1.1, we remind that the distance dAA is finite, geodesic and induces the manifold

topology. Our main object of study is the metric measure space (AA, dAA, µAA).

As a final part of this section we observe that

T (AA) = HAA + [HAA,HAA].

Then from Theorem 2 in Mitchell [44] we obtain the following:

Proposition 1.3.2. The Hausdorff dimension of the sub-Riemannian group AA is 4.

1.4 The sub-Riemannian geodesics of AA

In this section we make use of methods of Optimal Control Theory to give an explicit

description of the Sub-Riemannian geodesics of AA. We recall that the sub-Riemannian

distance on AA is given by

dAA(p, p′) = inf
γ

ˆ T

0

√√√√( λ̇(s)

2λ(s)

)2

+

(
ṫ(s)

2λ(s)

)2

ds (1.10)

where the infimum is taken over all horizontal curves γ : [0, T ] → AA given by

γ(s) = (a(s), λ(s), t(s)), with γ(0) = p and γ(T ) = p′.
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Up to our convenience we shall make use of the curve γI : [0, T ] → H1
C, which we recall is

defined as γI(s) = (λ(s), t(s)), s ∈ [0, T ].

It is important to mention that HAA = span{U, V } is a bracket-generating distribution. As a

consequence of Theorem 2.1.2 in the book of Montgomery [45], the distance dAA is geodesic,

i.e. the infimum (1.10) is actually a minimum.

We recall that the sub-Riemannian distance dAA is left-invariant by construction, thus with-

out loss of generality we can assume γ(0) = p = e to be the neutral element of AA and

γ(T ) = p′ ̸= e. Then the length-minimizing property of the geodesic from (1.10) will be

equivalent to the following optimal control problem with free time and fixed end-point:

min(u1,u2)

´ T
0

√
u21(s) + u22(s) ds

λ̇ = 2λu1

ṫ = 2λu2

ȧ = u2

γ(0) = e

γ(T ) = p′

. (1.11)

Notice, that in the above formulation, the curve γ = (a, λ, t) : [0, T ] → AA is automatically

a horizontal curve, and the control function u : [0, T ] → R2, defined as u = (u1, u2), gives

the identity for the horizontal velocity |γ̇|H =
√
u21 + u22. It is straightforward that the two

minimization problems (1.10) and (1.11) are equivalent to each other.

In what follows we want to apply Pontryagin’s Maximum Principle to describe the geodesics

of AA.

However, we will not derive an explicit characterization of the geodesics by a straightforward

application of Optimal Control Theory methods. Our current purpose is to change the above

setting to an equivalent problem where solving the optimal problem will be easier than solving

(1.11). To this end, the following statement will be useful

Proposition 1.4.1. Without loss of generality we can reparametrize by arc length the hori-

zontal curve γ : [0, T ] → AA such that√
u21(s) + u22(s) = C, s ∈ [0, T ]

where u = (u1, u2) = γ̇I
2λ

and C is a positive constant depending only on T and γ.

Proof. Consider γ : [0, T ] → AA to be a horizontal curve joining e with p′ such that

ℓ(γ) =

ˆ T

0

√
u21(s) + u22(s) ds
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ans satisying u = γ̇I
2λ

. By recalling that e ̸= p′, we can assume without loss of generality that

v(s) ̸= 0 for all s ∈ [0, T ]. Thus we can define an absolutely continuous homeomorphism

τ : [0, T ] → [0, T ] by

τ(s) =
T

ℓ(γ)

ˆ s

0

√
u21(v) + u22(v) dv . (1.12)

By defining the horizontal curve γ̃ = (ã, λ̃, t̃) : [0, T ] → AA with γ̃(σ) = γ ◦ τ−1(σ), we find

the map τ to be the suitable reparametrization. To see this notice that γ̃(0) = e, γ̃(T ) = p′

and γ(s) = γ̃ ◦ τ(s).

Taking the derivative into the latter relation gives

dγI
ds

(s) =
dγ̃I
dσ

(τ(s)) · τ̇(s) =
dγ̃I
dσ

(τ(s))
T

ℓ(γ)

√
u21(s) + u22(s), for a.e. s ∈ [0, T ], (1.13)

where we applied first the chain rule and then differentiated the identity (1.12). Now we

consider the horizontal velocity given by | ˙̃γ|H =
˙̃γI
2λ̃

, then using (1.13) and reordering yields

to √
ũ21(σ) + ũ22(σ) =

|dγ̃I
dσ

(σ)|
2λ̃(σ)

=
ℓ(γ)

T
,

for a.e. σ ∈ [0, T ].

Now, let us consider the problem

min(u1,u2)
1
2

´ T
0
u21(s) + u22(s) ds

λ̇ = 2λu1

ṫ = 2λu2

ȧ = u2

γ(0) = e

γ(T ) = p′

. (1.14)

The following proposition states that the two optimal control problems (1.11) and (1.14) are

in fact equivalent:

Proposition 1.4.2. The control problems (1.11) and (1.14) are equivalent; more precisely,

the control u∗ is optimal for (1.11) if and only if u∗ is optimal for (1.14).

Proof. First, let us suppose that u∗ is an optimal control for (1.11), i.e.

ˆ T

0

√
(u∗1)

2 + (u∗2)
2 ds ≤

ˆ T

0

√
u21 + u22 ds (1.15)
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for every admissible control u. By Proposition 1.4.1, we are in the position to assume that√
(u∗1)

2 + (u∗2)
2 is constant. Hence, applying first (1.15) and then the Cauchy–Schwartz

inequality with respect to
√
u21 + u22 and 1√

T
gives

ˆ T

0

(u∗1)
2 + (u∗2)

2 ds =

(ˆ T

0

√
(u∗1)

2 + (u∗2)
2

T
ds

)2

≤

(ˆ T

0

√
u21 + u22
T

ds

)2

≤
(ˆ T

0

u21 + u22 ds

)(ˆ T

0

ds

T

)
=

ˆ T

0

u21 + u22 ds .

This shows that u∗ is optimal for the problem (1.14).

Conversely, let us suppose that u∗ is optimal for (1.14) and by contradiction let us assume

that there exists an admissible control ũ such that

ˆ T

0

√
(ũ1)2 + (ũ2)2 ds <

ˆ T

0

√
(u∗1)

2 + (u∗2)
2 ds . (1.16)

Again by using Proposition 1.4.1, we may assume
√

(ũ1(s))2 + (ũ2(s))2 to be constant.

Applying in order (1.16) and then the Cauchy-Schwartz inequality with respect to
√

(u∗1)
2 + (u∗2)

2

and 1√
T

we obtain

ˆ T

0

(ũ1)
2 + (ũ2)

2 ds =

(ˆ T

0

√
(ũ1)2 + (ũ2)2

T
ds

)2

<

(ˆ T

0

√
(u∗1)

2 + (u∗2)
2

T
ds

)2

≤
(ˆ T

0

(u∗1)
2 + (u∗2)

2 ds

)(ˆ T

0

1

T
ds

)
=

(ˆ T

0

(u∗1)
2 + (u∗2)

2 ds

)
this contradicts the optimality of u∗ for the problem (1.14), completing the proof.

In what follows we shall focus our attention to the study of the problem (1.14). Our ap-

proach is based on Pontryagin’s Maximum Principle. In order to do that, we shall introduce

the Hamiltonian:

H :AA× R4 × R2 → R

(X,Ξ, u) 7→ H (X,Ξ, u) ,

given by

H(X,Ξ, u) = u2ξ + 2λu1η + 2λu2τ −
ω

2
(u21 + u22) .

where X = (a, λ, t), Ξ = (ξ, η, τ, ω) and u = (u1, u2).

To the previous we add the notation
−→
ξ = (ξ, η, τ) ∈ R3 and we denote by an upper index
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the dependence of a given vector with respect to the control u, for example Xu, Ξu or ωu.

Pontryagin’s Maximum Principle applied to our context (see Theorem 12.10 in [1]) gives the

following:

Theorem 1.4.3. Let us consider the control problem (1.14). If v is an optimal control, then

there exists a multiplier Ξv ̸= 0 where

• ωv = ω is a constant in {0, 1},

• (ξv, ηv, τ v) =
−→
ξ : [0, T ] → R3 is an absolutely continuous curve,

such that the following properties hold:

v(s) ∈ arg min
u∈R2

H(Xv(s),Ξv(s), u), s ∈ [0, T ], (1.17)

−̇→
ξv (s) = −∇X H(Xv(s),Ξv(s), v(s)), s ∈ [0, T ], (1.18)

H(Xv(s),Ξv(s), v(s)) = h, s ∈ [0, T ], (1.19)

where h is a constant.

Let us start our investigation. For our optimal control we have the following normality

property:

Proposition 1.4.4. Let v be an optimal control for the problem (1.14). Then v is a normal

control, i.e. ωv = ω = 1.

Proof. Let us assume by contradiction that ω = 0. Since v is an optimal control, the

Maximum Principle (1.17) guarantees that min exists, for every s ∈ [0, T ].

On the other hand we have

H(X,Ξ, u) = 2λη · u1 + (ξ + 2λτ) · u2,

and thus the function

u 7→ H(Xu(s),Ξu(s), u)

is affine. This implies that the above min exists only if the system{
ξ + 2λτ = 0

2λη = 0
(1.20)

holds on [0, T ]. Since λ > 0, the second equation of (1.20) gives

η(s) = 0 for all s ∈ [0, T ]. (1.21)
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With this information equation (1.18) reads as
ξ̇ = 0

η̇ = −2v2τ

τ̇ = 0

. (1.22)

From the first and third equations of the latter system we have ξ(s) = ξ0 for all s ∈ [0, T ]

and τ(s) = τ0 for all s ∈ [0, T ]. We examine first the case τ0 = 0. Thus the first equation of

(1.20) gives ξ(s) = 0 for all s ∈ [0, T ]. This contradicts the assumption Ξv ̸= 0 in Theorem

1.4.3.

In the second case where τ0 ̸= 0 we deduce from the first equation of (1.20) that λ(s) = − ξ0
2τ0

for all s ∈ [0, T ]. Since λ(0) = 1 the last fact implies that λ(s) = 1 for all s ∈ [0, T ]. Further,

from knowing (1.21) and combining it with the second equation of (1.22) we obtain v2 = 0.

The horizontality condition of γ written in (1.14) makes us conclude that γ(s) = e for all

s ∈ [0, T ], which is a contradiction with γ(T ) = p′ ̸= e.

Recalling Theorem 1.4.3 we consider the optimal control v : [0, T ] → R2 for the problem

(1.14), the associated curve γ : [0, T ] → AA and the associated multiplier
−→
ξ : [0, T ] → R3.

We denote the initial data:

γ(0) = e,
−→
ξ (0) = (ξ0, η0, τ0). (1.23)

We are now in the position to state and prove the following

Theorem 1.4.5. Let (1.23) be the initial data. The sub-Riemannian geodesics γ : [0, T ] → AA
are given by the following case distinction:

(i) if η0 = τ0 = 0, then γ(s) = (ξ0s, 1, 2ξ0s);

(ii) if η0 ̸= 0 and τ0 = 0, then γ(s) =
(
ξ0s, e

4η0s, ξ0
2η0

(e4η0s − 1)
)
;

(iii) if τ0 ̸= 0, then γ(s) = (a(s), λ(s), t(s)) is a horizontal curve which satisfies(
λ(s) +

ξ0
2τ0

)2

+

(
t(s) − η0

τ0

)2

= r2,

where r2 = 1 +
(
η0
τ0

)2
+ ξ0

τ0

(
1 + ξ0

4τ0

)
.

Proof. We observe that Proposition 1.4.2 grants the study of sub-Riemannian geodesics to be

equivalent to describe the solutions of (1.14). Theorem 1.4.3 applied to the control problem
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(1.14) and Proposition 1.4.4 give what follows. The Hamiltonian is

H(a, λ, t︸ ︷︷ ︸
X

, ξ, η, τ︸ ︷︷ ︸
−→
ξ

, u1, u2︸ ︷︷ ︸
u

) = u2ξ + 2λu1η + 2λu2τ −
1

2
(u21 + u22),

the optimality of the control v for H (1.17) holds and also the costate equation (1.18) holds.

The control v = (v1, v2) : [0, T ] → R2 is a minimum for H only if ∇uH = 0, from the latter

expression we obtain that the optimal control v is given by:{
v1 = 2λη

v2 = ξ + 2λτ
. (1.24)

We rewrite the horizontality condition for γ as
ȧ = v2

λ̇ = 2λv1

ṫ = 2λv2

. (1.25)

The costate equation reads as: 
ξ̇ = 0

η̇ = −2(v1η + v2τ)

τ̇ = 0

. (1.26)

From (1.26) we can write

ξ(s) = ξ0, s ∈ [0, T ],

and

τ(s) = τ0, s ∈ [0, T ].

Next, we replace v1 and v2 in the the second equation of (1.26) with the horizontality

condition (1.25), this yields to the o.d.e.

η̇ = −1

λ

(
λ̇η + ṫτ0

)
. (1.27)

We solve (1.27) by the variation of constants method and we get

η(s) =
1

λ(s)
(−τ0t(s) + η0), s ∈ [0, T ]. (1.28)

Now we insert (1.28) in (1.24) and obtain:{
v1 = 2(−τ0t+ η0)

v2 = ξ0 + 2τ0λ
. (1.29)
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Consequently we rewrite (1.25) as
ȧ(s) = ṫ(s)

2λ(s)

λ̇(s) = 4λ(s)(−τ0t(s) + η0)

ṫ(s) = 2λ(s)(2τ0λ(s) + ξ0)

. (1.30)

We consider two cases:

• if τ0 = 0, then (1.30) has an explicit solution, given by γ(s) =
(
ξ0s, e

4η0s, ξ0
2η0

(e4η0s − 1)
)

.

In the degenerate case, when also η0 = 0, we get γ(s) = (ξ0s, 1, 2ξ0s).

• if τ0 ̸= 0, from the system (1.30) we get the equation

2ṫ(−τ0t+ η0) = λ̇(ξ0 + 2λτ0).

Integrating the latter equation on [0, s] gives the relation

−τ0t2 + 2η0t = ξ0(λ− 1) + τ0(λ
2 − 1)

which can be rewritten as(
λ+

ξ0
2τ0

)2

+

(
t− η0

τ0

)2

= 1 +

(
η0
τ0

)2

+
ξ0
τ0

(
1 +

ξ0
4τ0

)
.

We want to make sure that r2 := 1 +
(
η0
τ0

)2
+ ξ0

τ0

(
1 + ξ0

4τ0

)
≥ 0 for all (ξ0, η0) ∈ R2 and

for all τ0 ̸= 0. To see this let g : R → R be the quadratic function defined as

g(s) = s
(

1 +
s

4

)
, s ∈ R.

It comes straightforward that

g(s) ≥ −1, s ∈ R,

granting the inequality
ξ0
τ0

(
1 +

ξ0
4τ0

)
≥ −1.

The proof is complete.
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Chapter 2

Contact transformations

A contactomorphism is an important type of diffeomorphism between the spaces pre-

sented in the previous chapter. It is also referred as contact transformation and it preserves

the horizontal sub-bundles of the respective spaces. In detail we provide the following

Definition 2.0.1. Let G1,G2 ∈ {AA,H,RT }, and let ϑ1, ϑ2 denote the respective contact

forms of G1 and G2. A diffeomorphism f : G1 → G2 is a contactomorphism if and only if

f ∗ϑ2 = σϑ1, for some σ : G1 → R nowhere vanishing smooth function.

2.1 The contact equivalence between AA, H and RT

It is well known, that, by Darboux theorem, each three dimensional contact manifold is

locally contactomorphic to the Heisenberg group. The purpose of this section is to give a

global version of this fact. In detail we will show that the spaces AA, H and RT are globally

contactomorphic.

We start by quoting what is already known in the literature (Lemma 5.5 in [26]) with

the following:

Proposition 2.1.1. The manifolds (RT , ϑRT ) and (H, ϑH) are globally contactomorphic.

We are now in the position to present our result.

Proposition 2.1.2. The manifolds (AA, ϑ) and (H, ϑH) are globally contactomorphic. Moreover,

the metric spaces (H, dH) and (AA, dAA) are locally bi-Lipschitz equivalent.

Proof. We define the smooth contactomorphism g : (H, ϑH) → (AA, ϑ) explicitely by the

formula

g(x, y, t) =

(
xe−y, ey,

1

2
(t− 2xy + 4x)

)
for (x, y, t) ∈ H. (2.1)
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Clearly, g is a smooth diffeomorphism between H and AA. Its inverse map g−1 : AA → H
is given by

g−1(a, λ, t) = (aλ, lnλ, 2t+ 2aλ(lnλ− 2)) for (a, λ, t) ∈ AA.

To check the contact property of g we compute directly:

g∗ϑ =
(1/2)dt− xdy − ydx+ 2dx

2ey
− e−ydx+ xe−ydy =

dt+ 2xdy − 2ydx

4ey
=

1

4ey
ϑH.

Now, since g is contact it preserves the respective horizontal bundles, i.e. g∗HH = HAA and

this implies that g∗⟨·, ·⟩AA on HAA is a smooth multiple of ⟨·, ·⟩H on HH. This particularly

means that g is locally Lipschitz with respect to the sub-Riemannian distances of dH and

dAA. For the same reason we also obtain that g−1 : AA → H is locally Lipschitz. Thus we

have that f : H → AA is locally bi-Lipschitz.

Remark 2.1.3. There are established criteria based on differential topology methods to

verify contact equivalence between three dimensional manifolds (see Eliashberg [24], [25]).

However, in the last proof, we preferred to provide a direct way by presenting the contacto-

morphism (2.1).

Combining Proposition 2.1.1 and Proposition 2.1.2 we deduce

Proposition 2.1.4. The manifolds (RT , ϑRT ), (H, ϑH) and (AA, ϑ) are all globally contac-

tomorphic to each other.

2.2 Lift of symplectic maps from H1
C to AA

The current objective of this section is to understand the interplay between the symplectic

maps of H1
C and the contactomorphisms of AA. Let f : H1

C → H1
C be a mapping and let us

recall the canonical projection π : AA → H1
C given by π(a, λ, t) = (λ, t) for (a, λ, t) ∈ AA,

we say that a mapping F : AA → AA is a lift of f when we have the diagram property.

f ◦ π = π ◦ F, on AA.

An advantage given by obtaining a result in this direction is that by lifting symplectic self-

maps of H1
C we can present first examples of contactomorphisms AA → AA.

Definition 2.2.1. Let ω denote the symplectic form of H1
C given by ω = dξ∧dη

4ξ2
.

Let f = (f1, f2) : H1
C → H1

C be a C1 diffeomorphism, we say that f is symplectic if

f ∗ω = ω.
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Let Jf denote the Jacobian determinant of a given differentiable mapping f . A straight-

forward characterization of a symplectic map is given by the following

Proposition 2.2.2. A C1 diffeomorphism f = (f1, f2) : H1
C → H1

C is a symplectic map if

and only if

Jf (ξ, η) =

(
f1(ξ, η)

ξ

)2

holds for all (ξ, η) ∈ H1
C.

By making use of the left-invariant vector fields U ,V and W (see Proposition 1.3.1), it

is straightforward to derive following equivalent characterization for a contactomorphism

F : AA → AA

Proposition 2.2.3. A C1 diffeomorphism F = (F1, F2, F3) : AA → AA is a contactomor-

phism if and only if the system of p.d.e.s
UF3 = 2F2 UF1,

V F3 = 2F2 V F1,

WF3 = 2F2(σ +WF1),

(2.2)

holds for some nowhere vanishing smooth function σ : AA → R.

We provide a lifting result in the following

Theorem 2.2.4. Let f : H1
C → H1

C be a C1 diffeomorphism. The following statements hold:

(i) If F : (AA, ϑ) → (AA, ϑ) is a C1 contactomorphism satysfing F ∗ϑ = ϑ and also F is

a lift of f , then f is a symplectic map;

(ii) If f is a C2 symplectic map, then there exists F : (AA, ϑ) → (AA, ϑ) contactomorphism

and also F is a lift of f .

Proof. Proof of (i).

Let p = (a, λ, t) ∈ AA and q = π(p) = (λ, t) ∈ H1
C. From the condition π ◦ F = f ◦ π we

have that

(F2(p), F3(p)) = (f1(q), f2(q)).

By applying U, V,W on F3 we obtain the relations:

U F3(p) = 2λ∂ηf2(q)

V F3(p) = 2λ∂ξf2(q) (2.3)

W F3(p) = 0.
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By combining the assumption F ∗ϑ = ϑ with Proposition (2.2.3) we write

UF3(p) = 2F2(p)UF1(p),

V F3(p) = 2F2(P )V F1(p), (2.4)

WF3(p) = 2F2(p)(1 +WF1(p)).

We apply the relations (2.3) into (2.4) and we obtain

U F1(p) =
λ∂ηf2(q)

f1(q)
,

V F1(p) =
λ∂ξf2(q)

f1(q)
, (2.5)

W F1(p) = −1.

At this point, we apply V to the first equation of (2.5), respectively U to the second one in

(2.5) and we subtract them obtaining:

[U, V ]F1(p) = U

(
λ∂ξf2(q)

f1(q)

)
− V

(
λ∂ηf2(q)

f1(q)

)
. (2.6)

Recalling the commutator relation [U, V ] = −2(U+W ) (see Proposition 1.3.1) and combining

it with (2.6) we have

U

(
λ∂ξf2(q)

f1(q)

)
− V

(
λ∂ηf2(q)

f1(q)

)
= 2

(
1 − λ∂ηf2(q)

f1(q)

)
. (2.7)

It is a straightforward calculation to verify that (2.7) implies

∂ξf1(q) ∂ηf2(q) − ∂ηf1(q) ∂ξf2(q) =

(
f1(q)

λ

)2

, q = (λ, t) ∈ H1
C. (2.8)

Thanks to Proposition 2.2.2 we see that (2.8) implies f : H1
C → H1

C to be a symplectic map.

Proof of (ii).

As before, consider p = (a, λ, t) ∈ AA and q = π(p) = (λ, t) ∈ H1
C. By defining

F2(p) = f1(q) and F3(p) = f2(q), (2.9)

we grant that π ◦ F = f ◦ π.

It remains to define F1 in order to have F contact. We define F1 to be the solution of the
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following system of p.d.e.s:

UF3 = 2F2 UF1,

V F3 = 2F2 V F1, (2.10)

WF3 = 2F2(1 +WF1).

It is straightforward to check that with such definition of F1 we obtain F ∗ϑ = ϑ.

Therefore it is left to show that there exists such F1 as a solution to the system of p.d.e.s

(2.10). By using (2.9) in (2.10) we obtain

Uf2(q) = 2f1(q)UF1(p),

V f2(q) = 2f1(q)V F1(p),

Wf2(q) = 2f1(q)(1 +WF1(p)),

which we simplify as

∂aF1(p) + 2λ∂tF1(p) =
λ∂ηf2(q)

f1(q)
,

∂λF1(p) =
∂ξf2(q)

2f1(q)
, (2.11)

∂aF1(p) = 1.

We rewrite the system (2.11) as

∂aF1(p) = 1,

∂λF1(p) =
∂ξf2(q)

2f1(q)
, (2.12)

∂tF1(p) =
∂ηf2(q)

2f1(q)
− 1

2λ
,

and we then define the functions P,Q,R : AA → R as

P (p) = 1,

Q(p) =
∂ξf2(q)

2f1(q)
, (2.13)

R(p) =
∂ηf2(q)

2f1(q)
− 1

2λ
.

Since AA is simply connected, if curl(P,Q,R) = (0, 0, 0) we conclude that F1 solving (2.10)

exists.
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It is true that curl(P,Q,R) = (0, 0, 0). Indeed, Proposition 2.2.2 applied to f gives:

∂λR(p) − ∂tQ(p) =
f1(q)∂

2
ξηf2(q) − ∂ηf2(q)∂ξf1(q)

2f1(q)2
+

1

2λ2

−
f1(q)∂

2
ξηf2(q) − ∂ξf2(q)∂ηf1(q)

2f1(q)2

= − Jf (q)

2f1(q)2
+

1

2λ2
= 0.

We observe that P is constant, both Q and R do not depend on a; thus it is easy to verify

that

∂tP − ∂aR = ∂aQ− ∂λP = 0.

At this point we can provide a representation formula for F = (F1, F2, F3).

Since left translations are contact transformations, there is no loss of generality in assuming

F1(0, 1, 0) = 0. Thanks to the system of p.d.e.s (2.12) we obtain that

F1(a, λ, t) = a+G1(λ) +G2(λ, t),

where G1(λ) =

ˆ λ

1

Q(a, u, 0) du and G2(λ, t) =

ˆ t

0

R(a, λ, v) dv.

Further we recall that (F2(p), F3(p)) = (f1 ◦ π(p), f2 ◦ π(p)). Therefore a representation

formula for F is given by

F (p) =


a+G1(λ) +G2(λ, t)

f1(λ, t)

f2(λ, t)

 for all p ∈ AA. (2.14)

We proceed by proving that F : AA → AA is a bijection. We pick some point p̂ = (â, λ̂, t̂) ∈ AA
and we will show that there is a unique p = (a, λ, t) ∈ AA so that F (p) = p̂. Since

f : H1
C → H1

C is an homeomorphism we know that there exists a unique (λ, t) ∈ H1
C so that

f(λ, t) = (λ̂, t̂), then a is the unique solution to the equation

a = â−G1(λ) −G2(λ, t).

Now, using the representation formula (2.14) we see that F : AA → AA is a C2 mapping

and also that JF (p) = Jf (π(p)) for all p ∈ AA. This last considerations grant us that F is

a C2 diffeomorphism. The proof is now complete.

Now we present the following
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Example 2.2.5. Let c1 > 0, c2 ∈ R and let us consider the symplectic map f : H1
C → H1

C

given by

(f1(ξ, η), f2(ξ, η)) = (c1ξ, c2ξ + c1η) .

Thanks to Theorem 2.2.4, in particular the representation formula (2.14), we obtain that

F : AA → AA given by

F (a, λ, t) =

(
a+

c2
2c1

log λ, c1λ, c2λ+ c1t

)
is a contact lift of f .

It is important to mention that when c2 = 0 such map f is a particular Möbius transformation

of H1
C, i.e. an orientation preserving isometry of H1

C (for details see Section 4.2 in Platis [51]).

In general, it holds that

F∗Up = UF (p), F∗Vp = VF (p) +
c2
c1
UF (p),

for p = (a, λ, t) ∈ AA. Therefore, in the specific case c2 = 0 we obtain that the lift F is an

isometry of (AA, dAA).

2.3 The Korányi-Reimann flow method on AA

The flow method is a powerful tool which gives conditions to some vector field in order

to generate a one-parameter subgroup of contact transformations. It was first introduced

by Libermann in [42], then put to use by Korányi and Reimann in [38], [39] to construct a

family contact transformations in Heisenberg groups. We shall explain this method in detail.

Let X : AA → R3 be a smooth vector field, let p ∈ AA and let I ⊆ R be a interval containing

0. Let us denote by ΦX : I ×AA → AA the flow of X solving the differential equation:{
d
ds

ΦX(s, p) = X(ΦX(s, p)), s ∈ I

ΦX(0, p) = p
. (2.15)

Let us consider the family (Gs)s∈I of C1 smooth mappings Gs : AA → AA. We say that

the family (Gs)s∈I is generated by X if the mappings are given by

Gs(·) = ΦX(s, ·), s ∈ I. (2.16)

Theorem 2.3.1. Let (Gs)s∈I be the family of maps defined in (2.16). Then Gs : AA → AA
are contact transformations for all s ∈ I if and only if the vector field has the form

X = hW +
1

2
((Uh)V − (V h)U) (2.17)

for some h : AA → R smooth function.
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Proof. In one direction, let X be a smooth vector field, written in the frame {U, V,W} as

X = fU + gV + hW , where f, g, h : AA → R are smooth functions. Let us assume that the

family of maps (Gs)s∈R generated by X is a contact flow, i.e.

d

ds
Gs(p) = X(Gs(p)) and G∗

sϑ = σsϑ, (2.18)

for some function s 7→ σs(·) where σs : AA → R is a nowhere vanishing smooth function for

all s ∈ I. Differentiating the second relation in (2.18) with respect to s yields to

LXϑ =
d

ds
(σs) · ϑ, (2.19)

where d
ds

(G∗
sϑ) = LXϑ corresponds to the Lie derivative of ϑ along the direction of the vector

field X (see Chapter 3 in Aubin’s book [5]). According to the ”Cartan’s magic formula” (cf.

Proposition 3.6 b) in [5] ) we have that

LX(ϑ) = (dϑ)X + d(ϑ(X)).

Since ϑ(X) = h, we obtain LX(ϑ) = (dϑ)X + dh. At this point let us insert the latter

expression into (2.19) and apply the obtained one forms on both sides to the vector field W .

Since W is the Reeb vector field we have the relations dϑ(X,W ) = 0 and ϑ(W ) = 1, and we

obtain that dh(W ) = d
ds

(σs). This implies that (2.19) will take the form:

(dϑ)X + dh = dh(W )ϑ.

Using that dϑ = dt∧dλ
2λ2

and inserting in the above relation the vector field U and V we obtain

that f = −1
2
V (h) and g = 1

2
U(h).

In the other direction, let us assume that a smooth vector field is given by the formula

X = hW +
1

2
((Uh)V − (V h)U)

where h : AA → R is a smooth function. We are going to show that the flow (Gs)s∈I

generated by X is a contact flow. To check this let us denote by ϑs = G∗
sϑ the pullback of

ϑ via Gs. Then we can write ϑs in the co-frame {ϑ, da, dλ
2λ
} as

ϑs = Asϑ+Bsda+ Cs
dλ

2λ
. (2.20)

We shall prove that the functions Bs and Cs are identically 0. Differentiating both sides of

(2.20) with respect to s we obtain

dϑs
ds

=
dAs
ds

ϑ+
dBs

ds
da+

dCs
ds

dλ

2λ
(2.21)
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and, recalling that d
ds

(G∗
sϑ) = LX(ϑ), the latter relation becomes

LX(ϑ) =
dAs
ds

ϑ+
dBs

ds
da+

dCs
ds

dλ

2λ
. (2.22)

Using the Cartan’s magic formula on the l.h.s. of (2.22) we rewrite

(dϑ)X + dh =
dAs
ds

ϑ+
dBs

ds
da+

dCs
ds

dλ

2λ
. (2.23)

We insert the vector fields U and V in the one forms at l.h.s. and r.h.s. of (2.23) and this

gives respectively

dϑ(X,U) + U(h) =
dBs

ds
, dϑ(X, V ) + V (h) =

dCs
ds

. (2.24)

Because of the particular form of

X = hW +
1

2
((Uh)V − (V h)U) ,

we obtain that both the l.h.s.s of (2.24) vanish, giving dBs
ds

= dCs
ds

= 0. On the other hand

G0 = Id by definition and thus G∗
0ϑ = ϑ. The latter identity gives that B0 = C0 = 0, which

concludes that Bs = Cs = 0 for all s ∈ I as required.

By choosing potentials h : AA → R, we can apply Theorem 2.3.1 to generate one-

parameter subgroups of contact transformations AA → AA. We present the following list

of examples.

Example 2.3.2. Let I = R and assume h(a, λ, t) = c0 to be a constant function, then

X = c0W and we have that Gs(p) = L(−c0s,1,0)(p), s ∈ R.

Example 2.3.3. Let I = R and assume h(a, λ, t) = c1a, then X = c1
2
V + c1aW and we have

that Gs(p) = (e−c1sa, ec1sλ, t), s ∈ R.

Example 2.3.4. Let I = R and assume h(a, λ, t) = c2λ, then X = −c2λU + c2λW and we

have that Gs(p) = (a− 2c2sλ, λ, t− 2c2sλ
2), s ∈ R.

Example 2.3.5. Let I = R≥0 and assume h(a, λ, t) = c3t with c3 ≤ 0, thenX = c3λV +c3tW

and we have that

Gs(p) =

(
a− c3st,

λ

1 − 2c3sλ
, t

)
, s ∈ R≥0.
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Chapter 3

Quasiconformal mappings on metric

measure spaces

3.1 Preliminaries

We start this chapter by recalling some concepts and results on the theory of quasicon-

formal (QC) maps in the setting of general metric measure spaces. For more details we refer

to [34], [33] and [36].

Let us recall that a homeomorphism f : X → Y between two metric spaces (X, dX) and

(Y, dY ) is called quasiconformal if there exists K ≥ 1 such that

lim sup
r→0

supdX(p,q)≤r dY (f(p), f(q))

infdX(p,q)≥r dY (f(p), f(q))
:= Hf (p) ≤ K, (3.1)

for all p in X.

A metric measure space is a triple (X, dX , µX) comprising a non empty set X, a distance

function dX and a regular Borel measure µX such that (X, dX) is a complete, and separable

metric space and every metric ball has positive and finite measure. This setting will be our

standing assumption throughout this thesis.

Given a point p ∈ X and a radius r > 0, we employ the following notation for balls:

BX(p, r) = {q ∈ X : dX(p, q) < r} and BX(p, r) = {q ∈ X : dX(p, q) ≤ r}.

Where it will not cause confusion, we will replace BX(p, r) by B(p, r).

A metric measure space (X, dX , µX) is called Ahlfors Q-regular, Q > 1, if there exists a

constant C ≥ 1 such that for all p ∈ X and 0 < r ≤ diamX, we have

C−1rQ ≤ µX(BX(p, r)) ≤ CrQ. (3.2)
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Further, we say that (X, dX , µX) is locally Ahlfors Q-regular, if for every compact subset

V ⊂ X, there is a constant C ≥ 1 and a radius r0 > 0 such that for each point p ∈ V and

each radius 0 < r ≤ r0 we have

C−1rQ ≤ µX(BX(p, r)) ≤ CrQ. (3.3)

We briefly discuss two examples of Ahlfors regular metric measure spaces. It straightfor-

ward to see that the Euclidean space (Rn, dE,Ln) is Ahlfors n-regular. It is known from the

literature (see Theorem 9.27 in Heinonen’s book [33]) that the sub-Riemannian Heisenberg

group H is Ahlfors 4-regular.

An important geometric notion in the theory of quasiconformal mappings is the Q-modulus

of a curve family. Let us consider Γ to be a family of curves in the metric measure space

(X, dX , µX), we say that a Borel function ρ : X → [0,∞] is admissible for Γ if for every

rectifiable γ ∈ Γ, we have

1 ≤
ˆ
γ

ρ dℓX .

Such a ρ shall be also called a density and the set of all densities shall be denoted by Adm(Γ).

If Q > 1 then the Q-modulus of Γ is

ModQ(Γ) = inf
ρ∈Adm(Γ)

ˆ
X

ρQ dµX .

It follows immediately from this definition that if Γ0 and Γ are two curve families such that

each curve γ ∈ Γ has a sub-curve γ0 ∈ Γ0, then

ModQ(Γ) ≤ ModQ(Γ0). (3.4)

Let us observe that by Theorem 3.8 in Koskela and Wildrick [40], if (X, dX , µX) and

(Y, dY , µY ) are separable metric measure spaces of locally finite measure that are both locally

Ahlfors Q-regular for some given Q > 1 and f : X → Y is a quasiconformal map then there

exists H ≥ 1 such that

ModQ(Γ) ≤ H ModQ(f(Γ)), (3.5)

for every curve family Γ in X, i.e., the ModQ is quasi-preserved by quasiconformal maps.

For two disjoint compact setsE,F ⊂ X we consider the quantity ModQ(E,F ) = ModQ(Γ)

where Γ is the set of all rectifiable curves connecting E and F . If x0 ∈ X is a fixed

point and 0 < r < R < diamX, E = ∂B(x0, r) and F = ∂B(x0, R) then the quantity

ModQ(E,F ) = ModQ(D(r, R)) is the so called modulus of the ring domain

D(r, R) = {x ∈ X : r < d(x, x0) < R}.

26



The following definition is a reformulation in the setting of metric spaces of the corre-

sponding concept by Zorich [56]. For related results we refer also to Holopainen and Rickman

[37], Coulhon, Holopainen and Saloff-Coste [21], Fässler, Lukyanenko and Tyson [28].

Definition 3.1.1. The metric measure spaces (X, dX , µX) is Q-parabolic if and only if for

some x0 ∈ X and R0 > 0 we have

lim
R→∞

ModQ(D(R0, R)) = 0. (3.6)

Otherwise we call (X, dX , µX) Q-hyperbolic.

Let us note that this property does not depend on the choice of x0 ∈ X and R0 > 0, in

particular when x0, R0 satisfying (3.6) exist then (3.6) holds true for any other choices of

x′0 ∈ X, R′
0 > 0. This means that parabolicity of a metric measure space is a property about

the behaviour of the space at infinity.

We also remark that Q-parabolicity of a metric measure space can be defined equivalently

by capacity of condensers (see Section 7 in [56] and Definition 4.5.4 in [28]).

The following sufficient condition seems to be known to experts, however we could not

locate a precise reference and we include it for the sake of completeness.

Proposition 3.1.2. Let Q > 1 and (X, dX , µX) be a metric measure space such that there

exists x0 ∈ X, R0 > 0 and K > 0 such that for all R > R0 we have

µX(B(x0, R)) ≤ KRQ. (3.7)

Then (X, dX , µX) is Q′-parabolic for any Q′ ≥ Q.

Proof. We shall consider the ring domain D(R0, R) = {x ∈ X : R0 < dX(x, x0) < R} for

R > R0. Our purpose is to show that

lim
R→∞

ModQ′(D(R0, R)) = 0.

To do this, we consider the integer N ∈ N defined by the property that 2NR0 ≥ R > 2N−1R0.

Note, that if R → ∞, then N → ∞. Consider the density

ρN(x) =


3
N
· 1
dX(x0,x)

if x ∈ D(R0, R)

0 otherwise.
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Let us check that the ρN is an admissible density for the curve family Γ connecting ∂B(x0, R0)

and ∂B(x0, R). To do so we consider the integers 1 < k < N and denote by Bk = B(x0, 2
kR0)

and Dk = Bk \Bk−1. For γ ∈ Γ denote by γk = Dk∩γ. By this notation, we observe that the

length of γk, ℓX(γk) ≥ 2k−1R0 and if x ∈ γk, then ρN(x) ≥ 3
N
· 1
2kR0

. Using this information

we can write

ˆ
γ

ρN dℓX ≥
N−1∑
k=2

ˆ
γk

ρN dℓX ≥
N−1∑
k=2

3

N
· 1

2kR0

ℓ(γk) ≥
3(N − 2)

2N
≥ 1,

if N ≥ 6. Note, that by our assumption on the upper of the measure (3.7) we have that

µX(Bk) ≤ K2kQRQ
0 . Using this upper estimate on the measure of Bk, the assumption Q′ ≥ Q

and the fact that for x ∈ Bk we have ρ(x) ≤ 3
N

1
2k−1R0

, we can estimate

ModQ′D(R0, R) ≤
ˆ
D(R0,R)

ρQ
′

N dµX ≤
N∑
k=1

ˆ
Dk

ρQ
′

N dµX ≤
N∑
k=1

ˆ
Bk

(
3

N

1

2k−1R0

)Q′

dµX =

=
N∑
k=1

(
3

N

1

2k−1R0

)Q′

µX(Bk) ≤ K

(
6

N

)Q′

RQ−Q′

0

N∑
k=1

2k(Q−Q′) → 0 as N → ∞.

Since R → ∞ implies that N → ∞ we obtain the statement.

As already discussed the Heisenberg group (H, dH, µH) is an Ahlfors 4-regular metric

measure space; hence, by applying Proposition 3.1.2, it turns out that H is 4-parabolic.

As expected, our next statement is a formulation of the fact that a parabolic metric measure

space cannot be quasiconformally equivalent to a hyperbolic one. In order to formulate the

statement we recall that a metric space is proper, if its closed metric balls are compact.

Theorem 3.1.3. Let Q > 1 and let (X, dX , µX), (X ′, dX′ , µX′) be two locally Ahlfors Q-

regular metric measure spaces. Assume that both spaces are proper and (X, dX , µX) is hy-

perbolic and (X ′, dX′ , µX′) is a parabolic space. Then there is no QC map f : X → X ′.

Proof. Assume by contradiction that there is a QC map f : X → X ′. Since (X, dX , µX) is

assumed to be hyperbolic, there exist a point x0 ∈ X, R0 > 0, a sequence Rn → ∞, and a

number M > 0 such that

ModQ(Γn) ≥M > 0, n ≥ n0,

where Γn is the set of curves connecting ∂BX(x0, R0) and ∂BX(x0, Rn). By the relation (3.5)

there exists H ≥ 1 such that

ModQ(f(Γn)) ≥ ModQ(Γn)

H
≥ M

H
> 0.
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Let us denote by y0 = f(x0) ∈ X ′. Since X is proper, B̄X(x0, R0) is compact and thus

f(BX(x0, R0)) is bounded in X ′. We conclude that there exists a number R′
0 > 0 such that

f(BX(x0, R0)) ⊆ BX′(y0, R
′
0). Let us denote by

R′
n := min{dX′(f(x0), f(x)) : x ∈ ∂BX(x0, Rn)}.

We claim that R′
n → ∞. For otherwise, we find a sequence xn ∈ X with dX(x0, xn) = Rn

such that d′X(f(x0), f(xn)) ≤ M ′ for some fixed constant M ′ > 0. Since the space X ′ is a

proper metric space, we obtain that (up to a subsequence) f(xn) → y for some y ∈ X ′. Let

us denote by x1 = f−1(y) ∈ X the preimage of y. Since f is a homeomorphism we have that

f(BX(x1, r)) is a neighborhood of y ∈ X ′ for any fixed r > 0. Since f(xn) → y we must have

that for n large enough f(xn) ∈ f(BX(x1, r)), which is a contradiction to the injectivity of

f .

Let us note that any curve in f(Γn) has a sub-curve connecting ∂BX′(y0, R
′
0) and ∂BX′(y0, R

′
n).

This implies by (3.4) that

ModQ(D(R′
0, R

′
n)) ≥ ModQ(f(Γn)) ≥ M

H
,

which is a contradiction to the parabolicity of (X ′, dX′ , µX′), concluding the proof.

3.2 Metric measure properties of AA, H and RT

The equivalence of contact structures between AA, H and RT presented in Chapter 2

has consequences in the theory just discussed in the previous section. In fact Proposition

2.1.2 gives the following:

Proposition 3.2.1. The metric measure space (AA, dAA, µAA) is locally Ahlfors 4-regular.

Proof. We are going to prove a stronger property for (AA, dAA, µAA): there exist a C ≥ 1

and a r0 > 0 such that

C−1r4 ≤ µAA(BAA(p, r)) ≤ Cr4, (3.8)

for all 0 < r ≤ r0 and for all p ∈ AA.

Due to the left-invariance of both the sub-Riemannian distance dAA and the measure µAA,

it suffices to prove (3.8) for balls BAA(e, r) centered at the neutral element e = eAA. We

have that (H, ϑH) and (AA, ϑ) are globally contactomorphic thanks to Proposition 2.1.2, so

let us consider the map

g : (H, dH,L3) → (AA, dAA, µAA), g∗ϑ = σϑH,
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given in (2.1). Since g(eH) = e, where eH = (0, 0, 0) is the neutral element of H and

g : H → AA is locally bi-Lipschitz, we have the inclusions

g(BH(eH, L
−1r)) ⊆ BAA(e, r) ⊆ g(BH(eH, Lr))

for some fixed number L ≥ 1 and any 0 ≤ r ≤ 1. Since g∗µAA = σ2µH = σ2L3 (up to

multiplicative constants different from 0) and L3(BH(eH, r)) = Cr4 for some fixed constant

C > 0, the claim follows.

Due to Proposition 2.1.4 we obtain that the same statement holds for the roto-translation

group RT .

In order to present the last result of this chapter we need a control from above for the

measure of metric balls in RT , provided by Corollary 5.9 in [26]:

Proposition 3.2.2. There exists R0 > 0, and C0 > 0 such that if BRT (eRT , r) is the open

CC-ball of centre eRT and radius r then:

L3(BRT (eRT , r)) ≤ C0r
3, for all r ≥ R0. (3.9)

The remarkable result of Fässler, Koskela and Le Donne states that in contrast to the fact

that both spaces (H, dH, µH) and (RT , dRT , µRT ) are 4-parabolic and by Proposition 2.1.1

locally bi-Lipschitz equivalent, they are still not QC equivalent (see Corollary 1.2 in [26]).

Now, applying Propositions 3.1.2 and 3.2.2, the following statement follows:

Proposition 3.2.3. The metric measure spaces (H, dH, µH) and (RT , dRT , µRT ) are locally

4-Ahlfors regular and 4-parabolic.
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Chapter 4

Hyperbolicity of AA

Our current objective is first to prove hyperbolicity of the affine-additive group AA, then

we shall focus on consequences of this fact.

We recall that the formal notion of an hyperbolic metric measure space (X, dX , µX) is given

Definition 3.1.1. Let us observe first, that hyperbolicity of (X, dX , µX) holds, if there exists

a compact set E ⊂ X and sequence of compact sets Fn ⊆ X such that

dist(E,Fn) := inf{dX(x, y) : x ∈ E, y ∈ Fn} → ∞

and

lim inf
n→∞

ModQ(E,Fn) > 0.

To see this, let us pick x0 ∈ E. We shall consider Rn = inf{dX(x0, y) : y ∈ Fn}. Note, that

Rn → ∞ and any curve connecting E and Fn must have a sub-curve connecting ∂B(x0, R0)

and ∂B(x0, Rn). Thus, by (3.4) we have the inequality

ModQ(D(R0, Rn)) ≥ ModQ(E,Fn).

Since lim infn→∞ ModQ(E,Fn) > 0 we obtain that (X, dX , µX) is hyperbolic.

The main idea of this section is to construct compact sets E and Fn in AA with the

above properties. This is explicitly done as follows:

Let n ∈ N, n ≥ 2. We define

E = {(a, 1, t) ∈ AA : a ∈ [−1, 1] and t ∈ [−1, 1]},

Fn =

{(
a,

1

n
, t

)
∈ AA : a ∈ [−1, 1] and t ∈ [−1, 1]

}
.

Next, for each such n we define the following curve families of piecewise smooth horizontal

curves:

Γn = {γ,γ : [0, 1] → AA such that γ(0) ∈ E and γ(1) ∈ Fn}. (4.1)
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The following estimate holds.

Proposition 4.0.1. With the above notation, there exists someM > 0 such that Mod4(Γn) > M

for all n ∈ N, n ≥ 2.

Proof. We consider the sub-family Γ0
n ⊂ Γn which comprises curves γ : [0, 1] → AA given by

γ(s) =

(
a, 1 −

(
1 − 1

n

)
s, t

)
, x ∈ [−1, 1], t ∈ [−1, 1].

It is straightforward to check that the curves in Γ0
n are horizontal with γ(0) ∈ E and γ(1) ∈ Fn

for all n ∈ N, n ≥ 2. Further, from (1.7) we obtain that

|γ̇(s)|H =
1 − 1

n

2
(
1 −

(
1 − 1

n

)
s
) .

If now ρ ∈ Adm(Γ0
n), then we have
ˆ 1

0

ρ

(
a, 1 −

(
1 − 1

n

)
s, t

)
1 − 1

n

2
(
1 −

(
1 − 1

n

)
s
)ds ≥ 1,

which, under integration by substitution with λ(s) = 1 −
(
1 − 1

n

)
s, gives

ˆ 1

1
n

ρ(a, λ, t)

2λ
dλ ≥ 1, ∀n ≥ 2. (4.2)

Next, by integrating (4.2) with respect to x ∈ [−1, 1] and t ∈ [−1, 1], we obtain
ˆ 1

−1

ˆ 1

−1

ˆ 1

1
n

ρ(a, λ, t)

λ
da dλ dt ≥ 8, ∀n ≥ 2. (4.3)

At this point, for n ≥ 2 we define the sets

Pn =

{
(a, λ, t) ∈ AA : a ∈ [−1, 1], λ ∈

[
1

n
, 1

]
, t ∈ [−1, 1]

}
and we apply Hölder’s inequality in (4.3) with respect to ρ(a,λ,t)√

λ
·XPn (a,λ,t)√

λ
and with conjugated

exponents 4 and 4
3
, to obtain(ˆ

AA
ρ4(a, λ, t)

da dλ dt

λ2

) 1
4
(ˆ

AA
XPn(a, λ, t)

1

λ
2
3

da dλ dt

) 3
4

≥ 8, ∀n ≥ 2. (4.4)

Now we observe thatˆ
AA

XPn(a, λ, t)
1

λ
2
3

da dλ dt ≤ 4

ˆ 1

0

1

λ
2
3

dλ = 12, ∀n ≥ 2.

The latter inequality combined with (4.4) givesˆ
AA

ρ4(a, λ, t)
da dλ dt

λ2
≥ 24

33
.

Finally, the proof is concluded by taking the infimum over all ρ ∈ Adm(Γ0
n).
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4.1 Quasiconformal inequivalence between AA, H and

RT

We are about to notice the importance of hyperbolicity of the affine-additive group AA
as a quasiconformal invariant. In detail we state and prove the following

Theorem 4.1.1. There are no global QC maps AA → H or AA → RT .

Proof. The proof is an immediate consequence of Theorem 3.1.3. Indeed, Proposition 3.2.3

grants that both the metric measure spaces H and RT are locally 4-Ahlfors regular and

4-parabolic. On the other hand Propositions 3.2.1 and 4.0.1 give that the metric measure

space AA is locally 4-Ahlfors regular and 4-hyperbolic.

4.2 Consequences in quasiregular mapping theory

The hyperbolicity of the affine-additive group has not only consequences in quasiconfor-

mal mapping theory but it also sets constraints for a more general class of mappings.

Consider a map f between metric spaces and let us recall the quantity Hf (·) from (3.1).

Further we define Bf as the branch set (i.e., the set of points where f does not define a local

homeomorphism). We make use of the following definition of quasiregular (QR) maps from

Fässler, Lukyanenko and Peltonen [27].

Definition 4.2.1. Let M and N be any sub-Riemannian manifolds among H, RT and AA.

We call a mapping f : M → N K-quasiregular if it is constant, or if:

(1) f is a branched cover onto its image (i.e., continuous, discrete, open and sense-preserving),

(2) Hf (·) is locally bounded on M ,

(3) Hf (p) ≤ K for almost every p ∈M ,

(4) the branch set Bf and its image have measure zero.

A mapping is said to be quasiregular if it is K-quasiregular for some 1 ≤ K <∞.

From the definition it is follows that every QC map is QR. On the other hand, the class

of QR maps can be substantially larger than the class of QC maps.

Let us recall, that by Theorem 4.8.1 from [28] if f : H → N is a QR map where N is

4-hyperbolic then f must be constant. Applying this statement to our situation, we obtain

the following result:
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Theorem 4.2.2. If f : H → AA is a quasiregular map, then f is constant.

In contrast to the previous statement, we note that there can be plenty of examples of

QR maps f : AA → H. One such map is the following:

Example 4.2.3. Let f : AA → H be the map defined by

f(a, λ, t) = (−
√
λ cos a,

√
λ sin a, t), (a, λ, t) ∈ AA.

By a direct calculation one can verify the contact property of f , namely f ∗ϑH = 2λϑ.

Moreover, denoting f(a, λ, t) = (x, y, t) ∈ H, one can check that f∗U = yX − xY and

f∗V = xX + yY . Using this, we have that

f∗(αU + βV ) = (αy + βx)X + (βy − αx)Y,

for any α, β ∈ R.

Since {U, V }, resp. {X, Y }, is the orthonormal basis in the sub-Riemannian metric of

AA, resp. H, we obtain that

|f∗(αU + βV )|H =
√

(α2 + β2)(x2 + y2)

and therefore

Hf (a, λ, t) =
max{|f∗(αU + βV )|H : α2 + β2 = 1}
min{|f∗(αU + βV )|H : α2 + β2 = 1}

= 1,

for every point (a, λ, t) ∈ AA. See also Proposition 2.4 in [27] for a different way to compute

the value of Hf (·).
Furthermore, note, that a direct computation, gives det f∗ = 1

2
; and thus f is a local

diffeomorphism at every point. This means that the branch set Bf of f is empty, and thus

f is an immersion of AA into H. Consequently we conclude that f is 1-quasiregular.

Further examples of QR maps g : AA → H can be obtained as compositions g = h ◦ f
where h : H → H is a QC map of the Heisenberg group.

With Example 4.2.3 we answer Question 3.20 in Guo, Nicolussi Golo, Williams and

Xuan [31].
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Chapter 5

Quasiconformal mappings on AA

In this chapter we present the general theory of quasiconformal mappings in the affine-

additive group AA. Such theory makes good advantage of the differential geometry features

of AA given by its sub-Riemannian structure.

5.1 Complex differential structure of AA

The use of complex notation on H1
C will turn out to be convenient from now on, so we

apply slight changes to the setting of AA. The hyperbolic plane is now given by

H1
C := {λ+ it ∈ C : λ > 0, t ∈ R}.

Based on this we reintroduce the group operation on H1
C by

(λ′ + it′) ⋆0 (λ+ it) = λ′(λ+ it) + it′.

We rewrite the group operation on AA as follows: if p′ = (a′, λ′ + it′) and p = (a, λ + it)

belong to R×H1
C, we have

p′ ⋆ p = (a′ + a, λ′(λ+ it) + it′) ∈ R×H1
C. (5.1)

We recall that AA is a three dimensional Lie group and, thanks to Proposition 1.3.1, a

basis of the tangent bundle T (AA) comprising left invariant vector fields is given by U , V

and W . The complex vector fields (shortly CVF) Z,Z, are given by

Z =
1

2
(V − iU), Z =

1

2
(V + iU).
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We notice that they satisfy the non-trivial commutator identity [Z,Z] = (Z−Z) + iW . The

Lie algebra of left invariant vector fields of the affine-additive group admits a grading

spanR{ImZ,ReZ} ⊕ spanR{W}.

The elements of the first layer are referred as horizontal left invariant vector fields. The

horizontal bundle HAA is the subbundle of the tangent bundle T (AA) whose fibers are the

horizontal subspaces

Hp,AA = spanR{ImZp,ReZp}, p ∈ AA.

We remind that the contact form for AA is ϑ = dt
2λ

− da. We recall also that a contact

transformation f : Ω → Ω′ on AA is a diffeomorphism between domains Ω and Ω′ in AA
which preserves the contact structure, i.e.

f ∗ϑ = σϑ, (5.2)

for some non-vanishing smooth function σ : AA → R. Through the identification of AA
with R×H1

C we write f = (f1, fI), fI = f2 + if3. Applying Proposition 2.2.3 with respect to

the CVFs Z,Z gives that a contact map f is determined by the following system of p.d.e.s

Zf3 = 2f2Zf1,

Zf3 = 2f2Zf1, (5.3)

Wf3 = 2f2(σ +Wf1).

5.2 Background results on quasiconformal mappings

A metric definition of quasiconformality (in the sense of Heinonen and Koskela [34]) is

given in terms of the sub-Riemannian distance on the affine-additive group as follows. If

Ω,Ω′ are two domains in AA, a homeomorphism f : Ω → Ω′ is called quasiconformal if there

exists 1 ≤ H <∞ such that

lim sup
r→0

supdAA(p,q)≤r dAA(f(p), f(q))

infdAA(p,q)≥r dAA(f(p), f(q))
=: Hf (p) ≤ H, for all p ∈ AA. (5.4)

Any smooth and metric quasiconformal map between domains in AA is locally a contact

transformation; this fact comes as a consequence of Proposition 3.3 in Balogh, Bubani and

Platis [7] and Theorem 1 in Korányi and Reimann [38].

Let L3 be the three dimensional Lebesgue measure on R×H1
C: we point out that µAA ≪ L3
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and therefore the terminology ”almost everywhere” is well defined on AA in the sense of L3.

In general, quasiconformal maps on AA do not need to be smooth, but rather they belong

to an apposite class of Sobolev mappings and they satisfy the contact conditions almost

everywhere. Explicitly, let 1 ≤ p <∞ and let Ω be a domain in AA. We say that a function

u : Ω → C belongs to the horizontal Sobolev space, u ∈ HW 1,p(Ω,C), if u ∈ Lp(Ω,C) and

there exist functions v, w ∈ Lp(Ω,C) such that

ˆ
Ω

vφ dµAA = −
ˆ
Ω

uZφdµAA, and

ˆ
Ω

wφdµAA = −
ˆ
Ω

uZφdµAA

for all φ ∈ C∞
0 (Ω,R). For such a function u ∈ HW 1,p(Ω,C), we denote by Zu and Zu the

weak horizontal complex derivatives v and w. This definition is compatible with the theory

of upper gradients on Carnot-Carathéodory spaces formulated in Haj lasz and Koskela [32].

A map f = (f1, fI) : Ω → AA is said to belong to HW 1,p(Ω,AA) if and only if f1, fI are in

HW 1,p(Ω,C). It is straightforward to define the local horizontal Sobolev spaces HW 1,p
loc .

We have that (AA, dAA, µAA) is a locally 4-Ahlfors regular space, cf. Proposition 3.5 in [7].

Combining the last fact with Theorem 11.20 in [32], Theorem 1.1 in Balogh, Koskela and

Rogovin [12] and Proposition 3.1 in Shanmugalingam [52] we deduce the following result for

metric quasiconformal maps on AA.

Proposition 5.2.1. Let f : Ω → Ω′ be a quasiconformal mapping between domains Ω,Ω′ ⊆ AA.

Then the pointwise derivatives (ReZ)f and (ImZ)f exist almost everywhere and coincide

with the distributional derivatives almost everywhere.

We recall that Proposition 1.3.2 grants the Hausdorff dimension of (AA, dAA) to be equal

to 4. Based on the latter fact the corresponding Sobolev class for quasiconformal mappings

in the affine-additive group is HW 1,4
loc .

A mapping f ∈ HW 1,4
loc (Ω,AA) is called weakly contact if the system of p.d.e.s (5.3) holds

almost everywhere in Ω. For such a mapping, we define the formal tangent map

(f∗)p : TpAA → Tf(p)AA,

for almost every p ∈ Ω. We express it in terms of the bases given by BCV Fp = {Zp, Zp,Wp}
and BCV Ff(p) = {Zf(p), Zf(p),Wf(p)} as

f∗ =


ZfI/2f2 ZfI/2f2 ∗
ZfI/2f2 Z fI/2f2 ∗

0 0 σ

 ,
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and define the formal horizontal differential to be the restriction DHf(p) : Hp,AA → Hf(p),AA

given by

DHf(p) =

[
ZfI/2f2 ZfI/2f2

ZfI/2f2 Z fI/2f2

]
.

Using the commutator relation together with the system (5.3), we find σ = 1
4f22

(
|ZfI |2−|ZfI |2

)
almost everywhere. This yields

det(f∗)p =
1

(2f2(p))4
(
|ZfI(p)|2 − |ZfI(p)|2

)2
a.e. in Ω. (5.5)

Further, set p ∈ AA and r > 0; we define the volume derivative for f with respect to µAA

the limit

JµAA(p, f) = lim
r→0

µAA(f(BAA(p, r)))

µAA(BAA(p, r))
. (5.6)

An interesting property is formulated in the following:

Lemma 5.2.2. Let f : Ω → Ω′ be a weakly contact transformation. Then the identity

JµAA(p, f) = det(f∗)p,

holds almost everywhere in Ω.

Proof. We observe first that a limit argument and the change of variables theorem induce

that at almost every point p = (a, λ+ it) ∈ Ω we have

JµAA(p, f) =
λ2

f 2
2 (p)

J (p, f).

Here, J (p, f) corresponds to the determinant of the tangent map (f∗)p : TpAA → Tf(p)AA
considered as a linear map with respect to the canonical bases BCanp = {∂a|p , ∂λ|p , ∂t|p} and

BCanf(p) = {∂a|f(p) , ∂λ|f(p) , ∂t|f(p)}. The change of bases formula describing the compositions

BCanp 7→ BCV Fp 7→ BCV Ff(p) 7→ BCanf(p)

leads to:

JµAA(p, f) =
1

(2f2(p))4
(
|ZfI(p)|2 − |ZfI(p)|2

)2
.

We consider the curve family

Γ1 = {γ, γ : [0, 1] → AA horizontal curve with γ(0) = p and |γ̇|H = 1}
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and we define the quantity ∥DHf(p)∥ = max{|(f ◦ γ)·|H : γ ∈ Γ1}. Using the complex

notation we find the explicit formula

∥DHf(p)∥ =
|ZfI(p)| + |ZfI(p)|

2f2(p)
a.e. in Ω.

The analytic definition of quasiconformality in AA is now in order:

Definition 5.2.3 (Analytic definition). A homeomorphism f : Ω → Ω′ between domains

Ω,Ω′ in AA is K-quasiconformal if f ∈ HW 1,4
loc (Ω,AA) is weakly contact, and there exists

a constant 1 ≤ K <∞ such that

∥DHf(p)∥4 ≤ KJµAA(p, f) for almost every p ∈ Ω. (5.7)

A map is quasiconformal, if it is K-quasiconformal for some K.

It will be later proved that a K-quasiconformal map in the analytic sense has a K-

quasiconformal inverse (see Proposition 5.2.4). This fact together with Theorem 3.8 in

Koskela and Wildrick [40] induce that a homeomorphism is quasiconformal according the

analytic sense if and only if it is quasiconformal according to the metric one.

It can be proven that JµAA(·, f) ̸= 0 a.e. for a quasiconformal mapping f . The above

considerations show that for a quasiconformal map f : Ω → Ω′ between domains in the

affine-additive group the following holds:

K(p, f)2 =
∥DHf(p)∥4

JµAA(p, f)
=

(
|ZfI(p)| + |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

)2

a.e. in Ω.

By setting K(·, f)2 = 1 at the points where JµAA(·, f) = 0, we obtain that K(·, f)2 is a mea-

surable function on Ω which is finite almost everywhere. A quasiconformal map f : Ω → Ω′

between domains in the affine-additive group is called orientation preserving if

detDHf(p) > 0 for almost every p ∈ Ω.

By recalling the expressions defined in the introduction

µf (p) =
ZfI(p)

ZfI(p)
, K(p, f) =

|ZfI(p)| + |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

and by defining

∥µf∥∞ = ess supp |µf (p)|, Kf = ess suppK(p, f),

the explicit relation between ∥µf∥∞ and Kf can now be written explicitly as follows:

K(p, f) =
1 + |µf (p)|
1 − |µf (p)|

, Kf =
1 + ∥µf∥∞
1 − ∥µf∥∞

. (5.8)

We present a result concerning the inverse of a quasiconformal mapping with the following
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Proposition 5.2.4. Let f : Ω → Ω′ be a quasiconformal mapping between domains Ω,Ω′ ⊆ AA.

Then also the inverse f−1 : Ω′ → Ω is a quasiconformal mapping and the following holds

K(p, f) = K(f(p), f−1) a.e. in Ω. (5.9)

Proof. To prove that f−1 : Ω′ → Ω is quasiconformal in the metric sense one can consider

the argument in the proof of Proposition 20 in [39] and adapt it to the context of AA. We

will show that the identity (5.9) is true.

Since f : Ω → Ω′ is quasiconformal, Proposition 5.2.1 grants that the derivatives Uf and

V f exist almost everywhere in Ω. Let J (p, f) denote the determinant of the tangent map

(f∗)p : TpAA → Tf(p)AA considered as a linear map with respect to the canonical bases

BCanp = {∂a|p , ∂λ|p , ∂t|p} and BCanf(p) = {∂a|f(p) , ∂λ|f(p) , ∂t|f(p)}.

Further, applying Lemma 5.2.2 for f quasiconformal, it holds that J (·, f) ̸= 0 almost

everywhere in Ω. The following derivatives are therefore well defined for almost every

p = (a, λ+ it) ∈ Ω:

(∂af
−1
2 )|f(p) =

(∂af3∂tf2 − ∂af2∂tf3)|p
J (p, f)

, (∂λf
−1
2 )|f(p) =

(∂af1∂tf3 − ∂tf1∂af3)|p
J (p, f)

,

(∂tf
−1
2 )|f(p) =

(∂af2∂tf1 − ∂af1∂tf2)|p
J (p, f)

, and

(∂af
−1
3 )|f(p) =

(∂af2∂λf3 − ∂λf2∂af3)|p
J (p, f)

, (∂λf
−1
3 )|f(p) =

(∂af3∂λf1 − ∂af1∂λf3)|p
J (p, f)

,

(∂tf
−1
3 )|f(p) =

(∂af1∂λf2 − ∂af2∂λf1)|p
J (p, f)

.

Recalling that Z = 1
2
(V − iU), we obtain:

(Zf−1
I )|f(p) =

1

2J (p, f)
(∂af2∂λf3 − ∂λf2∂af3 + 2f2(∂af1(∂λf2 + ∂tf3) − ∂af3∂tf1 − ∂λf1∂af2)

+ i (∂af2∂tf3 − ∂tf2∂af3 + 2f2(∂af1(∂tf2 − ∂λf3) + ∂af3∂λf1 − ∂af2∂tf1)))|p.

Now, we make use of the three contact equations (5.3) by replacing (∂af1)|p, (∂λf1)|p and

(∂tf1)|p in the last identity. This yields to:

(Zf−1
I )|f(p) =

σ(p)f2(p)

λJ (p, f)
(Z fI)|p ,

where σ : AA → R is the nowhere vanishing smooth function appearing in (5.3). Thanks to

the relation ZfI = Z fI we rewrite

(Zf−1
I )|f(p) =

σ(p)f2(p)

λJ (p, f)
(ZfI)|p . (5.10)
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Analogously, we find that

(Zf−1
I )|f(p) =

σ(p)f2(p)

2λJ (p, f)

(
(Uf3 − V f2)|p − i(Uf2 + V f3)|p

)
= −σ(p)f2(p)

λJ (p, f)
(ZfI)|p. (5.11)

Referring to (5.10) and (5.11) we conclude

K(f(p), f−1) =

∣∣Zf−1
I (f(p))

∣∣+
∣∣Zf−1

I (f(p))
∣∣∣∣Zf−1

I (f(p))
∣∣− ∣∣Zf−1

I (f(p))
∣∣ = K(p, f) a.e. in Ω. (5.12)

We state below a change of variable formula for integration in the case of quasiconformal

mappings on the affine-additive group.

Proposition 5.2.5. Let f : Ω → Ω′ be a quasiconformal mapping between domains Ω,Ω′ ⊆ AA.

Then the following transformation formula holds: if u : AA → R is a measurable non-

negative function, then the function p 7→ (u ◦ f)(p)JµAA(p, f) is measurable and we have

ˆ
Ω

(u ◦ f)(p)JµAA(p, f) dµAA(p) =

ˆ
Ω′
u(q) dµAA(q).

For a proof of this result we indicate Theorem 2 in Vodop’yanov’s work [55].

In order to present an important feature of quasiconformal mappings on the affine-additive

group we recall the construction of Hausdorff dimension for the metric space (AA, dAA). For

a ∈ (0,∞), the Hausdorff a-dimensional outer measure of a set A ⊆ AA is given by

Ha(A) = lim
ϵ→0

(
inf
B

∑
Bi∈B

(diamBi)
a

)
,

where the infimum is taken over all countable coverings B = (Bi)i∈I of A by sets Bi with the

diameter condition diamBi < ϵ for all i ∈ I. The Hausdorff dimension of A is defined by

dimH(A) = inf{a > 0 : Ha(A) = 0}

In what follows we want to highlight the existence of non-smooth quasiconformal maps of

AA that distort the Hausdorff dimension dimH of certain Cantor sets in AA in an arbitrary

fashion.
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Proposition 5.2.6. For any s and t such that 0 < s < t < 4 there exist Cantor sets Cs ⊂ AA
and Ct ⊂ AA such that dimH(Cs) = s and dimH(Ct) = t and a QC map F : AA → AA
such that F (Cs) = Ct.

Proof. The proof is based on the corresponding result in [6] for the case of the Heisenberg

group. In fact Theorem 1.1 in [6] states that if 0 < s < t < 4 there exist Cantor sets

Ks ⊂ H and Kt ⊂ H and a QC map G : H → H such that dimH(Ks) = s, dimH Kt = t,

Ks ⊂ BH(e, 1), Kt ⊂ BH(e, 1), G(Ks) = Kt and G = idH outside of BH(e, 1). We note that

the map F : AA → AA defined by F = g ◦ G ◦ g−1 is a QC map. To see this observe

that G : BH(e, 1) → BH(e, 1) is quasiconformal and the map g : BH(e, 1) → g(BH(e, 1)) is

bi-Lipschitz. This shows that F : g(BH(e, 1)) → g(BH(e, 1)) is a QC map. On the other

hand since G = idH\BH(e,1), this implies that the map FH\g(BH(e,1)) = idH\g(BH(e,1)). Thus F is

a global QC map and it does satisfy the properties in the statement for the sets Cs = g(Ks)

and Ct = g(Kt).

5.3 Modulus of a curve family in AA

The definition of modulus for a family of curves in general metric measure spaces was

given in Chapter 3. In the previous section we presented that the Hausdorff dimension of the

affine-additive group is 4. This indicates that a notion of conformally invariant Q-modulus

of a curve family will require Q = 4.

Before defining the 4-modulus we need to recall definition and properties of curves in the

affine-additive group. Any curve γ in AA shall be always considered continuous. The points

on a curve γ : [c, d] → AA are denoted by

γ(s) = (γ1(s), γI(s)) ∈ R×H1
C.

An absolutely continuous curve γ : [c, d] → AA (in the Euclidean sense) is called horizontal

if

γ̇(s) ∈ kerϑγ(s) for almost every s ∈ [c, d].

The length of a horizontal curve corresponds to

ℓ(γ) =

ˆ d

c

|γ̇(s)|H ds.

We say that γ is rectifiable when ℓ(γ) is finite, moreover we say that γ is locally rectifiable

when all its closed sub-curves are rectifiable.
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If γ : [c, d] → AA is a rectifiable curve, the line integral over γ of a Borel function

ρ : AA → [0,∞] is defined as

ˆ
γ

ρ dℓ =

ˆ d

c

ρ(γ(s))|γ̇(s)|H ds,

and in case γ is only locally rectifiable, we set

ˆ
γ

ρ dℓ = sup

{ˆ
γ′
ρ dℓ : γ′ is a rectifiable subcurve of γ

}
.

For curves γ : (c, d) → AA we shall employ the notion of local rectifiability.

The modulus Mod4(Γ) of a curve family Γ is defined as follows. Let Adm(Γ) be the set

of admissible densities : that is, non-negative Borel functions ρ : AA → [0,∞] such that´
γ
ρ dℓ ≥ 1 for all rectifiable curves γ ∈ Γ. Then

Mod4(Γ) = inf
ρ∈Adm(Γ)

ˆ
AA

ρ4(p) dµAA(p), (5.13)

It is worth to say that a family which consists only of curves that are not locally rectifiable

has modulus zero, see the book of Heinonen, Koskela, Shanmugalingam and Tyson [36]. All

quasiconformal mappings of the affine-additive group are absolutely continuous on almost

every curve, see the works of Heinonen, Koskela, Shanmugalingam and Tyson [35] and

Shanmugalingam [52]. To sum up, given a quasiconformal map f : Ω → Ω′ between domains

in the affine-additive group and given a family Γ of closed rectifiable curves in Ω, we have

Mod4 (γ ∈ Γ : f ◦ γ not absolutely continuous) = 0.

The next type of modulus inequality adapts the statement and the proof of Theorem 18

in [10] to the geometric setting of the affine-additive group. We can now prove the following:

Proposition 5.3.1. Suppose that f : Ω → Ω′ is a quasiconformal map between two domains

in AA and Γ is a family of curves in Ω. Then

Mod4(f(Γ)) ≤
ˆ
Ω

K2(p, f)ρ4(p) dµAA(p) for all ρ ∈ Adm(Γ). (5.14)

Proof. Let Γ0 be the family of all rectifiable curves in Γ on which f is absolutely contin-

uous (the non-rectifiable curves have modulus zero). Since f is quasiconformal, we have

Mod4(Γ) = Mod4(Γ0). Throughout the proof we shall assume f to be differentiable in the

sense of [43] on curves in Γ0 almost everywhere on their domain of definition, for otherwise

one can consider the argument in the beginning of the proof on Theorem 18 in [10].
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We now take an arbitrary admissible density ρ̃ ∈ Adm(f(Γ)) and we assign to it a pull-back

density ρρ̃ defined by

ρρ̃(p) =


ρ̃(f(p)) |ZfI(p)|+|ZfI(p)|

2f2(p)
, p ∈ Ω

0, p ∈ AA \ Ω.

We will show that ρρ̃ is admissible for Γ0. To this end, let γ : [a, b] → Ω be an arbitrary

curve in Γ0. By definition of Γ0, it is rectifiable and therefore it has a parametrization by

arc-length, γ̃ = (ã, λ̃ + it̃) : [0, ℓ(γ)] → Ω. We know that f is quasiconformal and that γ̃(s)

is horizontal; due to Lemma 6.2.2 this reasoning leads to

|(f ◦ γ̃)·(s)|H =
1

2f2(γ̃(s))

∣∣∣∣∣ZfI(γ̃(s))
˙̃γI(s)

2λ̃(s)
+ ZfI(γ̃(s))

˙̃γI(s)

2λ̃(s)

∣∣∣∣∣ for a.e. s ∈ [0, ℓ(γ)]

which gives

|(f ◦ γ̃)·(s)|H ≤ |ZfI(γ̃(s))| + |ZfI(γ̃(s))|
2f2(γ̃(s))

| ˙̃γ(s)|H for a.e. s ∈ [0, ℓ(γ)].

We notice that f ◦ γ̃ is absolutely continuous and the latter inequality yields

ˆ
γ

ρρ̃ dℓ =

ˆ ℓ(γ)

0

ρρ̃(γ̃(s))| ˙̃γ(s)|H ds

=

ˆ ℓ(γ)

0

ρ̃(f(γ̃(s)))
|ZfI(γ̃(s))| + |ZfI(γ̃(s))|

2f2(γ̃(s))
| ˙̃γ(s)|H ds

≥
ˆ ℓ(γ)

0

ρ̃(f(γ̃(s)))|(f ◦ γ̃)·(s)|H ds =

ˆ
f◦γ̃

ρ̃ dℓ =

ˆ
f◦γ

ρ̃ dℓ ≥ 1.

We deduce that ρρ̃ ∈ Adm(Γ0). Making use of (6.5), the previous fact allows us to conclude

as follows:

Mod4(Γ0) = inf
ρ∈Adm(Γ0)

ˆ
Ω

ρ4(p) dµAA(p)

≤
ˆ
Ω

ρ4ρ̃(p) dµAA(p) =

ˆ
Ω

ρ̃4(f(p))
(|ZfI(p)| + |ZfI(p)|)4

(2f2(p))4
dµAA(p)

=

ˆ
Ω

ρ̃4(f(p))

(
|ZfI(p)| + |ZfI(p)|
|ZfI(p)| − |ZfI(p)|

)2 (|ZfI(p)|2 − |ZfI(p)|2
)2

(2f2(p))4
dµAA(p)

=

ˆ
Ω

ρ̃4(f(p))K2(p, f)JµAA(p, f) dµAA(p)

=

ˆ
Ω′
ρ̃4(q)K2(f−1(q), f) dµAA(q),
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for all ρ̃ ∈ Adm(f(Γ)). Where the last equality in this chain of computations is obtained

through the change of variable from Proposition 5.2.5. We may apply the previous inequality

to the quasiconformal map f−1 and the curve family f(Γ). Thus

Mod4(f(Γ)) ≤
ˆ
Ω

K2(f(p), f−1)ρ4(p) dµAA(p), (5.15)

for all ρ ∈ Adm(Γ). Proposition 5.2.4 gives the identity

K(p, f) = K(f(p), f−1) a. e. in Ω. (5.16)

Combining (5.15) and (5.16) we obtain the desired result.

Remark 5.3.2. We want to underline two other important consequences following from the

proof of Proposition 5.3.1. In the first place, we have that

Mod4(Γ) ≤
ˆ
Ω′
K2(f−1(q), f)ρ̃4(q) dµAA(q) for all ρ̃ ∈ Adm(f(Γ)),

and thus
1

K2
f

Mod4(Γ) ≤ Mod4(f(Γ)) ≤ K2
f Mod4(Γ). (5.17)

Moreover, from (5.17) we evince that Mod4 is conformally invariant, i.e. invariant under

1-quasiconformal mappings.
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Chapter 6

The modulus method on AA

With the present chapter we aim to establish a method based on the modulus of curve

families in the affine-additive group which detects extremal quasiconformal mappings for the

mean distortion functional (see condition (6) in the Introduction).

6.1 Minimal stretching property and extremality

We begin this section with a result concerning an extremal density for the modulus of a

curve family foliating a bounded domain in the affine-additive group.

Proposition 6.1.1. Suppose ∆ is a domain in R2. Let 0 ≤ c < d and let

γ : (c, d) × ∆ → Ω

be a diffeomorphism which foliates a bounded domain Ω in the affine-additive group with the

property that

γ(·, δ) : [c, d] → Ω

is an horizontal curve with |γ̇(s, δ)|H ̸= 0 for all δ ∈ ∆ and

dµAA(γ(s, δ)) = |γ̇(s, δ)|4H ds dν(δ)

for a measure ν on ∆. Then

ρ0(p) =


1

(d−c)|γ̇(γ−1(p))|H
, p = γ(s, δ) ∈ Ω,

0, p /∈ Ω,

(6.1)
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is an extremal density for the curve family Γ0 = {γ(·, δ) : δ ∈ ∆} with

Mod4(Γ0) =
1

(d− c)3

ˆ
∆

dν(δ).

Here, γ̇(s, δ) = ∂
∂s
γ(s, δ) for (s, δ) ∈ (c, d) × ∆.

Proof. We show first that ρ0 ∈ Adm(Γ0): this is because for any γ(·, δ) ∈ Γ0 we have

ˆ
γ(·,δ)

ρ0 dℓ =

ˆ d

c

ρ0(γ(s, δ))|γ̇(s, δ)|H ds = 1.

Since we assume the measure decomposition dµAA(γ(s, δ)) = |γ̇(s, δ)|4H ds dν(δ), a direct

computation yields

ˆ
Ω

ρ40(p) dµAA(p) =

ˆ
∆

ˆ d

c

ρ40(γ(s, δ))|γ̇(s, δ)|4H ds dν(δ)

=
1

(d− c)3

ˆ
∆

dν(δ) .

Consequently,

Mod4(Γ0) ≤
1

(d− c)3

ˆ
∆

dν(δ).

For the reverse inequality, consider an arbitrary density ρ ∈ Adm(Γ0). By using the admis-

sibility of ρ and then Hölder’s inequality with conjugated exponents 4 and 4
3
, we have

1 ≤
ˆ
γ(·,δ)

ρ dℓ =

ˆ d

c

ρ(γ(s, δ))|γ̇(s, δ)|H ds

≤
(ˆ d

c

ρ4(γ(s, δ))|γ̇(s, δ)|4H ds
) 1

4

(d− c)
3
4 ,

for every δ ∈ ∆. Thus

1

(d− c)
3
4

≤
(ˆ d

c

ρ4(γ(s, δ))|γ̇(s, δ)|4H ds
) 1

4

.

We raise the latter inequality to the 4-th power and then we integrate with respect to dν

over ∆ to eventually obtain

1

(d− c)3

ˆ
∆

dν(δ) ≤
ˆ
∆

ˆ d

c

ρ4(γ(s, δ))|γ̇(s, δ)|4H ds dν(δ) =

ˆ
Ω

ρ4(p) dµAA(p).

Our result follows by taking the infimum over all densities ρ ∈ Adm(Γ0).
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6.2 Minimization of the mean distortion

Following the work of Balogh, Fässler and Platis [10], we define the minimal stretching

property as follows:

Definition 6.2.1. We say that an orientation preserving quasiconformal map f0 : Ω → Ω′

between domains in AA has the minimal stretching property (MSP) for a family Γ0 of

horizontal curves in Ω if for all γ ∈ Γ0, γ : [c, d] → AA, one has

µf0(γ(s))
γ̇I(s)

γ̇I(s)
< 0 for almost every s ∈ [c, d] with µf0(γ(s)) ̸= 0. (6.2)

If a map f0 has the MSP for a curve family Γ0, this means geometrically that Γ0 consists

of curves which are tangential to the direction of the least stretching of f0. To make this

precise, we state and prove the following

Lemma 6.2.2. Let f = (f1, f2 + if3) : Ω → AA be a quasiconformal map on a domain

Ω ⊆ AA. Let Γ be a curve family:

Γ = {γ(·) = (a(·), λ(·) + it(·)), γ : [c, d] → Ω horizontal }.

Then there exists a sub-family Γ′ ⊂ Γ of curves with Mod4(Γ
′) = 0 and such that

(fI ◦ γ)·(s) =
1

2λ(s)

(
ZfI(γ(s))γ̇I(s) + ZfI(γ(s))γ̇I(s)

)
for a.e. s ∈ (c, d), (6.3)

for all γ ∈ Γ \ Γ′.

Proof. If γ ∈ Γ is absolutely continuous then since f is quasiconformal, we have that the

image f ◦ γ is absolutely continuous up to a sub-family of curves having zero 4-modulus,

see [12]. Therefore we can choose γ such that f ◦ γ is differentiable almost everywhere. We

choose such an absolutely continuous curve γ : [c, d] → AA given by γ(s) = (a(s), λ(s)+it(s))

and by using the chain rule we write

(fI ◦ γ)·(s) =∇f2(γ(s)) · γ̇(s) + i∇f3(γ(s)) · γ̇(s), for a.e. s ∈ (c, d).

Using the o.d.e. (1.6) which holds for γ as well as the identities

λ̇(s) =
γ̇I(s) + γ̇I(s)

2
, ṫ(s) =

γ̇I(s) − γ̇I(s)

2i
,

we obtain

(fI ◦ γ)·(s) =
1

2λ(s)

(
ZfI(γ(s))γ̇I(s) + ZfI(γ(s))γ̇I(s)

)
, for a.e. s ∈ (c, d).
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Recalling that |γ̇(s)|H = |γ̇I(s)|
2λ(s)

, for an orientation preserving quasiconformal map f we

have:(
|ZfI(γ(s))| − |ZfI(γ(s))|

2f2(γ(s))

)
|γ̇(s)|H ≤ |(f ◦ γ)·(s)|H ≤

(
|ZfI(γ(s))| + |ZfI(γ(s))|

2f2(γ(s))

)
|γ̇(s)|H

for almost every s. If a map f0 has the MSP for a family Γ0, then by (6.2) we have equality

|(f0 ◦ γ)·(s)|H =

(
|Z(f0)I(γ(s))| − |Z(f0)I(γ(s))|

2(f0)2(γ(s))

)
|γ̇(s)|H . (6.4)

Secondly, we are about to provide a result in which conditions both on the foliation of the

domain as well as on the quasiconformal map are being set in order to obtain the equality

in the modulus inequality for the mean distortion.

Before getting into the details, we need to briefly recall a concept essential for our next

arguments. Denote by BAA(p, r) the open ball with respect to the distance dAA, centered

at p ∈ AA and with radius r > 0. Let f : Ω → AA be a quasiconformal map on a domain

Ω ⊆ AA and define the volume derivative for f with respect to µAA to be the limit

JµAA(p, f) := lim
r→0

µAA(f(BAA(p, r)))

µAA(BAA(p, r))
.

The following identity holds:

JµAA(p, f) =
1

(2f2(p))4
(
|ZfI(p)|2 − |ZfI(p)|2

)2
, (6.5)

almost everywhere in Ω.

For the proof of (6.5), see Lemma 5.2.2 in Chapter 5. Everything is arranged for the following

Proposition 6.2.3. Let f0 : Ω → Ω′ be an orientation preserving quasiconformal map

between domains in the affine-additive group. As described above, let γ be the foliation of Ω

and let Γ0 be the curve family. Assume further that f0 has the MSP for Γ0 and that

K(γ(s, δ), f0) ≡ Kf0(δ) (6.6)

for all (s, δ) ∈ (c, d) × ∆. Then

Mod4(f0(Γ0)) =
1

(d− c)3

ˆ
∆

K2
f0

(δ) dν(δ) . (6.7)

Proof. Let ρ′ ∈ Adm(f0(Γ0)) be an arbitrary density. Since f0 is quasiconformal, we know

that the image under f0 of an horizontal curve γ(·, δ) ∈ Γ0 is still a horizontal curve up to
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a sub-family of curves contained in Γ0 with vanishing 4-modulus. The minimal stretching

property of f0 grants (6.4) and therefore we find

1 ≤
ˆ d

c

ρ′(f0 ◦ γ(s, δ))|(f0 ◦ γ)·(s, δ)|H ds

=

ˆ d

c

ρ′(f0 ◦ γ(s, δ))

∣∣Z(f0)I(γ(s, δ))
∣∣− ∣∣Z(f0)I(γ(s, δ))

∣∣
2(f0)2(γ(s, δ))

|γ̇(s, δ)|H ds.

We apply Hölder’s inequality with conjugated exponents 4 and 4
3

to the last relation; this

gives

1

(d− c)3
≤
ˆ d

c

ρ′4(f0 ◦ γ(s, δ))
(∣∣Z(f0)I(γ(s, δ))

∣∣− ∣∣Z(f0)I(γ(s, δ))
∣∣

2(f0)2(γ(s, δ))

)4
|γ̇(s, δ)|4H ds.

Now, multiplying both sides by K2
f0

(δ) and integrating over ∆ with respect to dν gives

1

(d− c)3

ˆ
∆

K2
f0

(δ) dν(δ) ≤ (6.8)

ˆ
∆

ˆ d

c

ρ′4(f0 ◦ γ(s, δ))K2
f0

(δ)

(∣∣Z(f0)I(γ(s, δ))
∣∣− ∣∣Z(f0)I(γ(s, δ))

∣∣
2(f0)2(γ(s, δ))

)4

|γ̇(s, δ)|4H ds dν(δ).

By plugging in the assumption Kf0(δ) ≡ K(γ(s, δ), f0) for all (s, δ) ∈ (c, d) × ∆ into (6.5),

we obtain the identity

K2(γ(s, δ), f0)

(∣∣Z(f0)I(γ(s, δ))
∣∣− ∣∣Z(f0)I(γ(s, δ))

∣∣
2(f0)2(γ(s, δ))

)4

= JµAA(γ(s, δ), f0).

By recomposing the left-invariant Haar measure on AA through the foliation γ as

|γ̇(s, δ)|4H ds dν(δ) = dµAA(p), p = γ(s, δ) ∈ Ω,

we get that (6.8) results into

1

(d− c)3

ˆ
∆

K2
f0

(δ) dν(δ) ≤
ˆ
Ω

ρ′4(f0(p))JµAA(p, f0) dµAA(p). (6.9)

We apply the change of variable f0(p) = q ∈ Ω′; then (6.9) becomes

1

(d− c)3

ˆ
∆

K2
f0

(δ) dν(δ) ≤
ˆ
Ω′
ρ′4(q) dµAA(q).

Since ρ′ was chosen arbitrarily among the admissible densities of f0(Γ0), the latter inequality

shows that
1

(d− c)3

ˆ
∆

K2
f0

(δ) dν(δ) ≤ Mod4(f0(Γ0)).
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For the other inequality consider the push-forward density given by

ρ′0(q) =


2(f0)2(γ(s,δ))

(d−c)|γ̇(s,δ)|H(|Z(f0)I(γ(s,δ))|−|Z(f0)I(γ(s,δ))|)
, q = f0(γ(s, δ)) ∈ Ω′,

0, q /∈ Ω′.

Thanks to the minimal stretching property of f0 this density is admissible, i.e. ρ′0 ∈ Adm(f0(Γ0)):

ˆ
f0◦γ

ρ′0 dℓ =

ˆ d

c

ρ′0(f0 ◦ γ(s, δ))|(f0 ◦ γ)·(s, δ)|H ds =

ˆ d

c

1

d− c
ds = 1.

Therefore, via the change of variable f0(γ(s, δ)) = q ∈ Ω′ for some (s, δ) ∈ (c, d) × ∆, we

obtain:

Mod4(f0(Γ0)) ≤
ˆ
Ω′
ρ′ 40 (q) dµAA(q)

=

ˆ
Ω

ρ′ 40 (f0(p))JµAA(p, f0) dµAA(p)

=

ˆ
Ω

ρ′ 40 (f0(p))
1

(2(f0)2(p))4
(
|Z(f0)I |2 − |Z(f0)I |2

)2
(p) dµAA(p)

=

ˆ
∆

ˆ d

c

1

(d− c)4|γ̇(s, δ)|4H
K2(γ(s, δ), f0)|γ̇(s, δ)|4H ds dν(δ)

=
1

(d− c)4

ˆ
∆

ˆ d

c

K2(γ(s, δ), f0) ds dν(δ)

=
1

(d− c)3

ˆ
∆

K2
f0

(δ) dν(δ).

In this way the proof is concluded.

Before stating the main result of this chapter concerning conditions for extremality of

the mean distortion integral we need to define a condition on the quasiconformal distortion.

Let f0 : Ω → Ω′ be an orientation preserving quasiconformal mapping between domains

in the affine-additive group. Let γ be a foliation of Ω as described in Proposition 6.1.1.

Assume as well that f0 has the MSP for Γ0; we then say that the distortion quotient K(·, f0)
is constant along every curve γ if and only if

K(γ(s, δ), f0) ≡ Kf0(δ) for all (s, δ) ∈ (c, d) × ∆. (6.10)

We are in the position to prove the following

Theorem 6.2.4. Assume that f0 satisfies the minimal stretching property with respect to Γ0

described as above. Let ρ0 be the extremal density for Γ0 and assume K(·, f0) to be constant
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along every curve foliating Ω. Let Γ ⊇ Γ0 be a curve family such that ρ0 ∈ Adm(Γ) and let

F be the class of quasiconformal maps f : Ω → Ω′ such that

Mod4(f0(Γ0)) ≤ Mod4(f(Γ)). (6.11)

Then ˆ
Ω

K2(p, f0)ρ
4
0(p) dµAA(p) ≤

ˆ
Ω

K2(p, f)ρ40(p) dµAA(p)

for all f ∈ F .

Proof. Recalling the definition of ρ0 ∈ Adm(Γ0) given in (6.1) and combining it with

Proposition 6.2.3, applied on Γ0, ρ0 and f0, we get that:

ˆ
Ω

K2(p, f0)ρ
4
0(p) dµAA(p) =

1

(b− a)3

ˆ
Λ

K2
f0

(δ) dν(δ) = Mod4(f0(Γ0)) (6.12)

Thanks to the assumption (6.11), and applying (5.14) from Proposition 5.3.1 with respect

to the density ρ0 ∈ Adm(Γ0) ⊆ Adm(Γ), we obtain:

Mod4(f0(Γ0)) ≤ Mod4(f(Γ0)) ≤
ˆ
Ω

K2(p, f)ρ40(p) dµAA(p), for all f ∈ F . (6.13)

By coupling the inequalities (6.12) and (6.13) we obtain the desired result.

Remark 6.2.5. From the statement of Theorem 6.2.4 we can develop a method which

verifies if a candidate quasiconformal map f0 : Ω → Ω′ between domains Ω,Ω′ ⊂ AA, is a

minimizer for the mean distortion functional. We describe the steps of the method:

1. let F be a class of quasiconformal mappings f : Ω → Ω′, f ∈ F ;

2. let γ be a foliation for Ω which is composed of horizontal curves decomposing the volume

measure of AA, i.e. γ verifies the assumptions of Proposition 6.1.1;

3. introduce the curve family Γ0 and then calculate the extremal density ρ0 for Mod4(Γ0)

given by (6.1);

4. verify that the distortion quotient K(·, f) is constant along such horizontal curves foliating

Ω, i.e. condition (6.6);

5. check the MSP for f0 with respect to Γ0;

6. determine a curve family Γ ⊃ Γ0 such that Mod4(f0(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ F
and verify ρ0 ∈ Adm(Γ).
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Chapter 7

Stretch maps on AA

In this chapter we define linear and radial stretch maps on the affine-additive group, and

prove that they are minimizers of the mean quasiconformal distortion functional (6). For the

proofs we rely on the modulus method described in Chapter 6, in particular we shall follow

the strategy described in Remark 6.2.5.

7.1 The linear stretch map

For k > 0, the map fk : AA → AA given by

fk(a, λ+ it) = (ka, λ+ ikt), (7.1)

shall be called linear stretch map. Its name is justified by the fact that it is a linear map

with respect to the cartesian coordinates.

We will present two geometric settings where the linear stretch map turns to be a minimizer

for the mean distortion functional, respectively for k ∈ (0, 1) and for k > 1. This distinction

is motivated by the Beltrami coefficient µfk = 1−k
1+k

: the two geometric settings have distinct

suitable domains, foliations and associated curve families such that the MSP for fk holds for

both cases.

7.1.1 The case k ∈ (0, 1).

Let k ∈ (0, 1) and define two domains as follows:

Ω =

{(
a+

t

2λ
, λ+ it

)
∈ AA : a ∈ (0, 1), λ ∈

(
1

2
, 1

)
, t ∈ (0, 1)

}
,

Ωk =

{(
k

(
a+

t

2λ

)
, λ+ ikt

)
∈ AA : a ∈ (0, 1), λ ∈

(
1

2
, 1

)
, t ∈ (0, 1)

}
.
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For a fixed t ∈ R, we denote

∂Ωt =

{(
a+

t

2λ
, λ+ it

)
∈ AA : a ∈ (0, 1), λ ∈

(
1

2
, 1

)}
and consider the class Fk of all quasiconformal mappings f : Ω → Ωk which extend homeo-

morphically to the boundary and we impose conditions

f(∂Ω0) = ∂Ωk
0 and f(∂Ω1) = ∂Ωk

1.

The domain Ω is displayed in the following figure:

Figure 7.1: ∂Ω0 is in cyan and ∂Ω1 is in purple.
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With the present setting we prove the following

Theorem 7.1.1. The linear stretch map fk : Ω → Ωk is an orientation preserving quasicon-

formal map. With the above notation for ρ0, fk minimizes the mean distortion within the

class Fk: for all f ∈ Fk we have that

K2
fk

≤
´
Ω
K2(·, f)ρ40 dµAA´

Ω
ρ40 dµAA

. (7.2)

Proof. The steps of the proof steps are the ones explained in Remark 6.2.5.

1. The class Fk is presented above the proof.

2. Let the pair (a, λ) ∈ (0, 1) ×
(
1
2
, 1
)

and let γ : (0, 1) × (0, 1) ×
(
1
2
, 1
)
→ Ω be the foliation

of Ω given by

γ(s, a, λ) =
(
a+

s

2λ
, λ+ is

)
, (s, a, λ) ∈ (0, 1) × (0, 1) ×

(
1

2
, 1

)
.

In this way, the volume element on AA can be written as

dµAA(γ(s, a, λ)) =
1

λ2
da dλ ds = |γ̇(s, a, λ)|4H ds dν(a, λ),

where

dν(a, λ) = 24λ2 da dλ.

3. In order to apply Proposition 6.1.1, we consider the family of horizontal curves

Γ0 =

{
γ(·, a, λ) : a ∈ (0, 1), λ ∈

(
0,

1

2

)}
.

An extremal density for Γ0 is given by formula (6.1): namely, ρ0(a, λ+it) = 2λ ·XΩ(a, λ+it).

Hence

Mod4(Γ0) =

ˆ 1

1
2

ˆ 1

0

24λ2 da dλ =
14

3
.

4. An explicit calculation gives constant distortion quotient Kfk . Indeed,

K(γ(s, a, λ), fk) ≡
1

k
, (s, a, λ) ∈ (0, 1) × (0, 1) ×

(
1

2
, 1

)
,

and so Kfk = ess suppK(p, fk) = 1
k
.

5. We observe that fk has the MSP with respect to the curve family Γ0. Indeed, for k ∈ (0, 1)

we have

µf0(γa,λ(s))
˙

(γa,λ)I(s)
˙(γa,λ)I(s)

=
k − 1

1 + k
< 0 for all s ∈ (0, 1).
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6. Aiming to apply Theorem 6.2.4, we need to find a bigger curve family Γ ⊇ Γ0 for which ρ0

is still admissible and such that Mod4(fk(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ Fk. A guess for Γ is

the family of all horizontal curves contained in Ω which are joining the two components ∂Ω0

and ∂Ω1. The boundary conditions for maps in the class Fk provide that the image fk(Γ) is

going to be a family of the same type in Ωk. Using the absolute continuity of quasiconformal

mappings on almost every curve up to a negligible family of curves with zero 4-modulus and

using the boundary conditions, we may show that

Mod4(fk(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ Fk

We have to check that ρ0 is admissible for the extended family Γ. Indeed, for a curve

γ : [c, d] → AA with γ ∈ Γ, we haveˆ
γ

ρ0 dℓ =

ˆ d

c

√
λ̇(s)2 + ṫ(s)2 ds ≥

ˆ d

c

ṫ(s) ds = 1

Here we have used for the evaluation of the integral the fact that s 7→ t(s) is an absolutely

continuous function and the conditions γ(c) ∈ ∂Ω0, γ(d) ∈ ∂Ω1.

We conclude that ρ0 ∈ Adm(Γ) and, from Theorem 6.2.4, it follows that

K2
fk

ˆ
Ω

ρ0(p)
4 dµAA(p) ≤

ˆ
Ω

K(p, f)2ρ0(p)
4 dµAA(p) for all f ∈ Fk . (7.3)

The proof is complete.

We wish to highlight an important consequence which follows from the last proof: by

taking the essential supremum for K2(·, f) on the r.h.s. of (7.3), we notice that fk minimizes

also the maximal distortion Kf (see (5.8)). We therefore state:

Corollary 7.1.2. The linear stretch map fk : Ω → Ωk is an orientation preserving quasi-

conformal map such that

Kfk ≤ Kf ,

for all f ∈ Fk .

7.1.2 The case k > 1.

Let k > 1 and by using a similar notation as in the previous section we consider two

domains as follows:

Ω =

{
(a, λ+ it) ∈ AA : a ∈ (0, 1), λ ∈

(
1

2
, 1

)
, t ∈ (0, 1)

}
,

Ωk =

{
(ka, λ+ ikt) ∈ AA : a ∈ (0, 1), λ ∈

(
1

2
, 1

)
, t ∈ (0, 1)

}
.
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For a fixed λ > 0, let

∂Ωλ = {(a, λ+ it) ∈ AA : a ∈ (0, 1), t ∈ (0, 1)}

and consider the class Fk of all quasiconformal mappings f : Ω → Ωk which extend homeo-

morphically to the boundary subject to the conditions

f(∂Ω 1
2
) = ∂Ωk

1
2

and f(∂Ω1) = ∂Ωk
1.

With the current specific setting we prove a result analogous to Theorem 7.1.1 in the following

Theorem 7.1.3. The linear stretch map fk : Ω → Ωk is an orientation preserving quasicon-

formal map. With the above notation for ρ0, fk minimizes the mean distortion within the

class Fk: for all f ∈ Fk we have that

K2
fk

≤
´
Ω
K2(·, f)ρ40 dµAA´

Ω
ρ40 dµAA

. (7.4)

Proof. Again, the steps of the proof follow the strategy of Remark 6.2.5.

1. The class Fk is as above.

2. Let the pair (a, t) ∈ (0, 1)× (0, 1) and let γ :
(

3

2
1
3
, 3
)
× (0, 1)× (0, 1) → Ω be the foliation

of Ω given by

γ(s, a, t) =

(
a,
s3

33
+ it

)
, (s, a, t) ∈

(
3

2
1
3

, 3

)
× (0, 1) × (0, 1).

In this way, the volume element on AA can be written as

dµAA(γ(s, a, t)) =
34

s4
da ds dt = |γ̇(s, a, t)|4H ds dν(a, t),

where

dν(a, t) = 24 da dt.

3. In order to apply Proposition 6.1.1, we consider the family of horizontal curves

Γ0 = {γ(·, a, t) : a ∈ (0, 1), t ∈ (0, 1)}.

The extremal density ρ0 for Γ0 following from formula (6.1), is given by

ρ0(a, λ+ it) = c0λ
1
3 · XΩ(a, λ+ it),

where c0 = 2
4
3

3
(
2
1
3−1

) . This results into

Mod4(Γ0) =
1(

3 − 3

2
1
3

)3 ˆ 1

0

ˆ 1

0

24 da dλ =
25

33
(

2
1
3 − 1

) .
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4. An explicit calculation gives constant distortion quotient Kfk , indeed

K(γ(s, a, t), fk) ≡ k, (s, a, t) ∈
(

3

2
1
3

, 3

)
× (0, 1) × (0, 1),

and so Kfk = ess suppK(p, fk) = k.

5. We observe that fk has the MSP with respect to the curve family Γ0. Indeed, for k > 1

we have

µf0(γa,t(s))
˙

(γa,t)I(s)
˙(γa,t)I(s)

=
1 − k

1 + k
< 0, for all s ∈

(
3

2
1
3

, 3

)
.

6. Now, in order to apply Theorem 6.2.4, we need to find a bigger curve family Γ ⊇ Γ0 for

which ρ0 is still admissible and such that Mod4(fk(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ Fk. As in

the previous proof, a guess for Γ is the family of all horizontal curves contained in Ω which

are joining the two components ∂Ω 1
2

and ∂Ω1. Using similar arguments as in the previous

proof we have

Mod4(fk(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ Fk.

We have to check that ρ0 is admissible for the extended family Γ. Indeed, for a curve

γ : [c, d] → AA with γ ∈ Γ, we have

ˆ
γ

ρ0 dℓ =c0

ˆ d

c

λ(s)
1
3

√
λ̇(s)2 + ṫ(s)2

2λ(s)
ds

≥c0
2

ˆ d

c

λ̇(s)

λ(s)
2
3

ds =
3c0
2

(
λ(d)

1
3 − λ(c)

1
3

)
= 1.

Here we have used for the evaluation of the integral the fact that s 7→ λ(s) is an absolutely

continuous function and the conditions γ(c) ∈ ∂Ω 1
2
, γ(d) ∈ ∂Ω1.

We conclude that ρ0 ∈ Adm(Γ) and, from Theorem 6.2.4, it follows that

K2
fk

ˆ
Ω

ρ0(p)
4 dµAA(p) ≤

ˆ
Ω

K(p, f)2ρ0(p)
4 dµAA(p) for all f ∈ Fk .

The proof is complete.

In the same manner as in Corollary 7.1.2, we obtain

Corollary 7.1.4. The linear stretch map fk : Ω → Ωk is an orientation preserving quasi-

conformal map such that

Kfk ≤ Kf ,

for all f ∈ Fk .
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This case may be viewed as a solution to the Grötzsch problem on the setting of the

affine-additive group (see also [2] and [30] for the classical Grötzsch problem on the complex

plane, as well as Section 5.2 in [10] for the analogous Grötzsch problem on the Heisenberg

group).

7.2 Cylindrical-logarithmic coordinates

In order to construct radial stretch maps it is convenient to set up an appropriate type of

coordinate system on the affine-additive group. To this direction, a first step is to consider

cylindrical coordinates: recall that AA identifies to R ×H1
C, hence the coordinate map for

the cylindrical coordinates is given by C : R× R>0 ×
(
−π

2
, π
2

)
→ AA where

C(a, r, ψ) = (a, reiψ), (a, r, ψ) ∈ R× R>0 ×
(
−π

2
,
π

2

)
.

By applying the transformation ξ 7→ eξ = r > 0, with ξ ∈ R, the cylidrical-logarithmic

coordinates are defined as Φ : R× R×
(
−π

2
, π
2

)
→ AA where

Φ(a, ξ, ψ) =
(
a, eξ+iψ

)
. (7.5)

Moreover, the inverse map for this new type of coordinates is explicitly given by

Φ−1(a, λ+ it) =

(
a,

log(λ2 + t2)

2
, tan−1

(
t

λ

))
∈ R× R×

(
−π

2
,
π

2

)
, (a, λ+ it) ∈ AA.

On the domain

A := R× R×
(
−π

2
,
π

2

)
,

the map Φ : A → AA is a smooth diffeomorphism with corresponding Jacobian determinant

(det Φ∗)(a,ξ,ψ) = e2ξ ̸= 0. (7.6)

It follows that for each curve γ : [c, d] → AA and each point (a, ξ, ψ) = Φ−1(γ(c)), there exists

a unique curve γ̃ = Φ−1◦γ : [c, d] → A such that γ̃(c) = (a, ξ, ψ). If γ is absolutely continuous

in the Euclidean sense, or if it is Ck for a k ∈ N0, then γ̃ will be as regular as γ. Further, the

same reasoning applies also for continuous mappings from simply connected domains in AA.

In detail, every mapping f̃ : A → A yields a well-defined map f : AA → AA by setting

f = Φ ◦ f̃ ◦ Φ−1.

In what follows, we are going to use only cylindrical-logarithmic coordinates: we will

define a quasiconformal map f between domains in the affine-additive group by giving a for-

mula for f̃ . On the other hand, we will still work with f̃ in the case where this is convenient.
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It turns out that the stretch map has a much neater form in cylindrical-logarithmic co-

ordinates.

In what follows we shall give expression for:

• the contact condition;

• the horizontal vector fields;

• the volume and curve integrals;

• the Beltrami coefficient;

• the MSP condition,

in these particular coordinates. We adopt the notation

f̃(a, ξ, ψ) = (A(a, ξ, ψ),Ξ(a, ξ, ψ),Ψ(a, ξ, ψ)) .

Also, if η is an index running through a, ξ and ψ, we will write Aη = ∂A
∂η

for a given

differentiable function A.

7.2.1 Horizontality, contact condition and minimal stretching prop-

erty.

In order to apply the modulus method, we will need to understand how the horizontality

condition transfers on curves in terms of cylindrical-logarithmic coordinates. The following

formulas of horizontality and of line integration for curves in A are useful.

Proposition 7.2.1. A curve γ : [c, d] → AA is horizontal if and only if there exists an

absolutely continuous curve

γ̃ : [c, d] → A, γ̃(s) = (a(s), ξ(s), ψ(s)),

with Φ ◦ γ̃ = γ and

ψ̇(s)

2
+

tanψ(s)

2
ξ̇(s) − ȧ(s) = 0 for almost every s ∈ [c, d]. (7.7)

Moreover, for any Borel function ρ : AA → [0,+∞], we have

ˆ
γ

ρ dℓ =

ˆ d

c

ρ(Φ(γ̃(s)))

√
ξ̇(s)2 + ψ̇(s)2

2 cosψ(s)
ds . (7.8)
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Proof. If γ̃ : [c, d] → A is an absolutely continuous curve satisfying (7.7), then we consider

the absolutely continuous curve γ := Φ ◦ γ̃. Conversely, if γ : [c, d] → AA is horizontal, we

take γ̃ : [c, d] → A to be γ̃ = Φ−1 ◦ γ.

Now, consider two almost everywhere differentiable curves γ : [c, d] → AA and γ̃ : [c, d] → A

such that Φ ◦ γ̃ = γ for all s ∈ [c, d]. Let s be a point of differentiability in [c, d]. There

exists a neighborhood of s where we also have Φ ◦ γ̃ = γ. By applying the latter identity to

(1.6) it follows that the condition for a horizontal curve reads as (7.7). Then we obtain:

|γ̇(s)|H =

√
ξ̇(s)2 + ψ̇(s)2

2 cosψ(s)
.

For such a horizontal curve γ : [c, d] → AA, the formula for the curve integral follows

immediately since
´
γ
ρ dℓ =

´ d
c
ρ(γ(s))|γ̇(s)|H ds.

Now, we are going to describe the contact form and the contact conditions with respect

to the cylindrical-logarithmic coordinates. The cartesian coordinates on AA can be defined

through the diffeomorphism Φ using coordinates (a, ξ, ψ). The expression of the contact

form ϑ on A is

ϑ =
dψ

2
+

tanψ

2
dξ − da . (7.9)

Proposition 7.2.2. Let Q be an open set in A and assume that there exist C1 maps

f̃ : Q → A and f : Φ(Q) → AA such that f = Φ ◦ f̃ ◦ Φ−1 on Q. Then the following

conditions are equivalent:

(1) the map f is a contact transformation;

(2) there exists a nowhere vanishing function λ̃ : Q→ R such that the map f̃ = (A,Ξ,Ψ) is

a C1 diffeomorphism satisfying the system of p.d.e.s

Ψψ + tan Ψ Ξψ − 2Aψ = λ̃

Ψξ + tan Ψ Ξξ − 2Aξ = λ̃ tanψ (7.10)

2Aa − Ψa − tan Ψ Ξa = 2λ̃ .

Proof. Since f and f̃ are related by f = Φ ◦ f̃ ◦ Φ−1, it is straightfoward to see that f is a

C1 diffeomorphism if and only if f̃ is so.

Now, focusing on the contact conditions, we recall that the map Φ is a diffeomorphism and

that the contact form ϑ is given by (7.9). The condition that there exists λ(p) ̸= 0 such that

(f ∗ϑ)p = λ(p)ϑp is equivalent to (7.10) with λ̃ = λ ◦ Φ.
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Remark 7.2.3. We wish to underline here that a quasiconformal mapping f is differentiable

almost everywhere and contact almost everywhere. Thus the corresponding f̃ satisfies the

system of p.d.e.s (7.10) almost everywhere.

Below, we give expressions for the vector fields Z and Z in terms of cylindrical-logarithmic

coordinates. Straightforward calculations yield

Z = e−iψ cosψ(∂ξ − i∂ψ) − i

2
∂a , (7.11)

Z = eiψ cosψ(∂ξ + i∂ψ) +
i

2
∂a . (7.12)

Let f and f̃ = (A,Ξ,Ψ) be C1 maps as in Proposition 7.2.2. The Beltrami coefficient of f

is given by

µf (Φ(a, ξ, ψ)) =

(
Z(Ξ + iΨ)

Z(Ξ + iΨ)

)
|(a,ξ,ψ)

. (7.13)

Now assume in addition that f is an orientation preserving quasiconformal map. Let Γ̃ be a

family of C1 curves

γ̃ : [a, b] → A, γ̃(s) = (a(s), ξ(s), ψ(s))

such that

ψ̇(s)

2
+

tanψ(s)

2
ξ̇(s) − ȧ(s) = 0 for all s ∈ (a, b),

and

ξ̇(s) − iψ̇(s)

ξ̇(s) + iψ̇(s)

(
Z(Ξ + iΨ)

Z(Ξ + iΨ)

)
|γ̃(s)

< 0, (7.14)

for s ∈ (a, b) with µf (Φ(γ̃(s)) ̸= 0. Then f has the MSP for the family Γ = {Φ ◦ γ̃ : γ̃ ∈ Γ̃}.

7.3 The radial stretch map

In order to construct an analogue of the radial stretch map z 7→ |z|k−1z in the setting of

AA, we detect a suitable domain where this radial stretch map will be defined. This domain

happens to be a truncated cylindrical shell, parallel to the a-axis of AA.

In detail, for 0 < ψ0 <
π
2

and r0 > 1 we define

Dr0, ψ0 =

{(
a+

tanψ

2
ξ, eξ+iψ

)
∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0), ξ ∈ (0, log r0)

}
. (7.15)
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Furthermore, we define the following subsets of ∂Dr0, ψ0 :

E =
{(
a, eiψ

)
∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0)

}
, (7.16)

F =

{(
a+

tanψ

2
log r0, r0e

iψ

)
∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0)

}
. (7.17)

By varying a ∈ (0, 1) and ψ ∈ (0, ψ0), we see that E and F are connected by horizontal

curves γa, ψ : [0, log r0] → Dr0,ψ0 given by

γa, ψ(s) =

(
a+

tanψ

2
s, es+iψ

)
.

Before we proceed, we shall give a volume formula with respect to the logarithmic-cylindrical

coordinates and then apply it to the particular case of Dr0,ψ0 . Let Ω ⊆ AA be a measurable

set and let Q ⊆ A be an open set such that its image Φ(Q) = Ω. Then a function h : Ω → R
is integrable if and only if (h ◦ Φ)| det Φ∗| is integrable on Q and in this case we have

ˆ
Ω

h(p) dµAA(p) =

ˆ
Q

h(Φ(a, ξ, ψ))

cos2 ψ
dL3(a, ξ, ψ) .

For every integrable function h : Dr0, ψ0 → R we have

ˆ
Dr0, ψ0

h(p) dµAA(p) =

ˆ ψ0

0

ˆ log r0

0

ˆ 1+ tanψ
2

ξ

tanψ
2

ξ

h(Φ(a, ξ, ψ))

cos2 ψ
da dξ dψ .

Dr0,ψ0 for the case r0 = e, ψ0 = π
4

is in the following figure.

7.3.1 Proof of extremality.

In this section we construct the radial stretch map on the affine-additive group. We shall

prove the extremality of the radial stretch map with respect to the mean distortion integral

and then discuss the properties of the radial stretch map in the remarks.

Let 0 < k < 1; we start by considering logarithmic-polar coordinates (ξ, ψ) ∈ R ×
(
−π

2
, π
2

)
on H1

C with symplectic form ω = dξ∧dψ
4 cos2 ψ

and, with respect to the same coordinates, we set

the 1-form τ on H1
C given by τ = dψ

2
+ tanψ

2
dξ. We introduce the symplectic and planar

radial stretch map gk : R×
(
−π

2
, π
2

)
→ R×

(
−π

2
, π
2

)
, defined as

gk(ξ, ψ) =

(
kξ, tan−1

(
tanψ

k

))
.

Now, let p = Φ(a, ξ, ψ) ∈ AA, take γ to be an horizontal path joining the neutral ele-

ment eAA = (0, 1, 0) ∈ AA with p and we construct, in cylindrical-logarithmic coordinates,
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Figure 7.2: Domain De,π
4

with E in cyan and F in purple.

f̃k : A → A, i.e. the lift of gk as

f̃k(a, ξ, ψ) =

(ˆ
π(γ)

g∗kτ, kξ, tan−1

(
tanψ

k

))
=

(
a− ψ

2
+

1

2
tan−1

(
tanψ

k

)
, kξ, tan−1

(
tanψ

k

))
. (7.18)

Let r0 > 1, 0 < ψ0 < π
2

and let also the domain Dr0,ψ0 . Consider another truncated

cylindrical shell Dk
r0,ψ0

. In cylindrical-logarithmic coordinates those domains are given by

Dr0, ψ0 =

{
Φ

(
a+

tanψ

2
s, s, ψ

)
∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0), s ∈ (0, log r0)

}
,

Dk
r0, ψ0

=

{
Φ

(
a+

tanψ

2
s− ψ

2
+

1

2
tan−1

(
tanψ

k

)
, ks, tan−1

(
tanψ

k

))
∈ AA :

a ∈ (0, 1), ψ ∈ (0, ψ0), s ∈ (0, log r0)} .

66



Now, we setup a precise boundary condition for a mapping problem. The subsets E and F

of ∂Dr0, ψ0 (see (7.16)) are given in cylindrical-logarithmic coordinates by

E ={Φ (a, 0, ψ) ∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0)},

F =

{
Φ

(
a+

tanψ

2
, 1, ψ

)
∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0)

}
,

respectively. Also, we consider the following subsets of ∂Dk
r0, ψ0

:

Ek =

{
Φ

(
a− ψ

2
+

1

2
tan−1

(
tanψ

k

)
, 0, tan−1

(
tanψ

k

))
∈ AA : a ∈ (0, 1), ψ ∈ (0, ψ0)

}
,

F k =

{
Φ

(
a+

tanψ

2
− ψ

2
+

1

2
tan−1

(
tanψ

k

)
, k log r0, tan−1

(
tanψ

k

))
∈ AA :

a ∈ (0, 1), ψ ∈ (0, ψ0)} .

Denote by Fk the class of all quasiconformal maps Dr0, ψ0 → Dk
r0, ψ0

with the property

that they map homeomorphically the component E to Ek and the component F to F k,

respectively. We can now prove the following

Theorem 7.3.1. The radial stretch map fk : Dr0, ψ0 → Dk
r0, ψ0

is an orientation preserving

quasiconformal map. With the above notation for ρ0, fk minimizes the mean distortion

within the class Fk: for all f ∈ Fk we have that

ˆ
Dr0,ψ0

K2(p, fk)ρ
4
0(p) dµAA(p) ≤

ˆ
Dr0,ψ0

K2(p, f)ρ40(p) dµAA(p) .

Proof. We prove first that fk : Dr0, ψ0 → Dk
r0, ψ0

is a quasiconformal map. The assumptions

of Proposition 7.2.2 are satisfied by the smooth map f̃k : A → A; thus the stretch map

fk |Dr0,ψ0 is a smooth contact transformation onto its image. Formula (7.13) yields that

µfk(Φ(a, ξ, ψ)) = e2iψ
k2 − 1

k2 + 2 tan2 ψ + 1
, (a, ξ, ψ) ∈ A,

proving ∥µfk∥∞ < 1. We have therefore proved that fk is a smooth orientation preserving

quasiconformal map on Dr0,ψ0 with

∥µfk∥∞ =
1 − k2

1 + k2
< 1 and Kfk =

1

k2
<∞.

We next prove that

ˆ
Dr0,ψ0

K2(p, fk)ρ0(p)
4 dµAA(p) ≤

ˆ
Dr0,ψ0

K2(p, f)ρ0(p)
4 dµAA(p),
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with ρ0(a, λ, t) = (log r0)
−1 2λ

|λ+it| for all f ∈ Fk. In order to do so, we once more follow the

steps of the proof as in Remark 6.2.5.

1. The class Fk is as above.

2. Let ∆ = (0, 1) × (0, ψ0); we define

γ̃ : (0, log r0) × ∆ → A, γ̃(s, a, ψ) = (a(s), ξ(s), ψ(s)) =

(
a+

tanψ

2
s, s, ψ

)
, (7.19)

and

γ : (0, log r0) × ∆ → Dr0,ψ0 , γ(s, a, ψ) = Φ(γ̃(s, a, ψ)).

The smooth diffeomorphism γ has nowhere vanishing Jacobian determinant det γ∗(s, a, ψ) = e2s.

Further, for each fixed (a, ψ) ∈ ∆ the curve

γ(·, a, ψ) : (0, log r0) → Dr0,ψ0 , s 7→ Φ

(
a+

tanψ

2
s, s, ψ

)
,

is horizontal: indeed, we observe that

ψ̇(s)

2
+

tanψ(s)

2
ξ̇(s) − ȧ(s) = 0, s ∈ (0, log r0),

and we use Proposition 7.2.1. Additionally,

|γ̇(s, a, ψ)|H =
1

2 cosψ
̸= 0 for all (s, a, ψ) ∈ (0, log r0) × ∆.

In this way, by introducing δ = (a, ψ) ∈ ∆, the volume element on AA may be written as

dµAA(γ(s, δ)) =
1

cos2 ψ
ds da dψ = |γ̇(s, a, ψ)|4H ds dν(a, ψ),

where

dν(a, ψ) = 24 cos2 ψ da dψ.

3. Our model curve family is

Γ0 = {γ(·, a, ψ) : (a, ψ) ∈ (0, 1) × (0, ψ0)}.

According to Proposition 6.1.1, an extremal density for Γ0 is ρ0 defined by

ρ0(p) =

log(r0)
−12 cosψ, if p = γ(s, a, ψ) ∈ Dr0,ψ0 ,

0, if p /∈ Dr0,ψ0 ,

and also

Mod4(Γ0) =

(
2

log r0

)3

(ψ0 + sinψ0 cosψ0) .
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4. Since we have

K(γ(s, a, ψ), fk) =
1

k2 cos2 ψ + sin2 ψ
, (s, a, ψ) ∈ (0, log r0) × ∆,

we notice that the distortion K(γ(s, a, ψ), fk) does not depend on s ∈ (0, log r0), but only

on ψ ∈ (0, ψ0). This means that the distortion K(·, fk) is constant along every curve γ in

the sense of (6.10).

5. We use the criterion given in (7.14) to verify the MSP for fk with respect to the curve

family Γ0. We check straightforwardly that

ξ̇(s) − iψ̇(s)

ξ̇(s) + iψ̇(s)

(
Z(Ξ + iΨ)

Z(Ξ + iΨ)

)
|γ̃(s)

=
k2 − 1

k2 + 2 tan2 ψ + 1
< 0,

for all s ∈ (0, log r0). This holds true for all k such that 0 < k < 1. In this way, due to

Proposition 6.2.3, we obtain

Mod4(fk(Γ0)) =
24

(log r0)3

ˆ ψ0

0

ˆ 1

0

K2
fk

(a, ψ) cos2 ψ da dψ

=
24

(log r0)3

ˆ ψ0

0

cos2 ψ

(k2 cos2 ψ + sin2 ψ)2
dψ (7.20)

=

ˆ
Dr0,ψ0

K2(p, fk)ρ
4
0(p) dµAA(p).

6. We now define a bigger curve family Γ ⊇ Γ0 for which ρ0 is still admissible and such

that Mod4(fk(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ Fk. A typical guess for Γ is the family of all

absolutely continuous and almost everywhere horizontal curves contained in Dr0,ψ0 which

are joining the two components E and F . The boundary conditions for maps in the class

Fk assure us that the image fk(Γ) is going to be a family of the same type in Dk
r0.ψ0

. Using

the absolute continuity of quasiconformal mappings on almost every curve up to a negligible

family of curves with zero 4-modulus and using the boundary conditions, we can show that

Mod4(fk(Γ0)) ≤ Mod4(f(Γ)) for all f ∈ Fk. (7.21)

Eventually, we have to check that ρ0 is admissible for the extended family Γ. Observe that

from Proposition 7.2.1 it follows that for a curve γ : [c, d] → AA with γ ∈ Γ, we have

ˆ
γ

ρ0 dℓ =
1

log r0

ˆ d

c

√
ξ̇(s)2 + ψ̇(s)2 ds ≥ 1

log r0

ˆ d

c

ξ̇(s) ds

=
1

log r0
(log r0 − 0) = 1 .
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Here, to evaluate the integral we have used the fact that s 7→ ξ(s) is an absolutely continuous

function and the conditions γ(c) ∈ E, γ(d) ∈ F .

We conclude that ρ0 ∈ Adm(Γ) and from Theorem 6.2.4 it follows that

ˆ
Dr0,ψ0

K2(p, fk)ρ
4
0(p) dµAA(p) ≤

ˆ
Dr0,ψ0

K2(p, f)ρ40(p) dµAA(p) for all f ∈ Fk .

The proof is complete.

Remark 7.3.2. It is straightforward to show that the map fk, k > 1 is quasiconformal with

Kfk = k2. Indeed, it is enough to recover the same arguments from the first part of the

above proof. However, proving extremality in the case k > 1 requires a different argument.

Remark 7.3.3. In cartesian coordinates, the map fk = Φ ◦ f̃k ◦ Φ−1 : AA → AA, is given

by

fk(a, λ+ it) =

(
a− 1

2
tan−1

(
t

λ

)
+

1

2
tan−1

(
t

λk

)
,

(
(λ2 + t2)k

λ2k2 + t2

) 1
2

· (λk + it)

)
.

Remark 7.3.4. By writing the coordinate map φ : R×
(
−π

2
, π
2

)
→ H1

C as φ(ξ, ψ) = eξ+iψ,

(ξ, ψ) ∈ R ×
(
−π

2
, π
2

)
, and setting f̌k = φ ◦ gk ◦ φ−1 : H1

C → H1
C, we notice that the map

fk : AA → AA has the lifting property π ◦ fk = f̌k ◦ π.

Remark 7.3.5. Making use of the formal substitution k = −1, we obtain that the map

f−1 : AA → AA given by

(a, λ+ it) 7→
(
a− tan−1

(
t

λ

)
,
−λ+ it

|λ+ it|2

)
,

is a contactomorphism with f ∗
−1ϑ = ϑ and also a conformal map (1-quasiconformal).

7.4 Open question

In this final section we want to discuss the minimality of fk for the maximal distortion

Kfk , see (5.8). Let r0 > 1, ψ0 ∈
(
0, π

2

)
and we make use of the same notation as in the proof

of Theorem 7.3.1, reminding that the curve family Γ ⊇ Γ0 consists of all horizontal curves

contained in Dr0,ψ0 which connect the two boundary components E and F of ∂Dr0,ψ0 . By

coupling the modulus inequality given in (7.21) with the right inequality in (5.17), we obtain

the chain of inequalities

Mod4(fk(Γ))

Mod4(Γ)
≤ Mod4(f(Γ))

Mod4(Γ)
≤ K2

f , f ∈ Fk. (7.22)
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Now, notice that if we had

K2
fk

=
Mod4(fk(Γ))

Mod4(Γ)
, (7.23)

we would conclude

Kfk ≤ Kf , f ∈ Fk.

On the other hand, this is not the case because (7.23) does not hold for all ψ0 ∈
(
0, π

2

)
. To

this end, we recall that the density ρ0 is still admissible for the larger family Γ ⊇ Γ0. This

gives the modulus identity Mod4(Γ) = Mod4(Γ0) and thus

Mod4(Γ) =

(
2

log r0

)3

(ψ0 + sinψ0 cosψ0) .

To ρ0 we can assign a pushforward density fk#ρ0 given by

fk#ρ0(q) =


2(fk)2(f

−1
k (q))

|Z(fk)I(f−1
k (q))|−|Z(fk)I(f−1

k (q))|ρ0(f
−1
k (q)), if q ∈ Dk

r0,ψ0
,

0, if q /∈ Dk
r0,ψ0

.

Based on the proof of Theorem 7.3.1, it is straightforward to see that fk#ρ0 ∈ Adm(fk(Γ)),

giving an analogous modulus identity Mod4(fk(Γ)) = Mod4(fk(Γ0)). We refer to (7.20) and

this gives

Mod4(fk(Γ)) =

(
2

log r0

)3

k−3

(
k sin 2ψ0

1 + k2 + (k2 − 1) cos 2ψ0

+ tan−1

(
tanψ0

k

))
.

For ψ0 ∈ (π
4
, π
2
) we observe that the function

k 7→ k
3
2 sin 2ψ0

1 + k2 + (k2 − 1) cos 2ψ0

+ k
1
2 tan−1

(
tanψ0

k

)
, k ∈ (0, 1),

is monotone increasing (by a direct calculation the derivative is positive for k ∈ (0, 1)) and

thus bounded from above by ψ0 + sinψ0 cosψ0. Therefore

Mod4(fk(Γ))

Mod4(Γ)
≤ k−

7
2 < k−4 = K2

fk
.

In the case ψ0 ∈
(
π
4
, π
2

)
we see that equality does not necessarily hold for the stretch map fk

and the curve family Γ. Despite the latter inequality holds strictly it could still be true that

fk is minimal for the maximal distortion and it is an open question.
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Chapter 8

Riemmannian approximation scheme

In this chapter we make use of a Riemannian approximation scheme to provide notions of

horizontal mean curvature and of intrinsic Gaussian curvature for an Euclidean C2-smooth

surface in the affine-additive group AA away from characteristic points. Our approach will

combine such Riemannian approximation scheme with Cartan’s formalism, see Clelland’s

book [20]. Consider a surface Σ embedded in AA, by means of Cartan’s structural equations

we derive formulae for the sectional curvature K
ϵ

Σ and for the second fundamental form IIϵΣ.

By studying the limit case we provide formulae for the horizontal mean curvature H0 and

the intrinsic Gaussian curvature K0.

8.1 The method of moving frames

Before looking at the Riemannian approximation scheme we need to consider the differ-

ential geometry setup of AA as a Riemmannian manifold with a complex structure on the

horizontal sub-bundle of the tangent bundle T (AA).

Let ϑ be the contact form of AA given by (1.4), we recall that the horizontal bundle HAA

is given by

HAA = span{U, V },

where U, V as in Proposition 1.3.1. We denote with ⟨·, ·⟩AA the sub-Riemannian metric

defined on HAA and we associate the corresponding Carnot-Carathéodory distance dAA (see

Chapter 1 for more details). We define a complex structure J : HAA → HAA by letting

J(U) = V, J(V ) = −U.

Again according to Proposition 1.3.1 we denote with W the Reeb vector field.

Later on we will need the following (Proposition 12.17 in Lee’s book [41]):
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Proposition 8.1.1. For any differential 1-form ω and vector fields X1, X2 it holds

dω(X1, X2) = X1(ω(X2)) −X2(ω(X1)) − ω([X1, X2]).

We are now ready to implement the Riemannian approximation scheme. First, let us

define W ϵ = ϵW , for ϵ > 0. We consider a family of Riemannian metrics (gϵ)ϵ>0 on AA
such that {U, V,W ϵ} becomes an orthonormal basis. The choice of this specific family of

Riemannian metrics on AA is indicated by the following theorem

Theorem 8.1.2. The family of metric spaces (AA, gϵ) converges to (AA, dAA) in the pointed

Gromov–Hausdorff sense as ϵ→ 0+.

The result holds in the wider class of Carnot-Carathédory spaces, we refer to Chapter 2

in Gromov’s book [29] or Chapter 1 in Monti’s PhD thesis [46].

An affine connection is a basic concept in Riemannian geometry which serves as a useful

computational tool.

Definition 8.1.3. Let X (M) be the set of C∞-smooth vector fields on a manifold M . Let

D(M) be the ring of real-valued C∞-smooth functions on M . An affine connection ∇ on M

is a mapping

∇ : X (M) ×X (M) → X (M)

which is denoted with (X, Y ) 7→ ∇XY and which satisfies the following properties:

i) ∇fX+gYZ = f∇XZ + g∇YZ;

ii) ∇X(Y + Z) = ∇XY + ∇XZ;

iii) ∇X(fY ) = f∇XY +X(f)Y ;

in which X, Y, Z ∈ X (M) and f, g ∈ D(M).

It is well known that every Riemannian manifold is equipped with a privileged affine

connection: the Levi-Civita connection ∇ (see Theorem 3.6, Chapter 2 in do Carmo’s book

[23]). This is the unique affine connection which is compatible with the given Riemannian

metric and symmetric. Let ϵ > 0, we explain in detail such aforementioned properties for

the case of (AA, gϵ):
Xgϵ(Y, Z) = gϵ(∇XY, Z) + gϵ(Y,∇XZ)

and

∇XY −∇YX = [X, Y ]
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for all X, Y, Z ∈ X (AA).

Continuing with notation, we consider vector fields X, Y and write them with respect to the

orthonormal basis {U, V,W ϵ} as

X = x1U + x2V + xϵ3W
ϵ, Y = y1U + y2V + yϵ3W

ϵ,

thus obtaining

gϵ(X, Y ) = x1y1 + x2y2 + xϵ3y
ϵ
3.

Let us fix once for all the assumptions we will make on the surface Σ through this whole

chapter. We will say that a surface Σ ⊂ (AA, gϵ) is regular if

Σ is a Euclidean C2-smooth compact and oriented surface. (8.1)

In particular we will assume that there exists a C2-smooth function u : AA → R such that

Σ = {(a, λ, t) ∈ AA : u(a, λ, t) = 0}

and also assume that the standard gradient satisfies the condition ∇R3u ̸= 0. We say that a

point p ∈ Σ is called characteristic if

∇Hu(a, λ, t) := (Uu, V u)|(a,λ,t) = (0, 0). (8.2)

Our study will be local and away from characteristic points of Σ. We may also define the

characteristic set of Σ as

C(Σ) = {(a, λ, t) ∈ Σ : ∇Hu(a, λ, t) = (0, 0)}. (8.3)

We follow the notation adopted both in the book of Capogna, Danielli, Pauls and Tyson [17]

and in the work of Balogh, Tyson and Vecchi [13], and we define first

p = Uu, q = V u, r = W ϵu.

We then define

l = ∥∇Hu∥ :=
√

(Uu)2 + (V u)2, p =
p

l
, q =

q

l
, r =

r

l

lϵ =
√

(Uu)2 + (V u)2 + (W ϵu)2, rϵ =
r

lϵ
, (8.4)

pϵ =
p

lϵ
and qϵ =

q

lϵ
.

In particular p2 + q2 = 1. By looking at (8.2) it is straightforward that all the functions in

(8.4) are well defined on Σ \ C(Σ).
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Definition 8.1.4. Let Σ ⊂ (AA, gϵ) be a regular surface and let u : AA → R be as above.

The Riemannian unit normal nΣ to Σ is

nΣ =
∇ϵu

∥∇ϵu∥
= pϵ U + qϵ V + rϵW

ϵ,

where ∇ϵu = (Uu)U + (V u)V + (W ϵu)W ϵ is the Riemannian gradient of u.

Definition 8.1.5. Let Σ ⊂ (AA, gϵ) be a regular surface and let u : AA → R be as above.

We introduce the moving frame comprising the ordered vector fields {E1, E2, nΣ}, where E1,

E2 are given by

E1 = −q U + p V,

and

E2 =
l

lϵ
(r pU + r q V −W ϵ).

For every point (a, λ, t) ∈ Σ we observe that {(E1)|(a,λ,t), (E2)|(a,λ,t)} is an orthonormal

basis for the tangent plane T(a,λ,t)Σ. We also notice that for every point (a, λ, t) ∈ Σ the

normal vector (nΣ)|(a,λ,t) is orthogonal to T(a,λ,t)Σ. Later on we will make use of the two

following

Lemma 8.1.6. For p, q, lϵ and rϵ as above, we have

lϵ → ∥∇Hu∥, as ϵ→ 0+, (8.5)

rϵ → 0, as ϵ→ 0+, (8.6)

rϵ
lϵ

→ 0, as ϵ→ 0+, (8.7)

rϵ
ϵ lϵ

→ Wu

∥∇Hu∥2
, as ϵ→ 0+, (8.8)(

rϵ
ϵ

)2

→ (Wu)2

∥∇Hu∥2
, as ϵ→ 0+, (8.9)

rϵ
ϵ2

∼ Wu

ϵ∥∇Hu∥
, as ϵ→ 0+. (8.10)

Proof. All the limits and the asymptotic follow directly from the definitions in (8.4).

Lemma 8.1.7. Let us define

HH = U(p) + V (q), QH = U(q) − V (p),
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then the following identities hold:

nΣ(p) = (l/lϵ)(−q QH + rW ϵ(p)),

nΣ(q) = (l/lϵ)(pQ
H + rW ϵ(q)),

E1(p) = −q HH ,

E1(q) = pHH ,

E2(p) = (l/lϵ)(−r q QH −W ϵ(p)),

E2(q) = (l/lϵ)(r pQ
H −W ϵ(q)).

Proof. Applying U or V to the identity p2 + q2 = 1 we get

pU(p) = −q U(q) and p V (p) = −q V (q).

Now, by making use of the latter two relations, one recovers the identities from the statement

through straightforward verifications.

Let us consider three differential 1-forms given by

ω1 =
dt

2λ
, ω2 =

dλ

2λ
, ϑϵ =

ϑ

ϵ
,

we define the moving coframe as the ordered differential 1-forms {α1, α2, αΣ} given by

α1 = −q ω1 + p ω2,

α2 = (l/lϵ)(r p ω1 + r q ω2 − θϵ), (8.11)

αΣ = (l/lϵ) (p ω1 + q ω2 + r θϵ) ,

We observe that the moving frame {E1, E2, nΣ} is related to the moving coframe {α1, α2, αΣ}
via the duality relations:

α1(E1) = 1, α1(E2) = 0, α1(nΣ) = 0,

α2(E1) = 0, α2(E2) = 1, α2(nΣ) = 0,

αΣ(E1) = 0, αΣ(E2) = 0, αΣ(nΣ) = 1.

A direct calculation leads to the following

Proposition 8.1.8. Let ω1, ω2, ϑϵ, αΣ, α1 and α2 be as above, then it holds:

ω1 = (l/lϵ)pαΣ − qα1 + (l/lϵ)r p α2,

ω2 = (l/lϵ)qαΣ + pα1 + (l/lϵ)r q α2,

θϵ = (l/lϵ)(rαΣ − α2).
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Moreover,

ω1 ∧ ω2 = (l/lϵ)(αΣ ∧ α1 − rα1 ∧ α2),

ω1 ∧ θϵ = (l/lϵ)q r αΣ ∧ α1 − pαΣ ∧ α2 + (l/lϵ) q α1 ∧ α2,

ω2 ∧ θϵ = −(l/lϵ)p r αΣ ∧ α1 − q αΣ ∧ α2 − (l/lϵ) pα1 ∧ α2

and

dω1 = (2l/lϵ) (αΣ ∧ α1 − r α1 ∧ α2),

dω2 = 0,

dθϵ = (2l/(ϵlϵ))(αΣ ∧ α1 − rα1 ∧ α2).

Proposition 8.1.9. Let α1, α2 and αΣ be as above, then the differential 2-forms dα1, dα2

and dαΣ are given by:

dα1 = A1 αΣ ∧ α1 + A2 αΣ ∧ α2 + A3 α1 ∧ α2,

dα2 = B1 αΣ ∧ α1 +B2 αΣ ∧ α2 +B3 α1 ∧ α2,

dαΣ = C1 αΣ ∧ α1 + C2 αΣ ∧ α2,

where

A1 = (l/lϵ)
(
HH − 2 q

)
, (8.12)

A2 = qW ϵ(p) − pW ϵ(q), (8.13)

A3 = (l/lϵ)
(
−r(HH − 2 q)

)
, (8.14)

B1 = rE1(log(lϵ/l)) − E1(r) − 2/ϵ, (8.15)

B2 = nΣ(log(lϵ/l)) − rE2(log(lϵ/l)) − E2(r), (8.16)

B3 = E1(log(lϵ/l)) + r(2/ϵ), (8.17)

C1 = E1(log lϵ), (8.18)

C2 = E2(log lϵ). (8.19)

Proof. Since αΣ = du/lϵ, we have

dαΣ = −(1/l2ϵ )dlϵ ∧ du = αΣ ∧ d(log lϵ)

= E1(log lϵ)αΣ ∧ α1 + E2(log lϵ)αΣ ∧ α2.
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Next,

dα1 = −dq ∧ ω1 + dp ∧ ω2 − q dω1 + p dω2

= − (nΣ(q)αΣ + E1(q)α1 + E2(q)α2) ∧ ((l/lϵ)pαΣ − qα1 + (l/lϵ)r pα2)

+ (nΣ(p)αΣ + E1(p)α1 + E2(p)α2) ∧ ((l/lϵ)qαΣ + pα1 + (l/lϵ)r qα2)

−q(2l/lϵ) (αΣ ∧ α1 − r α1 ∧ α2).

By using the identities from Lemma 8.1.7 we proceed as follows: the component which

multiplies to αΣ ∧ α1 is

A1 = qnΣ(q) + pnΣ(p) + (l/lϵ)(pE1(q) − qE1(p)) + (l/lϵ)(−2 q)

= (l/lϵ)
(
HH − 2 q

)
.

Similarly, the component which multiplies to αΣ ∧ α2 is

A2 = (l/lϵ) (−r pnΣ(q) + r qnΣ(p) + pE2(q) − qE2(p))

= qW ϵ(p) − pW ϵ(q).

Finally, the component of α1 ∧ α2 is

A3 = (l/lϵ) (r(qE1(p) − pE1(q) + 2 q)) − qE2(q) − pE2(p)

= (l/lϵ)
(
−r(HH − 2 q)

)
.

The formula for dα1 then follows. Finally, to calculate dα2, we observe first that

α2 = rαΣ − lϵ
l
θϵ,

hence

dα2 = dr ∧ αΣ + r dαΣ − d(lϵ/l) ∧ θϵ − (lϵ/l)dθϵ

= (nΣ(r)αΣ + E1(r)α1 + E2(r)α2) ∧ αΣ

+rE1(log lϵ)αΣ ∧ α1 + rE2(log lϵ)αΣ ∧ α2

− (nΣ(lϵ/l)αΣ + E1(lϵ/l)α1 + E2(lϵ/l) a2) ∧ ((l/lϵ)rαΣ − (l/lϵ)α2)

−(2/ϵ)(αΣ ∧ α1 − rα1 ∧ α2)

= −E1(r)αΣ ∧ α1 − E2(r)αΣ ∧ α2

+rE1(log lϵ)αΣ ∧ α1 + rE2(log lϵ)αΣ ∧ α2

+rE1(log(lϵ/l))αΣ ∧ α1 + (nΣ(log(lϵ/l)) + rE2(log(lϵ/l))) αΣ ∧ α2 + E1(log(lϵ/l))α1 ∧ α2

−(2/ϵ)(αΣ ∧ α1 − rα1 ∧ α2)

and thus our formula for dα2.
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Corollary 8.1.10. The Lie brackets [nΣ, Ei], i = 1, 2, and [E1, E2], are given by

[nΣ, E1] = −C1nΣ − A1E1 −B1E2,

[nΣ, E2] = −C2nΣ − A2E1 −B2E2,

[E1, E2] = −A3E1 −B3E2.

Proof. We will only calculate [E1, E2], as the other two identities are analogous. We have

[E1, E2] = αΣ([E1, E2])nΣ + α1([E1, E2])E1 + α2([E1, E2])E2.

On the other hand Proposition 8.1.1 yields to

dαΣ(E1, E2) = −αΣ([E1, E2]),

dα1(E1, E2) = −α1([E1, E2]),

dα2(E1, E2) = −α2([E1, E2]),

and our formula follows.

In order to proceed with the next results we need the following

Definition 8.1.11. Let us denote by ∇ the Levi-Civita connection of (AA, gϵ) defined

and let us consider the moving frame {E1, E2, nΣ}. Let j ∈ {1, 2}, k ∈ {1, 2, 3} and let

Xk ∈ {E1, E2, nΣ}, we define the connection 1-forms ηkj to be the skew-symmetric differential

1-forms such that

ηkj (Ei) = −gϵ(∇EiXk, Ej), i ∈ 1, 2.

Now we formulate a statement known as Cartan’s first structural equation, see Chapter

12.6 in Clelland’s book [20].

Proposition 8.1.12. Let α1, α2 and αΣ be defined as above, let j ∈ {1, 2}, k ∈ {1, 2, 3} and

let ηkj be the connection 1-forms. Then it holds

dα1 = η21 ∧ α2 + η31 ∧ αΣ,

dα2 = −η21 ∧ α1 + η32 ∧ αΣ,

dαΣ = −η31 ∧ α1 − η32 ∧ α2.
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By writing the connection 1-forms ηkj with respect to the moving coframe {α1, α2, αΣ}
we have

η21 = (η21)1 α1 + (η21)2 α2 + (η21)3 αΣ

η31 = (η31)1 α1 + (η31)2 α2 + (η31)3 αΣ

η32 = (η32)1 α1 + (η32)2 α2 + (η32)3 αΣ,

then combining Propositions 8.1.9 and 8.1.12 we get

(η21)1 = A3, (η21)3 − (η31)2 = A2, (η31)1 = −A1,

(η21)3 + (η32)1 = −B1, (η32)2 = −B2, (η21)2 = B3,

(η31)3 = −C1, (η32)3 = −C2, (η31)2 − (η32)1 = 0.

The latter relations result in

η21 = A3 α1 +B3 α2 +
A2 −B1

2
αΣ,

η31 = −A1 α1 +
−A2 −B1

2
α2 − C1 αΣ, (8.20)

η32 =
−A2 −B1

2
α1 −B2 α2 − C2 αΣ.

We are in the position to formulate Cartan’s second structural equation (see again [20]) with

the following

Proposition 8.1.13. Let η21, η
3
1 and η32 be the connection 1-forms. Then the sectional

curvatures are given by

K
ϵ
(E1, E2) = η32 ∧ η31(E1, E2) − dη21(E1, E2),

K
ϵ
(E1, nΣ) = −dη31(E1, nΣ) − η32 ∧ η21(E1, nΣ),

K
ϵ
(E2, nΣ) = η31 ∧ η21(E2, nΣ) − dη32(E2, nΣ).

We apply the previous Proposition to the specific connection forms given by (8.20) and

write the sectional curvatures explicitly with the following

Proposition 8.1.14. Let Σ ⊂ (AA, gϵ) be a regular surface and let u : AA → R as above.

Let {E1, E2, nΣ} be the associated moving frame and let A1, A2, A3, B1, B2, B3, C1 and C2

be given by (8.12). Then the sectional curvatures are given by:

K
ϵ
(E1, E2) = −E1(B3) + E2(A3) − A2

3 −B2
3 +

(A2 +B1)
2

4
− A1B2,

K
ϵ
(E1, nΣ) = E1(C1) − nΣ(A1) − A2

1 − C2
1 +

(A2 +B1)
2

4
+ C2A3,

K
ϵ
(E2, nΣ) = E2(C2) − nΣ(B2) −B2

2 − C2
2 +

(A2 +B1)
2

4
+ C1B3.
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At this point we define the second fundamental form IIϵ of the embedding of Σ into

(AA, gϵ):

IIϵ =

(
−gϵ(∇ϵ

E1
nΣ, E1) −gϵ(∇ϵ

E1
nΣ, E2)

−gϵ(∇ϵ
E2
nΣ, E1) −gϵ(∇ϵ

E2
nΣ, E2)

)
.

By making use of the connection 1-forms given in (8.20), the explicit computation of the

second fundamental form in our case gives

IIϵ =

(
η31(E1) η32(E1)

η32(E1) η32(E2)

)
=

(
−A1 −1

2
(A2 +B1)

−1
2
(A2 +B1) −B2

)
.

The Riemannian mean curvature Hϵ of Σ is

Hϵ := −Trace(IIϵ) = A1 +B2. (8.21)

By means of the Gauss equation (see Theorem 2.5, Chapter 6 in do Carmo’s book [23]) we

have that the Riemannian Gaussian curvature Kϵ is

Kϵ := K
ϵ
(E1, E2) + det(IIϵ) = E1(B3) + E2(A3) − A2

3 −B2
3 . (8.22)

8.2 The horizontal mean curvature

We begin this section with the following

Proposition 8.2.1. Away from characteristic points, the horizontal mean curvature H0 of

a surface Σ ⊂ AA is given by

H0 = lim
ϵ→0+

Hϵ = U

(
Uu

∥∇Hu∥

)
+ V

(
V u

∥∇Hu∥

)
− 2

V u

∥∇Hu∥
. (8.23)

Proof. By definition

Hϵ = A1 +B2,

where we comply with the notation (8.4) and from Lemma 8.1.7. The result now follows by

using the ϵ-estimates from Lemma 8.1.6, indeed

A1 +B2 → HH − 2 q

as ϵ→ 0+.

We provide the following list of examples
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Example 8.2.2 (Planes in AA). We look at the horizontal mean curvature for a plane P

in AA given by

P = {(a, λ, t) ∈ AA : u(a, λ, t) = a− (c1λ+ c2t) = 0}

with c1, c2 ∈ R. By using (8.23) we obtain that

H0 = 8c1λ
2 2λ(c21 + c22) − c2
(4c21λ

2 + (1 − 2c2λ)2)3/2
.

This evidences that not all planes have costantly zero mean horizontal curvature, but

H0(p) = 0 for all p ∈ Σ if and only if c1 = 0.

Example 8.2.3 (Surfaces independent in λ ). Let f : R2 → R be a C2-smooth function and

we consider the surface Σ given by

Σ1 = {(a, λ, t) ∈ AA : u(a, λ, t) = f(a, t) = 0}

and we assume there are no characteristic points. The latter assumption, combined with

the fact that V u = 0 identically implies that Uu ̸= 0 for every point of Σ1. Without loss of

generality we can assume Uu > 0, thus having ∥∇Hu∥ = Uu and obtaining that

U

(
Uu

∥∇Hu∥

)
= 0.

Recalling that V u = 0, we conclude

H0 = 0.

Example 8.2.4 (Graphs independent in t ). Let f : (0,∞) → R be a C2-smooth function

and we consider the surface Σ2 given by

Σ2 = {(a, λ, t) ∈ AA : u(a, λ, t) = a− f(λ) = 0}.

Then by the formula (8.23) we have

H0 =
4λ2(4λ(f ′(λ))3 − f ′′(λ))

(4λ2(f ′(λ))2 + 1)
3
2

.

Solving the equation H0 = 0 is equivalent to the o.d.e.

4λ(f ′(λ))3 − f ′′(λ) = 0.

Hence the surfaces satisfying H0 = 0 are described by

fc1,c2(λ) = ±1

2
arctan

(
λ√

c1 − λ2

)
+ c2, c1, c2 ∈ R.

The existence of surfaces of this type is prescribed in the slice (λ, t) ∈ (0, c1)×R thus giving

Σ2 = {(fc1,c2(λ), λ, t) ∈ AA : λ ∈ (0, c1), t ∈ R}.
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8.3 The intrinsic Gaussian curvature

We start by providing the following

Proposition 8.3.1. Away from characteristic points, the intrinsic Gaussian curvature K0

of a surface Σ ⊂ AA is given by

K0 = lim
ϵ→0+

Kϵ = −2E1

(
Wu

∥∇Hu∥

)
− 4

(
Wu

∥∇Hu∥

)2

. (8.24)

Proof. Directly from the definition we have

Kϵ = −E1(B3) + E2(A3) − A2
3 −B2

3 ,

where we adopt the notations from (8.4) and from Lemma 8.1.7. The result now follows

again by making use of the ϵ-estimates from Lemma 8.1.6, indeed

−E1(B3) + E2(A3) − A2
3 −B2

3 → −E1

(
2
Wu

l

)
−
(

2
Wu

l

)2

as ϵ→ 0+.

Example 8.3.2 (Surfaces independent in a). Let f : H1
C → R be a C2-smooth function.

Then the surfaces Σ given by

Σ = {(a, λ, t) ∈ AA : u(a, λ, t) = f(λ, t) = 0}

have zero intrinsic Gaussian curvature. This is so because the function u is independent of

a. In particular for all cylinders CR defined as

CR = {(a, λ, t) ∈ AA : (λ− 1)2 + t2 −R2 = 0},

where 0 < R < 1, we find zero intrinsic Gaussian curvature. On the other hand the cylinders

C ′
R given by

C ′
R = {(a, λ, t) ∈ AA : u(a, λ, t) = (λ− 1)2 + a2 −R2 = 0},

with 0 < R < 1, have intrinsic Gaussian curvature equal to

K0 = −4(a4 + 4a2(λ− 1)λ2(3λ− 2) + 4(λ− 1)3λ3)

(a2 + 4(λ− 1)2λ2)2
.
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Example 8.3.3. The hyperbolic half-plane H1
C embedded in AA given by

H1
C = {(a, λ, t) ∈ AA : u(a, λ, t) = a = 0}

has constant intrinsic Gaussian curvature

K0 = −4.

Example 8.3.4. For planes P given by

P = {(a, λ, t) ∈ AA : u(a, λ, t) = Aa+Bλ+ Ct+D = 0}, with A,B,C,D ∈ R,

we have

K0 = −4A
(A3 + 6A2Cλ+ 4A(2B2 + 3C2)λ2 + 8C(B2 + C2)λ3)

(A2 + 4ACλ+ 4(B2 + C2)λ2)2
.

We see that planes with A = 0 have zero intrinsic Gaussian curvature, planes with C = 0

have negative intrinsic Gaussian curvature equal to

K0 = −4(A4 + 8A2B2λ2)

(A2 + 4B2λ2)2
.

From the previous formula we see that all planes of type

{(a, λ, t) ∈ AA : u(a, λ, t) = Aa+D = 0},

have constant negative intrinsic Gaussian curvature corresponding to

K0 = −4.
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[24] Y. Eliashberg. Classification of overtwisted contact structures on 3-manifolds. Invent.

Math., 98(3):623–637, 1989.

[25] Y. Eliashberg. Classification of contact structures on R3. Int. Math. Res. Not.,

1993(3):87–91, 1993.
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[29] M. Gromov. Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geom-

etry. Proceedings of the satellite meeting of the first European congress of mathematics
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