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GENERAL INTRODUCTION 1 

1. General background and challenges 2 

Increasing world population and climate change are one of the key problems faced by humans 3 

during the 21st century. According to the United Nations Department of Economic and Social 4 

Affairs Population Division, the world population was about 8.2 billion in 2020 and will reach 5 

10.3 billion in 2050 (World Population Prospects, 2024). In contrast to most models predicting 6 

population growth, a report by United Nations predicted population decline or stabilization in 7 

certain regions of the world at the end of the current century. This could have implications for 8 

food security and agricultural needs in the future (United Nations, 2019). For the year 9 

2024/2025, annual cereal production is projected at approximately 2.853 billion tonnes. To feed 10 

this growing population, annual production needs to be increased by 50 percent by the year 11 

2050 (FAO, 2025). Maize, wheat and rice are the staple crops and contribute significantly to 12 

caloric intake for a large proportion of the world's population (FAO, 2025). In particular, maize 13 

is a key crop due to its high productivity, food resourcefulness, and wide geographic range. 14 

Climate change can affect functioning of the natural and agricultural ecosystems including a 15 

drop in plant yield (Zhao et al., 2017). Drought is currently recognized as the one of the most 16 

devastating abiotic stresses that affects agriculture. Due to climate change, the frequency and 17 

intensity of drought is increasing rapidly (Trenberth et al., 2014). To improve plant resilience 18 

to drought, one of the most promising avenues could be plant-microbe interactions. These 19 

interactions help the plant not only with enhanced water and nutrient uptake but can also 20 

modulate stress responses (Begum et al., 2019). Drought results in altered plant physiological 21 

and biochemical processes, this can affect plant defence responses to the herbivores either 22 

increasing plant resistance or susceptibility to herbivory by insects (Hu et al., 2018). To 23 

increase the food production, we need not only to understand the impact of drought on 24 

agricultural ecosystems but also develop strategies to enhance food production under the 25 

climate change scenario (FAO, 2025).   26 
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Figure 1. Impacts of climate change on species losses, human health, and food production 27 
(Reproduced from IPCC, 2023. Licensed under CC BY 4.0.).  28 

2. Plant responses to drought 29 

A wide range of physiological, biochemical, and molecular responses are exhibited by plants 30 

to cope with drought stress, which is being intensified under climate change. These changes 31 

include reduced water uptake, changes in hormonal balance and plant metabolism (Buragohain 32 

et al., 2024; Raza et al., 2025). For example, plants regulate stomatal opening to minimize 33 
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water loss, together with a reduction in photosynthetic activity and growth inhibition (Xu et al. 34 

2025), eventually limiting production of carbohydrates (Bistgani et al., 2017). Under drought 35 

stress, plant accumulates osmoprotectants including proline, sugars and solutes, accompanied 36 

by upregulation of antioxidant defences to mitigate damages caused by the reactive oxygen 37 

species (ROS) (Per et al., 2017). The effect can also be antagonistic, as the concentration of 38 

sugars, amino acids, and nucleosides content was decreased in shoot of two grass species under 39 

drought stress (Gargallo-Garriga et al., 2015). Secondary metabolites such as phenolics, 40 

flavonoids, and benzoxazinoids (BXDs) are altered under drought stress and contribute to stress 41 

resilience and defence strategies. Drought also modulates BXDs profile in maize plants 42 

resulting in enhanced biotic interactions and plant resilience including herbivory (Hu et al., 43 

2018). A pivotal role is played by the abscisic acid (ABA) in regulating these responses through 44 

hormonal signalling (Aslam et al., 2022). As highlighted in recent multi-omics studies, plants 45 

adapt to drought stress through complex regulatory networks revealing strategies associated 46 

with genotype specificity (Singh et al., 2023). It is vital to understand these integrative 47 

responses to develop crops that are well suited to varying climatic conditions.  48 

Plants are the producers of energy in an ecosystem and are expected to lower damages caused 49 

by both biotic and abiotic stress eventually providing optimal yield. Drought has a negative 50 

impact on plants growth and productivity, thus leading to reduced biomass production (Ahmad 51 

et al., 2018). Drought also impairs plant’s ability to assimilate nitrogen leading to 52 

downregulation of nitrate reductase and glutamine synthetase enzymes. Therefore, protein 53 

synthesis is reduced leading to poor levels of seed filling (Liu et al., 2022). Drought triggers a 54 

shift in metabolic energy of plants from growth and reproduction to survival mode resulting in 55 

significantly lower yields.  56 

3. Plant responses to herbivory  57 

3.1. Plant resistance 58 

A wide array of compounds is produced by plants that are crucial for defences against 59 

environmental stresses and herbivores. These compounds are secondary metabolites and 60 

include phenolics (e.g., flavonoids, tannins), terpenoids, alkaloids, and benzoxazinoids, each 61 

playing distinct roles in mitigating damage or deterring herbivory (Erb & Kliebenstein, 2020; 62 

Dixon & Dickinson, 2024). Secondary metabolites act as toxins, feeding deterrents and can 63 

also enhance indirect defences by attracting natural enemies of herbivores through signalling 64 

molecules (Mithöfer & Boland, 2022). Through advances in metabolomics, studies reveal that 65 

the accumulation of these compounds are regulated by both biotic and abiotic factors with 66 
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implications for plant fitness and crop protection strategies (Alami et al., 2024). For example, 67 

the concentration of secondary metabolites in root latex of Taraxacum officinale was associated 68 

with low precipitation and higher temperature highlighting the potential role of secondary 69 

metabolites in resistance to abiotic stress (Bont et al., 2020). Plant secondary metabolites such 70 

as benzoxazinoids, the phytohormone abscisic acid (ABA), salicylic acid (SA) jasmonic acid 71 

(JA), and volatiles (VOCs) are all modulated under drought stress (Vaughan et al., 2018). 72 

Plants have evolved their defence mechanisms against herbivore attack through the production 73 

of secondary metabolites. Jasmonic acid (JA) acts as a key hormone in mediating these 74 

responses and is involved in the production of diverse classes of secondary metabolites 75 

including phenolics, alkaloids, terpenoids and benzoxazinoids. Meta-analysis confirmed the 76 

increased phenolic levels in plants that are infected by pathogens or insects (Wallis et al., 2020). 77 

Plants infection by herbivores leads to enhanced production of phenolic compounds such as 78 

lignin, coumarins, furanocoumarins, flavonoids, and tannins (Gantner et al., 2019). 79 

Glutathione, glucosinolates, phytoalexins are sulphur containing compounds known for their 80 

important defensive role in plants. Glutathione is actively involved in plant-herbivore 81 

interactions by regulating both signalling and detoxification reactions (Künstler et al., 2020). 82 

In soybean plants, glutathione mediated generation of H2O2 leading to reduced nematodes 83 

accumulation (Chen et al., 2020). Alkaloids, cyanogenic glycosides, and non-protein acids are 84 

the nitrogen-containing compounds that are effective in plant defence mechanisms against 85 

herbivores. Pyrrolizidine alkaloids (PAs) such as jacobine and erucifoline are also actively 86 

involved in plant defence against insect herbivory (Liu et al., 2017).  87 

Benzoxazinoids 88 
Benzoxazinoids are maize secondary metabolites and originate from indole-3-glycerol 89 

phosphate localized in the chloroplasts. They undergo transformation by benzoxazinless (BX) 90 

into 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HBOA), which is further hydroxylated 91 

into 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) (Niculaes et al., 2018). In some cases, 92 

DIBOA can be hydroxylated and methylated into 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-93 

3-one (DIMBOA). DIMBOA undergoes a methylation by ZMBX10, ZMBX11, ZMBX12, and 94 

ZMBX14, to form the methyl hydroxamate HDMBOA  (Frey et al., 2009; de Bruijn et al., 95 

2018). These compounds can be glycosylated by UDP-glucosyltransferases (UGT) into 96 

DIMBOA-xGlc or HDMBOA-xGlc which biologically inactivates them, preventing 97 

autotoxicity within the producing plant (Frey et al., 2009; de Bruijn et al., 2018). The resulting 98 

glucosides (DIMBOA-xGlc and HDMBOA-xGlc) can be stored in the vacuole and released 99 

upon tissue disruption, such as insect or herbivore attack (Robert and Mateo, 2022). This 100 

https://www.zotero.org/google-docs/?WYFj13
https://www.zotero.org/google-docs/?WYFj13
https://www.zotero.org/google-docs/?WYFj13
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ensures that toxicity is released only when the metabolite is hydrolyzed by glucosidases within 101 

the herbivore's system. Plant secondary metabolites play key role in plant defences, resilience 102 

and signalling.  103 

Benzoxazinoids under drought 104 
The synthesis of these compounds is often regulated under varying environmental conditions. 105 

Benzoxazinoids production is altered in maize plants when subjected to drought conditions. 106 

Under drought stress in seven days old seedlings, maize roots and leaves exhibited production 107 

of DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, and HDMBOA-2Glc. 108 

This effect was consistent across various maize lines (Sutour et al., 2024). BXDs altered 109 

composition under drought conditions underscores the plant strategy to better adapt to changing 110 

environmental conditions. The expression of ZMBX12 gene was enhanced under drought stress, 111 

resulting in the increased production of DIMBOA-Glc (Robert & Mateo, 2022). As specific 112 

BXDs are modulated in maize plants under drought, this could point towards their potential 113 

role in plant resilience. 114 

Role of UDP-glycosyltransferases (UGTs)  115 
UGTs catalyse the glycosylation of a wide range of compounds including phytohormones and 116 

secondary metabolites, therefore changing their solubility, stability, and bioactivity (Zhang et 117 

al., 2022). A critical role is played by UGTs in regulating plant stress responses by shifting 118 

levels and activities of secondary metabolites. For example, UGT UGT85E1 catalyses the 119 

glycosylation of abscisic acid, this influences ABA availability during drought stress and 120 

ultimately affects stomatal closure and water preservation (Gharabli et al., 2023). Despite the 121 

indicated significance of UGTs, they remain unexplored in production of maize secondary 122 

metabolites under drought stress (Liu et al., 2021). UGTs characterization in maize plants under 123 

drought stress can unravel their roles during stress adaptation and pave way for metabolic 124 

engineering to enhance drought tolerance.  125 

3.2. Plant tolerance  126 

Plants tolerance to herbivory is the ability to withstand or recover from damages caused by the 127 

herbivores without significantly reducing fitness. This allows the plants to maintain growth, 128 

reproduction and survival while sustaining damage at the same time. This can be achieved 129 

through various strategies involving increased photosynthetic rates, mobilization of stored 130 

resources and compensatory growth. Plants can also exhibit tolerance through reallocation of 131 

carbon and nitrogen resources or with regenerative capacity involving basal meristems (Strauss 132 

and Agarwal, 1999). Recent studies conducted on maize identify the role of genotypes, 133 
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environmental stress factors and herbivore specificity in conferring tolerance (Tůmová et al., 134 

2018; Fontes-Puebla et al., 2020). Tolerant plants possess to ability to grow rapidly after 135 

damage occurrence and can even overcompensate at times. The tolerant plants might become 136 

more vulnerable under added layer of drought as environmental stressor. Water limited plant’s 137 

ability to tolerate herbivory is constrained under limited resources needed for compensatory 138 

growth. Plants have been shown to form AMF associations that boost water and nutrient uptake 139 

to enhance tolerance under stress conditions (Ahmed et al., 2025). These findings show that 140 

tolerance is a context-dependent trait that evolves under environmental pressures. In the 141 

evolutionary perspective, growth rate and reproductive allocation are the trade-offs for plant 142 

tolerance to herbivory. Plants that are investing heavily in tolerance will consequently have less 143 

energy to spend on resistance, seed production and defence signalling. This is evident in the 144 

agricultural ecosystems where in pursuit of high yield crops, breeders compromise resistance 145 

making tolerance a more susceptible trait (Bergelson & Purrington, 1996).  146 

4. Plant responses to combined drought and herbivory stresses 147 

Plant responses become more complex when drought and herbivory occur simultaneously. 148 

Stress hormones ABA and JA are intensified during drought and therefore modify metabolite 149 

levels and composition (Kumari et al., 2023). In case of herbivory, drought stress enhances 150 

damage by tomato russet mite (TRM) by altering the plants defense responses (Ximénez-151 

Embún et al, 2017). Under drought, TRM population grows faster as key defence pathways 152 

such JA gene is downregulated, thus reducing activities of defensive enzymes. In addition, 153 

interaction of drought and TRM results in increased levels of free sugars and salicylic acid, 154 

resulting in better pest performance (Ximénez-Embún et al, 2017). Plant responses to 155 

interaction of drought and insect herbivory can be herbivore species specific, for example 156 

drought reduced performance of generalist beet armyworms (BAW) but not that of specialist 157 

Colorado potato beetles (CPB) in Solanum dulcamara with differences explained by hormonal 158 

signalling (Nguyen et al., 2018). Additionally, findings of field experiments demonstrated that 159 

small-mammal herbivory on Artemisia tridentata seedlings in spring significantly increased 160 

summer mortality under drought stress reducing survival by up to 60%. These findings 161 

highlight that drought can enhance herbivore attack by compromising plant defenses and can 162 

eventually lead to pest outbreaks. 163 
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5. AMF: Potential plant allies under drought stress (interactions) 164 

5.1. Plant and AMF association  165 

Plants are at the first trophic level of the ecosystem and are actively involved in producing 166 

energy for the whole trophic chain. Plants also form mutualistic symbiotic association with the 167 

arbuscular mycorrhizal fungi (AMF).  AMF are beneficial to plants as they enhance plant 168 

access to water and nutrients with the use of extraradical hyphal networks (Smith & Read, 169 

2008). Extensive root-hyphal network can penetrate deep into the soil improving the soil 170 

structure (Dias et al., 2018) and mobilize elements synergistically to promote plant growth (Xu 171 

et al., 2024). The enhanced ability to absorb nutrients helps plant to tolerate different biotic and 172 

abiotic stresses (Qin et al., 2019). AMF has the ability to boost plants resistance to extreme 173 

environmental factors that include microplastics, and heavy metals. The ability to cope with 174 

biotic factors such as pathogens and insects is also enhanced (Nie et al., 2024) 175 

AMF: classification, structure and functional roles 176 
Arbuscular mycorrhizal fungi (AMF) belong to the phylum Glomeromycota and forms 177 

mutualistic symbiotic association with about 80% of the land plants including agricultural 178 

crops (Berruti et., al 2015). The AMF provides the plants with nutrients and water and in return 179 

get photosynthetic products (Smith and Read, 2008). The fungal hyphae are thin and can 180 

penetrate deeper into the soil pores than roots and therefore have access to nutrients at more 181 

soil volumes (Allen, 2011). The nutrient exchange between fungal hyphae and plant roots takes 182 

place with the help of specialized structures called arbuscules which develop inside the cortical 183 

cells of the roots (Balestrini & Lumini, 2018). The AMF can thus alleviate the nutrient 184 

deficiency of the plants (Nouri et al., 2020). The earliest land plant fossils (400 MYA) contained 185 

the tree like structures arbuscules highlighting that the AMF spread parallel to the plants 186 

colonization of land or even preceded that (Remy et al., 1994). It is also hypothesized that AMF 187 

facilitated the colonization of plants on lands as a liverwort belonging to the most ancient extant 188 

clade upon association with AMF exhibits significant uptake of photosynthetic carbon, growth, 189 

and reproduction (Humphreys et al., 2010). 190 

Development of symbiosis  191 
Arbuscular mycorrhizae development can be characterized into distinctive steps with the first 192 

step being the pre-contact stage also known as the pre-symbiotic stage. Mutual recognition 193 

involves plant derived Strigolactones (SLs) eliciting fungal branching responses (Akiyama et., 194 

al 2005) and diffusible fungal signalling molecules inducing gene expression in plants 195 

(Steinkellner et al., 2007). Cutin monomers produced by the plant determine subsequent 196 
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hyphopodium formation at the root surface (Murray et al., 2013). Fungal hyphopodia emits 197 

mechanical and chemical signals leading to the formation of an intracellular structure by the 198 

plant, the pre-penetration apparatus (PPA) (Genre et al., 2005). This apparatus facilitates the 199 

entry of intracellular fungi into the deeper cell layers. After entering the cortex, hyphae of the 200 

fungi progress in the longitudinal direction along the apoplast and eventually initiate the 201 

formation of arbuscules in the cortical cells of the roots (Genre et al., 2008). 202 

Chemicals at the interface between AMF and roots 203 
Plant roots release strigolactones (SLs) under conditions of limiting inorganic phosphate. SLs 204 

are carotenoid-derived plant hormones and stimulate the branching and elongation of fungal 205 

hyphae (Akiyama et al., 2005; Besserer et al., 2006). This extensive branching promotes the 206 

chances of encountering of the fungal hyphae with the host. Exposure to SLs increase the fungal 207 

mitochondrial metabolism including the organelle division, ATP production and gene 208 

expression (Besserer et al., 2008; Lanfranco et al., 2018). AMF release of chitin oligomers was 209 

enhanced by the SLs treatment which act as signalling molecule on the plant (Sun et al., 2015). 210 

fungal genes required for symbiosis are also induced by the strigolactones (Tsuzuki et al., 2016; 211 

Kamel et al., 2017). The critical importance of strigolactones for the formation of symbiosis is 212 

clear as plants that fail to biosynthesize or exude SLs exhibit a lower level of colonization 213 

whereas arbuscules development is normal (Waters et al., 2017; Lanfranco et al., 2018). Plants 214 

modify its defense mechanism to facilitate the controlled penetration of the fungal hyphae into 215 

the root cortical cells. To avoid killing of the fungal cells, plant immune responses including 216 

the jasmonic and salicylic acid are downregulated (Pozo & Azcón-Aguilar, 2007). In addition 217 

to sugars, lipids and sterols are also required by the AMF to sustain their metabolism. This 218 

transfer of lipids and sterols from the plants to the fungi is regulated by the terpenoids 219 

(Luginbuehl et al., 2017). Under nutrient-deficient conditions, strigolactones are crucial in 220 

regulating the early stages of AMF symbiotic association. However, AMF response to 221 

strigolactone production can be significantly influenced by drought stress. 222 

In leguminous plants, phenolic compounds act as chemoattractants for AMF and enhance plant-223 

fungal communication (Lone et al., 2024). The access of AMF to the cortical cells of the root 224 

is enhanced by the phenolic compounds through increased root exudation (Lone et al., 2024). 225 

On the other hand, certain chemicals alkaloids, isoflavonoids, tannins and saponins can 226 

negatively impact colonization of the host plant by the AMF. Alkaloids suppress colonization 227 

by disrupting the hyphal growth while saponins and tannins exhibit antifungal properties 228 

(Thomspon et al., 2015; Elgharbawy et al., 2020). Secondary metabolites can stimulate 229 

antagonistic microbes such as Trichoderma that can compete with the AMF for root space 230 
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(Contreras-Cornejo et al., 2106). Certain secondary metabolites such as phytoalexins also 231 

create unfavourable conditions for AMF establishment (Morandi et al., 1996). 232 

Nutrient acquisition 233 
AMF can play a crucial role in plant growth by acquiring nutrients from adverse environments 234 

such as arid and low fertility soils. The hyphae from AM fungi absorbs phosphorus, nitrogen, 235 

potassium, sulphur, calcium, zinc, copper and translocate them from soil into the associated 236 

roots (Gildon and Tinker, 1983). The immobile nutrients such as phosphorus, zinc and copper, 237 

determined by the rate of diffusion are reported to have significant improvements because of 238 

AMF symbiosis. In the absence of adequate amount of nutrients, plants increase their rate of 239 

absorption at a pace which is more than the rate at which nutrients are being diffused thus 240 

creating a zone of depletion. Mycorrhizal roots extend beyond this depletion zone to explore 241 

and absorb nutrients as compared to non-mycorrhizal roots which have less explorative 242 

capacity (Cornejo et al., 2017).  243 

P acquisition  244 
The role of AMF in acquiring P is reported in all soils globally but particularly with P deficient 245 

soils (Smith and Read, 2008; Seguel, 2015). Massive quantities of phosphorus as 246 

polyphosphates are protected and stored by the AMF structures. Phosphorus in polyphosphates 247 

is transferred from the soil's depletion zone and from non-colonized roots to the colonized 248 

roots. This P is hydrolysed to inorganic phosphorus before transferring to the plant cell 249 

(Hijikata et al., 2010). The AMF symbiosis has molecular implications for the plant as it can 250 

modify the mechanisms related to P uptake and the production of phosphatases (Mitra et al., 251 

2023) that have high affinity for the P transporters (Biber et al., 2013). It is assumed that the 252 

association with AMF facilitates the uptake of phosphorus and mycorrhizal phosphate uptake 253 

(MPU) pathway is believed to be separate from the normal pathway involving root epidermal 254 

cells.  255 

N acquisition  256 
The most abundant mineral nutrient required by plants is nitrogen, indicating nitrogen 257 

fertilization in soil determines the crop productivity. Huge amounts of energy are invested in 258 

the production and application of nitrogen fertilizers consequentially increasing agricultural 259 

production costs (Xie et al., 2022). To ensure sustainability, it is therefore essential to increase 260 

nitrogen efficiency of the plants. AMF preferably acquire NH4
+ instead of NO3

− from the soil 261 

as NO3
− must be reduced to NH4

+ for incorporation into organic compounds and this process 262 

requires energy (Tanaka and Yano, 2005). AMF can degrade organic material such as grass 263 

leaves and accelerate the nitrogen acquisition by promoting the activity of bacteria in the 264 
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rhizosphere (Tanaka and Yano, 2005; Leigh et al., 2009). AMF can also uptake different amino 265 

acids such as arginine, glutamine and glycine (Whiteside et al., 2012). The AMF pathway for 266 

the uptake of nitrogen is not clearly understood.   267 

Micronutrient acquisition 268 
Micronutrients play a key role in plant growth, development and overall health. In soil, they 269 

are poorly mobile and available in limited quantities to the plants. AMF through their extended 270 

hyphae explore large volume of soil and mobilize key micronutrients including zinc, copper, 271 

iron and manganese through acidification, chelation and enzymatic solubilization. 272 

Bioavailability of zinc is increased by the AMF through secretion of low molecular weight 273 

compounds and promoting expression of Zn transporter genes (Zhang et al., 2025). AMF also 274 

enhances Fe acquisition through the stimulation of siderophores and a reduction in reductase 275 

activity near the root surfaces (Smith and Smith, 2011). Similarly, inoculation of Sorghum with 276 

AMF significantly enhanced micronutrients status, the total and bioavailable iron and zinc 277 

increased from 36.3% and 35.8% to 40.6% and 40.3%, respectively (Elsafy et al., 2024). 278 

Micronutrient acquisition mediated by the AMF supports plant productivity and stress 279 

resilience.  280 

Factors affecting AMF colonization  281 
The colonization of the plant by the AMF depends on various factors such as soil properties, 282 

plant species and genotype, fungal diversity, competition and environmental conditions. Plants 283 

rely on the AMF partner for the uptake of phosphorus, therefore its high availability in the soil 284 

or excessive use of chemical fertilizers containing phosphorus can limit colonization the 285 

colonization process (Treseder, 2004, Smith and Read, 2008). AMF thrive better in neutral to 286 

slightly acidic soils as extreme pH conditions of the soil results in reduced colonization (Van 287 

Aarle et al., 2002). Seasonal pattern also plays a crucial role in colonization with some species 288 

colonizing more in warmer seasons (Ruotsalainen et al., 2002). AMF spores germinate properly 289 

in the soils that are loose and well aerated as this allows for the hyphae to extend in broader 290 

regions (Ghorui et al., 2025). Plant species are also crucial in the onset of this association as 291 

different plant species have different compatibilities with AMF. Legume plants have higher 292 

rates of colonization due to their abilities to fix nitrogen, while members of the family 293 

Brassicaceae do not form this association (Maherali and Klironomos, 2007, Brundrett, 2009). 294 

Species composition of the AMF and the competition that exist between them can also impact 295 

the rates of colonization and eventual benefit to the plants (Bever at., 2001). A wide range of 296 

factors can affect AMF colonization; it is therefore crucial to understand specific molecules 297 

that lay the foundation for communication between plant and AMF.  298 
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Effect of drought on AMF colonization  299 
AMF are considered beneficial to plants under drought stress, but drought can also limit the 300 

colonization efficiency due to reduced allocation of photosynthate from the host plant as 301 

functioning of the fungi depends on the carbon dependent growth (Augé, 2001; Jayne & 302 

Quigley, 2014). Drought induces changes in the soil structure and community composition, this 303 

can affect the viability of the fungal propagules and competitive dynamics (Company et al., 304 

2010). AMF colonization increases under moderate drought as plant look to for support while 305 

extreme drought on the other hand can completely break down this association, this reflects 306 

that the mutualism between plant and amf is context dependent driven by environmental 307 

severity and host genotype (Ruiz-Lozano et al., 2016). Under drought stress, AMF colonization 308 

can be disrupted because of altered root exudation and modified signalling pathways. The 309 

question how root exuded metabolites including the secondary metabolites are shifted under 310 

drought changes and how does that impact colonization efficiency remains unanswered. 311 

Additionally, the timing of drought induction is an area that is not well understood as most 312 

studies induce drought along with inoculum induction.  313 

5.2. AMF and drought 314 

Drought is the most devastating environmental stress that strongly reduces soil biota and can 315 

restrict plant growth and yield. Drought affects the plant-microbe interactions both individually 316 

and at different levels (Bhattacharyya et al., 2021). The AMF enhances plant’s ability to acquire 317 

nutrients particularly phosphorus, which is scarce under drought stress and can therefore 318 

support plant growth and metabolism (Smith and Smith, 2011). By the modulation of 319 

physiological and biochemical responses such as enhanced antioxidant enzyme activities, 320 

osmotic adjustment and regulation of stress-responsive hormones like abscisic acid, AMF can 321 

contribute to alleviating drought stress (Fitter, 2013; Porcel et al., 2016). AMF can alter the 322 

plant secondary metabolism potentially producing defensive compounds that can mitigate the 323 

oxidative stress produced because of drought (Ruiz-Lozano et al., 2012). The multifaceted 324 

benefits provide by the AMF makes it a critical component of agricultural practices to improve 325 

crop performance in environments affected by drought (Miransari. 2010).  326 

5.3. AMF and herbivory  327 

Insect herbivores can substantially damage plants leading to lower yields and altered plant 328 

metabolism. AMF can remarkably enhance the plant resistance to above ground feeding by the 329 

herbivores. This involves utilizing a wide range of mechanisms from plant defence priming, 330 

altered nutrient allocation and secondary metabolism. Upon association with the plant roots, 331 
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AMF can increase nutrient uptake particularly phosphorus, which is responsible for enhancing 332 

plant vigor and resilience to herbivore damage. AMF also induces systemic changes in the 333 

plants such as production of compounds like phenolics, alkaloids ad terpenes which have 334 

defence related functions. In potato plants, inoculation with AMF enhanced the levels of 335 

phenolics and glycoalkaloids, such as α-solanine and α-chaconine, in leaves. This resulted in 336 

reduced performance of above-ground herbivore of Phthorimaea operculella. Similarly, the 337 

association of strawberry plants with the AMF Rhizophagus irregularis decreased herbivore 338 

performance of Spodoptera littoralis Boisduval (Roger et al., 2013). The role of AMF in 339 

mediating above-ground plant defenses is highlighted through different studies but how this 340 

association will work under drought stress needs to be properly addressed.  341 

5.4. AMF, drought and herbivory 342 

Drought stress can directly affect herbivore performance and had indirect effects by altering 343 

plants nutrients (McKenzie et al., 2013). AMF can modulate nutrient allocation, secondary 344 

metabolism and gene regulation therefore altering plant quality for the insect herbivores (Pozo 345 

& Azcón-Aguilar, 2007; Bennett et al., 2009). AMF colonization in certain cases can reduce 346 

herbivore performance or feeding by enhancing plant resilience through jasmonic acid 347 

mediated defenses (Jung et al., 2012). In contrast, AMF can increase nitrogen and phosphorus 348 

in the plant tissues making them preferable for generalist herbivore feeding (Gange & West, 349 

1994).  The impact and magnitude of effect of AMF on herbivore feeding depends on the host 350 

plant, fungal species and the herbivore feeding highlighting a complex interplay between 351 

nutrient supply and defense signalling (Kempel et al., 2010). Drought weakens plant defences 352 

against herbivore feeding, how this will shape under association with AMF remains to be 353 

properly explored.  354 

6. Thesis outline:  355 

6.1. Overall aim of the thesis  356 

 357 
This thesis aims to elucidate the interactions between arbuscular mycorrhizal fungi (AMF) and 358 

drought on maize secondary metabolism and whether these metabolic modulations can affect 359 

the performance of the larvae, Spodoptera exigua. Another vital component of this work is to 360 

explore the role of benzoxazinoids in forming association with the AMF and the effect of 361 

kinetic drought on the AMF symbiotic efficiency. The study also illustrates the function and 362 

enzymatic activity of the UDP-glucosyltransferases (UGTs), Zm00001eb330430 (UGT94A1) 363 

and Zm00001eb111270 (UGT94A2) involved in the production of double hexoses 364 
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benzoxazinoid in maize plants under drought stress. All together, these findings will advance 365 

our understanding how stresses along with symbiotic associations can shape plant chemical 366 

defences and ecological outcomes.  367 

6.2. Model system  368 

Climatic conditions 369 
The Swiss Central Plateau (German: Schweizer Mittelland; French: plateau suisse; Italian: 370 

altopiano svizzero) is located between the Swiss Alps and the Jura Mountains and represents 371 

one of the three main landscapes in Switzerland. The Swiss Central Plateau is partly flat but 372 

mostly hilly and covers almost 30% of the surface area of Switzerland. It is located within a 373 

transition zone between the humid oceanic climate and the continental temperate climate 374 

making proving it with a special climatic condition (The National Centre for Climate Services 375 

NCCS, CH-8058 Zurich, Switzerland). In addition to being centre of economy and 376 

transportation, Swiss central plateau is also the most densely populated area by far. There is an 377 

important implication associated to do research on drought in Swiss Central Plateau as climate 378 

change is predicted to decrease precipitation leading to severe drought events. This will 379 

intensify during the summer period in the agricultural ecosystems.  380 

Representative Concentration Pathway (RCP) scenarios 381 
To stimulate future climate conditions, the current study incorporates two Representative 382 

Concentration Pathway (RCP) scenarios, RCP 8.5 and RCP 2.6 to establish drought conditions. 383 

RCP 8.5 represents a trajectory with high greenhouse gas emission leading to a severe warming 384 

and increased drought frequency and intensity. RCP 2.6 projects limited warming by the year 385 

2100 given the emissions are reduced (IPCC, 2023). 386 

Maize (Zea mays) 387 
 388 
Maize (Zea mays) was chosen for the current model system study owing to its global 389 

agricultural importance as a staple crop and its well-characterized physiological and 390 

biochemical responses to abiotic and biotic stressors. Maize yield and quality is limited 391 

worldwide due to high susceptibility to drought stress (Casali et al., 2018; Kumar et al., 2024). 392 

Moreover, maize produces a diverse suite of specialized metabolites, such as benzoxazinoids, 393 

which are known to play crucial roles in defense against insect herbivores (Robert and Mateo, 394 

2022). Maize is an ideal system to investigate the interactive effects of drought, arbuscular 395 

mycorrhizal fungi (AMF), and insect herbivory on plant secondary metabolism and defense. 396 
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Figure 2. Known pathways involved in benzoxazinoid biosynthesis (Reproduced from Robert 397 
and Mateo, 2022. Chimia, Licensed under CC BY 4.0).  398 

 

Arbuscular Mycorrhizal Fungi Species: Rhizophagus irregularis 399 
The AMF species Rhizophagus irregularis was selected for its symbiotic relationship with 400 

maize and widespread distribution. R. irregularis exhibited the ability to improve host plant 401 

nutrient uptake and tolerance to biotic and abiotic stresses. R. irregularis potentially mitigates 402 

drought stress through enhanced water and phosphorus acquisition facilitated by the extensive 403 

hyphal networks (Fresno et al., 2023; Anandakumar et al., 2025).  Additionally, plant secondary 404 

metabolism and defence pathways are modulated by the AMF, and impact plant-herbivore 405 

interactions (Jung et al., 2012). These features make R. irregularis well-suited to be used in 406 

this study where biotic and abiotic stresses are applied together. 407 

Herbivore Species: Spodoptera exigua 408 
Spodoptera exigua, also known as the beet armyworm, is a polyphagous lepidopteran herbivore 409 

and a common maize pest worldwide (Rabelo et al., 2022). Life cycle and feeding behaviour 410 

of S. exigua is well-characterized making it an excellent model for studying plant-insect 411 
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interactions under stress conditions. S. exigua larvae can cause significant yield loss by feeding 412 

on maize leaves. Studying the performance of S. exigua under drought and AMF treatments 413 

allows us to assess how these factors influence herbivore resistance mediated by plant 414 

secondary metabolites. 415 

6.3. Individual aims:   416 

In the first chapter, we investigated interactive effect of drought and arbuscular mycorrhizal 417 

fungi (AMF) on benzoxazinoids modulation and its consequences for the herbivore 418 

performance by Spodoptera exigua larvae.  419 

In the second chapter, we investigated the role of benzoxazinoids in forming symbiotic 420 

association with the AMF, through MBOA complementation of bx1 mutant plants. We also 421 

investigated the impact of kinetic drought on the colonization efficiency 422 

In the third chapter, we investigated the UDP-glucosyltransferases (UGTs) in the families 423 

UGT79, UGT91, and UGT94 that are responsible for the production of DIMBOA-2Glc from 424 

DIMBOA-Glc under drought stress.  425 
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ABSTRACT 792 

Drought events are becoming increasingly frequent and intense, posing major challenges to 793 

crop productivity. Beyond direct water stress, drought can indirectly affect plants by enhancing 794 

herbivore performance. While Arbuscular Mycorrhizal Fungi (AMF) have been proposed to 795 

alleviate drought stress and to enhance plant resistance to herbivory, their role in mediating 796 

plant responses to the two combined pressures remains poorly understood. Here, we examined 797 

the individual and interactive effects of drought, AMF colonization, and herbivory on maize 798 

(Zea mays) performance. We combined a semi-field experiment with two growth chamber 799 

assays to assess growth, metabolism, and herbivore responses. Drought reduced maize biomass 800 

and chlorophyll content, while AMF improved reproductive traits, independently of soil 801 

moisture levels. Both drought and AMF colonization led to a reconfiguration of the plant 802 

primary and secondary metabolism. Interestingly, drought transiently decreased DIMBOA-Glc 803 

levels in maize leaves, an effect that was exacerbated under AMF colonization. Consistently, 804 

drought increased leaf herbivore performance. However, AMF colonization limited the 805 

drought-mediated increase in herbivore performance, despite similar leaf damage. Overall, 806 

AMF enhanced maize yield and herbivore resistance under drought conditions. This study 807 

highlights the need to consider multi-stressor interactions to understand and harness AMF 808 

benefits in agriculture under increasing drought pressure. 809 
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INTRODUCTION 812 

Drought is becoming increasingly frequent and intense across many regions due to shifting 813 

climate patterns, posing a serious threat to global food security (Farooq, et al., 2023; Rezaei et 814 

al., 2023, IPCC, 2023). While drought directly impairs plant growth and yield by limiting water 815 

and nutrient uptake, it can also increase herbivore pressure, either by weakening plant defenses 816 

or by improving plant tissue nutritional value. Arbuscular mycorrhizal fungi (AMF) can 817 

improve plant drought resilience (Abdalla et al., 2023; Zou et al., 2020) and plant tolerance 818 

and/or resistance to herbivory (Dowarah et al., 2022). However, the role of AMF in mediating 819 

plant responses under combined drought and herbivory remains poorly understood. Addressing 820 

this knowledge gap is essential for developing sustainable strategies to improve plant resilience 821 

in increasingly variable environments.  822 

The increasing frequency and severity of drought events threaten agricultural productivity 823 

worldwide, especially in regions already vulnerable to water scarcity (IPCC, 2023; Rosenzweig 824 

et al., 2014; Yuan et al., 2024). Among climate-related stressors, drought is one of the most 825 

damaging, with the potential to reduce crop yields by over 50% on arable land by 2050 826 

(Vinocur and Altman, 2005). The three major cereal crops, maize, wheat, and rice, which 827 

together provide over half of the global caloric intake, are particularly sensitive to water stress 828 

(Farooq et al., 2023; Deribe, 2024; Kheyruri et al., 2024; Mohammadi, 2024; Sheoran et al., 829 

2022). Drought leads to impaired photosynthesis, stunted growth, disrupted nutrient uptake, 830 

early senescence, and reduced yield (Gupta et al., 2020; Qiao et al., 2024). A meta-analysis 831 

showed that a 40% water reduction caused yield declines of up to 21% in wheat and 40% in 832 

maize in the field (Daryanto et al., 2016). As drought episodes intensify, safeguarding these 833 

staple crops is essential to ensure food security for a growing population. 834 

Beyond its direct effects on plant growth and yield, drought can also indirectly exacerbate plant 835 

stress by increasing herbivore pressure (Chávez-Arias et al., 2021). Water limitation can trigger 836 

increased tissue concentrations of sugars and amino acids due to osmotic adjustment and 837 

weaken or delay activation of defense pathways (Ruan, 2014). In crops, drought has been 838 

shown to impair the jasmonic acid (JA)- and salicylic acid (SA)-mediated defense responses 839 

that normally deter herbivory (Margay at al., 2024). As a result, stressed plants can become 840 

more susceptible to insect pests, particularly during early developmental stages. For instance, 841 

drought downregulated JA biosynthetic genes such as ZmOPR2 and ZmLOX10 in maize, 842 

leading to increased susceptibility to Spodoptera frugiperda larvae (Huang et al., 2023). 843 

Similarly, in Arabidopsis, drought suppressed SA defense against herbivores by 844 
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downregulating ICS1 expression via NAC transcription factors (Zhao et al., 2025). These 845 

findings underscore the importance of considering biotic and abiotic stress interactions, as 846 

drought not only reduces maize vigor but also increases vulnerability to herbivory, further 847 

threatening productivity under climate stress. 848 

AMF form symbiotic associations with the roots of most terrestrial plants and play a key role 849 

in improving plant resilience to drought (Bhupenchandra et al., 2024; Martin & vam der 850 

Heijden, 2024; Wang et al.; 2024). AMF penetrates cortical cells of the roots and produce 851 

arbuscles where an exchange of nutrients between the two partners takes place. This symbiotic 852 

association helps the plant to acquire nutrients, resistance against pathogens, enhanced growth 853 

under abiotic stresses (Bhupenchandra et al., 2024; Kumar et al., 2024). The fungi, in return 854 

receive carbohydrates  and lipids from the plant (Balestrini et al., 2020; Salmeron-Santiago et 855 

al., 2021). By extending their hyphal networks into the soil, AMF enhance water uptake beyond 856 

the root depletion zone, thereby improving plant hydration under limited water availability 857 

(Abrar et al., 2024). Furthermore, AMF increase the acquisition of essential nutrients such as 858 

phosphorus, potassium, and micronutrients, which are often less mobile in dry soils 859 

(Bhupenchandra et al., 2024; Balestrini et al.; 2020). In addition to improving resource uptake, 860 

AMF modulate plant physiological responses to drought by promoting osmotic adjustment 861 

through the accumulation of solutes like proline and soluble sugars, enhancing antioxidant 862 

enzyme activity, and stabilizing photosynthetic processes (Begum et al., 2019). These effects 863 

help maintain cell turgor, delay senescence, and support root hydraulic conductivity under 864 

water-limiting conditions (Abdalla et al., 2023). Studies across various species have 865 

demonstrated that AMF-inoculated plants maintain higher biomass, chlorophyll content, and 866 

stomatal conductance under drought stress compared to non-mycorrhizal plants (Tang et al., 867 

2022). For instance, mycorrhizal symbiosis can increase the uptake nutrients such as nitrogen, 868 

phosphorus and iron as demonstrated in a study in Pelargonium graveolens under drought 869 

stress (Amiri et al., 2017). Similarly. AMF-inoculated pistachio plants revealed high levels of 870 

phosphorus, potassium, zinc and manganese (Bagheri et al. 2012). Several studies have 871 

indicated that the association of AMF with plants led to an increase in biomass, rise in net CO2 872 

assimilation and stomatal conductance (Ran et al., 2024; Kakabouki et al., 2023). The 873 

photosynthetic activity indicated by higher levels of photosynthetic pigments and chlorophyll 874 

fluorescence parameters were also observed (Bagheri et al., 2019). Under drought stress, AMF 875 

can stabilize water relations, improving plant resilience through mechanisms such as increased 876 

root hydraulic conductivity when plants are subjected to drought stress (Erice et al., 2024). 877 

Through these multifaceted mechanisms, AMF contribute significantly to plant drought 878 
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tolerance and represent a promising tool for improving crop resilience in water-scarce 879 

environments. 880 

AMF can further enhance plant defenses against herbivory under ambient conditions (Meier & 881 

Hunter, 2018). AMF can increase plant vigor and support the synthesis of defensive secondary 882 

metabolites by improving nutrient acquisition, particularly of phosphorus and nitrogen (Amani 883 

et al., 2022, Orine et al., 2025). Additionally, AMF colonization has been shown to prime or 884 

amplify defense signaling pathways, notably those mediated by JA (Rivero et al., 2021). In 885 

particular, AMF have been shown to alter the production of secondary metabolites including 886 

the phenolic compounds quercetin, vanillic acid, rutin, coumaric acid, kaempferol, and 887 

tetraterpenoids carotenoids in quinoa (Benaffari et al., 2024), and benzenes and sulphur 888 

containing compounds in Solanum nigrum (Rashidi et al., 2024). In tomato plants, AMF 889 

enhanced tolerance to S. littoralis even in JA-deficient genotypes, suggesting that mycorrhizae 890 

can even compensate for impaired defense signaling (Formenti & Rasmann, 2019). In 891 

Asclepias species, AMF inoculation increased foliar phosphorus levels and conferred greater 892 

resistance to monarch butterfly larvae (Tao et al., 2015). Similarly, AMF associations reduced 893 

aphid performance on Ageratina adenophora by lowering nymph survival and supporting 894 

stronger plant growth (Du et al., 2022). These examples demonstrate that AMF can bolster 895 

plant defenses and mitigate herbivore damage under normal environmental conditions, 896 

highlighting their potential as a natural strategy for pest management in agriculture. 897 

While AMF have been shown to improve plant tolerance to both drought and herbivory when 898 

studied separately, their role under simultaneous exposure to these stressors remains poorly 899 

understood. In real-world agricultural settings, plants often face multiple, interacting stresses 900 

rather than isolated ones. It is therefore critical to understand whether AMF can continue to 901 

support plant performance and defense when both stressors co-occur. Some studies suggest that 902 

AMF can prime plant defense pathways even under abiotic stress, potentially maintaining 903 

resistance to herbivores during drought. For instance, Medicago truncatula inoculated with 904 

Rhizophagus irregularis showed increased expression of JA-responsive genes and elevated 905 

flavonoid levels under combined drought and insect stress, suggesting that mycorrhizal 906 

colonization can help sustain chemical defenses even when plants face water limitation 907 

(Adolfsson et al., 2017). However, the benefits of AMF may be highly context-dependent, 908 

varying with the timing, severity, and combination of stresses, as well as the plant and AMF 909 

genotypes involved. Investigating AMF-plant-herbivore interactions under realistic, multi-910 

stress conditions will enable us to better predict and harness their potential for sustainable crop 911 

protection and climate-resilient agriculture. 912 
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The present study investigated the individual and combined effects of drought stress, AMF 913 

colonization, and herbivory on maize. We first assessed how AMF colonization by 914 

Rhizophagus irregularis influenced maize growth, yield, and natural herbivory under ambient 915 

and drought conditions in a semi-field experiment. We then conducted a controlled growth 916 

chamber assay to evaluate how AMF modulated plant responses to drought and herbivory by 917 

S. exigua larvae. By integrating physiological, metabolic, and herbivore performance data, our 918 

goal was to determine whether AMF can enhance maize resilience under simultaneous abiotic 919 

and biotic stress, and to identify potential mechanisms underlying these effects. 920 

METHODS 921 

Biological resources  922 

B73 maize seeds were obtained from Maize GDB germplasm (MGCSC, Urbana, USA) and 923 

multiplied by Delley Semences et Plantes (DSP, Delley-Portalban, Switzerland). Inoculum 924 

containing sand, soil, roots, and spores of the AMF Rhizophagus irregularis (SAF22) as well 925 

as a mock inoculum without AMF was produced in the greenhouse, as previously described by 926 

Lutz et al. (2023), and were kindly provided by the Swiss Collection of Arbuscular Mycorrhizal 927 

Fungi (SAF, Zurich, Switzerland). Eggs of S. exigua were bought from Frontiers Agricultural 928 

Sciences, Newark, NJ, USA and larvae were reared on artificial diet (Lepidoptera diet; Frontier 929 

Agricultural Sciences, Newark, NJ, USA). Second-instar larvae were used.   930 

Maize growth and yield in the field  931 

The individual and interactive effects of drought and AMF on maize growth and yield were 932 

evaluated by conducting a semi-field assay. The experiment was carried out in Ostermundigen 933 

(46°57'59.8"N 7°29'13.1"E), Switzerland between June and October 2024. Weather data was 934 

provided by MeteoSwiss (Federal Office of Meteorology and Climatology, Zürich, 935 

Switzerland) and are presented in Supplementary Table 1. Maize seeds (var. B73) were surface 936 

sterilized using 15% (v/v) bleach (Potz, Migros, Zurich, Switzerland) in distilled water for 15 937 

min. The seeds were then rinsed with distilled water and pregerminated by placing them on 938 

damped filter papers (90mm; Cytiva, Marlborough, MA, USA) in a plastic box (Semadeni, 939 

Bern, Switzerland) in the dark for three days. Ten-liter pots (Hortima, Hausen, Switzerland) 940 

were covered at the bottom using fabric sheath (Neeser, Reiden, Switzerland) and filled with 941 

approximately 11.4 kg of soil (Landerde, Ricoter, Aarberg, Switzerland), what corresponds to 942 

95% of the pot volume. The soil chemical profile was analyzed by the laboratory Labor für 943 
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Boden- und Umweltanalytik (LBU, Steffisburg, Switzerland) (Supplementary Table 2). 944 

Approximately 500 g of the AMF inoculum were added to half of the pots (AMF+, n= 27) and 945 

mixed with the soil. The same amount of mock inoculum was added and mixed with the soil 946 

of control pots (AMF-, n=27). Three pregerminated seedlings were placed 3 cm deep into the 947 

soil in individual pots. After seven days, maize growth was assessed and one seedling (the most 948 

central) per pot was kept by manually removing additional seedlings. All plants were watered 949 

daily for two weeks. After this period, only control plants received water daily (AMF+: n=9, 950 

AMF-: n=9), while drought-exposed plants were left unwatered until drought symptoms 951 

appeared (leaf wilting score of 4, Sudhakar et al., 2016). Afterwards, all plants were watered 952 

once to twice weekly and received either 2.3 L (ambient), 1.9 L (RCP2.6) or 1.66 L (RCP8.5) 953 

(n=9 per treatment). The volume of water to add was based on the calculated soil moisture of 954 

the current ambient conditions and predicted future climate scenarios RCP2.6 and RCP8.5 with 955 

a water content of 23%, 19%, and 16.6% (v/v) respectively (Guyer et al., 2018). All plants 956 

received 1% NK fertilizer (NK Flüssigdünger; Biorga, Grossaffoltern, Switzerland) during the 957 

eighth and ninth week of the experiment. All pots were covered with 35 L plastic bags (Quick 958 

Bag, Galaxus, Zürich, Switzerland) during rain episodes. The 54 pots (2 AMF treatments x 3 959 

drought levels x 9 replicates) were randomly placed in the beds to avoid positional bias.  960 

Plant phenotypic parameters were measured after 60, 85 and 100 days. Relative chlorophyll 961 

content of the youngest leaf was measured using Soil and Plant Analysis Development 962 

SPAD502 plus (Konica Minolta, München, Germany) around 12 pm for all the plants. The 963 

duration of the measurements lasted from 30 min to one hour. Plant height was measured by 964 

using a ruler from the tip of the youngest leaf down to the soil surface. Herbivory damage was 965 

measured visually using a score of 1-3, one as the lowest scoring (1. Herbivory of < 5% leaf 966 

tissue, 2. Herbivory of 5-15% leaf tissue, 3. Herbivory of > 15% leaf tissue.). Maize yield was 967 

approximated by measuring tassel and cob development after 85 and 100 days of planting the 968 

pregerminated seedlings. When two cobs were present, the length of the oldest cob was taken 969 

into account for further analyses. The experiment was unexpectedly interrupted when an 970 

individual entered the field and collected most maize cobs, resulting in the premature 971 

termination of the experiment on day 118. As a result, and while fresh shoot and root biomass 972 

were measured at the termination of the experiment, no final cob parameters are available. 973 

Maize youngest leaves were collected on days 60 and 120 and flash frozen in liquid nitrogen 974 

for sugars, hormones and benzoxazinoid analysis. Maize roots were collected on day 120 for 975 

benzoxazinoid analysis and AMF colonization evaluation.   976 
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Herbivore performance under growth chamber conditions   977 

The impact of AMF and drought on maize resistance to herbivory was investigated by 978 

measuring herbivore damage and herbivore performance under laboratory conditions. Maize 979 

seeds were sterilized and pregerminated as described above. Germinating seedlings were 980 

placed in 3 L pots (Hortima, Hausen, Switzerland) covered at the bottom using fabric sheath 981 

(Neeser, Reiden, Switzerland). The pots were filled with either 3.4 kg soil (95% of pot volume; 982 

Landerde; Ricoter, Aarberg, Switzerland) mixed with 150 g AMF inoculum (AMF+, n= 36) or 983 

with 3.4 kg soil (95% of pot volume; Landerde; Ricoter, Aarberg, Switzerland) mixed with 150 984 

g of autoclaved control inoculum (AMF-, n=36). Maize plants were grown in a growth chamber 985 

at 23±1°C and 18±1°C with 14/10 hours of light and darkness respectively to simulate natural 986 

conditions and 60% (v/v) relative humidity. All plants were watered daily for two weeks. 987 

Because no difference was observed between the two drought levels in the field, only one 988 

drought treatment (RCP8.5) was used in this experiment. Half of the AMF+ and AMF- plants 989 

were further well-watered on a daily basis. The second half of the plants were watered with 990 

500 mL only upon leaf wilting (score 4) symptoms (RCP8.5). After 60 days, five pre-weighed 991 

S. exigua larvae were placed in the middle of the shoot tip. Control plants did not receive any 992 

insects. All plants were covered with a fleece (cover fleece 1.6 × 20 m; Florada, Hannover, 993 

Germany) to prevent larvae from escaping. The pots were randomly placed in the growth 994 

chamber. Five days later, S. exigua larvae were collected and weighed. Infested plants where 995 

no larvae were collected were excluded from the analysis. The leaves of infested plants were 996 

photographed to analyze the leaf damage area with ImageJ (Rasband, 2018). The youngest 997 

leaves and crown roots were collected and flash-frozen in liquid nitrogen to analyze the 998 

benzoxazinoid contents. Maize roots were collected and stored at minus 20⁰C for AMF 999 

colonization assessment by microscopy. The experiment was repeated twice to ensure a 1000 

sufficient number of replicates per herbivore treatment (n=7-8).  1001 

AMF colonization rates  1002 

Roots were stained following a previously established procedure (Vierheilig et al., 1998). 1003 

Maize thin roots (diameter 0.5 - 1 mm) were cut into small segments of approximately 1.5 cm 1004 

in length and preserved in 50% EtOH (Alcosuisse, Rüti b. Büren, Switzerland). The ethanol 1005 

was rinsed off using distilled water and the samples were then cleared with 10% w/v KOH 1006 

(Sigma-Aldrich, Steinheim, Germany) at 80°C in a dry bath (Digital Dry Bath; Labnet, Edison, 1007 

NJ, USA) for a duration of 30 min. After incubation, the roots were rinsed using distilled water 1008 

and stained with ink (Pelikan, Hannover, Switzerland) -vinegar solution (5% acetic acid; 1009 
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MBudget, Migros, Zurich, Switzerland) and incubated at 80°C for 30 min. After a final rinse 1010 

with distilled water, the samples were stored in 50% glycerol (Dr. Bähler Dropa AG, Bern, 1011 

Switzerland). The root samples were placed on a microscopic slide, mounted with 50% 1012 

glycerol, and covered with the help of a cover slip. The samples were observed under a 1013 

Fluorescence epi microscope with camera (Leica DMC6200; Leica Microsystems, Heerbrugg, 1014 

Switzerland) at the magnification of 200X (magnifying lens * ocular lens). The average number 1015 

of root segments analyzed for each plant in the field assay was 100, while the average of 60 1016 

root segments for each plant was analyzed for the herbivory assay. To exclude contamination 1017 

in controls, on average 85 root segments were analyzed in the field assay. The colonization rate 1018 

in percentage was measured as the proportion of root segments colonized by AMF compared 1019 

to the total number of root segments (McGonigle et al., 1990).  1020 

Soluble sugar quantification  1021 

The quantification of soluble sugars was performed using Ultra High Performance Liquid 1022 

Chromatography (UHPLC) coupled with Mass Spectrometry (MS) following a protocol 1023 

adapted from (Barzen-Hanson et al., 2018; Yang & Rainville, 2019; Zhu et al., 2015). Maize 1024 

roots and leaves samples were ground to a fine powder in liquid nitrogen using a mortar and a 1025 

pestle. Aliquots of 100 ± 1 mg were extracted by adding 500 µL of 50% (v/v) aq. EtOH in 2 1026 

mL tubes microtubes (Sarstedt AG & Co. KG, Nümbrecht, Germany). The samples were 1027 

incubated for 15 min at 78 °C in a dry bath, vortexed, and centrifuged at 14’000 rpm at 4°C for 1028 

10 min, and the supernatant was transferred to a new tube. This extraction was repeated twice, 1029 

adding the supernatants of the same sample to the same tube. The samples were diluted 100 1030 

times and stored at -20 °C until analysis. Fructose, glucose, and sucrose profiling were 1031 

performed with an Acquity UPLC I-Class system coupled to a single quadrupole mass 1032 

spectrometer (QDa) equipped with an electrospray source (Waters, Milford, MA, USA). 1033 

Gradient elution was performed on an Acquity BEH Amide (1.7 μm, 2.1 × 150 mm i.d.; Waters, 1034 

Milford, MA, USA) column maintained at 85 °C, using normal phase chromatography in 1035 

negative ion mode. The elution conditions were as follows: solvent A consisted of isopropanol 1036 

(IPA) and aq. 10 mM ammonium formate (50:50 v/v), while solvent B consisted of acetonitrile 1037 

(ACN), IPA, and aq. 10 mM ammonium formate (90:5:5 v/v). The flow rate was set to 0.7 1038 

mL/min. The gradient program was: 100% solvent B from 0.00-2.00 min; a linear gradient 1039 

from 100% to 60% solvent B from 2.00 to 6.00 min; 60% solvent B from 6.00 to 8.00 min; a 1040 

rapid linear gradient from 60% to 100% solvent B from 8.00 to 8.10 min; and finally, 100% 1041 

solvent B from 8.10 to 10.00 min. MassLynx v4.1 SCN923 (Waters, Milford, MA, USA) was 1042 
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used to control the instrument and for data processing. Absolute quantities were determined 1043 

using standard curves of the corresponding pure compounds. Glucose, fructose, and sucrose 1044 

standards were bought from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland).   1045 

Phytohormone analyses  1046 

Salicylic acid (SA), oxophytodienoic acid (OPDA), jasmonic acid (JA), jasmonic acid-1047 

isoleucine (JA-Ile), and abscicic acid (ABA) concentrations were quantified by UHPLC-1048 

MS/MS as described by Glauser et al. (2014) with minor adjustments (Gfeller et al., 2023). 1049 

Aliquots of 85 ± 5 mg ground plant material were extracted by adding 990 µL of extraction 1050 

solvent, consisting of ethyl acetate (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) and 1051 

formic acid (FA; Thermo Fisher Scientific, Waltham, MA, USA; 99.5:0.5 v/v), and 10 µL 1052 

internal standard solution (isotopically labeled hormones at 100 ng/mL in water; d6-SA from 1053 

Sigma-Aldrich Chemie GmBH, Buchs, Switzerland; d6-ABA and d5-OPDA from OlChemIm, 1054 

Olomouc, Czech Republic; d5-JA from CDN Isotopes, Quebec, Canada; 13C6-Ja-Ile produced 1055 

in the laboratory of the Neuchatel Platform of Analytical Chemistry). The solution was 1056 

vortexed (Vortex-Genie 2; Genie, Bohemia, NY, USA) for 10 s before adding 5 to 10 glass 1057 

beads for mixing in a mixer mill (MM300; Retsch, Haan, Germany) at 30 Hz for 3 min and 1058 

subsequently centrifuged at 14’000 rpm for 3 min (Centrifuge 5427 R; Eppendorf, Hamburg, 1059 

Germany). The supernatants were transferred to 2 mL tubes microtubes. The pellet was re-1060 

extracted in 500 µL of extraction solvent and centrifuged as described above. The two 1061 

supernatants were combined. The solvent was evaporated using a centrifugal evaporator 1062 

(CentriVap; Labconco, Kansas City, MO, USA) and resuspended in 200 µL of aq. MeOH 1063 

(50:50 v/v; Thermo Fisher Scientific, Waltham, MA, USA) using vortex and ultrasounds 1064 

(Ultrasonic bath XUBA1; Grant Instruments Ltd, Royston, UK). The supernatant was filtered 1065 

through a polytetrafluoroethylene hydrophilic syringe filter (0.22 µm × 13 mm i.d.; BGB, 1066 

Boeckten, Switzerland) and collected in a clean Eppendorf tube (Microtube CapLock; Nolato, 1067 

Torekov, Sweden). Hormone profiling was conducted using an Acquity UPLC I-Class (Waters 1068 

AG, Baden-Dättwil, Switzerland) coupled to a QTRAP 6500+ mass spectrometer (Sciex, 1069 

Framingham, MA, USA) operated in multiple reaction monitoring (MRM) mode with negative 1070 

ionization. Chromatographic separation was performed on an Acquity BEH C18 column (1.7 1071 

μm, 2.1 × 50 mm i.d.; Waters, Milford, MA, USA) coupled to a guard column of identical phase 1072 

chemistry. UHPLC gradient conditions were as follows: solvent A consisted of H2O and FA 1073 

(99.95:0.05 v/v), and solvent B consisted of ACN and FA (99.95:0.05 v/v). The flow rate was 1074 

set to 0.4 mL/min. The injection volume was 1 µL and the column temperature was maintained 1075 
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at 35°C. The gradient program was: a linear gradient from 5 to 50% solvent B from 0.00 to 1076 

5.00 min; a linear gradient from 60 to 100% solvent B from 5.00 to 8.00 min, 100 % solvent B 1077 

from 8.00 to 12.00 min; and re-equilibration at 5% solvent B from 12.00 to 16.00 min. Analyst 1078 

v.1.7.1 (Sciex, Framingham, MA, USA) was used to control the instrument and for data 1079 

processing.  1080 

Benzoxazinoid profiling  1081 

Benzoxazinoid contents were characterized using an Acquity UPLC I-Class system coupled to 1082 

a single quadrupole mass spectrometer (QDa) equipped with an electrospray source (Waters, 1083 

Milford, MA, USA) as previously described (Hu et al., 2018). The plant metabolites were 1084 

extracted from 100 ± 1 mg by adding 1 mL MeOH:H2O:FA (70:30 v/v, 0.1% FA) and 1085 

thoroughly vortexed for 10 s. The samples were then centrifuged for 20 min at 13’00 rpm at 1086 

10°C and the supernatant was collected for analysis. Compounds were separated on an Acquity 1087 

BEH C18 column (1.7 μm, 2.1 × 100 mm i.d.; Waters, Milford, MA, USA). The flow rate of 1088 

the mobile phase was maintained at 0.4 mL/min. The injection volume was 1 µL and the 1089 

temperature of the column was maintained at 40⁰C. The MS was operated in negative mode, 1090 

and data were acquired in the scan range (m/z 150–650) using a cone voltage of 10 V. All other 1091 

MS parameters were left at their default values. The elution conditions were as follows: solvent 1092 

A consisted of H2O and FA (99.9:0.1 v/v), while solvent B consisted of ACN and FA (99.9:0.1 1093 

v/v). The gradient program was: 2% solvent B from 0.00 to 1.00 min; a linear gradient from 2 1094 

to 40% solvent B from 1.00 to 4.00 min; a linear gradient to 100% solvent B from 4.00 to 6.00 1095 

min.; 100% solvent B from 6.00 to 8.50 min; a gradient from 100 to 2% solvent B from 8.50 1096 

to 8.51 min; and 2% solvent B from 8.51 to 10 min. MassLynx v4.1 SCN923 was used to 1097 

control the instrument and for data processing. The absolute quantities of HMBOA, DIMBOA, 1098 

DIMBOA-Glc, DIMBOA-2Glc, HDMBOA-Glc, and MBOA were determined using standard 1099 

curves of the corresponding pure compounds. MBOA was purchased from Sigma-Aldrich 1100 

Chemie GmbH (Buchs, Switzerland). DIMBOA-Glc DIMBOA-2Glc, and HDMBOA-Glc 1101 

were isolated from maize plants in our laboratory as previously described (Sutour et al., 2024; 1102 

Thoenen et al., 2023). DIMBOA and HMBOA were synthesized in our laboratory following 1103 

published protocols (Macías et al., 2006). HMBOA-Glc, HMBOA-2Glc, HM2BOA-Glc, 1104 

DIMBOA-3Glc, DIM2BOA-Glc, and HDM2BOA-Glc for which no analytical standards were 1105 

available, were quantified by comparison with the standard curve of their closest parent 1106 

compounds, HMBOA, DIMBOA-Glc, and HDMBOA-Glc. Full names and chemical formulas 1107 

of measured benzoxazinoids can be found in Supplementary Table 3. 1108 
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Statistical analyses 1109 

Statistical analyses and data visualization were done with R (version 4.4.2; R core team, 2018) 1110 

using R studio (version 2024.12.0.467; Posit team, 2024). The data was read in with the 1111 

package readxl (version 1.4.3). For organizing and structuring the data the package dplyr 1112 

(version 1.1.4) was used. The semi-field assay and the herbivory assay followed a fully 1113 

multifactorial design and the response variables were analyzed by using simple linear models. 1114 

Explanatory variables were AMF presence or absence, water regimes, and for the herbivore 1115 

assay presence or absence of herbivores. Homoscedasticity and normality of distribution of 1116 

residuals were confirmed visually with the diagnostic plots of base R. If the model fit was not 1117 

satisfactory, the tested variables were rank transformed prior to analysis. Two- and three-Way 1118 

ANOVAs were used to detect the effects of response variables, depending on the number of 1119 

variables in the experiment. For the insect performance data no effect of the experimental 1120 

repetition could be observed, and thus the data of both experiments were combined for analysis. 1121 

Plots were made using the package ggplot2 (version 3.5.1) and ggpattern (version 1.1.1). 1122 

RESULTS 1123 

Drought decreased maize growth, but AMF improved plant growth and 1124 

reproductive success independently of soil moisture levels 1125 

A semi-field experiment was carried out to assess the effects of drought, AMF, and naturally 1126 

occurring herbivores in conditions relatable to agriculture (Figure 1a). The addition of AMF 1127 

increased colonization from 2.34% to 76.1% in ambient conditions and from 0% to 46.3% and 1128 

0.25% to 51.4% under RCP2.6 and RCP8.5 conditions respectively (Figure 1b). Drought 1129 

further decreased shoot height already at day 60 and the effect intensified after 85 days but not 1130 

further after 110 days (Figure 1c). Shoot biomass was also decreased under RCP2.6 and 1131 

RCP8.5 drought conditions (Figure 1c, d). Drought further decreased leaf chlorophyll contents 1132 

(Supplementary Figure 1). Conversely, AMF presence increased shoot biomass, cob length, 1133 

and cob number (Figure 1d-f). No interactions between drought and AMF were observed on 1134 

any of the measured growth and reproductive parameters under semi-field settings (Figure 1). 1135 

Root biomass was not affected by treatments (Supplementary Figure 2). Field damage by 1136 

herbivores was low and did not show a treatment effect (Supplementary Figure 3).   1137 
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Figure 1. AMF colonization promotes shoot biomass and cob length independently of the moisture 1138 
conditions. A) A photograph of the semi-field experiment, B) AMF colonization in inoculated plants after 1139 
120 days, C) mean shoot height over time, D) mean fresh shoot biomass after 120 days, E) mean cob length 1140 
after 100 days, F) number of cobs after 100 days. Mean ± standard errors are shown (n = 9 per treatment) 1141 
(n = 9). ND: Ambient soil moisture: 23% (v/v); Drought soil moisture: RCP2.6 and RCP8.5: 19% and 16.6% 1142 
(v/v) respectively. AMF = Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). ANOVA tests were 1143 
run to analyze differences among treatments: ns: not significant; = 0.05<p<0.10, * = p<0.05, ** = p<0.01, 1144 
*** = p<0.0001. Different letters indicate significant differences between treatments when interactions 1145 
between AMF and drought were observed. Data on drought and AMF colonization effects on leaf 1146 
chlorophyll contents, root biomass, and field damage are provided in Supplementary Figures 1-3. 1147 



Chapter I, submitted to PCE, preprint 
 

49 
 

AMF and drought modulated maize metabolism in semi-field 1148 

conditions 1149 

In leaves, drought triggered transient changes in benzoxazinoids at day 60, reflected by a 1150 

decrease in DIMBOA-Glc levels and an increase in DIM2BOA-Glc leaf concentrations (Figure 1151 

2a; Supplementary Figure 4). The AMF-induced decrease in DIMBOA-Glc was stronger under 1152 

ambient than drought conditions (Figure 2a; Supplementary Figure 4). AMF colonization was 1153 

positively correlated with leaf sucrose and ABA concentrations (Supplementary Figure 5). At 1154 

day 60, AMF colonization was negatively correlated with DIM2BOA-Glc (Supplementary 1155 

Figure 6). After 120-day, drought stress decreased sucrose and, albeit not significantly, glucose 1156 

concentrations, but did not affect fructose levels in leaves (Figure 2b; Supplementary Figure 1157 

7). Drought did not affect leaf hormonal levels (Figure 2b; Supplementary Figure 7).  1158 

In roots, the prolonged drought increased fructose, JA, OPDA, SA, HMBOA-2Glc, and 1159 

HM2BOA-Glc levels (Figure 2c; Supplementary Figure 8). AMF presence increased fructose, 1160 

glucose, and sucrose concentrations, and decreased OPDA and total benzoxazinoid levels, 1161 

particularly through lowered concentrations of HMBOA-Glc and DIMBOA-Glc (Figure 2c; 1162 

Supplementary Figure 8). Drought and AMF presence showed an interactive effect on fructose, 1163 

as AMF-induced increase in fructose levels was stronger in the RCP2.6 drought scenario 1164 

(Figure 2c; Supplementary Figure 8). A negative correlation between AMF colonization and 1165 

HM2BOA-Glc and DIMBOA-2Glc was observed (Supplementary Figure 9).  1166 
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Figure 2. Drought and AMF modulate the maize metabolism. A. Heatmap of leaf metabolite concentrations –1167 

relative to concentrations in control plants under ambient conditions after 60 days, B. Heatmap of leaf metabolite 1168 

concentrations relative to concentrations in control plants under ambient conditions after 120 days, C. Heatmap 1169 

of root metabolite concentrations relative to concentrations in control plants under ambient conditions after 120 1170 

days. Ambient soil moisture: 23% (v/v); Drought soil moisture: RCP2.6 and RCP8.5: 19% and 16.6% (v/v) 1171 

respectively. AMF = Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). Data were log-transformed 1172 

(n=9 per treatment). Compounds highlighted in bold showed significant differences. Stars indicate significant 1173 

differences (linear model for each compound): *** = p ≤ 0.001, ** = p ≤ 0.01, * = p ≤ 0.05, = 0.05 < p < 0.1. 1174 

Different letters indicate significant differences between treatments when interactions between AMF and drought 1175 

were observed. ND: Ambient soil moisture: 23% (v/v); Drought soil moisture: RCP2.6 and RCP8.5: 19% and 1176 

16.6% (v/v) respectively. AMF = Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). Histograms 1177 

for individual compound graphs are shown in Supplementary Figures 4, 5, and 8. Correlations between AMF 1178 

colonization and ABA and between AMF colonization benzoxazinoids are shown in Supplementary Figures 6, 7, 1179 

and 9.  1180 
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AMF colonization limited drought-induced increase in insect 1181 

performance  1182 

Drought and AMF showed individual and interactive effects on maize leaf benzoxazinoids in 1183 

the field (Figure 2). Because the natural herbivore pressure in the field was low (Supplementary 1184 

Figure 3), the potential effects of drought and AMF-mediated changes in benzoxazinoids on 1185 

herbivore performance were assessed under controlled conditions. As in the semi-field assay, 1186 

drought reduced AMF colonization, plant height, and shoot biomass (Supplementary Figure 1187 

10). Drought and AMF showed interactive effects on chlorophyll contents, as AMF-induced 1188 

decrease in chlorophyll content was pronounced only under ambient conditions 1189 

(Supplementary Figure 10).  1190 

After 2 months, plants were subjected to feeding of 5 S. exigua larvae for 5 days. The relative 1191 

growth of the leaf herbivore S. exigua was not affected by AMF presence in soil but was slightly 1192 

increased on plants that were subjected to drought than on plants that grew in ambient 1193 

conditions (Figure 3a). While the herbivore performed better under drought conditions in the 1194 

absence of AMF, the effect disappeared in the presence of AMF (Figure 3a). The leaf damage 1195 

area was not affected by drought nor AMF (Figure 3b), but a significant correlation between 1196 

the absolute mass gain of larvae and the leaf damage area was observed (Supplementary Figure 1197 

11).  1198 

In the leaves, levels of HMBOA-Glc and DIM2BOA-Glc increased and HDM2BOA-Glc 1199 

decreased under drought conditions (Supplementary Figure 12). AMF alone showed no effect, 1200 

but AMF presence induced an increase in DIMBOA-2Glc under drought, but not ambient, 1201 

conditions (Supplementary Figure 12). Herbivory did not affect benzoxazinoid levels in leaves 1202 

(Supplementary Figure 12).  1203 

In roots, drought increased the concentration of HMBOA-Glc, HMBOA-2Glc, HM2BOA-Glc, 1204 

DIMBOA-2Glc, DIM2BOA-Glc, and MBOA, while only HMBOA showed a decrease. AMF 1205 

treatment affected DIMBOA-3Glc through elevated concentrations in AMF+ plants. 1206 

Interactive effects between drought and AMF were observed for DIMBOA and DIMBOA-1207 

2Glc, yet following opposite trends. While DIMBOA levels were lower in AMF+ plants under 1208 

drought treatment, DIMBOA-2Glc levels were increased in the same conditions. HMBOA-Glc 1209 

and DIMBOA-Glc were increased under drought conditions when subjected to herbivory 1210 

(Supplementary Figure 13).  1211 
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Figure 3. AMF alleviates the drought-mediated increase in insect performance. A. Relative individual weight 1212 
gain. B. Leaf damage per larval mass gain. Mean ± standard errors are shown (n = 7-8 per treatment). ANOVA 1213 
tests were run to analyze differences among treatments: ns: not significant; * = p<0.05. Different letters indicate 1214 
significant differences between treatments when interactions between AMF and drought were observed. The effect 1215 
of drought on AMF colonization under controlled conditions is shown in Supplementary Figure 10. The 1216 
correlation between the larval mass gain and leaf damage area is shown in Supplementary Figure 11. 1217 
Benzoxazinoid levels in maize leaves and roots are shown in Supplementary Figures 12 and 13. ND: Ambient soil 1218 
moisture: 23% (v/v); Drought soil moisture (RCP8.5): 16.6% (v/v). AMF = Arbuscular mycorrhizal fungi, 1219 
Rhizophagus irregularis (SAF22). 1220 

DISCUSSION 1221 

Our study revealed that drought significantly reduced maize vegetative growth, while AMF 1222 

colonization improved plant growth and reproductive success independently of soil moisture 1223 

levels. Under controlled conditions, drought increased herbivore performance, yet this effect 1224 

was neutralized in AMF-colonized plants, suggesting that AMF may reduce drought-enhanced 1225 

susceptibility to herbivory. Together, these findings highlight the potential of AMF to support 1226 

maize reproductive performance and buffer biotic stress under drought. 1227 
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Drought stress alone had clear effects on maize growth and metabolism, as well as on herbivore 1228 

performance. Drought led to significant reductions in maize shoot height, biomass, and 1229 

chlorophyll content, reflecting impaired photosynthetic capacity and overall plant vigor. These 1230 

observations are consistent with previous studies showing that drought reduces maize 1231 

performance (Deribe, 2024), although the extent of these effects can vary depending on 1232 

genotype, developmental stage, and nutrient availability (Blein-Nicolas et ak., 2020; Liu et al., 1233 

2021). In roots, prolonged drought increased fructose and glucose concentrations, consistent 1234 

with the known role of soluble sugars in osmotic adjustment and stress tolerance (Sepulva et 1235 

al., 2022; Anjum et al., 2017). However, in leaves, drought reduced sucrose and tended to 1236 

decrease fructose concentrations, while glucose levels remained unchanged. This partially 1237 

contrasts with studies reporting whole-plant sugar accumulation under drought (Du et al., 2020; 1238 

Mohammadkhani & Heidari, 2008), possibly due to differences in sampling time, tissue type, 1239 

or drought severity (Sharma et al., 2019; Gurrieri et al., 2020). Regarding phytohormones, and 1240 

despite clear wilting symptoms, drought did not affect ABA levels in roots or leaves, which 1241 

was surprising given its well-established role in stomatal closure and drought signaling (Kim 1242 

et al., 2010; Aslam et al., 2022). However, drought increased levels of JA, its precursor OPDA, 1243 

and of SA, reflecting activation of general stress responses. Drought further led to increased 1244 

concentrations of several benzoxazinoids in roots, including HMBOA-2Glc and HM2BOA-1245 

Glc, and transiently altered DIMBOA-Glc and DIM2BOA-Glc levels in leaves at day 60. These 1246 

changes are consistent with the reported induction of benzoxazinoids under abiotic stress as 1247 

part of plant defense and stress adaptation (Sutour et al., 2024; Robert & Mateo, 2022). Finally, 1248 

in the herbivory assays, drought increased the performance of S. exigua larvae, suggesting that 1249 

drought-induced changes in primary metabolites or reduced resistance mechanisms may have 1250 

outweighed the effects of plant defenses. This aligns with previous studies showing that 1251 

drought can increase herbivore growth by altering plant nutritional quality (Duell et al., 2024; 1252 

Ximénez-Embún et al., 2017; Carvajal-Acosta et al., 2022).  1253 

Under ambient conditions, AMF colonization alone had significant effects on maize growth, 1254 

yield, and defenses. AMF-inoculated plants showed increased shoot biomass, cob length, and 1255 

cob number, consistent with the well-established role of AMF in promoting plant growth 1256 

through improved nutrient acquisition and hormonal modulation (Bhupenchandra al., 2024). 1257 

Root fructose and glucose concentrations increased under AMF treatment, suggesting 1258 

enhanced carbon sink strength and possibly greater metabolic activity in roots, a pattern also 1259 

reported in peach and tomato plants colonized by AMF (Mo et al., 2016; Ge et al., 2008). 1260 

Interestingly, AMF colonization led to a reduction in root sucrose levels, possibly due to 1261 
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increased sucrose cleavage or altered sugar transport dynamics, as seen in other studies where 1262 

AMF modulated sugar transporter expression (Ge et al., 2008; Tang et al., 2022). In terms of 1263 

hormonal signaling, AMF colonization decreased OPDA in roots and SA in leaves, contrasting 1264 

with several reports that suggest AMF increase phytohormone levels under stress (Tang et al., 1265 

2022). This may indicate a shift toward resource allocation for growth rather than defense when 1266 

stress levels are low. In secondary metabolism, AMF suppressed root benzoxazinoid levels, 1267 

including HMBOA-Glc and DIMBOA-Glc, possibly reflecting a trade-off in which improved 1268 

nutrient status and physiological condition reduce the need for costly chemical defenses. The 1269 

reduction in constitutive defense compounds under ambient conditions could also imply that 1270 

AMF-colonized plants rely more on induced defenses or tolerance strategies. However, AMF 1271 

colonization can also lead to enhanced accumulation of defense metabolites such as DIMBOA 1272 

under pathogen attack, suggesting a complex context-dependent regulation (Song et al., 2011). 1273 

In the controlled assay, AMF colonization did not alter benzoxazinoid levels in leaves under 1274 

ambient conditions. This difference could reflect environmental or developmental factors, as 1275 

the semi-field experiment involved a longer growth period and greater exposure to fluctuating 1276 

conditions, possibly inducing stronger AMF-mediated reprogramming of defense metabolism. 1277 

Consistently, AMF colonization alone did not reduce S. exigua growth in the herbivore assays. 1278 

This aligns with earlier findings indicating that AMF-mediated resistance is often context-1279 

dependent and may require either a co-occurring stress or stronger defense priming signals to 1280 

translate into reduced herbivore performance. For instance, AMF boosted resistance to S. 1281 

littoralis in JA-deficient tomatoes, an effect that was only pronounced when defense pathways 1282 

were compromised (Formenti & Rasmann, 2019). Overall, these findings highlight the 1283 

multifaceted role of AMF in modulating maize metabolism, supporting both growth and fine-1284 

tuned defense regulation even in the absence of external stressors. 1285 

Interactive effects between AMF and drought on maize physiology and metabolism were 1286 

limited in the semi-field assay but became more apparent under controlled conditions. 1287 

Consistently with previous studies, drought reduced AMF colonization (Orine et al.; 2022). In 1288 

the field, AMF and drought affected maize metabolism largely independently with observed 1289 

interactive effects being limited to root fructose levels and leaf DIMBOA-Glc contents. AMF 1290 

increased root fructose and the effect that was more pronounced under drought conditions. 1291 

Such context-dependent enhancement of sugar accumulation may indicate that AMF contribute 1292 

to osmotic adjustment under moderate water stress as suggested in previous studies (Bahadur 1293 

et al., 2019; Chandrasekaran & Paramasivan, 2022). At day 60, AMF reduced DIMBOA-Glc 1294 

concentrations in leaves more strongly under ambient than drought conditions, suggesting 1295 
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drought constrained the AMF effect. Interestingly, while AMF alone had no effect on herbivore 1296 

performance, their presence cancelled the drought-induced increase in S. exigua growth 1297 

observed in non-mycorrhizal plants. This suggests that AMF conferred drought-associated 1298 

protection, possibly through improved nutritional balance or defense priming. The AMF-1299 

mediated dampening of drought-induced increases in herbivore performance highlights their 1300 

potential as a valuable biological tool for promoting crop resilience and reducing reliance on 1301 

chemical pest control in sustainable agricultural systems.  1302 

This study demonstrates that AMF can enhance maize reproductive success and modulate plant 1303 

metabolism under both well-watered and drought conditions, with additional benefits under 1304 

combined abiotic and biotic stress. While drought reduced plant growth and increased 1305 

herbivore performance, AMF colonization improved yield-related traits and mitigated drought-1306 

induced susceptibility to herbivory. The context-dependency of AMF effects, particularly their 1307 

modulation of benzoxazinoids and defense signaling under variable environmental conditions, 1308 

emphasizes the need for integrated, multi-factorial studies to understand plant responses in 1309 

realistic scenarios. From a practical perspective, the ability of AMF to buffer drought-enhanced 1310 

herbivore pressure offers promising opportunities for sustainable agriculture, reducing the need 1311 

for external inputs while supporting crop resilience. Future research should aim to elucidate 1312 

the mechanistic basis of these interactions across diverse plant and AMF genotypes, and under 1313 

fluctuating field conditions, to better harness the full potential of AMF for climate-smart crop 1314 

management. 1315 
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FIGURE LEGENDS 1328 

Figure 1. AMF colonization promotes shoot biomass and cob length independently of the moisture 1329 

conditions. A) A photograph of the semi-field experiment, B) AMF colonization in inoculated plants after 120 1330 

days, C) mean shoot height over time, D) mean fresh shoot biomass after 120 days, E) mean cob length after 100 1331 

days, F) number of cobs after 100 days. Mean ± standard errors are shown (n = 9 per treatment) (n = 9). ND: 1332 

Ambient soil moisture: 23% (v/v); Drought soil moisture: RCP2.6 and RCP8.5: 19% and 16.6% (v/v) respectively. 1333 

AMF = Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). ANOVA tests were run to analyze 1334 

differences among treatments: ns: not significant; = 0.05<p<0.10, * = p<0.05, ** = p<0.01, *** = p<0.0001. 1335 

Different letters indicate significant differences between treatments when interactions between AMF and drought 1336 

were observed. Data on drought and AMF colonization effects on leaf chlorophyll contents, root biomass, and 1337 

field damage are provided in Supplementary Figures 1-3.  1338 

Figure 2. Drought and AMF modulate the maize metabolism. A. Heatmap of leaf metabolite concentrations 1339 

relative to concentrations in control plants under ambient conditions after 60 days, B. Heatmap of leaf metabolite 1340 

concentrations relative to concentrations in control plants under ambient conditions after 120 days, C. Heatmap 1341 

of root metabolite concentrations relative to concentrations in control plants under ambient conditions after 120 1342 

days. Ambient soil moisture: 23% (v/v); Drought soil moisture: RCP2.6 and RCP8.5: 19% and 16.6% (v/v) 1343 

respectively. AMF = Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). Data were log-transformed 1344 

(n=9 per treatment). Compounds highlighted in bold showed significant differences. Stars indicate significant 1345 

differences (linear model for each compound): *** = p ≤ 0.001, ** = p ≤ 0.01, * = p ≤ 0.05, = 0.05 < p < 0.1. 1346 

Different letters indicate significant differences between treatments when interactions between AMF and drought 1347 

were observed. ND: Ambient soil moisture: 23% (v/v); Drought soil moisture: RCP2.6 and RCP8.5: 19% and 1348 

16.6% (v/v) respectively. AMF = Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). Histograms 1349 

for individual compound graphs are shown in Supplementary Figures 4, 5, and 8. Correlations between AMF 1350 

colonization and ABA and between AMF colonization benzoxazinoids are shown in Supplementary Figures 6, 7, 1351 

and 9. 1352 

Figure 3. AMF alleviates the drought-mediated increase in insect performance. A. Relative individual weight 1353 

gain. B. Leaf damage per larval mass gain. Mean ± standard errors are shown (n = 7-8 per treatment). ANOVA 1354 

tests were run to analyze differences among treatments: ns: not significant; * = p<0.05. Different letters indicate 1355 

significant differences between treatments when interactions between AMF and drought were observed. The effect 1356 

of drought on AMF colonization under controlled conditions is shown in Supplementary Figure 10. The 1357 

correlation between the larval mass gain and leaf damage area is shown in Supplementary Figure 11. 1358 

Benzoxazinoid levels in maize leaves and roots are shown in Supplementary Figures 12 and 13. ND: Ambient soil 1359 

moisture: 23% (v/v); Drought soil moisture (RCP8.5): 16.6% (v/v). AMF = Arbuscular mycorrhizal fungi, 1360 

Rhizophagus irregularis (SAF22). 1361 
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Supplementary Table 1. Meteorological data during the semi-field 1640 

assay 1641 

 

Calendar week 

 Mean soil 
temperature at 5 
cm depth [°C]  

 Mean air 
temperature 2 m 
above ground 
[°C]  

 Total 
precipitation 
[mm]  

 Mean daily 
sunshine 
duration [h]  

22                15.00                 12.80                    7.60                    0.70  
23                17.87                 17.20                 27.20                    4.87  
24                18.39                 14.94                 26.70                    5.10  
25                20.30                 18.54                 36.80                    6.11  
26                20.67                 20.10                    5.50                    6.16  
27                20.46                 17.41                 35.00                    4.10  
28                21.33                 19.49                 27.50                    7.21  
29                22.27                 20.90                 17.00                    9.31  
30                23.01                 21.14                    2.20                    8.51  
31                23.26                 22.26                    5.80                    8.83  
32                22.64                 21.47                 19.40                 10.71  
33                23.27                 22.50                 64.40                    9.17  
34                20.89                 18.56                    2.70                    8.09  
35                20.76                 19.87                    2.80                    7.81  
36                21.31                 19.46                 15.10                    6.37  
37                16.66                 11.86                 18.90                    2.64  
38                14.11                 11.77                    1.90                    5.67  
39                15.10                 13.07                 60.50                    2.66  
40                13.17                 10.73                 37.30                    3.07  
41                12.55                 11.00                    1.40                    2.15  
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Supplementary Table 2. Soil profile analysis  1642 

Soil Characteristics 1643 

 1644 

 1645 

 1646 

 1647 

 1648 

1.1. Available Nutrients (H2O10) 1649 

Nutrient Unit Result Correction 
Factor 

Supply 
Level 

Nitrate  mg/kg 351.4  Enriched 
Phosphorus  mg/kg 5.0 1.2 Moderate 
Potassium mg/kg 394.8 0.0 Enriched 
Calcium mg/kg 325.6  Stock  
Magnesium mg/kg 42.6 0.4 Stock 

 

1.2. Reserve Nutrients (AAE10) 1650 

Nutrient Unit Result Correction 
Factor 

Supply 
Level 

Phosphorus mg/kg 276.8 0.0 Enriched 
Potassium  mg/kg 1031.5  Enriched 
Calcium mg/kg 325.6 0.4 Poor 
Magnesium mg/kg 373.0 0.2 Stock 

 

1.3. Trace Elements 1651 

Nutrient Unit Result Correction 
Factor 

Supply 
Level 

Boron mg/kg 1.4  Enough 
Manganese  mg/kg 315  Stock 
Copper mg/kg 14.1  Stock 
Iron mg/kg 938  Enriched  

 

 
 
 
 
 

Parameter Unit Result Method Interpretation/Category 
     
Humus % G/G 2.0 Texture Test 

(FP) 
Low in Humus 

Clay % G/G 11.0 Texture Test 
(FP) 

Very sandy loam 

Silt % G/G 31.0 Texture Test 
(FP) 

 

pH Value  7.5 pH (1:2.5 
H2O) 

Slightly alkaline 
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Supplementary Table 3. Benzoxazinoid names and chemical formulas 1652 

 

Name Chemical name Chemical 
formula 

HMBOA 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one C9H9NO4 
HMBOA-Glc 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside C15H19NO9 
HMBOA-2Glc 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one diglucoside C21H29NO14 

HM2BOA-Glc 2-Hydroxy-7,8-dimethoxy-1,4-benzoxazin-3-one glucoside C16H21NO10 
DIMBOA 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one C9H9NO5 
DIMBOA-Glc 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside C15H19NO10 
DIMBOA-2Glc 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one diglucoside C21H29NO15 
DIMBOA-3Glc 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one triglucoside C27H39NO20 
DIM2BOA-Glc 2,4-Dihydroxy-7,8-dimethoxy-1,4-benzoxazin-3-one 

glucoside 
C16H21NO11 

HDMBOA-Glc 2-Hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside C16H21NO8 
HDM2BOA-Glc 2-Hydroxy-4,7,8-trimethoxy-1,4-benzoxazin-3-one 

glucoside 
C17H23NO11 

MBOA 6-Methoxybenzoxazolin-2-one C8H7NO3 
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Supplementary Figure 1. Experimental design for the semi-field 1653 

experiment in Ostermundigen in Summer 2024. 1654 
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Supplementary Figure 2. Preparation of roots for the microscopic 1655 

analysis (Mark Brundrett, 2008). 1656 
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Supplementary Figure 3. Maize leaf chlorophyll contents development 1657 

over time in the field  1658 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter I, submitted to PCE, preprint 
 

71 
 

Supplementary Figure 4. Maize root biomass in the field at day 120 1659 
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Supplementary Figure 5. Herbivore damage development over time in 1660 

the field 1661 
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Supplementary Figure 6. Drought had effect on Sucrose and AMF on SA 1662 

and HDMBOA-Glc in maize leaves in the field at day 120 1663 
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Supplementary Figure 7. Drought and AMF have interactive effects on 1664 

DIMBOA-Glc in maize leaves in the field at day 60 1665 
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Supplementary Figure 8. AMF colonization had effect on sucrose and 1666 

ABA levels in maize leaves in the field at day 120 1667 
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Supplementary Figure 9. AMF colonization had effect on DIM2BOA-Glc 1668 

levels in maize leaves in the field at day 60 1669 
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Supplementary Figure 10. AMF affected soluble sugar levels in maize 1670 

roots in the field at day 120 1671 
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Supplementary Figure 11. AMF colonization had effect on HM2BOA-1672 

Glc and DIMBOA-2Glc levels in maize roots in the field 1673 

 
 

 

 

 

 

 

 

 

 

 

  



Chapter I, submitted to PCE, preprint 
 

79 
 

Supplementary Figure 12. Drought reduced AMF colonization under 1674 

controlled conditions in herbivory assay 2 1675 
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Supplementary Figure 13. Absolute larvae mass gain and leaf damage 1676 

area are positively correlated in herbivory assays 1677 
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Supplementary Figure 14. Drought increase HMBOA-Glc and 1678 

DIM2BOA-Glc and decreased HDM2BOA-Glc levels in maize leaves in 1679 

herbivory assay (greenhouse) 1680 
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Supplementary Figure 15. Drought increased HMBOA-Glc, HMBOA-1681 

2Glc, HM2BOA-Glc, DIMBOA-2Glc, DIM2BOA-Glc and MBOA levels in 1682 

maize roots in herbivory assay 2 1683 
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ABSTRACT 1694 

Drought is one of the most devastating environmental stressors impacting crop productivity in 1695 

agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) forms association with plants 1696 

providing them with increased water and nutrient uptake, thereby enhancing plant resilience 1697 

against drought. Benzoxazinoids (BXDs) are secondary metabolites actively involved in plants 1698 

defences against drought, though their role in forming these symbiotic associations remains 1699 

unclear. In this study, we evaluated the role of BXDs in facilitating the establishment of 1700 

symbiotic associations with the arbuscular mycorrhizal fungi Rhizophagus irregularis. We 1701 

combined a semi-field experiment with greenhouse assay involving bx1 mutants 1702 

complemented with MBOA to assess growth, metabolism and AMF colonization. Additionally, 1703 

we also investigated the impact of kinetic drought on the rate of colonization. In the semi field 1704 

assay, drought increased DIMBOA, DIMBOA-Glc, DIM2BOA-Glc and DIMBOA-2Glc 1705 

concentration in maize roots while AMF decreased DIMBOA, DIMBOA-Glc, DIM2BOA-Glc 1706 

concentration after 60 days. In the bx1 mutant assay, AMF increased fresh shoot weight while 1707 

MBOA complementation increased colonization rate in bx1 mutant plants after 20 days. Kinetic 1708 

drought had no impact on the rate of colonization of AMF with the maize plants. Overall, 1709 

drought enhanced production of maize secondary metabolites, an effect which was minimized 1710 

in the presence of AMF. In bx1 mutant plants, MBOA addition increased the colonization rate 1711 

highlighting their potential role in signalling and symbiotic formation. These findings highlight 1712 

the need to better understand the BXDs role in plant defences and symbiotic interactions to 1713 

develop better strategies for crops experiencing drought stress.   1714 
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INTRODUCTION 1717 

Plants produce a wide range of low molecular weight organic compounds (Seregin et al., 2024, 1718 

which can be divided into three categories based on their functions: primary metabolites are 1719 

needed for plant growth (Salam et al., 2023), secondary or specialized metabolites are required 1720 

for plant-environmental interactions including attraction, repelling and defense reactions, and 1721 

hormones, which are involved in regulation of organismal processes and metabolism (Erb and 1722 

Kliebenstein, 2020). Approximately 200,000 secondary metabolites are produced across the 1723 

plant kingdom (Dixon, 2003). Some secondary metabolites are toxic owing to their instability 1724 

and capacity to react with other compounds (Akbar et al., 2024); they play a key role in plants 1725 

defense by influencing interactions with the environment and ultimately shaping plant fitness 1726 

and survival. 1727 

Benzoxazinoids (BXDs) are well recognized plant specialized metabolites found in wheat 1728 

(Triticum spp.) (Gfeller et al., 2023), rye (Secale cereale), maize (Zea mays) and other poaceae 1729 

members (Kukobo et al., 2017). Benzoxazinoids are also found in some dicot species belonging 1730 

to the Anthaceae, Lamiaceae and Scrophulariaceae (Schullehner et al., 2008). The pathway for 1731 

BXDs starts with the formation of indole catalysed by the enzyme indole 3-glycerol phosphate 1732 

lyase (IGL) (ZmBX1). These compounds can be glycosylated by UGTs into double and triple 1733 

hexoses which biologically inactivates them, preventing autotoxicity within the producing 1734 

plant (Robert & Mateo, 2022, Florean et al., 2023).  1735 

Maize plants produce multihexose BXDs when subjected to drought conditions. Drought 1736 

enhanced production of DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, and 1737 

HDMBOA-2Glc in roots and leaf tissues of seven days old maize seedlings, an effect observed 1738 

across various maize lines (Sutour et al., 2024). A study investigating the genomic basis of 1739 

maize adaptation to drought stress revealed enhanced expression of ZmBX12 gene involved in 1740 

the production of DIMBOA-Glc, underscoring its potential role in plants defense under drought 1741 

conditions (Zhang et al., 2021). The altered composition of BXDs under drought conditions 1742 

highlights the plant ability to better cope with changing environmental conditions.    1743 

Plants secrete bioactive molecules into the rhizosphere that can modify their growth 1744 

environment and soil microbiota (Hu et al., 2018). Root exudates consist of both primary 1745 

metabolites including sugars, amino acids and carboxylic acids and a wide array of secondary 1746 

metabolites (Hartmann et al., 2009). Root exudates not only serve as the carbon and nitrogen 1747 

source for the microbial growth but also act as signalling molecules, attractants and stimulants 1748 

or can have inhibitory repellent effects (Baetz & Martinoia, 2014). The host plant therefore 1749 
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controls the composition of the exudates and eventually shapes rhizosphere microbial 1750 

communities (Bulgarelli et al., 2013). Different plant species exude a broad range of bioactive 1751 

molecules; in maize, root exudates in the rhizosphere are particularly rich in BXDs (Pétriacq 1752 

et al., 2017; Hu et al., 2018). Extensive studies have shown that BXDs are involved in providing 1753 

resistance against herbivores and pathogens through root exudation, although their potential 1754 

role in forming symbiosis has not been explored.    1755 

Drought is one of the most significant abiotic stresses affecting global agriculture (Nehra et al., 1756 

2024), but AMF has emerged as key allies in enhancing plant resilience under challenging 1757 

conditions. For example, AMF can enhance plant tolerance to drought stress and reduce its 1758 

negative effects on plant growth (Li et al., 2019). Maize B73 plants when inoculated with AMF 1759 

Funneliformis mosseae resulted in improved seedling growth, plant biomass, soil nutrient 1760 

availability and microbial biomass. The AM fungi Rhizoglomus intraradices promoted the 1761 

uptake of copper, iron, manganese and zinc durum wheat (T. durum L.) plants when they were 1762 

subjected to drought conditions (Goicoechea et al., 2016). Similarly, R. intraradices also 1763 

promoted the uptake of potassium, phosphorus, calcium, magnesium, sodium, and iron in Rose-1764 

scented geranium (Pelargonium graveolens) under drought conditions induced by laser light 1765 

(Okla et al., 2022). Interestingly, a shift in the microbial community was also observed under 1766 

association with AMF under drought and well-watered conditions (Li et al., 2025). Drought 1767 

hinders plant cell metabolism and induces production of reactive oxygen species (ROS). AMF 1768 

can help alleviate the effect of ROS as it significantly reduces hydrogen peroxide, 1769 

malondialdehyde and electrolyte leakage (Chandrasekaran et al., 2022).  Under changing 1770 

climatic conditions, AMF is a promising tool for sustainable agriculture by increasing plant 1771 

tolerance to drought stress. 1772 

Nevertheless, environmental factors can limit AMF colonization under drought stress. 1773 

Moderate temperatures and adequate soil moisture are ideal for enhanced colonization, as 1774 

drought can lead to reduced spore germination and hyphal growth (Auge, 2001). Mycorrhizal 1775 

colonization frequency was declined in barley plants under drought condition. Additionally, the 1776 

abundance of arbuscules and vesicles was also reduced by 58% and 64% respectively while 1777 

ambient conditions had no effect on all indicators of AMF performance (Sendek et al., 2019). 1778 

Arbuscule abundance was also decreased with the increasing drought conditions in Poncirus 1779 

trifoliata (L.) plants inoculated with Rhizophagus irregularis (Zhang et al., 2024). The impact 1780 

of drought on AMF colonization needs further investigation, as it is context-dependent and 1781 

varies with drought intensity, plant species and soil conditions.  1782 
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Drought can significantly alter the patter of root exudates forcing the plants to adjust the 1783 

biochemical composition of exuded compounds because of limited water availability. The 1784 

modified composition includes enhanced release of specific sugars, amino acids and secondary 1785 

metabolites (Canarini et al., 2019) which are involved in signalling and act as cues for the soil 1786 

microbes (Canarini et al., 2019). Plant-soil communication under reduced water conditions is 1787 

reshaped by modulating the soil rhizosphere chemical composition. This modulation can 1788 

critically impact the arbuscular mycorrhizal fungi (AMF) as it relies on plant-derived carbon 1789 

which can become inadequate due to limitations in photosynthesis resulting in lowering spore 1790 

abundance and colonization rates (Augé, 2001; Jayne & Quigley, 2014). Furthermore, modified 1791 

exuded profiles can impact AMF recruitment and symbiotic efficiency under drought 1792 

conditions through altered chemical cues in the soil (Santos-Medellín et al., 2017). For 1793 

example, tomato plants enhance strigolactones exudation under phosphate starvation, but this 1794 

effect is not always maintained under drought stress highlighting complex regulation (López-1795 

Ráez et al., 2010)  1796 

Extensive research has been carried out on BXDs and AMF individually under abiotic stress 1797 

but their direct interaction especially in the context of colonization remains unexplored. This 1798 

study aims to address key knowledge gaps regarding the interaction between BXDs and AMF 1799 

in maize under drought conditions through a semi field assay. The study examines whether 1800 

AMF presence can modulate BXDs biosynthesis, potentially shaping plant growth and 1801 

defensive strategies in drought-affected environments. Specifically, it also investigates whether 1802 

BXDs, particularly MBOA (6-methoxy-benzoxazolin-2(3 H)- one), a breakdown product of 1803 

DIMBOA-Glc in soil, can influence AMF colonization. To explore this, we used both wild type 1804 

and bx1 mutant maize lines to assess AMF colonization levels and root BXDs profiles. 1805 

Furthermore, it evaluates potential trade-offs between BXDs mediated defense and AMF 1806 

benefits, such as plant growth, chlorophyll content and fresh shoot weight. In addition, the 1807 

effect of drought on AMF colonization was also evaluated under different drought regimes.  1808 

METHODS 1809 

Semi-Field Experiment (Ostermundigen; 2023) 1810 

Biological resources  1811 

B73 and W22 maize seeds were obtained from Maize GDB germplasm (USDA/ARS, 1812 

University of Illinois, Urbana,) and multiplied by Delley Semences et Plantes (DSP, Delley-1813 

Portalban, Switzerland). AMF Rhizophagus irregularis (SAF22) inoculum containing sand, 1814 
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soil, roots, and spores as well as a mock inoculum without AMF was produced in the 1815 

greenhouse, as previously described by Lutz et al. (2023), and were kindly provided by the 1816 

Swiss Collection of Arbuscular Mycorrhizal Fungi (SAF, Zurich, Switzerland).  1817 

Maize performance in the field  1818 

The individual and interactive effects of drought and AMF on maize growth and yield were 1819 

evaluated through a semi-field experiment (Figure S1). The experiment was carried out in 1820 

Ostermundigen (46°57'59.8"N 7°29'13.1"E), Switzerland between May and July 2023. Four-1821 

liter pots (Hortima, Hausen, Switzerland) were covered at the bottom using fabric sheath 1822 

(Neeser, Reiden, Switzerland) and filled with approximately 4.4 kg of soil (Landerde, Ricoter, 1823 

Aarberg, Switzerland). The soil chemical profile was analyzed by the laboratory Labor für 1824 

Boden- und Umweltanalytik (LBU, Steffisburg, Switzerland) (Supplementary Table 1). 1825 

Approximately 200 g of the AMF inoculum were added to half of the pots (AMF+, n= 36) and 1826 

mixed with the soil. The same amount of mock inoculum was added and mixed with the soil 1827 

of control pots (AMF-, n=9). Three maize B73 seeds were placed 3 cm deep into the soil in 1828 

individual pots. After ten days, maize growth was assessed and one seedling (the most central) 1829 

per pot was kept by manually removing additional seedlings. All plants were watered daily for 1830 

two weeks. After this period, only control plants received water daily (AMF+: n=12, AMF-: 1831 

n=3), while drought-exposed plants were left unwatered until drought symptoms appeared (leaf 1832 

wilting score of 4, Sudhakar et al. 2016). Drought treatments were defined based on the 1833 

calculated soil moisture of the predicted future climate scenarios RCP2.6 and RCP8.5 with a 1834 

water content of 19% (v/v) and 16.6% (v/v) respectively (Guyer et al., 2021; van Doan et al., 1835 

2021; IPCC, 2014). All plants were watered once daily. Drought-exposed plants received either 1836 

1.9 L (19% of pot volume; AMF+: n = 12, AMF-: n = 3) or 1.66 L (16.6% of pot volume; 1837 

AMF+: n = 12, AMF-: n = 3) water. Leaf wilting symptoms were observed at similar frequency 1838 

and intensity in both drought treatments. According to the manufacturer’s instructions, the 1839 

plants received 1% NK fertilizer solution (NK Flüssigdünger; Biorga, Grossaffoltern, 1840 

Switzerland) with one liter volume applied per plant during the fourth week of the experiment. 1841 

All pots were covered with 35 L plastic bags (Quick Bag, Galaxus, Zürich, Switzerland) during 1842 

rain episodes. The 45 pots (2 AMF treatments x 3 drought levels x 12 replicates) were randomly 1843 

placed in the beds to avoid positional bias.   1844 

Plant phenotypic parameters were measured after 15, 30, 45 and 60 days. Relative chlorophyll 1845 

content of the youngest leaf was measured using Soil and Plant Analysis Development 1846 

SPAD502 plus (Konica Minolta, München, Germany) around 12 pm for all the plants. The 1847 
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overall duration of the measurements lasted from 30 min to one hour. Plant height was 1848 

measured by using a ruler from the tip of the youngest leaf down to the soil surface. Maize 1849 

youngest leaves were collected on day 60 and flash frozen in liquid nitrogen for benzoxazinoid 1850 

analysis. Maize roots were collected on day 60 for benzoxazinoid analysis and AMF 1851 

colonization evaluation  1852 

Effect of kinetic drought on AMF colonization (Greenhouse 1853 

Ostermundigen; Summer 2024)  1854 

The impact of drought on maize AMF colonization was investigated by establishing drought at 1855 

different time points under greenhouse conditions (Supplementary Figure 3). Maize seeds (var. 1856 

B73) were surface sterilized as described above. Germinating seedlings were placed in 3 L pots 1857 

(Hortima, Hausen, Switzerland) covered at the bottom using fabric sheath (Neeser, Reiden, 1858 

Switzerland). The pots were filled with 3.4 kg soil (95% of pot volume; Landerde; Ricoter, 1859 

Aarberg, Switzerland). Maize plants were grown in a greenhouse at 23±1°C and 18±1°C with 1860 

14/10 hours of light and darkness respectively to simulate natural conditions and 60% (v/v) 1861 

relative humidity. The plants were subjected to four watering conditions i.e., CC, CD, DC and 1862 

DD, where C stands for control watering and D for drought treatment according to RCP 8.5 1863 

(16.6% soil moisture). For the first fourteen days, CC and CD treated plants received ambient 1864 

watering while DC and DD treated plants were subjected to drought watering conditions. 1865 

After this period, watering was continued for CC and DC while drought was applied to CD and 1866 

DD. All the plants mixed with 150 g AMF inoculum (AMF+, n= 32). The pots were randomly 1867 

placed in the greenhouse (Figure S2).  1868 

Plant phenotypic parameters were measured after 20, 40 and 60 days. Relative chlorophyll 1869 

content of the youngest leaf was measured using Soil and Plant Analysis Development 1870 

SPAD502 plus (Konica Minolta, München, Germany) around 12 pm for all the plants. The 1871 

duration of the measurements lasted from 30 min to one hour. Plant height was measured by 1872 

using a ruler from the tip of the youngest leaf down to the soil surface. Fresh shoot biomass 1873 

root length was also measured at the termination of the experiment. Maize youngest leaves and 1874 

roots were collected on days 20, 40 and 60 and flash frozen in liquid nitrogen for benzoxazinoid 1875 

analysis. Maize thin roots were collected on day 60 and stored at -20⁰C for AMF colonization 1876 

evaluation  1877 
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Maize W22 and bx1 mutant association with AMF and 1878 

complementation with MBOA (Ostermundigen; Summer 2024) 1879 

The impact of benzoxazinoids on maize AMF colonization was investigated by using W22 type 1880 

and bx1 mutant plants under greenhouse conditions (Supplementary Figure 3). Maize seeds 1881 

were surface sterilized using 15% (v/v) bleach (Potz, Migros, Zurich, Switzerland) in distilled 1882 

water for 15 min. The seeds were then rinsed with distilled water and pregerminated by placing 1883 

them on damped filter papers (90mm; Cytiva, Marlborough, MA, USA) in a plastic box 1884 

(Semadeni, Bern, Switzerland) in the dark for three days. Germinating seedlings were placed 1885 

in 3 L pots (Hortima, Hausen, Switzerland) covered at the bottom using fabric sheath (Neeser, 1886 

Reiden, Switzerland). The pots were filled with either 3.4 kg soil (Landerde; Ricoter, Aarberg, 1887 

Switzerland) mixed with 150 g AMF inoculum to each WT and bx1 mutant plants (AMF+, n= 1888 

14) or with 3.4 kg soil (Landerde; Ricoter, Aarberg, Switzerland) mixed with 150 g of 1889 

autoclaved control inoculum (AMF-, n=14). 8 mg of MBOA was purchased from Sigma-1890 

Aldrich Chemie GmbH (Buchs; Switzerland) and was added to bx1 mutant plants (AMF+, n= 1891 

7, AMF-, n= 7). Maize plants were grown in a growth chamber at 23±1°C and 18±1°C with 1892 

14/10 hours of light and darkness respectively to simulate natural conditions and 60% (v/v) 1893 

relative humidity. All plants were watered daily for eight weeks. The pots were randomly 1894 

placed in the growth chamber to avoid positional bias. 1895 

Plant phenotypic parameters were measured after 20, 40 and 60 days. Relative chlorophyll 1896 

content of the youngest leaf was measured using Soil and Plant Analysis Development 1897 

SPAD502 plus (Konica Minolta, München, Germany) around 12 pm for all the plants. The 1898 

duration of the measurements lasted from 30 min to one hour. Plant height was measured by 1899 

using a ruler from the tip of the youngest leaf down to the soil surface. Fresh shoot biomass, 1900 

root length, tassel and cob development were also measured at the termination of the 1901 

experiment. Maize youngest leaves and roots were collected on days 20, 40 and 60 and flash 1902 

frozen in liquid nitrogen for benzoxazinoid analysis. Maize thin roots were collected on day 60 1903 

and stored at - 20⁰C for AMF colonization evaluation  1904 

AMF colonization rates  1905 

Roots were stained following a previously established procedure (Vierheilig et al., 1998). 1906 

Maize thin roots (diameter 0.5 - 1 mm) were cut into small segments of approximately 1.5 cm 1907 

in length and preserved in 50% EtOH (Alcosuisse, Rüti bei Büren, Switzerland). The ethanol 1908 

was rinsed off using distilled water and the samples were then cleared with 10% w/v KOH 1909 

(Sigma-Aldrich, Steinheim, Germany) at 80°C in a dry bath (Digital Dry Bath; Labnet, Edison, 1910 
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NJ, USA) for a duration of 30 min. After incubation, the roots were rinsed using distilled water 1911 

and stained with 5% ink (Pelikan, Hannover, Switzerland) -vinegar solution (5% acetic acid; 1912 

MBudget, Migros, Zurich, Switzerland) and incubated at 80°C for 30 min. After a final rinse 1913 

with distilled water, the samples were stored in 50% glycerol (Dr. Bähler Dropa AG, Bern, 1914 

Switzerland). The root samples were placed on a microscopic slide, mounted with 50% 1915 

glycerol, and covered with the help of a cover slip. The samples were observed under a 1916 

Fluorescence epi microscope with camera (Leica DMC6200; Leica Microsystems, Heerbrugg, 1917 

Switzerland) at the magnification of 200X (magnifying lens * ocular lens). The colonization 1918 

rate in percentage was measured as the proportion of root segments colonized by AMF 1919 

compared to the total number of root segments (McGonigle et al., 1990). The number of root 1920 

segments per plant in average was 50, 40 and 40 for semi-field, drought kinetic and bx1 mutant 1921 

assays respectively.  1922 

Benzoxazinoids profiling  1923 

Benzoxazinoid contents were characterized using an acquity i-Class UHPLC system coupled 1924 

to a single quadrupole mass spectrometer (QDa) equipped with an electrospray source (Waters, 1925 

Milford, MA, USA) as previously described (Hu et al., 2018). The plant metabolites were 1926 

extracted from 100 ± 1 mg by adding 1 mL MeOH: H2O:FA (70:30 v/v, 0.1% FA) and 1927 

thoroughly vortexed for 10 s. The samples were then centrifuged for 20 min at 13’00 rpm at 1928 

10°C and the supernatant was collected for analysis. Compounds were separated on an Acquity 1929 

BEH C18 column (1.7 μm, 2.1 × 100 mm i.d.; Waters, Milford, MA, USA). The flow rate of 1930 

the mobile phase was maintained at 0.4 mL/min. The injection volume was 1 µL and the 1931 

temperature of the column was maintained at 40⁰C. The MS was operated in negative mode, 1932 

and data were acquired in the scan range (m/z 150–650) using a cone voltage of 10 V. All other 1933 

MS parameters were left at their default values. The elution conditions were as follows: solvent 1934 

A consisted of H2O and FA (99.9:0.1 v/v), while solvent B consisted of ACN and FA (99.9:0.1 1935 

v/v). The gradient program was: 2% solvent B from 0.00 to 1.00 min; a linear gradient from 2 1936 

to 40% solvent B from 1.00 to 4.00 min; a linear gradient to 100% solvent B from 4.00 to 6.00 1937 

min.; 100% solvent B from 6.00 to 8.50 min; a gradient from 100 to 2% solvent B from 8.50 1938 

to 8.51 min; and 2% solvent B from 8.51 to 10 min. MassLynx v4.1 SCN923 was used to 1939 

control the instrument and for data processing. To detect and identify BXDs, targeted mass 1940 

spectrometry in negative ionization mode was used. The absolute quantities of HMBOA, 1941 

DIMBOA, DIMBOA-Glc, DIMBOA-2Glc, HDMBOA-Glc, and MBOA were determined 1942 

using standard curves of the corresponding pure compounds. MBOA was purchased from 1943 
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Sigma-Aldrich Chemie GmbH (Buchs, Switzerland). DIMBOA-Glc DIMBOA-2Glc, and 1944 

HDMBOA-Glc were isolated from maize plants in our laboratory as previously described 1945 

(Thoenen et al., 2023). DIMBOA and HMBOA were synthesized in our laboratory directly 1946 

from or adapting published protocols (Macías et al., 2006). HMBOA-Glc, HMBOA-2Glc, 1947 

HM2BOA-Glc, DIMBOA-3Glc, DIM2BOA-Glc, and HDM2BOA-Glc for which no analytical 1948 

standards were available, were quantified by comparison with the standard curve of their 1949 

closest parent compounds, HMBOA, DIMBOA-Glc, and HDMBOA-Glc. Full names and 1950 

chemical formulas of measured benzoxazinoids can be found in Supplementary Table 3.  1951 

Statistical analyses   1952 

Statistical analyses and data visualization were done with R (version 4.4.2; R core team, 2018) 1953 

using R studio (version 2024.12.0.467; Posit team, 2024). The data was read in with the 1954 

package readxl (version 1.4.3; Wickham and Bryan, 2023). For organizing and structuring the 1955 

data the package dplyr (version 1.1.4; Wickham et al., 2023) was used. The semi-field assay 1956 

and the herbivory assay followed a fully multifactorial design, and the response variables were 1957 

analysed by using linear models or ANOVA. Explanatory variables were AMF presence or 1958 

absence, water regimes, and for the mutant assay presence or absence of bx1 gene. 1959 

Homoscedasticity and normality of distribution of residuals were confirmed visually with the 1960 

diagnostic plots of base R. I applied aligned rank transform (Art) ANOVA using ARTool 1961 

package (version 0.11.1; Kay et al., 2021) if the model fit was not satisfactory. Depending on 1962 

the number of variables in the experiment, two-way or three-way ANOVA was used to detect 1963 

the effects of response variables. P-values below 0.05 were considered significant. Plots were 1964 

made using the package ggplot2 (version 3.5.1; Wickham, 2016) and ggpattern (version 1.1.1; 1965 

Wickham and Davis, 2024). 1966 

RESULTS 1967 

Drought decreased AMF colonization enhanced root benzoxazinoid 1968 

levels in the field 1969 

We conducted a semi-field assay to examine the interactions between drought and AMF 1970 

Rhizophagus irregularis (SAF22) on maize plants (var. B73) growth and defense compounds, 1971 

specifically benzoxazinoids (Supplementary Figure 1).  1972 

We quantified colonization to make sure that the AMF association was established in the roots. 1973 

Time required by the AMF to fully colonize plant roots depend on plant genotype, fungal 1974 

species and the soil conditions. Our preliminary findings suggests that maize reached maximum 1975 
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colonization with R. irregulare after around eight weeks. Our findings revealed that drought 1976 

drastically reduced AMF colonization in the maize roots after 60 days while ambiently watered 1977 

plants had the highest colonization rate (Figure 1A).  1978 

We measured chlorophyll content to analyse the effect of drought on photosynthesis and 1979 

whether AMF can help plants in improving chlorophyll content under drought stress. Time 1980 

series of the chlorophyll content in maize plants is shown in Figure 1B. After 15 days, there 1981 

was a significant effect of drought and AMF on maize chlorophyll content (Supplementary 1982 

Figure 4A). After 30 days, AMF inoculation of maize plants improved chlorophyll content 1983 

(Supplementary Figure 4B). After 45 days, no effect of either drought or AMF was found for 1984 

chlorophyll content (Supplementary Figure 4C).  After 60 days, AMF reduced chlorophyll 1985 

content of plants that were watered ambiently while no effect on drought treated plants was 1986 

found (Supplementary Figure 4D).  1987 

We analysed how drought can impact the production of benzoxazinoids in maize plants under 1988 

drought as they are primarily involved in plant defences against environmental stresses. 1989 

Additionally, whether benzoxazinoids metabolic profiles were positively or negatively 1990 

modulated under the AMF association was also determined. We found that drought increased 1991 

root and leaf benzoxazinoid levels while AMF reduced benzoxazinoids content in the roots 1992 

(Figure 1C-D). In roots, drought increased the production of DIMBOA, DIMBOA-Glc, 1993 

DIM2BOA-Glc and DIMBOA-2Glc while AMF lowered the DIMBOA, DIMBOA-Glc, 1994 

DIM2BOA-Glc content. AMF enhanced the production of HDMBOA-Glc in roots while 1995 

interactive effect of AMF and drought were found for DIMBOA-Glc, DIM2BOA-Glc and 1996 

HMBOA-2Glc (Supplementary Figure 6). In leaves, drought enhanced the levels of HMBOA, 1997 

HMBOA-Glc, DIMBOA-Glc, while interactive effect of AMF and drought was found for 1998 

DIM2BOA-Glc. (Supplementary Figure 7).  1999 

Interestingly, in roots, correlations were found between BXDs and colonization rate. DIMBOA, 2000 

DIMBOA-Glc, DIM2BOA-Glc, DIMBOA-2Glc were positively correlated in roots under low 2001 

colonization. Alternatively, HDMBOA was negatively correlated in plants roots with higher 2002 

colonization (Supplementary Figure 8).  2003 
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Figure 1. The colonization rate of arbuscular mycorrhizal fungi (AMF) with maize B73 plants declined with 2004 
increasing drought conditions in the field. Benzoxazinoids levels in maize B73 roots and leaves were induced 2005 
under drought stress while AMF presence limited this effect in the roots A. Colonization rate of Rhizophagus 2006 
irregularis with maize B73 plants drastically declined under increasing drought conditions after 60 days. B. Time 2007 
series of the chlorophyll content in maize plants. C-D.  Profile of different benzoxazinoids in the root and leaf 2008 
tissues after 60 days are shown. Mean ± standard errors are shown (Ctrl_ND, Ctrl_RCP2.6, Ctrl_RCP8.5 n=3; 2009 
AMF_ND, n=7; AMF_RCP2.6, AMF_RCP8.5, n=9). Three-way anova test was used run to analyze differences 2010 
among treatments. For total BXDs, PERMANOVA test was run to analyze differences among treatments. Stars 2011 
and letters indicate significant differences, **: p<0.001, *: p<0.05, 0.05<p<0.10. Ctrl = Control, AMF = 2012 
Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). ND: Ambient, soil moisture: 23% (v/v); 2013 
Drought soil moisture: RCP2.6 and RCP8.5: 19% and 16.6% (v/v) respectively.  2014 
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Prolonged drought increased chlorophyll and benzoxazinoids content in 2015 

maize plants, while kinetic drought had no effect on AMF colonization 2016 

in the greenhouse. 2017 

In the first experiment, drought was established after 15 days of ambient watering 2018 

(Supplementary Figure 2). We, therefore, thought that the timing of drought could explain the 2019 

Plant-AMF interactions as previous studies with earlier drought establishment also did not 2020 

report decreased AMF colonization. Additionally, the effect of BXDs seem to occur at early 2021 

stages of maize and AMF interactions. We established four watering regimes i.e., CC, CD, DC 2022 

and DD for fourteen days before the addition of AMF inoculum and assessed plant growth, 2023 

colonization rate and BXDs content. Here, CC refers to ambient watering, CD as late drought, 2024 

DC refers to early drought, and DD as prolonged drought. All the plants were inoculated with 2025 

the AMF.  2026 

Time series of colonization rate after 35, 55 and 75 days is presented in Figure 2A. After 35, 2027 

55 and 75 days, there was no effect of early and late drought on the colonization rate of 2028 

Rhizophagus irregularis (SAF22) with maize B73 plants (Supplementary Figure 12).  2029 

Time series of chlorophyll content of maize B73 plants after 35, 55 and 75 days is presented as 2030 

Figure 2B. After 35 days, there was no effect of drought on the chlorophyll content 2031 

(Supplementary Figure 9A), while after 55 days late and prolonged drought treatment increased 2032 

the chlorophyll content in maize B73 plants (Supplementary Figure 9B).  2033 

Time series of fresh shoot weight of maize B73 plants after 35, 55 and 75 days is presented as 2034 

Figure 2C. After 55 days prolonged drought treatment decreased fresh shoot weight of maize 2035 

B73 plants (Figure 11B). The plants with early drought treatment recovered after 75 days and 2036 

had the highest fresh shoot weight (Supplementary Figure 11C) 2037 

Benzoxazinoids profile in the roots after 75 days is presented as Figure 2D. After 35 days, 2038 

prolonged drought increased DIM2BOA-Glc (Supplementary Information 13). while after 55 2039 

days prolonged drought increased HMBOA and DIMBOA concentrations in the roots 2040 

(Supplementary Information14). After 75 days, HDMBOA-Glc and DIMBOA-Glc 2041 

concentrations increased under prolonged drought while there was no effect of early, late and 2042 

prolonged drought on other benzoxazinoids (Supplementary Information 15). 2043 
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Figure 2. Kinetic drought had no effect on colonization rate of maize plants inoculated with AMF 2044 
Rhizophagus irregularis (SAF22) while prolonged drought increased chlorophyll and decreased fresh shoot 2045 
weight. A. Colonization rate of maize plants inoculated with AMF after 35, 55 and 75 days. B. Chlorophyll content 2046 
over time for maize plants inoculated with AMF under different drought treatments. C. Mean fresh shoot weight 2047 
over time for maize plants inoculated with AMF under different drought treatments. D. Benzoxazinoids profile in 2048 
the root tissues under different drought conditions and inoculation with AMF after 75 days. Mean ± standard errors 2049 
are shown (n=8 except for CD; n =7). Anova was performed to analyze differences among treatments. Letters and 2050 
stars indicate significant differences, ***: p<0.0001, **: p<0.01, 0.05<p<0.10. CC here stands for ambient 2051 
watering, CD is late drought, DC is early drought, and DD is prolonged drought treatment according to RCP 8.5 2052 
(16.6% soil moisture). For the first fourteen days, CC and CD treated plants received ambient watering while DC 2053 
and DD treated plants were subjected to drought watering conditions.  2054 
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Soil complementation with MBOA increased AMF colonization 2055 

In the first experiment, we found that Increasing drought led to increased levels of BXDs and 2056 

decreased levels of AMF colonization We therefore tested whether BXDs could explain the 2057 

lower AMF rates. We used bx1 mutants and complemented the soil with MBOA 2058 

(Supplementary Figure 3). MBOA is a breakdown product of DIMBOA, it is bioactive and is 2059 

involved in signalling, defense responses and effects soil microbes. We used ~ 2.5 mg 2060 

MBOA/kg of soil as it represents the amount in the plant tissues and is consistent with previous 2061 

studies (Fomsgaard et al., 2006).  2062 

For W22 plants, we measured colonization rate after 20 40 and 60 days to visualize the AMF 2063 

R. irregulare association with the genotype. R. irregulare successfully colonized W22 plants 2064 

and had close to maximum colonization rate after 20 days as opposed to B73 maize plants in 2065 

the field assay. The bx1 mutants were less colonized by the AMF, but the complementation of 2066 

bx1 mutants with MBOA increased the colonization rate significantly after 20 days (Figure 3A) 2067 

The stimulating effect of MBOA disappeared in bx1 mutant after 40 and 60 days where all 2068 

plants displayed similar AMF colonization rate (Supplementary information 20).  2069 

We measured the effect of MBOA on plant growth such as the fresh shoot weight considering 2070 

whether higher colonization rate facilitates in improved plant performance. We found that the 2071 

addition of MBOA did not affect the fresh shoot weight, while fresh shoot weight of W22 and 2072 

bx1 mutant plants was influenced by AMF after 20 (Figure 3A) and 60 days (Supplementary 2073 

Figure 19B). The fresh shoot weight after 40 and 60 days is presented in Supplementary Figure 2074 

19A-B. 2075 
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Figure 3. MBOA complementation increased AMF colonization in maize plants after 20 days. A. 2076 
Colonization rate of Rhizophagus irregularis (SAF22) with maize W22, mutant bx1 and mutant bx1 plants 2077 
complemented with MBOA. B. Fresh shoot weight of maize W22, bx1 mutant plants complemented with MBOA 2078 
after 20, 40 and 60 days. Mean ± standard errors are shown (n=7; except for BX1_MBOA_Ctrl, n=6). Two-way 2079 
anova test was run to analyze differences among treatments. Stars indicate significant differences, ***: p<0.0001, 2080 
**: p<0.01, *: p<0.05, 0.05<p<0.10.  Ctrl= Control, AMF = Arbuscular mycorrhizal fungi, Rhizophagus 2081 
irregularis (SAF22). MBOA0 = No MBOA, MBOA1 = MBOA addition.   2082 
 

DISCUSSION 2083 

The present study reports contradicting results of the effect of drought on AMF, as drought 2084 

decreased AMF colonization in the semi-field assay while increased it in the kinetic assay 2085 

under greenhouse conditions. AMF had an increasing effect on chlorophyll content in maize 2086 

plants after 30 days but decreased it in well-watered plants after 60 days. Interestingly, whereas 2087 

drought increased benzoxazinoids content in the roots and leaves, AMF reduced BXDs 2088 

concentrations in the roots. While first evidence suggests that some BXDs, namely MBOA, 2089 
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may play a role in stimulating AMF colonization at early stage, more investigations are 2090 

required to best characterize the role of BXDs in maize-AMF interactions as well as the effect 2091 

of drought on AMF association.  2092 

In the field assay, one of the most significant observations is the decreased AMF colonization 2093 

under drought conditions. Under standard conditions, AMF form mutualistic associations with 2094 

plant roots, facilitating nutrient and water uptake in exchange for carbohydrates. Previous 2095 

studies have reported increased AMF colonization under drought conditions (Chareesri et al., 2096 

2020; Orine et al., 2022). AMF can help plants enhance their drought tolerance through 2097 

different mechanisms: for instance by extending their hyphal networks deeper into the soil, 2098 

beyond the root zone, they can access water and nutrients that would otherwise be unavailable 2099 

to the plant (Bhupenchandra et al., 2024). Increased colonization under drought has been 2100 

attributed to the plant’s need for more efficient nutrient and water acquisition during stress, as 2101 

well as AMF’s ability to stabilize soil structure and improve water retention (Aminzadeh et al., 2102 

2025). Our field data contrasts with these studies as we found that drought conditions reduced 2103 

AMF colonization rates. Previous work showed that the relationship between drought and AMF 2104 

colonization can also vary depending on factors such as the severity and duration of the 2105 

drought, plant species, and soil conditions. For example, while moderate drought may stimulate 2106 

AMF colonization as part of a plant’s adaptive response, more severe or prolonged drought 2107 

may lead to resource allocation trade-offs, where plants prioritize survival over maintaining 2108 

symbiotic relationships. In these cases, colonization rates may decrease, especially if the plant 2109 

reduces carbon allocation to the roots or if soil moisture levels drop too low to support fungal 2110 

growth. Interestingly in the greenhouse experiment, establishing different watering regimes 2111 

including, early, late and prolonged drought before the addition of the AMF inoculum mitigated 2112 

the effect of drought on AMF colonization. A few studies indicate that drought can result in 2113 

reduced AMF colonization due to reduced carbon allocation and root growth under drought 2114 

stress (Augé, 2001). However, pre-establishment of drought conditions can result in root 2115 

remodelling or stress priming that can support effective fungal colonization. Under water 2116 

deficient systems, the timing of AMF inoculation can be a key strategy to enhance symbiotic 2117 

associations, but more investigations are needed to clearly characterize interaction between 2118 

drought and AMF.     2119 

In this study, drought triggered an increase in root BXDs contents, an effect which is consistent 2120 

with former work in maize (Sutour et al., 2024). BXDs known for their role in plant defense 2121 

against herbivores and pathogens (Neal et al, 2012) also facilitate the colonization of the 2122 

rhizosphere by the plant growth promoting rhizobacteria Pseudomonas putida (Nael et al., 2123 
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2017).  Yet, the involvement of BXDs in modulating AMF colonization under abiotic stress 2124 

such as drought has not been widely explored. An interesting finding of this study is that AMF 2125 

colonization resulted in reduced BXDs levels in the roots. For successful AMF colonization, 2126 

plants may suppress their immune responses including downregulation of defense metabolites. 2127 

This modification of the metabolic processes is expected to result in reduced accumulation of 2128 

BXDs such as DIMBOA-Glc. At the hormonal level, salicylic acid and jasmonic acid pathways 2129 

regulate the BXDs biosynthesis genes, ZMBX1-ZMBX14 (Ahmad et al 2011; Hu et al., 2018; 2130 

Setotaw et al., 2024). Increased levels of salicylic acid can therefore delay AMF colonization 2131 

in tobacco plants (Blilou et al., 2000; Medina et al., 2003). Additionally, this symbiotic 2132 

association requires exchange of energy and reduces the need for investing in high levels of 2133 

chemical defenses and conserves growth resources.   2134 

Drought stress often triggers changes in plant physiology, such as altered root exudation 2135 

patterns, reduced carbon allocation to the roots, and shifts in hormone signalling, all of which 2136 

can negatively affect AMF colonization. BXDs act as signalling molecules and can regulate 2137 

plant-biotic interactions; their exudation in the rhizosphere can impact microbial communities 2138 

and shape plant interactions with the soil microbiota (Hu et al., 2018). BXDs are involved in 2139 

altering the root-associated microbiota as marked differences were observed in community 2140 

composition of bacteria and fungi in WT and bx1 mutant plants (Cadot et al., 2021). 2141 

Benzoxazinoids exudation from the maize roots also altered the root microbial community in 2142 

the field conditions with more pronounced effects observed for the root fungi. BXDs exudation 2143 

consistently depleted Flavobacteriaceae and Comamonadaceae across the different 2144 

environments (Cotton et al., 2019; Cadot et al., 2021).   2145 

The use of bx1 mutants and the addition of MBOA, provided further insights into the role of 2146 

BXDs in AMF interactions. The lack of difference in AMF colonization rates between wild-2147 

type (WT) and bx1 mutants suggests that BXDs production may not directly inhibit AMF 2148 

colonization. However, when MBOA was introduced into the soil, AMF colonization rates 2149 

temporarily increased, which suggests that specific BXDs derivatives may have a stimulatory 2150 

effect on AMF under certain conditions. This stimulatory effect of MBOA was transient, 2151 

disappearing after 40 days, indicating a time-sensitive dynamic in the plant-fungi relationship 2152 

possibly influenced by other environmental or biological factors. Several hypotheses could 2153 

explain these observations. First, the transient increase in AMF colonization in response to 2154 

MBOA could be due to an initial enhancement of fungal activity triggered by low levels of 2155 

BXDs-derived compounds. However, over time, this effect may be counteracted by feedback 2156 

mechanisms in the plant or fungi, leading to a normalization of colonization rates. Another 2157 
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possibility is that AMF colonization is influenced by a complex interplay of multiple factors, 2158 

including plant hormonal responses, root architecture, or changes in the soil microbiome under 2159 

drought conditions, which may override any potential BXDs-mediated effects. MBOA has 2160 

demonstrated antimicrobial properties against pathogenic fungi and specific soil bacteria, it can 2161 

therefore contribute to selective microbial recruitment (Niemeyer, 2009; Hu et al., 2018). 2162 

Furthermore, beneficial microbes utilize MBOA for metabolic adaptation or niche colonization 2163 

adaptation (Cotton et al., 2019; Kudjordjie et al., 2019). Dual role of MBOA as carbon substrate 2164 

and in deterring or favouring specific microbiota depends on the functionality. Together, 2165 

MBOA impact appears to be context-dependent and current study is consistent that it can act 2166 

either as a nutrient or stimulator reflecting shifts in microbial profiles. Temporary increase in 2167 

AMF colonization in response to MBOA indicates that BXDs might serve as signalling 2168 

molecules that affect symbiotic dynamics without necessarily altering overall plant 2169 

performance in the short term.  2170 

In conclusion, this study highlights the relationship between drought stress, benzoxazinoid 2171 

levels, and AMF colonization. While drought reduces AMF colonization and increases BXDs 2172 

production, the timing of drought establishment and AMF inoculation minimized that effect 2173 

respectively. The exact role of BXDs in mediating these effects also remains unclear. The 2174 

reducing effect of AMF colonization on the root benzoxazinoids level points towards 2175 

modulation in plant defense chemistry, but further investigation is needed to confirm the 2176 

underlying processes. Although MBOA temporarily stimulated AMF colonization, the long-2177 

term dynamics of this interaction require further investigation. Future work should focus on 2178 

validating these findings and exploring the underlying mechanisms driving these interactions 2179 

over extended periods and in varying environmental conditions. Understanding these processes 2180 

could help in developing strategies to mitigate the impacts of drought and drought timing on 2181 

plant-microbe symbioses and improve plant resilience to stress.  2182 
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FIGURE LEGENDS 2209 

Figure 1. The colonization rate of arbuscular mycorrhizal fungi (AMF) with maize B73 plants declined with 2210 

increasing drought conditions in the field. Benzoxazinoids levels in maize B73 roots and leaves were induced 2211 

under drought stress while AMF presence limited this effect in the roots A. Colonization rate of Rhizophagus 2212 

irregularis with maize B73 plants drastically declined under increasing drought conditions after 60 days. B. Time 2213 

series of the chlorophyll content in maize plants. C-D.  Profile of different benzoxazinoids in the root and leaf 2214 

tissues after 60 days are shown. Mean ± standard errors are shown (Ctrl_ND, Ctrl_RCP2.6, Ctrl_RCP8.5 n=3; 2215 

AMF_ND, n=7; AMF_RCP2.6, AMF_RCP8.5, n=9). Three-way anova test was used run to analyze differences 2216 

among treatments. For total BXDs, PERMANOVA test was run to analyze differences among treatments. Stars 2217 

and letters indicate significant differences, **: p<0.001, *: p<0.05, 0.05<p<0.10. Ctrl = Control, AMF = 2218 
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Arbuscular mycorrhizal fungi, Rhizophagus irregularis (SAF22). ND: Ambient, soil moisture: 23% (v/v); 2219 

Drought soil moisture: RCP2.6 and RCP8.5: 19% and 16.6% (v/v) respectively.  2220 

Figure 2. Kinetic drought had no effect on colonization rate of maize plants inoculated with AMF 2221 

Rhizophagus irregularis (SAF22) while prolonged drought increased chlorophyll and decreased fresh shoot 2222 

weight. A. Colonization rate of maize plants inoculated with AMF after 35, 55 and 75 days. B. Chlorophyll content 2223 

over time for maize plants inoculated with AMF under different drought treatments. C. Mean fresh shoot weight 2224 

over time for maize plants inoculated with AMF under different drought treatments. D. Benzoxazinoids profile in 2225 

the root tissues under different drought conditions and inoculation with AMF after 75 days. Mean ± standard errors 2226 

are shown (n=8 except for CD; n =7). Anova was performed to analyze differences among treatments. Letters and 2227 

stars indicate significant differences, ***: p<0.0001, **: p<0.01, 0.05<p<0.10. CC here stands for ambient 2228 

watering, CD is late drought, DC is early drought, and DD is prolonged drought treatment according to RCP 8.5 2229 

(16.6% soil moisture). For the first fourteen days, CC and CD treated plants received ambient watering while DC 2230 

and DD treated plants were subjected to drought watering conditions.  2231 

Figure 3. MBOA complementation increased AMF colonization in maize plants after 20 days. A. 2232 

Colonization rate of Rhizophagus irregularis (SAF22) with maize W22, mutant bx1 and mutant bx1 plants 2233 

complemented with MBOA. B. Fresh shoot weight of maize W22, bx1 mutant plants complemented with MBOA 2234 

after 20, 40 and 60 days. Mean ± standard errors are shown (n=7; except for BX1_MBOA_Ctrl, n=6). Two-way 2235 

anova test was run to analyze differences among treatments. Stars indicate significant differences, ***: p<0.0001, 2236 

**: p<0.01, *: p<0.05, 0.05<p<0.10.  Ctrl= Control, AMF = Arbuscular mycorrhizal fungi, Rhizophagus 2237 

irregularis (SAF22). MBOA0 = No MBOA, MBOA1 = MBOA addition.   2238 
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Supplementary Table 1. According to the Labor für Boden- und 2435 

Umweltanalytik (German for Laboratory for Soil and Environmental 2436 

Analysis) soil profile analysis, the table represents nutrient profiles in 2437 

the soil sample. Correction factor is applied to the raw data as a 2438 

numerical adjustment for variations that affect measurement accuracy, 2439 

it is not applied in the nutrient values given in the table above.   2440 

 2441 

 2442 

 2443 

 2444 
 2445 

Available Nutrient (H2O10) 2446 
 2447 
 2448 
 2449 
 2450 
 2451 
 2452 

Reserve Nutrients (AAE10) 2453 

 2454 

 2455 

 2456 

 2457 

Trace Elements 2458 

 2459 

 2460 

 2461 

 2462 

 
 
 

Parameter Unit Result Method Interpretation/Category 
Humus % G/G 3.0 Texture Test 

(FP) 
Low in Humus 

Clay % G/G 21.0 Texture Test 
(FP) 

Clay 

Silt % G/G 31.0 Texture Test 
(FP) 

 

pH Value  7.5 pH (1:2.5 
H2O) 

Weakly alkaline 

Nutrient Unit Result Correction 
Factor 

Supply 
Level 

Nitrate  mg/kg 877.1  Enriched 
Phosphorus  mg/kg 2.8 1.4 Moderate 
Potassium mg/kg 431.8 0.0 Enriched 
Calcium mg/kg 968.5  Enriched  
Magnesium mg/kg 76.1 0.0 Stock 

Nutrient Unit Result Correction 
Factor 

Supply 
Level 

Phosphorus mg/kg 296.8 0.0 Enriched 
Potassium  mg/kg 662.4 0.0 Enriched 
Calcium mg/kg 26,970  Stock 
Magnesium mg/kg 369 0.2 Stock 

Nutrient Unit Result Correction 
Factor 

Supply 
Level 

Boron mg/kg 1.7  Stock 
Manganese  mg/kg 360  Stock 
Copper mg/kg 12.9  Stock 
Iron mg/kg 906  Enriched  



Chapter II 

 

115 
 

Supplementary Table 2. Benzoxazinoid names and chemical formulas 2463 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 
 

Name Chemical name Chemical 
formula 

HMBOA 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one C9H9NO4 
HMBOA-Glc 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside C15H19NO9 
HMBOA-2Glc 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one diglucoside C21H29NO14 

HM2BOA-Glc 2-Hydroxy-7,8-dimethoxy-1,4-benzoxazin-3-one glucoside C16H21NO10 
DIMBOA 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one C9H9NO5 
DIMBOA-Glc 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside C15H19NO10 
DIMBOA-2Glc 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one diglucoside C21H29NO15 
DIMBOA-3Glc 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one triglucoside C27H39NO20 
DIM2BOA-Glc 2,4-Dihydroxy-7,8-dimethoxy-1,4-benzoxazin-3-one 

glucoside 
C16H21NO11 

HDMBOA-Glc 2-Hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside C16H21NO8 
HDM2BOA-Glc 2-Hydroxy-4,7,8-trimethoxy-1,4-benzoxazin-3-one 

glucoside 
C17H23NO11 

MBOA 6-Methoxybenzoxazolin-2-one C8H7NO3 
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Supplementary Figure 1. Experimental design for the semi-field assay 2464 

to visualize the individual and interactive effects of drought and AMF on 2465 

colonization and maize secondary metabolism 2466 
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Supplementary Figure 2: Experimental design for the greenhouse 2467 

experiment to visualize kinetic effect of drought on colonization 2468 
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Supplementary Figure 3. Experimental design for the greenhouse 2469 

experiment to visualize the role of Benzoxazinoids in AMF colonization 2470 

with W22 and mutant bx1 plants complemented with MBOA 2471 
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Supplementary Figure 4: Interactive effect of drought and AMF 2472 

Rhizophagus irregularis on chlorophyll content after 15, 45 and 60 days. 2473 

The chlorophyll content was reduced under the effect of AMF in 2474 

normally watered plants after 60 days 2475 
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Supplementary Figure 5: Interactive effect of drought and AMF 2476 

Rhizophagus irregularis on shoot height after 15, 30, 45 and 60 days 2477 
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Supplementary Figure 6: Interactive effect of drought and AMF 2478 

Rhizophagus irregularis on root benzoxazinoids content after 60 days  2479 
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Supplementary Figure 7: Interactive effect of drought and AMF 2480 

Rhizophagus irregularis on leaf benzoxazinoids content after 60 days 2481 
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Supplementary Figure 8:  Correlation between colonization rate and 2482 

root benzoxazinoids content after 60 days 2483 
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Supplementary Figure 9. Kinetic drought effect on chlorophyll content 2484 

in inoculated maize B73 plants after 35, and 75 days  2485 
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Supplementary Figure 10. Kinetic drought effect on shoot height in 2486 

inoculated maize B73 plants after 35, 55 and 75 days 2487 
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Supplementary Figure 11. Kinetic drought effect on fresh shoot weight 2488 

in inoculated maize B73 plants after 35 and 75 days. 2489 
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Supplementary Figure 12. Kinetic drought effect on colonization rate of 2490 

Rhizophagus irregularis with maize B73 plants after 35, 55 and 75 days 2491 
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Supplementary Figure S13. Kinetic drought effect on root 2492 

benzoxazinoids content after 35 days 2493 
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Supplementary Figure S14. Kinetic drought effect on root 2494 

benzoxazinoids content after 55 days 2495 
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Supplementary Figure 15. Kinetic drought effect on root benzoxazinoids 2496 

content after 75 days 2497 
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Supplementary Figure 16. Correlation between root benzoxazinoids 2498 

content and colonization rate after 75 days 2499 
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Supplementary Figure 17. Chlorophyll content of inoculated maize 2500 

W22 and mutant bx1 plants complemented with MBOA after 20, 40 and 2501 

60 days   2502 
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Supplementary Figure 18. Shoot height of inoculated maize W22 and 2503 

mutant bx1 plants complemented with MBOA after 20, 40 and 60 days  2504 
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Supplementary Figure 19. Fresh shoot weight of inoculated maize W22 2505 

and mutant bx1 plants complemented with MBOA after 40 and 60 days 2506 
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Supplementary Figure 20. Colonization rate of AMF Rhizophagus 2507 

irregularis with W22 and bx1 mutant plants complemented with MBOA 2508 

after 40 and 60 days 2509 
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ABSTRACT 2520 

Benzoxazinoids are key defense metabolites in maize, and their activity and stability can be 2521 

modulated through glycosylation. Here, we report a drought-induced biosynthetic pathway for 2522 

multihexose benzoxazinoids in maize (Zea mays). Under drought, the concentrations of 2523 

DIMBOA-2Glc, DIMBOA-3Glc, and HMBOA-2Glc increased up to 40-fold in roots. 2524 

Transcriptome mining and phylogenetic analysis identified nine candidate UDP-2525 

glycosyltransferases (UGTs) in the UGT79, UGT91, and UGT94 families, of which two, 2526 

UGT94A1 and UGT94A2, were strongly upregulated by drought. Recombinant expression in 2527 

E. coli demonstrated that both enzymes can convert DIMBOA-Glc to DIMBOA-2Glc. Site-2528 

directed mutagenesis of UGT94A1 abolished this activity, confirming the functional role of the 2529 

target residues. Additionally, CRISPR/Cas9 mutants for UGT94A1 and UGT94A2 were 2530 

generated in KN5585 inbred line by Weimi Biotechnology Company. To date, a single 2531 

homozygous ugt94a1 mutant has been isolated, containing a 368 bp deletion between the 2532 

UGT94A1-1 and UGT94A1-2 target sites. Multiple other mutant lines for both loci are 2533 

currently still segregating. Our findings uncover key enzymes in a previously uncharacterized 2534 

multihexose benzoxazinoid biosynthesis pathway and highlight their inducibility by drought, 2535 

offering new insights into the chemical adaptation of maize to environmental stress. 2536 

 

 

 
 

 

 

 

 

 

 

 

 

Keywords: 2537 

Multihexoses Benzoxazinoids, UDP-Glucosyltransferases, Recombinant Expression, Maize  2538 
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INTRODUCTION  2539 

Many regions of the world are projected to suffer frequent and severe drought, significantly 2540 

impacting crop yield (IPCC, 2022; Farooq et al., 2023; Karanth et al., 2023). As compared to 2541 

2010, global total food demand is expected to increase by 30-62% by 2050, therefore efforts 2542 

aimed at increasing crop yields in many regions across the world will face serious challenges 2543 

(Lobell et al., 2011; van Dijk et al., 2021). Plants adapt to drought through complex 2544 

biochemical processes by regulating metabolic adjustments and production of defence 2545 

compounds (Kaya et al., 2023). It is thereby necessary to understand these plant responses to 2546 

drought to ensure global food security (Janni et al., 2024). This chapter focuses on the UDP-2547 

glycosyltransferases (UGTs) that are involved in modulating secondary metabolic profile in 2548 

maize plants under drought stress.  2549 

Maize has played an increasingly diverse role since its domestication some 9000 years ago. As 2550 

a staple crop, maize provides proteins, calories and essential nutrients for millions of people 2551 

(FAO, 2022). Maize is the leading cereal in terms of production volume (Asfawa et al., 2024) 2552 

with production over one billion tons over the last decade and will overtake wheat as the most 2553 

grown and traded crop in the coming decade. By the year 2050, maize is also expected to 2554 

provide more than 50% of the cereal demands. The world is currently witnessing a surge in 2555 

maize production owing to demand and a combination of area expansion, technical advances 2556 

and yield increase (Erenstein et al., 2022). Global maize production highlights its importance 2557 

in the agriculture sector and therefore it is needed to ensure resilience against environmental 2558 

stressors such as drought.    2559 

Although maize yield has increased significantly over the past few decades, its susceptibility 2560 

to drought has also increased in parallel (Lobell, 2014). Drought can lead to significant yield 2561 

losses by reducing the water use efficiency of maize during critical stages of growth (Hatfield 2562 

and Dold, 2019). Drought stress is a major barrier in the production of maize as it decreases 2563 

yield components, leaf photosynthesis and transpiration rate (Li et al., 2018). Maize is the most 2564 

vulnerable to drought stress during the silking, vegetative and ear stages resulting in yield 2565 

reduction of upto 25%, 50% and 21% respectively (Sah et al., 2020). Drought can lead to fewer 2566 

kernels per cob and smaller kernel size by disrupting the plants reproductive process (Farooq 2567 

et al., 2009). Drought stress during the vegetative growth stage can also lead to reduced growth 2568 

rate, extension of the vegetative growth stage and redirection of the roots in maize plants (Wang 2569 

et al., 2019). It is therefore critical to understand the physiological mechanisms that underlie 2570 

maize tolerance to drought to facilitate its resilience to changing climatic conditions. 2571 
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Benzoxazinoids (BXDs) are specialized plant secondary metabolites that are produced in the 2572 

family poaceae including wheat, rye and maize (Niemeyer, 2009; Robert and Mateo, 2022). 2573 

They are derived from indole and comprise of benzoxazinones (1,4-benzoxazin-3-one 2574 

skeleton) and benzoxazolinones (1,3-benzoxazol-2-one core structure) and play role in 2575 

modulating important activities in plants including reproduction, development, nutrition and 2576 

defenses (Robert and Mateo, 2022).  The predominant benzoxazinoid in maize is DIMBOA 2577 

(2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) which is synthesized from the amino acid 2578 

tryptophan through a series of enzymatic steps (Frey et al., 1997). In response to both biotic 2579 

and abiotic stresses such as pathogen attack and drought respectively, BXDs such as DIMBOA 2580 

and its derivatives have been shown to accumulate in maize plants (Meihls et al., 2013; Erb et 2581 

al., 2015). The role of these BXDs is to enhance plant´s defense strategies. Sutour et al., 2024 2582 

identified that the maize plant under drought conditions produces di, tri and tetra BXDs in the 2583 

leaves and roots of maize plants. Multihexose BXDs that are specifically induced in the drought 2584 

stress are DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, HDMBOA-2Glc, 2585 

highlighting plant metabolism modulation and ability to cope drought stress.  2586 

UDP-glycosyltransferases (UGTs) are a family of enzymes that catalyse the glycosylation of 2587 

various plant secondary metabolites such as alkaloids, flavonoids, and terpenoids (Liu et al., 2588 

2025). The physicochemical properties of metabolites including solubility, stability, and 2589 

reactivity are altered because of glycosylation thereby modulating the availability and 2590 

bioreactivity of metabolic compounds in the plant tissues (Hou et al., 2004). Several studies in 2591 

recent years have highlighted the importance of UGTs in plants response to drought stress. For 2592 

example, UGT87A2 is overexpressed in Arabidopsis thaliana under drought conditions, and 2593 

confers resistance by promoting germination, root growth, and reduced accumulation of 2594 

reactive oxygen species (ROS) (Li et al., 2017). Similarly, overexpression of UGT79B2 and 2595 

UGT79B3 under drought stress increased flavonoid accumulation improving plant resistance 2596 

against drought and cold stress (Li et al., 2017). AtUGT79B2/B3 in Arabidopsis leads to 2597 

enhanced glycosylation of anthocyanins resulting in increased plant tolerance to drought via 2598 

ROS scavenging (Liu et al., 2017). In rice plants, UGT85E1 glycosylates abscisic acid and 2599 

enhances tolerance to drought, this involves strengthening the stomatal closing under drought 2600 

stress (Liu et al., 2021).  Similarly, in Solanum plants, formation of flavonoid diglycosides 2601 

resulted in antipyretic, anti-inflammatory and analgesic properties (Nassar et al., 2013). To 2602 

enhance absorption and antioxidant capacity as compared to monoglycosides, flavonoid 2603 

C-glycosides including isovitexin, vitexin and orientin are also multi-glycosylated in plants 2604 
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(Xiao et al., 2016). This evidence strongly suggests broader the role of UGTS in mediating 2605 

plant responses to drought and other environmental stresses across various species.  2606 

The detrimental effects of climate change are escalating on agriculture (Prajapati et al., 2024); 2607 

it is therefore necessary to understand mechanism of plant responses to tackle these challenges. 2608 

This chapter aims to identify the role of UGTs in maize plants that are involved in modulating 2609 

secondary metabolites during stress conditions. Specifically, we aim to identify the UGTs that 2610 

are involved in the formation of DIMBOA-2Glc in maize under conditions of drought. We 2611 

expect that the UGTs involved in the glycosylation activity have a polar end to stabilize the 2612 

second glucose molecule to already present glucose moiety, which in the current case is due to 2613 

the amino acid threonine. We also aim to observe whether substitution of threonine with non-2614 

polar amino acid isoleucine by site directed mutagenesis can result in the loss of glycosylation 2615 

activity. This will involve heterologous expression of genes in bacterial cells, purification of 2616 

protein, performing enzymatic assays and HPLC-MS analysis. These insights can contribute to 2617 

the better development of crops with enhanced tolerance to stress marking a key step forward 2618 

in sustainable agricultural productivity.    2619 

METHODS 2620 

Biological material 2621 

Plants 2622 

Maize seeds (Zea mays L.) of the variety B73 were provided by Delley Semences et Plantes 2623 
SA (Delley, CHE).  2624 

Climatic conditions 2625 

Current and predicted climatic conditions were calculated using climatic data from the Swiss 2626 

Central Plateau (Average of summer conditions from 2004 to 2016, Oensingen, 47°17'11.1" N 2627 

/ 7°44'01.5" E, Switzerland), data were supported by MeteoSwiss (Federal Office of 2628 

Meteorology and Climatology, Zürich, Switzerland), and predictions from the Representative 2629 

Concentration Pathway 8.5 (RCP 8.5, Intergovernmental Panel on Climate Change (IPCC) 2630 

report (IPCC 2014). RCP 8.5 corresponds to an extreme scenario in which CO2 emissions 2631 

continue to rise throughout the 21st century. Consequently, current and RCP 8.5 atmospheric 2632 

CO2 concentrations were of 450 ppm (± 50ppm), and 850 ppm (± 50 ppm) respectively. Current 2633 

and RCP 8.5 of soil temperatures were 19.6 °C and 23 °C respectively. Because daily 2634 

temperature variation can affect insect performance and predator-prey interactions (Stoks et al 2635 

2017), current and RCP 8.5 soil temperatures followed a diurnal variation of 3.5 °C (minimal 2636 
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temperature at 6 am and maximal temperature at 4 pm) and reached a maximum temperature 2637 

of 21.4 °C and 24.8 °C respectively (Figure S1). Current and RCP 8.5 soil volumetric moisture 2638 

levels were adjusted to 23% and 16.6% (corresponding to 28 % less precipitation) (Figure S2). 2639 

Microcosm systems 2640 

To manipulate CO2 levels, temperature, and moisture, we used a microcosm system using dry-2641 

bath cyclers and a custom-made CO2-dosage system. Falcon tubes (50 mL, Falcon, Greiner 2642 

Bio-One, Frickenhausen, Germany) were filled with 10 g dry (80 °C for 48 hrs), sieved (2 cm 2643 

mesh) soil (40% sand, 35% silt, 25% clay; Landerde, Ricoter, Aarberg, Switzerland). The 2644 

natural soil microbiota was re-implemented to the soil as previously described (Hu et al., 2018). 2645 

All falcon tubes were placed in dry bath cyclers (Digital Heating Cooling Drybath, Thermo 2646 

Scientific, Fisher Scientific AG, Reinach, Switzerland) equipped with heating blocks that can 2647 

accommodated up to nine falcon tubes. A CO2 mixing and distribution system was designed to 2648 

continuously mix CO2 ambient air, measure the CO2 concentration of the mixture, and 2649 

distribute it to different channels. Mixing CO2 and air was achieved using an air compressor 2650 

(Prematic AG, Affeltrangen, Switzerland) coupled to two mass-flow-controllers (for CO2: 2651 

Bronkhorst El-Flow Select F-200CV (0.6 mL.min-1), Ruurlo, Netherlands; and for air: CKD 2652 

FCM-0010AI (0-10 L.min-1), CKD Corporation, Aichi, 485-8551, Japan). Ambient air from 2653 

outside the building was used for mixing, therefore no CO2 was added to mimic current 2654 

conditions (=450 ppm ± 50 ppm). A concentration of 400 ppm CO2 (purity 100%, 54.6 L bottle, 2655 

and pressure of output at 0.8 bars, Gümligen, Switzerland) was added + 400 ppm to ambient 2656 

air (=850 ppm ± 50 ppm) to reach expected RCP 8.5 scenarios. The resulting CO2: air mix was 2657 

pushed through a filter of activated carbon (Camozzi, Warwickshire, United Kingdom) and 2658 

split through valves (Needle Valve 2839-⅛, CKD, Aichi, 485-8551, Japan) into seven 2659 

individual channels in a series. The first channel, referred thereafter as “CO2 measuring 2660 

channel”, was connected to a CO2 sensor (Rotronic AG, Bassersdorf, Switzerland). The air 2661 

flow circulated alternatively between the CO2 measuring channel (for 2 min) and experimental 2662 

channels (for 2 min). The two minutes duration between experimental channels was sufficient 2663 

to reach stable expected CO2 concentrations. In all assays, four experimental channels were 2664 

used, alternating between ambient (channels 2 and 4) and CO2 enriched (channels 3 and 5) air. 2665 

Therefore, the ambient or CO2-enriched air was distributed through all channels within 16 min. 2666 

This cycle was repeated every 30 min (16 min air distribution followed by 14 min pause) over 2667 

the course of the experiment. Each of the experimental channels had 12 outlets (One-Touch 2668 

fittings-male Straight, Sang-A Pneumatic Co., Daegu, Korea). Polyurethane tubing (outer/inner 2669 
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diameter: 4/2.5 mm, length: 2 m, Sang-A Pneumatic Co., Daegu, Korea) was connected to the 2670 

outlets and distributed the air to the Falcon tubes. The tubing was attached to the lids of the 2671 

Falcon tubes using One-Touch fittings-male Elbow (Sang-A Pneumatic Co., Daegu, Korea). 2672 

The flow rate sent through individual Falcon tubes was adjusted to 1 L.min-1. The outflow of 2673 

the Falcon tubes was connected to a collection system, itself connected to the CO2 sensor to 2674 

verify CO2 levels. The collected air was then released in the environment. 2675 

The temperature in the Falcon tubes was controlled through the dry-bath cyclers and followed 2676 

a diurnal variation of 3.5 °C. Soil temperatures used to mimic current conditions were of 17.8 2677 

°C at 6 am, and gradually increased to reach 21.4 °C at 4 pm (Figure S1), as reported for the 2678 

Swiss Plateau over the past two decades (MeteoSwiss, Federal Office of Meteorology and 2679 

Climatology, Zürich, Switzerland). The temperatures mimicking the RCP 8.5 scenario were set 2680 

to 21.2 °C at 6 am and progressively increased to reach 24.8 °C at 4 pm (Figure S1). 2681 

The moisture present in the tubes was controlled by adding the soil leachates to the tubes once 2682 

at the beginning of the experiment. The volume of water to add in the tubes was calculated 2683 

based on the soil density of 1.2 g.cm-3. Current moisture levels (23% soil moisture) were 2684 

achieved by adding 16.6% (v/v) microbiota extracts contained in tap water and 6.4% (v/v) 2685 

additional tap water. Predicted moisture levels (RCP 8.5, 28% less precipitation, Figure S2) 2686 

were achieved by adding 16.6% (v/v) microbiota extracts contained in tap water only. The 2687 

temperatures were adjusted to the different scenarios over a six-hour adaptation period (Figure 2688 

S1). 2689 

Benzoxazinoids analyses  2690 

The leaf and root samples were grinded using liquid nitrogen in the pestle and mortar. The plant 2691 

metabolites were quantified using 100 mg of grinded material which was extracted using 2692 

extraction buffer MeOH:H20: (70:30 v/v, 0.1% Formic acid) and thoroughly mixed for 10 2693 

seconds on the vortex. The samples were centrifuged for 20 min at 13,000 rpm at 10 °C and 2694 

supernatant was collected and stored in glass vials. The supernatant was analyzed with an 2695 

acquity UHPLC-MS system equipped with an electrospray source (Waters i-Class UHPLC-2696 

QDA, USA). Gradient elution was performed on an Acquity BEH C18 column (2.1 × 50 mm 2697 

i.d., 1.7 μm particle size) at 99–72.5% A over 3.5 min, 100% B over 2 min, holding at 99% A 2698 

for 1 min, where A = 0.1% formic acid/water and B = 0.1% formic acid/acetonitrile and the 2699 

flow rate of mobile phase was maintained at 0.4 mL/min. The injection volume was 1 ul and 2700 

the temperature of the column was maintained at 40⁰C. The MS was operated in negative mode, 2701 

and data were acquired in scan range (m/z 150–650) using a cone voltage of 10 V. All other MS 2702 
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parameters were left at their default values as suggested by the manufacturer (Adapted from 2703 

Robert et al., 2017; Steinauer, 2021).  2704 

Cloning and heterologous expression in E. coli cells 2705 

To identify candidate genes involved in glycosylation activity belonging to families, UGT79, 2706 

UGT91, and UGT94, phylogenetic analysis combined with transcriptome mining were 2707 

employed. The genes of interest, Zm0001eb111430 (UGT94A1) Zm0001eb111270 2708 

(UGT94A2) and were amplified using a specific set of primers. 2709 

Primer’s sequence:  2710 

UGT94A1-F, 5’- ggtgccgcgcggcagccataTGGCGCAGATGGAGCGCGAG-3';  2711 

UGT94A1-R, 5’- acggagctcgaattcggatcTCAGTTGGGCACGGCCACTC-3';  2712 

UGT94A2-F, ggtgccgcgcggcagccatATGGCGCAGGCGGAGCGCGA-3';  2713 

UGT94A2-R, acggagctcgaattcggatcTCAGTTGGGCACGGCCACAC-3';  2714 

Extensions for Gibson Assembly are in lower case. Zm0001eb111430 (UGT94A1) and 2715 

Zm0001eb111270 (UGT94A2) were cloned into the NdeI and BamHI restriction sites of the 2716 

pET28b vector (Novagen, Madison, WI) in-frame with an N-terminal hexahistidine tag. 2717 

Briefly, full-length coding sequences were amplified using gene-specific primers with 20-bp 2718 

extensions at their 5′ ends homologous to the termini of the linearized vector. 2719 

Amplified gene fragments (2 µL) were individually inserted into 1 ul the pET28b plasmid 2720 

(Novagen, Madison, WI) using 5 ul of Gibson Assembly Master Mix (New England Biolabs; 2721 

NEB). The solution was incubated at 50°C for 30 minutes to allow annealing of each fragment 2722 

at the insertion site of the plasmid. The process involved chewing 5´ends of the pET28b 2723 

plasmid by the exonuclease, creating overhangs at the 3´ ends complementary to each of the 2724 

gene of interest. The polymerase then extended the 3´ ends by filling the gaps, and the nicks 2725 

were sealed by the ligase. The Gibson assembly reaction products containing the pET28b 2726 

plasmid and each gene of interest were mixed with Escherichia coli (DH5α cells) separately. 2727 

To facilitate transformation, cells were given heat shock treatment at 42°C for 45 seconds and 2728 

then placed on ice for 5 minutes. The transformed cells were diluted in 1 mL of Super Optimal 2729 

Broth with catabolite repression media (SOC) as it allows for the recovery of E. coli cells. The 2730 

cells were plated on agar plates containing 50 ug/mL of kanamycin to screen for the cells that 2731 

are successfully transformed as our plasmid contains gene for the kanamycin resistance. The 2732 

successfully plated colonies were picked to perform colony PCR to ensure the incorporation of 2733 

the plasmids into the cells based on the fragment size (1.8 kb). The colonies with the correct 2734 

fragment size were then subjected to mini preparation (mini prep) to isolate plasmids which 2735 
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were also sequenced to confirm the correct assembling of each gene fragment. These plasmids 2736 

for each gene were then transformed into expression cells of E.coli BL21 (DE3) using the 2737 

protocol described above. BL21 (DE3) cells contain the antibiotic resistance gene for 2738 

chloramphenicol. The transformed cells were plated on agar plates containing both kanamycin 2739 

and chloramphenicol to screen for the transformed cells. Colony PCR was again performed to 2740 

verify the correct incorporation of the plasmids. The correct fragment length was selected for 2741 

each gene from the stab plate and grown into an overnight liquid culture in LB media containing 2742 

both antibiotics at 37°C. Two Erlenmeyer flasks were filled with 250 mL of liquid LB media, 2743 

50 µg per mL of kanamycin and 35 µg per mL of chloramphenicol. The media was inoculated 2744 

with 250 uL of overnight cultures of each gene. The culture was grown at 37 °C with shaking 2745 

until it reached an OD₆₀₀ of 0.6–0.8, at which point IPTG was added to a final concentration of 2746 

1 mM. The induced cells were then incubated at 16 °C with shaking for 18 hours and harvested 2747 

by centrifugation. After harvesting, the cell pellet was resuspended in one-tenth the original 2748 

culture volume of buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 1 mM PMSF, and 1 mg/mL 2749 

lysozyme), and the cells were lysed by three rounds of freeze-thaw. After the incubating with 2750 

DNase, the lysate was clarified by centrifugation, and the His-tagged recombinant protein was 2751 

purified from the supernatant using HisPur Cobalt Resin. 2752 

The purified protein was used for enzymatic assay, the reaction was performed in 200 µL of 2753 

Tris-HCl buffer (pH 7.5) containing 200 µM substrate and 2 µg of affinity-purified 2754 

recombinant protein. The mixture was incubated at 30 °C for 1 hour, after which an equal 2755 

volume of methanol was added to stop the reaction. The sample was then centrifuged at 2756 

12,000 rpm for 10 minutes and filtered through a 0.2 µm filter before analysis. 2757 

Site directed mutagenesis 2758 

A single nucleotide substitution was introduced to change the gene of interest (GOI), 2759 

Zm0001eb111430 (UGT94A1). Specifically, cytosine (C) was replaced with thymine (T) at 2760 

position 143 of the gene sequence resulting in codon alteration from ACC to ATC. The new 2761 

codon ATC encodes the amino acid isoleucine instead of threonine encoded by ACC in the 2762 

original gene sequence. Modified primers  2763 

UGT94A1-T143I-F, GCACCTCAGCATCTTCAGCGCCG;  2764 

UGT94A1-T143I-R, CGGCGCTGAAGATGCTGAGGTGC 2765 

were used to amplify two gene fragments both containing the desired mutation. The two 2766 

fragments were then assembled using the overlap extension PCR and the final product was then 2767 
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cloned into the pET28b expression construct as described previously. Sequencing was 2768 

performed to confirm the insertion of mutation at the desired position. 2769 

Mutant generation 2770 

CRISPR/Cas9 knockout lines targeting the UGT94A1 and UGT94A2 loci were generated in 2771 

the KN5585 inbred line by Weimi Biotechnology Company using the following sgRNAs: 2772 

UGT94A1-1, GACCCCTCGGATCCGCTTCGCGG;  2773 

UGT94A1-2, GGCGCAGTACATCCTCCGCGAGG;  2774 

UGT94A2-1, CCTCGGGGTTCGTGGCCATCAAG; and  2775 

UGT94A2-2, CCGCGTCACGCGGTGGCTCGACC.  2776 

To date, a single homozygous ugt94a1 mutant has been isolated, containing a 368 bp deletion 2777 

between the UGT94A1-1 and UGT94A1-2 target sites. Multiple other mutant lines for both 2778 

loci are currently still segregating. 2779 

Statistical analyses 2780 

Statistical analyses were conducted using R (version 3.5.3, https://www.r-project.org) and 2781 

online tools (http://quantpsy.org; https://www.graphpad.com). Normality and 2782 

heteroscedasticity of error variance were assessed using Levene’s and Shapiro-Wilk tests, as 2783 

well as by visualizing quantile-quantile plots and model residuals versus fitted values. ANOVA 2784 

analysis was used to analyze effects of response variables. Comparisons of means were 2785 

performed using Tukey's HSD tests (p ≤ 0.05). The heat map of BX profiles was expressed in 2786 

log fold change value compared to ambient BXDs by using the functions foldchange () in 2787 

package gtools and heat.map2() in the package of gplots(). 2788 

RESULTS 2789 

Drought induces the production of multihexose benzoxazinoids 2790 

Climatic components have specific effects on BXDs profiles contents in shoot, kernel, and 2791 

roots (Figure 1). Drought strongly increased the concentrations of DIMBOA-2Glc, HMBOA-2792 

2Glc, and DIMBOA-3Glc in a tissue specific manner. Low precipitation increased the 2793 

concentrations of DIMBOA double and triple glycosides about 40 times in the roots (Figure 2794 

1). Elevated temperature increased the concentrations of HMBOA, HMBOA-Glc, DIMBOA-2795 

Glc, DIM2BOA-Glc, HDMBOA-Glc, and HDM2BOA-Glc in kernels and roots. Elevated CO2 2796 

alone changed total glucoside BXDs profiles in shoot. Combined drought and elevated 2797 

temperature synergistically increased BXDs in roots and shoots. Combined drought or elevated 2798 
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CO2 with elevated temperature affected on glucosides BXDs contents. Combined elevated CO2 2799 

and elevated temperature increased total glucoside contents in the shoot of maize seedlings. 2800 

 

Figure 1. Climatic variables increase maize benzoxazinoid contents in maize. BXDs concentration were log 2801 
10 transformed and expressed as fold changes compared to current conditions. Blue indicates lower concentrations 2802 
compared to current conditions. Red indicates higher concentrations than in current conditions. Stars indicate 2803 
significant differences to current condition: ***: p ≤ 0.001; **: p ≤ 0.01; *: p ≤ 0.05; p ≤ 0.1. Moist: soil moisture, 2804 
Temp: temperature, CO2: CO2 levels, cur: current conditions, +/-: elevated or decreased levels of soil moisture, 2805 
temperature or CO2 as predicted by the RCP 8.5 scenario IPCC, 2014. 2806 

Figure reproduced with permission from Van Cong Doan (2020), Interactive effects of elevated temperature, 2807 
drought and elevated CO₂ on tritrophic interactions in maize. Doctoral dissertation, University of Bern. 2808 
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The glucosyltransferases Zm00001eb330430 (UGT94A1) 2809 

Zm00001eb111270 (UGT94A2) are induced by drought 2810 

In the roots of maize plants, Zm00001eb330430 (UGT94A1) and Zm00001eb111270 2811 

(UGT94A2) and were highly induced under drought stress as indicated by the drought induced 2812 

expression data analysis. The maize UGT Zm00001eb330430 (UGT94A1), located on the 2813 

chromosome 7 at the genomic locus Zm00001d022467 encodes a protein containing a 2814 

conserved UGT domain in addition to plasmodesma, plasma membrane activity and 2815 

biosynthesis of anthocyanin-related compounds. The full-length cDNA sequence spans 1,883 2816 

bp, translating into a 476-amino-acid protein (Woodhouse et al., 2021). The maize UGT 2817 

Zm00001eb111270 (UGT94A2), located on the chromosome 2 at the genomic locus 2818 

LOC103647933 encodes a protein containing a conserved UGT domain in addition to 2819 

localization in plasmodesmata and plasma membrane. The full-length cDNA sequence spans 2820 

1,708 bp, translating into a 475-amino-acid protein (Woodhouse et al., 2021).  2821 
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Figure 2. Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) are glucosyltransferases 2822 
induced by drought in roots of maize plants. A. Phylogenetic tree of maize and Arabidopsis thaliana UDP-2823 
glucosyltransferases (UGTs). Multiple sequence alignment was performed, and the tree was generated using 2824 
HMMER indicating evolutionary relationships among the selected UGT genes. B. The concentration of 2825 
Zm00001eb330430 (UGT94A1) produced under drought in roots of maize B73 plants is 83 folds higher than the 2826 
Zm00001eb111270 (UGT94A2) (Reproduced from Opitz et al. (2014), BMC Plant Biology, licensed under CC 2827 
BY 4.0.).  2828 
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Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) 2829 

produce DIMBOA-2Glc from DIMBOA-Glc 2830 

Both Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) were able to 2831 
successfully glycosylate DIMBOA-Glc to DIMBOA-2Glc. 2832 

 
 

Figure 3. Chromatograms of DIMBOA-2Glc produced by Zm00001eb330430 (UGT94A1) and 2833 
Zm00001eb111270 (UGT94A2). A. Chromatogram showing DIMBOA-Glc at a retention time of 1.66 minute, 2834 
observed in the control reaction. B. Chromatogram of DIMBOA-2Glc at a retention time of 1.04 minute, produced 2835 
by Zm00001eb330430 (UGT94A1) when supplemented with 2 mM UDP-glucose after 60 minutes at 30⁰C. 2836 
Chromatogram of DIMBOA-2Glc at a retention time of 1.04 minute, produced by Zm00001eb111270 2837 
(UGT94A2) when supplemented with 2 mM UDP-glucose after 60 minutes at 30⁰C. We were not able to detect 2838 
traces of DIMBOA-3Glc. 2839 
 

 

 
 
 



Chapter III 

155 
 

Site-directed mutagenesis of Zm00001eb330430 (UGT94A1) 2840 

abolished glycosylation of DIMBOA-Glc to DIMBOA-2Glc 2841 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4. The mutated gene lost the ability to glycosylate DIMBOA-Glc to DIMBOA-2Glc. A. Chromatogram 2842 
of DIMBOA-2Glc produced by the Zm00001eb330430 (UGT94A1) at a retention time of 1.04 minute, when 2843 
supplemented with 2 mM UDP-glucose after 120 minutes at 30⁰C. B. Chromatogram illustrating DIMBOA-Glc 2844 
as the mutated protein lost its ability to glycosylate DIMBOA-Glc. C. The wild type ESMFold Protein Structure 2845 
of Zm00001eb330430 (UGT94A1) (Modified from Meta AI, Lin et al., 2022, Licensed under under a CC-BY-2846 
NC-ND 4.0). D. Mutated ESMFold Protein Structure of Zm00001eb330430 (UGT94A1) (Modified from Meta 2847 
AI, Lin et al., 2022, Licensed under under a CC-BY-NC-ND 4.0).  2848 
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DISCUSSION 2849 

In the current study, we detected glycosylated BXDs, DIMBOA-2Glc, DIMBOA-3Glc, and 2850 

HMBOA-2Glc in maize plants under drought conditions highlighting underexplored 2851 

mechanism of stress adaptation. We identified nine candidate UDP-glycosyltransferases 2852 

(UGTs) in the UGT79, UGT91, and UGT94 families using transcriptome mining and 2853 

phylogenetic analysis. Out of nine, Zm00001eb330430 (UGT94A1) and Zm00001eb111270 2854 

(UGT94A2) were strongly upregulated by drought. Recombinant expression analysis in E. coli 2855 

demonstrated that both these enzymes are involved in the production of DIMBOA-2Glc from 2856 

DIMBOA-Glc. Site-directed mutagenesis in Zm00001eb330430 (UGT94A1) impaired its 2857 

ability to produce DIMBOA-2Glc from DIMBOA-Glc.    2858 

In the study, interesting finding demonstrate that the concentrations of DIMBOA-2Glc, 2859 

DIMBOA-3Glc, and HMBOA-2Glc are increased up to 40-fold in the roots. BXDs are defence 2860 

related compounds primarily involved in providing resistance against herbivores and pathogens 2861 

(Robert and Matteo, 2022). Currently, there is increasing evidence they also play role in 2862 

acquiring resistance to abiotic stress such as drought, although the functions remain largely 2863 

unidentified (Frey et al., 2009). Glycosylated BXDs such as DIMBOA-Glc are inactive, non-2864 

toxic, storage forms of BXDs under drought stress conditions when metabolism is suppressed 2865 

(Niculaes et al., 2018). This modification can help plants conserve energy which is critical 2866 

when metabolic activity is suppressed under water limiting conditions. Glycosylation can also 2867 

help plants in priming against biotic stresses by rapidly activating BXDs from non-toxic 2868 

compounds (Niculaes et al., 2018; Israni et al., 2020). Furthermore, glycosylated compounds 2869 

are more water soluble, increasing their movement within the plant tissues or exudation through 2870 

root tissues. Glycosylation of benzoxazinoids (BXDs) can be a crucial mechanism adopted by 2871 

plants to regulate their bioactivity and distribution.  2872 

In the current study, based on preliminary analysis and expression profiles, we identified two 2873 

out of nine UGTs that are involved in BXDs glycosylation. These two UGTs 2874 

Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) were highly induced in 2875 

the roots under drought stress pointing towards tissue specific role in adaptation to drought 2876 

stress. UGTs are enzymes involved in plant metabolism and catalyse the addition of sugar 2877 

molecules to a wide range of acceptor molecules such as secondary metabolites and hormones. 2878 

As a result of this glycosylation, solubility, stability, and bioactivity of these compounds is 2879 

increased thereby modulating their roles in plant growth and development under stress 2880 

conditions (Gharabli et al., 2023).  The specific roles of glycosylated BXDs are currently 2881 
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unknown, though various hypotheses can be provided based on functions of glycosylated 2882 

BXDs in different systems. For example, formation of glycosylated flavonoids can help release 2883 

the stress of reactive oxygen species (ROS) owing to their antioxidant properties (Pourcel et 2884 

al., 2007). BXDs are not antioxidant in nature, their glycosylation can result in indirect redox 2885 

homeostasis or alternatively prevent their breakdown into harmful degradation products. For 2886 

instance, BXDs such as DIMBOA can be cytotoxic at higher concentrations, their glycosylation 2887 

can prevent plants cells during drought stress where cell damage can result in membrane 2888 

permeability or metabolite leakage (Ahmad et al., 2011). Glycosylation also enables the 2889 

sequestration of metabolites in vacuolar compartments and serves as a reservoir that can be 2890 

rapidly utilized under stress condition (Jones at el., 2003). Under drought stress, BXDs 2891 

glycosylation can serve as reservoir pool that can be hydrolysed when needed. Initial evidence 2892 

is provided through mutant analysis supporting their involvement, we await the availability of 2893 

CRISPR-generated knockout lines to thoroughly confirm this. 2894 

Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) are also actively 2895 

involved in cellular functions owing to their localization in plasma membrane and 2896 

plasmodesmata. Additionally, Zm00001eb330430 (UGT94A1) is involved in the biosynthesis 2897 

of anthocyanin containing compounds, suggesting its role in biological processes (Woodhouse 2898 

et al., 2021). Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) are largely 2899 

conserved and have orthologs in Sorghum bicolor (Sorghum), Setaria italica (Foxtail millet), 2900 

Oryza sativa japonica (Rice), Brachypodium distachyon (Brachypodium) (Woodhouse et al., 2901 

2021). The Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) share a 2902 

stretch of conserved 40 amino acids with other UGTs in Arabidopsis and tea plants that are 2903 

involved in glycosylation activities including AtUGT71B1, AtUGT74C1, AtUGT79B1, 2904 

AtUGT79B6, CsUGT94P1B1. Moreover, they all possess a conserved Adenine in their 2905 

sequence along with our two UGTs (Ohgami et al., 2015).  2906 

Under drought, glycosylation of BXDs represents a novel mechanism adopted by plants to 2907 

manage drought stress. Although, the functional aspects of this biochemical adaptation are not 2908 

completely understood, glycosylation of BXDs under water stress is likely aimed to modulate 2909 

their stability, storage and bioactivity. A novel biosynthetic pathway is elucidated in this study 2910 

involving Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) genes that 2911 

modify plant metabolic responses to drought. Future work will be carried out to perform qPCR 2912 

analysis of the identified UGTs and their relevance in mutant plants for drought resilience. 2913 

Furthermore, more investigations are needed to properly characterize the function of these 2914 

compounds in maize plants under water limiting conditions.   2915 
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FIGURE LEGENDS 2942 

Figure 1. Climatic variables increase maize benzoxazinoid contents in maize. BXDs concentration were log 2943 

10 transformed and expressed as fold changes compared to current conditions. Blue indicates lower concentrations 2944 

compared to current conditions. Red indicates higher concentrations than in current conditions. Stars indicate 2945 

significant differences to current condition: ***: p ≤ 0.001; **: p ≤ 0.01; *: p ≤ 0.05; p ≤ 0.1. Moist: soil moisture, 2946 

Temp: temperature, CO2: CO2 levels, cur: current conditions, +/-: elevated or decreased levels of soil moisture, 2947 

temperature or CO2 as predicted by the RCP 8.5 scenario IPCC, 2014. 2948 

Figure 2. Zm00001eb330430 (UGT94A1) and Zm00001eb111270 (UGT94A2) are glucosyltransferases 2949 

induced by drought in roots of maize plants. A. Phylogenetic tree of maize and Arabidopsis thaliana UDP-2950 

glucosyltransferases (UGTs). Multiple sequence alignment was performed, and the tree was generated using 2951 

HMMER indicating evolutionary relationships among the selected UGT genes. B. The concentration of 2952 

Zm00001eb330430 (UGT94A1) produced under drought in roots of maize B73 plants is 83 folds higher than the 2953 

Zm00001eb111270 (UGT94A2) (Reproduced from Opitz et al. (2014), BMC Plant Biology, licensed under CC 2954 

BY 4.0.).  2955 

Figure 3. Chromatograms of DIMBOA-2Glc produced by Zm00001eb330430 (UGT94A1) and 2956 

Zm00001eb111270 (UGT94A2). A. Chromatogram showing DIMBOA-Glc at a retention time of 1.66 minute, 2957 

observed in the control reaction. B. Chromatogram of DIMBOA-2Glc at a retention time of 1.04 minute, produced 2958 

by Zm00001eb330430 (UGT94A1) when supplemented with 2 mM UDP-glucose after 60 minutes at 30⁰C. 2959 

Chromatogram of DIMBOA-2Glc at a retention time of 1.04 minute, produced by Zm00001eb111270 2960 

(UGT94A2) when supplemented with 2 mM UDP-glucose after 60 minutes at 30⁰C. We were not able to detect 2961 

traces of DIMBOA-3Glc. 2962 

Figure 4. The mutated gene lost the ability to glycosylate DIMBOA-Glc to DIMBOA-2Glc. A. Chromatogram 2963 

of DIMBOA-2Glc produced by the Zm00001eb330430 (UGT94A1) at a retention time of 1.04 minute, when 2964 

supplemented with 2 mM UDP-glucose after 120 minutes at 30⁰C. B. Chromatogram illustrating DIMBOA-Glc 2965 

as the mutated protein lost its ability to glycosylate DIMBOA-Glc. C. The wild type ESMFold Protein Structure 2966 

of Zm00001eb330430 (UGT94A1) (Modified, Meta AI). D. Mutated ESMFold Protein Structure of 2967 

Zm00001eb330430 (UGT94A1) (Modified, Meta AI).  2968 
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LIST OF SUPPLEMENTARY INFORMATION 3107 

Supplementary Figure 1. Microcosm temperature regimes. To mimic natural conditions, the 3108 

two temperature conditions were set to reach a maximum at 4 pm and progressively reduced 3109 

by 3.5 °C to reach a minimum around 6 am. Adaptation stage was set 6 hours before three day-3110 

night cycles.  3111 

Supplementary Figure 2. Correlation between precipitation and soil moisture. Linear 3112 

correlation between average June precipitation sum (in mm) and average June soil moisture 3113 

(v/v) at a soil depth of 15 cm between 2004 and 2016 (years 2005, 2006, 2012 and 2013 were 3114 

not recorded in the field) in the Swiss Central Plateau (47°17'11.1" N / 7°44'01.5" E), 3115 

Switzerland. 3116 

Supplementary Figure 3. Nine candidate genes in maize reveals a conserved glutamic acid 3117 

residue that is a hallmark for sugar acceptor recognition 3118 

Supplementary Figure 4. Genes in Arabidopsis thaliana and Camellia sinensis involved in 3119 

adding glucose to another glucose molecule have a conserved threonine, including two 3120 

Zm00001eb330430 and Zm00001eb111270 of the nine candidate genes in maize  3121 
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SUPPLEMENTARY INFORMATION 3122 

Supplementary Figure 1. Microcosm temperature regimes. To mimic 3123 

natural conditions, the two temperature conditions were set to reach a 3124 

maximum at 4 pm and progressively reduced by 3.5 °C to reach a 3125 

minimum around 6 am. Adaptation stage was set 6 hours before three 3126 

day-night cycles  3127 

 

 

Figure reproduced with permission from Van Cong Doan (2020), Interactive effects of elevated 3128 

temperature, drought and elevated CO₂ on tritrophic interactions in maize. Doctoral 3129 

dissertation, University of Bern. 3130 
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Supplementary Figure 2: Correlation between precipitation and soil 3131 

moisture. Linear correlation between average June precipitation sum (in 3132 

mm) and average June soil moisture (v/v) at a soil depth of 15 cm 3133 

between 2004 and 2016 (years 2005, 2006, 2012 and 2013 were not 3134 

recorded in the field) in the Swiss Central Plateau (47°17’11.1” N / 3135 

7°44’01.5” E), Switzerland 3136 

 
 

 

 

 

Figure reproduced with permission from Van Cong Doan (2020), Interactive effects of elevated 3137 

temperature, drought and elevated CO₂ on tritrophic interactions in maize. Doctoral 3138 

dissertation, University of Bern. 3139 
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Supplementary Figure 3: Nine candidate genes in maize reveals a 3140 

conserved glutamic acid residue that is a hallmark for sugar acceptor 3141 

recognition 3142 

 

 
(Brandt et al., 2021, Licensed under CC by 4.0) 3143 
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Supplementary Figure 4: Genes in Arabidopsis thaliana and Camellia 3144 

sinensis involved in adding glucose to another glucose molecule have a 3145 

conserved threonine, including two Zm00001eb330430 and 3146 

Zm00001eb111270 of the nine candidate genes in maize  3147 

 
 

 

(Brandt et al., 2021, Licensed under CC by 4.0) 3148 
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GENERAL DISCUSSION 3149 

My PhD work was focused to fill knowledge gaps about the modulation of maize secondary 3150 

metabolism when subjected to drought stress. Firstly, the interactive effects of drought and 3151 

AMF on BXDs modulation and its effect on the herbivore performance was analysed. Under 3152 

drought stress, maize biomass and chlorophyll content was reduced while AMF on the other 3153 

hand increased reproductive traits and altered metabolic profiles. Under drought and AMF 3154 

treatments, metabolic changes in sugars, phytohormones and BXDs were also observed. 3155 

Interestingly, drought increased the performance of the leaf herbivore Spodoptera exigua, an 3156 

effect limited in the presence of the AMF.  (Chapter I). 3157 

Secondly, the role of BXDs in facilitating the establishment of symbiotic associations with the 3158 

arbuscular mycorrhizal fungi Rhizophagus irregularis was evaluated. Furthermore, how 3159 

colonization efficiency is affected by kinetic drought was also investigated. In semi-field assay, 3160 

drought increased DIMBOA, DIMBOA-Glc, DIM2BOA-Glc and DIMBOA-2Glc 3161 

concentration in maize roots while AMF decreased DIMBOA, DIMBOA-Glc, DIM2BOA-Glc 3162 

concentration after 60 days. Kinetic drought had no impact on the rate of colonization in maize 3163 

plants with the AMF. MBOA complementation increased colonization rate in bx1 mutant plants 3164 

after 20 days while AMF increased fresh shoot weight (Chapter II).  3165 

Finally, we identified UGTs Zm00001eb330430 (UGT94A1) and Zm00001eb111270 3166 

(UGT94A2) that are specifically involved in the formation of double hexose DIMBOA-2Glc 3167 

from DIMBOA-Glc in maize plants under drought condition. These UGTs were identified by 3168 

employing phylogenetic analysis combined with transcriptome mining of UGT79, UGT91, and 3169 

UGT94, families. The enzymatic function of these two UGTs was confirmed by recombinant 3170 

expression in E. coli cells. Site-directed mutagenesis of UGT94A1 abolished this activity, 3171 

confirming the functional role of the target residues (Chapter III). Below I discuss future 3172 

possibilities that arise from these findings.  3173 

Plant growth under drought and AMF  3174 

Drought is one of the most limiting factors for plant growth and results in reduced biomass and 3175 

altering of key physiological processes involving photosynthesis, stomatal regulation and 3176 

nutrient uptake (Ahmad et al., 2018; Liu et al., 2024; Zhao et al., 2024). AMF has emerged as 3177 

a key ally that can help boost plant resilience by promoting the uptake of water and nutrients 3178 

(Ansari et al., 2025; El Malahi et al., 2025; Priyadarshani et al., 2025). In line with previous 3179 

studies, our findings demonstrated the negative effect of drought on maize growth and how 3180 
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AMF can help mitigate these effects by improving plant development and reproductive success 3181 

under reduced soil moisture levels (Duan et al., 2025; Nader et al., 2025; Yang et al., 2025). 3182 

The findings highlighted the negative impact of drought on plant growth resulting in 3183 

significantly lower fresh shoot biomass, plant height, cob length, and cob number, AMF 3184 

colonization on the other hand facilitated in alleviating these impacts. Plant stress resilience 3185 

under AMF association can be attributed to the extensive hyphal networks that enhances plants 3186 

access to water and nutrient uptake, thus sustaining metabolic activity during drought (Akter 3187 

et al., 2024; Ahmed et al., 2025).  3188 

Secondary metabolism under drought and AMF 3189 

Climate change is global phenomena with drought being as one of the most critical stressor 3190 

predicted to increase in severity and frequency (IPCC, 2023; Savari et al., 2024). AMF forms 3191 

mutualistic symbiotic association with plants and can help modify physiological and metabolic 3192 

processes under stress conditions (Begum et al., 2019; Sonbol et al., 2025; Deng et al., 2025). 3193 

The interactive effect of drought and AMF elicit plant responses that were significantly 3194 

different from the responses triggered by individual’s stressors alone (Hussain et al., 2019). In 3195 

the current study, both drought and AMF were able to induce changes in maize secondary 3196 

metabolism although the effects were antagonistic. Drought enhanced the production of root 3197 

BXDs including DIMBOA, DIMBOA-Glc, DIM2BOA-Glc DIMBOA-2Glc (Sutour et al., 3198 

2024) while AMF on the other hand decreased their levels of DIMBOA, DIMBOA-Glc and 3199 

DIM2BOA-Glc.  3200 

These findings suggest that a regulatory crosstalk exists between symbiosis and secondary 3201 

metabolism. Drought stress upregulates maize chemical defences leading to the increased 3202 

accumulation levels of BXDs. This effect can be explained by several hypotheses, firstly BXDs 3203 

can maintain cell turgor pressure and osmotic balance by acting as osmoprotectants. Secondly, 3204 

hydrogen bond can be formed in the sugar moieties leading to reduced water loss linked with 3205 

transpiration. Thirdly, multihexose compounds can protect damage due to reactive oxygen 3206 

species better than their precursors. Fourth, sugars may be stored as an energy source in the 3207 

form of multihexoses as a mechanism to tolerate drought and reduced photosynthetic rates. 3208 

Fifth, BXDs are involved in modulating plant interactions with the herbivores, multihexose 3209 

BXDs may play role in protecting plant from biotic stress under drought conditions. These 3210 

sugars compounds can also be exuded in the rhizosphere to incorporate beneficial microbiota.   3211 

AMF on the hand, can likely dampen stress signalling pathways including jasmonic acid and 3212 

salicylic acid signalling, thereby reducing the induction of defensive compounds (Pozo & 3213 
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Azcón-Aguilar, 2007). Likely, AMF through enhanced water and nutrient uptake during 3214 

drought stress can limit the needs for the stress-induced metabolic compounds (Smith & Read, 3215 

2008; Khoza et al., 2025). Another plausible explanation is to supress antifungal compounds 3216 

to better facilitate the colonization with the maize plant. There also exists an energy trade off 3217 

to spend on the symbiosis rather than on the defensive chemistry.  3218 

Drought and AMF interactions 3219 

My study also highlighted the impact of drought on AMF colonization. In the two semi-field 3220 

experiments, drought significantly reduced AMF colonization. Plants form association with 3221 

AMF to increase drought tolerance and previous studies suggests more colonization success 3222 

under drought conditions (Chareesri et al., 2020). Relationship between drought and AMF 3223 

colonization can vary depending on factors such as the drought severity and duration, plant 3224 

species, and soil conditions. Plants can stimulate colonization to adapt to drought stress, but 3225 

severe or prolonged drought can result in resource allocation trade-offs, where plants prioritize 3226 

survival over maintaining symbiotic relationships. The decreased AMF colonization can be 3227 

explained by the fact that reduced soil moisture had a negative effect on fungal growth, spore 3228 

germination and hyphal proliferation (Augé, 2001; Trouvelot et al., 2015). The establishment 3229 

and maintenance of fungal structures is also limited as fungal hyphae require adequate soil 3230 

moisture to explore and transfer nutrients (Smith & Read, 2008). Root exudation patterns are 3231 

altered under drought stress resulting in modified chemical signals that are involved in 3232 

regulating AMF colonization (Badri & Vivanco, 2009). Conversely in the greenhouse 3233 

experiment where drought was established prior to the inoculum induction, we did not observe 3234 

the effect of drought on colonization success. Interestingly, plants with prolonged drought 3235 

exhibited the highest levels of colonization success. This suggested that prior drought induction 3236 

can prime the root architecture or exudation patterns that eventually favors the AMF 3237 

establishment. This finding aligns with the research that root exudates or strigolactones can be 3238 

enhanced under mild stress and they are key signals involved in AMF association (Besserer et 3239 

al., 2006; Ruiz-Lozano et al., 2016). These findings underscore the fact that not only the 3240 

drought intensity, but its chronology is also crucial in determining the colonization efficiency 3241 

of the AMF, however more investigations are required to best characterize the effect of drought 3242 

on AMF association.  3243 

Drought and AMF differently affect spodoptera feeding  3244 

The current study gave emphasis to the herbivore performance under drought and AMF. 3245 

Herbivore performance of Spodoptera exigua was increased under drought conditions when 3246 
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there was more accumulation of secondary metabolites. Conversely, AMF association reduced 3247 

the performance of S. exigua larvae under drought conditions, highlighting role of AMF in 3248 

deterring herbivores through possible stabilization of the metabolite profiles beyond BXDs. 3249 

Secondary metabolites deter herbivores, but the certain metabolites are not that effective 3250 

against all herbivores. Drought stress also increases sugar content (Jahan et al., 2024; Xiao et 3251 

al., 2024) due to increased accumulation of certain secondary metabolites; this provides a rich 3252 

energy source for herbivores and eventually increases their performance (Züst & Agrawal, 3253 

2017). AMF association can prime plant defences preparing them more rapidly in case of 3254 

herbivore attack. Although the overall levels of secondary metabolites are reduced, certain anti-3255 

herbivore compounds are primed resulting in lower herbivore performance as compared to non- 3256 

mycorrhizal plants. For example, colonization of tomato plants by the AMF resulted in higher 3257 

mortality rates of the herbivore Spodoptera exigua. Although the overall metabolome of the 3258 

leaf was not impacted by mycorrhizal association, but accumulation of alkaloids and fatty acid 3259 

derived compounds was exhibited resulting in priming of plant defence responses (Rivero et 3260 

al., 2021). In conclusion, the study depicted contrasting effects of AMF and drought on 3261 

herbivory. This supports the hypothesis that AMF can mitigate both biotic and abiotic stresses 3262 

by modulating chemical defences of the plant. However, this balance is delicate as BXDs 3263 

accumulation was also limited raising questions about metabolic pathways that are involved in 3264 

reducing insect herbivory.  3265 

MBOA increases AMF colonization  3266 

There has also been a growing interest in how secondary metabolites can shape AMF symbiotic 3267 

association including phenolics, terpenoids (Pozo et al., 2015) and BXDs. Although these 3268 

metabolites are tightly regulated, they can be modulated by the AMF to prime plant defences. 3269 

This means that in case of herbivory, plants respond more effectively even without high 3270 

constitutive levels of defense compounds (Pozo et al., 2015). My study illustrates the possible 3271 

role BXDs can have in AMF colonization. The bx1 mutant line had lower rates of colonization 3272 

with the AMF Rhizophagus irregularis but the complementation of bx1 mutant plants with 3273 

MBOA resulted in higher colonization rates after 20 days. The AMF colonization reduction 3274 

observed in bx1 mutant plants suggests that specific metabolic pathways or genetic factors are 3275 

required for maintaining symbiosis. This also aligns with previous studies that highlight the 3276 

role of root exudates and specialized metabolites in symbiotic efficiency (McLaughlin et al., 3277 

2022; Chen & Liu, 2024; Cui et al., 2024; Robert et al., 2025). Interestingly, our finding that 3278 

MBOA complementation can enhance AMF colonization, indicates an either direct or indirect 3279 
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role of these compounds in facilitation of AMF symbiosis. Benzoxazinoids have documented 3280 

role in not only plant defense against pathogens and herbivores but also in altering the 3281 

rhizosphere community and signalling (Hu et al., 2018; Cotton et al., 2019). It is, therefore, 3282 

reasonable to suggest that BXDs have role in modifying root exudate profiles enabling fungal 3283 

recognition and growth, albeit further investigations are needed.  3284 

UGTs and multihexose BXDs  3285 

Out of nine candidate genes, Zm00001eb330430 (UGT94A1) and Zm00001eb111270 3286 

(UGT94A2 were identified in carrying out glycosylation activity and forming DIMBOA-2Glc 3287 

from DIMBOA-Glc. Under drought stress, these two UGTs are highly expressed in the maize 3288 

roots (Opitz et al., 2014). Glycosylation is characterized mechanism by which plants modify, 3289 

store or detoxify toxic metabolites (Gharabli et al., 2023), the formation of multihexose 3290 

compounds suggests another layer of metabolic adaptation by the maize plants (Barreda et al., 3291 

2024).  Specific enzymes for forming multihexoses signifies that a degree of functional 3292 

specialization exists within the UGT family and that these compounds can have distinct 3293 

biological roles, including enhanced solubility, autotoxicity reduction, transport and storage. 3294 

For example, UGTs in Arabidopsis and tea plants that are involved in glycosylation activities 3295 

include AtUGT71B1, AtUGT74C1, AtUGT79B1, AtUGT79B6, CsUGT94P1B1 (Ohgami et 3296 

al., 2015), these UGTs share a stretch of conserved 40 amino acids. These UGTS glycosylate 3297 

particularly, flavonoids and phenylpropanoids (Yonekura-Sakakibar 2014; Dai et al., 2018; Liu 3298 

et al., 2018). The compounds produced because of glycosylation are actively involved in 3299 

storage, solubility, bioactivity, regulating antioxidant activity and defence responses such as 3300 

SA levels (Yang et al., 2024).  3301 

DIMBOA-2Glc can be characterized as a safe metabolite reservoir and can be remobilized or 3302 

activated under stress condition of drought and herbivory. As some UGT expression overlap 3303 

with stress treatment, DIMBOA-2Glc can have role in possible root exudation or microbial 3304 

signalling. This finding expands our understanding that plants do not utilize glycosylation as 3305 

merely a detoxification step but as a regulatory mechanism to fine tune metabolic profiles in a 3306 

context-dependent manner.  3307 

Impact 3308 

This thesis advances our understanding that how maize plant responds to drought stress at both 3309 

physiological and metabolic levels, particularly under association with the arbuscular 3310 

mycorrhizal fungi, Rhizophagus irregularis. Although, drought had significant impact on plant 3311 

growth, AMF symbiosis helps in alleviating these impacts. Drought had a contrasting effect on 3312 
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colonization rate in semi-field and greenhouse experiments, drought establishment prior to 3313 

inoculum addition and duration can possibly minimize the effect on colonization rate. These 3314 

findings shed light on the complex interactions that takes place between plants and AMF 3315 

highlighting that chronology in addition to water availability is also crucial. Notable work also 3316 

includes the upregulation of maize defensive metabolites including DIMBOA-Glc, DIM2BOA-3317 

Glc, DIMBOA-2Glc and HMBOA-2Glc under drought stress, while AMF association 3318 

attenuates this chemical upregulation by improving growth and suppressing herbivore 3319 

performance at the same time. These key findings demonstrated that AMF not only buffers 3320 

physiological drought impacts but also effects higher trophic level by modulating secondary 3321 

metabolism. Additionally, role of MBOA in increasing AMF colonization elucidates the 3322 

potential role of metabolites in the regulatory feedback and establishment of symbiosis. Finally, 3323 

the identification of UGTs Zm00001eb330430 (UGT94A1) and Zm00001eb111270 3324 

(UGT94A2) that are involved in glycosylation of DIMBOA-Glc to DIMBOA-2Glc opens new 3325 

avenues for biochemical and functional studies focused on bioengineering and crop 3326 

improvement strategies.  3327 

Perspectives  3328 

In the future, there is a need to understand the signalling pathways through which interaction 3329 

of drought and AMF modulates the BXDs biosynthesis. This can involve transcriptomic 3330 

analysis of the regulatory genes that could be differentially expressed under interactive effect 3331 

of drought and AMF. As AMF successfully supressed BXDs accumulation and herbivore 3332 

performance, field-based trails can be conducted where AMF inoculants can be integrated with 3333 

pest management strategies to develop solutions for sustainable agriculture in regions that are 3334 

affected by drought. To unravel the mechanisms behind reduced herbivory, targeting feeding 3335 

assays can be carried out alone with BXDs and compounds induced under AMF association. 3336 

Role of other metabolite classes such as flavonoids and terpenoids must be investigated in 3337 

conferring deterrence against herbivory. The novel finding of MBOA increasing AMF 3338 

colonization can help to promote its use or synthetic analogs to boost symbiosis in poor soils. 3339 

Lastly, one of the key priorities will be to functionally characterize the role of multihexose 3340 

compounds produced under drought stress. 3341 
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