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Abstract

Next-generation mobile networks are expected to support a wide range of demanding
applications and services that have strict and varying performance requirements. To meet
these requirements, Network Slicing (NS) has emerged as a powerful technique to enable
cost-effective, multi-tenant communications and services over a shared physical mobile network
infrastructure. However, the effective realization of the NS paradigm hinges on the ability
to manage the end-to-end lifecycle of network slices in a dynamic, efficient, and automated
manner. This challenge is exacerbated by the multi-dimensional slice requirements such as

bandwidth, latency, and CPU and the unpredictable, online arrival of slice requests.

To address the challenges of managing the end-to-end lifecycle of network slices, this thesis
proposes online, data-driven solutions that are capable of adapting to dynamic conditions
in mobile networks by optimizing multi-dimensional resource allocations, enabling scalable,
real-time slice orchestration across heterogeneous infrastructures and proactively optimizing

network slice performance to ensure service-level compliance.

First, we investigate the slice admission control problem, focusing on the setting where slice
requests arrive sequentially and must be admitted or rejected in real-time without prior
knowledge of future resource demands. We propose an online algorithm that dynamically
incorporates system resource utilization to guide admission decisions, and therefore resource

allocations, with the aim of maximizing the long-term revenue of infrastructure providers.

Second, building on this foundation, we address the problem of online policy selection under
non-stationary network conditions. By modeling the policy selection task as a multi-armed
bandit problem, we propose a data-driven solution that learns to select the most effective
admission policy across time-varying network conditions. This approach balances exploration

and exploitation while detecting and reacting to changes in environmental dynamics.

Third, we address the problem of scalable slice provisioning in large-scale, distributed networks,
and propose a hierarchical solution for the online network slice provisioning problem in which
a service function chain must be effectively mapped onto the network infrastructure, while

optimizing for multiple objectives.

Finally, we propose a proactive optimization framework for the problem of allocating resources
to heterogeneous network slices. The proposed framework aims to learn an effective resource
allocation strategy in virtual radio access network environments by anticipating traffic

fluctuations and proactively adjusting network slice resources for optimal performance.
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Chapter 1

Introduction

1.1 Overview

While third generation (3G) and fourth generation (4G) cellular networks were primarily
driven by the need for high data-rates and better network coverage, Next-Generation Mobile
Networks (NGMNs) (i.e. Fifth Generation - 5G - and beyond 5G) will be required to provide
enhanced support for applications and services that have stringent Quality of Service (QoS) and
Quality of Experience (QoE) requirements [1], [2]. Towards this, the main focus in the ongoing
development of 5G networks has been on increasing the network capacity and availability,
improving the connection density, enhancing network reliability, and reducing the overall
end-to-end (E2E) network latency [3]. The adoption of Cloud, Edge and Fog computing into the
network architecture, as well as recent advancements in Network Function Virtualization (NFV)
and Software Defined Networking (SDN), have also stood out as essential developments that
can be used to create new opportunities that meet current and future requirements of novel
applications and services. More specifically, the combination of heterogeneous technologies
enables the realization of Network Slicing (NS) in NGMNSs, where the vision is to facilitate
the on-demand creation and instantiation of multiple logical networks that share a common
network infrastructure, and where each logical network (i.e., a Network Slice (NSL)) is tailored
towards a particular use case. Network Slicing technology enables network resources to be
dynamically allocated and shared across a diverse range of services, applications and network
operators [4]. However, due to the unpredictable nature of mobile traffic, slice requests and
service requirements, especially at the edge, there is a need to develop novel solutions that
can overcome the limitations of traditional approaches used for network optimization, which
typically assume full and static knowledge about the behavior of the network environment,

while ensuring that the diverse objectives in provisioning a NSL are met.

Over the past decade, advancements in Machine Learning (ML) and Artificial Intelligence (AI)
have rapidly evolved and found applications in a wide range of domains, including mobile
communication networks, such as 5G. As a result, data-driven techniques such as Deep
Learning (DL), Reinforcement Learning (RL), Random Forests (RFs), Decision Trees (DTs),
XGBoost, and Support Vector Machines (SVMs) have been applied to address challenges in
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mobile network management, including network optimization, traffic forecasting, mobility
management, intrusion and anomaly detection, and cognitive network management, thereby
improving network performance and the user experience [5]. As mobile networks evolve
from 5G to 6G, such intelligent techniques will likely become an omnipresent feature of such
networks, enabling ubiquitous intelligence by penetrating every aspect of the network fabric

to fulfill the diverse requirements of novel applications and services [6].

Despite the general success of Machine Learning (ML)-based solutions in networking related
problems, such as enhanced transmission reliability and better responses to changing network
conditions and demands, the inherent uncertainty of ML-based algorithms, especially in
complex and dynamically changing network environments, raises concerns about their
reliability and suitability in autonomously managing or operating future networks [5].
Moreover, many ML-based techniques require extensive training on large datasets to learn
management or orchestration policies, thereby hindering their adoption in real-time network
management due to long training times and a lack of representative datasets. Overcoming
these limitations is essential for enabling fully autonomous, intelligent networks that adapt to

environmental dynamics.

1.2 Motivation

Fifth Generation mobile networks are now the de-facto Radio Access Technology (RAT)
for cellular communications. However, adequately supporting the wide range of upcoming
5G-enabled services and applications over the same network infrastructure will be a
significant challenge [7], and requires enhancements to the current network architecture
to enable greater flexibility and ubiquity towards the realization of fully programmable
networks [8]. Consequently, network slicing has been proposed as a virtualization-enabled and
software-defined technique in which physical network resources (i.e., compute, storage,
bandwidth, or physical resource blocks) can be virtualized and deployed to enable
multi-tenancy, greater customizability, and better overall network performance, while reducing
Operating Expenditure (OPEX) and Capital Expenditure (CAPEX) for infrastructure
providers. The network slicing paradigm follows the Service-Based Architecture (SBA) of
softwarized 5G network designs and can be delivered as part of a Network-as-a-Service (NaaS)
computing model - Network Slice-as-a-Service (NSaaS) - as it provides a low-cost and logically
isolated network over the physical infrastructure by splitting it into multiple instances, where
each Network Slice Instance (NSI) is tailored towards a particular service based on the
demands of a Slice Tenant (ST).

Building on this paradigm, the integration of AT/ML into mobile network optimization is a key
enabler of efficient, adaptive, and automated network-slice lifecycle management. Al-driven
approaches leverage data and advanced learning methods to optimize resource allocation,
forecast network demand, and dynamically reconfigure slices to meet diverse application
and service requirements [9]. Within the NSaaS paradigm, AI enables Infrastructure

Providers (InPs) to make more informed decisions, proactively optimize resources, and
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improve QoS, thereby delivering a more resilient and cost-effective multidimensional

network-slicing framework

Multi-Dimensional Resource Management. Network slicing in NGMNs introduces
substantial complexity in resource management because multiple resource dimensions must
be optimized concurrently across network domains and protocol layers. A NSL may require
reserving and isolating specific computing resources (Central Processing Unit (CPU), Graphic
Processing Unit (GPU), Tensor Processing Unit (TPU)), memory, storage capacity, physical
resource blocks, bandwidth, and specialized network functions to satisfy stringent latency
and reliability requirements [10], [11]. The resulting multi-dimensional resource landscape
creates a high-dimensional, tightly constrained optimization space [12], where decisions
must account for intricate inter-dependencies among heterogeneous resource types, rendering
classical optimization approaches inadequate and slow for operational timescales. For example,
in admission control for network slicing, classical optimization methods struggle to jointly
optimize CPU, memory, storage, and bandwidth in real time; the computational burden
grows exponentially with each added dimension, highlighting the need for efficient online
algorithms that handle multi-dimensional constraints while enabling rapid decision making
[13]. The challenge is further compounded by infrastructure heterogeneity, as varying hardware

capabilities and capacity limits must be considered in resource allocation and SAC decisions.

In NGMNs, Network Slice Requests (NSRs) arrive in an online manner with heterogeneous
resource demands, revenue profiles, and Service Level Agreements (SLAs), necessitating
real-time decisions that balance immediate resource reservation or allocation against
preserving scarce resource capacity for future demand [14]. The challenge intensifies when
NSRs differ in duration or exhibit elastic scaling requirements, requiring admission-control
mechanisms that can commit resources promptly while safeguarding capacity for potentially
higher-value future requests [15]. As network slicing becomes central to supporting diverse
applications, services, and industry verticals in next-generation mobile networks, the design
of efficient multi-dimensional resource-reservation and allocation strategies remains a critical

research priority.

Non-Stationary Networks and Uncertainty. The provisioning of network slices in NGMNs
faces several challenges that are a result of non-stationary conditions such as fluctuating traffic
patterns, unpredictable resource availability, and dynamic user mobility. The dynamic nature
of such networks makes it difficult to obtain optimal resource allocation decisions or maintain
consistent and guaranteed performance across NSs [16], [17]. This non-stationarity introduces
significant uncertainty that challenges traditional optimization approaches which assume static
or predictable network conditions. In the NS context, where multiple virtual networks share
the same physical infrastructure, these uncertainties are magnified as changes in one slice can
quickly and easily be propagated and affect the resource availability for co-deployed NSLs. The
problem is exacerbated when SLLAs must be maintained despite these fluctuating conditions,
requiring adaptive resource allocation and admission control mechanisms that can respond to
both gradual trends and sudden network changes in the network states without prior knowledge

of future conditions.
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To address these challenges, frameworks that integrate predictive analytics, robust
optimization, and machine learning are required. Methods from Stochastic Optimization
(SO) [18]-[20], Online Convex Optimization (OCO) [21], [22], Bayesian Optimization (BO) [23],
[24], and RL [25]-[27], often augmented with uncertainty estimation [28]-[30], have been
leveraged to develop robust, resilient resource-optimization frameworks for NS.  These
approaches optimize under current network conditions while explicitly accounting for
distributions over possible future states, yielding strategies that remain effective across a
broad range of scenarios. Ultimately, the goal is to realize self-organizing NSLs that adapt
rapidly and autonomously to non-stationary conditions while maintaining SLA guarantees,
ensuring efficient resource utilization, and promoting fair allocation among co-deployed slices

— capabilities that are critical for NGMNs to support diverse applications and services.

Scalability Challenges in Network Slicing. The provisioning of NSLs faces critical
scalability challenges, as InP attempt to instantiate, configure, and deploy NSLs at the pace
demanded by diverse vertical industries and use cases. The time-sensitive nature of network
slice provisioning - which involves resource reservation, Virtual Network Function (VNF)
placement, Service Function Chain (SFC) composition, and policy configuration - creates
significant operational challenges when scaled to support hundreds or thousands of concurrent
flows from diverse NSRs [31]-[33]. In particular, as the granularity of concurrent flows, such
as provisioning resources at the per-user or per-application level, increases, the complexity
and scale of operational tasks grow, which further increases the challenges involved in
real-time network slice provisioning. Traditional provisioning workflows often rely on manual
verification steps and sequential processes that introduce unacceptable delays in service
activation, particularly for dynamic use cases, requiring the establishment of NSLs in
near-real-time. These inefficiencies become more pronounced as NSRs increase in volume and
complexity, creating a fundamental tension between provisioning speed and the assurance
of NSL isolation and performance guarantees. Moreover, the process of provisioning NSLs
requires the consideration of multiple potentially conflicting objectives [34], [35], including:
Maximizing the revenue gained from provisioning the requests and ensuring that the QoS
requirements of the requests are met during their lifetimes in the network. These objectives
can typically be achieved by maximizing the number of accepted NSRs, maximizing or
minimizing the resource utilization rate in the network, reducing the provisioning times, and

minimizing the number of migrations that occur as a result of accepting a request [35].

The introduction of edge computing into the mobile network infrastructure, characterized by
distributed, resource-constrained devices with heterogeneous capabilities, creates unique slice
provisioning challenges that render traditional centralized approaches ineffective [36]. More
specifically, the distributed nature of edge networks further complicates the NSL provisioning
task at scale, requiring complex orchestration across multiple technology and administrative
domains and systems, where each network domain could introduce its own provisioning latency,
resource discovery mechanisms, and configuration interfaces. This creates cumulative delays
that impact the end-to-end slice deployment time. Hence, achieving scalable slice provisioning

remains a prerequisite for realizing the commercial potential of NS in NGMNs, particularly for
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supporting emerging applications requiring rapid service instantiation and reconfiguration in

response to changing business requirements or network conditions.

Ubiquitous Network Intelligence. The intelligent management of mobile networks
represents a paradigm shift in how NSLs are orchestrated, optimized, and maintained across
increasingly complex network infrastructures. As NSLs are deployed to support diverse
vertical applications and services with heterogeneous requirements, traditional rule-based
management approaches become overwhelmingly complex and inefficient, creating the need
for Al-driven automation approaches. This is further emphasized by the goal of ubiquitous
intelligence as one of the most important features of NGMNs, as it will be able to penetrate
various parts of NS systems [37] to enable the simultaneous monitoring of performance metrics
across multiple NSLs which would identify complex inter-slice dependencies, detect anomalous
behaviors, and predict potential service degradations before they impact end-users. Through
intelligent monitoring of the ongoing network conditions, proactive resource allocation [38]
and slice capacity adjustments can be made to ensure that the SLAs of NSL requests are
being continuously met and ensure that networks are able to autonomously predict, detect,

and respond to complex operational challenges without strict human intervention [39], [40].

The ongoing evolution toward Zero-Touch Management (ZTM) through intelligent systems
creates opportunities for significant operational cost reductions and enhanced service reliability.
However, the lack of 5G/6G specific datasets creates challenges regarding the evaluation of
intelligent techniques for ZTM [38] in such networks. Hence, there’s a need to build frameworks
that integrate Al for more accurate prediction, with dynamic optimization of slice resources

by leveraging realistic networking datasets to evaluate the performance of such solutions.

1.3 Problem Statement

The increasing demand for NS in 5G and beyond requires the development of intelligent and
efficient resource allocation strategies to ensure service quality and optimize resource efficiency.
However, the dynamic nature of network slice requests, coupled with the multi-dimensional
resource constraints in mobile network and time-varying service demands, presents significant
challenges in efficient slice management. While traditional static optimization approaches
have typically been used in the previous generations of mobile networks (i.e., 3G and 4G),
the dynamic nature of NGMNs, such as 5G mobile networks, means that such optimization
techniques often struggle to adapt to changing network conditions and cannot produce
optimal solutions to various network slice management problems within an acceptable time,
which leads to suboptimal resource allocation and efficiency. Furthermore, the complexity of
managing multiple resource dimensions simultaneously, such as CPU, GPUs, TPUs, storage,
and bandwidth, makes it challenging to make real-time admission, placement and configuration

decisions while maintaining the QoS guarantees of NSs.

In this thesis, we seek to develop novel strategies that address these challenges by focusing on
the need for solutions that lead to timely decisions in dynamic and uncertain environments,

such as the network edge. Specifically, we focus on challenges relating to the admission of
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network slice requests, the placement of such requests in distributed edge networks to meet
multiple provisioning objectives and the need for predictive techniques to continually optimize

the capacity of the deployed network slices to satisfy slice SLAs.

In the following subsections, we provide a detailed description of the main challenges raised by
dynamic network slicing and present the research questions that we have designed to guide our

research.

1.3.1 Online Resource Reservation for Network Slice Requests

Online resource reservation in NS systems presents a fundamental challenge of decision-making
under uncertainty, where InPs must commit resources to NSLs without complete knowledge
of future requests and their demands. This problem is defined by the inherent trade-off
between proactive resource reservation to ensure service availability and reactive resource
allocation to optimize for resource efficiency. InPs face the challenging task of determining
optimal reservation strategies across multiple resource dimensions (e.g., computing, storage,
bandwidth) while potentially accounting for temporal demand variations, service priority levels,
and economic considerations. The over reservation of resources leads to poor resource efficiency
and increased OPEX, while under reserving resources risks service degradation and SLA
violations during demand spikes. The challenge is further complicated by the heterogeneity
of NSL requirements, ranging from ultra-Reliable and Low-Latency Communication (uRLLC)
services which demand stringent resource guarantees to massive Machine Type Communication

(mMTC) applications where statistical multiplexing might be more appropriate.

To address the above issues, we formulate the following research questions, which focus
on designing an online admission control solution that jointly optimizes resource efficiency,

long-term revenue, and fairness under heterogeneous and uncertain network slicing demands:

RQ 1.1: How can admission control policies effectively manage the multi-dimensional
resource demands of network slices while maintaining high resource efficiency in dynamic mobile

networks?

RQ 1.2 How can online admission control policies ensure long-term revenue optimization in

network slicing, while accommodating heterogeneous slice requirements and uncertain demand?

RQ 1.3: How does economic disparity among slice tenants influence admission control

decisions, and how can admission control policies balance revenue optimization with fairness?

1.3.2 Data-Driven Policy Selection in Network Slicing

Network management in the context of network slicing must operate in highly dynamic
environments characterized by continuous and unpredictable changes in resource utilization
patterns, user demands, and operational conditions - a phenomenon that is captured by
Concept Drift (CD). Concept drift refers to the change in the statistical properties of the target
variable or the underlying data distribution over time, which can degrade the performance of

predictive models if not properly addressed [41]. The existance of such a phenomenon in mobile
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networks renders static resource allocation and admission control policies inherently ineffective,
as they fail to capture the temporal dynamics of network behavior, leading to suboptimal
resource utilization and potential service degradation when conditions inevitably change. In
the context of network slice management, the existence of concept drift may arise from evolving
traffic patterns, shifting service-level requirements, or the introduction of new applications and
devices, necessitating adaptive policies and algorithms that can detect and respond to these
changes in real-time to maintain efficient and reliable operation. With increasing network
complexity and the proliferation of heterogeneous services, there is a critical need for intelligent,
adaptive solutions that can monitor distributional changes in traffic and service demands
and environmental conditions to continuously evolve their resource management strategies to
reflect current network states. While traditional machine learning approaches have shown
promising results for network management tasks such as traffic prediction and fault detection,
they typically rely on historical datasets with assumed stationary distributions, which is an
assumption that rarely holds in real-world production environments. The development of
adaptive policies introduces additional challenges related to computational overhead, system
stability preservation, and the fundamental exploration-exploitation dilemma, where systems
must balance discovering better policy parameters against leveraging known effective strategies,
based on their historical performance. Modern approaches increasingly focus on developing
data-driven, Online Learning (OL) frameworks capable of adapting to non-stationary
conditions while simultaneously maintaining strict service guarantees across diverse slice types
- a capability essential for enabling resilient, self-organizing network slicing platforms that
can support dynamic slice requests without manual intervention or performance degradation

during environmental transitions in the network.

To address the above issues, we formulate the following research questions, which focus on
developing adaptive admission control strategies that remain robust to shifting slice request

patterns:

RQ@ 2.1: How can network slice admission control policies be dynamically adapted to cope

with evolving network slice request patterns in 5G networks?

RQ 2.2: What is the effect of temporal shifts in the distribution of network slice request

characteristics on the performance and robustness of slice admission control policies?

RQ 2.3: How can online learning techniques be integrated with change detection mechanisms
to enable continuous selection and adjustment of admission control policy parameters for

network slicing in dynamic environments?

1.3.3 Hierarchical Decision Framework for Network Slice Placement

The goal of allocating resources to diverse services and applications in NGMNs introduces
significant complexity in resource management due to the need to optimize multiple resource
dimensions (e.g., CPU, memory, storage, bandwidth) across various network domains and
layers. FEach NSL may require specific resources to meet strict latency and reliability

requirements, while also maintaining isolation between slices. The multi-dimensional nature
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of these resources, along with intricate dependencies and constraints, makes traditional
optimization approaches inadequate and time-consuming. For example, in a large-scale
distributed network, determining where to efficiently deploy sequentially arriving NSRs
in real-time, presents computational challenges that grow exponentially with the number
of arriving requests and the possible deployment options. This complexity is further
compounded by the heterogeneous nature of network infrastructure due to integration of Edge
Computing (EC) capabilities and the dynamically arriving NSRs with varying resource needs,
SLAs, and lifetime durations. Optimizing the decisions relating to the real-time provisioning
of NSLs must seek to balance immediate resource allocation with long-term availability, while
ensuring that future NSRs, can also be deployed in the network. Therefore, scalable and
data-driven NSL provisioning solutions are critical for the effective deployment of slice requests
in edge-enabled NGMNs.

To address these challenges, the following research questions are formulated, which focus on
designing a scalable network slice provisioning solution through hierarchical decision-making

and multi-objective, fairness-aware performance evaluation:

RQ 3.1: How can we increase the rate of admitted NSLs while minimizing the amount of
allocated network resources, especially in large-scale networks with highly dynamic resource

requirements?

RQ 3.2: How can a hierarchical model be devised so that agents in different network

subdomains make their own placement decisions?

RQ 3.3: How can we design a NS-provisioning performance metric that considers multiple
objectives and enables a network policymaker to specify the objectives’ relative importance

and mutual fairness?

1.3.4 Proactive Resource Optimization under Traffic Uncertainty

In modern mobile networks, such as 5G, NS plays a crucial role in supporting diverse
applications and services with varying resource demands and performance requirements.
However, the challenge lies in the uncertainty of future demand for each slice, which can
fluctuate due to changing traffic patterns, user behaviors, and network conditions. Traditional
reactive approaches, which allocate resources only after demand manifests, often lead to
inefficiencies, such as over-provisioning or under-provisioning resources, which can degrade

QoS and lead to higher operating expenses due to unnecessary reconfiguration costs.

The proactive optimization of NSLs aims to address this challenge by anticipating future
demand and allocating resources ahead of time to ensure optimal performance, while
minimizing the amount of resources under-utilized. The main problem involves predicting
future resource requirements or traffic volumes for each deployed NSL with a high accuracy,
despite the inherent uncertainty in demand. This requires developing advanced forecasting
models that can account for dynamic and unpredictable factors influencing network traffic.
Furthermore, proactive optimization needs to balance the trade-off between minimizing the

amount of resources unutilized (due to over-provisioning) and ensuring sufficient resources are
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available to meet SLAs and latency constraints (due to under-provisioning). The proactive
optimization of NSLs must consider the inter-dependencies between different network slices,
as resource allocation in one slice can impact the performance of others that are co-deployed
with it and share the same underlying infrastructure. Therefore, the development of
efficient proactive slice optimization algorithms that can leverage predicted NSL demand to
dynamically allocate resources and maintain service guarantees in the face of uncertainty is
critical for achieving the goals of NS, ensuring resource efficiency, and maintaining QoS in
NGMNs.

Based on the above observations, we formulate the following research questions, which focus on
integrating traffic prediction with reinforcement learning to enable proactive and SLA-aware

resource allocation in heterogeneous 5G slicing environments:

RQ 4.1: How can ML-based traffic prediction be integrated with reinforcement learning

to enable proactive resource allocation in heterogeneous 5G network slicing environments?

RQ 4.2: To what extent does forecasting accuracy and prediction horizon impact the
effectiveness of proactive resource allocation strategies in maintaining SLA while maximizing

resource efficiency?

1.4 Thesis Contributions

The main contributions of this thesis are to develop algorithmic approaches and design
learning-based frameworks that would enable quick, near-optimal decision-making and policy
learning for network management tasks, within next-generation mobile networks. A typical
trend within this thesis is to focus on the real-time nature of mobile networks and the
associated uncertainty they embody due to inherent dynamism. Primarily, the objective of
this thesis is to design solutions for common network slice provisioning problems such as,
admission control, dynamic policy selection, network slice placement, and slice dimension
optimization. We seek to address the previous research questions in Section 1.3 by designing
novel algorithms and frameworks to improve the provisioning of NSLs, based on optimizing
different objectives such as the number of accepted NSRs, the utilization of resources, the
revenue gained from NSL, and the SLAs violated. The contributions of the presented works

can be summarized as follows:
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Online Slice Admission Control

Drift-Aware Policy Selection for Slice Admission Control
o Hierarchical Placement Learning for Network Slice Provisioning
e Proactive Slice Optimization for Heterogeneous Network Traffic

Through these contributions, this thesis provides a robust set of solutions that seek to address
the algorithmic and modeling challenges commonly seen in NS problems, and by doing so, lays
the foundation for the development of advanced, Al-driven mobile networks that can support

a diverse range of applications and services.

1.4.1 Online Slice Admission Control

In our first contribution, we propose an Online Slice Admission Control (OSAC) approach that
leverages online reservation policies for multi-dimensional resource evaluation in heterogeneous
mobile networks. This approach maximizes the InP revenue despite the uncertainty around the
requirements, value and duration of future NSRs. We demonstrate its effectiveness compared
to other solutions, showing that it consistently outperforms benchmarks in key metrics like

revenue maximization and resource efficiency, regardless of the chosen reservation function.

To address RQ 1.1 and RQ 1.2, we model the SAC problem as an Online Multidimensional
Knapsack Problem (OMdKP) and implement two reservation policies: Linear Reservation
Policy (LinRP) and Exponential Reservation Policy (ExpRP). These policies dynamically
adjust admission thresholds based on current resource utilization, accounting for the
heterogeneous resource dimensions in the network. By considering the scarcity in each
resource dimension, the introduced policies ensure slice requests are only admitted if sufficient
capacity exists and their value meets or exceeds resource costs. This approach enables our

OSAC approach to maximize long-term revenue from admitted requests.

For RQ 1.3, we model economic inequality with a parameter w in a Beta distribution,
where low w values indicate high inequality. Our evaluation shows that, in high-inequality
scenarios, OSAC selectively rejects lower-value requests to reserve capacity for higher-value
ones. While this reduces acceptance ratios compared to greedy algorithms, it significantly
boosts revenue. Economic inequality thus enables strategic admission control, reducing average

resource utilization and improving allocation efficiency under network uncertainty.

By using online reservation policies, our OSAC algorithm reserves scarce network resources by
dynamically updating the admission threshold for incoming slice requests. This results in a
12% increase in InP revenue and a 1.7% reduction in resource utilization. The formulated SAC
problem, the description of the reservation policies and how they’re leveraged in our algorithm

are described thoroughly in Chapter 3.
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1.4.2 Drift-Aware Policy Selection for Slice Admission Control

As the second contribution, this work presents the Drift-AwaRe upper confldence
bOund (DARIO) framework, which adaptively learns from historical request patterns to
select near-optimal, online slice admission-control policies in real time. By framing Slice
Admission Control Policy Selection (SACPS) as a Multi-Armed Bandit (MAB) problem,
DARIO learns a policy that prioritizes high-value NSRs, which significantly boosts InP
revenue. This contribution addresses the research questions in Section 1.3 by presenting a
novel online-learning framework for SAC that adapts admission thresholds via drift detection

on historical slice request patterns.

We address RQ 2.1 by framing SACPS as a MAB problem. In this formulation, the bandit
agent determines which admission control policy to apply for incoming network slice requests.
We propose a Sliding-Window Upper Confidence Bound (SW-UCB)-based algorithm for

adaptively selecting between policies, enabling online learning of their performance.

RQ 2.2 is addressed by analyzing how the statistical features of slice requests impact admission
control policy performance. Based on these insights, we design an ADaptive WINdowing
(ADWIN)-based change detection mechanism to identify shifts in statistical features of slice

requests and trigger adaptive threshold adjustments.

For RQ 2.3, we integrate the SW-UCB algorithm with the change detection mechanism to
create a data-driven online framework. This framework learns from historical performance
data while remaining responsive to environmental changes (e.g., fluctuations in the
Willingness-To-Pay-Ratio (WTPR) - 6). It balances exploring different policies for
performance information with exploiting known high-performing ones, especially when

the request distribution is non-stationary.

By combining OL with Drift Detection (DD), our framework adapts to changing network
conditions, captured by the characteristics of incoming slice requests. We compare DARIO’s
performance to baseline solutions, including LinRP, ExpRP, greedy FCFS, and a basic Upper
Confidence Bound (UCB) algorithm without change detection. Our results show that DARIO
outperforms all benchmarks, achieving a 4.5% higher revenue gain while maintaining efficient
resource utilization. This success essentially stems from DARIO’s ability to detect deviations
in historical request characteristics and adapt by exploiting or exploring policies for better
performance. The description of the considered problem, its formulation and the details about

the framework are described in greater detail in Chapter 4.

1.4.3 Hierarchical Placement Learning for Network Slice Provisioning

In our third contribution, we address the challenge of NSL provisioning in distributed
edge environments by developing the Hierarchical nEtwork sLIce prOviSioning (HELIOS)
framework, a novel hierarchical learning approach built on the Hierarchical Multi-Armed
Bandit (HMAB) model. By partitioning the network into sub-domains based on connected
communities, we develop a hierarchical framework of bandit agents that are distributed

across the network in each sub-domain to solve the slice provisioning problem. The proposed
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framework learns a mapping between slice request requirements and their likelihood of

acceptance, along with the expected resource utilization, across different network sub-domains.

We addressed RQ 3.1 by demonstrating how dividing the network into clusters using
community detection (Louvain algorithm) and implementing a two-tier agent structure
(High-Level Agent (HLA) and Low-Level Agent (LLA)) provides an effective slice provisioning
solution. Our experimental results demonstrated that the hierarchical approach outperforms
centralized baselines across multiple network topologies with heterogeneous resources by
admitting a higher number of requests and having marginally higher utilization than the

baselines.

RQ 3.2 is addressed by proposing Hierarchical nEtwork sLIce prOviSioning (HELIOS), a novel
two-level hierarchical learning system to solve the online Network Slice Provisioning (NSP)
problem by jointly placing the VNFs of a SFC in the network. At HELIOS’ high level, a
contextual bandit agent directs each slice request to a specific region in the network, depending
on the measured resource state and slice features. At HELIOS’ low level, a combinatorial bandit
agent determines the nodes on which the VNF's will be placed. HELIOS is designed to learn a

placement policy that scales with network size.

To address RQ 3.3, we leverage the Generalized Gini Index (GGI) aggregation function which
scalarizes and balances multiple provisioning objectives, together. By maximizing this function,
we aim to find a point on the Pareto front of the multi-objective optimization problem. This
allows for a direct optimization of the different provisioning objectives, enabling trade-offs

based on the chosen weights.

By designing a hierarchical decision framework which enables independent and distributed
bandit agents to sequentially solve the NSP problem at different network locations, we achieve
scalable slice provisioning in distributed, heterogeneous edge environments. HELIOS achieves
higher acceptance rates and lower resource utilization compared to both myopic and intelligent
benchmark solutions. The hierarchical strategy learned by HELIOS effectively manages the
complexity of distributed edge networks, providing a scalable approach to slice provisioning.
Our findings contribute to the design of hierarchical learning-based frameworks that combine
bandit learning efficiency with structural network awareness, enabling multi-objective
optimization in resource-constrained edge environments without needing complete prior
knowledge of request patterns or infrastructure capabilities. We describe the framework and

its hierarchical learning capabilities in more detail in Chapter 5.

1.4.4 Proactive Resource Optimization for Heterogeneous Network Slices

In our fourth and final contribution, we address the challenge of learning a policy to proactively
allocate resources to heterogeneous NSLs, with the goal of meeting their varying SLAs. By
predicting the upcoming traffic of different NSLs, we design a framework, PROPHET, that
leverages Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL)
algorithm, for on-policy learning. We demonstrate that PROPHET is able to optimize the
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performance of NSLs by proactively allocating them adequate resources to meet the SLAs of

their services.

We address RQ 4.1 by designing a forecaster to predict the upcoming traffic in heterogeneous
NSLs. The forecaster is based on an Long Short-Term Memory (LSTM)-attention hybrid
architecture and is able to show relatively good predictive performance on a real-world User

Equipment (UE) network traffic time-series dataset.

We address RQ 4.2 by designing a DRL framework that integrates the predicted output of
the traffic forecaster into the resource allocation policy search problem. Our results show that
by incorporating predicted traffic of NSL into the state space of the DRL agent, we’re able to
learn a policy for proactively allocating resources based on predicted traffic, and thus, minimize
the SLA violations of heterogeneous NSLs. Specifically, we show that the average cumulative
reward of incorporating predicted traffic is dependent on the prediction horizon, with longer

predictions leading to lower average performance for the resource allocation problem.

By combining network traffic prediction and resource optimization through on-policy learning,
our proposed framework demonstrates the ability to predictably optimize network resource

efficiency and minimize SLA violations in NGMNs, through proactive resource allocation.

The considered problem, its formulation and the detail about the PROPHET framework are
described in greater detail in Chapter 6.
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1.5 Thesis Outline

This section provides a brief overview of the thesis structure. The rest of the thesis is structured

as follows.

Chapter 2 provides the foundational context by defining key concepts and reviewing
contemporary research relevant to this thesis. Through a comprehensive examination of
literature on network softwarization, edge computing, network slicing, admission control, and
online learning, it establishes the basis for the novel contributions presented in subsequent

chapters. It also highlights critical gaps in existing work that the thesis seeks to fill.

Chapter 3 introduces a novel online slice admission control framework that evaluates incoming
requests through reservation policies that are based on multi-dimensional resource utilization.
It shows that reserving scarce network resources can maximize InP revenue under uncertainty
about future slice demand. The chapter further shows that, despite employing conservative
reservation policies, the proposed algorithm consistently outperforms benchmark methods

across various performance metrics.

Chapter 4 introduces the DARIO framework, which adaptively selects near-optimal online
slice admission control policies based on historical request patterns. The chapter re-frames
slice admission control policy selection as an online learning problem and presents a method
that continually estimates and compares policy performance across non-stationary scenarios.
By prioritizing high-value requests, the framework increases InP revenue while maintaining

responsiveness to evolving demand.

Chapter 5 presents a Hierarchical Decision Framework, HELIOS, that enables scalable slice
provisioning across distributed edge networks through hierarchical bandit learning. It explains
how we partition the slice provisioning problem’s search space to deploy intelligent agents
capable of learning effective deployment policies within specific network sub-domains. The
evaluation and analysis of the approach demonstrates how the learned policy achieves higher
acceptance rates while maintaining lower average resource utilization compared to benchmark

approaches.

Chapter 6 discusses the PROPHET approach, which is a proactive resource optimization
solution for heterogeneous NSLs. In this chapter, we formulate the problem of continuously
allocating network resources to slices with different traffic and SLA requirements. The efficacy
of the proposed solution is evaluated based on a real dataset of UE network traffic and on a

custom-built OpenAl Gym environment for NS.

Finally, Chapter 7 summarizes the contributions of the thesis by highlighting the key findings
and achievements of each research area studied. More specifically, it describes how the different
solutions and frameworks proposed by this thesis bring forward the integration of Al in
networking for efficiency in resource allocation, service placement and real-time slice dimension
adjustments based on usage patterns and demand forecasts. It also describes various avenues
for future research which could further enhance network performance and intelligence through

Al-native network slicing.
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Chapter 2

Background and Related Works

2.1 Background

2.1.1 Network Softwarization

Next-Generation Mobile Networks represent a remarkable technological leap over the previous
network generations (i.e., 4G) by introducing significant hardware and software innovations.
More specifically, 5G and beyond networks consolidate a major process of softwarization that
stands out due to the adoption of cloud-based systems and technologies such as Network
Function Virtualization (NFV), Software Defined Networking (SDN), Network Slicing (NS),
and a Service-Based Architecture (SBA) [42] (Figure 2.1). Network softwarization enables the
design, implementation, building, management and maintenance of equipment, services, and
components of mobile networks through programmable interfaces [43]. In turn, this enables the
network to be flexible, adaptive, agile and dynamically reconfigurable in the presence of evolving
network conditions. The driving force behind the softwarization of the network is the need to
reduce Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) while improving
operational and lifecycle management of next-generation mobile networks [44]. However, the
transition from the current centralized hardware-centric and purpose-built mobile network
architecture with tightly coupled control and data planes to a softwarized, disaggregated mobile

networks, brings about several challenges.

The main impetus for network softwarization stems from the increasing demands for network
agility, scalability, and cost-effectiveness in the face of explosive growth in data traffic, cloud
computing, and diverse application requirements, which are largely powered by online activity
such as large-scale analytics, remote conferencing, e-commerce, digital communications,
and video streaming that amount to hundreds of billions of dollars in market size [14].
By abstracting the availability and discovery of network resources through Application
Programming Interfaces (APIs) and orchestrating them through centralized controllers,
softwarized networks enable unprecedented levels of automation, service innovation, and
resource optimization. This architectural transformation has profound implications across the

telco ecosystem, as it influences everything from operator business models and service delivery
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paradigms to infrastructure deployment strategies and standardization efforts within bodies
such as the Third Generation Partnership Project (3GPP), the ITU Telecommunication
Standardization Sector (ITU-T), European Telecommunications Standards Institute (ETSI),
the Internet Engineering Task Force (IETF) and the Open Networking Foundation (ONF).
As 5G networks mature and research into 6G accelerates, network softwarization continues
to evolve, incorporating emerging technologies like NS, Edge Computing (EC), and Artificial

Intelligence (AI)-driven network management.

Software Defined Networking

SDN aims to simplify network management and enable the development of new network services
by decoupling the control plane from the data plane, enabling centralized and programmable
management that enhances scalability and network operational efficiency [45]. The decoupling
of control plane functionality from the data plane introduces a novel layer of abstraction
and provides opportunities for flexibility and adaptation [46], [47], where the data plane, or
infrastructure plane, is the lowest layer in SDN architecture, consisting of forwarding devices
such as physical and virtual switches. Through SDN, it is possible to create and separate the
network control plane(s) that traverse hardware devices, communicate with network devices
(i.e., switches) through southbound APIs and implement network-wide policies to handle
various types of traffic flows at a central entity (i.e., controller). The global view of the
network enabled by SDN provides a means to detect changes in the network state (such as link
loads and link failures) in order to dynamically react and maintain the high-level policies of the
network. Furthermore, the complexity of current wireless and mobile networks is also being
acknowledged in the SDN domain by making network management simpler and more scalable.
The growing consensus is that future Software-Defined Wireless and Mobile Networks, through

the integration with SDN, will follow an Al-native approach [38].

Network Function Virtualization

The ongoing trend of NFV reflects a growing trend of softwarization in mobile networks to
facilitate flexible, scalable, and adaptive network management [8]. NFV can be considered
as a complementary technology to SDN [48] as it also enables scalable network operations
through the flexible allocation of resources. This is due to the decoupling of hardware from
software functionality, which enables network functions to be implemented as VNFs on General
Purpose Processors (GPPs) that could form part of the resources at the edge. Network Function
Virtualization facilitates the transition from hardware-based networking platforms towards
more off-the-shelf softwarized networks, which would enable the deployment of services in
virtualized environments, such as Virtual Machines (VMs) or containers, and more recently,
as serverless functions [49]. The advances in NFV have seen the design and implementation
of various Physical Network Functions (PNFs) such as load balancers, firewalls, and even
Radio Access Network (RAN) functions, as Virtual Network Functions. More specifically, the
virtualization of RAN functions towards providing virtualized Radio Access Networks (VRANSs)

which could be deployed at central locations, such as data centers, is quite revolutionary,
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as it reduces the cost of network deployment, as well as greatly improves the ability of the
network to scale to varying loads. This results in networks that enable Service Providers (SPs)
to instantiate logically isolated entities, also know as Virtual Networks (VNs), on top of a
Substrate Network (SN) [50].
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FIGURE 2.1: Service-Based Architecture in 5G Networks.

In order to facilitate the development of flexible wireless networks that can respond
quicker to changes in demand, there are efforts being made towards designing service-based
networks that can support network virtualization, softwarization, NS, as well as providing an
infrastructure for the development of stateful/stateless services, in a novel paradigm known as
Network-as-a-Service (NaaS). To achieve this, network elements such as the Evolved Packet
Core (EPC) and RAN are remodeled as VNFs that run on GPPs such those found in cloud
datacenter environments. Following this trend, Radio Access as a Service (RANaaS) has
emerged as a possible new cloud computing paradigm in which an access network is delivered
as a pay-as-you-go service that can be instantiated on top of a cloud infrastructure [51].
This allows network operators to respond quickly to changes in network load (e.g., increased
demand at a particular cell) by instantiating new instances of these Network Functions (NFs)
and distributing the load to them through load balancing. Due to virtualization of the RAN
functions such as Radio Resource Management (RRM), radio bearer control, scheduling and
transmission, and Core Network (CN) functions such the User Plane Function (UPF), Access
and Mobility Management Function (AMF) and Session Management Function (SMF), it is

possible reduce resource consumption and meet the demands for heavier cell loads.

As a result of ongoing virtualization efforts in NGMNs, Open Radio Access Networks (O-RANSs)
have emerged as a critical cloud-based and disaggregated network architecture that

revolutionizes conventional cellular networks. By disaggregating Base Stations (BSs) into
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virtualized components that communicate through open and standardized interfaces, O-RAN
replaces the traditional black-box and monolithic RAN architectures of previous generations
(e.g., 4G). This flexible, multi-vendor approach not only enables efficient resource utilization,
data-driven optimization, closed-loop control, and automation but also supports flexible
network slice management to meet diverse SLA requirements such as latency, throughput, and
reliability [52]-[54]. To further enhance flexibility, the O-RAN architecture allows fine-grained
control enabled by advanced Al and ML techniques for tasks such as real-time online resource
orchestration [55]. However, despite these benefits, the widespread adoption of O-RAN
still faces significant challenges due to the complexity of configuration choices, which can

profoundly affect both network performance and energy efficiency [56].

In essence, NFV and SDN have stood out as complementary technologies that can be used
to create new opportunities that will meet the ever-growing computational and networking

requirements for 5G and beyond mobile networks.

2.1.2 Edge and Fog Computing

Edge and Fog computing offer storage, computational, and networking capabilities within a
single or multiple domains to enable the deployment of novel applications and services [57]. As
a result, they provide an environment in which applications and services can make use of the
cloud computing and IT capabilities of devices that are closer to the network edge, thereby
reducing the physical and logical distance between application or service path endpoints. As
the processing and storage resources (i.e., servers) are closer to the edge, users that require
low-latency and high bandwidth capabilities can be supported by the servers that are in
close proximity to them compared to cloud data centers. Applications that typically benefit
from such capabilities of the network are those that required computational offloading or
collaboration (i.e., Vehicle-to-Everything (V2X)) and video content delivery [48] (i.e., Virtual
Reality (VR) and Augmented Reality (AR)), where long delays caused by the transmission

distance could affect the QoS and user-experienced QokE.

Recent proposals' have suggested and considered the co-deployment of edge servers at the
radio access network edge in order to drive MEC adoption in 5G systems, and improve
the performance of edge-hosted services by enabling access to real-time radio and network
information. This would enable context-awareness for mobile services & edge applications
to adequately respond to varying channel conditions, for example, by reducing video quality

transmitted when the channel is congested.

2.1.3 Network Slicing

The introduction of Network Slicing into the 5G system architecture equips such networks with
the ability to meet the heterogeneous requirements of different industry verticals, including
Robotics, Factory Automation, VR, and V2X communication [58]. To differentiate between

the requirements of the diverse range of applications and services that will need to be supported

1 https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp23_mec_and_cran_edl_final.pdf



2.1. Background 19

Preparation

L= Bd e |

Commissioning

SN e mm—m—m————-
- -

P

N ’ \s ______________ ,'
I’_ """" N '¢"""""""". """"""" ‘s\
: 1 ! Operation ]
1
1 — — m— — — — —

g - x Ik
1 o : 1 | 1
| 2 - : | :
[—— 1 1 | — — — . — — — . 1
1 (s 2 & [
1

1 g | : :
1 O 1 1 1
1 (] 1 1 1
1 Q 1 1 1
1 1 ] 1
1 1 \ ]
\ ! N ’
~ 4 ~ ’

FIGURE 2.2: The lifecycle of a Network Slice Instance

in 5G systems, three major service categories have been suggested which would each require
the deployment of Network Slices (NSLs) [59]:

o enhanced Mobile Broadband (eMBB): in this service category, the aim is to have a NSL
that can cater to high-throughput (i.e., >10 Gbps) or high-bandwidth services such as
video streaming services or immersive multimedia content and provide improved spectral

efficiency

» massive Machine Type Communication (mMTC): this service category provides NSLs
for that act as a medium for machine-to-machine type communication for devices that

transmit smaller amounts of data and can tolerate higher delays

o ultra-Reliable and Low-Latency Communication (uRLLC): with this service category, the
NSL is expected to enable mission-critical communications that require very low latencies
(1 ms-10ms)

By efficiently allocating network and compute resources to each Network Slice in the network,
the diverse QoS requirements of the services required by each Network Slice can be ensured in

order to provide service users with seamless, and high-quality internet experiences [60].

Each NSL can invoke VNF's that run on the common infrastructure, and tailor them to meet its
specific application and service requirements in order to ensure NSLs are customized to support
specific mobile services, which provides greater flexibility than RAN sharing approaches in

previous generation mobiles networks such as 5G [61].
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Network Slicing enables cost-effective, multi-tenant communications over a shared physical
infrastructure in wireless networks. This is important to support the heterogeneous and diverse
services that will need to be supported in 5G and beyond wireless networks. In order to enable
personalized services over the same infrastructure, a combination of NF'V and SDN approaches
is crucial as they could be used to support a tight coordination for VNF allocation and service
provisioning at the edge-cloud continuum, allowing for true and flexible service control [4].
Network Slicing can provide an efficient allocation of resources (i.e. Radio, Compute, Network)
to the different tenants of the network based on the requirements of the services the tenant
serves. Allocating resources to network slices is also vital to providing load balancing, enhancing
resource utilization, and improving network performance, which are all important factors in

providing a viable network infrastructure for latency-sensitive services.

Introducing the slicing concept into wireless networks requires thorough study. Novel slicing
architectures which can provide integrated 5G communication stacks to create QoS-tailored
slices, as in [62], will need to developed and evaluated to determine their suitability for
latency-sensitive applications and services. A slicing-enabled 5G architecture that is able to
efficiently capture the need for integrated network programmability and control, support service
orchestration, as well as provision for important concepts such as Central RAN and MEC is

the aim of many researchers.

To efficiently manage an instance of a NSL, the 3rd Generation Partnership Project (3GPP)
has defined a four-phase lifecycle for network slices [63], [64], namely: 1.) Preparation, 2.)
Commissioning, 3.) Operation, and 4.) Decommissioning, as illustrated in Figure 2.2. The
preparation phase occurs before creating a network slice instance in the network and involves
pre-planning, designing the slice topology, configuring slice parameters, evaluating performance,
and negotiation of service attributes, among other tasks. During the commissioning phase,
NSLs with varying resource requirements are created and placed onto the underlying network
infrastructure and allocated or configured with the resources to meet the requirements of
the NSL. In the operation phase, run-time operations are enabled which include activation,
supervision, reporting, modification, and deactivation of the deployed NSI. This is achieved
through continuous monitoring to ensure the optimal performance of the NSL and adapt to
evolving demands. Finally, the decommissioning phase occurs when the NSL reaches the end of
its lifecycle or is no longer needed by the ST. In this case, the allocated resources are released,
making them available for other future NSLs or VNF.

While each phase has unique challenges that require carefully designed solutions, in this
thesis, we primarily focus on designing and developing novel algorithmic and learning-based
frameworks that can be used for the management of slice-enabled mobile networks by
leveraging online and data-driven optimization approaches to dynamically allocate, orchestrate

and optimize network resources in Next-Generation Mobile Networks.

Currently, most NS solution approaches in the literature consider the challenge of resource
allocation at the RAN or CN to guarantee slice isolation whilst meeting QoS-requirements of

various services. However, in increasingly virtualized mobile networks, the resources in other
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network domains, such as the network edge, will form part of the network description and
slice components, and thus will need to be allocated and orchestrated, in an optimal manner,
to support the co-location of heterogeneous services over a common infrastructure. This is
underlined by the introduction of Mobile Edge Computing (MEC) into the network architecture
as a way to bring computational power closer to the edge through small but powerful cloud
infrastructures [65], in order to reduce the delay for latency-sensitive services by lowering the
transmission and processing time between where the data is generated and where it is processed.
MEC enables support for a new range of 5G-native mission-critical and real-time applications
which could require strict communication and computation guarantees. It also provides the
network with an infrastructure to exploit context-based information available at the edge
(i.e., for a given geographical area) [66] in real-time, to dynamically alter the performance
of edge-hosted applications and slice-specific Virtual Network Functions (VNFs) to meet QoS
requirements. While the introduction of MEC will undoubtedly improve service delivery, the
co-deployment of edge-hosted network functions and applications with RAN components over
the same infrastructure could lead to higher contention of the underlying resources, ultimately
leading to performance degradation. This underline the requirement for strict reservation and
isolation of network resources to avoid QoS disruptions during the provisioning of applications

and services in NSLs at the edge.

Network Slicing typically involves complex decision-making processes that span from
admission control and resource allocation to dynamic resource reconfiguration across multiple
administrative domains [61], [67]. One of such domains is the network edge, which contains
constrained computing resources to support low-latency applications and services. Practical
EC networks are typically characterized by their large-scale deployments, temporal and
spatial variations in workload distribution, diverse application types, and varied QoS
requirements [68]. These factors pose significant challenges for traditional EC systems,
including inefficient resource utilization, unacceptable service delays, and limited scalability,
requiring solutions that can efficiently allocate heterogeneous resources to services that are
included in a Network Slice Description (NSD).

The multi-dimensional nature of network resources and the potential inter-dependencies
between different network layers (i.e., cloud, fog, edge) also necessitate a sophisticated
learning approach that can capture these relationships effectively and account for the
uncertainties that exist at each network layer, while trying to achieve multiple provisioning
objectives such as maximizing the number of accepted slice requests deployed at the edge and

optimizing resource efficiency.

2.1.4 Online Algorithms for Network Slicing

A key challenge in modern mobile networks is the allocation of multiple resources in
increasingly complex and dynamic environments. This challenge is exacerbated by the
fact that in edge-based mobile networks, decisions on how much resources to allocate to
applications, services or NSLs must be made in real-time, typically without the prior knowledge

of future requirements or demands of existing or new requests. Such unpredictability makes
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it difficult to optimize different networking objectives such as: maximizing revenue or profit,

optimizing resource efficiency and maximizing QoS.

To address this challenge, Online Algorithms (OAs) are typically designed in order to make
real-time decisions based only on the information that is currently available. By definition, an
OA can be considered as any algorithm that sequentially processes an input sequence without
having knowledge of the whole sequence at the beginning of the run. These algorithms have
found applications in various fields including: cloud computing [69]-[71], traffic routing [72],
appointment booking [73] and electric vehicle charging [74], [75]. The performance of OAs
is typically evaluated through the paradigm of competitive analysis [76], where the objective
of an OA is to minimize the Competitive Ratio (CR), which is the worst-case ratio of the
performance obtained by the offline algorithm in hindsight and the performance of an online
algorithm [77]. More formally, given an arrival instance Z, we denote by OPT(Z) the optimal
performance (i.e., utility or value) achieved in the offline setting when the information of the
arrival instance Z is known prior. Similarly, let ALG(Z) denote the performance achieved by an

online algorithm ALG. The competitive ratio of the online algorithm can then be represented
ALG(Z)
OPT(Z)’
the performance of the OA compared to the optimal offline algorithm [78].

as CR = maxg

where CR > 1 and the closer the competitive ratio is to 1, the better

Network slicing in modern mobile networks presents unique resource allocation challenges that
require efficient online optimization that can be addressed through algorithmic approaches
such as stochastic network optimization and the domain of competitive online algorithms [79].
Effective OAs for network slicing must address multi-dimensional resource constraints spanning
multiple domains including the radio access network, edge network, transport network and
core network components, while minimizing computational complexity to enable real-time
decision-making at the network edge. While the inherent design of online algorithms typically
leads to overly conservative practical solutions that are optimized for worst-case scenarios, they
provide strong theoretical results that are provable through performance guarantees, robust
to adversarial inputs and interpretable or explainable through transparent decision-making
logic, which are important characteristics for their potential deployment in practical network
slicing scenarios. To overcome the traditionally conservative nature of OAs, recent advances
have considered leveraging historical data to predict future inputs towards the development
of ML-enhanced Online Algorithms which infuse predictions in their decision making process,

i.e., learning-augmented algorithms [80]-[84].

In this thesis, we addresses the SAC problem in mobile networks by proposing a novel online
algorithm. Our approach leverages online reservation policies to facilitate dynamic decisions
on slice admission and resource commitment, based on real-time network state. Building upon
this foundation, we introduce a data-driven online policy selection framework to augment the
algorithm’s performance. This extension is specifically designed to improve its average-case
performance and resilience when subjected to potentially adversarial input sequences (i.e.,
requests that are crafted to exploit weaknesses in static reservation policies or overwhelm the

system under non-stationary or bursty traffic conditions).
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2.1.5 Machine Learning for Network Management

Machine Learning is a branch of AI that is dedicated to developing systems that learn directly
from data. This learning process typically consists of two phases, the training phase and the
testing phase. During the training phase, typical ML algorithms analyze a dataset to create a
model that represents the inherent patterns in the dataset. Subsequently, in the testing phase,
the model is applied to new, previously unseen, data to generate predictions based on the
learned model. ML algorithms can typically be classified into four primary types: Supervised

Learning, Unsupervised Learning, Semi-Supervised Learning, and Reinforcement Learning.

While traditional ML techniques such as Supervised Learning, Semi-Supervised Learning
and Unsupervised Learning have found several applications to network management over the
years through fields like intrusion detection [85], [86], anomaly detection [87], [88], traffic
classification [89], [90], network performance prediction [91], and fault diagnosis [92], [93],
there are still several challenges related to their utilization for real-time data processing, their
scalability, and their adaptability to dynamic network environments. In contrast, however, RL
and OL, are promising and increasingly important techniques that deal with highly dynamic
data that becomes available in a sequential order [94], [95]. Specifically, unlike deep learning
approaches which often require preprocessing and long training times, online learning does
not require pre-processing or offline operations as it adapts at runtime to the system and
environment conditions using real-time observations [96]. Similarly, reinforcement learning has
gained increasing attention and adoption for network management problem due to its ability to
make autonomous decisions in dynamic and uncertain network environments, provide adaptive

optimization of network resource allocation, traffic engineering, and service orchestration.

Reinforcement learning explores how an agent can discover which actions to take in an
environment to maximize the total reward it accumulates over time. In this approach, the
agent learns to interact with the environment by trying out actions, receiving rewards or
penalties as feedback, and gradually developing a policy that associates each state with the
best action, aiming to achieve the highest possible long-term reward To achieve this, RL
agents are faced with the dilemma of choosing between trying out new actions to discover
better rewards (exploration) and sticking with known good actions that maximized rewards in

the past (exploitation) [97]. Typically, RL methods fall within one of two categories:

e Model-based Methods: these algorithms typically attempt to learn the environment’s

dynamics (transition probabilities and reward function)

e Model-free Methods: here the algorithms learn the policy or value function directly

without explicitly learning the model

Interestingly, RL has seen tremendous success in various domains, including game playing

(AlphaGo), robotics, autonomous driving, and network resource management.

OL techniques, such MABs, have emerged across numerous fields where decision-makers must
balance exploration (gathering information) with exploitation (using known information) and

are under the umbrella of RL methods. While they were originally developed for ”ethical”
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medical trials [98], this mathematical framework has helped researchers collect valuable
scientific data while minimizing potential harm to patients. In the digital domain, web
applications represent perhaps the most widespread modern use of MAB algorithms. Website
designers employ them to optimize user interfaces and experiences, content curators use them
to determine which material deserves prominence, search engines leverage them to refine
results, and advertisers utilize them to place ads most effectively on webpages. Similarly,
recommender systems incorporate exploration strategies to continuously improve suggestions
for entertainment options like movies, dining experiences at restaurants, accommodation at
hotels, and many other consumer choices [99], [100]. The domain of economics also offers
another ideal ground for MAB applications [101], [102], as sellers can dynamically adjust prices
and product offerings, while frequent buyers, such as procurement agencies, can optimize
their bidding strategies. Auctioneers can refine their auction mechanisms over time, and
crowdsourcing platforms can enhance their assignment of tasks, workers, and compensation
rates to maximize efficiency and satisfaction. In robotics, MAB algorithms have been used to
help machines iteratively improve their performance across various tasks through systematic
trial and error [103]-[105]. Finally, in the networking domain, it is increasingly recognized
that experimentation and adaptive learning often outperform rigid network designs and
solutions [106], which is the strength of MAB algorithms [107]. This approach enables the
optimization of network and datacenter operations, as well as networking protocols, through

continuous refinement and learning.

In this thesis, we primarily focus on online learning [108] and deep reinforcement
learning-based [97] approaches, in which a control policy or action model can be learned by
taking different actions in a trial-and-error manner. Specifically, we propose solutions that
leverage the lightweight MAB framework, which has seen applications in multiple domains [109]
and is a classical, canonical formalization of the exploration-exploitation dilemma [110]. We
also propose a solution based on DRL, which we use to address the challenge of allocating
network resources to heterogeneous network slices, to optimize the resource efficiency in such
networks while minimizing the SLA violations that could arise as a result of dynamic network

conditions.

2.2 Related Works

2.2.1 Admission Control in Mobile Networks

The Admission Control (AC) problem in mobile network settings is an essential and
fundamental problem and has been well-studied in the past. However, previous works
focused on devising mechanisms for the admission of mobile users to the network, as part
of the RRM process. The emerging virtualization of the network infrastructure, and the
softwarization of network functionality to support multi-tenancy through network slicing,
increases the complexity of the AC. Specifically, the increasing virtualization of 5G mobile

networks has emphasized the SAC problem. As such, there is a need to explore new admission
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control mechanisms and approaches for such networks. A survey on State-of-The-Art (SoTA)

strategies and solutions for SAC in 5G networks is presented in [11].

Usually, the goal of NS is to optimize the utilization of network resources to enhance overall
network utility which includes metrics like throughput, latency, and revenue, while ensuring
that slice-specific SLAs are met. This ultimately translates most problems in the NS domain,
such as SAC, into network utility maximization problems [72], [111], and there have been a
plethora of works in the literature that focus their efforts on applying advanced techniques
such as ML and RL to address such problems. To determine an optimal SAC policy, Bakri
et al. [112] compare the performance of both online and offline solutions. Gholamipour et al.
formulate a joint online admission control and resource allocation problem based on an Integer
Linear Program (ILP) [113]. Their solution considers the energy consumption of network
nodes, as well as the workload uncertainties of sliced VNFs in their approach. Sciancalepore
et al. enable concurrent slice requests to be deployed over an InP’s physical resources while
maximizing multiplexing gains [114]. Their approach focuses on addressing the SAC problem
under demand uncertainty of network slices. Salvat et al. focus on the slice orchestration
problem by jointly considering admission control and resource reservation [115]. They propose
solutions based on an optimal Benders decomposition method and a sub-optimal heuristic, to
address the considered problem. Finally, Noroozi et al. study the SAC problem, where each
slice is made of RAN and CN resources, and propose a sub-optimal two-step heuristic algorithm

to maximize the total revenue gained from admitted slices, in [116].

Chen et al. [117] propose an optimal admission control mechanism for delay-sensitive services
in edge environments. In their work, they look to balance maximizing provider revenue and
ensuring the QoS of existing services are guaranteed by balking incoming requests. The
work of Sciancalepore et al. enables concurrent slice requests to be deployed over an InP’s
physical infrastructure while maximizing the utilization of network resources through stochastic
multiplexing and maximizing the overall InP profit of accepted NSRs [114]. Luu et al. [118]
jointly study the problem of Admission Control (AC) and resource reservation in mobile
networks to guarantee the SLAs of slices under uncertainty in the resource demand of slice
requests. J. Leguay et al. study the AC problem under the framework of a centralized SDN
controller and evaluate the performance of key AC algorithms under realistic settings [119].
Vincenzi et al. explore the application of ML for SAC [120]. They train a Neural Network (NN)
to learn the best AC policies based on pre-computed conditions and use these policies to make
near-optimal decisions at runtime. Lindstahl et al. consider the problem of SAC and propose
a MAB-based approach to jointly decide on the admission of NSRs, as well as the number of
resource measurements to take before committing to the admission decision [121]. Prasad et al.
propose reservation-based mechanisms that enable quick decisions on the admission of NSRs
[122]. Through simulations, they show that their approach can quickly admit slice requests,
while also optimizing for revenue achieved by the InP. Sulaiman et al. propose the use of
multi-agent DRL to jointly solve the problems of network slicing and SAC [123], [124]. Dayot
et al. propose a Deep Contextual Bandit that combines DRL with a Contextual Bandit (CB)

model for the problem of resource allocation [125]. Their results show that their approach
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TABLE 2.1: Related Works: Policy Selection for SAC

Reference Admission Online Drift Policy
Control Learning Detection Selection

Scianalepore et al. [114]
Chen et al. [117]
Luu et al. [118]
Vincenzi et al. [120]
Lindstahl et al. [121]
Prasad et al. [122]
Sulaiman et al. [123]
Sulaiman et al. [124]
Dayot et al. [125]
Jiang et al. [126]
Haque et al. [127]
Bakhshi et al. [128]
DARIO [15]

NN N N N N N S RN
WX X X UX XXX XX
N X X X X X X X X X XX X
NX X XX X X X X X X X X

optimizes network resource efficiency and the achieved slice throughput compared to other

intelligent solutions.

In essence, various RL and DRL-based solutions for the SAC problem in 5G networks have
been proposed [123], [126]-[128]. However, such solutions typically suffer from problems such
as the curse of dimensionality [129] and the cold-start problem [130] in which a large number
of training samples are required in order to learn a single policy and are therefore likely to
have limitations in terms of their practical performance. A summary of the related works can
be found in Table 2.1.

2.2.2 Online Learning in Mobile Networks

NGMNs are expected to provide native, embedded intelligence to support heterogeneous,
killer applications and human-centric services, ultra-fast handover under mobility scenarios,
reconfiguration of network components, and smart energy consumption. This will require the
development of learning-based frameworks which can detect changes in network conditions
and scenarios and rapidly adapt to them. Such framework will need to go beyond pre-trained
Al models as they might not be able to adequately respond to ongoing changes due to their
largely static nature. More specifically, such learning-based frameworks will need to depend on
ultra-fast, OL or Continual Learning (CL) models to provide Al-enabled network optimization
compared to traditional learning and optimization techniques [131], [132]. This is because
in contrast to traditional learning and optimization approaches, OL/CL approaches offer
the advantage of adaptability to non-stationary system dynamics or distributions, as well
as potentially unforeseen scenarios [6], [133]. In such systems, when the data distribution
shifts, the learning model needs to adapt, which is a central concern for online and continual
learning. The majority of existing solutions detect these shifts via statistical tests, changes in
the empirical loss, or they utilize fixed time-windows to identify and discard outdated data,
and then retrain the model [134]. Hence, the development and deployment of OL/CL-based
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frameworks would enable NGMNs to automatically learn efficient resource management
policies in complex scenarios characterized by time-varying statistics [135]. A comprehensive

review of OL algorithms and techniques can be found in [136].

Despite the need for learning-based frameworks that can operate and adapt to real network
environments, there are currently limited works that apply OL in the context of resource
allocation, resource management or NS in the literature. This opens up an avenue for the
development of OL solutions that can address such problems in time-varying networks. Under
the banner of OL algorithms, BO and MABs [109] stand-out as well-known optimization
and sequential decision making frameworks, where at every time step, a decision needs
to be made between different actions that have an unknown probability of occurring [137].
Contextual Multi-Armed Bandit (C-MAB), extend this framework by observing N-dimensional
context-vectors before choosing an an arm (or action), with the goal of choosing actions
that maximize the reward or minimize the regret (i.e., they consider context-dependent
reward functions). As C-MABs are able to consider the trade-off of the cost of acquiring new
information (exploration), against the generation of rewards based on existing information
(exploitation) [138], they are useful in dynamic environments that necessitate sequential
decision making. More specifically, as part of the OL paradigm, MABs provide an efficient

solution to optimizing actions by learning through sequential feedback [139].

S. Boldrini et al. propose the use of MABs for wireless network selection by a multi-Radio
Access Technology device, with the goal of maximizing the quality perceived by the device
user [140]. Kerkouche et al. in propose light-weight learning methods, based on MABs, to
select the communication parameters (namely spreading factor and emission power) in low
power wide area networks [141]. They are able to show that such an approach can manage
the trade-off between energy consumption and packet loss much better than other adaptive
algorithms. An online path manager for Multi-Path TCP that is based on a contextual bandit
algorithm is used to choose the optimal primary path connection that maximizes throughput
and minimizes delay and packet loss in heterogeneous networks in [142]. Kalntis et al. consider
the problem of handover optimization through the prism of OL and propose an algorithm
that provides robust and dynamic regret guarantees even in challenging environments [143].
Bistritz et al. propose an OL algorithm for adaptive admission control of networked open
multi-agent systems [144]. In their proposal, a centralized admission controller uses OL to
adjust the probability of admitting new players in a distributed system in order to achieve

system equilibrium.

Due to the increasing virtualization of the network, OL based solutions have been gaining
increasing attention in the literature for a variety of resource management problems in mobile
networks. Monteil et al. develop a learning-based framework based on the theory of Online
Convex Optimization in order to study how the service providers should reserve resources
to maximize their services’ performance while not violating a time-average budget threshold
[145]. They analyze the impact of key system parameters on the learning performance, and
discuss the implications for the design of Network Virtualization markets. Kalntis et al.

propose an OL-based scheme that dynamically chooses the best-performing resource allocation
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algorithm and operates under minimal assumptions and without requiring knowledge of
the environment [146]. They show that their proposed solution achieves sub-linear regret
(zero optimality gap), and characterize their dependence on the main system parameters.
Lahmer et al. propose a Continual Learning strategy as part of a novel resource allocation
framework that enables an agent to adapts to sudden changes in traffic dynamics [135].
They test their strategy with a network slicing use case in which the learning agent and
system users compete for the same network resources and show that their approach is able to
outperform static baselines. Liu et al. propose an OL-based solution for End-to-End (E2E)
network slicing [147] and service configuration [148], which allows individualized learning for
each NSL and maintains its SLA through a novel constraint-aware policy update method
and proactive baseline switching mechanism, and a Bayesian Optimization method. Their
results show that they’re able to reduce utilization by up to 61%, while maintaining zero
SLA violations throughout the OL phase. Zhao et al. design a novel adaptive network
slicing system, based on OL, to continuously orchestrate virtual network resources to adapt
to changing network dynamics [55]. The proposed system integrates an AI/ML technique
based on Bayesian Optimization with an optimization method based on Alternating Direction
Method of Multipliers, to improve the virtual resource utilization of slices. Their results show
that they’re able to outperform State-of-The-Art solutions by over 60% for their considered

metrics.

In the context of slice admission control, current solutions focus on designing fixed or static (i.e.,
one-size-fits-all) models and policies. However, as mobile networks are inherently dynamic,
especially at the edge, such policies are likely to face performance shortcomings at runtime, since
they rely on strong assumptions, such as the expected traffic demand [129]. The development of
a framework that learns the most optimal admission policy or model by dynamically selecting
and learning the performance of different admission control algorithms, is missing and is
therefore a relevant gap in the literature that this thesis aims to address. Such a problem
can be addressed by modeling the problem as a MAB problem, a portfolio selection problem
or Policy Selection (PS) problem, of which there are many potential solutions that can be
applied [149]-[154].

2.2.3 Hierarchical Learning in Mobile Networks

An important challenge in modern mobile networks is the efficient allocation of resources
under uncertainty, particularly in large-scale environments such as the network edge, where
the complexity and interdependence of components significantly complicate management [155].
Traditional single-layer optimization methods often fail to capture the sequential and
interrelated nature of decision-making across multiple network functions, leading to
suboptimal performance. The dynamic and resource-constrained nature of these networks

requires adaptive strategies capable of generalizing across varied scenarios.

A Hierarchical Decision Framework (HDF) offers a structured approach to this challenge by
decomposing complex tasks into multiple decision layers. In such frameworks, high-level policies

define strategic objectives that guide lower-level policies responsible for more granular control,
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thereby improving both scalability and coordination. The most common instantiation is based
on Hierarchical Learning (HL) or Hierarchical Reinforcement Learning (HRL), where policies
are learned at different abstraction levels to break complex problems into simpler sub-tasks

handled by specialized agents.

Compared to centralized learning, where a single agent operates over a global state
representation, and fully decentralized learning, where each agent must estimate the policies
and actions of all others, HL provides a balanced middle ground. It scales more effectively than
centralized approaches while avoiding the high coordination complexity of fully decentralized
systems [156]. In hierarchical architectures, coordination requirements are largely confined
to well-defined interfaces between layers, enabling efficient information exchange without full

network-wide synchronization.

This trade-off is illustrated in Figure 2.3, which presents the spectrum of learning-based
architectures applicable to dynamic resource allocation under uncertainty. The figure also
highlights the specific coordination assumptions required by each paradigm: from the strong
global observability and synchronous updating needed in centralized systems, to the minimal
but more complex agent reasoning in fully decentralized systems, to the structured and more

scalable intermediate approach enabled by HL or HRL.

In the literature, HRL has been used to learn hierarchical provisioning policies for NS. Wei et
al. propose an intelligent hierarchical NS framework that operates at two different time-scales
[157]. Their results demonstrate that their lightweight framework outperforms benchmark
algorithms in terms of system utility, throughput and transmission delay. Sun et al. [158]
propose a hierarchical radio resource allocation architecture for allocating sub-channels to NSLs
and NSLs resources to UEs. They show that they are able to outperform the benchmark
algorithms that they compare their solution to. A hierarchical meta-RL solution is proposed
by Chen et al. [159] who seek to optimize the provisioning of services and manage the allocation
of radio resources in O-RANs. Through numerical analysis, they show that their propose HRL
approach outperforms other SoTA benchmarks. Similarly, Qiao et al. [160] propose a HL
multi-cell, multi-dimensional resource, and multi-timescale O-RAN slicing framework to meet
the QoS of heterogeneous services and lower the costs for SPs. Their solution is based on
a DRL approach in which, the upper layer of the framework make decisions regarding the
size and number of Physical Resource Blocks (PRBs) and the amount of computing resources
to allocate to each NSL, while the lower layer of the framework is tasked with making PRB
selection and computing resource allocation decisions. A general summary of the related works

are given in Table 2.2.

HRL in mobile networks has emerged as a crucial paradigm for addressing the challenges of
distributed intelligence, resource constraints, and dynamic environments inherent in modern
mobile systems. Generally, in HL, agents develop high-level policies for goal-oriented behavior
while simultaneously acquiring lower-level policies for managing specific sub-tasks [161]. In the
context of network slice provisioning or placement, incorporating hierarchical learning into a

hierarchical decision framework can enhance the effectiveness of the learned provisioning policy.
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FIGURE 2.3: Architectures for Addressing Dynamic Resource Allocation under Uncertainty (Adapted
from [156]).

TABLE 2.2: Related Works: Network Slice Provisioning
RNTs = Real Network Topologies

Reference NSP OL MOO HDF RNTs
Lin et al. [32] v/ X X X X
Mao et al. [162] v X X X X
Wu et al. [163] v/ v X X X
Hojeij et al. [164] v X X X X
Yue et al. [165] v X X X X
Bi et al. [166] v v X X X
Han et al. [167] v X X X X
Li et al. [168§] v/ X X X X
Tran et al. [169] v X X X X
Lim et al [170] X v v v X
HELIOS [171] v v v v v

By leveraging hierarchical structures, complex tasks, such as service function chain placement,
can be decomposed into a series of smaller, more tractable sub-tasks, each addressed at a specific
level of the hierarchy. This decomposition can yield significant performance gains by enabling
more focused decision-making at each stage. However, while hierarchical learning effectively
reduces complexity, it may inadvertently oversimplify inter-dependencies between sub-tasks.
For example, in network slice provisioning, constraints or correlations across different service

function placements might be overlooked and potentially lead to suboptimal global policies.

Inherently, the network slice provisioning problem involves addressing multiple conflicting
objectives, such as optimizing resource utilization, minimizing service delays, and ensuring
fairness across slices. Multiple-Objective Optimization (MOO) techniques allow network
operators to balance trade-offs dynamically, adapting to changing service demands and
network conditions. However, there are not many works that design hierarchical solutions that

aim to solve multiple objectives jointly and in a fair manner. It is also noted in [172], that
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there is currently no consolidated framework that can be used to learn hierarchical policies
where different approaches are used for different benefits. More specifically, there’s a lack of
HDF's that are designed to operated in an online manner and without the need for extensive
and expensive upfront training. In this thesis, we look to fill this gap by proposing a HMAB
framework for network slice provisioning. Our proposed framework, Hierarchical nEtwork
sLIce prOviSioning (HELIOS), integrates contextual information into the decision-making
process while ensuring an effective balance between exploration and exploitation. Building
on a HMAB formulation, HELIOS addresses a key gap in the NSP literature by structuring
the decision process across multiple hierarchy levels. At each level, specialized algorithms are
employed to tackle the distinct subproblems inherent to that layer, enabling more efficient and

context-aware resource allocation.

2.2.4 Proactive Resource Optimization in Mobile Networks

Leconte et al. propose a flexible and lightweight resource allocation framework, which uses
cloud-native architectural concepts, and methods from continuous optimization, to provision
and auto-scale slices in real-time [173]. Their approach is based on flexible utility functions
that are subject to the network bandwidth and processing power capacity of cloud instances.
Chien et al. propose an algorithm that jointly considers communication and compute
resources in the allocation of resources for heterogeneous, multi-tenant 5G services [174].
The proposed algorithm adjusts the capacity of services and traffic allocation to minimize
the over-provisioning of network resources, while satisfying the latency constraints and other
SLA of tenants. To jointly manage radio and computational resources in resource-constrained
edge environments, Liu et al. propose a solution that achieves low-latency for delay-sensitive
applications [175]. Their solution minimizes service latency by optimizing a range of network
parameters, including: uplink (UL) transmission power and the amount of computational
resources allocated to users of edge applications. Mahmoud et al present a data-driven

resource allocation approach which is tested in an O-RAN environment [176].

In their approach, they compared the effectiveness of different algorithms in minimizing the
number of PRBs utilized in the system, by optimizing the Throughput-to-Bandwidth ratio.
An intelligent network application (or xApp) for slicing the RAN using AI and Deep Learning
techniques is proposed by Yeh et al. [177]. Through their evaluations, the authors show how
different services can co-exist over a common network infrastructure, while meeting the SLAs of
each service. Wang et al. propose a Multiple-Agent Deep Reinforcement Learning (MADRL)
framework for robust Network Slicing in dynamic environments [178]. Their solution looks
to address the problem of admitting randomly arriving service requests from users, under
time-varying channel and user mobility scenarios. Kak et al. develop an automatic Network
Slicing framework to address the objectives of computing optimal network routes and allocating
network resources, with minimal SLA violations [179]. Their proposed framework does not
utilize prior information concerning the resource requirements associated with a NSL, and is
therefore robust to a wide variety of use cases and scenarios. Mohanti et al. propose a resource

allocation framework that uses predictions of the network quality [180]. Their proposed solution
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is used to demonstrate how look-ahead forecasting of channel conditions can improve the
performance of the network over traditional resource allocation methods, however, they don’t
specifically consider the O-RAN architecture or the challenge of slice reconfiguration. Wei et al.
propose a predictor-optimizer framework that intelligently performs inter-slice reconfiguration
with the aim of minimizing the energy consumption while provisioning NSL [181]. In their
work, they use prediction intervals that are made of lower and upper bounds which constrain
the future traffic demands with a pre-specified probability. In the work of Balasingam et
al., a novel RAN slicing system that provides assurances of application-level throughput and
latency, is proposed [182]. By forecasting the availability of RAN resources, their proposed
slicing system is able to determine whether or not the admission of a new slice request will

ensure that the SLAs of already admitted requests will be met.

While a plethora of works [183]-[187] consider RL and Value Iteration methods for data-driven
optimization and close-loop control of NSLs in O-RAN, such approaches either require long
training periods, fail to scale or do not meet system requirements [188], and as a result,
they are challenging to apply to real-time scenarios since they must be re-trained each
time the environment changes [156]. Moreover, such techniques, which are based on DL
architectures, often require extensive offline training to be able to accurately forecast future
traffic demands [189], which limits their application for real-time reconfiguration in edge
or O-RAN environments. Our approach differs from previous works as we build our online
predictive optimization framework for NSL reconfiguration based on 2-components. The first
component carries out traffic demand forecasting to determine the amount of traffic that would
be expected in each slice in an upcoming period (e.g., 2 minutes in advance). The second
component, based on the predicted traffic demand obtained in the first step, dynamically
allocates resources to the deployed NSLs (i.e., adapts the slices) in order to maximize their

time-varying SLAs, collectively.

2.3 Chapter Conclusions

This chapter lays out the foundational groundwork, including background information and
related concepts that are essential to the different topics explored within this thesis. In
Section 2.1, we give a general overview of the background on modern mobile networks,
discussing concepts such as network softwarization, edge and fog computing, network slicing,
online algorithms for admission control and ML for network management. The covered
concepts are required for understanding the contributions which are subsequently presented in
Chapters 3, 4, 5 and 6.

In Section 2.2, we discuss various related works that cover the state-of-the-art techniques and
solutions that address the research questions of this thesis, which we described in Section 1.3.
We highlight the major drawbacks of the different related works that necessitate new solutions

to handle the research questions in this thesis.

In Section 2.2.1, we evaluate the most relevant works related to SAC in mobile networks,

considering both the online and offline settings. We find that most works study the SAC
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problem in the offline setting and propose solutions that require full knowledge of all NSRs
before deciding on the requests to admit, which severely limits their practicality in real
networks. Of the works that consider the online setting, most utilize RL or DRL solutions

that require a long training period to find learn an admission policy.

In Section 2.2.2, we discuss the relevant literature on the wide and diverse use of OL approaches
in mobile networks. We highlight the ability of CL and OL models to provide Al-enabled
network optimization compared to traditional learning and optimization techniques as they are
better at adapting to changes in network conditions. We further explain how such models detect
network changes through statistical tests, changes in the empirical loss, or fixed time-windows
in order to adapt. Then, we explain how current solutions to resource management problems,
such as SAC, are typically designed as fixed or static models and policies which could have
poor performance in real-time, dynamic networks and highlight how a solution for selecting

between multiple admission policies could lead to improved network performance.

The problem of scalable network slice provisioning is considered in Section 2.2.3, where we
discuss HL. or HRL as a typical way to address the issue of dynamic resource allocation
in large-scale mobile networks by breaking up the problem into sub-problems that can be
addressed by different agents. We present the related works and how they apply such techniques
in the context of resource allocation and provisioning NSLs and explain their advantages over
centralized and decentralized approaches with respect to their complexity and in terms of their

assumptions required for coordination.

Finally, in Section 2.2.4, we give details on how AI/ML techniques such as DL can be used to
forecast traffic demands and resource availability in order to proactively allocate resources and

improve network management tasks across a range of architectures.

To solve the various issues discussed in the related works and address the previously formulated
research questions, we design and evaluate four approaches in this thesis, which improve the
provisioning of NSLs, as explained in Chapters 3, 4, 5 and 6. In particular, Chapter 3 addresses
the challenge of online SAC, as described in Section 2.2.1. Chapter 4 addresses the issues of
learning an admission control policy in an online setting by selecting between different policies,
as explained in Section 2.2.2. In Chapter 5 addresses the problems of scalable NSL provisioning
in edge-enabled networks, as described in Section 2.2.3. Finally, in Chapter 6, we address
the challenge of proactive or predictive resource optimization for heterogeneous traffic in 5G

networks, as explained in Section 2.2.4.
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Chapter 3

Multi-dimensional Slice Admission Control

3.1 Introduction

A major challenge in the management of slice-enabled 5G networks is the allocation of
resources required to support dynamic and online (or real-time) provisioning of network
slices. Addressing this problem requires efficient and timely assignment of virtualized network
resources to optimize network objectives such as improved resource efficiency, improving
Quality of Service (QoS) metrics, or increasing infrastructure provider revenue by maximizing
the number of admitted slices in the network [118], [190]. Hence, an important consideration
in the dynamic provisioning of network slices is the decision that an Infrastructure Provider
(InP) needs to make when a slice request (i.e., Network Slice Request (NSR)) from a
tenant is received for the deployment of a new network slice onto the physical network
infrastructure [191]. This is commonly described as the Slice Admission Control (SAC)
problem, and requires finding an optimal strategy that achieves the InPs’s primary objectives,
while also considering the spatio-temporal traffic dynamics of network slices [112]. While the
SAC problem is challenging to address as it typically involves a level of uncertainty in terms
of the unknown arrival rate, multi-dimensional resource requirements, expected revenue, and
the lifetime of NSRs, devising an appropriate SAC mechanism is important for achieving

improved resource efficiency and fairness in a shared network infrastructure [126].

In this chapter, we investigate the problem of online slice admission control in next-generation
mobile networks, where an InP has to determine whether or not to accept arriving NSRs in an
online manner without the benefit of knowing the demands or offers of future requests from
Slice Tenants (STs).

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.1.

RQ 1.1: How can admission control policies effectively manage the multi-dimensional
resource demands of network slices while maintaining high resource efficiency in dynamic mobile

networks?
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RQ@ 1.2: How can online admission control policies ensure long-term revenue optimization
in network slicing, while accommodating heterogeneous slice requirements and uncertain

demand?

RQ 1.3: How does economic disparity among slice tenants influence admission control

decisions, and how can admission control policies balance revenue optimization with fairness?

To address the above mentioned challenges, we propose the Online Slice Admission Control
(OSAC) algorithm. This algorithm leverages online reservation functions to decide on the
admission of sequentially arriving slice requests without explicit knowledge about potential
benefits of future requests. We address the RQ 1.1 by formulating the SAC problem as an
Online Multidimensional Knapsack Problem (OMdKP) where the goal of the problem is to
maximize the value of the requests admitted into the network. We consider that the value of
each slice request is a weighted combination of the required multi-dimensional resources and
the duration of the request in order to accurately model a range of request types and observe
their impact on the long-term resource efficiency in the network. We address the RQ 1.2 by
developing an algorithm that leverages online reservation functions to reserve network resources
based on linear or exponential cost functions. This ensure that scarce network resources are
available for high-valued slice requests, regardless of the order the requests arrive in. To address
RQ 1.3, we construct different scenarios, where each scenario is based on the assumption of
the distribution of the number of high-valued and low-valued requests. This Beta distribution
is based on a parameter that controls the unit value of each request and helps us to evaluate

the performance of our algorithm under different scenarios for the pre-determined metrics.
Our contributions are as follows.

¢ We model the OSAC problem as an OMdKP with unknown resource demands and lifetimes
and where the objective is to maximize the long-term revenue received from NSRs, while

respecting the capacity constraints of the system resources.

e To address the OSAC problem, we leverage two novel policies, Linear Reservation Policy
(LinRP) and Exponential Reservation Policy (ExpRP), and propose an online algorithm that
utilizes either of the two policies to perform admission control of NSRs in the considered

online scenario.

e Through extensive simulations, we evaluate the performance of the online algorithms in
terms of the average resource utilization, the acceptance ratio, and total revenue gained

compared to an online greedy solution.

The following sections discuss the content in our paper published in the 2023 IEEE 20th Annual
Consumer Communications and Networking Conference (CCNC) [15]. Section 3.1 describes
the research questions addressed in this chapter and discusses the contributions of the online
algorithms proposed to address the considered SAC problem. Section 3.2 describes the system
model and formulates the SAC problem. Section 3.3 presents the OSAC algorithm and the

online reservation functions leveraged in our solution, in greater detail. Section 3.4 describes
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TABLE 3.1: Summary of Notations

Symbol Description

m Number of resource types
H Index set of NSRs
T, Requested amount of resource j by NSR h
op Lifetime of NSR h
T Timestamp of NSR h
e Revenue of NSR K
Pn Unit value of NSRs h
ay, Coefficient vector of NSRs h
G Aggregated capacity of resource j
Xy, Decision variable on NSR &
lin ,€xp

Normalized Resource Utilization of LinRP and ExpRP policies for resource j
when NSR / enters the system
([),ljn, ¢, System Admission Cost of LinRP and ExpRP policies when NSR & enters the

Dnj> In,j

h
System
K; Resource heterogeneity ratio for resource j
0 Willingness-To-Pay-Ratio

the simulation setup and discusses the evaluation results. Finally, section 3.5 concludes the

study in this chapter by reviewing the main contributions and highlighting the relevant results.

3.2 System Model and Problem Formulation

In this section, we formulate our problem in a typical network slicing scenario, in which an InP
owns the network resources and can lease them to STs for variable periods. Thus, we describe

the system model of the virtualized mobile network and formulate the SAC problem.

3.2.1 System Model

Infrastructure Model: We consider a scenario that consists of a sliced edge infrastructure
made of BSs co-located with Edge Servers (ESs), which are equipped with an arbitrary amount
of virtualized network and compute resources (e.g., bandwidth, CPU, RAM, storage). In this
scenario, an InP owns and leases the physical network resources by dynamically allocating
them to incoming NSRs. We assume that the physical resources of all edge servers in the
system are pooled together to support heterogeneous NSs with different resource requirements.
Therefore, in this work, the NSRs are admitted and executed on a single virtual infrastructure,
physically distributed over a set of edge servers. In the considered scenario, STs seek to deploy
and instantiate new slices (with their Virtual Network Functions (VNF's)) on the infrastructure

to provide their services, as shown in Figure 3.1.

In line with the time-varying network conditions at the network edge in Network Function
Virtualization (NFV)-enabled mobile networks, we assume that time in the system is divided
into consecutive intervals called time slots. Each time slot is indexed with an element of

the ordered index set T = {1,...,|T|}. We assume that the sliced edge infrastructure offers
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m different types of resources, whose amount does not change over time. We define [m] =
{1,...,m} as an index set that identifies each of the m resource types. For example, in this
work, we assume that m = 3, as the resource pool primarily consists of computing resources
such as CPU, memory, and storage, which can be hosted by edge servers or a regional cloud
provider. We define the variable C; € R4, with j € [m], as the aggregate capacity of the j-th
resource in the whole infrastructure. For example, in a scenario with m = 3 types of resources,
C1, Co, and Cs can indicate the infrastructure-wide capacity of CPU, memory, and storage,

respectively.

Slice Request Model: Each of the consecutive tenant-generated NSRs is identified by the
incremental index h € H, where H = {1,...,|H|} is defined as the ordered set of all NSR
indices. Furthermore, each NSR’s features are summarized by a tuple (r4, 4y, T, 71,), whose
components are described hereafter. The variable 7, is an m-dimensional vector, where each
component 7y, ; is the requested amount of a resource of type j by an NSR h. The variable
0 € IN represents the lifetime of NSR h, defined as the number of time slots the NSR needs
to access the network resources. The variable 7, € IN represents the timestamp of NSR h,
defined as the time slot index at which the request arrives to the scheduler. The variable
1T, € Ry represents the revenue of NSR h, defined as the economic benefit gained by the InP
from accepting the tenant’s slice request and granting it its requested resources. We calculate
it as 71, = Opppanty, with ||apill1 = 1. The j-th component of the coefficient vector & € (0,1]™
represents the relative weight of the j-th resource to constitute a logical resource unit, and py,
represents the unit value of each logical resource in the NSR. The Manhattan-norm ||ap,il|1
is used to represent the sum of coeflicients of each resource j, for an NSR h, and is given by

Y ap; = 1. In this revenue model, we assume that a higher value of a coefficient represents
j€lm]
a higher priority of the resource towards meeting the SLA of the NSR.

3.2.2 Problem Formulation

The considered dynamic SAC problem aims at maximizing the long-term revenue collected
from admitting NSRs by optimizing the decisions on which NSRs should be admitted to the

system while respecting the capacity requirements of the available resources.

Let us define x; as the decision variable that takes a value of 1, if the NSR is admitted,
and 0 otherwise. We define x = (xl,...,x|H|) as the decision vector, where x € {O,l}”’”.
Let us define the indicator function 14 : T — {0,1} so that 14(t) =1 <= t € A and
14()) =0 < t¢ A. We can now define the SAC problem as follows.

max Z T, Xp, (3.1a)
x e {0,1}1" nen
s.t. Z rh,jxhl[7;1,7;1+5h](t) <Cj, (3.1b)
heH

Vje[m],vteT
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FIGURE 3.1: System Overview

In this problem, constraint 6.3b ensures that at any time slot and for any resource, the system
allows only a number of NSRs whose aggregate resources are less than the aggregate system
capacity. We observe that the stated SAC problem is NP-hard [192], as it can be reduced to a
variant of the Multidimensional Knapsack Problem (MdKP) problem, which is also NP-hard.
The literature offers several methods to approximate the solution of an NP-hard problem
through algorithms that have polynomial complexity. However, the main limitation of this
offltine formulation of the SAC problem is that, to compute the optimal solution, the scheduler
must know the whole sequence of arriving NSRs, including those who will arrive in the future,
which is unfeasible in real-world scenarios. The lack of future information when deciding on the
admission of NSRs makes the considered SAC intractable [190]. Hence, to enable real-world
systems to approximate the solution of the stated offline SAC problem, we design a scheduler

that uses an online algorithm for Slice Admission Control to optimize revenues.

3.3 Online Slice Admission Control

We consider the online version of the SAC problem, where the unknown inputs are the
multi-dimensional resource requirements (or demand) of the NSRs, and their corresponding

revenue. In such a problem, the goal is to design an online algorithm that determines how
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sequentially arriving requests are accepted, based only on the currently available information.
Specifically, we consider the scenario in which arrving NSRs cannot be buffered in the
scheduler queue, and therefore a decision must be made on it’s admission immediately and
before the end of the current time-slot, as this would enable immediate resource allocation for
the arriving NSR. Finding a policy that can solve the SAC problem in polynomial time while

considering the unpredictable nature in which requests can arrive, is challenging.

Primer on Online Multi-dimensional Knapsack Problems

The Online Multidimensional Knapsack Problem is one in which there exists a knapsack (i.e.,
an edge server/gNodeB) whose capacity is represented by several dimensions (i.e., 2 < m), and
where each dimension (sic. resource) could have a different capacity. In this problem, items
(or slice requests), with a different value in each dimension of the knapsack, arrive in an online
manner. The goal in such a problem is therefore to admit or reject items upon their arrival in
a way that maximizes the overall profit of the knapsack from the admitted items (i.e., slices),
while also ensuring the capacity of the knapsack in each dimension is maximized, as well as

ensuring that the SLA of new & existing slices are not violated while being served.

The OMAdKP can be seen as a natural generalization and combination of the classic
single-dimension knapsack problem but applied to multiple dimensions [193], and the online
variant of the knapsack problem. Such a definition is an appropriate consideration to the
online slice admission control problem applied to programmable and virtualized 5G networks,
where each incoming slice request from a tenant could include multi-dimensional resources
(i.e., CPUs, Storage, Memory, GPUs, and FPGAs) of varying values, that span multiple
domains (i.e., Edge, RAN, and Cloud Core). Unlike online multiple knapsack problems where
actions are required to determine admission and allocation, problems in the OMdKP domain

are primarily concerned with admission decisions.

Proposed Solution

We address the challenge of approximating a solution for the considered online SAC problem
based on it’s reduction to the OMdKP. This enables us to leverage two policies[193] designed for
the OMdKP, namely the LinRP and ExpRP, in our solution. The policies are based on online
reservation functions that associate an implicit admission cost based on the utilization of each
network resource. The intuition behind this is that by multiplying the current scarcity of each
resource by the corresponding resource requirement of an NSR, the cost of admitting a request
is effectively evaluated in an online manner. Furthermore, it is important to discourage high
utilization of any resource in order to increase the chances of admitting higher valued future
requests, as well as avoid performance degradation from resource sharing between co-located

slices.

Let us define the WTPR 0, as the ratio between the maximum and minimum price per
resource unit per time slot the tenants are willing to pay to reserve resources on the provider’s
infrastructure. The main purpose of 6 is to quantify the spread (i.e., the variation) in the

NSRs’ utilities, and, therefore, scenarios with a higher value of 6 lead to higher revenues.
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However, such scenarios could likely have an impact on the admission rate due to the need
for guaranteed QoS from high paying tenants. In this work, we assume that the value of 0 is
fixed and known in advance (Section 3.4). However, in real-world scenarios, the slice admission
controller can learn the value of 6 online by exploiting real-time information on sequentially
arriving NSRs and by using data-driven algorithms. Let us define uy; as the utilization of
the network resource j after a NSR I has been accepted onto the infrastructure, and let us
recall that C; is the total capacity of the j-th resource in the network. Finally, let us define the
resource heterogeneity ratio k;j = Cl] Zze[m] C,, which captures the heterogeneity of the capacities
of individual resources in the network (an important factor in the considered multi-dimensional

setting). The details of the two policies are as follows.

o Linear Reservation Policy (LinRP): In this policy, the scarcity of each network
resource increases linearly based on the normalized utilization of the resource. Hence, the
higher the utilization of a given resource is, the higher is the admission cost of admitting
a new NSR that requests that resource. As a result, in periods where the overall network
infrastructure has a higher load leading to higher resource utilization, the admission cost
increases too to reserve the resources for higher valued requests. Therefore, we define
the normalized resource utilization q};‘} and the system admission cost ¢ for LinRP in

Equations 3.2 and 3.3, respectively.

. uy ;
g = { Ch]] \/GmJ (3.2)

lin ZK]
Py = mAX i1\ Th (3.3)

o Exponential Reservation Policy (ExpRP): The second online reservation function
considered is the Exponential Reservation Policy (ExpRP). Intuitively, the scarcity of
each resource in the system increases following an exponential reservation function and
is also based on normalized resource utilization. Therefore, we define the normalized

exp

resource utilization g, j and the system admission cost ¢2Xp for ExpRP in Equations 3.4

and 3.5, respectively.

exp _ | Uhj ,
T = {C]' log (GK])J (3.4)
m
¢, =) (2% = 1)ry, (3.5)
j=1

Due to the exponential increase in the scarcity of resources, the ExpRP approach can be
considered as a more conservative approach, compared to LinRP, which could be suitable
for situations with very high resource utilization to ensure only the highest valued requests

are accepted.
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Algorithm 1 Online Slice Admission Control
Input: 0, x;, C;, Vj € [m]
Output: xj,
1: (h, Uuop, qo) — (0, 0,0)
2: loop
3: h<h+1
4: (1"h, On, 7'L'h) — WaitNSR()
5: // Update Admission Threshold (if LinRP)

lin __ 2K;
P < G = MAXje ) qn-1,i\ T Thj

6:

7: // Update Admission Threshold (if ExpRP)
S gy gt = L@~ 1n,

9: x, <0 :

10: if 7t;, > ¢y, and Th,i < C] — Up—1,j, Vj e [m] then
11: xp 1

12: // Update Resource Utilization

13: Up,j < Up—1,j + XpTh,j, Vj € [m]

14: while CheckFinishedNS() do

15: 1y < GetFinishedNS()

16: // Release Resources

17: Up,j <= Up,j — Thj, Vj e [m]

18: // Update Normalized Utilization (if LinRP)
19: g qﬁr; = VCL;V GmJ Vi€ [m]
20: // Update Normalized Utilization (if ExpRP)
Up,j .
20 guy gt = | L log (6x) | vj € m]
return xj,

Online Slice Admission Control Algorithm

Our algorithm works in a time-slotted fashion in which NSRs that arrive in a given time
slot are handled in immediately, upon which they are either accepted and admitted onto the
infrastructure or rejected immediately. We now describe the steps of Algorithm 1. When a
new NSR arrives, we check its resource requirements (line 4). Then, the admission threshold
is updated based on the current scarcity of each resource with the requested resource. When
the LinRP policy is applied, the scarcity is based on the resource with the higher scarcity or
normalized utilization (line 6), while with the ExpRP approach, the sum of scarcities in each
dimension is summed up (line 8). A NSR meets the criteria for admission when the value of
the request is higher than the admission threshold for either policy and there is enough space
in the system to accommodate the resource requirements of the request, otherwise the request
is rejected (lines 9-11). Based on the decision to accept or reject the NSR, we update the
resource utilization in the system (line 13). Since we consider that each admitted slice is in
the system for a certain period of time, at the end of each time slot we update the current
resource utilization by releasing the allocated resources (line 14-17), and update the normalized

utilization of the system too (lines 18-21).
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3.4 Performance Evaluation

3.4.1 Simulation Setup

We compare the performance of the implemented ExpRP and LinRP policies with those of
FCFS, an online greedy policy that admits arriving NSRs onto the network infrastructure if
there is sufficient capacity. We implemented the three policies and the simulated scenarios
in Python and publicly released the source code on GitHub!. As the literature does not offer
public datasets on NSRs, we evaluate the performance of our proposed approach on a synthetic
dataset H containing a sequence of 5- 107 NSR slots for each simulation. The size of this dataset
is sufficient to estimate the average, long-term performance of the proposed approach with high
confidence. We assume that the system contains m = 3 resource types, namely CPU, RAM,
and storage. Each NSR in the dataset h contains information about its duration dy,, requested
resources #y, revenue 71, and arrival timestamp T;,. We assume a time-slotted environment,
where, during each time slot ¢, a random number X; of NSRs enters the system. We model
X; as a Poisson process in which all X;, Vt € {1,...,|T|} follow a Poisson distribution Pois(A)

with identical arrival rate A = 2, where A is the average number of arrivals per slot.

To evaluate how the compared policies perform under variable amounts of requested resources,
we assume that each component of the resource vector rj, requested by a NSR comes from a
normalized uniform distribution ¢ ([0,1]). Furthermore, for the sake of simplicity, we assume
that resource capacities are also normalized, so C; = 1,Vj € [m]. To simulate the impact of
different durations on the system, we assume that the slice lifetimes J;, are uniformly distributed
as &, ~ U({1,{}), where { is the upper duration bound. To represent different economic
conditions of tenants that issue NSRs, we model the slice unit value py as p, =1+ (0 —1)Y,
where Y is a random variable that follows a symmetric Beta(w,w) distribution, and ¢ > 1
is an economic scale factor such that pj, € [1,0]. The parameter w € (0, +0c0) represents the
economic inequality of the tenants: when w — 0 an increasing share of tenants will request
slices with unit values close to 1 or to ¢, while when w — +o0, tenants will offer increasingly
similar unit values for their NSRs. We evaluated our approach in a range of scenarios, where
w € {0.05,0.1,...,1}, ¢ € {10,20...,100}, and ¢ € {10,30,100}. In these scenarios, the
values of max;ecy d;p; = 0 and min;ey 6;p; = 1. Therefore, the WTPR 0 that characterizes
each scenario is 0 = 0{/1 = 0. Furthermore, considering that C; = 1,Vj € [m], the resource

heterogeneity ratio is Vj € [m] : x; = m = 3.
3.4.2 Performance Metrics

The following three metrics are used to evaluate our approach:

o Average Revenue Relative Gain. We define the average revenue as the ratio y =
ﬁ Y nen 70 between the total revenue and the number || of all received slice requests.

We define the average revenue relative gain for the two policies LinRP and ExpRP as

Ihttps://github.com/CDS-Bern/Online-Slice-Admission-Control
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HL—HF
HE
LinRP, ExpRP, and FCF'S, respectively.

and EP; EE respectively, where pp, pg, and pr indicate the average revenues for

o Acceptance Ratio Relative Gain. We define the acceptance ratio n = n/|H| as the
ratio between the number n of accepted slices and the number |H| of all received slice
requests. The acceptance ratio relative gain for the two policies LinRP and ExpRP are
defined as '75];;” and '7‘2%” respectively, where 11, #g, and yr indicate the acceptance
ratios for the LinRP, ExpRP, and FCFS policies, respectively.

e Average Resource Utilization Relative Gain. We define the average resource
utilization p = ﬁ Ynen Lijem) Unj/ Cj as the sum of the normalized utilization for all
resources for all received slice requests divided by the number |H| of all received slice

requests. The average resource utilization relative gain for the two policies LinRP and

ExpRP are defined as £ Lp;pF and £ Ep;p L respectively, where pr, pg, and pr indicate the
average resource utilization for the LinRP, ExpRP, and FCFS policies, respectively.

3.4.3 Simulation Results

Average Revenue Relative Gain

Figure 3.2a shows the relative gains of the LinRP (red, blue and green lines) and ExpRP (light
red, light blue, and light green) policies, compared to the greedy (FCFS) policy for the mean
revenue. The results are based on the slice holding time &), of each incoming NSRs, which is
bounded by a specific duration, i.e., { € {10,30,100}. From this, we can see that applying both
policies in our algorithm leads to higher average revenue than the greedy policy across various
upper bounds on the NSR durations and for the range of unit values considered. Specifically, it
can be observed that in situations with higher economic inequality between tenants (w — 0),
the revenue gain is the highest (over 10%) when using both policies. This is because, in such
scenarios, the value of the accepted NSRs is higher due to the online reservation function
that places a higher threshold on the values that can be accepted. The results shown are for

confidence intervals at level 99.9%.

Acceptance Ratio Relative Gain

The relative gains in the Acceptance Ratio (AR) by using the online reservation-based policies,
are shown in Figure 3.2b. We see that by utilizing the introduced policies in our approach,
fewer NSRs are admitted compared to the greedy FCFS approach for the considered range
of upper-bounded NSR durations times. The performance of our solution improves when the
average duration of requests increases and when the value of w approaches 1. This is primarily
due to the admission criteria of the reservation-based policies compared to that of the greedy
policy, where the proposed solution rejects lower-valued requests at a higher rate compared
to higher-valued slice requests with longer durations. This leads to a lower overall acceptance
ratio for the considered parameters, but a higher revenue, as seen in the previous results for
Average Revenue Relative Gain. Here again, the results shown represent confidence intervals
at level 99.9%.
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Average Resource Relative Utilization

It can be seen in Figure 3.2¢, that across most of the evaluated upper-bounded duration and
unit price parameters, the resource utilization is lower on average using our approach. This
is in line with the results from the acceptance ratio gain, which shows that based on the
reservation-based policies our approach leads to a lower overall acceptance ratio, and hence,
there are periods during the experiments when the resources are not fully utilized but new
NSRs are rejected due to their revenue and the current utilization level of any given resource
in the system. Achieving a lower average utilization is key to achieving the goal of maximizing
the revenue for InPs as it ensures that the scarce resources are reserved for the NSRs that offer

the most revenue. The displayed results show confidence intervals at level 99.9%.
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FIGURE 3.2: Relative Gain for LinRP and ExpRP against FCFS for different values of w and o = 10.
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3.5 Chapter Conclusions

This Chapter primarily investigated the problem of online admission control of NSLs in
mobile networks. In order to address the problem, we modeled the problem as an Online
Multidimensional Knapsack Problem in which decisions on sequentially arriving NSRs which
offer the InP some revenue must be made, with the goal of maximizing the long-term revenue
gained from accepting requests in the network. Specifically, we focus on the dynamic nature
of mobile networks by considering an online and multidimensional scenario in which NSRs
contain multiple resources which must be considered during the admission process in order to
ensure that the SLAs of a NSL are met during it’s lifetime. This problem is exacerbated in
this scenario as decisions must be based on the currently available information only, and in the
absence of future information. To address the problem, we proposed a novel online solution
that leverages reservation-based policies to determine wether or not NSRs are admitted onto
the InPs’s virtualized mobile network infrastructure. To evaluate our proposed solution, we
consider scenarios that represent different economic conditions of tenants that issue NSRs and
show that our proposed solution is able to outperform the greedy FCFS baseline solution in
terms of revenue gained from accepted requests, while accepting fewer NSRs and saving on

the consumption of system resources.

However, our proposed solution, OSAC, assumes that the reservation policies utilized are
optimal across all the evaluated scenarios and that the distribution of network slice request
parameters are fixed and stationary over time, which isn’t necessarily the case in real-networks.
In Chapter 4, we present a method for detecting changes, or drifts, in the underlying parameters
of network slice requests that define a scenario (i.e., a given WTPR), and for dynamically
selecting the optimal admission policy by learning how different algorithms perform across

various scenarios, in an online manner.
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Chapter 4

Data-Driven Online Policy Selection

4.1 Introduction

For 5G Infrastructure Providers (InPs), the efficient management of network resources is
becoming an increasingly critical challenge in multi-tenant, multi-service and multi-domain
environments. As a result, Slice Admission Control (SAC) emerges as a fundamental component
of resource management, tasked with determining which Network Slice Requests (NSRs) to
admit based on available resources and the objectives of the NSRs. Traditional approaches
to admission control often employ static policies that make reservation of network resources
for a specified duration of time based on instantaneous network states without considering the
temporal dynamics of the network environment [194]. Such approaches, while computationally
efficient, fail to capture the inherent uncertainties and variations that characterize real-world
mobile networks [195].

5G network systems are inherently dynamic and time-varying, exhibiting fluctuations
in resource availability, user mobility patterns, and traffic demands [61], [196]. These
time-varying dynamics introduce what can be referred to as drift in the network state
i.e., a systematic shift in network characteristics or conditions that evolve over time [41].
Conventional admission control policies that neglect these drifts may lead to suboptimal
resource utilization, increased Service Level Agreements (SLAs) violations, and reduced
revenue for InPs. The effectiveness of an admission control policy is therefore contingent on
its ability to adapt to changing network conditions[195]. In the context of slice admission
control in mobile networks, the challenge of adaptive online policy selection has not received
sufficient attention in the literature. However, due to the time-varying network dynamics and
admission cost functions involved, it is an important consideration since admission decisions
must be made sequentially along a single continuous trajectory, rather than restarting from

an identical initial network state to assess alternative admission control policies. [197].

This chapter introduces a novel framework for drift-aware policy selection in 5G networks, to
address the problem of SAC. We propose a meta-decision system that dynamically selects

the most appropriate admission control policy from a portfolio of candidate policies based
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on detected network drift patterns. By incorporating drift awareness, our approach enables
proactive adaptation to evolving network conditions, thereby enhancing long-term system
performance. We formulate the Slice Admission Control Policy Selection (SACPS) problem
as a Multi-Armed Bandit (MAB), and develop a framework for addressing this problem by
characterizing drifts in the patterns of slice requests. This enables us to establish a mechanism
for mapping optimal admission control policies to detected drifts conditions. Through extensive
simulations using realistic network scenarios, we demonstrate that our drift-aware approach
significantly outperforms static policy selection methods across multiple performance metrics,

including resource utilization efficiency, revenue generation and the acceptance of NSRs.

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.2.

RQ 2.1: How can admission control policies be dynamically adapted to cope with evolving

network slice request patterns in 5G networks?

RQ 2.2: What is the effect of temporal shifts in the distribution of network slice request

characteristics on the performance and robustness of admission control policies?

RQ 2.3: How can online learning techniques be integrated with concept drift detection to

enable continuous adaptation of slice admission control policies in dynamic environments?

We address the above mentioned challenges, by proposing Drift-AwaRe upper confldence
bOund (DARIO), a data-driven solution to adaptive policy selection for slice admission control.
We address RQ 2.1 by formulating the policy selection problem as an MAB problem to
address the exploration-exploitation trade-off in the problem. We address RQ 2.2 by creating
a synthetic dataset of NSRs that contains distribution shifts to evaluate the performance of the
baseline admission policies across time-varying distributions. Based on these observations, we
design a change detection mechanism based on ADaptive WINdowing (ADWIN) to detect the
changes in the statistical features of NSRs which could trigger admission policy adjustments
through adaptive thresholds. The RQ 2.3 is addressed by integrating the Sliding-Window
Upper Confidence Bound (SW-UCB) algorithm with the change detection technique to create
a data-driven, drift-aware online learning framework that learns the performance of parametric
admission policies, by updating their parameters based on the estimated changes in the

historical request patterns.
Our contributions can be summarized as follows.

e We study the problem of online SAC and focus on the challenge of adaptively selecting
between a set of AC policies for this problem. We formulate the policy selection problem as
a MAB problem.

e To address the MAB problem, we design a framework, DARIO, that aims to learn
the performance of the SAC policies and to identify efficient admission policies across

time-varying scenarios.
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e Through extensive evaluations, we show that our proposed framework is able to outperform

the Single Best (SB) Policy (i.e., a static policy), as well as a vanilla UCB selection policy.

The following sections discuss the content in our paper published in the 2024 IEEE
Network Operations and Management Symposium (NOMS) [195]. Section 4.1 describes the
research questions addressed in this chapter and discusses the contributions of the proposed
learning-based framework. Section 4.2 describes the system model and formulates the PS
problem in the considered SAC context. Section 4.3 presents the DARIO framework in more
detail. Section 4.4 describes the simulation setup and discusses the evaluation results. Finally,
section 4.5 concludes the study in this chapter by reviewing the main contributions and

highlighting the important results.

4.2 System Model and Problem Formulation

In this section, we describe the considered NSL scenario, while also describing the infrastructure
and NSR models. Finally, we formulate the considered SACPS problem.

Action E
Slice Admission Controller .
a €
e 1
1 1
Reward R, 6 !
1 I !
1 L. e '
NSRs ! ! )
vl Ly

— ) Time H_/'
0, 0,

Or

FIGURE 4.1: Policy Selection Problem for SAC

To model the problem of adaptive selection of AC policies, we first consider a sequence B =
{b1, by, ...,br} of problem instances, where each problem instance b; € B represents an instance
of the online SAC problem [15] in which a decision is required on the admission of arriving NSRs
in order to maximize the long-term revenue received by the InP. Furthermore, we consider a set
A = {A1, Ay, ..., AN} of policies such that each problem instance by can be solved by at least one
policy A, € A, where n € N and the elements of N' = {1,2,..., N} represent the index of an
admission policy. In such a setting, the goal is to select the policy that performs best according
to the optimization objective of the problem instance [198]. This goal could be achieved either
by identifying the Single Best policy for the whole set of problem instances or, the best policy
for each instance of the problem. However, in this work, we consider a more general setting in
which a selection policy ® is to be sequentially learned for the adaptive selection of different

admission control policies, where each policy is expected to perform well on different subsets
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TABLE 4.1: Summary of Notations

Symbol  Description

m Number of resource types

H Index set of NSRs

B Set of SAC problem instances

Th,j Requested amount of resource j by NSR h
oy Lifetime of NSR h

Iy Timestamp of NSR h

vy, Revenue of NSR K

Pn Unit value of NSRs h

ay, Coefficient vector of NSRs h

G Aggregated capacity of resource j

Xy Decision variable on NSR h

K; Resource heterogeneity ratio for resource j
6/6 Willingness-To-Pay-Ratio or Estimate of WTPR
A Set of AC policies

Ay Arm (or policy) selected at time ¢

R; Reward at the time ¢

g«(a) Value of arm a* at time ¢

Mar/Ma, Mean of arm a* or a at time ¢

of the problem instances B. In both scenarios, there is a clear trade-off between exploring
the performance of different admission control policies over the set of problem instances B and
exploiting the estimated optimal admission control policy based on the performance on a subset
of problem instances. Formally, such a problem can be modeled in the MAB setting, which is

a well-known paradigm for dealing with this trade-off.

We consider that the set of applicable admission control policies are the Linear Reservation
Policy (LinRP) and Exponential Reservation Policy (ExpRP) [193], which use linear and
exponential reservation functions, respectively, to determine the admission thresholds for
incoming network slice requests. Such threshold-based policies could be said to characterize
the attitude of an InP toward the uncertain utilities of future NSRs. That is, they determine
how much of the currently available network resources should be reserved in advance for the
possible arrival of future NSRs that could offer a higher utility. This is done by evaluating the

marginal utility of each network resource at its current utilization level.

By modeling the SACPS problem as an MAB problem, we consider the scenario in which the
range of offered utilities in the sequentially arriving NSRs are unknown in advance but must be
estimated by the considered AC policies to adaptively determine their admission thresholds. We
quantify the variation in the NSRs utilities by defining the Willingness-To-Pay-Ratio (WTPR)
0 = % as the ratio between the maximum and minimum price per resource unit per time
slot the tenants are willing to pay for resource reservations on the InP’s infrastructure, i.e.,
Pmax and pmin are the upper and lower bound on the price per resource unit per time slot i.e.,
P € [Pmins Pmax]- AS Pmin and pmax may vary between time slots, we assume that 6 can also

fluctuate over time.
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Let us define H; as the set of the slice requests received by the slice admission controller during
time slot f, where each time slot effectively represents a period (i.e. a few minutes) in which a
certain admission control Ay policy is applied. The decision variable x; € {0,1} is 1 if request h
is accepted and 0 otherwise. We assume that the slice admission controller selects an admission
policy at the time slot’s beginning and keeps it the same for the whole duration of the time
slot. This assumption means that all slice requests received during a time slot are subject to

the same acceptance policy (i.e., the bandit’s arm).

A key challenge in designing an appropriate solution for the formulated SACPS problem is
determining a reasonable performance metric that can be used to compare policies that earn
different utilities (i.e., amounts of revenue), and utilize different amounts of resources [199].
A direct comparison of the revenues earned as a result of applying the decisions of admission
control policies, leaves out the fact that different policies can have distinct admission thresholds
and therefore can admit requests at different rates. This leads to the selection and application
of each policy utilizing varying amounts of resources which potentially leaves fewer resources
available in the future and impacts the decisions of subsequent policies. We address by defining
the reward R; (Equation 4.1) for time slot t as the ratio between the actual revenue gained by
applying policy a and the total revenue that would be gained if all slice requests were accepted,

towards the maximization objective of the InP’s revenue:

Y. VR
_ heH;
Y vy

heH;

R; (4.1)

We assume that the average reward of each arm R; is an unknown mean p,, where a € A.
The advantage of such a reward formulation is that R; € [0, 1], which allows the application of
bandit-based algorithms [200]. We define the action A; € A = {LinRP,ExpRP} at time slot ¢
as the admission policy selected by the slice controller at that time slot. We define the value

of an arm a (i.e., the choice of a policy) as g.(a) = E[R¢|A; = a].

Let us define pi,+ and pg, to denote the expectation of rewards R;(a;) and Ry(a;), respectively,
at time slot ¢, i.e. pyr = E[R;(af)] and pq, = E[R;(a;)], and T is the time horizon. Our MAB
model aims to minimize the expected cumulative regret IE[R(T)] for T arm plays (Equation 4.2),
which is the difference between the rewards obtained through the chosen arm and the optimal

arm (i.e. the SB policy or benchmark) a; = argmax, E[R(a)] at time f:

E[R(T)] =E | }_(Ri(a;) — Ri(ar))

teT

=Y (Ha; — Hay) (4.2)

teT

4.3 Drift-Aware Policy Selection

To address the formulated policy selection problem, DARIO aims to select the optimal policy
that maximizes the long-term reward by learning the performance of the policies for SAC

across different scenarios, each characterized by a time-varying, unknown WTPR 6; at time ¢,
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estimated by an estimator:
A maXpey, Pn

t .
miMue, Ph

which is computed on the arriving NSR’s features. We note that under the full feedback setting,

s

(4.3)

such a problem could be addressed by keeping a running average of the reward of each arm (or
policy) and playing the arm with the best estimate, as is done by the Follow-The-Leader (FTL)
meta-algorithm. However, this gives rise to a purely exploitation-based approach, which could
lead to a sub-optimal arm being constantly chosen despite the potentially better performance
of other arms across different scenarios. As a result, the regret achieved by such an approach
grows linearly over time [201]. Furthermore, this approach is likely to impose high overhead as
the performance of the adjacent policies in A would need to be considered during the selection of
the AC policy. Hence, in the design of DARIO, we consider a more flexible setting with bandit
feedback. In particular, DARIO builds upon the SW-UCB algorithm [202] by incorporating a
change-detection mechanism to monitor Concept Drift (CD). The change detection mechanism
enables the framework to learn the performance of the policies by adapting the selection policy
® across different scenarios, based on the WIPR estimate ;. This is achieved by updating
the thresholds of the admission policies and resetting the selection policy when a drift in 6; is

detected in order to compensate for the changing features of the arriving NSRs (Figure 4.2).

4.3.1 Change Detection

Our framework aims to learn the performance of the admission control algorithms in various
scenarios by incorporating a change-detection technique to monitor the presence of CD. CD
is the phenomenon in which the statistical features of a target domain change over time
and in an arbitrary manner [203]. The CD mechanism used to detect the changes in the
underlying distribution of unit values is presented in Algorithm 2 and is based on an ADWIN
technique [204]. We chose this technique as its able to work with any kind of real-valued
input and does not require any knowledge regarding the input distribution [205]. Detecting the
distribution shifts of unit values is crucial in ensuring the robustness of our learning framework

to CD scenarios based on the historical characteristics or patterns of slice requests.

To estimate the WTPR {ét}thl in an online manner, an estimate of the distribution of NSR unit
values is required. The algorithm detects whether there has been a significant change (drift)
in the underlying data distribution of arriving NSRs characteristics by statistically comparing
two halves of a sliding window containing historical WTPR estimates. The algorithm begins
by splitting the input window W into two equal sub-windows (lines 3-4): Wy containing the
older half of the data (elements from index 0 to |W|/2-1) and W; containing the newer half
(elements from index |W|/2 to |W|). It then computes the harmonic mean m (line 6) of the
two sub-window lengths, which equals |W]|/2 since both halves are equal in size, and uses
this to calculate a drift detection threshold (line 8) € = 4/ ﬁ . ln%w‘ based on Hoeffding’s
concentration inequality [204]. This threshold accounts for both the window size (larger
windows require larger differences to indicate drift) and the desired confidence level a (smaller
« values make drift detection more sensitive). The algorithm then computes the empirical

averages flp and fi; of the WTPR estimates in each sub-window respectively, representing the
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Algorithm 2 Concept Drift

Require: Sliding Window Size W, Error Threshold &
1: function CONCEPTDRIFT(W, «)

2: > Split window in two subwindows
3: Wy < Subwindow (0, |[W|/2 — 1)
4: Wj < Subwindow(|W|/2, |W|)
5: > Harmonic mean of subwindows length
6: m <— 1171

ol ]
7 > Compute drift detection threshold

€ 4 ﬁ -In %
> Compute empirical averages of the estimator in half-windows

10: o+ g I
1 gy Z‘ti\]ﬂW\/Z 0
12: if ’ﬁo — ﬁ1| > ¢ then
13: > Discard old window W
14: W+ W,
15: return W

mean behavior in the older and newer portions of the data (lines 10-11). Finally, it performs
the drift test by comparing the absolute difference |y — fi1| against the threshold ¢ (line 12): if
the difference exceeds the threshold, it indicates that the underlying distribution has changed
significantly, prompting the algorithm to discard the older sub-window Wy and return only the
newer sub-window Wj to maintain relevance (line 14); otherwise, it returns the original window
unchanged (line 15). This approach provides a statistically principled method for the DARIO
algorithm to adapt to changing network conditions by ensuring that only relevant, recent data
influences the bandit learning process, with the trade-off that smaller a values lead to more
responsive but potentially noisier adaptation, while larger a values provide more stability but

slower response to genuine changes.

4.3.2 Learning Admission Policies under Concept Drift

DARIO estimates 6; upon drift detection and seeks to learn the performance of the admission
policies (Section 4.2) in the following Sliding Window (SW), based on this estimate. This is
done by considering the number N;(7,a) of times each arm a, is selected by the SW-UCB
algorithm during the last T time slots, which is represented by:

t

Nt(T, a) - Z ]l,AS:a/ (44)
s=max{0,t—7+1}

where 1 4. —, is an indicator function that evaluates to 1 when the arm selected within time-slot
s is a. Furthermore, we define the empirical average reward of an arm up to the current decision
interval t and define the R;(t,a) for this, which can be calculated using [202]:

_ 1 t

Ri(t,0) = ———— Rslp,—a, (4.5)
Nt(T’a) s—max{%i;—'r-i-l} i ’
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where Rg represents the sum of rewards of policy a during time-slot s. Based on the SW-UCB
approach, the framework learns the average performance of each algorithm’s decisions in a
given SW. Therefore, we define the bandit’s sequential arm selection policy at a given time
slot ®; as:

®; = argmax R¢(t,a) +c¢ log(f A7)

5 Ni(T,a) ' (4.6)

where the second addend is used to encourage the exploration phase during the learning process
and (t A T) denotes the minimum of ¢ and T [202]. Based on N;(7,4a), (Equation 4.5) and
Equation (4.6), the framework learns the performance of each arm within a given SW and,
subsequently, across different scenarios by adjusting the learned policy through the feedback
information and the concept drift detection. Hence, it learns the performance of the admission

control policies in dynamic network conditions which are captured by the dynamic value of 6.

4.3.3 Proposed Solution

Theta Estimation/

No > Best Arm
Drift Detection

Exploitation

t

¥» Online Learning

Update Algorithms

LTI

FIGURE 4.2: DARIO Workflow

The DARIO algorithm is a MAB-based approach that dynamically selects between different
network slice admission policies, while adapting to concept drift in network slice request
patterns. Algorithm 3 shows DARIO’s operation. The algorithm begins by initializing key
parameters including time slot counter f, initial resource utilization ug and initial normalized
resource utilization gg, an empty sliding window W for storing WTPR estimates, and the
resource heterogeneity ratio for resource j, x;, which is set to 5 for each resource type j € [m]
(line 1). At each time slot, DARIO first collects incoming NSRs during the current period (line
4), then estimates the WTPR 0; by computing the ratio between the maximum and minimum
request values among all arriving requests (line 6), which captures the request heterogeneity
and resource demands. This WTPR estimate is appended to the sliding window W (line 8),
which is then processed through the ConceptDrift algorithm that splits the window into older
and newer halves, computes a statistical threshold based on Hoeffding’s inequality, compares
the empirical averages of both halves, and discards the older half if significant drift is detected,

ensuring that only relevant recent data influences future decisions (line 10). Using the updated
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Algorithm 3 Drift-Aware uppeR confldence bOund (DARIO)

Require: Sliding Window Size w, Drift sensitivity coefficient «
1: t,h,uo,qo 0, W+ @, K; <5

2: loop
3: > Collect NSRs arriving during timeslot ¢
4: H; < WaitNSRs(t)
5: X > Estimate the WTPR for current time slot
6: O < maxuey, pn/ Mipey, Pu
€6 > Append the WTPR, estimation to the window
g W<« WU{8}
9: > Update window if CD detected
10: W <= ConceptDrift(W, a)
11: > T is the window size in timeslots
122 T+ |W]|
13: > Prepare bandit over T window
14:  for ¢ € Ado
15: Nt(T (P) — Zé max{Ot T+1} ]1.,45:4;
16: Rt(T (P) T¢) s max{0,f—t+1} RS ((P) lAs:‘P
17: > Apply the SW-UCB policy over T window
18: ®; < arg max [ﬁt(r,qb) +c loNgtEtTA(;))}

peA ’
19: if ®; = LinRP then
20: > Apply Linear Reservation Policy and collect reward
21: R; <+ RewardLinRP(H;, 6;)
22: else if ®; = ExpRP then
23: > Apply Exponential Reservation Policy and collect reward
24: Rt < RewardExpRP(H;, ét)
25: > Release resources of finished NSRs
26: ry < GetFinishedNS(t)
27: Upj < Upj— Th,j,Vj S [m]
28: > Estimate Average Reward

20: Ry« 1¥! (R,
30: t+—t+1

window of size T, DARIO applies a SW-UCB policy by computing for each policy ¢ in the action
set {LinRP, ExpRP} the number of times it was selected N;(T,¢) and its average reward R;(T, ¢)
within the current window, then selects the policy that maximizes the upper confidence bound
ﬁt(T, (P) +c log(tAT)

Ni(7,9)
of potentially better alternatives (lines 12-18). When LinRP is selected (line 19), a subroutine

which balances exploitation of historically good policies with exploration

(algorithm 4) computes an admission threshold (line 4) ¢y, = maXe(y) n-1,j \/%rh,j that scales
linearly with resource utilization levels and request resource demands, admits a slice if its value
vy, exceeds this threshold and sufficient resources are available across all dimensions (lines 5-6),
or rejects otherwise (line 8), updates resource utilization up,; by adding the allocated resources
(line 10), and updates normalized resource utilization g j using a square-root scaling formula
V'” \/EJ that grows moderately with utilization (line 11). Alternatively, when ExpRP is

selected, another subroutine (algorithm 5) computes an exponential admission threshold (line 4)
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Algorithm 4 Linear Reservation Policy (LinRP)

function REWARDLINRP (H;, 6;)
for h € H; do
Update Admission Threshold
2%
P < MANjelu) G171\ 3 Thy

1:
2
3
4
5: if vy > 4);1 and Th,j < C] — Up—1,5, V] € [m] then
6
7
8
9

xp 1 > Admit slice
else
xp 0 > Reject slice

: Update Resource Utilization
10: Upj < Up—1, + XnTn,j, V] € [m]
11: Qnj VCL/ V éth ,Vj € [m]
): VnXp
heHy
PRRRTA

heHy

12: return R; =

Algorithm 5 Exponential Reservation Policy (ExpRP)

1: function REWARDEXPRP (H;, 6;)
2 for h € H; do

3: Update Admission Threshold
m
4: Pn < L (277 — 1)y,
j=1
5: if v, > O and Th,j < C] — Up—1,js V] S [m] then
6: xp 1 > Admit slice
7: else
8: xp 0 > Reject slice
9: Update Resource Utilization
10: Up,j <= Up—1,j + XpTh,j, Vj e [Wl]
11: Gnj < [%’ log (étKj)J Vi€ [m]
hg{ VnXp
12: return R; = Z’ m
heHty

oy = Z}‘ﬂ:l (2717 — 1)ry,; that grows exponentially with normalized resource utilization levels,
creating increasingly restrictive admission conditions as resources become scarce, admits or
rejects NSRs using the same value and resource availability criteria (lines 5-8), and updates
normalized resource utilization levels using a logarithmic formula {%f log(éﬂcj)J that grows
more aggressively than LinRP’s square-root approach (lines 10-11). After applying the selected
policy, DARIO computes the reward R; as the fraction of total request value successfully
admitted (lines 21-24), releases resources from NSRs that have completed their service duration
(lines 26-27), updates the cumulative average reward estimate (line 29), and increments the

time counter before repeating the entire process (line 30).

This comprehensive approach enables DARIO to automatically adapt between conservative
linear resource reservation LinRP, which suitable for stable, predictable NSR patterns and

aggressive exponential resource reservation ExpRP, which is more appropriate for highly
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variable, competitive scenarios. The drift detection mechanism ensures rapid adaptation
to changing network conditions by maintaining only statistically relevant historical data,
and the UCB-based policy provides guarantees on regret minimization while balancing the
exploration-exploitation trade-off inherent in learning optimal reservation strategies under

uncertainty [206].

4.4 Performance Evaluation

4.4.1 Simulation Setup

We evaluated DARIO’s performance against state-of-the-art baselines in a range of simulated
scenarios. The simulations, proposed solution, and benchmark algorithms were implemented
in Python to simulate the admission process of diverse NSRs and different network scenarios.
As the literature does not offer publicly available datasets on the time-varying characteristics
of NSRs, we evaluate the performance of our proposed approach on a synthetic dataset H
containing a sequence of 107 NSRs for each simulation. The size of this dataset is sufficient
to estimate the long-term average performance of DARIO with high confidence. The system
contains m = 5 resource types (Section 4.2). In the constructed dataset, each NSR h contains
information about its duration ¢y, requested resources ry, revenue vy, and arrival timestamp
1. In the time-slotted environment, during a time slot ¢, a random number X; of NSRs enters
the system. We model X; as a Poisson process in which all X, vVt € {1,...,|T|} follow a
Poisson distribution Pois(A) with identical arrival rate A, where A is the average number of
arrivals per slot. We evaluate DARIO’s performance under various load conditions by varying
A, specifically when A = 4 and when A = 10. Finally, we set the error threshold a defined in

Algorithm 2, to 0.002 as a result of empirical observations on the generated dataset.

Dataset Generation

Generating a dataset with distribution shifts enables the evaluation of our framework across
potentially different distributions. To generate the synthetic dataset used this in work, we
assume that each component of the resource vector rj, requested by an NSR comes from a
normalized uniform distribution ¢/ ([0,1]), and, for simplicity, we assume that the resource
capacities are also normalized, so C; = 1,Vj € [m]. Given that C; = 1, the resource
heterogeneity ratio is Vj € [m] : x; = m = 5. To simulate the impact of different slice
durations on the system, we assume that the slice lifetimes J;, are uniformly distributed as
Oy ~ U({1,{}), where { is the upper duration bound. To represent the different conditions
of tenants that issue NSRs, we model the slice unit value py as p, = 1+ (0 —1)Y, where Y
is a random variable that follows a symmetric Beta(w, w) distribution, and o > 1 is a scaling
factor such that p, € [1,0]. The parameter w € (0,+00) represents the inequality in the
conditions of the tenants: when w — 0 an increasing share of tenants will request slices with
unit values close to 1 or to o, while when w — 400, tenants will offer increasingly similar unit
values for their NSRs. In these scenarios, the values of max;cy d;p; = ¢ and min;cy é;p; = 1.
Therefore, the WTPR 0 characterizing each scenario is 8 = 0{/1 = (.
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We evaluated our approach in a range of possible scenarios, where we upper-bound the NSR
lifetime by ¢ = 10 slots and we vary the w € {0.05,0.1,...,1}. For each scenario, we assess the
capacity of our proposed frameworks to adapt its behavior to values of WTPR 6 that vary over
time. In particular, we divide the total number of simulated time slots into 10 equally-sized
periods, each indexed by «, and assign a constant 6, as WTPR for the duration of the period.
This is done to ensure that the drift (or change) detection mechanism implemented in DARIO is
able to detect abrupt changes in the distribution of 6 at different points of the simulations, based
on the recent observations of NSR features within a time slot. The values of 8, are sampled from
a uniform distribution so that 6, ~ #/({10,20,...,100}), Vx € {1,...,10}. Therefore, for
each period «, the related oy is constant for the whole period and is o, = 6,/ € {1,2...,10}.
We generate the synthetic dataset in this way in order to limit the complexity of the considered
dynamics and to ensure that DARIO can accurately detect distributional changes. However,
based on the error threshold a selected, our framework would also be able to detect more

gradual changes that could occur within a given time slot.

Benchmark Algorithms

We compare DARIO’s performance to both static and adaptive selection policies. Namely, we
compare our solution to the ExpRP, LinRP, and FCFS benchmark policies, as well as a UCB

selection policy.

o Static (or Expert) Policies: LinRP and ExpRP assume full knowledge of 6. The
FCFS policy is a greedy policy that does not consider the value of NSRs and admits
them providing they pass a feasibility check.

e Upper Confidence Bound: The vanilla UCB is an adaptive selection policy that aims
to maximize the long-term reward by choosing the action at each round with the highest

upper bound.

Performance Metrics
We evaluate our approach using:

» Average Revenue Relative Gain. The average revenue is the ratio y = ﬁ Y hen Vn
between the total revenue and the number |H| of all received slice requests. The average
revenue relative gain for a policy is defined as the difference in the average revenue of
the selection policy @ and the FCFS policy, divided by the average revenue of the FCFS

Ho—Hr
HF

policy and is represented as , where e and pr indicate the average revenues for a

selection policy @ and the FCFS policy, respectively.

o Acceptance Ratio Relative Gain. The acceptance ratio y = n/|H| is the ratio
between the number 7 of accepted slices and the number || of all received slice requests.
The acceptance ratio relative gain for a policy is defined as the difference in the average

AR of the selection policy @ and the FCFS policy, divided by the average AR of the

FCFS policy and is represented as %, where 7o and 77 indicate the acceptance ratios

for selection policy ®, and the FCFS policy, respectively.



4.4. Performance Evaluation 59

o Average Resource Utilization Relative Gain. The average resource utilization p =
|7%T| Yner Liem) Unj/ Cj as the sum of the normalized utilization for all resources for all
received slice requests divided by the number |H| of all received slice requests. The
average resource utilization relative gain for a policy is defined as the difference in the
normalized utilization for all resources as a result of the selection policy ® and the FCFS
policy, divided by the normalized utilization for all resources with the FCFS policy and
is represented as 'O‘DP;FPF, where pp and pr indicate the average resource utilization for a

policy @ and the FCFS policy, respectively.

4.4.2 Simulation Results
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FIGURE 4.3: Average Revenue Relative Gain for DARIO against the Static and Adaptive baselines.
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FIGURE 4.4: Acceptance Ration Relative Gain for DARIO against the Static and Adaptive baselines.

Average Revenue Relative Gain

Figure 4.3a and Figure 4.3b show the relative gains of the LinRP (red, blue and green lines)
and ExpRP (light red, light blue, and light green) policies, compared to the greedy (FCFS)
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FIGURE 4.5: Average Resource Utilization Relative Gain for DARIO against the Static and Adaptive
baselines.

policy for the mean revenue. The results are based on the slice holding time Jj, of each incoming
NSRs, which is bounded by a specific duration, i.e., { € {10,30,100}. From this, we can see
that applying both policies in our algorithm leads to higher average revenue than the greedy
policy across various upper bounds on the NSR durations and for the range of unit values
considered. Specifically, it can be observed that in situations with higher economic inequality
between tenants (w — 0), the revenue gain is the highest (over 10%) when using both policies.
This is because, in such scenarios, the value of the accepted NSRs is higher due to the online

reservation function that places a higher threshold on the values that can be accepted.

Acceptance Ratio Relative Gain

The relative gains in the AR by using the online reservation-based policies, are shown in
Figure 4.4a and Figure 4.4b. We see that by utilizing the introduced policies in our approach,
fewer NSRs are admitted compared to the greedy FCFS approach for the considered range
of upper-bounded NSR, durations times. The performance of our solution improves when the
average duration of requests increases and when the value of w approaches 1. This is primarily
due to the admission criteria of the reservation-based policies compared to that of the greedy
policy, where the proposed solution rejects lower-valued requests at a higher rate compared
to higher-valued slice requests with longer durations. This leads to a lower overall acceptance
ratio for the considered parameters, but a higher revenue, as seen in the previous results for

Average Revenue Relative Gain.

Average Resource Utilization Relative Gain

In Figure 4.5a and Figure 4.5b, we see that across most of the evaluated upper-bounded
duration and unit price parameters, the resource utilization is lower on average using our
approach. This is in line with the results from the acceptance ratio gain, which shows that
based on the reservation-based policies our approach leads to a lower overall acceptance ratio,

and hence, there are periods during the experiments when the resources are not fully utilized
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but new NSRs are rejected due to their revenue and the current utilization level of any given
resource in the system. Achieving a lower average utilization is key to achieving the goal of
maximizing the revenue for InPs as it ensures that the scarce resources are reserved for the
NSRs that offer the most revenue.

4.5 Chapter Conclusions

In this chapter, we focused on the problem of learning to select the optimal admission control
policy among a set of policies, in slice-enabled mobile networks. We address the problem by
modeling it as an Multi-Armed Bandit problem in which the selected policy is used to decide
whether on not sequentially arriving NSRs will be admitted onto the network infrastructure.
This approach overcomes the limitations of designing or learning a single one-size-fits-all policy
for different network conditions and enables a dynamic and adaptive solution for learning
a meta-policy for slice admission control. This is particularly important in dynamic 5G

environments where the traffic patterns can change significantly over time.

To address the formulated MAB problem, we proposed DARIO, a Drift-Aware OL-based
framework for the adaptive selection of admission control policies for network slicing. We
consider two online policies as the possible AC policies and learn their performance in dynamic
network scenarios. To detect when to switch between policies, we incorporate a CD mechanism
that detects changes (or drifts) in the distribution of the underlying network request patterns,
which triggers an update in the thresholds of the admission policies. We show that by detecting
changes in the underlying features in the sequence of arriving NSRs, DARIO outperforms static
policies and an adaptive selection policy that doesn’t consider updating thresholds based on
the changing distribution of the features of NSRs. Through simulations, we evaluate DARIO in
a range of scenarios and show the benefit of extending the SW-UCB algorithm with a Concept
Drift detection mechanism, as we achieve a higher average revenue gain (approximately 4.5%)
compared to the static policies and the UCB policy, while our solution also leads to accepting

marginally fewer NSRs compared to a naive FCFS policy.

In order to provision NSLs, the process of deciding whether to admit NSRs onto the mobile
network infrastructure is only the first step, especially given the distributed infrastructure
of modern edge networks that form part of the mobile network architecture. During the
commissioning phase of the NSL lifecycle (Section 2.1.3), the decision of where to place the
request on the underlying network infrastructure to allocate and configure it’s resources is a
crucial step. In Chapter 5, we design a scalable hierarchical framework to learn a placement
policy in distributed edge networks in an online manner to minimize the provisioning time for
new NSRs.
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Chapter 5

Hierarchical Network Slice Provisioning

5.1 Introduction

In next-generation mobile networks, network operators will be expected to meet complex,
and increasingly heterogeneous service requirements [207]. As a result, technology enablers
such as SDN, NFV and edge computing are playing an increasingly crucial role in the
Management & Orchestration (MANO) of resource in 5G mobile networks [208]. These
techniques are essentially redefining how applications and services, such as VR and
Internet-of-Things (IoT) [209], can be effectively provisioned to meet different performance
requirements. The combination of such techniques aids the goal of concurrently provisioning
and multiplexing a diverse set of services over a shared communication infrastructure through
NS, which is a novel virtualized infrastructure model [210] in 5G networks. The increasing
adoption of NS in NGMNs enables flexible network deployment strategies without requiring
significant changes to the underlying components of the network infrastructure [126]. The
NS model enables the provisioning of NSLs as part of a Slice-as-a-Service (SlaaS) solution
from InPs, in which STs can request and ensure the reservation of network resources for a
specified period of time [194]. In this context, a NSL can be described as a virtualized logical
network that runs on top of a shared physical network that spans across multiple network
domains, such as the RAN, the Transport Network (TN), the CN, and Edge Networks (ENs),
to provide customized services [211]. To support the diverse service requirements expected
in NGMNs and to deal with the time-varying nature of such networks presents a significant
challenge for the efficient management and orchestration of network resources. A key challenge
in provisioning NSLs is coordinating how to distribute and use the shared network resources
while ensuring that each NSL adheres to its own set of rules and resource limits [212]. This
challenge is further complicated by rapidly increasing network sizes and continually changing
network conditions and environments. This motivates the development of novel solutions that
can be used to address the NSP problem in NGMNs, where NSP refers to the process of
allocating physical network resources to NSRs [213].

To address the problem above, we specifically focus on the placement of chained VNFs (i.e.,

SFCs) in virtualization-enabled edge networks. To do this, we assume that a NSR is deployed on
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a per-service basis, i.e., one service, represented by an SFC, is mapped to one slice instance [214].
While finding an optimal solution to the NSP problem is already an NP-hard problem for static
network conditions, its complexity is exacerbated in the online setting due to the presence of
heterogeneous edge computing capabilities and multi-dimensional service requirements [215],
[216]. As a result, traditional optimization and heuristic approaches are unlikely to provide
satisfactory solutions within an adequate time to meet the low-latency requirements of network
requests and services. To address this problem, we formulate the NSP problem as a two-step
problem. In the first step, we aim to solve a Contextual Multiple-Objective Multi-Armed
Bandit (MO-MAB) problem in order to select where in the network the arriving NSRs will
be placed, based primarily on the requirements of the request and the capabilities of different
parts of the network. In the second step, based on the solution provided in the first step, we
seek to address a Combinatorial MO-MAB to jointly deploy the VNFs of a request across the
nodes in the network. In the Contextual MO-MAB problem, we seek to learn a high-level
action selection policy, which maps the current context information to the performance of the
arms in meeting the different objectives. In the Combinatorial MO-MAB problem, the goal is
to learn a policy for the joint deployment of VNF's in an SFC to nodes in the network. Based
on this formulation, we propose a hierarchical framework to learn a provisioning policy that
optimizes multiple provisioning objectives, simultaneously. Typically, the NSP problem has
different optimization objectives, including maximizing resource efficiency, network latency
minimization, and throughput maximization (i.e., QoS optimization) [162], [216]. In this
context, the goal of addressing multiple objectives simultaneously and in an online manner
can be a complex task, as a potential solution that maximizes one objective could adversely
affect another. Therefore, finding the optimal trade-off that balances potentially conflicting
objectives can be a challenging task [217].

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.3.

RQ@Q 3.1: How can we increase the rate of admitted NSLs while reducing the required
allocated resources, especially in large-scale networks with highly dynamic resource and

user requirements?

RQ 3.2: How can we design a hierarchical architecture so that agents in different network

subdomains make their own placement decisions?

RQ 3.3: How can we design a NS-provisioning performance metric that considers multiple
objectives and enables a network policymaker to specify the objectives’ relative importance

and mutual fairness?

To address the challenges mentioned above, we propose HELIOS, which is a hierarchical
multi-armed bandit solution to learn a NSL placement policy in distributed edge networks. We
address RQ 3.1 by demonstrating how dividing the network into clusters using community
detection (Louvain algorithm) and implementing a two-tier agent structure provides an effective
NSL provisioning solution. Our experimental results show that the hierarchical approach

outperforms centralized baselines across multiple network topologies with heterogeneous
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resources. The RQ 3.2 is addressed by implementing the Generalized Gini Function (GGF)
as a fairness-preserving aggregation function and integrating it within the HDF framework.
Our results show that this approach successfully balances the dual objectives of maximizing
acceptance ratio while minimizing node resource utilization within the network. We address
RQ 3.3 by showing that the utilization and combination of UCB-based algorithms at both the
upper and lower levels of the hierarchy consistently outperform centralized baseline approaches
in the considered network scenarios. This is validated by our time-slotted simulations, which
demonstrate the ability of our HDF to make sequential provisioning decisions that improve

over time as the system learns from previous slice deployments.
Our contributions are summarized as follows.

e We formulate the NSP problem as an general offline constrained optimization problem,
considering computing and network resources as constraints. Then, we reformulate NSP

problem as a HMAB problem to allow an online solution.

e We propose HELIOS, a novel two-level hierarchical learning system to solve the online NSP
problem by jointly placing the VNFs of a SFC in the network. At HELIOS’ high level,
a contextual bandit agent directs each slice request to a specific region in the network,
depending on the measured resource state and slice features. At HELIOS’ low level, a
combinatorial bandit agent determines the nodes on which the VNF's will be placed. HELIOS

is designed to learn a placement policy that scales with network size.

e We leverage the GGI aggregation function which scalarizes and balances multiple
provisioning objectives, together. By maximizing this function, we aim to find a point
on the Pareto front of the multi-objective optimization problem. This allows for a direct
optimization of the different provisioning objectives, enabling trade-offs based on the chosen

weights.

The following sections discuss the content in our paper published in the IEEE 50th Conference
on Local Computer Networks (LCN) [171]. Section 5.1 describes the research questions
addressed in this chapter and discusses the contributions of the proposed learning-based
framework. Section 5.2 describes the system model and formulates the Online Network Slice
Provisioning (ONSP) problem. Section 5.3 presents the HELIOS framework in more detail.
Section 5.4 describes the simulation setup and discusses the evaluation results. Finally,
section 5.5 concludes the study in this chapter by reviewing the main contributions and

highlighting the important results.

5.2 System Model and Problem Formulation

5.2.1 System Model
Network Model

We consider a distributed edge-computing network primarily comprising of edge servers and

physical paths that are required to support the provisioning of diverse NSRs [215], see Fig 6.1.
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FIGURE 5.1: System Model

Each edge server has an arbitrary but limited amount of compute and network resources. Such
a network can be modeled as a connected, undirected graph G = (N, E), where N represents
the set of edge servers available in the network and E represents the set of physical links in
the network. In the considered network scenario, we assume the availability of node-specific
resources such as CPU (MIPS), GPU (GFLOPS), RAM (MB), and Storage (MB), as well
as link-specific resources like Bandwidth (Mbit/s) for communication between servers. We
define C]’7 as the maximum capacity of resource type j on a network node n € N, and C?
as the maximum capacity of resource type j on a network link g € E. To avoid ambiguity
when aggregating these values, we define the total capacity for each category separately. The
aggregated capacity for the j-th type of node resource across all nodes is given by C]I.wde =
YneN CJ’?. Similarly, the aggregated capacity for the j-th type of link resource across all links
is given by C}i“k = YyeE C?. Based on this infrastructure model, we assume that the InP owns
and leases the physical network resources in an elastic, pay-as-you-go model by dynamically
allocating and de-allocating them to incoming and existing NSR. In line with the time-varying
conditions at the network edge, we model the time in the system as divided into discrete

consecutive intervals, i.e., time slotst € T.

Request Model

In our request model, an NSR is identified by the incremental index h € H, where H =
{1,...,|H|} is defined as the ordered set of all request indices. We define ), = (r%, e, T 0)
as the vector containing the required amount of each resource request, as well as the lifetime
of the request, é;, € IN, which is defined as the number of time slots the request needs to access
the network resources. We assume that slice tenants or service providers submit requests for
NSLs, where each request defines the resources required by the NSL and the duration of the
request. Based on the resource requirements of request h defined by 7j,, the tenant defines a
suitable set of VNF's to provide the network slice request with a sufficient performance level to

support the associated application. This set of VNF's, connected together through virtual links,
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form a Service Function Chain (SFC) which would need to be deployed over the edge network

to provision a NSL for services with specific performance requirements, as seen in Figure 6.1.

We indicate the single SFC associated with NSR & as G, = (N, Ej,, 6y, T,), where Nj, represents
the set of all VNFs in SFC Gy, the quantity Ej represents the set of links concatenating the
VNFs in the request, and 1, € IN represents the timestamp of the request, defined as the time

slot index at which the request arrives in the network.

We denote the multi-dimensional resource requirements of a VNF v in a given SFC as ¢, =
(@L, ..., @pmede), with r{l = Yoen, <p£,, where mp0qe is the number of node resource types. We
denote the multi-dimensional resource requirements of a virtual link e = (v,0') € E, C N2
between a pair of VNFs v and ¢’ in a given SFC h as @, = (¢l, ..., ¢z ), with r{l = Yeek, goé,

where m;y is the number of link resource types.

5.2.2 Problem Formulation

Given an arriving SFC, the objective in the NSP problem is to determine the optimal placement
for each VNF in the SFC, while achieving the objectives of minimizing resource utilization and
maximizing the number of accepted requests. More specifically, given an SFC Gy, our goal is
to find an optimal mapping between each VNF v in N}, to an edge server n € N in the network
topology.

Constraints
To formulate this problem, we introduce two binary variables x and y¢ to (6.3a) indicate a

mapping of a VNF v to an edge node n

B 1, if VNF v is placed on edge node n (5.1)
0, otherwise .

I

and (5.2), to indicate whether or not a virtual link between two VNFs e € Ej,, is mapped to a
corresponding physical link in the edge network g € E

q 1, if virtual link e is mapped to physical link g
Yo = (5.2)

0, otherwise.

Let us recall the indicator function 1y, which is equal to 1 if predicate p is true and 0 otherwise.
We now introduce two families of constraints (5.3) and (5.4) to ensure that the nodes’ and links’
capacities, respectively, are sufficient to support the NSR resources. It is worth noting that
(5.3) and (5.4) jointly introduce a total of 2mT|N| constraints.

Z rile[rhgt«ﬁéh] <, Vn € N,Vv € Ny,
heH (5.3)

Vie{l,..., Myoge}, VEET
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2 r;lygl[ThSt<Th+(5h] S C?/ vq € E, Ve € Eh,
heH (54)

V] S {mnode + 1/ . ooy, Mpode + Miink = m}/ vVteT

where, myoqe refers to the number of resources on a node, while my, refers the number of
physical link resources in the network. To ensure that each VNF v, of an NSR is mapped to

at most one node in the physical network graph G, we define the following constraint (5.5).

Y oxp=1, Vn €N (5.5)

vEN),

Objectives

The NSP optimization problem aims to determine, at each time step, the optimal placement
of an NSR that satisfies the resource constraints and minimizes a cost function U to achieve a

tradeoff between the two following objectives.

o Maximize Accepted NSRs: This objective (5.6) aims to maximize the number of accepted

requests in the network, which would maximize the revenue gained by the InP. Formally,

fa=— Z Z Xy (5.6)

neN veEN,

we represent this objective as:

o Minimize Resource Utilization: In the second objective, we aim to minimize the average
resource utilization of edge nodes. We define the optimization objective for the j-th node

resource as in (5.7).

and the optimization objective for the j-th link resource as in (5.8).

=L L Lo (5.8)
]

qeE heH ecEy,

Multi-Objective Optimization: Let us define w = (w,, wy, ..., wy) € [0,1]"! as the weighting
parameters for the different objectives, where ||w||= 1. We define the multi-objective utility
vector as f = (fa, f1,---, fm)T We can combine the optimization objectives, while considering

the constraints, to formulate a scalarized multi-objective problem as (9):

min U(f) =w'f=w,f,+ iw]f] (5.9a)
j=1

st. (1) — (5) (5.9b)
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Finding the optimal solution to such a combinatorial optimization problem is NP-hard [218],
[219], as it would require knowing prior information about the resource requirements of NSRs
and their performance objectives, which are not always available at runtime, and it could
require exhaustive search to find an optimal solution. Furthermore, the overall space of
placement options grows exponentially with the number of edge devices and the length of SFCs.
Commercial solvers have previously been used to address similar optimization problems [220],
however, they assume perfect system knowledge and could take considerable time to arrive to an
optimal solution for the considered problem. Moreover, the difficultly of solving the considered
optimization problem grows with the size of the physical network [221] and the number of
optimization objectives [222]. Instead, we look to re-formulate the considered problem in the
MAB setting, by converting the problem into a sequential decision problem, specifically the

HMARB problem, that can be solved at each time slot following an online solution.

5.3 Hierarchical Placement Learning

This section describes HELIOS, our proposed data-driven NSP method that learns a
multi-objective online provisioning policy. HELIOS is based on a two-level, hierarchical
architecture (Figure 5.2). At the higher level, we have a centralized HLA that dynamically
assigns arriving NSRs to one of the LLAs. FEach LLA operates over a fixed-size subset of
nodes and links (i.e., a cluster) in the network and effectively determines onto which nodes
within the cluster the request’s VNFs will be deployed. This design choice is driven by the
observation that learning a provisioning policy in large-scale networks using a fully centralized
approach may be impractical for learning algorithms due to the prohibitively large state and

action spaces [223].

5.3.1 Background

To address the challenges outlined in Section 5.2.2, we decompose the network slice provisioning
problem into K sub-problems, where each sub-problem k € {1,2,...,|K|} corresponds to a
connected partition of the network graph G (See Figure 5.2 ). This decomposition leverages the
natural community structure of physical networks [156], [221], reducing the original problem’s
complexity through lower-dimensional state and action spaces, which is particularly important

for large-scale graphs.

We formulate this as a hierarchical optimization problem with two learning layers:
(1) Specialized LLAs or experts that solve the placement problem in cluster-specific
subdomains [224], [225], and (2) A coordinating HLA that selects among these experts
to balance exploration-exploitation. The graph partition is generated using the Louvain
method [226], which maximizes modularity to identify communities. = Each resulting

community, or cluster, forms a discrete spatial region for resource allocation [227].

In our hierarchical framework, the HLA directs slice requests to these regions, optimizing
the trade-off between exploration (testing underutilized clusters) and exploitation (leveraging

high-reward clusters) to maximize the multi-objective performance. Essentially, the HLA
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FiGURE 5.2: HELIOS Architecture.

treats each LLA as an ezpert whose performance in a given region or sub-domain is learned
and evaluated over time. This selection is performed using the Multi-Objective Contextual
Multi-Armed Bandit (MO-CMAB) framework [228], which balances the trade-off between
exploration and exploitation. In the second layer of the framework, the LLA associated with
the selected cluster is responsible for placing the components of each NSR on nodes within
its assigned sub-domain. The LLA’s goal is to jointly select node combinations that optimize
the provisioning objectives defined in Equation 5.9a. This combinatorial selection process is
approximated using the Combinatorial Multi-Objective Multi-Armed Bandit (COMO-MAB)
framework [229], which efficiently handles the exploration-exploitation trade-off across node
subsets and enables each LLA to learn optimal node combinations for VNF placement within

its cluster, while adapting to dynamic resource constraints.
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5.3.2 Cluster Formation via Community Detection

Given a physical network G = (N, E) of unclustered nodes, our goal is to find groups, or
clusters, of nodes by identifying the communities within the network, where a community
is formed by optimizing the local modularity of each group of clustered nodes. Hence, we
define a community as a group of nodes that are densely connected internally, while being
sparsely connected to the nodes in other groups [230]. This enables the formation of different
node clusters with heterogeneous resource capacities, where each cluster can either belong to
the one or multiple InPs. To effectively optimize the modularity of the network graph G, in
this work, we adopt the Louvain algorithm [226], which efficiently identifies the communities
(i.e., clusters) in the network, and we use the nodes in the communities as a basis for our
hierarchical bandit approach. The Louvain algorithm is a hierarchical community detection
method that optimizes modularity through an iterative two-phase approach to identify
cohesive subgroups within network structures. The algorithm commences by assigning each
node to its own distinct community and progressively optimizes the modularity score Q, which
quantifies the density of connections within communities relative to connections between
communities. In each iteration, the algorithm evaluates potential node movements between
communities by calculating the modularity gain AQ that would result from relocating a node
from its current community to a neighbor’s community. The modularity gain calculation
considers both the density of internal connections within potential new communities and
the reduction in connections to the node’s original community. Nodes are reassigned to
neighboring communities only when such movements yield positive modularity gains, ensuring
monotonic improvement in the network’s community structure. This process continues until
no further improvements in modularity can be achieved, indicating a locally optimal partition
of the network into communities. The algorithm’s effectiveness stems from its ability to
naturally determine the number of communities without requiring this as a predetermined
parameter, while its modularity optimization approach inherently balances the competing
objectives of maximizing intra-community connections while minimizing inter-community
connections. While we leverage the Louvain algorithm for detecting clusters in our approach,
other clustering techniques (i.e., Leiden, Birch, DBSCAN etc.) can be used to detect the

clusters in a network graph. As an examples, we show the possible clusters formed on a simple
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Abilene topology, in Figure 5.3.

5.3.3 Hierarchical Multi-Armed Bandit Framework

To formulate the problem, we consider that the set of nodes N in G are partitioned into |K|
disjoint clusters, where k € {1,2,...,|K|}. As depicted in Figure 5.2, the HMAB framework
consists of two parts: (1) High-level policy 7" learning at the HLA, based on the principle
of contextual bandits, to orchestrate a set of high-level actions {aﬁ},lle, where each high-level
action corresponds to selecting one of the available clusters k; (2) low-level policy 7'[]1( learning
at the LLAs, based on the principle of combinatorial bandits, where each LLA assigned to a

cluster seeks to learn a joint node selection policy that optimizes the provisioning objectives.

We consider a sequential decision-making problem over a time horizon T, where at each time
step t € {1,2,---,T}, the HLA observes a context X; € X C [0,1]M|K|, with || A¢][2 < 1 for
all . The context vector represents the current state of the network, including the available
resources in each cluster and the aggregated resource requirements of the arriving requests.
Specifically, we define the context X} € RM of a cluster k at time slot t as a vector containing M
relevant system information elements, such as available multi-dimensional resources, requested
resources by the NSR, and the number of nodes in cluster k. The overall context vector at time
t is therefore represented by Xy = (X1, , X, k) € [0, 1JMIK with X} x associated with each
cluster k € K.

Based on the observed context at time step ¢, the HLA takes an action uZ € Ah, where A" =
{aflk € {1,---,|K|}}, and receives a corresponding multi-objective reward vector p, , where
My € [0,1]"*1. The selected high-level action a,i’ directs arriving slice requests to a specific
cluster, k. Then, the LLA for that cluster selects an action aé € Al which specifies the subset
of nodes (Sk) on which to place the requests’ VNFs, where A} = {S; C Ki||Sx| < D}, of which
K is the set of network nodes belonging to cluster k and D represents the number of VNF's to
be placed.

Given the contextual bandit approach used by the HLA, the expected reward of selecting an
action ai’,k given the context X follows the linear realizability assumption and is given by:
Elp, | Xk, ai‘,k] = X,}0;, where, we assume that there exists K unknown parameter vectors
67,05, - 05 for each high-level action, and where Vk : 6} € ]I{(er])XM,HG;(‘Hz < 1. For
simplicity, and without loss of generality, we adopt a shared-parameter formulation in which
all arms (4.e., sub-domains) share the same underlying unknown parameter vector, i.e.,, 8; =
0y = --- = 0 = 0, which avoids learning disjoint arm-specific models while allowing for
generalization across the different sub-domains. Based on this assumption, we define the regret

of the high-level policy 7" as

Rn(T)=E Z G(P‘t,k*) - Z G(Vt,k) (5.10)

teT teT

where G(-) is an aggregation function that maps the multi-dimensional reward vector u to a

scalar value based on the weight vector w (Eq. (9)), k* is the index of the best high-level action
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at time step t and k indicates the index of the high-level action selected by the HLA. In the
formulated HMAB problem, the goal is to learn a cluster selection policy at the HLA and a

combinatorial node selection policy at the LLA.

High-Level Agent (HLA)

The HLA’s goal is to leverage current context information to learn a multi-objective cluster
selection policy that optimizes the different objectives in Equation 5.9a, and effectively acts as
a slice broker [114], [231] that decides, at a high-level, the allocation of resources for NSRs in

the network.

Let us define the known mean reward vectors of each cluster k € {1,...,|K|} as p. We
consider that for a given aggregation function G(p,), the optimal cluster selection policy seeks
to find a strategy such that the index of G(#) is as large as possible, where i, = %Zthl Mg
This ensures that clusters are selected with the aim of maximizing the aggregation function,
towards the optimization of the provisioning objectives. In this work, we consider that
the aggregation function that scalarizes inputs from different objectives, is the GGF [232].
The GGF is a non-linear, concave function, and is a special case of the Ordered Weighted
Averaging (OWA) aggregation operators [233] that seek to preserve impartiality with respect
to individual objectives. Rather than using a deterministic strategy that always selects the
single cluster maximizing the aggregated reward G, we adopt a mixed strategy that optimizes a
probability distribution &; € A over all clusters, from which a cluster is sampled. Specifically,
the probability distribution is the simplex A = {& = (a1,...,a) € [0,1]K : [ally= 1},
according to which a cluster ay is selected. As explained in [234], the optimal mixed
strategy cluster selection policy is given by solving the following optimization problem,

o' € argmax G (Zl‘fil akyk>, which determines a probability distribution over clusters
nEA
that maximizes the GGI of the expected aggregated rewards. However, based on the

probability distribution used by the mixed strategy, clusters with smaller estimated rewards
are periodically selected to balance the trade-off between exploration of potentially useful
clusters that could lead to good multi-objective rewards and exploitation of cluster that are
known to have high estimated rewards. By leveraging the GGF as the aggregation function in

the optimal cluster selection strategy, the regret of the high-level policy can be estimated as:

A 18L&
Rn(T)=G (T Y ) ”‘?,kﬂt,k*) -

t=1k=1

1 T K
Gl=)Y) anp, | (511)
T == ’

Given this definition, the goal of the high-level policy is to minimize the regret by maximizing
the GGF of the aggregated multi-objective reward (second term in Eq. (11)), based on the
current parameter estimates of the cluster selection strategy. Specifically, we utilize ridge
regression [235] to get the expected reward p, i for a particular action a’;k at time ¢, given the

context X} x. The parameter estimate for objective o is given by 0, = (A + YIp) " 'b?. Here,
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Ay = tT;ll(XT,kTXTT kT) accumulates the outer products of contexts from previously selected
clusters, and b} = tT_:ll Xk, 19 accumulates the products of contexts with the observed

rewards, where 7 € r; is the reward of objective 0 observed from the combinatorial action
of the LLA in cluster k¢ at time T and rr = X¢(Sk,).

The cluster selection policy a; seeks to maximize the GGF of the expected aggregated
multi-objective rewards through Online Gradient Ascent (OGA) by optimizing the function
G (Z}‘fill “t,kﬁt,k>- Starting from a uniform distribution a; = (1//K],...,1/|K|), we perform Z

gradient ascent steps, where at each step z, we perform the following:
« Compute the gradient: gl*) = V.G (Z,Ile al((Z)ﬁtk> - My, where My = [, 1, ..., |K|] is
the matrix of estimated mean reward vectors of each cluster k.

1
Vz+1

o Next, we take a gradient step: alztl) = g2 4 ng(z), with step-size 1, =
« Finally, this is projected onto the simplex: a(#t1) =TIp (&(ZH)).

After Z iterations, we use a; = a'%) as our mixed strategy and sample cluster k; according
to this distribution. This approach ensures convergence to a local optimum of the GGI while

maintaining the constraint that a; remains a valid probability distribution [228].

Low-Level Agent (LLA)

Upon receiving an NSR H; directed by the HLA to a cluster k;, the designated LLA for that
cluster is tasked with the goal step of selecting an optimal set of physical nodes to host the
D VNFs comprising the SFC. This selection is formulated as a COMO-MAB problem [229],
where the LLA must learn to make choices that align with the overall system objectives defined
in Eq (9). To formulate the problem, we define Ky as the set of network nodes belonging to
cluster k. Each network node in set K can be selected by the LLA for deploying a VNF,
therefore each network node in Ky is a base arm of the agent. We define the power set P(Ky) of
set Ky as the set of all possible combinations of base arms € K, i.e., P(Ky) = {Sk|Sx C Ki}.
We now define a super arm Sy for cluster k as a subset of the set K of base arms, which
represents the network nodes on which the SFC’s VNFs will be simultaneously deployed, i.e.,
St € P(Ky). Tt is worth noting that |P(Ky)| = 2/%/, which makes the problem NP-hard as it

scales exponentially with the k-th cluster size |K|.

At each time step f, the LLA pulls the super arm S; and receives a reward X;(S;) =
(Xi1,---0 Xps)) € [0,1]I8x(m+1) “and the outcomes of the base arms in X; are assumed to
be independent. The rewards represent the acceptance of the VNF's in the selected, as well as
the resource utilization on the selected nodes as a result of deploying the request. The final
goal of the LLAs is to eventually learn the optimal super arm S} (i.e., set of nodes in Kj) that
optimizes the objectives defined in Eq (8). The goal of the LLA is to learn the optimal super

arm Sf, € P(K) , over time. However, selecting the optimal super arm, which is given by:

Sy = argmax|| X;(S)|| (5.12)
SeP(K)
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is an NP-hard problem [236], [237]. Hence, the LLAs in the Hierarchical Bandit (HB) framework
uses the UCB to learn the rewards of the different arms in a given super arm and picks the
super arm with the higher upper confidence bound. More specifically, a simplified version of
the Combinatorial Multi-Objective Upper-Confidence Bound (COMO-UCB) [229] algorithm is

developed to address the exploration and exploitation dilemma of the considered problem.

5.3.4 Proposed Algorithm

Our proposed algorithm works as follows (Algorithm 6). First, in lines 1 and 2, we initialize the
contextual and combinatorial bandit parameters A, by, and UCB{ which represent the identity
matrix, scaled by <y for ridge regression, the reward accumulation vector for each objective o,
and the upper confidence bound of the reward for each base super arm, respectively. Then (line
4), we receive the |K| clusters based on the communities detected on the network graph G. In
line 5, we initialize a (uniform) probability distribution over the clusters a; which determines
the initial probability of selecting each cluster.. In lines 6 and 7, we begin by collecting the NSRs
arriving at the current time slot. Based on the collected NSRs and the current resources in the
clusters, the HLA estimates the reward of placing the requests in each cluster (lines 18-22).
In lines 24-29, we update a; using projected gradient ascent to maximize the GGIl-aggregated

expected reward, and then sample a cluster according to the resulting distribution.

Based on the selected cluster in the HLA procedure, the LLA function determines the
combination of nodes within the cluster to deploy the VNFs of a request. For each request
in the current time slot H;, the LLA looks to improve its VNF placement strategy through
exploration and exploitation. In lines 34-37, for each node i in the selected cluster K and each
objective o, the LLA evaluates the potential rewards from selecting that node based on the
empirical mean rewards from previous times a node was selected. From lines 38-40, the LLA,
based on the COMO-UCB algorithm [229], selects the super arm S; (i.e., set of nodes) that
maximizes the sum of UCB values across all the selected nodes and objectives. If the VNFs of
the request are deployed on the set of nodes, then the LLA receives a multi-dimensional reward
X;(Sy) that captures the provisioning objectives (i.e., the acceptance of the request and the
utilization of resources in the cluster) (lines 41-45). Based on the selected nodes by the LLA,
the shortest path between the nodes is computed using Dijkstra’s algorithm. In lines 13-15,
we update the parameters of the contextual bandit algorithm based on the multi-dimensional

rewards of the LLA’s selected nodes, in order to improve the overall learning procedure.
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Algorithm 6 Hierarchical nEtwork sLIce prOviSioning (HELIOS)
Require: Regularization ¢y > 0, learning rate 1, > 0, number of gradient steps Z
Initialize: A; + Iy, b\ < 0y Vo € [m +1]

1:

2: UCBY(t) « +oo,Vo € [m+1],Vi € [Ki],Vt € [H]

3: > Create Set of Clusters based on G
4: |K| <~ Louvain(G)

5 ap + (1/]K], ..., 1/|K])

6: fort € {1,...,T} do

e > Collect NSRs arriving during timeslot ¢
8: H; < WaitNSRs(#)

9: ki « HighLevelAgent(#H;)

10:  Xy(Sg,) < LowLevelAgent(Hy, ki)

11: ry = Xt(Skt) S R+

12: > Regression Update
13: A A+ Xt,kt Xt?;ﬂ

14:  foro e [m+1] do

15: by < bf + Xyiri

16: function HIGHLEVELAGENT(H;)

17: > Observe Cluster Contexts at timeslot ¢

18: X, < GetClusterContexts(t)
19:  foroe [m+1]do

20: 0; A bY > Estimate parameter
21: for k € K do

22: ﬁgok) — thﬂf > Predict reward
23: > Perform Online Gradient Ascent to optimize mixed strategy
24: a0 o > Initialize
25: for z € [Z] do

26: V.G (Zszl a,&zfl)ﬁt,k) > Compute gradient
27: a® — TIp (a(zfl) + 15 V) > Update
28: wp — al?) > Set final strategy
29:  k; ~ Categorical () > Sample cluster
30: > Send request to LLA of cluster k;
31: return k;

32: function LOWLEVELAGENT(H;, k;)
33: fort € {1,...,|H|} do

34: for i € [Ky],0 € [m+1] do
35: > Update Upper Confidence Bound
36: if P, > 0 then
Y, 3logt
37: UCB] (1) <= X(t—1) + /25
38: St <~ argmaxg g Y es Y UCBY(t)
39: > Play super arm S; and observe rewards
40: Xt(Sk) = (Xt,lz . /Xt,\St|) — PullArm(St)
41: for i € S5¢ do
42: > Increment pull counter for arm i
43: P+ P+1
44: for o € [m+ 1] do
45: Xf(t) « Pz'Xi(tl_)ll)J’_Xi(t)

i+1

46 return X;(Sx)
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TABLE 5.1: Simulation Parameter Settings

Parameters Values
Clusters in GEANT and DTelekom, |K| {3, 5}

GGI Weights Gy w, = 27071
OGA TIterations Z 10

Learning Rate 17, \/zlﬁ
Regularization Parameter 7 0.1

VNF Resource Requirements [5,50] units
Node Capacity ¢ [5,1000] units
Virtual Link Requirements [50, 100]Mbit/s
Link Capacity [500, 5000]Mbit/s
SFC Length (VNFs per request) ¢ {2, 3, 4}

5.4 Performance Evaluation

5.4.1 Simulation Setup

We evaluated the performance of the HELIOS framework against five baselines on two
real-world network topologies of different size, namely: GEANT (22 nodes, 33 links, which is
a pan-European research and education data network) [238] and DTelekom - DT2 - (68 nodes,
272 links) which is a sample topology of Deutsche Telekom [239]. The simulations, proposed
solution, and baseline algorithms were implemented in Python with NetworkX to simulate
different network scenarios on the two network topologies. We select the Louvain community
detection algorithm to identify the |K| communities (or clusters) within the network topology
based on the topological features of each generated network graph. One LLA agent is
deployed within each cluster to handle the joint placement of VNF's on the devices within the
cluster. The CPU, RAM, storage, and GPU capacities of network nodes ¢}, were uniformly
generated within the range of [5,1000] resource units, while the bandwidth of each link is
in the range [50,5000]Mbit/s. For each NSR we randomly generate an SFC with {2,3,4}
VNF's, where each VNF represents a generic NF. The resource requirements of each VNF and
virtual link in a request are uniformly generated within the range of [5,50] resource units and
[50,100]Mbit/s, respectively.

To conduct realistic evaluations, we evaluate the performance of our algorithm in an online
setting with T = 5000 time slots. We assume a random number v; of NSRs arriving in the
system at the beginning of each time slot, which defines the time between successive requests.
We model v; as a Poisson process in which all v, Vt € [T] follow a Poisson distribution,
Pois(A), with identical arrival rate A, where A is the average number of arrivals per slot. We
evaluated scenarios, where A = 2 and A = 5. The lifetimes J;, of the requests (in minutes)
are generated from a uniform distribution &, ~ U({10,{}), where { is the upper bound of
the request duration and we evaluated the scenario in which { = 50 to investigate the impact
of different request lifetimes on the system. Finally, we initialize the weight vector w to

w, = 27°t,0 € [m+ 1] [234]. Table 5.1 summarizes the simulation parameters used.
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5.4.2 Benchmark Algorithms

We compare HELIOS against a set of benchmark algorithms that are adapted to address the

considered slice provisioning problem:

e Random: The random provisioning policy uniformly and jointly assigns VNF's of an SFC

to different nodes in the network without considering their available resources.

e e-greedy: This provisioning policy uses the e—greedy strategy to determine where to
deploy the VNF's of a request, based on exploration parameter, €. We set € = 0.5 in our

evaluations.

o Linear Upper Confidence Bound (LinUCB) [240]: LinUCB is a learning-based algorithm
that leverages context information to determine where to place requests given the entire

topology.
o Conteztual-Combinatorial Upper-Confidence Bound (CPUCB) [241]: The C?UCB

algorithm combines context information with combinatorial node selection to determine

the nodes on which to place a request jointly.

o Contextual Thompson Sampling (CTS) [242]: CTS is a lightweight solutions that learns a
provisioning policy based on estimating the posterior distribution of the expected rewards

of different placements conditioned on the context information.

5.4.3 Performance Metrics
We evaluated the performance of our approach by considering the following three metrics:

e Request Acceptance Ratio: The request acceptance ratio is effectively defined as the
ratio between the total number of NSRs submitted by the tenants and the total number

of NSRs accepted onto the infrastructure.

« Average Node Resource Utilization: The average node resource utilization quantifies
the mean percentage of computational, memory, or bandwidth resources used across all
nodes in the network over a given period. It is calculated by averaging the utilization

rates of individual nodes in the network.

e Average Execution Time: The average execution time represents the mean time
required to process and complete NSL placement from the moment they are initiated

until completion.

5.4.4 Simulation Results
Request Acceptance Ratio

Defined as the ratio between the total number of NSRs submitted by the tenants and the
total number of NSRs accepted onto the infrastructure. Figure 5.4a and Figure 5.4b show the
performance of our approach compared to the baseline algorithms on the GEANT and DT2

topologies, respectively. The results are obtained for the scenario where the parameters for
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FIGURE 5.6: Average Resource Utilization and Cluster-based Performance over the DT2 topology.

arrival rate and request duration are set as A = 2 and { = 5, respectively. We see that on the
larger DT2 topology, our solution is able to admit a higher number of NSRs (up to 97%) under
different arrival conditions (A) and across the different chain lengths (¢), compared to the
baselines. However, in the smaller GEANT topology, the overall performance decreases across
the different scenarios. This is attributed to the fact that there are fewer nodes per cluster in
the GEANT topology, making it less likely for each cluster to contain an optimal combination
of nodes that can meet the provisioning objectives. This is especially true for scenarios with
longer chains and higher arrival rates, as node resources are more likely to be congested, leading
to a lower overall acceptance rate. Despite this, our results suggest that HELIOS can learn a
hierarchical provisioning policy that leads to better performance by fragmenting the original
problem into sub-domains due to the inherent spatial structure of communication networks

and leveraging context information in the placement decision.

Average Node Resource Utilization

In Figure 5.5a and Figure 5.6a, we observe the resulting average CPU resource utilization per

node in the considered system, based on the provisioning policy of the proposed approach and
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the baseline algorithms. The results are obtained for the scenario where the parameters for
arrival rate and request duration are set as A = 5 and { = 5, respectively. Based on the
provisioning objectives, we see that the provisioning policy learned by our approach leads to
an average resource utilization per node per time slot that is relatively low, approximately 5%,
especially in the larger DT2 network, which is reflected in the higher acceptance ratio for the
network scenarios considered in Figure 5.4b. However, in the smaller GEANT topology, the
average CPU resource utilization is considerably higher reaching up to 9% average utilization,
which leads to a lower acceptance ratio for this topology, as fewer requests are deployed on
the GEANT network. This highlights how our proposed solution is able to minimize average
resource utilization, while seeking to maximize the number of accepted requests, by learning a
cluster selection policy and a combinatorial node selection policy that achieves both objectives.
Compared to the UCB-based approach employed by HELIOS and other baselines, the CTS
approach typically leads to an unbalanced distribution of actions due to the random nature
of the sampling process from the posterior distribution, which contrasts the more consistent
policy of UCBs-based solutions [125].

TABLE 5.2: Avg. Execution Times of Baseline Algorithms and HELIOS [s]

Topology C?UCB LinUCB CTS HELIOS

GEANT 26.7 51.3 29.8 38.4
DT2 71.2 182.3 46.4 96.5

Average Execution Time

We evaluate the execution times of the different learning-based baselines on deploying a set of
requests (~25000) across the considered topologies. As the random and € —greedy approaches
are heuristically simple and, therefore, have negligible execution times, we omit their results
due to brevity. Our results are shown in Table 5.2. We see that on average, our proposed
solution had a higher execution time compared to the majority of baseline solutions on the
GEANT and DT2 topologies, taking 38 s and 96 s, respectively. This is a result of our our
hierarchical approach which adds logical complexity and requires multi-level decisions on the
placement decision of requests. Furthermore, the HLA takes multiple OGA steps during the

LLA selection, which adds to the longer execution time.

Cluster-based Performance

Figures 5.5b and 5.6b show the scalable performance of our solution for different numbers of
clusters. The results are obtained for the scenario where the parameters for arrival rate and
request duration are set as A = 2 and { = 5, respectively. As it can be seen in the results, the
performance of our solution begins to decrease after dividing the topology into more than three
sub-domains, or clusters, in the GEANT topology. However, it does not show a similar trend
in the larger DT2 topology. This is attributed to the average size of clusters in each topology,
as more clusters in the GEANT topology reduces the number of nodes per cluster affecting the

performance of the LLAs, while the number of nodes per cluster is larger in DT2. We also see
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that increasing the number of clusters in each topology reduces the average execution time of

our solution, highlighting the tradeoff between performance and speed on smaller topologies.

5.5 Chapter Conclusions

In this chapter, we presented a novel approach to the ONSP problem, a critical challenge
in the efficient management of NGMNs. The increasing complexity and heterogeneity of
services in these networks demands intelligent solutions that are capable of simultaneously
meeting diverse provisioning objectives while maintaining scalability. The core contribution
of this chapter lies in the reformulation of the ONSP problem as a HMAB problem and the
development of a hierarchical solution, HELIOS. HELIOS aims to learn an online provisioning
policy that effectively balances the often-conflicting objectives of maximizing the acceptance
of NSRs and minimizing the average node resource utilization. Through extensive simulations
on real network topologies, the proposed approach demonstrated its ability to outperform
baseline solutions in terms of both average node resource utilization and the number of accepted
requests. This highlights the potential of HMAB approaches in addressing complex dynamic

resource allocation problems in dynamic network environments, such as the network edge.

In the broader context of this thesis, the work presented in this chapter contributes a valuable
OL solution for network resource management. The application of a hierarchical multi-objective
bandit approach offers a framework that can be extended and adapted to other resource
orchestration challenges in complex networked systems. The insights gained from this chapter
pave the way for future research focused on enhancing the efficiency and adaptability of online

resource allocation algorithms in dynamic and distributed environments.

As part of the management of NSLs, the ability to effectively optimize the allocation of resources
to deployed slices is critical for maintaining SLAs, ensuring efficient utilization of network
resources, and adapting dynamically to varying traffic and QoS requirements across diverse
application scenarios. Hence, in Chapter 6, we design a resource optimization framework
that seeks to proactively allocate network resources to NSLs that serve a diverse range of

applications, in order to meet their QoS and SLAs.
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Chapter 6

SLA-Driven Proactive Slice Optimization

6.1 Introduction

The fifth generation of cellular networks (5G) promises to revolutionize communication by
supporting a heterogeneous and novel range of applications and services and bringing an
evolutionary leap in performance, capabilities, and user experiences [243]. To differentiate
between the different applications and services that will need to be supported in 5G, three major
service categories have been suggested: 1.) eMBB services that require very high data rates
(>10 Gbps), 2.) mMTC services which require a communication medium for machine-type
devices and 3.) uRLLC services which require very low latencies (1ms-10ms). Adequately
supporting these services will be a difficult challenge given the current network architecture,
which is based on dedicated hardware middle-boxes and a rigid infrastructure, to provide a
“Best Effort” delivery model [244]. A key tool for addressing the diverse needs of the mobile
network infrastructure is flexibility in resource management which is enabled by the growing
NFV and SDN to enable dynamic spectrum allocation, baseband processing, scheduling, and

task containerization [245].

A cornerstone technology enabling network flexibility and versatility is NS, which supports
the creation of isolated virtual networks tailored to specific requirements of applications
and services deployed on shared physical infrastructure [246]. However, the dynamic and
heterogeneous nature of 5G resource demands presents a significant challenge for effective
slice management and orchestration. Specifically, in multi-tenant mobile networks, such
as bG, where resources must be shared among numerous tenants, users and applications,
off-the-shelf solvers are typically used to repeatedly solve the optimization problem of
resource distribution. However, such solvers may take several hours to solve an optimization
problem, which could violate SLAs, and often struggle to keep up with the increasing size
of the optimization problems, especially in dynamic and fast-growing systems [247]. Other
traditional optimization approaches, which often rely on reactive mechanisms, seek to adjust
resource allocation only after performance degradation has been detected [248]-[250]. The
inherent latency in the reactive approaches leads to suboptimal resource utilization, potential

SLA violations, and a diminishing user experiences. Hence, while NS promises tailored
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application performance in 5G and beyond networks, the current coarse-grained, traditional
approaches raise questions about the adaptability and granularity of resource allocation
approaches in an era of increasingly diverse performance requirements and a continuously
evolving network environment [251]. More specifically, ensuring that the SLAs of deployed
NSLs can be met requires novel solutions that constantly optimize the slice resource allocation,
while deciding whether or not to admit new NSRs [252]. These solutions need to perform
network resource optimization in order to guarantee that the requirements of the NSLs are met
despite unpredictable potential load variations or traffic uncertainty [253], which may lead to
lower resource efficiency, SLA violation or deterioration QoS [254]. To achieve such dynamic
network slice management, proactive and robust AI/ML-driven mechanisms are required to
enable efficient management for NSLs [187], [255] that share the same infrastructure and who’s
resource requirements profiles may change over time [256], [257], and calls for strategies that
are aimed at adapting network slice configurations or capacities over time, in response to the
changing network conditions (i.e., updating slice configurations based on the level of resource

utilization or observed SLA violations) [258].

This chapter aims to address this by proposing a novel framework, Proactive Resource
Optimization for Heterogeneous nETwork slices (PROPHET), that aims to optimize the
capacities of NSLs that handle diverse traffic. Specifically, our proposed solution seeks to
solve the dynamic resource allocation problem by decoupling the problem into two phases: 1.)
traffic demand prediction and 2.) adaptive resource optimization. PROPHET seeks to predict
the upcoming traffic demand of each deployed NSL, by using a Deep Neural Network (DNN)
architecture, specifically, an hybrid architecture that combines Bidirectional LSTM layers
with attention mechanisms. Based on the predicted traffic demand of each NSL, an online
resource allocation problem is solved to optimize the allocation of resources in each NSL.
By combining traffic demand prediction with adaptive resource optimization, our solution
dynamically and preemptively reconfigures the allocated resources of NSLs in a robust and
online manner, ensuring that the time-varying SLAs of the NSLs are met and maximizing the

resource efficiency.

The contributions of this chapter aim to answer the following research questions described in
Section 1.3.4.

RQ 4.1: How can ML-based traffic prediction be integrated with reinforcement learning to

enable proactive resource allocation in heterogeneous 5G network slicing environments?

RQ 4.2: To what extent does forecasting accuracy and prediction horizon impact the
effectiveness of proactive resource allocation strategies in maintaining SLA while maximizing

resource efficiency?

We address the above challenges by introducing PROPHET, a proactive resource optimization
framework that seeks to optimize the allocation of network resources in slice-enabled network,
through DRL. We address RQ 4.1 by designing a traffic forecasting model tailored for
heterogeneous NSLs, enabling proactive network management. Our forecaster leverages a

hybrid architecture combining LSTM networks with attention mechanisms to effectively
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capture both temporal dependencies and salient traffic patterns. We test this model on
a real-world UE network traffic time-series dataset, and show that our developed model
demonstrates relatively good predictive performance, particularly in capturing dynamic traffic
behaviors common in mobile network environments. This capability lays the foundation for
anticipatory resource allocation, where forecasting accuracy directly enhances decision-making
under uncertainty. To address RQ 4.2, we extend the developed framework that incorporates
traffic forecasts into the resource allocation policy optimization process. Our findings
demonstrate that including predicted NSL traffic in the state representation of the DRL agent
enables the learning of a policy that proactively allocates resources based on anticipated
demand, thereby reducing SLA violations across heterogeneous NSLs. In particular, we
observe that the average cumulative reward achieved with traffic prediction is influenced by
the length of the prediction horizon—longer horizons tend to result in lower performance for

the resource allocation task.
Concretely, our contributions can be summarized as follows:

e Design of an attention-based deep learning model for predicting network traffic demands

across heterogeneous services in slice-enabled 5G environments.

e Development of a DRL framework that learns optimal resource allocation policies for

heterogeneous traffic flows while adapting to dynamic network conditions.

e Performance evaluations through simulations demonstrate improved resource utilization and
reduced SLA violations, captured by the agent’s reward, compared to reactive resource

allocation methods.

The following sections discuss the content in our paper submitted to the 2025 IEEE Global
Communications Conference (GLOBECOM) [259]. Section 6.1 describes the research questions
addressed in this chapter and discusses the contributions of the proposed learning-based
framework. Section 6.2 describes the system model and formulates the considered Markov
Decision Process (MDP) problem. Section 6.2.3 presents the PROPHET framework, including
descriptions of the traffic prediction and DRIL-based optimization modules. Section 6.4
describes the dataset used in the simulation, the simulation setup and the evaluation results.
Finally, section 6.5 concludes the study in this chapter by reviewing the main contributions

and highlighting the important results.

6.2 System Model and Problem Formulation

In this section, we present the considered system and formulate the problem.

6.2.1 System Model

We consider a Network Slicing scenario supported by a Virtual Radio Access Network (VRAN)
network architecture and a single BS, where a set of NSLs H = {hy,hy, ..., h,} must compete
for a limited amount of network resources (i.e., Physical Resource Blocks (PRBs)), as illustrated

in Figure 6.1. Each NSL h € H is characterized by a traffic demand dj,, a QoS requirement (e.g.,
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maximum acceptable jitter [;"**), and a priority weight wj, that reflects its relative importance

in the system. To meet the QoS requirements for each Network Slice, resources a; within a
min

bounded range must be allocated and are defined by a minimum allocation ;™" and a maximum

allocation a;', which yields the following inequality:

a,rf‘i“ <ap <ap™ VheH (6.1)

The total available amount of PRBs are limited to K, and resource allocation decisions must
ensure that the cumulative allocation across all NSLs does not exceed this capacity. This

constraint is represented as:
il

E ay <K (6'2)
h=1

Additionally, the jitter experienced by a NSL is influenced by its allocated resources. For each
NSL h, we define a binary variable v, € {0,1} to indicate whether an SLA violation occurs,
where v, = 1 represents a violation and v, = 0 indicates SLA compliance. Additionally, we
introduce a non-negative variable d;, > 0, which effectively quantifies the absolute difference
between the total traffic demand of NSL & and the total amount of resources allocated to it.
This variable captures the fairness or deviation in resource distribution relative to the actual

demand, serving as a measure of allocation imbalance.

6.2.2 Problem Formulation

The objective of the optimization problem is to maximize the network’s objective function by
balancing NSL satisfaction and resource efficiency. Specifically, the goal is to maximize the
weighted sum of SLA satisfied slices, represented by Y e wy(1 — vj,), while minimizing the
overall deviation between traffic demand and resource allocation, captured by Y ;< dy. The
resulting objective function ensures that high-priority NSLs are favored, SLA violations are

penalized, and fairness in resource allocation is encouraged.

To detect SLA violations, we consider a simple jitter model which assumes that jitter is inversely

dh
ay+e

small constant to avoid division by zero. If this condition is not satisfied for a given NSL, it

proportional to allocated resources. This relationship is modeled as:

< JI& where € is a

is considered an SLA violation. This direct formulation allows us to clearly identify when the

allocated resources are insufficient to meet the jitter requirement.

In our considered scenario, resource efficiency is evaluated by comparing the relative proportions
of traffic demand and allocated resources. For each NSL h, the demand proportion p‘,il is
defined as the fraction of total traffic demand attributed to it, while the allocation proportion
pj, represents the fraction of total resources it receives. To quantify the mismatch between
these proportions, we introduce the variable Jj,, which captures the absolute difference between
demand and allocation 6, = ]pg — p4|. This formulation ensures that even small mismatches
between demand and allocation are accounted for, thereby promoting fairness and efficiency in

resource distribution.
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The objective of the considered problem is therefore given by:

max Z wy(1—vy) — Z on (6.3a)

heH heH
st (1)(2) (6.3b)

This problem can be formulated as a MDP, where an agent dynamically selects actions based
on the current network state with the goal of optimizing a given reward function that considers

both SLA satisfaction and resource efficiency.

6.2.3 MDP Formulation

To overcome the challenge of finding a solution to the formulated problem within a reasonable
time, the problem is reformulated as a sequential decision problem within the framework of
an MDP, where the goal is to learn a resource allocation policy that meets the objectives of
the stated problem, while respecting the constraints. An MDP can generally be specified by
a five-tuple which includes state space, action space, transition probability from the current

state to the next, reward, and discount factor, i.e.,(S, A, P, R, ), respectively.

e State Space: The state space represents the environment, which are defined as a set of
states s(t) € S, and represents the information available to the agent at the beginning of
each time step t. We define this by: s; = {d},(t), a,(t — 1), v,(t = 1), ci (), fr(t), K(t) }nen,
where dj,(t) represents the current traffic demand for NSL h, aj,(t) represents the previous
resources allocated to the NSL h, v, (t) represents the current SLA status of the slice,
which includes the average jitter for the set of UEs U/ in the NSL, the average Channel
Quality Indicator (CQI) for the set of UEs in the slice is represented by cj(t), fu(t)
represents the forecasted aggregated traffic demand for the NSL over a specified future
horizon (i.e., the demand at t + w, where w is the considered horizon) and, finally, the

capacity of the resources is represented by K(f).

o Action Space: The action space typically defines the agent’s behavior and is based on
a policy 7r, which determines the agent’s actions on the environment (i.e., the resource
allocation decision taken by the agent in a given state s;). The agent’s action is given by
a(t) = {an(t) }nep, where a,(t) represents the proportion of total resources to be allocated
to NSL & and a; € A. The environment processes this action a; to derive the amount
of resources (i.e., PRBs) to effectively allocate by scaling the allocation proportions to
the total available resources K (Eq. (2)) and applying per-slice minimum and maximum

resource constraints (Eq. (1)).

o Reward Function: We define the reward as r = R(s;, a;), which is received after taking

action a; in state s;. Specifically, we compute the reward as: 1 = Y ey wy(1 —vp) —

dy max
ap+e 2 S

indicator function that evaluates to 1 if the SLA is violated and 0 otherwise, and &, >

Y new On where wy, is the priority weight of the NSL h, v, = 1( ) is an
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dy(t)

ey dw (1) and

|p} — p}| captures the resource efficiency of the action, with pf(t) =
a — a(t)
Pit) = o

The goal of an agent is to find a policy 71 : S — A that maximizes the expected return:

" = argmaxE,
T

i vtn] (6.4)

t=0

v € [0,1] controls the relative importance of immediate versus future rewards.

6.3 Proactive Slice Optimization

NSL traffic demands vary continuously due to dynamic users, applications, and services,
requiring proactive resource optimization strategies that can predict the spatial-temporal
characteristics of traffic patterns for the online optimization of NSLs [260], [261]. As a result,
accurate traffic prediction is crucial for efficient resource allocation, as it enables InPs to
optimize NSL resources and meet diverse SLAs, which is a critical goal of our proposed

solution.

To maintain the QoS across the shared mobile network infrastructure, network operators must
monitor the performance of NSLs throughout the network and dynamically reconfigure their

capacity to prevent service degradation that would potentially violate SLAs.
6.3.1 Attention-based Traffic Prediction Module

To predict the traffic in the system, we develop a traffic prediction module that leverages
a hybrid architecture combining Bidirectional LSTM layers with attention mechanisms to
better capture the temporal dynamics of network traffic patterns [260]. The module plays
a crucial role in enabling proactive decision-making for the DRL agent. Based on the MDP
formulation, at each simulated time step f, after the agent has taken an action and the
current environment state (including current traffic demand d(#)) has been observed, the traffic

forecasting component is invoked.

The forecaster employs a sequence-to-sequence approach with a configurable sequence length
of 10 time steps, utilizing MinMaxScaler normalization to ensure stable training. It processes
historical traffic data up to time t to generate predictions fj,(t) for each NSL h over the
next w time steps (where w represents the forecast horizon). The architecture consists of
stacked Bidirectional LSTM layers (25 units each) with dropout regularization (0.3) for
capturing long-range dependencies and avoiding overfitting, followed by dense layers for final
prediction [262]. This design choice enables the model to learn both forward and backward
temporal patterns in the traffic data, which is particularly important for capturing the often

cyclical nature of network usage patterns.
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6.3.2 DRL-based Optimization Module

Based on the MDP formulation, we leverage a DRL algorithm to learn a data-driven resource
allocation policy. More specifically, in the considered MDP, the agent explores the environment
by taking actions in several states, without having apriori knowledge about which actions
are more beneficial or optimal, with the goal of eventually learning the best policy through

experience [263].

To learn a proactive resource allocation policy, we employ the PPO algorithm [264], a
state-of-the-art actor-critic RL method known for its stability and sample efficiency. PPO
iteratively refines a policy 7tg(a;|s;) and a value function Vj(s;) parameterized by neural
networks with parameters 6 and ¢, respectively. The policy network maps the current
comprehensive state s; which includes current network information (i.e., actual traffic,
observed jitter and CQI), historical data (past resource allocations, traffic, and QoS metrics),
and critically, forecasted traffic demands f; for a future horizon w to a distribution over

possible resource allocation actions a;.

The learning process involves collecting batches of experience by allowing the agent to interact
with the simulated network environment using its current policy. For each state-action pair, the
advantage A; is estimated using Generalized Advantage Estimation (GAE), which quantifies
how much better the chosen action was compared to the policy’s average performance from
that state. Then, PPO updates it’s policy parameters 8 by maximizing a clipped surrogate
objective function LCLIP(9) = E[min(%fﬁclip(%,l — 6,1+ ¢€)A")]. This
objective encourages policy improvement while constraining the update step size via the
clipping mechanism (controlled by €) , preventing destructive large updates. Concurrently,
the value function parameters ¢ are updated by minimizing the mean squared error between

Vi (s¢) and the empirical return.

The proactive nature of the learned policy emerges primarily from the inclusion of forecasted
traffic within the state s;. By observing predicted future demands, the agent learns to
anticipate resource needs and adjust allocations preemptively, rather than merely reacting
to current conditions. The PPO algorithm, through its value function and advantage
estimation effectively attributes responsibility for long-term outcomes, such as SLA violations
or efficient PRB resource utilization resulting from responding to forecasts, enabling it to
learn sophisticated, proactive resource allocation policies that approximate a solution to the

constrained optimization problem in Eq. (3).

6.4 Performance Evaluation

6.4.1 Simulation Setup

In this section, we empirically evaluate the performance of our proposed PROPHET
framework. We first describe the simulation setup, including the dataset and performance
metrics. Subsequently, we present and analyze the results, focusing on the efficacy of the

attention-based traffic prediction, the proactive resource allocation capabilities of the PPO
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TABLE 6.1: Dataset Features and Output

Dataset Feature Description
Current Demand Traffic for considered applications:
WebRTC, SIPp, Web-Server
CQIl Channel Quality Indicator reflecting
the average quality of the radio link
Jitter UE experienced Jitter (s)
Output Description
Predicted Demand Future traffic demand per NSL

agent in terms of SLA compliance, and overall resource utilization efficiency. We also compare

PROPHET against relevant baseline approaches.

6.4.2 Dataset and Preprocessing

Our experiments leverage a publicly available dataset [265] composed of high-frequency (1 Hz)
network performance data, including real-world network traffic and QoS statistics like Jitter
and CQI per UE, captured from UEs operating in a commercial LTE network and from realistic
network behavior in an office environment with scenarios based on network patterns observed
between 10:00 AM and 11:00 AM. This dataset provides detailed time-series information
for multiple UEs, quantifying traffic generated by distinct applications such as WebRTC,
SIP protocol, and Web-Server, which serve as proxies for three heterogeneous network slice
types in our simulation: a real-time communication slice (e.g., eMBB/URLLC hybrid), a
signaling/control slice (e.g., URLLC/mMTC), and a best-effort data slice (e.g., eMBB). To
align with practical DRL agent decision-making intervals and render this data suitable for

modeling NSL resource allocation, we apply temporal aggregation to the raw 1 Hz data by
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TABLE 6.2: Attention-LSTM Parameters

Hyperparameter Configuration

Multi-Head Attention Layers 1
Number of Heads 4
Dimensionality of Attention Vectors 64
LSTM Layers 1
LSTM Units 25
Units per Hidden Layers 16
Dense Layers 1

Optimizer Adam

Learning Rate 1073

Loss Function MSE

Activation Function ReLLU

partitioning it into contiguous, non-overlapping time windows of Wy, = 10. Within each

window, traffic volumes for UEs belonging to the same service type are summed to compute the
aggregate demand for each NSL, and key QoS metrics like jitter are averaged per UE to yield
representative performance indicators. This preprocessing yields the temporally aggregated
dataset used as input for our simulation environment, as illustrated in Figure 6.2, where each
record encapsulates the state of slice demands and average UE conditions over a discrete time

step.

Our simulations are conducted using OpenAI Gym [266], a widely recognized toolkit in Python.
The Gym API serves as a bridge between our learning-based algorithm and our Python-based
simulation environment. Specifically, Gym provides a standardized interface that allows for
seamless integration of our custom algorithms with various simulated scenarios, enabling us to

efficiently test and refine our learning approaches.

TABLE 6.3: PPO Hyperparameters

Hyperparameter Value
Learning Rate 3x10°*
Steps per Update 1024
Batch Size 64
Number of Epochs 10
Discount Factor () 0.99
GAE Lambda (A) 0.95
Clip Range (€) 0.2
Entropy Coefficient 0.01
Value Function Coefficient 0.5
Max Gradient Norm 0.5

The attention-based prediction module (Section 6.3.1) is trained on the initial 70% of the
aggregated dataset to predict per-slice traffic demands w steps ahead, where w = 5 windows.
Specifically, we use the Mean Squared Error (MSE) loss with the Adam optimizer and
incorporate early stopping to speed up the training process and avoid overfitting. The specific

details about the hybrid architecture and the hyper-parameters used are given in Table 6.2
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and are generated using grid search for hyperparameter tuning. The remaining 30% is used
for evaluating the DRL agent. The PPO agent is configured with the parameters given in
Table 6.3. The three NSLs (i.e., WebRTC, SIPp, Web-Server) are configured with specific
SLA targets for maximum jitter and minimum effective CQI, and resource allocation bounds
(i.e., aZ”” and a]'"), as outlined in Section 6.2.1. We consider a 20 MHz configuration for
the BS, which translates to 100 PRBs available to be allocated between the NSLs, based on
which, we set the values of a,’fi” and a;"* to 10 PRBs and 30 PRBs, respectively. The resource
allocation constraints reflect the heterogeneous requirements of different service types in the
network. Finally, the network environment simulates QoS metrics (i.e., jitter, effective CQI)
based on the agent’s resource allocation decision, observed traffic, and current dataset CQI,

using the model described in Section 6.2.2.

6.4.3 Benchmark Algorithms

To evaluate the advantage of our proactive solution, we compare the performance of our
approach against a PPO agent that is identical in architecture and hyperparameters, but
without access to traffic forecasts in it’s state space. Hence, the agent makes decisions based

only on current and historical observations, and is considered as a reactive baseline solution.
6.4.4 Performance Metrics

We evaluated the performance of our approach by considering the following metrics:

o Traffic Forecasting Accuracy: This is evaluated using Normalized Root Mean Square
Error (NRMSE) for each NSL/service type.

¢ Average Cumulative Reward: This is the average sum of discounted rewards obtained

by the DRL agent per episode during evaluation.

6.4.5 Simulation Results
Traffic Forecasting Performance

TABLE 6.4: Forecasting Performance Metrics

Service Type | NRMSE
WebRTC 21.00%
SIPp 13.15%
Web-Server 14.50%

The training and validation performance of the traffic forecaster is shown in Figure 6.3. We
see that the attention-based model is well fitted to the dataset that is constructed for the
purpose of our simulations. The performance of the attention-based traffic forecasting module
is presented in Table 6.4, based on the NRMSE evaluation metric. We can observe that the
prediction module demonstrates relatively good performance across all three service types,
achieving NRMSE values of 21%, 13.15%, and 14.5% for WebRTC, SIPp, and Web-Server

traffic, respectively, indicating that the hybrid architecture captures some of the temporal
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dynamics of the heterogeneous network traffic patterns within each NSL. Nevertheless, we are
able to leverage the model in our simulations to predict future traffic and states to aid the
DRL agent in making proactive resource allocation decisions that minimize SLA violations and

optimize for resource efficiency.

Average Cumulative Reward

We investigated the impact of the forecasting horizon w on PROPHET’s performance. As
shown in Figure 6.4, a horizon of w = 5 achieved a better average cumulative average reward
(approx. average: -516) compared to w = 20 (approx. average: -1040) and significantly
outperformed the standard PPO baseline (approx. average: -752). This suggests that there
is an optimal range for w, as horizons that are too short may not provide sufficient time for
proactive actions, while horizons that are too long may introduce excessive forecast uncertainty

or incorporate irrelevant future information.

6.5 Chapter Conclusions

In this work, we introduced the PROPHET framework for proactive resource optimization
in 5G environments with network slices that support heterogeneous services. By integrating
an attention-based traffic prediction module with a PPO-based DRL agent, we demonstrated
a systematic approach to anticipatory resource allocation that addresses the fundamental
challenge of dynamic traffic management in slice-enabled networks. Our framework leverages
multi-dimensional state representations, including current network conditions, queue
occupancy levels, and traffic forecasts, enabling the DRL agent to learn allocation policies

that balance SLA compliance with resource efficiency.
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Through comprehensive evaluation using real-world LTE network traffic data, we observed
that the prediction module achieved NRMSE values of 21%, 13.15%, and 14.50% for WebRTC,
SIPp, and Web-Server NSL traffic, respectively. While these forecasting accuracies indicate
room for improvement, the integrated PROPHET framework still demonstrated a better
average cumulative reward which encapsulates it’s resource efficiency and SLA violation
policy, compared to reactive baseline methods. The framework successfully maintains service
differentiation, enforcing slice-specific resource bounds while adapting to the heterogeneous

QoS requirements of different slice types.

Specifically, our findings reveal both the potential and current limitations of Al-driven proactive
network management. The moderate prediction accuracy highlights the inherent challenge of
forecasting highly variable network traffic for heterogeneous NSLs. However, the framework’s
architecture proves resilient, as the DRL component learns to balance proactive allocation
based on the predictions of future traffic demands with reactive adjustments based on observed
conditions. This hybrid solution emerges naturally from the reward structure, which heavily

penalizes SLA violations while encouraging efficient resource utilization.

Finally, the PROPHET framework represents a meaningful step toward intelligent and
autonomous network slice management in 5G and beyond mobile networks. As network
traffic patterns become increasingly complex and service requirements more stringent, the
combination of predictive analytics and adaptive learning towards proactive and predictive
optimization, as demonstrated in this work, will be essential for maintaining QoS requirements

while maximizing infrastructure efficiency in next-generation mobile networks.
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Chapter 7

Conclusions and Future Work

In this chapter, we first summarize the contributions of this thesis in Section 7.1, by providing
a general review of the contributions in the previous chapters. Then, in Section 7.2, we discuss
potential avenues for future research towards autonomous, intelligent, and sustainable network

slicing.

7.1 Summary of Contributions

In this thesis, we investigate and addresses important challenges relating to the dynamic
provisioning of network slices in softwarized and distributed edge computing environments.
Beginning with a comprehensive literature review that established the theoretical foundation
of our work, we identified significant gaps in the current resource management solutions and
frameworks towards the realization of real-time network slicing, admission control, and resource
optimization strategies. As a result, our work’s contributions have effectively addressed these
challenges through three complementary frameworks which advance the state-of-the-art in
intelligent network slice management. Collectively, these frameworks tackle the complexities of
resource management in modern edge-based mobile networks, offering innovative and intelligent

solutions towards improving resource efficiency, service quality, and scalability in such networks.

7.1.1 Online Slice Admission Control

In Chapter 3, we introduced an innovative online slice admission control approach that
leverages online reservation policies for multi-dimensional resource evaluation in heterogeneous
mobile networks, to address the research questions in Section 1.3.1. This proposed method
demonstrated how strategic resource reservation can maximize the revenue of infrastructure
providers despite the uncertainty around the value of future slice requests. We show the
efficacy of our solution in comparison to other slice admission control solutions and show
that regardless of the selected reservation policy, it is able to consistently outperform the
benchmark solutions across key performance metrics, such as revenue maximization and

resource efficiency.

The research in this chapter addresses the following research questions:
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e RQ 1.1: How can admission control policies effectively manage the multi-dimensional
resource demands of network slices while maintaining high resource efficiency in dynamic

mobile networks?

e RQ 1.2: How can online admission control policies ensure long-term revenue
optimization in network slicing, while accommodating heterogeneous slice requirements

and uncertain demand?

e RQ@ 1.3: How does economic disparity among slice tenants influence admission control
decisions, and how can admission control policies balance revenue optimization with

fairness?

We address RQ 1.1 and RQ 1.2 by formulating the Slice Admission Control problem as an
Online Multidimensional Knapsack Problem and utilizing linear and exponential reservation
policies that dynamically adjust admission thresholds based on the current resource utilization
level. These policies account for heterogeneous resource dimensions, preserving capacity for
higher-valued future requests by calculating scarcity across each resource type and ensuring
that slice requests are only admitted if there is enough capacity and their value is larger than
or equal to all evaluated resource dimension costs. This approach enables our proposed online
slice admission control algorithm to maximize the long-term revenue received from admitted

network slice requests.

We addressed RQ 1.3 in this chapter by modeling economic inequality through parameter
w in a Beta distribution, where low w values represent high inequality with tenant values
polarizing towards minimum (1) or maximum (¢) values. Our evaluation demonstrated that
in high inequality scenarios, our solution selectively rejected lower-value slice requests to
reserve capacity for future higher-value opportunities. This selective approach resulted in lower
acceptance ratios compared to greedy algorithms but generated significantly higher revenue.
Economic inequality thus creates opportunities for strategic admission control, leading to
reduced average resource utilization while achieving more efficient resource allocation under

network uncertainty.

By leveraging the online reservation policies in our online slice admission control algorithm, we
have shown that the proposed solution to the slice admission control problem is able to reserve
scarce network resources by dynamically updating the admission threshold for sequentially
arriving slice requests. More specifically, the superiority of our solution is highlighted by the
fact that it increases infrastructure provider revenue by over 12%, while reducing the resource

utilization by up to 1.7%.

7.1.2 Drift-Aware Policy Selection for Slice Admission Control

In Chapter 4, we developed the Drift-AwaRe upper confldence bOund framework for
dynamically learning and selecting optimal slice admission control policies based on
historical request patterns. By reformulating the slice admission control policy selection
problem as a multi-armed bandit problem, our proposed framework learns a policy that

effectively prioritizes high-value slice requests, significantly enhancing revenue generation for
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infrastructure providers. The contributions of this chapter also answer the research questions
posed in Section 1.3.2. The Drift-AwaRe upper confldence bOund framework is a novel online
learning framework for slice admission control to dynamically update the admission threshold

of slice requests based on detecting drifts in the patterns of previous network slice requests.
The research in this chapter addresses the following research questions:

e RQ 2.1: How can network slice admission control policies be dynamically adapted to

cope with evolving network slice request patterns in 5G networks?

e RQ 2.2: What is the effect of temporal shifts in the distribution of network slice
request characteristics on the performance and robustness of slice admission control policy

configurations?

e RQ 2.3: How can online learning techniques be integrated with change detection
mechanisms to enable continuous selection and adjustment of admission control

policy parameters for network slicing in dynamic environments?

We address RQ 2.1 by formulating the slice admission control policy selection problem as
a multi-armed bandit problem in which the bandit agent determines which admission control
policy to apply for a set of arriving network slice requests. Based on the formulated problem,
an upper confidence bound-based algorithm is proposed for adaptively selecting between the

admission control policies in order to learn their performance in an online manner.

The RQ 2.2 is addressed by designing a synthetic dataset that contains distribution shifts
in order to evaluate how the statistical features of slice requests affect performance of
the admission control policies. Based on these observations, we design a change detection
mechanism based on adaptive windowing to detect the changes in the statistical features and

trigger policy adjustments through adaptive thresholds.

Finally, RQ 2.3 is effectively addressed by integrating the sliding-window upper confidence
bound algorithm with a change detection mechanism to create a data-driven framework that
learns both from historical performance data while remaining responsive to environmental
changes (i.e., fluctuations in the WTPR 6). Our framework explores the trade-off between
exploring different admission control policies to gather information about their performance and
exploiting known high-performing admission control policies, particularly when the underlying

distribution of requests is non-stationary.

By combining online learning with change detection, our proposed framework is able adapt to
changing network scenarios, which are captured by the characteristics of the arriving network
slice requests. We compare the performance of our approach to the benchmark linear and
exponential reservation policies, the greedy first-come-first-serve policy, as well as the vanilla
version of the upper confidence bound algorithm that adaptive selects between the two policies
but does not detect any changes in the characteristics or features of requests. Our results
demonstrate that our propose approach is able to outperform all the baseline solutions in
terms of admitting high-valued requests, achieving approximately 4.5% higher revenue gain,

while maintaining the efficient utilization of resources. This is a result of our solution being
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able to detect when the characteristics of historical requests deviate from a given distribution
within a given time duration, and adapt to this change by either exploiting the policy that has

performed well so far, or exploring other policies that could lead to better performance.

7.1.3 Hierarchical Placement Learning for Network Slice Provisioning

In Chapter 5, we focused on addressing challenge of slice provisioning in distributed edge
environments through the hierarchical multi-armed bandit framework, which is a novel
hierarchical learning approach to network slice provisioning. By partitioning the search space
of the network into sub-domains based on the identification of connected communities in the
graph, we developed a hierarchical framework of bandit agents that are distributed over the
network to address the slice provisioning problem. HELIOS effectively learns a high-level
mapping between the requirements of slice requests and their acceptance and utilization in

different sub-domains of the network.
The research in this chapter addresses the following research questions:

e RQ@ 3.1: How can we increase the rate of admitted NSLs while reducing the required
allocated resources, especially in large-scale networks with highly dynamic resource

and user requirements?

e RQ@Q 3.2: How can a hierarchical model be devised so that agents in different network

subdomains make their own placement decisions?

e RQ 3.3 How can we design a NS-provisioning performance metric that considers
multiple objectives and enables a network policymaker to specify the objectives’

relative importance and mutual fairness?

We addressed RQ 3.1 by demonstrating how dividing the network into clusters using
community detection (Louvain algorithm) and implementing a two-tier agent structure
(HLA and LLA) provides an effective slice provisioning solution. Our experimental results
demonstrated that the hierarchical approach outperforms centralized baselines across multiple
network topologies with heterogeneous resources by admitting a higher number of requests

and having marginally higher utilization than the baselines.

RQ 3.2 is addressed by proposing HELIOS, a novel two-level hierarchical learning system
to solve the online NSP problem by jointly placing the VNFs of a SFC in the network. At
HELIOS’ high level, a contextual bandit agent directs each slice request to a specific region in
the network, depending on the measured resource state and slice features. At HELIOS’ low
level, a combinatorial bandit agent determines the nodes on which the VNFs will be placed.

HELIOS is designed to learn a placement policy that scales with network size.

To address RQ 3.3, we leverage the GGI aggregation function which scalarizes and balances
multiple provisioning objectives, together. By maximizing this function, we aim to find a
point on the Pareto front of the multi-objective optimization problem. This allows for a direct
optimization of the different provisioning objectives, enabling trade-offs based on the chosen

weights.
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By designing a novel HDF that enables distributed bandit agents to solve the ONSP at
different locations in the network, we enable scalable slice provisioning in distributed and
heterogeneous edge environments. We have shown that HELIOS achieves higher acceptance
rates while maintaining lower resource utilization compared to both myopic and intelligent
benchmark solutions. The hierarchical strategy learned by HELIOS effectively manages
the complexity inherent in distributed edge networks, providing a scalable approach to
network slice provisioning. Our findings in this chapter contribute to design of hierarchical
learning-based frameworks that can combine the algorithmic efficiency of bandit learning
with structural awareness of network topologies, enabling multi-objective optimization in
resource-constrained edge environments without requiring complete prior knowledge of request

patterns or infrastructure capabilities.

7.1.4 Proactive Resource Optimization for Heterogeneous Network Slices

In Chapter 6, we investigated the challenge of dynamic resource allocation in mobile networks
through proactive resource optimization for heterogeneous NSLs, and in doing so, we address
the research questions described in Section 1.3.4. Our approach combines traffic forecasting
with DRL to enable intelligent, forward-looking allocation of network resources. By first
predicting future traffic demands using an LSTM-attention-based forecaster, and then
incorporating these predictions into a DRL-based resource allocation framework, we are able
to reduce SLA violations and improve overall network resource efficiency. The integrated
solution allows our framework to anticipate potential demand fluctuations and adapt resource
distribution between heterogeneous NSLs accordingly, offering a proactive and effective
strategy for managing dynamic and diverse NSL requirements in next-generation mobile

networks.
The research in this chapter addresses the following research questions:

e RQ 4.1: How can ML-based traffic prediction be integrated with reinforcement
learning to enable proactive resource allocation in heterogeneous 5G network slicing

environments?

e RQ 4.2: To what extent does forecasting accuracy and prediction horizon impact
the effectiveness of proactive resource allocation strategies in maintaining SLA while

maximizing resource efficiency?

The RQ 4.1 is addressed by designing an attention-based DL model for predicting mobile
network traffic demands across heterogeneous services in slice-enabled 5G environments. The
performance of the model is evaluated based on a real-world dataset and shows promising
results in terms accurately predicting traffic demands of heterogeneous services. To address RQ
4.2, we developed a DRL-based framework that learns optimal resource allocation policies for
heterogeneous traffic while adapting to dynamic vRAN conditions. By evaluating the learned
resource allocation policy through it’s cumulative average reward and comparing it to a purely

reactive solution, we show that the framework is able to achieve the goals of improving resource
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efficiency and minimizing SLA violations at a better rate than the baseline solution, depending

on the different prediction horizons.

By combining traffic prediction with the power of DRL, we create a unified framework that not
only reacts to current network conditions but also proactively plans for future spikes in demand.
This synergy allows the DRL agent to make informed resource allocation decisions based on
anticipated traffic patterns, significantly improving performance in dynamic, heterogeneous
network slicing environments. The predictive insights provided by the LSTM-attention
model enhance the DRL agent’s ability to minimize SLA violations while optimizing resource

efficiency, especially under variable and dynamic traffic scenarios.

Collectively, these contributions represent comprehensive approaches to intelligent network
slice management that spans admission control, policy selection, hierarchical learning and
proactive/predictive optimization. Our frameworks demonstrate significant improvements
in key performance metrics including revenue generation, resource utilization, service
acceptance rates and QoS optimization. The adaptability of our solutions to changing
network conditions addresses the dynamic nature of modern network environments, providing
robust mechanisms for optimal resource allocation under network uncertainty. Furthermore,
these research contributions establish a foundation for future work in intelligent, Al-driven
network management, particularly as network infrastructures continue to evolve toward
more distributed, heterogeneous, software-defined architectures. The methodologies and
frameworks presented here offer promising directions for further investigation into autonomic
network management systems that can seamlessly adapt to emerging networking paradigms,
architectures, and novel service requirements under the umbrella of multi-dimensional network

slicing.

7.2 Future Work

In this section, we discuss potential areas for future research that would extend the
contributions made in this thesis. Primarily, the aims of the contributions presented in this
thesis have focused on how NSLs can be admitted, embedded and adjusted in Next-Generation
Mobile Networks, and in doing so, the contributions address the current gaps in research.
Building upon these foundations, we propose several avenues for future work in this field that
were elaborated based on the open issues of our contributions in this thesis. Below, we discuss

the potential open questions for each chapter this thesis presents.

Digital Twin Evaluation. The evaluation of the proposed online algorithm and online
learning based frameworks on a viable network digital twin test-bed constitutes an important
avenue for future work. While the results from evaluating our solutions in controlled simulation
environments showed promising results, their efficiency and generalizability to real network
scenarios would only be determined when they have been evaluated in digital twin environments
which reflect changes in the network infrastructure, in order to analyze their response to
changing network scenarios and patterns, as well as overcome the performance discrepancy

between simulations and real network environments, i.e., the simulation-to-reality gap [267].



7.2. Future Work 101

With the recent development of large-scale emulation platforms like Colosseum [268] that can
imitate dynamic wireless channel conditions in city-scale scenarios, the performance of our
algorithms and frameworks can be tested under real network conditions. This is especially
important for the data-driven online learning solutions, which should ideally be trained in
live systems to avoid the unforeseen scenarios that are typical assumed in offline simulations.
Our proposed algorithms could also be further augmented with time, resource, and action
constraints in such environments to prevent the live systems or test-beds from going into

unsafe states.

Multi-Domain Slice Federation. A significant challenge in provisioning network slices in
next-generation mobile network is the deployment of network slices that span multiple domains.
In multi-domain network slicing, the goal would be to allocate resources across multiple network
domains (e.g., Edge/RAN, TN, and CN) to create virtualized network slices that are tailored
to diverse services. While we typically only consider a single provider or single domain (i.e.
Edge) in the majority of the works in this thesis, extending our results to multi-provider and
multi-domain scenarios in which slice providers need to lease resources from other providers
that own resources across different domains, is an interesting research direction. This can be
addressed by extending the proposed solution in Chapter 5 to include nodes from other clusters
to address the challenge of limited resources in certain clusters and increase the probability
of successfully deploying NSRs across multiple clusters. This could also be considered as
leasing resources from other clusters or domains by allowing the LLA agents to coordinate
to address such a problem. By characterizing such a federated multi-domain scenario, novel
online algorithms and learning-based frameworks can be developed to determine an optimal
resource federation and slice composition across multiple domains, with the goal of maximizing
the number of accepted NSRs and the revenue gained by each InP for hosting a part of the

NSL in it’s domains.

Graph Reinforcement Learning for Network Slicing. The goal of zero-touch network
management in next-generation mobile networks requires intelligent solutions, driven by
the ongoing developments in AI and ML techniques. One of such developments is in the
fast-growing field of Graph Reinforcement Learning (GRL), which is a novel constructive
decision-making method for graph-based problems [269]. More specifically, it a more
appropriate ML tool for handling combinatorial optimization problems on graphs, where
ML models can be used to execute known algorithms, improve existing algorithms through
data-driven learning, or discover new algorithms through RL. In the context of NS, such an
approach can be used to develop novel algorithms for network management problems, such
as the placement or provisioning problem addressed in our third contribution. This approach
could be particularly important for dynamic network slicing, where the state of the network
evolves over time, as it overcomes the limitation of current ML algorithms for graph-based
problems which typically assume that the network structure or topology remains static over

time.
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Intent-based and Explainable Slice Optimization. As a result of heterogeneous
traffic and dynamic QoS requirements in mobile networks, there is an increasing need to
automatically manage network resources and operations towards the goal of Zero-Touch
close-loop orchestration. Intent-Based Networking (IBN) has recently emerged as an advanced
approach to network management that focuses on automating and simplifying how networks
are configured, operated, and maintained by enabling administrators to specify high-level
intents, i.e., what they want the network to achieve, using natural language or predefined
policies. More specifically, an interesting future work would be to combine intent-based
network management with Large Language Models (LLMs) [270] in order to optimize the
performance of deployed network slices towards meeting certain performance requirements by
translating the high-level intents into low-level network actions, such as slice instantiation,
migration or scaling [271]. However, to realize intent-based network slice optimization would
also require the development of eXplainable Artificial Intelligence (XAI) techniques that can
provide clear, interpretable, and transparent explanations for their networking decisions and
predictions, in order to ensure that the stability of the network through clearly defined and

human-interpretable logic and actions.

Sustainable Network Slicing. With the increasingly important role of computing
infrastructure in next-generation mobile networks and their critical role in delivering novel,
data-hungry Al applications and services, there is a growing concern about the carbon
footprint of future mobile networks. Given the role of NS in providing a customized platform
for delivering such applications and services to geographically distributed users, the allocation
of heterogeneous network and compute resources to NSLs should be evaluated for their
impact on sustainability, with the aim of meeting strict QoS requirements while minimizing
each NSLs’s carbon footprint. More specifically, the creation, deployment and management
of NSLs by sustainably routing traffic [272] and scheduling resources [273] in a way that
significantly improves the energy efficiency in mobile networks by potentially reducing energy
wastage, water consumption and operational costs while minimizing the environmental
impact [274] of provisioning NSLs for increasingly demanding AI applications and services,
is a promising direction for future research towards the goal of sustainable network slicing.
Such a consideration is especially crucial in developing nations with unique environmental and

resource constraints [275].

This goal can be advanced through intelligent decision-making and rigorous evaluation of
learning-based algorithms on realistic sustainability benchmarks [276]. Concretely, extending
the HDF from the third contribution to an RL setting for dynamic control would allow
both the HLA and distributed LLAs to monitor per-cluster slice performance and resource
utilization, then either adjust processor power states within a cluster or migrate workloads
from heavily loaded, high-carbon clusters to lower-carbon alternatives, thereby reducing total
energy consumption [277]. In parallel, ML models, such as the one designed in our fourth
contribution, can be used to perform renewable-energy forecasting across clusters and time
horizons to inform NSL placement and scheduling at locations and periods with higher expected

renewable energy availability.
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To conclude, the different contributions made in this thesis provide a solid foundation for
real-time and adaptive network slicing in next-generation mobile networks through enhanced
network intelligence and automated resource allocation. They effectively provide a basis
for building and designing intelligent future mobile networks through the different research
directions which would enable Al-driven mobile networks, which can be dynamically configured
through intents, evaluated on large-scale testbeds or digital twins and be sustainable for
the mobile users, service and infrastructure providers, and most importantly, the overall

environment.
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