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Abstract
Sensor–based Feedback for Coordination Training on the Sensopro

by Heinz Hegi

The incidence of coordination problems and poor balance in the general popula-
tion is at least partly associated with a lack of physical activity linked to the modern
sedentary lifestyle, and the recent trends in digitalization may further exacerbate these
issues in the future. Balance and coordination training on the Sensopro may constitute
one promising tool to mitigate these problems: While performing exercises on the Sen-
sopro, users stand on an unstable base of support that requires continual adjustments
to maintain balance, which provides a challenging environment that, thanks to avail-
able safety features, allows risk-free training conditions even for people with dimin-
ished mobility. An automated sensor-based feedback system could provide additional
training incentives through gamification and progress tracking, in addition to guid-
ing users to better movement solutions to facilitate motor learning during autonomous
training. However, the Sensopro previously only supported video instructions without
augmented feedback. Consequently, the development of an automated sensor-based
feedback system that provides relevant feedback during Sensopro exercises could im-
prove motivation, training adherence, and training outcomes.

The goal of this project was therefore to develop a feedback system for the Sensopro
in order to improve motivational aspects and training outcomes. First, a scoping re-
view of the existing literature informed the design of the subsequent system, but it also
revealed some potential gaps in the research that prevented the establishment of more
general guidelines. Next, the training data gathered in a cross-sectional study of eight
basis exercises on the Sensopro served as a reference for functional movement analy-
ses and provided a training set for neural network models. Furthermore, a validation
study demonstrated that the developed measurement system produces adequate tape
kinematic data, including foot placement and orientation estimations. All these build-
ing blocks were then combined to develop algorithms that are able to produce relevant
and understandable performance metrics. Finally, a longitudinal study was planned
with the objective of empirically verifying the desired long-term benefits provided by
the developed feedback system.

We thus successfully developed an automated sensor-based feedback system capa-
ble of providing relevant performance metrics for balance and coordination exercises
on the Sensopro. Future research may include an empirical assessment of the expected
benefits in a longitudinal study, improvements to the measurement capabilities by ex-
amining key aspects of the measurement setup in more detail, generalizing the mea-
surement system to other unstable bases of support, and a systematic investigation of
the effects of different feedback properties in complex movement tasks on the Sensopro.

https://www.unibe.ch/
https://www.ispw.unibe.ch/
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Introduction

1.1 Problem Statement

The increasing digitalization and the modern sedentary lifestyle are responsible for
a growing concern regarding the incidence of balance and coordination problems in
youth and adults, which can lead to a reduction in quality of life and a higher risk of
falls in old age [1, 2, 3]. Furthermore, poor balance may, in extreme cases, lead to fear
of falling and in turn additionally hinder physical activity [4]. Balance and coordina-
tion training on the Sensopro may mitigate these issues [5, 6, 7] through challenging
exercises on an unstable base of support that are suitable for all age ranges [8]. Thanks
to the available safety and comfort adjustments, Sensopro training could be a viable
option for improving high-level mobility in high-risk populations as well, including
older adults and stroke patients or patients suffering from neurodegenerative diseases
[9, 10]. Despite being well suited for sensor-based feedback due to providing a semi-
enclosed, static environment and already featuring a built-in tablet computer for video
instructions, the Sensopro currently does not offer any automated measurements or
augmented feedback. Yet, an automated feedback system could further support Sen-
sopro training, for example, with progress tracking options for individualized training
reminders or with gamification strategies to induce additional incentives for physical
activity [11, 12]. Such a system could therefore encourage and guide users, leading
to better training adherence, training compliance, and overall outcomes — hence im-
proving balance, aiding efforts for fall risk prevention, and improving quality of life for
users [13].

In the long term, such a feedback system would offer a great opportunity to estab-
lish a full online-feedback system that includes services for training data processing
and storage in addition to the localized feedback on a single Sensopro device. This
would establish a direct relationship between Sensopro AG and the end user, making
the synchronization of training history data between different Sensopro devices pos-
sible and opening the door for individualized training feedback based on long-term
training data. The Sensopro Luna is already used in therapy, rehabilitation, fitness, and
professional sports, and newer Sensopro models may also increasingly enter home and
work environments. With minor adjustments for the different models, the feedback sys-
tem and its benefits could thus affect an extensive user base in all of these sectors. Addi-
tionally, the capability to measure and store individual training data would conceivably
open up new avenues for further research regarding balance and coordination training
on the Sensopro. This could include, for example, systematic research on the effects
of different feedback regimes, with the Sensopro representing a fairly consistent envi-
ronment for the investigation of complex yet comparable movement tasks. Moreover,
the growing user base training on Sensopros with an automatic measurement system
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would also expand the pool of potentially motivated participants for large-scale obser-
vational or longitudinal field studies with manageable additional effort and cost. This
may eventually lead to better individualized training recommendations and a deeper
understanding of the general mechanisms and effects of feedback and coordination
training on unstable bases of support.

The main goal of this project is to improve training outcomes and training expe-
riences in the short and long term for a large variety of potential users by extending
the functionality of the Sensopro with a sensor-based feedback system. The objective is
therefore to inform and support the development of an online feedback system for the
Sensopro in accordance with the requirements and constraints established in the asso-
ciated Innosuisse project (see Section 1.2). In order to provide meaningful feedback that
increases engagement and maximizes desirable behavior conducive to motor learning,
we first need to gain insight into the properties of augmented feedback systems by ex-
amining the existing literature. However, relevant and intuitive feedback content is
also a key factor in guiding users to better solutions for the specific movement tasks
and thereby improving motor learning progress. Hence, we also need to examine and
appraise movement patterns on the Sensopro so that we can operationalize key perfor-
mance indicators and develop an appropriate measurement system, culminating in a
system capable of producing relevant and accurate feedback during or after training.
The main objective has thus been refined into the following specific research aims:

Aim 1: Establish evidence-based guidelines for the design of feedback regimes.

Aim 2: Contrast biomechanical data with functional movement analyses to facilitate
the investigation of movement patterns and the establishment of baselines.

Aim 3: Design and validate the measurement system.

Aim 4: Develop algorithms that are responsible for deriving relevant and understand-
able metrics from the available measurement system output.

Aim 5: Assess the benefits of the developed feedback system.

These aims and the corresponding aspects of the overall project are not strictly hier-
archical but rather interdependent, so the thesis structure presented in the following
paragraph is merely a stratification of an iterative and occasionally parallelized design
process. This interdependence is broadly illustrated in Figure 1.1.

To achieve these aims in a way that allows the adaption of the resulting system on
regular Sensopro devices in rehabilitation and fitness environments, it is essential to
first understand certain constraints from the implementation partner and the training
equipment we are working with. Section 1.2 therefore offers a more detailed explana-
tion of the Innosuisse project that this PhD thesis is embedded in, including a more de-
tailed list of requirements for the desired feedback system, followed by Section 1.3 that
provides a brief overview of the different Sensopro models. Then, the different aspects
related to the design of a sensor-based feedback system for the Sensopro are examined
in Chapter 2, with each section loosely corresponding to one of the five research aims.
To address Aim 1, Section 2.1 briefly introduces the theoretical background of feedback
design and the results of a scoping review on sensor-based augmented feedback. Next,
Aim 2 was fulfilled by providing a biomechanical reference dataset of Sensopro exercise
executions and corresponding performance criteria — Section 2.2 explains how this was
achieved by first presenting related research on unstable bases of support and introduc-
ing the basis exercises on the Sensopro before describing the cross-sectional study that
delivered the biomechanical dataset and facilitated the corresponding functional move-
ment analyses. Then, to elucidate the design choices and compromises regarding the
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FIGURE 1.1: Project overview: Aim 1 concerns feedback design, Aim 2 the movement quality
criteria, and Aim 3 combines sensing technology and software development. Aim 4 concerns

algorithms to produce the metrics, but it needs to observe all other aspects to construct a
beneficial feedback system, with Aim 5 finally evaluating these benefits.

basic measurement system for Aim 3, Section 2.3 discusses different sensor options, the
necessary technical background on Inertial Measurement Units (IMUs), the resulting
IMU-based measurement system, and the validation study assessing the accuracy of
the derived tape kinematic data. Aim 4 necessitates operationalizing and incorporating
the results of Aims 1-3 for the development of high-level algorithms that are tasked
with supplying the feedback content by deriving meaningful yet understandable met-
rics from the tape kinematic data produced by the basic measurement system — Section
2.4 thus outlines the algorithms that resulted from this process so far. Finally, Section 2.5
describes past field tests and the planned longitudinal study that will address Aim 5 by
evaluating the effects of feedback on the Sensopro, possibly contributing to adjustments
to the feedback system and hopefully verifying its benefits for sensorimotor training.

1.2 Innosuisse Project: Sensopro

This PhD thesis is part of the Innosuisse project "Online-Feedback-System (OFS) for
coordination diagnostics and training on the Sensopro in fitness and therapy" (Grant
No. 38795.1 IP-LS). Innosuisse is the Swiss Innovation Agency and has the explicit
goal of promoting science-based innovation by supporting small- and medium-sized
enterprises in their research and development activities. This project is a collaboration
between the Institute of Sport Science at the University of Bern and the implementation
partner Sensopro AG. The goal of the project is to develop a feedback system for coor-
dination training on Sensopro products. This entails that the topics treated in this thesis
are intrinsically linked to the practical and economic needs of the implementation part-
ner, who in turn supported this research with equipment, software development, and



4

recommendations to ensure that research and business interests align and that the end
product is economically viable as well as scientifically sound. However, the research
itself is independent in the sense that the funders and the implementation partner had
no role in the collection, analysis, and interpretation of the data.

The main objective in this project is the design of a feedback system that benefits
the end user — depending on the use case, this can imply supporting motor learn-
ing, providing performance scores, conveying meaningful markers for the quality of
exercise execution, or simply amplifying incentives for increased physical activity and
adherence to a training schedule. For Sensopro AG, the developed Online-Feedback-
System would also achieve several economic goals: Bolstering its market position by
expanding their product portfolio, bringing existing trends in digitalization to the coor-
dination training sector with gamification and biofeedback options, strengthening the
relationship of the user with the training equipment through individualized instruc-
tions and feedback, and adding diagnostic utility to the Sensopros in therapy settings
by providing meaningful performance and progress indicators.

Furthermore, the process of developing and validating said system includes en-
deavors that offer several opportunities for interesting scientific contributions:

• Analyze existing literature on augmented feedback in complex movement tasks to
identify research gaps and ultimately expand the existing knowledge on guidance.

• Develop a simple measurement system on the Sensopro that could later be adapted
to other unstable bases of support.

• Investigate movement patterns on unstable bases of support to find and opera-
tionalize markers for exercise execution quality.

• Explore the potential of advanced algorithms for estimating body kinematics from
tape kinematics.

• Expand on the existing research regarding the effects of feedback on motor learning
in complex movement tasks.

As a consequence of differing priorities in research and industry, this project must ad-
dress various requirements in different areas. First, the project must contribute to the
existing body of research by adhering to the expected scientific rigor and making re-
sults of experiments available through publications. Second, the developed system
should be unobtrusive and easy to use to make it appealing for applications in differ-
ent environments without adding unnecessary steps to the training experience. Third,
safety and privacy protections need to be upheld in laboratory and field settings be-
fore and after deployment. Fourth, the design of performance metrics should observe
human biomechanics to ensure that the feedback is conducive to functional movement
patterns. Fifth, the visualizations should be simple enough to be understandable for
users during and after exercises yet allow for optional access to more intricate metrics
by interested users, coaches, and therapists. Last but not least, hardware and software
should be cost-effective and compatible with existing products to make deployment
economically viable.

In addition to their advisory role and their support with software development,
contacting experts, and the procurement of hardware, the implementation partner also
covered many of the above design tasks that are not related to research, specifically
considerations regarding economical aspects and deployment. These tasks are not the
direct topic of this thesis and will not be addressed in more detail here. However, these
considerations still defined the scope of the project and influenced several decisions,
especially the choice of exercises and equipment to investigate.
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FIGURE 1.2: The Sensopro Luna with a fixed (left) or released (right) swingboard.
Copyright 2025 by Sensopro AG [14].

1.3 Sensopro Training Equipment

There are currently four available Sensopro models: Luna Fitness, Luna Physio, Casa,
and Piccolo. The Luna Physio is a medically certified version of the Luna Fitness. The
Casa is a smaller variant intended for home training. Finally, the Piccolo is a tiny variant
intended for incorporating physical activity in office environments. All models consist
of a metal frame and two non-stretchable canvases suspended by metal springs or elas-
tic cords. Contrary to the Luna models, the Casa and Piccolo have no swingboard or
elastic tubes, and the Piccolo does not have metal guardrails either. Due to the similar-
ities between the bases of support in the different models, the results from one model
should generalize to the other models with only small parameter adjustments (primar-
ily tape length, spring length, and spring coefficient). Therefore, setting the focus on
only one model is warranted to reduce the problem complexity for this project. Due
to having the complete list of features as well as being the common model in fitness
centers, the Luna Fitness has been chosen as the standard model for this project.

The Sensopro Luna Fitness is a stationary exercise device (approx. 2.5m x 1.4m x
2.35m) intended for coordination training in fitness and therapy. It consists of a large
metal frame, two side rails, a video kit presenting exercise instructions in the front, and
a swingboard with two tapes. Each tape consists of a non-stretchable canvas that is
mounted on the swingboard in the front and back with either metal springs or elastic
cords. The swingboard can remain firmly attached during exercise, or, if its retainers
are released, it can rotate about the longitudinal axis through the swiveling holders in
the front and back. The two tapes always form an unstable base of support for the
user to stand on, so releasing the retainers simply adds an extra degree of freedom
to make the base of support even less stable and the task more challenging. Spring
guards in the front and back cover the springs and facilitate mounting and dismounting
the Sensopro via a step behind the swingboard. Hereafter, the term Sensopro without
further specification refers to the Sensopro Luna Fitness. The namesake company is
referred to as Sensopro AG.
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Aspects of Feedback System Design

2.1 Feedback Design Guidelines

2.1.1 Feedback Terminology and Background

Augmented feedback is external information that an athlete receives about their per-
formance, for example, from a coach or an electronic device. This stands in contrast
to intrinsic feedback that directly stems from the athlete’s senses [15]. Since intrinsic
feedback is outside the scope of this project, the term feedback will hereafter denote
augmented feedback unless stated otherwise. Furthermore, this project is mainly con-
cerned with automated, sensor-based evaluations rather than verbal assessments from
coaches or therapists. The feedback system is intended to help these professionals in
their tasks, e.g., by giving them access to otherwise difficult-to-perceive metrics or by
delivering training data afterwards so that they do not necessarily have to watch the
exercise in progress. It is important to keep in mind that the sensor-based feedback sys-
tem is definitely not suitable for replacing individualized coaching, nor is it intended
to do so. The augmented feedback should convey performance metrics, support motor
learning, and add incentives for encouraging physical activity and adhering to estab-
lished training schedules [16]. The measurement system is fundamental for the evalu-
ations because it produces the metrics required for a fair rating of a performance. This
rating advances the above goals in several ways, depending on the use case: it permits
juxtaposition of different athletes’ performances, furthering competition; it allows for
comparisons with previous performances of oneself, empowering the users by increas-
ing their sense of self-efficacy through a clear visualization of motor learning progress;
and finally, it makes contrasting a performance with a baseline possible, facilitating the
identification of peculiarities or weaknesses by a coach, therapist, or the users on their
own. At the same time, the feedback system is constrained by the provided quantities
and the precision of the measurement system.

All these considerations affect the trade-offs involved in the choices for different
properties of the feedback regime, including its modality, content (metrics), timing,
schedule, and other related design options. Visual feedback is the obvious choice with
regard to the modality on the Sensopro because the required screen is readily avail-
able thanks to the video kit and because other modalities, such as auditory feedback,
are more likely to disturb other people around the Sensopro in fitness centers. Visual
feedback has the added advantage that users are likely accustomed to a wide variety
of graphical representations for different kinds of information, which should make the
task of designing accessible graphics relatively straightforward. On the other hand,
what information these graphics should present, i.e., the feedback content, is more
difficult to pin down. Performance metrics for coordination training exercises are ar-
guably harder to establish compared to cardiovascular or strength training, because
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coordination tasks require complex motor skills needed to manage the elaborate inter-
play of multiple body parts to achieve the desired result. Therefore, the result itself, as
well as the steps to achieve it, may be less quantifiable and less generalizable to other
movement tasks. In contrast, cardiovascular and strength training metrics can rely on
relatively common measures such as heart rate, speed, endurance, hypertrophy, and
training volume. In the literature, the feedback content is often categorized by whether
it conveys Knowledge of Performance (KP) or Knowledge of Results (KR), which corre-
spond to assessments of the quality of task executions or assessments of task outcomes,
respectively [17]. This is not to be confused with the timing of the feedback, which
refers to whether it is given during the exercise as concurrent feedback or whether it is
given after the completion of the exercise as terminal feedback. The exact timing may
have profound consequences for the encoding of motor memories [18]. Finally, the
feedback schedule defines when or under what conditions information is displayed.
Giving the maximum amount of guidance all the time may incur an inordinate reliance
on the evaluations shown, which is known as the guidance effect [19, 20]. Specifically,
if such information is continuously available under training conditions, it may lead to
worse performance under test conditions or field conditions, for example, when trying
to apply the learned skill in activities of daily living or sports competitions. Careful
structuring of the feedback schedule by employing fading strategies, which entail a
gradual reduction of feedback frequency over time, may help avoid these adverse ef-
fects [21, 17]. Although this negative effect is well established for simple movement
tasks, it is unclear if and how this generalizes to complex movement tasks like the basis
exercises on the Sensopro [22, 23, 24]. Thus, a closer investigation into the possible ef-
fects of different feedback regime choices in complex movement tasks is warranted to
better inform the design of the feedback system on the Sensopro.

2.1.2 Sensor-based Visual Feedback — A Scoping Review

The following scoping review consolidated the investigated feedback regimes and cor-
responding recommendations from the pertinent literature into an overview of possi-
ble feedback characteristics and associated benefits. This allowed us to make informed
decisions about various aspects of the feedback system, thus at least partially address-
ing Aim 1 in the context of this project. However, despite limiting the included arti-
cles to studies of visual feedback in exercises that, like the exercises on the Sensopro,
squarely fall into the realm of complex movement tasks, the resulting study pool ex-
hibited considerable heterogeneity in exercise types, study methodology, participants,
and properties of the feedback regime. Due to this multifaceted heterogeneity and the
concerns revealed in the risk of bias assessments, the results of the included studies
were incommensurable [25], even when split into several subcategories. As a regret-
table consequence of this, the question of a conceivable partial generalizability of the
guidance hypothesis [19, 26, 23] has thus still not been answered satisfactorily. This
leaves open the possibility that detrimental effects from excessive guidance are simply
delayed in complex movements, leading to diminished motor learning progress after
the initial stage of motor learning.
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The following abstract belongs to a peer-reviewed article published in Frontiers in Sports and
Active Living [27]. The full article is in Appendix A.1

Sensor-based augmented visual feedback for coordination training in
healthy adults: a scoping review
Introduction: Recent advances in sensor technology demonstrate the potential to en-
hance training regimes with sensor-based augmented visual feedback training sys-
tems for complex movement tasks in sports. Sensorimotor learning requires feed-
back that guides the learning process towards an optimal solution for the task to be
learned, while considering relevant aspects of the individual control system — a pro-
cess which can be summarized as learning or improving coordination. Sensorimotor
learning can be fostered significantly by coaches or therapists providing additional
external feedback, which can be incorporated very effectively into the sensorimotor
learning process when chosen carefully and administered well. Sensor technology
can complement existing measures and therefore improve the feedback provided by
the coach or therapist. Ultimately, this sensor technology constitutes a means for au-
tonomous training by giving augmented feedback based on physiological, kinetic, or
kinematic data, both in real-time and after training. This requires that the key aspects
of feedback administration that prevent excessive guidance can also be successfully
automated and incorporated into such electronic devices.
Methods: After setting the stage from a computational perspective on motor control
and learning, we provided a scoping review of the findings on sensor-based aug-
mented visual feedback in complex sensorimotor tasks occurring in sports-related
settings. To increase homogeneity and comparability of the results, we excluded
studies focusing on modalities other than visual feedback and employed strict inclu-
sion criteria regarding movement task complexity and health status of participants.
Results: We reviewed 26 studies that investigated visual feedback in training
regimes involving healthy adults aged 18-65. We extracted relevant data regarding
the chosen feedback and intervention designs, measured outcomes, and summarized
recommendations from the literature.
Discussion: Based on these finding and the theoretical background on motor learn-
ing, we compiled a set of considerations and recommendations for the development
and evaluation of future sensor-based augmented feedback systems in the interim.
However, high heterogeneity and high risk of bias prevent a meaningful statistical
synthesis for an evidence-based feedback design guidance. Stronger study design
and reporting guidelines are necessary for future research in the context of complex
skill acquisition.

In their 2013 narrative review [28], Sigrist et al. provided an overview of feedback
research into the effects of different feedback modalities relative to task complexity, con-
cluding that a systematic evaluation of feedback design within movement classes and
specific modalities is needed before comparing the effectiveness of specific modalities
to each other. They also mention the challenge associated with such studies due to the
required technical effort, and they subsequently started a series of studies investigating
feedback in a rowing simulator [29, 30, 31, 32]. Incidentally, the Sensopro could also
be well-suited for such a systematic evaluation, which will be discussed in more de-
tail in Section 3.3.3. The same 2013 review by Sigrist et al. also discussed the benefits
of abstract visualizations to represent key movement features and the benefits of us-
ing concurrent (in addition to terminal) feedback to guide users to optimal movements
without causing dependency on the feedback. Research into the effects of the exact mo-
ment when contextual cues are given further underpins the relevance of the timing of
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concurrent visual feedback in the formation of motor memories [18]. These considera-
tions help to further delineate a strategy for the initial feedback system design.

2.1.3 Desired Feedback System on the Sensopro

While the scoping review indicated that the recent research on sensor-based visual feed-
back does not conclusively determine the role of guidance in complex movement tasks,
the feedback system is likely not in grave danger of negatively impacting motor learn-
ing to a high degree, because strong negative effects of excessive guidance would pre-
sumably have been apparent in the literature. Nevertheless, there is an argument to be
made for self-selection or, if available, coach-selection of feedback frequency and type,
because self-selection has been associated with positive effects on self-efficacy [33] and
both self- and coach-selection of feedback may still help detect and avoid potentially
detrimental feedback. A fully automated fading schedule, however, is not warranted.

The strategy of combining abstract visualizations with concurrent and terminal
feedback is suitable for the Sensopro feedback system in principle, but concurrent feed-
back may lead to challenges with regard to hardware limitations. Nonetheless, the next
step is an analysis of movement patterns in Sensopro exercises to elucidate key features
and the notion of optimality in that context, so that the system can indeed guide the
users towards optimal movement patterns.

2.2 Performance Indicators for Sensopro Exercises

2.2.1 Movement Features on Unstable Bases of Support

It is essential to bear in mind that all exercises on the Sensopro are exercises on an unsta-
ble base of support. On one hand, the unstable base constitutes a challenging training
environment that, together with the many variations of exercises on the video kit, could
improve motor learning outcomes [34]. On the other hand, motor learning of balance
and coordination skills is thought to be specific to the corresponding movement pat-
terns, and therefore it is not immediately clear whether training on the Sensopro would
produce a measurable transfer effect to balance and coordination tasks on hard ground,
with both positive and negative examples existing in the literature [35, 36, 37, 38]. For
this reason, the experts designing the exercise instructions on the Sensopro apply func-
tional movement analyses and focus on functional movement tasks that closely mimic
the (real-life) tasks the users train for [39]. The feedback system should likewise follow
this theoretical background by emphasizing a task-specific understanding of movement
patterns, necessitating an in-depth analysis of the movement patterns on the Sensopro.

The different step detection definitions and strategies discussed in Section 2.4.2 are
corroborative of the difference between movements on solid ground and the Sensopro,
i.e., stable and unstable bases of support. While related literature on measurement sys-
tems for exercises on unstable bases of support is available for slacklines, trampolines,
and other devices [40, 41, 42, 43, 44], the Sensopro itself is a relatively novel field of
investigation. Moreover, contrary to Sensopro exercises, walking on a slackline usu-
ally involves changes in foot placement along the slackline, so step detection strate-
gies on slacklines are likely different from the required step detection approach on the
Sensopro, where changes in foot placement during the exercise are less common. On
trampolines and especially mini-trampolines, the stepping pattern may be similar to
the stepping patterns observed on the Sensopro. Nevertheless, the fact that the base of



10

support of trampolines resembles a plane rather than a tape likely leads to different step
detection strategies as well. Since the strategies for a task as simple as step detection
are already different on Sensopros, slacklines, and trampolines, it stands to reason that
other, more complex tasks will also differ. An investigation of the potential strategies
for detecting movement features on the Sensopro is therefore warranted.

2.2.2 Basis Exercises

Users can select the desired exercise from a large library of video instructions avail-
able on the video kit. Since there are too many different exercises on the Sensopro to
consider each one of them separately, the focus is instead on eight basis exercises that
cover different types of basic tape movements. The results from these exercises should
broadly generalize to other exercises with similar tape kinematic patterns. As discussed
in Section 2.3.1, inertial measurement units on the tapes will form the central building
block for the measurement system. To assess the capabilities of the measurement sys-
tem without interference from elements that cannot be measured, the deliberate choice
was made to exclude all elastic tubes from the basis exercises. To further simplify the
task at hand, the swingboard function is also not considered. Finally, touching the metal
guardrails is discouraged but not prohibited due to safety concerns.

The following movement tasks were chosen as the eight basis exercises:

• One-Leg Stand: An asymmetrical balance task in which the athlete tries to stand on
one leg for as long as possible. The unstable base of support makes it difficult to
hold the pose for an extended time, so athletes often have to temporarily grab onto
the handrails or set down the other foot in order to re-establish balance.

• Sideways: A balance task in which the athlete tries to keep the two tapes at a sim-
ilar height while facing sideways (right or left) instead of forwards. The feet are
shoulder-width apart and on different tapes, resulting in asymmetrical anteropos-
terior and lateral foot positions.

• Lunges: A slow, asymmetrical stability task similar to lunges on stable ground. Ath-
letes position one foot towards the front and one foot towards the back, then they
try to maintain mediolateral and anteroposterior balance while repeatedly going
from upright into a lunge position and back, without lifting the feet.

• Squats: A slow, symmetrical stability task similar to squats on stable ground. Ath-
letes try to keep the tapes at a similar height while repeatedly going from upright
into a squatting position and back.

• Step: An asymmetrical rhythm task with medium speed. This involves shifting the
weight between the left and the right leg. The movement is similar to walking in
place, but the toes generally remain on the tape throughout the exercise.

• Bouncing: A symmetrical rhythm task with medium speed. Athletes rhythmically
move the tapes up and down by slightly engaging the knees without lifting the feet
off the tape.

• Sprint: A fast-paced, asymmetrical exercise, mimicking sprinting movements with-
out moving forward. The toes may or may not remain in contact with the tape
throughout the exercise.

• Waves: A fast-paced, symmetrical exercise in which the athlete tries to quickly move
the tapes up and down while keeping them parallel.

In all exercises except sideways, the athletes are facing the video kit in front of them.
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2.2.3 Movement Analysis

For a more detailed examination of the specific movement patterns during these ba-
sis exercises, a cross-sectional study was carried out to address Aim 2. Participants
performed the eight basis exercises on the Sensopro, resulting in 65 datasets after ex-
clusion due to measurement errors. Using a ten-camera motion tracking system (Vicon
T20, 2MP, Vicon Nexus 2.12, Vicon Motion Systems Ltd., Oxford, UK), body kinemat-
ics of participants and tape kinematics of the Sensopro were recorded simultaneously.
Participants were also filmed from the back and the right side using Blackmagic Pocket
Cinema Camera 4K (Blackmagic Design Pty Ltd, South Melbourne, Australia). Finally,
two types of 9-axis IMUs were attached to the tapes: the SFM2 (Sensor Maestros LLC,
Denver, CO, USA) as a consumer-grade option and the Blue Trident (Vicon Motion
Systems Ltd., Oxford, UK). A pilot study was conducted beforehand in the scope of a
Bachelor’s thesis [45] to refine the study methodology. Additional details regarding the
cross-sectional study can be found in Appendix A.3.

The cross-sectional study did not yet lead to a separate publication, but the anthro-
pometric, IMU, and motion capture data aided the development and testing of algo-
rithms, and may serve as a baseline for feedback with a reference in the future (see [27]
for examples of references in related research). The dataset was also used for training
and evaluating neural networks (see Section 2.4.3). The resulting recordings were inte-
gral for expert questionnaires that led to functional movement analyses in a Bachelor’s
Thesis [46], which resulted in the selection of performance criteria for the Sensopro
exercises.

The experts broadly agreed on the different performance criteria for each move-
ment task, though sometimes with different thresholds for what constitutes a good or
bad performance. The following key quality criteria were listed: avoid valgus or varus
alignment in legs; maintain symmetrical posture (if applicable); keep center of mass
centered above the base of support (except in step and sprint); distribute the weight
equally on both tapes; keep the hip horizontal; hold an upright posture with a straight
spine; relax shoulders; maintain a constant rhythm; and execute the movements con-
sistently and calmly (except in sprint and waves). Thus, the performance criteria men-
tioned by experts mostly concerned correct posture, rhythm, symmetry, and consis-
tency. During all exercises except for the one-leg stand and sideways, participants were
usually able to refrain from touching the rails. Standing on one leg for longer than a
couple of seconds proved to be exceptionally difficult for all participants, indicating
that properly measuring performance in that exercise would likely require a sensor
system capable of detecting rail touches, unless the difficulty is reduced by instructing
users to hold onto the elastic tubes throughout the exercise. However, even if it may
not be possible for the measurement system to detect all relevant movement features,
they may still prove useful for the feedback system, for example, by simply scheduling
pertinent cues that remind the user to guide their attention to these criteria.

Finally, interviews with physiotherapists by Sensopro AG revealed that motiva-
tional aspects of the feedback system are not just important for recreational applica-
tions, but also a core priority in rehabilitation and therapy. Since experts can supply
metrics themselves by simply watching their patients, a precise measurement of clini-
cally relevant movement features may not be strictly necessary. From this perspective,
the focus should be on usability and on supplying gamification elements to engage
users, thus encouraging them to adhere to the training schedule and to comply with
exercise instructions. This means that even less functionally relevant movement fea-
tures may be considered for feedback, as long as it succeeds in motivating the users.
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However, we still strive to give meaningful feedback for four reasons: First, overly inac-
curate or irrelevant feedback might demotivate inquisitive users. Second, as mentioned
before, the ability to consistently record performance indicators may be instrumental in
future field studies on motor learning. Third, the same performance criteria may be
used in the future for commensurable performance scores to allow individual progress
tracking and to foster competition between users. Lastly, even if the experts do not need
the training recordings when they can observe the exercise execution, the system may
still aid coaches and therapists by recording unsupervised training sessions for further
evaluation. This may give coaches and therapists a tool to better assess progress [47],
e.g., during the recovery after an accident or in training of motor skills. It is important
to note that in this context, gamification strategies on the Sensopro may not necessar-
ily only serve a motivational role: Serious games have found applications in many
areas, including motor learning [48], and gamification elements were also previously
employed for diagnostic purposes in an associated project that investigated pareidolia
production in stroke patients [49].

2.3 Measurement System

2.3.1 Sensing Technology for Human Motion Analysis

To generate feedback about the performance, a measurement system must reliably sup-
ply information about the exercise execution. The selection of available sensor systems
for measuring human motion is too large to consider each option separately [50], so it
first needs to be narrowed down to a few candidates before addressing Aim 3. Inertial
measurement units on the tapes are a promising candidate for detecting tape kinemat-
ics because they are often used for step detection on solid ground [51] and because of
their ability to measure acceleration and rotation speed directly, without complex com-
putations or assumptions on the surrounding environment. Therefore, IMUs will be
the main sensors of interest for the measurement system, despite the disadvantage that
they cannot directly detect information related to posture. This disadvantage could be
remedied by extending the measurement system with other sensors.

A passive optical system would be one possible extension for obtaining informa-
tion related to posture. Video cameras are ubiquitous due to the proliferation of smart-
phones, which explains the relatively cheap hardware and a broad range of available
algorithms for interpreting large amounts of video data, including solutions for seg-
mentation and pose estimation. Conversely, it faces challenges with respect to camera
placement, privacy protections of user data, differentiating between the user and other
people within the field of view, and potential privacy concerns from people in the sur-
rounding area who did not agree to be recorded. The immediate transformation from
video into abstract pose data could ameliorate some of these issues. Moreover, various
range imaging technologies could further enhance the usually 2-dimensional record-
ing with depth information for more accurate 3-dimensional estimations. The technical
capabilities of a possible extension of the measurement system with consumer-grade
cameras was investigated in a Master’s Thesis on 3D human pose estimation [52]. The
thesis results indicated that a camera-based measurement system may be sufficient for
detecting movement cycles in slow exercises like squats or lunges, but it would en-
counter difficulties because of imprecise depth recognition and erroneous joint angle
estimations during rapid movements or movements in an unfavorable direction. These
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results, together with the aforementioned practical concerns, led to this line of investi-
gation being put on hold. Despite that, such a system could be considered again in the
future, either with custom optical flow approaches for depth estimation [53] or with
depth cameras using infrared projectors that could produce more accurate 3D data,
thus simplifying pose estimation and making background removal trivial but requir-
ing more expensive hardware.

Another option would be a radar (radio detection and ranging) or lidar (light de-
tection and ranging) system that could provide position and velocity data, including
information on posture. However, there are concerns regarding algorithm complex-
ity, computational complexity, secure placement of the sensors, and interference from
the surrounding environment. Other possible extensions of the measurement system
could detect usage of other Sensopro components, like detection of contact with the side
rails (e.g., using light barriers or capacitance) or kinematics and kinetics of the flexible
tubes, although these features were not deemed important enough to be included in
the current measurement system. All wearable options (including marker-based track-
ing, IMUs, electromyography, and electrocardiography) are excluded on the basis that
putting on and taking off equipment for every training session would be cumbersome
and raise hygiene concerns.

For these reasons, the proposed measurement system is only based on IMUs pro-
viding tape kinematic data. Future investigations may reevaluate possible active or
passive camera-based extensions to supplement the feedback system with postural in-
formation.

2.3.2 Inertial Measurement Units and Sensor Fusion

Inertial measurement units come in different varieties, but the main components rele-
vant to this project are the accelerometer, the gyroscope, and the magnetometer. Other
components like pressure or temperature sensors may be internally important for mak-
ing the readings of the main components more accurate, but these are of no further con-
sequence here. Each of the three main components could theoretically cover between
one and three spatial axes, but it makes sense to disregard options that are limited to
one or two axes because all three spatial dimensions are significant for tape kinematics.
The two main variants of interest are 6-axis IMUs, which only include accelerometer
and gyroscope data, and 9-axis IMUs, which also include magnetometer data. When
an IMU is attached to the tape, the accelerometer and gyroscope readings give imme-
diate information about the tape’s acceleration and angular velocity. By combining the
accelerometer, gyroscope, and magnetometer readings in a process called sensor fusion,
it is possible to obtain orientation information as well.

Orientations can be regarded as rotations relative to a reference coordinate system.
Orientations can thus be represented by unit quaternions (versors), which are conve-
nient for calculations due to their computational efficiency, numerical stability, as well
as the absence of a gimbal lock. In this project, the w-component of a quaternion de-
notes the real part, while x, y, and z are the imaginary parts corresponding to the longi-
tudinal (X), lateral (Y), and vertical (Z) axes, respectively. The positive axes directions
are defined as follows: X forward; Y left; Z upwards. All kinematic data produced
throughout this project adhered to this axis convention. The main disadvantage of
quaternions is that they are largely unknown and hard to understand for laypeople.
On the other hand, Tait-Bryan angles have computational disadvantages, but their lin-
ear relationship with rotations along the three spatial axes allows for quicker, more
intuitive interpretation of visualizations (at least for the relatively small rotations ob-
served in Sensopro tapes; combinations of larger rotations may be less intuitive). For
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this reason, both quaternions (for calculations) and Tait-Bryan angles (for metrics and
visualizations) have been used in this project. Throughout the project, Tait–Bryan an-
gles followed the XYZ intrinsic rotation convention to determine roll, pitch, and yaw.
Roll refers to a rotation about the longitudinal tape axis (X), pitch refers to a rotation
about the lateral axis (Y), and yaw refers to a rotation about the vertical axis (Z).

A caveat of unit quaternions, which likely had an impact on the IMU assessment
discussed in Section 2.3.3, is that they are isomorphic to the special unitary group
SU(2), which covers the 3D rotation group SO(3) twice over. This means that for every
orientation in three-dimensional space, there are two ways to represent that rotation as
quaternions. A intuitive way to see this is to consider the relationship of quaternions
with axis-angle representations: a quaternion q = (w, x, y, z) corresponds to a rotation
of θ = 2 × arccos(r) degrees about the (x, y, z)-axis (only the axis direction is needed,
and if w = 1, then there is no rotation and the axis is irrelevant). Now, since a rotation
of θ about the (x, y, z) axis is the same as a rotation of −θ about the (−x,−y,−z) axis,
it is clear that q and −q represent the same orientation in three dimensional space. This
is troublesome because this may lead to inadvertently treating equivalent rotations as
dissimilar, especially when applying naive algorithms for interpolation between orien-
tations or for differentiating orientations to get angular velocities. On account of these
problems, quaternions are often limited by imposing the condition that w ≥ 0 to ensure
consistent behavior, replacing q with −q if this is not the case [54, 55].

Sensor fusion combines the readings from multiple components to achieve differ-
ent or more accurate measurements. The orientation is estimated for each time step
by integrating the angular velocity and adding the resulting rotation to the last orien-
tation estimate. Without corrections from the other components, this estimate would
exhibit integration drift, so it would continuously accumulate errors due to noise in the
measurements and due to digitization (the process of converting analog quantities into
digital formats). Fortunately, gravity and the earth’s magnetic field offer a reference
that can be used to correct this drift — provided these references are not made indis-
cernible by movements or electromagnetic interference. Note that an IMU measures
proper acceleration, i.e., acceleration relative to free fall: there is no measured accelera-
tion in free fall, and the measured acceleration vector at rest is pointing upwards with
vector norm 1g (standard gravity, approximately 9.81m/s2). When at rest, this gravi-
tational acceleration vector can be compared against the expected upward direction in
the current orientation to find the error in inclination (roll or pitch in Tait-Bryan angles).
The magnetometer reading provides an estimate for the direction of true north, thereby
providing a reference for the orientation in the horizontal plane (yaw in Tait-Bryan an-
gles). The magnetometer reading is influenced by nearby devices and structures with
different magnetic permeability, which unfortunately includes the surrounding metal
frame of the Sensopro and the cables of the IMUs, making the horizontal orientation
less reliable.

2.3.3 IMU-based Measurement Systems

As a result of the considerations in the previous two sections, the planned measurement
system is based on IMUs attached to the Sensopro tapes, thus providing acceleration,
angular velocity, and orientation data. In order to fulfill usability and safety require-
ments, the IMUs are attached to the underside of the tapes, with cables being guided
towards the joint of the swingboard to allow normal operation without interfering with
exercise execution on the Sensopro.

A Bachelor’s Thesis assessed SFM2 IMUs regarding accuracy and stability [56] prop-
erties that would influence their potential use on the Sensopro. This first assessment
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warranted further laboratory tests, resulting in the observation that the integrated sen-
sor fusion algorithm may have stability issues causing small discreet jumps in the ori-
entation estimation when the IMU is rotated 180° from the default zero orientation,
with the zero orientation corresponding to (X, Y, Z) axes aligned with (east, north, up)
directions. After conferring with the IMU manufacturer and observing similar pat-
terns in Blue Trident IMUs as well, we surmised that this may be a consequence of the
quaternion being constrained to positive scalar values in the integrated sensor fusion
library. If this is indeed the case, then this problem would likely affect many IMUs
with integrated sensor fusion capabilities. One potential solution to this problem is to
allow negative scalar components in quaternions and simply smooth the orientation
output by detecting and correcting abrupt sign switching, thereby avoiding a discon-
tinuous jump, but we lacked the resources to test this in an onboard sensor fusion li-
brary. Since taring did not affect this behavior, the only alternative to prevent this issue
was to avoid problematic orientations during tests in the laboratory, which meant that
IMUs were placed with the Z-axis pointing upward and the X-axis not pointing east.
However, this constraint would certainly be too restrictive for the deployment of the
measurement system for Sensopro customers. This issue was one of several reasons
that ultimately led Sensopro AG to commission a custom IMU system, thus enabling
them to adjust the employed sensor fusion algorithm as needed.

At first, a measurement system using only one IMU per tape was considered, with
IMUs attached under the middle tape segments to directly record kinematic data of the
area the users are most often standing on. However, this would diminish the value
of the recorded data in exercises with different foot placement, such as lunges. Fur-
thermore, in contrast to applications on solid ground [51], the dampening effect of the
Sensopro tapes obscures the stepping patterns in the accelerometer data, thus hinder-
ing the reliable detection of relevant movement features. Sensopro AG consequently
opted for a system with two IMUs per tape, attached to the front and rear segments, fa-
cilitating tape position estimations from IMU data as explained in Section 2.3.4. Yet, the
commissioned sensor system is based on 6-axis IMUs that are not capable of recording
magnetometer data, which means that yaw data is also not available. This is mostly
a cost-saving measure, which is justified by the relatively small yaw angles observed
during Sensopro training and by magnetic interference in real-life settings potentially
leading to stability and accuracy issues. Nevertheless, depending on the outcome of
ongoing investigations on advanced movement feature detection algorithms (see Sec-
tion 2.4.3), a future expansion of the measurement system may be warranted — for
example including magnetometers or adding a third IMU underneath the middle seg-
ment of the tape, provided that the subsequent feedback capabilities would justify the
additional hardware cost.
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2.3.4 A Simple Model for Estimating Tape Kinematics

The following abstract belongs to a peer-reviewed article published in Sensors [57]. The full
article is in Appendix A.2

A Simple Model for Estimating the Kinematics of Tape-like Unstable Bases
from Angular Measurements near Anchor Points
Sensorimotor training on an unstable base of support is considered to lead to im-
provements in balance and coordination tasks. Here, we intend to lay the ground-
work for generating cost-effective real-time kinematic feedback for coordination
training on devices with an unstable base of support, such as Sensopros or slack-
lines, by establishing a model for estimating relevant tape kinematic data from angle
measurements alone. To assess the accuracy of the model in a real-world setting, we
record a convenience sample of three people performing ten exercises on the Sen-
sopro Luna and compare the model predictions to motion capture data of the tape.
The measured accuracy is reported for each target measure separately, namely the
roll angle and XYZ-position of the tape segment directly below the foot. After the
initial assessment of the model in its general form, we also propose how to adjust
the model parameters based on preliminary measurements to adapt it to a specific
setting and further improve its accuracy. The results show that the proposed method
is viable for recording tape kinematic data in real-world settings, and may therefore
serve as performance indicator directly or form the basis for estimating posture and
other measures related to human motor control in a more intricate training feedback
system.

The article above describes a simple method for estimating tape kinematics based
on orientation data recorded near anchor points. Consequently, the proposed measure-
ment system may now use orientation data from IMUs to derive position and rotation
data of the tape segment that the foot is placed on, albeit with currently limited accu-
racy for sideways displacement and rotation angles. Since this method does not rely on
a specific placement of the feet on the tapes, it can be used for a large variety of Senso-
pro exercises, including lunges. One limitation is that the swingboard was not released
during testing, so the potential effects of its use on accuracy or the expected range of
sideways displacements is unknown. Nonetheless, this is a promising approach, and
future research on generalizations of this method to slacklines or trampolines may not
only broaden the range of possible applications, but it may also lead to higher accuracy
for roll angle and sideways displacement estimations on the Sensopro.

The IMU-based tests indicated that drift may become an issue in Sensopro exercises
with continuous movements, because these movements obscure the acceleration due
to gravity and the orientation relative to the magnetic field, which prevents reliable
drift corrections without resting periods. This predicament reinforces the need for a
custom sensor fusion solution: the limited range of possible orientations achievable
by Sensopro tapes could allow for the detection and correction of drift during exercise
executions, irrespective of resting periods.
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FIGURE 2.1: Step features defined by vertical tape position and time.

2.4 From Tape Kinematics to Relevant Movement Metrics

2.4.1 Basic Algorithms for Basis Exercises

The feedback system includes algorithms that are tasked with transforming the tape
kinematic data from the measurement system into human-understandable metrics for
visual feedback (Aim 4). Whether this concerns concurrent gamification elements or
terminal progress scores, the derived metrics should still focus on relevant movement
features and be consistent (as explained in Section 2.2.3), otherwise, users may be dis-
couraged by irrelevant scores or when they notice inconsistencies, which they may even
misattribute to a lack of training progress on their part.

The most straightforward metrics consist of movement features that are directly
related to quantities recorded by the measurement system, such as roll angles, jitter,
or tape heights. The roll angle of the tape, for example, could serve as an adequate
measure for a balanced stance, since big roll angles of the tape imply either off-center
foot placement or roll (i.e., supination or pronation) of the foot. In exercises like the
one-leg stand while holding onto tubes, high roll angles may be part of a functional
strategy for maintaining balance, so scores based on roll angle deviations would mostly
offer an additional challenge. In exercises like squats, keeping a small roll angle may be
a suitable performance indicator, but its relevance may depend on the specific use case
and instructions from therapists (e.g., in rehabilitation). As opposed to roll angles, jitter
is relatively ambiguous, as it simply refers to quick, uncontrolled shaking of the tape.
Jitter scores could therefore be built on some trivial aggregation of tape acceleration,
like the root mean square of the absolute acceleration vector, thus penalizing rapid
changes in velocity. While this may be of interest in some exercises that would ideally
be performed calmly, like lunges or the one-leg stand, its ambiguous definition means
that its value lies mostly in broad comparisons between exercise executions. Compared
to jitter, the difference between tape heights is a more versatile metric, as it provides
information about lateral stability and symmetry that could be relevant in exercises
like squats, lunges, sideways, waves, and bouncing. If the tape height is compared
between the same phases of different movement cycles instead of just subtracting it
between the tapes for every point in time, this would constitute an indicator of spatial
consistency that would also be relevant for step and sprint exercises. This leads us to
the importance of algorithms for step detection on the Sensopro.

2.4.2 Step Detection

Step counters based on micro-electromechanical systems are quite popular in exercise
on solid ground and for measuring physical activity in general [58], which is beneficial
both because there is a broad research base to rely on and because users may already be
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FIGURE 2.2: Step detection approaches based on signal peaks, a fixed tape height threshold,
and relative height thresholds, leading to different points at which step events are detected.

accustomed to steps as a metric. If the measurement system can reliably detect when
a step occurs, then basic metrics related to the rhythm of the movement cycles follow
immediately. If the vertical range covered during a single step is available too, then
spatial consistency metrics can be derived as well (see Figure 2.1), which may also lead
to more accurate energy expenditure metrics. Steps can be operationalized in several
ways, possibly involving assumptions regarding distance traveled as well as the move-
ment pattern typical for human ambulation [59, 60, 61]. For example, in elderly people
with reduced mobility, a shuffling gait pattern may be the main method for walking
to reduce the risk of falls. Such a gait pattern would not necessarily involve lifting the
moving foot off the ground or fully putting the entire weight on the other foot. There-
fore, said definitions may depend on the specific problem at hand.

On the Sensopro, we are interested in movements that mimic walking on solid
ground, but without traveling any distance. A step therefore simply involves shift-
ing the weight partly or entirely onto one foot, thereby lowering that respective tape
and lifting the other foot upwards — which may involve lifting that foot partly or en-
tirely off the tape. Additionally, it is helpful for the generalizability to different kinds of
exercise to define steps even more broadly to allow for singular, one-sided steps. Specif-
ically, a left-leg step just means clearing a certain vertical threshold over a movement
cycle with the left leg, without stipulating what the other leg does in the meantime.
With this definition, a symmetrical bouncing exercise and an asymmetrical stepping
exercise can both use the same step-detection algorithm: the first would simply require
left and right steps to happen at more or less the same time, while the second would re-
quire left-right alternated steps. Algorithmically, the difference between bouncing and
stepping exercises then becomes a question of phase-shift between the left and right
movement cycles. Different exercises still require different parametrizations, such as
the minimum required vertical clearance (i.e., the amplitude) that needs to be much
larger in step cycles than in sprint cycles.

During initial trials on the Sensopro, acceleration data on its own proved insufficient
for reliably detecting step events. The feedback system therefore relies on positional
data for different step detection modules shown in Figure 2.2: First, an appropriately
tuned peak-detection algorithm can accurately detect peaks and troughs in the vertical
tape position. While this is useful for determining the amplitude and timing of a cycle,
such a module struggles with providing concurrent feedback on its own due to signal
noise and duplicative counting of twin peaks. Second, a fixed tape height threshold
for each step cycle constitutes a constant measure to enforce a required minimum am-
plitude, but such a module would need individualized tuning to avoid putting users
with decreased flexibility or different weight ranges at a disadvantage. Third, a rela-
tive tape height threshold would allow adaptive adjustments of the required peak or
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trough heights, thus being more equitable for different users yet potentially leading to
less consistent exercise executions. Furthermore, both threshold-based approaches are
unable to detect the precise reversal point, so employing them for concurrent feedback
may incentivize users to clear the required range as narrowly as possible, which may
or may not be desirable. Finally, the most versatile approach is to simply combine an
appropriate threshold-based module with peak detection to compensate for the asso-
ciated disadvantages. For example, clearing the lower bound of the threshold could
prime the peak detection module so that a step event is triggered at the next reversal
point, after which step detection is blocked until the upper bound of the threshold is
cleared again.

2.4.3 Neural Network Models for Center of Mass Kinematics

The following abstract belongs to an unfinished article in preparation for publication in Sports
Engineering. See Appendix A.3 for the full draft.

Prediction of Center of Mass Kinematics of Sensopro Exercises with Neu-
ral Network Models [In Preparation]
Augmented feedback supplements autonomous coordination training, ensuring cor-
rect exercise execution and enhancing self-efficacy by scoring and tracking perfor-
mance indicators. We intend to develop a practical, cost-effective measurement sys-
tem to provide center of mass predictions based on tape kinematics for advanced
postural feedback in three balance and coordination exercises on an unstable base of
support. In a cross-sectional study, 65 participants performed exercises on the Sen-
sopro Luna, while a marker-based motion capture system recorded tape and body
kinematics. These recordings were split into training and test data sets for several
neural network models. To predict the center of mass position in all three dimen-
sions from tape kinematics, we implemented models based on a convolutional and a
variational auto-encoder neural network architecture. Preliminary results based on
a subset of the data and a smaller convolutional neural network architecture showed
good accuracy. Therefore, further experiments with different exercises, deeper mod-
els, and a more complex architecture are warranted.

By leveraging a deep neural network’s capability of considering many interdepen-
dent parameters without the need to specify the underlying logic, it may be possible to
obtain Center of Mass (CoM) information from tape kinematics without first deriving
a biomechanical model and finding a way to handle noisy and possibly biased input
data. With the CoM position, key performance indicators related to posture may be ap-
proximated, thus potentially offsetting some of the weaknesses of the current feedback
system. For example, the lateral CoM displacement during waves or squats exercises
could indicate asymmetrical posture, while the overall CoM sway may be an indicator
of consistency and stability during exercise execution.

Concretely, the dataset from the cross-sectional study offers an opportunity to train
exercise-specific neural network models that predict CoM displacement based on tape
segment orientation, acceleration, and angular velocity, all of which may also be col-
lected by IMUs. Preliminary results indicate that even simple neural networks are able
to produce CoM data with adequate accuracy, provided the movements do not deviate
too much from the movement patterns observed in the training set. However, the ar-
ticle merely serves as a proof of concept, demonstrating the prospects of an advanced
measurement system consisting of high-precision orientation data of three tape seg-
ments as well as acceleration and angular velocity. If these tests produce promising
results, later investigations could evaluate possible concessions in the input data that
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would still allow an adequate prediction of CoM displacement. This additional inves-
tigation would likely result in adjustments to the measurement system (e.g., with an
additional IMU) or neural network models that could handle data obtained from the
current measurement system.

2.5 Feedback System Evaluation

2.5.1 Preliminary Assessments

The goal of the feedback system evaluation is to verify that the feedback system is
indeed beneficial for Sensopro users (Aim 5). These benefits may encompass both
enhanced motor learning progress and motivational aspects. Preliminary supervised
field tests were performed in a fitness center, where users could experiment with a pro-
totype system that provided concurrent and terminal visual feedback. The available
visualizations at the time comprised abstract line plots, numbers, step event indicators,
and horizontal beams indicating tape lateral balance (see Figure 2.3). These field tests
were also an opportunity to test the configuration and recruit prospective participants
for the planned longitudinal study. Sensopro users generally responded positively to
the feedback system, with many responses including ideas for possible new features
or adjustments to the visualizations to improve usability. However, the field tests also
uncovered stability issues in the prototype system, at least partly caused by the much
greater operating times compared to previous tests. The system was not designed to
handle the resulting delays in the input data, leading to inaccurate feedback that im-
pacted the training experience.

As one key consequence of the preliminary field tests, Sensopro AG eventually de-
cided to transition towards only providing terminal feedback for the initial launch of
the feedback system, thereby avoiding potential stability issues associated with the real-
time processing required for concurrent feedback. This leads to a more stable user ex-
perience and less troubleshooting, but also entails scant opportunities for gamification
elements and a smaller potential impact of the provided feedback on motor learning
progress and motivation [18, 23]. For the current system to operate robustly on the
video kit, it would need to be capable of dynamically dealing with delays caused by
other processes running in the background, possibly in a resource-insufficient envi-
ronment [62] that may lead to some data being dropped. However, the video kit is
currently not designed for real-time scheduling, so it is preferable to outsource some of
this computation to other hardware to guarantee the clear processing budget needed
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for concurrent feedback with static scheduling. The new hardware included in the cus-
tom IMU system commissioned by Sensopro AG may fulfill these requirements, so this
problem may resolve itself. If this is not the case, additional hardware may be needed
for the longitudinal study to ensure that the desired feedback is given consistently.
The longitudinal study has subsequently been put on hold until this issue is resolved.
Unfortunately, this means that there is no empirical data to verify the benefits of the
developed feedback system. Instead, the next section will briefly explain the study
protocol.

2.5.2 Longitudinal Study

To assess the long-term effects of feedback during Sensopro training on motivation and
motor learning, a longitudinal study under field conditions is required. Following our
advice from the scoping review (see Section 2.1.2), the study should consist of three
groups: one wait list control group, one classical Sensopro training group without feed-
back, and one feedback training group. Training interventions should ideally consist of
two or three training sessions per week over eight weeks, using a cross-over study
design where participants switch between feedback and no-feedback conditions after
four weeks. In the best case scenario, the intervention group starting without feedback
will train in a different fitness center than the group with feedback, thereby preventing
them from learning about the other intervention group (with the control group being
split between the two sites). However, the total number of participants and the number
of intervention sites may depend on how many volunteers sign up to participate in the
study. By selecting participants from people who already train in a gym multiple times
a week and by instructing them to use the intervention as a warm-up for their regular
training, we hope to decrease the rate of attrition and the dropout rate. One training
session lasts approximately 12 minutes and consists of a subset of basis exercises (e.g.,
step, sprint, bouncing, waves, and squats).

To assess the effects of the different interventions, pre-tests, tests just before the
cross-over after four weeks, and post-tests are performed under laboratory conditions.
The primary retention tests would consist of one training session on the Sensopro, but
without feedback for all intervention groups. The dependent variables are the spatial
and temporal consistency of the movement cycles, an assessment of the form during
each exercise, and the total number of cycles in sprints and waves. Motivational aspects
are assessed with questionnaires and overall training adherence. Transfer effects to ex-
ercises on solid ground are of secondary importance for this study, but a Y-excursion
test and squats or repeated jumps on a force plate (measuring rhythm, symmetry, and
consistency of ground reaction force patterns) may be included for exploratory pur-
poses. Were the study to proceed as planned, we would thus not only be able to eval-
uate the benefits of the developed feedback system during Sensopro training, but also
gain insights into the effect size of Sensopro training without feedback while simulta-
neously exploring potential transfer effects for future studies.
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General Discussion

3.1 Synthesis of Findings

Balance and coordination training may provide an important tool to combat issues re-
lated to sedentary lifestyles, such as poor motor skills or increased risk of falls, thus
affecting overall quality of life [2, 5, 7, 6]. The different Sensopro models offer an op-
portunity for challenging exercises to maintain and improve high-level mobility [10, 3]
in diverse segments of the population without compromising on safety, thanks to the
available safeguards. The goal of this project was therefore to promote training adher-
ence, quality of movement, and overall motor learning progress on the Sensopro by
developing a feedback system that can provide gamification elements as well as mean-
ingful performance scores. While some aims towards that goal have not been fully
realized, the work presented here constitutes a significant step towards extending the
current functionality of the Sensopro Luna with a fully integrated feedback system for
sensorimotor training on an unstable base of support.

The scoping review in Section 2.1.2 provided an appropriate overview of feedback
properties and their various purported advantages (Aim 1), but it also demonstrated
a gap in the available literature that largely precludes generalizations of these findings
based on empirical evidence, most notably the open questions regarding long-term ef-
fects of excessive guidance and different fading strategies in complex movements [23,
28]. Instead, an adequate interim solution is to offer self-selection or coach-selection
features in place of a fixed regime, thus reaping the associated benefits [33] as well
as leaving the option of removing feedback in the eventuality that negative effects are
suspected. Next, interviews with experts indicated that motivational aspects of feed-
back should not be neglected, with the actual biomechanical or medical relevance of the
feedback taking on a secondary role in some rehabilitation and therapy settings. Yet, ir-
relevant or overly inaccurate feedback would likely confuse and disparage users, so the
feedback system must still achieve a certain standard despite not needing high accuracy
and stability for clinical settings. The cross-sectional study addressed the need for a ref-
erence dataset comprising exercise executions for the eight basis exercises, which now
can supply baselines for the feedback system (Aim 2). The corresponding performance
criteria obtained from the functional movement analyses and the expert questionnaires
largely fall into two categories: postural or tape kinematic (or both). The developed
IMU-based measurement system (Aim 3) is well suited for detecting movement fea-
tures that are closely related to the tapes, such as rhythm or step depth consistency.
However, a camera-based system, which could complement the IMU system with pos-
tural information, is not yet ready for deployment due to systematic errors in the pose
estimations in addition to the privacy concerns and the increased computational cost.
Overall, it was possible to at least partially transform the somewhat abstract perfor-
mance criteria from Aim 2 into a few concrete metrics (Aim 4) that can be derived from
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the measurement system output. Although preliminary results look promising, the ex-
ploration of a center of mass prediction system in 2.4.3 has not yet concluded at the time
of writing, so it remains unclear whether this approach could accurately provide some
basic postural information without requiring cameras. If this exploration should not
lead to satisfying results, a deeper exploration of different sensors (e.g., lidar or radar)
or a combination of multiple sensors may still yield more accurate postural data. How-
ever, the demand for such a complicated system is not guaranteed, especially since it
is possible that customers are already satisfied with the capabilities of the current IMU
system.

Aims 1- 4 have therefore been achieved with varying degrees of success and com-
pleteness. In the meantime, Sensopro AG has started to deploy an initial version of
the IMU-based measurement system that is able to provide terminal feedback, with
ongoing monitoring and further development efforts likely leading to further adjust-
ments in the near future. Finally, regarding Aim 5, preliminary observations during
field tests have been presented in Section 2.5.1, and the study protocol for the planned
longitudinal study is briefly discussed in Section 2.5. While motivational benefits and
usability aspects will likely become apparent through customer responses over time,
which in turn may lead to improvements to the feedback system that could facilitate
a future in-depth investigation, a more rigorous longitudinal study would be needed
in further research to empirically prove the benefits of the feedback with regard to op-
timized motor learning. However, on a theoretical basis, it stands to reason that an
appropriate application of the feedback system is expected to benefit motor learning,
purely based on the related research on the connections between motor learning and
motivation [63], and especially considering the existing evidence that concurrent feed-
back may improve performance at least momentarily [20], which can in turn increase
the perception of competence, task interest, enjoyment, and thereby ultimately also the
effectiveness of motor learning [64]. These deliberations notwithstanding, the best gen-
eral strategy regarding feedback design on the Sensopro may lie in openly relying on
coaches and therapists to bring the displayed feedback into perspective for the users,
thus entrusting the decision of its usefulness in each particular case to them. An au-
tomated feedback system such as this is simply incapable of fully accounting for the
many individualized parameters influencing relevance of performance indicators, with
priorities likely changing depending on age, motor skill proficiency, health, and train-
ing goals.

3.2 Limitations

Naturally, the main limitation is the lack of a longitudinal study that examines the long-
term effects of the developed feedback system on sensorimotor training outcomes on
the Sensopro (see Section 2.5). While there is some practical and theoretical evidence
indicating that the feedback system may have an overall positive influence on the train-
ing experience and motor learning progress, it is still possible that empirical evidence
would uncover some aspect that we have yet to sufficiently account for. Furthermore,
the lack of concurrent feedback, which is one of the reasons why the longitudinal study
was delayed, may limit the potential benefits of the feedback system, both due to a re-
duction in prospective gamification options as well as due to a the connection between
concurrent feedback and motor skill learning [18]. However, thanks to the addition
of new hardware in the custom sensor system, there may already be a solution for
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this problem, so a renewed exploration of concurrent feedback running on that hard-
ware instead of running directly on the integrated video kit may resolve this limitation
within the foreseeable future.

While the scoping review has yielded some practical results that affected the de-
sign of this feedback system (see Section 2.1.2), it was unfortunately not possible to
compile evidence-based guidelines for the design of visual feedback regimes in gen-
eral. While this may not impact the application of this system anymore, the unclear
picture of the effects of augmented feedback on motor learning and motor adaptions
has potentially profound implications in a variety of training scenarios related to com-
plex motor tasks (see Section 3.3.3). Another small limitation concern the fact that the
measurement system has only been tested on the Sensopro Luna with metal springs,
this is, however, consistent with the project plan and it should be fairly straightforward
to adapt the measurement system to models with elastic cords, possibly including the
Sensopro Casa and the Sensopro Piccolo, if desired. Moreover, the investigations into
models for tape roll angles, lateral tape displacement, the relationship between pre-
dicted longitudinal position and center of pressure, and the AI-based center of mass
position estimation are all incomplete (see Section 2.3.4 and Section 2.4.3). However,
this may also be regarded as a strength, seeing as this leaves many potential avenues
open for further improvements regarding the accuracy and number of available metrics
for feedback on the Sensopro.

3.3 Outlook

3.3.1 Sensopro Training Effects

The obvious next step is to conduct the planned longitudinal study (see Section 2.5) to
resolve the main limitation mentioned in the previous section. This could not only ver-
ify the benefits of the current feedback system, but it could also encompass a small
exploration of possible transfer effects regarding balance and coordination tasks on
solid ground. Metrics of interest could include, e.g., plyometric jumps or squats on
a force platform, with a focus on left-right symmetry. This could also help inform fu-
ture studies, e.g., on the potential use of Sensopro training (with or without feedback)
in the treatment of gross motor symptoms of neurological disorders such as ataxia [65].
Preliminary tests indicated that, given the right safety precautions and professional
support, training on the Sensopro would indeed be feasible for patients suffering from
this disorder, even in the presence of gait abnormalities that would prevent unaided
upright walking.

Moreover, a prototype software system providing services for concurrent data anal-
ysis and storage was developed in an associated project [66], operating with cloud
or on-premise storage solutions and suitable for integrating additional measurement
devices if needed. Applying such a software system could not only be of interest to
Sensopro users and their coaches or therapists (because it allows sharing information
between Sensopro devices and different training sites without impacting the training
experience), but it could also prove to be a powerful tool for combining the existing
measurement system with laboratory setups for more sophisticated tests that are di-
rectly comparable to training sessions in the field. Integrating such a software solution
on the Sensopro may therefore aid future studies by facilitating the consolidation of
long-term observational data with field and laboratory data gathered with the same
measurement system.
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3.3.2 Advanced Tape Kinematic Measurements

Several possible paths for further research have been identified in the article on the
simple trigonometric model for estimating tape kinematics (see Section 2.3.4): First,
it would be interesting to apply a similar model to slacklines, not just to make IMU-
based measurements viable for slackline training, but also because it could be helpful
to investigate roll angles and lateral displacements in a system that only consists of one
material (as opposed to the spring and canvas on the Sensopro). Second, possibly aided
by the insights gained from slacklines, roll angle and lateral displacement estimation
accuracy could be improved on the Sensopro by appropriately accounting for the dif-
ferent resistance to deformations in the canvas and the metal springs (resp. the elastic
cords in other models). Third, an analysis of the exact center of pressure position on
the tape in relation to the IMU-based sagittal position estimation may reveal a possible
connection between the two, which could account for some of the observed differences
between measured and estimated position. Fourth, taking advantage of the kinematic
constraints present on the Sensopro tapes to detect and adjust for drift in the sensor fu-
sion algorithm could lead to more accurate IMU-based orientation estimations, thereby
improving the accuracy of all metrics that are derived from that (including vertical
displacement and roll). Fifth, after a potential adaption of the existing measurement
system to Sensopro models with elastic cords, an additional validation study may be
warranted. Sixth, in order to adequately support swingboard operation with the cur-
rent measurement system, an additional investigation into the effects of swingboard
use on measurement accuracy may be required — if the current measurement system
proves unsuitable for estimating the swingboard tilt angle, an extension to the measure-
ment system with one additional IMU attached to the swingboard may be warranted.
Lastly, a 3D IMU-based measurement system could be developed for trampolines, thus
providing a similar feedback system for trampolines.

3.3.3 On Guidance

On a more tangential note, by applying the task-space model for motor learning [34] to
past results on feedback timing, a reinterpretation with an interesting potential applica-
tion emerges: Howard et al. provided evidence that the representation of sensorimotor
states in motor memory depends on the exact timing of visual cues, i.e., with effects
from visual cues decaying over time [18]. Considering that the visual cue is only one
of many aspects of the sensorimotor state during task space exploration, it may be pos-
sible to extend the duration of such effects by coupling the information provided by
the visual cues with a change in the sensorimotor state. For example, when instruct-
ing Sensopro users to shift the weight a little more towards the left during squats (e.g.,
in rehabilitation after an injury to the left leg), pairing some visual feedback with the
instruction to make a non-functional adjustment to the movement to remind them of
that feedback (e.g., by making a fist with the left hand) may serve as an alternative
to continuous visual feedback. The proprioceptive change in the sensorimotor state
due to that non-functional adjustment could therefore extend the duration of the ef-
fects of the initial visual feedback, even without consciously keeping the attention on
that adjustment, because the task-space is persistently altered until the instruction is re-
scinded. Other than presenting an avenue for further research investigating the effects
of feedback timing, such instructions may also bridge the gap between haptic feed-
back and visual feedback on the Sensopro, thereby potentially providing some limited
advantages of haptic feedback during Sensopro training without additional hardware.
While the feedback system on the Sensopro currently only considers unimodal visual
feedback, it would also be possible for specific studies to extend the feedback system
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with sonification or haptic feedback, allowing further research into these modalities as
well as multimodal feedback later on. Such experiments may be warranted despite the
associated practical challenges (see Section 2.3.1), because previous research indicated
that the underlying mechanisms may differ fundamentally between different feedback
modalities [28], thus potentially leading to additional benefits for Sensopro training.

Finally, and perhaps most interestingly, the limitation regarding the results of the
scoping review mentioned in Section 3.2 also introduces an opportunity for tackling
the issue of guidance in complex movement tasks. Specifically, there is still a need for a
concerted, systematic investigation into the exact function and effects of different aug-
mented feedback properties with regard to motor learning in complex movement tasks.
This general sentiment has been voiced several times before [23, 28, 67, 68]. Elucidat-
ing the role of augmented feedback in motor learning and motor adaptions could have
far-reaching consequences on training of complex motor tasks, possibly even in train-
ing scenarios beyond sports or sports-adjacent settings. As mentioned in Section 2.1.2,
the feedback system on the Sensopro may also present an ideal opportunity to study
different feedback regimes, analogously to an existing series of rowing studies initiated
by Sigrist et al. [29, 30, 31, 32]. Given the non-invasive measurement system combined
with a wide variety of available full-body exercises for balance and coordination train-
ing within the fixed space provided by the Sensopro frame, it is difficult to imagine a
more appropriate training device for studying the effects of feedback in complex motor
tasks. Contrary to the rowing studies, feedback studies on the Sensopro could also be
conducted under field conditions, with comparatively little additional effort thanks to
the system being deployed in a variety of settings where Sensopros are already in use.
This may allow studying long-term effects with a large pool of potential participants,
which, in combination with the relatively homogeneous training setting provided by
the Sensopro, would be likely to lead to more commensurable results.

3.4 Conclusion

After considering the available research on feedback design and investigating key per-
formance indicators for eight basis exercises on the Sensopro Luna, we developed a
feedback system that is capable of providing feedback of relevant performance metrics,
with sufficient accuracy levels for movement features that are related to tape kinemat-
ics on the Sensopro. In principle, the feedback system may thus promote balance and
coordination training by boosting engagement through gamification elements and by
supporting automated performance tracking features that help users discern perfor-
mance progress. This may further encourage physical activity, training adherence, and
training compliance in applications such as exergaming, rehabilitation, and therapy. At
the same time, the deployment of this system may lead to many opportunities for fu-
ture research concerning further improvements to the system, the role of augmented
feedback in motor learning of complex motor tasks, and the potential health benefits
of training on unstable bases of support, especially with regard to the prevention or
treatment of neurodegenerative and age-related diseases.
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Sensor-based augmented visual
feedback for coordination training
in healthy adults: a scoping review
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Introduction: Recent advances in sensor technology demonstrate the potential to
enhance training regimes with sensor-based augmented visual feedback training
systems for complex movement tasks in sports. Sensorimotor learning requires
feedback that guides the learning process towards an optimal solution for the
task to be learned, while considering relevant aspects of the individual control
system—a process that can be summarized as learning or improving
coordination. Sensorimotor learning can be fostered significantly by coaches or
therapists providing additional external feedback, which can be incorporated
very effectively into the sensorimotor learning process when chosen carefully
and administered well. Sensor technology can complement existing measures
and therefore improve the feedback provided by the coach or therapist.
Ultimately, this sensor technology constitutes a means for autonomous training
by giving augmented feedback based on physiological, kinetic, or kinematic
data, both in real-time and after training. This requires that the key aspects of
feedback administration that prevent excessive guidance can also be
successfully automated and incorporated into such electronic devices.
Methods: After setting the stage from a computational perspective on motor
control and learning, we provided a scoping review of the findings on sensor-
based augmented visual feedback in complex sensorimotor tasks occurring in
sports-related settings. To increase homogeneity and comparability of the
results, we excluded studies focusing on modalities other than visual feedback
and employed strict inclusion criteria regarding movement task complexity and
health status of participants.
Results: We reviewed 26 studies that investigated visual feedback in training
regimes involving healthy adults aged 18-65. We extracted relevant data
regarding the chosen feedback and intervention designs, measured outcomes,
and summarized recommendations from the literature.
Discussion: Based on these findings and the theoretical background on motor
learning, we compiled a set of considerations and recommendations for the
development and evaluation of future sensor-based augmented feedback
systems in the interim. However, high heterogeneity and high risk of bias
prevent a meaningful statistical synthesis for an evidence-based feedback design
guidance. Stronger study design and reporting guidelines are necessary for
future research in the context of complex skill acquisition.
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Introduction

In the last decades, technological progress has brought about a

multitude of competitively priced sensor devices for recording and

analyzing human movement in real time. In the context of sports

and exercise, this development led to a variety of commercial

products leveraging sensor-based augmented feedback applied in

domains ranging from physical activity monitoring to classical

strength and endurance training to exergaming and even motor-

skill learning (1). Such autonomous technological solutions

promise to be an efficient and (cost-)effective complement to

classical instructor-led interventions and are therefore marketed

aggressively for home training, but also for fitness centers and

even for clinical use in physical therapy and rehabilitation. The

prevalence of human trainers and their obvious benefits in all

kinds of sport training alone form strong indicators that such

sensor-based augmented feedback training (SAFT) systems may

also provide advantages in the aforementioned domains while

tackling already prevailing and in the future intensifying cost and

personnel capacity issues. Therefore, further investigation of

potential benefits but also harms of sensor-based augmented

feedback seems necessary.

In general, SAFT systems are intended to foster sensorimotor

learning, a process which brings about a relatively permanent

improvement in the capability of a person to perform a

sensorimotor skill (2). From a theoretical perspective on motor

control and learning, four principal sensorimotor learning

mechanisms can be distinguished, which extend Newell’s well-

known task-space landscape metaphor (3) and were first

elaborated by Hossner, Kredel, and Franklin (4)—namely, task-

space formation, differentiation, exploration and (de-)

composition. It quickly becomes apparent that SAFT systems can

foster sensorimotor learning during all these stages. First, SAFT

systems can assist novices during task-space formation, where

learners need to identify basic functional task structures. As

Hossner and Zahno (5) state, this process can be enhanced by (i)

providing task-goal related instructions, (ii) following appropriate

schedules, or (iii) introducing part-whole training. Not only can

SAFT systems provide this information in a reliable and

systematic manner, moreover, they can analyze the learner’s

compliance based on the gathered sensor data and adapt to

potential deviations. Second, during task-space differentiation,

learners start paying attention to less salient task parameters,

thus increasing the dimensionality of the task-space. SAFT

systems can support this process by inducing controlled amounts

of variance, e.g., by increasing difficulty or augmenting errors.

This contributes to optimally structured learning contexts that

promote the identification of additional task-relevant control

variables while, at the same time, assuring the exploration of the

continuously evolving task subspaces. Third, SAFT systems allow

to point the learner towards better task solutions during task-

space exploration and therewith promote a systematic escape

from local optima. According to Hossner, Kredel, and Franklin

(4), this can be achieved by avoiding repetitive, blocked practice

of task variants, which fosters a stronger representation in

memory [cf. the reconstruction hypothesis (6)] and facilitates an

interpolation of the explored support points of the task space [cf.

the elaboration hypothesis (7)]. Fourth, such a well-explored task

space can be expected to allow for a better transfer of sub-spaces

containing movement structures into the context of different

tasks. Consequently, during task-space (de-)composition, learners

need to be supported in identifying functional (sub-)structures in

their task spaces that can be potentially applied outside the

current motor task (5). Applying the above reasoning again, as

SAFT systems allow for a systematic variation of specific,

functionally relevant control variables while keeping others

constant, their application can promote structure detection and

therefore (sub-)space identification. Moreover, decomposing a

task into such transferrable sub-structures may allow to train

those in isolation, increasing the quality of the building blocks

independent from training the whole task (4). Functionally

relevant task-space decomposition would additionally allow to

start task-space exploration with a well-educated guess,

consequently changing the learning of completely novel tasks to

a transfer of functionally fitting subspaces from previous

experience (5). With its fine granularity on sensory motor

learning mechanisms, this theoretical framework has the

potential to guide the conceptual design of SAFT systems to

ultimately benefit sensorimotor learning.

Despite all potential benefits, a major challenge remains for a

successful application of SAFT systems to sensorimotor learning:

Finding appropriate approaches to guide the learner to specific

regions of the task space, in other words, defining the optimal

type and amount of instruction and feedback for the current

experience level of the individual learner. Well established

approaches in sports practice can be differentiated by the amount

of structure provided during the learning process. They form a

continuum between unsupervised and supervised learning regimes.

On one end of the continuum, and like unsupervised learning,

(unguided) discovery learning builds on the self-organized search

behavior by the learners, assuming that they can find their optimal

task solution better than any external observer [e.g., Vereijken and

Whiting (8)]. When targeting specific mechanisms of motor

learning as sketched above, this approach seems particularly suited

to exploit inherent variability, while a systematic addressing of

specific regions of the task space seems limited.

Applying a rather prescriptive approach, located at the other

end of the continuum, those specific regions might be targeted

more easily by explicitly instructing the learner, ideally in the

form of desired sensory consequences. Those instructions are

thought to generate sensorimotor imagery together with the

desired action consequences and therefore provide sufficient

input to the motor system to parametrize the movement (4).

While older research found larger detrimental effects due to

raised psychological demands for explicitly learned skills (9), in a

recent review, Kal et al. (10) did not find clear disadvantages in

their descriptive synthesis. They therefore explicitly encourage

employing both approaches in practice based on their

appropriateness for the task and learning challenge at hand.

Nevertheless, applying instructions and feedback excessively may

introduce artificial feedback-specific dimensions to the task space

which provide highly precise information for movement
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parametrization. From a Bayesian perspective, the estimations

throughout the learning process would be dominated by those

artificial dimensions over noisier, task-relevant dimensions.

However as soon as feedback is removed, the artificial

dimensions do not provide meaningful information anymore,

preventing the sensorimotor system from finding a good

solution. This phenomenon is known as the guidance effect

(11, 12). Even if this effect does not necessarily generalize to

more complex tasks [e.g., (13–16)], considering the general

mechanism seems sensible.

In their 2002 review, Wulf and Shea (14) concluded that

principles derived from simple skill learning do not necessarily

generalize and more intensive research on complex skills is

required to advance motor learning theory and to adequately

inform practice. Since then, most research has been investigating

augmented feedback very broadly [cf. Sigrist et al. (17)].

Neglecting given instructions and experience levels while

including multiple modalities, mixed populations, and simpler

movement tasks in medical settings generally results in a very

heterogenous set of outcomes not allowing for a clear-cut

synthesis of the results. The combination of these factors may

have contributed to the ambiguous result patterns in prior

research on augmented feedback in motor skill learning.

In this review, an approach involving a restrictive search

purview has been employed to increase the homogeneity of the

included research. Diminished health, older age, or different levels

of motor development may affect motor learning and the

optimality of developed strategies, so we restricted target

population to healthy, non-elderly adults. When it comes to the

task complexity-dependent effect of feedback, it is still unclear

whether it should be regarded as a binary question of simple

movements vs. complex movements, or rather as a spectrum. We

thus opted for a conservative definition of complex movements

that involves postural control and multi-joint movements, further

limiting the considered experiments to sports-related coordination

training interventions with such complex movement tasks. A

previous review on the potential impact of different feedback

modalities and parameters has concluded that vision was the

most investigated modality (17), which can be enforced from an

implementational viewpoint due to the ubiquity of electronic

screens in digital technologies and existing training devices. By

focusing on visual feedback as the largest body of evidence only,

we expect to maximize the review’s synthesis potential. To sum

up, the objective of our scoping literature review is thus to

provide the basis for informed feedback design and to provide

guidelines for the development of future autonomous visual SAFT

systems for sports-related settings to maximize the training

benefits derived from such feedback. More specifically, we

approach this objective by addressing the following goals:

i. Aggregate results pertaining to similar feedback regimes to

provide an overview of the findings in relation to these choices.

ii. Outline what visual feedback regimes have been considered in

sports-related research.

iii. Compile the recommendations made in these studies

regarding visual feedback regimes.

Methods

We followed the PRISMA Extension for Scoping Reviews

(PRISMA-ScR) (18) without prior registration of a formal review

protocol. A research librarian advised the investigators in the

selection of the databases and the formulation of the search

strings. In accordance with the recommendations of the Interim

Guidance from the Cochrane Rapid Reviews Methods Group

(19), the three electronic databases Embase, PubMed, and

Cochrane Central were searched to cover a comprehensive basis

of the available literature. The last search on each database was

carried out on the 17th of October 2022 by one investigator. The

search strings consisted of a conjunction of disjunctions, grouped

into the following four inclusion criteria (with NEAR/10 meaning

that the respective keywords need to be closer than ten words):

• Feedback: (“knowledge of performance” OR “knowledge of

results” OR ((augment* OR external OR extrinsic OR kinetic*

OR kinematic* OR motion) NEAR/10 (feedback OR

biofeedback)))

• Coordination: (performance OR motor OR movement OR skill*

OR coordination OR neuromuscular OR techni* OR athlet* OR

sport*)

• Training: (training OR acquisition OR improvement OR

learning OR athlet* OR sport*)

• Visual: (visual* OR display* OR screen OR perceptual*)

The search was limited to articles published in peer-reviewed

journals and always covered abstracts. If the database interface

permitted a combined search with titles and keywords, then

these were also included. Where possible, filters were set to

exclude reviews and study registrations and to only consider

intervention studies. If this was not possible, the filtering process

was performed manually in the screening phase. There was no

restriction to sensor-based feedback in the search terms because

such specifics of the methodology may be missing in the abstract.

The screening procedure consisted of two phases: The first phase

was based on abstracts, titles, and keywords, while the second phase

considered the full-text articles. In both phases, two screeners read

all records. After the first phase, 52 items had conflicting verdicts,

which were then discussed on a one-by-one basis until a

consensus was reached between both screeners. After the second

phase, all results were discussed to verify the final selection.

Studies in languages other than English were excluded, as well as

studies older than 30 years (publication year 1991 or earlier) as

sensor-based real-time feedback was practically unavailable before.

Studies were excluded if they did not include a complex sports-

related coordination task with sensor-based visual feedback or did

not have at least one group of healthy, non-elderly adult

participants. The general rationale behind these criteria was mostly

based on the theoretical aspects that were discussed in the

introduction. A practical explanation with the resulting concrete

differentiations in the screening procedure is given here:

• Sensor-based feedback:

Our goal was to restrict the purview to feedback that was

generated in an automatic and objective manner, as opposed
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to, e.g., human augmented feedback from coaches or peers. This

decision has some unintuitive consequences: Video-feedback

was included, because it is technically a sensor, while other

visual feedback generated by electronic devices such as laser

pointers was not included.

• Visual feedback:

By focusing on one feedback modality, we hope to attain more

consistent results. However, we still included studies that added

other feedback modalities to the provided visual feedback if the

visual feedback was clearly in the focus. Other intervention

groups with different feedback modalities or no feedback at all

were considered as control groups for the data extraction.

• Healthy, adult, non-elderly population:

Disorders, diseases, and age could affect motor learning

mechanisms, because these factors might alter the optimality

of specific movement solutions and because cognitive maturity

or decline might affect motor learning. Thus, as a rather

conservative boundary, we only considered participants that

are between 18 and 65 years. If a study involved at least one

group of participants that fully satisfies these criteria, then the

study was included even if other groups were considered in

the study. In that case, all groups not satisfying these criteria

were ignored during the data extraction.

• Sports-related, complex sensorimotor tasks:

We expected participants to have a different mindset in sports-

related training compared to medical settings. Compared to

sports, interventions targeting activities of daily living (ADL)

generally have a different focus, and, in turn, a potentially

different feedback objective. Therefore, we excluded ADL and

simple balancing tasks.

We purposefully drew the line between simple and complex

tasks rather conservatively so that any study lying between

clearly complex and clearly simple tasks was excluded as

well. This should ensure that possible negative outcomes

stemming from tasks that were not quite complex enough

are fully avoided in the synthesis of outcomes, but it is in no

way meant as a definition for what constitutes a complex

movement task. Tasks which required active control of only

one single joint were excluded, as well as bimanual tasks

such as reaching, pointing, or sequencing. On the other

hand, rowing studies were included despite the seated

position if the correct execution of the task required

coordination of leg, hip, and trunk movements in addition to

the movement of the arms.

After the full-text screening, included studies were categorized

into three distinct groups according to the applicability of their

results for a potential synthesis. First, if a study reported on the

difference between pre- and post-tests for intervention and

comparable control groups, with all participants satisfying our

population inclusion criteria, then it was categorized as reporting

a training effect. This category has the potential to indicate how

visual feedback design affect retention effects.

For the control group to be considered as comparable, we

required that it was different from the intervention group,

both regarding participants (i.e., a distinct set of people) and

the provided feedback: the control must have either no

feedback, a different feedback modality, or also visual feedback

but with a relevant change to the way it is designed or

administered. Furthermore, the feedback must be withdrawn

during testing for all groups to ensure that the measured

effects stem from changes in the motor skill in the original

task. The measured effect must therefore constitute actual

learning and not just a temporary effect caused by the task

difference brought about by the given feedback. Second, a

study that compares feedback trials with no-feedback trials was

categorized as reporting immediate effect of feedback. The

control can again consist of no-feedback, a different modality,

or visual feedback with some aspects changed. Contrary to the

first category, these studies must necessarily include tests or

measurements with feedback. The control group can either be

a different group of participants like in the first category, or

alternatively the same group under different feedback

conditions in a within-subject design. Therefore, whereas the

first category required at least two groups of participants

satisfying our population inclusion criteria, one such group

was enough to categorize the study as reporting on immediate

effects. Third, all other studies were only deemed relevant

from a design-only perspective, with the focus on the design

choices rather than their results. To be included in this

category, studies still had to satisfy our inclusion criteria, but

they either had exactly one participant group satisfying our

population criteria and no within-subject design, or they had

multiple participant groups that were not comparable because

they did not differ in the administration of the visual feedback

(for example only differing in other feedback modalities

administered in conjunction with visual feedback).

For the structured data extraction, two investigators extracted

information and co-edited the results into a table. Conflicting

table entries were discussed until a consensus was reached. The

table was then stratified so that all entries follow common

nomenclature, and further condensed into the two final, more

concise tables presented in this article. The study characteristics

were summarized in a first table (Table 1), where the columns

broadly describe the category, the task and its goal, the

intervention, and the participants for each study. A second table

(Table 2) was split into the three study categories (training

effect, immediate effect, design-only) by horizontal lines, using

multiple rows for reports including multiple studies, depicting

details of the outcomes and the visual feedback regimes for each

study. For each main outcome of the studies in the training

effect category, at most one post-test (PT) directly following the

last intervention session, one short-term retention test (RT1) at

least 1 day after the last intervention session, and one long-term

retention test (RT2) were considered, each of which is

represented in a different column. Potential additional retention

tests were discarded because they would only describe the pattern

of depreciation over time in more detail. Since the time effect of

the interventions in these studies cannot be clearly separated

from the immediate effect of the feedback, measurements during

the intervention phase were not considered for this study

category. Conversely, such immediate tests (IT) were considered
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for the studies in the immediate effect category, where the focus is

not on the effect of the intervention over time but rather on how

the feedback affects performance at the instant when it is

applied. Finally, no outcome measures were reported for the

design-only category because these studies are only relevant for

the overview of feedback regimes in the literature, i.e., goal (ii) of

this review. The outcomes were represented by arrows indicating

whether participants in the visual feedback intervention

performed significantly better (⇑), significantly worse (⇓), or not
significantly different (⇔) when compared to the control group.

For the training effect category, these reported effects always

refer to the learning rates or the change from baseline to post- or

retention tests (PT, RT1, RT2), in other words group-by-time

interaction effects. Conversely, immediate effect studies always

refer to the group effects measured (IT), while potential time

effects were discarded. Other tests in the respective categories

were not reported in the table. In case of differing outcomes,

effects for multiple main outcomes were represented separately

by splitting them into multiple lines while comparisons to

multiple control groups were separated by commas. Multiple

visual intervention groups were addressed by prefixing these

comparisons with a letter assigned to the different groups (for

more details on the chosen nomenclature, refer to the note below

Table 2). The chosen intervention groups could have multimodal

feedback, but visual-only groups were preferred if available, in

which case additional multimodal groups would be disregarded

in the reporting of outcomes.

Study populations were classified according to our estimation

of their experience in performing the specific movement task.

This classification does not necessarily coincide with the one

used in the corresponding reports, which were usually based on

levels of competition of the recruited participants instead. We

classified participants as Novice if they had likely no prior

experience with the task. Further, Beginner, Intermediate, and

Advanced refer to some experience, regular experience, and

expert-level experience with the task, respectively.

The qualitative extraction of the recommendations made in the

literature was a less structured process. The discussion and

conclusion sections of the included studies were screened for

statements that we deemed relevant and generalizable for

informing future feedback design. Such statements were only

extracted if they satisfied two additional conditions: they were

based on the results found in the study (as opposed to other

referenced research), and they went beyond descriptions and

explanations of the outcomes. Two reviewers marked potential

candidate passages in the text, and one reviewer then made the

decision whether they should be picked up in the result section

of this review. The intention was to include only the most

important statements in a concise overview.

Finally, one investigator performed a risk of bias assessment using

the risk-of-bias tool for randomized trials (ROB 2) (45) for each study

in the training effect category. The rationale for this assessment was to

evaluate the strength of evidence that a potential meta-analysis could

provide in a systematic review of this research topic.

TABLE 1 Overview of tasks, goals, interventions, and population characteristics.

Identifier Type Task Goal Duration Sessions Groups N Age Sex Experience

Benjaminse et al. (20) TE Sidestep Reduce peak knee forces 1 1 3 90 24.6 ± 4.4* X Advanced

Chan et al. (21) TE Treadmill Running Soften footfalls 14 8 2 320 18–50 X Intermediate*

Ericksen et al. (22) TE Jumping Stick the landing 1 1 3 36 20.7 ± 2.3* F Beginner

Gilgen-Ammann et al. (23) TE Running Reduce ground contact time 28 8 3 30 31.0 ± 7.5 X Advanced

Mononen et al. (24) TE Shooting Maximize accuracy 28 12 4 34 20.4 ± 1.8 M Intermediate

Mulloy et al. (25) TE Fencing Lunge Maximize propulsion, keep sequencing 180 6 2 32 18–40 X Novice

Nagata et al. (26) TE Jump Squats Increase lifting velocity 28 7 4 37 19–22 M Advanced

Nekar et al. (27) TE Squats Maintain proper form 28 12 4 48 18–35 M Beginner

Post et al. (28) TE Golf Chipping Hit target, maintain form 1 1 2 44 21.8 ± 1.3 X Novice

Rauter et al. (29) TE Rowing Follow reference 2 2 5 40 19–32 X Novice

Rauter et al. (30) TE Rowing Match target movement 2 2 2 16 27.7 ± 1.9 X Novice

Rucci and Tomporowski (31) TE Hang Power Clean Maximize power output 28 7 3 17 18–22 F Intermediate

Sigrist et al. (32) TE Rowing Match target movement 3 3 4 35 28 ± 3.7 X Novice

Todorov et al. S1 (33) TE Table Tennis Return Hit target through barrier 1 1 3 42 NA X Novice

Todorov et al. S2 (33) TE Table Tennis Return Hit target through barrier 3 3 2 18 NA X Novice

Viitasalo et al. (34) TE Shooting Maximize accuracy 84 36 4 30 37.5 ± 11.3* M Beginner

Anson et al. (35) IE Treadmill Walking Reduce trunk variability 1 1 1* 10* 22.6 ± 4.9 X Intermediate

Eriksson et al. (36) IE Treadmill Running Adjust running technique 1 1 1 20 28.4 ± 6.4 X Advanced

Hamacher et al. (37) IE Walking Achieve a balanced gait in frontal plane 1 1 1* 15* 45–65 F Intermediate

Jones et al. (38) IE Ergometer Cycling Increase performance 21 4 2 20 35.5 ± 6.5* M Advanced

Koritnik et al. (39) IE Stepping Match reference 1 1 2 23 23–30 X Intermediate

Washabaugh et al. (40) IE Treadmill Walking Use full range of motion of knee joint 1 1 1 13 21.0 ± 2.5 X Intermediate

Weakley et al. (41) IE Back Squat Maximize concentric power 14 4 1 12 21.8 ± 0.9 M Intermediate

Sigrist et al. (42) DO Rowing Match target movement 2 2 3 24 26.1 ± 3.0 X Novice

Teng et al. (43) DO Treadmill Running Increase trunk flexion 28 4 1 12 23.3 ± 3.8 X Intermediate

Teran-Yengle et al. (44) DO Treadmill Walking Avoid knee hyper-extension 1 1 1 17 26.6 ± 5 F Intermediate

The studies are specified by category (type: TE, training effect; IE, immediate effect; DO, design-only), task, goal, characteristics of the intervention (duration in days, sessions,

groups), and population: N=number of participants, age (years, either as range or as M± SD), sex (M, male; F, female; X, mixed), and experience. NA means not available.

*Adjusted by review authors (only counting healthy, adult, and not elderly participant groups; aggregated age; different definitions for experience levels).
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Results

Study selection and data extraction

The initial literature search identified 892 records from three

databases (Figure 1) (46). After removing 224 duplicates, 668

distinct records remained. From these, we excluded all records

that did not satisfy the criteria specified in the methods section:

588 records were excluded in the abstract screening stage and 55

reports during the full-text screening, leading to 25 reports

included in the final dataset. 15 of these 25 reports measured

training effects of visual feedback, but one report consisted of

two empirical studies, so in total 16 studies were assigned to the

training effect studies. The remaining 10 reports were not eligible

for the training effect category because some only had one

intervention group satisfying our population criteria (7 reports),

no post-intervention tests without feedback were performed (2

reports), or because the control groups differed in other feedback

modalities without affecting attributes of the visual feedback (1

report). Of these 10 reports, seven measured performance under

different visual feedback conditions and were thus eligible for the

immediate effect category, featuring five within-subject designs,

one between-subject design, and one with both within- and

between-subject comparisons. The remaining three reports did

not compare immediate performance under different visual

feedback conditions, but instead reported training effects over

time for a single group (2 reports) or had control groups that all

received the same visual feedback (1 report). All 26 studies of the

25 reports and their characteristics deemed relevant for this

review are summarized in Table 1 (population and intervention)

and Table 2 (dependent variables and feedback).

Several small adjustments were made during the data extraction

process. Two studies incorporated groups of participants that did not

match our population criteria (35, 37), these groups were

subsequently ignored in the data extraction. Multimodal

groups receiving visual feedback were disregarded in three studies

(31, 39, 42) in Table 2 because visual-only intervention groups

and non-visual control groups were available. Rauter et al. (29)

designated the visual feedback group as control group, but for our

purposes this constitutes the intervention group, with the haptic

feedback groups serving as control instead. In three studies

(23, 24, 34), one “true” control group, in which the participants

received no intervention at all, was disregarded in Table 2. An

item of concern was that Rauter et al. (29) and Sigrist et al. (42)

seemed to share the same visual-only feedback group, i.e., only

one unique dataset was gathered for both studies. The visual-only

feedback group is therefore counted twice in the columns of

Table 1 that concern study participants. This group was assigned

to Rauter et al. (29) as the main intervention group in Table 2 so

that it could be counted for group comparisons in the training

effect outcomes. Because Sigrist et al. (42) is in the design-only

category, the same group is not relevant for group comparisons

here, so this group was ignored for this study in Table 2 to avoid

over-representation of the same feedback regime. Instead, the

otherwise similar multimodal group was considered as the main

intervention group in Sigrist et al. (42).T
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Populations and intervention formats

Most studies (18 out of 26) had a relatively small group size

with less than 15 participants per intervention arm (Table 1

columns “Groups” and “N”). The exceptions were Benjaminse

et al. (20) with 30, Chan et al. (21) with 160, Mulloy et al. (25)

with 16, Post et al. (28) with 22, Eriksson et al. (36) with 20,

Hamacher et al. (37) with 15, and Teran-Yengle et al. (44) with 17.

Instructions were often implicit to the task, e.g., trying to hit a

target implicitly conveys the desire to increase accuracy, which

was the goal in 5 out of 26 studies. Increasing physiological

power output was the objective in 5 studies. More nuanced

instructions consisted of following a target movement (5

studies), reducing joint strain (2 studies), or a direct adjustment

to the movement technique (11 studies). Two studies explicitly

combined the performance goal with the demand to maintain

proper technique.

When classifying the studies according to their intervention

schedule, 10 studies lasted for less than 1 day, encompassing a

single session, while 5 studies lasted between 2 and 3 days

with 2–3 sessions. Nine studies lasted between 2 and 4 weeks

with 4–12 sessions; the remaining 2 studies lasted 12 weeks with

36 sessions and 6 months with 6 sessions, respectively.

Utilized visual feedback regimes

The quantities used for the feedback mostly consisted of

positions, joint angles, or forces relevant to the movement task,

often coinciding with one of the dependent variables (cf.

“Feedback Measures” and “Outcome Measures” in Table 2).

These quantities were mostly measured using motion capture

systems, cameras, force plates, and inertial measurement units.

Todorov et al. (33) used an electromagnetic sensor to track

paddle position and orientation. Nekar et al. (27) employed a

mobile AR device. The rowing studies (29, 30, 32, 42) all utilized

the same rowing simulator, which incorporated rope robots,

motion capture, and wire potentiometers. The shooting studies

(24, 34) employed an optoelectronic shooting system to detect

the shot and to determine the relevant performance metrics. The

shooting studies also included a trace of the point where the

shooter was aiming at. Nagata et al. (26) used an optical encoder

FIGURE 1

PRISMA 2020 (46) flow diagram: overview of the study selection process consisting of database searches, abstract screening, and full-text assessment.
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system to measure lifting velocity. In Eriksson et al. (36) and

Weakley et al. (41), a position transducer measured the

displacements and velocities, respectively. In Jones et al. (38),

participants trained on a cycle ergometer. Participants in

Washabaugh et al. (40) wore an exoskeleton that measured joint

angles (while also applying the resistance for the movement

task). Teng et al. (43) included the percentage of time spent in

the desired parameter range as terminal feedback in addition to

the concurrent joint angles measured by a motion capture system.

Knowledge of Performance (KP) feedback was given in every

study, with four studies additionally including Knowledge of

Results (KR) in the augmented feedback, but the timing of KP

and KR feedback varied between studies. For KP, concurrent and

terminal feedback was approximately equally common (in 16 and

17 studies respectively, shown in columns “C” and “T” of

Table 2). One study, Sigrist et al. (32), reported a deliberate

delay of terminal KP feedback during the trials: After feedback

was requested by the participant, there was a 10 s delay, after

which feedback was shown for the last 18 s of the movement. KR

was given as terminal feedback in 3 of 4 studies, with only Jones

et al. (38) giving concurrent KR feedback during their trials by

displaying the total distance covered.

In 21 studies, some form of reference was incorporated to the

visual feedback (as indicated in column “R” of Table 2). Possible

forms of reference were ideal values or ranges (e.g., given as a

line), a virtual avatar or a reference-oar performing the correct

movement, or a split-screen video with another performance.

Hamacher et al. (37) provided a reference by showing the

current joint angles with the desired ranges overlaid on a virtual

avatar of the participant. The data for the provided references

was either sourced a priori (e.g., from recommendations or from

experts showing the correct movements) or generated during the

study from a participants’ previous performances.

According to the following classification into four groups

(plots, numerical, video, complex graphics), the 26 studies

featured a total of 38 occurrences of graphical feedback

visualizations (see column “Content” in Table 2). These

visualizations varied in terms of graphical complexity and

abstraction level, but no study tried to graphically convey more

than three quantities at once and no study reported issues with

the understandability of the graphics. In 12 studies the feedback

was visualized by plotting it on a 2-dimensional plane. This was

achieved with linked motion-capture marker-models (1 study),

showing the trace of the movement on a plane (5 studies) or in

a 3D virtual environment (2 studies), quantity-time plots (2

studies), dots on quantity-quantity plots (1 study), and

markings on virtual bulls-eye targets (3 studies, two of which

included aiming-traces). In 11 studies, numbers were

represented as numerical values or vertical bars. A video

recording of the participant was used in 6 studies, one of which

involved augmented reality with graphical movement guidance.

More complex graphical representations (9 studies) involved

virtual avatars, a virtual copy of the training environment to

show the trace in, or a virtual rowing simulator that included a

virtual representation of the oar and other modalities (e.g.,

traces). In Jones et al. (38), the avatar was set on a virtual

cycling track that graphically simulated a movement through

space dependent on their cycling performance. Five studies (22,

27, 30, 34, 42) applied additional non-visual feedback in the

visual feedback group, so the participants received multimodal

feedback. Audio resulting from the simulation of water in the

rowing studies (29, 30, 32, 42) were considered part of the

immersion and not specifically marked as multimodal feedback

in the table. Analogously, the virtual extension of the oar was

not treated as visual feedback. All groups in all rowing studies

received this audio and visual feedback.

A form of summary feedback (i.e., feedback that is not specific

to a single movement execution) was used in Nagata et al. (26) by

averaging over the whole set, and in Gilgen-Ammann et al. (23) by

providing only the mean ground contact time over each interval

run. Jones et al. (38) was the only instance where participants

were deliberately deceived about the nature of the provided

feedback: One group was told in one trial that the pacer (the

reference avatar) showed their own performance from a baseline

trial, without telling them that its speed was increased by 2%.

The reported frequency of each feedback schedule refers to

the percentage of trials or time during the intervention phase

in which participants had the opportunity to receive feedback

(Table 2 column “F”). Test trials without feedback were treated

the same as training trials without feedback if they consisted of

the same movements. For the instantaneous effect studies, the

frequency was generally 100% because there was no meaningful

intervention phase to average over. The only possible exception

is Jones et al. (38), which received a + 2% and a + 0% pacer as

feedback for 25% of the time each, with the remaining 50% of

the total time being reserved for baseline tests without pacer.

In 18 studies, the feedback schedule was completely

predetermined for at least one visual feedback group. In 8

studies, at least one group received visual feedback with other

scheduling strategies. Fading feedback (a gradually decreasing

frequency over the intervention duration) was used in Chan

et al. (21) and Teng et al. (43). Self-selected feedback

(providing feedback only upon request by the participant) was

used in Sigrist et al. (32) and Post et al. (28). Self-selection led

to variable feedback frequencies considerably different from the

maximum possible frequencies, e.g., resulting in a mean

frequency of 9% (range 2%–37%) compared to 100% possible

in Post et al. (28). Error-based feedback (no or reduced visual

feedback when performing below a certain error threshold) was

used in three of the four rowing studies (29, 30, 42).

Specifically, the trace was only drawn above the error threshold

in Rauter et al. (29) and Sigrist et al. (42), and the

transparency of the reference oar was increased with decreasing

error, making it harder or even impossible to see. In Rauter

et al. (30), visual feedback was provided if the spatial error was

the dominant error, otherwise an auditive feedback was given

for the velocity error instead. Three studies (21, 23, 43)

explicitly reported that participants continued training outside

the intervention sessions during the intervention period, at

home or elsewhere. For these studies, the reported frequencies

only refer to the training during the trials, other training (at

home without feedback) was not taken into account.
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Effect of visual feedback on intervention
outcomes

Using a vote counting approach, it is evident that the reported

effectiveness of feedback varies a lot between studies (see Table 2,

where votes are indicated by arrows). When interpreting these

outcomes, it is crucial to also consider what exactly the

intervention groups were compared against: Even the control

groups showed high heterogeneity, which makes a fair

comparison impossible. Only one study, Rucci and

Tomporowski (31), reported that the visual feedback group

showed worse outcomes than their control group, which

received verbal feedback. Positive and no benefits are

approximately equally common in the feedback and no-

feedback conditions of the training effect studies. Even when

looking only at the studies with the biggest group-sizes, the

outcomes are mixed: Chan et al. (21) (160/group with fading)

shows a clear benefit, Benjaminse et al. (20) (30/group with

100% feedback) and Mulloy et al. (25) (16/group with 70%

feedback) show no benefit compared to no-feedback control

groups, and Post et al. (28) (22/group) only shows a clear

benefit in a transfer test. This pattern does not continue in the

immediate effect studies, where feedback groups always

outperformed no-feedback groups in at least one outcome

measure. Otherwise, no clear pattern is visible regarding the

time at which the tests were administered (“IT”, “PT”, “RT1”,

and “RT2” in Table 2) or regarding specific feedback regime

parameters. While the studies in the immediate effect category

yielded proportionally more positive results than the training

effect studies, this was not statistically tested either and no risk

of bias assessment was performed for this category, so this may

be due to publication bias. The tendencies shown in the tests of

the training effect category are further relativized by the

concerns shown in the risk of bias assessment.

Because of the high risk of bias and because the included

studies are too heterogenous in their design and especially their

outcome measures, a statistical synthesis of the findings was not

conducted. The risk of bias assessment revealed high concerns

for all experiments in the training effect category except for

Ericksen et al. (22) (some concerns) and Nekar et al. (27) (low

concerns). Chan et al. (21) was considered to have high concerns

with regard to feedback effectivity since the control group did

not receive instructions to “run softer” in the intervention

(effectively resulting in no intervention instead of a no-feedback

intervention). All other high concern evaluations are already

determined by domain 1 (underspecified randomization process)

and domain 5 (no information due to lack of prespecified

analysis plan). Any synthesis based on these results would

therefore suffer from a very low strength of evidence. Attributing

outcomes (positive or non-significant) to movement tasks,

experience levels, or specific feedback parameter choices is not

warranted, since any purported effect could be attributed to

random chance or bias (induced by the specific selection or

grouping criteria) rather than a generalizable property of motor

learning.

Feedback regime recommendations from
the literature

While Table 2 may serve as a basis to find similar research to

consider in future SAFT studies, the remainder of this section is

devoted to summarizing recommendations made by the authors

of included studies. These recommendations are not necessarily

based on hard evidence, i.e., significant study results with a low

risk of bias, and instead represent a collection of informed

opinions to pay attention to in the future scientific investigation

of SAFT.

Benjaminse et al. (20) concluded that the ideal feedback

modality might depend on gender, with males in their study

benefiting from visual feedback, whereas females instead might

benefit from different feedback modes. Anson et al. (35) further

mentioned that visual processing is slower and therefore more

amenable to slow movements when compared to other

modalities. Additionally, larger movements may be easier to

detect with visual feedback than smaller movement details. Sigrist

et al. (32) suggested that the effectiveness of concurrent feedback

may not only depend on the complexity of the movement task,

but also the complexity of understanding the task requirements.

They stressed that different feedback modalities have different

strengths, and further explain that concurrent visual feedback

may be more suitable for instructing complex movement,

whereas haptic feedback should be used instead for temporal

guidance. Sigrist et al. (42) also discussed modality-dependent

benefits (sonification for temporal aspects, visual feedback for

spatial aspects). However, no significant benefit of multimodal

over unimodal feedback was found in the study. They concluded

that the selective advantages may be determined by the exact

design of the feedback rather than being inherent to the modality

itself.

Benjaminse et al. (20) also mentioned that providing subject

views from multiple angles might improve the outcome, but that

feedback with high complexity can be detrimental. Post et al.

(28), however, explicated that the instruction to focus on the

(previously defined) critical features of the movement task may

be sufficient to avoid overwhelming the learner with the

information presented in video (even without offering a video-

specific interpretation). Rucci and Tomporowski (31)

corroborated other results according to which video feedback

without additional cues has little effect on skill acquisition. They

emphasized that regardless of the feedback modalities used to

deliver feedback, it should provide information on how

movement errors can be detected (instead of only directing the

learners’ attention to the error). This complements Mononen

et al. (24), who argued that it might be difficult to establish a

link between the received feedback and the corrections that

should be made. Teran-Yengle et al. (44) mentioned that real-

time feedback can provide the learner with specific information

that is not available with intrinsic feedback, thus encouraging

exploration and discovery of alternative movement solutions.

Jones et al. (38) concluded that the practical effects of

challenging correct feedback as opposed to threatening deceptive
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conditions should be further explored, and that their effects may

ultimately depend on the performance of the learner as well.

Washabaugh et al. (40) emphasized the importance of using

external motivational tools, such as feedback, to increase both

learning and training intensity when intrinsic motivation is

lacking. Weakley et al. (41) stressed the importance of providing

encouragement and feedback during resistance training, and

further noted that the extent of the benefit and the most

successful way of providing such encouragement may also

depend on individual characteristics, particularly the degree of

conscientiousness. In this line of argumentation, Rauter et al.

(29) suggested that future studies should tailor feedback to the

experience of the participants, that feedback should be changed

over the intervention time to prevent studies from becoming

monotonous, and, moreover, that such changes have the

potential to reduce the induced feedback-dependency (Note that

these recommendations specifically concern the planning of

feedback in studies and may not be meant as a direct

recommendation for feedback in practice). Also, Sigrist et al. (32)

recommended to combine multiple modes of feedback and to

use an intelligent feedback strategy that individually tailors

feedback to preferences, learning rates, error patterns, feedback

susceptibility, and performance.

Ericksen et al. (22) explicitly cautioned against using the

proposed feedback without first examining retention and transfer

effects. Post et al. (28) mentioned that their study could

represent an example where transfer may be a more sensitive test

of learning, and that self-selected scheduling of split-screen

feedback facilitates motor learning under the right circumstances.

Todorov et al. (33) explained that the goal of their study was to

show that augmented feedback can give an advantage in a

difficult multi-joint movement, so the characteristics of

augmented feedback in their study were chosen with that goal in

mind. They stressed that this consequently does not constitute

proof that all the choices made were required to achieve a

significant performance benefit. In other words, the chosen

conditions were deemed sufficient, but possibly not necessary.

The other reports only mentioned intervention effects and

general explanations, but did not state explicit, generalizable

feedback regime or study recommendations based on their results.

Discussion

Summary and limitations

We aggregated information about the intervention and visual

feedback regimes utilized in 26 studies on training complex,

sports-related sensorimotor tasks. We additionally presented the

authors’ recommendations concerning feedback regimes. In

general, studies were practice-oriented and therefore compared

considerably different interventions with various feedback regimes,

without making generalizability of results for specific feedback

parameters a priority. Despite our efforts to increase homogeneity

by applying restrictive inclusion criteria, this remaining

heterogeneity and the differences between the measured outcomes

make it difficult to relate effects of single parameters changes over

multiple studies. For the studies with multiple main outcomes,

taking one as the main outcome for such a comparison would be

an arbitrary choice with a high risk of introducing bias.

Consequently, a statistical synthesis of the effectiveness of different

feedback parameters was considered inadequate. There were no

clear indications as to which specific sensorimotor tasks or target

populations might benefit from visual feedback, and where it

should be avoided. Therefore, this review reported current trends

regarding visual feedback regimes and their effectiveness in the

research literature, but it could not provide strong evidence

concerning specific feedback parameters. Moreover, when assessing

the strength of evidence for or against the specific feedback design

used, most included studies had either high concern according to

ROB 2 or consisted of relatively small sample sizes per

intervention group. As such, the described results should not be

taken as definitive evidence, but rather as indications to take into

consideration for guiding future research or practical

implementation. For these reasons, we cannot give specific

recommendations for practical SAFT system design and will

instead summarize general considerations based on the designs

and recommendations in the literature as well as giving theoretical

guidelines to inform future research on SAFT system design.

By employing a strict search procedure specifically narrowed to

sensor-based visual feedback, we set out to reduce the breadth of

the study scopes a priori. These restrictive definitions were

intended to facilitate objective evaluation but do not constitute a

theoretical consensus. The exclusion of bimanual tasks, for

example, was not based on research showing that these

movements are necessarily simple tasks, but instead was a result

of conservatively avoiding potential interference when including

semi-complex tasks. Also, the boundaries between some other

reported categories (e.g., concerning experience levels) should

only be interpreted as rough indicators. Finally, the restriction to

sensor-based feedback excluded functionally identical but non-

sensor-based designs. For example, applying body-mounted laser

pointers does not utilize sensors but provides the exact same

information as a motion sensor and a display [cf. Stien et al.

(47)]. On the other hand, raw video replay was included [e.g.,

Benjaminse et al. (20)] because of the camera sensor, which does

not necessarily provide different information than a physical

mirror [e.g., Roy et al. (48)].

While we believe we have covered the most important

parameters in the design of visual feedback, there may be other

important design variations in the remaining body of research

beyond our search parameters and the three searched databases,

especially in databases more related to sports. Based on the

results shown here, we would not expect subsets with sufficient

homogeneity to allow generalizable quantification of the benefits

of specific feedback parameters even with a larger set of included

studies. Including simple movement tasks, which tend to have

more standardized testing and outcome measures, would not

help with our main research question either because previous

research has shown that the effects of feedback do not generalize

to complex tasks (13–16). Be that as it may, our sample

consisted of various settings in which visual feedback was used
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effectively, indicating that further usage and study of visual

feedback seems warranted: In certain settings, visual feedback can

have a positive impact, both on the immediate effects during

training and on the learning and retention of complex

sensorimotor tasks over longer periods of time.

Feedback regimes in the literature

We have seen a strong focus on knowledge of performance

rather than knowledge of results. This may be explained by the

fact that knowledge of results is often readily available (e.g., by

looking at the point where a thrown ball has landed), so SAFT

systems are not required in these cases. Moreover, designing

concurrent knowledge of results may be more difficult and may

not even make sense in non-continuous tasks. Indeed, the only

case where we have seen concurrent knowledge of results was a

cycling task where the result (total distance covered) is

continuously updated. The benefits of KR or KP feedback have

been discussed extensively in the literature, suggesting that it is a

crucial aspect and that it should be considered when comparing

one feedback intervention to another (49). However, there may

be task goals and feedback regimes where the distinction is not

so clear, particularly when execution of a prescribed movement

without spatial error is the desired result [e.g., Koritnik et al. (39)].

Regarding the timing of feedback, we have seen little variation in

feedback delay, with most feedback being simply described as

concurrent or terminal. Sigrist et al. (17) concluded in their review

that concurrent feedback is more beneficial as task complexity

increases, so this could serve as a guiding principle. Anson et al.

(35) argued that visual feedback is better for slow movements

because visual processes take longer compared to proprioception.

From this perspective, feedback delay is a spectrum rather than a

binary property. This seems to be in contrast with the prevailing

definition of concurrent or terminal feedback. We also note that

in both concurrent and terminal feedback, delays in feedback

could theoretically be added to encourage independent self-

assessment and error prediction by the learner.

We found that feedback frequency was sometimes not reported,

or at least not as a deliberate choice. As mentioned before, a reduced

frequency could also be the result of tests during the intervention

period. This, of course, should be taken into account when

interpreting a feedback intervention from a study or using it in

practice, as a different efficacy might be observed if the feedback

training is not interspersed with non-feedback tests. In addition,

strategies such as self-selected or error-based feedback could lead

to an implicit, individualized fading mechanism, that promotes,

for example, higher involvement and better transfer (50). If

increased competence in the movement task through learning

leads to fewer feedback requests or fewer errors exceeding the

defined threshold, then this will effectively lead to less feedback

received over time, as indicated by the vast discrepancies between

average and maximum feedback frequencies in these regimes [e.g.,

in Post et al. (28)].

Feedback can be presented at different levels of abstraction and

reliability. This may include, for example, ambiguities in

representation, rounding of scores, combining multiple scores into

one score, or over time (i.e., changing the resolution or specificity

of the feedback). This can make it more difficult for the subject to

interpret the results, introduce a threshold below which errors are

imperceptible, or otherwise weaken the link between the measured

quantity and the information conveyed to the subject. An example

of deceptive feedback was given in Jones et al. (38), which is also

a good example of using two different levels of abstraction: In

addition to the more precise performance feedback provided by

displaying distance traveled as a number, increased speed was also

encoded in a complex graphical representation by moving an

avatar faster through the environment. Taken in isolation, such

complex feedback would not allow accurate differentiation of small

changes in speed over time.

Finally, the most versatile parameter for visual feedback is the

content of the graphical representation itself. We saw some

complex graphics, but many of the included studies had

relatively simple representations such as numbers, bars, and

plots. The choice of visual feedback display format (such as

plots, avatars, videos, etc.) seems to matter little. We would have

expected much more variance in this area because it is becoming

easier to develop such complex graphics and because commercial

products with such graphics are ubiquitous, including exergames

or virtual and augmented reality devices. This discrepancy could

be explained by visual feedback becoming too complex for the

learner to interpret effectively, or by potential confounding

factors introduced with complex graphical representations that

encode multiple variables simultaneously. Having said that, we

have not seen any cases where the authors explicitly stated that

the feedback was too hard to understand for the participants.

None of the graphical representations were deemed too complex,

and none of the quantities too abstract for the participants. As a

result, we do not see a reason to restrict these parameters a

priori. However, we should point out that the number of

parameters conveyed at once were always rather small (i.e., at

most three). It is not quite clear whether this was a purely

scientific decision to control what the participants focus on, or

whether this is a feedback design decision because participants

may not be able to process or select from too much information

at once. We would only expect the latter point to play a big role

for concurrent feedback, since in the case of terminal feedback,

there is ample time for the participant to study the information

and select the most relevant parts in the terminal condition. A

possible exception to the generally low number of parameters is

present in video feedback: Depending on one’s perspective, the

scene can be interpreted as one parameter conveying the general

silhouette or posture of the whole body, or it can be interpreted

as containing a plethora of parameters including limb positions

and joint angles. This might also explain the recommendations

to guide the participants’ focus with appropriate instructions, as

this would affect the effective numbers of parameters to interpret.

We should also point out that the main goal of SAFT systems is

to be beneficial for overall training, and comprehensibility of the

provided feedback is only one aspect of this. It is unclear to what

extent the feedback needs to be cognitively processed at all for it

to help with the operationalization of certain movement

Hegi et al. 10.3389/fspor.2023.1145247

Frontiers in Sports and Active Living 12 frontiersin.org



parameters. After all, even if subjects find the visual feedback

confusing or do not quite understand it, the feedback could in

principle still have a positive effect because some (negative)

patterns are still recognizable. This is more apparent in

sonification, where understanding the parameterization may be

more difficult than hearing when something about the movement

is out of the ordinary. Another possible explanation for the

relatively low diversity in the graphical content of the feedback

are the rather uniform objectives of the feedback regimes we

encountered: The feedback regimes were generally focused on

direct error correction (with the error in question being directly

related to the study outcome measures). Other possible objectives

of feedback, such as guided exploration of the task-space through

targeted variation of task and feedback parameters, remain

largely uncharted. A more in-depth theoretical analysis of the

movement tasks and training goals according to the four task-

space learning mechanisms could encourage the examination of

other feedback objectives.

Implications for the practical application of
SAFT systems and future research

Implications for the application of SAFT systems in practice

remain largely speculative. The main challenge to practically apply

SAFT systems lies in identifying effective feedback regimes for

specific sensorimotor tasks, and specific populations at specific

stages of learning. The effectiveness of concurrent feedback may

depend on the complexity of the movement as well as the

complexity of understanding the task requirements. The optimal

modality may depend on gender, speed of movement, and how

large a movement is (i.e., visual discernability). There is some

evidence that visual feedback is better suited for spatial task

aspects (as opposed to temporal tasks), but Sigrist et al. (42)

mentioned that this may be an artefact of simplicity of feedback

design. In other words, designing intuitive feedback may be more

straightforward if it has the same modality as the movement

aspect, but that does not mean that otherwise a good design is

impossible to find or that this feedback is inherently more

effective. There may also be a tradeoff between feedback simplicity

and the amount of information conveyed. Video feedback in

particular may be too complex for the user, so additional, carefully

formulated instruction is required. This guidance should ideally

direct the user to correct the error and not just give information

about the error, which necessitates a comprehensive understanding

of the task and the involved control parameters. Finally, feedback

can encourage the user to increase performance, but the

effectiveness of this may be highly dependent on the user’s

preferences or skill level. The feedback should thus ideally be

highly individualized and adaptive. When the motivational aspect

is the main goal of the feedback, then the feedback regime might

be regarded as successful even if it does not affect the overall

training efficiency, as long as it does not hinder progress either.

In our opinion, the current research on feedback for complex

skill learning does not support any sweeping statement for or

against specific feedback regime parameters in practice. In this

regard, not much has changed since the call for more intensive

research on complex skill learning from Wulf and Shea (14) in

2002. It looks like visual feedback for complex movements at least

does not lead to worse learning outcomes in most cases even if no

explicit fading was implemented, provided that this is not due to

publication bias. This lack of negative outcomes stands in contrast

to feedback on simple movements [cf. the guidance hypothesis

(11, 12)], which we interpret as corroborating Wulf and Shea’s

warning against using results from feedback studies with simple

movement tasks to inform the feedback design for complex skills.

Whether visual feedback shows a significant positive effect or no

significant effect at all seems to depend on the situation—how much

this concerns the design of the feedback regime, the movement task,

or the characteristics of the participant cannot be said with any

certainty based on the current scientific literature. To better

explain and predict the effectiveness of feedback in certain

settings, standardized evidence is needed, so that a statistical meta-

analysis that compares similar settings with low risk of bias

becomes feasible. To this end, we call for future research to focus

on obtaining clear definitions on what constitutes a complex

coordination task and ideally finding task-category-dependent

standardized coordination tests that can be utilized as main

outcome parameters in different studies. After establishing a solid

basis to build upon, systematic experiments varying only single

parameters of the provided feedback for specific tasks would have

the potential to produce prescriptive feedback design

recommendations. Furthermore, generalizability of results from

one outcome of interest to others in the context of augmented

feedback training should be investigated: For example, it is not

clear at the moment whether specific feedback design parameters,

such as a reduced feedback frequency, would have the same effect

in training for better endurance-running economy and training for

increased weight-lifting performance. Interestingly, this need for

more uniform, fundamental research on complex movement task

learning with feedback mirrors the conclusion reached by Kal

et al. (10) in a systematic review comparing the benefits of the

implicit and explicit motor learning. This is a clear indication that

this problem is not confined to feedback design studies, but rather

points to a systematic issue with the design of trials investigating

complex movement tasks in general, specifically the lack of trial

and reporting guidelines as suggested by Kal et al. While there are

useful reporting checklists for exercise studies, such as the

Consensus on Exercise Reporting Template (CERT) (51), these

checklists are not specific to feedback studies and only cover the

reporting rather than the design of studies.

Theoretical considerations

In the absence of evidence-based guidance, we fall back on the

theoretical background to inform future SAFT research to the best

possible extent. First and foremost, it should be kept in mind that

SAFT systems cannot be designed without considering the

characteristics of the task and the instruction regime. Even if no

explicit instructions are given to the learner, the way the feedback

is presented during or after task execution potentially influences
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the learner’s (implicit or explicit) task goals. As outlined in the

introduction, SAFT system designers need to be aware of the

subtleties of the well-established and researched motor learning

approaches that lie between discovery learning and prescriptive,

explicitly instructed learning. Only then can the designer leverage

the real potential of systems to systematically assist motor learning

during task space formation, exploration, differentiation, and (de-)

composition. This is particularly important because instructions

and feedback can cause shifts in attentional focus and influence

learner motivation, triggering or hindering the learning of task

specifics [e.g., compensatory effects (52)]. Unfortunately, the

complexity of retrieving the correct instruction and feedback rises

with the complexity of the task space. To tackle this issue, a

structured approach to task understanding seems necessary.

Naturally, domain specific knowledge, e.g., from experts in the

field, in addition to evidence from similar previous research could

provide a good basis for potentially fruitful feedback regimes.

Complementary, functional task analysis (53) seems to be a well-

suited approach to guide the identification of structure and

functionally relevant features of the sensorimotor task without

forcing the user to adopt a specific theoretical stance. Even if

naturally the focus, functional assignments for specific modalities

of the task’s (sub-)actions are not limited to the biomechanical

domain but can also be derived from anatomical, physiological,

coordinative, perceptual, mental, or tactical perspectives on the

sensorimotor task. As Hossner et al. (53) noted, these further

functional justifications are based on the fact that a learner’s

perceptual-motor skills and psychological competencies shape

individual task spaces. Hence, functional task analysis seems

particularly suitable for the design of SAFT systems, as it

automatically distinguishes (functionally irrelevant) style aspects

from (functionally relevant) errors in the individual task solution.

Both can be incorporated into the design of feedback—the latter

as feedback that should be given to ensure correct and functional

task solutions, the former as feedback that should be avoided to

keep individual freedom and compensation potential high for the

motor system and increase its robustness. Once the task space and

relevant control variables are identified, the designer can begin to

define the intended objectives of the feedback and instructions.

To define the intended objectives of the SAFT, a broad

examination and prioritization of the potential benefits of feedback

in the target setting is required. We describe some of these

potential benefits for visual feedback here, but this list is by no

means exhaustive. First, feedback can provide benefits simply by

reducing monotony or making the learner more aware of their

learning progress, which can, in turn, increase motivation (54).

Second, feedback can be used to alter the goal-specifications or shift

attentional focus (55). For example, adding an accuracy score in a

throwing task might shift the learner’s goal: Instead of trying to

maximize the power output, the desired result might become

movement precision or correct form, guiding the learner closer to

an optimal solution. Such feedback may be necessary to guide the

learner out of a local optimum in the task-space (4) or to encode

variables related to injury risk in the optimization of a movement

solution. Third, feedback could focus only on its immediate effect

and not on lasting improvements. For example, correct posture and

movement execution may be important factors for safety during

strength and endurance training. In this case, it may even be

beneficial to provide feedback to improve these parameters during

each single training session, provided that the exerciser never has to

perform these tasks without feedback, and they rather serve as basic

building blocks for other skills. Fourth, visual feedback can be easily

ignored by looking away, even if this is obviously not considered its

primary intent. This may, however, be an advantage of visual

feedback over other feedback modalities, as it allows for a form of

self-selection that has been reported to increase the effectiveness of

feedback and motivation (50). For an even more detailed discussion

of the effectiveness of different types of feedback, we refer the

reader to the pertinent review by Sigrist et al. (17). Since the

intended objective of a feedback is critical for the design of

the feedback regime, we additionally refer the reader to Table 1 in

Hossner and Zahno (5), where the specific roles of variance in

different motor learning mechanisms are summarized.

There isnotnecessarily afixed feedback regime that is optimal forall

individuals. The optimal feedback strategy might even depend on the

individual’s daily mood, motivation, or physical condition, and it

might change over a single training session with the level of fatigue.

In addition, different aspects of the same task may be optimized in

different ways, and tradeoffs could occur. For example, injury-

prevention, speed, and jump height in volley spikes may be mutually

contradicting goals that result in different optimal movement

executions depending on the importance placed on each aspect.

Once a promising solution is found, a well-designed intervention

studywith fair controls is recommended to validate the effectiveness of

the feedback intervention. If motivation is a primary objective of the

feedback, even a null effect on learning rates may be considered a

positive outcome, as it could mean that the motivational benefits

can be reaped without impeding training progress. On the other

hand, if the feedback-guided intervention is aimed at learning real-

world skills in a training setting, transfer tests are needed to validate

the effectiveness of the designed intervention, or at least, according

to Teran-Yengle et al. (44), some sort of formal documentation of

carry-over to normal life. When testing a novel training intervention

with feedback, we strongly recommend three intervention groups:

One with the novel training intervention with feedback, one with the

novel training intervention but without feedback, and one as a

classical control (no intervention or reference intervention). With

such a design, the study can not only validate the effectiveness of the

intervention, but it may also show the extent to which the outcome

was influenced by the feedback provided.

Proposed strategy for SAFT system design in
future research

Based on the literature reviewed and the theoretical

considerations, we propose the following general strategy for

designing SAFT systems in a scientific setting: First, clearly define

the intended objectives of the SAFT. Second, conduct a functional

task analysis to clearly identify functionally relevant control

variables and error mechanisms. Third, determine options for

initial feedback solutions based on prior research and domain-
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specific knowledge. Fourth, if needed to make an evidence-based

decision, conduct small pilot studies to choose among different

parameter options. Fifth, conduct a well-designed comparative

study that includes transfer testing and a single clear main

outcome measure. For novel training interventions with feedback,

two control groups may be optimal: one with the training

intervention without feedback, and one that does not receive the

intervention. For established training interventions with novel

feedback, a single control group getting the same intervention

without feedback is sufficient. In both cases, we do not recommend

designating a group receiving different feedback as the control

group, unless the utilized feedback can be regarded as the gold

standard in that setting. This procedure should support

investigation of the potential benefits of a developed feedback

intervention in practice as well as answering the question whether

the feedback itself made a significant positive contribution to the

overall outcome.

Conclusion

We compiled significant findings, utilized feedback regimes, and

recommendations from a set of 26 studies on visual feedback in

complex sensorimotor tasks with healthy adults. Although the

current evidence base is insufficient to derive clear rules for or

against the use of specific feedback regimes in complex

sensorimotor tasks, the findings outlined in this review and the

referenced research can serve as a basis for the initial steps in the

process of developing a feedback regime for learning sports-related

skills. Consideration of the properties of the sensorimotor task, the

task instructions, the feedback regime, and the intended objectives

of the feedback is critical. Because the evidence in the literature

does not form a strong basis for an evidence-based feedback

design guidance, the proposed strategy for future sensor-based

augmented feedback training research is instead based on

statements in the literature as well as the theoretical background.

These considerations are only meant to inform feedback

intervention studies in the interim. Standardized study design and

reporting guidelines for motor learning research on complex

movements, compiled by experts on motor control, are needed to

direct future research in a way that will lead to a stronger

scientific foundation that can adequately inform design decisions

for sensor-based augmented feedback systems in practice.
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Abstract: Sensorimotor training on an unstable base of support is considered to lead to
improvements in balance and coordination tasks. Here, we intend to lay the groundwork
for generating cost-effective real-time kinematic feedback for coordination training on
devices with an unstable base of support, such as Sensopros or slacklines, by establishing
a model for estimating relevant tape kinematic data from angle measurements alone. To
assess the accuracy of the model in a real-world setting, we record a convenience sample
of three people performing ten exercises on the Sensopro Luna and compare the model
predictions to motion capture data of the tape. The measured accuracy is reported for each
target measure separately, namely the roll angle and XYZ-position of the tape segment
directly below the foot. After the initial assessment of the model in its general form, we
also propose how to adjust the model parameters based on preliminary measurements to
adapt it to a specific setting and further improve its accuracy. The results show that the
proposed method is viable for recording tape kinematic data in real-world settings, and
may therefore serve as a performance indicator directly or form the basis for estimating
posture and other measures related to human motor control in a more intricate training
feedback system.

Keywords: sensor-based; kinematics; augmented feedback; dynamic exercise; unstable
surface; balance training; inertial measurement unit

1. Introduction
Physical exercise on unstable bases of support is associated with cognitive, cardio-

vascular, and performance benefits in coordination and balance tasks [1–8] (although the
transfer of sensorimotor capabilities to tasks on stable surfaces may be limited [9–11]).
Training on unstable bases of support can be supported by training feedback systems that
provide performance indicators for coaches, augment individual, autonomous training
with feedback on execution parameters; or serve as an input device for the gamification
of such training scenarios [12]. Importantly, measurement systems used in such environ-
ments should not increase the complexity of using the training equipment, but rather
integrate seamlessly into the training experience, while still providing relevant feedback
on execution or task performance. To that end, our goal here is to lay the foundation for a
cost-effective and versatile diagnostic and training feedback system capable of estimating
performance-related movement characteristics. The objective is therefore to estimate per-
formance parameters, e.g., the kinematics of the unstable support base or the dynamics
of human posture, with device-mounted sensors rather than wearable sensors. While
camera-based measurement systems [13,14] might offer the highest flexibility for such a
task, they are associated with significant hardware costs for the image sensors and the CPU-
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and/or GPU-based analysis units. On top of potentially raising privacy concerns, they are
further limited by their intrinsic susceptibility to artifacts introduced by varying lighting
conditions, occlusions, additional persons in the field-of-view, and geometric constraints to
capture the whole scene. Inertial sensors, e.g., attached to the unstable support bases and
capable of directly estimating their kinematics, seem to be a more viable approach. Instead
of relying on a camera-based measurement system, we therefore intend to derive these
kinematics in a way that is also compatible with versatile and cost-effective device-mounted
Inertial Measurement Units (IMUs). However, it is not entirely clear which postural in-
formation or performance measures [15] can be accurately derived from such kinematics
alone. For more complex postural estimates, such as knee positioning or center-of-mass
information, a more detailed investigation of the relationship between the support base and
body kinematics could be required. Irrespective of other relevant characteristics that are
not directly related to the kinematics of the support bases due to multi-joint biomechanics,
these kinematics should at least correspond well with the kinematics of the feet. As such,
support base kinematics can provide the necessary data for basic applications such as
step counters and various other simple performance metrics in tape exercises, as well as a
rudimentary control to ensure correct exercise execution.

Systems for estimating performance-related movement features on stable bases
founded on accelerometers have previously been developed [16,17]. However, these
systems do not work well in settings with irregular steps [18], so direct transfer to unstable
support bases is impaired. Other research tackled the task of developing measurement sys-
tems for unstable bases [13,15,19–21], some of which also included IMUs [22–24]. However,
deriving position data can be challenging on unstable bases, since double integration of
acceleration data suffers from strong drift [25], which cannot be tared in regular intervals
because there are no extended rest phases [26] between steps. We propose estimating the
position of the support base by other means. To the best of our knowledge, the approach
presented here has not been disseminated previously.

Specifically, our proposed setup leverages a specific constraint of slacklines and train-
ing devices with similar geometries, such as the Sensopro Luna, which consists of a metal
frame and two slackline-like tapes that the exercising person is standing on (see Figure 1).
Independently of whether the tape under consideration is a flexible slackline or a more
rigid tape with springs on a Sensopro Luna, the tape can only take up tension (i.e., pulling
forces in the direction of the tape), and so its geometry aligns with the direction of the
pulling forces. The tape can thus be modeled as an idealized rope with only longitudinal
geometric extension, so that one can derive the position of the contact point of a mass on
the tape (which exerts another force on the rope) by only measuring the angles of the tape
near the anchor points, provided the positions of the anchor points are known. So, in order
to derive the position and roll angle of the tape segment directly below the mass, our
model only needs the static geometric constraints of the setup and angular measurements
near the tape anchor points (estimated, e.g., by IMU sensors) while deliberately ignoring
potentially available measurements from segments close to the acting mass (e.g., the feet of
the exercising person).
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(a) (b)
Figure 1. The tapes of the Sensopro Luna during a sideways exercise (a) and at rest (b), with green
markings indicating the IMU positions. Blue plastic covers are screwed onto the tape, hiding the
springs. The anchor points are below the black platforms at the front and back.

From the various potential kinematic measures of the tape, the focus in this article is
on tape segment orientation and position, particularly the segment in contact with the mass.
Functionally, the orientation and position axes on the tape have fundamentally different
significance in tape exercises. Firstly, the longitudinal position has two potential functions:
The longitudinal position of the lowest tape point approximates the foot position along the
tape, which may help to ensure correct foot positioning for specific exercises. Additionally,
changes in the longitudinal position of the lowest point over short periods of time might
correlate to changes in pitch angle. Therefore, they also have potential for estimating the
relative changes in the longitudinal position of the center of pressure (CoP) resulting from
the foot pitch angle, even though the absolute pitch angle of the tape segment or foot
cannot be determined in this way (a change in pitch results in a change in the longitudinal
CoP position, just like moving the foot would also move the CoP position, which makes
distinguishing these two effects difficult). Secondly, the lateral displacement of the support
base can be utilized as a proxy for lateral CoP movement [27] and is therefore indicative of
performance in balancing tasks [28]. However, depending on the geometric constraints of
the training devices, it only has a very low magnitude and is consequently strongly affected
by measurement noise. Even though our chosen experimental setup strongly limits its
magnitude, we still include it in the analysis because of its functional relevance for lateral
CoP changes and its expected larger role in slacklines due to their higher magnitude of
lateral displacement. Thirdly, the vertical displacement is the most important measure
for exercises with a stepping motion, since step count, intensity, and rhythm are directly
derived from vertical displacement over time. Fourthly and lastly, the roll, pitch, and yaw
angles of the tape segment close to the foot are related to posture and foot placement on
the tape, so these angles may provide important information to correct improper exercise
execution. Even if all of these angles could be measured without the model presented here
by attaching an IMU sensor to the tape segment below the foot, such a setup would limit
supported foot placements to a small area on the tape and increase prediction errors due to
higher accelerations compared to the placement of the measurement devices close to the
anchor points.

The goal of this validation study is to present a novel model for estimating tape
kinematics and to assess its accuracy. After describing the proposed general model in detail
and discussing a basic parameterization to further adjust it, we analyze its accuracy with
both input from a motion capture system under laboratory conditions and an example IMU
input that could be used under field conditions.

2. Materials and Methods
2.1. Nomenclature and Coordinate System on the Luna

To carry out our experiments, we used the Sensopro model Luna Fitness (Sensopro AG,
Münsingen, Switzerland), an exercise device primarily designed for coordination training
and commonly found in fitness and rehabilitation centers (see Figure 1). The Luna Fitness
can be described as follows: When training on the Sensopro, users stand on two unstable
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tapes while receiving exercise instructions from a touch screen in front of them. Each tape
consists of a rectangular non-stretchable canvas connected to two sets of four springs that
are attached to the front and back anchor points on the surrounding metal frame. The total
length between the front and back anchor points is 1726 mm, and the unloaded, initial
length of the springs is approximately 200 mm.

We define the coordinate system as follows: The origin is in the exact center of the
anchor points, between the two tapes. The X-axis points forwards, parallel to the long
tape axis. The Y-axis points to the left and the Z-axis points upward. Roll, pitch, and yaw
correspond to rotations about the X-, Y-, and Z-axes, respectively, using Euler angles,
or, more specifically, Tait–Bryan angles following the XYZ intrinsic rotation convention. In
this application, the restricted range of possible rotations of Luna tapes keeps the resulting
angles similar to the corresponding axis-angle representation (which are used internally for
motion capture post-processing) and helps avoid the mathematical limitations associated
with Tait–Bryan angles. However, this may not be the case in other settings and should be
verified before employing the same algorithm on slacklines, for example.

2.2. Tape Kinematics Model

We consider each tape separately as an ideal rope that connects the two fixed anchor
points at (±863, 0, 0) in the sagittal plane, as shown in Figure 2. The general model only
requires one setting-specific parameter, namely the rest length L, measured from the back
anchor point to the front anchor point. It treats the foot as a single point (X, Z) on the tape
that causes the maximum Z-displacement dM. This point is computed from the front and
back angles α and β, which result in pitch-angle-based model predictions for the vertical
position (Z) and the longitudinal position (XZ). Note that the obtained input pitch angle
values are normalized so that both the front and back angles are positive when the tape
is displaced downwards; in the proper physical frame of reference, the front pitch would
be negative instead. Equations (1) and (2) based on ray intersection and trigonometry,
respectively, show the mathematically equivalent formulations (we noted both formulations
because they can have different performance and stability properties depending on the
exact implementation and system).

Figure 2. The general model for the X-position and Z-displacement dM compared to the actual tape
displacement approximated by dR. The black and purple arrows correspond to the front and back
tape segments that determine the input angles α and β, respectively.

t = cos(α) + sin(α)
cos(β)

sin(β)
Z = − sin(α)

L
t

XZ = cos(α)
L
t

(1)

Z =
−L

1
tan(α) +

1
tan(β)

XZ =
|Z|

tan(α)
(2)

The general model output assumes that Z = dM (as shown in Figure 2) and thus
overestimates the actual displacement of the tape (dR) because the foot is not a point mass.
The difference between dM and dR depends on the size of the shoe, the position of the foot
on the tape, the flexibility of the shoe and the foot, and the flexibility of the tape around
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the shoe. For example, assuming a flat segment of a length of LF = 260 mm results in a
0.85-ratio for dR/dM (applying the intercept theorem results in dR/dM = LF/L), which
yields an alternative, parameterized model output ZR85. Note that the longitudinal position
(X) is not affected by this parameterization, but the correct X-position of dR could be
anywhere below the shoe.

We use the same basic model in the horizontal plane to infer the yaw-angle-based
model predictions for the lateral displacement (Y) and the longitudinal foot position (XY).
For the yaw-angle-based model, however, we do not include an alternative parameteriza-
tion correcting the foot segment length because only small Y-displacements are possible on
the Sensopro Luna, and so the absolute error remains small, too. An additional property
that the model does not consider is the fact that the springs of the Sensopro Luna can have
different resistance to lateral displacement from the rest of the tape, resulting in different
yaw angles along the longitudinal tape axis. Similarly, the roll rotation angle can also be
modeled as increasing linearly along the X-axis, but suffers from the same issue because
the spring segment has different resistance to angular deformation than the tapes. Contrary
to the yaw-based lateral displacement, this effect is too large to ignore for the roll angles.
Therefore, the following four modeling variants are included in the analysis for comparison:

• A non-configurable model expecting linearly increasing roll (RM);
• A model with spring-coefficient parameterization expecting the rotation in the spring

segment to be a fixed multiple of the rotation in the tape (RS);
• A model with the same spring-coefficient parameterization as in RS but with an

additional weighted sum based on the longitudinal foot position (XZ) to rely more on
the measured input roll from the sensor that is closer to the foot (RWS);

• A trivial approach that simply adds the measured front and back roll angles, ignoring
the contribution of the remaining tape segments altogether (RA).

Overall, the model outputs are labeled as follows: XZ and XY denote the X-position
predictions obtained from the Z and Y models, respectively. Y and Z describe the general
(non-parameterized) model predictions for the lateral and vertical displacement, respec-
tively. ZR85 refers to the Z-prediction optimized using the 0.85-ratio parameterization
obtained from the theoretical shoe-correction and the synthetic recordings, while ZR82

refers to the 0.82-ratio parameterization obtained from the full dataset recorded in this
validation study (the 0.82-ratio is only included to show how demographic-specific parame-
terization could further improve the output, but it is possible that it constitutes overfitting).

2.3. Validation Study

We conducted an exploratory assessment with a convenience sample of three par-
ticipants, denoted as A, B, and C, with shoe sizes between 42.5 and 45 (EUR shoe sizes,
with shoe lengths measured at 28 cm to 32 cm and shoe widths at 11 cm to 12 cm). Each
participant performed the following ten exercises on the Sensopro Luna: (01) stepping
in place; (02) strong steps; (03) sprinting; (04) symmetrical bouncing; (05) one-leg stand;
(06) walking back and forth; (07) walk with roll variation; (08) walk with yaw variation;
(09) stepping with variation in lateral foot positioning (Y); (10) standing sideways (facing to
the right) and stepping (Figure 1a shows the left-facing version of this exercise). Exercises
01–05 and 10 were similar to standard Sensopro exercises, but focused on variation in
movements instead of consistency. Exercises 06–09 were not typical exercises, but ensured
coverage of a bigger range of possible states. The exercises were performed for 60 s each,
but the recordings were longer to allow for start-up and shutdown sequences. Directly
after the start-up sequence and before the start of the exercise, participants jumped onto the
tapes to facilitate temporal alignment of the IMU and motion capture data streams during
post-processing.
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A Vicon optical motion capture system (10 Vicon T20s cameras, 2 MP, 500 Hz, Vicon
Nexus 2.13, Vicon Motion Systems Ltd., Oxford, UK) tracked foot and tape movement by
means of reflective markers (14 mm diameter). We attached three markers to each foot
and eleven markers to the inner (five markers) and outer (six markers) edges of each tape,
as shown in Figure 3.

Figure 3. Reflective marker on the tapes (with the front on the right hand side). The plastic covers on
the right tape have been loosened to partially expose the metal springs.

The markers were grouped into eight pairs per tape, with the inner edge marker in the
middle of each tape belonging to two pairs. These pairs split the tape into seven sections,
with each marker pair being the border between two sections. This way, each tape section
had three (middle section) or four (other sections) markers defining the section position
and rotation, with the exception of the front and back sections that connected the two
tape markers with the anchor points (the view of the anchor points was obstructed by
the metal frame of the Luna, so the anchor point positions had to be reconstructed from
static measurements and markers on the metal frame tracking potential shifts). The Tait–
Bryan angles (up to this point in the calculation, angle-axis and quaternion representations
were used internally for the transformations) of the front and back sections later served
as inputs for the different kinematic model functions. Additionally, one IMU (SFM2,
Sensor Maestros LLC, Denver, CO, USA) was attached to the bottom side of the front
and back sections of each tape (four IMUs in total). Using sensor fusion of accelerometer,
gyroscope, and magnetometer data, these sensors estimated the front and back section
roll, pitch, and yaw angles. This setup serves as an example of a cost-effective orientation
measurement system.

A third-order 100 Hz low-pass Butterworth filter was applied to the data before
resampling and interpolating it from 500 Hz (resp. about 400 Hz for IMU data) down to
200 Hz, so that the resulting motion capture and IMU data shared the same timestamps.
The coordinate system was then transformed to ensure that the longitudinal tape axis was
exactly aligned with the X-axis. As a next step, the relative translations and rotations of each
tape section were computed using the same transformation (these transformations were
found by applying the align_vector method in the scipy.spatial.transform.Rotation class [29],
which internally applies the Kabsch algorithm [30]). To improve numerical stability, our
implementation of the model defaulted to zero predictions (i.e., no displacement, X in the
center) when given small input angles (less than 0.1°). Data points where the center of
the foot segment was at least 70mm above the center of the tape segment were excluded
from the subsequent analyses, because this indicates that the foot was almost or entirely
removed from the tape (this threshold was determined from the height of foot markers
when standing still; it is still possible for the foot to be in partial contact with the tape above
that threshold, for example, by tiptoeing). Similarly, data points where both feet were on
the same tape, which only happened in trial 10, were also excluded. A total of 30 trials
were processed for both tapes, resulting in 60 single-tape recordings. One trial (B08) was
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cut to only approximately 56 s instead of the regular 60 s due to a technical issue causing a
delay in the IMU start-up sequence. All other trials were cut to exactly 60 s of exercise time.

2.4. Statistical Evaluation

For the statistical analysis, we first checked the applicability of the model and obtained
a rough estimate for the application-specific model parameterization by analyzing data from
separate trials where the tape had been manipulated in a more synthetic manner by hand
(Z-displacements without roll, Y-displacements without Z-displacements, and roll without
Z- or Y-displacements). This yielded the required parameters for RS, RWS, and ZR85. Then,
we assessed the accuracy of each model output, first for motion capture-based input angles
and then for IMU-based input angles, by comparing the model predictions to the reference
values, defined as follows: For each point in time, the reference Y-, and Z-displacements
were taken from the tape segment with the highest absolute Z-displacement. The reference
X-position was obtained from the motion capture markers attached to the foot and the
reference roll angle was taken from the tape section with the highest absolute roll (this
might be different from the section with the highest Z-displacement because the foot can
be in contact with several tape sections).

For the motion capture-based input angles, we visualized the prediction error with
a modified box plot, compiled a table showing the Root-Mean-Squared Error (RMSE) for
each trial, and generated more detailed plots showing the effect that X and Z position have
on the prediction error of key outputs (XZ, Y, ZR85, and RWS). For the IMU-based input
angles, we first plotted the difference between IMU- and motion capture-based angles
for a single trial. Because of the systematic bias in pitch drift, we then applied a simple
drift adjustment for pitch by shifting negative values up before visualizing the overall
IMU-based prediction errors with a modified box plot again.

3. Results
3.1. Applicability of the Model

Because post-processing was kept to a minimum for the synthetic checks, the measured
marker coordinates in the figures were not corrected for slight axis-misalignment, marker
placing inaccuracies, or marker jitter, which might sometimes result in a few millimeters of
difference between the recorded frame marker positions and anchor point coordinates.

Figure 4 shows a consistent pitch for tape segments that are not near the foot position,
as would be expected based on the simple rope model. The model output overshoots
the actual Z-position, which is ameliorated when employing the 0.85 shoe length factor.
A similar plot is shown for lateral displacement (Y) in Figure 5. Note that the maximal
lateral displacement is much smaller than the vertical displacement shown in Figure 4,
and some markers do not lie on a straight line. The yaw angles are larger in the first and
last segment compared to the more central segments. Furthermore, the model prediction
near the back (i.e., the left tape in Figure 5) shows a substantially larger overshoot than the
model prediction towards the center (right tape), despite similar absolute Y-displacements
in the measured data. Finally, Figure 6 shows how the tape roll develops along the
longitudinal axis (X), with the non-parameterized model strongly overestimating the
maximum roll angle.
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Figure 4. One data point of the left and right tapes in the sagittal plane (as seen from the side).

Figure 5. One data point of the left and right tapes in the transversal plane (as seen from above).

Figure 6. Variation in roll angle along tape axis compared to non-parameterized (RM) and parameter-
ized (RS) model outputs.

3.2. Model Accuracy
3.2.1. Descriptive Statistics

A total of 359,211 data points were recorded, covering 1796 seconds of exercise time.
Due to the foot being removed from the tape, 54,781 and 52,916 of these samples were
excluded from the following analysis for the left and right tapes, respectively. Consequently,
the analysis included 304,430 and 306,295 samples for the left and right tapes.

Figure 7 shows the accuracy of the different model outputs. Most (±2σ, i.e., 96%) pitch-
based predictions (XZ) lie within [−4 cm,+14 cm] of the measured X-position of the foot,
but the yaw-based predictions (XY) are spread out to [−36 cm,+45 cm]. Both X-predictions
also have notable outliers exceeding ±40 cm (an interval that covers more than half the tape
length). Most predictions for lateral displacement (Y) are within an error margin of ±8 mm
(note, however, that the maximum observed lateral displacements in these trials were only
±70 mm). For the vertical displacements, the parameterized solutions resulted in more
accurate predictions than the non-parameterized model (Z). The median of the prediction



Sensors 2025, 25, 1632 9 of 18

error for the 0.82-ratio is closer to zero compared to the 0.85-ratio, but the variation remains
similar: for ZR85, more than 96% of predicted positions are within −8± 12 mm of the actual
displacement, while ZR82 moves that interval to 2 ± 12 mm. Finally, the spring-corrected
model predictions (RS) lie within ±8.5°, except for outliers, which is also more accurate
than the non-parameterized roll angle model output (RM). Adding weights based on
the reference X-position has a small positive effect, with the weighted spring-corrected
roll predictions (RWS) lying within ±7° of the reference for over 96% of all data points.
The simple approach RA is only slightly less accurate, with ±9°. Similarly, half of all
predictions lie within ±1.9° of the reference for RS and RWS, while the same proportion
covers the interval [−2.2°,+2.0°] for RA.

Figure 7. Modified box plots of the prediction errors in all samples. The whiskers range from the 2nd
to the 98th percentile, and the boxes cover the 25th to 75th percentile. The median is shown as an
orange line, and all outliers (highest and lowest two percentiles) are marked in blue.

3.2.2. Effect of Position on Accuracy

Figure 8 shows how the different model outputs are affected by the foot position
along the tape axis. The spring-corrected roll angle displays a tendency to have smaller
prediction errors towards the center of the tape. A similar pattern emerges in ZR85, but less
pronounced. The predictions for longitudinal (X) and lateral (Y) displacements both show
variations with no clear pattern. Figure 9 similarly shows the effect of the downward dis-
placement of the tape. Other than at small (≤5 cm) and at very big (≥30 cm) displacements,
there seems to be little effect on the prediction error, except some curvature in ZR85.

Table 1 shows how the accuracy is affected by different exercises. Notably, the RMSE
of the longitudinal position prediction XZ is lower in sideways trials and highest in sprint-
ing trials. The lateral (Y) and vertical (Z) displacement outputs show largely consistent
performance over the different trials, except for increased RMSE for ZR85 and ZR82 in the
walking trials with increased X-position variation (trials 06–08). The roll angle predictions
also seem to have higher RMSE in these walking trials, but they also have higher RMSE
in trials 04 and 05 (bouncing and one-leg stand), with trial 10 (sideways) only having an
above average RMSE for RM and RWS.
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(a) X (b) Y

(c) ZR85 (d) RWS

Figure 8. Effect of X-position on prediction error for X, Y, ZR85, and RWS. The green line is the
median, the dark green area covers the 25th to 75th percentiles, and the light green area covers the
2nd to 98th percentiles (96% of all data points). The blue, orange, red, and purple lines correspond to
the 98th, 75th, 25th, and 2nd percentiles, respectively.

(a) X (b) Y

(c) ZR85 (d) RWS

Figure 9. Effect of Z-position on prediction error for X, Y, ZR85, and RWS. The green line is the
median, the dark green area covers the 25th to 75th percentiles, and the light green area covers the
2nd to 98th percentiles (96% of all data points). The blue, orange, red, and purple lines correspond to
the 98th, 75th, 25th, and 2nd percentiles, respectively.
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Table 1. RMSE of prediction error for each exercise.

Exercise XZ XY Y Z ZR85 ZR82 RM RS RWS RA
(mm) (mm) (mm) (mm) (mm) (mm) (°) (°) (°) (°)

01 80.7 94.7 2.5 30.1 5.0 4.6 4.8 2.2 1.8 2.7
02 79.0 108.1 2.2 33.3 5.5 5.2 4.3 1.8 2.1 2.0
03 90.3 115.0 2.7 32.7 7.1 3.7 4.4 1.7 2.1 1.9
04 58.8 103.5 3.7 33.7 9.0 4.7 6.6 5.0 3.3 5.5
05 60.0 112.6 3.3 36.8 8.5 5.1 7.0 4.8 3.5 5.5
06 65.5 205.8 2.9 38.5 12.0 7.8 8.4 2.5 2.6 2.5
07 64.8 203.1 3.8 33.8 11.5 7.8 12.2 3.7 3.6 3.9
08 56.8 196.7 3.4 35.2 11.4 7.6 13.4 4.3 4.0 4.6
09 59.9 117.5 4.3 33.0 6.7 4.4 8.3 4.0 3.4 4.7
10 23.6 179.4 3.0 30.3 7.0 5.7 10.9 2.5 3.2 2.4

all 66.6 148.8 3.3 33.7 8.7 5.8 8.6 3.5 3.0 3.8

3.3. Model Accuracy on IMU Data

Figure 10 shows that the IMU pitch and yaw angles used as inputs for the model
predictions drift away from the reference angles recorded by the motion capture system,
but this is not the case for the roll angles. Figure 11 shows that the IMU-based predictions
for X, Y, and Z are much less accurate than the ones obtained from the motion capture
system. The roll predictions are similar to the one based on motion capture data. Note
that the prediction error after the drift for pitch angles was corrected with the assumption
that the tape cannot exceed its rest height, i.e., that the input angle for Z and XZ is always
positive. Compared to the motion capture based model output, the 96% prediction error
interval increased as follows: from [−4 cm,+14 cm] to [−14 cm,+24 cm] for XZ; from
±8 mm to [−5 cm,+4 cm] for Y; from −8 ± 12 mm to [−53 mm, 27 mm] for ZR85; and
from ±7° to [−10°,+11°] for RS, RWS, and RA. Notably, RWS had a larger prediction error
than RA and RS, which was not the case for the predictions based on motion capture data.

Figure 10. Comparison between IMU angles and reference motion capture data for a single trial
(C02).
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Figure 11. Modified box plots of prediction errors using IMU input data. The whiskers range from
the 2nd to the 98th percentile.

4. Discussion
4.1. Summary of Findings

The proposed model for estimating relevant kinematic data for exercises on tapes
was successfully applied to the Sensopro Luna Fitness, including a simple parameteriza-
tion for foot-size adjustments. With near-perfect input angles from the motion capture
system, the model achieved a prediction error within a few centimeters of the reference
measurements for lateral (Y) and vertical (Z) displacements (see Figure 7). Since the tape is
wide enough to wrap around the foot and the reference system could only measure marker
positions near the edges of the tape, this may at least partially lie within the measurement
error for the reference data. Similarly, the error range for the longitudinal position (X,
excluding 4% of data points as possible outliers) is smaller than the length of the foot.
While this seems like a large variation at first, the following aspect needs to be taken into
account before evaluation: by shifting the center of pressure forward and backward, the the-
oretically perfect X measurement (i.e., the CoP position) would also shift while barely
affecting the reference X-position that is only based on the foot markers. This interpretation
is supported by the fact that the sideways trial (exercise 10) had a noticeably smaller RMSE
than the other trials (see Table 1). The same model does not perform as well for roll angle
predictions; even the parameterized and weighted versions are not substantially more
accurate (see Figure 7) than a simple addition of roll angles measured at the front and back.
Finally, while the estimation based on IMU measurements showed higher prediction errors
than the motion capture-based predictions, the accuracy would probably suffice for some
applications, such as gamification. However, there is still room for further improvements
in several areas.

4.2. IMU Drift

Drift in the IMU angles could be mitigated in several ways. One simple adjustment
was already included here, namely prohibiting negative pitch input angles. This brought
the ZR85 prediction error down from [−35 mm, 61 mm] to the [−53 mm, 27 mm] shown
in Figure 11, and reduced XZ from [−33 cm, 42 cm] to [−14 cm, 24 cm]. Another strategy
would be to detrend the signal to mitigate the effects of drift (from short experiments, a third-
order 0.001 Hz high-pass Butterworth filter seems to work well for pitch angles; similarly,
a 0.01 Hz high-pass filter seems adequate for roll angles), but this has the downside of
hiding long-term shifts in movement patterns over the exercise duration. When additional
information about the intended exercise is provided (e.g., by linking the data collection
and algorithms to the selected exercise or by implementing an automatic classification
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system similar to [24]), this could be used to impose more specific constraints on the
input data. For example, in symmetrical exercises where the whole weight is on the tapes,
the displacement averaged over a time window of several seconds should remain more
or less constant. Furthermore, some part of the pitch angle drift seems to be caused by
the repeated up and down movements during regular exercise or the tape swinging freely
in its natural frequency. The one-sidedness of the observed pitch drift patterns could
therefore be explained by the general sensor fusion algorithm considering accelerations
near 1G as resting points for the internal drift correction. This would lead to the inclusion of
time frames with 1G downward accelerations (in addition to the 1G upward accelerations
expected at rest). Overall, it would likely be beneficial to implement a specialized sensor
fusion algorithm that would estimate the input angles based on the raw accelerometer,
gyroscope, and magnetometer data. By adapting the sensor fusion algorithm to the specific
setting, in which the state space of possible angles is severely restricted, such drift patterns
could potentially be detected and avoided. For example, when the foot contact is suddenly
removed, Sensopro Luna tapes show fairly regular oscillation frequencies that could be
filtered in the measured input angles to avoid drift and increase reliability.

4.3. Outlier Detection

In addition to these possible improvements to the IMU input, the outliers could be
detected independently of the orientation measurement system. Our model currently only
considers each time frame separately. Generally, temporal coherence conditions can be
enforced on X, Y, and Z to reject at least some of the observed outliers, because these values
should change smoothly. Also, since the model outputs two variables for each data point
((XZ, Z) or (XY, Y)), we can infer information about the reliability of one by using the other.
Low Z values generally lead to unreliable XZ estimations, and the same is true for Y and
XY. Conversely, moving the foot in the X direction usually involves lifting the foot off
the tape. So, large changes in X-predictions (i.e., larger than the foot length) without an
intermediate foot-lift-off phase are likely inaccurate (unless for exercises where both feet
are on the same tape).

The biggest outliers for the X-position tend to happen when the tape is not under load,
because then, even little changes in input angles can have big effects on the predicted XZ.
When removing the foot from the tape, it quickly oscillates up and down in a range of about
±4 cm. It would be best to detect idle or oscillating tape conditions and handle them sepa-
rately to avoid these issues. For a similar reason, the yaw-angle-based longitudinal position
estimation (XY) does not seem to be a viable option for the Sensopro Luna; displacements
in the Y direction are in the range of a few centimeters, and small perturbations in the input
will therefore have a big effect on the predicted XY-position. For this reason, slight marker
shifts and tape deformations during recording are also sufficient for explaining the chaotic
lines observed in Figure 5, since the marker positions only deviate a few millimeters from
a straight line (excluding the first and last segments). When using IMUs for tape angle
measurements, the predicted Y and XY positions would be even less accurate because the
yaw angle required as n input is more susceptible to drift and fluctuations (contrary to
pitch and roll, the sensor fusion for yaw angles cannot use gravitational acceleration for
drift correction and must rely on magnetometer data instead). These issues can generally
be mitigated by rejecting measurements with small angles altogether. This is a reasonable
procedure under real-world conditions since the X-position is a meaningless measure when
the foot is removed from the tape and since we are not interested in the vertical and lateral
tape positions when unloaded.
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4.4. Effects of X- and Z-Position on Accuracy

The effects of the X- and Z-positions on the different model outputs shown in
Figures 8 and 9 have a few different possible explanations:

• Generally, more data samples are gathered near the center of the tape (i.e., X near 0),
because the standard exercises in the first five trials have little X-variation. It is possible
that the movement in the latter five trials with more X-variation is also more erratic,
which would generally increase the prediction error. Furthermore, the motion capture
markers are closer together near the center of the tape, so the reference measurements
might be less accurate in the front and back sections for all variables other than the
X-positions.

• The longitudinal position prediction XZ defaults back to the center of the tape when
the tape is not under load, which would explain the larger variations for small Z-values
and possible smaller variations when the X-reference is near zero. Since the variation
is mostly within a [−10 cm,+20 cm] interval around the reference X-position, it is
possible that this variation is not due to prediction errors at all: the distances of heel-
markers and toe-markers to the foot-center position are also about 10 cm and 20 cm,
respectively, so this could be due to changes in the center-of-pressure position (which
is what the model actually tries to predict) relative to the foot-center position.

• Larger Y-variation can be achieved by the user when positioned near the center of the
tape (X near zero) and with increased downward force applied to the tape, at least
up to a point, since extreme Z-displacements are difficult to achieve when there is
additional sideways displacement. With larger real Y variation, larger prediction
errors are to be expected.

• There is less variation in ZR85 prediction error near the center of the tape (see Figure 8c),
but the pattern is not symmetrical, so this could be an instance where the more erratic
movements in the trials with more X-variation (i.e., trials 06–10) affect the prediction
error. The curved form with increased Z-displacement up to −250 mm could be
indicative of a non-linear error term that has not been included in the parameterized
model, especially since the median error is affected the same way.

• The distribution of the roll angle prediction error seems to be more spread out for
smaller Z-displacements, but the 25th to 75th percentile ranges show the exact op-
posite effect. This can, again, be explained by smaller variations in roll angles for
extreme Z-values. However, there is a much stronger dependency on the X-position:
increased distance from the center leads to up to three times larger prediction errors.
Consequently, the current implementation of the parameterized model is not suitable
for X-positions near the very front and back of the tape.

• According to Figure 8, the prediction error is not symmetrical in the sagittal axis. This
could be explained by the fact that in most trials, the feet were pointing forward, so
that the toes would have a higher X-value than the heels. The only exception was trial
number 10, where the feet were turned to the right, resulting in a smaller effective
foot segment. Generally, the prediction error for ZR85 and RWS seems to increase with
larger distance from the center, but it is not clear whether this is due to a potential
limitation of the model, due to the feet affecting the measured angles when closer to
the anchor points, or just due to less regular movement patterns in the trials that also
had large movements in the X-direction. However, if the different movement patterns
are the actual reason for the increased prediction errors, we would expect a noticeable
pattern in the trial RMSE in Table 1.
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4.5. Limitations

The accuracy assessment conducted in this study is limited by the measurement setup
in several ways, some of which have already been mentioned before. Here, we list the most
pertinent caveats: First, the validation study is only meant as an assessment of the model
accuracy, with a focus on covering basic exercises as well as a large variety of tape poses.
It is by no means a representative study for making statements about general exercise
patterns and human body kinematics during training. Furthermore, it is possible that
the reported accuracy ranges exhibit specific biases, so additional setting- and exercise-
specific validation with more participants is recommended before the model is used in
practice. Second, only small Y-variations were achieved, potentially reducing the observed
prediction error independently of the chosen model. Third, we used foot markers to
detect and exclude measurements where the foot was not on the tape. Under real-world
conditions, this would have to be detected algorithmically if these data points needed to be
excluded. Finally, the theoretically ideal reference position would be the center of pressure,
which cannot be determined directly in our setup—its position may be anywhere below
the foot (with a larger range of lateral variation than in slacklines [27]). Moreover, marker
positions and complex tape behavior further separate the measured values from the ideal
CoP position. Nevertheless, these inaccuracies should lie in an inconsequential range for
everything but the Y-variations, and so we believe that this validation setup is sufficient to
show the usefulness of the model. Removing these unsystematic measurement errors in
the data (if possible at all) could affect the estimated accuracy in both directions, so it is not
clear whether it would increase or decrease the estimated accuracy ranges.

One general limitation of the model presented here is that we expect the tape to be
loaded, which is not always the case. When the mass is quickly removed from the tape,
this can lead to complex oscillations that affect the orientation at the front and back. These
oscillations can even lead to the inputs having different signs, which leads to numerical
instability for all model outputs. Even if both angles have the same sign, it is possible that
the two 3D rays resulting from tape angle measurements do not intersect. Our proposed
method looks at the XZ and the XY 2D-planes separately to determine the (XZ, Z) and
(XY, Y) intersection positions, respectively. If there is no 3D ray intersection, then this
will result in XZ ̸= XY, which could serve as an indicator for inaccurate measurements.
However, the Y displacements we observed here were not large enough to make use of this.
Generally, if IMU measurements result in a discrepancy between XZ and XY, we suggest
giving more weight to the (XZ, Z) position due to the yaw angle being less reliable.

The model also does not account for the change in spring length under load, which
affects the exact X-position at which the roll angle is measured. Therefore, the exact factor
relating measured roll to foot segment roll may change with increased pitch (although we
would expect a more clearly visible pattern in Figure 9d if this effect was strong).

4.6. Future Research

Future research should try to replicate these accuracy assessments for slacklines. The
observable parameter ranges are severely restricted by the Sensopro Luna as follows: Y
is within ±7 cm, Z is between 0 cm and 38 cm, and roll is between −30° and 30°. An as-
sessment in slacklines would therefore be especially important for the Y-displacement,
but potentially benefit the other parameters as well since it would allow for larger dis-
placements in all directions (e.g., [20] used a slackline of 3 m length and 5 cm width,
compared to the 1.73 m long and 20 cm wide tapes used here). Additionally, a slackline
would have one homogeneous material throughout the full length of the elastic ribbon, so
it may be beneficial to investigate the potentially simpler relationship of these quantities
with measurements in slacklines, too. For example, given a yaw and roll angle estimation
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formula on slacklines that is parameterized with length and rotational stiffness constants,
another candidate for computations on Sensopro tapes could be found by applying that
same formula twice (with different parameter values on the spring and tape segments).
Alternatively, setting-specific heuristic approaches like the one applied in RA could already
be sufficient, but those likely also benefit from data-driven adjustments.

Another interesting topic for further investigation is the relationship between model
output and kinetic features, specifically between foot pitch, center of pressure, and predicted
X-position. We expect that some variation in the XZ prediction can be explained by changes
in posture affecting the exact center-of-pressure position beneath the foot and, consequently,
the position of the lowest point of the tape, rather than solely being due to measurement or
model errors. If that is the case, it would be possible that the pitch or the center-of-pressure
X-position could be predicted if the exact foot placement on the tape is given. The feet
are generally not completely removed during typical exercises, so the X-position of each
foot should be fixed in some sense, which would make these relative variations useful
in practice. While we already saw some correlation between small X-variations and foot
pitch variation in this dataset, a different measurement setup would be required to identify
a direct relationship between these quantities with certainty. For example, leveraging
in-sole pressure measurement devices or employing a full-body motion capture system
with biomechanical modeling, one could potentially relate variations in model predictions
to center-of-mass and center-of-pressure movements.

Finally, although we focused on the tapes of the Sensopro Luna in the accuracy
assessments and proposed further adjustments based on slackline measurements, we see
the simplicity of the general model as a potential strength in the sense that it could already
be applied to other Sensopro models and slacklines as-is, even without a more detailed
investigation into the best possible setting-specific parameterization. Nevertheless, we
recommend a previous application-oriented validation in order to obtain pertinent accuracy
ranges and updated parameter values, since the accuracy reported here may otherwise not
apply due to population biases and different exercise sets. It would also be interesting to
see how such a model would perform for trampolines, where several input angles could be
measured at different positions. It may be possible to adapt this approach to trampolines by
either treating them as several overlapping two-dimensional rope models or by expanding
the approach to a full three-dimensional model of unstable bases of support.

5. Conclusions
The general model provides a rough estimate of the most relevant kinematic parame-

ters, sufficient for gamification applications. Adjusting the model with a few tape-specific
parameters greatly reduces bias and improves the accuracy of the model. With these adjust-
ments, generating feedback for coordination training based on the output of this model
seems possible. Our results show moderate accuracy for sagittal foot positioning along the
tape and high accuracy for vertical displacement, while lateral displacements, roll angles,
and potential kinetic relationships may require further investigation. IMU-based measure-
ments suffer from drift over time, but appropriate drift corrections can mitigate this issue.
Promising related applications of the proposed model include slacklines and trampolines.
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Abstract

Augmented feedback supplements autonomous coordination training, ensuring
correct exercise execution and enhancing self-efficacy by scoring and tracking
performance indicators. We intend to develop a practical, cost-effective measure-
ment system to provide center of mass predictions based on tape kinematics for
advanced postural feedback in three balance and coordination exercises on an
unstable base of support. In a cross-sectional study, 65 participants performed
exercises on the Sensopro Luna, while a marker-based motion capture system
recorded tape and body kinematics. These recordings were split into training and
test data sets for several neural network models. To predict the center of mass
position in all three dimensions from tape kinematics, we implemented models
based on a convolutional and a variational auto-encoder neural network architec-
ture. Preliminary results based on a subset of the data and a smaller convolutional
neural network architecture showed good accuracy. Therefore, further experi-
ments with different exercises, deeper models, and a more complex architecture
are warranted

Keywords: Coordination Training, Augmented Feedback, Model Prediction,
Time-Series Analysis
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1 Introduction

The Center of Mass (CoM) plays an important role in assessments of postural
control[4, 5, 8]. Postural control is also a central aspect of balance and coordination
training, making the CoM an interesting candidate for performance assessments or
augmented feedback on unstable bases of support[7] such as the unstable tapes of the
Sensopro Luna. While existing methods of estimating the CoM position with optical
motion capture systems have high accuracy[1], they require expert supervision and
expensive camera systems that are not suitable for field conditions. Hence, alterna-
tive measurement systems based on wearable Inertial Measurement Units (IMUs) have
been proposed[2, 4]. In contrast to these efforts, we use kinematic measurements of
the unstable base of support to predict CoM displacement without the use of wear-
ables, thus avoiding complex user-setup or calibrations. This should be possible in
theory because the reaction forces on the unstable base of support are intrinsically
linked to the forces applied to the CoM and therefore to changes in CoM kinematics[6]
as long as the unstable base is the only contact point. Furthermore, by training dif-
ferent neural network models with different sets of input kinematics, we intend to
assess the potential viability of potential CoM prediction systems based on tape kine-
matics derived from IMUs attached to Sensopro tapes[3]. Such a system would make
cost-effective tracking of features related to postural control attainable under field
conditions, thereby facilitating automated postural feedback and performance track-
ing for autonomous balance and coordination training in therapy and fitness centers.
To that end, we compare the accuracy of three exercise-specific models to gain insight
into the relative difficulty of CoM prediction for different exercises on the Sensopro.
For each exercise, both a convolutional neural network and variational autoencoder
architectures are tested and compared to gauge the potential of deeper and more com-
plex models. Finally, we analyze and discuss these results for each axis separately, with
the main focus on the mediolateral CoM displacement accuracy because this would
be the most relevant direction for most forward-facing exercises on the Sensopro.

The objectives of this article are therefore (1) to demonstrate that center of mass
position can be predicted from tape kinematics with neural network models, (2) to
compare the relative accuracy of these models for different Sensopro exercises in all
three principal spatial axes, and (3) to compare the accuracy of predictions made by
model architectures of different complexities.

2 Material and Methods

2.1 Participants

Participants for the cross-sectional study were recruited from sport science students (18
to 24 years old). In order to avoid systematic biases due to fatigue and asymmetrical
exercises, participants were evenly allocated into eight groups that differed in the
order in which the exercises were executed and in leg placements for asymmetric
exercises. The initial goal was to collect at least eight full recordings for each of the
eight groups, but 12 recordings had to be excluded from the dataset due to issues with
the recorded data (missing markers, recording errors, system errors). Consequently,
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Fig. 1: The Sensopro Luna during a sideways exercise (left) and tapes (right) showing
marker and IMU placement. Copyright 2025 by Sensopro AG.

additional invitations were sent out until all of the 64 slots were filled by complete
recordings, with at least 4 female and 4 male participants for each of the 8 groups.
In total, 77 participants were invited over the span of six months, resulting in 65 full
recordings (including one additional participant that was recorded as a reserve).

The study was carried out in accordance with the Declaration of Helsinki and was
approved by the Institutional Ethics Committee of the Faculty of Human Sciences at
the University of Bern (approval number: 2019-08-00004). Written informed consent
was obtained from all individual participants included in the study.

2.2 Devices and Setup

Exercises were performed on a Sensopro model Luna Fitness (Sensopro AG, Switzer-
land), shown in Figure 1. Tape motion and body kinematics were recorded with a
marker-based motion tracking system (10 Vicon T20s cameras, 2MP, 500Hz, Vicon
Nexus 2.12). Tape kinematics were also recorded using two inertial measurement units
(Blue Trident IMUs, 500Hz, Vicon), attached to the center of each tape (see Figure
??). Anthropometric data was gathered for each participant before completing static
and dynamic calibration recordings for the full-body marker model (Vicon Plug-in
Gait full-body model).

The motion capture system provided the CoM data (three values, one value for each
axis), which constituted the desired output. The full input for the models comprised
orientation of the front and rear tape segments, IMU data, trigonometric position esti-
mates for the lowest point on each tape, and the estimated height difference between
tape. Each IMU measured acceleration, angular velocity, and orientation data (using
sensor fusion) of the middle segment (nine values per tape). The motion capture sys-
tem recorded the orientation data for the front and rear segments (three values each).
The tape segment orientations were then used to derive lowest tape point XY Z-
position estimates (three values for each tape) using the trigonometric formula from
[3]. Finally, the difference of the vertical position estimates was added to the input
too, for a total of 37 input values and three output values.

2.3 Exercises

Participants first performed each of the eight base exercises for 30 seconds as a warm-
up. After the warm-up phase, each exercise was repeated four times for 45 seconds
each, with a break of at least 20 seconds between each exercise (participants could
request longer breaks if necessary). Representatives from Sensopro AG advised us
in the choice of exercises to ensure that they were fairly representative for exercises
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on the Sensopro Luna in general, with the restriction that they should not involve
complex hand movements or other elements of the Sensopro (e.g., not holding onto
elastic tubes or metal rails unless for safety reasons). Of the eight recorded exercise
types, only the following three exercises were chosen for training the neural network
models in this study: 1) stepping in place (slow, asymmetrical movement); 2) waves
(fast, symmetrical movements); 3) single leg stance (difficult balancing task, with
participant frequently grabbing the metal rails for support).

2.4 Data Processing

The inbuilt functions in the Vicon Nexus software were used to first fill gaps in the
marker trajectories and then generate the reference CoM data. Trials with less than 20
seconds of CoM data were excluded from training and testing sets. (This could happen
when the posture of the participant resulted in a marker being covered throughout
the exercise.) The orientation data from front tape segments, rear tape segments, and
IMUs was tared using the static recordings of each participant. A third-order 100Hz
low-pass Butterworth filter was applied to all recordings before resampling to 200Hz.
The orientation was converted to roll, pitch, and yaw following the intrinsic XY Z
convention for Tait-Bryan angles. Then, the position estimates for the lowest point on
both tapes, as well as the height difference between the tapes, were derived from the
orientation data of the respective front and rear segments. Finally, all these values were
combined together with the resampled raw data from the IMUs to form the input and
reference for training and testing of models. The trivial reference model did not require
training and simply used the estimated lowest points weighted by left-right height
difference to derive a CoM prediction (the lower tape tends to have more weight on
it, so the CoM displacement is predicted to be closer to the lower foot displacement).

2.5 Preliminary Tests

Disclamer: This section and the corresponding preliminary results and discussion will
be removed after the analysis of the more complex neural network models is complete.

To gauge the potential of CoM-prediction based on tape kinematics, we first
checked whether a smaller neural network would achieve promising results by using
the recorded tape kinematics for the prediction of CoMY . The training set for these
tests consisted of stepping trials from 16 participants, and the test set consisted of
45 stepping trials from the other participants that were not included in the training
set. Trials were not yet fully processed, so the recordings were not yet downsam-
pled from 500Hz. For the analysis, the difference between predicted and measured
COMY -positions was summarized with short descriptive statistics while the overall
distribution was visualized with a boxplot and a Bland-Altman plot.

2.6 Neural Network Models

The same convolutional neural network architecture was used to train three base-
line models, one specific for each exercise. The absolute vertical CoM position is not
attainable through tape kinematics alone, as it depends on the height and posture
of the participant. Therefore, each model was instead tasked to predict the relative
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CoM position, i.e., the CoM displacement, based on the full set of the 37 possible
input parameters. Similarly, a more complex model based on a variational autoen-
coder architecture, consisting of the above CNN in conjunction with an LSTM and a
decoder, was trained for each exercise to compare the accuracy and reliability of the
more complex architecture with the simple convolutional neural network.

In order to train the models, the complete dataset is split into a test set and a
training (and validation) set. For each exercise, one trial from each participant is chosen
at random for the test set, and the other three trials were moved to the training set.
The randomization was necessary to avoid a systematic bias due to increasing fatigue.

2.7 Network Architecture

A convolutional neural network (CNN) was developed to predict the lateral dis-
placement of the body’s center of mass (CoMXY Z) displacement from fixed-length
sequences of multivariate sensor data. The input to the network consisted of prepro-
cessed time-series signals. These signals were normalized and shaped into tensors of
size [N, 1, F ], where N is the number of samples and F is the number of extracted
features per frame (in this case, 37 input channels). The network architecture com-
prises three successive 1D convolutional layers with increasing filter depths (8, 16, and
32 channels), each using a kernel size of 3 with a padding of 1. Each convolutional
block is followed by a ReLU activation and a max-pooling operation (kernel size = 2),
reducing the sequence length from 8 to 1 across the three pooling stages. The output
of the final convolutional layer is flattened and passed through two fully connected
layers with 64 and 32 neurons, respectively, using ReLU activations. This is followed
by a final linear output layer that yields a single scalar value representing the pre-
dicted CoMY . The model was trained using the Adam optimizer with a learning rate
of 0.001. Mean squared error (MSE) was used as the loss function to minimize the
regression error. The dataset (excluding test set trials) was split into training (80%)
and validation (20%) subsets, and training was performed over 25 epochs with a batch
size of 256.

In a next step, the same convolutional network was combined with a bidirectional
long short-term memory (LSTM) architecture to realize a variational auto-encoder
topology.

2.8 Statistical Analysis

We compute the RMSE of the difference between predicted and expected displace-
ments to evaluate the overall accuracy of the 6 neural network models and compare
them to the accuracy of the trivial reference model. The position-dependent variability
is explored with plots showing error quantiles against CoM displacements. Potential
accuracy differences between participants are shown using a confusion matrix.

3 Results

Three wave trials had to be excluded due to missing CoM data. The full dataset
therefore included a total of 260 step trials, 257 wave trials, and 260 single leg trials.
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Fig. 2: A boxplot showing the distribution of the lateral CoM position measured by
the motion capture system (top) and predicted by a simple neural network model
(bottom).

Fig. 3: A Bland-Altman plot showing the variability of lateral CoM position mea-
surements and predictions.

Furthermore, three participants had to be excluded from the preliminary tests due
to improper setup of the IMUs. The test set thus consisted of 45 trials, resulting in N=
958 664 test samples. The median difference between predicted and measured CoMY -
positions was 1.6mm (M= 1.4mm, SD= 10.9mm). The boxplot and Bland-Altman
plot of the spatial distribution are shown in Figure 2 and Figure 3, respectively.

4 Discussion

The preliminary results look promising overall. The low (less than two millimeters)
mean and median imply a low general bias in samples that were not in the training
set. If the model was overfitted and only applicable to participants that it was trained
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Fig. 4: An example stepping trial showing that the model underestimates large dis-
placements.

on, then we would expect higher offsets there. Likewise, the standard deviation of
10.9mm is also acceptable, considering that it is comparable to the observed stan-
dard deviations of other IMU-based CoM measurements (e.g., the sway tasks in [2]).
Figure 2 shows that predicted CoMY covers a smaller range of Y -positions than the
measurements, which indicates a systematic underestimation of large displacements.
However, this pattern is barely visible on the Bland-Altman plot, so it is not clear
whether this may cause an issue in some cases. Figure 4 has therefore been included
here to compare the measurements and predictions for a single trial. While small
underestimations are visible in almost every peak, the most salient underestimations
are at the start and at the end of that trial. One likely reason is that the participant
was still getting into position in the beginning, but started leaning further to one side
to get into a more comfortable position at the end. If this is correct, then the issue
mostly concerns movements that are not part of the regular exercise executions of the
training set and the planned cutting of the trials would therefore further improve the
average predictions by reducing the test set to trained movement patterns.

Since the preliminary tests were successful, further investigation is warranted. Post-
processing and recalibration of the IMU data using static measurements is expected
to lead to more consistent training data and allow for the inclusion of all 65 partici-
pants. The planned training and analysis of CNN and VAC models for three exercises
could eventually lead to the development of an IMU-based CoM feedback system on
the Sensopro. If successful, this may aid balance and coordination training by offering
postural feedback without additional user-setup that would be required for wear-
ables, thereby hopefully increasing engagement, motivation, and training adherence
in fitness, rehabilitation, and therapy settings.

5 Conclusion

The preliminary tests show that a convolutional neural network may be capable of
predicting center of mass positions from tape kinematics during Sensopro exercises,
provided the movements are similar to previously trained exercise executions. Further
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exploration of different exercises using a reduced set of tape kinematics with a deeper
convolutional neural network is therefore warranted. Another line of investigation is
the training and testing of a deep neural network based on a variational autoencoder
architecture.
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