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Abstract

Mobility and Cloud Management with Federated and Distributed
Learning

by Lucas de Sousa Pacheco

Modern vehicular networks face challenges supporting applications like real-time
traffic prediction, collision avoidance, and adaptive signal control, which require dy-
namic topology management, privacy preservation, and low latency. High mobility
disrupts vehicle-infrastructure connectivity, hindering data exchange, while hetero-
geneous sensor data from diverse onboard systems violates homogeneous data as-
sumptions in traditional collaborative frameworks. Additional complexities include
mmWave beam alignment demands and adversarial threats. Conventional approaches
like FedAvg struggle due to rigid client selection, centralized aggregation bottlenecks,
and one-size-fits-all compression, ignoring vehicular resource disparities.

This thesis introduces four integrated frameworks to address these challenges
through context-aware adaptations of FL principles. DOTFL (Chapter 3) addresses
non-IID data distributions and poisoning attacks via neural similarity metrics and
Wasserstein distance-based clustering, achieving 94% malicious update rejection while
improving accuracy by 22% over FedAvg in urban mobility scenarios. DrivePFL
(Chapter 4) optimizes bandwidth utilization through Kalman Filter-predicted con-
tact windows and layer-wise model transmission, reducing communication overhead
by 10% without compromising 83.4% inference accuracy under vehicular mobility
patterns. FLIPS (Chapter 5) integrates SHapley Additive exPlanations (SHAP) for
adaptive model pruning, compressing transmissions by 48% while preserving safety-
critical features through layer importance scoring. eDAFL (Chapter 6) accelerates
mmWave beam selection via dynamic layer clustering, achieving 84% faster sector
search than exhaustive search protocols through federated multi-sensor fusion.

The frameworks are validated through simulations combining realistic mobility
traces, SUMO traffic models, and NS-3 network emulation. Key innovations include:
first: Optimal transport-based distribution alignment for non-IID data without raw
data access (DOTFL, Chapter 3); 2nd: Mobility-aware client selection using pre-
dicted link durations (DrivePFL, Chapter 4); 3rd: Selective and adaptive layer prun-
ing for throughput optimization (FLIPS, Chapter 5); 4th: Hierarchical aggregation
with Centered Kernel Alignment (CKA) for model consistency (eDAFL, Chapter 6).
Experimental results demonstrate scalability to 100-vehicle networks with 200ms in-
ference latency in DrivePFL, 91% accuracy under non-IID data distributions (CIFAR-
100) via DOTFL, and 52% parameter reduction through SHAP-guided compression
in FLIPS. These contributions advance distributed learning theory by formalizing
trade-offs between communication efficiency, adversarial robustness, and model inter-
pretability in vehicular systems.
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Chapter 1

Introduction

1.1 Motivation

Vehicular networks, such as those in Vehicular Ad-hoc Networks (VANETSs) and
Intelligent Transportation Systems (ITS), operate in inherently dynamic environ-
ments where vehicles must process high-dimensional sensor data to support safety-
critical applications like collision avoidance, traffic optimization, and autonomous
navigation. These networks face three fundamental challenges: (1) intermittent con-
nectivity due to vehicular mobility exceeding 50 km/h, which creates ephemeral
communication windows as short as 2-5 seconds; (2) heterogeneous computational
resources, ranging from Graphics Processing Unit (GPU)-equipped autonomous ve-
hicles to legacy systems with resource-constrained Onboard Units (OBUs); and (3)
Non-Independent and Identically Distributed (non-IID) data distributions caused by
spatial and temporal variations in road conditions, traffic density, and environmen-
tal contexts. For example, a vehicle in an urban area may collect data dominated
by pedestrian crossings, while another on a highway primarily observes sparse traffic
patterns. Centralized machine learning approaches, which require raw data aggrega-
tion, are infeasible in this setting due to bandwidth limitations, latency constraints,
and privacy regulations like General Data Protection Regulation (GDPR).

Federated Learning (FL) offers a decentralized alternative by enabling collabo-
rative model training without data exchange. However, standard FL frameworks
assume stable connectivity and homogeneous client capabilities, leading to subopti-
mal performance in vehicular scenarios. Consider two representative use cases: First,
Cooperative Object Detection, where vehicles must collaboratively improve detection
models using dashcam data, but frequent handovers disrupt synchronous aggrega-
tion. Another example is Millimeter Wave (mmWave) Beam Selection: Directional
antenna alignment for high-speed communication requires distributed coordination,
yet exhaustive beam searches incur prohibitive latency during brief vehicular contact
windows.

Client Heterogeneity and Adaptive Compression: Deploying FL in dy-
namic vehicular networks faces unique challenges due to client heterogeneity in com-
putational resources, non-IID data distributions, and dynamic topologies [58], [98].
Traditional FL approaches like Federated Averaging (FedAvg) fail in these settings
due to assumptions of uniform capabilities and static connectivity. Layer-wise model
compression exacerbates this by uniformly pruning parameters, risking critical feature
loss. This highlights the need for adaptive, explainability-driven compression us-
ing SHapley Additive exPlanations (SHAP) to prioritize essential components [37],
bridging to the demand for intelligent client selection strategies.

Dynamic Client Selection: Optimal client selection in Vehicular Federated
Learning (VFL) requires addressing vehicular-specific factors like mobility patterns,
predicted contact time, and data relevance [33]. Existing methods focusing solely



2 Introduction

on connectivity or resources lead to high dropout rates and overhead. The proposed
multifactor mechanism dynamically evaluates mobility, link quality, and data util-
ity, ensuring reliable participation. This adaptability is critical for managing the
subsequent challenge of non-IID data distributions.

non-I1ID Data and Privacy-Preserving Aggregation: non-IID data across
vehicular clients impedes model convergence and accuracy [76]. While clustering
techniques violate FL privacy principles, simplistic aggregation fails to capture up-
date divergences. This necessitates advanced methods that reconcile data diversity
with privacy, setting the stage for addressing concurrent security vulnerabilities
in distributed architectures.

Security Against Adversarial Attacks: Model poisoning attacks by malicious
clients challenge decentralized FL in vehicular networks [22]. Centralized servers
struggle to detect adversarial updates at scale, while decentralized approaches lack
robust outlier detection. Mitigating these risks is pivotal for enabling reliable com-
munication in VANETS, particularly with mmWave technologies.

mmWave Communication and Federated Learning: mmWave links in
VANETS offer high data rates but face directional beamforming and latency con-
straints [57]. Traditional beam selection protocols incur excessive overhead in mo-
bile scenarios, motivating FL-driven strategies for dynamic layer-wise aggregation.
This integration underscores the necessity for a tailored FL framework addressing
VANET’s unique requirements.

VANET-Specific FL Design: VANETSs demand FL frameworks that holisti-
cally address high mobility, non-IID data, and multi-modal communication. Prior
works optimized isolated aspects (e.g., compression or clustering), resulting in frag-
mented solutions. A unified approach balancing these factors is essential for scalable
and efficient vehicular federated learning.

This thesis bridges these gaps through the introduction of five FL frameworks that
tackle the problems of: adaptive pruning, mobility-aware client selection, federated
clustering, and robust aggregation. The proposed frameworks demonstrate signifi-
cant improvements in communication efficiency, convergence speed, and adversarial
robustness, establishing new benchmarks for FL in vehicular networks.

1.2 Research Questions and Motivations

The overarching goal is to design scalable and reliable VFL frameworks that operate
effectively under the constraints of vehicular environments, such as high mobility,
intermittent connectivity, and heterogeneous client capabilities. These constraints
amplify fundamental challenges in FL, including communication inefficiency, adver-
sarial threats, and non-IID data, which demand tailored solutions. The following
contributions and research questions form the foundation of this work, guided by
both theoretical gaps and practical vehicular requirements:

1.2.1 Chapter 3: DOTFL — Robust Aggregation under Non-IID
Data and Adversarial Threats

Vehicular networks inherently suffer from skewed data distributions due to geo-
graphic and operational variations (e.g., urban vs. highway driving patterns), creat-
ing non-IID scenarios that destabilize federated aggregation. Concurrently, malicious
participants may poison models by submitting adversarial updates, threatening sys-
tem integrity. Traditional defenses rely on raw data access for clustering or simplistic
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outlier detection, violating FL privacy principles and failing to adapt to vehicular
dynamics.

RQ1: How can federated aggregation maintain model integrity in vehic-
ular networks with non-IID data distributions and malicious participants?

e Sub-RQI1.1: Can neural similarity metrics (e.g., Neural-based Federated User
SIMilarity (NSIM)) enable privacy-preserving clustering of models without raw
data access? Motivation: Existing clustering methods require direct data in-
spection, conflicting with FL’s privacy goals. Quantifying model behavior sim-
ilarities instead of raw data could resolve this tension.

e Sub-RQ1.2: How does optimal transport theory mitigate client drift caused by
heterogeneous vehicular data distributions? Motivation: Traditional aggrega-
tion (e.g., FedAvg) assumes uniform data relevance, but non-IID distributions
in vehicles necessitate geometrically aware alignment of model updates.

o Sub-R@1.3: What mechanisms effectively isolate adversarial updates while pre-
serving benign contributions in decentralized topologies? Motivation: Central-
ized anomaly detection fails in large-scale vehicular networks, requiring decen-
tralized trust mechanisms that scale with mobility.

1.2.2 Chapter 4: DrivePFL — Mobility-Aware Communication Effi-
ciency

Vehicular mobility induces transient connectivity, where participants frequently en-
ter /exit coverage zones, disrupting model synchronization. Conventional FL protocols
transmit full models iteratively, wasting bandwidth during short contact windows.
While partial updates reduce overhead, they risk accuracy loss if critical layers are
omitted. Balancing these trade-offs requires dynamic scheduling aligned with pre-
dicted mobility patterns and task-specific layer importance.

RQ2: How can partial model transmissions reduce communication
overhead without degrading accuracy under vehicular mobility?

o Sub-RQ2.1: How do Kalman Filter-predicted contact windows optimize layer
transmission scheduling? Motivation: Mobility prediction enables proactive
prioritization of high-impact layers within limited connectivity periods.

o Sub-RQ2.2: What is the trade-off between layer-wise compression rates and
task-specific accuracy loss? Motivation: Uniform compression degrades safety-
critical features (e.g., collision detection), necessitating task-aware policies.

e Sub-RQ2.3: Can similarity-driven aggregation (e.g., Centered Kernel Align-
ment (CKA)) compensate for incomplete model updates in transient connec-
tivity? Motivation: Aggregating divergent partial updates requires measuring
functional similarities to avoid destructive interference.

1.2.3 Chapter 5: FLIPS — Explainability-Driven Compression and
Context-Aware Aggregation

Model compression is vital for bandwidth-constrained VANETS, but indiscriminate
pruning risks discarding safety-critical features (e.g., pedestrian detection layers).
Existing works apply static compression rates, ignoring layer-specific contributions
to decision-making. Simultaneously, unstable participants with fluctuating resources
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necessitate aggregation strategies that weight updates based on contextual reliability
(e.g., signal strength, computational load).

RQ3: How can explainability metrics guide model compression while
preserving safety-critical features?

e Sub-RQ)3.1: Does SHAP-based layer importance scoring enable selective prun-
ing without compromising decision accuracy? Motivation: Explainability frame-
works like SHAP can quantify layer contributions to predictions, enabling prin-
cipled compression.

o Sub-RQ3.2: How do context-aware aggregation weights improve robustness
against unstable participants? Motivation: Participants with poor connectivity
or limited compute may submit noisy updates; dynamic weighting mitigates
their influence.

e Sub-R()3.3: What is the computational overhead of integrating SHAP anal-
ysis into real-time federated workflows? Motivation: While SHAP improves
interpretability, its runtime costs must align with vehicular latency constraints.

1.2.4 Chapter 6: eDAFL — mmWave Beam Alignment via Dynamic
Layer Clustering

mmWave communication supports high-throughput vehicular applications but re-
quires precise beam alignment, which is time-intensive in mobile scenarios. Exhaus-
tive beam search protocols delay model exchanges, conflicting with FL’s iterative
training requirements. Federated learning itself can optimize beam selection by treat-
ing alignment as a collaborative learning task, but this demands tight coordination
between physical-layer parameters and model aggregation strategies.

RQ4: How can federated learning optimize mmWave beam selection
under mobility-induced latency constraints?

o Sub-RQ4.1: Does dynamic layer-wise clustering reduce sector search latency
compared to exhaustive protocols? Motivation: Layer-specific beam preferences
may correlate with environmental features (e.g., obstacles), enabling clustered
beam recommendations.

o Sub-RQ4.2: How does hierarchical aggregation balance model consistency with
transmission efficiency? Motivation: Balancing global model coherence with
localized beam adaptations requires multi-tier aggregation.

o Sub-RQ4.3: What are the trade-offs between beam alignment accuracy and
federated convergence speed? Motivation: Faster beam alignment may reduce
per-round latency but risk suboptimal updates, requiring systematic evaluation.

1.3 Technical Contributions

This thesis introduces four integrated frameworks that collectively address the chal-
lenges of VFL through complementary technical approaches. While each framework
targets specific aspects of federated learning in vehicular networks, they share com-
mon design principles of context-awareness, adaptive optimization, and layered coor-
dination. Table 1.1 summarizes their key characteristics, while the following subsec-
tions elaborate on their synergies and distinctions.



1.3. Technical Contributions 5

TABLE 1.1: Comparison of Technical Contributions

Attribute DOTFL DrivePFL FLIPS eDAFL
Primary Focus Robust aggregation Communication efficiency Explainable compression Beam alignment
Key Technique Optimal transport clustering Kalman Filter Prediction SHAP-guided pruning Layer-wise clustering
Data Handling non-IID distribution alignment Mobility-aware partial updates Context-aware feature preservation Multi-sensor fusion
Bandwidth Reduction 18% 10% 48% 22%

Key Innovation Privacy-preserving clustering Contact window prediction Safety-critical layer retention Dynamic beam selection

1.3.1 Contribution Overview

e DOTFL (Chapter 3) resolves RQ1 via neural similarity metrics (NSIM) and
optimal transport-based clustering. The framework ensures robust aggrega-
tion in non-IID scenarios while detecting and rejecting 94% of adversarial up-
dates through decentralized model comparisons, maintaining privacy without
raw data access. DOTFL Focuses on robust aggregation through neural sim-
ilarity metrics and optimal transport theory. Uniquely addresses adversarial
resilience and non-IID data alignment via Wasserstein distance-based cluster-
ing.

e DrivePFL (Chapter 4) answers RQ2 by integrating Kalman Filter-predicted
contact windows with layer-wise transmission. The framework reduces band-
width consumption by 10% through partial model updates while achieving sub-
200ms inference latency under vehicular mobility patterns. DrivePFL Opti-
mizes communication efficiency through mobility-aware layer transmission. In-
troduces Kalman Filter-based contact prediction and layer importance ranking
for bandwidth reduction.

e FLIPS (Chapter 5) addresses RQ3 through SHAP-guided adaptive pruning
and context-aware aggregation. By prioritizing safety-critical layers, the frame-
work compresses transmissions by 48% while preserving 91% accuracy on non-I11D
CIFAR-100 data. FLIPS Integrates explainability into compression through
SHAP-guided layer pruning. Combines feature importance scoring with context-
aware client selection.

e eDAFL (Chapter 6) tackles RQ4 via dynamic layer clustering for mmWave
beam alignment. The hierarchical aggregation strategy reduces sector search
latency by 84% compared to exhaustive protocols, demonstrating scalability in
high-density vehicular networks. eDAFL Specializes in mmWave beam align-
ment via dynamic layer clustering. Reduces sector search latency through hier-
archical model synchronization.

1.3.2 Inter-Framework Relationships

All the proposed contributions share some crucial aspects in their design and imple-
mentations. Firstly, DOTFL’s model clustering provides a base to FLIPS’ mechanism
for weights aggregation, both with similar approaches to clustering, while DrivePFL’s
mobility prediction can also be seen in eDAFL’s beam selection process.
Furthermore, All frameworks incorporate mechanisms to reduce common issues of
FL, such as mitigating non-1ID data impact in DOTFL and FLIPS, and the issue of
client dropout and stragglers, as seen in DrivePFL /eDAFL via link quality thresholds.
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1.3.3 Differentiating Factors

Three axes differentiate the frameworks:

e Temporal Granularity: DrivePFL/eDAFL operate at millisecond-level timescales
for mobility/beam coordination, while DOTFL/FLIPS use multi-second inter-
vals for clustering/pruning decisions.

e Privacy-Utility Balance: DOTFL and FLIPS prioritize data privacy through
model-level comparisons, whereas DrivePFL and eDAFL optimize for channel
efficiency with minimal metadata exposure.

e Resource Adaptation: FLIPS and eDAFL employ dynamic layer adjust-
ments based on network conditions, while DOTFL and DrivePFL use fixed
clustering/transmission policies per communication round.

1.4 Chapter Summary

Modern vehicular networks face critical challenges in supporting real-time appli-
cations such as traffic prediction and collision avoidance, exacerbated by dynamic
topologies, heterogeneous data distributions, and adversarial threats. Traditional
federated learning (FL) approaches, designed for static environments, struggle un-
der these conditions due to rigid client selection, communication bottlenecks, and
one-size-fits-all compression. This thesis addresses these limitations through four
integrated frameworks that advance distributed learning theory by balancing com-
munication efficiency, adversarial robustness, and model interpretability in vehicular
systems.

The first contribution, DOTFL (Chapter 3), introduces neural similarity met-
rics and optimal transport-based clustering to handle non-IID data and detect ma-
licious updates. It achieves 94% adversarial update rejection while improving ac-
curacy by 22% over FedAvg. DrivePFL (Chapter 4) optimizes bandwidth usage
through Kalman Filter-predicted contact windows and layer-wise transmissions, re-
ducing communication overhead by 10% without compromising inference latency.
FLIPS (Chapter 5) integrates SHAP-guided adaptive pruning and context-aware ag-
gregation, compressing models by 48% while preserving safety-critical features. Fi-
nally, eDAFL (Chapter 6) accelerates mmWave beam alignment via dynamic layer
clustering, achieving 84% faster sector search than exhaustive protocols.

These frameworks share a foundation in context-aware adaptation but differ in
temporal granularity, privacy-utility trade-offs, and resource optimization strategies.
DOTFL and FLIPS prioritize model integrity through privacy-preserving clustering
and explainability, while DrivePFL and eDAFL focus on mobility-aware communi-
cation efficiency. Collectively, they formalize novel trade-offs between robustness,
efficiency, and interpretability in distributed vehicular learning.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Section 2, we provide a
comprehensive review of related work in Federated Learning (FL) within vehicular
networks, focusing on key topics such as device selection, communication, non-II1D
data challenges, and security. Section 3 introduces the concept of robust aggregation,
with a detailed description of the Neural-based Federated User SIMilarity (NSIM) es-
timator and the DOTFL framework. Section 4 focuses on communication efficiency,
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presenting methods for optimizing bandwidth usage and reducing latency in FL ap-
plications. In Section 5, we describe the system model and algorithmic design of
DrivePFL, a Partial Federated Learning algorithm for vehicular networks, including
experimental results and performance evaluation. Section 6 introduces the FLIPS
framework, addressing model pruning, client selection, and explainability-driven ag-
gregation. Finally, Section 7 concludes the thesis and discusses potential future work
in the field.






Chapter 2

Federated Learning in Vehicular
Networks

2.1 Background

FL has emerged as a promising paradigm for training machine learning models across
distributed vehicular networks while preserving data privacy and reducing communi-
cation overhead. In VANET, vehicles generate vast amounts of heterogeneous data
from onboard sensors, which can enhance collaborative intelligence for applications
like traffic prediction, autonomous driving, and edge caching. However, the dynamic
nature of vehicular environments introduces unique challenges: transient connectivity,
high mobility, resource constraints, non-II1D data distributions, and security vulnera-
bilities. These factors necessitate specialized FL frameworks that balance communi-
cation efficiency, model robustness, and scalability.

Unlike traditional centralized training, where data is aggregated in a single loca-
tion, FL ensures that data remains decentralized, mitigating privacy risks and regu-
latory constraints [9]. This approach is especially relevant in scenarios where data is
sensitive, heterogeneous, and generated across distributed edge devices. Such is the
case of VANETSs and ITS, where intelligent vehicles continuously collect and process
vast amounts of high-dimensional data generated by sensors such as Light Detection
and Ranging (LiDAR), cameras, and Global Positioning System (GPS) [19]. Central-
izing such data for training is not only impractical due to bandwidth limitations, but
also raises significant privacy risks, as the handling of such data must comply with
strict data protection regulations, such as the GDPR and the California Consumer
Privacy Act (CCPA) [5].

FL operates through coordinated rounds where clients locally train models on
private data and share updates with a central aggregator. Key components include
client selection strategies prioritizing devices with stable connectivity and sufficient
compute resources [11], local training via Stochastic Gradient Descent (SGD) with
configurable epochs (3-10 typically) and batch sizes to balance convergence and re-
source constraints [47], and aggregation mechanisms like FedAvg or Federated Prox-
imal (FedProx) that weight updates based on data quantity or model similarity [51].
Privacy preservation in FL leverages differential privacy through gradient noise injec-
tion [17]. These mechanisms collectively address the dual challenges of maintaining
model performance with non-IID data distributions while minimizing communication
overhead in resource-constrained networks.

VFL extends FL principles to the domain of vehicular networks, enabling vehicles
to collaboratively improve machine learning models while preserving data locality
[52]. This capability is critical in ITS, where vehicles must make real-time deci-
sions based on learned patterns from diverse environments. However, VFL differs
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from conventional FL in several fundamental ways. VANETSs exhibit extreme mobil-
ity, causing frequent topology changes that disrupt stable communication [95]. The
computational resources available to vehicles are heterogeneous, ranging from high-
performance embedded GPUs in modern autonomous cars to resource-constrained
OBUs in older models [97]. Additionally, data distributions across vehicles are inher-
ently non-IID, as different vehicles experience diverse road conditions, environmental
contexts, and traffic densities [17].

VFL may present several technical challenges regarding distributed machine learn-
ing, wireless communication, and vehicular networking. First, efficient communica-
tion strategies are essential, as transmitting model updates over bandwidth-limited
vehicular networks incurs high latency and can degrade real-time performance [51].
Second, the non-IID nature of vehicular data leads to client drift, where locally trained
models diverge from the global objective, impairing overall model convergence [52].
Third, vehicular networks can be the targets of malicious actors, leading to adversarial
threats, including model poisoning attacks from malicious vehicles seeking to corrupt
the training process [95]. Finally, the integration of explainability into FL is impera-
tive in safety-critical applications such as autonomous driving, where interpretability
of model predictions is as crucial as accuracy [19].

Vehicular networks introduce unique constraints that necessitate a departure
from standard FL methodologies. Unlike static edge computing environments, where
clients remain persistently connected to a central server, vehicular networks are char-
acterized by intermittent connectivity [33]. Vehicles moving at speeds exceeding 50
km/h in urban areas frequently enter and exit base station coverage, resulting in
ephemeral communication windows that can be as short as a few seconds [58]. These
rapid topology changes make synchronous FL strategies impractical, as waiting for
all clients to complete their local updates may lead to excessive delays. Moreover, ve-
hicular nodes are highly heterogeneous in terms of hardware capabilities. While some
vehicles are equipped with dedicated Artificial Intelligence (AI) accelerators, others
rely on low-power Central Processing Units (CPUs), leading to disparities in training
efficiency [97]. Addressing these heterogeneity issues requires adaptive client selection
mechanisms that consider both computational capacity and mobility patterns.

The challenges posed by non-IID data further complicate VFL deployment. In
traditional FL, client data is often assumed to be independently and identically dis-
tributed, which simplifies global aggregation [17]. However, in vehicular environ-
ments, sensor data’s spatial and temporal variations create significant statistical het-
erogeneity. A vehicle operating in an urban setting may frequently encounter dense
traffic, pedestrian crossings, and complex road intersections. At the same time, an-
other in a rural area may primarily experience open highways with sparse traffic.
These discrepancies lead to model divergence, as updates from different clients con-
tribute inconsistently to the global model [51]. Existing FL aggregation techniques,
such as FedAvg, fail to account for this variability, resulting in suboptimal model
performance.

Security in VFL is another critical concern due to vehicular networks’ open and
decentralized nature. Unlike traditional FL settings where clients are typically con-
trolled by a single entity (e.g., a company managing edge devices), VFL operates in an
environment where participants belong to different organizations, have varying levels
of trust, and may even act maliciously [95]. Adversaries can exploit this openness
by injecting poisoned model updates, attempting to manipulate the global model to-
wards incorrect predictions. Conventional defenses such as Byzantine-robust aggrega-
tion methods mitigate some attacks but often struggle in high-mobility environments
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where client participation is transient. Therefore, effective anomaly detection and
filtering techniques are required to maintain model integrity [33].

Beyond efficiency and security, explainability is a crucial yet often overlooked as-
pect of FL in vehicular applications. In scenarios where machine learning models
influence safety-critical decisions, such as autonomous driving or collision avoidance,
understanding the reasoning behind model predictions is imperative [19]. However,
FL inherently complicates explainability, as model updates occur in a distributed
manner with limited visibility into the training process of individual clients. Tra-
ditional explainability techniques, such as feature importance scoring and attention
mechanisms, must be adapted to federated settings where data privacy constraints
prevent direct inspection of raw inputs [52]. Integrating explainability into FL im-
proves trust in model decisions and aids in debugging and refining learning algorithms.

Table 2.1 details the main differences between traditional FL. and VFL, highlight-
ing the unique challenges and requirements of vehicular environments. The differences
span mobility patterns, resource constraints, data characteristics, security considera-
tions, methodological approaches, and other key aspects.

2.2 Foundations of Federated Learning

The work by Koneény et al. [38] established foundational principles for FL, intro-
ducing FedAvg as a communication-efficient protocol for distributed model training.
Their framework addressed two critical challenges: 1) reducing upstream/downstream
communication costs through selective parameter synchronization, and 2) preserving
data privacy by avoiding raw data transmission. FedAvg operates by aggregating
locally computed model updates using weighted averaging based on client dataset
sizes, achieving up to 10x communication reduction compared to centralized SGD.
However, the authors’ assumption that IID data distribution across clients limits ap-
plicability to vehicular networks, where sensor data is inherently non-IID due to geo-
graphic sparsity and mobility patterns. For instance, vehicles in urban versus highway
environments exhibit fundamentally different driving patterns, causing model diver-
gence that FedAvg cannot resolve. Furthermore, the proposed encryption methods
for secure aggregation relied on simplistic additive homomorphic schemes vulnera-
ble to collusion attacks. While FedAvg remains a benchmark, its static aggregation
weights and lack of dynamic client selection make it unsuitable for vehicular sce-
narios with rapidly changing network topologies. Empirical studies in later works
showed FedAvg’s accuracy degrades by 22-37% under vehicular non-IID conditions,
highlighting the need for adaptive aggregation mechanisms.

Karimi et al. [35] advanced FL optimization through Fed-LAMB, a layer-wise
adaptive momentum algorithm designed to mitigate client drift in non-IID settings.
Unlike global adaptive methods like Adam, Fed-LAMB applies separate learning rates
to each neural network layer based on gradient variance, theoretically aligning local
updates across heterogeneous clients. The authors demonstrated 18% faster conver-
gence than FedAvg on Canadian Institute for Advanced Research - 100 (CIFAR-100)
under label skew non-IID conditions. A key innovation was dimension-wise gradient
normalization, which reduced weight divergence by 40% compared to vanilla FedProx.
However, Fed-LAMB’s computational overhead makes it impractical for vehicular de-
ployment: per-layer variance calculations increased training time by 30% on Residual
Network (ResNet)-50 models, while the 2.4x memory footprint for layer-specific
momentums exceeded typical vehicle GPU capacities (e.g., NVIDIA Jetson AGX
Xavier’s 32Gigabyte (GB) limit). Additionally, the method assumed uniform layer
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importance, ignoring the empirical observation that shallow layers in Convolutional
Neural Networks (CNNs) exhibit higher gradient variance in vehicular vision tasks.
While Fed-LAMB represents a theoretical advancement in adaptive FL, its resource
demands conflict with the latency and energy constraints of vehicular edge computing,
where models must train within 100ms inference windows for real-time navigation.

Elgabli et al. [20] proposed an energy-efficient FL framework combining meta-
learning with Projected Stochastic Gradient Ascent (P-SGA) to optimize both model
accuracy and device battery life. Their key insight was reformulating FL as a bi-level
optimization problem, where global meta-updates guide local training trajectories to
minimize energy consumption. Using a robotic arm dataset, they achieved 87% faster
convergence than Model-Agnostic Meta-Learning (MAML) while reducing energy us-
age by 43% through adaptive gradient projection. The projection step constrained
local updates to a low-energy subspace identified via Principal Component Analy-
sis (PCA), effectively eliminating 72% of redundant computations in dense neural
layers. However, the framework’s neglect of latency constraints renders it unsuitable
for vehicular safety applications: the meta-update cycle required 450ms per round on
average, exceeding the 200ms Ultra-Reliable Low-Latency Communications (URLLC)
threshold for collision avoidance systems. Furthermore, the PCA subspace estimation
assumed static data distributions, failing to adapt to sudden environmental changes
(e.g., weather-induced sensor noise variations). In highway scenarios with 60 ve-
hicles, their method caused 12% more false braking alerts than real-time baselines
due to delayed model updates. While innovative in energy optimization, the ap-
proach prioritizes efficiency over timeliness — a critical trade-off that limits viability
in latency-sensitive vehicular networks.

2.3 Communication Efficiency and Bandwidth Optimiza-
tion in FL

Chen et al. [10] pioneered communication-efficient FL through a two-stage framework
combining probabilistic device selection and non-uniform quantization. Their device
selection algorithm prioritized clients with high local gradient diversity using a sub-
modular optimization objective, reducing participant count by 73% per round while
maintaining 98% model quality. Adaptive 4-bit logarithmic quantization further com-
pressed updates by exploiting weight distribution skewness, achieving an 87% reduc-
tion in per-client transmission size (from 12.3 Megabyte (MB) to 1.6 MB for ResNet-
50). The authors demonstrated 3.6% accuracy gains over FedAvg on CIFAR-100
non-IID splits, attributing improvements to reduced update collision in over-the-air
computation. However, the centralized aggregation architecture proves incompatible
with vehicular networks: the server-side gradient reconstruction required full client
participation matrices (O(N?) storage for N vehicles), becoming infeasible beyond
50 nodes. In highway scenarios with 100 vehicles, their method incurred 650ms ag-
gregation latency due to sequential parameter alignment, exceeding the 200ms 5%
Generation of Networks (5G) URLLC threshold for platooning control. Furthermore,
the static quantization bins failed to adapt to abrupt gradient distribution shifts
caused by sensor noise variations, increasing weight divergence by 19% in rainy con-
ditions. While innovative in balancing selection and compression, the framework’s
centralized bottlenecks and environmental sensitivity limit its viability for large-scale
vehicular FL.

Sattler et al. [87] introduced Sparse Ternary Compression (STC), a three-stage
protocol achieving 103x communication reduction via top-1% gradient sparsification,
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ternarization (-1,0,+1), and Golomb-encoded indexing. For CNN models like Mo-
bileNetV2, STC maintained 99% of FedAvg’s accuracy on IID ImageNet while reduc-
ing per-round communication from 23.4 MB to 23.4 Kilobyte (KB). The ternary pro-
jection minimized update entropy through dynamic thresholding, preserving the di-
rectional fidelity of critical gradients. However, STC’s performance degraded severely
in vehicular Long Short-Term Memory (LSTM) applications. On the Kéln/Cologne
mobility dataset, ternarization discarded 89% of temporal dependency signals in
LSTM hidden states, causing 12% higher trajectory prediction errors compared to
8-bit quantization. The authors’ fixed sparsity threshold (1%) also proved subopti-
mal for vehicular vision tasks—in object detection benchmarks, critical small-object
gradients (e.g., pedestrians at 50m+ range) fell below the cutoff 63% of the time,
increasing false negatives by 14%. Golomb encoding’s variable-length codewords also
introduced non-deterministic transmission times (120-450ms per update), violating
the 200ms deterministic latency requirements for autonomous braking systems. While
STC remains a landmark in FL. compression, its one-size-fits-all thresholds and en-
tropy coding undermine reliability in safety-critical vehicular contexts.

Xing et al. [93] decentralized FL over Device-to-Device (D2D) vehicular networks
using analog over-the-air computing, where simultaneous model transmissions achieve
implicit gradient aggregation via waveform superposition. Their ” AirFed” protocol
exploited the broadcast nature of wireless channels, reducing per-round communica-
tion by 92% compared to digital Time Division Multiple Access (TDMA) schemes.
For a 100-vehicle network, AirFed achieved 81% faster convergence than FedAvg by
leveraging spatial multiplexing gains. However, the assumption of perfect Channel
State Information (CSI) led to catastrophic failures under realistic vehicular condi-
tions: in urban canyon simulations with 15Decibel (DB) Nakagami-m fading, chan-
nel estimation errors caused 25% additive noise in aggregated gradients, increas-
ing misclassification rates by 18% on traffic sign recognition tasks. The framework
also ignored Doppler shifts (>1.2Kilohertz (KHZ) at 60Gigahertz (GHz) mmWave
bands), causing destructive interference that corrupted 34% of aggregation rounds
at highway speeds. Furthermore, the analog scheme lacked cryptographic protec-
tion—eavesdroppers could recover 41% of local model weights via matched filtering
attacks during transmission. At the same time, AirFed advanced physics-layer FL
integration, its sensitivity to mobility-induced channel variations, and security vul-
nerabilities render it impractical for production vehicular systems.

Lee et al. [46] proposed LA-FedGSS, a layer-wise adaptive aggregation frame-
work that dynamically prunes less significant model layers based on gradient sensi-
tivity scores. By computing layer importance via Hessian trace approximations, their
method achieved a 29% communication reduction for Vision Transformer while main-
taining 98.7% of original accuracy on ImageNet. The adaptive sparsity thresholds
(0-95% per layer) prioritized transmission of critical early CNN filters and final clas-
sifier weights. However, LA-FedGSS’s global synchronization requirements created
insurmountable barriers for vehicular deployment: the distributed Hessian estimation
required 15 rounds of all-to-all communication for a 50-vehicle network—exceeding
typical 5G data plans. In mobility scenarios, transient disconnections during syn-
chronization caused 22% vehicle exclusion per round, biasing models toward static
roadside units. The fixed importance scoring also failed to adapt to dynamic environ-
ments—in sudden fog conditions, LA-FedGSS under-prioritized mid-level CNN layers
essential for low-visibility object detection, increasing pedestrian false negatives by
27%. While advancing adaptive compression, the method’s synchronization overhead
and environmental rigidity limit its applicability to real-world vehicular FL.



2.4. Non-IID Data Handling and Distribution Alignment in FL 15

2.4 Non-IID Data Handling and Distribution Alignment
in FL

Zhao et al. [100] tackled the challenge of non-IID data by showing that it can degrade
FL accuracy by as much as 55%, a significant loss in performance that directly impacts
the practical deployment of FL in heterogeneous environments like vehicular networks.
They proposed a solution by introducing a global data subset that all clients would
share in order to align data distributions and mitigate the divergence caused by local
data skew. While their approach effectively improves model accuracy, it presents
a significant drawback regarding privacy. The inclusion of a globally shared data
pool, even if minimal (5% of the data), introduces vulnerabilities to privacy attacks,
such as membership inference attacks. This issue arises because malicious parties
could infer whether specific data points were part of the shared pool, undermining
the privacy guarantees that FL aims to provide. Furthermore, the authors did not
address how to mitigate these privacy concerns when sharing such subsets, making it
challenging to apply their solution to privacy-sensitive applications like autonomous
driving or health data processing, where data confidentiality is paramount. While
the method effectively tackles data heterogeneity, it compromises one of FL’s key
benefits—privacy-preserving decentralized learning.

Briggs et al. [7] proposed a solution to the non-IID data problem by employ-
ing hierarchical clustering to group clients based on the similarity of their model
updates. This method led to an impressive 87% reduction in convergence time by
isolating clients with similar data distributions, allowing them to train more efficiently
on specialized models. However, the hierarchical clustering method used by Briggs
and colleagues has several limitations. First, their approach assumes that client data
distributions are relatively stable and that clusters remain consistent throughout the
training process. However, In real-world vehicular networks, data distributions are
likely to shift over time due to mobility, traffic patterns, and environmental changes.
These temporal shifts in data distributions can make static clustering ineffective,
as the initial clusters may no longer be relevant or optimal for the updated data
distributions. As a result, the clustering approach could lead to suboptimal model
performance when the clusters no longer represent the underlying data well. Addi-
tionally, the hierarchical clustering approach does not consider the dynamic nature of
the vehicle networks, where vehicles may frequently enter or leave the network, fur-
ther complicating the clustering process. This limitation suggests that more adaptive
clustering methods are needed to account for such fluctuations in real-time vehicular
environments.

Ghosh et al. [26] addressed the problem of non-IID data in FL by deriving
information-theoretic bounds for optimal cluster sizes, which is an important theoreti-
cal contribution to the field. Their work provides a framework for determining the best
way to group clients for efficient federated training. They claim to enhance the over-
all performance and convergence rates of federated models by optimizing the cluster
sizes. However, the key limitation of their approach lies in its reliance on centralized
coordination, which contradicts one of the core principles of FL—decentralization.
In decentralized networks like vehicular environments, where clients (vehicles) are
mobile, and data is distributed across various locations, centralizing coordination can
introduce significant challenges related to scalability and reliability. Centralized co-
ordination may lead to bottlenecks in data aggregation, resulting in latency issues
and increased communication overhead, which is especially problematic in the con-
text of vehicular networks with high mobility and real-time processing requirements.
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Furthermore, their method assumes that the optimal cluster sizes can be determined
with perfect information, which is rarely available in dynamic environments. This
makes their framework less practical for large-scale, decentralized FL applications,
where the resources for centralized coordination may be limited or nonexistent.

Li et al. [48] introduced Model-Contrastive Learning (MOON), a novel approach
to handling non-IID data by aligning model representations via similarity metrics.
Their method showed a 20% improvement in accuracy on non-IID image data, which
is a substantial improvement over traditional federated learning approaches. MOON
works by contrastively learning representations that capture the similarities between
models trained on heterogeneous local datasets, thus improving the global model’s
ability to generalize across clients with different data distributions. However, a signif-
icant drawback of their approach is the increase in memory usage due to the storage
requirements for contrastive samples. Their method requires storing and managing
a large number of contrastive samples, which increases memory usage by 1.8 times
compared to conventional FL. methods. This added memory overhead can be criti-
cal in resource-constrained environments like vehicular networks, where vehicles are
typically equipped with limited storage and computational resources. Additionally,
the approach does not address the computational burden of the contrastive learning
process, which may further increase latency and reduce the efficiency of real-time
model updates. Therefore, while MOON shows promise in improving accuracy, its
practical applicability in resource-constrained settings, such as autonomous driving,
is limited by its high memory and computational demands.

2.5 Privacy Preservation and Secure Aggregation for FL

Hongbin and Zhi [29] proposed a blockchain-based aggregation model for the Industrial
Internet of Things (IIoT) that utilizes Practical Byzantine Fault Tolerance (PBFT)
to ensure secure aggregation of data. Their method aimed to enhance the efficiency
of FL by using PBFT to achieve 52.75% faster consensus compared to the tradi-
tional FedAvg approach. While this is a notable improvement in consensus speed,
their approach presents several drawbacks, mainly when applied to real-time vehicu-
lar networks. The primary limitation of their system is the introduction of a 300ms
latency per transaction due to the blockchain layer. This delay becomes a significant
issue in vehicular environments, where low latency is crucial for safety-critical applica-
tions like autonomous driving. The latency introduced by the blockchain could cause
critical delays in model updates, potentially jeopardizing the performance and safety
of real-time vehicular systems, where decisions need to be made within milliseconds.
Additionally, while blockchain can offer strong security guarantees, it requires sub-
stantial computational resources to maintain the distributed ledger and ensure fault
tolerance, which may further exacerbate the latency issue. Thus, while blockchain can
theoretically improve security and fault tolerance, its high transaction latency makes
it less suitable for real-time vehicular applications, where speed is of the essence.
Liu et al. [53] integrated blockchain with FL for intrusion detection in vehicular
networks. Their approach combined blockchain’s decentralized ledger system with
FL to ensure privacy while detecting cyber threats in vehicular networks. However,
the authors utilized energy-intensive Proof-of-Work (PoW) protocols to secure the
blockchain, which brings significant drawbacks, particularly in energy-constrained
environments like vehicular networks. The reliance on PoW increases the computa-
tional cost and results in a 40% increase in CO9 emissions compared to traditional
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centralized solutions. This is a significant concern, as vehicles are typically resource-
constrained, with limited power and computational capacity. The additional energy
consumption could lead to reduced battery life for electric vehicles, which is already
a critical concern for modern autonomous vehicles. Moreover, the high energy re-
quirements for PoW make the solution unsustainable in the long term, significantly
as the number of vehicles and the frequency of updates increase. This suggests that
PoW-based systems are not ideal for large-scale vehicular networks, and more energy-
efficient consensus mechanisms, such as proof-of-stake or more lightweight blockchain
protocols, would be necessary to address the growing environmental and resource
constraints.

Kong et al. [39] proposed the use of Paillier homomorphic encryption for secure
aggregation in FL, a technique that enables secure data processing without expos-
ing the raw data. While Paillier encryption is a strong cryptographic method that
ensures privacy during data aggregation, it comes with a notable trade-off. The
authors reported a 35% communication overhead due to the ciphertext expansion
introduced by the encryption process. This overhead is problematic, particularly in
vehicular networks with limited bandwidth, and communication efficiency is critical.
Increased communication overhead reduces the overall efficiency of the FL system, re-
quiring more resources for data transmission and increasing latency in model updates.
Furthermore, the Paillier encryption approach introduces additional computational
complexity, as the encryption and decryption processes are computationally expen-
sive. This is especially problematic for devices with limited processing power, such
as edge devices in vehicular networks. Thus, while Paillier homomorphic encryption
provides robust privacy guarantees, its communication, and computational overheads
make it impractical for real-time vehicular FL applications where speed and efficiency
are paramount.

Corcuera Bércena et al. [14] designed FL-as-a-Service for 6" Generation of Net-
works (6G) networks with a focus on differential privacy, aiming to provide privacy-
preserving model training while still enabling useful model outputs. They applied
differential privacy to FL to ensure the training data remained secure, even in the
face of adversarial queries. However, their approach is limited by the use of large
privacy budgets (specifically, privacy budgets greater than 5.0), which significantly
reduces model utility. The greater the privacy budget, the more noise is introduced
into the model, thereby reducing the accuracy and effectiveness of the model’s predic-
tions. In vehicular networks, where high accuracy and low-latency decision-making
are crucial, such high privacy budgets may be unacceptable because they result in
diminished model performance. Furthermore, the paper does not fully explore the im-
pact of these high privacy budgets on the system’s scalability. In large-scale networks
with many vehicles, the trade-off between privacy and model utility becomes even
more pronounced, making it difficult to find an optimal balance. Therefore, while
differential privacy offers strong privacy guarantees, the model’s reduced utility due
to high privacy budgets could severely limit its practicality in real-world applications,
particularly in safety-critical environments like autonomous driving.

2.6 Data Similarity in the Context of FL

Alvarez-Melis and Fusi [3] explored the concept of dataset similarity through OT the-
ory, offering a model-agnostic framework to quantify the distance between datasets.
Their approach provides a powerful geometric interpretation of dataset similarity, en-
abling comparisons even between datasets with different structures or distributions.
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This method does not rely on any specific model architecture, making it applicable
across various machine learning paradigms. However, a significant limitation of their
approach is that it requires access to the entire dataset, which contradicts one of the
core principles of FL—data locality. In FL, data is kept on local devices to ensure
privacy, and models are trained in a decentralized manner. Alvarez-Melis and Fusi’s
method, which necessitates dataset aggregation, would violate this privacy guaran-
tee, as it requires sharing the entire dataset for effective comparison. This makes
their approach unsuitable for decentralized systems like FL, where data must remain
local to preserve privacy and confidentiality. While the theoretical advantages of OT
in dataset similarity are evident, its application in privacy-sensitive, decentralized
settings is highly constrained.

Farnia et al. [23] extended the concept of OT to personalized FL by developing
multi-marginal OT, a more advanced method aimed at handling the heterogeneity of
data across clients in FL scenarios. Their approach allows for a more nuanced mea-
surement of dataset similarity by considering multiple distributions simultaneously,
which is particularly useful in personalized settings where data distributions differ
significantly across clients. However, the computational complexity of their method
is a major limitation. The algorithm scales with O(N?) for N clients, meaning that the
computational burden grows quadratically as the number of clients increases. This
presents a severe scalability issue, particularly in large-scale FL networks, such as
those used in vehicular networks, where the number of clients can easily exceed 100.
The high computational requirements of multi-marginal OT render it impractical for
real-time applications in large, distributed systems, where efficiency and scalability
are paramount. Therefore, while Farnia et al.’s method improves the personalization
of FL, it faces significant challenges when applied to large-scale, real-world environ-
ments.

Kornblith et al. [42] proposed CKA to measure neural network similarity. CKA is
a framework that allows for comparisons of neural network representations across dif-
ferent architectures and models, providing a way to quantify the similarity of learned
features in a way that is agnostic to the specific network architecture. This makes it
highly useful for evaluating and aligning models in a model-agnostic manner. How-
ever, a key drawback of CKA is its computational complexity. The method scales
with O(d?) for d-dimensional features, which becomes highly expensive for large mod-
els such as Transformer with many features. This computational burden makes CKA
impractical for real-world applications, mainly when dealing with large-scale models
standard in modern machine learning tasks, including natural language processing
and computer vision. In settings where quick and efficient comparisons of neural
network representations are required, such as in FL environments, the high compu-
tational cost of CKA becomes a bottleneck, limiting its practical use.

Zhang et al. [99] extended the concept of kernel independence measures to struc-
tured data, offering a new way to measure the similarity between data distributions
in more complex, structured environments. Their method aims to extend the classi-
cal kernel independence criterion to handle the complexities of structured data, such
as time-series data or data with dependencies between features. However, their ap-
proach lacks the necessary mechanisms to handle missing data, a common challenge
in real-world applications like vehicular networks, where sensor data streams can be
incomplete or corrupted due to communication errors or sensor failures. This limi-
tation makes their method unsuitable for vehicular FL applications, where missing
or incomplete sensor data is frequent. In such environments, the inability to han-
dle missing data can significantly impair the effectiveness of the similarity measures,
leading to inaccurate conclusions and suboptimal model updates. This highlights
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the need for methods to handle the inherent challenges of missing data in real-time,
dynamic environments.

2.7 Model Compression and Size Reduction Techniques
for FL

Gale et al. [24] explored the use of magnitude pruning to achieve model sparsity
to reduce communication and computation costs in FL. Their work demonstrated
that pruning individual model weights based on their magnitude could achieve up to
90% sparsity without losing accuracy on IID data. This significantly reduces model
size, reducing the communication load and making it a promising technique for real-
time applications. However, the authors observed a 15% performance drop when
applying magnitude pruning to non-IID vehicular data. This highlights a critical
limitation of their method: while it works well in controlled, homogeneous data set-
tings (IID data), it struggles to maintain performance in more realistic and diverse
scenarios like vehicular networks, where data is inherently non-IID. In non-IID en-
vironments, where data distributions differ across clients (e.g., vehicles in different
geographic regions or with different sensor setups), magnitude pruning can overlook
important features, causing significant accuracy degradation. This trade-off between
model compression and performance loss underscores the need for more adaptive and
context-aware pruning techniques, especially in dynamic, decentralized environments
like FL.

Lee et al. [46] proposed a layer-wise adaptive aggregation approach for model
compression, which dynamically adjusts the sparsity level of model layers based on
their importance. This method reduces communication by 29% through importance-
aware pruning, where less critical layers of the model are pruned more aggressively.
The adaptive pruning mechanism allows for a more efficient reduction in model size
compared to traditional pruning methods. However, their approach also has a sig-
nificant limitation: the fixed threshold strategy used to determine the pruning rate
does not account for rapidly changing vehicular channel conditions. In vehicular net-
works, the data characteristics and communication conditions can change quickly due
to mobility, environmental changes, or varying network congestion. As a result, the
static thresholds for pruning might not always capture the true importance of spe-
cific model layers under fluctuating conditions. This limitation can lead to suboptimal
pruning decisions, especially when the network topology and communication channels
are unstable, resulting in lower performance in real-time vehicular applications like
autonomous driving or ITS. The need for more dynamic and context-aware pruning
strategies is evident in this work, as these techniques must be capable of adapting to
the rapidly changing conditions in vehicular environments.

Salehi et al. [83] introduced FLASH-and-Prune, a method designed to optimize
model compression for mmWave beam management in vehicular networks. The
method combines FL with iterative pruning, reducing uplink overhead by 35% by
pruning the model parameters in a way that ensures minimal communication cost
while preserving accuracy. FLASH-and-Prune uses a codebook-based beam selec-
tion technique to choose the optimal model parameters for communication, which
reduces the model’s size and the bandwidth required for transmitting it. However,
their approach fails to account for Doppler shifts in high-speed scenarios, a key fac-
tor in vehicular networks where vehicles often move at high speeds. Doppler shifts,
which cause changes in the frequency of the signals due to relative motion between
the transmitter and receiver, can significantly affect the quality of communication in
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high-speed environments. The absence of consideration for these shifts in FLASH-
and-Prune leads to potential errors in beam selection, as the model’s assumptions
about the channel conditions may no longer hold in fast-moving vehicular networks.
This oversight makes the method less effective in dynamic, real-time scenarios, where
accurate and timely communication is crucial for applications like autonomous driv-
ing and high-speed vehicular communication systems. Therefore, while effective in
reducing uplink overhead, FLASH-and-Prune would benefit from more sophisticated
mechanisms that can account for the challenges posed by mobility and fast-changing
communication environments.

2.8 Explainable Al and Trustworthy FL

Béarcena et al. [4] introduced Fed-Explainable AI (XAI), an approach to integrat-
ing XAI into FL systems to enhance the interpretability of models. Their method
aimed to improve user trust in FL by providing interpretable explanations of model
predictions. They relied on post-hoc Local Interpretable Model-Agnostic Explana-
tions (LIME), a popular technique that generates feature importance scores for model
predictions. However, using LIME has a significant drawback: it introduces an ad-
ditional 40ms inference latency. This latency increase is problematic for real-time
applications, such as autonomous driving or other safety-critical systems, where quick
decision-making is essential. The added latency from generating post-hoc explana-
tions could delay the system’s response, undermining its effectiveness in high-stakes
environments. Moreover, LIME’s reliance on local surrogate models to explain in-
dividual predictions can sometimes lead to inaccurate or inconsistent explanations,
especially in complex, high-dimensional data settings. As a result, while Fed-XAI
addresses the need for interpretability, its impact on real-time performance and the
potential for inconsistent explanations pose challenges for its deployment in dynamic
and time-sensitive FL applications.

Renda et al. [77] explored the integration of SHAP into FL systems, specifically
in the context of 6G networks. SHAP is a well-established method for providing
feature attribution by quantifying the contribution of each feature to a model’s out-
put. Renda et al.’s approach aimed to improve the trustworthiness of FL models
by explaining the model’s predictions in terms of the features that most influenced
them. However, their method resulted in a 12% loss in accuracy due to the regular-
ization induced by the explanation process. The introduction of explanation-driven
regularization, while improving interpretability, reduces the model’s ability to fit the
data, leading to a trade-off between accuracy and explainability. This is particularly
concerning in contexts such as 6G networks, where performance and accuracy are cru-
cial to ensure the reliability and efficiency of communication systems. Furthermore,
the explanation-driven regularization could introduce inconsistencies in how models
behave under different conditions, making it difficult to guarantee high performance
across diverse scenarios. This trade-off highlights the inherent challenge of balanc-
ing model explainability with performance, especially in advanced and high-demand
systems like FL in 6G networks.

Lundberg and Lee [55] proposed SHAP as a unified approach to feature attribution
for machine learning models. SHAP provides a theoretical framework for consistent
and interpretable feature importance scores agnostic to the model architecture. While
SHAP has become a popular method for interpretability, its assumptions, particularly
the assumption of feature independence, pose significant limitations. In vehicular sen-
sor data, where features are often correlated (e.g., speed and distance of vehicles),
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the assumption of feature independence can lead to misleading explanations. For
example, two correlated features are deemed equally important in isolation. In that
case, SHAP may fail to capture their true relationship, potentially resulting in incor-
rect or incomplete interpretations of model behavior. This limitation is particularly
concerning in autonomous driving applications, where understanding the interactions
between correlated features is crucial for making accurate and reliable decisions. As
a result, SHAP’s inability to account for feature dependencies can undermine the
trustworthiness of explanations, especially in complex, correlated data environments
like vehicular networks.

Rjoub et al. [78] combined XAI with federated Deep Reinforcement Learn-
ing (DRL) to improve the interpretability of autonomous driving systems. Their
approach aims to provide transparent explanations for the decisions made by rein-
forcement learning models in the context of autonomous vehicles. However, one of
the key weaknesses of their work is the lack of quantitative metrics for assessing the
fidelity of the explanations. While using XAI techniques in DRL can enhance the
transparency of model behavior, the absence of metrics to measure how accurately
the explanations reflect the actual decision-making process raises concerns about the
reliability of the explanations. Without reliable metrics, it is difficult to ensure that
the explanations are accurate and meaningful, potentially leading to false or mis-
leading conclusions about the model’s behavior. In safety-critical applications like
autonomous driving, ensuring the accuracy and reliability of explanations is crucial
to prevent misinterpretations that could impact safety and performance. This gap in
the evaluation of explanation fidelity makes it challenging to assess the effectiveness
of XAI in the context of federated DRL for autonomous vehicles.

2.9 DMobility-Aware Resource Management in FL

Hosseinalipour et al. [30] introduced multi-stage hybrid FL with D2D collaboration
to address the challenges posed by vehicular mobility. Their approach aimed to re-
duce the convergence time of FL by 2.1x through localized consensus, where clients
collaborate within local groups before aggregating their results at a central server.
This technique has the potential to significantly improve the efficiency of FL in ve-
hicular networks, where real-time communication is critical. However, their model
assumes perfect GPS synchronization across all vehicles, which fails to account for the
real-world issue of urban canyon effects. In cities, tall buildings can obstruct GPS
signals, leading to positioning errors of 15-30 meters. These errors can negatively
impact the accuracy of localization and communication in D2D networks, leading to
suboptimal collaboration between vehicles. As a result, the assumption of perfect
GPS synchronization in their work limits the method’s applicability in environments
with poor satellite visibility. While the multi-stage hybrid FL approach is promis-
ing, it requires further refinement to incorporate real-world mobility challenges, such
as GPS inaccuracies, to become truly effective in urban environments where D2D
communication is crucial.

Nishio and Yonetani [63] focused on optimizing client selection for FL in vehic-
ular networks using resource-aware scheduling. While their approach significantly
improves resource utilization, it relies on simplistic Rayleigh fading models to pre-
dict signal degradation. This assumption does not account for the complex effects
of mmWave blockage, a significant factor in high-speed vehicular environments. In
mmWave communication, obstacles like buildings, trees, or other vehicles can cause
severe signal attenuation, leading to communication disruptions and reduced model



22 Federated Learning in Vehicular Networks

performance. Their model underestimated the impact of these blockages by 40%,
which could lead to inaccurate client selection, especially in dense urban areas where
mmWave communication is highly susceptible to blockage. The reliance on simpli-
fied fading models without considering mmWave-specific challenges represents a key
limitation in their approach. To improve their scheduling mechanism, more accu-
rate models that incorporate mmWave propagation characteristics and real-world
obstruction effects are needed to ensure more reliable client selection and enhance
the performance of FL in vehicular networks.

Pervej et al. [75] proposed a Vehicular Edge Federated Learning (VEFL) frame-
work that integrates Kalman-filtered mobility prediction to handle the dynamic na-
ture of vehicular networks better. Their approach aims to predict vehicle mobility
and use these predictions to optimize the federated learning process, thus improving
communication efficiency and model convergence. However, a critical limitation of
their framework is the need for frequent 1Hertz (Hz) GPS updates, which leads to
significant battery drain, with an estimated 18% battery consumption per hour. In
autonomous vehicles or other vehicular applications, battery life is a crucial consider-
ation, and the high energy consumption of frequent GPS updates poses a significant
challenge. This issue is particularly problematic in real-time systems where battery
longevity is critical for long-duration operations. Additionally, the Kalman filter’s
reliance on frequent updates might not be suitable for all vehicles, especially in areas
with limited access to reliable GPS signals. This makes the VEFL framework less
practical for widespread use in large-scale vehicular networks, where battery efficiency
and energy consumption must be carefully managed.

Wang et al. [92] employed distributed clustering for edge computing in FL, a
method designed to optimize the resource usage of vehicular networks by grouping ve-
hicles based on their resource availability and communication capabilities. While this
approach shows promise in reducing communication overhead and improving the over-
all efficiency of model training, it lacks essential mechanisms for handling handovers
between cells, which is a critical issue in mobile environments like vehicular networks.
During cell transitions, vehicles may move from one base station’s coverage area to
another, leading to potential disruptions in the federated learning process. Wang et
al.’s model experienced up to 25% divergence in model performance during such han-
dovers, as the disruption in communication during the transition causes the vehicles
to temporarily lose sync with the global model. This highlights a significant weakness
in their method. Without mechanisms to smoothly manage handovers, the model’s
accuracy and consistency could be severely impacted, especially in high-mobility sce-
narios where handovers are frequent. To address this limitation, future work should
integrate robust handover protocols and strategies to minimize the impact of mobil-
ity on model convergence and ensure continuous, seamless communication between
vehicles during cell transitions.

2.10 Hybrid and Hierarchical FL Architectures

Elbir et al. [18] proposed the Hybrid Federated and Centralized Learning (HFCL)
architecture, which combines both centralized and decentralized elements in FL. The
alm was to capitalize on the strengths of both approaches, with centralized learning
handling global model aggregation and decentralized learning ensuring local data pri-
vacy. Their approach led to a 20% accuracy gain over pure FL, which highlights the
potential for hybrid models to improve model performance by leveraging both local
and global information. However, the method also introduces a significant trade-off:
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the 15% data centralization required for HFCL violates the GDPR’s data minimiza-
tion principle. The GDPR mandates that personal data should only be collected and
processed when necessary and that data should not be stored longer. In this context,
the hybrid architecture’s partial centralization poses privacy risks by requiring some
data to be transferred to a central server, thus potentially exposing sensitive informa-
tion. This creates a dilemma between improving model accuracy through centralized
learning and preserving user privacy in decentralized systems. The reliance on cen-
tralization limits the applicability of HFCL in privacy-sensitive applications, such
as healthcare or autonomous vehicles, where data privacy is a crucial concern. The
trade-off between model performance and privacy preservation remains a significant
challenge for hybrid FL architectures.

Taik et al. [90] developed a clustered FL architecture for multi-task learning using
Vehicle-to-Vehicle (V2V) communications. The architecture employs clustering tech-
niques to group vehicles based on task similarity, thus allowing for more efficient learn-
ing by reducing unnecessary communication between vehicles with dissimilar tasks.
This method shows potential for improving FL efficiency in vehicular networks, where
communication bandwidth is limited, and vehicles are frequently moving. However,
one of the critical limitations of this approach is that it ignores the interference from
overlapping clusters, which can degrade the model’s accuracy. In dense urban envi-
ronments, where the density of vehicles is high, overlapping communication clusters
can lead to signal interference, causing model divergence and reducing the overall
effectiveness of the FL process. This issue is particularly problematic in real-time
applications where high accuracy is critical, such as in autonomous driving or traffic
management systems. Additionally, the lack of mechanisms to address interference
in overlapping clusters makes the architecture less scalable, as the model’s perfor-
mance will degrade further with an increasing number of vehicles in the network.
To overcome this limitation, the system must incorporate interference management
techniques or adaptive clustering algorithms that can adjust to dynamic changes in
the vehicular environment. Without such improvements, the clustering approach may
struggle to maintain performance in large-scale, high-density deployments.

2.11 mmWave and Advanced Beam Management using
FL

Xue et al. [96] explored the use of federated DRL for mmWave communication sys-
tems, aiming to reduce handoff latency by 52% through Double Deep Q-Network
(DDQN)-based optimization. This approach demonstrated the potential of DRL
to optimize the selection of communication beams, enhancing the efficiency of data
transmission and reducing delays during handoff between communication cells. The
use of analog over-the-air computation in their framework allowed for simultaneous
transmission and aggregation of model updates, which is a promising solution to
reduce communication overhead in FL. However, the system faced significant chal-
lenges in the form of phase misalignment, which led to an 18% loss in Signal-to-Noise
Ratio (SNR). This signal quality loss can severely degrade communication reliability,
particularly in high-speed vehicular environments where rapid handoff and precise
beam alignment are essential. mmWave communications can be caused by vehicle
motion, environmental obstacles, and signal interference, making it difficult to main-
tain stable communication. This limitation highlights the need for more robust beam
management techniques that can account for dynamic conditions in real-time, such
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as mobility-induced misalignment and changing environmental factors, to ensure con-
sistent performance in federated learning applications over mmWave networks.

Salehi et al. [81] proposed a fusion of LIDAR and GPS data for sector predic-
tion in mmWave communication systems to optimize beam selection and improve
communication performance. Using sensor data from LiDAR and GPS, their system
aimed to more accurately predict the best communication sectors for vehicle connec-
tions, thereby reducing signal interference and improving throughput. However, a
significant issue with this approach is its high data requirements, with each vehicle
needing to send 200MB of sensor data per vehicle. This amount of data exceeds typi-
cal 5G data caps, making it impractical for large-scale deployment, especially in areas
where network bandwidth is limited or congested. The high data volume not only
strains network resources but also increases the communication overhead, which can
undermine the efficiency gains from optimized beam selection. In real-world vehicular
environments, where vehicles are constantly moving, and data needs to be processed
in real-time, the need to transmit large amounts of sensor data can significantly reduce
the system’s overall effectiveness. This issue underscores the importance of designing
lightweight data fusion techniques that can achieve high-accuracy predictions with
minimal data transmission, in line with the bandwidth limitations of modern wireless
networks.

Samarakoon et al. [84] applied FL to URLLC beam management using extreme
value theory, aiming to optimize communication reliability in vehicular networks.
Their approach focused on ensuring high reliability even in extreme events such as
signal blockages or interference. While their method is helpful in ensuring reliable
communications in adverse conditions, it assumes static vehicular topologies, which
is a significant limitation. In real-world vehicular environments, especially on high-
ways where vehicles move at high speeds (up to 100 km/h), the network topology
constantly changes as vehicles enter and exit communication ranges. This dynamic
nature of vehicular networks means that the static assumptions used in their model
are unrealistic and lead to poor performance in high-speed scenarios. The failure to
account for the mobility of vehicles results in suboptimal beam management, as the
system cannot adapt to the rapidly changing network conditions. To improve the
robustness of beam management in such environments, it is essential to incorporate
mobility-aware mechanisms that can dynamically adjust the beamforming strategy
based on vehicles’ changing locations and velocities.

2.12 Chapter Summary

The chapter systematically evaluates FL frameworks in vehicular networks, address-
ing challenges such as non-IID data, communication efficiency, privacy, and mobility.
Foundational works like FedAvg and Fed-LAMB establish baseline performance but
falter under vehicular dynamics due to static aggregation and computational over-
head. Communication-efficient methods, including STC and AirFed, reduce band-
width but introduce latency or security vulnerabilities. non-IID handling via clus-
tering (Briggs et al.) or contrastive learning (MOON) improves convergence but
struggles with scalability or memory constraints. Privacy-preserving approaches like
blockchain or homomorphic encryption trade off latency and bandwidth for security,
rendering them impractical for real-time applications.
The proposed frameworks—Distributed Optimal Transport-based Federated Learn-

ing (DOTFL), Partial Federated Learning for Driving Assistance (DrivePFL), Federated
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Learning with Importance-driven Pruning and Selection (FLIPS), and enhanced Dy-
namic Adaptive Federated Learning (eDAFL)—demonstrate targeted advancements.
DOTFL’s OT-based clustering mitigates client drift and rejects 94% of malicious
updates via neural similarity metrics. DrivePFL integrates Kalman Filter-based mo-
bility prediction, achieving 10% bandwidth reduction while maintaining sub-200ms
inference latency. FLIPS employs SHAP-guided pruning and context-aware aggre-
gation, reducing communication overhead by 48% without compromising accuracy.
eDAFL optimizes mmWave beam selection through dynamic layer-wise clustering,
reducing sector search latency by 84% compared to conventional protocols.

Table 2.2 synthesizes these frameworks against benchmarks. eDAFL excels in
communication efficiency (52.2% parameter reduction) and robustness via SHAP-
driven layer pruning and hierarchical clustering. FLIPS balances accuracy and ex-
plainability, while DOTFL ensures adversarial resilience through Wasserstein distance-
based filtering. Centralized learning, though accurate, remains infeasible due to
privacy and scalability limitations. The trade-offs highlight that adaptive mecha-
nisms—mobility prediction, dynamic pruning, and decentralized clustering—are crit-
ical for vehicular FL, where transient connectivity and heterogeneous data demand
both efficiency and robustness. These findings underscore the necessity of context-
aware, layered approaches to FL in safety-critical vehicular applications.
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Chapter 3

Optimal Transport for Robust
Federated Learning Aggregation

This chapter addresses Research Question 1 ( “How can federated aggregation maintain
model integrity in vehicular networks with non-IID data distributions and malicious
participants?”) through three interconnected contributions, each corresponding to a
sub-research question:

Sub-Research Question 1.1: Privacy-Preserving Model Clustering To re-
solve “Can neural similarity metrics enable privacy-preserving clustering of models
without raw data access?”, we propose the Neural-based Federated User SIMilarity
metric. NSIM computes layer-wise weight correlations between client models, by-
passing raw data inspection while capturing behavioral similarities (motivated by the
need to reconcile clustering efficacy with FL privacy constraints). Experimental vali-
dation on CIFAR-100 non-IID splits shows a 0.96 Pearson correlation between NSIM
scores and ground-truth dataset similarities, confirming its utility for privacy-aware
clustering.

Sub-Research Question 1.2: Client Drift Mitigation via Optimal Trans-
port Addressing “How does Optimal Transport theory mitigate client drift caused
by heterogeneous vehicular data distributions?”, we employ Wasserstein distance min-
imization to align model updates geometrically. This method accounts for spatial
discrepancies in non-IID vehicular data, unlike FedAvg’s naive averaging. Results
demonstrate a 22% accuracy improvement over FedAvg in high-heterogeneity scenar-
ios, with Wasserstein distance thresholds achieving 0.85 sensitivity to non-IID shifts.

Sub-Research Question 1.3: Adversarial Update Isolation For “What mech-
anisms effectively isolate adversarial updates while preserving benign contributions?”,
we design a hierarchical clustering mechanism that analyzes NSIM output distribu-
tions to detect anomalies. This decentralized approach achieves 94% malicious update
detection at a 30% adversary ratio, outperforming centralized detectors in scalability
tests under dynamic vehicular topologies.

The robustness of the Distributed Optimal Transport-based Federated Learning frame-
work proposed in this chapter is quantified through two key metrics:

o Wasserstein distance thresholds: 0.85 sensitivity to non-IID data shifts, ensur-
ing reliable cluster formation.

e Model rejection rates: 94% detection of poisoned updates under aggressive at-
tacks, preserving model integrity.
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Experimental validation combines simulated vehicular networks with real-world non-IID
benchmarks, demonstrating NSIM’s alignment with privacy principles and resilience
to dual heterogeneity-adversary challenges. These findings establish a foundation for
trustworthy aggregation in decentralized VFL.

Published Works: The contributions of this chapter appear in the following two
papers [69], [71].

3.1 Distributed Optimal Transport-based Federated Learn-
ing

This chapter introduces the DOTFL framework to reconcile these challenges through
three innovations:

1. A NSIM metric that compares layer weights instead of raw data for privacy-
preserving model clustering.

2. Wasserstein distance-based distribution alignment to mitigate non-IID client
drift.

3. Hierarchical filtering that isolates adversarial updates through multi-stage di-
vergence analysis.

Evaluations using vehicular mobility traces and CIFAR-100 non-1ID splits demon-
strate DOTFL’s 94% malicious update rejection rate at 30% adversary participation
while improving accuracy by 22% over FedAvg. The framework’s NSIM component
achieves 0.96 Pearson correlation with ground-truth dataset similarities, outperform-
ing traditional Canonical Correlation Analysis/CKA methods by 41% [40]. Subse-
quent sections detail the system model (Section 3.1), NSIM architecture (Section 3.2),
and experimental validation (Section 3.3) of these advancements.

First, we establish the mathematical basis for model similarity assessment. We
now demonstrate how these metrics enable secure, topology-aware federated learning
through three key innovations:

1. Optimal Transport Clustering: Utilizes Wasserstein distances between model
distributions for robust clustering of similar users

2. Mobility-Aware Aggregation: Integrates Kalman Filter-filter predicted con-
tact durations with bandwidth-aware model transfer

3. Adversarial Rejection: Implements hierarchical clustering on NSIM outputs
to isolate malicious participants

This progression from similarity measurement (Section 3.2) to a distributed learn-
ing framework creates a logical flow where fundamental metrics enable system-level
innovations. The subsequent subsections detail each component of DOTFL, demon-
strating how neural similarity analysis directly informs our solution to the challenges
of vehicular federated learning.

3.1.1 System Model

Figure 3.1 shows a VANET scenario where a set of vehicles possesses local datasets
collected from the various sensors in the vehicle, from which they can train Neural Net-
work models according to the FL optimization objective. In this context, vehicles can
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FI1GURE 3.1: DOTFL vehicular learning scenario

communicate with the fixed network infrastructure (i.e., Vehicle-to-Infrastructure)
and directly with other vehicles (i.e., Vehicle-to-Vehicle) to propagate their trained
Neural Networks (NNs). Vehicles opportunistically send trained models via V2V or
Vehicle-to-Infrastructure (V2I) when being inside the coverage areas of other vehicles
or base stations. Thus, the models can be aggregated in vehicles or edge servers
based on the quality and duration of their communication links. Figure 3.1 shows
the DOTFL modules, considering a local dataset of previously received models for
dissemination, a clustering module based on the model similarity estimation, and an
aggregation module that generates the local aggregated model for predictions. The
DOTFL modules are present in all nodes of the network (vehicles and edge servers).
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A mobility prediction module is responsible for estimating the contact time between
vehicles to assist in the transfer of models. The presence of malicious vehicular
users disseminating incorrect weights is possible in the scenario (center vehicle). In
addition, malicious vehicular users could disseminate incorrect weights, which may
decrease the accuracy of aggregated models and increase the time for convergence in
FL.

We consider a vehicular networking scenario (e.g, VANETS, connected vehicles,
autonomous vehicles, etc) with N mobile vehicles u; € {uy,...,un}, where each ve-
hicle has local dataset D; € {D1,...,Dy}. Each dataset D; contains a set of features
xyi, with k € {1,...,||D;||}, each associated with a label yj ;. The scenario also con-
tains C' base stations {ci, c2, ..., cc}, located at arbitrary positions, that can commu-
nicate with a set E = {e1, ea,...,ec} of C edge servers through the core network and
with vehicles through their communication interfaces (e.g., Dedicated Short-Range
Communications and 4" Generation of Networks/5G). In this scenario, vehicles can
communicate through direct V2V links, but we assume they cannot directly access
each other’s datasets to guarantee privacy. Each vehicle u; in the system locally
trains a model architecture A to obtain the NN model weights W; that minimize a
loss function ! on its local dataset D;, as shown in Equation (3.1). The local loss
[(W;, D;) is defined as the average loss, as the prediction error, across all predictions
for the dataset D; using the weights W;.

[1Dil

= ’ Zf Wukaykl) (31)

(W;, D) =
[1D:]]

We assume that edge servers take care of system initialization and provide every
vehicle with the NN architecture A, consisting of the NN hyperparameters and loss
function via base stations. Edge servers also provide computation support for training
by disseminating partially trained models to accelerate convergence. The goal of the
FL process is to compute the set W* = {Wi,..., Wx} of weights that minimize the
global average loss function [94] ls, formulated in Equation (3.2), over a series of model
aggregations, where the global loss I5(W*) is defined as the average of the local loss
across users with their local weights and local datasets.

1 N
L) = > (Wi, Dy) (3.2)
1=1

Furthermore, some users may be malicious regarding their contributions to the
model. The weights W; from non-malicious vehicles in N are distributed according
to a distribution P, ie., W; ~ P, for u; € N. However, the weights W; from
malicious vehicles in M are distributed according to a different distribution @), i.e.,
W; ~ @Q, for u; € M, where P # Q. Thus, the participation of such users may
compromise the convergence of the Machine Learning models as the malicious weights
may compromise prediction accuracy for non-malicious users’ datasets.

3.1.2 Algorithm Description

Let us define M; as the distance matrix generated by a trained NSIM [72] on vehicle
1, which contains the distance values between models.

Let us define the contribution history H; as a bounded-capacity FIFO queue, in
which each element is a set of NN weights, trained and stored on node ¢, called model
contribution. We now model a local instance of the FL. model for the vehicular user
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u; as a 4-tuple (A, D;, M;, H;), where D; is the i-th node’s local dataset, and A is the
global NN architecture, received from the network.

We consider that the most recent model contributions from other vehicular users
or the FL server are stored in the user’s device and fed into the NSIM module to
compute the model distance. NSIM computes the distance matrix of the vehicle user’s
contribution history based on the NN weights contained within the contributions.
After the distance matrix M; has been computed, it is fed into a Density-Based
Spatial Clustering of Applications with Noise algorithm [61], pre-configured by the
network at system startup. Each contribution H; is assigned a label ¢;, [ being the
internal cluster number of a given contribution assigned at the user device. Given
that the user’s trained contributions have a label i’, the aggregation is performed over
contributions with label 7;, such that 4; = ¢’. In this context, each vehicle computes
its FL. model by aggregating contributions in their contribution history, which are
IID with the users’ dataset.

The model weights define the user’s local updates after a round of training over
their local datasets. Based on the model’s prediction accuracy, a loss function, de-
scribed in Equation (3.1), must be computed and minimized for the FL process to
converge with a minimum accuracy value across users. The weights computed by
the vehicular user are then committed to the contributions history H; with a hash
computed from the trained weights, which can uniquely identify the computed model
at the corresponding iteration.

3.1.3 Communication and Contact Estimation

Let us define Sy; € N as the size of the model weights in bits and || H;|| € N as the
number of models exchanged from the user’s contribution history. The total amount
of data b; to transfer the whole contribution history H; from the vehicular user ¢ to
another vehicular user is given by Equation (3.3), where 7 represents the inefficiency
of the encoding (i.e.,, the difference between the actual transmission size and the
minimum size given by the entropy) [86].

bi = S| Hill (3-3)

In this context, the uplink and downlink transfers are not necessarily symmetric.
Users may have a history of unique contributions more than their counterparts in the
communication round. The compression scheme’s efficiency for transferring weights
will also impact the number of bits transmitted.

To estimate the mobility of a neighboring vehicle, we consider data collected by
the vehicle’s sensors, which includes direction and velocity data. This information is
communicated through beacons, enabling a vehicle to monitor its environment. We
use a Kalman Filter (KF) on board the vehicle to estimate the future positions of
its neighboring vehicles. This information is important to decide if a vehicle will (or
not) exchange models with a specific neighbor. The KF is integral to the contact
estimation process. This article assumes KF' as a mobility prediction mechanism, but
other approaches could be used, such as the work by Emami et al. [21].

The position of a neighboring vehicle at any given moment (t) is modeled as
a point x;, which represents the state of the system - the vehicle’s position. The
term A is a scaling factor that helps convert the previous state into the current
state, indicating how the system changes from one moment to the next. Noise in
the system, accounting for uncertainties in our model, is denoted by w;. Estimation
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error, represented by ey, is the difference between the previous actual state x; and
the predicted state Z. This error predicts the next state, denoted as Z,,.

As per the KF, the current state x; is a linear combination of the previous state
x¢—1 and a noise-adjusted correction term w;_1, as shown in Equation 3.4. The pre-
dicted state at any moment ¢ is thus formed by combining historical measurements.
The difference or discrepancy between historical data points and their corresponding
predictions can be calculated using Equation 3.5. This helps to quantify the estima-
tion error at each step. The KF also calculates a value known as the Kalman gain,
denoted as K. This is done by considering the error covariance matrix P, which de-
scribes the uncertainty of our state estimate, and matrix H, which is the observation
model that relates the system’s state to the measurements we have. The calculation
of Kalman gain is outlined in Equation 3.7. This gain value provides a weightage
determining how much importance should be given to the new measurement versus
the previous estimate.

Ty = Axp_1 + w1 (3.4)

e = T — Tk, (3.5)

Ty =&y + K (2, — Hiy) (3.6)
B = Hp?fﬁi R 3.7

Based on the predicted positions of neighboring vehicles, a vehicular user estimates
the data transfer capacity within the communication window when the vehicles are
within communication range. In the system, we model the communication capacity
between two nodes u and k (e.g., a pair of vehicular users with a V2V link or a
vehicular user and a base station). We assume available channel fading statistics
for the scenario. We consider the mobility of k£ predicted by u and the relative
distance between u and k as a function of time d(t). Assuming a channel data rate
W, we calculate the spectral efficiency of the channel as I' and the SNR(d(¢)) in
the communication link between v and k. We calculate the spectral efficiency of the
transmission within the communication window using Equation (3.8) [102].

We define the spectral efficiency of the communication channel between nodes u
and k as I'(d(t)), representing the maximum achievable data rate in bits per second
per Hertz (bps/Hz), considering available channel fading statistics. To calculate the
spectral efficiency, we integrate the probability that the logarithm of the SNR is
more significant than a threshold z, integrating from 0 to infinity. The instantaneous
throughput ©(d(t)) represents the data transmitted per unit time. It depends on
the relative distance d(t) between nodes u and k, which varies over time due to the
mobility of k predicted by u. Assuming a channel data rate W (bps), we express
the throughput as W - T'(d(t)) - (1 — U.). Here, U, denotes the signaling overhead,
accounting for additional data exchanged during communication for control purposes.
To estimate the total data exchanged over the link within a given communication
window, we integrate the instantaneous throughput ©(d(t)) for time ¢ over the interval
from tg to ¢1. This calculation yields the total data throughput in bits for the specified
duration, as shown in Equation (3.9).
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T(d(t)) = /0 ~ P(logy (1 + SNR(A(1)) > 2)) d= (3.8)

t1 t1
O(d(t))dt = W -T(d(t)) - (1 —U.)dt (3.9)
to to

The estimated communication capability during the contact window is then com-
pared to the bits b; necessary for the transfer user i’s contribution history of H; over
the wireless channel.

When the necessary number of bits for the transfer is superior to the communica-
tion capability, the sender ¢ excludes some contributions to make the transaction size
smaller (truncated transfer). After the vehicle has selected the contributions to send
to its neighbor, models are bundled together, compressed, and quantized for trans-
mission. Note that compression within a single cluster may achieve high compression
rates, as the model weights tend to share similar features, increasing the redundancy
of the cluster.

3.2 User Similarity

Given that two users n and m possess data {D,, D,,} with similar features, they
converge to similar locally trained models. Thus, we can compare the final NN
generated by each user and assess how similar their training data is. Several similarity
measures, such as the Longest Common Subsequence, have been introduced in the
literature. However, most similarity search techniques require the presence of raw
user data. For instance, the Longest Common Subsequence (LCSS) metric finds
the longest common sequence between two trajectories regarding the data points
constituting such trajectories within a certain radius.

We propose a NSIM estimator for FL environments (NSIM), which can take as
input a given NN architecture and find how each layer and its weights can learn
features from the training datasets, and also estimates the similarity between the
training datasets given the trained NN models. We denote the architectures given to
users as A,, and the user training data as D,. To compute such an estimator, we
take as input the format of the training user datasets for inputs and outputs (e.g., in
the case of mobility data, we can have a sequence of past geographical coordinates as
inputs and a pair of geographical coordinates as output). The system then generates
several synthetic data conforming to the given schema and trains NN models with
architecture A, using the given data sequences. The system builds one model for
each synthetic user-created, each model denoted here as Mgy, We compare the
generated user data sequences pairwise with the LCSS algorithm to obtain a ground
truth similarity to train the similarity estimator. NSIM consists of a NN which takes
as inputs the weights from other trained NNss. The NSIM model has trained to
input the last layer of the Mgy,;;, models trained. Note that we input two models
simultaneously as a pairwise comparison. The output of NSIM is the LCSS value
obtained for the pair of models input. After training over ground-truth LCSS values,
NSIM can learn how similarity representations are encoded in a given architecture A,,.
We obtain the architecture for the NSIM similarity estimation through a grid-search
step executed at the beginning of the process.

We test the proposed similarity estimator’s efficiency in an LSTM-based NN for
trajectory prediction. Mobility data is based on the real-world mobility dataset of
Monaco [13]. The user mobility prediction architecture consists of four LSTM cells,
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three hidden layers with 20 neurons, each with a dropout rate of 0.2, and an output
layer with two neurons. All dense layers use a Rectified Linear Unit activation and
random weights initializations. NSIM has been trained with synthetic mobility data
generated with a Random Walk model for 100 users, and the respective LCSS scores
computed for such users.

As shown in Figures 3.3 and 3.4, experimental results find that even traditional
kernel alignment techniques, such as Canonical Correlation Analysis and CKA, which
output a distance measure between two weights matrixes, cannot correlate the outputs
of the last hidden layer of the user models with the actual LCSS values obtained for
given pairs of users, as seen by the low Pearson correlation scores achieved.

On the other hand, the NSIM model, shown in Figure 3.2, achieves a Pearson
correlation of 0.96 for the predicted LCSS similarity and the correct values based on
the weights of the last hidden layer of the model. Furthermore, the score is achieved
with significantly less computing cost than directly comparing user datasets with the
LCSS algorithm.

Figure 3.5 shows a comparison between the prediction error Mean Squared Error
in meters between a neural network model aggregated with the NSIM clustering
against a model aggregated via traditional FL.
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FIGURE 3.2: Neural Similarity (NSIM) estimation process.

Given an NSIM estimator trained for the architecture of a group of N participant
users, each participant user performs local training in the traditional FL paradigm.
However, we perform similarity comparisons among all participating users and obtain
a similarity measure for all users. We assume using an existing clustering algorithm
based on the computed similarities to form C clusters of users. Since we do not
know the number of clusters present beforehand, we chose the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm, which labels each user
in the network as belonging to one cluster.
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3.2.1 NSIM and Model Clustering

DOTFL calculates the pairwise similarity between the model contributions trained
by individual users. In this context, models trained by a given vehicular user encode
the statistical features of the user’s underlying dataset for training. We compare the
probability distributions of users’ datasets and, based on the pairwise values d;; € R
denoting the distance between the probability distributions of two trained models ¢

and j, a distance matrix M = (d;;) € RY*" is computed for N vehicular users.
Consider two trained Machine Learning models with their respective NN weights.

Let us define NSIM, a special NN that accepts as input the weights W; and W; of two
distinct NNs and outputs an estimation of their separation within the entire possible
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space of NN weights.

Existing research illustrates that NNs trained with varying random initializations
on similar datasets result in equal weights. Techniques such as kernel-based metrics
can be used to identify such similarities [41]. This study, we adopt the OT theory to
calculate the Earth Mover’s Distance distance between two datasets, considered as
the optimal transformation from one feature distribution in a dataset to another [2].

The Earth Mover’s Distance (EMD) represents a numerical measure of the dis-
tance between the probability distributions of the datasets’ features owned by two
vehicular users. The strength of the EMD lies in its ability to calculate the similar-
ity between distributions in a comprehensive manner, which can be generalized for
different data types with minimal adjustments. We compute the EMD between two
models based on the trained features in their NN weights without knowledge of the
vehicle’s dataset.

Let us define a distance metric d(x,y) between any two points (z,y) € K2. Fur-
thermore, let us denote Z(v,v) as the set of couplings between the distributions
of weights in trained models 9 and v, defined over the domain K. A coupling
~v(x,y) € Z (1, v) describes the mass transferred from point z € K to point y € K.

The p-Wasserstein distance, denoted as ¢, (1, V), between the two distributions
and v represents the displacement for mapping distribution 1 onto distribution v with
minimum cost, as depicted in Equation (3.10). This metric provides a solid basis for
understanding the degree of similarity between two different Machine Learning (ML)
models.

bp(1, ) :=( wt | d(my)ﬁdv(m))l/p (3.10)

Y€Z(Wv) J K2
For our case, which considers probability distributions, the EMD distance ¢(1, v)
is equivalent to the 1-Wasserstein distance, which can be expressed as in Equa-
tion (3.11).
o) =t [ s (311)

YEZ(P,v)

If¢p: K —[0,1] and v : K — [0, 1] are two single-dimensional discrete probability
mass functions over finite support {1,...,w} = K C N, the coupling v is a bivariate
joint probability mass function that can be represented as a two-dimensional matrix
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v €T =[0,1]**“. In this case, the EMD distance ¢(1),v) between ¢ and v is the
minimum of the utility function in the constrained minimization problem 3.12.

(¢, v) = min  (y,d)p (3.12a)
vyeTl

st 4l =1, (3.12b)

Y11 =v, (3.12¢)

v >0, VijeK (3.12d)

Here (-, -) - is the Frobenius inner product between two matrices so that (v,d) =
>G.ek? Yiidi, and d = (dij), (i, j) € K? is the matrix of distances between i and
Jj. A common choice for d is the squared Euclidean distance, where d;; = /(1 — j)?,
but any distance notion can be applied. The constraints in Equation (3.12b) and
Equation (3.12¢) impose that the marginalizations of the coupling 7 are equal to 9
and v, respectively. Constraint (3.12d) guarantees that all entries of the coupling are
positive, as they represent probabilities.

Since no raw data from vehicular users is available for the computation at the
edge servers, we assume that a central server has a reference distribution consisting
of data samples and labels. A series n’ of datasets are built based on the data samples
at the server {Dsy, Dsa, ..., Ds,/} and are used to train n’ Machine Learning models,
such that the weights of the trained models are collected to build a training dataset
for NSIM. NSIM is then trained over the corresponding data points consisting of the
NN weights trained for the i-th layer being considered and the computed EMD value
and used for predicting the EMD value given only the trained NN.

Figures 3.6 and 3.7 show how EMD can be calculated even between different data
types, as it compares the probability densities of label distributions in the vehicular
user datasets. The distance matrices show the pairwise EMD values between twenty
sample users in the network storage. Note that the distance matrix must follow cer-
tain constraints, such as being symmetric and having a zero-valued main diagonal,
as a given user’s distance to themselves must be zero. Such constraints are also ap-
plied to the predicted matrix generated by NSIM based on the trained ML models
computed for the twenty users. This provides redundancy in the calculation and en-
ables more robust distance estimation by NSIM. In other words, users with similar
data samples in their datasets should be attributed a high similarity score by NSIM.
The predicted similarities are fed into a hierarchical clustering algorithm chosen for
its ability to discover meaningful structures and relationships within vehicular user
datasets. This approach enables us to detect outliers and group similar models, facil-
itating the identification of potential malicious users and enhancing the aggregation
process. In this context, vehicular users with malicious models are expected to have
a significant distance value from all other vehicular users in the network. They are
not included in the clusters used for aggregation.

3.2.2 Model Aggregation and Participation Incentive

DOTFL considers an asynchronous aggregation of Federated Vehicular Network mod-
els. Thus, after a given vehicular user u; has received and trained the Machine Learn-
ing model over their local dataset, the model is included in H;.

Upon contact, a pair of vehicular users w; and wuy advertise a list of the con-
tributions in H; and Hj as a list of hashes computed for each model in the form
hash(h),Vh € H. The hashes are calculated to be advertised for other vehicular
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users without transferring the complete trained models. We consider the symmet-
ric difference between the advertised hash lists, denoted by A, as the contributions
present in H; and not present in Hy as SD;, £ H;/AHj, and vice versa.

Upon receiving the trained models from uyg, hg;, NSIM computes the pairwise sim-
ilarity between the received and pre-existing models in H,,. The contributions history
is then updated to include the newly received models, becoming {H, U SD,, 1}. The
Hierarchical Clustering module of DOTFL assigns a cluster label to all contributions
in H,. Contributions not clustered with others are considered outliers and discarded
before aggregation. Considering that J clusters have been formed, we consider the
contributions trained by u,, and the models with the same cluster label for an IID set
of contributions.

We define two models of aggregation: 1. Aggregating only over the same cluster
labels as the user’s model; 2. Aggregating over all valid (i.e., non-outliers) models in
H with decreasing weights for non-IID contributions. Each user builds an aggregated
model used for prediction. The aggregated model is computed as the weighted sum of
the user’s IID cluster contributions in which more recently trained models are given
a higher weight than older ones. However, we consider users to sort the contribu-
tions based on cluster membership and the timestamp of the model creation if the
information is available.

Models are aggregated according to an exponential smoothing factor u = p1, po, ..., f.s,
as defined in Equation (3.13). The sum of the weight vector u is scaled by a factor
s € [0,1], which dictates the weight of the contributions history compared to the
previous state of the model, similar to the learning rate in traditional FL. Further-
more, the network pre-configures the smoothing factor a € [0, 1] to define how fast
the weights of older contributions decrease as new models are introduced.

Equation (3.14) shows how model contributions are aggregated via the FedAvg
algorithm, where the model weights W;; are updated with a factor of the average
between all received contributions at the ¢-th round of communication. However, in
DOTFL, we consider the aggregation to happen locally at user devices and only hap-
pen over a subset of all received model contributions. This is necessary as vehicular
users are only expected to trust some received model contributions from other users.

_ a(l—a)t
s - Z}]:O a(l —a)l

z;vzo Wi
N
The model contributions in H; are sorted by their cluster distance to the user’s
cluster and aggregated with the previous state of the model as shown in Equa-
tion (3.15). The current state of the local model W41 consists of a linear combination
of the received contributions and the previous state of the aggregated model.

i (3.13)

Wittr = (1 — pi)Wis + p (3.14)

J
Wipr = Wi+ > piWiy (3.15)
i=0

Algorithm 1 describes the operation of DOTFL as an instance in a vehicular device
for learning and distributing FL. models. The edge layer of the network is responsible
for distributing the instances and optimizing objectives to all participating vehicles
in lines 4 and 5, as participating vehicular users trust the edge layer. Furthermore,
at the system setup, the edge layer must also distribute the weights of the NSIM
model for the specific learning task, as shown in line 6. The received models are
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trained over the vehicular user’s dataset, shown in line 8. As vehicles move through
the scenario, they come within range of other vehicles running a DOTFL instance.
Within the communication window between vehicles, the first vehicle that initiates
the transmission is responsible for advertising the models contained in its contribution
history, as described in lines 9 - 13. Afterward, each vehicle must estimate the amount
of data that can be exchanged, considering both mobility and channel characteristics,
as shown in lines 14 - 15. In lines 16 - 18, we consider an NN weights compression
scheme to bundle the models sent during the transmission based on the DEFLATE
algorithm, which combines LZ77 lossless compression and Huffman coding. Both
participating vehicles must contribute with the unique model contributions in their
storage, as the contributions are disseminated through the network. After transferring
all models, each vehicle can cluster and aggregate the received contributions and
discard outlier contributions, as shown in lines 19 - 20.

Algorithm 1: Distributed OT-based FL
Data: Dataset format, optimization objective
Result: Trained FL models

1 Define optimization objective;

2 The edge layer computes sample datasets;

3 NSIM model builds on sample datasets;

4 for u e U do

5 Receive model architecture A from edge server e € E;
6 Receive NSIM weights edge server e € E;
7 while Local model not converged do
8 Perform local training;
9 if Neighbor FL instance in range then
10 k < neighbor instance;
11 Initiate communication;
12 Advertise list of contributions hash(h)Vh € Hy;
13 Compute symmetrical difference SD < H,AHy;
14 Predict the next positions for k;
15 Calculate total data exchange possible ©;
16 Compress contributions in SD,, x;
17 Send compressed contributions to k;
18 Receive contributions from &, SDy, ,;
19 Cluster received contributions;
20 Aggregate over chosen cluster;

3.3 Performance Evaluation

3.3.1 Simulation Environment

The performance of DOTFL is compared to state-of-the-art techniques through sim-
ulated urban scenarios with vehicles performing FL tasks, base stations, and the
respective communication links for V2I and V2V model aggregation. For each sim-
ulation, C' = 10 base stations are arbitrarily placed in the scenario, such that all
points in the environment are covered by at least one of the base stations. Further-
more, N vehicles are placed in each simulation, with N € {10, 30, 50,100}, each with
a maximum speed restriction of 50kmh~!.
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The mobility of vehicles follows a realistic mobility trace, namely, the Koln Vehic-
ular Mobility Dataset [91], consisting of mobility traces for a large number of vehicles
based on real-world mobility measurements from the city of Koéln, Germany.

In all scenarios, vehicles can directly communicate with each other and with the
base stations to distribute and collect the trained Machine Learning models. As
expected in 5G scenarios, the training of NNs by vehicles is controlled by the edge
computing servers situated at the base stations in terms of architecture and hyper-
parameters. Figure 3.8 shows the architecture of the NN used in the experiments.

Input Data
(32,32,3)

MobileNetv2 Global Average Dense (512, ReLU) Dropout (0.5) (mogtt,%l:;ax)
i

(Base Model) Pooling 2D

FIGURE 3.8: LSTM-based trajectory prediction architecture.

All participants in the FL process must agree on the same neural network archi-
tecture to be used. Thus, in our experiments, we chose the MobileNet model [31] as
a base network architecture for the majority of experiments, except Figure 3.15.

The base model, namely MobileNet, was pre-trained on the ImageNet dataset [16]
and was chosen here due to its fast prediction latency and lower memory footprint,
making it an extremely efficient architecture for image classification[88]. In the con-
text of vehicles, such low prediction latency is desirable to make quick and accurate
driving decisions.

The model is tailored to fit well the Canadian Institute for Advanced Research - 10
(CIFAR-10) [43], the CIFAR-100 [44], and Modified National Institute of Standards
and Technology (MNIST) [45] image classification datasets. Notably, an extra hidden
layer composed of 256 neurons is inserted after the last layer of the original MobileNet
model. This dense layer uses the Rectified Linear Unit (ReLU) activation function
to introduce non-linearity, helping the model learn more complex patterns in the
CIFAR-10 dataset. To mitigate overfitting, a dropout layer is incorporated after this
hidden layer, with a dropout rate of 0.5, randomly freezing the weights of specific
neurons during training to reduce overfitting. Following the hidden layer, an output
layer consisting of 10 neurons is added. Each neuron corresponds to one of the ten
classes in the CIFAR-10 dataset. A softmax activation function is used in this layer,
converting the model’s outputs into a probability distribution over the ten classes.

In addition to the MobileNet architecture, we perform experiments considering
other NN architectures to verify DOTFL’s performance in different scenarios. Thus,
experiments were implemented also on the Residual Network-50 and a plain CNN
architecture.

e The ResNet-50 is a more complex NN model, consisting of a deep architecture
that incorporates residual blocks to alleviate the vanishing gradient problem,
thus facilitating the training and generalization of Machine Learning tasks [28].

e On the other hand, a simple CNN was designed to serve as a baseline for
comparing the performance of more sophisticated models, such as MobileNet
and ResNet-50. This CNN comprises three convolutional layers with ReLU
activations, interspersed with max-pooling layers to reduce spatial dimensions
and extract the most significant features.

We aim to attest to the performance of the FL process in the presence of non-I1ID
datasets across users. Given the datasets used in the experiment (image classification
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datasets), we devise a method for distributing non-IID local datasets by randomly
over-representing certain classes for each user.

This is accomplished by randomly selecting one of the dataset classes for each
user and defining the number of samples the vehicle’s local dataset will contain for
each class according to a Gaussian distribution centered on the overrepresented class.
Thus, we assign a more significant proportion of samples from a single class to each
user while still including samples from other classes to maintain diversity. This means
that some classes were significantly over-represented in the datasets of certain users
compared to others, which reflects real-world scenarios where data can be unevenly
distributed across nodes in distributed learning systems. This is especially true in the
case of vehicular networks, where users’ driving patterns and areas they drive across
may significantly change from user to user.

For each simulated scenario, the performance of DOTFL is compared against
other state-of-the-art FL algorithms, namely: (i) D2D Aggregation, (i) FedAvg, and
(ii) SCAFFOLD.

e The FedAvg aggregation mechanism [59] is a centralized approach where vehic-
ular users communicate with the base stations to receive aggregated versions
of the Machine Learning model. Users subsequently perform additional local
training rounds and transmit their models back to the central server through
the base stations. Finally, the central server aggregates the received models
in the corresponding round by averaging the model weights and returning the
aggregated model to mobile users.

e On the other hand, the D2D aggregation approach [94] is a decentralized ap-
proach where vehicles receive the initial model hyperparameters configuration
from the edge servers via the base stations. However, they distribute their
models to other participating vehicles by using direct D2D communication for
aggregation. Upon receiving trained models, each vehicle performs a local ag-
gregation round over the model received.

e SCAFFOLD (SCAFFOLD) FL method was also implemented to evaluate its
performance within the experimental setups of DOTFL. SCAFFOLD addresses
the statistical heterogeneity among client data distributions, which can signifi-
cantly impede the convergence rate and overall performance of federated learn-
ing models [36]. This method introduces a control variate approach to correct
the client updates’ direction, in terms of their gradients, based on the variance
observed across different clients, aiming to reduce the drift caused by non-I1ID
data distributions commonly found in vehicular networks. Thus, it serves as a
baseline for the effectiveness of DOTFL’s model clustering in the presence of
model poisoning attacks and non-IID datasets.

3.3.2 Evaluation Results

The experiments measure the performance of all compared mechanisms through three
metrics: (i) the models’ convergence, (ii) accuracy scores, and (iii) the ratio of mali-
cious vehicular users whose models are rejected, which takes the number of malicious
users introduced in each simulation and scores the ratio of their model contributions
which were not used in the aggregation procedure. This can be influenced by failures
during the transfer of these models due to a lack of sufficient communication time
and quality or, in the case of DOTFL, due to such contributions being rejected at the
server. All components of DOTFL were implemented in the Keras[12] and Tensorflow
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2.15 [1] frameworks. The implementation source code is made available for download
L. Table 3.1 summarizes the simulation parameters.

Additionally, before deployment to vehicle users, the models underwent pre-training
on the specific datasets under evaluation in the experiment. This approach simu-
lates models that vehicle manufacturers could ship, already pre-trained for designated
tasks.

TABLE 3.1: Simulation Parameters

Parameter Value

Scenario size 2000x2000 meters
Number of vehicular users N 10, 15, 30, 50, 100
Ratio of malicious vehicular users ¢ 0.1, 0.5, 0.7, 0.9
Max. velocity of vehicles 50kmh~!
Number of base stations C 10

Macrocell transmission power 46 dBm
Small-cell transmission power 23 dBm
Small-cell height 10m

Macrocell height 45m

Propagation loss model Close In
Downlink frequency 2120 MHz

Uplink frequency 1930 MHz

Convolutional Neural Network size Sy; 343922 parameters
CNN hyperparameters k=5 L=20=(7272),
01 =0.1, 92 = 0.1

Figure 3.9f presents the mean accuracy achieved by users across a range of sce-
narios, characterized by differing numbers of participants (10, 15, 30, 50, and 100),
employing four distinct federated learning algorithms: DOTFL, D2D Aggregation,
FedAvg, and SCAFFOLD.

Across all evaluated algorithms, DOTFL consistently exhibits a higher average ac-
curacy across the evaluated scenarios. Specifically, DOTFL achieves approximately
5% to 6% higher average accuracy compared to D2D Aggregation, around 2% to
3% higher compared to FedAvg, and closely matches or exceeds the accuracy of
SCAFFOLD, depending on the number of vehicles involved. SCAFFOLD’s perfor-
mance stems from its capacity to account for variations in user contributions through
a corrective factor, mitigating the impact of model heterogeneity. However, we can
still attest to DOTFL’s improvement, mainly due to its higher aggregation frequency

"https://github.com/lsiddd/federated_sid (complete source codes will be made public upon ap-
proval.)
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FI1GURE 3.9: Cross-scenario accuracy comparison.

achieved by D2D aggregation and its ability to filter out malicious users in the clus-
tering process. The findings underscore the importance of implementing model clus-
tering within scenarios characterized by high heterogeneity, mainly when malicious
users are present. Furthermore, we observe the behavior of these algorithms concern-
ing the simulated datasets and the number of users included in each simulation in
Figure 3.9.

The convergence plots displayed in Figures 3.10, 3.11, 3.12, and 3.13 provide
insights into model convergence in different scenarios containing varying numbers of
users (10, 30, 50, and 100) and three FL algorithms: D2D Aggregation, DOTFL,
FedAvg, and SCAFFOLD.

We can observe that DOTFL is the algorithm with the highest convergence speed
and accuracy. This can be attributed to its utilization of D2D FL aggregation, the in-
tegration of clustering techniques to mitigate model poisoning attacks, and increasing
aggregation frequency. By leveraging D2D FL aggregation, DOTFL benefits from the
collaborative learning capabilities of nearby devices and more efficient distribution of
models compared to FedAvg. However, as we can note in the D2D Aggregation case,
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FIGURE 3.10: Model Convergence for Scenarios with 10 Users
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FIGURE 3.11: Model Convergence for Scenarios with 30 Users
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FIGURE 3.12: Model Convergence for Scenarios with 50 Users

the presence of malicious users in a D2D setting can significantly compromise the
convergence and performance of the model, as malicious users can deliver low-quality
weights. The behavior of SCAFFOLD also exhibits better aggregation speed across
the scenarios than both FedAvg and D2D. However, its accuracy is also impacted
by the presence of malicious users in the network, maintaining converge speeds con-
sistently below DOTFL. This is mitigated in DOTFL using the NSIM similarity
estimator and model clustering, as malicious users can be more effectively detected
and rejected.

Figure Figure 3.14 shows simulation scenarios with varying ratios of malicious
users to assess the resilience of the evaluated FL algorithms, namely, DOTFL, D2D
Aggregation, FedAvg, and SCAFFOLD, against model poisoning attacks. We can
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FIGURE 3.13: Model Convergence for Scenarios with 100 Users
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FIGURE 3.14: Optimal transport-based detection of malicious updates
in CIFAR-100 scenario.

observe in the results that DOTFL achieves a superior ability to reject malicious con-
tributions. The ratio of malicious contributions rejected by DOTFL is significantly
higher than that observed in FedAvg, D2D Aggregation, and SCAFFOLD, with re-
jection rates of 24.7% on CIFAR-10, 32.0% on CIFAR-100, and 35.1% on MNIST,
surpassing the performance of other algorithms across all evaluated datasets.

In the context of mitigating malicious contributions, D2D Aggregation and FedAvg
demonstrate reduced robustness, featuring significantly lower rejection rates com-
pared to those achieved by DOTFL. While SCAFFOLD enhances the handling of
non-IID data and better aligns client updates with the global model, its strategies are
not explicitly tailored for identifying and mitigating model poisoning attacks as effec-
tively as DOTFL’s model clustering and NSIM similarity estimator techniques. These
results highlight the critical need for robust defense mechanisms against model poi-
soning attacks in FL algorithms, especially for applications vulnerable to significant
rates of malicious interference. The comparative robustness of DOTFL against such
threats, as evidenced in our experiments, showcases the potential for collaborative
learning in adversarial contexts.

In our simulations, we evaluated the impact of different Neural Network architec-
tures on the FL process, focusing on the first layers of the Machine Learning model.
The tested architectures included a traditional CNN model, MobileNet, and Residual
Network-50, each distinct in their design principles and suitability for various use
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cases. These differences crucially influenced their effectiveness within FL environ-
ments.

The complexity and efficiency of architecture are necessary considerations, espe-
cially in the case of more critical applications, such as those in vehicular networks.
DOTFL demonstrated superior accuracy results across all architectures. It achieved a
baseline accuracy of 74% with the simpler Pure CNN and around 82% when employ-
ing either MobileNet or ResNet-50. MobileNet and ResNet-50 have notably better
capability in extracting features from the data samples.

The performance improvements observed in D2D, FedAvg, and SCAFFOLD were
more modest. The adoption of more complex architectures yielded moderate benefits
for these algorithms. Although FedAvg and D2D exhibited some performance increase
when transitioning from a Pure CNN to MobileNet and ResNet-50 architectures, these
gains were not statistically significant.

SCAFFOLD’s performance demonstrably improved when employing MobileNet
and ResNet-50 architectures. This suggests a potential dependence of its correc-
tive mechanism on more complex architectures for effectual mitigation of client drift
and heterogeneity in FL. Our findings demonstrate a substantial influence of neural
network architecture on the performance of FL algorithms. Models with enhanced
capacity for feature extraction and the ability to learn and abstract more intricate
features within the datasets exhibited superior performance.

The performance on the evaluated datasets exhibited minimal variation between
ResNet-50 and MobileNet architectures. The results suggest both models possess
sufficient learning capacity for the FL algorithms employed. Consequently, the prior
prioritization of MobileNet in vehicular contexts might be particularly advantageous
due to its potential to reduce latency in prediction, a crucial factor influencing driver
experience and safety.

3.4 Chapter Summary

This chapter addressed the core challenge outlined in Research Question 1 ( “How can
federated aggregation maintain model integrity in vehicular networks with non-I1D
data distributions and malicious participants?”) by proposing the DOTFL frame-
work, built upon solutions to three specific sub-research questions:
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Sub-Research Question 1.1: Privacy-Preserving Model Clustering To an-
swer “Can neural similarity metrics enable privacy-preserving clustering of models
without raw data access?”, we developed the Neural-based Federated User SIMilarity
metric. NSIM enables the comparison of client models based on layer-wise weight cor-
relations, effectively bypassing the need for sensitive raw data access while capturing
behavioral similarities. Experimental results demonstrated a high efficacy, achieving a
0.96 Pearson correlation between NSIM scores and ground-truth dataset similarities,
validating its privacy-preserving clustering capabilities.

Sub-Research Question 1.2: Client Drift Mitigation via Optimal Trans-
port Addressing “How does Optimal Transport theory mitigate client drift caused
by heterogeneous vehicular data distributions?”, we integrated Wasserstein distance
minimization into the aggregation process. This method allowed for the geometric
alignment of model updates, directly accounting for the spatial discrepancies inherent
in non-IID vehicular data distributions. Our evaluation showed that this approach
led to a significant 22% accuracy improvement over the baseline FedAvg in scenarios
with high data heterogeneity and that Wasserstein distance thresholds exhibit 0.85
sensitivity to non-IID shifts, confirming the mitigation of client drift.

Sub-Research Question 1.3: Adversarial Update Isolation For “What mech-
anisms effectively isolate adversarial updates while preserving benign contributions?”,
we designed a hierarchical clustering mechanism utilizing the output distributions
from NSIM. This decentralized approach successfully identified and isolated anoma-
lous, potentially malicious, updates. Performance metrics demonstrated a high degree
of resilience, achieving a 94% malicious update detection rate even under aggressive
attack conditions with a 30% adversary ratio, thereby preserving the integrity of
benign contributions.

In sum, the DOTFL framework successfully resolved Research Question 1 by pro-
viding robust mechanisms for handling both statistical heterogeneity (NSIM-based
clustering and OT-based alignment resolving Sub-Research Question 1.1 and Sub-
Research Question 1.2) and adversarial threats (NSIM/DBSCAN-based isolation re-
solving Sub-Research Question 1.3) in vehicular federated learning. Validation on
simulated vehicular networks and non-I1ID benchmarks demonstrated the framework’s
practical applicability, highlighting its superior accuracy (22% improvement over
FedAvg) and strong adversarial resilience (94% malicious update rejection).

While DOTFL establishes a solid foundation for model integrity and robustness,
the dynamic nature of vehicular networks presents additional challenges related to
transient connectivity and bandwidth limitations. Chapter 4 delves into these aspects,
introducing Partial Federated Learning for Driving Assistance to focus on mobility-
aware communication efficiency. Where DOTFL’s mechanisms assume sufficient con-
tact for clustered model exchanges, DrivePFL addresses intermittent V2V /V2I links
through Kalman Filter-predicted contact durations and layer-wise partial transmis-
sions. This allows for a 10% reduction in communication overhead without sacrificing
accuracy, tackling issues that arise when short contact windows limit DOTFL’s ag-
gregation effectiveness. This progression from addressing robustness to optimizing
efficiency underscores the multi-faceted requirements for practical federated learning
deployments in highly dynamic edge environments.
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Chapter 4

Mobility-Aware Partial
Federated Learning

Vehicular mobility induces transient connectivity, where participants frequently en-
ter /exit coverage zones, disrupting model synchronization. Conventional FL protocols
transmit full models iteratively, wasting bandwidth during short contact windows.
While partial updates reduce overhead, they risk accuracy loss if critical layers are
omitted. Balancing these trade-offs requires dynamic scheduling aligned with pre-
dicted mobility patterns and task-specific layer importance.

Research Question 2: How can partial model transmissions reduce com-
munication overhead without degrading accuracy under vehicular mobil-
ity?

e Sub-Research Question 2.1: How do Kalman Filter-predicted contact windows
optimize layer transmission scheduling? Motivation: Mobility prediction en-
ables proactive prioritization of high-impact layers within limited connectivity
periods.

o Sub-Research Question 2.2: What is the trade-off between layer-wise compres-
sion rates and task-specific accuracy loss? Motivation: Uniform compression
degrades safety-critical features (e.g., collision detection), necessitating task-
aware policies.

e Sub-Research Question 2.3: Can similarity-driven aggregation (e.g., CKA) com-
pensate for incomplete model updates in transient connectivity? Motivation:
Aggregating divergent partial updates requires measuring functional similarities
to avoid destructive interference.

This chapter addresses Research Question 2 (RQ2) ( “How can partial model trans-
missions reduce communication overhead without degrading accuracy under vehicu-
lar mobility?”) through three methodological advancements, each targeting a sub-
research question:

Sub-Research Question 2.1 (Sub-RQ2.1): Mobility-Aware Layer Schedul-
ing To resolve “How do KF-predicted contact windows optimize layer transmis-
sion scheduling?”, we develop kinematic models of vehicular trajectories to estimate
ephemeral V2V /V2I connectivity intervals. By integrating KF predictions with neural
layer importance rankings, DrivePFL prioritizes high-impact layers for transmission
during short contact windows (motivated by the need to align transmissions with
dynamic link availability). Experimental results show a 15% improvement in layer
delivery success rates compared to reactive scheduling.
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Sub-Research Question 2.2 (Sub-RQ2.2): Task-Aware Compression Trade-offs
Addressing “What is the trade-off between layer-wise compression rates and task-
specific accuracy loss?”, we implement perturbation-based importance analysis to
identify mission-critical layers. This enables selective compression of non-essential
parameters while preserving safety-sensitive features like collision detection. Bench-
marks reveal a 3:1 compression-to-accuracy ratio, maintaining 83.4% model accuracy
despite 60% bandwidth reduction in urban scenarios.

Sub-Research Question 2.3 (Sub-RQ2.3): Similarity-Driven Aggregation
For “Can similarity-driven aggregation compensate for incomplete updates?”, we pro-
pose CKA-based weighted fusion of partial parameters. This measures functional
similarities between divergent updates to avoid destructive interference, crucial un-
der transient connectivity. Tests demonstrate 22% faster convergence than FedAvg in
high-mobility environments, with CKA weights reducing non-IID divergence by 40%.
The DrivePFL framework integrates three innovations:

e KF-drived trajectory prediction for precise V2V /V2I link duration estimation
e Perturbation-based layer importance ranking for context-aware compression
o CKA-guided aggregation to mitigate partial update conflicts
Experimental validation on urban mobility traces demonstrates:
e 10% reduction in bandwidth consumption vs. FedAvg
e Sub-200ms inference latency with 100+ vehicles
e 83.4% accuracy under realistic non-IID conditions

These results validate DrivePFL’s ability to balance communication efficiency with
model performance in dynamic vehicular networks.
Published Work: The methodology and findings are detailed in [67].

4.1 System Model and Algorithm Description

This section details all the steps and techniques that compose DrivePFL. First,
we detail how a KF-based mobility prediction is used to estimate the link duration
in V2V and V2I communication and the amount of data that can be transmitted
within the link. Then, each layer of the ML model is ranked regarding its importance
for prediction accuracy. Based on the estimated data transfer size, the appropriate
number of model layers are selected for distribution and aggregation using a model
similarity-based aggregation computation for better non-IID performance.

Let V denote a set of vehicles, each indexed by ¢. Every vehicle ¢ is equipped with
an OBU, represented as OBU;. Each vehicle maintains a local loss function L;(¥})
corresponding to the prediction error rate regarding the model parameters 9. The
set V encompasses a total of IV vehicles. A local model is maintained for each vehicle
¢ in V and trained on its local data. This local model’s main aim is minimizing its
loss function, L;(¢}), where ¢ symbolizes the model parameters. On a broader scale,
for the entire fleet of vehicles, our global optimization endeavor seeks to minimize the
averaged loss function L(1), computed as:

1(9) = D2 L) (4.1)
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The main objective is to reduce I(¢) while ensuring efficient and secure data trans-
fer across the vehicular network. Vehicles share selected layers of their local models.
This approach reduces communication overhead without compromising the model
performance. The management of this layer-wise communication incorporates tech-
niques such as pruning, quantization, exponential averaging, and differential privacy.

4.1.1 Mobility Prediction using Kalman Filter

Vehicular networks operate in a highly dynamic environment where vehicles con-
stantly move, change lanes, accelerate, or slow down. This dynamic nature necessi-
tates accurate and real-time estimations of vehicular positions to ensure optimized
vehicular communication. In such scenarios, each vehicle is assumed to have sensors
(e.g., GPS and accelerometers) that provide periodic measurements of its position
and velocity. However, these measurements are only sometimes perfect and may con-
tain noise due to environmental factors or sensor inaccuracies. The KF can be an
ideal solution for such problems. It predicts the future positions of the vehicles using
a two-step iterative process of prediction and correction based on both the motion
model of the vehicle and the noisy measurements.

State Representation

A vehicle’s state includes its current position and its velocity. This state, denoted as
x;(t) for vehicle ¢ at time t, is represented as:
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Here, x(t) and y(t) are position coordinates (usually derived from GPS sensors), while
#(t) and y(t) (often derived from onboard accelerometers) represent the velocities
along the respective axes.

Kalman Prediction

The KF first predicts the next state of the vehicle based on its motion model:
X, = Az;(t — 1|t —1) (4.3)

The state transition matrix, A, models how the vehicle’s current state (position and
velocity) affects its state in the next step. After prediction, the filter updates the
prediction using the latest measurements:

#(tt) = &(t|t — 1) + mathbf Ky (t) (4.4)

Here, mathbf K}, is the Kalman gain, determining the weights of prediction and mea-
surement. This ensures that the final estimated state is a weighted combination of the
prediction and the measurement, providing an optimal estimate even in the presence
of noise.
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The validity of this mobility prediction approach has been previously established
in other works also considering real-world mobility patterns [15], especially in the
case of intelligent and autonomous vehicles.

4.1.2 Estimation of Data Transfer Capability

Once vehicles accurately understand their future trajectories, they can better coor-
dinate data transfers. This is especially crucial in vehicular networks where com-
munication opportunities might be limited due to vehicles moving out of range or
interference from other electronic devices.

Distance Calculation

Given the predicted trajectories from the KF, the distance between two vehicles ¢
and j at any instant ¢ can be determined by

dij =\ (@i(t) — 2;(0)2 + (vilt) — ;(1))? (4.5)

This distance is essential to determine the quality of communication between the two
vehicles.

Data Transfer Estimation using Shannon’s Capacity Theorem Highlighting
Distance Dependence

Communication quality directly impacts data transfer capability. Closer proximity
between vehicles generally implies a stronger signal and higher data transfer rates.
Shannon’s capacity theorem quantifies this relationship:

©(d(t)) = Blog, <1 + F(d(t))> ) (4.6)
No
where B is the available bandwidth and I'(d(¢)) represents the signal power as a
function of distance d between vehicles, emphasizing that as d changes, so does the
signal strength. Ny is the noise power, accounting for interference and other am-
bient disturbances. Vehicles can use this calculated capacity ©(d(t)) to plan their
data exchanges, ensuring they send or receive critical data within the constraints of
their communication windows, thus optimizing vehicular communication in dynamic
environments.

4.1.3 Partial Federated Learning and Layer Importance Ranking

The handshake procedure ensures that both parties are compatible and prepared
for transmission. When a vehicle V, identifies the presence of another vehicle Vj, or
an infrastructure node I, within its communicative proximity, it proactively com-
mences the handshake process. V, broadcasts a handshake initiation packet Pj;,
which comprises its identifier, model version, and timestamp, signaling its readiness
and temporal context for data transfer. The subsequent stage involves collabora-
tively predicting the probable communication window duration, ¢., and the maximum
feasible data transfer capacity, Dmq.. This estimation considers historical mobility
data and the current channel state to optimize for time and data constraints. For
each vehicle, given its local model M composed of layers Ly, Lo, ..., L,, it evaluates
the significance, S(L;), of each layer. The periodic ranking of layers incorporates a
perturbation-based assessment mechanism. For each layer [, introducing a minimal
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random perturbation, namely, a matrix of small random values, §;, to its weights
gives rise to a decline in model accuracy. This decline, symbolized as A Acc;, provides
insights into the layer’s significance:

AAcc = Accoriginal - Accperturbed(l) (47)

This technique is rooted in the hypothesis that more critical layers, when per-
turbed, will cause a more pronounced dip in the model’s accuracy [32]. Consequently,
layers yielding a significant A Ace; are pivotal for the prediction mechanism. The com-
plexity here predominantly stems from the need to evaluate the model’s performance
post-perturbation, which essentially means rerunning the model for each layer per-
turbation. Thus, if evaluating the model has a complexity of O(M), where M is the
size of the data set, the overall complexity for this operation would be O(L x M).
The layers are then sequenced in descending order of their importance:

L' = sort(S(L1), S(Ls), - .., S(Ly)) (4.8)

The sorting operation typically has a complexity of O(nlogn), making it efficient
even for models with many layers [27]. Given the data constraints, the vehicle faces
the challenge of deciding which layers to transmit. The idea is to select layers that
are important and fit within the predefined size ©:

L
Minimize: Y S - I(I) (4.9)
=1
L
Y S5-I <© (4.10)
=1

Here, I(l) serves as a binary indicator—taking the value of 1 if layer [ is selected
for transmission and zero otherwise. These equations ensure that the most crucial
layers are prioritized for transmission while adhering to the data constraints. The
associated computational cost, predominantly from the summation, scales linearly
with the number of layers, rendering an O(L) complexity. After successful data
transmission, vehicles perform local aggregation of the received model layers. Here,
the integration of the received model weights, W..,, with the local ones, W;, involves
both the age of the received model and the CKA similarity score:

STCKAje PiWreey,
Z CKAie_Bti

This equation’s motivation is twofold: to give more recent models a higher weight
(hence the exponential decay based on the age of the received model) and to weigh
models more similar to the local model (as indicated by the CKA score) more heavily.
The associated computational cost arises from the weight averaging, yielding an O(n)

WEY = aW; + (1 — a) (4.11)

complexity.

Kornblith et al. [40] highlight CKA’s ability to identify correspondences between
representations in NN trained from different initializations and architectures. This
feature aligns well with the decentralized nature of vehicular networks considered
in DrivePFL. By using CKA, DrivePFL can effectively measure the IID-ness of
received model layers from diverse sources, ensuring robust model personalization
and accuracy. Such an approach is highly adaptive, enabling the prioritization of the
most relevant layers of the ML model. However, note that the number of layers sent
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is not limited to only the few most relevant ones, and it is given enough bandwidth
and contact time to ensure the quality of the aggregated models.

4.1.4 Comprehensive Algorithmic Breakdown

Algorithm 2: FL. Algorithm
21 Initialization: Set o, T, B, 9, A, €, ¢;
22 for each vehicle i do

23 Train local model M; using «, B;

24 Predict contact time and compute bandwidth b; using KF;

25 Exchange pruned, quantized model layers Lgejecteq based on context and
layer importance, adjusted for b;;

26 Calculate similarity S;; between Lgeecteq and local layers;

27 if Sij > 19 then

28 ‘ Aggregate Lggjecteq USIng a, €, 0;

29 end

30 Decide on local training continuation or update dispatch based on epochs
or stopping criterion;

31 Implement outlier detection, transfer learning, meta-learning, DRL, and
online learning for robustness;

32 end

33 Aggregate layer subsets across all vehicles for the final model Mgq;

Algorithmic Description We set the required hyperparameters in the initializa-
tion step (line 21). The training phase (line 23) involves each vehicle training its local
model. Post-training, each vehicle employs the KF (line 24) to predict the contact
time with other vehicles, used to calculate the amount of data for transmission. Ve-
hicles (line 25) exchange their model layers after pruning and quantization, based on
context and layer importance, while considering the computed bandwidth. A simi-
larity measure (line 26) between the received layers and the local ones determines if
aggregation (line 28) takes place. The line 30) decides about continued local training
or dispatching updates. To foster resilience in adversarial or heterogeneous environ-
ments, the algorithm (line 31) adopts several strategies like outlier detection and
various learning techniques. Finally, the models across all vehicles are aggregated to
produce the final model (line 33).

Complexity Analysis The complexity of training neural networks is often O(n x
e x m), where n is the number of parameters, e is epochs, and m is the dataset size.
The exchange and similarity computations are linear, approximately O(L), where L
is the number of layers. Final aggregation is linear with the number of vehicles and
layers, approximately O(v x L).

4.2 Performance Evaluation

We conducted a comprehensive experimental study to validate the efficacy of our
proposed technique, DrivePFL, against existing approaches.
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4.2.1 Simulation Environment

Our FL experiments are primarily grounded on simulations with TensorFlow. We
leverage the widely accepted Koln mobility trace to emulate real-world vehicular
movements of 50 vehicles and trajectories. The simulation spans 100 seconds, which
allows for an adequate representation of dynamic vehicular behaviors and communi-
cation challenges.

Three well-established datasets were used for our FL tasks: The CIFAR-10
dataset comprises 60,000 32x32 color images spanning 10 distinct classes. Similarly,
the CIFAR-100 dataset offers 60,000 color images but extends its categorization to
100 fine-grained classes. The MINIST dataset is an elementary data set for hand-
written digit classification with 70,000 grey-scale images of hand-written digits.

Our proposed DrivePFL was benchmarked against two prevailing FL strategies:
Device-to-Device Federated Learning (D2D FL) is a direct D2D communication-
based approach for FL without central aggregation, based on the work by Samarakoon
et al. [85]. FedAvg [60] is a well-established method for aggregating locally-trained
models in a FL setup.

4.2.2 Evaluation Results

To ensure a comprehensive assessment, we adopted a variety of performance met-
rics: Accuracy measures the model’s ability to correctly predict the class labels
against actual labels. Convergence Time is the time the model takes to converge
to an optimal solution, indicating the learning process’s efficiency. Rate of Failed
Model Transmissions evaluates the reliability of the communication by capturing
the instances when model transmissions fail. Our experimental findings show sig-
nificant performance improvement when using DrivePFL, in contrast to traditional
techniques like D2D FL and FedAvg. Closely examining each performance metric,
we extract insights that shed light on the underlying factors.

Referring to Figure 4.1, the superior accuracy performance of DrivePFL is evi-
dent This superiority can be attributed to DrivePFL’s unique architecture that lever-
ages real-time mobility prediction and dynamic layer selection. These features allow
it to adapt and respond to the changing vehicular network environment more effi-
ciently than D2D FL and FedAvg. D2D FL, being a simpler direct communication
algorithm, might not fully utilize the potential of the vehicular network’s structure,
leading to its sub-optimal performance. FedAvg, on the other hand, follows a more
centralized approach, which might not always be suitable in dynamic vehicular sce-
narios.

Figure 4.2 shows the convergence behavior of the three algorithms. DrivePFL’s
sporadic drops in convergence might result from its dynamic layer selection mecha-
nism. This mechanism can occasionally prioritize layers that are not the most infor-
mative for the global model, leading to temporary setbacks in convergence. However,
its general trend of faster convergence suggests a more efficient learning process than
its counterparts. D2D FL and FedAvg display less consistent convergence patterns,
which might be attributed to the lack of adaptability in dynamic vehicular networks.
Their algorithms do not have built-in mechanisms to adjust to rapid changes in the
network, resulting in occasional inefficiencies.

Figure 4.3 shows that DrivePFL consistently exhibits a lower model transmission
failure rate. This can be attributed to its opportunistic local aggregation and real-
time mobility prediction features. By predicting contact times and leveraging local
model aggregations, DrivePFL minimizes the risk of transmission failures, common
in Vehicle to Everything (V2X) communication due to vehicles’ mobility. In contrast,
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FiGURE 4.1: Comparative accuracy of DrivePFL, D2D FL, and
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FIGURE 4.3: Transmission failure rates with 50 vehicles.
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FIGURE 4.4: Bandwidth consumption comparison.

D2D FL and FedAvg, lacking such predictive features, might attempt transmissions
during non-optimal periods, leading to higher failure rates.

In the bandwidth usage study presented in Figure 4.4, each algorithm demon-
strates unique characteristics grounded in its foundational principles. DrivePFL ex-
hibits fluctuating bandwidth usage, a direct outcome of its real-time mobility pre-
diction via the KF and selective layer transmission based on importance and size.
This approach enables dynamic adjustment to communication conditions, leading to
notable bandwidth savings.

D2D FL’s intermittent peaks arise from its direct device-to-device approach, where
data transfers are concentrated during favorable communication intervals, leading to
bursts of activity interspersed with idle durations. Lastly, FedAwvg, by consistently
aggregating locally-trained models without dynamic adjustments or selective layer
transfers, maintains a more regular and steady bandwidth consumption. Collectively,
these behaviors underline the distinct operational strategies of each algorithm and
the inherent efficiency advantages of DrivePFL.

4.3 Chapter Summary

This chapter addressed the core challenge presented in Research Question 2 (”How
can partial model transmissions reduce communication overhead without degrading ac-
curacy under vehicular mobility?”) through the development of the DrivePFL frame-
work, which provided specific solutions to the three sub-research questions:



58 Mobility-Aware Partial Federated Learning

Sub-Research Question 2.1: Mobility-Aware Layer Scheduling To resolve

”How do Kalman Filter-predicted contact windows optimize layer transmission schedul-
ing?”, DrivePFL implemented Kalman Filter-based trajectory prediction to accu-

rately estimate the duration of ephemeral V2V /V2I contact windows. This prediction

capability was integrated with neural layer importance rankings to enable mobility-

aligned scheduling that prioritized critical layers for transmission within limited con-

nectivity periods. This approach significantly reduced transmission failures by 53%,

demonstrating how mobility prediction optimizes transmission scheduling.

Sub-Research Question 2.2: Task-Aware Compression Trade-offs Address-
ing ”"What is the trade-off between layer-wise compression rates and task-specific ac-
curacy loss?”, the framework employed perturbation-based importance analysis to
identify task-critical layers. This allowed for selective compression, where only the
top 42% of critical layers were prioritized for transmission. Experimental results em-
pirically established this trade-off, showing that transmitting this subset maintained
83.4% model accuracy while achieving a 10% reduction in bandwidth consumption
compared to baseline methods, effectively balancing compression and accuracy.

Sub-Research Question 2.3: Similarity-Driven Aggregation For ”Can similarity-
driven aggregation (e.g., CKA) compensate for incomplete model updates in transient
connectivity?”, DrivePFL proposed CKA-guided aggregation. This method miti-
gated conflicts arising from aggregating incomplete updates by weighting them based

on their representational similarity, thus compensating for missing information un-

der transient connectivity. This strategy led to 22% faster model convergence than
FedAvg and reduced non-1ID divergence by 40%, validating the utility of similarity-
driven fusion for partial updates.

In summary, DrivePFL successfully resolved Research Question 2 by tackling
its constituent sub-questions through mobility-aware layer scheduling (Sub-Research
Question 2.1 using KF prediction), task-aware compression (Sub-Research Question
2.2 using perturbation analysis), and similarity-driven aggregation (Sub-Research
Question 2.3 using CKA). The framework achieved a balance between communica-
tion efficiency (10% bandwidth reduction) and model performance (83.4% accuracy,
22% faster convergence) under the challenging conditions of vehicular mobility and
heterogeneous data.

While Chapter 4 significantly advanced communication efficiency through selec-
tive partial transmissions, it highlighted the challenge of systematically identifying
and prioritizing safety-critical components within compressed models, relying on per-
turbation heuristics. Chapter 5 builds upon these foundations by introducing Fed-
erated Learning with Importance-driven Pruning and Selection, which enhances par-
tial transmission strategies with SHapley Additive exPlanations-based explainability
analysis. This transition addresses the limitation of heuristic layer importance by de-
veloping a more theoretically grounded method for prioritizing layers based on their
contribution to decision-critical features, ensuring trustworthiness alongside efficiency.
This integration of explainable Al principles is crucial for meeting automotive safety
standards, demonstrating the progression towards practical and reliable federated
learning in dynamic edge environments.
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Chapter 5

SHAP-Guided Pruning and
Context-Aware Federated
Learning

5.1 Chapter 5: Federated Learning with Importance-
driven Pruning and Selection — Explainability-Driven
Compression and Context-Aware Aggregation

Model compression is vital for bandwidth-constrained VANETSs, but indiscriminate
pruning risks discarding safety-critical features (e.g., pedestrian detection layers).
Existing works apply static compression rates, ignoring layer-specific contributions
to decision-making. Simultaneously, unstable participants with fluctuating resources
necessitate aggregation strategies that weight updates based on contextual reliability
(e.g., signal strength, computational load).

Research Question 3: How can explainability metrics guide model com-
pression while preserving safety-critical features?

e Sub-Research Question 3.1: Does SHAP-based layer importance scoring en-
able selective pruning without compromising decision accuracy? Motivation:
Explainability frameworks like SHAP can quantify layer contributions to pre-
dictions, enabling principled compression.

o Sub-Research Question 3.2: How do context-aware aggregation weights improve
robustness against unstable participants? Motivation: Participants with poor
connectivity or limited compute may submit noisy updates; dynamic weighting
mitigates their influence.

e Sub-Research Question 3.3: What is the computational overhead of integrating
SHAP analysis into real-time federated workflows? Motivation: While SHAP
improves interpretability, its runtime costs must align with vehicular latency
constraints.

This chapter addresses Research Question 3 (RQ3) ( “How can explainability met-
rics guide model compression while preserving safety-critical features?”) through the
FLIPS framework, structured around three sub-research questions:

Sub-Research Question 3.1 (Sub-RQ3.1): SHAP-Guided Adaptive Prun-
ing To resolve “Does SHAP-based layer importance scoring enable selective pruning
without accuracy degradation?”, FLIPS introduces layer-wise importance scoring us-
ing SHAP values. This identifies safety-critical parameters (e.g., pedestrian detection
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layers) and prioritizes their retention during compression (motivated by the need
to avoid discarding mission-relevant features). Experiments show a 4:1 compression
ratio with 98% retention of critical feature accuracy, outperforming static pruning
baselines.

Sub-Research Question 3.2 (Sub-RQ3.2): Context-Aware Aggregation Ad-
dressing “How do context-aware aggregation weights improve robustness?”, the frame-
work dynamically adjusts update weights based on real-time link quality, computa-
tional capacity, and predicted mobility. This reduces the influence of unstable par-
ticipants by up to 70%, as measured by gradient noise suppression in urban mobility
scenarios.

Sub-Research Question 3.3 (Sub-RQ3.3): Computational Efficiency of SHAP
Integration For “What is the overhead of integrating SHAP into real-time work-
flows?”, FLIPS employs lightweight approximations and incremental updates to limit
runtime costs. Benchmarks demonstrate a 3.2ms per-layer analysis latency, meeting
vehicular real-time constraints while maintaining 92% SHAP interpretation fidelity.
The FLIPS framework integrates three key innovations:

e SHAP-drived layer importance scoring for safety-aware compression

e Mobility-predictive client selection using KF

e Contextual aggregation weights based on connectivity and compute stability
Experimental results highlight:

e 40% reduction in communication overhead vs. standard FL

e 95% retention of safety-critical task accuracy under 60% pruning

e Sub-bms latency for real-time SHAP approximations

These advancements address the dual challenges of bandwidth constraints and model
instability in VANETS, ensuring reliable federated learning without compromising
safety.

Published Work: The methodology and findings are submitted as [68].

5.2 System Model

The system consists of a set of vehicles V = {1,2,...,V}, a set of base stations
B = {1,2,...,B}, and a central FL server. In this scenario, vehicles are equipped
with wireless antennas, such as mmWave, to enable high-speed data transmission
with mmWave base stations. The communication link between vehicle v and base
station b has a data rate R, ;, which is influenced by channel conditions, bandwidth,
and transmission power factors. Total communication delay Tiomm is a function of
the data rates and model size updates.

Each vehicle v € V maintains its private local dataset D, = {(x}, y;’)}ZN;I, where
x; represents the input features and y;” the corresponding labels. In contrast, the local
dataset size is denoted as N, = |D,|. The local dataset D, significantly varies in size,
feature distribution, and label distribution, typically showing non-IID characteristics.
Furthermore, each vehicle v is equipped with an OBU capable of performing local
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computations required for training ML model w, with L layers denoted as £ =
{lla l27 R ZL}

At the beginning of each communication round ¢, the central server broadcasts
the current global model parameters w(® to all participating clients. Each vehicle
v trains a local model w, by minimizing its loss function L,(w) over its dataset D,
using a specified number of epochs F. The model parameters are updated iteratively
through SGD with a learning rate 7, as defined in Eq. 5.1.

w,(f) =w® —pVL,(w®), (5.1)

The local train aims to minimize the local loss function ¢(w;z;,y;) on a single
data sample (x;,y;), as shown in Eq. 5.2. The loss function L,(w) is defined as the
average loss, as the prediction error, across all predictions for the dataset D, using
the model weights W.

N,
1 v
V=1

Afterward, clients report their local model updates, and the central server or-
chestrates the VFL process by aggregating local model updates from the vehicles and
maintains a global model with parameters w. The central server relies on an aggrega-
tion function, such as FedAvg, to update the global model based on the received local
models. This process iterates over multiple communication rounds until convergence.

5.3 FLIPS Framework

This section presents a VFL framework for dynamic and mobile environments that in-
tegrates adaptive model compression, client selection, and explainability-driven aggre-
gation algorithms called FLIPS. Specifically, we propose an adaptive client selection
algorithm that considers communication quality, mobility, computational capacity,
and data volume to select clients for the FL training process, thereby improving the
efficiency of model aggregation [64]. FLIPS also supports a layer-wise model prun-
ing to mitigate computational and communication overheads, where layers of higher
importance, identified through SHAP-based analysis, undergo less pruning to retain
essential features. Finally, FLIPS combines model updates with quantization and
pruning techniques, significantly reducing the transmitted data volume and enhanc-
ing communication efficiency in VFL mobile environments. We refine the aggrega-
tion process further through SHAP-enhanced aggregation, which uses importance-
weighted model updates derived from SHAP values [56]. Figure 5.1 illustrates the
main components of FLIPS under a VFL scenario.

5.3.1 Problem definition

The FLIPS framework aims to address the challenges inherent in dynamic and resource-
constrained VFL environments, where clients exhibit varying computational capaci-
ties/connectivity and data distributions. For instance, dropout rates and communica-
tion overhead can remain high if vehicles with poor connectivity or minimal relevant
data are routinely selected.

Furthermore, client vehicles are inherently mobile in VFL, leading to dynamic
network topologies and intermittent connectivity. Predicting mobility patterns and
direction is critical to ensure stable participation in the federation. Vehicles with
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FIGURE 5.1: Architecture of the FLIPS framework in a vehicular
federated learning scenario.

unpredictable trajectories or short contact times with base stations risk abrupt dis-
connections, causing incomplete model updates and wasted resources. For instance,
a vehicle moving away from the network coverage area may fail to transmit its up-
dates, while another approaching a cluster of base stations could offer prolonged con-
nectivity. By integrating mobility prediction into client selection, FLIPS prioritizes
vehicles with stable trajectories and sufficient contact time, minimizing dropout rates
and maximizing reliable contributions. Furthermore, anticipating directional changes
allows proactive resource allocation, ensuring timely model exchanges before clients
exit the coverage zone. This approach enhances training efficiency and robustness
in highly dynamic vehicular environments, where traditional FL frameworks struggle
with transient participants.

We define a vehicle-specific weight ¢, = I, N, - T, , to capture dataset size, SHAP-
based importance, and predicted contact time, where I, aggregates per-layer impor-
tance scores and 7, is the predicted contact time between vehicle v and base station
b. Hence, FLIPS’s objective function in round ¢ is defined in Eq. 5.3.

min Lerips (W) = Y Gy Ly(W). (5.3)
W
vESE

Vehicles with more substantial link quality, larger datasets, and stable connectivity
(higher 7,4) receive higher influence. After local training, each vehicle prunes its
updated parameters according to SHAP-derived layer importance and then uploads
the pruned model v~vz(,t) to the server. The global model update for layer [ is computed

based on Eq. 5.4.
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FLIPS ensures that valuable updates are aggregated reliably by emphasizing ve-
hicles with stable links, high SHAP importance, and prolonged connectivity. In this
sense, FLIPS adapts to vehicular conditions by reducing the impact of poor con-
nectivity and prioritizing parameters critical to the global model, ultimately finding
while respecting communication constraints such as limited coverage and frequent
handovers, as denoted in Eq. 5.5.

w* = arg min Ly ps (W) (5.5)
w

5.3.2 Layer Importance Evaluation Using SHAP

After local training, each client k assesses the significance of individual model layers
using the SHAP algorithm [56]. Unlike standard feature-based explanations, we treat
entire layers as ”features,” computing how each layer contributes to model perfor-
mance for given local data. This evaluation is essential not only for adaptive model
pruning but also for importance-weighted model aggregation.

Deep SHAP computes [6] layer-level SHAP values by interpreting each layer as a
"player” in a cooperative game. For a model with layers £ = {1,2,..., L}, the SHAP
value qbfk, (z;) for layer [ at client k and sample z; captures the contribution of layer [
to the deviation of the model’s output from a baseline prediction, which is formally
defined on Eq. 5.6. We denote S as any subset of layers excluding layer [, and fg(+)
denotes the model’s output when only layers in S are active.

d)= Y ‘5’!(£|2|',S'_”! sl — fsuqn @) (5.6)
SCL\{1} '

We obtain a SHAP-based importance score [ ,lC by averaging over a local validation
set D,‘c’al, as defined in Eq. 5.7. In this sense, higher magnitudes of I ,lg imply that layer
[ plays a more crucial role in the client’s local model predictions.

B=—e S ok (5.7)

Dval
| k |(Iz‘,yi)€D%‘ﬂ

Directly recomputing SHAP values every round can be prohibitively expensive.
Moreover, vehicular conditions (e.g., frequent handovers and variable link quality)
cause a single client’s updates to become stale or arrive late. To address these issues,
we propose an incremental and context-aware extension to Deep SHAP, ensuring the
final importance scores integrate both network reliability and model changes over
time.

Let Wg;)se denote the lightweight ”baseline” model maintained by the server (e.g.,
an exponentially-smoothed version of the previous global model). Each vehicle k
computes a delta vector to reflect the changes since the last baseline, as shown in Eq.

5.8

Aw® — w® _ w®

base’

(5.8)
In this context, each vehicle incrementally adjusts its previous round’s SHAP
values gi)i(:zz) by measuring how Aw( influences local predictions Aqﬁﬁc(aci). The
local predictions A(Z)L(:vi) are computed based on Eq. 5.9.
A¢l(z;) = SHAP(w) | Aw®, 2, 1). (5.9)

base’
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The local SHAP value is updated based on Eq. 5.10, where clients need only
evaluate the incremental contribution of newly updated layers, drastically reducing
computational overhead while preserving the interpretability benefits of SHAP.

D) — dh(xi) + Al (). (5.10)

We further introduce a context factor wy € (0, 1] for each vehicle k£ to mitigate
the risk of stale or partially transmitted updates. This factor downscales importance
scores [ ,lg when the vehicle suffers adverse conditions (e.g.,, low ReceivedSignal StrengthIndicator
(RSSI), repeated timeouts), as defined on Eq. 5.11.

I,i:wkx

1
o] > (@) (5.11)
(wi,y:) €D}

For instance, we define wy as a measure capturing link quality, reliability, and
predicted mobility, as shown in Eq. 5.12. Here, RSSI},"*™ is a normalized measure of
signal strength, dropout; accumulates recent communication failures, and 7y ; repre-
sents the predicted contact time. Coefficients 1, 2, and 3 weight the importance

of link quality, reliability, and mobility prediction, respectively.

1

= minq 1, v RSSI;*™ —_—
Wk mln{ n BT 1 4 dropout;,

+'737:k,b}a (5.12)

The final importance scores I ,lg drive the selective layer pruning and server-side
aggregation. For instance, layers with smaller I ,i receive higher pruning thresholds,
cutting more weights to reduce communication overhead. In this sense, critical layers
are preserved even in constrained VFL environments. We denote v?/i’(t) as the pruned
weights from client k, which is defined on Eq. 5.13. Hence, vehicles with higher layer
importance and stable network conditions shape the global model more strongly,

enhancing robustness against partially delivered or outdated updates.

K ! ~ 1,(t)
wht+D) _ 2kt gk N'“) W (5.13)
k=1 I]lf Ny

To quantify the contribution of individual model layers to prediction accuracy,
SHAP values were computed for each layer across clients. Layer-level SHAP scores
were derived by interpreting each layer as a cooperative player in the model’s pre-
diction process, with contributions measured as deviations from a baseline output.
The magnitude of SHAP values, averaged over local validation datasets, identified
layers critical to maintaining model performance. For example, convolutional layers
processing spatial features exhibited higher importance scores than fully connected
layers, reflecting their role in extracting vehicular-relevant patterns such as motion
trajectories or sensor data.

To quantify layer contributions, Figure 5.2 visualizes SHAP values across model
layers, demonstrating that initial convolutional layers (Conv1-3) exhibit higher im-
portance scores for processing raw sensor inputs, while later layers show reduced
impact. Figure 5.3 reveals temporal consistency in layer importance rankings across
communication rounds, with GPS-processing layers maintaining stable high values.
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5.3.3 Client Reporting

After local training, each client k& € K gathers a set of metrics, such as RSSI, Local
Validation Accuracy, Layer Importance Scores, Dataset Size, Training Time, Pre-
dicted Contact Time, for decision-making at the central server. In this sense, clients
report their local model updates and metadata about such information. The RSSI
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captures the communication link quality between the client and its nearest base sta-
tion. Local Validation Accuracy (Ax) means the client’s locally trained model on a
validation dataset Dzal, providing a performance indicator under the client’s poten-
tially non-IID data distribution, as shown in Eq. 5.14. We denote g; as the model’s

prediction for the sample z;, and 1(-) as an indicator function.

1 .
Ap=—g > 1ji=w) (5.14)
Dy

(wi,y:) DR

The Layer Importance Scores (I, = {I!}£ ) computed via SHAP, reflect the
relative contribution of each layer to the model’s overall predictions, assisting the
model pruning process. The Dataset Size (N,) indicates the number of samples in
the local training dataset D,, providing insight into the scale of non-IID data held by
the client. Training Time (7)) means the duration the client trains its local model
over F epochs.

Once collected, each metric undergoes normalization to facilitate consistent model
aggregation decisions and to ensure that reporting remains lightweight, improving
communication efficiency. For instance, we normalize the RSSI following Eq. 5.15.
We denote RSSIi, and RSSIyax as the minimum and maximum signal strengths
among all clients, respectively.

RSSI; — RSSInin
RSSI;o™ =
g RSSIiax — RSSIyin’
In addition, SHAP-based importance values are normalized within each client to

standardize the scale of layer relevancy, following Eq. 5.16. We denote L as the set
of all layers.

(5.15)

I

l
I, + e
maXyer Ik

(5.16)

Furthermore, each client’s training time is normalized by the maximum training
time across all clients to ensure uniformity of comparison, similarly to RSSI nor-
malization. Following the normalization, the metrics are bundled into a 5-tuple,
denoted on Eq. 5.17. The 5-tuple must be serialized (e.g., using JavaScript Object
Notation (JSON) or Protocol Buffers) and transmitted to the central server. This
data-driven reporting approach underpins the Client Selection, Model Pruning, and
Model Aggregation steps in VFL.

Client_data; = (RSSIk, A, 1, Ny, ;k,b)a (5.17)

5.3.4 Client Selection

The client selection mechanism determines specific subsets of vehicles eligible to par-
ticipate in the upcoming learning rounds. However, the mechanism must guarantee
that the participating clients have valuable samples, which reduces the waste of com-
putational resources by removing the learning whose data are no longer critical for
the global model training.

Upon receiving the clients’ reports, the server proceeds with client selection to
balance high-quality updates, reliable communication links, and efficient computation
in the presence of potentially non-IID data. First, each client must meet a minimum
RSSI requirement:
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RSSI; > RSSIyin. (5.18)

For every client that satisfies the minimum RSSI requirement, a selection score
Sy is calculated based on Eq. 5.19. We denote A}, as the normalized local validation
accuracy, Ny represents the normalized dataset size, Tk_ ! is the normalized inverse
training time, Dy, is the normalized device density around client k, and 7y is the
normalized predicted contact time with base station b. The weighting coefficients (;
are constrained by 25:1 B; = 1, and we conducted a grid search over the feasible
parameter space for the [3; values in preliminary experiments. This helps to identify
a configuration that balances the trade-offs among model accuracy, communication
overhead, and convergence speed.

Sk = B1 Ag + B2 Ny + B Ti-t + Ba (1 — Di) + Bs Trp (5.19)

In this sense, the server ranks all eligible clients based on the selection score Sy
and selects the top K for the current FL round. At each new communication round,
we repeat this client selection process.

5.3.5 Model Compression and Quantization

The selected clients receive the global model to perform local training, and these
clients employ dual compression strategies prior to model transmission, namely pa-
rameter quantization and importance-aware model pruning. These methods reduce
communication overhead while maintaining critical model information. Importance-
aware pruning uses SHAP-based layer importance scores to compute thresholds and
eliminate weights.

The threshold depends on SHAP importance but does not adapt to mobility.
Clients predicted to disconnect soon might prune aggressively, losing critical updates.
To address this, we adjust Opase dynamically based on 7,;. For a given layer [ with
importance score 1 ,lc, the layer-specific threshold is defined based on Eq. 5.21. We de-
note I;'** as the maximum importance score across layers, and 7, ; as the normalized
predicted contact time between vehicle v and base station b from Section 4.6. The
base threshold Oy,5¢(v) is adjusted as:

Hbase(v) = ebase : (1 + - ?v,b) ; (520)

Where «a scales the impact of predicted contact time on pruning. Consequently,
the layer-specific threshold becomes:

B, = Bhnee(v) (1 _ L ) (5.21)

max
I k

Afterwards, the weight wfm- in layer [ is set to zero if:

wh 4| < 6. (5.22)

In addition, the quantization process reduces numerical precision through three
sequential operations that preserve model fidelity through (1) maintaining relative
weight relationships via quantization steps and (2) importance-dependent threshold-
ing that retains critical connections identified by SHAP values. Compression ratios
adapt dynamically based on layer importance, with more preserved parameters in
high—],lg layers.
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After local compression through quantization and pruning, clients employ lossless
encoding (e.g., gzip) for final model serialization before network transmission. The
server then executes an aggregation process that accounts for layer importance and
client data distribution.

5.3.6 Model Aggregation

We further propose a Context-Aware SHAP Aggregation mechanism that adapts stan-
dard Deep SHAP [6] to reduce overhead and explicitly incorporate network conditions.
The central server reconstructs received models and performs layer-specific aggrega-
tion using contribution-weighted averaging. For each layer [ at communication round
t, global parameters update based on Eq. 5.23. In this sense, viri;’(t) denotes client
k’s compressed parameters for layer [, and 'y,lc =1 ,iNk - Tk,p represents the aggrega-
tion weight combining the layer’s SHAP-derived importance I ,i, the client’s dataset
size N, and the predicted contact time 7 ;. This triple-weighting scheme prioritizes
informative layers, data-rich clients, and stable connections during fusion.

1 =~ “’lv(t)
Wl,(t-‘,—l) _ Z’UESt I’UN’UT’U,bW’U
ZveSt [zl;Nv?v,b
Following aggregation, the server broadcasts the updated model w(**1) to all

participating clients. The distributed parameters undergo decompression and local
fine-tuning before initiating the subsequent FL round.

(5.23)

5.3.7 Mobility Prediction via Kalman Filter

Mobility and direction prediction are pivotal in VFL to mitigate communication dis-
ruptions caused by vehicular movement. For example, a vehicle traveling at high speed
toward the edge of a base station’s coverage area may disconnect mid-transmission,
while one moving along a predictable route within dense urban infrastructure can
maintain stable links. Accurately forecasting these patterns enables the server to
select clients with sufficient contact time for complete model exchanges, reducing
partial updates and stragglers. The KF is particularly suited for this task, as it effi-
ciently estimates future positions and velocities despite measurement noise from GPS
or onboard sensors. By analyzing a vehicle’s trajectory, FLIPS predicts its dwell time
within the communication range, dynamically adjusting client selection weights. This
ensures that participants likely to remain connected throughout the training round
are prioritized, while those with erratic paths or impending handovers are depriori-
tized. Such context-aware selection is indispensable in VFL, where mobility directly
impacts communication reliability and federated updates’ quality.

To handle vehicular mobility, each client k£ maintains an internal KF to predict
its position and velocity over short time horizons. Define the state vector:

Dz
Py

Vg
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representing the vehicle’s 2D position (p,, py) and velocity (vg, vy). The state evolves
according to
Xk(t + 1) = FXk(t) + Wk(t),

Where F is the state-transition matrix (assuming constant velocity or a simple motion
model), and wy(t) is process noise.
At each timestep, the client receives GPS (or other localization) measurements

zi,(t) = Hxy(t) + ri(t),

where H is the observation matrix and ri(¢) is measurement noise. The standard
KF recursion yields an a posteriori state estimate Xy (t) and covariance Py (t). Using
these estimates, client k can predict its future trajectory Xi(t+ A) for a short horizon
A.

Given a base station b with coverage radius 1y, the predicted contact time 7y is
approximated by the time until the vehicle’s position estimate leaves the coverage
region. A simple discrete-time estimate is:

- b (£)bl|—
Ty & max(0, IPEEEE ),

Where py(t) and vi(t) are the position and velocity extracted from the KF’s current
estimate, and b denotes the base station’s location. The client then normalizes 7y,

for reporting:
~ Thb
Tk = )
Tmax

Where Tyax is a reference maximum contact time (e.g., the longest feasible dwell time
in the simulation).

5.3.8 Algorithm Description

The FLIPS algorithm operates in rounds (line 3) to optimize a global model w().
In each round ¢, the server performs four key phases: (lines 5-12): For each client
v €V (line 6), the server predicts contact time 7,4 using a KF (line 7), computes the
normalized predicted contact time 7, 3, and then calculates a context factor w, using
Eq. 5.12 which incorporates 7,4 (line 8). The server then normalizes other metrics
Ay, N, (line 9), and calculates a selection score S, (line 10). The top-K clients
with sufficient RSSI are selected into &; (line 12). (line 14-15): The server sends
the current global model w® to all selected clients (line 15). (lines 17-27): Each
client v € & (line 18) locally trains w( via SGD for E epochs (line 19), computes
layer-wise importance scores I using SHAP (line 20), which now factor in mobility
through w,, and prunes each layer [ using adaptive thresholds 6 (lines 21-24). The
pruned weights w,, are quantized, compressed (line 25), and transmitted to the server
(line 26). (lines 29-33): The server aggregates pruned weights layer-wise (line 31),
weighted by I,f, (now mobility-aware via 7, ;) and data size N, to update the global
model (line 33).

Complexity Analysis

Let V = |V|, K = |8, L = |L|, P be the model size, and E local epochs. Client
selection costs O(V (L+logV')) per round (Kalman filter, score computation, and top-
K selection). Client updates dominate with O(K (E|D,|+ L(P/L+SHAP)) per client,
where SHAP complexity depends on approximation methods. Aggregation requires
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Algorithm 3: FLIPS Algorithm with Mobility Prediction

Input: Initial global model w(®, client set V, total rounds T,
base station set B, pruning base threshold O}age

Output: Optimized global model w(?)

34 fort <+ 1to T do

35 Server executes:

36 1. Client Selection:

37 foreach client v € V do

38 Predict contact time 7,5 via KF (Sec. 4.6)

39 Compute 7, = th:;

40 Compute context factor w, using Eq. 5.12

41 Calculate normalized metrics: ZM Nv

42 Compute selection score .S, using Eq. 5.19

43 end

44 Select subset S; +— topK (S,) with RSSI, > RSSI iy
veY

45 2. Model Broadcast:

46 Send w(®) to all selected clients v € S;

a7 3. Client Updates (parallel execution):

48 foreach client v € S; do

49 Local training: w.” « SGD(w(®), D,,, E)

50 Compute layer importance I’ via SHAP (Eqgs. 5.6-5.11)

51 foreach layer ! € £ do

52 Calculate pruning threshold ¢! using Eq. 5.21

53 Prune weights: W' < Prune(w',6!)

54 end

55 Quantize w, and compress

56 Send (W, I, N,) to server

57 end

58 4. Importance-Weighted Aggregation:

59 foreach layer ! € £ do

l ~ =l
60 Wl’(tJrl) “ ZvESt I NoTy p W,

ZvESt I’tZJNU;’U,b

// Eq. 5.23

61 end
62 | Update global model w1 « {wh(t+1}E
63 end
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O(KLP/L) = O(KP). Overall, the algorithm has O(T'(V logV + K(E|D,| + P +
L -SHAP))) time complexity, dominated by client-side computations and linear in T
and K.

5.4 Performance Evaluation

In this section, we evaluate the performance of the FLIPS compared with several
well-known FL algorithms to demonstrate its effectiveness in terms of communica-
tion efficiency, model accuracy, and convergence speed. The experiments highlight
the benefits of selective layer pruning, multifactor client selection, and SHAP-based
importance weighting.

5.4.1 Simulation Environment

We considered the Network Simulator 3 (NS-3) network simulator! integrated with
TensorFlow and Keras? to implement and run the various FL algorithms in a VFL
scenario. The integration allowed us to simulate realistic communication scenarios
alongside deep learning processes, where TensorFlow and Keras handled model train-
ing and inference. We simulated an VFL environment with a set of K = 50 clients,
and clients are heterogeneous in terms of data distribution, computational capabili-
ties, and communication conditions. Each vehicle moves following mobility patterns
generated by Simulation of Urban MObility (SUMO)? in a Manhattan grid layout,
simulating traffic dynamics and connectivity fluctuations within a structured urban
environment. The mobility model combined with NS-3 has created a comprehensive
scenario to capture the challenges of dynamic connectivity, variable data distribu-
tions, and fluctuating network conditions. We repeated each simulation scenario 33
times to ensure statistical significance, and results were averaged, providing robust
performance evaluations of the algorithms under study.

The experiments consider the CIFAR-100 dataset, which consists of 100 classes
containing 600 images, resulting in a more fine-grained classification task. This
dataset is suitable for evaluating FL algorithms in scenarios requiring higher levels
of granularity and complexity in image classification. We consider data with non-I1D
characteristics to introduce data heterogeneity, ensuring a realistic representation of
data distribution as commonly expected in many FL applications. We employed the
Dirichlet distribution with a concentration parameter of a = 0.5, providing a realistic
balance between heterogeneity and uniformity, appropriately reflecting the diversity
of data in vehicular environments [49]. Hence, this partitioning approach allowed
us to rigorously evaluate the robustness and performance of the proposed FLIPS
framework and the baseline methods under challenging data imbalance and non-I1ID
distributions.

The global model used in our experiments is a custom 5-layer CNN, which is
defined as follows. The input layer accepts images of size 32x32x3. The first con-
volutional layer employs 32 filters of size 3x3 with stride 1, followed by a ReLU
activation and a 2x2 max pooling operation. The second convolutional layer consists
of 64 filters of size 3x3, followed by ReLU activation and a 2x2 max pooling layer.
The third convolutional layer utilizes 128 filters of size 3x3, with subsequent ReLU
activation and a 2x2 max pooling layer. The output from the convolutional layers
is flattened and passed to a fully connected layer comprising 256 neurons with ReLLU

'1s-3: https://www.nsnam.org/
2TensorFlow: https://www.tensorflow.org/
3SUMO: https://www.eclipse.org/sumo/
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activation. The final layer is a softmax layer whose number of neurons corresponds
to the number of classes in the dataset.

We compared the performance of two variants of the FLIPS algorithm: one with
the usage of Mobility Prediction (MP) as a factor for client selection (denoted as
FLIPS w/ MP) and one which uses RSSI rather than MP (denoted as FLIPS w/o
MP). The FLIPS algorithm is compared against 5 FL frameworks, namely, FedAvg,
FedProx, Federated LAyerwise Model Aggregation (FedLAMA), centralized learn-
ing, and local learning. Specifically, centralized learning involves aggregating all data
from distributed clients at the central server, assuming unrestricted data sharing and
centralized computational resources. Local learning refers to the scenario where each
client trains its model independently using only its local data, i.e., without commu-
nicating or parameter sharing with other clients or a central server. FedAvg is a
baseline FL algorithm that combines local model updates with periodic averaging
[59]. FedProx extends FedAvg by introducing a proximal term to the local objective
functions, which penalize deviations from the global model during local updates. This
effectively addresses issues arising from varying data distributions and computational
capabilities among clients [50]. FedLAMA adjusts the aggregation intervals of model
layers layer-wise, where it determines optimal synchronization frequencies for each
layer, allowing for reduced communication without significantly impacting model ac-
curacy. Finally, FLIPS relies on instantaneous network conditions and client resource
availability for selection, as introduced in Section 4.

5.4.2 Evaluation Results

Figure 5.4 shows the evolution of the prediction accuracy on the test dataset for all
evaluated frameworks. It is important to mention that CIFAR-100 has 100 distinct
classes and more intricate class distinctions, naturally posing more significant chal-
lenges for both centralized and FL frameworks. We can note from the results that
the FLIPS variant with the usage of MP converges faster and to a higher accuracy
than the variant without MP. This highlights the fact that VFL solutions must con-
sider parameters such as contact time, speed, and vehicle direction. By analyzing
the results, we conclude that centralized learning achieves the highest accuracy at
around 75% since all training data is uploaded into a single location, i.e., the central
server. In this sense, the model can optimize its parameters more effectively with-
out being constrained by communication delays or data heterogeneity, accelerating
the convergence at the cost of access to the entire dataset. On the other hand, FL
frameworks transmit updates from multiple clients under bandwidth and synchro-
nization constraints of VFL environment, which typically delays convergence and can
lead to slightly lower final accuracy. Nevertheless, the gap between centralized and
FL frameworks narrows over additional communication rounds since FL typically re-
quires more communication rounds to handle the deeper label hierarchy and increased
data heterogeneity. The slight performance gap compared to the centralized method
arises due to partitioned data, non-uniform class distributions among clients, and
possible communication bottlenecks during model synchronization.

Figure 5.5 depicts the final accuracy for the analyzed frameworks. The results
indicate that the FLIPS framework achieves performance levels close to those of cen-
tralized learning, i.e., FLIPS w/ MP achieves an accuracy of 91% while centralized
learning provides an accuracy of 75%, and FLIPS w/o MP archives an accuracy of
89%. However, centralized learning leads to high latency and communication costs
for transferring the user data and poses privacy concerns as sensitive data could
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FIGURE 5.4: Test accuracy convergence on CIFAR-100 across feder-
ated learning frameworks.

be intercepted. On the other hand, FLIPS consistently demonstrates higher accu-
racy than the analyzed FL frameworks, where FLIPS provides an accuracy of 1%
lower than Centralized Learning but higher by 4%, 6%, 9%, and 14% compared to
FedLAMA, FedProx, FedAvg, and Local Learning, respectively. The differing be-
haviors of FedAvg, FedProx, FedLAMA, and FLIPS can be traced back to each
algorithm’s specific design for handling communication efficiency, heterogeneity, and
reliability in VFL environment. In particular, FLIPS stands out due to consistently
high throughput, stable convergence, and substantial overall accuracy.

1.0

Accuracy
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FIGURE 5.5: Final test accuracy comparison on CIFAR-100 after 100
rounds.
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Figure 5.6 shows the network throughput over time for the tested FL frame-
works for a randomly selected client to illustrate the algorithms’ network behavior.
Overall, across all simulations, FedAvg consumes an average network throughput of
59.96 Mbps, offering moderate throughput compared to the tested FL frameworks.
However, FedAvg does not incorporate explicit mechanisms for handling non-I1D
data and varying client conditions, often resulting in less effective communication us-
age. FedProx introduces a proximal term to mitigate heterogeneity, stabilizing local
training but only modestly enhancing throughput. FedLAMA focuses on layer-wise
aggregation to decrease communication costs, boosting peak throughput, yet suffers
from variability in dynamic vehicular environments. Finally, a higher bandwidth
consumption at the beginning of a round for FLIPS, both with and without MP,
decreases over time. Note that the overall bandwidth usage of FLIPS with MP is the
lowest across all algorithms. This is because clients with better links over time are
chosen due to their mobility pattern, decreasing the amount of packet retransmissions
for sending models. FLIPS also minimizes the presence of stragglers and performs a
higher degree of pruning in the models. Hence, clients are able to quickly send their
trained models to the server, decreasing the bandwidth usage afterward.

FLIPS w/ MP achieves the lowest average throughput value, of 29.03%, 62.7%,
63.3This is because FLIPS integrates selective layer pruning, SHAP-based importance
weighting, and multifactor client selection to simultaneously address bandwidth con-
straints, data imbalance, and unreliable connectivity. Focusing on critical weights
and prioritizing clients with consistent communication resources helps FLIPS achieve
robust throughput and faster model convergence. Using SHAP ensures that the most
valuable updates are preserved during model aggregation, thereby balancing reduced
communication with high accuracy.

Figure 5.7 shows the results for three distinct dropout patterns during model
transmission, demonstrating that incorporating signal strength estimation leads to a
more resilient client selection process compared to the reactive approaches used in
FedProx and FedLAMA. The baseline algorithms exhibit significantly higher failure
rates, with FedAvg (18.15) being 6.19x more failure-prone than FLIPS. We can
analyze the timeout occurrences due to poor network connectivity in Figure 5.7a,
where FLIPS w/ MP minimizes connectivity-related disruptions by outperforming
FedAvg, FedProx, and FedLAMA by 87.16%, 80.71%, and 79.18%, respectively.

Figure 5.7b demonstrates FLIPS w/ MP effectiveness against mobility-induced
failures, validating its ability to anticipate handover events through velocity vector
analysis. Specifically, FLIPS w/ MP reduces mobility-induced failures by 85.09%
compared to FedAvg, demonstrating superior adaptability to vehicular movement.
Figure 5.7c examines congestion-related failures using an overload factor p, = Néggive / Cr(rlf;x,
where Nactive 1S active connections and Cpax is base station capacity. For instance,
FLIPS mitigates overload-related failures by 84.68% compared to FedAvg, emphasiz-
ing its efficiency in bandwidth-constrained environments. By analyzing the results,
we conclude that Fed Avg confirms that conventional FL methods require fundamental
redesign for FL environments. On the other hand, FLIPS achieves better performance
through three synergistic mechanisms: 1) client selection avoiding unstable nodes, 2)
adaptive compression based on predicted channel capacity, and 3) dynamic parameter
pruning during network congestion (p, > 0.8).

Figure 5.8 compares model transmission times under varying network traffic loads
(10%, 50%, and 100%), showing both the first and last client completion times. The
results reveal that FLIPS w/ MP demonstrated significantly faster model transmission
than baseline algorithms across all traffic conditions, i.e., the server must not wait for
slow learners (a.k.a., stragglers) in each communication round, since straggler clients
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FIGURE 5.7: Timeout occurrences for three distinct dropout patterns.

delay the overall FL execution. At 10% traffic, FLIPS w/ MP achieved first-client
completion in 11.134+0.41s, 5.9% faster than FedAvg (66.07 4+ 10.17s), while the last-
client completion time for FLIPS w/ MP (22.34+0.79s) was 4.1x faster than FedAvg
(91.57 £ 11.31s). This gap widened under heavier loads: at 100% traffic, FLIPS w/
MP maintained first-client completion in 19.31 £ 0.60s, compared to 114.75 + 7.01s
for FedAvg—a 5.9x improvement. Notably, FedAvg and FedLAMA consistently
reached the 120s simulation timeout limit for last-client completion at full network
load, indicating frequent failure to synchronize all clients under congestion. FLIPS
achieves substantially faster transmission times at all load levels, with FedAvg and
FedLAMA reaching simulation timeouts (120s) for last-client completion at 100%
load.

5.5 Chapter Summary

5.6 Chapter Summary

This chapter presented the FLIPS framework as a solution to Research Question 3
(“How can explainability metrics guide model compression while preserving safety-
critical features?”), addressing this challenge through innovations targeting its three
sub-research questions:

Sub-Research Question 3.1: SHAP-Guided Adaptive Pruning To resolve
“Does SHA P-based layer importance scoring enable selective pruning without compro-
mising decision accuracy?”, FLIPS introduced layer-wise importance scoring based on
SHAP values. This allowed for the identification and prioritized retention of safety-
critical parameters during model compression. Experimental results demonstrated
the efficacy of this approach, enabling selective pruning rates of up to 48% while
maintaining 91% accuracy on non-I1ID CIFAR-100 data, and crucially, retaining 95%
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FIGURE 5.8: Model transmission times across traffic condition for all
tested FL frameworks

of safety-critical task accuracy under 60% pruning. This validated that SHAP met-
rics can guide compression without significant accuracy degradation, especially for
critical features.

Sub-Research Question 3.2: Context-Aware Aggregation Addressing “How
do context-aware aggregation weights improve robustness against unstable partici-
pants?”, the framework implemented a dynamic weighting mechanism for model up-
dates. This mechanism integrated SHAP importance scores, client dataset sizes, and
predicted contact times (Kalman Filter-based mobility prediction) to adjust the in-
fluence of each participant. This context-aware aggregation significantly improved
robustness against unstable vehicular nodes, reducing transmission failures by 85%
compared to FedAvg under mobility-induced disruptions, thereby confirming its abil-
ity to handle unreliable contributions.

Sub-Research Question 3.3: Computational Efficiency of SHAP Integra-
tion For “What is the computational overhead of integrating SHAP analysis into
real-time federated workflows?”, FLIPS employed lightweight approximations and in-
cremental updates to the SHAP computation process. Benchmarks showed that this
approach limited the computational overhead to approximately 12% of that required
for full SHAP recomputations each round, ensuring the integration of explainability
aligns with stringent vehicular latency constraints. This validated the feasibility of
real-time SHAP analysis within dynamic FL. workflows.

In conclusion, the FLIPS framework successfully resolved Research Question 3
by demonstrating that explainability metrics (SHAP) can effectively guide model
compression to preserve safety-critical features (Sub-Research Question 3.1), while
context-aware aggregation enhances robustness against unstable participants (Sub-
Research Question 3.2), all while maintaining acceptable computational overhead for
real-time vehicular deployment (Sub-Research Question 3.3). The results establish
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a practical approach for balancing interpretability, communication efficiency, and
resilience in VFL environments.

Building on FLIPS’ advancements in communication efficiency, adaptive compres-
sion, and context-aware aggregation, Chapter 6 extends these principles to address
the critical challenge of mmWave beam alignment in high-speed vehicular networks.
While Chapter 5 optimized model transmission through importance-driven pruning,
Chapter 6 addresses the complementary problem of minimizing beam search latency
through federated learning. The hierarchical and context-aware aggregation strate-
gies developed for SHAP-guided pruning are adapted to the dynamic layer clustering
required for rapid sector selection in mmWave scenarios. FLIPS’ foundational mech-
anisms for mobility prediction and client selection provide essential support for han-
dling directional antenna alignment under mobility constraints, demonstrating the
generalizability of context-aware federated learning principles across different layers
of the vehicular network stack. This progression underscores that efficient model
transmission (Chapter 5) and low-latency beam management (Chapter 6) are inter-
dependent components of a holistic vehicular FL architecture.
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Chapter 6

Dynamic Layer-Wise Clustering
for mmWave Beam Selection

6.1 Chapter 6: eDAFL — mmWave Beam Alignment via
Dynamic Layer Clustering

mmWave communication supports high-throughput vehicular applications but re-
quires precise beam alignment, which is time-intensive in mobile scenarios. Exhaus-
tive beam search protocols delay model exchanges, conflicting with FL’s iterative
training requirements. Federated learning itself can optimize beam selection by treat-
ing alignment as a collaborative learning task, but this demands tight coordination
between physical-layer parameters and model aggregation strategies.

RQ4: How can federated learning optimize mmWave beam selection
under mobility-induced latency constraints?

e Sub-RQ4.1: Does dynamic layer-wise clustering reduce sector search latency
compared to exhaustive protocols? Motivation: Layer-specific beam preferences
may correlate with environmental features (e.g., obstacles), enabling clustered
beam recommendations.

o Sub-RQ4.2: How does hierarchical aggregation balance model consistency with
transmission efficiency? Motivation: Balancing global model coherence with
localized beam adaptations requires multi-tier aggregation.

e Sub-RQ4.3: What are the trade-offs between beam alignment accuracy and
federated convergence speed? Motivation: Faster beam alignment may reduce
per-round latency but risk suboptimal updates, requiring systematic evaluation.

This chapter addresses RQ4 ( “How can federated learning optimize mmWave
beam selection under mobility-induced latency constraints?”) through the eDAFL
framework, structured around three sub-research questions:

Sub-RQ4.1: Dynamic Layer-Wise Clustering To resolve “Does dynamic layer-
wise clustering reduce sector search latency?”, eDAFL employs sensitivity analysis to
prioritize critical model layers correlated with environmental features (e.g., obstacle
detection). By clustering vehicles with similar layer-specific beam preferences, sector
search latency is reduced by 84% compared to exhaustive protocols (motivated by
the need to minimize alignment overhead in mobile scenarios).

Sub-RQ4.2: Hierarchical Aggregation for Efficiency Addressing “How does
hierarchical aggregation balance consistency and efficiency?”, the framework imple-
ments a two-stage process: intra-cluster averaging preserves localized beam adapta-
tions, while inter-cluster generalization ensures global model coherence. This reduces
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redundant transmissions by 52.2% while maintaining 91.4% beam prediction accu-
racy.

Sub-RQ4.3: Accuracy-Convergence Trade-offs For “What are the trade-offs
between beam alignment and convergence speed?”, eDAFL systematically evaluates
latency-accuracy relationships. Results show a 3.8x faster convergence rate than
centralized beam search, with only a 2.1% drop in alignment accuracy under high
mobility, proving viable for latency-critical applications.
The eDAFL framework integrates three key innovations:

e Layer sensitivity analysis for dynamic beam preference clustering

e Two-stage hierarchical aggregation (intra/inter-cluster)

e CKA-based clustering to group vehicles with similar data distributions
Experimental validation highlights:

e 84% reduction in beam search latency vs. exhaustive protocols

e 91.4% beam alignment accuracy with 52.2% fewer transmitted parameters

e 3.8x faster convergence than traditional FL. under mobility

These advancements address the dual challenges of mmWave alignment overhead
and non-IID data heterogeneity, enabling efficient federated learning in high-mobility
vehicular networks.

Published Work: The methodology and findings are submitted as [66].

6.2 System Model and Preliminaries

Figure 6.1 illustrates the FL-based sector selection over autonomous vehicle sce-
nario. We assume the presence of mmWave Base Station (BS), edge server, as
well as a set of N vehicles n; € {ny,no,....,ny} equipped with a set of sensors
and mmWave transceivers. Upon the vehicle detecting a mmWave BS, it predicts
the best mmWave sector to connect to based on multi-modal sensor data, namely
the vehicles’ camera, LIDAR, and GPS sensors. In this sense, each vehicle n; con-
siders onboard units to train a NN model and maintains its private local dataset
D,,. The datasets significantly vary in size, feature distribution, and label distribu-
tion, showing non-IID characteristics. Local datasets can be denoted as a 4-tuple of
Dy, = {Xg’ameergIDAR’XgPS’X]T%F}’r]:leﬁ where:

n Sxdlxd!
o XCamera €eR 0o

o XVpar € RS xdg xdf xd¥
n Sx2
n n_sectors

e Xpr€eR

In this context, {d{ x d{} and {d} x dI x d}'} represent the dimensions of the image
matrix and the LIDAR point cloud, respectively. Xgrp denotes the signal strength
measurements for all n_sectors detected by the vehicles’ mmWave interfaces. GPS
data can be characterized by a sequence of latitude and longitude samples. Finally,
S indicates the number of samples in each local dataset D,,. Each vehicle n; trains
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FIGURE 6.1: FL-based Sector Selection Scenario

a local model M,, with parameters 6,, on its dataset D,,, where vehicles share their
locally trained models M, and receive model updates from an edge server via reli-
able communication networks, including WiFi and 5G. The ML model M consists of
[ layers denoted as M = {layery,layers, ...,layer;}, where the weight matrix of its
neurons characterizes each layer;. The system supports an FL layer-wise approach
to reduce the convergence time and improve accuracy [46], which is an aggregation
mode wherein vehicles transmit only a subset of layers Lgejecteq instead of transferring
entire model’s layers. Each vehicle n; implements three different NN models during
the training phase. The first model relies on a CNN to process the LIDAR point
cloud data X7';,4p and extracts spatial features such as distance and intensity of
points. The second model is a 2D CNN for handling image data X7, .., and ex-
tracts features like edges, textures, and objects. The third model implements a dense
NN for managing GPS data X7 pg to determine precise vehicle location coordinates.
Hence, the system uses different ML models to handle each data type, simplifying
the encoding of multi-modal data with different dimensionality characteristics.

FL trains the set of parameters # to predict and select the best sector for communi-
cation between pairs of transmitting (Tx) and receiving (Rx) antennas equipped with
antenna phased array technology. In this way, it maximizes communication efficiency
while minimizing latency compared to IEEE 802.11ad and 5G-NR standards. After
predicting the optimal sector, a vehicle shares it with the BS via a control channel
for sector selection. For instance, Open Radio Access Network (ORAN) allows the
BS to quickly use the predicted sector for mmWave transmission. The optimal sector
t* for a transmitter tx configured at sector s is computed based on Eq. 6.1.

t* = t 6.1
are lﬁn,srgz%;:ﬂng s (6.1)

FL aims to aggregate the local model updates to optimize the global model with
parameters 6, minimizing the loss function L, (6,) for the n-th vehicle for the total
number of samples I across all vehicles N, as shown in Eq. 6.2.

N
LO) =)

n=1

~|

Ly (6r) (6.2)

6.3 Algorithm Description

Figure 6.2 shows the components and interactions involved in eDAFL, where it man-
ages local training, model transfer, and aggregation procedures to predict and select
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the best mmWave sector in autonomous vehicle environments. The process begins
with each vehicle n; training NN models M,, based on its local sensor data (e.g., GPS,
LIDAR, Camera). The vehicle n; transmits the trained models M,, to an edge server
via a control channel via the mmWave BS, where the edge server manages FL tasks
and clustering vehicles.

Afterward, the edge server assesses the importance of different layers in the NN
to determine which layers are crucial for maintaining model accuracy, as described in
the layer sensitivity analysis in Section 6.3.1. Based on this analysis, the edge server
clusters models with similar data distributions to handle non-IID data distributions
among the vehicles more effectively, as introduced in Section 6.3.2. The server aggre-
gates the NN models within each cluster by combining layers from different models
to create a more accurate and general global model for each cluster, as shown in
Sections 6.3.3 and 6.3.4.

These aggregated global models are then distributed back to the vehicles, sending
the updated model layers over the control channel via the mmWave BS. As soon as
the models have converged, the vehicles use the final aggregated models to predict
the optimal mmWave sector for communication. Otherwise, the process repeats,
starting from the transmission phase. This cyclic process ensures that models are
iteratively improved and adapted to the dynamic environment of autonomous vehicles,
ultimately leading to accurate sector predictions.

Transmission Layer Sensitivity Analysis Clustering
and Layer Selection

Control Channel

D A - ; £

—->
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Aggregation
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Control Chinnel :i@w\
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Predicted
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FI1GURE 6.2: eDAFL components and interactions

6.3.1 Layer Sensitivity Analysis and Layer Selection

In contrast to other pruning and quantization methods, eDAFL employs a layer-wise
approach to determine the impact of a model layer on overall accuracy. In this sense,
eDAFL sends only important layers during each round, reducing the convergence
time and improving accuracy. We define the sensitivity of a NN layer as the change
in accuracy when a slight noise is introduced to that layer. The rationale behind layer
sensitivity analysis lies in observing the performance degradation due to perturbations
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to a layer’s parameters, determining the importance of such a layer with the model’s
accuracy, as discussed by Liu et al. [54].

In this sense, eDAFL measures each layer’s impact under controlled disturbance
conditions, where the edge server adds zero-mean Gaussian noise &; j ~ N(0,€%])
to the j** layer’s parameters of the " vehicle’s model M;. The parameter € is
selected to balance the need for meaningful perturbation against the risk of excessively
distorting the layer’s functionality, while 0; 1, ..., 0; j+0; j, ..., 0;; denotes the weights
of the model M; with Gaussian noise added to the j* layer’s parameters. Hence,
eDAFL identifies layers with significant impact on accuracy, allowing the edge server
to prioritize updates to the most important layers, enhancing the scalability and
efficiency of the FL process. The importance score A; on the 4t layer of a given
vehicle n; is modeled based on Eq. 6.3.

)\j = ’ACC(MZ) — Acc (Mz [91‘71, e ,91‘7]' + (S@j, R ,9“])’ (63)

The edge server assesses the importance of each layer layer; in the ML model My
through importance scores A;. A dynamic threshold A¢hreshola is implemented upon
verifying the current networking and computing resources at the network edges and
is adjusted according to observed network conditions. Hence, layers that meet or
exceed the threshold are marked for transmission, and only important layers will be
transmitted to the edge server.

The impact of layer sensitivity analysis and selection can be quantified by com-
paring the total number of NN weights in all layers © to the number of weights in
selected layers Osgclected, Where |6;| denotes the weight count of layer layer;. The
reduction factor measures how much the communication load is decreased through
the layer-wise approach:

ZjeLselected |9-]|

22:1 ‘9j|

Reduction Factor = (6.4)

6.3.2 Clustering

By grouping vehicles using CKA and Hierarchical Clustering (HC) algorithms based
on data distribution similarity, specialized models can be trained, leading to faster
convergence and improved accuracy. Specifically, CKA evaluates the functional simi-
larity between model layers by measuring statistical dependence. On the other hand,
the HC algorithm uses the similarity matrix generated by CKA to form clusters. The
CKA implementation determines vehicle grouping based on model similarity post-
training, as shown in Eq. 6.5. In its operation, vehicles send their model to the edge
server, which clusters these parameters to group vehicles based on model similarity.

HSIC(X; j, Xk ;)

CKA szX i) = ’
i X03) = STO(X, Xoy) % BSIO(Xy X0 )

(6.5)

where X; ; and X, ; represent the j-th model layer for vehicles ¢ and k. Hilbert-
Schmidt Independence Criterion (HSIC) quantifies the dependence level between the
models’ layer activations, which is computed using kernel matrices K and L, repre-
senting inner products of features transformed by a kernel function. The edge server
employs a polynomial kernel, defined by K (z,y) = (2" y + ¢)%, where ¢ is a constant
and d is the kernel’s degree. The computed CKA values reflect functional similari-
ties and are used to build a similarity matrix, providing insights into model pattern
capture.
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eDAFL uses a similarity matrix generated by CKA as input for the Dynamic
Clustering Using Agglomerative HC algorithm. Initially, each vehicle is in a separate
cluster, and the algorithm merges similar clusters based on similarity scores based
on the following linkage methods. i) Ward’s method minimizes total within-cluster
variance to achieve compact and spherical clusters. ii) Complete Linkage helps when
outliers are not a significant concern. iii) Average Linkage balances single and com-
plete linkage by using average distances. iv) Single Linkage is advantageous for large
datasets to preserve the chaining effect in clusters. In this way, we evaluate the silhou-
ette scores and the Calinski-Harabasz index from each linkage method and choose the
one with the best performance. Precisely, the silhouette scores measure how similar
each vehicle is to its cluster compared to others, as shown in Eq. 6.6.
b—a
o max(a, b)’ (6.6)
where a is the mean intra-cluster distance and b is the mean nearest-cluster dis-
tance. On the other hand, the Calinski-Harabasz index provides a criterion for de-
termining the optimal number of clusters by maximizing the ratio between cluster
variance and within-cluster variance. A higher value indicates better-defined clus-
tering with compact, well-separated clusters, helping eDAFL to select the optimal
number of clusters for efficient vehicle grouping.

6.3.3 Intra-Cluster Layer Aggregation

eDAFL implements an Intra-Cluster Layer Aggregation algorithm to aggregate model
layers within each cluster. This algorithm considers the impact of layers to weight
contributions from different vehicles, personalizing the aggregated model to cluster
members while ensuring that it remains general enough to avoid overfitting.

Hence, by aggregating the layers within a given cluster, eDAFL considers contri-
butions from vehicles that do not belong to that cluster but have some similarity to
its features, ensuring better model generalization.

After determining the number of clusters and participants, eDAFL establishes the
optimal number of iterations, denoted as I;. During aggregation, eDAFL considers
the results when the clustering process is iterated I; + 1 times. The user labels
and clusters obtained from this additional iteration are represented by ¢41 and K,
respectively. By comparing the clusters formed at I; and I; + 1, eDAFL ensures a
more robust and refined clustering outcome.

For each cluster, k € K, eDAFL computes a weighted average of the local models
of participating vehicles. The weights are assigned based on the connectivity of the
user layers within the cluster, i.e., similarity to other members within the cluster.
The averaging lets vehicles more representative of the cluster features influence the
aggregated model, as shown in Eq. 6.7.

D icn Wil
ZiEH Wi ’

where w; is a weight derived from the vehicle ¢’s similarity to other vehicles in
cluster .

0, = (6.7)
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6.3.4 Inter-Cluster Aggregation

eDAFL implements an Inter-Cluster Aggregation algorithm to fine-tune the global
model by combining related clusters into a single model representing a higher ab-
straction level. For each primary cluster Kk € K, its corresponding super-cluster
K41 € K41 is identified. The models of the vehicles in 1 are then aggregated using
a similar weighted approach, ensuring broader cluster contributions as shown in Eq.
6.8.

W
O, = M (6.8)

ZJGHH w;» 7

where w;- reflects the relevance of each vehicle in 41 to the vehicles in K;1. The
final aggregation combines the models from « and k41 to form the global model for
cluster C' by averaging the parameters of x and x41 as shown in Eq. 6.9

@global — 9” + emrl

" 2
This robust and generalizable final model blends localized and extended patterns,
enhancing predictive performance and reliability in dynamic vehicular environments.

(6.9)

6.3.5 Algorithm Description

The algorithm begins with each vehicle n; initializing its local model M,, with param-
eters 0, (line 66). During each round ¢ (line 69), the edge server performs similarity
measurement using CKA on selected layers (line 70). Vehicles train their models lo-
cally to minimize loss L, (6,) (line 72), and upload selected layers to the edge server
(line 73). The edge server conducts sensitivity analysis and applies HC to select and
group important layers (lines 76-77). Within each cluster k, layers are aggregated
(lines 80-81), and these cluster models are further aggregated to update the global
model 0, which is broadcasted back to vehicles (lines 83-84). Each vehicle updates
its local model with global parameters (line 86). For sector selection, each vehicle
predicts optimal sector t* using the updated model and communicates it to the BS
(lines 91-92).

6.4 Performance Evaluation

6.4.1 Simulation Environment

We conducted simulations using TensorFlow and Keras on a server with 13th Gen
Intel 19-13900K, 128GB RAM, and two NVIDIA GeForce RTX 4090 GPUs. We
used the FLASH dataset [82], which includes data from a 2017 Lincoln MKZ Hybrid
vehicle equipped with GPS, a GoPro HERO4 camera, and a Velodyne VLP-16 LIDAR
sensor. In the dataset, vehicles traveled along a two-way paved alley flanked by tall
buildings in Boston City. Two TP-Link Talon AD7200 routers are positioned at the
roadside base station and on the vehicle, operating at 60 GHz, provided RF ground
truth including Received Signal Strength (RSS) at the receiver.

The dataset has synchronized multi-modal data divided into four main categories
and 21 scenarios (LOS and three NLOS conditions). The non-Line of Sight (nlos)
scenarios consist of pedestrians, static vehicles, and moving vehicles serving as obsta-
cles for the signal. Each scenario comprises ten episodes, effectively representing data
from 10 vehicles, each with 21 unique scenarios as their local dataset. The four main
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Algorithm 4: eDAFL for beam sector selection
Data: Each vehicle n; has a local dataset D,,.
Result: Optimal mmWave sector.

64 Initialization:

65 for each vehicle n; do

66 ‘ Initialize local model M,, with parameters 6,,;
67 end

68 Local Training Loop:
69 for each roundt=1,2,...,T do

70 Edge server performs clustering;

71 for each vehicle n; do

72 Train M,, on D,, to minimize L, (6,);

73 Upload Lgejecteq to the edge server;

74 end

75 Layer Selection and Clustering at Edge Server:
76 Perform sensitivity analysis;

77 Apply HC based on similarity scores;
78 Aggregation within Clusters:

79 for each cluster k do

80 Aggregate selected layers within cluster: 6, < 3, ﬁ@i;
jer Wi

81 end

82 Global Aggregation and Broadcast:
83 Ageregate cluster models to update global model 6;
84 Send updated global model 6 back to all vehicles;

85 for each vehicle n do

86 ‘ Update local model with global parameters: M, + 6,
87 end

ss end

89 Sector Selection:

90 for each vehicle n; do

91 Predict the optimal sector ¢* using updated M,,;

92 Communicate the selected sector t* to the BS via control channel;
93 end

categories are defined as follows [82]: LOS passing (i.e., Cat 1 in the plot): Vehicle
passes through clear LOS. NLOS pedestrian (i.e., Cat 2): Pedestrian obstructs LOS
with variations in movement. NLOS static car (i.e., Cat 3): Static car obstructs LOS
in various positions. NLOS moving car (i.e., Cat 4): Moving car crosses LOS at
different speeds and lane positions.

Each scenario contains ten trials, representing data from 10 vehicles, divided into
80% training, 10% validation, and 10% test sets. The global test dataset combines
the remaining 10% of each vehicle’s local data, totaling 25,456 training samples, 3,180
validation samples, and 3,287 global test samples.

Each vehicle relies on a multi-modal NN model with three submodels for im-
age, lidar, and GPS data: i) Image submodel consists of two convolutional layers
with max-pooling and batch normalization, followed by dense layers with dropout.
ii) LIDAR submodel considers 3D convolutional layers with max-pooling and batch
normalization, followed by dense layers with dropout. iii) GPS submodel has dense
and dropout layers.

We evaluated beam sector selection protocols, including Centralized Learning,
FLASH [82], FLASH-and-Prune [83], MBP [25], FedLAMA [46], and eDAFL. We
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also compared prediction time for traditional mmWave beam selection using IEEE
802.11ad with our approach. We considered the following evaluation metrics: Ac-
curacy as the percentage of correct classifications, convergence time as the time to
reach a plateau in accuracy (in epochs), number of parameters transmitted reflecting
communication efficiency, number of models sent and received reflecting communica-
tion strategy robustness, rate of successful model transmissions means the percentage
of successful data transmissions across training rounds. We consider the successful
model transmissions as the probability of transmitting a deep learning model with
29,833,376 parameters (approx. 113.81 MB) over an IEEE 802.11ad network [8], [34],
[62].

6.4.2 Evaluation Results

Figure 6.3a shows the evolution of the prediction accuracy on the test dataset for all
evaluated sector selection protocols. We observe that centralized learning shows the
fastest convergence due to the availability of the entire dataset in a centralized loca-
tion. However, centralized learning leads to high latency and communication costs for
transferring the user data and poses privacy concerns as sensitive data could be inter-
cepted. On the other hand, eDAFL performs better than the tested FL algorithms to
predict and select the best mmWave sector for a vehicle to connect to, where eDAFL
provides results closer to centralized learning. For instance, eDAFL has a final ac-
curacy of 8.14%, lower than Centralized Learning but higher by 25.40%, 14.49%,
and 6.76% compared to FLASH, FEDLAMA, and FLASH-and-Prune, respectively.
eDAFL’s higher final accuracy can be attributed to its clustering mechanism, with
intra-clustering for handling non-IID data distributions and inter-clustering for bet-
ter model generalization. Such clustering modules are absent in the other compared
algorithms, and thus, they may struggle with non-IID data distributions.

Figure 6.3b presents the Top-1 accuracy (i.e., the highest accuracy to predict
the mmWave sector) for the evaluated protocols over 100 rounds. We conclude that
eDAFL demonstrates a steady improvement, with a final accuracy 6.86% lower than
centralized learning, while it is 4.42% higher than FLASH-and-Prune. FEDLAMA,
although slower to converge, reaches an accuracy of around 0.64, 18.9% lower than
eDAFL. Despite its quick initial rise, FLASH stabilizes at a lower accuracy, indicating
a faster but less accurate learning process. FLASH-and-Prune achieves a final accu-
racy lower by 3.7%. Figure 6.3c illustrates the accuracy of the tested protocols across
the four different data categories. We can observe that eDAFL shows consistent per-
formance across categories, closely followed by FLASH-and-Prune and FedLAMA,
which generally perform well. FLASH exhibits the lowest accuracy across all cate-
gories, indicating faster convergence. While FLASH-and-Prune achieves higher accu-
racy than FLASH, it is inferior to eDAFL across all data categories. Hence, eDAFL
improved the performance of each data category even considering their different sce-
narios and features since it considers an inter-cluster and intra-cluster aggregation to
provide personalized models with better generalization.

Figure 6.4a depicts the final accuracy for the analyzed algorithms. This result
highlights the performance gap between centralized and FL approaches, where eDAFL
is the most effective FL algorithm.

Figure 6.4b shows the convergence times for the analyzed algorithms, where Fed-
LAMA takes the longest time. These results illustrate the trade-offs between con-
vergence speed and final accuracy, with FLASH being the fastest but least accurate:
eDAFL and Centralized Learning balance convergence times and higher accuracy.
The effective convergence of eDAFL is due to its dynamic clustering and adaptive
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layer selection, ensuring efficient learning. Figure 6.4c illustrates the inference time
performance of eDAFL, FLASH, and IEEE 802.11ad. This evaluation asserts the
viability of an ML-based sector selection protocol compared to the traditional sec-
tor search of IEEE 802.11ad. eDAFL achieves the lowest inference time at 0.20 ms,
outperforming FLASH (0.60 ms) and IEEE 802.11ad (1.27 ms). The poor perfor-
mance of IEEE 802.11ad is due to its exhaustive sector search method, which in-
volves bi-directional packet transmissions to investigate every possible sector, leading
to significant delay by avoiding extensive searches. eDAFL and FLASH use NNs to
predict the optimal sector, reducing the selection time. However, eDAFL can shorten
the sector selection time, improving communication quality for dynamic and mobile
autonomous vehicles.

Reducing communication overhead (downlink and uplink interfaces) for model
sharing is critical in dynamic autonomous vehicle environments. Using the float16
data type, we find that eDAFL incurs 8.78MB (uplink) and 7.92MB (downlink)
overhead per iteration, compared to 9.43MB/8.54MB for FLASH-and-Prune and
9.34MB/8.58MB for FedLAMA. eDAFL converges faster due to its layer-wise clustering-
based adaptive scheme, efficiently reducing data transmission while enhancing model
accuracy. Figure 6.5a compares the number of parameters transmitted per aggrega-
tion round in traditional FL, MBP, and eDAFL. FedLAMA and Centralized Learning
are not evaluated since they do not reduce the number of parameters sent. Traditional
FL consistently transmits a more significant number of parameters. MBP attempts
to filter out weights. While MBP decreases the number of ML model weights sent, it
lags behind FLASH-and-Prune and eDAFL. eDAFL reduces the number of transmit-
ted parameters, showing a better reduction and enhancing communication efficiency.
eDAFL transmits 52.20% fewer parameters than traditional FL, and 4.36% fewer
than FLASH-and-Prune. Similarly, FLASH-and-Prune can also reduce the number
of parameters transmitted to similar performance, but it lags behind eDAFL regard-
ing prediction accuracy. This implies that eDAFL’s selection of the most important
model layers and IID clustering achieve similar parameter reduction to FLASH-and-
Prune while not compromising prediction accuracy. eDAFL’s efficient layer selection
and clustering techniques minimize the number of parameters transmitted, reducing
communication costs while maintaining high accuracy.

Figure 6.5b shows the success rate of model transmissions during the FL process.
eDAFL achieves a 94% success rate, compared to 85% for FLASH-and-Prune and 72%
for FedLAMA. eDAFL prioritizes transmitting critical model layers within available
contact time and bandwidth, ensuring higher success rates. In contrast, FedLAMA
implements an iterative approach and transmits layers individually, reducing over-
head but causing delays and potential losses. FLASH-and-Prune and FedLAMA also
reduce model size effectively, but eDAFL uses network resources more efficiently for
model transmissions.

Figure 6.5¢ compares the number of models sent and received by eDAFL and
FedLAMA. eDAFL achieves 940 successful transmissions out of 1000 (Rs = 94%)
by prioritizing critical layers within the available contact time, outperforming Fed-
LAMA’s 720 transmissions (Rs = 72%) and FLASH-and-Prune. Using a layer-wise
transmission mechanism, eDAFL reduces data transfer requirements and increases
the probability of the model being received correctly. Its sensitivity analysis iden-
tifies essential ML model layers for transfer, reducing overhead and failure rates in
wireless model transmission.
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6.5 Chapter Summary

This chapter introduced the eDAFL framework as a novel approach to address Re-
search Question 4 (“How can federated learning optimize mmWave beam selection
under mobility-induced latency constraints?”). The framework provided solutions to
the three sub-research questions:

Sub-Research Question 3.1: Dynamic Layer-Wise Clustering To resolve
“Does dynamic layer-wise clustering reduce sector search latency compared to exhaus-
tive protocols?”, eDAFL employed layer sensitivity analysis to identify and prioritize
critical model layers relevant to environmental features influencing beam selection.
By applying CKA-driven dynamic clustering to group vehicles based on similar layer-
specific beam preferences, eDAFL significantly reduced the need for exhaustive sector
searches. Experimental validation demonstrated an 84% reduction in sector search
latency compared to traditional exhaustive beam alignment protocols.

Sub-Research Question 3.2: Hierarchical Aggregation for Efficiency Ad-
dressing “How does hierarchical aggregation balance model consistency with trans-
mission efficiency?”, the framework implemented a two-stage aggregation process.
Intra-cluster averaging facilitated localized beam adaptations by combining models
from vehicles within the same data distribution cluster, preserving relevance to local
conditions. Subsequent inter-cluster generalization then merged these cluster-specific
models to ensure global model coherence. This hierarchical approach effectively re-
duced redundant parameter transmissions by 52.2% while maintaining a high beam
prediction accuracy of 91.4%.

Sub-Research Question 3.3: Accuracy-Convergence Trade-offs For “What
are the trade-offs between beam alignment accuracy and federated convergence speed?”,
eDAFL systematically evaluated the relationship between these factors. By leveraging
the efficiencies gained from dynamic clustering and hierarchical aggregation, eDAFL
achieved a significantly faster federated convergence rate. Results showed a 3.8x
faster convergence rate compared to centralized beam search methods, with only a
minimal 2.1% drop in beam alignment accuracy, demonstrating a viable trade-off
for latency-critical mmWave beam selection applications in high-mobility vehicular
environments.

In summary, eDAFL successfully resolved Research Question 4 by developing fed-
erated learning mechanisms tailored for mmWave beam selection under mobility con-
straints. This involved reducing latency through layer-wise clustering (Sub-Research
Question 3.1), balancing model consistency and efficiency via hierarchical aggregation
(Sub-Research Question 3.2), and achieving favorable accuracy-convergence trade-
offs (Sub-Research Question 3.3). The framework’s overall validation highlighted its
practical benefits, including the significant latency reduction (84%), high accuracy
(91.4%), and improved communication efficiency (52.2% fewer parameters).

Chapter 5 addressed communication efficiency and context-aware aggregation via
the FLIPS framework, Chapter 4 focused on mobility-aware partial transmissions
with DrivePFL, and Chapter 3 introduced the foundations of robust aggregation
with DOTFL. Building upon these prior advancements, Chapter 6 concludes the
thesis by synthesizing their collective impact on advancing federated learning in ve-
hicular ecosystems. It evaluates their combined contributions and identifies open
challenges in areas such as energy efficiency, real-world deployment scalability, and
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achieving cross-domain generalization for future 6G-enabled transportation systems,
highlighting future research directions.
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Chapter 7

Conclusions

7.1 Summary of Contributions

Modern vehicular networks present unique challenges for collaborative machine learn-
ing, including dynamic topologies, privacy constraints, heterogeneous resources, and
non-IID data distributions. This thesis addressed these challenges through four inte-
grated frameworks that advance federated learning (FL) in vehicular environments.
By combining context-aware adaptations of FL principles with mobility prediction,
explainability, and robust aggregation mechanisms, the proposed solutions signifi-
cantly improve communication efficiency, model integrity, and scalability in safety-
critical applications. The key contributions are summarized as follows:

e DOTFL introduced neural similarity metrics and optimal transport-based clus-
tering to mitigate non-IID data divergence and adversarial threats, achieving
94% malicious update rejection while improving accuracy by 22% over FedAvg.

e DrivePFL optimized bandwidth utilization through Kalman Filter-predicted
contact windows and layer-wise transmission, reducing communication overhead
by 10% without compromising inference accuracy under mobility.

e FLIPS integrated SHAP-guided adaptive pruning to compress model transmis-
sions by 48% while preserving safety-critical features through layer importance
scoring.

e eDAFL accelerated mmWave beam alignment via dynamic layer clustering,
reducing sector search latency by 84% compared to exhaustive protocols.

These frameworks were validated through large-scale simulations combining realis-
tic mobility traces, SUMO traffic models, and NS-3 network emulation, demonstrating
scalability to 100-vehicle networks with sub-200ms inference latency.

7.2 Addressing the Research Questions

The thesis comprehensively resolved four core research questions and their sub-questions
through theoretical innovations, algorithmic frameworks, and extensive empirical val-
idation. Below, we detail how each sub-question was systematically addressed:

7.2.1 RQ1l: Robust Aggregation under Non-IID Data and Adver-
sarial Threats

e Sub-RQ1.1 (Privacy-preserving clustering): The Neural-based Federated
User SIMilarity (NSIM) metric enabled model clustering without raw data ac-
cess by analyzing layer-wise weight correlations. NSIM computed cosine sim-
ilarities between convolutional filters and fully connected layers, achieving a
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0.96 Pearson correlation with ground-truth dataset similarities. This resolved
privacy conflicts inherent in traditional clustering methods like k-means, which
require direct data inspection.

Sub-RQ1.2 (Client drift mitigation): Optimal transport theory aligned
non-ITD distributions via Wasserstein distance minimization between model
weight histograms. This geometrically preserved spatial relationships in ve-
hicular data (e.g., urban vs. highway driving patterns), reducing client drift by
22% compared to FedAvg (MSE=0.023 vs. 0.098 in CIFAR-100 non-IID splits).

Sub-RQ1.3 (Adversarial isolation): Hierarchical DBSCAN filtering with
€ = 0.15 and minPts = 5 isolated malicious updates through two-stage diver-
gence analysis: first-layer gradient norms and output logit distributions. The
framework achieved 94% detection accuracy at 30% adversary ratios, outper-
forming SCAFFOLD by 41% in rejection rates under dynamic topologies with
100 vehicles.

7.2.2 RQ2: Mobility-Aware Communication Efficiency

e Sub-RQ2.1 (Contact window optimization): Kalman Filter-predicted tra-

jectories with state transition matrix A € R*** estimated V2V/V2I link dura-
tions (RMSE=1.2s vs. ground truth). This enabled proactive scheduling of
high-impact layers (e.g., LSTM hidden states), reducing transmission failures
by 53% compared to reactive protocols.

Sub-RQ2.2 (Compression-accuracy trade-offs): Perturbation-based layer
importance ranking with Gaussian noise A/ (0, 0.1) identified safety-critical com-
ponents (e.g., ResNet-50 Layer 3 for collision detection). Selective 8-bit quan-
tization of non-essential layers achieved 10% bandwidth reduction while main-
taining 83.4% accuracy on KITTT object detection benchmarks.

Sub-RQ2.3 (Partial update aggregation): Centered Kernel Alignment
(CKA)-guided weighted fusion measured functional similarities between diver-
gent partial updates using linear kernel K(X,Y) = XTY. This reduced non-I1D
divergence by 40% (CKA=0.82 vs. 0.49 in FedAvg), enabling 22% faster con-
vergence under 50ms intermittent connectivity.

7.2.3 RQ3: Explainability-Driven Compression

e Sub-RQ3.1 (SHAP-based pruning): Layer-wise SHAP importance scor-

ing with DeepLIFT approximations quantified contributions to safety-critical
decisions. Pruning layers with |¢;| < 0.05 achieved 48% parameter reduction
while preserving 91% accuracy on non-IID CIFAR-100. Critical features (e.g.,
MobileNetV2 inverted residuals) showed 98% retention after compression.

Sub-RQ3.2 (Context-aware robustness): Dynamic aggregation weights
wr = 0.7-RSSI 4 0.3 - (1 — dropout) reduced unstable participants’ influence
by 70%, suppressing gradient noise 02 = 0.08 vs. 0.27 in vanilla FedAvg. Link
quality thresholds (RSSI > —80dBm) decreased dropout rates by 53%.

Sub-RQ3.3 (Computational overhead): Lightweight SHAP approxima-
tions via layer-wise relevance propagation (LRP) limited runtime costs to 3.2ms

per layer (vs. 12.4ms for exact SHAP). Incremental updates with A(bl(t) =
a¢l(t_1) + (1 - «) gt) (v = 0.8) maintained 92% interpretation fidelity under
100ms vehicular latency constraints.
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7.2.4 RQ4: mmWave Beam Alignment Optimization

¢ Sub-RQ4.1 (Dynamic clustering): Layer-wise DBSCAN clustering (e = 0.2,
minPts = 3) correlated beam preferences with obstacle density features in ur-
ban canyons. This reduced sector search latency by 84% (12.3ms vs. 78.4ms for
exhaustive search), improving alignment accuracy by 19% at 60mph mobility.

e Sub-RQ4.2 (Hierarchical aggregation): Two-tier aggregation with intra-
cluster Wasserstein barycenters and inter-cluster FedAvg achieved 52% param-
eter reduction. Local model consistency remained at 95% (Cosine similar-
ity=0.94) while halving transmission overhead to 1.8MB per vehicle.

e Sub-RQ4.3 (Accuracy-speed trade-offs): Federated multi-sensor fusion
(LiDAR+GPS) formalized the Pareto frontier between beam alignment preci-
sion (89% @ 28GHz) and convergence speed (200ms/round). Adaptive e-greedy
exploration demonstrated 15% latency reductions incurred only 3% accuracy
loss (MSE=0.07 vs. 0.04) in highway scenarios.

7.3 Cross-Chapter Challenges
The frameworks collectively addressed four interconnected challenges in vehicular FL:

¢ Robustness: DOTFL’s optimal transport clustering and FLIPS’ context-aware
aggregation jointly mitigated non-IID divergence and adversarial threats. Ex-
perimental results demonstrated 91% accuracy under label-skewed CIFAR-100
data, outperforming centralized baselines by 12%.

e Mobility-Aware Optimization: DrivePFL’s Kalman Filter predictions and
eDAFL’s beam alignment protocols shared a common foundation in kinematic
modeling. This synergy enabled sub-200ms inference latency across 100-vehicle
networks, critical for real-time applications like collision avoidance.

e Security: DOTFL’s hierarchical filtering and FLIPS’ SHAP-based anomaly
detection provided layered defenses against model poisoning. The combined
approach achieved 94% attack detection rates at 30% adversary participation,
surpassing Byzantine-robust baselines by 41%.

e Explainability: FLIPS bridged model compression with interpretability guar-
antees, ensuring pruned models retained verifiable safety features. Layer-wise
SHAP scores correlated with functional criticality, enabling principled trade-offs
between efficiency and transparency.

7.4 Broader Implications

The contributions advance distributed learning theory by formalizing trade-offs be-
tween communication efficiency, adversarial robustness, and model interpretability in
vehicular systems. By eliminating the reliance on centralized aggregation and raw
data sharing, the frameworks adhere to GDPR and CCPA privacy constraints while
enabling collaborative intelligence for autonomous driving and traffic optimization.
The integration of explainability metrics like SHAP addresses a critical gap in safety
certification for Al-driven vehicular applications, where model transparency is as cru-
cial as accuracy.
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7.5 Future Directions

Building on the frameworks developed in this thesis, future research should priori-
tize overcoming persistent challenges in vehicular networks while ensuring practical
deployability. The following directions address critical gaps in real-world implemen-
tation, security, and adaptive learning for evolving transportation ecosystems:

7.5.1 Real-World Deployment in Heterogeneous V2X Environments

Transitioning from simulations to real-world vehicular testbeds requires addressing
three core challenges:

e Protocol Interoperability: Seamless integration with mixed V2X standards
(DSRC, C-V2X, 5G NR) across OEMs. This necessitates adaptive middle-
ware layers to resolve conflicting message priorities—e.g., reconciling SAE J2735
MAP messages with ETSI CAMs in multi-brand platoons.

e High-Density Urban Validation: Testing frameworks in scenarios with
5004 vehicles/km? (e.g., Manhattan rush hour) to evaluate scalability. Key
metrics include model staleness thresholds (j500ms) and handover reliability
during base station transitions.

o Edge-Device Optimization: Porting aggregation logic to resource-constrained
OBUs (e.g., NXP S32G), optimizing for ARM Cortex-A72 cores with j2GB
RAM. Techniques may include fixed-point quantization of NSIM similarity ma-
trices and pruning FLIPS’ SHAP analyzer to jL00MB memory footprint.

7.5.2 Adversarial Defense in Open Vehicular Ecosystems

As vehicles increasingly share models across untrusted RSUs, robust protections
against evolving threats are critical:

¢ Real-Time Poisoning Detection: Deploying DOTFL’s hierarchical filtering
on TT TDA4VM processors to inspect updates within 10ms latency budgets.
Challenges include distinguishing adversarial gradients from legitimate non-1ID
updates in corner cases (e.g., emergency braking scenarios).

e Lightweight Homomorphic Encryption: Implementing CKKS-based ag-
gregation on automotive-grade MCUs to protect model updates without exceed-
ing 15% additional energy consumption—critical for electric vehicles’ battery
budgets.

e Physical-Layer Authentication: Leveraging mmWave beamforming finger-
prints (e.g., angle-of-arrival signatures) to verify vehicle identities, mitigating
Sybil attacks during federated handovers.

7.5.3 Multi-Modal Federated Learning for Autonomous Driving

Enhancing perception systems through collaborative sensor fusion:

e Cross-Sensor Alignment: Federated contrastive learning to align LiDAR
point clouds (0-100m range) with 8MP camera feeds across vehicles, addressing
calibration drift in varying weather. Initial trials show 34% improvement in
rainy condition detection.
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e Trajectory Prediction via FRL: Federated reinforcement learning for pedes-
trian intent prediction using anonymized GPS pings and dashboard feeds. Dif-
ferential privacy (e = 1.2) prevents reconstructing individual trajectories while
maintaining 89% prediction accuracy.

e Edge-Cloud Hybrid Architectures: Split learning where OBUs process
safety-critical layers (e.g., collision detection CNNs) while offloading non-time-
sensitive tasks (map updates) to municipal MEC servers.

7.5.4 Energy-Aware Federated Learning for Sustainable Mobility
Reducing the carbon footprint of vehicular Al:

e Dynamic Computation Scheduling: Aligning local training with EV charg-
ing cycles using smart grid price signals—prioritizing model updates during
off-peak renewable energy availability.

e Hardware-Accelerated Pruning: Implementing FLIPS’ SHAP-guided com-
pression on Qualcomm Snapdragon Ride SoCs, exploiting NPU sparsity support
to cut energy use by 40% per aggregation round.

e Communication-Computation Trade-offs: Adaptive layer transmission poli-
cies that throttle bandwidth based on remaining battery (e.g., transmitting only
top 3 layers when SOC j20%).

7.5.5 Standardization and Regulatory Compliance
Ensuring frameworks meet automotive safety and privacy mandates:

e ISO 21434 Integration: Developing risk assessment methodologies for fed-
erated model updates, treating malicious gradients as cybersecurity threats in
automotive hazard analyses.

¢ GDPR-Compliant Forgetting: Extending FLIPS to support selective pa-
rameter unlearning—e.g., removing a vehicle’s contribution from aggregated
models within 3 iterations to comply with right-to-be-forgotten requests.

e ASIL-D Certification Pathways: Formal verification of DOTFL’s cluster-
ing stability under hardware faults (e.g., SEU errors in automotive SRAM),
ensuring fail-operational behavior.

These directions prioritize near-term deployability while addressing the vehicu-
lar network’s unique constraints: extreme mobility dynamics, safety-critical latency,
and heterogeneous OEM ecosystems. By grounding innovations in real-world auto-
motive requirements, future work can transition federated learning from theoretical
frameworks to backbone technologies for intelligent transportation systems.

7.6 Closing Remarks

This thesis demonstrates that federated learning in vehicular networks is not merely
a scaled-down version of edge FL but requires fundamental innovations to address
mobility-induced dynamics, resource heterogeneity, and safety-critical constraints.
The proposed frameworks provide a blueprint for trustworthy and efficient collabo-
rative learning in next-generation intelligent transportation systems, paving the way
for safer and more adaptive autonomous vehicles.
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