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General Abstract

Cheminformatics has played a central role in medicinal chemistry, enabling the storage, analysis, and
modelling of large volumes of chemical data, particularly for small organic molecules. However, its
application to large and structurally complex compounds remains underdeveloped. This thesis
addresses that gap by developing and improving computational tools that extend molecular
representation and modelling strategies to natural products, modified peptides and macromolecules,
which often fall outside the scope of conventional methods.

One part of the thesis focuses on the reimplementation and extension of two molecular
fingerprints. The macromolecule extended atom-pair fingerprint (MXFP) was adapted within an
open-source framework and applied to the analysis of chemical spaces composed of molecular pairs.
Separately, the MinHashed atom-pair fingerprint (MAP4) was extended to encode stereochemistry,
resulting in MAP4C. Both MXFP and MAP4C were integrated into a revised version of the peptide
design genetic algorithm (PDGA), a modular, rule-based framework for generating synthetically
accessible peptide analogs. Coupling MAP4C to PDGA enabled efficient similarity-based
exploration of combinatorial peptide spaces exceeding 10760 structures. In addition, MXFP could be
used to generate pharmacophorically similar peptide analogs of any query structure.

The thesis also explores the use of deep learning models for prediction tasks related to peptides
and natural products. A general-purpose language model (GPT-3.5 turbo) was benchmarked against
established models for classifying antimicrobial and hemolytic peptide sequences. In a separate
project, a transformer-based model was trained to predict the absolute configuration of natural
products from achiral molecular input, potentially serving as a computational alternative to

experimental stereochemistry assignment.
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1 Thesis Outline

1.1 Thesis Scope and Outline

Most modern drugs available on the market fall within the two main categories of small organic
molecules and biologics. In early drug discovery, computational methods for these two groups differ
substantially, with small organic molecules typically relying on molecular graph-based
representations and biologics typically relying on sequence-based representations. However,
emerging therapeutic modalities blur the line between these two categories. Therapeutic peptides, in
particular, combine characteristics of both.

For example, many natural antimicrobial peptides (AMPs), such as vancomycin and
polymyxin, are primarily composed of peptide monomers but also incorporate a variety of chemical
modifications. These modifications are often difficult to encode accurately using conventional
sequence-based methods, which are designed for unmodified peptide chains. At the same time,
traditional cheminformatics approaches fail to represent the size and sequence-dependent properties
of these larger and more complex molecules. As a result, there is a pressing need for computational
tools that can not only accommodate the structural scale of therapeutic peptides (and other
macromolecules) but also adapt to their chemical richness.

Addressing this need, previous work in the Reymond group led to the development of two
molecular fingerprints tailored for macromolecular encoding: the macromolecule extended atom-pair
fingerprint (MXFP) and the MinHashed atom-pair fingerprint (MAP4). In addition, a genetic
algorithm that uses these fingerprints to guide the generation of peptide analogs from any query
structure was introduced. During my PhD, I contributed to both (i) the further development and
refinement of these methods and (i1) their integration into practical applications for the design of new
AMPs, in close collaboration with the Reymond group’s wet lab team. The content of this thesis

focuses primarily on objective (i), covering the computational developments in detail. However, the



tools described here have been applied in both completed and ongoing collaborative projects within
the research group and with external collaborators (related publications are outlined in section 1.2).
The following chapter outline is intended to provide context and a common thread for the individual

projects presented in this thesis:

Chapter 2 provides a general introduction to key concepts and techniques relevant to the thesis. It

serves as a foundation for understanding the context and contents presented in later chapters.

Chapter 3 began with the goal of introducing an open-source RDKit implementation of MXFP.
However, the project evolved into a broader exploration of how tools originally developed for
reaction informatics could be repurposed to analyse chemical spaces composed of molecular pairs.
This concept is potentially useful for identifying meaningful transformations and scaffold hops within

analog series generated by generative models.

Chapter 4 focuses on the development of a chiral extension of the MAP4 fingerprint, resulting in
MAPA4C. A major challenge in representing natural products and peptides is the presence of multiple
stereocenters, where different stereoisomers, such as D- and L-amino acids, can lead to distinct
biological properties. MAP4C was designed to address this issue by explicitly encoding
stereochemistry, enabling the differentiation of different stereoisomers. The fingerprint retains
compatibility with both small and large molecules, making it particularly suitable for the analysis of

structurally diverse datasets.

Chapter 5 describes how the newly developed MXFP and MAP4C fingerprints were incorporated
into a refined version of the peptide design genetic algorithm (PDGA). The updated algorithm was
modularized to support a range of chemically realistic modifications, reflecting both the structural
diversity observed in nature and the constraints of synthetic accessibility. The performance of PDGA

was evaluated in large combinatorial spaces (on the order of 10760 structures) demonstrating its



ability to recover arbitrary query compounds and to propose structurally related analogs of these

queries.

Chapter 6 focuses on the emerging role of large language models (LLMs) in chemistry. During the
initial wave of interest in tools such as ChatGPT, we evaluated whether a general-purpose LLM
(GPT-3.5 turbo) could be used out of the box to predict the antimicrobial and hemolytic activity of
peptide sequences. Although the model performed comparably to established predictors, its high
computational cost limited its practical utility. Nevertheless, the study provided an early benchmark
for the potential application of LLMs in molecular activity prediction. Some of the models and
approaches developed in this context have also been used to guide candidate selection in both

published work and ongoing collaborations within the group.

Chapter 7 continues the exploration of transformer-based models by applying them to a specific
challenge in natural product research: the prediction of absolute stereochemistry. A transformer
model (NPstereo) was trained to predict the most likely absolute configuration (chirality) of a natural
product based solely on its achiral SMILES representation. NPstereo achieved good predictive
performance and could potentially offer a computational alternative to experimentally intensive

methods for stereochemical assignment.

1.2 Publications

The thesis is based on the first-author publications listed below, each presented as an individual

chapter.
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Drugs. Digital Discovery 2023, 10.1039.D3DD00039G.

https://doi.org/10.1039/D3DD00039G.



https://doi.org/10.1039/D3DD00039G

2. Orsi, M.; Reymond, J.-L. One Chiral Fingerprint to Find Them All. J Cheminf. 2024, 16 (1),

53. https://doi.org/10.1186/s13321-024-00849-6.

3. Orsi, M.; Reymond, J. Navigating a |E+60 Chemical Space of Peptide/Peptoid Oligomers.

Molecular Informatics 2024, €202400186. https://doi.org/10.1002/minf.202400186.

4. Orsi, M.; Reymond, J.-L. Can Large Language Models Predict Antimicrobial Peptide

Activity and Toxicity? RSC Med. Chem. 2024, 15 (6), 2030-2036.

https://doi.org/10.1039/D4MDO00159A

5. Orsi, M.; Reymond, J.-L. Assigning the Stereochemistry of Natural Products by Machine

Learning. ChemRxiv, February 7, 2025. https://doi.org/10.26434/chemrxiv-2024-zz9pw.

The following co-authored publications were produced during the course of this thesis. Relevant

contributions have been integrated into the thesis where explicitly indicated.
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2 Introduction

2.1 Scaling Drug Discovery: From High-Throughput to /n Silico

The advent of high-throughput screening (HTS) in the 1990s marked a paradigm shift in drug
discovery, transforming it from a largely hypothesis-driven discipline into a numbers-driven
endeavour. With the ability to experimentally test hundreds of thousands to millions of compounds
against a biological target, HTS established the idea that success could be achieved by simply
increasing the volume of screened candidates. Technologies like phage display'-? and DNA-encoded
libraries (DELs)? further pushed the boundaries of this idea, enabling the experimental screening of
libraries containing up to 1079-10"11 variants, which is to date the highest number of compounds
screenable in vitro.*°

Despite these advancements, in vitro screening remains fundamentally limited. Practical
constraints such as the cost and time associated with compound synthesis, reagent availability,
solubility, and assay throughput restrict the size and diversity of screenable chemical space. More
importantly, these methods are unable to access the vast majority of all theoretically plausible
molecules, which are collectively referred to as chemical space.””!! Although this space is
conceptually unlimited, drug discovery has traditionally focused on the subset relevant to drug-like
small organic molecules. Even within this constrained region, estimates suggest that chemical space
may encompass between 10720 and 10760 structures, which is orders of magnitude beyond what any
experimental screening library can contain.!?-14

To address these limitations, theoretical and computational approaches have emerged as
powerful alternatives to in vitro techniques. Operating entirely in silico, they enable the efficient
exploration of vast regions of chemical space that are otherwise inaccessible through experimental
means. This computational turn has been made possible by the rise of cheminformatics, a discipline

that began with the task of digitizing chemical structures and databases, but has since evolved into a

comprehensive toolkit for modelling, analysing, and navigating chemical space.!> Today,



cheminformatics supports nearly every stage of early drug discovery and serves as an interface
between experimental data and compound design, enabling the interpretation of experimental results
and prioritization of candidates for synthesis and further testing.!6-2

Central to cheminformatics is the question of how molecular structures can be represented in
formats suitable for computational processing. Translating the complexity of chemical structures into
machine-readable encodings is the foundation upon which all downstream analyses, such as similarity
searching, virtual screening, or predictive modelling, are built.?!~23 The next section introduces how

molecules are digitally represented for computational use, and how these representations serve as the

basis for cheminformatics and machine learning pipelines.
2.2 Molecular Representations for Computational Applications

To operate on molecular structures, computers require these structures to be translated into a machine-
readable format. In cheminformatics, this is typically done by transforming molecules into high-
dimensional numerical vectors. These representations, commonly referred to as molecular descriptors
or fingerprints, serve as mathematical proxies for molecular identity and summarize structural
features such as atom types, connectivity, electronic distribution, stereochemistry, and spatial
geometry.?*?3 Importantly, this transformation enables quantitative comparisons between molecules
by placing them in a structured, vectorized space where distances and similarities can be defined
using formal metrics.?%?” As such, molecular descriptors form the basis for tasks such as compound
clustering, virtual screening, and machine learning applications that require structured numerical
input.

Molecular descriptors can be broadly categorized by dimensionality: 1D descriptors typically
reflect single physicochemical properties; 2D descriptors account for full molecular topology based
on graph representations; and 3D descriptors incorporate spatial geometry, which offers more detailed
information but requires 3D coordinates, making them slower to compute and less widely applicable

in early-phase screening. For most tasks in drug discovery, 2D descriptors strike the best balance



between detail and computational efficiency.?® In particular the descriptor classes described below

will be relevant for the contents discussed in the thesis (Figure 1).
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Figure 1. Comparison of common molecular fingerprinting strategies relevant for this thesis. a)
Substructure-based fingerprinting encodes atom-centered circular neighborhoods defined by a fixed
bond radius. b) Atom-pair fingerprints represent all atom pairs along with their topological distance,
capturing global molecular shape. ¢) Hybrid fingerprints combine circular substructures with atom-
pair distances by generating shingles of substructure pairs and their separating topological distance.

2.2.1 Circular substructure fingerprints

Circular substructure fingerprints, such as Extended Connectivity Fingerprints (ECFPs), encode
molecular structure by enumerating all atom-centered circular subgraphs within a specified bond
diameter (Figure 1a).2%3° Each subgraph is hashed into a numerical identifier, and these identifiers
are subsequently folded into a fixed-length binary vector using a modulo operation, yielding a sparse
bitstring that serves as a unique structural fingerprint of the molecule. Owing to their lightweight
implementation and robust performance, ECFPs are to date the golden standard for similarity-based
tasks in cheminformatics.?!

MinHashed Fingerprints (MHFPs) represent a recent evolution of this concept.3? Like ECFPs,
they extract circular atom environments but encode them as SMILES strings instead of feature-based

graphs. These strings are hashed using the SHA-1 algorithm and subjected to MinHashing, a
9



technique borrowed from natural language processing.? A key advantage of MinHashing lies in its
compatibility with locality-sensitive hashing (LSH) forests, which enable extremely fast and scalable
similarity searches across ultra-large chemical libraries.?* This makes MHFPs particularly well-suited
for applications requiring rapid nearest-neighbour queries in very high data regimes.

While circular substructure fingerprints perform exceptionally well for small molecules, they
lose resolution when applied to large or repetitive structures such as peptides or polymers. Their
limited radius constrains them to local subgraphs, which can obscure global molecular topology
especially in cases with repeating monomers (such as with peptides and glycosides) where not only
the presence of certain substructures is important, but also their relative placement within the global
structure. To overcome this, alternative fingerprinting strategies have been developed to more

effectively capture long-range structural information.
2.2.2 Atom-pair fingerprints

Atom-pair fingerprints provide an effective way to capture the complexity of large molecules such as
peptides and other natural products. Unlike circular substructure methods that focus on local
neighbourhoods, these descriptors represent molecular structure by recording all pairs of atoms along
with the topological distances (measured in bond counts) that separate them (Figure 1b). This
captures global molecular features, including spatial relationships and overall shape.??

The Xfp fingerprint, developed for small molecule comparison, builds on atom-pair
representations by additionally classifying atoms according to pharmacophoric features such as
hydrogen bond donors (HBD), acceptors (HBA), hydrophobic groups, and planar atoms. It then
counts the frequency of all atom-pair combinations across discrete topological distances, typically
ranging from one to ten bonds.3*3” Building on this concept, the Macromolecule Extended Atom-Pair
Fingerprint (MXFP) adapts this encoding for larger, more complex structures by expanding both the
distance resolution (using 31 bins that cover a wide range of bond lengths) and the pharmacophoric

groups (including six distinct functional categories beyond simple atom identity).38° This encoding
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enables the fingerprint to retain long-range information and capture key functional patterns found in

macromolecules while still maintaining a manageable representation size and computation time.
2.2.3 Hpybrid Fingerprints

While circular substructure and atom-pair fingerprints each offer unique advantages, they also come
with trade-offs: the former excels at capturing local environments but struggles with large-scale
topology and sequence-dependent effects, while the latter encodes long-range features at the cost of
lower local precision. Hybrid fingerprints aim to unify these approaches by combining their
respective strengths (Figure 1c¢).

One such fingerprint is the MinHashed Atom-Pair fingerprint up to four bonds (MAP4), which
combines the methods of circular substructure and atom-pair fingerprints.** MAP4 extracts atom-
centered circular substructures up to two bonds away and converts these into canonical SMILES
strings. From this set of substructures, MAP4 generates all possible atom pairs and encodes them as
shingles, composite strings that combine the two substructure SMILES with their topological distance
in the format: “SMILES1|distfSMILES2”. These shingles are then MinHashed into a fixed-length
fingerprint. A key strength of MAP4 lies in its versatility: it performs well across a wide range of
molecule sizes, from small drug-like compounds to large peptides and macrocycles. The MinHashing
step ensures compatibility with LSH, allowing rapid nearest-neighbour searches and scalable
chemical space visualization using algorithms like TMAP.#!

To further expand its applicability, the MAP4C variant extends the MAP4 encoding to
incorporate chiral information by embedding Cahn-Ingold-Prelog (CIP) descriptors into the shingles
prior to hashing.*? Stereochemistry plays a critical role in molecular function across both small
molecules and larger macromolecules: while enantiomers of small drugs can exhibit markedly
different pharmacokinetics or target affinities, stereochemical variation in peptides and natural
products can impact folding, membrane interaction, and bioactivity.**** To address this, we
developed MAP4C as a practical solution for our own experimental workflows, enabling the

differentiation of peptide diastereomers containing both D- and L-residues and ensuring that

11



stereochemical differences are preserved in similarity comparisons. At the same time, MAP4C
remains broadly applicable to a wide range of molecular structures, from small chiral drugs to large,

stereochemically complex natural products.

2.3 From Representation to Prediction: Machine Learning in Molecular
Design

Once molecular structures are encoded numerically, they can be positioned in a structured space
where molecular relationships become quantifiable. This enables not only similarity-based
operations, but also the application of statistical models that learn from data and generalize to unseen
compounds. Machine learning (ML) methods provide a practical solution to this need, offering a way
to relate molecular features to experimental outcomes. As datasets have expanded and become more
heterogeneous, ML has proven useful for identifying patterns within these datasets that are not easily

captured by rule-based heuristics alone.

2.3.1 Descriptor-Based Modelling with Classical Algorithms

One of the earliest and most widely used applications of machine learning in drug discovery involves
pairing molecular descriptors with classical algorithms to predict biological activity, toxicity, or target

binding.4+47

Among the first algorithms adopted in this setting were Support Vector Machines
(SVMs), Random Forests (RFs), and Multilayer Perceptrons (MLPs). These models, while relatively
simple by today’s standards, remain effective when combined with well-curated molecular
descriptors. SVMs operate by identifying an optimal hyperplane that separates classes in a high-
dimensional feature space.*” RFs are ensemble methods that aggregate the predictions of multiple
decision trees, offering robustness to noise and built-in feature importance metrics.>® MLPs, as simple
feedforward neural networks, are capable of learning non-linear mappings from input features to
target properties, though they tend to require more tuning and regularization than SVMs or RFs."!

All three model types benefit from the fixed length, vectorized nature of molecular descriptors,

which allows them to be integrated directly with minimal preprocessing. Their relatively low
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computational demands and moderate data requirements make them well suited for applications
where experimental throughput is limited. Even in the context of more complex architectures, these
models continue to serve as useful baselines and are often preferred in cases where interpretability,

fast iteration, or robustness under data constraints are essential.>>>3
2.3.2 Learning Representations from Molecular Structure

While molecular fingerprints have enabled efficient modelling across many tasks, their design is
inherently static. They capture features based on predefined rules and heuristics, which makes them
well-suited for similarity comparisons and classical modelling approaches. However, because these
features are selected in advance, they may not reflect the structural patterns most relevant to a specific
task or dataset. Representation learning offers a more flexible alternative. Instead of relying on hand-
crafted descriptors, models can be trained to learn internal molecular representations directly from
structural input. These learned representations, or embeddings, are continuous vectors that summarize
the chemical and structural information most predictive of a given outcome.’*> They are optimized
during training and can later be reused for related tasks such as clustering, similarity analysis, or
chemical space visualization.

A natural choice for learning such representations is to work directly with the molecular graph,
where atoms are treated as nodes and bonds as edges. This format preserves the structure of molecules
and avoids the abstraction steps required by traditional fingerprints. Graph neural networks (GNN5s)
are designed to operate on this kind of data.>®®! They use iterative message-passing to update atom-
level features based on the local connectivity within the graph. Over multiple layers, the model
incorporates information from larger regions of the molecule, allowing it to capture both local
substructures and broader topological features. Because GNNs learn representations directly from
molecular structure, they eliminate the need for manual feature design and can adapt to the statistical
properties of the training data. However, graph-based models also come with limitations. They can

be computationally intensive, particularly for large molecules, and often require careful tuning of

13



architecture and message-passing schemes to perform well. In addition, they lack the straightforward

parallelization and scalability that have made sequence-based models highly effective.
2.3.3 Sequence-Based Representations and Transformer Models

An alternative is to represent molecules as linear sequences, such as SMILES strings or amino acid
chains. These formats make it possible to apply powerful and computationally efficient techniques
originally developed for natural language processing (NLP), where models learn to recognize patterns
in sequential data.

Early NLP applications in cheminformatics were driven by Recurrent Neural Networks
(RNNs), which process input sequences one token at a time. Because chemical structures can be
represented as SMILES strings, and peptides as residue sequences, RNNs can be applied with little
preprocessing to these string representations directly. RNNs are useful for both predictive and
generative tasks.%>% However, they suffer from several limitations. Their strictly sequential
processing hinders parallelization and makes training inefficient, particularly for long sequences. In
addition, their ability to capture dependencies between distant tokens is often limited by vanishing
gradients and restricted memory capacity, which can affect performance on inputs with long-range
interactions.

The transformer architecture was introduced to overcome the limitations of RNNs, most
notably in the seminal paper “Attention Is All You Need”, which proposed a fully attention-based
model for sequence learning.® Unlike RNNs, which process sequences in a strictly sequential
manner, transformers apply a self-attention mechanism® that allows the model to consider all
positions in a sequence simultaneously. This architecture makes it possible to model dependencies
between distant tokens without being constrained by input order. As a result, transformers are
particularly effective at capturing long-range relationships within molecular sequences, such as
correlations between distant functional groups or the influence of backbone modifications in peptides.

When applied to SMILES strings or amino acid sequences, transformers treat molecules as

sequences of discrete tokens (typically atoms, bonds, or residues). The self-attention mechanism
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enables the model to learn which parts of the sequence are most informative for a given task.
Transformers have proven particularly effective in generative modelling.%>7! By learning the
conditional probability of each token given the preceding context, they can be trained to produce new
molecular or peptide sequences that follow the syntactic rules of the input representation and
(potentially) reflect learned structure-function relationships. When properly trained, these models are
capable of generating chemically valid SMILES strings or biologically plausible sequences,

conditioned on specific design objectives such as activity, toxicity, or target selectivity.”?7

2.3.4 Synergies Between Classical and Deep Learning Approaches

Despite the increasing sophistication of deep learning methods, classical machine learning remains a
relevant and complementary approach in many areas of drug discovery. It continues to offer practical
advantages in settings where data is limited, or interpretability is a priority. These conditions are
common in exploratory or early-phase projects.!”-76-7

A key distinction between classical machine learning and modern deep learning approaches
lies in how they handle molecular input and data availability. Classical models based on molecular
fingerprints typically operate on fixed-length, chemically meaningful descriptors. These features
encode established structural principles and often act as inductive biases, allowing the models to
perform reliably even on relatively small, well-curated datasets and in out-of-distribution scenarios.
In contrast, deep learning models usually operate on raw or minimally processed molecular
representations (such as graphs or sequences) and require larger, more diverse datasets to learn useful
abstractions. While deep models can capture complex, nonlinear relationships between structure and
activity, their performance often depends on how well the training data cover the relevant chemical
space. When this space is narrow or unrepresentative, generalization becomes more difficult and
model reliability can suffer.8%-82 Transfer learning offers a partial solution to this problem by allowing

pretrained models to be fine-tuned on smaller, domain-specific datasets.®3-3¢ However, this strategy

still depends on the assumption that the source data contain at least some relevant structural patterns.
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Hence, the choice between classical descriptors and learned representations is best viewed in
terms of alignment with the problem setting. For tasks with well-defined objectives and limited data,
classical machine learning methods often perform competitively, with lower computational
requirements, faster deployment, and greater interpretability.”’-”° Deep learning models, by contrast,
are well suited to settings where large, diverse datasets are available and the goal is to model complex
structure-activity relationships, integrate multiple prediction tasks, or generate novel compounds
from learned patterns.®2-66:9-71 Taken together, these considerations highlight that the choice between
classical and deep learning approaches should not be based on perceived methodological superiority,
but on how well each strategy fits the specific constraints and goals of a given project. In drug
discovery and development, where modelling is only one part of a broader experimental (and
regulatory) pipeline, factors such as data availability, interpretability, and compatibility with
downstream requirements often play a decisive role. Hence, placing the right tool in the right setting
is particularly important, since the aim is not just to improve predictions, but to support the discovery

of compounds that can ultimately advance toward becoming safe and effective drugs (Figure 2).8%8°
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Figure 2. Overview of molecular representation strategies and corresponding machine learning
models. The choice of model should reflect both the data regime and the goals of the application.

This framing is particularly relevant in therapeutic areas where conventional discovery
strategies have become less effective, and in resource-limited settings such as academic research,

where methodological efficiency is essential. Antimicrobial drug discovery exemplifies both
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challenges: it demands new molecular strategies while operating under limited funding, low

commercial incentive, and the need for targeted, data-efficient design.
2.4 Antimicrobial Resistance and Antimicrobial Peptides

The introduction of antibiotics in the early 20th century transformed the landscape of modern
medicine. These compounds, largely discovered from microbial natural products, enabled the
treatment of previously fatal bacterial infections and underpinned the safe development of surgical
procedures, cancer therapies, and organ transplantation. However, their widespread and often
indiscriminate use has led to the emergence of antimicrobial resistance (AMR), a phenomenon in
which bacteria evolve mechanisms to survive exposure to antibiotics.?-*! Over time, resistance has
accumulated not only within individual strains but also across species through horizontal gene
transfer, leading to a growing number of multidrug-resistant (MDR) pathogens.

Particularly concerning are pathogens in the ESKAPE group (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp.), which are responsible for a disproportionate share of hospital-acquired
infections and are increasingly resistant to last-line therapies.”> Meanwhile, the development of new
antibiotics has slowed dramatically, in part due to scientific challenges in discovering novel chemical
scaffolds, and in larger part due to economic disincentives: antibiotics are typically used for short
durations and are often conserved to delay resistance, resulting in poor return on investment compared
to chronic disease therapeutics. As a result, the pipeline for novel antimicrobial agents remains
sparse.**

To address this gap, attention has increasingly turned toward non-traditional antimicrobial
modalities, among which antimicrobial peptides (AMPs) represent a particularly promising class.®
AMPs are short, often cationic peptides that are produced by a wide range of organisms, either as
components of the innate immune system? or as competitive factors in microbial ecosystems.®” Unlike
classical antibiotics that typically target specific enzymes or biosynthetic pathways, AMPs tend to act

through more generalized mechanisms, including membrane disruption and aggregation of
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intracellular targets.®>* These features make them inherently less susceptible to some resistance
mechanisms. Despite these advantages, AMPs face a distinct set of challenges that have limited their

clinical adoption. Chief among these are:

Proteolytic instability, leading to rapid degradation by host or bacterial proteases.

e Hemolytic and cytotoxic effects, particularly at concentrations close to the therapeutic
window.

e  Poor pharmacokinetics, including short half-life and low bioavailability.

e Synthetic complexity, especially for cyclic or modified backbones.

Overcoming these barriers requires systematic exploration of peptide chemical space. This
space grows combinatorially with peptide length and diversity, quickly exceeding what can be
addressed through traditional synthesis and experimental screening alone.!®” In addition, the
landscape of synthetically accessible peptides is constantly evolving, driven by new building blocks
and chemistries emerging from experimental practice. As a result, efficient computational methods
are needed not only to search vast design spaces, but also to adapt quickly to new synthetic
possibilities and guide experimental efforts toward tractable and promising candidates.

One potential strategy for exploring peptide space is the use of generative models, such as
those based on transformer-based architectures. Methods like PepINVENT, for example, have shown
how models trained on virtual peptide libraries can be used to conditionally generate novel
sequences.'! However, the structural rules governing peptide assembly are relatively simple and
synthetically tractable peptides can be validly constructed by well-defined bond-forming rules such
as peptide bond formation, disulfide bridging, head-to-tail cyclization, or side-chain crosslinking. As
a result, there is less need for generative deep learning models to ensure syntactic validity, unlike in
small-molecule design where atom type and connectivity constraints for “drug-likeness” are non-

trivial.
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Hence, among the tools developed to support peptide design, rule-based frameworks remain
particularly attractive due to their adaptability. In the Reymond group, we have introduced the Peptide
Design Genetic Algorithm (PDGA), a modular generator designed to explore synthetically feasible
peptide spaces using predefined connection rules and customizable building blocks (Figure 3).!00:102
Because it relies on explicit chemical rules rather than learned syntax, the PDGA can accommodate
new monomers or synthesis strategies without requiring model retraining. Molecular fingerprints,
such as MAP4C* and MXFP,*%3 are then used in combination with the PDGA to guide compound
generation and similarity-based selection. This approach has been applied in a real-life setting to
design polymyxin-inspired peptide-peptoid hybrids, several of which were synthesized and shown to

retain antimicrobial activity.'%3

Initial Population Evaluation Hits
«Start with a random set of «Determine the fitness of «If the peptide is fit enough,
peptides» the generated peptides» itis saved as a hit»
Selection
«Select the fittest
peptides»
Building Blocks Mutation/Cross-Over
«Monomers that can be «Mutate and recombine the
concatenated via SPPS» selected peptides»

Selection Loop

Figure 3. Conceptual overview of the Peptide Design Genetic Algorithm (PDGA). The algorithm is
initialized with a fixed set of building blocks and synthetic rules to generate candidate structures.
Within the selection loop, candidates are iteratively refined based on a fitness function. High-scoring
compounds are retained according to a predefined threshold and stored in a hit database.

Yet many of the challenges associated with AMP design, such as hemolytic activity,
proteolytic stability, or serum half-life, cannot be anticipated from structural similarity alone. For
these properties, predictive models trained on experimental data are essential.6>-66:103-197 Integrated
into generative workflows, such models can filter or re-rank sequences based on complex biological
properties. As synthesis platforms become more automated and peptide datasets continue to grow,
the ability to iteratively generate, evaluate, and refine candidate structures will become increasingly

central to antimicrobial discovery. Within this context, combining rule-based design with predictive
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modelling provides a practical and scalable foundation. The next chapters of this thesis will focus on

the development, implementation, and evaluation of computational methods that support this goal.
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3 Alchemical analysis of FDA approved drugs

This chapter is based on a scientific article previously published in Digital Discovery. The article is

reproduced here under the terms of the Creative Commons Attribution License (CC BY 3.0):

Orsi, M.; Probst, D.; Schwaller, P.; Reymond, J.-L. Alchemical Analysis of FDA
Approved Drugs. Digital Discovery 2023, 10.1039.D3DD00039G.
https://doi.org/10.1039/D3DD00039G.

Abstract

Chemical space maps help visualize similarities within molecular sets. However, there are many
different molecular similarity measures resulting in a confusing number of possible comparisons. To
overcome this limitation, we exploit the fact that tools designed for reaction informatics also work
for alchemical processes that do not obey Lavoisier’s principle, such as the transmutation of lead into
gold. We start by using the differential reaction fingerprint (DRFP) to create tree-maps (TMAPs)
representing the chemical space of pairs of drugs selected as being similar according to various
molecular fingerprints. We then use the Transformer-based RXNMapper model to understand
structural relationships between drugs, and its confidence score to distinguish between pairs related
by chemically feasible transformations and pairs related by alchemical transmutations. This analysis
reveals a diversity of structural similarity relationships that are otherwise difficult to analyse
simultaneously. We exemplify this approach by visualizing FDA-approved drugs, EGFR inhibitors,

and polymyxin B analogs.
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3.1 Introduction

Mapping molecular databases in a chemical space where distances represent similarities between
molecules helps to understand their structural similarities and identify relationships that can provide
critical insights for drug development and related fields.!*®122 However, molecular similarity can be

computed in multiple ways,!?*!12% typically using various molecular fingerprints,??

resulting in a
confusing multiplicity of possible chemical space representations.3”-126

To overcome this limitation and create a chemical space map considering various similarity
measures simultaneously, we report a new approach of applying reaction informatics tools to map
and analyze drug pairs, namely the differential reaction fingerprint (DRFP)'?” and the Transformer-
based RXNMapper model,'?”'?° respectively (Figure 4). These tools were initially designed to
analyze chemical reactions. However, they can also be applied to processes that do not obey
Lavoisier’s principle, the conservation of mass, such as the alchemical transmutation of lead into
gold.131132 Here, we apply them to transmutations between pairs of molecules selected for their
similarity according to various molecular fingerprints as similarity measures, an approach related to
the recent development of transformer models for drug optimization. 33134

We start by using DRFP, which encodes chemical reactions by storing the symmetric
difference of two sets containing the circular molecular n-grams generated from the molecules of the
molecular pair as a binary fingerprint,'?’ to represent the chemical space of drug pairs as a TMAP
(tree-map).*' A TMAP lays out the minimum spanning tree of the nearest neighbour graphs according
to a selected similarity measure, here DRFP, and represents a remarkably efficient dimensionality
reduction method for high-dimensional datasets. The DRFP TMAP visualization provides a global
similarity perspective across drug pairs combining the selected similarity measures. We then use
RXNMapper,'?® a model trained on one million reactions documented in the USPTO dataset! to
pair corresponding atoms between reactants and products in a chemical reaction, to identify the

structural relationship between drugs. The confidence score of this transformer appears not to

correlate with any of the molecular similarity measures used. It allows us to distinguish drug pairs
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related by feasible chemical processes, such as matched molecular pairs corresponding to substituent
exchanges,'?%!137 from those related by more esoteric, alchemical transmutations including scaffold-
hopping changes.!3%!3 We demonstrate this approach with the example of FDA-approved drugs as a
diversity set, as well as for a series of EGFR inhibitors and polymyxin B analogs as two high

similarity sets chosen among small molecule drugs and peptide macrocyclic drugs, respectively.

1) select similar pairs
(8 different fingerprints)

—
FDA approved
drugs

amcd - 0
chemical
reaction

Figure 4. Principle of alchemical analysis of molecular sets at the example of FDA approved drugs.
1) Drugs pairs passing a similarity threshold according to eight different molecular fingerprints are
selected. 2) The set of selected pairs is mapped in a TMAP computed using the differential reaction
fingerprint (DRFP), color coded by the RXNmapper confidence distance (amcd). 3) the amcd

distinguishes pairs of drugs related by a possible reaction (amcd — 0) from those related by an
alchemical transmutation (amecd — 1).

3.2 Methods

3.2.1 Datasets

The set of FDA-approved drugs was downloaded from ZINC15,'4%14l the SMILES were
canonicalized and kekulized and duplicates were removed to obtain a set of 1,213 unique chemical
structures. For the EGFR set, all compounds binding to the tyrosine kinase erbB1 with a molecular
weight <700 and an annotated ICso value were downloaded from ChEMBL-31.'4? After SMILES
canonicalization and kekulization, duplicates were removed and the 1,500 molecules with the highest

ECFP4 Tanimoto similarity to afatinib were selected for the final set. The polymyxin B similarity set
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was downloaded from ChEMBL-31 by selecting compounds above the 55% ChEMBL similarity
threshold with annotated MIC values. The SMILES were canonicalized and kekulized, and duplicates

were removed resulting in a final set of 274 structures.

3.2.2 Molecular fingerprints and similarity calculations

Chemical structures were encoded as eight different fingerprints, namely extended connectivity
fingerprints ECFP4 and ECFP6,%-° the MinHashed Fingerprint MHFP6,%? the RDKit Atom-Pair
Fingerprint (AP),* the Macromolecule Extended Fingerprint (MXFP),* the MinHashed Atom-Pair
fingerprint MAP4,% the Molecular ACCess System keys (MACCS),!* and Molecular Quantum
Numbers (MQNs).'* ECFP4, ECFP6, AP, MACCS and MQN were calculated using the

implementation in the RDKit package (2022.3.4. , https://www.rdkit.org). ECFPs were calculated as

2048-bit vectors. MHFP6 and MAP4 were calculated as 2048-bit vectors using the code described in

https://github.com/reymond-group/mhfp and https://github.com/reymond-group/map4. MXFP was

calculated using a new open-source version available at https:/github.com/reymond-

group/mxfp_python. The differential reaction fingerprint (DRFP)!?’ was calculated as 2048-bit

vectors using the code available at https://github.com/reymond-group/drfp.

Pairwise distances for every possible molecular pair were calculated and stored as a matrix
for each fingerprint. Distances were calculated as Jaccard distances (d;) for ECFP4, ECFP6, MHFP6,
AP, MAP4 and MACCS keys, and as Taxicab distances (dt) for MXFP and MQNs, with values min-
max standardized. We selected similar pairs by applying the following distance threshold: d;< 0.6
for ECFP4, ECFP6, MHFP6, d; < 0.5 for AP, d; < 0.2 for MACCS, d; < 0.8 for MAP4, dr < 0.1 for
MXFP and dr < 0.05 for MQN (Taxicab distances after rescaling) for the FDA set and d; < 0.2 for
ECFP4, ECFP6, MHFP6, AP, d; < 0.0125 for MACCS, d; < 0.3 for MAP4, dt < 0.1 for MXFP and

dr < 0.05 for MQN for the EGFR and PMB sets.

Additionally, the ranking of molecular pairs for every compound and fingerprint was calculated,

resulting in 1,213 ranked lists of 1,213 pairs each for the FDA set, 1,500 ranked lists of 1,500 ranked
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pairs for the EGFR set and 274 ranked lists of 274 pairs for the polymyxin B similarity set for each
fingerprint.

Violin plots to display the distribution of distances for every fingerprint and heatmaps to
visualize correlations between fingerprints were generated using the seaborn (0.11.2) package. The
pairwise distance distributions were balanced out by calculating the ranking of molecular pairs for
every compound, resulting in 1,213 ranked lists of 1,213 pairs each for the FDA set, 1,500 ranked
lists of 1,500 ranked pairs for the EGFR set and 274 ranked lists of 274 pairs for the polymyxin B

similarity set.
323 Reaction informatics

A reaction SMILES in the form “SMILESI>>SMILES2” (forward reaction) as well as
“SMILES2>>SMILES1” (backward reaction) was generated for every selected molecular pair. The
forward reaction SMILES was generated to always have the molecule with the lower heavy atom
count as a reactant and the molecule with the higher heavy atom count as a product. The reaction
SMILES for each drug pair was then encoded using DRFP.'?” The 20 nearest neighbors (NNs) in the
DRFP feature space were extracted and the minimum spanning tree layout calculated using the TMAP
package.*! The resulting layout was displayed interactively using Faerun.!'* In addition, the atom-
mapping and the corresponding atom-mapping confidence scores were computed for each drug pair
reaction SMILES using the published model described in the RXNmapper'?® GitHub repository

https://eithub.com/rxn4chemistry/rxnmapper.

3.3 Results and Discussion

3.3.1 Datasets and selection of drug pairs

To test our reaction informatics approach to map drug space, we selected 1,213 FDA-approved drugs
as a representative high diversity set. As examples of a more focused series, we accessed the
ChEMBL database'** and retrieved 1,500 analogs of the small molecule drug afatinib, a kinase
inhibitor blocking the endothelial growth factor receptor (EGFR) and used to treat non-small cell lung
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carcinoma (NSCLC),'¢ as well as 274 analogs of polymyxin B (PMB), an FDA-approved
macrocyclic peptide natural product considered as a last resort antibiotic against multidrug-resistant
bacteria.!’

To represent molecular similarities, we considered three types of molecular fingerprints. First,
we selected the classical Morgan fingerprint,’® also called extended connectivity fingerprint
(ECFP),” which is a binary fingerprint encoding the presence of specific atom-centered circular
substructures up to a diameter of four (ECFP4) and six (ECFP6) bonds, as well as our recently
reported MinHashed fingerprint MHFP6,%? which similarly encodes circular substructures up to a
diameter of six bonds using shingling and MinHashing to compress information.!#® These circular

substructure fingerprints are particularly efficient in virtual screening benchmarks?#3*2

and off-target
prediction tasks.!#%15° Second, we considered three pharmacophore fingerprints encoding the relative
positions of atoms in a molecule and representing molecular shape, namely the RDKit atom-pair
fingerprint AP,*® our recently reported macromolecule extended atom-pair fingerprint MXFP,*® and
the MinHashed Atom-pair fingerprint up to a diameter of four bonds MAP4.%° Finally, we also

143 and molecular quantum numbers

included two composition fingerprints, namely MACCS keys
(MQN),'* which encode the presence and number of features present in a molecule.

To identify relevant pairs in each of our three drug sets (FDA, EGFR and PMB), we computed
all pairwise distances in each fingerprint as either Jaccard distance d; (ECFP4, ECFP6, MHFP6, AP,
MAP4, MACCS keys) or Taxicab distance dr (MXFP, MQN). For all fingerprints, distance zero
indicates highest similarity. For each molecule in each set, we then selected the NN for each of the
eight fingerprints, as well as any molecule appearing in at least seven of the eight lists of top-20
nearest neighbors. In addition, we selected all drug pairs having a certain similarity in each fingerprint
by applying a maximum Jaccard distance (d ) threshold (see Methods for details).

This selection corresponded to 6,406 (0.87 %) of the 735,078 possible drug pairs in the FDA
set, 8,932 (0.79 %) of the 1,124,250 possible drug pairs in the EGFR set, and 8,464 (22.63 %) of the

37,401 possible drug pairs in the PMB set. Each drug was represented in the selected pairs between

1 and 193 times in the FDA approved set, between 1 and 870 times in the EGFR set, and between 4
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and 1,031 times in the PMB set (Figure Al). Compared to the exhaustive list of drug pairs, the
selected drug pairs were enriched in high similarity pairs with lower values of Jaccard distance (d).
They spanned the entire similarity range in each fingerprint, reflecting the fact that the different
fingerprints captured different similarity features (Figure Sa/Figure 6a/Figure 7a). Distances were
correlated between ECFP4, ECFP6, MHFP6, MAP4, which all encode circular substructures around
atoms (r> ~ 0.8, Figure Sb/Figure 6b/Figure 7b). The correlations of MAP4 with other circular
substructure fingerprints, particularly in the polymyxin B2 set, were generally lower. This can be
attributed to its hybrid nature, which encodes both substructures and atom-pairs. Even so, the
correlation between MAP4 and circular substructure fingerprints is notably stronger than its
correlation with other fingerprint types. AP and MACCS, which both encode atomic features, were
weakly correlated with each other and to a lesser extent with circular fingerprints (1> ~ 0.5). Finally,
MQN and MXFP distances were partly correlated with each other (r> ~ 0.5) but not with any other
fingerprints, probably because both fingerprints are size-dependent and count similar features in

molecules.

3.3.2 DRFP chemical space maps

To gain a closer insight into the pairwise relationships among the selected drug pairs, we represented
each pair in the form of a reaction SMILES considering the conversion of one drug into the other.
Form the reaction SMILES, we then computed the differential reaction fingerprint (DRFP),!?” which
encodes the circular substructures that occur only in either the reactant or the product. To represent
the DRFP chemical space illustrating the similarities between different drug pairs, we then computed
a tree-map (TMAP) providing an overview of drug pairs in each of the three datasets, using various
color codes to visualize pair properties (Figure 5c/Figure 6c/Figure 7c¢). The TMAP of DRFP
similarities organized pairs by structural types, often series of close analogs of a reference drug.
Furthermore, in the FDA-approved drug set, different compound families such as amino acids,

steroids, B-lactams, catecholamines, benzodiazepines or prostaglandins appeared in different regions
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of the map. This was visible upon close inspection of the interactive TMAPs and is illustrated here
for the FDA drug set with the color FCsp? (Figure 5¢).

Interactive browsing of the TMAPs made it very easy to inspect drug pairs with specific
properties. For example, with the EGFR set, color-coding by activity differences pointed to the few
similar drug pairs representing activity cliffs (Figure 6¢). Inspection of TMAPs was also key to

identifying interesting pairs from the point of view of their transformations, as discussed below.
3.3.3 Atom mapping

To estimate whether paired drugs were interconvertible by a feasible chemical reaction or required a
more esoteric transmutation, we subjected the drug pair reaction SMILES to the Transformer-based
RXNMapper model,'?® which returns an atom-to-atom comparison illustrating the structural
relationships within pairs, as well as an atom-mapping confidence score. Atom-mapping confidence
scores were determined for the forward and backward reactions and converted to atom-mapping
confidence distances (amcd), defined here as one minus the confidence score. In most cases the amed
values were similar for forward and backward reactions, however since the difference was sometimes
substantial (Figure A2), we used the mean amcd of forward and backward reactions for our analysis.
The mean amcd value spanned the entire range between low and high distance (last entry, Figure
Sa/Figure 6a/Figure 7a) except for the PMB set, which mainly contains high confidence distances
as the structures are too big for the model to map with high confidence. Further, the amcd was not
correlated with any of the selected molecular similarities (last entry, Figure Sb/Figure 6b/Figure
7b).

Low amcd values indicated drug pairs related by a simple and usually feasible chemical
transformation, usually a functional group change or addition as those found in matched molecular
pairs,!3¢137 illustrated in the FDA set for the hydroxylation of L-tyrosine to L-DOPA (Figure 5d),
and in the EGFR set for a Suzuki coupling resulting in a large activity change (Figure 6d). In the
case of the PMB set, low amcd values indicated pairs related by single amino acid exchange often

potentially corresponding to a reaction, for example mutation of a glycine to a phenylalanine residue
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corresponding formally to an a-alkylation of glycine with benzyl bromide (Figure A6). This
observation suggests that the amcd metric effectively captures chemically intuitive transformations,
aligning well with the way chemists predict and perceive such changes in molecules during drug
design and development.

On the other hand, high amcd values indicated alchemical transmutations that cannot be
realized easily, such as scaffold-hopping changes.'*%!* Note that the RXNMapper assigned
corresponding atoms mostly in a correct manner even for pairs giving high amcd values. For example,
tetrabenazine is paired with hydrocodone by seven of the eight molecule fingerprints used for pairing.
The transformation features an exotic double-ring formation accompanied by a reshuffling of the 23
atoms (Figure Se). A similarly exotic alchemical change relates afatinib with osimertinib, an analog
matched by all eight fingerprints used for pairing (Figure 5f). In the EGFR set, a double linker
modification preserving activity relates CHEMBL469997 to CHEMBL181275, whereby the benzyl
ether linker is obtained by combining an oxygen atom of the sulfone with a methylene group of the
aminobutanol second linker group (Figure 6e). In another scaffold hopping change between
CHEMBL469997 and CHEMBL181275, an aniline substituent is incorporated into the adjacent
bicyclic system to form a condensed tricyclic heteroaromatic group, resulting in an interesting activity
increase (Figure 6f).

In the case of the PMB set, many pairs were generally related by high amcd values, probably
because the changes corresponded to multiple amino acid exchanges, which cannot be realized on the
complete molecules since each sequence analog requires a separate synthesis. Interestingly, one of
the high amcd changes corresponds to a simple exchange of four aromatic aldehyde imines attached
to the four diaminobutanoic acid residues, a reaction which would seem to be feasible (Figure 7d).
This imine exchange is however accompanied by a mutation of a leucine residue to a phenylalanine.

Taken together, the analysis of the TMAP of similar drug pairs guided by DRFP similarity
and amcd values allowed a rapid insight into multiple interesting comparisons between molecules in
each of the three sets analyzed. Further examples of interesting pairs in the FDA approved set are

provided in the Supporting information (Figure A7).

29



3.4 Conclusion

In summary, we have shown that borrowing tools from reaction informatics provides an opportunity
to map multiple similarity relationships between molecules simultaneously and gain insights into
interesting drug pairs that are otherwise difficult to identify. Specifically, we used DRFP to map the
chemical space of multiple drug pairs selected as being similar according to eight different molecular
fingerprints simultaneously in the form of TMAPs. We then used RXNMapper to visualize the
structural changes between drugs and identify pairs of drugs related by feasible chemical
transformation from pairs related by alchemical changes corresponding to multiple and complex
structural rearrangements. These tools should generally be applicable to analyze drug sets from
multiple angles in the context of drug discovery. For instance, they present a promising opportunity
to visualize chemically feasible transformations, aiding in the improvement of potential drug
candidates. Furthermore, this method offers a potential avenue to detect molecular transformations
that enhance biological activity, assisting in determining their chemical feasibility. Lastly, these tools
can be applied in prodrug development, facilitating the visualization and identification of potential
transformations that a prodrug may undergo, and thus guiding the selection of optimal groups for

prodrug design.
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Figure 5. FDA-approved drugs as drug pairs. (a) Violin plot of dJ values in each of the fingerprints
for all pairs (left, orange) or for selected pairs (right, blue), and for atom mapping confidence distance
(amcd) of selected pairs (blue, last entry). (b) Heat map of correlation coefficients r2 between dJ
values of different fingerprints, and between dJ values and amcd, calculated across all selected pairs.
(c) TMAP of DRFP similarities for selected drug pairs. Each point is a different drug pair, color-
coded by the fraction of sp3 atoms (Fsp3). See supporting information and
https://tm.gdb.tools/map4/DRFP_FDA/ for additional color codes and for the interactive version of
the map. (d) Atom-mapped drug pair L-tyrosine and L-DOPA related by a hydroxylation reaction.
(e) Atom-mapped drug pair tetrabenazine and hydrocodone related by an alchemical double
cyclization. (f) Atom-mapped drug pair afatinib and osimertinib related by a series of substituent and
ring system changes. Atoms highlighted in blue are lost during the forward reaction, while atoms
highlighted in yellow are gained. Interesting atom rearrangements as predicted by the RXNMapper
are highlighted with their respective atom-mapping number. The full atom-mapping can be found in
Figure A3.
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Figure 6. EGFR inhibitor drug pairs. (a) Violin plot of dJ values in each of the fingerprints for all
pairs (left, orange) or for selected pairs (right, blue), and for atom mapping confidence distance
(amcd) of selected pairs (blue, last entry). (b) Heat map of correlation coefficients r2 between dJ
values of different fingerprints, and between dJ values and amcd, calculated across all selected pairs.
(c) TMAP of activity differences. Each point is a different drug pair, color-coded by the activity
difference. See supporting information and https://tm.gdb.tools/map4/DRFP EGFR/ for additional
color codes and for the interactive version of the map. (d) Atom-mapped drug pair CHEMBL35820
and CHEMBL126974 related by a Suzuki coupling resulting in an activity cliff. (¢) Atom-mapped
drug pair CHEMBL460732 and CHEMBL14952 related by an alchemical double linker exchange
preserving activity (f) Atom-mapped drug pair CHEMBL469997 and CHEMBL181275 related by an
alchemical scaffold hopping preserving activity. Atoms highlighted in blue are lost during the forward
reaction, while atoms highlighted in yellow are gained. Interesting atom rearrangements as predicted
by the RXNMapper are highlighted with their respective atom-mapping number. The full atom-

mapping can be found in Figure A4.
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information and https://tm.gdb.tools/map4/DRFP PMB/ for additional color codes and for the

interactive version of the map. (d) Atom-mapped drug pair CHEMBL1090265 and

CHEMBL2372545 related by an imine exchange and a leucine—phenylalanine mutation. Atoms
highlighted in blue are lost during the forward reaction, while atoms highlighted in yellow are gained.

Interesting atom rearrangements as predicted by the RXNMapper are highlighted with their respecti
atom-mapping number. The full atom-mapping can be found in Figure AS.
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4 One chiral fingerprint to find them all

This chapter is based on a scientific article previously published in the Journal of Cheminformatics.

The article is reproduced here under the terms of the Creative Commons Attribution License (CC BY

4.0):

Orsi, M.; Reymond, J.-L. One Chiral Fingerprint to Find Them All. /
Cheminform 2024, 16 (1), 53. https://doi.org/10.1186/s13321-024-00849-6.

Abstract

Molecular fingerprints are indispensable tools in cheminformatics. However, stereochemistry is
generally not considered, which is problematic for large molecules which are almost all chiral.
Herein we report MAP4C, a chiral version of our previously reported fingerprint MAP4, which lists
MinHashes computed from character strings containing the SMILES of all pairs of circular
substructures up to a diameter of four bonds and the shortest topological distance between their central
atoms. MAP4C includes the Cahn-Ingold-Prelog (CIP) annotation (R, S, » or s) whenever the chiral
atom is the center of a circular substructure, a question mark for undefined stereocenters, and double
bond cis-trans information if specified. MAP4C performs slightly better than the achiral MAP4,
ECFP and AP fingerprints in non-stereoselective virtual screening benchmarks. Furthermore,
MAPA4C distinguishes between stereoisomers in chiral molecules from small molecule drugs to large
natural products and peptides comprising thousands of diastereomers, with a degree of distinction
smaller than between structural isomers and proportional to the number of chirality changes. Due to
its excellent performance across diverse molecular classes and its ability to handle stereochemistry,

MAPA4C is recommended as a generally applicable chiral molecular fingerprint.
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4.1 Introduction

Many computational tasks related to small molecule drug discovery, such as similarity searches,?*!?
target prediction, 4%-151-154 [igand-based virtual screening!'®> and visualization of large databases of
drug-like molecules,*-110:117.120.145,156-160 can  be performed using vectors encoding molecular
structure, called molecular fingerprints.?>** Remarkably, molecular fingerprints work quite well to
classify and compare bioactive molecules without considering stereochemical information, which is
somewhat surprising considering that biological matter is essentially chiral and stereo-defined at the
molecular level,'®'~163 but also reflects the fact one only rarely needs to distinguish between different
stereoisomers of small molecule drugs, in part simply because many drug-like compounds are achiral.

In the context of developing computational tools for new modalities including beyond-Ro5

164,165 i 166-168

molecules, n our case for peptides with variable chain topology and stereochemistry, we
have adapted molecular fingerprints based on atom-pairs*>—"-138 for large molecules such as peptides
and proteins.?¥3%19 In particular, we combined atom-pair analysis and circular substructures as
encoded the Morgan fingerprint ECFP4,220 with the principle of data compression using
MinHashing,3?33148:170 to design MAP4, a MinHashed Atom-Pair fingerprint. MAP4 encodes all
possible pairs of circular substructures up to a diameter of four bonds in a molecule.*’ These pairs are
written in the form of two canonicalized SMILES!7!:172 separated by the shortest topological distance,
counted in bonds, between the corresponding pair of central atoms. Remarkably, MAP4 distinguishes
molecular structures across different compound classes spanning from small molecules to natural
products, peptides and the metabolome, for which other fingerprints such as the classical Morgan
(ECFP4)?° and Atom Pair (AP)* fingerprints fall short. In addition, MAP4 outperforms these and
many other fingerprints in virtual screening benchmarks for both small molecule drugs’* and
peptides.*

Similarly to commonly used molecular fingerprints however, MAP4 does not include

stereochemistry (cis-trans double bonds, enantiomers and diastereomers), which is clearly an

omission considering that most molecules beyond Ro5, such as diverse natural products and synthetic

35



compounds in the public databases ChEMBL,'¥> COCONUT,!”* and ZINC,'#! are chiral (Figure 8a).
To correct this omission and enable the cheminformatic analysis of compounds with multiple chiral
centers such as carbohydrates and peptides, we now report MAP4C, an improved version of the
MAP4 fingerprint. MAP4C includes the description of chiral centers following the Cahn-Ingold-
Prelog (CIP) nomenclature in a fraction of molecular shingles (Figure 8b/c), as well as double bond

stereochemistry.
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Figure 8. Molecular chirality and fingerprints. (a) Correlation between chirality and heavy atom
count (HAC) across ChREMBL, COCONUT, and ZINC datasets. The blue line depicts the percentage
of chiral molecules relative to HAC. A steady increase in the percentage of chiral molecules is
observed with increasing HAC. The yellow line represents the total count of molecules corresponding
to each HAC. (b) Chiral shingle generation concept exemplified on a selected atom pair of polymyxin
B2. The generated shingle corresponds to the pair of circular substructures (blue) separated by the
shortest topological distance (red) of their central atoms. Whenever the central atom of a substructure
is chiral, the atom symbol in the substructure SMILES is replaced by the Cahn-Ingold-Prelog (CIP)
descriptor (R, S, r, or s), or by a question mark (?) if the stereochemistry is not defined, bracketed by
two “$” characters (yellow). (¢) Percentage of molecular shingles containing chiral information vs.
percentage of chiral atoms in the molecule for MAP4C (largest diameter of four bonds). These
percentages were computed using a dataset of chiral molecules uniformly sampled from the Riniker
& Landrum benchmark. The high r? and Pearson correlation coefficients underscore a strong
association between the two variables.
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4.2 Methods

4.2.1 Fingerprint design

The chiral version of the MinHashed Atom-Pair fingerprint (MAPC) was implemented in Python

using RDKit following these steps:

1.

At every non-hydrogen atom, extract all circular substructures up to the specified maximum
radius as isomeric, canonical SMILES. Isomeric information (“@” and “@@” characters) is
manually removed from the extracted SMILES, while the implicit E/Z-isomerism (*/”, and
“\” characters) are maintained. Allene chirality and conformational chirality such as in biaryls
or in helicenes are not considered, as they cannot be specified in the SMILES notation. Radius

0 is skipped.

At the specified maximum radius, whenever the central atom of a circular substructure is
chiral, replace the first atom symbol in the extracted SMILES with its Cahn-Ingold-Prelog
(CIP) descriptor bracketed by two “$” characters ($CIP$). The CIP descriptor of the chiral

atom is defined on the entire molecule, not on the extracted substructure.

. Ateach radius, generate shingles for all possible pairs of extracted substructures. Each shingle

contains two substructures and their topological distance in following format: “substructure 1

| topological distance | substructure 2”.

MinHash the list of shingles to obtain a fixed sized vector. The MinHashing procedure is

explained in detail in our previous publication.3>4?
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422 Benchmark

The virtual screening performance of the MAPC fingerprint was evaluated in a comparative study
with commonly used fingerprints (ECFP4,? ECFP6,> Atom-Pair®) in a benchmark adapted from
Riniker and Landrum.?* Since the structure SMILES in the original benchmark do not contain any
stereochemistry, the respective chiral SMILES (when applicable) were retrieved from the DUD, !
MUV!75 and ChEMBL'#? databases using the provided compound IDs.

Additional 60 peptide sets were included in the benchmark to test the performances of the
fingerprints for large biomolecules. For each of 30 random linear sequences, a set containing 10,000
single-point mutants and a set containing 10,000 scrambled versions of the random sequence were
generated and BLAST analogues labelled as actives. The precise generation procedure of the peptide
datasets is described in our previous publication.*

For every set, 5 randomly selected actives were extracted and stored in a separate file. The
mean and standard deviation of pairwise ECFP4C Tanimoto and MAP4C Jaccard similarities of the
five selected actives are reported in the Figure B1-2. Each of the selected actives was used as a query
to rank the remaining compounds in the set based on fingerprint similarity (Jaccard similarity for
MinHashed fingerprints; Dice similarity for folded fingerprints). AUC, EF1, EF5, BEDROC20,
BEDROCI100, RIE20 and RIE100 metrics were calculated for the obtained ranked lists and averaged
along the 5 queries for every set in the benchmark. Additionally, the fingerprints were ranked based
on the obtained performance metrics and finally the average rank of each fingerprint determined for
all metrics. Pearson correlation coefficients and Friedman-Nemenyi post-hoc tests were calculated

for all fingerprint pairs using the scipy and scikit-posthocs Python libraries.

4.2.3 Stereoisomers, isomers and scrambled sequences

We enumerated all possible stereoisomers of molecules 1 - 14 (Figure 10) by generating all possible
isomeric SMILES combinations, canonicalizing them, and removing duplicates. We additionally
enumerated all possible permutations of In65 (7) and polymyxin B2 (1) sequences, obtaining a total

of 330 and 1,512 scrambled sequences respectively. Structural isomers of 1,4-diaminocyclohexane
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(15) and aminopiperazine (16) were extracted from GDB-13 using the MQN-browser.!’!77 The
extracted sets contained 203 structural isomers of 15, of which 156 contained one or more
stereocenters and 48 structural isomers of 16, of which 29 contained one or more stereocenters. For
each structural isomer, all possible sterecoisomers were generated using the RDKit
“EnumerateStereoisomers”™ function, yielding 746 unique structures for 15 and 126 for 16. For all

stereoisomers and permutations, fingerprints were calculated as 2048-bit vectors.

424 TMAP

The indices obtained from the MAP4C calculation were used to create a locality-sensitive hashing
(LSH) forest of 32 trees. For each molecular structure, the 500 approximate nearest neighbours in the
MAPA4C feature space were extracted from the LSH forest and used to calculate the TMAP layout.*!

The resulting layout was displayed in an interactive TMAP using the open-source Faerun package.!'#®

4.3 Results and Discussion

4.3.1 Encoding stereochemistry in MAP fingerprints

The MAP (MinHashed Atom-Pair) fingerprint of a molecule consists in a series of MinHashes
computed from the list of its molecular shingles.3233:148:170° A molecular shingle is written for each
possible pair of circular substructures of a given diameter (2 bonds for MAP2, 4 bonds for MAP4, 6
bonds for MAP6), written as canonicalized SMILES, separated by the shortest topological distance
separating the central atoms, counted in bonds.*’ We preserve the Z/E double bond information in all
shingles whenever the entire double bond is included in a shingle. To encode stereocenter information
into our fingerprints, we label chiral atoms with their Cahn-Ingold-Prelog (CIP) descriptor (R, S, r or
s), as computed by RDKit, whenever stereochemistry is defined, or label them with a question mark
(“?”) if stereochemistry is not specified. Importantly, we only apply the chiral label when a chiral
atom 1is the central atom of a circular substructure and only for shingles with the largest diameter
considered. The concept is illustrated for one of the possible pairs involving the stereocenter in
polymyxin B2 (1, (Figure 8b).
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When applied to a dataset of chiral molecules uniformly sampled from the Riniker and
Landrum benchmark (Figure B1),>* we find that the percentage of molecular shingles containing
chiral information is approximately the same as the percentage of chiral atoms in a molecule for
MAP2C (largest diameter of two bonds, Figure B2a), MAP4C (largest diameter of four bonds,
Figure 8c) and MAP6C (largest diameter of six bonds, Figure B2b). Most importantly, chiral
information only appears in a relatively small fraction of all possible shingles, such that any defined
stereoisomer of a molecule has a relatively high similarity to the molecule without assigned

stereochemistry, for which the MAPC fingerprint is identical to the MAP fingerprint.
4.3.2 Virtual Screening Benchmark

The relevance of any molecular fingerprint for drug discovery can be tested by attempting to retrieve
known bioactive compounds for a given target by nearest-neighbour searches from one of the known
active compounds in a dataset in which the known actives have been mixed with so-called decoys.
These decoys are molecules selected randomly from databases to have similar physicochemical
properties as the actives, but which are not documented to be active on the target. Here we tested
MAP4C with the reference benchmarking dataset of Riniker and Landrum for small molecule drugs,**
which considers 118 active and decoy datasets taken from DUD,'”* MUV,!”> and ChEMBL.'*? For
larger molecules, we used our previously reported set of 60 different randomly chosen 10-, 15- and
20-mer peptides mixed with either random single point mutants (30 sets), or sequence scrambled
analog (30 sets),*” for which we challenge the fingerprint to retrieve BLAST search analogs.!”®

Both of these benchmarks tested the ability of the fingerprints to retrieve bioactive analogs.
Here we compared the performance of MAP2C, MAP4C, and MAP6C with their respective achiral
counterparts, as well as with reference binary fingerprints ECFP4, ECFP6, and AP, and their
corresponding chiral versions (ECFP4C, ECFP6C, and APC). The primary objective of the
benchmark experiment was to ensure that the inclusion of chirality does not compromise the baseline
virtual screening capabilities of the original MAP fingerprint. All fingerprints demonstrated

comparable performances across various test sets and performance metrics, showing that including
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chirality information was not detrimental to fingerprint performance in these benchmarks (Figure
9a/b and Figure B5-9).

Interestingly, the ranks of the different fingerprints for the various performances measures
showed that the chiral MinHashed fingerprints were slightly ahead of the other fingerprints, with
MAP4C appearing with the best ranks in the small molecule benchmark and MAP6C in the peptide
benchmark (Figure 9¢). We conducted a pairwise Friedman-Nemenyi test across all performance
metrics to assess the statistical significance of performance differences among the various fingerprints
(Figure B10-16). Performance differences within the same fingerprint groups (e.g., MAP and MAPC;
ECFP and ECFPC; AP and APC) were not statistically significant, whereas performance differences
between different groups typically were. Furthermore, the difference between chiral and non-chiral
fingerprints were not significant, indicating that observed performance advantages were an artefact
of rank combination rather than intrinsic differences.

However, MAPC fingerprints significantly performed better than ECFP(C) and AP(C)
fingerprints (with exception of AP(C) for the AUC metric). MAPC fingerprints provide high local
precision, akin to ECFPs, as well as global structure encoding, akin to AP fingerprints. This
combination is particularly effective in scenarios where both local precision and global structure are
relevant to differentiate between active and non-active molecules, possibly explaining the higher

performance of the MAPC fingerprints compared to ECFPC and APC.
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Figure 9. Virtual Screening benchmark a) AUC and b) EF1 of MAP6 (purple), MAP4 (magenta),
MAP?2 (blue), AP (grey), ECFP6 (orange) and ECFP4 (yellow) and across all small molecules and
peptide targets (80 ChEMBL targets, 21 DUD targets, 17 MUYV targets, 30 mutated peptide targets,
and 30 scrambled peptide targets). Chiral fingerprints are displayed as bold lines, non-chiral
fingerprints are displayed as dashed lines. The value displayed for each dataset is the mean metric of
5 runs. ¢) Mean ranks of fingerprints across all virtual screening datasets for each metric. Small
molecule sets (ChEMBL, DUD, MUV) and peptide sets are presented separately to highlight the
differences in relative performance.

4.3.3 Finding all stereoisomers

In addition to be on par with non-chiral fingerprints for the above virtual screening benchmarks, one
would expect a chiral fingerprint to distinguish all possible stereoisomers of a chiral molecule. To
test the chiral differentiation of our fingerprints, we investigated their ability to assign a different
fingerprint value for each stereoisomer on a series of stereochemically complex molecules comprising
carbohydrates, peptides and macrocyclic natural products containing up to thousands of stereoisomers

per molecule (Figure 10 and
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Table 1).

For carbohydrates, both MAP6C and MAPAC readily distinguished the 32 stereoisomers of
a-D-glucopyranose (2), the 1024 stereoisomers of the disaccharide lactose (3), the 528 possible
stereoisomers of the non-reducing, C;-symmetrical o-diglucoside trehalose (4), the 16,384
stereoisomers of the aminoglycoside antibiotic validamycin A (5), and the nine possible stereoisomers
of the signalling carbocyclic sugar myo-inositol (6). By contrast, the four other chiral fingerprints
tested all fell short in at least one of the six cases, and APC failed on all of them.

Our MinHashed fingerprints performed very well with peptide stereoisomers. In the case of
the antimicrobial undecapeptide In65 (7), a membrane disruptive antimicrobial peptide whose
activity/toxicity balance is modulated by stereochemical variations, and which motivated the present
study,!® the three chiral MAP fingerprints distinguished all the 2,048 possible stereoisomers. By
contrast, ECFP6C only saw about half of them and ECFP4C and APC distinguished less than 10%,
most likely because this peptide is composed of only lysine and leucine residues, which reduces the
number of possible substructures. The chiral MAP fingerprints also distinguished the 330 possible
sequence-scrambled isomers of 7 and the 675,840 possible stereoisomers of sequence-scrambled
isomers of 7. By comparison, APC succeeded for the 330 scrambled sequences but failed on the larger
set, and both chiral ECFPs failed in both cases, which can be attributed to the absence of long-range
substructures in ECFP fingerprints.

The ability of chiral MAP fingerprints to perceive peptide stereoisomers was also well
illustrated by their ability to distinguish all 512 stereoisomers of the cell-penetrating peptide nona-
arginine (8),'71% as well as the 4,096 stereoisomers of polymyxin B2 (1), used as last resort antibiotic
against multidrug resistant bacteria.®’ In the latter case, our fingerprints also distinguished between
the 1,512 possible sequence-scrambled isomers of 1, the 774,144 possible sequence-scrambled
stereoisomers of 1, as well as between the 531,441 possible assignments of chirality as R, S, or
undefined stereochemistry in the 12 chiral centers of 1. An undefined stereochemistry corresponds to

a stereorandomized position accessible by chemical synthesis using a racemic amino acid at that
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position (stereorandomization at multiple position can lead to partially active analogs as reported for
1).!8! In all of these cases, APC and ECFPCs were unable to distinguish all possibilities.
Macrocyclic natural products with rotational symmetries were particularly challenging for
chiral fingerprints. For instance, only MAP4C and MAPG6C correctly identified the 136 possible
stereoisomers of the cyclic peptide antibiotic quinaldopeptin (9) and the 2,080 stereoisomers of the
cytotoxic macrocyclic depsipeptide onchidin (10), two natural product macrocycles with Ca
symmetry. By contrast, the 528 sterecoisomers of the C, symmetrical antimicrobial macrocyclic
peptide gramicidin S (11) were only distinguished by MAP6C. Furthermore, none of the chiral
fingerprints tested was able to cope with the C3; symmetrical dodecadepsipeptide antibiotic
valinomycin (12, 1,376 stereoisomers), the C4 symmetrical macrolide ionophore antibiotic nonactin
(13, 16,456 stereoisomers), or the C7 symmetrical hepta-arginine cyclic peptide NP213 developed as
antifungal agent (14, 20 stereoisomers). Note that all fingerprints were used with 2,048-bits, but that
performance did not increase significantly when using much larger bit sizes or without MinHashing

or folding.
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Table 1. Stereoisomer and scrambled sequence distinction task for selected natural products and
peptides with multiple chiral centers and varying degrees of internal symmetry.

Query? N /Sym.” Total® MAP6C MAP4C MAP2C APC ECFP6C ECFP4C
a-D-glucopyranose (2) 5/- 32 32 32 32 11 32 32
Lactose (3) 10/ - 1,024 1,024 1,024 992 443 1,024 1,024
Trehalose (4) 10/ C, 528 528 528 516 336 528 512
Validamycin A (5) 14/ - 16,384 16,384 16,384 16,384 7,657 16,384 16,384
Inositol (6) 6/ Cey 9 9 9 9 1 1 1

1n65 (7) 11/- 2,048 2,048 2,048 2,048 196 1,140 36

In65 (scrambled) 11/- 330 330 330 330 330 8 4

In65 (dia x scrambled) 11/- 675,840 675,840 675,840 675,840 90,217 38,500 144

Ro (8) 9/- 512 512 512 512 146 88 12
Polymyxin B2 (1)9 12/- 4,096 4,096 4,096 4,096 2,500 4,096 1,536
PMB2 (scrambled)e) 9/- 1,512 1,512 1,512 1,512 1,512 861 75
PMB2 (dia x scrambled)? 9/- 774,144 774,144 774,144 774,144 287,631 602,003 9,312
PMB?2 (R, S or undefined) 12/ - 531,441 531,441 531,441 531,441 277,901 531,441 137,781
Quinaldopeptin (9) 8/C, 136 1369 136 134 64 132 90
Onchidin (10) 12/C, 2,080 2,080 2,080 2,064 469 1,760 810
Gramicidin S (11) 10/C, 528 528 504 334 25 448 243
Valinomycin (12) 12/Cs 1,376 1,250 714 416 112 616 27
Nonactin (13) 16/ Cy 16,456 16,425 16,176 10,045 13,189 6,474 675
NP213 (14) 7/C; 20 7 13 17 13 5 3

® Name and nr. of molecule. See Figure 4 for structural formulae. ® N = number of stereocenters in the molecule. Sym. = rotational
molecular symmetry for the molecule without chiral labels. © Number of possible stereoisomers considering inversion of all chiral
centers in the molecule and the internal symmetry, or number of sequence isomers (scrambled). The number of different fingerprint
values for each fingerprint type is given in the following columns. All fingerprint were used with 2,048 bit size unless otherwise noted.
9 all stereocenters in the molecule are considered. ® amino acids are scrambled, the N-terminal fatty acid and the branching Dab residue
are maintained. P only the a-carbon chirality of the scrambled residues was considered here, which corresponds to 512 stereoisomers
per scrambled sequence. 2 with 4,096 bits, only 135 different FP values are obtained with 2,048 bits due to a bit collision.
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Figure 10. Structures of natural products and peptides selected for the stereoisomer distinction task.

4.3.4 Ranking stereoisomers versus isomers

The degree of differentiation between stereoisomers should be proportional to the number of
stereochemical changes between any two stereoisomers and should also be smaller than the difference
to a different molecule such as a structural isomer. We tested the ability of our chiral fingerprints for
this task for small and large molecules separately. As a test case for small molecules, we computed
Jaccard distances between all pairs involving the 203 structural isomers of 1,4-diaminocyclohexane
(15), a ring fragment which is enriched in bioactive molecules from ChEMBL,'#>!%3 and between all
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pairs of stereoisomers in the set. We similarly analysed all pairs involving the 48 structural isomers
of 4-aminopiperazine (16), a similar drug scaffold, and the stereoisomeric pairs within the set.
Generally, MAPC distances were higher than those of other fingerprints. This outcome is
unsurprising, given that MAPC encodes a notably greater number of features, which also contributes
to its high precision. In both test cases, all six fingerprints ranked pairs stereoisomers closer to each
other than pairs of structural isomers (Figure 11a/b).

For peptides, we measured Jaccard distances between pairs of scrambled-sequence isomers
versus pairs of stereoisomers with the same sequence for In65 (7) and polymyxin B2 (1). For peptides,
the degree of sequence similarity can also be measured by the Levenshtein distance, which represents
the minimum number of mutations necessary to transform one sequence into another one, considering
residue type changes, stereochemical inversions, insertions and deletions (Figure 11c¢/d and (Figure
B17/Figure B18). Jaccard distances generally increased with increasing Levensthein distances for all
fingerprints. Similar to small molecules, distances between peptide stereoisomers were smaller than
between sequence isomers only for chiral MAP fingerprints and APC. However, chiral ECFPs
assigned larger distances to stereoisomers than to sequence isomers, which probably relates to their
inability to distinguish many pairs of sequence isomers. For both In65 (7) and polymyxin B2 (1), the
lower Jaccard distances between stereoisomers compared to sequence isomers was well visible in
TMAP representations of each dataset constructed using MAP4C as similarity measure (Figure
12a/b).*! In both cases, there was a complete separation between the 2,048/512 stereoisomers of the

parent peptide and the 330/1,512 sequence isomers.
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Figure 11. Differentiation between stereoisomers and structural isomers, shown as box plots of
average Jaccard distances between pairs of stereoisomers (blue) or structural/sequence isomers
(yellow). a) structural isomers of 1,4-diaminocyclohexane (203) and 4-aminopiperidine (48) and their
diastereomers. The skewed distribution of Jaccard distance of 15 with MAP6C is caused by two
outliers exhibiting a distance of 0 which cannot be represented on the log scale and is likely due to a
bit-clash issue. b) sequence isomers (330) or diastereomers (2,048) of In65 (7) as function of the
Levenshtein distance separating each pair. ¢) sequence isomers (1,512) or diastereomers (512) of
polymyxin B2 (1) as function of the Levensthein distance separating each pair. See Figure B10 and
Figure B11 for plots with MAP6C, MAP2C and ECFP6C. See methods for details.
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Figure 12. MAP4C TMAPs showing the Jaccard distance (d;; rainbow) of stereoisomers (blue) and
sequence isomers (yellow) towards their respective queries: (a) In65, 2,048 diastereomers and 330
sequence isomers. The interactive version of the TMAP is accessible under
https://tm.gdb.tools/map4/MAP4AC 1n65/ (b) polymyxin B2, 512 diastereomers and 1,512 sequence
isomers. The interactive ~ version  of  the TMAP is accessible  under
https://tm.gdb.tools/map4/MAP4C _pmb2/.
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4.4 Conclusion

In summary, the data above shows that the chiral versions of MAP fingerprints reported here perform
as good as their achiral versions in non-stereoselective virtual screening benchmarks. Remarkably,
our chiral MAP fingerprints are able to distinguish stereoisomers even in cases involving up to
thousands of stereoisomers where the chiral versions of ECFP and AP do not perform well.
Furthermore, the chiral MAP Jaccard distances between enantiomers or stereoisomers are generally
shorter than for structural isomers, allowing to use chiral MAP fingerprints as a refinement of their
achiral version. Because MAP4C computes faster than MAP6C due to the small number of atom pairs
considered, we recommend MAPA4C as the molecular fingerprint of choice for comparing molecules
spanning from small drug-like building blocks to large natural products and peptides. The ability of
our chiral fingerprint MAP4C to handle stereoisomers from small molecules to large natural products
and peptides is unprecedented and opens the way for cheminformatics to include stereochemistry as

an important molecular parameter across all fields of molecular design.
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5 Navigating a 1E+ 60 chemical space of peptide/peptoid
oligomers

This chapter is based on a scientific article previously published in Molecular Informatics. The article
is reproduced here under the terms of the Creative Commons Attribution-Non Commercial

License(CC BY-NC 4.0):

Orsi, M.; Reymond, J. Navigating a 1E+60 Chemical Space of Peptide/Peptoid
Oligomers. Molecular Informatics 2024, e202400186.
https://doi.org/10.1002/minf.202400186.

Abstract

Herein we report a virtual library of 1E+60 members, a common estimate for the total size of the
drug-like chemical space. The library is obtained from 100 commercially available peptide and
peptoid building blocks assembled into linear or cyclic oligomers of up to 30 units, forming molecules
within the size range of peptide drugs and potentially accessible by solid-phase synthesis. We
demonstrate ligand-based virtual screening (LBVS) using the peptide design genetic algorithm
(PDGA), which evolves a population of 50 members to resemble a given target molecule using
molecular fingerprint similarity as fitness function. Target molecules are reached in less than 10,000
generations. Like in many journeys, the value of the chemical space journey using PDGA lies not in
reaching the target but in the journey itself, here by encountering non-obvious analogs. We also show

that PDGA can be used to generate median molecules and analogs of non-peptide target molecules.
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5.1 Introduction

Since the advent of combinatorial chemistry in the early 1990’s, which was triggered by the invention
of the split-and-mix method yielding one-bead-one-compound libraries of millions of peptide and
peptide-like oligomers in a few tens of synthetic operations,'**-1%° drug discovery has been fascinated
and partly driven by large numbers.!>!3187 Approaches ranged from the “needle in a haystack”
method of high-throughput screening typical for genetically encoded display libraries'®%1% and DNA-
encoded libraries,”*!°! to the concept of chemical space guiding the design of focused libraries of
small drug-like molecules,!?192193 fragments'3>1°* and peptides.'®®1>1%  Many projects are
currently exploiting “make-on-demand” virtual libraries of a few billion members obtained by using
various coupling chemistries to combine two to four building blocks, each being taken from a pool
of thousands of building blocks, to form linear, branched or cyclic oligomers.?%-2!! Despite of being
rather constrained, this oligomer chemical space has proven amenable to virtual screening and
sufficiently diverse to solve most drug discovery problems,?'?-214 probably because biomolecules are
themselves oligomers and their binding sites are usually suitable for partly flexible, pearl-string like
molecules.?!3-217

Following up on our interest for exhaustive enumeration of chemical space, 132207298 here we
aimed to extend the oligomer chemical space to reach up to a virtual library size of 1E+60, a common
estimate for the total size of the drug-like chemical space.!>!* We also aimed to demonstrate virtual
screening at that library size focusing on ligand-based virtual screening (LBVS).2%-219 LBV'S consists
in identifying analogs of a reference bioactive compound by scoring the virtual library using
molecular similarity measures such as molecular fingerprints,?>?4153211  or shape-based
comparisons, 3614138212213

As discussed below, we achieved our goals for the case of mixed peptide-peptoids potentially
accessible by solid-phase peptide synthesis (SPPS),?'* moving up to 30-mers with 100 different

building blocks to reach the required library size. To demonstrate LBVS, we modified our recently

reported peptide design genetic algorithm (PDGA),!°> which evolves analogs of any target molecule
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by performing mutations/selection cycles on sequences encoding a topologically diverse oligomer
space using molecular fingerprint similarity as fitness function, an approach which is related to small
molecule design genetic algorithms.?!>?!® PDGA can be used to design new analogs of known
peptides as recently demonstrated experimentally for antimicrobial peptide dendrimers.?!’
Specifically, we computed the fitness function using the macromolecule extended atom pair

fingerprint (MXFP)*%3? and the chiral MinHashed atom pair fingerprint (MAP4C),**? both designed

for large molecules.

5.2 Methods

5.2.1 Building Blocks

Our set of 100 building blocks includes the 20 proteinogenic amino acids, their D-enantiomers, 12
further amino acids, 46 peptoids (N-substituted glycines)?'® as well as GABA and B-alanine, all
available commercially or easily accessible in protected form for Fmoc-SPPS or for the submonomer
synthesis method for peptoids (Figure C1).2!%22° To further augment diversity, we allowed 11
different acyl group to cap the N-termini, and allowed a single cyclization either via a cystine bridge
or by amide bond formation between the C-terminus and the N-terminus or a primary amine side
chain (at lysine and related diamino acids). All building blocks are encoded in SMILES notation,
ensuring that their concatenation always leads to a valid molecule. Additionally, sequences are
represented in linear format to facilitate mutation and cross-over operations within the genetic
algorithm. In this format, "BBXXX" denotes a building block containing an amine and carboxylic
acid, "bXXX" a diamino acid for sequence branching, "c" a C-to-N cyclization, “s” a cysteine for
disulfide bridges, and "TXXX" an N-terminal cap. Figure C2 illustrates the enhanced sequence

format. Both, the enhanced sequence format, and the corresponding SMILES, are stored in the results

files.
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522 Genetic Algorithm

We modified our previously reported PDGA!?? by computing fitness functions either as the Jaccard
distance (d)) to the target molecule computed using the molecular fingerprint MAP4C,* saving all
generated molecules at each generation as trajectory molecules, or as the City Block Distance (dcap)
to the target molecule computed using the most recent version of MXFP,* here saving only molecules
with dcsp < 300 as trajectory molecules, a threshold which only retains molecules with a significant
degree of similarity to the target. Each PDGA run was started either from 50 random linear sequences
generated using the 100 available building blocks, or from 50 repetitions of a selected starting
sequence (for traversal runs) and stopped either when the target was found or after 10,000 generations.
For all runs, a mutation rate of 0.5, population size of 50 and free topology exploration were employed
during the genetic optimization process. In each iteration, the 15 sequences nearest to the query are
chosen as parents and mutated to create 35 new sequences, which are then added to the population.
Mutation types include point mutations, deletions, insertions and cross-over. A second set of
topology-changing mutations were added to the pool of possible mutations in the PDGA. These
include forming and breaking of C-to-N-cyclizations, forming and breaking of branching points using

diamino acids as well as forming and breaking of disulfide bridges by insertion of two cysteines.

5.3 Results and Discussion

5.3.1 A 1E+60 combinatorial library from 100 building blocks up to 30-mers

Due to its size, a chemical space of 1E+60 cannot be explicitly enumerated, leaving a formal
combinatorial enumeration as the only viable option. Assembling N building blocks to form an
oligomer of length M results in NM possibilities, hence 1E+60 is readily reached in a 60-mer peptide
using only 10 different amino acids, in line with the well-known combinatorial explosion of
possibilities in peptide and protein sequences. However, reducing length M in the direction of small
molecules requires an exponentially increasing number of building blocks N, for instance including

all 20 proteinogenic amino acids would still require a 46-mer to reach 1E+60, and reducing oligomer
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length to a tetramer assembly typical of small molecules would require 1E+15 building blocks, well
beyond the known small molecule chemical space (Table 2, 2™ column).

Here we settled for 100 building blocks, reaching 1E+60 with a 30-mer, which lies within the
size range of peptide drugs such as the HIV membrane fusion inhibitor enfuvirtide (34 residues)?*! or
the diabetes/obesity drug semaglutide (31 residues).?”?> To reach N = 100, we considered the 20
proteinogenic amino acids in L- and D- enantiomeric forms, together with simple non-proteinogenic
amino acids as well as peptoids (N-alkylated glycine),?'® which can be easily assembled by SPPS
with the sub-monomer approach.??* All 100 building blocks selected were commercially available or
easily accessible in a protected form suitable for peptide and/or peptoid submonomer SPPS (Figure

Cl).

Table 2. Influence of oligomer length M and number of building blocks N on virtual library size.?

Library size at
oligomer length Number of building blocks (N)

length M with
(M) required to reach NM = 1 E+60
N =100
60 10 1E+120
46 20 1E+92
30 100 1E+60
29 117 1E+58
15 10,000 1E+30
8 31,622,777 1E+16
4 1E+15 100,000,000

a) For linear amide-bond connected oligomers. Since we consider single strands and the amide bond is directional
(CO-N is not equivalent to N-CO), there are no symmetrical sequences. In the present report library size is further
increased by cyclization and diverse N-terminal caps (see text and methods).

With these 100 building blocks at hand, a virtual combinatorial enumeration of 1E+60 sequences was

possible. To increase diversity, we allowed for eleven different N-terminal carboxylic acids, in
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particular fatty acids as found in peptide antibiotics such as polymyxin®’ and which favour cellular

224 and extend peptide circulation times via albumin binding.?*> We also

uptake in natural products
added several options for cyclization to increase diversity (see methods for details). While these
additional variations enlarged library size, it should be noted that library size depended primarily on
oligomer length. For instance, reducing length by one unit to 29-mers reduced library size by 100-
fold, implying that 99% of the library resided with 30-mers. Nevertheless, with 100 building blocks

the virtual library still contained 100 million members for tetramers, well in the size range of the

public archive PubChem (Table 2, 3 column).??¢
5.3.2 Ligand-based virtual screening by genetic algorithm guided navigation

Virtual screening consists in computationally evaluating a dataset to select a restricted number of
molecules for closer inspection. Here we used LBV'S aiming to select analogs of a target compound
by using a genetic algorithm approach with PDGA (Figure 13).192 Genetic algorithms evolve a
population for fitness by rounds of mutations and selection. In the context of our 1E+60 chemical
space, this approach corresponds to a targeted navigation guided by the fitness function, which
circumvents the need for evaluating every library member. We set out to test whether our PDGA
would find its way through our 1E+60 virtual library, drawing from the selected set of 100

peptide/peptoid building blocks rather than only 20 amino acids to generate mutants.
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Figure 13. Design of PDGA. PDGA uses a list of input building blocks to generate a set of random
linear sequences. The sequences are encoded using either the MAP4C or MXFP fingerprints. The
fingerprints are used to determine the fitness of the sequences by calculating the distance towards a
specified query molecule. Sequences with distances below a set threshold are stored in an analogs
database. The 15 fittest sequences undergo rounds of mutations and crossovers in which building
blocks and topology are changed to add 35 new sequences to the population. This process iterates
until either the query is found or the PDGA reaches 10,000 generations.

We challenged PDGA to identify analogs of six known bioactive linear and cyclic peptides of various
length in our 1E+60 library. The test cases were polymyxin B2 (1, 10 residues, antimicrobial),’’
gramicidin S (2, 10 residues, antimicrobial),?”-??® the mixed peptide/peptoid hybrid EB9 (3, 11
residues, antibacterial),?!* oncocin (4, 19 residues, antimicrobial),??° cathelicidin BF (5, 30 residues,
immunomodulatory peptide),?*? and circulin D (6, 30 residues, anti-HIV)?! (Figure 14). In each case,
we performed three PDGA runs of maximum 10,000 generations starting from 50 random sequences
using the chiral fingerprint MAP4C, which encodes pairs of circular substructures with high precision

including chirality.*%4?
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Figure 14. Structures of the selected queries for the PDGA runs using the MAP4C similarity as fitness
function. The linear sequences (4, 5 and 6) are written with standard one-letter code for amino acids,
with free N-terminus marked as “H-* and C-terminus in acid form “-OH” or amide form “-NH,”.

PDGA identified the target molecule in less than 10,000 generation in at least one of the three runs
for each of these six peptides, including the two 30-mer peptides S and 6, which required exploration
of the full 1E+60 chemical space (Table 3). Since each generation only amounted to 35 new
molecules, which were evaluated against the 15 best scoring molecules of the previous generation
used as parents, the cumulative number of molecules generated in each trajectory only amounted to
a few thousands, which is remarkably low considering the size of the explored chemical space. Note
that the number of molecules per trajectory was approximately 30% lower when excluding
stereoisomers. The presence of stereoisomers in the trajectory resulted from the presence of D- and
L- residues in the building block set and the ability of MAP4C to rank each stereoisomer differently.
Among the generated structures, PDGA delivered thousands of virtual screening hits characterized

by a high similarity (Jaccard distance d; < 0.5) to the target peptide.
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The evolution of the best score (d to target) per generation as function of generation number
illustrated how PDGA reached each target (Figure 15 and Figure C3, upper row). After an initial
round of approximately 10 generations, the best score started to decrease, indicating that the algorithm
had found a way towards the target. After approximately 1,000 generations, the score had either
decreased to zero and the target had been found, or the algorithm was stuck at an intermediate score.
In terms of the cumulative number of new molecules generated, the increase per generation was
approximately steady until the target had been found (Figure 15 and Figure C3, lower row). When
the target was not found however, the algorithm was unable to generate any new structures, indicating
that the same 15 top scoring molecules kept being selected as parent in each round and that none of
their mutants led to any improvement in the score, implying that a local minimum had been reached.
Because the computational expense of correcting this limitation by introducing a duplicate molecule
check at every iteration was found to be far too large and the target was usually found by repeating

the run several times, the algorithm was not modified.

Table 3. Results of three parallel PDGA runs for queries 1-6.

# unique structures not counting
# unique structures

Query length  Structure® # generations to query® diastereomers
(% with d; < 0.5)9
(% with d;<0.5)9
Runl Run2 Run3 |Runl Run 2 Run 3 Run 1 Run 2 Run 3

Polymyxin B2 (1) 10 cyclic peptide [894 1,371 >10k  [6,934 (67) 6,362 (74) 7,877 (24) 5,123 (57) 4,792 (67) 4,851 (13)
Gramicidin S (2) 10 cyclicpeptide [512 736 >10k  [,119(69) 5,438(80) 4,142 (13) [,384 (63) 4,505(76) 2,958 (9)

EB9 (3) 11 peptoid D485 2295 >10k [20,998 (36) 20,377 (44) 7,160 (32) [16,705 (32) 16,333 (41) 5,720 (28)
Oncocin (4) 19 linear peptide [5350 5,629 >10k  [6,591 (80) 39,835 (77) 55,462 (67) 2,023 (65) 27,829 (70) 32,698 (52)
Cathelicidin BF (5) 30 linear peptide 9,355 8,521 >10k  [88,738 (86) 86,265 (87) 31,301 (86) [57,367 (81) 63,374 (83) 20,831 (80)

Circulin D (6) 30 Cyclotide® 8,133 >10k >10k (73,535 (73) 37,526 (74) 33,738 (61) 13,550 (58) 23,368 (61) 26,092 (53)

a) see supporting information Figure S2 for structural formulae. b) number of generations used by PDGA to reach the
query molecule. >10k indicates that the target was not found within 10k generations. c¢) d refers to the Jaccard distance
calculated using MAPA4C fingerprints. d) PDGA was run on the linear sequence lacking the cystine bridges.
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Figure 15. Analysis of three parallel PDGA runs starting from 50 random sequences towards selected
queries. Top plots show the overall best score throughout the trajectory; the bottom plots show the
cumulative number of unique new molecules generated throughout the trajectory for a) polymyxin
B2, b) EB9, and c) cathelicidin BF. The best score refers to the MAP4C d; of the closest structure
generated up to that generation relative to the target.

To get a closer insight into the analogs (MAP4C d; < 0.5) generated by PDGA, we focused on the
case of polymyxin B2 (Figure 16). We compared the three PDGA runs with an additional self-run,
starting PDGA from polymyxin B2 and letting the algorithm complete 10,000 generation independent
of target identification. This self-run quickly exhausted itself and produced 1,906 unique analogs,
significantly less than the approximately seven thousand analogs obtained for each PDGA run.
Interestingly, each of the three runs produced a different set of analogs (Figure 16a). While it is not
surprising that all 7,877 molecules in the failed run were unique to this run since it failed to converge
on the target, the two successful runs only shared three common molecules and less than 100 with the
self-run, although all molecules in these runs were highly similar to polymyxin B2, with an average
Jaccard distance below 0.35 (Figure 16b). We also analysed the average number of mutations from
the target using Levenshtein distance as a proxy. Analogs of the successful runs were on average
three mutations away from the target, while the self-run only produced point mutants and molecules

from the failed run remained approximately 9 mutations away from polymyxin B2 (Figure 16c¢).
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A closer analysis of the successful runs revealed that many analogs combined multiple
mutations with a high similarity to the target, as exemplified with analog 7 (Figure 16d). Such
analogs are particularly interesting since they would be difficult to identify without PDGA compared
to single point mutant from the self-run, which do not require an algorithm for design. When displayed
on a tree-map (TMAP)* computed using MAP4C similarities, molecules from the two successful
runs and the self-run were intermixed, indicating that they occupied a similar chemical space. Note
however that two clusters of molecules from Run 1 (blue) or Run 2 (yellow) were visible, which
contained early generation molecules with high Jaccard distance. Molecules from Run 3, which did
not reach the target, also remained at high Jaccard distance and occupied a separate area of the map,
reflecting their very different structural type, which featured a large, unbranched macrocycle

exemplified by analog 8 (Figure 16d).
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Figure 16. Analysis of polymyxin B2 runs starting from 50 random linear sequences (Run 1-3) or
from polymyxin B2 without stopping condition (Self). a) Heatmap indicating the number of generated
compounds with MAP4C d; < 0.5 to polymyxin B2 for each trajectory, along with the number of
overlapping compounds. b) Bar plot showing the mean and standard deviation of the d; calculated
using MAP4C fingerprints for generated compounds with d; < 0.5 to polymyxin B2. c¢) Bar plot
showing the mean and standard deviation of the Levenshtein distance (dr; proxy for number of
mutations) to polymyxin B2 for generated compounds with d; < 0.5 to polymyxin B2. d) Structure of
a selected polymyxin B2 analog featuring a high d; and low d;(7) and the closest analog generated
in the failed run (8). ¢) TMAP displaying the generated compounds in a 2D space. Interactive TMAP:
https://tm.gdb.tools/map4/10E60/polymyxin_randself tmap.html.

5.3.3 Traversing chemical space to find median molecules

We next tested whether PDGA might be used to generate traversal trajectories in chemical space,

starting from molecule A to reach a target molecule B, potentially travelling by a region of chemical
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space containing median molecules, a goal realized by small molecule generation algorithms,?32233

but not demonstrated for the case of peptides or peptide-like oligomers. PDGA was indeed able to
generate such traversal trajectories between pairs of linear or cyclic peptides as illustrated with the
pair of cyclic peptide natural products polymyxin B2 (1) and gramicidin S (2), the peptide/peptoid
pair EB9 (3) and oncocin (4) and the pairs of linear 30-mers cathelicidin BF (5) and circulin D (6).
Although reaching their targets, these trajectories rapidly diverged from the starting molecules and
generated mostly close analogs to the target, without spending significant time at intermediate
similarities (blue and red points in Figure 17a and Figure C4).

To obtain median molecules between A and B, we ran PDGA with a modified fitness function
minimizing the sum of three terms, namely the Jaccard distances to A and B and their absolute
difference. This fitness function guided the algorithm to produce molecules with the smallest possible
but equal distance to A and B. Indeed, the population of molecules generated using this modified
fitness function were close to the diagonal of the 2D-jaccard distance plot (yellow points in Figure
17a and Figure C4). A TMAP analysis of the set of molecules generated for the Polymyxin B2 (1)
to gramicidin S (2) trajectories showed that each trajectory generated structurally distinct classes of
molecules corresponding to different areas of the chemical space around these molecules, with
interesting hybrid molecules such as 9 and 10 combining features from both compounds (Figure

17b/c).

64



Q
'

0.8 4

0.6 1

d; Gramicidin S
(]
B

. % . ;
" I l I I I ~ 3.1 7% ‘L‘: %, \"5"‘:“5‘“}“:‘3 - SN e
00 02 04 06 08 L AT R Al T A
. 3 v, 3, ? Sogee on” T 3 #:
dj Polymyxin B2 M3 g =l Seed A e RS
' ‘he T 8" s pm & 2 LA ol
.-)_-'f s '.'I{ \‘rf AL AR & e ..;-":v(,:",
v“;. |" 'T,:R"il " P 3‘: o 'r-\h': 4w { g :-. d’%":‘{‘_'_ \,r:s-:
o PMB2 —- GRMS .‘.“-?-: a9 ‘}!. .‘ ol < 3 . . "i,:"' 2 ,.:'.
 PHIB2 + GRMS, SRR NG T A
PMB2 + GRMS - 3t ,:'Iq_:-\'l P L‘?i““j’sf s e :;_
et N A X TR AT NS
Fa 8 T Ay o’ _.,_&‘n A
T RALAIY ;2 yJ TR
LS A H ‘.\- ".‘»J-' o
i WL e
NPT oA
e -
c) 0 : o.j/N\:/lLH o
+ - . .
HSN\/\)LH/YNH HN - HN_ . \@
\OH O _NH ;\
L oo NO o R0) ’Ao*HsN . N}
)\/\/\WNJN Ny HNIVNHJ N_O  NHgt O/,
H - H \E

H
NH,* Hot
3 3 OA\Q M oMy N o
RN T

! 2
dypms2 =0 dypme2 = 0.76
dycrms = 0.76 dyerus = 0

o 10
djpme2 = 0.6 Ay = 0.59
dyerms = 0.6 e 0,50

Figure 17. Visualization of traversal trajectories and median molecules between polymyxin B2 and
gramicidin S. a) Jaccard distance of molecules selected from the different trajectories towards
polymyxin B2 and gramicidin S. The trajectory from polymyxin B2 to gramicidin S is displayed in
blue, the reverse trajectory is displayed in red, and the combined structure trajectory is displayed in
yellow. b) MAP4C TMAP of selected molecules colored by their trajectory of origin. The trajectories
populate separate chemical subspaces. ¢) Structures of the two queries polymyxin B2 and gramicidin
S and two selected molecules from the median trajectory (yellow). Interactive TMAP:
https://tm.gdb.tools/map4/10E60/polymyxin_gramicidin_tmap.html.
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5.3.4 Traveling towards non-peptide molecules

We next used PDGA to identify analogs of targets not obtainable for the 100 selected building blocks,
described here as “non-peptide”, by minimizing the distance to target and stopping after 10,000
iterations. We tested this approach for diverse macrocycles containing building blocks and linkages
not available in our library (11-17, Figure C5). For these non-peptide targets, driving PDGA with
the shape and pharmacophore fingerprint MXFP delivered somewhat more convincing results than
with MAP4C.

Specifically, the molecules generated using the MXFP fitness function matched the overall
shape of the target molecules better than those generated using the MAP4C fitness function (Figure
18 and Figure C6). For instance, in the case of cyclosporin (11), which contains several N-methylated
amide bonds contributing to its membrane permeability,>**?*> and for valinomycin (13), where half
of the linkages are ester instead of amide bonds, MAP4C generated macrocycles preserved more
standard amide bonds, while those generated by MXFP guided PDGA to use the peptoid units
available in our set of 100 building blocks, in order to mask the amide H-bond donor group.
Furthermore, MAP4C sometimes selected acyclic analogs as best fits due to its emphasis on
substructures, while MXFP always selected macrocycles matching the overall shape and polarity of

the target molecule.
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Figure 18. Non-peptide macrocycles, the overall best score throughout the trajectories and the
corresponding best scoring MXFP analog from three combined runs for a) cyclosporin and b)
valinomycin. The MXFP dcsp is reported for each analog. See also Figure C6 for further details.

5.4 Conclusion

In the conversations around chemical space, 1E+60 has established itself as a symbolic and
fascinating boundary. Here we explicitly created a virtual library of 1E+60 molecules by combining
100 peptide and peptoid buildings blocks to form up to 30-mer linear or cyclic oligomers, all
potentially accessible by standard solid-phase synthesis. We demonstrated LBVS of this 1E+60
chemical space using a simple genetic algorithm, which succeeded in identifying virtual hits, defined
either as analogs of specific molecules or as median molecules, by surveying only a few thousand
sequences. It should be noted that, like in many journeys, the value of the chemical space journey
using PDGA lies not in reaching the target but in the journey itself, here by encountering interesting
molecules which would be otherwise difficult to design. Whether these molecules might translate into
useful bioactives requires experimental evaluation of specific series. Additional studies along these

lines are ongoing in our team.
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5.5 Code availability

The code used for the analysis and plots study is available at https:/github.com/reymond-

group/10E60. The raw results files can be retrieved at https://zenodo.org/records/11396287.
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6 Can large language models predict antimicrobial
peptide activity and toxicity?

This chapter is based on a scientific article previously published in RSC Medicinal Chemistry. The

article is reproduced here under the terms of the Creative Commons Attribution License (CC BY 3.0):

Orsi, M.; Reymond, J.-L. Can Large Language Models Predict Antimicrobial
Peptide Activity and Toxicity? RSC Med. Chem. 2024, 15 (6), 2030-2036.
https://doi.org/10.1039/D4MD00159A

6.1 Abstract

Antimicrobial peptides (AMPs) are naturally occurring or designed peptides up to a few tens of amino
acids which may help address the antimicrobial resistance crisis. However, their clinical development
is limited by toxicity to human cells, a parameter which is very difficult to control. Given the
similarity between peptide sequences and words, large language models (LLMs) might be able to
predict AMP activity and toxicity. To test this hypothesis, we fine-tuned LLMs using data from the
Database of Antimicrobial Activity and Structure of Peptides (DBAASP). GPT-3 performed well but
not reproducibly for activity prediction and hemolysis, taken as a proxy for toxicity. The later GPT-
3.5 performed more poorly and was surpassed by recurrent neural networks (RNN) trained on
sequence-activity data or support vector machines (SVM) trained on MAP4C molecular fingerprint-
activity data. These simpler models are therefore recommended, although the rapid evolution of

LLMs warrants future re-evaluation of their prediction abilities.

6.2 Introduction

Antimicrobial peptides (AMPs) have gained significant attention in the field of drug discovery due

to their potential therapeutic applications in the fight against antimicrobial resistance.?*!-2>* However,
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the vast number of possible peptide sequences and their complex structure-activity relationship
landscape mean that it is difficult to rationally design peptides with the desired biological activity, in
particular tuning their activity versus toxicity to human cells, which is often measured as hemolysis
of human red blood cells.?3%-240

To address this issue, several machine-learning models have been developed for the de novo
design of antimicrobial peptides.3:66:104-107.256-265 Because property prediction from a peptide
sequence can be framed as a natural language processing problem, many of these models use

68,251,252 Fyrthermore, the

architectures specifically designed for language processing tasks.
emergence of large language models (LLMs), such as OpenAIl’s GPT models,?*? has opened new
possibilities for leveraging powerful language processing capabilities in drug discovery applications.
Recent attempts by Jablonka et al. to explore the capabilities of GPT-3 for predicting properties of
small molecules in various applications have shown that GPT-3 was able to perform comparably or

254 There also

even outperform conventional statistical models, particularly in the low data regime.
have been successful efforts into augmenting LLM capabilities to tackle tasks related to small
molecule chemistry in the areas of organic synthesis, drug discovery, and materials design.”2270-272
Hereby, the models mainly orchestrate a set of tools to solve chemistry tasks starting from a natural
language prompt.’*23%259 However, to the best of our knowledge LLMs have not been implemented
to predict the bioactivity of peptides yet.

In this study, we aimed to compare GPT models fine-tuned on antimicrobial peptide sequence
data with models that have been previously used to predict antimicrobial activity and hemolysis of
peptide sequences.®®197 Alongside evaluating the performance of the fine-tuned GPT models, we also
seek to explore the advantages and disadvantages they offer in terms of time and cost effectiveness.

Furthermore, we compare the performance of models trained on amino acid sequences to a support-

vector machine (SVM) trained on the MAP4C fingerprint.*?
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6.3 Methods

6.3.1 Datasets

The datasets used in this study were peptide sequences with annotated antimicrobial and hemolytic
activity collected from the Database of Antimicrobial Activity and Structure of Peptides
(DBAASP).%62%0 Sequences exhibiting an activity measure below 10 mM, equivalent to 10,000 nM
or 32 mg mL-1, against at least one of selected target organisms P. aeruginosa, A. baumannii, or S.
aureus were categorized as active. Conversely, sequences with activity measures exceeding 10 mM,
10,000 nM, or 32 mg mL-1 against all of these targets were categorized as inactive. When available,
activity against human erythrocytes was utilized to classify sequences as either hemolytic or non-
hemolytic. Concentrations were standardized to mM, and sequences causing less than 20% hemolysis
at concentrations equal to or above 50 mM were categorized as non-hemolytic and flagged
accordingly. Sequences inducing more than 20% hemolysis were classified as hemolytic, irrespective
of concentration. The dataset used for the classification tasks contained 9,548 (7,160 training / 2,388
validation) sequences with annotated antimicrobial activity, of which 2,262 (1,723 training / 539
validation) sequences had additional hemolytic activity annotations. To test models in low data
regimes, we randomly selected subsets from the original training sets, representing approximately
20% and 2% of the original activity set, and approximately 10% of the original hemolysis set. All
datasets are further described in Table 4.To ensure consistency, we maintained the same training and
test split for all initial evaluations. For the detailed study, we used the same 5-fold cross-validation

sets.
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Table 4. Sizes and composition of the datasets used in the present study. Datasets are available at
https://github.com/reymond-group/LLM _classifier.

Name Size # Positive Class # Negative Class
Activity Training 7,160 3,580 3,580
Activity Training 20% 1,400 701 699
Activity Training 2% 140 74 66
Activity Validation 2,388 1,194 1,194
Hemolysis Training 1,723 717 1,006
Hemolysis Training 10% 35 65 105
Hemolysis Validation 539 226 313
6.3.2 Models

As reference models, we used our previously reported Naive Bayes (NB), Support Vector Machine
(SVM), Random Forest (RF), and Recurrent Neural Network (RNN) classifiers trained on the same
data.%® We furthermore trained two additional SVM models on alternative representations of peptide
sequences: one utilizing the MAP4C fingerprint*? with a custom Jaccard kernel, and another using
predicted fraction of helical residues and hydrophobic moment with a linear kernel. Fraction of helical
residues were predicted using SPIDER3.2! Hydrophobic moment was computed using the method
of Eisenberg et al.*®?

To explore the potential of GPT-3 models for antimicrobial and hemolytic activity
classification, we performed fine-tuning of the Ada, Babbage, and Curie models which were
accessible through the OpenAl API (v0.28.0, accessed between 25.05.2023 and 01.06.2023). The
fine-tuning process involved training each model using the full, 20% and 2% sets for activity
classification and the full and 10% set for the hemolysis classification. In the later evaluation with
the more advanced LLM GPT-3.5 Turbo, fine-tuning was also performed via OpenAl's Python API
(v1.11.1), following the provided guidelines, but we restricted ourselves to the full model. The
utilized fine-tuning datasets contained a system role ("predicting antimicrobial activity/hemolysis
from an amino acid sequence"), a user message (peptide sequence formatted as "SEQUENCE ->"),

and a system message ("0" for negative labels and "1" for positive labels).
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6.3.3 Metrics

All models were evaluated using five commonly accepted performance metrics: ROC AUC,
Accuracy, Precision, Recall and F1. Metrics were either calculated using the scikit-learn (v1.4.0)
Python (v3.12.1) package (reference models and GPT-3.5) or directly obtained from the OpenAl

platform after fine-tuning was completed (for all GPT-3 models).

ROC AUC (Receiver Operating Characteristic Area Under the Curve: The ROC AUC measures the
area under the Receiver Operating Characteristic curve, which plots the True Positive Rate
(Sensitivity) against the False Positive Rate. A higher ROC AUC value (ranging from 0 to 1) indicates

better discrimination and predictive performance of the model.

Accuracy: Accuracy measures the overall correctness of the model's predictions, calculating the ratio
of correctly classified instances to the total number of instances. It provides a general understanding

of the model's performance but can be misleading in imbalanced datasets.

| ~ TP + TN
CCUracy = Tp + FN + TN + FP

Precision: Precision measures the proportion of true positives out of all predicted positives. It focuses
on the model's ability to avoid false positives.

TP

Precision = —
recision = T Fp
Recall: Recall measures the proportion of true positives out of all actual positives. It represents the

model's ability to identify positive instances accurately.

Recall = e
T TP+FN
F1 score: F1 is the harmonic mean of precision and recall. It provides a balanced measure that

considers both precision and recall.

2 * Precision * Recall
F1=

Precision + Recall
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6.4 Results and Discussion

6.4.1 Model screening

Starting from the DBAASP dataset of 9,548 peptide sequences annotated with antibacterial activity
and 2,262 peptide sequences annotated with hemolysis effect, we had previously evaluated NB, RF,
SVM and RNN models, and found the latter to perform best for predicting both activity and hemolysis
from sequence data.%®!'%” For additional reference, we trained an SVM on the fraction of helical
residues and the hydrophobic moment, two properties commonly known to correlate with
antimicrobial activity, as well as another SVM on MAP4C, a molecular fingerprint that can reliably
encode large molecules such as natural products and peptides including their chirality,*? a parameter
which we considered important since our data listed sequences containing both L- and D-amino acids.

Aiming to test how LLMs perform in predicting antimicrobial activity and hemolysis, we first
fine-tuned and evaluated GPT-3 Ada, Babbage, and Curie models (Table D1). As discussed in our
preprint, these models performed slightly better than the reference models and even provided good
performances when trained in low data regime (20% and 2% of full data). However, these models
were later deprecated by OpenAl, and their performance cannot be reproduced. We therefore discuss
herein only the results obtained with the more recent GPT-3.5 model, in comparison with the
reference models.

For both, prediction of antimicrobial activity and prediction of hemolysis, the top-performing
models were the MAP4C SVM and the RNN model trained on sequence data, the latter being the best
performer in our original work (Table 5).° The performances for both models were in a similar range,
although the RNN displayed a notably higher ROC-AUC in both tasks. GPT-3.5 displayed the highest
recall performance among the activity models, indicative of the model's tendency to overly favour
positive predictions, potentially leading to increased false positive predictions. On the other hand, the
features SVM trained only on helicity and hydrophobic moment did not perform significantly above

background and was later used as a negative control model.

75



Table 5. Performance metrics of all models tested on antimicrobial activity and hemolysis
classification. The best value for each metric is highlighted in bold. NB: Naive Bayes, RF: Random
Forest, SVM: Support Vector Machine, RNN: Recurrent Neural Network, MAP4C: Chiral
MinHashed Atom-Pair Fingerprint of Diameter 4, GPT: Generative Pre-Trained Transformer.

Model ROC AUC  Accuracy Precision Recall F1

NB act. 0.55 0.55 0.59 0.32 0.42
RF act. 0.81 0.71 0.7 0.75 0.73
SVM act. 0.75 0.68 0.68 0.68 0.68
RNN act. 0.84 0.76 0.74 0.8 0.77
Features SVM act. 0.65 0.65 0.66 0.62 0.64
MAP4C SVM act. 0.8 0.8 0.79 0.83 0.8

GPT-3.5 Turbo act. 0.68 0.68 0.62 0.93 0.75
NB hem. 0.58 0.56 0.48 0.76 0.59
RF hem. 0.8 0.77 0.81 0.6 0.69
SVM hem. 0.69 0.73 0.72 0.58 0.65
RNN hem. 0.87 0.76 0.7 0.76 0.73
Features SVM hem. 0.62 0.63 0.57 0.5 0.54
MAP4C SVM hem. 0.83 0.83 0.76 0.85 0.8

GPT-3.5 Turbo hem.  0.65 0.69 0.72 0.43 0.54

6.4.2 Model comparison

Following the initial model screening, we aimed to validate our findings through a more robust
approach: a 5-fold cross-validation involving GPT-3.5, the MAP4C SVM, the RNN, and finally the
features SVM as negative control. For this purpose, we generated five data splits and conducted
predictions anew.

The results, depicted in Figure 19a for antimicrobial activity prediction and Figure 19b for
hemolysis prediction, confirmed our earlier observations (performances in Table D2). Notably, the
RNN performances were higher than those observed in the screening experiment and were clearly

above those of GTP-3.5. Furthermore, both the RNN and MAP4C SVM demonstrated comparable
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performances, indicating the validity of both approaches in predicting antimicrobial activity and
hemolysis. The finding that simpler machine learning architectures, like SVM, can rival the
performance of more complex RNNs in predicting antimicrobial activity and hemolysis is particularly
interesting. A comparison with models trained on similar datasets, which achieve similar
performances as reported in this study, further reinforces the consistency of our findings.?63-23

This raises questions about the importance of model architecture versus foundational elements
such as data quality and feature engineering. It suggests that a balanced approach, prioritizing
optimization of these foundational components, could prove more beneficial than focusing solely on

model complexity.

a) Activity b) Hemolysis

1.0

0.8
B GPT-3.5 Turbo
0. H RNN
0 MAP4C SVM
Features SVM
0.
0.0

Figure 19. Results of the 5-fold cross-validation study aimed at validating MAP4C SVM, Features
SVM, RNN, and GPT-3.5 turbo performance for a) antimicrobial activity and b) hemolysis
predictions. The mean performance across the 5 cross-validations for each metric is shown as a bar,
the standard deviation is displayed with an error bar. The results confirmed earlier observations but
showed notably higher performances for the RNN compared to the one-shot screening experiment.
Both the RNN and MAP4C SVM demonstrated comparable performances.
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6.4.3 Data visualization

The high performance achieved by the SVM trained on the MAP4C fingerprint suggested that the
nearest neighbour relationships in the MAP4C feature space could be sufficient to distinguish active
from inactive and hemolytic from non-hemolytic peptide sequences. In our previous work, we
observed that the MAP4 fingerprint*® correctly clustered natural products, taken from the COCONUT

173

database,!” according to their organism of origin.?6*!!> In analogy to our previous work, we were
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curious to see whether a spatial separation of actives/inactives and hemolytic/non-hemolytic
sequences can be obtained from encoding with MAP4C, the chiral version of MAP4, possibly
explaining the good performance of the MAP4C SVM model. For this, we reduced the 2048-
dimensional feature space of MAP4C to 2D using the dimensionality reduction method TMAP,*! and
used the obtained visualization to display a set of molecular properties.

First, we wanted to confirm that the TMAP visualization aligns with intuitive distributions of
structural features relevant for peptides. For that, we coloured the data points based on their heavy
atom count (HAC), an indicator of molecular size, and fraction of carbon atoms (fraction C), a simple
proxy for the hydrophobicity of a peptide sequence. The TMAP revealed visible clusters for both,
HAC (Figure 20a) and fraction C (Figure 20b), indicating that the reduced MAP4C features can
reliably represent simple molecular descriptors in the underlying chemical space.

Following this first observation, we wanted to test if we can detect clusters within TMAP
visualizations of more complex physicochemical properties, such as the predicted fraction of helical
residues (Figure 20c¢) and the hydrophobic moment (Figure 20d). In both cases, we could not detect
large homogenous clusters as was the case for HAC and fraction C. However, the data formed a large
number of small local clusters, indicating that the nearest neighbour relationships in the MAP4C
feature space can possibly be used to distinguish sequences with high helicity/hydrophobicity
opposed to sequences with low helicity/hydrophobicity.

Finally, we analysed the distribution of active versus inactive (Figure 20e) and hemolytic
versus non-hemolytic (Figure 20f) sequences in the MAP4C chemical space. Similarly to the
visualizations of predicted fraction of helical residues and hydrophobic moment, active and inactive
or hemolytic and non-hemolytic sequences are spatially separated in a large number of small, local
clusters. This finding is particularly interesting as it suggests that nearest neighbour relationships in
the MAPA4C feature space are sufficient to separate peptide sequences based on their antimicrobial
activity and hemolysis. It further provides an explanation to the good performance obtained with the
MAP4C SVM, which can leverage the nearest neighbour relationships stored in the MAP4C

fingerprint feature space when provided with a custom Jaccard kernel function.
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Figure 20. Chemical space covered by the 9,548 peptide sequences with annotated antimicrobial
activity extracted from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP).
The sequences are encoded using the MAP4C fingerprint and the resulting 2048-dimensional space
reduced to 2D using TMAP. The sequences in the 2D TMAP were colored based on a) heavy atom
count, b) fraction of carbon atoms, c) predicted fraction of helical residues, d) hydrophobic moment,
e) annotated antimicrobial activity and f) annotated hemolysis.
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6.5 Conclusion

In the present study we investigated the potential of LLMs as predictive tools for antimicrobial
activity and hemolysis of peptide sequences. We assessed that fine-tuning GPT models in cloud is a
relatively easy and fast process as access through the API eliminates the need to buy expensive
hardware and requires little technical expertise. Duration of fine-tuning was short, and the associated
costs were low (Table D3). In contrast to cloud-based fine-tuning, local model training involves
setting up and maintaining hardware, which can be costly and require technical expertise. While less
complex models like RNNs and SVMs have lower hardware requirements, training larger models
such as LLMs locally can pose challenges in terms of scalability, as one can rapidly face limitations
in terms of hardware capacity and maintenance costs.

However, the lack of control over the training environment in cloud-based approaches raises
concerns regarding reproducibility of scientific results. In the course of this study, we had originally
fine-tuned GPT-3 models Ada, Babbage and Curie. These models performed slightly better than the
reference models, even achieving good performances in low data regimes. Unfortunately, these
models were later deprecated by OpenAl and their performance cannot be reproduced. When fine-
tuning a newer iteration of GPT-3 (GPT-3.5 Turbo), we observed a significant decrease in
performance for the same task. We attribute the drop in performance to the increasing optimization
of LLMs for conversational interactions, which may negatively impact their effectiveness in out-of-
scope predictive tasks. These findings highlight the potential risk of how not controlling one's own
models can compromise the reproducibility and reliability of scientific results.

The aforementioned findings suggest a diminishing suitability of chat oriented LLMs for
classification tasks over time, a function beyond their intended design. This observation specifically
applies to LLMs tailored for conversational or human interaction purposes, rather than specialized
LLMs trained on domain-specific data. Unfortunately, the latter do not provide the ease of access and

usability that GPT models do. Consequently, we expect that LLMs will increasingly be employed in
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human interaction settings, facilitating the integration of various chemical tools through natural
language interfaces as is being pioneered by Bran?*® and Boiko et al.?*®

Finally, we could demonstrate in the present study that classical machine learning techniques,
such as SVMs trained on MAP4C fingerprint encodings, can achieve state-of-the-art performance in
the prediction of antimicrobial activity and hemolysis. This finding is especially interesting, as it
showcases that good performance can be achieved by less complex models, putting the emphasis on

data quality rather than model complexity.
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7 Assigning the stereochemistry of natural products by

machine learning

This chapter is based on a preprint publicly available on ChemRxiv. The preprint is reproduced here

under the terms of the Creative Commons Attribution-Non Commercial License (CC BY-NC 4.0):

Orsi, M.; Reymond, J.-L. Assigning the Stereochemistry of Natural Products by
Machine Learning. September 23, 2024. https://doi.org/10.26434/chemrxiv-

2024-zz9pw.

Abstract

Nature has settled for L-chirality for proteinogenic amino acids and D-chirality for the carbohydrate
backbone of nucleotides. Here we asked the question whether stereochemical patterns might also
exist among natural products (NPs) such that their stereochemistry could be assigned automatically.
Indeed, we report that a language model can be trained to assign the stereochemistry of NPs using the
open access NP database COCONUT. In detail, our language model, called NPstereo, translates an
NP structure written as absolute SMILES into the corresponding isomeric SMILES notation
containing stereochemical information with 80.1% per-stereocenter accuracy for full assignments and
86.3% per-stereocenter accuracy for partial assignments across various NP classes including
secondary metabolites such as alkaloids, polyketides, lipids and terpenes. NPstereo might be useful

to assign or correct the stereochemistry of newly discovered NPs.
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7.1 Introduction

Since the identification of carbon containing molecules as signature constituent of living matter on
our planet (vis vitalis), deciphering the structure and function of natural products (NPs) has guided
the development of organic chemistry and remains an essential source of inspiration for the

development of new medicines.?8%2%3

However, while the atom connectivity of NPs can be assigned
by a variety of methods ranging from degradation chemistry to Mass Spectrometry and NMR
spectroscopy, as of today determining the configuration of individual stereocenters in NPs (3D-
structure) remains challenging and requires techniques such as X-ray crystallography and chiroptical

spectroscopy often combined with derivatization,?%4-2%

and sometimes total synthesis to confirm or
correct the initial stereochemical assignment.3%0-308

Considering that nature has settled for only L-chirality in proteinogenic amino acids and D-
chirality in the carbohydrate backbone of nucleotides, we asked the question whether similar
regularities might be hidden in NP stereochemistry that might allow this information to be machine
learned. To the best of our knowledge, this question has not been addressed despite many studies
using machine learning to classify NPs and their relation to other molecular classes.'!4136.280,309-313
We set out to test if a transformer model, a type of neural network initially developed for language
translation,®® found to perform well for a variety of chemistry related tasks,?°¢ including the prediction
of stereoselective reactions in forward and retrosynthesis direction,?®’2°” might be able to learn NP
stereochemical assignments.

As detailed below, we found that the stereochemistry of NPs can indeed be assigned by a
transformer model trained on inserting missing stereochemical labels for chiral centers and Z/E
double bonds into a SMILES (Simplified Molecular Input Line Entry System)!”"172 string
representation of the molecular structure with entirely missing or partially assigned stereocenters. We
trained our model using 63,998 NPs with fully assigned stereochemistry and a literature reference,

which we collected from the open access database COCONUT (COlleCtion of Open Natural

ProdUcTs), a database which combines several NP databases into a single source.!”® Our transformer
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model, called NPstereo, assigns NP stereochemistry with 80.1% per-stereocenter accuracy for full

assignments and 86.3% per-stereocenter accuracy for partial assignment across various NP classes.

7.2 Results and Discussion

7.2.1 Dataset analysis

All NPs associated with at least one associated literature reference were extracted from the
COCONUT database, which provided 116,403 NPs written as canonical isomeric SMILES, including
stereochemical information for tetrahedral centers (@ or @ @) and stereogenic double bonds (/C=C/
or /C=C\). Visualizing similarity relationships between NPs as measured by the MAP4C molecular
fingerprint,*> using the dimensionality reduction method TMAP,3*#! provided a layout illustrating
the different structural classes (polyketides, benzenoids, nucleosides, alkaloids, lignans, peptides,
lipids & terpenes, and glycosides, Figure 21a). The structural classes differed by the number of
stereocenters per molecule, which was relatively high for lipids & terpenes, peptides, and glycosides,
and much lower for benzenoids and nucleosides (Figure 21b). Some of the 116,403 NPs
corresponded to different stereoisomeric forms of the same 2D-structure, including structures with
incomplete of fully missing stereochemical assignment, such that the set only contained 98,108
different 2D-structures without stereochemical assignment, written as absolute SMILES. Note that
NPs with incomplete stereochemical assignment were evenly distributed among the different NP
structural classes, as evidenced by color-coding the TMAP (Figure E1).

The subset of NPs with fully assigned stereochemistry featured 73,130 different isomeric
SMILES corresponding to 63,998 different absolute SMILES after removal of stereochemical labels.
Among these, 12,095 absolute SMILES (18.9%) did not contain any stereocenter, 9,254 (14.5%)
contained 11 or more stereocenters, and the remaining 42,649 (66.6%) were approximately evenly
distributed in groups containing between one and ten stereocenters. Most of these absolute SMILES

corresponded to a single stereoisomer (i.e. a single isomeric SMILES, 56,676, 88.6%), a small group
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to two stereoisomers (6,100, 9.5%), and a very small fraction (1,212, 1.9%) to three or more

stereoisomers (Figure 21c¢).
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a) full accuracy
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Figure 21. Dataset analysis and model training strategy. (a-b) MAP4C TMAPs of 116,403 unique compounds
with an associated DOI, extracted from the COCONUT database. The TMAP visualizations are colored
according to a) NP structural classes, as defined in the COCONUT database “chemical super class” field,
with peptides and glycosides further refined using SMARTS substructure searches; and b) the number of
stereocenters in each structure. An interactive version of the TMAP plot can be accessed at:
https://tm.gdb.tools/map4/NPstereo/. (¢) 3D bar plot showing the number of molecules (vertical axis) as a
function of the number of total stereocenters (depth axis) and the number of stereoisomers (horizontal axis)
for 63,988 structures with fully assigned stereocenters. (d) Workflow for data selection, model training and
evaluation.

7.2.2 Model design and training

To test if NP stereochemical assignment could be machine learned, we set out to train transformer
models to translate a source absolute SMILES, describing the unassigned 2D-structure of an NP, into

the corresponding target isomeric SMILES containing stereochemical labels. For model training, we
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used the 73,130 NPs with a literature reference and a fully assigned stereochemistry extracted from
COCONUT. We split the data into training, validation and test sets at the level of 2D-structures
(63,988 canonical absolute SMILES, lacking stereochemical labels) with an 80:10:10 ratio, and
optionally considered data augmentation schemes compensating for the relatively small dataset size
to train and evaluate various models in terms of full assignment accuracy and per-stereocenter
assignment accuracy (Figure 21d).

To train our first transformer model C1, we considered each canonical isomeric SMILES in
the training and validation splits and generated a corresponding absolute SMILES by removing all
stereochemical labels, which resulted in an absolute SMILES with the same order of characters as the
canonical isomeric SMILES. These absolute SMILES were used as source strings and associated with
the corresponding canonical isomeric SMILES as target strings, resulting in training and validation
datasets for model C1 (see methods for details). In this manner, model C1 would be trained to convert
each absolute SMILES into the corresponding canonical isomeric SMILES by inserting
stereochemical labels without having to alter the order of characters in the SMILES.

Next, we enlarged the training and validation sets of C1 using two possible data augmentation
approaches. First, we used SMILES randomization,**° a technique which generates a number of non-
canonical forms of a canonical SMILES and is often used to enhance the performance of language
models trained on SMILES.3%1:392 We applied the procedure to the target lists of canonical isomeric
SMILES at 2-, 5-, 10-, 20-, and 50-fold levels, and subsequently removed stereochemical labels from
the resulting non-canonical isomeric SMILES to produce the corresponding absolute SMILES for the
augmented source lists, which resulted in augmented datasets to train models A2, AS, A10, A20 and
AS0. Second, we randomly removed stereochemical labels from each canonical isomeric SMILES of
the target list in C1 in up to five different versions for each number of removed label to produce an
augmented source list of partially assigned isomeric SMILES. We then paired each of these partially
assigned isomeric SMILES with their parent fully assigned canonical isomeric SMILES in the target
list. This procedure resulted in a 25-fold augmentation of the data to train model NPstereo. Finally,

we combined both data augmentation approaches by applying a 10-fold SMILES randomization to
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the target lists of canonical isomeric SMILES of C1, and then randomly removing stereochemical
labels from each randomized isomeric SMILES one at a time until none remained to produce partially
assigned randomized SMILES for the source list. This procedure augmented the C1 training and
validation datasets by approximately 65-fold, resulting in training data for model M65.

In addition to these augmented datasets, we generated a negative control dataset R1 by
randomizing stereochemical labels in the target lists of canonical isomeric SMILES of model C1 such
that no pattern in stereochemistry should be recognizable. An additional negative control dataset RP
was created by partial removal of stereochemical label from the target list of R1 to augment the source
list. All models described above were trained for approximately 9 hours to complete 100,000 steps

(see methods for details).

7.2.3 Performance evaluation

We first tested the different models on writing fully assigned canonical isomeric SMILES from
absolute SMILES, a task which corresponds to assigning the configuration of all stereocenters in an
NP 2D-structure (Table 6, upper part, center: canonical full assignment test set). All models except
the negative control model R1 produced almost exclusively (>99%) valid SMILES, indicating
reliable learning of the canonical SMILES syntax. In terms of prediction accuracy, the best
performing model was NPstereo trained on canonical SMILES including partially assigned sources,
which achieved 58.1% top-1 accuracy for full assignment and 80.1% top-1 accuracy per assigned
stereocenter. The second-best model was AS0 with 56.3% top-1 accuracy for full assignment and
80.3% top-1 accuracy per assigned stereocenter. All other models performed worse but still
significantly above the negative control models R1 and RP trained with randomized stereochemical
labels, which achieved 23-24%% top-1 accuracy for full assignment. This performance level reflected
their ability to identify NPs lacking stereocenters (19% of the dataset), combined with the probability
that a random stereochemical assignment can be correct (50% for the 6% NPs containing a single
stereocenter). The inability of both negative control models to recognize stereochemical patterns was

well reflected in their ~50% top-1 per-stereocenter accuracy, close to the random guess expectation.
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When tested on non-canonical absolute SMILES, NPstereo only produced 83.4% valid
SMILES and performed at the same levels as the negative control models R1 and RP for full
assignment and per-stereocenter accuracy (Table 6, upper part, right, non-canonical full assignment
test set). This low performance indicated that NPstereo, which was trained with canonical SMILES,
needed the canonical order of SMILES characters in the source to produce valid SMILES annotated
with the correct NP stereochemistry. On the other hand, models A2-AS0 trained with both canonical
and non-canonical SMILES performed similarly well on both SMILES types in terms of SMILES
validity (98 - 99.3%), top-1 accuracy for full assignment (45.4 - 56.2%), and top-1 per-stereocenter
accuracy (72.5 - 80%). The mixed model M65 trained with canonical and non-canonical partially
assigned source SMILES, performed similarly to model AS in terms of SMILES validity (99.2%),
top-1 accuracy for full assignment (47.7%) and per-stereocenter top-1 accuracy (75.9%), indicating
that the addition of partially assigned SMILES was not helpful for learning the stereochemistry of NP
written in non-canonical SMILES format.

Models NPstereo, M65 and the negative control RP, trained on translating partially assigned
isomeric SMILES to the corresponding fully assigned SMILES, were additionally tested on adding
missing stereochemical labels to partially assigned SMILES. This task is comparable to completing
the stereochemical assignment of a partially assigned NP structure, which is often encountered in
practice. When tested with partially assigned canonical SMILES, NPstereo was better than M65 and
performed slightly better than on the full assignment task in terms of top-1 overall accuracy (64.6%)
and top-1 per-stereocenter accuracy (86.3%, Table 6, lower part, center, canonical partial assignment
test set). The model however collapsed to the level of the negative control on all three measures when
tested with non-canonical SMILES, indicating again the requirement for a canonical order of
characters in the source SMILES for proper prediction. On the other hand, model M65 performed
quite well for assigning missing stereocenters to partially assigned non-canonical SMILES in terms
of SMILES validity (99.1%), top-1 overall accuracy (54%) and top-1 per-stereocenter accuracy

(82.1%, Table 6, lower part, right, non-canonical partial assignment test set).
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Table 6. SMILES validity and performance metrics of models for NP stereochemistry assignment
evaluated across different dataset augmentation strategies.

Training Dataset

(Train + Validation)

Canonical Full Assignment Test Set”

Non-Canonical Full Assignment Test Set”

Full-Assignment

Per-Stereocenter

Full-Assignment

Per-Stereocenter

SMILES SMILES
Model SMILES type Size Accuracy? Accuracy® Accuracy? Accuracy®
Validity® Validity®
Top1/2/3 Top1/2/3 Top1/2/3 Topl1/2/3
C1 Absolute — Canonical 58,571 99 56.3/67.4/71.4 78.7/86.9/89.2 |76.7 22.5/27.3/30.5 41/49.7/53.9
A2 Absolute — Randomized (2x) 116,872 99.4 36.2/46.6/52.5 67.8/783/82.4 |98 45.4/56.1/61.5 72.5/81.7/854
A5 (5x%) 288,472 99.6 442/56.4/623 73.9/83.7/87.3 |99.1 50.4/622/68.3 76.8/859/89.3
A10 (10x) 570,898 99.7 51.7/65/71.2  77.9/87.3/90.8 |99.4 544/673/73.6 79.3/88.2/91.5
A20 (20x) 1,117,782 {99.7 55.1/68.6/75.1 79.7/89/92.1 99.4 55.6/68.7/74.8 79.8/88.8/91.8
AS50 (50x) 2,651,393 [99.6 56.3/69.6/75.6 80.3/89.1/92.3 |99.3 56.2/69.9/76.1 80/89.1/92.3
NPstereo | Partially Assigned — Canonical 1,370,809 |99.4 58.4/69.9/754 80.1/88.6/91.4 |83.4 23/28.7/32.3 45.4/55.3/59.8
Partially Assigned — Canonical
M65 3,872,215 [99.7 46.4/59.5/66.1 753/852/88.9 |99.2 47.7/60.6/66.7 75.9/854/88.9
or Randomized
Absolute — Canonical with
R1 58,571 92.1 23.1/289/31.9 49.9/59.2/63 97.5 23.3/30.1/33.5 50.9/62.7/66.8
randomized stereochemistry
Partially Assigned — Canonical
RP 1,757,098 | 99.1 24/30.5/346  52.6/64.8/69.6 |80.9 19.6/24/27.5 39.2/48.5/52.7
with randomized stereochemistry
Canonical Partial Assignment Test Set” Non-Canonical Partial Assignment Test Set®
NPstereo | Partially Assigned — Canonical 1,370,809 |99.5 64.6/76.6/80.6 86.3/92.6/943 |78.1 142/223/26.5 46/56.6/61.4
Partially Assigned — Canonical
Mé65 3,872,215 [99.8 51.7/68.6/75.1 81.4/90.9/93.5 |99.1 54/70.5/76.5 82.1/91.1/93.6
or Randomized
Partially Assigned — Canonical
RP 1,757,098 [99.3 13.9/26.6/32.7 53.3/69.1/743 |75.5 8.1/154/19.2 37.1/48.8/53.5

with randomized stereochemistry

a) Test set consisting of absolute SMILES generated by removing all stereochemical labels from canonical isomeric SMILES. b) Test set consisting of

absolute SMILES generated by removing all stereochemical labels from randomized isomeric SMILES. c) Percentage of valid SMILES generated by

the model considering the top-3 outputs. d) Full-assignment accuracy represents the percentage of times the isomeric SMILES (canonical or non-

canonical) of the target is produced by the model in the top-1, top-2 or top-3 outputs in response to the source absolute or partially assigned isomeric

SMILES (canonical or non-canonical). ¢) The per-stereocenter accuracy is the highest percentage of correctly predicted stereocenters per molecule

when analyzing the top-1, top-2 and top-3 isomeric SMILES outputs of the model. For NPs without stereocenter, the predicted SMILES is considered

correct if it matches the target SMILES. The best top-1 value for each accuracy metric is highlighted in bold. See text and methods for details. f) Test

set consisting of isomeric SMILES generating by removing part of the stereochemical labels from canonical isomeric SMILES. g) Test set generated

by removing part of the stereochemical labels from randomized isomeric SMILES.
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Analysis of model performance as function of the number of unassigned stereocenters per molecule
provided further insights into model performance. For full stereochemical assignment on the
canonical SMILES test set, the best models NPstereo and AS0 were closely matched in performance
across all numbers of stereocenters per molecule (light green and dark blue curves in Figure 22a, left
panel). However, these models were surpassed by NPstereo tested on the partial stereochemical
assignment test set with up to nine unassigned stereocenters, indicating that, not unexpectedly, the
availability of partial stereochemical information helped the model to assign the missing stereocenters
(green curve in Figure 22a, left panel). Note that the higher performance of all models for NPs with
five or less stereocenters partly reflected the contribution of a chance assignment to be correct, as
indicated by the performance curve of the negative control models R1, RP and RP on partial
assignment task, which matched the performance expected from chance assignment (light grey, grey,
black and dashed black lines, Figure 22a, left panel). This analysis also showed that all models
including the negative controls trained with randomized stereochemical labels performed perfectly
with NPs lacking stereocenters, implying that they had learned not to add any stereochemical labels
when no stereocenters were present.

For the non-canonical SMILES test set, the top-1 assignment accuracy as function of the
number of unassigned stereocenters highlighted the performance collapse of models C1 and
NPstereo to random and negative control levels for all number of stereocenters in both the full and
the partial stereochemical assignment tasks, an effect also apparent in Table 1 discussed above (red
and light green lines, Figure 22a, right panel). In fact, models only trained on canonical SMILES
(C1, NPstereo, and the negative controls R1 and RP) performed even below chance levels and even
partly failed to identify NPs without stereocenters for this non-canonical SMILES test set. On the
other hand, model AS0 performed quite well for the full assignment and model M65 for the partial
assignment task on these non-canonical SMILES on which they had been trained (dark blue and dark
yellow lines, Figure 22a, right panel). The dependence of model performance on the SMILES syntax
(canonical or non-canonical) in training versus test sets showed that stereochemical assignment was

learned according to the order of characters in the SMILES, which is very different in randomized
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versus canonical SMILES. This effect also explained the need for a relatively large training set (50-
fold augmentation) for a model to learn stereochemistry in the more diverse context of randomized
SMILES.

Analysis of the top-1 per-stereocenter assignment accuracy as function of the number of
stereocenters showed that, for the full assignment task on canonical SMILES (all models except
negative controls, Figure 22b, left panel) and non-canonical SMILES (all models trained with
randomized SMILES, Figure 22b, right panel), performance was lowest for NPs with a single chiral
center, and gradually increased with additional stereocenters. These effects probably reflected the
presence of regularities in NPs with high number of stereocenters such as the homochirality in most
peptides and oligonucleotides and the limited stereochemical diversity of carbohydrates and steroids,
because such regularities would be easier to learn for the different models in the full assignment task.

The same effect could explain the almost constant performance of the partial assignment task
as the number of unassigned stereocenters increased for models NPstereo (green line in Figure 22b,
left panel) and M65 (dark yellow line in Figure 22b, both panels), because the difficulty to assign
stereochemistry to NPs with a single stereocenter would be compensated by the ease of adding a
single missing center to NPs with a large number of stereocenters. Indeed, analysing model
performance across different NP classes showed that both full and partial assignment accuracies were
particularly high for glycosides, nucleosides, lipids & terpenes which include steroids, and peptides,
with NPstereo standing out again as the best performing model across most of these classes (Table

7).
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Figure 22. Model performance stratified by the number of unassigned stereocenters. (a) Top-1 NP
stereochemistry full assignment accuracy for the canonical test set (left panel) and the non-canonical
test set (right panel). (b) Top-1 NP stereochemistry per-stereocenter assignment accuracy for the
canonical test set (left panel) and the non-canonical test set (right panel).
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Table 7. Top-1 per-stereocenter accuracy for NP stereochemistry assignment, stratified by NP
structural class. The best values for each NP structural class are highlighted in bold.

Alkaloids | Benzenoids | Glycosides | Lignans Lipids & Nucleosides | Peptides | Polyketides | Other
Model Terpenes

(101) (307) (872) (63) (15) (298) (213) (1,650)

(1,674)

Top-1 accuracy (%) on full assignment canonical test set
C1 82.4 69 84.8 70.2 79.5 92 80.7 71.4 73.4
A2 59.6 59.9 79.6 62.3 66.2 77 72.1 68 60.1
A5 65.2 60.5 83.2 69.4 73.7 89.2 75.2 76 67.8
A10 72.2 65.7 86.6 67.8 78.2 85.9 80.7 75.6 72
A20 77.6 68.8 88.4 65.2 80.3 95.9 83.3 76.1 73.4
AS0 76.5 66.4 88.9 73.6 81.3 85.2 83.6 78.1 73.9
NPStereo | 83.6 64.9 87.1 70.3 81.9 88.9 83.7 73.6 74.3
M65 67.8 59.5 86.8 66.6 753 933 79.8 71.5 68.8
R1 549 49.3 39.3 40.6 50.6 44 33.7 50.4 51.4
RP 524 48.7 49.2 50.5 49.9 46.1 49.5 53.2 52.2

Top-1 accuracy (%) on partial assignment canonical test set
NPStereo | 85.6 77.3 90.1 75.1 87.4 89.8 86 81.9 81.8
Mé65 71.8 69.5 88.4 73.1 81.4 89.8 81.4 80.8 75.3
RP 53.4 55.3 52.8 62.2 53.5 49.3 52.4 55.4 53.2

7.2.4 Assigning stereochemistry with NPstereo

NPstereo might serve to assign the stereochemistry of partially or completely unassigned NPs. The

assignment would be done by providing the query structure as a canonical SMILES, on which the

model performed best. Here we illustrate how our model performed on such tasks with selected

examples (Figure 23). First, we tested its performance for full assignment of stereochemistry on NP

examples from the test set. For instance, NPstereo correctly assigned the stereochemistry of the well-

known tubulin binding NPs colchicine (1),% docetaxel (2),3** epothilone B (3),’*> and monomethyl

auristatin E (4),3% as well as the stereochemistry of both double bonds in bombykol (5), the first

insect pheromone discovered.?’
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We further tested NPstereo with NPs with known stereochemistry, but which were only
available as absolute SMILES in COCONUT and were therefore absent from model training. For
example, NPstereo correctly assigned all stereocenters in the natural pyrethrin plant insecticide
chrysanthemic  acid  (6),>*® the plant phenolic triterpenoid  1,3,6-tris-0-(3,4,5-
trihydroxybenzoyl)hexopyranose  (7),3® the bacterial linear Csy carotenoid hydroxy-
diaponeurosporenal (8),°!° and the plant NP D-a-tocopheryl acetate (vitamin E, 9),’!! and only
misassigned one stereocenter in the plant flavonoid glycoside datiscin (10).3!2

NPstereo also performed quite well when challenged to assign the stereochemistry of recently
discovered NPs absent from the COCONUT dataset, such as the antibacterial fungal polyketide
aspercitrininone A (13, all but one center correct),?’? antibacterial marine NP olimycin E (11, all
centers correct),*!? the glucosylated plant alkaloid rhynchophylloside L 11-O-B-D-glucopyranoside
(12, all centers correct),’!* the fungal polyketides aspercitrininone A (13, 4/5 stereocenters correct)
270 and mauritone A (14, all stereocenters correct).?!> Furthermore, NPstereo also correctly assigned
all stereocenters in the plant neolignan (+)-nectamazin A (15), whose stereochemistry was recently

reassigned.3!16
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Figure 23. Assigning NP stereochemistry using NPstereo. The structural formulae of NPs with
stereocenters highlighted as assigned correctly (blue) or incorrectly (red).

7.3 Conclusion

In this study, we demonstrated the efficacy of transformer-based models for assigning the
stereochemistry of NPs from their absolute SMILES representations using data extracted from the
COCONUT database. The selected model, named NPstereo, was trained and challenged with
canonical SMILES, and achieved a per-stereocenter accuracy of 80.1% top-1 per-stereocenter

accuracy for full stereochemical assignments and 86.3% top-1 per-stereocenter accuracy for partial
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stereochemical assignments. The model showed a consistent ability to assign stereochemistry across
molecules of varying complexity and performed particularly well for NPs with multiple stereocenters.
Our work demonstrates that learnable stereochemical patterns exist in many NP classes and
introduces a scalable methodology for assigning the stereochemistry of NPs, paving the way for future

improvements in stereochemical prediction and NP characterization.

7.4 Methods

7.4.1 Dataset processing and visualization

The complete COCONUT database (09-2024) was retrieved from the website

https://coconut.naturalproducts.net via the dedicated “Download” section as a PostreSQL dump. A

SQL query was executed on the database to extract NPs with at least one associated citation DOI.
The query retrieved the molecule identifier, canonical isomeric SMILES!?! structure and chemical
class, for a total of 116,403 entries. The results were then exported as a CSV file for further
processing.

The complete dataset of 116,403 NPs, consisting of isomeric SMILES with either fully or
partially assigned stereocenters, were encoded using the MAP4C fingerprint.*? The indices obtained
from the MAP4C calculation were used to create a locality-sensitive hashing (LSH) forest of 32 trees.
For each NP, the 20 approximate nearest neighbors in the MAP4C feature space were extracted from
the LSH forest and used to calculate the TMAP layout. 3*' The resulting layout was displayed in a
static TMAP plot using the Python matplotlib package (3.5.3). The NPs in the TMAP were color-
coded to highlight structural class, stereochemistry, and dataset split. Structural class information was
extracted from the COCONUT “chemical_super class” entry and further refined for peptides and
glycosides using SMARTS patterns. The number of stereocenters was calculated using RDKit

(2023.9.5).
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7.4.2 Training data

NPs with incomplete stereochemistry (including both tetrahedral and double bond stereochemistry)
were removed, reducing the dataset to 73,130 structures. These entries were then grouped by their
canonical absolute SMILES (notation without stereochemistry), yielding 63,988 unique structures,
each potentially associated with one or more stereoisomers. The canonical absolute SMILES dataset
was divided into training, test, and validation sets using an 80:10:10 random split. In each of these
three sets, each canonical absolute SMILES was associated with one or more, each written as a
canonical isomeric SMILES. These canonical isomeric SMILES were used to form the target lists for
training model C1.

To generate the corresponding source lists, we removed the stereochemical labels (“@” and
“@@” for tetrahedral centers, “/C=C\” and *“/C=C/” for double bonds) in each canonical isomeric
SMILES to obtain an equivalent absolute SMILES. Importantly, different stereoisomers of the same
canonical isomeric SMILES produced the same absolute SMILES after removing stereochemical
labels, implying that the order of characters in the canonical isomeric SMILES did not contain
stereochemical information. Also note that the absolute SMILES generated by removing
stereochemical labels from canonical isomeric SMILES were almost identical to the canonical
absolute SMILES, as measured by the Levenshtein distance between the two characters strings,
compared to the Levenshtein distance between different absolute SMILES generated by SMILES
randomization (Figure E2).

To obtain additional training data, we used several schemes of data augmentation in the
training and validation sets separately. First, we applied SMILES randomization3® to the canonical
isomeric SMILES in the target lists of C1 to increase their number by approximately factors of 2, 5,
10, 20, and 50 (after removal of duplicates), producing augmented target isomeric SMILES lists. We
then generated the absolute SMILESs of each randomized isomeric SMILES by removing
stereochemical labels for the source lists, resulting in training datasets for models A2, AS, A10, A20
and A50. As a second data augmentation approach, we augmented the source lists of C1 with SMILES

containing only partially assigned stereochemistry. To do so, we identified the number of
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stereocenters (n) in each molecule. For each molecule, we created up to 5 SMILES variations by
randomly removing stereochemical labels for each level of stereochemistry removal, starting with
removing all stereocenters (n), then n-1, and continuing until no stereocenters were replaced. This
resulted in augmented source lists of isomeric SMILES strings with progressively reduced
stereochemistry, each associated with the corresponding fully assigned canonical isomeric SMILES
in the target lists, composing the training data for model NPstereo. In a third approach, we combined
augmentation through SMILES randomization with augmentation by partial removal of
stereochemical labels. To do so, we first augmented the target lists of C1 10-fold using SMILES
randomization. In a second step, we augmented the source list by generating one additional variation
for each level of stereochemistry removal for each randomized isomeric SMILES. This combined
procedure resulted in approximately 65-fold data augmentation, providing training data for model
M65.

Finally, we generated a first negative control training dataset R1 by randomizing the
stereochemical information in the target list of canonical isomeric SMILES of model C1, and a
second negative control training dataset RP by augmenting the source lists of control R1 using the
partial assignment procedure used for model NPstereo.

For all datasets, isomeric SMILES (target) and the absolute SMILES generated from them
(source) were tokenized using a custom tokenizer which applies a regular expression to split the
SMILES string into individual chemical symbols, atoms, and bond types. The tokenizer captures
elements like atoms (e.g., "Br", "CI"), bond types (e.g., "=", "#"), and stereochemistry markers. All

resulting training, validation, and test splits were saved as separate text files.

7.4.3 Transformer training

Model training was carried out on the OpenNMT python ecosystem (3.5.1).3!7 All models used a
transformer-based architecture with 6 layers each for both the encoder and decoder, employing 8

attention heads and a hidden size of 512. Training utilized mixed precision (fp16) and Adam
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optimizer with a scheduled learning rate initialized at 2 and Noam decay. Batches were processed
with a bucket size of 262,144 tokens and a batch size of 4096 tokens. Dropout regularization of 0.1
was applied during training, including attention dropout. The models were trained for a total of
100,000 steps. Checkpoints were saved every 25,000 steps, with validation performed every 5,000
steps to monitor model performance. The model hyperparameters and training parameters were
configured according to the recommendations provided by OpenNMT. Complete configuration files

for setup and training are available at https:/github.com/reymond-group/NPstereo. Each model

required approximately 9 hours to complete 100,000 training steps on a single Nvidia GeForce RTX
3070 GPU. The model checkpoint at step 100,000 was selected for subsequent performance

evaluation across all trained models.

7. 4.4 Performance evaluation

All calculations were done using the NumPy (1.26.4), pandas (2.1.0), and RDKit (2023.9.5) python
libraries. The following performance metrics were used:

SMILES validity: Ratio of valid SMILES to the total number of predicted SMILES.
Full-Assignment Accuracy: Ratio of correctly predicted isomeric SMILES strings to the total number
of predicted isomeric SMILES. An isomeric SMILES string predicted from an absolute SMILES is
considered correctly predicted if it matches exactly one of the isomeric SMILES associated with this
absolute SMILES.

Per-Stereocenter Accuracy: Average ratio of correctly predicted stereocenters within a single
prediction, accounting for both tetrahedral stereocenters and stereogenic double bonds. When

multiple associated stereoisomers are present, the highest ratio is used.
7.5 Code availability

The code for data extraction and augmentation, training the transformer models, running predictions,

and analyzing results is available at https://github.com/reymond-group/NPstereo. The datasets used

to train the models can be downloaded from https://zenodo.org/records/13790363.
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8 Conclusion and Outlook

8.1 Conclusion

While conventional molecular representations and predictive models are optimized for small organic
molecules, they often fail to scale to larger and more complex structures. This thesis presented
cheminformatics tools specifically designed to enable the comparison, generation, and classification
of such structures.

The first part of the thesis investigated structural relationships between approved drugs using
a reaction-informatics-based approach, where drug pairs are analysed through the lens of hypothetical
transformations. Using DRFP and RXNMapper, molecular pairs were embedded into a reaction-like
chemical space and ranked by atom-mapping confidence to distinguish feasible structural changes
from non-trivial transmutations. This approach provided an orthogonal view of molecular similarity,
enabling the assessment of scaffold modifications and substituent changes interesting for analog
design.

To address the lack of stereochemistry-sensitive molecular fingerprints for larger compounds,
this thesis introduced MAP4C. The fingerprint extends MAP4 by incorporating CIP stereochemistry
annotations into circular substructures, allowing the differentiation of diastereomers and enantiomers
across structurally diverse molecular sets. MAP4C performed on par with established fingerprints in
virtual screening tasks and reliably distinguished thousands of stereoisomers in datasets of natural
products and peptides, demonstrating its applicability for structure-based analysis of stereochemically
rich molecules.

Building on these representation tools, this thesis introduced an updated implementation of
the Peptide Design Genetic Algorithm (PDGA), capable of exploring peptide and peptoid spaces
exceeding 10760 structures. The algorithm was adapted to accommodate topologies compatible with
solid-phase synthesis and feasible synthetic modifications. Its performance was demonstrated through

target recovery benchmarks, where it successfully identified known antimicrobial peptides such as
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polymyxin and cathelicidin, and through trajectory-based exploration yielding analogs with multiple
sequence modifications but high structural similarity. The generated analogs populated coherent
regions of chemical space and represent viable candidates for further study in structure-activity
relationship investigations. The method was also applied in a real-life design scenario in collaboration
with Dr. Etienne Bonvin, leading to the discovery of novel peptide-peptoid polymyxin analogs with
experimentally confirmed antimicrobial activity.

This thesis also evaluated the use of general-purpose language models for molecular property
prediction, focusing on GPT-3.5 as a case study. When applied to the classification of antimicrobial
and hemolytic peptides, the model showed moderate baseline performance but was limited by poor
reproducibility and high variability across runs. As a reference, a classical SVM trained on MAP4C
consistently outperformed GPT-3.5 in both accuracy and reliability. These results suggest that while
large language models may offer convenience and broad applicability, their current form is not well-
suited for cheminformatics tasks requiring robustness, transparency, and controlled behaviour.

Finally, a transformer model (NPstereo) was developed for the stereochemical assignment of
natural products from SMILES input lacking stereochemical labels. Trained on data extracted from
the COCONUT database, the model achieved over 80% per-stereocenter accuracy in full assignment
and over 86% in partial assignment tasks. These results indicated the presence of learnable patterns
in NP stereochemistry and offer a machine learning-based alternative to wet-lab assignment
experiments.

In summary, this thesis developed cheminformatics tools adapted to structurally complex
molecules. The contributions addressed shortcomings in conventional methods and introduced
practical solutions for comparison, generation, and classification tasks outside the scope of traditional
small-molecule frameworks. The methods were designed to perform reliably in real-life scenarios,
prioritizing consistency, modularity, and interpretability. All tools are available in open-source format
and integrate with existing cheminformatics workflows, facilitating their application to evolving
research and design problems involving peptides, natural products, and other large, diverse compound

classes.
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8.2 Outlook

The tools developed in this thesis were shaped by a practical need: to extend cheminformatics
methods beyond the scope of small molecules and into the structurally rich space of peptides, natural
products, and other complex scaffolds. As interest in these compound classes continues to grow, so
does the importance of having efficient and scalable computational methods to support their design.

Although the molecular fingerprints presented here are broadly applicable, optimizing their
computational performance could further improve the speed of similarity searches in large-scale
virtual screening. Such improvements could be particularly relevant in early-stage screening
campaigns, where rapid filtering across massive compound libraries is often a bottleneck. The Peptide
Design Genetic Algorithm (PDGA) introduced in this work also offers a clear path for extension.
While its current scoring relies on structural similarity to a reference molecule, future iterations could
incorporate hybrid fitness functions that combine general scaffold constraints with machine learning-
based property predictions. This would enable the algorithm to generate candidates guided not only
by shape or topology, but also by modelled activity or selectivity, supporting more targeted and data-
driven molecule generation.

On a broader level, the field continues to shift toward more flexible and modular compound
classes such as peptides and peptidomimetics. These molecules challenge the assumptions built into
conventional cheminformatics tools, but they also offer unique opportunities. Their synthetic
accessibility, especially via solid-phase peptide synthesis, makes them particularly compatible with
automation. This creates fertile ground for closed-loop design systems that combine in silico
generation, predictive modelling, and experimental feedback. Current work within our group, in
collaboration with Basak Olcay and Xiaoling Hu, is focused on building such automated frameworks
for peptide discovery, aimed to streamline the design-make-test cycle.

In addition to these projects, I was also involved in a collaborative effort with Angelo Frei
that applied machine learning to in-house experimental datasets (publication outlined in 1.2). The

data originated from a focused screening of organometallic compounds for antibiotic activity and
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represented a typical low-data regime. Despite this, it was possible to train predictive models that
guided the selection of a second screening round, leading to a significantly higher hit rate in the
second round. This experience demonstrated that even with limited data, machine learning can
support decision-making in compound prioritization when paired with well-curated experimental
inputs. It also reinforced the value of integrating predictive models into small-scale academic
workflows, where iterative design is often guided by in-house knowledge and constraints.
Altogether, the contributions of this thesis offer a foundation for cheminformatics approaches
tailored to emerging compound classes. As predictive models mature and synthesis becomes
increasingly automated, there is clear potential for more integrated, iterative, and data-efficient design

pipelines even in data constrained settings.
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« So long, and thanks for all the fish. »

Douglas Adams, So Long, and Thanks for All the Fish
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Figure A1. Count of molecules by number of occurrences in selected pairs for the a) FDA, b) EGFR
and c) PMB set. In all sets, most of the molecules appear sporadically in the selected pairs. Only a
limited number of compounds appears more often.
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Figure A2. Count of molecular pairs by difference in atom-mapping confidence score between the
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Figure AS. Full atom mapping of the example selected from the PMB set. The shown atom-mapping

is the one of the backwards reaction.
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Figure A6. Full atom-mapping of mutation of a glycine to a phenylalanine residue (amed: 0.32),
corresponding to a feasible a-alkylation reaction of glycine with benzyl bromide.
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Figure A7. Additional interesting pairs selected from the drug pairs in the FDA -approved subset and
the determined atom-mapping confidence distance of the reaction. a) Trospium and Umeclidinium,
two anticholinergic drugs acting on the muscarinic receptor. The structures contain common
elements, such as the diphenylmethanol and tropane-like moieties, which are completely rearranged
between the two structures. b) Valrubicin and Cabazitaxel, two anticancer drugs acting on
topoisomerase II and tubulin stabilization respectively. Although the two compounds act on different
targets, these targets are part of the same pathway and their inhibition leads to cell death. c)
Benztropine and Paroxetine, two unrelated drugs acting on serotonin uptake inhibition. d) (R)-
Sulconazole and (S)-Econazole, two imidazole antifungals differing from each other by a single atom
mutation from S to O. e) (+)-Paredrine and L-Tyrosine, two closely related structures separated by
an alchemical condensation of a carboxylic acid to a methyl and stereo-inversion. f) Stavudine and
Zidovudine, two HIV reverse transcriptase inhibitors separated by an azidation. g) Clocortolone and
Halobetasol, two steroid drugs used for the treatment of inflammatory and itching skin diseases. h)
EDTA and EDTMP, both highly related chelating agents. 1) Alanine and Pyruvic Acid, two highly
related compounds separated by a N to =O mutation.
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Appendix B - Supplementary information for: One chiral fingerprint
to find them all
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Figure B1. Mean and standard deviation of the pairwise similarities calculated for all 5 selected
actives of each dataset contained in the benchmarking platform. Actives are encoded using the chiral
ECFP4 (radius=2, nBits=2048) fingerprint and Tanimoto similarities determined for all possible
pairs. ChEMBL, DUD and MUV sets comprise the original Riniker & Landrum benchmark. The
“Peptides” set contains scrambled sequences of the same peptide. The “PeptidesM” set contains
single point mutants of the same peptide.
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Figure B2. Mean and standard deviation of the pairwise similarities calculated for all 5 selected
actives of each dataset contained in the benchmarking platform. Actives are encoded using the
MAPA4C (max_radius=2, n_permutations=2048) fingerprint and Jaccard similarities determined for
all possible pairs. ChEMBL, DUD and MUV sets comprise the original Riniker & Landrum
benchmark. The “Peptides” set contains scrambled sequences of the same peptide. The “PeptidesM”
set contains single point mutants of the same peptide.
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Figure B3. Distribution of molecular weight (MW) (yellow), number of stereocenters (magenta) and
ratio of stereocenters to heavy atom count (blue) in the set uniformly sampled from the extended
benchmark. The set contained a total of 10,122 compounds and was used to determine the relative
impact of stereochemistry encoding on total similarity.
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Figure B4. Scatterplots of chiral shingle ratio vs. chiral atoms ratio for a) radius = 1 b) radius = 2 and
c) radius = 3. Additionally, the 1> of the linear fit and the Pearson correlation coefficient (PCC) are
reported. All reported PCCs are statistically significant.
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Figure BS. EF5 of MAP2 (blue), MAP4 (magenta), MAPG6 (purple), AP (grey), ECFP4 (yellow) and
ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD targets,
17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral fingerprints
are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The value displayed
for each dataset is the mean metric of 5 runs.
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Figure B6. BEDROC20 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4
(yellow) and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21
DUD targets, 17 MUYV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral
fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The
value displayed for each dataset is the mean metric of 5 runs.
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Figure B7. BEDROCI100 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4
(yellow) and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21
DUD targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral
fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The
value displayed for each dataset is the mean metric of 5 runs.
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Figure B8. RIE20 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 (yellow)
and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD
targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral
fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The
value displayed for each dataset is the mean metric of 5 runs.
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Figure B9. RIE100 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 (yellow)
and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD
targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral
fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The
value displayed for each dataset is the mean metric of 5 runs.
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Figure B10. a) Pairwise Pearson correlations among tested fingerprints, derived from the mean AUCs
acquired from benchmark datasets. The numbers represent the Pearson correlation coefficient for
each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the ranked AUCs
from benchmark datasets. A red square denotes a not significant difference between fingerprints at
0=0.05, while a blue square denotes a significant difference.
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Figure B11. a) Pairwise Pearson correlations among tested fingerprints, derived from the mean EF1s
acquired from benchmark datasets. The numbers represent the Pearson correlation coefficient for
each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the ranked EF1s
from benchmark datasets. A red square denotes a not significant difference between fingerprints at
0=0.05, while a blue square denotes a significant difference.
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EF5
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Figure B12. a) Pairwise Pearson correlations among tested fingerprints, derived from the mean EF5s
acquired from benchmark datasets. The numbers represent the Pearson correlation coefficient for
each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the ranked EF5s
from benchmark datasets. A red square denotes a not significant difference between fingerprints at
0=0.05, while a blue square denotes a significant difference.
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BEDROC20

a) ChEMBL, DUD, MUV Peptides
map2c map2c
map2 map2
map4c map4c
map4 map4
map6¢ map6c
map6 map6
ecfpdc ecfpdc
ecfpd ecfpd
ecfpbec ecfpbe
ecfpb ecfpb
apc apc
ap ap

& QﬁsESQ(;§§&6Q(‘?S Q efdikﬁoggS? & & é£9};§§25§$;§§;§§P 6§E§“;ki§5éi;g§h S
b) ChEMBL, DUD, MUV Peptides

map2c map2c

map2 map2
map4c map4c
map4 map4
map6c map6c
map6 map6
ecfp4c ecfp4dc
ecfp4d ecfpd
ecfpbe ecfpbe
ecfpb ecfpb

apc apc

ap

9 < © L R & c C
e & eP e <

Figure B13: a) Pairwise Pearson correlations among tested fingerprints, derived from the mean
BEDROC20s acquired from benchmark datasets. The numbers represent the Pearson correlation
coefficient for each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the
ranked BEDROC20s from benchmark datasets. A red square denotes a not significant difference
between fingerprints at 0=0.05, while a blue square denotes a significant difference.
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Figure B14. a) Pairwise Pearson correlations among tested fingerprints, derived from the mean
BEDROCI100s acquired from benchmark datasets. The numbers represent the Pearson correlation
coefficient for each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the
ranked BEDROC100s from benchmark datasets. A red square denotes a not significant difference
between fingerprints at 0=0.05, while a blue square denotes a significant difference.
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RIE20
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Figure B15. a) Pairwise Pearson correlations among tested fingerprints, derived from the mean
RIE20s acquired from benchmark datasets. The numbers represent the Pearson correlation coefficient
for each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the ranked
RIE20s from benchmark datasets. A red square denotes a not significant difference between
fingerprints at 0=0.05, while a blue square denotes a significant difference.
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Figure B16. a) Pairwise Pearson correlations among tested fingerprints, derived from the mean
RIE100s acquired from benchmark datasets. The numbers represent the Pearson correlation
coefficient for each pair. b) Pairwise Friedman-Nemenyi test among tested fingerprints, based on the
ranked RIE100s from benchmark datasets. A red square denotes a not significant difference between
fingerprints at 0=0.05, while a blue square denotes a significant difference.
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Figure B17. Comparative analysis of MAP2C, MAP4C, MAP6C, APC, ECFP4C and ECFP6C
Jaccard distance assignment on In65 diastereomers (blue) and structural isomers (yellow). The
distance distributions are grouped by Levenshtein distance, used to determine the number of
mutations from any sequence to In65. MAPC fingerprints display a higher performance than the other
fingerprints when it comes to distinguishing all possible diastereomers and structural isomers from
each other. This is not the case for APC, which has difficulties distinguishing diastereomers, and
ECPFC fingerprints, which cannot distinguish diastereomers or structural isomers robustly. MAPC
fingerprints also consistently assign lower distances to diastereomers than structural isomers. APC
follows the same trend, although the lower diastereomer distances are skewed due to the APC
fingerprint not being able to robustly distinguish all diastereomers. ECFPC show a complete overlap
of Jaccard distances for diastereomers and structural isomers. Finally, the overall Jaccard distances
increase with increasing Levenshtein distance for MAPC fingerprints, indicating that the obtained
distances align with intuitive changes such as stereocenter or residue mutations.
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Figure B18. Comparative analysis of MAP2C, MAP4C, MAP6C, APC, ECFP4C and ECFP6C
Jaccard distance assignment on polymyxin B2 diastereomers (blue) and structural isomers (yellow).
The distance distributions are grouped by Levenshtein distance, used to determine the number of
mutations from any sequence to polymyxin B2. MAPC fingerprints display a higher performance
than the other fingerprints when it comes to distinguishing all possible diastereomers and structural
isomers from each other. This is not the case for APC, which has difficulties distinguishing
diastereomers, and ECPFC fingerprints, which cannot distinguish diastereomers or structural isomers
robustly. MAPC fingerprints also consistently assign lower distances to diastereomers than structural
isomers. APC follows the same trend, although the lower diastereomer distances are skewed due to
the APC fingerprint not being able to robustly distinguish all diastereomers. ECFPC show a complete
overlap of Jaccard distances for diastereomers and structural isomers. Finally, the overall Jaccard
distances increase with increasing Levenshtein distance for MAPC fingerprints, indicating that the
obtained distances align with intuitive changes such as stereocenter or residue mutations.
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Appendix C - Supplementary information for: Navigating a 10E+ 60

chemical space of peptide/peptoid oligomers
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Figure C1. Structures of the building blocks used by the PDGA.
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Figure C2. Linear format used to store sequences in the PDGA with examples for all possible types
of modifications. Modifications that are compatible with each other can also be combined, e.g. C-to-
N and disulfide cyclization.
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Figure C3. Analysis of three paralle]l PDGA runs starting from 50 random sequences towards selected
queries. Top plots show the overall best score throughout the trajectory; the bottom plots show the
cumulative number of unique new molecules generated throughout the trajectory for a) gramicidin S,
b) oncocin, and c) circulin D.
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Figure C4. Jaccard distance of molecules selected from the different traversal trajectories towards a)
oncocin and EB9 and b) circulin D and cathelicidin BF.
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Figure C5. Structures of the non-peptide macrocycle queries for the PDGA runs

similarity as fitness function.
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Figure C6. TMAPs of top 1000 molecules generated in each of three parallel MAP4C and MXFP

trajectories of selected non-peptide queries.
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Appendix D - Supporting information for: Can large language models
predict antimicrobial peptide activity and toxicity?

Table D1. Performance metrics of all models tested on antimicrobial activity and hemolysis
classification. The best value for each metric is highlighted in bold for activity and hemolysis
separately. Results for reduced training sets are reported for 20% and 2% size of the original activity
dataset and 10% of the original hemolysis set.

Model ROC AUC  Accuracy Precision Recall F1

GPT-3 Ada act. 0.84 0.78 0.78 0.78 0.78
GPT-3 Babbage act. 0.85 0.79 0.79 0.78 0.79
GPT-3 Curie act. 0.86 0.79 0.78 0.81 0.79
GPT-3 Ada 20% act. 0.75 0.69 0.7 0.67 0.68
GPT-3 Babbage 20% act. 0.76 0.69 0.7 0.69 0.68
GPT-3 Curie 20% act. 0.76 0.7 0.71 0.71 0.71
GPT-3 Ada 2% act. 0.66 0.6 0.6 0.63 0.61
GPT-3 Babbage 2% act. 0.66 0.62 0.6 0.73 0.66
GPT-3 Curie 2% act. 0.65 0.6 0.6 0.63 0.61
GPT-3 Ada hem. 0.9 0.82 0.8 0.79 0.79
GPT-3 Babbage hem. 0.87 0.8 0.76 0.76 0.76
GPT-3 Curie hem. 0.89 0.84 0.82 0.79 0.8

GPT-3 Ada 10% hem. 0.72 0.68 0.63 0.58 0.6

GPT-3 Babbage 10% hem.  0.72 0.7 0.65 0.6 0.62
GPT-3 Curie 10% hem. 0.73 0.68 0.63 0.59 0.61
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Table D2. Mean and standard deviation of performance metrics of selected models tested on
antimicrobial activity and hemolysis classification. The best value for each metric is highlighted in
bold.

Model ROC AUC  Accuracy Precision Recall F1

Features SVM act. 0.65+£0.01 0.65+0.01 0.65 +0.01 0.63 +£0.01 0.64 +£0.01
MAPA4C SVM act. 0.8+ 0.01 0.8 £0.01 0.78 + 0.01 0.83 +0.01 0.80 + 0.01
RNN act. 0.85+0.01 0.78+0.01 0.76 £0.02  0.81+0.01 0.78 £0.01

GPT-3.5 Turbo act. 0.69 +£0.01 0.69 £0.01 0.62 £0.01 0.95 £0.01 0.75+0.01

Features SVM hem. 0.62 +£0.01 0.64 £0.01 0.59+0.02 0.48 £0.02 0.53 £0.01
MAP4C SVM hem. 0.82+0.02  0.82 +£0.01 0.78 + 0.02 0.82 +0.04 0.79 £ 0.01
RNN hem. 0.87+0.01 0.81+0.01 0.77£0.03 0.79+£0.03 0.78 £0.01

GPT-3.5 Turbo hem. 0.47 +0.01 0.48 £ 0.01 0.38+0.02 0.36 £ 0.02 0.37 £ 0.02
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Table D3. Training times and costs of GPT models on the full training sets.

158

Model Time (h) Costs ($)
GPT-3 Ada Activity 01:05:04 $0.39
GPT-3 Babbage Activity 01:09:38 $0.59
GPT-3 Curie Activity 01:15:05 $2.93
GPT-3.5 Turbo Activity 00:53:24 $7.00
GPT-3 Ada Hemolysis 00:55:37 $0.09
GPT-3 Babbage Hemolysis 00:57:19 $0.13
GPT-3 Curie Hemolysis 01:08:09 $0.67
GPT-3.5 Turbo Hemolysis 00:55:58 $1.66




Appendix E - Supporting  information  for:  Assigning  the

stereochemistry of natural products by machine learning
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Figure E1. MAP4C TMAP of 103,605 unique compounds with an associated DOI, extracted from
the COCONUT database. The TMAP visualization is colored according to the data split (grey-
training, red-validation, blue-test) for SMILES with complete stereocenter assignment (63,988) and
as incomplete (yellow) for SMILES with icomplete stereocenter assignment (39,617).
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Figure E2. Levenshtein distance distribution comparing absolute canonical SMILES generated with
RDK:it to two alternatives: (1) absolute canonical SMILES with stereochemistry-defining characters
removed (blue) and (2) absolute randomized SMILES generated with RDKit (red).

159



160

Declaration of consent

on the basis of Article 18 of the PromR Phil.-nat. 19

Name/First Name:  Orsi Markus
Registration Number: 16-946-220
Study program: Chemistry and Molecular Sciences

Bachelor [] Master [] Dissertation ¢

) ) Computational Strategies for the Data-Driven Discovery of Antimicrobial
Title of the thesis: Peptides

L Prof. Dr. Jean-Louis Reymond
Supervisor:

| declare herewith that this thesis is my own work and that | have not used any sources other than
those stated. | have indicated the adoption of quotations as well as thoughts taken from other authors
as such in the thesis. | am aware that the Senate pursuant to Article 36 paragraph 1 litera r of the
University Act of September 5th, 1996 and Article 69 of the University Statute of June 7th, 2011 is
authorized to revoke the doctoral degree awarded on the basis of this thesis.

For the purposes of evaluation and verification of compliance with the declaration of originality and the
regulations governing plagiarism, | hereby grant the University of Bern the right to process my
personal data and to perform the acts of use this requires, in particular, to reproduce the written thesis
and to store it permanently in a database, and to use said database, or to make said database

available, to enable comparison with theses submitted by others.

Bern, 01.04.2025

Place/Date

Signature



	1 Thesis Outline
	1.1 Thesis Scope and Outline
	1.2 Publications
	1.3 Conference Presentations

	2 Introduction
	2.1 Scaling Drug Discovery: From High-Throughput to In Silico
	2.2 Molecular Representations for Computational Applications
	2.2.1 Circular substructure fingerprints
	2.2.2 Atom-pair fingerprints
	2.2.3 Hybrid Fingerprints

	2.3 From Representation to Prediction: Machine Learning in Molecular Design
	2.3.1 Descriptor-Based Modelling with Classical Algorithms
	2.3.2 Learning Representations from Molecular Structure
	2.3.3 Sequence-Based Representations and Transformer Models
	2.3.4 Synergies Between Classical and Deep Learning Approaches

	2.4 Antimicrobial Resistance and Antimicrobial Peptides

	3 Alchemical analysis of FDA approved drugs
	3.1   Introduction
	3.2 Methods
	3.2.1 Datasets
	3.2.2 Molecular fingerprints and similarity calculations
	3.2.3 Reaction informatics

	3.3 Results and Discussion
	3.3.1 Datasets and selection of drug pairs
	3.3.2 DRFP chemical space maps
	3.3.3 Atom mapping

	3.4 Conclusion
	3.5 Code availability
	3.6 Author contributions
	3.7 Acknowledgements

	4 One chiral fingerprint to find them all
	4.1 Introduction
	4.2 Methods
	4.2.1 Fingerprint design
	4.2.2 Benchmark
	4.2.3 Stereoisomers, isomers and scrambled sequences
	4.2.4 TMAP

	4.3 Results and Discussion
	4.3.1 Encoding stereochemistry in MAP fingerprints
	4.3.2 Virtual Screening Benchmark
	4.3.3 Finding all stereoisomers
	4.3.4 Ranking stereoisomers versus isomers

	4.4 Conclusion
	4.5 Declarations
	4.5.1 Funding
	4.5.2 Availability of data and materials
	4.5.3 Competing interests
	4.5.4 Author contributions


	5 Navigating a 1E+ 60 chemical space of peptide/peptoid oligomers
	5.1 Introduction
	5.2 Methods
	5.2.1 Building Blocks
	5.2.2 Genetic Algorithm

	5.3 Results and Discussion
	5.3.1 A 1E+60 combinatorial library from 100 building blocks up to 30-mers
	5.3.2 Ligand-based virtual screening by genetic algorithm guided navigation
	5.3.3 Traversing chemical space to find median molecules
	5.3.4 Traveling towards non-peptide molecules

	5.4 Conclusion
	5.5 Code availability
	5.6 Author Contribution Statement
	5.7 Acknowledgements

	6 Can large language models predict antimicrobial peptide activity and toxicity?
	6.1 Abstract
	6.2 Introduction
	6.3 Methods
	6.3.1 Datasets
	6.3.2 Models
	6.3.3 Metrics

	6.4 Results and Discussion
	6.4.1 Model screening
	6.4.2 Model comparison
	6.4.3 Data visualization

	6.5 Conclusion
	6.6 Code availability
	6.7 Author Contribution Statement
	6.8 Acknowledgements

	7 Assigning the stereochemistry of natural products by machine learning
	7.1 Introduction
	7.2 Results and Discussion
	7.2.1 Dataset analysis
	7.2.2 Model design and training
	7.2.3 Performance evaluation
	7.2.4 Assigning stereochemistry with NPstereo

	7.3 Conclusion
	7.4 Methods
	7.4.1 Dataset processing and visualization
	7.4.2 Training data
	7.4.3 Transformer training
	7.4.4 Performance evaluation

	7.5 Code availability
	7.6 Author Contribution Statement
	7.7 Acknowledgements

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook

	References
	Appendix
	Appendix A -  Supplementary information for: Alchemical Analysis of FDA Approved Drugs
	Appendix B -  Supplementary information for: One chiral fingerprint to find them all
	Appendix C -  Supplementary information for: Navigating a 10E+  60 chemical space of peptide/peptoid oligomers
	Appendix D -  Supporting information for: Can large language models predict antimicrobial peptide activity and toxicity?
	Appendix E -  Supporting information for: Assigning the stereochemistry of natural products by machine learning


