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Abstract

From Automated Scoring to Digital Biomarkers: Computational Methods Towards
Precision Sleep Medicine

Michal BECHNY, Ph.D. in Computer Science
Universitat Bern, 2025

Sleep, together with diet and physical activity, is one of the fundamental pillars of health.
Sleep disorders are highly prevalent, with rising incidence particularly among younger and
economically disadvantaged populations, and they are closely linked to neurological, psy-
chiatric, metabolic, and cardiovascular conditions. The clinical gold standard for assessing
sleep is polysomnography (PSG), which records multiple biosignals such as brain activity,
breathing, and movement during the night. Following established guidelines, every 30-
second segment is scored by trained experts into one of five sleep stages, producing a stage-
by-stage sequence called a hypnogram. From this representation, standard sleep metrics are
calculated and combined with indices of breathing- or movement-related events to support
diagnostics. While central to diagnosis, PSG is costly and labour-intensive, with manual
scoring alone requiring up to two hours of expert time. With the growing use of Artificial
Intelligence (AI), automated sleep scoring (ASS) powered by modern machine- and deep-
learning algorithms achieves human-level agreement of 75-85%, but remains limited by the
inter-rater variability inherent in training labels. This limits performance and requires mech-
anisms for effective human—AlI collaboration. The first branch of this thesis (Chapters 2—4)
addresses these challenges by developing methods for clinical integration of ASS, including
uncertainty-guided oversight and a flexible statistical framework to quantify algorithmic
bias. These approaches aim to support efficient physician review while promoting fairness,
transparency, and reliability in clinical deployment. After improving the ASS process, the
second branch (Chapters 5-7) focuses on deriving novel digital biomarkers from sleep-stage
dynamics—an underutilised aspect of PSG with potential to capture subtle physiological sig-
natures. Using clinical, observational, and prospective datasets, we investigated their value
in sleep-disordered breathing, chronic fatigue and pain syndromes, and long-term cardio-
vascular risk. To address confounding and build predictive models, we employed causal
inference methods, Bayesian networks, and forest-based classification and survival models,
systematically examining the effects and risk profiles associated with sleep-stage transitions.
These studies revealed disorder-specific alterations and showed that sleep-stage dynamics
can also predict future cardiovascular events. Together, the findings demonstrate that sleep-
stage dynamics represent a promising class of digital biomarkers that extend standard PSG
metrics, improve risk assessment, and—when combined with wearable technology in the
future—may enable unobtrusive yet sensitive long-term monitoring of diverse conditions.


https://www.unibe.ch




ix

Acknowledgements

I am very grateful to my PhD advisors, Athina Tzovara from the Cognitive Computa-
tional Neuroscience (CCN) group at the University of Bern and Francesca Faraci from the
Biomedical Signal Processing group at the Institute of Digital Technologies for Personalised
Healthcare (MeDiTech) at SUPSI in Lugano. Thank you for the time you dedicated to me,
the knowledge you shared, and the opportunities you made possible. I especially thank
Francesca for securing the funding that allowed me to pursue this PhD, present my work at
international conferences, and for her personal support during challenging moments.

My work with data from Inselspital, University Hospital of Bern, would not have been
possible without Julia van der Meer, whose support in understanding the data, along with
her constructive feedback even under tight deadlines, proved invaluable. I also thank
Markus Schmidt and Claudio Bassetti for offering clinical perspectives on my work.

I am grateful to Akifumi Kishi, who supervised me during my research stay in Japan and
gave me valuable input on sleep dynamics, as well as being a wonderful guide in the Land
of the Rising Sun. I also thank Yasuhiro Tomita for his helpful feedback on the link between
sleep and cardiovascular disease, and for the memorable dinner we shared in Tokyo.

Many thanks to Marco Scutari, for his openness in discussing methods, the knowledge
he passed on, the academic connections he introduced me to, and his generous support.

I owe thanks as well to all my colleagues in Lugano, Bern, and Tokyo for their feedback
on my work and the good moments we shared over lunch and outside work. I also thank my
former university teachers, especially the team at the Institute of Applied Statistics at JKU
Linz, and my former research colleagues at the Software Competence Center Hagenberg in
Austria, who passed on their knowledge and helped me at the start of my career.

I gratefully acknowledge the University of Bern for supporting my research stay in Japan
and my attendance at the World Sleep Congress in Singapore, both of which were very
valuable experiences as a young researcher. I also thank my hometown, Novy Ji¢in, for
awarding me a scholarship for international students that helped cover some of my confer-
ence expenses, and the Swiss Society for Sleep Research, Sleep Medicine and Chronobiology
(SSSSC) for a travel grant to the European Sleep Congress in Seville.

Finally, my warmest thanks go to my beloved partner Radka, my family, and my friends.
I thank Radka for her support, patience, and respect, which have been the driving force of
our long-standing relationship. I am especially grateful to my grandparents, whose example
has been one of my greatest teachers. I also thank my siblings for always being there for me,
and above all, my mother, for her endless love and understanding.






xi

Contents

Abstract vii
Acknowledgements ix
1 Introduction 1
1.1 Clinical Sleep Study (Polysomnography) . .. ... ............... 2
1.1.1 Polysomnographic Acquisition . . . ... ... ... .. .. ....... 2
1.1.2 Manual Sleep Scoring . . . .. ... .. ... . o 3
1.1.3  PSG-Derived Sleep Metrics . . . .. ... ... ... ... ...... 4
Impact of disorder, age, and genderonsleep . . ... ... ....... 5
1.1.4 Cost and Accessibility of PSG Across Healthcare Systems . . . . . . .. 5
1.2 Automated Sleep Scoring: Potential and Challenges . . . . . ... .. ... .. 5
1.2.1 Background and Historical Development . . . . ... ... ... .... 5
1.2.2  Current Clinical Use and Regulatory Considerations . . .. ... ... 6
Ethical and Legal Considerations: . . . .. ... ............. 7
1.3 Structureofthethesis. . . .. ... ... ... ... ... ... ... ... ... 7
2 Bridging AI and Clinical Practice: Integrating Automated Sleep Scoring Algorithm

with Uncertainty-Guided Physician Review 11
2.1 Imtroduction . . .. ... ... . ... e 12
22 Materialsand Methods . . . . ... ... ... ... L Lo L L 13
221 Dataset . . . . ... 13
222 U-Sleep: The Sleep Scoring Algorithm . . . .. .. .. ..... .. ... 15
2.2.3 Estimation of Predictive Uncertainty . . . . . ... ... . ... ... .. 15
Softmax-Based Measures . . .. ... .......... ... .. .... 15
Uncertainty Quantification Using an Auxiliary Confidence Network . 16

2.2.4 Utilizing Uncertainty Estimates for an Efficient Review of Predicted
Hypnograms . . .. ... ... ... ... ... .. ... . 17
Best-Suited Uncertainty Measure . . . . ... ............... 17

Statistical Tests to Assess the Discriminative Power of the Superior Un-
certainty Metric . . . ... ... ... ... .. L. 18
Impact-Evaluation of Physician Intervention on Uncertain Epochs . . 18
23 Results . . ... . e 18
2.3.1 U-Sleep Classification Performance . ... ................ 19
2.3.2  Evaluation of Approaches for Uncertainty Estimation . . . . . ... .. 20
Softmax-Based Measures . . . ... ....... ... ... .. .... 20
Auxiliary Confidence Network . . . . . ... ... ... ... ...... 21
Confidence-Supplemented Hypnogram . . . . . ... ... ... .... 21

2.3.3 Statistical Tests of on-Subject TCP Scores with Respect to Clinical Di-
AgNOSIS . . . . o e 21
2.3.4 Performance Boost Under Physician’s Intervention . . ... ... ... 24
24 DIiSCUSSION . . . . . v vt e 26
25 Conclusion . . . .. ... L 28

3 Framework for Algorithmic Bias Quantification and its Application to Automated

Sleep Scoring 29
31 Introduction . . .. ... ... ... 29
3.2 Materialsand Methods . . . . .. ... ... .. .. .. . oL oL 30

3.2.1 Bias and its quantification using GAMLSS . . ... ... ... ... .. 30



xii

322 Dataset . . . ... 31

3.2.3 U-Sleep: the sleep scoring algorithm . . . .. ... ... ... ... . 31

33 Results . .. ... . 32

3.3.1 Baseline performance of U-Sleep algorithm . . . . ... ... ... ... 32

3.3.2 Bias Quantification (BQ) . . . . . . .. ... ... . o 32

3.4 Discussion& Conclusion . . . .. ... ... ... L L 35
Beyond Accuracy: A Framework for Evaluating Algorithmic Bias and Performance,

Applied to Automated Sleep Scoring 37

41 Introduction . . .. ... .. ... 37

42 Materialsand Methods . . . . ... ... ... . o o o 39

421 Current standards and limitations in reporting algorithmic performance 39

42.2 Framework for algorithmic bias quantification using GAMLSS . . .. 40

423 Studyuse-case . ... ... ... 41

Sleep-scoring classifiers: U-Sleep and YASA . . . ... ... ... ... 41

Data . .. ... . . e 42

43 Results . ... ... 43

43.1 Implementation . .. .. ... ... ... .. ... .. ... 43

4.3.2 Descriptive statistics of bias-inducing variables . . .. ... ... ... 43

433 Algorithmic Performance . . ... ... ... . ... ........... 44

434 Algorithmic bias concerning clinical markers . . . . . . ... ... ... 48

435 Utilizing biased predictions for diagnostic purposes . . . . .. ... .. 53

44 DiIsCuSSiON . . . . .. ... 55

45 Conclusion . . . .. ... . 58

46 Limitations . .. ... ... .. ... ... 59

Novel Digital Markers of Sleep Dynamics: Causal Inference Approach Revealing

Age and Gender Phenotypes in Obstructive Sleep Apnea 61
51 Introduction . .. .. .. .. ... ... 61
52 Materialsand Methods . . . . . ... ... .. L oL o 65
521 Data . ... ... ... .. 65
Berner Sleep DataBase (BSDB) . . . . ... ................ 65
Sleep Heart Health Study (SHHS) . . ... ... ... ... ....... 67
52.2 Matrix P of sleep-stage transition proportions: a basic sleep marker . . 67
P recovers the majority of clinically established PSG markers . . . . . 68
P allows derivation of novel PSGmarkers . . . . . ... ... ... ... 68

P bridges stage-transitions and durations-oriented sleep dynamics re-
search. . . . . ... L L 69

52.3 Causal framework to quantify sleep-stage transition matrix P and ef-
fectsofadisorder . . . . . ... ... L L L 69
Dirichlet regression: model formulation and properties . . . . . . . .. 70
Causalelements. . . . . ... ... .. ... .. L o 70

524 Study use case: effects of OSA on sleep-stage transitions matrix P and
derived markers . . .. ... ... L L Lo 72
53 Results . .. ... . 72
53.1 Modelling of sleep-stage transition matrix . ... ... ... ... ... 73
Propensity score model and IPW balancing . . . . .. ... ... .... 73
Outcomemodel . . . ... ... ... L o 73
5.3.2 Personalized digital markers of sleep dynamics and the effects of OSA 74
Matrix P of sleep-stage transition proportions . . . .. ... ... ... 74
PSG markers derived fromP . . . . ... oo o oo oL 75
Markovian transition matrix PM derived fromP . . . . ... ... ... 77
5.3.3 Predictive Performance of P Markers on External Data . . . .. .. .. 78
534 Interactive RShinyapp ... ....... ... .. .. .. .. ..... 79
54 Discussion . . . . .. .. ... 80
55 Conclusion . . . ... .. L 82

56 Limitations . . . . . . . . . . e e 82



xiii

6 Unveiling Sleep Dysregulation in Chronic Fatigue Syndrome

with and without Fibromyalgia Through Bayesian Networks 85
6.1 Introduction . .. ... ... ... ... 85
6.2 Materialsand Methods . . . . .. ... ... ... . L o oo 86
621 Data . ..... ... ... 86
6.2.2 Bayesian Networks to Capture Sleep Stage Dynamics . . . . . . .. .. 86
63 Results . . .. ... . . 87
6.3.1 Descriptive Statistics . . . .. ... ... ... ... 0L 87
6.3.2 Structure Identification. . . . . ... ... .. L o o o 87
6.3.3 Performance and Generalization . . . ... ... ... .......... 89
6.3.4 Effects of CFS and CFS+FM via Interventions . . . . . ... .. ... .. 89
6.4 DiScussiOn . . . . . .. ... 91
6.5 Conclusion . . ... ... . L 92
7 Sleep-Stage Dynamics Predict Current Sleep-Disordered

Breathing and Future Cardiovascular Risk 93
71 Introduction . .. ... ... ... 93
72 Materialsand Methods . . . .. .. ... .. .. .. o oL 95
721 Datasets . . .. ... ... .. e 95
Sleep Heart Health Study (SHHS) . . ... ... ... ... .. ..... 95
Bern Sleep-Wake Registery (BSWR) . . ... ........ .. .. ... 97
Data Preprocessing . . . . . .. ... ... ... ... 97

7.2.2  Prediction, Validation, and Effect Quantification using Random (Sur-
vival) Forests . . . . . . . . . .. .. 97
73 Results . ... .. 98
7.3.1 Descriptive statistics . . . . ... ... ... ... . 0 0oL 99
7.3.2 Identification of current SDBstatus . . . . ... ... ... ... .. .. 100
Predictors and training of RF . . . .. .......... ... ...... 100
Performance and generalizationof RF . . . .. ... ..... ... ... 101
SDB risk-profiles via partial effectsof RE . . . . ... ... ... ..., 103
7.3.3 Prediction of long-term cardiovascularrisk . . . . ... ... ... ... 104
Predictors and trainingof RSF . . . . .. ...... .. .. .. ..... 104
Performance and generalizationof RSF . . . .. ... ... ... ... 106
Cardiovascular risk-profiles via partial effects of RSF . . . . . ... .. 109

Correlation of predicted cardiovascular risk with sleep disorders and
non-sleep comorbidities. . . . .. ... L L oL 112
74 DISCUSSION . . . . . . . e 112
75 Conclusion . . . ... .. 114
76 Limitations . . . . ... ... 115
8 Discussion 117
8.1 Summary of research findings . . . . ... ... ... ... ... 0. 117

8.1.1 Integration of Automated Sleep Scoring (ASS) into Clinical Practice . . 117
Chapter 2: Bridging Al and Clinical Practice: Integrating Automated Sleep

Scoring with Uncertainty-Guided Physician Review . . . . . . . . 117
Chapter 3: Framework for Algorithmic Bias Quantification and its Applica-
tion to Automated Sleep Scoring . . . . ... ... ... ... 118
Chapter 4: Beyond Accuracy: Extending Bias Quantification to Perfor-
mance Metrics and Clinical Markers . . . . . ... ... .. ... 119
8.1.2 Digital Biomarkers from Sleep-Stage Dynamics . .. ... ....... 120

Chapter 5: Novel Digital Markers of Sleep Dynamics: A Causal Inference
Approach Revealing Age and Gender Phenotypes in Obstructive

Sleep Apnea . . . . .. ... 120
Chapter 6: Unveiling Sleep Dysregulation in Chronic Fatigue Syndrome

with and without Fibromyalgia Through Bayesian Networks . . . 121
Chapter 7: Sleep-Stage Dynamics Predict Current Sleep-Disordered Breath-

ing and Future Cardiovascular Risk . . . . .. ... .. .. ... 122

8.2 ConcluSions . . . . . . . . e 123



Xiv

83 Limitations . . . . . . . . . . e e e

Bibliography

A

Supplementary Materials for Chapter 4

A.l Statistical characteristics of derived PSGmarkers . . . . ... ... ... . ...

A.2 Statistical characteristics of raw errors in algorithm-derived PSG markers

A.3 Partial effects of age on U-Sleep and YASA performance metrics . . . . . . ..

A4 PerformancePlots . . . . . . ... Lo

A.5 Partial effects of age on bias in U-Sleep and YASA derived percentage of wake-
fulness . . . ..

A.6 Bias in clinical PSG markers based on YASA predictions. . . . . ... ... ..

A.7 Bias in clinical PSG markers based on U-Sleep predictions . .. ... ... ..

Supplementary Materials for Chapter 5

B.1 Outcome model of Dirichlet regression . . . . . . ... .. .. ... .......
B.2 Comparison based on matrices of transition proportionsP . . . ... ... ..
B.3 Effect tables for markers of sleep macro-structure and dynamics . . . . .. ..
B.4 Comparison based on derived Markovian matrices PM . . . .. ... ... ..
B.5 Effect plots for sample dynamics markers . . ... ... . ... ... ... ...

Supplementary Materials for Chapter 7
C.1 Bern Sleep-Wake Registery (BSWR) . . . ... ... ... ... ... .....
C.1.1 Descriptive statistics . . . . . ... .. ... .. ... .. ... ...
C.1.2  Occurrence of clinical conditions . . . . ... ...............
C.1.3 Characteristics of clinical conditions, predicted risk, and their compar-
isontohealthy. . . ... ... .. .. .. .. . . o o o
C.2 Sleep Heart Health Study (SHHS) . . . . ... ....... ... .........
C21 SHHSI . ... .
C22 SHHS2 . ... .
C.3 Performance of Random Survival Forestmodel . . . . . ... ... ... ...
C.4 Survival Plots for RSF with AHI predictor . . . . . ... .............
C.4.1 Primarystudycohort. . . ... ... ... Lo
C4.2 SHHSItestsubjects . . .. ............ .. .. .. .. .....
C4.3 SHHS2trainsubjects . . . .. ... ... ... .. ... ... .. ... ..
C44 SHHS2testsubjects . . ... ...... ... .. .. .. .. .. .....
C.5 Survival Plots without AHI predictor . . .. ... ... . ... .........
Cb5.1 Primarystudycohort. . . .. ... ... ... .. . L L L
Cb5.2 SHHSItestsubjects . . ... ........ ... .. .. ... .....
Cb5.3 SHHS2trainsubjects . . . .. ... ... ... ... .. L
Cb54 SHHS2testsubjects . ... ... .. .. ... .. .. .. .. .. .....
C.6 Partial Effects for RSF without AHI predictor . . . . ... ... ... ......



List of Figures

1.1

2.1
2.2
23
24

25

3.1

32
3.3

34

4.1

4.2

5.1

52

5.3

5.4

55

6.1
6.2
6.3

6.4

7.1

Typical polysomnographicsetup. . . . ... ....................

Schematic overview of the implemented pipeline. . ... ... .........
Schematic overview of the datasets, their sizes, and purposes. . . . ... ...
Combined output of predicted and physician-scored hypnograms with asso-
ciated confidencescores. . . . . ... ... Lo o
Performance boost with physician review of epochs with TCP scores below a
giventhreshold. . . . . ... ... .. .. .. L L L
Review amounts (% of epochs exported) versus the % of discordant predic-
tionsgathered. . . . . ... ... ..

Partial effects of age on the mean (y) and standard deviation (o) of the W%-
bias model, quantified with cubicsplines. . . . . . ... ... ... .. .. ...
Expected quantiles of the W%-bias. . . . . ... ... ... ... ... ....
Expected coverage of the region of practical equivalence (ROPE) for W%-
predictions, expressed as an interval of =ROPE thresholds. . . . . . . ... ..
Probability of positive bias (overestimation, f — y > 0) in W%-predictions. . .

Expected distribution of subject-specific F1-score for U-Sleep across demo-
graphic and clinical subgroups. . . . .. ... ... L L L L oL
Expected distribution of the bias in the wakefulness percentage after sleep
onset (W, %) for U-Sleep predictions. . . . ... ..... ... .........

Graphical overview of the implemented approach for quantifying sleep-stage
dynamics. . . .. ...
Heatmap of RR-CATE values for OSA effects on sleep-stage transition pro-
portions across gender, age, and OSA severity. . . . ... ... .........
Heatmap of RR-CATE values for OSA effects on PSG-markers derived from
matrix P of sleep-stage transition proportions across gender, age, and OSA
severity. . . . . ... e
Effects of age and OSA-severities on NREM-REM oscillations, P(NREM =
REM),infemales. . . . . . .. . .
Heatmap of RR-CATE values for OSA effects on individual dimensions of
row-normalized Markovian transition matrix PM across gender, age, and OSA
severity. . . .. ... e

Full-structure Bayesian network withlag=2. . . . . ... .. .. .. ... ...
Expected durations of sleep-stage bouts for H, CFS, and CFS+FM groups.

Lag-1 sleep-stage transition dynamics for Healthy (H), Chronic Fatigue Syn-
drome (CFS), and CFS with Fibromyalgia (CFS+FM). . . ... ... ... ...
Lag-2 sleep-stage transition dynamics for Healthy (H), Chronic Fatigue Syn-
drome (CFS), and CFS with Fibromyalgia (CFS+FM). . . ... ... ... ...

Partial effects and their 95% ClIs for the risk of moderate-to-severe sleep-
disordered breathing (AHI>15) for the age in years, Body Mass Index (BMI),
gender (0 = female, 1 = male), and smoking status. . . . . . ... ... ... ..

XV

33

76



XVi

7.2 Partial effects and their 95% Cls for the risk of moderate-to-severe sleep-
disordered breathing (AHI>15) for the minutes of Total Sleep Time (TST),
Wake After Sleep Onset (WASO), Sleep Latency (SL), REM Latency (REM),
and Deep-sleep Latency (DL). . . . ... ... ... ... .. ........... 104

7.3 Partial effects and their 95% Cls for the risk of moderate-to-severe sleep-
disordered breathing (AHI>15) for relative frequencies of individual transi-
tions between sleep-stages (W, N1, N2, N3, REM =R). . . . .. ... ... ... 105

7.4 Partial effects and their 95% ClIs for 10-year cardiovascular event-free proba-
bility for the age in years, Body Mass Index (BMI), Apnea-Hypopnea Index
(AHI), gender (0 = female, 1 = male), and smoking status, for RSF with AHI
predictor. . . . . ... 109

7.5 Partial effects and their 95% Cls for 10-year cardiovascular event-free prob-
ability for the minutes of Total Sleep Time (TST), Wake After Sleep Onset
(WASO), Sleep Latency (SL), REM Latency (REM), and Deep-sleep Latency

7.6 Partial effects and their 95% Cls for 10-year cardiovascular event-free prob-
ability for the relative frequencies of transitions between sleep-stage (W, N1,

N2, N3, REM), for RSF with AHI predictor. . . . ... .. .. .. ........ 111
A.1 Partial effects of age on U-Sleep accuracy. . . . ... ............... 142
A2 Partial effects of age on U-Sleep Fl-score. . . . ... ... ... ......... 143
A3 Partial effects of age on YASA accuracy. . . ... ... ... ........... 143
A4 Partial effects of age on YASA Fl-score. . .. ... ... ............. 143
A.5 Expected distribution of subject-specific accuracy for U-Sleep across demo-
graphic and clinical subgroups. . . . . ... ... .. L L oL L oL 144
A.6 Expected distribution of subject-specific Fl-score for YASA across demo-
graphic and clinical subgroups. . . . . ... ... ... L oL 145
A.7 Expected distribution of subject-specific accuracy for YASA across demo-
graphic and clinical subgroups. . . . . ... ... ... o oL 146

A.8 Partial effects of age on bias in U-Sleep-derived wakefulness percentage (W%). 146
A9 Partial effects of age on bias in YASA-derived wakefulness percentage (W%). 147
A.10 Expected distribution of the bias in the sleep latency (SL, minutes) for YASA

predictions. . . ... ... L 147
A.11 Expected distribution of the bias in the REM latency (REML, minutes) for

YASA predictions. . . . . . ... 148
A.12 Expected distribution of the bias in the total sleep time (TST, minutes) for

YASA predictions. . . . . .. L 149
A.13 Expected distribution of the bias in the wake after sleep onset (WASO, min-

utes) for YASA predictions. . . ... ... oo oo 150
A.14 Expected distribution of the bias in the number (#) of sleep cycles for YASA

predictions. . . . . ... 151
A.15 Expected distribution of the bias in the hourly rate (# / hour) of sleep stage

transitions for YASA predictions. . . . ... ... . oL 152
A.16 Expected distribution of the bias in the hourly rate (# / hour) of awakenings

for YASA predictions. . . . . .. ... L o o 153
A.17 Expected distribution of the bias in the sleep efficiency percentage (SE, %) for

YASA predictions. . . . .. ... 154
A.18 Expected distribution of the bias in the wakefulness percentage after sleep

onset (W, %) for YASA predictions. . . . ... ... ... ... ... ... 155
A.19 Expected distribution of the bias in the N1 sleep percentage after sleep onset

(N1, %) for YASA predictions. . . . . . ... ... ... L Lo 156
A.20 Expected distribution of the bias in the N2 sleep percentage after sleep onset

(N2, %) for YASA predictions. . . . . . ... ... ... .. o oL 157
A.21 Expected distribution of the bias in the N3 sleep percentage after sleep onset

(N3, %) for YASA predictions. . . . .. ... ... ... . oL 158

A.22 Expected distribution of the bias in the REM sleep percentage after sleep onset
(REM, %) for YASA predictions. . . . ... ... ... .. .. .. .. .. ... 159



XVii

A.23 Expected distribution of the bias in the sleep latency (SL, minutes) for U-Sleep

predictions. . . ... ... L 160
A.24 Expected distribution of the bias in the REM latency (REML, minutes) for U-

Sleep predictions. . . . . .. ... ... 161
A.25 Expected distribution of the bias in the total sleep time (TST, minutes) for U-

Sleep predictions. . . . . .. ... ... 162
A.26 Expected distribution of the bias in the wake after sleep onset (WASO, min-

utes) for U-Sleep predictions. . . . ... ........... ... ... . ... 163
A.27 Expected distribution of the bias in the number (#) of sleep cycles for U-Sleep

predictions. . . . . ... 164
A.28 Expected distribution of the bias in the hourly rate (# / hour) of sleep stage

transitions for U-Sleep predictions. . . . . . ... ....... ... ... ..., 165
A.29 Expected distribution of the bias in the hourly rate (# / hour) of awakenings

for U-Sleep predictions. . . . .. ... ... ... ... ... ... 166
A.30 Expected distribution of the bias in the sleep efficiency percentage (SE, %) for

U-Sleep predictions. . . .. . ... ... ... .. ... . 167
A.31 Expected distribution of the bias in the wakefulness percentage after sleep

onset (W, %) for U-Sleep predictions. . . . . ... ................. 168
A.32 Expected distribution of the bias in the N1 sleep percentage after sleep onset

(N1, %) for U-Sleep predictions. . . . . . .. ... ... ... ... .. ...... 169
A.33 Expected distribution of the bias in the N2 sleep percentage after sleep onset

(N2, %) for U-Sleep predictions. . . . . ... ... .. ... ......... 170
A.34 Expected distribution of the bias in the N3 sleep percentage after sleep onset

(N3, %) for U-Sleep predictions. . . . . ... ... ... ... ... ...... 171
A.35 Expected distribution of the bias in the REM sleep percentage after sleep onset

(REM, %) for U-Sleep predictions. . . . .. ... ... .. .. .......... 172
B.1 Expected matrices of transition proportions P for healthy females and females

with different OSA severities, each stratified by age. . . . ... ... ... ... 176
B.2 Differences (CATE) in matrices of transition proportions P between healthy

females and females with different OSA severities, each stratified by age. . . . 177
B.3 Risk ratio (RR-CATE) of matrices of transition proportions P between healthy

females and females with different OSA severities, each stratified by age. . . . 178
B.4 Expected matrices of transition proportions P for healthy males and males

with different OSA severities, each stratified by age. . . . . .. ... ... ... 179
B.5 Differences (CATE) in matrices of transition proportions P between healthy

males and males with different OSA severities, each stratified by age. . . . . . 180
B.6 Risk ratio (RR-CATE) of matrices of transition proportions P between healthy

males and males with different OSA severities, each stratified by age. . . . . . 181
B.7 Expected derived Markovian transition matrices PM for healthy females and

females with different OSA severities, each stratified by age. . . . . . ... .. 189

B.8 Differences (CATE) in derived Markovian transition matrices PM between
healthy females and females with different OSA severities, each stratified by
AL+ i e e e 190
B.9 Risk ratio (RR-CATE) of derived Markovian transition matrices PM between
healthy females and females with different OSA severities, each stratified by

ALC. . o e 191
B.10 Expected derived Markovian transition matrices PM for healthy males and
males with different OSA severities, each stratified by age. . . ... ... ... 192

B.11 Differences (CATE) in derived Markovian transition matrices PM between
healthy males and males with different OSA severities, each stratified by age. 193
B.12 Risk ratio (RR-CATE) of derived Markovian transition matrices PM between
healthy males and males with different OSA severities, each stratified by age. 194
B.13 Effects of age and OSA-severities on NREM-REM oscillations, P(NREM =
REM),inmales. . . . . . . .. 195
B.14 Effects of age and OSA-severities on sleep-stage fragmentation, in females. . . 196
B.15 Effects of age and OSA-severities on sleep-stage fragmentation, in males. . . . 196



XViil

C.1 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS1 (E=0,M=0). . . . ... ... ... . ... . .....
C.2 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS1T(E=0,M=1). . . . . .. ... ... ..
C.3 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS1HE =1, M=0).. . . . ... .. ... ... . ...
C.4 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHSIH(E=1,M=1). . . . . . ... ... .. ...
C.5 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2 (E=0,M=0). . . . . . . . . . . . i
C.6 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2 (E=0,M=1). . . . ... ... ... . ... . .....
C.7 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2 (E=1,M=0). . . . .. ... ... .. ..
C.8 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2 (E=1,M=1). . . . . ... .. ... . . . ..
C.9 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2T(E=0,M=0).. . . . . ... ... ... ...
C.10 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2T(E=0,M=1). . . . . .. ... ... ...
C.11 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2YE=1,M=0).. . . . . ... ... ... ...
C.12 Cardiovascular outcomes and RSF (including AHI predictor) performance
metrics for SHHS2T(E=1,M=1).. . . ... .. ... .. ...
C.13 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHST (E=0,M=0). . . . . . .. . ... . ..
C.14 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS1HE =0,M=1). . . . . ... ... ... ... ... ... ....
C.15 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHSIT(E=1,M=0). . . . . ... ... .. ... . ...
C.16 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHSIT(E=1,M=1).. . . . ... .. ... ... . . ... ..
C.17 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2(E=0,M=0). . ... ... ... .. ... ... ........
C.18 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2(E=0,M=1). . ... ... ... .. . . . . ... ...
C.19 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2(E=1,M=0). . ... .. ... .. ... ... ...,
C.20 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2(E=1,M=1). . ... ... ... . . . . .. ... .. .....
C.21 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2T(E=0,M=0). . . . . . ... .. ... ...
C.22 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2Y(E=0,M=1). . . . . ... . ... ... . ... ... ...
C.23 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2T(E=1,M=0). . . . . ... ... ... ...
C.24 Cardiovascular outcomes and RSF (excluding AHI predictor) performance
metrics for SHHS2T(E=1,M=1). . . . . ... ... ... . . ..
C.25 Partial effects and their 95% Cls for 10-year cardiovascular event-free proba-
bility for the age in years, Body Mass Index (BMI), Apnea-Hypopnea Index
(AHI), gender (0 = female, 1 = male), and smoking status, for RSF without

C.26 Partial effects and their 95% Cls for 10-year cardiovascular event-free prob-
ability for the minutes of Total Sleep Time (TST), Wake After Sleep Onset
(WASO), Sleep Latency (SL), REM Latency (REM), and Deep-sleep Latency
(DL), for RSF without AHI predictor. . . . . ... .................



Xix

C.27 Partial effects and their 95% Cls for 10-year cardiovascular event-free prob-
ability for the relative frequencies of transitions between sleep-stage (W, N1,
N2, N3, REM), for RSF without AHI predictor. . . ... ... ... ....... 236






List of Tables

2.1
2.2

2.3
24
25
2.6
27

2.8

4.1

4.2

4.3

44

4.5

51

5.2

6.1
6.2

7.1

7.2

73

Al

A2

B.1

Demographic characteristics of BSDB subjects across data splits. . . . . . . ..
Occurrence of sleep disorder classes across BSDB conclusive diagnoses and
datasplits. . . ... ... ... ...
Measures of prediction uncertainty based on U-Sleep softmax output.

Classification performance of U-Sleep across individual data splits. . . . . . .
Performance of uncertainty measures in detecting U-Sleep predictions that
deviate from human scoring across data splits. . . . . ... ... ... .....
Bootstrap confidence intervals (CI) for differences in subject-level mean TCP
scores between aligning and discordant predictions. . . . . .. ... ... ...
Bootstrap confidence intervals (CI) for correlations between subject-level
mean TCP scores and performance metrics. . . . . .. ... ... .. ......
Rescoring amounts required to achieve target levels of sleep-scoring perfor-
INANCE. .« v v i vt

Summary statistics of demographic and clinical variables and performance
metrics for U-Sleepand YASA. . . ... ... ... ... ... ..
Significant predictors in performance quantification models for U-Sleep and

Summary of absolute errors in PSG markers derived from U-Sleep and YASA
compared to physicianscoring. . . . . ... ... ... . L oL
Significant predictors of bias quantification models for PSG markers in U-
Sleepand YASA. . . . .. ...
Performance comparison of machine learning classifiers trained on physician-
and algorithm-derived PSG markers for OSA detection. . . . . . .. ... ...

Comparison of demographics, sleep metrics, and prevalence of sleep comor-
bidities among healthy and (mild, moderate, severe) OSA subjects in the
BSDBdataset. . ... ... ... .. ... ..
AUROC with 95% CI for predicting moderate sleep-disordered breathing
from individual sleep-stage transition proportions. . . . . . ... ... ... ..

Mean (SD) bout statistics for healthy (H), CFS, and CFS+FM subjects. . . . . .
The impact of BN-included variables on the performance metrics. . . . . . . .

Descriptive characteristics of SHHS1 (E = 0, M = 0) cohort stratified by cardio-
vasculareventstatus. . . . . ... ... L L L Lo
Random Forest identification of moderate-to-severe sleep-disordered breath-
ing across SHHS and BSWR test datasets. . . . . ... ..............
Performance of the Random Survival Forest model including AHI predictor
across SHHS and BSWR datasets of subjects with no previous cardiovascular
events (E=0). . . . . . .

Descriptive statistics of sleep metrics from physician scoring and predictions
by U-Sleepand YASA. . . . . . . ..
Summary of prediction errors in sleep metrics from U-Sleep and YASA com-
pared to physicianscoring. . . . . . ... ... L L Lo

Estimated coefficients with bootstrapped 95% CI for the Dirichlet regression
outcome model (Eq.5.30). . . .. ... ... ... L L

xxi

20

51

102

107

141

174



XXxii

B.2 Expected probabilities and estimated OSA effects (CATE, RR-CATE) for 30-

year-old females. . . .. ... ... ... .. .. 182
B.3 Expected probabilities and estimated OSA effects (CATE, RR-CATE) for 50-
year-old females. . . . . ... ... 183
B.4 Expected probabilities and estimated OSA effects (CATE, RR-CATE) for 70-
year-old females. . . . ... ... .. ... 184
B.5 Expected probabilities and estimated OSA effects (CATE, RR-CATE) for 30-
year-oldmales. . .. ... ... ... L. L 185
B.6 Expected probabilities and estimated OSA effects (CATE, RR-CATE) for 50-
year-old females. . . . ... ... .. 186
B.7 Expected probabilities and estimated OSA effects (CATE, RR-CATE) for 70-
year-old females. . . . ... ... .. ... 187
C.1 Characteristics of Berner Sleep-Wake Registry (BSWR) cohort stratified by no-
to-mild SDB (AHI < 15) versus moderate-to-high SDB (AHI > 15).. . . . . .. 197
C.2 Health conditions in the Berner Sleep-Wake Registry (BSWR) stratified by no-
to-mild SDB (AHI < 15) versus moderate-to-high SDB (AHI >15).. . . . . .. 199
C.3 Summary statistics and adjusted cardiovascular risk in the Bern Sleep-Wake
Registry (BSWR). . . ... ... . . 201
C.4 Subsets of SHHS database stratified based on prior cardiovascular event sta-
tus (E) and medicationuse (M). . . . . . .. . ... Lo 202
C.5 Descriptive characteristics of SHHS1 (E = 0, M = 1) cohort stratified by cardio-
vasculareventstatus. . . . . . ... L L Lo 202
C.6 Descriptive characteristics of SHHS1 (E = 1, M = 0) cohort stratified by cardio-
vasculareventstatus. . . . . . ... L L L Lo 203
C.7 Descriptive characteristics of SHHS1 (E = 1, M = 1) cohort stratified by cardio-
vasculareventstatus. . . . . . ... L oL L Lo 204
C.8 Descriptive characteristics of SHHS2 (E = 0, M = 0) cohort stratified by cardio-
vasculareventstatus. . . . .. ... L L Lo 205
C.9 Descriptive characteristics of SHHS2 (E = 0, M = 1) cohort stratified by cardio-
vasculareventstatus. . . . . . ... L L L L L 206
C.10 Descriptive characteristics of SHHS2 (E = 1, M = 0) cohort stratified by cardio-
vasculareventstatus. . . . .. ... L L oL 207
C.11 Descriptive characteristics of SHHS2 (E = 1, M = 1) cohort stratified by cardio-
vasculareventstatus. . . . . . ... Lo L L Lo 208

C.12 Performance of the Random Survival Forest (RSF) model without AHI pre-
dictor across SHHS and BSWR datasets of subjects with no previous cardio-
vascularevents (E=0). . . . . . . . . . . . L 209

C.13 Performance of the Random Survival Forest model including AHI predictor
across SHHS and BSWR datasets of subjects with previous cardiovascular
events (E=1). . . . . . . 210

C.14 Performance of the Random Survival Forest model without AHI predictor
across SHHS and BSWR datasets of subjects with previous cardiovascular
events (E=1). . . . . . . 211



Chapter 1

Introduction

Sleep, alongside physical activity and diet, is recognised as one of the three fundamental pil-
lars of human health. The connection between sleep and well-being has been acknowledged
for millennia. One of the earliest preserved references comes from ancient Greece, attributed
to Hippocrates, often regarded as the father of medicine:

"Both sleep and insomnolency, when immoderate, are bad.”
—Hippocrates (c. 400 BCE)

Despite its age, this quote remains remarkably relevant today. Hippocrates did not reduce
the complexity of sleep needs to a simple “more is better” argument. Instead, he implied,
likely deliberately without specifying a quantity, that there exists an optimal amount of
sleep, and that both insufficient and excessive sleep may be harmful.

In this short aphorism, Hippocrates anticipated many modern efforts to quantify the
ideal duration and structure of sleep. Yet much of contemporary thinking, both in popular
discourse and in scientific literature, still assumes that “more”—whether more total sleep,
more deep sleep, or more rapid eye movement (REM) sleep—is inherently beneficial. Far
fewer studies consider the possibility of a U-shaped relationship, in which both extremes
are detrimental and the optimum lies somewhere in between. This concept, intuitive even
two and a half millennia ago, remains underutilised in modern research, perhaps because
identifying such an optimum, which likely varies between individuals and population sub-
groups, is computationally and practically challenging.

The endurance of Hippocrates’s words suggests that sleep disturbances were already
a recognised health concern in ancient times. Whether their prevalence in ancient Greece
was comparable to today is unknown, but modern epidemiological data are sobering: in
Switzerland, for example, about one-third of the population reports sleep disorders: 7%
pathological and 26% moderate, with nearly half (48%) waking multiple times during the
night, either frequently or occasionally [1]. The causes and distribution of sleep problems
have shifted considerably over time: disorders related to physical inactivity and obesity,
such as obstructive sleep apnea, or those linked to excessive exposure to artificial light before
bedtime, were likely rare in ancient societies but are increasingly common today.

While our intuitive understanding of sleep dates back millennia, substantial scientific
progress has been achieved only in recent decades. Advances in neuroscience, physiol-
ogy, and biomedical engineering have deepened our understanding of sleep architecture
and disorders, while the emergence of sleep medicine as a clinical discipline has been en-
abled by technological innovation. Specialised sleep laboratories, formal diagnostic criteria,
and advanced monitoring tools—ranging from gold-standard polysomnography to mod-
ern wearable devices—now allow for precise diagnosis, long-term monitoring, and detailed
assessment of sleep-related behaviours.

This dissertation aims to contribute to the field of sleep medicine not by directly improv-
ing the reader’s sleep (although certain sections may have that side effect), but by applying
quantitative methods to advance the computational assessment and interpretation of sleep.
It bridges the domains of computer science and clinical sleep medicine, demonstrating how
algorithmic approaches, data-driven modelling, and machine learning can be applied to
address practical problems in healthcare effectively.

The contributions of this thesis fall into two main thematic branches:
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1. Clinical integration of algorithms for automated sleep scoring (ASS), with the po-
tential to streamline clinical workflows, reduce the cost of sleep studies, and promote
algorithmic fairness in clinical decision-making.

2. Quantification of novel digital biomarkers derived from sleep-stage dynamics, to
enhance physiological insight into sleep disorders, support their diagnosis, and inves-
tigate their associations with long-term health outcomes, particularly in the cardiovas-
cular domain.

In the sections that follow, we introduce the clinical sleep study, polysomnography (PSG),
and its outputs, including the process of sleep scoring. We then examine the challenges of
(automated) sleep scoring, such as inter-scorer disagreement, and the potential of scoring
outputs for biomarker derivation and diagnostics. This contextual foundation is followed by
an overview of the six manuscripts that form the core of this dissertation and their intercon-
nections. The subsequent chapters present each manuscript in full, while the final chapter
synthesises the findings, explores their implications for sleep medicine, and discusses their
limitations.

1.1 Clinical Sleep Study (Polysomnography)

Polysomnography (PSG) is the gold standard for the objective assessment of sleep phys-
iology and the diagnosis of sleep disorders. These disorders, such as insomnia, sleep-
disordered breathing (SDB, including obstructive and central sleep apnea), hypersomnia,
parasomnias, movement-related sleep disorders, and circadian rhythm disturbances, affect
a substantial portion of the population and are closely linked to cardiovascular, metabolic,
and mental health outcomes [2]-[7].

A typical overnight PSG combines neurophysiological, cardiorespiratory, and muscu-
loskeletal recordings to provide detailed insight into sleep architecture and physiology. It
enables both sleep staging and the detection of physiological or pathological events such as
apneas, periodic limb movements, and cortical arousals [8], [9].

1.1.1 Polysomnographic Acquisition

In a standard clinical PSG setup (Figure 1.1), the following physiological signals are recorded
overnight in a controlled laboratory setting [8], [10], [11]:

¢ Electroencephalography (EEG) — to monitor brain activity and determine transitions
between wakefulness and individual sleep stages, using electrodes placed according
to the international 10-20 system;

* Electrooculography (EOG) — to capture horizontal and vertical eye movements, essen-
tial for identifying REM sleep;

¢ Electromyography (EMG) — to monitor muscle tone and activity, particularly in the
chin (submental region) and lower limbs (tibialis anterior), relevant for detecting REM
atonia and movement-related sleep disorders;

¢ Respiratory effort and airflow — measured using thoracic and abdominal belts (typi-
cally respiratory inductance plethysmography) and nasal pressure transducers or ther-
mistors;

¢ Pulse oximetry (SpO;) — to detect oxygen desaturation events associated with sleep-
disordered breathing;

* Body position sensors — to track posture and positional dependency of respiratory
events;

¢ Optional channels - including electrocardiography (ECG) for heart rate and rhythm
monitoring; snore microphones; and additional limb EMG channels for periodic limb
movement detection.
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Figure 1.1: Typical polysomnographic setup.
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Signals are digitised and stored at high resolution (200-512 Hz) for manual or automated
analysis. In-lab PSGs often include synchronised infrared video and audio to assist with
behavioural assessment and artifact detection. Although requiring extensive patient instru-
mentation and technician oversight, this multichannel setup offers a comprehensive view of
sleep architecture and related pathologies.

1.1.2 Manual Sleep Scoring

Sleep stages are traditionally assigned in 30-second epochs by visual inspection of EEG,
EOG, and EMG signals, following the American Academy of Sleep Medicine (AASM) crite-
ria [8]. The five standard vigilance states with unique physiology are [8], [9], [13]:

¢ Wake (W) — Characterized by alpha activity (8-12 Hz) over the occipital region during
eyes-closed rest, transitioning to beta activity (13-30 Hz) with eyes open or increased
alertness. Muscle tone is high, and frequent eye movements are present. In healthy
individuals, wakefulness typically accounts for 5-10% of the total PSG recording.

* Stage N1 — The lightest sleep stage, marked by low-amplitude mixed-frequency EEG
(theta 4-7 Hz), slow rolling eye movements, and reduced chin EMG tone. N1 is a brief
transitional stage comprising ~5% of sleep in healthy adults.

* Stage N2 — Defined by the appearance of sleep spindles (= about 1 second short,
11-16 Hz oscillations) and K-complexes (sharp negative wave followed by a slower
positive component). Eye movements cease, and muscle tone decreases. N2 typically
follows N1 and represents 45-55% of total sleep time.

* Stage N3 - Also called slow-wave sleep (SWS), exhibits high-amplitude low-frequency
delta waves (0.5-3 Hz). Muscle tone is low, and arousal thresholds are highest. N3
comprises 15-25% of sleep, mainly in the early part of the night.

* REM sleep — Identified by low-amplitude mixed-frequency EEG, rapid eye move-
ments, and near-complete muscle atonia. REM typically follows N2 and accounts for
20-25% of sleep, increasing in duration toward the later part of the night.
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In healthy adults, these stages cycle every 90-120 minutes, following a pattern of: (W — N1
— N2 — N3 — N2 — REM — N1/W), with N3 declining and REM increasing across the
night [9], [13]. Awakenings are more likely from N1, N2, or REM [9], [13].

Sleep stages and their composition (i.e., macrostructure) provide clinicians with valuable
information about possible sleep disturbances or pathologies. Manual scoring, however,
is both time-consuming and prone to variability. Inter-scorer agreement typically ranges
between 75-85%, depending on dataset complexity (e.g., healthy vs. clinical populations;
pediatric vs. adult recordings) and the level of scorer training [14], [15]. Scoring a single
night’s PSG generally takes 1-2 hours of focused work by a trained technologist [16].

1.1.3 PSG-Derived Sleep Metrics

The PSG recording begins with the lights-off time, marking the intended onset of the study
and start of biosignals measurements, and ends with the lights-on time. The difference be-
tween lights-off and lights-on defines the total recording duration or time in bed. During this
interval, sleep stages are scored epoch by epoch, yielding a temporal sequence known as a
hypnogram, providing a visual summary of sleep architecture across the night. The hypno-
gram allows for the extraction of sleep macrostructure metrics, which are, alongside with
interpretation of raw biosignals and derived indices, used as standard clinical markers in
the evaluation of sleep quality and the diagnosis of sleep disorders [8].

Hypnogram-Derived Metrics include:

* Total Sleep Time (TST) — total duration scored in sleep stages (N1, N2, N3, REM);
excludes epochs scored as W.

¢ Sleep Efficiency (SE) — ratio of TST to total time in bed (from lights-off to lights-on),
expressed as a percentage.

¢ Sleep Latency (SL) — time from lights-off to the first epoch scored as sleep (usually
N1).

¢ REM Latency — time from sleep onset (first non-W epoch) to first REM epoch.

* Wake After Sleep Onset (WASO) — total time spent awake after initial sleep onset and
before final awakening.

¢ Sleep Stage Percentages — relative share of TST spent in N1, N2, N3, and REM sleep.

* Number of Awakenings per Hour - rate of transitions from sleep (N1, N2, N3, REM)
to wakefulness (W), used to quantify sleep continuity or fragmentation.

e Number of Stage Transitions per Hour — rate of stage switching, reflecting overall
sleep stability or fragmentation.

Biosignal-Derived Indices, derived from EEG, EOG, EMG, and respiratory channels, in-
clude particularly [8]:

* Arousal Index — Number of EEG-defined cortical arousals (>3 s) per hour of sleep,
following >10 s of stable sleep.

* REM Density — The number of eye movements per minute of REM, often associated
with mood disorders such as depression.

¢ Periodic Limb Movement Index (PLMI) — Number of periodic limb movements
(0.5-10 s each, spaced 5-90 s apart) per hour, detected via EMG from the anterior
tibialis muscle.

* Apnea-Hypopnea Index (AHI) — Number of apneas (>10 s airflow cessation) and hy-
popneas (>30% airflow reduction + >3% desaturation or cortical arousal) per hour of
sleep.

* Oxygen Desaturation Index (ODI) — Number of >3% oxygen desaturations (>10 s)
per hour from baseline, measured via pulse oximetry.
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Impact of disorder, age, and gender on sleep

Hypnogram-derived metrics and biosignal-based indices are influenced by age and gen-
der, even in generally healthy individuals, and are further altered in the presence of sleep
and other disorders or medications. With ageing, TST decreases, fragmentation increases
(WASO, awakenings, stage transitions), and N3 proportion declines markedly [9], [17], [18];
REM sleep may also become less stable [17], [19]. Gender differences are also evident: fe-
males tend to have longer TST, higher SE, more N3, and shorter SL, despite reporting more
sleep complaints [18], [20], [21]; males show greater fragmentation and steeper age-related
declines in deep sleep [18], [21]. These variations must be taken into account to distinguish
typical ageing and sex effects from pathological alterations in clinical interpretation.

Sleep disorders and other comorbidities alter sleep architecture and associated metrics in
distinct ways. Insomnia is characterized by reduced TST, SE, and prolonged SL/WASO, re-
flecting difficulties with sleep initiation and maintenance [22]. Hypersomnia disorders such
as narcolepsy feature shortened SL and REML, along with frequent sleep-onset REM peri-
ods (SOREMPs) [23], [24]. Sleep-disordered breathing, particularly obstructive sleep apnea
(OSA), is typically marked by reduced N3 and REM sleep, elevated WASO, and frequent
arousals and awakenings, accompanied by increased AHI and ODI [25]-[27]. REM sleep
behavior disorder (RBD) involves loss of REM atonia, abnormal stage transitions, and al-
tered REM structure [28]-[30]. Depression is often associated with shortened REM latency,
increased REM percentage, and fragmented sleep architecture [31], [32]. Neurodegenera-
tive, metabolic, and renal disorders commonly present with reduced SE and TST, increased
WASO, and loss of N3 and REM sleep [33]-[36]. Finally, reduced N3 and REM sleep, di-
minished delta activity, and abnormal total sleep duration have been consistently associated
with increased cardiovascular morbidity and all-cause mortality [37]-[44].

Altogether, PSG-derived sleep metrics not only enable the diagnosis of sleep disorders
but also provide a valuable reflection of broader physiological and pathological processes
across the lifespan.

1.1.4 Cost and Accessibility of PSG Across Healthcare Systems

Polysomnography (PSG) is a resource-intensive diagnostic procedure, and its cost, avail-
ability, and reimbursement vary considerably across healthcare systems. For example, in
the United States (U.S.), the total cost of an attended, in-laboratory PSG typically ranges
from $1,000 to more than $7,000, depending on geographic region, clinical setting, and
whether associated services—such as pre-study consultation and post-study interpreta-
tion—are included [45], [46]. The average market price is estimated at approximately $3,300
per study [45]. In Switzerland, PSG is available at most public and private sleep centers at
a cost ranging from 1,000 to 3,500 CHF, generally reimbursed under compulsory health in-
surance and subject to applicable deductibles and co-payments [47]. Across Europe, access
to accredited sleep laboratories is generally well-established, although regional differences
in availability and waiting times persist. Home-based sleep studies offer a lower-cost al-
ternative but with reduced diagnostic resolution. The main cost drivers of PSG include
technician labor for overnight monitoring and manual scoring, physician time for interpre-
tation, and the amortization of equipment and laboratory infrastructure. A standard PSG
involves 1-2 hours for patient preparation, 6-8 hours of overnight recording, and 1-2 hours
for post-acquisition scoring and analysis [16].

Cost and limited availability remain significant barriers to broader clinical implementa-
tion of PSG, particularly for early screening and routine assessment.

1.2 Automated Sleep Scoring: Potential and Challenges

1.2.1 Background and Historical Development

Manual sleep staging of PSG recordings is time-consuming, costly, and requires trained scor-
ers. To reduce this burden, automated sleep scoring (ASS) has been explored since the
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1960s [48]. The aim is to algorithmically replicate the AASM rules [8], assigning each 30-
second PSG epoch to one of five vigilance states—W, N1, N2, N3, or REM—thus framing the
task as multiclass classification.

Early approaches were rule-based or statistical, aiming to mimic formal scoring criteria
into handcrafted logic and operating on small datasets [49]-[51]. With the development of
the broader field of Artificial Intelligence (Al), these were followed by classical machine-
learning methods that relied on manually extracted features mapped to target stages in
a more data-driven manner [52]-[58]. In the past decade, deep-learning (DL) architec-
tures—convolutional, recurrent, and more recently transformer-based—have dominated
the field [48], [59]-[64]. These models learn stage-discriminative representations directly
from raw biosignals, eliminating the need for expert-defined features.

Despite these technical advances, generalization of ASS algorithms on unseen data typ-
ically saturates at 75-85% for common performance metrics such as accuracy, macro-F1, or
Cohen’s k—aligned with the average human inter-scorer agreement [14], [15], [48], [65]-[69].

To better encode labelling uncertainty, a part of ASS research exploits multi-scorer
datasets, in which each PSG is independently annotated by several experts [70]-[73]. These
studies show that modern ASS models can match, or even outperform, individual scorers
when compared to a consensus reference, demonstrating the potential of ASS systems to
provide robust and clinically useful outputs. However, collecting such datasets is resource-
intensive, limiting their widespread availability.

Cross-study comparisons of different ASS systems are further complicated by differences
in datasets, preprocessing, training pipelines, and evaluation metrics. Recent benchmarking
initiatives have addressed this by harmonizing datasets and training protocols, aiming to
improve reproducibility and representativeness of study comparisons [73], [74]. These ef-
forts suggest that, when trained on the same data, sufficiently capable architectures (e.g.,
U-Net, DeepResNet, transformer) tend to converge toward similar levels in performance
metrics [73] and trends, when associated with demographics and clinical variables.

As the field advances, key priorities include the creation of large, representative, open-
access (and ideally multi-scorer) databases; standardized benchmarking protocols; and a
deeper understanding of model generalization. These steps are essential for safe and effec-
tive deployment of ASS in clinical practice.

1.2.2 Current Clinical Use and Regulatory Considerations

Despite major technological advances and the proliferation of ASS solutions, manual scoring
by trained physicians or technicians remains the clinical standard. This persistence reflects
a combination of technical, ethical, and regulatory constraints that currently prevent full
automation of sleep-scoring within clinical practice.

From a technical perspective, generalization remains the central challenge. Supervised
ASS models are trained on human-labelled PSG data, which are inherently noisy due to
scorer subjectivity, signal artefacts, and inter- as well as intra-subject variability. Inter-scorer
agreement for sleep staging typically ranges from 75-85%, depending on dataset compo-
sition and clinical context [14], [15], [48], [65]-[69]. This variability stems from multiple
sources: subjective interpretation of biosignals; complexity in applying the AASM rules; de-
mographic and clinical heterogeneity (e.g., due to age, sex, comorbidities); and possible am-
biguities in the rules themselves. Historical changes in scoring criteria, such as the transition
from the R&K system to the AASM guidelines [75]-[77], further compound inconsistency in
historical datasets.

Moreover, algorithm performance often varies systematically across subpopulations, re-
flecting differences in sleep architecture and biosignal characteristics driven by factors such
as age and health status [18], [58], [78], [79].

As a result, the noise in the sleep scoring labels, primarily due to inter-rater variability,
places a theoretical performance ceiling on ASS models trained on large heterogeneous data,
typically between 75-85% in performance metrics [80], [81]. Moreover, the performance
of ASS algorithms often varies systematically across subpopulations, reflecting differences
in sleep architecture and biosignal characteristics driven by factors such as age and health
status [18], [58], [78], [79].
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A further limitation is that most ASS research focuses on stage-level performance met-
rics while overlooking clinical validity and diagnostic utility. Only a small subset of stud-
ies, primarily in the context of at-home PSG systems seeking regulatory approval or certi-
fication, evaluate whether model-derived scoring supports accurate computation of down-
stream, hypnogram-derived, clinical markers (e.g., WASO, TST), and quantify associated
error rates [82]-[84]. Without such evidence, the real-world clinical utility of ASS remains
difficult to assess.

Ethical and Legal Considerations:

As software-based medical technologies, often incorporating Al, ASS systems fall under
evolving legal and regulatory frameworks governing Al in healthcare. Relevant instru-
ments include the EU Al Act (Regulation (EU) 2024/1689), the EU Medical Device Regula-
tion (MDR, Regulation (EU) 2017/745), the Swiss Medical Devices Ordinance (MedDO,
SR 812.213), and the U.S. FDA’s guidance on Al/ML-enabled medical devices. These
frameworks embed ethical principles such as transparency, fairness, and accountability,
while mandating human oversight for Al systems involved in high-stakes clinical decision-
making [85]-[87].

In ASS, Al-based algorithms are constrained by inherent inter-scorer variability, lead-
ing to typical disagreement rates of 15-25% between model outputs and human annota-
tions [14], [15], [65], [66], [88]. Given this variability, it is often impossible to determine
whether a specific discrepancy reflects an algorithmic error or a difference in human inter-
pretation. Yet, in the clinical setting, legal and medical accountability remains entirely with
the physician. Consequently, human-labelled annotations persist as the definitive reference
standard, both in regulation and practice. In line with this, current regulatory frameworks
mandate a cautious approach to the adoption of Al-based software tools, including ASS:
such systems must complement rather than replace expert judgment, and must meet rigor-
ous requirements for explainability, fairness, and post-deployment surveillance [89]-[91].

Beyond performance, regulators and researchers increasingly stress the importance of
addressing algorithmic fairness and equity in healthcare Al, to prevent the amplification of
existing health disparities [89], [90], [92]. This consideration is particularly relevant for ASS
systems, where reliance on observational data with uneven distributions of demographic
and clinical variables can lead to unequal model performance across patient subgroups,
thereby directly affecting their clinical outcomes.

While much research focuses on maximizing ASS performance—which, given label
noise, is already at its theoretical ceiling [15], [65], [88]—few studies address regulatory
compliance or effective clinical integration. In particular, limited work evaluates how ASS
tools can be embedded into efficient workflows that enable meaningful interaction with
human experts [93], [94], or validates the diagnostic utility of prediction-derived clinical
markers [95]-[97].

Going forward, research efforts must balance technical optimisation with practical de-
ployment. Priorities include the creation of representative training datasets, the standardis-
ation of benchmarking practices [71], [73], and the design of clinically integrated ASS tools
that meet regulatory, ethical, and usability requirements.

1.3 Structure of the thesis

Motivated by the importance of sleep as one of the pillars of health, the cost and limited
availability of polysomnography (PSG), and the potential of the large volume of data it pro-
duces, this dissertation presents six closely related first-author studies by Michal Bechny,
PhD candidate in Computer Science at the University of Bern. Together, these works range
from uncertainty quantification and bias analysis in predictive ASS algorithms to causal in-
ference and explainable machine learning for biomarker discovery, with a shared focus on
improving the computational assessment of sleep and its integration into clinical workflows.
For clarity, the research is organised into two main conceptual branches.

The first part of the thesis focuses on the design and application of computational meth-
ods for the effective Integration of ASS into Clinical Practice. It primarily addresses the
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general ethical and legal mandates for introducing Al-based (software) solutions into health-
care, using ASS as a case study. Specifically, the presented studies aim to develop an efficient
human-in-the-loop pipeline, to ensure human oversight, and to promote Al fairness by intro-
ducing a general framework for detecting and quantifying algorithmic bias. This thematic line
is covered in:

* Chapter 2 — Bridging Al and Clinical Practice: Integrating Automated Sleep Scoring Al-
gorithm with Uncertainty-Guided Physician Review [95], focusing on establishing human
oversight in ASS by quantifying prediction uncertainty, published in Nature and Science
of Sleep. The work compares several approaches, including a proposed auxiliary long
short-term memory (LSTM) confidence neural network, specifically designed for time-
series PSG data, estimating predictive uncertainty in DL-based algorithm U-Sleep, and
their use in establishing and streamlining human oversight.

* Chapter 3 — Framework for Algorithmic Bias Quantification and its Application to Auto-
mated Sleep Scoring [96], presenting a method to quantify systematic deviations (i.e.,
biases) in predictive algorithms, published as a short paper at the 2024 11th IEEE Swiss
Conference on Data Science (SDS). The study introduces a Generalized Additive Models
for Location, Scale, and Shape (GAMLSS)-based framework to characterise the dis-
tribution of errors in algorithmic predictions, conditioned on sensitive attributes of
interest, such as demographic and clinical characteristics. The approach is illustrated
on the U-Sleep algorithm [59], [60] in the context of wakefulness detection.

¢ Chapter 4 — the follow-up manuscript Beyond Accuracy: A Framework for Evaluating Al-
gorithmic Bias and Performance, Applied to Automated Sleep Scoring [97], published in Sci-
entific Reports, extends the GAMLSS framework by quantifying the conditional distri-
bution of performance metrics and presents it on two state-of-the-art ASS algorithms.
Bias is evaluated in a wide range of clinical hypnogram-derived markers and several
performance metrics. The clinical utility of possibly biased ASS predictions for diag-
nostics is also discussed.

After enhancing the ASS process, the second part of the thesis focuses on the design
and quantification of novel Digital Biomarkers from Sleep-Stage Dynamics to characterise
current health status, understand the impact of different disorders, and quantify the risk of
long-term health outcomes, using explainable machine learning methods. The character-
istics of sleep-stage dynamics are, despite evidence of being capable of capturing detailed
physiological signatures (cf. [98]-[114]), still underutilised in standard clinical PSG stud-
ies. Current PSG reports typically include only coarse parameters such as total or hourly
awakenings, or the overall rate of stage transitions. Motivated by this underuse and the po-
tential of sleep-stage dynamics for diagnostics and risk assessment, this branch of the thesis
presents the following studies:

* Chapter 5 — Novel Digital Markers of Sleep Dynamics: Causal Inference Approach Reveal-
ing Age and Gender Phenotypes in Obstructive Sleep Apnea [115], published in Scientific
Reports, introduces a causal meta-learner approach for personalised digital markers de-
rived from sleep-stage dynamics and applies it to the (comorbid) apnea use-case. The
work links the matrix of sleep-stage transition proportions to established hypnogram-
based clinical parameters, and shows how to exploit it to derive new markers using
propensity and outcome models with logistic and Dirichlet regression, adjusted for
clinical confounders.

* Chapter 6 — Unveiling Sleep Dysregulation in Chronic Fatigue Syndrome with and without
Fibromyalgia Through Bayesian Networks [116], published as a full-paper at the 23rd In-
ternational Conference on Artificial Intelligence in Medicine (AIME 2025), quantifies sleep-
stage dynamics using Bayesian networks (BN). Using a strictly controlled dataset, the
study quantifies the impact of chronic fatigue syndrome (CFS) and its interaction with
fibromyalgia (FM) on sleep dynamics. The work exploits BN for both diagnostic classi-
fication of health states and estimation of causal effects, providing evidence for clinical
differentiation and suggesting novel diagnostic markers.


https://www.dovepress.com/bridging-ai-and-clinical-practice-integrating-automated-sleep-scoring--peer-reviewed-fulltext-article-NSS
https://www.dovepress.com/bridging-ai-and-clinical-practice-integrating-automated-sleep-scoring--peer-reviewed-fulltext-article-NSS
https://ieeexplore.ieee.org/document/10675993
https://ieeexplore.ieee.org/document/10675993
https://www.nature.com/articles/s41598-025-06019-4
https://www.nature.com/articles/s41598-025-06019-4
https://www.nature.com/articles/s41598-025-97172-3
https://www.nature.com/articles/s41598-025-97172-3
https://link.springer.com/chapter/10.1007/978-3-031-95838-0_4
https://link.springer.com/chapter/10.1007/978-3-031-95838-0_4
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* Chapter 7 — Sleep-Stage Dynamics Predict Current Sleep-Disordered Breathing and Future
Cardiovascular Risk [117], under review in Scientific Reports, applies explainable forest-
based machine learning models to demonstrate that sleep-stage dynamics can not only
diagnose current condition (SDB) but also predict the risk of future cardiovascular
events, reflecting the central role of sleep in human health. Interpretability techniques
based on partial dependence effects reveal novel markers and risk profiles for both
SDB and long-term cardiovascular outcomes.

Collectively, the presented works draw on statistical modelling, causal inference, and ma-
chine learning to advance both the methodological and clinical frontiers of sleep research,
with a consistent focus on reliability, fairness, and practical utility. The thesis concludes with
Chapter 8, which summarises the main findings and contributions of the presented studies,
as well as their limitations.


https://www.medrxiv.org/content/10.1101/2025.07.31.25332545v1
https://www.medrxiv.org/content/10.1101/2025.07.31.25332545v1
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Chapter 2

Bridging Al and Clinical Practice:
Integrating Automated Sleep
Scoring Algorithm with
Uncertainty-Guided Physician
Review

Abstract

Purpose: This study aims to enhance the clinical use of automated sleep-scoring algorithms
by incorporating an uncertainty estimation approach to efficiently assist clinicians in the
manual review of predicted hypnograms, a necessity due to the notable inter-scorer vari-
ability inherent in polysomnography (PSG) databases. Our efforts target the extent of review
required to achieve predefined agreement levels, examining both in-domain (ID) and out-
of-domain (OOD) data, and considering subjects’ diagnoses. Patients and Methods: A total
of 19,578 PSGs from 13 open-access databases were used to train U-Sleep, a state-of-the-art
sleep-scoring algorithm. We leveraged a comprehensive clinical database of an additional
8832 PSGs, covering a full spectrum of ages (0— 91 years) and sleep-disorders, to refine
the U-Sleep, and to evaluate different uncertainty-quantification approaches, including our
novel confidence network. The ID data consisted of PSGs scored by over 50 physicians, and
the two OOD sets comprised recordings each scored by a unique senior physician. Results:
U-Sleep demonstrated robust performance, with Cohen’s kappa (x) at 76.2% on ID and
73.8-78.8% on OOD data. The confidence network excelled at identifying uncertain predic-
tions, achieving AUROC scores of 85.7% on ID and 82.5-85.6% on OOD data. Independently
of sleep-disorder status, statistical evaluations revealed significant differences in confidence
scores between aligning vs discording predictions, and significant correlations of confidence
scores with classification performance metrics. To achieve x > 90% with physician interven-
tion, examining less than 29.0% of uncertain epochs was required, substantially reducing
physicians’” workload, and facilitating near-perfect agreement. Conclusion: Inter-scorer
variability limits the accuracy of the scoring algorithms to ~80%. By integrating an uncer-
tainty estimation with U-Sleep, we enhance the review of predicted hypnograms, to align
with the scoring taste of a responsible physician. Validated across ID and OOD data and
various sleep-disorders, our approach offers a strategy to boost automated scoring tools’
usability in clinical settings.

Keywords:
Automated Sleep Scoring, Uncertainty Quantification, Explainable Al, Polysomnography, Sleep
Medicine
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2.1 Introduction

Sleep, often dubbed as the third pillar of health alongside diet and exercise, plays a critical
role in our well-being. Polysomnography (PSG), a comprehensive sleep monitoring tech-
nique, captures detailed biosignals — primarily the electroencephalogram (EEG), the elec-
trooculogram (EOG), and the electromyogram (EMG). Adhering to the guidelines of the
American Academy of Sleep Medicine (AASM) [8], physicians score PSG recordings into
specific sleep stages, on 30-second windows (epochs). Such structured scoring, called a
hypnogram, divides sleep into five distinct stages: W, REM, N1, N2, and N3, each repre-
senting a unique physiological state [13]. The proportions of sleep stages, as well as patterns
in their transitions, are basic indicators of sleep health [118], [119], and also biomarkers of
certain disorders [27], [104], [120].

While manual scoring remains the gold standard, the procedure may be labor-intensive,
often demanding up to 2 hours for a comprehensive evaluation of a single PSG record-
ing [16]. Research into automatic sleep scoring, which aims to support the manual scoring of
physicians by computational algorithms, dates back to the 1960s [48]. Recent advancements
in Artificial Intelligence (Al) have significantly improved automatic scoring solutions, espe-
cially those based on Machine and Deep Learning (ML/DL) methodologies. Notably, the
U-Sleep algorithm introduced by Perslev et al. [59], and further investigated by Fiorillo &
Monachino et al. [60], stands at the forefront due to its balance between performance rivaling
human scorers and the diversity of its training data.

Supervised automated sleep scoring algorithms can reach considerable performance but
are to-date not able to overcome an intrinsic problem. The different interpretations of AASM
scoring standards by physicians result in an inter-scorer agreement of about 76% [15], [65],
[88]. This human-based variability in the annotations introduces approximately 20% noise-
level, technically limiting the performance of scoring algorithms optimized in a supervised
way, as the ability of an Al algorithm can hardly be better than the quality of its training data.
Consequently, despite the breadth of training databases available, the ceiling for ML/DL
model generalizability is limited by this prevailing inter-scorer agreement. Therefore, de-
spite the technological advancements Al has brought to sleep scoring, physicians — who are
still irreplaceable and responsible for clinical decisions — must subject the predicted hypno-
grams to a thorough review and compare whether the algorithm-proposed predictions are
consistent with their personal interpretation of patterns present in the original PSG biosig-
nals. While some level of error in sleep-scoring models is deemed clinically acceptable [121],
the review process of predicted hypnograms can be time-consuming and costly. Specifically,
if physicians lack prior insights into problematic segments of the biosignal, the review might
be as resource-intensive as conducting manual scoring without any algorithmic assistance.

Given the limits posed by inter-scorer variability, a subset of research has pivoted to-
wards quantifying prediction uncertainty to elevate model performance by enabling review
of the least confident predictions. Such semi-automated approaches combining predictions
proposed by algorithms with physician’s expertise represent a promising solution for in-
tegration of sleep scoring tools in clinical settings [48]. Van Gorp et al. delved into the
theoretical aspects of such (un)certainty [93]. Kang et al. advanced this notion by proposing
an uncertainty detection mechanism via Shannon’s entropy of the softmax output of a statis-
tical classifier [122]. By allowing physicians to correct uncertain predictions, they managed
to substantially enhance the agreement (x-score) between classifier and physician’s scoring
taste. In the realm of DL-based algorithms, Fiorillo et al. employed a query procedure target-
ing a predetermined percentage of the most uncertain predictions based on the maximum
and variance of the softmax output [123]. Hong et al. presented a novel method, Dropout-
Correct-Rate, and showcased its potential to boost model performance with targeted human
review [94]. Meanwhile, Phan et al. utilized a transformer-based sleep scoring model and
identified uncertain epochs through normalized entropy scores, demonstrating that a sub-
stantial fraction of misclassified predictions were within the most uncertain epochs [64].
Most recently, Rusanen et al. evaluated several softmax-based measures of aSAGA, a convo-
lutional neural classifier, and reported effective identification of predictions in the mismatch
to the consensus-scoring of 5 scorers [124].

The integration of sleep-scoring algorithms into clinical practice demands a deep un-
derstanding of the physician’s real needs and expectations. However, these are seldom
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considered in existing work, which approaches this problem in isolation from the human
experts. Our study builds upon the U-Sleep algorithm, a state-of-the-art DL-based sleep
scoring model trained on a broad spectrum of open-access clinical databases. Considering
the intrinsic limitations of sleep scoring, rather than just aiming to improve the model’s
epoch-wise performance, which might already be at its ceiling level due to the inter-scorer
variability, our study seeks to integrate this established system in a manner that actively
involves physicians.

By investigating various strategies for pinpointing the least confident predictions and
streamlining their review, we aim to redefine the collaboration between sleep-scoring al-
gorithms and clinicians. Utilizing clinically rich Berner Sleep Data Base (BSDB) [125], we
systematically investigate (i) the optimal strategies to gather uncertain sleep stage predictions for
the physicians’ review and based on that we (ii) quantify the volume of predictions that need to
be reviewed (ie, physician’s effort) to reach certain agreement benchmarks. Leveraging details on
physicians involved in scoring of individual BSDB PSGs, we robustly assess the efficacy of
our combined system integrating the sleep-scoring algorithm with uncertainty estimation,
considering both in-domain (ID), and potentially more challenging out-of-domain (OOD) test
data.

Semi-automated approaches for sleep staging have been explored in various modalities
and frameworks [48], [64], [93], [94], [122]-[124]. However, comprehensive testing of these
methods against their limitations has been relatively sparse. To the best of our knowledge,
our study is the first one extensively addressing a wide range of challenges specific to semi-
automated scoring. This includes an in-depth examination and adaptation to individual
scoring tastes of single (OOD) physicians, the impact of different sleep-disorder diagnoses
on our approach’s validity, the metrics employed, as well as the dimensions and diversity of
the datasets involved.

2.2 Materials and Methods

2.2.1 Dataset

For our primary evaluations, we exploited the Berner Sleep Data Base (BSDB) from our part-
ner clinic, Inselspital, University Hospital Bern. A total of 8,832 PSGs have been collected
from 2000 to 2021 on individuals covering the whole spectrum of age (0-91 years), sleep
disorders, as well as healthy controls. The signals were recorded at 200 Hz and, across 20
years of data collection, scored manually by more than 10 senior and 50 assistant physicians
according to the AASM rules. To match older recordings scored according to Rechtschaf-
fen and Kales with AASM standard, the N3 and N4 stages were merged into a single-stage
N3. Secondary usage of the dataset was approved by the local ethics committee (KEK-NTr.
2020-01094). Participants provided written general consent upon its introduction at Insel-
spital in 2015, and data were maintained with confidentiality. Most individuals underwent
PSG due to the suspicion of a sleep disorder. Together 66 individuals represented healthy
subjects that took part as controls in clinical trials. The BSDB provides various levels of di-
agnoses based on individual tests (eg, actigraphy- or PSG-based). For our evaluations, we
considered the clinically most relevant conclusive diagnoses made by physicians consider-
ing all test-based diagnoses, clinical anamnesis, and the context. The amount of available
conclusive diagnoses is compared to the test-based ones smaller but provides the most reli-
able and highly trustworthy information.

For the purpose of our research, we divided the BSDB into three parts: one in-domain
(ID) subset — consisting of training, validation, and test data splits consisting of PSGs, each
scored by one of >50 physicians — used for optimization and baseline evaluation of the algo-
rithmic approaches adopted — and, utilizing the information about the scorers, we created
two out-of-domain (OOD) held-out subsets, each containing PSGs scored by a unique se-
nior physician not presented in ID data with potentially different "scoring taste" than the
population of ID-included physicians. Hence, such stratified evaluations on OOD subsets
represent a more robust generalizability assessment close to the scenario happening in clin-
ics, where typically a single physician takes decisions (e.g., about scoring, diagnosis). As one
patient can have multiple PSGs recorded, all data splits were done per subject, assuring that
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the individual’s data are present only in one subset. A summary of data splits with respect
to the number of PSGs, physicians involved, and demographic characteristics of subjects is
provided in Table 2.1. Moreover, Table 2.2 provides details on the occurrence of different
classes of sleep disorders among conclusive diagnoses of subjects.

In addition to BSDB, part of our work replicated the training of the sleep-scoring algo-
rithm U-Sleep, using 19,578 PSGs from 13 open-access databases. A detailed description
of these data, including demographic characteristics, is provided in the original publica-
tion [60].

Table 2.1: Demographic characteristics of BSDB subjects across data splits.

Domain Scorers Split PSG Age Gender
(N) P (N)  u(0)-median - min-max (%, &-9)
> 8SP Train 4,245 49.22 (16.40)-51-2-88 64.28-35.72
ID > 50 A/P Validation =~ 226 52.66 (21.45)-60-8-84 67.71-32.29
Test 423 50.48 (20.32) -55-2-86 65.57-34.43
O0D1 1SP Test 1,966 48.90 (18.60)-52-0-91 64.65-35.35
0OO0D2 1SP Test 1,972 46.93 (20.06)-50-0-86 60.92-39.08
> 10SP,
TOTAL 55 Ap 8,832 48.82 (18.25) -51-0-91 63.76-36.24

Abbreviations: i1, mean age per group; ¢, standard deviation of age per group; min, minimum age; max, maximum age; %,
percentage; SP, senior physician; AP, assistant physician.

Table 2.2: Occurrence of sleep disorder classes across BSDB conclusive
diagnoses and data splits.

Domain
o

. < N 8 8
E = g a a .
. . [m) ) o) o o -
Diagnosis class = = = o ©) <
HE 27 2 3 12 22 66
INS 106 + 15 8+1 17+2 31+5 43+4  205+27
SDB 247 +156 16+8 34+17 91+33 124+18 512 +232
CDH 171+30 10+2 22 +5 54+1 115+10 372 + 48
CRD 11+1 0+0 2+0 1+0 5+0 19+1
PSD 75+9 7+0 6+0 22+1 44 +0 154 + 10
SMD 74 +5 5+0 7+0 18+1 33+0 137+ 6
IS 227 +11 13+1 26 +1 77 +1 127 +1 470 + 15
DSS 26 +0 1+0 2+0 7+0 16 +0 52+0
Multiple disorders 418 26 52 128 205 829
Single disorders 227 12 25 42 33 339
Other or unknown 3573 186 343 1,784 1,712 7,598
TOTAL 4,245 226 423 1,966 1,972 8,832

Notes: Columns indicate individual data subsets: ID (training, validation, testing) and two OOD test sets (OOD1, OOD?2),
summing up to ALL. Rows indicate the number of subjects according to conclusive diagnoses class indicated by abbreviations
described below. Row Multiple disorders indicates the number of subjects with multiple classes of sleep-disorders, Single disorders
the number of subjects with a single sleep disorder, and Other or unknown the number of subjects with no or unknown conclusive
diagnosis. TOTAL is equal to HE + Multiple disorders + Single disorder + Other or unknown. At the cell level of rows (INS to
DSS), the sum refers to the number of subjects having multiple disorders including that given class plus the number of subjects
having that specific class only.

Abbreviations: HE, healthy controls; INS, insomnia disorders; SDB, sleep-disordered breathing; CDH, central disorders of
hypersomnolence; CRD, circadian rhythm sleep-wake disorders; PSD, parasomnia-related sleep disorders; SMD, sleep-related
rhythmic movement disorders; IS, isolated symptoms and normal variants; DSS, findings specific to day-time sleep studies.
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2.2.2 U-Sleep: The Sleep Scoring Algorithm

The U-Sleep, introduced by Perslev et al. [59], is a deep convolutional neural network for
sleep stage classification inspired by the U-Net, an architecture originally used for image
segmentation [126]. The U-Sleep takes as its input at least one pair of EEG-EOG channels
(re)sampled at 128 Hz and outputs an array of softmax values quantifying the plausibility of
each signal window (epoch) of a specified length, usually 30 seconds, to represent one of the
5 sleep stages. If more input channel-pairs are available, the U-Sleep averages the softmax
outputs over all of them. The architecture of U-Sleep consists of an encoder-decoder part —
compressing and decompressing the input signal using convolutional operations — followed
by a classifier layer.

In-depth technical details on the U-Sleep architecture, including the preprocessing steps
implemented to unify signals from different devices, and the training process, are thor-
oughly described in the original work [59]. This study also reports the state-of-the-art per-
formance on 16 databases of more than 15,000 participants, achieving an average F1-score of
79%. The robustness of U-Sleep was confirmed even after its original implementation was
corrected for a channel-derivation bug, achieving an average F1-score of 76.5% [60].

Our work replicated the training run on 13 open-access databases of 19,578 PSGs using
the most recent implementation of U-Sleep [60]. Based on that, we exploit the rich BSDB
and fine-tune (re-train) the U-Sleep using training and validation ID-splits as described in
Table 2.1. Finally, we use such fine-tuned U-Sleep as a basis for the selection of the most
suitable approach of uncertainty estimation to enable an efficient review of predicted hypno-
grams by physicians. The generalizability of both sleep scoring and predictive uncertainty-
quantification approaches were rigorously evaluated on the ID test set and two single-scorer
OOD subsets of the BSDB.

2.2.3 Estimation of Predictive Uncertainty

In advancing sleep scoring algorithms for clinical practice, one crucial component is the
quantification of predictive uncertainty, which encompasses both epistemic and aleatoric as-
pects. Epistemic uncertainty, in a sleep-scoring context, arises from the variability in how
physicians interpret AASM guidelines, leading to ~20% noise in sleep-stage labels due to
~80% inter-scorer agreement. On the other hand, aleatoric uncertainty, inherent in the vari-
ability of sleep patterns themselves, represents a natural randomness that cannot be miti-
gated. In this section, we elaborate on our approach with the U-Sleep classifier. First, we
detail measures of predictive uncertainty based on the classifier’s softmax output. Next, we
describe adapting an auxiliary confidence network, specifically designed for sleep-related
time-series representations derived from the U-Sleep, to estimate confidence in its predic-
tions. The terms uncertainty and confidence can be understood as complementary and will
be used according to the appropriateness of the context. The integration of uncertainty quan-
tification is pivotal not only in elevating the trustworthiness of the automated sleep-scoring
solutions but also in enabling physicians to efficiently review and verify algorithm-proposed
predictions.

Softmax-Based Measures

The confidence level of a classifier’s predictions can be gauged from its softmax output,
which can be graphically represented as hypnodensity [61]. This can be analyzed either visu-
ally or, when uncertain epochs should be automatically gathered, by numerical assessment
of the softmax values. At its simplest, the maximum value of the predicted softmax can be
perceived as a representation of the epoch’s likelihood of belonging to a specific class (i.e.,
sleep-stage). The closer the max-softmax is to 1, the higher the confidence, while lower val-
ues indicate uncertainty. There are a variety of measures, rooted in softmax outputs, that can
be employed to discern these uncertainties. For instance, several works employed entropy-
based measures because as entropy rises, the distribution of softmax values becomes more
uniform [64], [122], [124].

Regardless of the chosen measure, uncertain predictions from each predicted hypno-
gram can be highlighted in two ways: (i) by showcasing a fixed percentage of the most uncertain
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epochs or (ii) by indicating epochs that surpass a specific value threshold. The latter is more advo-
cated as it may consider the sampling distribution of classification accuracy. Moreover, the
fixed-percentage approach has greater potential to introduce undesired results (false posi-
tives/negatives) if the predetermined percentage does not coincide with the actual amount
of misclassified epochs. In our research, we sought methods that adeptly identify uncertain
predictions for subsequent review by clinical experts. A comprehensive mathematical de-
tailing of all measures employed in our work is provided in Table 2.3, whereas a comparison
in terms of their ability to discern predictions discordant with human scoring is presented
in Results.

Table 2.3: Measures of prediction uncertainty based on U-Sleep softmax

output.
Measure Notation Mathematical formula

I  Average softmax-entropy Pentr M Z -1 Zk 1 Pk 108y Pk
II  Average softmax-ratio 19 w Zm LAY maf(’g; -
III  Average softmax-standard-deviation g Y™ SD(pm)

IV Maximum of majority-softmax U max ﬁ Zg:l Pm

V  Standard deviation of majority-softmax o SD (% yM pm)

VI  Fixed % according to y U% -
VII  Fixed % according to o 0% -

Notes: Uncertainty measures adapted for majority-voting mechanism of the U-Sleep classifier
Abbreviations: M, total number of input channel-pairs used; m, index over M; k, index over 5 classes (i.e., sleep stages); puk,
probability (i.e., softmax-value) of the k-th class based on the m-th input channel pair; p,,, probability vector (i.e., softmax) of 5
classes based on the m-th input channel pair; max, maximum; SD, standard deviation.

Uncertainty Quantification Using an Auxiliary Confidence Network

Neural networks, while powerful, often exhibit overconfidence, manifested as a disparity
between the predicted softmax value and the actual probability of an observation belonging
to a specific class [127]. This may limit the use of softmax-base measures to gather uncer-
tain predictions accurately. To counteract this issue, Corbiere et al. proposed an auxiliary
confidence network, which aims to estimate the True Class Probability (TCP) score, designed
to work in tandem with an already-trained classifier network [128]. The TCP is defined as
the value of the predicted softmax that aligns with the true label, meaning, for misclassified
predictions, it diverges from the softmax maximum value. Upon the completion of classifier
training, the TCP scores are extracted from training and validation data and serve as a target
for the confidence network. This positions the training of the confidence network as a re-
gression problem, where the objective is to predict the TCP - a single float value within the
(0, 1) range — for each observation. In the original work, the confidence network was applied
to image data, supplementing a convolutional network classifier, which involved reusing
the classifier’s architecture and its pre-trained weights, adding additional layers to facilitate
the prediction of the TCP outcome, and finally optimizing the modified architecture [128].
Our contribution extends this idea specifically to PSG time-series data. Leveraging the
U-Sleep output, we designed a lightweight sequence-to-sequence long-short-term-memory
(LSTM) confidence network [129]. For each EEG-EOG input channel-pair of U-Sleep, our
confidence network is fed by representations extracted from U-Sleep layers, including the
5-dimensional softmax output, the binary code of the same dimensionality as softmax indi-
cating the predicted class, and the five-dimensional hidden features extracted from the layer
preceding the softmax. The adoption of a bidirectional-LSTM-based architecture was driven
by our beliefs that the uncertainty in predicting sleep stages is intrinsically tied to sequential
information — namely, the representations preceding and succeeding a given epoch. Recog-
nizing the functional dependencies in the softmax output (that sums up to 1), we applied
to it the additive log-odds ratio (ALR) transformation, which reduces the dimension by one
(i.e., to 4) and decreases the co-linearity [130]. Building on the premise that combined data
offers a richer perspective for identifying the most uncertain predictions, we fed the confi-
dence network with all such extracted features simultaneously. The final architecture of our
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confidence network had 35,628 parameters and consisted of three main parts: an input layer
with batch normalization; 4 hidden layers (LSTM of 50 neurons, bidirectional-LSTM of 30
neurons enabling information flow from the past as well as future states, two LSTMs of 10
and 5 neurons) returning sequences, with tanh activation function and 25% drop-out; and a
final layer with an output LSTM neuron with the custom activation function, (tanh(x)+1)/2,
returning a sequence in desired (0, 1) range, corresponding to the predicted sequence of TCP
confidence scores for each PSG-epoch. These are then, consistent with U-Sleep’s mechanism,
averaged across all input channel-pairs used. The design of our LSTM-based confidence net-
work is presented in Figure 2.1

The TCP confidence score using a more complex input information processed by a specif-
ically designed neural network extended the set of rather simpler softmax-based measures.
Our evaluations focused on their in-depth comparison in terms of identifying U-Sleep-
predicted epochs that do not align to the physician’s scoring, forming a basis for creating a
system that allows physicians to effectively utilize automatic sleep scoring algorithms.

Figure 2.1: Schematic overview of the implemented pipeline.

Input data: U-Sleep Extracted LSTM TCP y
features: confidence
EEG-EOG network
softmax,
hiddens, 50 LSMT —
binary 30 bi-LSTM —
10 LSTM —
> w 5LSTM )
tanh activation
25% dropout
(N x 128 Hz)
x2 Nx 14 Nx1 Nx1

Notes: An EEG-EOG channel-pair is used as an input for the U-Sleep classifier. Using the trained U-Sleep, several representations
are extracted (softmax; binary code indexing the predicted class; hidden representations - hiddens - from the layer preceding
softmax) and used as an input for the confidence network evaluating the True Class Probability (TCP) confidence score. The

hypnogram predicted by U-Sleep (y) is provided jointly with the assessment of predictive uncertainty (1-TCP) to guide an efficient

review by a physician.

2.2.4 Utilizing Uncertainty Estimates for an Efficient Review of Predicted
Hypnograms

Our analysis, tailored towards the efficient use of uncertainty estimates for the review of
predicted hypnograms, was guided by a three-tiered evaluation approach: (i) selection of the
best-suited uncertainty measure; (ii) statistical evaluations of its discriminative power; and (iii) the
impact-evaluation when physicians rescore the most uncertain predictions gathered. While the first
two aspects focus on the technical aspects, the conclusive part evaluates the practical impli-
cations, comparing the physician’s effort — quantified as the amount of epochs reviewed —
in relation to the boost of the agreement between their scoring taste and partially reviewed
predictions of the scoring algorithm.

Best-Suited Uncertainty Measure

Initially, in order to pinpoint the most suitable uncertainty measure, we treated identifying
epochs diverging from human scoring as a binary classification task. The diverging epochs
from human scoring, ie, the U-Sleep-misclassified predictions, were considered a positive
class. Using this setup, we selected the most apt measure based on their Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) curve performances. The choice of ROC and
PR curves stems from their ability to handle class imbalances and effectively comparing the
true-positive against false-positive rates.
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Statistical Tests to Assess the Discriminative Power of the Superior Uncertainty Metric

Upon identifying the superior metric, we further sought to statistically assess its efficacy in
two distinct manners. Firstly, we proposed the null hypothesis Hyy: “There is no significant
difference between the on-subject mean-aggregated uncertainty scores of epochs congruent with hu-
man scoring and those diverging from it.” In other words, this would imply that the uncertainty
in correctly scored epochs would be the same as for the misclassified ones. With Hy;, we
aimed to test whether predictions in line with human scoring systematically differed from
those diverging in terms of their uncertainty score, effectively probing the metric’s ability to
distinguish between correctly versus incorrectly classified epochs.

Further, the null hypothesis Hy, postulated: “There is no significant correlation between the
mean-aggregated on-subject uncertainty scores and the on-subject classification performance met-
rics.” In other words, that would imply that, e.g., classification accuracy is not associated
with uncertainty levels. The Hy, aimed to assess the relationship between the uncertainty
attached to predictions and the classification performance on a per-subject basis.

Both assessments were conducted separately for ID and OOD data, with consideration
of sleep-disorder status of individuals. Given the skewed non-normal nature of the uncer-
tainty measures with bounded value ranges, the non-parametric bootstrap was employed to
calculate confidence intervals (CI) to assess both hypotheses [131].

Impact-Evaluation of Physician Intervention on Uncertain Epochs

The culmination of our analysis revolved around varying the threshold employed to discern
the uncertain epochs for the superior uncertainty metric identified. Under each threshold
specification from a predefined grid, a physician review was enacted, with discordant pre-
dictions being rectified and agreeing epochs being kept. Subsequently, the classification
metrics were recalculated to encapsulate this simulated physician’s intervention. While the
relation between increased reviewed epochs and monotonic performance improvement is
evident, our objective was to quantify the rescoring effort required to meet distinct perfor-
mance benchmarks. This examination was undertaken across both ID and OOD test data
splits, fortifying the robustness of our conclusions. Further, in order to make fair compar-
isons with existing research, we enumerated the performance improvements across diverse
metrics: accuracy (Acc), weighted Fl-score (F1,), and Cohen’s kappa (x).

2.3 Results

In this section, we provide the main findings with respect to the algorithmic methods ex-
ploited and developed (U-Sleep algorithm along with the auxiliary confidence neural net-
work), and their validation on individual data domains, as depicted within the workflow in
Figure 2.2.
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Figure 2.2: Schematic overview of the datasets, their sizes, and purposes.
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Notes: A set of 13 open-access datasets (in blue) was used for the baseline training of the U-Sleep. The middle and right parts of
the schema relate to the evaluations on BSDB. Its ID part refers to PSGs each scored by one of more than 50 assistants and 10 senior
physicians. The ID training and validation splits (in yellow) were used to fine-tune U-Sleep and, subsequently, to train the
confidence network. Baseline evaluation of both algorithmic approaches was performed on the ID-test data (in orange). Their
robustness was further evaluated on two OOD test sets (in red), each containing PSGs scored by a unique SP.

2.3.1 U-Sleep Classification Performance

As a sleep scoring classifier, we employed U-Sleep and replicated the training experiment
of its most recent implementation using 13 open-access databases of 19,578 PSGs [60]. Next,
the model was fine-tuned on the BSDB, leveraging the ID training and validation splits as
elaborated in Table 2.1. The U-Sleep optimization based on minimization of the categorical
cross-entropy loss converged after 539 training epochs. To ensure a comprehensive compar-
ison with existing research, we enumerated three distinct classification performance metrics:
Acc, Fly, and x, computed in three different ways: epoch-wise (pertaining to all 30-second
windows in the relevant data split), as well as subject-wise mean- and median-aggregated.
Table 2.4 summarizes the performance across the ID and the two OOD test data. The results
indicate that the epoch-wise performance on ID (test) slightly exceeded that of the OOD2 and
was marginally inferior to OOD1, with a maximum difference of 2.9% in the F1,, between
ID vs OOD1. These findings were consistent for on-subject metrics. Noteworthy, on the ID
test split, which contains "scoring tastes" of more than 50 different physicians involved in
scoring of PSGs, U-Sleep reached the subject-wise agreement level of x = 76.2% that corre-
sponds to the interscorer agreement of x = 76% reported in the literature [15], [65], [88]. This
points to the robustness of U-Sleep’s scoring ability in line with the theoretically justifiable
performance ceiling that can be achieved on human-scored hypnograms. Marginal over-
and under-performance on OOD data splits can be attributed to the greater or lesser con-
sistency of the given (split-specific) senior physician with the "overall” population scoring
pattern encoded in U-Sleep.
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Table 2.4: Classification performance of U-Sleep across individual data
splits.

Domain Metric Epoch-wise Subject-wise mean Subject-wise median

Acc 82.5 82.1 84.5
ID-test  F1, 82.8 824 85.3
K 75.0 71.2 76.2
Acc 84.2 84.5 86.4
OOD1 F1, 85.0 85.5 87.4
K 77.6 76.0 78.8
Acc 80.7 80.8 82.7
O0OD2 F1, 80.5 81.4 83.4
K 73.3 71.1 73.8

Notes: Epoch-wise performance calculated over all 30-second windows present in individual data splits. Mean and median
subject-wise metrics are calculated as performance achieved on individual-specific hypnograms.

2.3.2 Evaluation of Approaches for Uncertainty Estimation

The primary objective in this phase was to pinpoint the best approach that adeptly identifies
U-Sleep-predicted epochs that deviate from human scoring. This consisted of two main
strands of investigation: comparing softmax-based uncertainty metrics and evaluating the
confidence scores based on the adapted confidence neural network.

Softmax-Based Measures

We initially took into consideration all the softmax-based metrics, as delineated in Table 2.3.
The metrics (I-V) identify uncertain epochs based on a distributional threshold, while met-
rics (VI, VII) are designed to accumulate a predetermined percentage of the most uncertain
predictions. The fixed-percentage strategies do not include an approach based on the soft-
max ratio () as it is monotonically dependent on the maximum of the softmax () and would
lead to the same results. Calculation of these metrics was straightforward, as they involved
only the U-Sleep softmax output based on each input channel-pair. The performance of indi-
vidual measures in terms of identifying predictions discordant from human scoring is listed
in Table 2.5. The majority of the metrics achieved comparable results with the superiority of
the distributional-threshold-based metrics over the fixed-percentage strategies, confirming
the need for a flexible approach adapting to possibly different amounts of difficult-to-score
(uncertain) epochs per PSG. The best performing approach was yu — the maximum of the
majority-softmax (= softmax averaged over all input channel pairs) — reaching AUROC of
76.5% on the ID-test and 82.4-81.1% on the two OOD sets.

Table 2.5: Performance of uncertainty measures in detecting U-Sleep
predictions that deviate from human scoring across data splits.

. Evaluation _ _ _

Domain metric Pentr P o U o u% % TCP*
IDotest  AUROC 764 757 762 765 643 59.1 565 85.7*
et AUPR 39.7 413 41.0 429 302 365 314 63.1%
oop1  AUROC 80.1 820 81.6 824 754 60.6 572 85.6
AUPR 388 420 41.0 435 410 333 268 53.6%

oopa  AUROC 79.6 80.8 806 81.1 750 599 571 82.5*
AUPR 432 450 44.6 458 341 369 314 50.7*

Notes: Performance assessment as the % of the AUROC and AUPR curves for the softmax-based measures from Table 2.3 and the
True Class Probability (TCP) score based on confidence network. Bold font highlights the best performance obtained among
compared metrics.
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Auxiliary Confidence Network

Our evaluations continued with the auxiliary confidence network leveraging the joint in-
formation of the transformed softmax output and the hidden representations extracted from
U-Sleep to predict the True Class Probability (TCP) score. We trained the confidence network
on the ID training and validation splits, targeting the actual TCP scores calculated based on
predictions of the already trained U-Sleep classifier. The training was based on minimizing
the mean-absolute-error (MAE) loss, adopting mini-batches of U-Sleep-derived features for
one PSG channel pair (EEG-EOG) at the time, and adhering to the default configurations of
the Adam optimizer in Tensorflow 2.6.0. The training process achieved convergence after
16 epochs, marking a validation MAE of 0.0827. This indicates the confidence network’s
capability to predict the TCP with an average error of 8.27% in probabilistic terms. It is
worth noting that the training set incorporated epochs labeled as "unknown" by physicians,
reflecting the inherent challenges in scoring such signals, often due to untouched electrodes
yielding constant (zero) signal. These particular epochs were assigned a target TCP of 0,
given that none of the softmax values would match the correct class (i.e., sleep-stage).

Having the trained confidence network, we evaluated how its predicted TCP-score per-
forms to detect discordant epochs. Focusing on the last column of Table 5, we observe its su-
periority in comparison to all simpler softmax-based approaches across all test data subsets.
It outperformed the other approaches in terms of both ROC and PR assessments, reaching
AUROC of 85.7% on ID, 85.6-82.5% on the two OOD sets, and AUPR of 63.1% for ID and
52.3-50.7%, respectively. Furthermore, the robustness of the confidence network was con-
firmed, as it delivered comparable performance on both ID and OOD splits, highlighting
its generalizability to potentially different scoring patterns introduced by different senior
physicians. Given its demonstrated efficacy, the TCP confidence score was selected as the
key metric for the following evaluations simulating physician’s interventions, focusing on
the review and eventual correction of the most uncertain predictions.

Confidence-Supplemented Hypnogram

Using the TCP as the most reliable uncertainty quantification measure, Figure 2.3 depicts
the combined output of the U-Sleep-predicted hypnogram (in white) with the estimated
confidence TCP-scores as a green-red color scale in the background. This dual output is
a result of our final pipeline, depicted as a diagram in Figure 3, detailing the process of
transforming original biosignals into a joint presentation of predicted sleep stages and their
associated confidence levels. Such visual representation is designed to guide the physician
in identifying specific segments of the PSG that deserve closer review. For demonstration,
the actual physician’s scoring on given PSG, referred to as true, is depicted in blue. A close
examination reveals that segments with lower predicted TCP scores often (e.g., 1:30-2:30 h of
sleep) predominantly align with U-Sleep misclassifications. In contrast, regions with higher
scores (e.g., from 3:30 h onwards) mostly point to accurately scored epochs. It is important
to note that since the estimated TCP scores are model-derived, occasional discrepancies can
arise. For instance, around 1:45 h, a brief period marked with high confidence corresponds
to discordant scoring. Even though this segment erroneously indicates high confidence,
its neighborhood areas of low confidence might draw physician’s attention for a review.
Despite occasional inconsistencies, the results from Table 2.5 indicate that TCP-score has the
best ability to identify discordant epochs.

2.3.3 Statistical Tests of on-Subject TCP Scores with Respect to Clinical
Diagnosis

Further, we investigated in-depth the discriminative power of the TCP-score to reveal dis-
cordant predictions. Firstly, to evaluate Hy;, we calculated the on-subject difference between
averaged TCP-scores of predictions that align and those that disagree with human scoring;:
d; = TCP; correct — TCP; jncorrect- Next, for the evaluation of Hyy, the on-subject performance
metrics (Acc;, Fl,,;, k;) and the overall average TCP score (TCP;), for each subject’s pre-
dicted hypnogram were calculated. The TCP; can be understood as an assessment of the
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Figure 2.3: Combined output of predicted and physician-scored
hypnograms with associated confidence scores.
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Notes: Combined output of the predicted hypnogram (in white), associated TPC confidence scores (in the background), and
physician-scored hypnogram (in blue), for a 44-year-old female diagnosed with hypersomnolence. On-subject (Acc, F1y, «) of

79.2,72.2, 61.5)%, respectively. On-subject average TCP of 0.74. For correctly and incorrectly classified epochs, the average
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on-subject TCP was 0.87 and 0.41, respectively.

confidence over the entire predicted hypnogram of a given subject. We employed a non-
parametric bootstrap approach, with 5000 repetitions, for both hypotheses to compute 95%
confidence intervals (Cls). Having a database rich in sleep-disorder diagnoses enabled us to
assess both hypotheses considering individual classes of diagnoses, as described in Table 2.2.
To assess the generalizability of our findings, we considered subjects from the ID-test and
the two OOD test data with confirmed conclusive diagnoses. Since the subjects — except for
healthy controls — suffer in many cases from several sleep disorders, we always included
in a given class all who have at least one corresponding diagnosis. Both hypotheses were
assessed on disorder classes of at least 10 subjects, separately on the ID test data, and — to
achieve a larger sample size in each class — the pooled OOD data.

Table 2.6 gives an overview of bootstrapped 95% Cls and the medians related to Hy; for
each diagnosis class considered. Based on the Cls obtained, Hp; can be rejected (p-value
< 0.05 in all cases), and one can conclude that the difference between the mean-aggregated
TCP-scores of aligning and discordant predictions significantly differs and is consistently
greater than 0. All that across the entire diagnosis spectrum, on both ID and OOD test do-
mains. The median differences ranged as 0.20-0.23 and 0.19-0.26, for ID and OOD, respec-
tively, which affirms that the TCP-score was in terms of a probability about 20% lower for
the discordant predictions. In an extension of our analysis, we conducted the same evalua-
tion on a subgroup of 76 children under 6 years old, using pooled OOD data. Compared to
the mean classification metrics presented in Table 2.4, U-Sleep demonstrated lower scoring
performance with Acc of 71.28%, F1,, of 73.15%, and x of 59.19%. This performance drop
is likely attributable to specific AASM scoring rules applied to children. Nonetheless, the
average on-subject difference between aligning and discordant TCP scores was significantly
greater than zero, indicating a mean difference of 0.19 with a 95% CI of (0.17, 0.22). These
findings suggest that the confidence network and the resulting TCP score can efficiently
guide physicians on hypnogram and respective PSG sections needing review and potential
correction, regardless of subject’s diagnosis status, including pediatric cases.
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Table 2.6: Bootstrap confidence intervals (CI) for differences in subject-level

mean TCP scores between aligning and discordant predictions.

Domain: ID-test Pooled OOD
Diagnosis Class Median  95% CI N | Median  95% CI N
HE - - 3 0.26 (0.22,0.30) 34
INS 0.21 (0.18,0.24) 19 0.23 (0.21,0.25) 83
SDB 0.20 (0.17,0.22) 51 0.21 (0.20,0.22) 266
CDH 0.23 (0.20,0.27) 27 0.23 (0.21,0.24) 180
PSD - - 6 0.19 (0.16,0.21) 67
SMD - - 7 0.20 (0.18,0.23) 52
IS 0.21 (0.18,0.25) 27 0.22 (0.21,0.23) 206
DSS - - 2 0.25 (0.21,0.29) 23

Notes: Evaluations on ID-test data and pooled OOD data. Bootstrapped median stands for the estimate of the mean-difference,

and the corresponding 95% CI are calculated as 2.5% and 97.5% quantiles of bootstrap resamples.

Abbreviations: HE, healthy controls; INS, insomnia disorders; SDB, sleep-disordered breathing; CDH, central disorders of
hypersomnolence; CRD, circadian rhythm sleep-wake disorders; PSD, parasomnia-related sleep disorders; SMD, sleep-related
rhythmic movement disorders; IS, isolated symptoms and normal variants; DSS, findings specific to day-time sleep studies.

Further, Table 2.7 relates to Hp, and details the bootstrapped 95% Cls for the correlation
between the average on-patient TCP score and the classification performance metrics. Based
on the CIs obtained, we conclude that for all diagnoses of both ID and OOD test data, the cor-
relation with any performance metric was consistently significant (p-value < 0.05 in all cases)
and positive. The TCP correlated — on average — the most with the accuracy with a range of
0.67-0.74 across individual diagnosis classes of ID test data, and of 0.58-0.81 for OOD data.
Consistent findings were identified even for the 76 OOD children aged under 6 years, where
TCP was significantly positively correlated with all the performance metrics: 0.62 with 95%
CI of (0.43, 0.76) for Acc, 0.56 (0.36, 0.72) for F1y, and 0.60 (0.41, 0.75) for x. These findings
suggest that the aggregated TCP score can efficiently pinpoint subjects whose biosignals are
challenging to classify and also those with high prediction performance, including children
with different AASM scoring rules applied.
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Table 2.7: Bootstrap confidence intervals (CI) for correlations between
subject-level mean TCP scores and performance metrics.

Diagnosis , Performance ID-test Pooled OOD

Class Metric Median 95% CI Median 95% CI
Acc 0.74 (0.59,0.91)
HE K 0.67 (0.50, 0.89)
Fly 0.60 (0.41, 0.84)
Acc 0.67 (0.46, 0.91) 0.58 (0.46, 0.78)
INS K 0.56 (0.28, 0.88) 0.59 (0.47,0.84)
Fly 0.63 (0.39, 0.91) 0.49 (0.36,0.72)
Acc 0.71 (0.62, 0.85) 0.71 (0.66, 0.80)
SDB K 0.69 (0.58, 0.85) 0.68 (0.62,0.77)
Fly 0.57 (0.44, 0.78) 0.65 (0.59, 0.75)
Acc 0.72 (0.55, 0.90) 0.75 (0.69,0.84)
CDH K 0.64 (0.45, 0.86) 0.72 (0.66, 0.82)
Fly 0.58 (0.35, 0.85) 0.68 (0.61,0.79)
Acc 0.81 (0.74, 0.89)
PSD K 0.81 (0.74, 0.90)
Fly 0.78 (0.70,0.87)
Acc 0.63 (0.47,0.84)
SMD K 0.54 (0.37,0.79)
Fly 0.55 (0.39,0.79)
Acc 0.74 (0.58, 0.90) 0.70 (0.64, 0.80)
IS K 0.74 (0.59, 0.90) 0.64 (0.57,0.76)
Fly 0.62 (0.40, 0.87) 0.63 (0.56, 0.75)
Acc 0.62 (0.34,0.92)
DSS K 0.62 (0.36,0.93)
Fly 0.49 (0.21, 0.86)

Notes: Evaluations on ID-test data and pooled OOD data. Bootstrappped median stands for the estimate of correlation with a
performance metric, and the corresponding 95% CI are calculated as 2.5% and 97.5% quantiles of bootstrap resamples.
Abbreviations: HE, healthy controls; INS, insomnia disorders; SDB, sleep-disordered breathing; CDH, central disorders of
hypersomnolence; PSD, parasomnia-related sleep disorders; SMD, sleep-related rhythmic movement disorders; IS, isolated
symptoms and normal variants; DSS, findings specific to day-time sleep studies.

2.3.4 Performance Boost Under Physician’s Intervention

In the final part of our evaluations, we aimed to quantify the potential improvement in sleep-
scoring classification performance when the most uncertain predictions underwent physi-
cian’s review. We simulated an intervention in which predictions with a TCP confidence
score falling below a designated threshold, incremented in 0.01 steps across the [0,1] range,
were set aside for human assessment. Within this set, predictions that did not align with the
physician’s assessment were subsequently adjusted to reflect the physician’s scoring eval-
uation. Alongside observing the uplift in performance, we also monitored the amount of
predictions subjected to review. This amount is indicative of the physician’s time spent on
re-scoring, prompting us to quantify the effort needed to reach specific performance bench-
marks.

Figure 2.4 depicts the impact of the physician’s review on the classification performance
for the ID-test and the two OOD test data. The lower x-axis depicts the TCP-score threshold
used to gather uncertain predictions, whereas the upper x-axis to the corresponding total
% of the epochs re-scored (ie, the physician’s effort). The % refers to the aggregate over
all PSGs in a given data split, as from each PSG were extracted only epochs below a given
threshold and so, the individual % differed. At a TCP-threshold of 0, when no uncertain
epochs are extracted, the performance as depicted on the vertical axis corresponds to the
original epoch-wise performance as shown in Table 2.4. From Figure 2.4, we can observe
a monotonic improvement in all the performance metrics with the increasing amount of
epochs gathered for the review. Based on that, we can identify, that to reach, eg, at least
90% in all the evaluation metrics, a rescoring effort of about 26% for ID-test, 19% for OOD1,
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and 27% for OOD?2 is needed, respectively, whereas the corresponding TCP threshold lies
consistently around 0.75.

Figure 2.4: Performance boost with physician review of epochs with TCP
scores below a given threshold.
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Further, based on Figure 2.4 and Table 2.8 summarizes the % of epochs needed to be
reviewed to achieve the performance benchmarks of at least (80, 85, 90, 95)% for each evalu-
ation metric, which we use for the comparison with other existing works in the Discussion.
For example, to reach at least 90% in x, a physician’s review of 25.6% of epochs is needed on
the ID-test, and 18.8-29.0% on the two OOD datasets.

Table 2.8: Rescoring amounts required to achieve target levels of
sleep-scoring performance.

Desired performance level
80% 85% 90% 95%

K 7.6 157 256 415
ID-test Acc 0 6.0 165 32.2
Fl, 0 6.2 172 33.7

K 23 91 18.8 329
OO0D1 Acc 0 1.1 98 255
F1, 0 0.1 105 255

K 8.3 173 290 44.0
0OO0D2 Acc 0 6.7 190 370
F1, 0 83 219 391

Domain Metric

Finally, Figure 2.5 compares the rescoring effort based on an appropriate TCP-threshold
in comparison to the % of all the misclassified epochs detected (ie, the true positive rate)
per individual test data splits. The diagonal depicts a “random strategy”, where physician’s
review would be conducted without any prior guidance on uncertain epochs. We observe
that independently of the data domain, less than 50% of epochs need to be reviewed in
order to detect at least 90% of all misclassified epochs. Similarly, to detect more than 95% of
all misclassified epochs, a review of less than 60% of all epochs is needed. At a hypothetical
20% error rate, the 50% review effort with a corresponding detection of 90% out of all the
discordant predictions leads to a boost of 18% resulting in a scoring performance of 98%,
conforming with proposed clinical standards and being far beyond acceptable scoring error
rates [121]. Since in our case is the error rate less than 20% for all domains (accuracy is
always >80%) (as indicated in Table 2.4), the 50% review effort corresponds to obtaining
almost perfectly aligned hypnograms with agreement above 98%
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Figure 2.5: Review amounts (% of epochs exported) versus the % of
discordant predictions gathered.
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2.4 Discussion

Our study was motivated by a key clinical application in the field of sleep medicine, where
physicians reach a consensus of about 76% when scoring PSG into sleep stages [15], [65],
[88]. This level of agreement sets a technical limit on the accuracy metrics attainable when
training scoring algorithms on multiple domains (scorers/databases). Consequently, when
incorporating a scoring algorithm into clinical practice, its predictions must be subjected to
a rigorous review by a human expert. If this is not guided to the uncertain regions of the
predicted hypnogram and the respective PSG biosignals, such review may require a similar
time effort as manual scoring done from scratch. Motivated by these challenges, we de-
signed a pipeline where a state-of-the-art scoring algorithm is combined with an uncertainty
estimation to guide the human review of the predicted hypnograms, with a particular focus
on the quantification of the effort required to achieve certain performance benchmarks. We
took advantage of the rich clinical database (BSDB) and evaluated our approach on both
in-domain (ID) and the two out-of-domain (OOD) test data, considering individuals” con-
clusive sleep-disorder diagnoses. Such stratified analysis subjected our pipeline to a dual
robustness test. In the case of the ID data, counting PSGs scored by >50 physicians, the
evaluations related to the expected generalizability on an "average" pattern of sleep-scoring
based on a broad population of physicians involved. On the other hand, the evaluations on
OOD single-scorer splits were essential, because they assessed how well our system adapts
to a real clinical setting, where PSG-scoring is performed by a single expert with a unique
interpretation of the AASM rules.

As a sleep scoring classifier within our pipeline, we exploited the well-established U-
Sleep, which we trained on 13 open-access databases and fine-tuned on ID (training and
validation) data of BSDB. Such trained U-Sleep reached a robust performance of « = 76.2%
for ID test data and x = (78.8, 73.8)% on the two single-scorer OOD sets, respectively.

Following that, we extensively investigated different uncertainty estimation approaches
and assessed their performance on both ID and OOD datasets. Remarkably, our designed
confidence network, specifically trained for PSG time-series data working in tandem with
the U-Sleep, emerged as the superior approach, adeptly identifying predictions discordant
with human scoring across both ID (AUROC = 85.7%) and the two OOD test data (AUROC
of 85.6-82.5%). Identifying an approach that accurately pinpoints disagreeing predictions
was a key prerequisite to enabling efficient review of predicted hypnograms by physicians.
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Furthermore, our research extended into statistical examinations of the predicted un-
certainty estimates, namely confidence scores based on our auxiliary network, leading to
two pivotal conclusions: (i) the on-subject confidence scores were significantly different and
lower for epochs discordant with human scoring, and (ii) the on-subject aggregated confi-
dence scores significantly and positively correlated with all on-subject classification perfor-
mance metrics. Both findings were consistent over the entire spectrum of sleep diagnoses
present in both ID and OOD test data. Additional evaluations confirmed these conclusions
even on 76 OOD children under 6 years of age, highlighting the generalizability of the pre-
dicted confidence scores for subjects with slightly different AASM scoring rules applied.
These insights not only validate the efficacy of our approach for physician’s review but also
highlight its capacity to pinpoint sections of PSG biosignals that are inherently challenging
to score, independently of the subject’s diagnosis status, including pediatric cases.

As a pivotal component of our evaluations, we examined the extent to which guiding
physicians in reviewing uncertain epochs could augment the efficacy of sleep staging. To
attain a commendable classification performance of at least 90% in (x, Acc, F1,) metrics,
our approach necessitated physicians to examine under 25.6% for x, 16.5% for Acc, and
17.2% for F1y, of the epochs on ID test data. For both OOD data, these figures were less
than 29.0%, 19.0%, and 21.9%, respectively. These outpace the findings by Hong et al. [94]
where about 35% and 25% of epochs needed a review to achieve a similar 90% rate in (x,
F1,) on ID data primarily from sleep-disordered subjects. In the broader context, the review
effort of our approach closely mirrors that of Phan et al. [64]. In their study on the Sleep-
EDF dataset of healthy subjects, they reported a requirement to review 50% of epochs to
identify 90% of all misclassified epochs. In our setup, with a dataset predominantly featuring
sleep-disordered subjects, our efforts resonated closely, demanding a review of 45-50% of
epochs, on both ID and OOD test data. Notably, the review of 50% of all the epochs leads,
in our case, to an agreement of >98% for all ID and OOD test datasets. Furthermore, aiming
for a more stringent identification of 95% of all misclassifications, our approach stands out,
demanding a review of less than 60% of epochs on both ID and OOD test data - a subtle
improvement over the 61.4% reported by Hong et al. [94]. In addition, our efforts are in line
with the findings of the most recent work of Rusanen et al. [124], who identified about 90%
of all misclassified cases by reviewing 50% of all epochs on consensus-hypnograms of the
DOD database of 81 subjects (56 OSA + 25 healthy), where each PSG was scored by multiple
experts. In our case, the level of this performance was achieved on ID as well as on two OOD
single-scorer datasets of a considerably larger size containing subjects from a full spectrum
of sleep-disorders. We consider results on our OOD datasets to be remarkably positive since
the adaptation of the approach to the scoring taste of a single scorer is expected to be more
difficult for algorithms (U-Sleep, confidence network) trained on data containing scorings
of different physicians, as it represents a change of domain from multiple- to single-scorer
ones. Adapting to the single-scorer’s taste is closer to the current setup in clinical practice,
where obtaining multiple-scorers’ consensus is costly, and a single physician evaluates the
PSG and makes the final clinical decisions. These results spotlight not only the efficacy
of our approach and its robustness to OOD data with different diagnosis statuses but also
underscore the potential to reduce the physicians” workload on manual sleep staging, which
is paramount in practical scenarios.

Yet, our work is not without limitations. The field of uncertainty quantification for sleep
staging is relatively new, and it does not include well-established baselines that would also
incorporate publicly available data covering the full spectrum of sleep disorders. The data
in the BSDB are mostly observational, i.e., subjects undergo sleep studies due to suspicion
or symptoms, and so, the presence of different diagnoses is not randomized or balanced.
The training of both classification and uncertainty-estimation algorithms was done without
explicit control for gender, ethnicity, age, and clinical diagnosis, which may — together with
non-randomized data — contribute to computational bias.
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2.5 Conclusion

The significant challenges in automatic sleep staging, such as noise-amounts due to inter-
scorer disagreement, and heterogeneity in PSG databases — reflecting the large inter-
individual variability in sleep manifestation — underscore the complexities in achieving
an Al model that could perfectly generalize to data from different domains. While auto-
mated sleep scoring algorithms have achieved excellent performances despite these hurdles,
they are still bound by the limitations inherent to the quality of their training labels. Conse-
quently, despite the technological advancements, the critical role of physicians in reviewing
and verifying predicted hypnograms remains — so far — irreplaceable and imperative. With
the increasing prevalence of sleep-wake disorders, and with the massive amounts of data
present in PSGs, it is therefore necessary to drive research efforts to optimize physician’s
review by directing them to potential areas of uncertainty, while ensuring an efficient exam-
ination compliant with clinical needs.

In this study, we developed a pipeline aimed at enhancing the use of automated sleep-
scoring algorithms in clinical practice. By retraining of the U-Sleep algorithm on 19,578 PSGs
coming from 13 open-access databases, we reached state-of-the-art performance (F1, >
80.5% on all test data) and encoded the sleep-scoring expertise of a broad range of physi-
cians. Utilizing the comprehensive BSDB database of 8,832 additional PSGs, we compared
various approaches for uncertainty quantification, including a novel confidence network
that we designed to work in tandem with U-Sleep. Compared to softmax-based measures,
our confidence network demonstrated its superiority for identifying predictions discordant
from physician’s scoring (AUROC > 82.5% on all test data) and built a prerequisite for suc-
cessful implementation of a system that efficiently incorporates physician’s insights.

Our study makes a significant contribution to sleep science by demonstrating the po-
tential of incorporating a semi-automated approach into clinical settings. This is achieved
through a unique combination of the U-Sleep robustness, the precision of an added confi-
dence network, and the richness of the BSDB database, enabling in-depth validations with
respect to individuals’ diagnoses and accommodating the scoring preferences of different
physicians. The combined approach of our pipeline ensures that while insights from the au-
tomatic sleep-scoring tool are utilized, physicians can concentrate their efforts on reviewing
segments of biosignals where potential disagreements or algorithmic errors may occur. This
has a great potential to significantly reduce the workload in the analysis of sleep studies.
Moreover, the design of our pipeline can be applied beyond the sleep-scoring framework,
for any use case where expert verification of algorithmic predictions is needed.

We believe that the adoption of scoring algorithms for clinical practice does not consist
in replacing the physician’s expertise with an algorithm, but mainly in enabling the effective
use of the algorithm’s insights and their thorough validation.
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Chapter 3

Framework for Algorithmic Bias
Quantification and its Application
to Automated Sleep Scoring

Abstract

The validation of predictive algorithms is gaining importance with the increasing use of AL
Traditional validation of software seeking, for example, clinical certification involves cor-
relation or Bland-Altman analysis comparing differences between predicted and reference
values. However, such approaches are subject to simplifying assumptions on the algorith-
mic errors: normality of their distribution, homogeneity of variance, and independence
from external factors. Our study, motivated by the sleep medicine use-case, proposes an
in-depth quantification of systematic algorithmic error (bias) using the flexible statistical
tool GAMLSS. Our approach allows the estimation of the bias distribution, identification of
bias-generating factors, and extrapolation of various quantities assessing prediction validity.

Keywords:
Bias Quantification, Explainable Al, Model Validation, Automated Sleep Scoring

3.1 Introduction

Scoring of polysomnographic (PSG) recordings into 5 sleep-wake stages: Wake (W), Rapid-
Eye-Movement (REM), and 3 Non-REM (N1, N2, N3), is a routine of many physicians. This
process requires following AASM guidelines [8], and spending up to 2 hours determining
the stage for every 30-second window (epoch) of a single-night data. Due to different and
often subjective interpretations of the AASM guidelines, physicians reach inter-rater agree-
ment of about 80% [15]. Research in automatic sleep scoring, motivated by high medical
costs, has advanced since the 1960s [132]. In the last decade, Deep-Learning-based algo-
rithms became prominent thanks to their ability to handle large datasets and capture com-
plex patterns [48]. Yet, the algorithms trained on a broader range of PSG databases are in
their performance technically limited by inter-scorer agreement. Hence, the classification
accuracy of about 80% can be considered as near-perfect. An example of a state-of-the-art
sleep-scoring algorithm is the U-Sleep [59], evaluated on the most extensive set of 16 clinical
databases and reaching robust human levels of performance.

Automated tools have a great potential to enhance insights and improve physicians’ ef-
ficiency. However, their transition to clinical use requires extensive validation - not only in
classification performance but also in clinical relevance. Typically, algorithm performances
are presented in terms of their average epoch-wise agreement metrics like the accuracy or
the Fl-score. While adequate for computer science, much more is needed for their clini-
cal adoption. A subset of research validates algorithms also on a more clinically relevant
subject-specific basis and evaluates how their performance correlates with individuals” de-
mographics (e.g., age) or clinical status (e.g., rates of apneic/ movement-events, AHI/PLMI)
[133]. The more detailed validity assessments include Bland-Altman (BA) plots [134], com-
paring errors against reference values, typically quantifying their mean, and the magnitude
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of their variability as a £1.96 xstandard-deviation (SD). Assuming a normal distribution of
errors, such an approach intends to cover 95% of the expected error range. The BA-plot-
derived validation typically involves clinically informative parameters (biomarkers), like
AHI for apnea detectors or sleep stage percentages for sleep-scoring tools. Therefore, such
validation is common in studies seeking clinical certification (e.g., [16], [135]).

Whether correlation or BA analysis is applied, it is crucial to highlight limitations (cf.
[136]) that could cause the validation results to seem excessively positive to their intended
user, the physician:

 Correlation does not guarantee validity; even systematically shifted - biased - predictions
can be perfectly correlated with their reference.

* BA plots assume errors to follow a normal distribution with homogeneous variance, which
may not always be true as variance often increases with the magnitude.

* Both correlation and BA plots overlook the potential impact of any external factors.

In this preliminary work, we demonstrate our framework while testing the cutting-edge
sleep-scoring algorithm U-Sleep on a comprehensive clinical out-of-domain database.
Specifically, we focus on using GAMLSS to identify potentially nonlinear biases, quan-
tify their distribution, and examine their relation to relevant domain-specific factors. All this
considering the ability of U-Sleep to predict one of the key prediction-derived markers of
automatic sleep-scoring: the W%-state.

3.2 Materials and Methods

3.2.1 Bias and its quantification using GAMLSS

The term bias can generally be understood as a systematic deviation in estimates/predictions,
7, to their reference/true values, y. In statistical terminology, an estimate is called biased if
the expected value of its error is non-zero [137]:

E(# —y) #0. (3.1)

Typically, it refers to an estimation of parameters, 6, of a statistical model, p(y|f). Trans-
ferably, bias is understood in a broader sense: gender-bias is said to be present if the output
systematically differs in dependence on the perception of male/female or other genders, age-
bias if the output is affected by the consideration of the individual’s age, etc. Let’s denote
such factor(s) inducing biases as a variable x.

Combining statistical terminology and the comprehension of different sources of bias in
a broader sense, we obtain:

E(@—y) ~x (3.2)

denoting the relation (~) between the bias (expected error) and the bias-inducing factors
x. If E(§ —y) is independent of x, or of their function f(x), meaning the errors in predic-
tions occur randomly, there is no x-induced bias. This framework already generalizes the
validation assessments based on correlation analysis, cor (7, y), or more advanced BA plots,

(7 —y) ~ %y, by considering external factors x and their relation to the error.
Considering more bias-potential factors, (x1, ..., X ), being in an arbitrary functional form
f to the expected error, the framework can be extended to:

E(§—y) ~ f(x1, 0 Xp).- (3.3)

As the f is unknown, one needs to make some assumptions to enable estimation of this
relation: bias-quantification (BQ). For example:

E( —y) ~ Bo+ P1x1 + ... + Brxi + €, (3.4)

yields linear-regression-based BQ, with standard assumptions such as € ~ N(0,02). A sig-
nificant By can be interpreted as a baseline bias, similar to correlation- and BA-plot-based
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validations, and any significant f; as x;-induced bias. This approach quantifies bias in a
linear way (i.e., the effect of B is supposed to be the same regardless of the value of x;), and
assumes a homogeneous variance ¢? independent of x. Importantly, it focuses on the esti-
mation of the expected (mean) bias conditioned on x, rather than on its entire distribution.
The GAMLSS is a flexible statistical framework to model a broad range of probability
distributions D using flexible models unique for their location (y), scale (c), and shape (A)
distributional parameters [138]. For the BQ specifically, the GAMLSS can be formulated as:

J—y~D(p=f(X|B),o=g(X[y),A =hX[])),

where f,g,h stand for arbitrary functions of y, o, A-specific predictors parameterized by
B, v, T, respectively. For example, these functions may be an identity with linear predic-
tors for linear regression, a link function for Generalized Linear Models (GLM), splines for
Generalized Additive Models (GAM), but also a neural network. The choice of a distribution
D, depends on the support of an error, but we found that the BQ using an extended Normal
distribution with flexible predictor functions for both y and ¢ is a reasonable choice. The
benefits of using GAMLSS for BQ are numerous, as it enables:

* Quantification of the entire distribution of the bias, i.e., not only of the mean but also of
arbitrary quantiles,

* Contribution assessment of external bias-inducing factors x to individual distributional pa-
rameters using standard statistical tests (AIC, ANOVA, t-test, etc.),

* Quantification of non-linear biases, e.g., non-monotonic contribution of x (like age) to the
bias using splines as predictor functions.

Based on the detailed knowledge of the bias distribution, one can extrapolate and fix x at
arbitrary values of interest to (i) quantify the expected value or arbitrary quantiles. Based on
that, one can also estimate (ii) the expected probability that the bias lies within the expert-defined
Region Of Practical Equivalence (ROPE), or (iii) the probability that predictions are systematically
over/under-estimating their reference.

Despite the flexibility of GAMLSS, it is always up to the researcher to cope with the stan-
dard challenges of model building: identifying a suitable bias distribution, selecting relevant
x, and choosing an appropriate functional form of predictors. Naturally, this choice is de-
pendent on the application domain and the amount of available data, taking into account
the balance between the complexity and practicality of the approach. Considering BQ as a
framework for model validation and explainability, simpler approaches should be preferred.

3.2.2 Dataset

For the evaluations, we utilized the Berner Sleep Data Base (BSDB) from our partner clinic,
Inselspital, University Hospital Bern [125]. From 2000 to 2021, more than 8000 PSG record-
ings were collected in individuals covering the entire spectrum of age (0-91 years) and sleep
diagnoses. Signals were recorded at 200 Hz, and over the 20 years of data collection, manu-
ally scored according to AASM rules by one of more than the total of 60 physicians involved.
For our work, we identified a subset of 4,075 PSGs with complete sleep scoring and available
information on individuals’ age, gender, AHI, and PLMI. This subset was used to character-
ize their demographic and clinical profiles and identify potential bias-inducing variables x

3.2.3 U-Sleep: the sleep scoring algorithm

The U-Sleep, introduced by Perslev et al. (2021) [59], is a deep convolutional neural net-
work designed for sleep stage classification. It processes EEG-EOG channel pairs sampled
at 128 Hz and outputs an array of softmax values, representing probabilities of the 5 sleep
stages, for each signal window of the desired length. If more channel pairs are available,
the U-Sleep implements majority voting and averages the predictions. The architecture in-
cludes an encoder-decoder part supplemented with skip connections and a classifier layer.
The U-Sleep demonstrated state-of-the-art performance on 16 databases with over 15,000
participants, achieving an average Fl-score of 79%. To date, this algorithm is cutting-edge
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in terms of its performance as well as the amount and diversity of its training data. Further-
more, additional tests claim high resilience of U-Sleep and generalizability over different age
groups of subjects [60]. For our evaluations on BSDB, representing out-of-domain test data,
we used the most recent implementation of U-Sleep trained on 13 open-access databases
of 19,578 PSGs, described as an experiment (i) on p. 3 in [60], reaching (76.5 &+ 10.6)% in
F1-score on test data.

3.3 Results

3.3.1 Baseline performance of U-Sleep algorithm

The dataset of 4,075 subjects consisted of 1,504 females (F) and 2571 males (M) aged 0-86
and 0-91, respectively. The AHI/PLMI ranged from 0 to (141.6/131.5) for F and from 0 to
(155.2/240.0) for M. The U-Sleep reached the mean + SD in on-subject averaged-F1-score
of (74.29 +11.07)%, and the mean W%-error of (—1.13 4+ 5.15)% and (—1.45 + 6.05)% for F
and M, respectively. The natural question is whether such a difference in W% is systematic,
only sex-related, or whether it can be attributed to particular distributions of age, AHI, and
PLMI. Using the W% as a parameter of interest, we will demonstrate the application of our
GAMLSS approach for BQ. The bias should be interpreted considering the expected W%,
which according to the meta-analysis follows an increasing trend, from 2-3% for children to
20% for adults over 80 [17].

3.3.2 Bias Quantification (BQ)

Potential Bias-Inducing Factors: As factors x that may contribute to the bias, we consid-
ered gender, age, AHI, and PLMI. This choice was domain-specific and driven by evidence
(e.g., [78]) that they highly influence individuals’ structure of sleep. We aimed to evaluate
whether, and eventually how much, these factors contribute to the algorithm’s on-subject
W%-bias. Based on that, we aimed to extrapolate the expected bias distribution conditional
on arbitrary values of x.

BQ Model Class: To quantify the W%-bias, we modelled the difference between U-Sleep
and physician-derived W% using the extended Normal distribution N(y, o), with separate
u and o predictors. The p, o stand for location and scale distributional parameters directly
related to the expected value and the SD, and fully identify distributional quantiles.

BQ Model Structure: To quantify whether and how much an arbitrary factor x contributes
to the bias, each distributional parameter 8 = (1) = 11,6(2) = ') was modelled as:

00 = £(cl) + c\ Gender + ci AHI + c{) PLMI + s(Age; c!”)), (3.5)
where c](i)—s are 8)-specific coefficients and f is a suitable link function: the identity for

and log for . We anticipated linear effects on gender, AHI, and PLMI (e.g., an increasing
o due to higher AHI), and a possibly nonlinear age-effect as quantified by the cubic spline
s. To evaluate which factors contribute significantly to each parameter, a forward-building

procedure was applied to Eq. 3.5, starting from the baseline predictor §()) = f (c(()i)), and
iteratively adding the most significant term based on ANOVA (p-val < 0.05), if available.

Estimated W%-bias model: The following significant predictor functions were identified
for the y and ¢ parameters:

# = —0.009 — 0.0001 AHI — 0.0001 PLMI + s(Age)
log(o) = —3.845 + 0.058 GenderMale + 0.005 AHI (3.6)
+0.006 PLMI + s(Age)



3.3. Results 33

Figure 3.1: Partial effects of age on the mean (j1) and standard deviation (o)
of the W%-bias model, quantified with cubic splines.
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Interpretation: The baseline mean-bias (y) of -0.009 refers to the U-Sleep underestimation
of W% by 0.9%. This bias tends to expand with both AHI/PLMI and is not dependent on
gender. In contrast, the baseline SD of the bias, o = 2.1% = 100% x e384 tends to increase
for males and with AHI/PLMI. Both u and ¢ are dependent on the non-linear effect of age
identified by splines s, as depicted in Figure 3.1. The magnitude of the bias and its spread
tend to be smaller for subjects between 20-60 years and to increase otherwise. Particularly,
children under 10 tend to have greater underestimation of W% and an increased variability
(e.g., an additional bias of about -0.07 for y and 64.9% = 100 x (1 — €%?) increase in ¢ for
newborns). This important finding reflects the under-representation of children in the U-
Sleep training data (only 1 of 13 databases, cf. [60]) as a likely source of this bias.

Derived Quantities: Quantifying bias distribution enables validation beyond the signif-
icance of the model’s terms using a broad range of derived quantities: (i) bias quantiles,
(if) ROPE coverage, and (iii) probability of an over/under-estimation, as depicted in Fig-
ures 3.2,3.3, and 3.4, respectively. Based on Eq. (3.6), all figures extrapolate an optimistic
(“healthy’) scenario of AHI = PLMI = 0 and illustrate outcomes subject to an individual’s age
and sex. To better demonstrate our results, we created an interactive app showing the results
also for other sleep stages and providing technical details on underlying bias-models.

Figure 3.2 shows that for arbitrary age and gender, the W% is underestimated, as the
median-bias < 0, with the greatest bias of -8% for newborns. Bias magnitude and its vari-
ability increase for younger and older subjects. Further, more than 25% (lower dashed lines)
of subjects aged under 10 and above 70 have the W% underestimated by at least 5%.
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Figure 3.2: Expected quantiles of the W%-bias.
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As depicted in Figure 3.3, considering the error-magnitude of 2.5% to be irrelevant and
to define the ROPE, the algorithm predictions would cover about 15-20% of babies, 65% of
adults aged 20, and up to 30% of adults above 75.

Figure 3.3: Expected coverage of the region of practical equivalence (ROPE)
for W%-predictions, expressed as an interval of =ROPE thresholds.
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Finally, Figure 3.4 depicts the probability of over-estimated (j — y > 0) predictions. The
green horizontal line depicts a situation of a symmetric bias distribution where the median
would be 0, and the chances of over- and under-estimation equal. In the case of W%, the
predictions are for both genders systematically underestimated: for >80% of babies and
55-60% of adults between 20-65 years.
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Figure 3.4: Probability of positive bias (overestimation, § — y > 0) in
W%-predictions.

1.00

0.75
=
A
|>‘ 0.50
g
o

0.25

0.00

0 25 50 75 100
Age
Gender female —— male

3.4 Discussion & Conclusion

Detailed validation of predictive algorithms is essential for in-depth evaluation of their ac-
curacy, and it is a prerequisite for their successful adoption. Our study presents a universal
framework for flexible quantification of the algorithmic bias, which may be in a possibly
non-linear relation to external controlling factors. We illustrated this framework on the use-
case of the cutting-edge sleep-scoring algorithm U-Sleep, focusing on W%ake estimation,
which is essential for assessing sleep efficiency. We outlined the steps of bias-model build-
ing, identification of relevant bias-contributing factors, and extrapolation of results through
various quantile-based metrics. As an important result, we revealed a bias for children who
were underrepresented in the original training data of the U-Sleep, illustrating the practical-
ity of our approach for detecting gaps in the training data or their insufficient heterogeneity.
Results of our study are also available within an app, allowing interactive visualizations of
results and their discussion with domain experts.

We are convinced that with the growing use of complex Al models across various do-
mains, research into approaches for their flexible and explainable validation should not be
delayed.
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Chapter 4

Beyond Accuracy: A Framework
for Evaluating Algorithmic Bias
and Performance, Applied to
Automated Sleep Scoring

Abstract

Recent advancements in artificial intelligence (AI) have significantly improved sleep-scoring
algorithms, bringing their performance close to the theoretical limit of approximately 80%,
which aligns with inter-scorer agreement levels. While this suggests the problem is tech-
nically solved, clinical adoption remains challenging due to ethical and regulatory require-
ments for rigorous validation, fairness, and human oversight. Existing validation methods,
such as Bland-Altman analysis, often rely on simple correlation metrics, overlooking po-
tential non-linear influences of external factors (e.g., demographic or clinical variables) on
systematic predictive errors (biases) in derived clinical markers. Additionally, performance
metrics are typically reported as the mean of on-subject results, neglecting critical scenar-
ios—such as different quantiles—that could better convey the algorithm’s capabilities and
limitations to clinicians as end-users. To address this gap, we propose a universal framework
for quantifying both performance metrics and biases in predictive algorithmic tools. Our ap-
proach extends conventional validation methods by analyzing how external factors shape
the entire distribution of predictive performance and errors, rather than just the expected
mean. Applying it to the widely recognized U-Sleep and YASA sleep-scoring algorithms,
we identify biases—such as age-related shifts—indicating missing input information or im-
balances in training data. Despite these biases, we illustrate that both algorithms maintain
non-inferior performance in the risk assessment of sleep apnea based on prediction-derived
markers, highlighting the potential and clinical utility of algorithmic insights.

4.1 Introduction

Polysomnography (PSG) is the gold standard for diagnosing sleep disorders, offering com-
prehensive insights into sleep architecture through multi-channel recordings, including
brain activity (electroencephalography, EEG), eye movements (electrooculography, EOG),
and muscle tone (electromyography, EMG). Scoring each 30-second window of PSG record-
ings into five discrete sleep-wake stages—wake (W), non-rapid eye movement stages 1-3
(N1, N2, N3), and rapid eye movement (REM) sleep—is traditionally done by expert physi-
cians following the American Academy of Sleep Medicine (AASM) guidelines [8]. Such
structured scoring, known as a hypnogram, allows for the extraction of various sleep mark-
ers, such as REM-latency and sleep efficiency, which are crucial for evaluating sleep quality
and identifying potential sleep disorders [18], [139].

However, manual sleep-scoring is time-consuming, often requiring hours to evaluate a
single night’s data, and is subject to variability between scorers. Notably, the inter-rater
agreement among human scorers reaches, depending on metric used, approximately 75-
80%][14], [15], [66], [140], setting a technical upper bound on the performance of automated
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algorithms trained on datasets containing reference labels from multiple scorers [80], [81],
[141]. Despite these limitations, sleep-scoring algorithms have shown a great potential for
reducing the manual workload of clinicians, with widely recognized tools such as the deep
learning-based U-Sleep [59], [60] and the machine learning-based YASA [58]. U-Sleep, uti-
lizing a deep convolutional neural network, reported a macro F1-score of 79% [59]. In con-
trast, YASA employs a lightweight approach, extracting time- and frequency-domain sleep-
related statistical features from PSG signals, making it computationally less demanding. On
a validation set of 25 healthy adults scored by five independent scorers, YASA reported
a mean (interquartile-range) macro F1l-score of 78.5% (9.4), compared to 82.7% (7.7) for U-
Sleep [58]. In a cohort of 50 adults with sleep apnea, YASA scored 70.1% (15.5), while U-Sleep
reached 78.7% (10.9) [58]. Both validation cohorts of 25 + 50 subjects reported in [58] were
sourced from the multi-scorer DOD database [70]. Despite methodological differences, both
algorithms perform close to inter-rater agreement levels.

While artificial intelligence (AI) holds great promise for automating sleep-scoring, the
inherent variability in human labels used to train these tools imposes a theoretical perfor-
mance ceiling [141]. Due to about 20-25% noise level in sleep-stage labels inherent from
inter-scorer disagreement [14], [15], [66], [140], the algorithms trained on a broad range of
databases containing scoring tastes of multiple human-annotators technically struggle to ex-
ceed the performance-level of about 75-80%, aligning with inter-rater agreement [80], [81],
[142]. In consequence, even the state-of-the-art systems will inevitably show some level of
error relative to individual scorers, and a single physician is expected to disagree with ap-
proximately 20-25% of Al predictions, reflecting the fundamental challenge in automated
sleep scoring and its integration into clinical practice [95]. This is a critical limitation, as
physicians remain responsible for both the scoring and diagnostic decisions that follow, rais-
ing ethical and practical concerns. In response, emerging legal frameworks such as the EU
Al Act (Regulation (EU) 2024/1689) and the Medical Device Regulation (MDR, Regulation
(EU) 2017/745) have been introduced to ensure transparency, fairness, and human over-
sight in Al-driven (healthcare) solutions. While the U.S. Food and Drug Administration
(FDA) has not yet established a dedicated Al regulatory framework, it has issued guidance
on Al/ML-enabled medical devices, including the Artificial Intelligence and Machine Learning
(AI/ML)-Enabled Medical Devices resource and the Artificial Intelligence-Enabled Device Software
Functions draft guidance, which align with the principles of the EU Al Act and MDR.

Despite significant improvements in algorithmic performance, the clinical adoption of
Al-based sleep-scoring tools—such as U-Sleep and YASA—remains limited. This may be
due to a combination of factors, including regulatory challenges [85], such as the require-
ment for human oversight (cf. EU Al Act), and the current lack of deployed clinical pipelines
to support such integration efficiently [95]. Additional barriers include limited clinician trust
and lack of interpretability [86], [87], possible ambiguities in the interpretation of AASM
scoring guidelines [11], [15], [88], and signal artefacts that contribute to substantial inter-
scorer variability [8], [15], [66], [88], [140]. Concerns about algorithmic bias [91], [96], where
predictions systematically vary across demographic or clinical subgroups, and broader is-
sues of fairness and equity in clinical Al applications [89], [90] also play an important role.

Beyond legal and ethical considerations, current validation methods—typically relying
on average (possibly on-subject) accuracy or correlation-based metrics such as Bland-Altman
(BA) plots [134]—often fail to assess clinical reliability fully and may even lead to misinter-
pretation [136]. These methods overlook important characteristics of expected model perfor-
mance and error distribution (e.g., min, max, and different quantiles), assume normality and
uniform variance across the entire testing population, and typically disregard the influence
of external factors (e.g., the dependence of algorithmic errors on demographics). Addition-
ally, correlations can obscure systematic biases, as even systematically shifted - biased - pre-
dictions can be perfectly correlated with their reference values. Therefore, there is a growing
need for more comprehensive validation approaches that evaluate whether AI models per-
form consistently across diverse (sub)populations and offer clinically meaningful, reliable,
and granular insights into the distributional characteristics of algorithmic performance and
errors [96].

In this study, we extend our recently proposed framework for quantifying algorithmic
bias in predictive Al tools [96], with a specific focus on automated sleep-scoring. We system-
atically evaluate the performance of two widely recognized models, U-Sleep and YASA, and
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assess the validity of clinically relevant markers (e.g., REM latency, sleep efficiency) derived
from their predicted hypnograms. These markers represent key metrics routinely included
in PSG reports to support diagnostic decisions. Leveraging a large, out-of-domain clini-
cal dataset, we examine whether these algorithms exhibit biases across demographic and
clinical factors, quantifying both the magnitude and distributional characteristics of their
performance metrics and errors in predicting derived PSG markers. Key contributions of
this study include:

A general framework for algorithmic bias quantification applied to the context of automated
sleep-scoring,

» Systematic evaluation of algorithmic performance, including expected distributions and
systematic shifts across demographic and clinical subgroups,

* Quantification of algorithmic biases in prediction-derived clinical PSG markers, including
bias distributions and their dependence on external factors,

» Assessment of the diagnostic utility of potentially biased markers, particularly in the detec-
tion of obstructive sleep apnea,

* Provision of an interactive R-Shiny app for dynamic exploration of results.

By proposing a framework for in-depth bias quantification, we aim to ensure that Al-based
clinical tools are not only accurate, but also fair, reliable, and transparently validated. Un-
derstanding algorithmic performance and its limitations is essential for bridging the gap
between computer scientists developing these tools and clinicians as end users [143]. This
collaboration can be strengthened by increasing awareness of Al's potential benefits while
managing expectations through clear reporting of its capabilities and limitations. While
we demonstrate our framework on U-Sleep and YASA, this study does not aim to com-
pare which algorithm performs better, as they were trained on different datasets. Rather,
our primary objective is to present the framework as a tool for communicating algorithmic
performance and error distributions to end users (clinicians) and for use within clinical cer-
tification processes to evaluate model reliability across diverse clinical contexts.

4.2 Materials and Methods

In this section, we review common methods for assessing predictive performance and
present our framework for systematically quantifying algorithmic bias and performance [96].
Finally, we introduce a study use-case demonstrating this framework by evaluating the
sleep-scoring algorithms U-Sleep and YASA on a large, out-of-domain clinical dataset.

421 Current standards and limitations in reporting algorithmic perfor-
mance

Predictive Al (statistical, machine- or deep-learning) models are subject to multiple sources
of uncertainty [144], including model architecture (e.g., predictor selection in regression;
number of hidden layers in neural networks, NN), label noise (e.g., inter-scorer dis-
agreement in sleep stage annotations), and dataset heterogeneity (e.g., demographic im-
balances or variability in recording devices). Additionally, NNs are prone to overconfi-
dence [127]—assigning excessively high probabilities to their predictions—and often rely on
spurious correlations rather than causal relationships, leading to systematic biases [145].
Therefore, despite the fast and often accurate insights predictive tools can provide, it is
essential to rigorously validate them [146]. The classification performance is commonly re-
ported using aggregated metrics such as accuracy or Fl-score, typically averaged across all
epochs (windows/observations) of the test data. Particularly for healthcare, a more infor-
mative approach is to report subject-wise (test) performance, supplemented with variability
measures such as standard deviation (SD) to capture inter-subject differences. For numerical
outcomes in a regression setting (e.g., predicting the Apnea-Hypopnea-Index, AHI, captur-
ing frequency of breathing arrests in apnea-detectors), validation is often based on the corre-
lation between predicted (i) and reference (y) values, even though the concepts of correlation
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and validity are quite distinct [147]. Particularly for tools seeking clinical certification, this is
extended with Bland-Altman (BA) plots [134], which compare the prediction errors (7 — y)
against reference values and typically approximate the error distribution as the mean error
rate + a multiple of the SD.

However, these conventional validation methods have critical limitations [136], [146],
[147]. Classification metrics alone typically fail to report performance variability across sub-
populations (e.g., for different ages, genders, or diagnoses) and do not evaluate critical sce-
narios including minimum/maximum and different quantiles in algorithmic performance
or error rates, also concerning subjects” characteristics. Moreover, regression tools that are
validated using correlation or BA analysis implicitly assume symmetric, homoscedastic er-
rors independent of external factors, which is a rare case in practice. Notably, correlation-
based assessments may often fail to detect systematic biases, as the correlation can be per-
fect: cor(7,y) = 1, even if predictions are systematically shifted: 7 = y + c. These limitations
highlight the need for a more comprehensive validation framework that extends beyond
clinical Al applications, offering a detailed assessment of algorithmic performance, error
distribution, and their dependence on external factors.

4.2.2 Framework for algorithmic bias quantification using GAMLSS

Bias, in the context of model validation, refers to the systematic deviation between model
predictions (§) and true reference values (y). Conventionally, a prediction (or estimate) is
considered biased if the expected value of its error deviates from zero, i.e., E(§ —y) # 0[137].
In practice, this systematic deviation (= bias) may stem from multiple factors such as age, gen-
der, or other attributes, which we collectively denote as bias-inducing variables (X) or sensitive
attributes [91]. These factors influence predictive errors and performance, leading to system-
atic shifts in their distribution that can be modeled and quantified.

In previous work [96], we introduced a framework for Bias Quantification (BQ), which
extends beyond measuring baseline bias, E(7 — y), to assess the influence of external fac-
tors, such as age or gender. Specifically, we proposed quantifying the relationship between
predictive errors and bias-inducing variables X through conditional expectation:

E(bias) = E(§ —y) ~ f(x1,...,x¢|6), (4.1)

where f represents an arbitrary function parameterized by 6, capturing the relationship be-
tween bias and the external factors X = (x1,...,x). This framework extends traditional
validation approaches, such as correlation- or Bland-Altman (BA) analysis, by systemati-
cally integrating external variables, providing a more comprehensive understanding of bias.
To operationalize this framework, we utilize Generalized Additive Models for Location, Scale,
and Shape (GAMLSS) [138], a highly flexible statistical approach that models the entire dis-
tribution (of bias) rather than just its mean (as done in standard regression setting). The
GAMLSS allows capturing not only the expected bias (location), but also its variability
(scale), and other shape-related distributional properties, such as skewness, kurtosis, or in-
flation [138]. Each of these distributional parameters can depend on X in possibly non-linear
ways. Specifically, we suggest to exploit GAMLSS to model the distribution of the bias as:

bias ~ D(p = fu(X|Bu), 0 = fo(X|Bo),v = fu(X[Bv), T = fr(X[Br)), (4.2)

where y, 0, and v, T represent the location, scale, and two shape parameters of a chosen
distribution D [148]. The predictor functions fy define the relationships between these pa-
rameters and the external factors X, which can be specified as linear, non-linear, spline, or
even neural network-based, depending on the complexity of dependencies. The predictor
functions for each 6 € {y, o, v, T} are parameterized by By, respectively.

Bias Quantification (BQ): As a suitable distributional choice for BQ, evaluating the distri-
bution of algorithmic errors, we suggest using the generalized normal distribution:

y_yNN(V:fH(XWH)r‘T:fO(Xma)) (4.3)



4.2. Materials and Methods 41

with separate predictors for its location () and scale (¢) parameters. This BQ model effec-
tively addresses the limitations of standard validation approaches by capturing both system-
atic biases (through p) as well as their variability (i.e., heteroscedasticity, through o) across
different subgroups defined by bias-inducing factors X. The possibly non-linear impact of
X on both y# and o may be quantified through flexible functions (e.g., splines), enabling the
estimation of arbitrary error quantiles for a more detailed bias characterization.

Performance Quantification: Beyond bias assessment, our framework extends to the mod-
elling of performance metrics (e.g., accuracy and Fl-score), accounting for their trends and
variability across subgroups, defined by X. Since performance metrics are typically bounded
between 0 and 1 (i.e., 0-100%), we propose using the zero-and-ones-inflated beta distribution
(B) [148]:

Performance Metric ~ B(u = f,(X|Bu), 0 = fo(X|Bo), v = fu(X|Bv), T = fr(X|Bc)), (4.4)

which is well-suited for bounded data with potential boundary inflation. This distribution is
characterized by four parameters: location (y), scale (), zero-inflation (v), and one-inflation
(1). By leveraging B and flexible predictor functions, our framework captures both sys-
tematic patterns in central tendency, and variability, and addresses extreme performance
outcomes (such as complete misclassification or perfect classification), concerning arbitrary
demographic or clinical characteristics X.

Key Advantages: Our framework offers several key advantages that are shared between
bias and performance quantification:

* Modelling of the full distribution: Rather than focusing solely on average bias or per-
formance, our approach models the entire distribution, allowing the estimation of ar-
bitrary quantiles. This enables a comprehensive view of both bias and performance
metrics across arbitrary subject characteristics (sensitive attributes) X included.

* Capturing non-linear relationships: By incorporating flexible, non-linear predictors (e.g.,
splines), the framework effectively captures complex, non-monotonic relationships be-
tween X and the bias or performance metrics.

* Hypothesis testing: The framework supports standard statistical hypothesis testing (e.g.,
using AIC, ANOVA, or t-tests) to assess the contribution of specific characteristics X.

4.2.3 Study use-case

Our framework is demonstrated to two recognized sleep-scoring algorithms: U-Sleep and
YASA. We evaluate the validity of their predictions on a large, out-of-domain clinical dataset
and investigate how demographic and clinical factors influence the distribution of perfor-
mance metrics and the bias concerning prediction-derived clinical markers. In addition, we
evaluate the diagnostic utility of (possibly biased) predicted markers in distinguishing be-
tween healthy subjects and OSA patients. The OSA, estimated to impact up to 17% of the
general population [149], is the most prevalent sleep disorder and a significant risk factor for
the development of cardiac events and overall mortality [150].

Sleep-scoring classifiers: U-Sleep and YASA

U-Sleep: Developed by Perslev et al. (2021) [59], U-Sleep is a deep learning-based model
utilizing a convolutional neural network for multi-channel sleep staging. It processes EEG-
EOG pairs, sampled at 128 Hz, and predicts the probability of five sleep stages (Wake, N1,
N2, N3, REM) for each signal window of the specified length. When multiple channel pairs
are available, U-Sleep aggregates predictions using majority voting that averages probability
outcomes of individual pairs. Its architecture combines an encoder-decoder network with
skip connections, followed by a classification layer. Originally evaluated across 16 large-
scale sleep datasets (~15,000 participants), U-Sleep reported the weighted-mean F1-score of
79% across evaluated datasets [59]. In our study, we use the latest implementation, trained
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on 19,578 PSGs from 13 public datasets, described as an experiment (i) on p. 3 of Fiorillo et al.
(2023) [60], which corrected a prior channel-derivation bug and reported a mean (standard
deviation) Fl-score of 76.5%(10.6) on unseen test data. U-Sleep has demonstrated strong
generalizability across different age groups and sleep disorder profiles [59], [60].

YASA: Developed by Vallat and Walker (2021) [58], YASA employs a machine learning-
based approach, utilizing LightGBM (Light Gradient Boosting Machine) for sleep stage clas-
sification. For each channel and 30-second window, YASA extracts statistical and spectral
features (e.g., kurtosis, skewness, power ratios) from EEG, EOG, and optionally EMG sig-
nals. It was trained on 31,000 hours of data from 3,163 full-night PSGs across seven diverse
datasets, covering a broad age range of mean (SD) of 49.8 (26.4) years and various sleep dis-
orders. On a hold-out test set of 25 healthy subjects, YASA achieved a mean (inter-quartile-
range) macro F1-score of 78.5% (9.4), and on 50 patients with obstructive sleep apnea (OSA),
it achieved 74% (10.8), both sourced from the Dreem Open Datasets (DOD) [70]. While
slightly outperformed by the deep learning-based U-Sleep—macro F1-score of 82.7% (7.7)
and 78.7% (10.9) on DOD healthy and OSA, respectively [58] —YASA'’s lightweight architec-
ture enables efficient large-scale processing in under five seconds per night. To ensure a fair
comparison with the U-Sleep majority-voting mechanism, we averaged YASA’s predictions
across all EEG-EOG pairs of each PSG.

Data

We conducted our evaluations using the Berner Sleep-Wake Registry (BSWR), provided by
Inselspital, University Hospital Bern. The database contains over 8,000 PSG recordings col-
lected between 2000 and 2021 from predominantly symptomatic subjects (< 1% are healthy
controls), mostly males (63.1%), across a broad range of age (0-91 years) and sleep disorders
(e.g., OSA, narcolepsy). PSG signals were recorded at 200 Hz and manually scored by one of
over 60 physicians according to the AASM guidelines [8]. To align older Rechtschaffen and
Kales [75] scorings with the AASM standard, N3 and N4 stages were merged.

For our analysis, we selected a subset of 4,075 PSGs with complete sleep-scoring and
available demographic and clinical data, including age, gender, Apnea-Hypopnea Index
(AHI), and Periodic Limb Movement Index (PLMI). AHI was computed using the AASM
"recommended" definition, requiring >30% airflow reduction with >3% desaturation or
arousal for hypopneas. PLMI excluded limb movements associated with respiratory events
or arousals. These were considered potential bias-inducing factors X (cf. Eq. 4.1) due to
their known effects on sleep architecture and association with the majority of sleep comor-
bidities [18], [139], [151], [152]. Specifically, age and gender were included as demographic
variables known to influence sleep physiology, while AHI and PLMI were used to charac-
terize clinical subgroups, as both relate to breathing and movement disturbances that may
introduce signal artefacts and can also alter sleep architecture [18], [152].

To quantify bias and performance, we utilized three sets of hypnograms: a "true" ref-
erence scored by physicians and two algorithmically predicted hypnograms from YASA
and U-Sleep, all at a 30-second resolution. Using these hypnograms, we computed subject-
specific accuracies, macro-F1 scores, and clinically relevant markers (e.g., sleep-stage per-
centages, sleep efficiency). The resulting dataset was structured into a tabular format with
4,075 rows, each representing a single PSG recording, while columns contained performance
metrics, clinical markers, and bias-inducing variables X (age, gender, AHI, PLMI). This
structure enabled a systematic analysis of patterns in both performance metrics and biases
in hypnogram-derived clinical markers. Lastly, to evaluate the diagnostic utility of poten-
tially biased markers, we included clinically conclusive diagnoses (e.g., OSA) as part of the
dataset.

Ethics Approval and Consent The secondary usage of the Berner Sleep-Wake Registry
(BSWR) dataset was approved by the local ethics committee (Kantonale Ethikkommission
Bern [KEK]-Nr. 2022-00415), ensuring compliance with the Human Research Act (HRA) and
Ordinance on Human Research with the Exception of Clinical Trials (HRO). All methods
were carried out in accordance with relevant guidelines and regulations. Written informed
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consent was obtained from all participants, as part of the general consent process introduced
at Inselspital in 2015. Data were maintained with confidentiality throughout the study.

4.3 Results

4.3.1 Implementation

The analytical part of this study was conducted using the statistical software R and its de-
velopment environment, RStudio [153]. To implement our framework and quantify the dis-
tribution of algorithmic performance metrics and biases concerning derived clinical PSG
markers, we used the gamlss v5.4-22 package. The evaluation of the diagnostic utility
of derived markers was performed using caret v6.0-94 and glmnet v4.1-8. Additionally,
demographically balanced cross-validation splits were achieved using the anticlustering im-
plemented in anticlust v0.8.7. To demonstrate our framework, we used the existing im-
plementation of U-Sleep from the experiment (i) on p.3 of Fiorillo et al. (2023) [60] and YASA
by Vallar and Walker (2021) [58] from the open-source python library yasa v0.6.4.

R Shiny App To supplement our findings, we provide an interactive web application built
using shiny v1.9.1, allowing users to explore bias and performance quantification across
demographics (age, gender) and clinical indices (AHI, PLMI), for both U-Sleep and YASA.
The app is freely accessible at: https://mystatsapps.shinyapps.io/bias/, and features five
main tabs: 1. Expected Quantiles: Displays the expected distributions of selected perfor-
mance metrics (accuracy, Fl-score) or bias for selected prediction-derived PSG marker, as a
function of age, gender, and selected AHI/PLMI values. It also presents a table of expected
quantiles at (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99)% for both males and females. 2. Region of
Practical Equivalence (ROPE):Illustrates ROPE coverages for predefined sample thresh-
olds to assess the expected proportion of predicted PSG markers within predefined ROPE-
bounds of negligible errors (i.e., practical equivalence). 3. Probability of Bias: Computes
the percentage of cases where the algorithmic prediction (fj) overestimates the physician-
based reference value (y). 4. Model Summary: Provides detailed statistical outputs, including
ANOVA tables, p-values, and other relevant information for each bias/performance model.
5. Partial Effects: Visualizes the effects of numeric bias-inducing variables (age, AHI,
PLMI) along with their 95% confidence intervals. This is particularly relevant for age, whose
effect was modelled as possibly a non-linear spline term. The app offers a flexible explo-
ration of bias and performance quantification models, supporting further interpretability
and reproducibility of our findings.

4.3.2 Descriptive statistics of bias-inducing variables

For both bias- and performance-quantification models (Eq. 4.3-4.4), we consider age, gen-
der, AHI (Apnea-Hypopnea Index), and PLMI (Periodic Limb Movement Index) as poten-
tial bias-inducing variables X. These variables are clinically known to affect sleep and were
therefore considered to eventually impact the predictive performance and the bias in sleep-
scoring algorithms. The study dataset consists of a subset of 4,075 PSG recordings from
Berner Sleep-Wake Registery (BSWR), where these variables were fully observed. Most
recordings were from male subjects (63.1%) with a mean (SD) age of 50.1 (18.0) years, while
female subjects accounted for 36.9% with a mean (SD) age of 45.9 (18.7) years.

The upper part of Table 4.1 presents further statistical characteristics of X, including
Spearman correlations (p) and gender differences assessed by the Wilcoxon test. The overall
mean age was 48.6 (18.4) years, with a broad range of 0-91 years. AHI, a measure of breath-
ing arrest frequency, had a mean of 18.1 (20.1) with values ranging from 0 to 155.2. PLMI,
reflecting the limb movement frequency, exhibited a mean of 13.4 (24.5), ranging from 0 to
240. Correlation analysis using Spearman’s p, which robustly accounts for monotonic re-
lationships, showed significant positive associations between age and both AHI (p = 0.41)
and PLMI (p = 0.27). AHI and PLMI were also positively correlated (o0 = 0.11), support-
ing prior findings that breathing- and movement-related sleep disruptions tend to co-occur
and increase with age [154]. Gender differences were evident in all numeric X variables.
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Males—who were in our dataset older (median difference = 4)—exhibited a higher AHI
(median difference = 7.3) and PLMI (median difference = 1.9), compared to females. These
differences may be attributed either to the greater prevalence of sleep-disordered breathing
in males [149] or to age-related increases in AHI and PLMI [154], given that males were
older.

4.3.3 Algorithmic Performance

Descriptive statistics of performance metrics The bottom part of Table 4.1 summarizes
the on-subject performance metrics, specifically accuracy and macro F1-score of U-Sleep and
YASA achieved on BSWR, representing the out-of-domain dataset. Performance was evalu-
ated using accuracy and macro-F1 score, calculated for the five-class sleep staging task, with
the macro-F1 score computed as the unweighted average of the per-class F1-scores. U-Sleep
achieved a mean (SD) accuracy of 79.2% (10.0), outperforming YASA, which reached 74.6%
(11.8). The same trend was observed for the Fl-score, with U-Sleep at 74.3% (11.1) versus
YASA’s 66.1% (13.3).

Performance varied substantially across subjects, with both models occasionally pro-
ducing either perfect predictions (100%) or near-complete misclassifications (0%). These
extremes justify modelling performance using a zero-and-ones-inflated beta distribution
(Eq. 4.4) to capture both central and boundary tendencies. Looking at the lower quar-
tile (Q25), U-Sleep maintained the accuracy and F1-score of 75.0% and 69.9%, while YASA
dropped to 69.3% and 60.1%, indicating predictive power lower than the commonly reported
inter-rater agreement level of about 75-80%][14], [15], [66], [140] for at least 25% of subjects,
for both algorithms. Conversely, at the upper quartile (Q75) in accuracy and F1-score, the
U-Sleep reached 86.0% and 81.7%, whereas the YASA 82.9% and 75.5%, respectively, both
approaching or slightly exceeding the commonly reported inter-scorer agreement level in
the literature [14], [15], [66], [140]. Given that our clinical data include scoring patterns from
over 60 physicians, this suggests that both algorithms—based on naive sample-based com-
parisons ignoring influence of bias-inducing variables—achieve or exceed the performance
bound of human-level agreement in about 25% of cases.

Further, correlations revealed negative associations between age, AHI, PLMI, and both
accuracy and F1-score across models. For example, age was negatively correlated with U-
Sleep and YASA’s accuracies (o of -0.29 and -0.27, respectively), suggesting performance
declines in older subjects. Similarly, AHI and PLMI negatively correlated with both perfor-
mance metrics, indicating that individuals with more breath- and movement-related events
(observed more in older) pose classification challenges, with steeper performance decline
for AHI. In addition, the Wilcoxon test revealed gender differences, with both algorithms
showing median performance reductions across metrics of about 2.5% in males.

These results highlight the importance of considering demographic and clinical factors
in model evaluation. The substantial variability observed across different subgroups under-
scores the need for robust performance quantification frameworks, ensuring both, the trans-
parent reporting of algorithmic capabilities, and their equitable deployment across diverse
populations.



Table 4.1: Summary statistics of demographic and clinical variables and performance metrics for U-Sleep and YASA.

Metric \ Mean SD Q10 Q25 Q50 Q75 Q90 Min Max \ p(Age) p(AHI) p(PLMI) M-F
Demographic and Clinical Variables
Age 486 184 230 360 51.0 620 720 00 910 1 0.41 0.27 4
AHI 181 201 14 41 11.0 244 448 0.0 1552 0.41 1 0.11 7.3
PLMI 134 245 00 00 29 148 423 0.0 2400 0.27 0.11 1 1.9
Model Performance Metrics
Accuracy (U-Sleep) 792 100 668 750 814 860 892 1.0 100.0 -0.29 -0.35 -0.19 -2.18
Accuracy (YASA) 746 118 590 693 772 829 862 0.0 100.0 -0.27 -0.36 -0.19 -2.64
F1-score (U-Sleep) 743 111 599 699 769 817 852 1.7 100.0 -0.28 -0.27 -0.16 -2.23
Fl-score (YASA) 66.1 133 477 601 694 755 796 0.0 100.0 -0.29 -0.29 -0.18 -2.69

Notes: Mean, standard deviation (SD), (10, 25, 50, 75, 90)%-quantiles (Q10, Q25, Q50, Q75, Q90), minimum (Min), and maximum (Max) values are reported. Spearman correlations (o) with age, AHI, and PLMI are provided,
along with the median difference between males and females (M - F), assessed using the Wilcoxon test. Significant correlations and differences are highlighted based on the p-value thresholds: 0.05 , 0.01 ,and 0.001 ,

respectively.
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Performance-quantification models To assess the systematic impact of demographic and
clinical factors on algorithmic performance (accuracy, Fl1-score), we employed the zero-and-
ones-inflated Beta distribution (Eq. 4.4) within the GAMLSS framework. This approach en-
abled flexible modelling of performance distribution, rescaled to the [0,1] interval, capturing
both expected quantiles and extreme cases of perfect (100%) or zero performance. We did
not include Cohen’s Kappa, a common metric of agreement comparison, in our analysis due
to its value range of [-1, 1], which would complicate direct interpretability and comparison
with other [0,1] bounded metrics (accuracy, Fl-score) on the percentual scale. In princi-
ple, our framework using inflated Beta distribution can accommodate Cohen’s Kappa via
min-max normalisation that would bring its values to [0,1] range. For each metric and al-
gorithm, the predictor functions of each distributional parameter (¢, o, v, T) were identified
using a forward stepwise regression procedure with Generalized Akaike Information Crite-
rion (GAIC) in the gamlss R package. The stepwise procedure starts from an intercept-only
model and iteratively adds the most significant predictor, if available. For the functional
form of predictors, we considered the binary gender-male indicator, linear terms of AHI
and PLMI, and a P-spline[155] age-term with 3 degrees of freedom (df). Whereas the bi-
nary/linear terms enable quantification of a uniform change (increase/decrease) in outcome
(performance) due to a unit change in X (i.e., gender, AHI, PLMI), the spline age-term with
df = 3 enables data-driven estimation of non-linear effects, with up to two inflection points
(local extremes). The rationale behind the choice of linear effects for AHI and PLMI is that
these measures of breathing and movement disturbances are expected to proportionally de-
grade performance and increase its variability. In contrast, age was modelled using splines
to account for potential nonlinear changes in sleep structure at the biological level [18], [78],
[79], which we anticipated would manifest as non-uniform shifts in the performance distri-
bution.

Table 4.2 presents the estimated predictors of each performance metric and the two sleep-
scoring algorithms. The spline term of age significantly influenced the location (y) and scale
(0) in all cases, indicating a nonlinear relationship across age and both, expectation and
variability of U-Sleep and YASA performance metrics. A detailed view of these effects can
be seen in Supplementary Figures A.1-A.4. AHI and PLMI were significantly associated
with lower expected performance (decreasing y) and higher variability (increasing o) across
both models, reinforcing the challenge of scoring individuals with frequent breathing ar-
rests and movement disturbances. Gender effects were minimal, with a significant impact
observed only in U-Sleep’s location parameter, suggesting potential gender-related dispari-
ties beyond age and AHI/PLMI effects. Notably, YASA showed no significant gender-based
performance differences. Finally, neither zero-inflation (v) nor one-inflation (7) showed sig-
nificant associations with any bias-inducing factors. However, this lack of significance likely
results from the scarcity of extreme performance cases (<5 such PSGs per scenario). More
details on individual effects can be obtained from the supplementary app, specifically Model
Summary and Partial Effects tabs.

Performance Across Demographic and Clinical Subgroups Figure 4.1 and Supplemen-
tary Figure A.5 depict the expected distribution of subject-specific F1-scores and accuracy
for U-Sleep. Parts (i)-(iii) and (iv)-(vi) demonstrate the marginal distribution of age, AHI,
and PLMI, for males and females, respectively. For both metrics and genders, the high-
est performance with the least variability (i.e., the narrowest quantile spread) is observed
in mid-20s females with no apnea- or movement-related events (AHI = PLMI = 0). In this
group, the median Fl-score and accuracy reach 81.7% and 86.5%, respectively, with 1-99%
quantiles spanning 63.3-93.7% (F1-score) and 70-96.1% (accuracy). In all quantiles, males
reach slightly lower performance, with difference <1%, reflecting the significant y term in
Table 4.2. Performance declines notably in pediatric subjects, and variability increases at
both younger and older ages (cf. Supplementary Figures A.1-A.2). For instance, newborn
and 75-year-old females exhibit median Fl-scores of 59.2% and 74.3%, with corresponding
1-99% ranges of 32.3-82.9% and 46.6-92.7%. The accuracy (Supplementary Figure A.5) fol-
lows a similar trend, as it is closely related to the F1-score. These systematic and statistically
significant distributional age-related shifts in algorithmic performance can be attributed to
several factors. First, imbalances and under-representation of different age groups in U-
Sleep training data, e.g., only 1 in 14 databases is children-based [60]. Second, the algorithm
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Table 4.2: Significant predictors in performance quantification models for
U-Sleep and YASA.

Performance  Sleep-scoring | Performance-model’s Performance-models’ terms
metric algorithm parameter Intercept  pb(Age) AHI PLMI  Gender
logit(pt) 1.629 * -0.008 -0.003 -0.044
logit(c) -1.636 *0.004 0.003 -
U-Sleep log(v) -21.538 - - - -
log(T) -7.191 - - - -
Accuracy - == == - - |- logit(u)” 1345~~~ * 20010 -0.002 -~
logit(o) -1.449 * 0.006  0.003 -
YASA log(v) 21.538 - - - -
log(7) -7.597 - - - -
logit(p) 1.286 * -0.006 -0.003 -0.043
logit (o) -1.522 *0.003  0.003 -
U-Sleep log(v) -21.538 - - - -
log(T) -7.191 - - - -
Flscore - -—-----|- logit(u)~ 0900 ~ ~ ~ * 0008 -0.003 -~
logit (o) -1.281 *0.004 0.003 -
YASA log(v) -20.538 - - - -
log(7) -7.597 - - - -

Notes: Significant predictors for the zero-and-ones-inflated Beta distribution GAMLSS model used for performance quantification
of accuracy and macro Fl-score in U-Sleep and YASA sleep-scoring algorithms. The table reports parameter estimates for the
model’s location (i), scale (¢), zero-inflation (v), and one-inflation (7) terms. Predictors include the intercept, age (modelled as a
spline term, pb(Age)), AHI, PLMI, and gender. "*" indicates a significant spline term, while "-" denotes non-significance. The spline
term for age, pb(Age), which cannot be summarized by a single coefficient, can be further explored through the interactive
application supplementing our study.

may struggle to learn clinically established age-related EEG changes [79], as evidenced by
increasing performance variability and decreasing accuracy in older subjects. Third, since
U-Sleep does not incorporate age as an input [59], it cannot capture age-EEG interactions.
Lastly, AASM guidelines define distinct sleep-scoring rules for pediatric cases [8]. The com-
bination of missing age information and the under-representation of children in the training
data makes pediatric sleep staging particularly challenging. In addition to the age-related
performance shifts, panels (ii)-(iii) and (v)-(vi) demonstrate the AHI-PLMI effects for males
and females, respectively. For both AHI and PLMI, the performance metrics significantly de-
crease and their variability increases, particularly with AHI. As shown in the Figure 4.1, the
median and 1-99% range in Fl-score for 50-year-old female with AHI = PLMI = 0 decreases
from 79% (58.9-92.6) to 73.7% (50-90.7) if AHI = 50 and PLMI = 0, and to 76.5% (52.6-92.5)
if AHI = 0 and PLMI = 50. These changes are likely related to movement artefacts possibly
introduced by both AHI and PLMI, but also to the altered sleep patterns, such as increased
sleep stage transitions and reduced sleep efficiency, that all correlate also with age and may
pose challenges to both, sleep-scoring algorithms and also human-scorers, who tend to reach
lower agreement for PSGs of sleep-disordered subjects [67]-[69].

Similar trends are observed in Supplementary Figures A.6 and A.7, and A.3-A.4, which
illustrate the distributions of F1-score and accuracy, and related age effects, for YASA, respec-
tively. Unlike U-Sleep, none of the distributional parameters of YASA's performance metrics
were significantly impacted by gender (cf. Table 4.2), indicating the absence of gender bias
in YASA predictions. Consistently with U-Sleep, maximal performance with minimal vari-
ability, of 74% (50.4-90.8) and 82.2% (61.9-94.7) in median and 1-99% range of F1-score and
accuracy, respectively, is reached for subjects in their mid-20s. The trend of declining perfor-
mance, down to 55% (39.2-80.8) in F1-score in newborns and 66.6% (38.5-88.6) in 75-year-old
subjects, is consistent with U-Sleep, reflecting the same underlying challenges. YASA's per-
formance exhibits a more pronounced decline with AHI, as indicated by the estimated u
effects from Table 4.2, which are larger in magnitude compared to U-Sleep (e.g., -0.008 vs.
-0.01 for U-Sleep and YASA accuracies, respectively). Similarly, YASA’s performance vari-
ability tends to be larger, as reflected by greater o effects. In contrast, PLMI had comparable
effects on both y and ¢ in both algorithms. As shown in Supplementary Figure A.6, for a
50-year-old subject with AHI = PLMI = 0, the median and 1-99% range in F1-score decreases
from 71.8% (45.9-90.4) to 63.1% (32.5-87.7) if AHI = 50, PLMI = 0, and to 68.5% (39.3-90.1) if
AHI =0, PLMI = 50.

In summary, YASA exhibits about 5% lower performance than U-Sleep and follows a
very similar trend concerning subjects’ age. In addition, YASA seems to be more sensitive
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Figure 4.1: Expected distribution of subject-specific F1-score for U-Sleep
across demographic and clinical subgroups.
(i) Expected F1-macro [%] for male (i) Expected F1-macro [%] for male (iii) Expected F1-macro [%] for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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(iv) Expected F1-macro [%)] for female (v) Expected F1-macro [%)] for female (vi) Expected F1-macro [%)] for female
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Notes: Expected distribution of the subject-specific macro F1-score based on the zero-and-ones-inflated Beta performance model
for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution
as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median,
while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99%
in red, illustrating the expected performance variability across subjects’ characteristics.

to breath-disruption-related artefacts and sleep alterations, as its performance declines more
with AHI. These results suggest that the compared version of deep-learning-based U-Sleep
has superior sleep-scoring capability than YASA. However, as both were trained on different
amounts of data, we cannot conclude, whether U-Sleep superiority is attributable to a more
complex model’s architecture or a larger set of training data. Next, unlike YASA, U-Sleep
predictions exhibit a small but statistically significant gender bias. Finally, arbitrary results
quantifying performance distribution of both algorithms and specified age, gender, AHI,
and PLM]I, including their marginal effects, can be explored in our interactive app.

4.3.4 Algorithmic bias concerning clinical markers

While the previous section evaluated the overall predictive performance of the algorithms
in sleep stage classification, this section explores whether algorithmic predictions accurately
preserve clinically relevant PSG markers and whether errors in derivations of these markers
are random or systematically influenced by bias-inducing variables X.

Descriptive statistics of PSG markers based on physicians” and algorithms’ sleep-scoring:
Supplementary Table A.1 summarizes the statistical characteristics (mean, SD, quantiles,
min, max) of PSG markers derived from reference physicians’ scoring and (U-Sleep, YASA)
algorithmic predictions, based on our BSWR dataset. Additionally, the results of Wilcoxon
signed-rank tests, assessing whether differences between algorithmic and physician-based
values are symmetrically distributed around zero, are presented. The values of PSG mark-
ers span their full possible ranges: the (sleep, REM) latencies vary from 0 minutes to hours,
hypnograms include cases with no recorded sleep (i.e., total sleep time and sleep efficiency),
and sleep-stage percentages exhibit broad variability. For example, the mean (SD), min-max
range of W% was 19.9 (14.9), 0-100 for physician-based scoring, whereas 18.5 (14.4), 0-100
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and 28.7 (17.2), 1.9-100 based on derivation from U-Sleep and YASA predictions, suggesting
possible U-Sleep under-estimation and YASA over-estimation of wakefulness percentages.
Except for sleep cycle counts for YASA, Wilcoxon-based comparisons revealed significant
deviations from zero in error distributions for all PSG markers across both sleep-scoring
algorithms, indicating systematic shifts in their predictions.

Expected clinical trends and their potential impact on bias interpretation: Established
clinical literature describes several age-, gender-, and pathology-related trends in hypnogram-
derived markers that are important to consider when interpreting potential biases. For ex-
ample, N3 sleep is known to decline with age [17], [18], [156], which could amplify relative
errors or lead to proportional overestimation in subjects with already low N3 duration.
Total sleep time (TST) tends to decrease and wake after sleep onset (WASO) increases with
age [17], [156], [157], which may affect the accuracy of TST and WASO predictions in older
adults. Similarly, AHI and PLMI—both of which increase with age and are more common
in males and older subjects [158], [159]—are linked to more fragmented sleep, increased
awakenings, N1, and N2, and reductions in REM and N3 stages [18]. These factors are also
known to elevate inter-scorer disagreement, particularly in clinically complex subjects [67]-
[69], [88], which may increase the uncertainty of the reference labels used for evaluation. As
a result, there is a potential for both overestimation and underestimation of certain markers
by automated algorithms. Moreover, elevated label variability in these subgroups could
lead to an inflation of the observed bias spread, even in the absence of systematic over-
or under-prediction. By explicitly including age, gender, AHI, and PLMI as covariates for
both location (y) and scale (¢) distributional parameters in our proposed bias-quantification
framework, it is designed to account for these expected influences.

Descriptive statistics of algorithmic errors in PSG markers Supplementary Table A.2
presents the characteristics of raw errors in PSG markers, derived from algorithm-predicted
and physicians’ sleep-scoring. A negative mean or median (Q50) raw error suggests that the
model underestimates a given marker, meaning the predicted value is, on average, lower
than the reference one, in the majority of evaluated PSGs. For example, the percentage
of wakefulness after sleep onset (W%) is on-average underestimated by 1.3% by U-Sleep,
whereas YASA overestimates it by 8.8%. Median errors, which are less sensitive to out-
liers, confirm this trend, with values of -0.6 and 6.2 for U-Sleep and YASA, respectively.
The smaller magnitude of the observed errors for U-Sleep may be attributable to its gener-
ally higher sleep-scoring performance identified above. Further, the systematic under- and
over-estimation of W% by the two models propagate to related sleep metrics: U-Sleep un-
derestimates sleep latency, WASO, and the number of awakenings per hour, while YASA
overestimates them. Conversely, U-Sleep overestimates total sleep time and sleep efficiency,
whereas YASA underestimates them. Further, Table 4.3 describes absolute errors, which
disregard under- and overestimation, and quantify the overall magnitude of algorithmic er-
rors. For W%, U-Sleep has a mean (SD) absolute error of 3.2 (4.9), indicating lower bias and
its spread compared to YASA’s 9.1 (9.5). Additionally, the best-performing 10% of subjects
(Q10) had an absolute error below 0.3% for U-Sleep and 1.8% for YASA, suggesting a six-fold
larger error magnitude in YASA's best cases. In contrast, the worst 10% (Q90) exhibited abso-
lute errors of at least 7.7% for U-Sleep and 19.5% for YASA. Table 4.3 enables corresponding
interpretation for all of the PSG markers listed. The merit of using absolute errors and their
quantiles lies in their intuitive interpretability—they provide a clear summary of the error
distribution across the dataset. For example, a Q50 (median absolute error) of 7.0 minutes
for U-Sleep and 26.0 minutes for YASA in total sleep time (TST) suggests that, for half of
the evaluated PSGs, the predicted TST deviated from the reference by less than +7 and +26
minutes, respectively. In addition, Table 4.3 presents the Spearman correlation of absolute
errors with age, AHI, and PLMI, alongside gender-based error differences assessed via the
Wilcoxon test. Except for sleep cycle count (for both algorithms) and the correlation between
age and awakenings per hour (for YASA), absolute errors in all PSG markers and both mod-
els show significant correlations with age, AHI, and PLMI. The signs of these correlations
were shared among the age, AHI, and PLMI, likely due to their joint (positive) association
with age (cf. Table 4.3). Among the significant associations, the absolute errors, and hence
the error-bounds, tend to increase with age, AHI, and PLMI for most PSG markers in both
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models. However, an exception is observed in N3 and REM%, which are clinically known to
decrease with age [18], and likely therefore the error magnitude tends to be smaller (also in
age-positively correlated AHI and PLMI). Regarding gender differences, out of 13 evaluated
PSG markers, U-Sleep exhibited 10 significant gender-based differences in absolute error,
with 8 overestimations and 2 underestimations in males. In comparison, YASA showed 6
such differences, with 4 and 2 over- and underestimation in males.



Table 4.3: Summary of absolute errors in PSG markers derived from U-Sleep and YASA compared to physician scoring.

Absolute Error Algorithm | Mean SD Q10 Q25 Q50 Q75 Q90 Min Max | p(Age) p(AHI) p(PLMI) | M-F
Sleep Latency U-Sleep 55 138 00 05 15 45 135 00 2710 0.09 0.09 0.09 | -0.50
[minutes] YASA 98 185 05 1.0 4.0 105 235 0.0 2665 0.17 0.13 0.10 | -1.00
REM Latency U-Sleep 302 622 05 10 30 160 1080 0.0 608.0 0.04 0.06 0.05 | 0.00
[minutes] YASA 455 672 1.0 25 100 705 1443 0.0 4115 0.09 0.10 0.09 | 0.00
Total Sleep Time U-Sleep 135 212 10 30 70 155 315 0.0 3535 0.17 0.18 013 | 1.50
[minutes| YASA 383 413 75 145 260 470 815 00 5325 0.13 0.22 0.14 | 1.00
WASO U-Sleep 128 206 10 25 6.0 145 305 0.0 3175 0.18 0.19 0.14 | 150
[minutes] YASA 31.8 360 45 105 210 400 695 0.0 4265 0.09 0.19 012 | 1.50
Sleep Cycles U-Sleep 03 06 00 00 00 05 1.0 00 8.0 0.01 0.01 -0.02 | 0.00
[N] YASA 05 07 00 00 00 10 1.0 00 105 -0.02 0.02 -0.01 | 0.00
Transitions U-Sleep 72 51 14 34 64 101 139 00 398 0.16 0.22 0.04 | 0.30
[N /hour] YASA 59 47 09 24 48 85 119 00 382 0.20 0.23 0.06 | 0.54
Awakenings U-Sleep 10 12 01 03 06 12 2.1 0.0 171 0.13 0.20 0.07 | 0.15
[N /hour] YASA 19 18 02 06 14 27 43 00 156 0.01 0.14 0.04 | -0.05
Sleep Efficiency  U-Sleep 32 49 03 07 17 37 77 0.0 663 0.20 0.20 0.14) | 047
[%] YASA 91 95 18 34 63 114 195 00 999 0.17 0.24 0.14 | 048
W U-Sleep 32 49 03 07 17 37 77 0.0 663 0.20 0.20 014 | 047
[%] YASA 91 95 18 34 63 114 195 00 999 0.17 0.24 0.14 | 048
N1 U-Sleep 66 66 07 21 47 90 148 00 615 0.27 0.30 0.14 | 1.37
[%] YASA 113 95 22 46 88 151 235 00 774 0.39 0.46 023 | 261
N2 U-Sleep 97 84 15 37 76 132 201 00 783 0.12 0.24 0.10 | 0.63
[%] YASA 7.3 6.8 0.9 2.5 54 10.0 16.0 0.0 78.1 0.25 0.28 0.11 0.90
N3 U-Sleep 47 50 04 13 33 65 110 00 753 -0.09 -0.07 -0.03 | -0.53
[%] YASA 43 49 03 11 27 57 103 00 753 -0.09 -0.09 -0.04 | -0.29
REM U-Sleep 20 25 01 05 12 26 46 00 376 -0.10 -0.08 -0.07 | -0.11
[%] YASA 27 31 03 08 18 36 60 00 398 -0.07 -0.04 -0.03 | -0.04

Notes: Summary of absolute errors in sleep metrics, derived from hypnograms predicted by U-Sleep and YASA compared to those derived from physician-scored hypnograms. The table presents the mean absolute error,
standard deviation (SD), (10, 25, 50, 75, 90)%-quantiles (Q10, Q25, Q50, Q75, Q90), minimum (Min), and maximum (Max) values. Spearman correlations (p) evaluate the association of absolute errors and bias-inducing factors
(age, AHI, and PLMI) across various sleep metrics. The table also includes the median difference in absolute errors between males and females (M - F), assessed by the Wilcoxon test. Significant associations and differences are

highlighted as p-value < 0.05, 0.01 ,and 0.001 , respectively.
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Bias-Quantification Models The descriptive statistics of error distributions in PSG mark-
ers provided an overview of the general trends of algorithmic biases, and correlations as-
sessed their pairwise associations. Despite the level of detail, conclusions about potential
biases should not rely solely on descriptive statistics. Measures such as averages or quan-
tiles do not account for the uneven distribution of the population, for instance, variations in
age or clinical characteristics (AHI, PLMI), nor do they reflect how these factors individu-
ally influence the distribution of prediction errors. To systematically quantify biases while
accounting for all bias-inducing variables X (age, AHI, PLMI, and gender) simultaneously,
we modelled the differences between algorithm-predicted and physician-based reference
PSG markers using the generalized normal distribution from Eq. 4.3. Each distributional
parameter—location (y) and scale (¢)—was modelled with unique predictors. As in the per-
formance models, predictor functions for each distributional parameter were selected via a
forward stepwise regression procedure using the Generalized Akaike Information Criterion
(GAIC). Using the same rationals as for the performance quantification models, the candi-
date predictors included gender (male) indicator, linear terms of AHI and PLMI, and the
cubic spline of age. Table 4.4 summarizes the significant predictors (X) for location () and
scale (¢) in each marker-specific bias-quantification (BQ) model. The effects of each pre-
dictor in these models can be interpreted as adjusted for all other included variables. In
some cases, certain predictors were not included, because their inclusion did not improve
the GAIC, meaning, their presence would increase model complexity without enhancing
goodness-of-fit.

A key finding is that for both U-Sleep and YASA, bias distribution of all PSG markers
was significantly influenced by the spline term of age in both location and scale parameters.
This suggests that the magnitude and variability of errors in both algorithms systematically
and non-linearly differ across ages. Several clinical and technical factors likely contribute to
this result, paralleling those discussed in performance quantification: (i) AASM guidelines
define different scoring rules for pediatric and adult subjects [8], (ii) sleep architecture dif-
fers across age groups (e.g., variations in sleep-stage percentages) [18], [78], [139], (iii) raw
EEG signals evolve with age and may carry age-related artifacts [79]. Since neither U-Sleep
nor YASA incorporates age as its input [58], [59], these age-related variations are likely ig-
nored in both models. Consequently, the algorithms may underfit the AASM guidelines due
to omitted variable bias (as age defines different scoring rules for pediatric vs adult sub-
jects), or overfit specific age-related EEG patterns [79] correlated with sleep stages, rather
than learning scoring rules directly. It is important to mention that Fiorillo et al. [60] con-
ducted extensive computational experiments to assess whether the fine-tuning of U-Sleep
on specific age groups could enhance its performance in age-matched test data. However,
applying sandwich batch normalization (SaBN)—a rolling standardization technique similar to
z-score normalization conditioned on age—did not yield significant improvements [60], as it
may have failed to capture the age-related EEG alterations that are manifested primarily in
spectral (frequency) domain [79]. A more straightforward approach could involve applying
SaBN selectively to specific frequency bands incorporating age as an additional input to the
model, or using age-stratified sampling during the training.

Further, both AHI and PLMI were associated with the increased error variability () and
seem to worsen the baseline bias (y), meaning, they typically increase the magnitude of
the bias in the direction identified for specific ages. The only exceptions were the ¢ in the
number of sleep-cycles (not influenced by AHI in U-Sleep; decreasing with PLMI in both
algorithms) and the N3% (decreasing with AHI in both algorithms; decreasing with PLMI in
YASA). These exceptions may likely be related to reductions in N3 and REM sleep evidenced
in subjects with movement- and breath-related sleep disorders [18], [139], [151].

Out of 13 PSG markers, gender significantly influenced bias in 7-8 (y-0) parameters
for U-Sleep and 10-9 respective parameters for YASA, suggesting that YASA exhibits more
gender-related biases than U-Sleep after controlling for age, AHI, and PLMI. This also sug-
gests that the larger count in significant gender differences in descriptive error statistics for
U-Sleep (cf. Table 4.3), may rather be attributed to the age- rather than gender-related bias,
as males our study dataset are significantly older (cf. Table 4.1). After adjusting for all
bias-inducing variables simultaneously, U-Sleep seems to be less affected by gender-bias
compared to YASA. Most prominent gender-related biases included the male-specific effect
of 1.29 in u of N3% bias for U-Sleep, -1.32 minutes in y in sleep latency for YASA, and 5.48
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minutes in p of REM latency error for U-Sleep.

Based on the estimated bias models from Table 4.4, Figure 4.2 illustrates the expected
bias distribution for W% in U-Sleep. Sub-figures (i) and (iv) show the expected bias for
males and females under an optimistic scenario where AHI = PLMI = 0. Since gender does
not significantly affect y, the trend remains consistent between males and females; however,
variance is greater in males due to significant ¢ term (cf. Table 4.4). W% is underestimated
in pediatric cases (age <18 years), likely due to the already discussed differences in AASM
scoring rules. Bias is minimal with the highest precision (lowest variance) in early adulthood
(20s), followed by increasing underestimation and variability with age. The partial effects of
age on y and o of W% bias in U-Sleep is provided in Supplementary Figure A.8 and can be
compared with Supplementary Figure A.9 for YASA, which overestimates the W%. Finally,
both AHI and PLMI from panels (ii, v) and (iii, vi) of Figure 4.2 amplify underestimation
and increase variance, as indicated by a decreasing median (Q50) trend and widening 1-99%
quantile range.

Corresponding results quantifying bias distribution for all evaluated PSG markers and
arbitrary age, gender, AHI, and PLMI for both U-Sleep and YASA, including their marginal
effects, can be explored in our interactive app. Supplementary Figures A.1-A.22 and A.1-
?? provide a detailed view of the bias distribution regarding individual clinical markers
derived from YASA and U-Sleep predictions, respectively, including their dependencies on
age, gender, AHI, and PLMI.

Figure 4.2: Expected distribution of the bias in the wakefulness percentage
after sleep onset (W, %) for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the percentage of wakefulness (W%) based on the generalized normal distribution for
U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.

4.3.5 Utilizing biased predictions for diagnostic purposes

The derived PSG markers are in clinical practice widely used for diagnostics. In previous
sections, we highlighted potential biases in sleep-scoring algorithms when predicting these
markers. This section evaluates whether simple machine learning (ML) classifiers trained on
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Table 4.4: Significant predictors of bias quantification models for PSG
markers in U-Sleep and YASA.

PSG Sleep-scoring  Bias-model’s Bias-models’ terms
parameter algorithm parameter Intercept  pb(Age) AHI PLMI  Gender
) i 1628 T 0020 0038 0768
Sleep Latency U Ie¢P log(r) 2.523 * 0003 0005  -0.107
[minutes] i oax 1 w7027 0 FT0061 0 0079 0 -1.321
YASA
log(c) 2.518 * 0004  0.008 -
— i 8839 : 0115 5477
REM Latency p log (') 4.023 * 0004 0002  -0.168
[minutes] " ioan ] W T 21570 T T *FT T T T T T T T T T T
YASA log () 1161 * 0004 0003  -0.079
) r 1027 T 0055 0.038 -
TotalSleep Time U O°P log() 2666 * 0004 0006 _ 0045
[minutes] VAGA i 73.886 ST 0443 0153 3203
log(0) 3.490 + 0008 0004  -0.125
) r 0.110 T 0.036 0377
WASO UBleeR ggle) 2709+ 0005 0005 -
[minutes] VAGh ; 31,504 70388 T 0078 797
log(c 3.386 * 0008 0004  -0.051
Uiee yg( : 0243 T 0001 -0.001 -
Sleep Cycles P log(0) -0.560 * - -0.002 0.075
Nl uaen w0083 T T a
YASA log () 0410 + 0003 0001 0057
) T 6362 T 0048 0.001 -
Transitions U-Sleep log(o) 1.499 *0.009  0.002 -
[N/hour] L iax 1 W 3826 0 * 0048 T - T -7
YASA log () 1589 * 0007  0.002 ;
o r 0.071 + 0010 0.001 -
Awakenings P log () -0.106 * 0011  0.002 0.114
[N/ hour] e T T T T T Am7 T T T TR 002 000A T T 0255
log () 0.552 * 0009 0002  -0.054
) r 0.359 0015 0010 -
Sleep Efficiency ~ © 1P log () 1244 * 0005 0006  0.058
%] uaexn W -6.892  ~  ~ * 0109 -0.036  0.619
YASA log(0) 1977 + 0008 0004  -0.072
) I 0359 0015 001 -
w U-Sleep log(r) 1244 * 0005 0006  0.058
%] uxen w7 6892 *770109 0036  -0619
YASA
log () 1977 * 0008 0004  -0.072
U-Sleep r 3634 T 0086 0013 0.065
N1 log(c 1558 + 0010 0004  0.101
[%] B ;{1;5; 77777 U Bl -6.557 ~ ~ ~ ~ * 7 0205 -0.054 ~ -0.298
log () 1683 + 0010 0003  0.081
6231 011 0030 0737
N2 U-Sleep o (o) 1.831 * 0008  0.002 -
%] uaex w1193 0 *T70.094 0 0020 0526
YASA log () 1.845 * 0009  0.002 -
) r 3794 : - 129
N3 U-Sleep log(c) 1.832 * 0003 0001  -0.074
%] uaean W 2791~ * 700150 T -0 T 0732
YASA log () 1872 * 0003 0001  -0.158
el r 1597 T0008 0007 0293
REM cep log (o) 0.866 * 0002  0.001 -
%] uaen w0765~ * 70009 -0 -~
YASA log(0) 1218 + 0002 0002 ;

Notes: Significant predictors for the extended normal distribution GAMLSS model used for bias quantification of U-Sleep and
YASA in predicting key clinical markers derived from PSG data. The table reports parameter estimates for the model’s location ()
and scale (), alongside the significance of bias-model terms, including the intercept, age (as a spline term, pb(Age)), AHI, PLMI,
and gender. "*" indicates a significant spline term, while "-" denotes non-significance. The bias in each PSG-derived marker was
assessed by comparing derivations based on hypnograms predicted by (U-Sleep/YASA) with those obtained from physicians.

PSG markers derived from physician-scored and algorithm-predicted hypnograms can mit-
igate these biases and effectively identify the presence of Obstructive Sleep Apnea (OSA).
OSA was chosen as the target condition due to its high prevalence—affecting approximately
17% of the general population [149]—its role as a significant risk factor for overall mortal-
ity and cardiovascular events [150], and its well-documented impact on sleep patterns [18],
[139], [151]. For this analysis, we identified a subset of 678 PSG recordings from 641 unique
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subjects (69% males), with a mean (SD) age of 52.1 (15.7) years, where a conclusive diag-
nosis of either OSA—616 PSGs from 579 subjects aged 53.9 (14.3), 72.7% males—or healthy
control—62 PSGs from 62 subjects aged 34.9 (18), 40.3% males—was available. This subset
passed the exclusion criteria of failing to fall asleep (i.e., total sleep time = 0), application of
respiratory therapy (e.g., CPAP), or if excessive light exposure affected more than 5% of the
PSG-study duration. As predictors, we employed 29 hypnogram-derived PSG markers:

* Minutes [mins] of (sleep, W, N3, REM)-latencies, Wake-After-Sleep-Onset (WASO),
Total-Sleep-Time (TST), mean- and maximum-durations of (W, N1, N2, N3, REM), to-
talling 16 variables;

e Percentages [%] of (W, N1, N2, N3, REM)-stages after sleep onset, and sleep efficiency,
totalling 6 variables;

e Counts [N] and rates [N /hour] of sleep-stage-transitions and awakenings, totalling 4
variables;

e Count [N] of NREM-REM cycles different bout durations (0,3, and 10 minutes), to-
talling 3 variables,

and their interactions with age (in decades) and gender (binary indicator: 1 = male, 0 =
female). This resulted in a total of 87 = 3 x 29 hypnogram-based predictors, supplemented
by age and gender. These predictors were computed based on both physician-scored and
algorithm-predicted hypnograms (U-Sleep and YASA).

We evaluated five ML classifiers: Linear Discriminant Analysis (LDA), LASSO and
Ridge logistic regression, Random Forest (RF), and K-Nearest-Neighbors (KNN). To es-
timate uncertainty in performance metrics, we applied a cross-validation (CV) strategy,
and partitioned PSG recordings into five approximately equal-sized subject-wise splits
(folds/groups) using anticlustering [160], ensuring balanced distributions of age, gender,
and OSA prevalence across folds. Model hyperparameters, such as the regularization pa-
rameter A for LASSO and Ridge, and the number of neighbors K for KNN, were optimized
using an inner three-fold CV applied to the training data (i.e., 4 out of 5 folds in each CV
run).

Table 4.5 presents the mean (SD) of performance metrics for ML classifiers trained on
PSG markers derived from physician-scored and algorithm-predicted hypnograms (U-
Sleep, YASA). The results indicate that classification performance using algorithm-derived
markers was comparable to that based on physician-derived markers, as the 95% confidence
intervals (mean £ 1.96xSD) of the physician-based scenario overlapped with those of both
U-Sleep and YASA across all methods and metrics. Since the performance intervals overlap,
no superiority or inferiority can be inferred for either algorithm.

Despite systematic biases in algorithm-predicted PSG markers (see Table 4.4), ML classi-
fiers effectively adapted to these shifts, achieving comparable AUROC values, maintaining
strong classification performance (AUROC > 80% across all scenarios). Accuracy, sensitiv-
ity, and specificity were also consistent across sleep-scoring sources, although slightly lower
sensitivity was observed in some methods (e.g., with KNN), likely due to probability cali-
bration issues—evidenced by corresponding increases in specificity. These findings suggest
that, despite inherent biases, algorithm-derived PSG markers can serve as informative in-
puts for ML-based diagnostics, with classifiers effectively adapting to systematic deviations
in algorithm-predicted PSG markers, preserving diagnostic utility for OSA detection.

4.4 Discussion

With the advancement of Al and data-driven algorithmic solutions, there is a growing de-
mand for validation approaches that address not only performance but also generalization
and compliance with regulatory standards. This is particularly critical in healthcare, where
Al holds tremendous potential to improve efficiency and increase accessibility to medical
care. However, these potential benefits come with the risk of unfairness, especially con-
cerning sensitive attributes such as age, gender, or specific clinical characteristics. When
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Table 4.5: Performance comparison of machine learning classifiers trained
on physician- and algorithm-derived PSG markers for OSA detection.

Method | Sleep-Scoring | AUROC | Accuracy | Sensitivity | Specificity
Physicians 85.5(2.9) | 91.4 (1.8) | 47.1 (6.4) 95.9 (1.1)
LDA U-Sleep 84.7 (4.6) | 91.4(0.9) | 495 (7.7) 95.6 (1.6)
YASA 834 (2.6) | 89.4(1.0) | 375 (8.0) 94.7 (2.0
Physicians 87.0 (1.8) | 76.3(2.6) | 77.3 (6.4) 76.2 (3.2)
LASSO [ U-Sleep 894 (1.6) | 785(1.7) | 81.3(9.1) 783 (2.1)
YASA 845 (2.7) | 758(3.7) | 77.3(87) 75.7 (4.4)
Physicians 86.8(3.1) | 775(33) | 79.3(49) 77.3 (3.7)
Ridge [ U-Sleep 88.7 (2.2) | 80.7 (1.7) | 825 (5.9) 80.5 (1.8)
YASA 85.7 (2.3) | 76.7 (3.6) | 79.3 (4.9) 76,5 (3.9)
Physicians 82.1(37) | 92.3(1.4) | 21.2 (8.0 99.5 (0.4)
RF U-Sleep 89.1(2.6) | 92.3(1.3) | 264 (135) | 98.8 (1.0)
YASA 82.6(22) | 922(1.5) | 19.2 (8.1) 99.5 (0.5)
Physicians 842 (38) | 91.0(1.7) | 17.8(7.7) 98.4 (1.6)
KNN U-Sleep 85.6 (3.7) | 919 (1.2) | 17.8(2.9) 99.3 (0.4)
YASA 835(3.7) | 90.7 (1.2) | 132 (7.7) 985 (1.3)

Notes: Performance comparison of machine learning classifiers trained on PSG markers derived from physicians- and
algorithm-based (U-Sleep, YASA) hypnograms to identify the Obstructive Sleep Apnea (OSA). The table presents the mean
(standard deviation) of performance metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), accuracy,

sensitivity, and specificity, calculated using 5-fold cross-validation. The classifiers include Linear Discriminant Analysis (LDA),
LASSO logistic regression, Ridge logistic regression, Random Forest (RF), and K-Nearest Neighbors (KNN).

predictive accuracy (e.g., for diagnosis, risk assessment, or clinical outcomes) is systemat-
ically shifted across these attributes or exhibits systematic dependencies on them, this is
considered algorithmic bias [92].

Since most Al models in healthcare are trained on observational data, the risk of bias
and reliance on spurious correlations often becomes a reality. This challenge has motivated
regulatory frameworks (e.g., EU Al Act or MDR), which see the application of Al algorithms
in healthcare as a high-risk area, mandate human oversight, and require fairness in their
predictions. However, how to technically encounter fairness, or quantify its violation (bias)
in practice, is still an open research field.

Standard validation practices typically involve reporting the average performance (e.g.,
accuracy, error rates) across subjects along with their variability, or the correlation of pre-
dicted and reference values. However, these conventional approaches do not provide in-
sights into critical scenarios such as the minimum expected performance for different sub-
populations (e.g., defined by restricted ranges of senstive attributes), its variability, or the
potential dependence of both, predicted values or performance metrics, on external factors
such as demographics or clinical profiles [134], [136], [142], [143], [146]. The relationship be-
tween algorithmic outcomes and sensitive attributes may be non-linear and exhibit varying
degrees of variability, which current validation methods, such as the gold-standard Bland-
Altman analysis used in clinical certification [134], fail to capture effectively [136].

Motivated by these limitations [136], [142], [143], [146], our study proposes a universal
framework for quantifying algorithmic performance and bias, originally outlined in Bechny
et al. (2024) [96], and applies it to the sleep medicine use-case of automatic sleep-scoring.
The approach, based on the existing implementation of Generalized Additive Models for
Location, Scale, and Shape (GAMLSS) [138], allows for flexible modeling of performance or
bias distributions using a broad range of functional bases (including linear models, splines,
or even neural networks) that quantify the relation between sensitive attributes and perfor-
mance/bias distributional parameters [148], [155]. This enables detailed characterization of
the performance and bias distribution, capturing the non-linear effects of sensitive attributes,
and hypothesis testing to assess the presence of these relationship. In addition, upon quan-
tification of the performance/bias distribution, expected quantiles may be reported with re-
spect to the arbitrary values of included predictors (i.e., sensitive attributes), enabling critical
assessments giving much broader idea of the expected algoritmic performance, compared to
standard reporting.
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We demonstrate this framework in the use case of automatic sleep-scoring, a particu-
larly challenging task for AI algorithms due to inherent inter-rater variability among hu-
man experts (physicians) who provide the scoring labels used for training. Specifically, de-
pending on metric, human scorers achieve an agreement-level of approximately 75-80% [14],
[15], [66], [140], which introduces an inherent noise-level in the labels and defines a techni-
cal performance ceiling for Al-based solutions trained on sleep studies scored by multiple
experts [141]. The necessity of human oversight (cf. EU Al Act) in this context is fully
justified, as physicians remain responsible for clinical diagnostics that often rely on sleep-
scoring—and even an optimal Al model can be expected to disagree with human scorers in
approximately 20-25% of cases. We applied our approach to quantify the distribution of per-
formance and errors for two widely recognized sleep-scoring algorithms: the deep-learning
(DL)-based U-Sleep [59], [60] using raw biosignals (EEG, EOG) as its input, and the machine-
learning (ML)-based YASA [58] using as its input derived statistical features. In this study,
we demonstrated our framework from the perspective of end users (clinicians) and regula-
tory bodies, by evaluating two existing models trained on different data using a rich, unseen
out-of-domain dataset.

To quantify performance metrics (e.g., accuracy, Fl-score), we used a zero-and-one-
inflated Beta distribution, which is defined on the 0-100% range and allows for the identi-
fication of cases of perfect or entirely incorrect classification through inflation parameters.
Performance distributions were modelled while accounting for age, gender, AHI, and PLMI,
enabling us to test whether predictive performance systematically varies with these factors.
The deep-learning-based U-Sleep demonstrated higher expected performance and lower
variability across demographic and clinical subgroups (AHI/PLMI), making it superior to
the feature-based YASA. Both algorithms exhibited a significant non-linear effect of age,
quantified by spline, on expected performance and its variability, with the most pronounced
challenges occurring in pediatric cases. The primary reasons for this performance drop
appear to be a combination of (i) the under-representation of pediatric subjects in training
data [60], (ii) the application of distinct AASM scoring rules for children [8], and (iii) the
absence of age as an input variable in both U-Sleep and YASA, which limits their abil-
ity to learn these differences. Although these issues are specific to sleep-scoring, similar
challenges—where algorithms under-perform on under-represented data or due to omit-
ted variables—are prevalent across domains, highlighting the usefulness of our approach.
Performance was also systematically affected by AHI and PLMI, both of which indicate the
severity of breathing disturbances and movement events during sleep. These factors led
to lower accuracy and increased performance variability across both models. Additionally,
U-Sleep exhibited significantly lower performance for male subjects, whereas none of the
studied factors significantly influenced the inflation parameters. While this is a desirable
outcome, it is likely due to the small number of extreme cases (<5 PSGs) of perfect-prediction
or complete-misclassification in our dataset. The varying levels of sleep-scoring perfor-
mance across different subpopulations highlight the need for human oversight, ensuring
the validation of algorithmic predictions [95], and hence promoting equitable care across all
age groups.

Further, we applied our approach to quantify the distribution of systematic error (bias)
across algorithms concerning sleep-staging-derived clinical markers (e.g., sleep stage pro-
portions, REM latency), which play a key role in diagnostics. Bias was quantified as the
difference between values of markers based on sleep-stages predicted by the algorithms and
those derived from human-scored hypnograms, accounting for the same sensitive attributes
(age, gender, AHI, PLMI) as in the performance analysis. For both algorithms and all 13
evaluated markers, we identified significant non-linear spline effects of age on both bias ex-
pectation and its variability. This extends our findings on age-related performance variations
to systematic distortions in derived clinical markers, indicating both systematic over- or un-
derestimation of reference values based on subject age and changes in precision, reflected in
the dispersion of expected bias quantiles. We presented in detail the ability of algorithms
to accurately estimate wakefulness proportion (W%), which is functionally linked to several
other PSG markers, including sleep latency, total sleep time, WASO, number of awaken-
ings, sleep efficiency, and the proportion of remaining sleep stages. Across all age groups,
U-Sleep underestimated W%, whereas YASA overestimated it, with both bias magnitude
and variability increasing in older subjects and with AHI and PLMI. Even more pronounced
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bias was observed in pediatric subjects, likely caused by the same challenges as identified
for performance metrics. Bias in W% propagated to other PSG markers, where U-Sleep’s
underestimation of W% led to a corresponding overestimation of total sleep time and sleep
efficiency, while the opposite trend was observed in YASA, which overestimated W%. De-
tailed results for each algorithm, clinical marker, and arbitrary values of sensitive attributes
(age, gender, AHI, PLMI) can be further explored through our interactive app, enabling the
assessment of algorithmic bias and performance across different subpopulations.

Interestingly, direction of biases, i.e., whether a clinical marker is over- or underesti-
mated, often differed between U-Sleep and YASA. For instance, W% tends to be underes-
timated by U-Sleep and overestimated by YASA, with this effect propagating into down-
stream statistics such as TST, WASO, etc. These opposing trends suggest that the observed
biases likely stem from differences in the algorithms themselves, e.g., due to imbalanced
training data, architectural characteristics of U-Sleep, or selected input features in YASA,
rather than from the BSWR dataset alone, which likely suffers from selection bias. While
the primary aim of this study is to present and demonstrate a novel validation framework,
robust conclusions about generalizable algorithmic bias would require prospective studies
using representative populations, as mandated by regulatory authorities for the certification
of Al-based medical software (cf. MDR, EU AI Act).

The results of performance and bias quantification confirmed a trend of increased error
rates and greater variability at the extremes of age (i.e., pediatric and elderly individuals),
as well as with elevated AHI and PLMI values. Clinical indices (AHI, PLMI) are indicative
of poorer sleep health, which tends to correlate with age, and all that often presents with al-
tered sleep architecture and signal artefacts [18], [78], [79], [139], [151], [152]. The increased
variability can plausibly be attributed to the well-documented rise in inter-scorer disagree-
ment when scoring PSGs from clinically complex subjects [67]-[69]. Rather than questioning
whether the “truth” in sleep staging lies with the human scorer or the algorithm—where the
latter is often benchmarked against soft-consensus scores from multiple independent ex-
perts and has, in some studies, even outperformed individual scorers [61], [70], [72], and
the former represents the de facto standard in real-world clinical workflows, where scoring
is typically performed by a single trained scorer in alignment with regulatory expectations
under the MDR and EU Al Act—our work emphasizes the importance of quantifying these
trends.

Finally, we evaluated the diagnostic utility of derived markers, despite their inherent
biases. By training five simple classifiers (e.g., LDA, Random Forest) to distinguish OSA
subjects from healthy controls, we found no statistically significant difference in predictive
performance (e.g., AUROC) between classifiers trained on physician-scored markers and
those trained on algorithm-predicted markers. Although we demonstrated that algorithm-
derived markers exhibit systematic biases (e.g., U-Sleep underestimates W%, while YASA
overestimates it), the classifiers adapted to these shifts due to their systematic nature, ulti-
mately achieving comparable performance. This finding does not contradict the necessity
of validation and bias quantification but rather highlights that when systematic errors are
present in predicted markers, they can still retain the same predictive capability as human-
scored markers, making them comparably useful for screening applications.

4.5 Conclusion

This study advances methods for identifying and quantifying algorithmic performance and
bias, offering a framework that allows for the evaluation of external factors on error and bias,
the modelling of non-linear effects, and the application of standard statistical tests to assess
their significance. Applied to automatic sleep-scoring, our approach highlighted primarily
age-related performance shifts and biases. Our results suggest that omitting subjects” age in
sleep-scoring algorithms not only ignores biologically distinct EEG patterns [18], [78], [79]
but also prevents learning different scoring rules applied to pediatric and adult cases- as de-
fined by AASM guidelines [8]. Our evaluations confirm common sources of algorithmic bias,
including under-representation of certain subgroups (e.g., children), omitted variables (e.g.,
age), and the use of observational rather than experimental data—the latter being costly but
crucial for bias mitigation. Using our framework for identifying sub-populations affected by
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pronounced algorithmic bias can help guide the selection of training or fine-tuning data for
its iterative mitigation. In conclusion, our study is convinced of the benefit and usefulness
of automatic sleep-scoring algorithms, both in clinical settings and the expanding consumer
device market. To ensure fair and reliable predictions, it is essential to exercise caution in
their use, adhere to emerging regulatory frameworks, incorporate human oversight, and
raise awareness among physicians regarding their technical limitations and potential biases.

4.6 Limitations

Our study has several limitations. First, while our framework quantifies and tests for bias,
it does not directly address mitigation strategies, which could involve post-processing tech-
niques or adjustments in training procedures [161], [162]. Future extensions could benefit
from integrating dedicated fairness toolkits such as Fairlearn [163] or AIF360 [164]. Second,
our analysis considered only four sensitive attributes (age, gender, AHI, and PLMI) when
quantifying performance and bias. Although these variables roughly cover an individual’s
health status, considering specific diagnoses and other clinical variables may help for more
precise bias quantification. Since our framework is model-based, there is a risk that bias
could persist within the bias-quantification model itself due to unaccounted confounders.
While our method provides a structured approach, selecting the appropriate model remains
a challenge, best addressed through a combination of domain expertise and high-quality
data. Furthermore, the study dataset (BSWR) is observational and non-randomized, and
while it includes scoring patterns from over 60 physicians, individual scorers evaluated dif-
ferent numbers of PSGs, potentially influencing the distribution of scoring tendencies in the
dataset. Additionally, each PSG in the BSWR dataset was scored by a single expert, which
prevents direct comparisons against consensus and limits our ability to analyze inter-scorer
agreement or evaluate algorithm performance relative to scoring variability across multi-
ple human annotators. While the use of a single out-of-domain dataset (BSWR) enabled an
in-depth illustration of our proposed framework, validating the generalizability of the quan-
tified biases would benefit from applying the approach to additional, ideally prospectively
collected and representative datasets, and from re-training both algorithms (U-Sleep, YASA)
on shared cohorts. We aim to focus our future work on addressing the study limitations.
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Chapter 5

Novel Digital Markers of Sleep
Dynamics: Causal Inference
Approach Revealing Age and
Gender Phenotypes in Obstructive
Sleep Apnea

Abstract

Despite evidence that sleep-disorders alter sleep-stage dynamics, only a limited amount of
these parameters are included and interpreted in clinical practice, mainly due to unintuitive
methodologies or lacking normative values. Leveraging the matrix of sleep-stage transition
proportions, we propose (i) a general framework to quantify sleep-dynamics, (ii) several
novel markers of their alterations, and (iii) demonstrate our approach using Obstructive
Sleep Apnea (OSA), one of the most prevalent sleep-disorder and a significant risk factor.
Using causal inference techniques, we address confounding in an observational clinical
database and estimate markers personalized by age, gender, and OSA-severity. Impor-
tantly, our approach adjusts for five categories of sleep-wake-related comorbidities, a factor
overlooked in existing research but present in 48.6% of OSA-subjects in our high-quality
dataset. Key markers, such as NREM-REM-oscillations and sleep-stage-specific fragmen-
tations, were increased across all OSA-severities and demographic groups. Additionally,
we identified distinct gender-phenotypes, suggesting that females may be more vulnerable
to awakenings and REM-sleep-disruptions. External validation of the transition markers
on the SHHS database confirmed their robustness in detecting sleep-disordered-breathing
(average AUROC = 66.4%). With advancements in automated sleep-scoring and wearable
devices, our approach holds promise for developing low-cost screening tools for sleep-,
neurodegenerative-, and psychiatric-disorders exhibiting altered sleep patterns.

Keywords:
Sleep Dynamics, Digital Markers, Obstructive Sleep Apnea, Dirichlet Regression, Causal Inference,
Sleep Disorders, Polysomnography

5.1 Introduction

The clinical sleep study (polysomnography, PSG) involves comprehensive overnight moni-
toring of body biosignals, including electroencephalogram (EEG), electrocardiogram (ECG),
electromyogram (EMG), and others. Medical personnel evaluate the PSG following guide-
lines of the American Academy of Sleep Medicine (AASM) [8], focusing on the detection of
complete and partial breathing arrests (i.e., apneas and hypopneas), movement events, and
notably, categorizing stages of sleep. Sleep scoring - conventionally done manually for each
30-second window (epoch) of the biosignals recorded - differentiates between five sleep-
wake stages: wakefulness (W), rapid-eye-movement (REM) sleep, and three other non-REM
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(N1, N2, N3) sleep-states. Such a structured sleep-scoring (hypnogram) forms a basis for the
PSG report, providing information on basic markers (e.g., sleep efficiency, % of sleep-stages,
REM latency) that relate to sleep quality and may also indicate certain sleep disorders [18],
[139], [165].

Sleep and its markers have a complex relationship with individuals’ age and may vary
by gender [166]. Several meta-analyses have made considerable efforts to establish norma-
tive values of sleep markers in healthy individuals [9], [17]. However, the validity of certain
estimates might be questionable due to inappropriate statistical evaluations of the individ-
ual studies whose results were pooled [167]. For instance, REM latency, as a time-to-event
phenomenon subject to censoring, is best quantified using survival techniques rather than
mean comparisons. Similarly, the % of sleep-stages, which are interdependent, should be
assessed by compositional methods. Proper techniques enabling unbiased estimation are
however rarely applied. Quantification of normative ranges and changes in sleep mark-
ers in diseased subjects is even more challenging. The observational study design of PSG
databases, typically including non-randomized symptomatic subjects, introduces a high de-
gree of confounding [168]. This results in an imbalanced prevalence of individuals with dif-
ferent clinical statuses and distributional shifts in their demographic characteristics. These
factors make it difficult to separate the effects of natural ageing from the effects of particular
disorders on sleep parameters. The unaddressed confounding, difficulty in assessing data of
patients who often suffer from several sleep disorders simultaneously, and the use of not al-
ways appropriate statistical approaches are major challenges that increase the risk of biased
conclusions even in the analysis of well-established PSG markers.

While differences in sleep-stage dynamics are evident for certain sleep disorders, such
as increased sleep fragmentation in Obstructive Sleep Apnea (OSA) [25], [169], or a short
REM latency in narcoleptic patients [170], the clinical PSG report has, so far, included only
a limited number of dynamics-related markers. This includes sleep and REM latencies and
the absolute counts of sleep-stage transitions or awakenings [8]. While latencies target the
first (tens of) minutes of the night, the overall numbers of transitions/awakenings are pro-
portional to sleep duration and may not sufficiently capture more complex patterns of sleep
dynamics that may be specific to individual sleep disorders. Although counts of transi-
tions and awakenings are sometimes normalized as indices per hour, stage-specific dynam-
ics—such as REM-related continuity and transitions—are typically overlooked, despite their
potential to reveal disorder-specific patterns of sleep disruption. Their limited incorpora-
tion into clinical PSG reports is largely due to the absence of standardized methodologies,
normative values, and intuitive frameworks to support clinical interpretation. Recognizing
these limitations, significant research has been conducted to comprehensively explore sleep-
stage dynamics in various modalities. These studies, which date back to the 1980s, exhibit
heterogeneity in terms of subject demographics, clinical diagnoses, and the methodologies
employed [171]. Two main investigative directions have emerged: (i) focusing on the transi-
tions between sleep stages, and (ii) focusing on the duration of sleep stages. The perspectives of
these two seemingly distinct but strongly interrelated areas are discussed in the following
two separate paragraphs, highlighting the contribution of the most impactful studies.

Research on sleep-stage transitions has evolved rapidly, beginning with one of the earli-
est mathematical models by Kemp (1986), who quantified transition intensities in 23 healthy
males aged 18-30 [98]. Yassouridis (1999) followed by exploring the relationship between
transition intensities and plasma cortisol levels in 30 males aged 20-30 [99]. Several studies
identified associations between transition rates and clinical symptoms. For instance, Burns
(2008) observed increased sleep fragmentation and transitions into N3 in 15 females with fi-
bromyalgia syndrome (mean + standard deviation (SD) age of 42.5 + 12.9), contrasting with
age- and gender-matched controls [100]. Laffan (2010) found a significant association be-
tween transition rates and self-reported sleep quality in a large cohort from the Sleep Heart
Health Study (SHHS) database, consisting of 5684 participants (47.2% males, all aged over
40) [101]. The existing research extends to specific conditions such as chronic fatigue syn-
drome, where Kishi (2008) reported abnormal REM transitions in 22 female patients (aged
42 + 8) in comparison to healthy controls of similar demographics [102]. Further exploring
clinical implications, Kim (2009) found differences in sleep-stage dynamics between nights
with and without CPAP therapy in 113 OSA subjects (aged 54.0 + 11.7, 16 females) [103].
Wei (2017) documented increased N2-to-W /N1 transitions in 46 insomnia patients (aged
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50.3 £ 13.6, 8 males) compared to age- and gender-matched controls, indicating altered sleep
patterns [104]. In addition, Schlemmer (2015) analyzed first- and second-order sleep-stage
transitions across 4 groups of subjects (young vs old, healthy vs disorder), highlighting the
varied impacts of ageing and pathological conditions [105]. Yet, the disordered subjects rep-
resented a pool of various sleep and psychological conditions, and the findings cannot be at-
tributed to a specific diagnosis. Recently, Wachter (2020) utilized MANOVA adjusted for age,
gender, and BM], to evaluate differences in the 25 most common second-order transitions in
different severities of OSA compared to healthy subjects, demonstrating associations with
demographic and clinical factors [106]. The significant findings primarily related to wake
and light-sleep (N1, N2) oscillations, when comparing severe-OSA and healthy. An inno-
vative yet not diagnosis-oriented approach by Yetton (2018) applied a Bayesian network to
model transitions as well as stage durations in 3,202, according to exclusion criteria, healthy
subjects (mean age of 62.5, 60% males). The prediction-oriented results demonstrated the
highest accuracy (62.3%) in the identification of the current stage based on the previous 2
stages, the duration of the last stage, and no consideration of age, gender, or BMI [107].

Another perspective in understanding sleep dynamics focuses on the quantification of
sleep stage durations, providing insights into the temporal characteristics of individual
sleep-wake periods. Lo (2002) initiated this research direction by examining sleep-wake
dynamics in 20 healthy subjects (aged 23-57, 9 males), revealing different characteristics
between sleep and wake periods’ duration and advocating for their modelling using power
law distributions [108]. Building on this, Penzel (2003) applied power-law models to quan-
tify sleep-stage durations in both healthy and disordered subjects, identifying reduced
duration and hence more fragmented sleep in sleep-apnea subjects [109] (with no spe-
cific demographic details provided). Following that, Norman (2006) exploited survival
techniques and revealed decreased sleep continuity when comparing 10 mild and 10 moder-
ate/severe subjects with sleep-disordered-breathing (SDB) against 10 normal subjects [110].
The analysis did not consider subjects” age, which was significantly higher in disordered
subjects. Chervin (2009) compared sleep architecture in 48 children (aged 5-12.9) with sleep-
disordered breathing to healthy controls, finding a significant decrease in the duration of
N2 and REM [111]. Bianchi (2010) employed multi-exponential fitting to analyze sleep-stage
durations across 376 predefined controls (aged 68.2 + 6.3, 35.6% males), in comparison to 496
mild-OSA (aged 63.8 + 0.3, 60% males), and 338 severe-OSA (aged 63.7 + 10.5, 70.7% males)
subjects from the SHHS database [112]. They report accelerated decay rates in W, NREM,
and REM among OSA subjects, suggesting a larger sleep fragmentation and shorter stage
bouts. Notably, despite considerable age and gender differences within its sample (35.6% vs
70.7% males in healthy vs severe-OSA), the study did not adjust for them. Klerman (2013)
investigated durations of sleep-wake states in healthy subjects and identified an age-related
decline of NREM-sleep continuity [113]. A comparison of sleep-stage duration by Kishi
(2020) in sleep bruxism (SB) patients (aged 23.3 + 1.1, 6 males) and matched controls showed
that despite no differences in the prevalence of sleep-stages (except for N1), the SB subjects
differed in several parameters describing their dynamics, particularly related to an increased
REM fragmentation and hence reduced duration of REM-bouts [114].

By analysing sleep-stage transitions [98]-[107] or by characterizing their duration [108]-
[114], all of these studies highlight the importance and clinical utility of analysing sleep dy-
namics across a wide range of disorders. Although most of the studies focus on one of these
two aspects, it is important to point out that their nature is functionally linked as the lower
transition probability relates to an increased bout duration [172], [173]. The existing research
works have variously addressed the complexities of confounding and the selection of ap-
propriate statistical models. The majority of studies concurred on the need to control for age
and gender or limit the demographic ranges to ensure a homogeneous group of study par-
ticipants. In existing studies, this is achieved by using stratified analysis with (M)ANOVA
(e.g., [105], [106], [112]), regression adjustment (e.g., [101]), or selecting matched individu-
als (e.g., [100], [104], [114]). The simplicity of the first two approaches, typically comparing
the effect of exposure (such as OSA) on the outcome (e.g., sleep dynamics) against unex-
posed healthy controls, is offset by its susceptibility to confounding bias [174]. Analyzing
non-randomized observational PSG databases, which typically include older, symptomatic
individuals, complicates the separation of confounder effects (of age, gender) from the expo-
sure (disorder). In contrast, while the matching approach helps a lot to reduce the bias [175],
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it is generally applied within smaller subject cohorts. This limitation arises from the chal-
lenges of finding individuals with matched characteristics within typically imbalanced clin-
ical databases of limited size.

Our study introduces a comprehensive framework for quantifying sleep dynamics,
demonstrated on OSA but applicable to other (sleep) disorders. OSA, one of the most preva-
lent sleep disorders and a significant risk factor affecting up to 17% of the general adult
population [149], serves as a use-case to showcase the framework’s versatility. Building on
existing research and addressing its limitations, our framework—depicted in Figure 5.1 and
detailed in Methods—fulfils several key objectives:

¢ Data acquisition, Figure 5.1a: Leveraging a high-quality, heterogeneous observational
clinical database, we identified OSA and healthy subjects (aged 6-91 years) based
on the clinical gold-standard of conclusive diagnosis. Consistent with the literature
(e.g., [101], [105], [106], [112], [149]), we identified age and gender as the primary con-
founders. The subjects” sleep was summarized through AASM-scored hypnograms,
forming the basis for proposing and deriving novel digital markers of sleep and its
dynamics. The information about sleep comorbidities was also considered to adjust
our framework for additional possible confounders. The importance of the need for
comorbidity-adjustment can be underscored by the fact that 48.6% of OSA subjects in
our dataset had at least one sleep-wake comorbidity among their conclusive diagnoses.

* Balancing confounders, Figure 5.1b: To address confounding of age and gender, ex-
hibiting distributional overlap between OSA and healthy subjects, we applied Inverse
Probability Weighting (IPW) (c.f., [176]-[178]) that ensured balanced comparisons be-
tween the OSA and healthy groups, regarding the main confounding factors. In short,
IPW aims to mathematically re-weight the original dataset, as it was matched regard-
ing the confounders considered (such as age).

* Sleep dynamics modeling, Figure 5.1c: Utilizing hypnograms, we propose a novel
“sleep fingerprint”, a matrix P of sleep-stage transition proportions. As first ones in the
field, respecting the interdependencies between individual dimensions of transition
proportions P (that sum-up to 100%), we quantified them jointly using Dirichlet re-
gression [179], a method well-suited for the compositional nature of P, within a causal
S-Learner framework [180] applied to IPW-balanced data. The idea of causal S-Learner
is to extrapolate outcomes for “conditioned” (OSA) vs control (healthy) subjects for ar-
bitrary values of predictors. This approach enables the estimation of changes in sleep
(dynamics) across different ages, OSA-severities (AHI), and the previously understud-
ied interplay of OSA with gender and sleep-wake-related comorbidities.

¢ Digital marker quantification, Figure 5.1d: Finally, by exploiting the estimated model
(1.c), we quantify not only the estimated effects of OSA on P but also derive several
novel digital markers. These markers capture the disorder’s impact on sleep, sleep-
stage dynamics and also durations, personalized for arbitrary values of predictors
(such as age, gender, apnea-severity), and are presented in terms of Conditional Average
Treatment Effect (CATE) and Risk-Ratio CATE (RR-CATE) [181], standing for absolute
and relative comparisons of expected outcomes (such as specific stage-transitions) for
OSA and healthy, respectively.

Our framework integrates the two main branches of sleep dynamics research—quantification
of sleep-stage transitions and durations—by demonstrating their interconnectedness and
enabling their simultaneous quantification. Our study is the first in the field to rigorously
account for the interactions between OSA, gender, and a wide range of comorbidities, pro-
viding a deeper understanding and less biased estimates of how OSA impacts sleep across
various ages, genders, and apnea-severity levels. As demonstrated in our results, the quan-
tified effects and markers of OSA can be leveraged to: (i) explain—Dby establishing normative
values for sleep parameters tailored to different demographic profiles and OSA severity;
and also (ii) predict—Dby training models capable of identifying OSA subjects based solely
on observed demographics and sleep-stage dynamics. The results are publicly accessible
through an interactive online app, fostering a broader scientific exploration and discussion.
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Figure 5.1: Graphical overview of the implemented approach for
quantifying sleep-stage dynamics.
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Notes: Part a): The study utilized observational data, including hypnograms of subjects with a conclusive diagnosis of either
Obstructive Sleep Apnea (OSA) or healthy status. The illustration highlights differences in the overall prevalence of OSA
(OSA-affected > healthy) concerning gender (male predominance in OSA), age (higher OSA prevalence in older subjects), and
comorbidities (not present in healthy subjects). Part b): Inverse Probability Weighting (IPW) is applied to balance the data for the
primary confounders of age and gender, having distributional overlap between OSA and healthy subjects. Part c: A sleep
fingerprint matrix P of sleep-stage transition proportions is modelled using Dirichlet regression within a causal S-Learner
framework to capture the effects of OSA, its severity (Apnea-Hypopnea Index, AHI), age, gender, and comorbidities. Part d): The
framework quantifies digital markers of OSA (raw P, PM as the normalized Markovian P, and derived quantities such as sleep
fragmentation), personalized for subjects” demographics, OSA severity, and comorbidities, and presented in terms of Conditional
Average Treatment Effect (CATE) and Risk-Ratio CATE (RR-CATE).

5.2 Materials and Methods

This section details the study data, introduces the matrix of sleep-stage transition propor-
tions as a foundational digital marker, and explores its properties alongside several novel
sleep markers. Additionally, we outline the technical framework, which leverages causal
inference tools to minimize bias in the conclusions of this observational study, and present a
use case examining the effects of OSA.

5.2.1 Data
Berner Sleep Data Base (BSDB)

For the primary evaluations (such as estimating the effects) of our study, we exploited the
clinical Berner Sleep Data Base (BSDB) from Inselspital, University Hospital Bern. We consid-
ered a subset of 62 healthy subjects (aged 0-71 years) with excluded existing clinical condi-
tions undergoing PSG as controls in several historical studies, and a total of 560 individuals
having OSA (aged 2-81 years, including 2 pediatric cases aged < 18 years) as one of their con-
clusive diagnoses, made by physicians considering all test-based diagnoses (e.g., actigraphy-
or PSG-based), clinical anamnesis, and the context. The PSG signals were recorded at 200
Hz and scored manually according to the AASM rules [8]. To align older recordings scored
by Rechtschaffen and Kales [75] rules with the AASM standard, N3 and N4 stages were
merged into N3. To prevent bias due to possibly longer sleep-onset in the unfamiliar clin-
ical setting, a part of the PSG recording and hypnogram before the first sleep was cut off.
Further, recordings with total sleep time <180 minutes, >5% of the time with lights-on, no
sleep-stage transitions, and subjects with breath control or ventilation therapy introduced, or
undergoing split-night PSG evaluations were excluded. For the basic statistical description
of BSDB in Table 5.1, we considered 3 groups of OSA subjects: mild (O1) with AHI € [5,15),
moderate (O2) with AHI € [15,30), and severe (O3) with AHI > 30.



Table 5.1: Comparison of demographics, sleep metrics, and prevalence of sleep comorbidities among healthy and (mild, moderate, severe) OSA
subjects in the BSDB dataset.

H: Healthy O1: Mild OSA  O2: Moderate OSA  O3: Severe OSA  Significant Pairs
DEMOGRAPHICS:
Subjects [count] 62 238 164 158
*Males 25 (40.3) 166 (69.7) 117 (71.3) 127 (80.4) O1H, O2H, O3H
*Females 37 (59.7) 72 (30.3) 47 (28.7) 31 (19.6) O1H, O2H, O3H
tAge 349 (18) 50.6 (14.9) 53.8 (14.7) 58 (11.9) O1H, O2H, O3H, 0301
SLEEP METRICS:
*TST [minutes] 370.3 (62.9) 345.5 (74.3) 344.1 (76.4) 321.4 (64.2) O2H, O3H, 0301, 0302
*Efficiency [%] 88.4 (6.6) 83.4 (11.7) 81.3 (12.2) 78.9 (12.5) O2H, O3H, 0301
+Sleep latency [minutes] 16.5 (15.4) 12.9 (19) 16.6 (24) 15.7 (22) O1H
tREM latency [minutes] 1134 (50.7)  138.9 (80.1) 124.4 (72.6) 148.6 (86.3) -
tHourly transitions [%] 16.2 (4.9) 20.6 (5.6) 22.2 (6.1) 25.9 (7.9) O1H, O2H, O3H, 0201, 0301, 0302
tHourly awakenings [pow] 24(12) 32(1.7) 3.3(1.7) 4(2.8) O1H, O2H, O3H, 0301
TW [%] 11.6 (6.6) 16.6 (11.7) 18.7 (12.2) 21.1 (12.5) O1H, O2H, O3H, 0301
N1 [%] 9.4 (6.3) 13.6 (7.6) 16.3 (9.1) 24.1(13.3) O1H, O2H, O3H, 0201, 0301, 0302
N2 [%] 40.6 (10.3)  39.9 (10.3) 36.1 (10.7) 34.1(13.2) O2H, O3H, 0201, 0301
N3 [%] 21.7 (8.7) 16.9 (9.7) 16.4 (11.1) 102 (7.9) O1H, O2H, O3H, 0301, 0302
tREM [%] 16.7 (7.1) 13.1(6.7) 12.5 (6.4) 10.4 (6.5) O1H, O2H, O3H, 0301, 0302
SLEEP COMORBIDITIES:
*No comorbidity 62 (100) 94 (39.5) 85 (51.8) 109 (69) 0301, 0302
*Single comorbidity 0(0) 52 (21.8) 37 (22.6) 30 (19) -
*Multiple comorbidities 0(0) 92 (38.7) 42 (25.6) 19 (12) 0201, 0301, 0302
+*Insomnias 0 (0) 44 (18.5) 22 (13.4) 15 (9.5) -
*Narcolepsy type 1 0(0) 11 (4.6) 7 (4.3) 4(2.5) -
*Other hypersomnias 0(0) 88 (37) 37 (22.6) 15 (9.5) 0201, 0301, 0302
*Parasomnias 0(0) 28 (11.8) 25(15.2) 22 (13.9) -
*Movement-related 0(0) 23(9.7) 13 (7.9) 12 (7.6) -
*Circadian-rhythm-related 0 (0) 2(0.8) 3(1.8) 1(0.6) -

Notes: Variables denoted with * are binary, summarized as count (percentage), N (%), and significantly different pairs are listed, following a significant chi-squared independence test and pairwise posthoc proportions test.

Healthy subjects were excluded from the comorbidities comparisons as they had no comorbidities. Variables denoted with * are continuous, summarized as mean (standard deviation), (), and significant pairs are listed
following a significant Kruskal-Wallis test and pairwise Wilcoxon posthoc test. All posthoc pairwise comparisons were performed with Bonferroni corrections at the significance level of 0.05.
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Most sleep metrics and demographics differ significantly between healthy individuals
and OSA groups, as well as across different OSA severity levels. There is a clear trend of
increasing age and % of males from healthy to more severe OSA, which is also associated
with changes in sleep architecture, such as decreased sleep efficiency and reduced N3 and
REM %. Separating the effects of these demographic shifts from the effects of OSA is a key
challenge, addressed using a causal inference below.

Ethics Approval and Consent The secondary usage of the dataset was approved by the
local ethics committee (Kantonale Ethikkommission Bern [KEK]-Nr. 2022-00415), ensuring
compliance with the Human Research Act (HRA) and Ordinance on Human Research with
the Exception of Clinical Trials (HRO). All methods were carried out in accordance with
relevant guidelines and regulations. Written informed consent was obtained from all par-
ticipants, as part of the general consent process introduced at Inselspital in 2015. Data were
maintained with confidentiality throughout the study.

Sleep Heart Health Study (SHHS)

The Sleep Heart Health Study (SHHS) is a large, multi-centre cohort study designed to
investigate the relationship between sleep-disordered breathing and cardiovascular out-
comes [182], [183]. SHHSI includes baseline polysomnography (PSG) data collected from
5,804 unique subjects aged 39-90 years, while SHHS2 provides follow-up PSG data for 2,651
subjects aged 44-90 years. Following the same criteria as in BSDB, we included only subjects
with total sleep time (TST) > 180 minutes. After this selection, SHHS1 retained 5,734 subjects
(mean age 63.1 + 11.2 years, 47.6% male), and SHHS2 included 2,621 subjects (mean age 67.5
+10.3 years, 46.1% male).

SHHS1 and SHHS2 were utilized to independently evaluate the predictive power of in-
dividual sleep-stage transition proportions, forming the foundation for deriving novel sleep
markers in identifying subjects with sleep-disordered breathing. These analyses provide ro-
bust external validation of the effectiveness of these transition proportions in the predictive
task, which underscores their clinical relevance.

For both BSDB and SHHS datasets, the definition of the Apnea-Hypopnea Index (AHI)
used aligns with the National Sleep Research Resource (NSRR) harmonization [183]: AHI
= (All apneas + hypopneas with >30% nasal cannula [or alternative sensor] reduction and
>3% oxygen desaturation or with arousal) per hour of sleep, which follows clinical guide-
lines [8].

5.2.2 Matrix P of sleep-stage transition proportions: a basic sleep marker

Our framework proposes the use of a flexible digital marker—a sleep fingerprint—that,
based on the observed sleep stages of a subject, enables the derivation of both established
and novel PSG parameters, quantifying various sleep characteristics that may be specific to
different sleep conditions. The basis for achieving this is the hypnogram, which represents
the sequence of sleep-wake stages (W, N1, N2, N3, REM) throughout the night. While sleep
dynamics in clinical PSG reports are currently limited to the total counts of transitions and
awakenings, this can be easily extended by the 5 x 5 matrix of sleep-stage transition propor-
tions P. Let us denote the total number of epochs in the patient’s hypnogram (starting from
sleep-onset) as NE, and the number of transitions from stage i to j as N. Each cell pij of P
can then be expressed as:

1
pij = Z—; = P(next stage = j, current stage =i) = P(i — j) Vi,j € {W,N1, N2, N3, REM},
(6.1)

indicating the empirical probability (proportion, %) of observing a transition from stage i to
j (i — j), relative to all the transitions observed in the hypnogram. In the following, we

highlight three main dimensions of the clinical relevance of P.
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P recovers the majority of clinically established PSG markers

For example, summing up the column transition proportions of P yields the overall percent-
age of sleep stages:

stage j % = p.j = ) pij Vje€{W,N1,N2,N3, REM}. (5.2)
i€{W, N1, N2, N3, REM}
In addition, other clinically commonly used PSG markers can be easily derived by consider-

ing relevant proportions and the Total Sleep Time (TST), TST = NTE, in minutes. For example,
Sleep Efficiency (SE), quantifying the percentage of sleep after its onset, can be calculated as
SE = Yje(N1,N2, N3, REM]} Pj = 1 — Ps,w. The Wake After Sleep Onset (WASO) minutes can

be computed as WASO = NTEp*,W. The Number of Awakenings (NoA) can be determined
by NoA = NE Yic{N1,N2, N3, REM} Piw- Finally, the Number of Transitions (NoT) is given by

NoT = NE ;e rw, N1, N2, N3, REm) (1 — Pii)-

P allows derivation of novel PSG markers

The aggregation of P-dimensions offers great flexibility to derive several novel and highly
intuitive digital markers of sleep and its dynamics. Considering a set of sleep-states,
S = {N1, N2, N3, REM}, we propose and in results also evaluate the following.

Total Awakenings, the probability of transitioning from any sleep-state (S) to wakefulness:
P(S - W) =) piw = pniw + PNow + PN3W + PREMW, (5.3)
€S

Light-sleep Awakenings, the probability of transitioning from light sleep (N1, N2) to wakeful-
ness:
P(Light-sleep — W) = pn1w + pnaw, (5.4)

Deep-sleep Awakenings, the probability of transitioning from deep sleep (N3) to wakefulness:
P(N3 — W) = pnaw, (5.5)

REM Awakenings, the probability of transitioning from REM sleep to wakefulness:
P(REM — W) = premMw, (5.6)

NREM-REM Oscillations, sum of probabilities for transitions between NREM sleep stages
and REM sleep:
P(NREM = REM) = Y Pij (5.7)
(i,j)€{N1,N2,N3} x {REM}

Light-sleep Oscillations, sum of probabilities for transitions between the light sleep stages (N1,
N2):
P(N1 2 N2) = pni,n2 + PN2NT, (5.8)

Sleep Compactness, the total probability of staying within any (non-wake) sleep stages:

P(Sleep Compactness) = Y pj, (5.9)
(i,j)eS xS

Sleep Fragmentation, the total probability of switching between wakefulness and sleep states:
P(Sleep Fragmentation) = Y (pw,i + piw), (5.10)
i€S

Sleep-stage Compactness, the sum of probabilities of staying within the same (non-wake) sleep
stages:
P(Sleep-stage Compactness) = ) _ p; ;, (5.11)
i€eS
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Sleep-stage Fragmentation, the probability of transitioning from one (non-wake) sleep stage to
a different one:
P(Sleep-stage Fragmentation) = Z Pij (5.12)
(i,j)eSxS
i#]
Stage-specific Compactness and Fragmentation, for each sleep stage i, the probability of staying
in the same stage and the probability of switching to any other sleep stage, respectivelly:

P(i-th stage Compactness) = p;;, P(i-th stage Fragmentation) = ) p;; Vi € {W, N1, N2, N3, REM}
Ji#j
(5.13)
Each metric from Eq. 5.3-5.13 expands the standard clinical PSG markers and focuses on a
specific sleep pattern. Their quantification requires no additional effort once the subject has
undergone the PSG study and the hypnogram is available.

P bridges stage-transitions and durations-oriented sleep dynamics research.

Normalizing P so that each row sums to 1 (100%) yields a standard transition matrix, often
utilized in Markovian models. We denote this matrix as PM, where M indicates it is Marko-
vian. Each cell, p%f , corresponds to the conditional probability of transitioning to stage j after

being in stage i:
Pij _ Pij
Pix  Lje{W,N1,N2, N3, REM} Vi

pl]\f = P(next stage = j | current stage = i) = Vi, j € {W,N1, N2, N3, REM}

(5.14)
The key difference is that while P provides an overall view of the plausibility of individual
transitions, PM operates under the assumption that a given state has occurred and problem-
atically evaluates the chances of (not-)switching the sleep-stage in the next epoch. Both P
and PM are interconnected and offering two perspectives on sleep-stage dynamics. Notably,
the diagonal elements of PM enable straightforward quantification of the sleep-stage dura-
tions, as they are exponentially distributed, £(A) = £(1 — p%), with the expected duration
(ED) of each stage (over entire night):

1 1
ED; = E(duration of stage i) = SR Vi € {W, N1, N2, N3, REM}, (5.15)
—Pii
known as the mean sojourn time. Due to the scoring of sleep in 30-second windows, these
durations are measured in epochs.

5.2.3 Causal framework to quantify sleep-stage transition matrix P and
effects of a disorder

The preceding sections have highlighted the utility of investigating the matrix P as a sleep-
fingerprint, showing its relation to several clinically established PSG markers and its con-
nection between stage-transition and stage-duration sleep dynamics research. Moreover, we
introduced several novel markers derived from P. To quantify P and the derived markers,
the next sections will present an approach that combines Dirichlet regression, well-suited for
the compositional data of P, with elements of causal inference to address confounding. The
key challenge in modeling P lies in respecting the compositional nature of the data, where
the total of all percentages must sum to 100%. Ignoring this constraint, such as analyzing
particular proportions separately with ANOVA, can lead to significant bias and counterintu-
itive outcomes. This issue is evident in some meta-analyses where, for example, aggregated
percentages of sleep stages do not sum to 100%, as seen in Table 2 of [9]. This challenge must
be addressed when modeling the proportions of sleep-stage transitions in P, which involve
25 compositional dimensions. Ensuring the outcomes are intuitive and correct is crucial for
enabling their interpretation by medical professionals.
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Dirichlet regression: model formulation and properties

The Dirichlet distribution is well-suited for modeling compositional data, such as percent-
ages or the elements of P. For a random variable Y = (Y7,Y), ..., Yp) representing propor-
tions over D dimensions, the probability density function of the Dirichlet distribution is
parameterized by a vector of positive reals « = («ay,...,ap) and given by:

D
Dir(Y;a) = B(la) TTv, (5.16)
d=1

where B(a) is the multivariate beta function ensuring normalization [179]. In Dirichlet re-
gression, the logarithms of a are modeled as functions of covariates, adapting the distribu-
tion’s characteristics based on predictor values:

log(ag) = Bao + Ba1 X1 + - - + Bax Xk, (5.17)

where X = (Xj, ..., Xk) is a set of K covariates and B; = (B0, ..., Bix) @ vector of regression
coefficients for the d-th dimension. The expectation of each component Yy, E[Y;], and the

marginal effect of X; on E[Yy], aggk 4, are directly influenced by all elements of X and &,

reflecting the interdependencies of compositional data:

Ey,= %4 _ exp(Bao + Par X1 + -+ - + BaxXk)
Y2 L exp(Bjo+ BpnXi+ -+ BjXk)
OEY, D
a}[{kd] = E[Yy] <,Bdk — ]; ,BjkE[Yj]> . (5.18)

A convenient property of the Dirichlet distribution is its ability to aggregate over several
dimensions, allowing flexible quantification of measures based on the elements’ summation.
For example, aggregating dimensions i and j yields:

Y = (Y1, Y+ Y, o, YD) ~ Dir(Y’; (061, w0+ Ky oeey DCD)). (5.19)

Thus, Dirichlet regression is suitable for modelling P, and its aggregation property facilitates
straightforward quantification of all markers derived from it (c.f., Eq. 5.2-5.13).

Causal elements

In contrast to randomized experiments, the analysis of observational data, such as those
from PSG databases, is susceptible to confounding, due to varying distributions of char-
acteristics (e.g., age), between treated/exposed/conditioned and healthy-control subjects.
Our study, which aims to quantify changes in sleep parameters resulting from a sleep dis-
order, adopts the principles and standard notation of causal inference [181]. We define the
treatment/exposure/condition variable T as an indicator of whether a subject suffers from a
particular disorder of interest (I' = 1), or is a healthy control (T = 0). In line with the lan-
guage of causal inference, the treatment within our study corresponds to the presence of
OSA. The outcome (Y) represents the sleep parameter investigated, such as P, while subject
characteristics and potential confounders are denoted as X.

Potential outcomes framework and causal estimands. The potential outcomes framework
asserts to each individual two hypothetical outcomes: Y (1), under T = 1, and Y(0), without
exposure, T = 0. The Individual Treatment Effect (ITE), T;, is the difference between these
outcomes, evaluating the causal effect of exposure (e.g., OSA) on subject’s outcome (e.g.,
sleep):

ITE = 7, = Y;(1) — Y;(0). (5.20)

The Average Treatment Effect (ATE) is the expected ITE, assessing the effect of T across the
entire population:
ATE = E[7] = E[Y(1) — Y(0)]. (5.21)
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The Conditional Average Treatment Effect (CATE) assesses T(x), standing for the treatment
effect within a specific subgroup of the population characterized by covariates X, making it
suitable to quantify personalized markers for different conditions:

CATE(X) = E[t(x)] = E[Y(1) — Y(0) | X], (5.22)

The fundamental problem of causal inference is that only one of the two potential outcomes is
observed for each individual, according to their treatment/exposure assignment T;:

Y™ = Yi(T;) = TY(1) + (1 - T))Y(0), (23

making it impossible to directly calculate all hypothetical estimands (ITE/ATE/CATE) from
observed data (Y%, T;, X;).

Personalized markers using CATE estimates. To estimate (C)ATE from observational
data, advanced techniques are required to adjust for confounders and mimic a randomized
experiment setting. One method exploits Propensity Scores (PS):

n(X;) = P(T = 1|X;), (5.24)

assessing the probability of receiving treatment given the individual’s characteristics X. Ad-
justing for PS removes biases associated with included covariates [176]. In addition, by as-
suming positivity (i.e., all confounder values can be observed in both treated and controls)
and no unobserved confounders, the treatment and potential outcomes become indepen-
dent conditional on 77(X;), T L Y(0),Y(1)|7t(X), allowing straightforward effect estimation
by matching or regressing the outcome on PS [177].

Another approach, Inverse Probability Weighting (IPW), balances the distribution of X
across treated and controls by creating a pseudo-population where each original subject is
re-weighted using weights:

T; n 1-T;
(X)) 1-m(Xi)

The weights can be, for example, incorporated into flexible, even machine-learning-based,
outcome models (e.g., weighted regression) to estimate the treatment effect while mitigating
selection bias [178].

In our study, focusing on quantifying the effects of OSA (T = 1) on P, we employ IPW
within the S-learner framework [180]. The S-learner is a baseline approach of meta-learners,
enabling flexible estimation of heterogeneous CATE. The S-learner quantifies the outcome
using a single model (hence S-Learner), including the treatment indicator T as one of its
predictors:

(5.25)

w; =

p(x,t) = E[Y"|X = x,T =], (5.26)

allowing straightforward estimation of CATE from Eq. 5.22 that is easily extrapolated over
the entire range of X:
CATE(x) = fi(x,1) — Ai(x,0). (5.27)

For probabilistic outcomes, the Risk-Ratio CATE (RR-CATE) is preferred as it naturally com-
pares the chances of an event:

RR-CATE(x) = 2% 1)

A(x,0)
One of the key benefits of S-Learner is its simplicity in extrapolating the (RR-)CATE esti-
mates over and beyond the observed values of X. Unlike other meta-learners (e.g., T- or
X-learner [180]) that fit separate response functions for exposed (T = 1) and control (T = 0)
subjects, the S-learner estimates a single model and thus requires less data, while assuming
that the effects of the other (non-treatment) variables are shared within groups.

(5.28)

Practical considerations. Care must be taken in interpreting causal effects due to assump-
tions underlying PS (and so IPW), such as no unobserved confounders and positivity. These
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assumptions are challenging to validate rigorously. In summary, addressing confounding is
better than ignoring it, but interpretations should consider the assumptions made.

5.2.4 Study use case: effects of OSA on sleep-stage transitions matrix P
and derived markers

The practical part of our study links the proposed sleep fingerprint P (c.f. Eq. 5.1) and de-
rived markers (c.f., Eq. 5.2-5.13 and Eq. 5.14) to a causal framework for their efficient quan-
tification and estimation of disorder effect. We demonstrate our approach on OSA, the most
prevalent sleep disorder and a significant risk factor, and exploit study dataset from BSDB.

To model PS from Eq. 5.24, we applied the logistic regression including confounders the
most frequently occurring in the literature: age and gender. Both factors are also known to
impact the risk of OSA and at the same time, their value range is not constrained between
OSA and healthy subjects, thus meeting the positivity assumption. The PS model included
separate predictors of the scaled age above 50 years in decades (X(age—50)/10), gender indi-
cator (I ;,,e), and their interaction:

1

X) = P(OSA =1 X) = ‘
7(X) ( | X) 1+e*(/30+l311[ma1e+l32X(Age-50)/1o+l3311ma1eXX(Age-Sﬂ)/lo)

(5.29)

The IPW weights based on Eq. 5.25 were used to balance the data concerning the main con-
founders shared.

To estimate the effects, i.e., (RR)-CATE from Eq. 5.27-5.28, of OSA on the compositional
outcome of P, the Dirichlet regression, as introduced in Eq. 5.16-5.17, was exploited to model
the response within the S-learner framework from Eq. 5.26. Each of the 25 possible transition
proportions captured in P and indexed as (i,j) Vi,j € {W, N1, N2, N3, REM}, was mod-
elled using the predictor specific for the corresponding dimension characterized by a(; :

log(a(ijy) =Bij),0 + Bij)1Imale + Bij)2 X (Age—50) /10 + Bii j)3losa + Byi j)a(Tosa X Imate)+
Bijys(Tosa X X(ari-s)/10) + B(i,j),6(Losa X Tinsomnia_Com) + B(ij),7(Tosa X INT1 Com)+

,B(i,j),s (]IOSA X 1[OtherHyp_Com> + .B(i,j),9 (]IOSA X ]IParasomnia_Com) + ,B(i,]’),lo (I[OSA X ]IMovement_Com)-
(5.30)
This log-transformed «; ;) was regressed on several covariates and interaction terms with
a primary goal to separate and quantify the effect of OSA, present as an indicator variable
Iosa. Although this S-learner model was estimated on IPW-balanced data (c.f., Eq. 5.29), the
inclusion of age and gender was justified by the necessary adjustment due to their known in-
fluence on sleep manifestation. Next, the interaction of OSA with gender was also included,
to investigate potential gender-specific phenotypes. In addition, several variables that vio-
lating the positivity assumption were included, as they could not be utilized within the PS
model due to their disjoint distributions among healthy and OSA subjects. This included the
interaction terms of OSA with scaled Apnea Hypopnea Index (AHI), X sp_5) /10, denoting
number of AHI greater than 5 in tens, capturing the apnea severity as the number of com-
plete or partial breath-arrests per hour. Uniquely, our model adjusts for a comprehensive
range of comorbidities present as indicator variables: insomnia (Insomnia_Com), Narcolepsy
Type 1 (NT1, INT1_Com), Other hypersomnolence except NT1 (IotherHyp_com), Parasomnias
(Iparasomnia_Com), and movement-related sleep-disorders (Injovement Com). The distribution
of AHI and all the comorbidities is completely disjoint, as healthy subjects do not suffer
from any disorder/comorbidity and AHI values in OSA subjects are always greater than 5.
To assess uncertainty and calculate confidence intervals (CI) in all strands of our inves-
tigations, including the PS model, IPW-balanced S-learner with Dirichlet regression, and
subsequent quantification of P-derived markers using (RR)-CATE, we implemented a non-
parametric bootstrap procedure with 200 repetitions, inspired by [184].

5.3 Results

The main findings of our study are presented in the four subsections:
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* Modelling of sleep-stage transition matrix, following Figure 5.1a-c, presents the estimation
of causal S-learner quantifying the matrix of sleep-stage transition proportions P, and
the impact of predictors, on IPW-balanced data.

* Personalized digital markers of sleep dynamics and the effects of OSA, following Figure 5.1d,
introduces principal findings on OSA-markers based on: 1. raw matrix P exploring the
overall prevalence of individual transitions; 2. derived markers capturing certain clinical
properties by summing up relevant dimensions of P; and 3. derived Markovian matrix
PM investigating sleep-stage-specific transition mechanisms related to stage durations.
The personalization of markers refers to the estimation of the OSA impact for various
levels of age, genders, and apnea-severity, helping to understand how OSA alters sleep
and its dynamics across different subpopulations.

* Predictive Performance of P Markers on External Data evaluates the utility of each of the
25 possible sleep-stage transition proportions in identifying subjects with moderate
sleep-disordered breathing (AHI > 15). A logistic regression model was trained on the
study dataset (BSDB) and applied to the large open-access dataset (SHHS), using only
age, gender, and the specific transition proportion as predictors.

* The final part introduces our app, which lets users interactively explore results be-
yond those shown in this paper (e.g., interactions of OSA with arbitrary comorbidities,
evaluation of extreme OSA with AHI>> 30, etc).

5.3.1 Modelling of sleep-stage transition matrix
Propensity score model and IPW balancing

To balance the Berner Sleep Data Base (BSDB) study dataset for the main confounders of
gender and age, we used the Inverse Probability Weighting (IPW) strategy, c.f., Figure 5.1a-b.
Propensity scores introduced in Eq. 5.24 were used to calculate weights according to Eq. 5.25.
The estimates of propensity scores were based on the logistic regression model from Eq. 5.29.
The choice of gender and age as the inputs for the IPW was driven by the evidence of existing
studies that control for them [101], [106] and clinical evidence that OSA is more prevalent
in males and at older ages [149]. In the BSDB exploited, both OSA and healthy subjects can
be observed across the entire range of age and genders, thus satisfying the assumption of
overlap and positivity [177]. After re-weighting the dataset, the characteristics of age and
gender were balanced, which was evidenced by a t-test based on IPW-reweighted means
and standard deviations that failed to reject (p-val > 0.05) the null hypothesis of equality
of variable means between the OSA and healthy subjects. The weights were subsequently
used within the outcome model, enforcing the balanced impact of age and gender, across
OSA and healthy subjects.

Outcome model

The proportions of the 25 possible sleep-stage transitions in P were modeled using Dirich-
let regression (c.f., Figure 5.1c) applied to IPW-balanced data. The model specification fol-
lowed Eq. 5.30, and the inclusion of the OSA indicator as one of its predictors exploited
the causal S-learner framework, enabling a straightforward quantification of (age, gender,
apnea-severity)-heterogeneous OSA-effects in terms of Conditional Average Treatment Ef-
fect (CATE) and Risk-Ratio CATE (RR-CATE) (c.f., Eq. 5.27-5.28). Simplistically, the CATE
and RR-CATE refer to absolute and relative differences between conditioned (i.e., OSA-
affected) and control (i.e., healthy) subjects, respectively. The model estimation followed the
implementation of Dirichlet regression in R [179]. To assess uncertainty, both in the model
coefficients and derived effects, the nonparametric bootstrap with 200 repetitions was used
to calculate 95% confidence intervals (CI) based on 2.5% and 97.5% bootstrapped quantiles.

A summary of estimated regression coefficients together with CI for each predictor and
transition proportion is provided in Supplementary Table B.1. The estimates indicate a sig-
nificant influence of both demographics (age and gender), OSA, and its severity (AHI) on
sleep-stage dynamics, as at least one of them had a significant impact on each of the transi-
tion proportions. The significant interactions of OSA with gender point to the presence of
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possible gender-specific OSA phenotypes. The adjustment for comorbidities appears to be
essential as the comorbidity indicators influenced most of the transitions.

Given the complex relationship of the marginal effect on the outcome (i.e., transition %’s)
with individual coefficients and the actual predictors’ value (c.f., Eq. 5.18), we detail results
in the intuitive scales of expected percentages, differences (CATE, Eq. 5.27), and risk-ratios
(RR-CATE, Eq. 5.28), below.

5.3.2 Personalized digital markers of sleep dynamics and the effects of
OSA

The estimated outcome model enables various scenarios of comparisons of OSA vs healthy,
including the raw matrix P, derived markers (e.g., % of sleep-stages), and Markovian transi-
tion matrix PM, c.f., Figure 5.1d. All this, for arbitrary values of predictors, provides a wide
range of results that can inspire new investigative directions. Since all of our results refer
to (possibly derived) transition probabilities (%), we present them in RR-CATE (CATE)%
format, indicating the amount of relative (absolute)% changes, respectively.

Utilizing our model (Eq. 5.30) can extrapolate OSA-effects for arbitrary values of predic-
tors, we showcased the results for three scenarios according to OSA severity, O1: mild (AHI
=5), 02: moderate (AHI = 15), and O3: severe (AHI = 30); three ages: Al: young (30 years),
A2: middle-aged (50 years), A3: older (70 years); and for females (F) and males (M), with-
out comorbidities. When selecting the most prominent effect in a group, we choose the one
according to RR-CATE.

Matrix P of sleep-stage transition proportions

The heatmap in Figure 5.2 shows whether individual transition proportions in P (Eq. 5.1)
were significantly altered due to specific OSA conditions across different ages and gen-
ders. All these aggregated findings are based on detailed results depicted as supplemen-
tary heatmap figures showing respective estimates and CI. Specifically, Supplementary Fig-
ures B.1 and B.4 depict expected P for different ages and OSA-severities for F and M, re-
spectively. Based on that, Supplementary Figures B.2 and B.5 present CATE comparisons
between different levels of OSA and healthy individuals of the same demographics, and
Supplementary Figures B.3 and B.6 depict the respective RR-CATE.

Figure 5.2: Heatmap of RR-CATE values for OSA effects on sleep-stage
transition proportions across gender, age, and OSA severity.
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Notes: Risk-Ratio Conditional-Average-Treatment-Effects (RR-CATE) of OSA (compared to a matched healthy subject) on
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OSA-severity (O1, O2, O3). Decreased (i.e., RR < 100%) and increased (i.e., RR > 100%) risk-ratios are depicted with red and green
shaded backgrounds, respectively. Significant effects are in bold and highlighted with a star (*).

Notably, except for N2 — N3 and N3 — N2 of A3-F, each significant effect identified
for O1 or O2 of both genders was followed with significant effect in the corresponding more
severe OSA group. This follows the intuition, that the sleep-stage dynamics and hence also
P change gradually with increasing prevalence of apnea events (i.e., AHI). The exemption of
older F is justified by a significantly lower % of N3, 70.04 (-5.6)% in A3-O3 (c.f., Supplemen-
tary Table B.4).
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As the entire P sums up to 100%, each decrease in a certain proportion is compen-
sated with an increase in one or more other ones. For F, a major decrease is observed in
REM — REM, with RR-CATE of about 60% across all ages and OSA severities, and the
most prominent drop, 55.55 (-4.85)%, in older. This suggests significant REM sleep insta-
bility, which could impact cognitive health [185]. The O2- and O3-F also show significantly
decreased N3 — N3, as low as 57.08 (-6.97)% in A3, indicating disrupted deep-sleep con-
tinuity, which may affect physical restoration and memory consolidation [186]. For A1-M,
REM — REM decreased for all OSA severities, down to 67.5 (-6.19)%, and for A2-(02,03),
66.93 (-4.73)%, with the largest declines always in O3. The decreases in all A3-M-OSA groups
were not significant, likely due to a larger variance in estimates caused by the limited num-
ber of healthy older M in the data. Contrary to F, a decrease in N3 — N3 was not significant
in M, but a significant decrease in N2 — N2 was noted for (A1, A2) O3-OSA, as low as 91.09
(-3.22)%.

For both genders of all ages and OSA severities, several significantly increased transi-
tion proportions were identified, distinguishing them from healthy subjects. The most pro-
nounced effects were found in A1-O3-E. The increased W — (N2, N3) transitions, up to
234.6 (0.4)%, indicate more frequent arousals attributable to apneic events and subsequent
attempts to quickly regain restorative sleep. Increased transitions N1 — N3, up to 241.0
(0.4)%, suggest a compensatory mechanism where the body attempts to achieve the restora-
tive effects of deep sleep, bypassing intermediate stages due to frequent sleep disruptions.
The increase in N3 — (N1, REM) transitions, up to 245.5 (0.3)%, indicates rather infrequent
compensatory transitions for reduced N3-continuity, related to a regression to lighter sleep
or irregular shifts to REM sleep. Lastly, elevated REM — (N1, N3) transitions, up to 261.6
(0.6)%, reflect REM stage instability, with more frequent abrupt changes in sleep depth. Par-
ticularly, the atypical transitions between N3 and REM may reflect a build-up of sleep pres-
sure associated with OSA. While such transitions are uncommon under normal conditions,
their presence may indicate a compensatory mechanism triggered by long-term disrupted
or unrefreshing sleep.

Interestingly, all OSA-F showed a significant increase in awakenings from all sleep stages,
(N1, N2, N3, REM) — W. For M, there was no increase in REM — W in any OSA group,
and increases in (N1, N2, N3) — W were observed only for O2 and O3. This suggests that in
comparison to M, the OSA-F may experience more fragmented sleep due to frequent awak-
enings from all stages, potentially leading to greater daytime sleepiness, and the presence of
insomnia symptoms.

PSG markers derived from P

The heatmap in Figure 5.3 aggregates the OSA-effects identified for different PSG markers
(c.f., Eq. 5.2-5.13) derived from P. Detailed results concerning expected probabilities (%) of
their occurrence following Eq. 5.18-5.19, CATE, and RR-CATE for individual age and OSA
categories are provided in Supplementary Tables B.2-B.4 for F, and Tables B.5-B.7 for M,
respectively.

Regarding the percentagess of individual sleep-stages, the main effect of OSA shared
between both genders of all ages is the increase in N1 in O3, with the largest increase of
161.94 (5.53)% in Al-F. The increase affected also all O2-M, up to 122.36 (2.57)% in A1, and
A1-O2-F, 134.41 (3.07)%. F seem to have more affected sleep macro-architecture by OSA
than M, as for all OSA-severities of (A1, A2)-F an additional increase in W%, up to 185.63%
(3.57%) in A1-O3, suggesting a reduced sleep-efficiency, and decreased REM%, as low as 74.9
(-4.25)% in A2-O3, was identified. Except for reduced REM% in A1-O3-M, 79.54 (-4.46)%,
these changes were identified only in F.

In addition to increased N3- and REM-awakening from Eq. 5.5-5.6 already discussed
above, increased aggregates of total-awakenings (Eq. 5.3), up to 192.55 (2.89)%, and of light-
sleep-awakenings (Eq. 5.4), up to 200.35 (2.01)%, were observed in all age and OSA cate-
gories with exception of O1-M, with largest effects in A1-O3-F.

A particularly sensitive marker of OSA for all severities appear to be NREM-and-REM
oscillations (Eq. 5.7), which were identified as significantly increased across all groups, peak-
ing at 212.48 (3.59)% in A1-O3-F. This marker is elaborated in detail in Figure 5.4 showcasing
the expected outcome for F. The upper plots (1a-c) depict the expected probability (%), CATE,
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Figure 5.3: Heatmap of RR-CATE values for OSA effects on PSG-markers
derived from matrix P of sleep-stage transition proportions across gender,
age, and OSA severity.
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Notes: Risk-Ratio Conditional-Average-Treatment-Effects (RR-CATE) of OSA (compared to a matched healthy subject) on
PSG-markers derived from matrix P of sleep-stage transition proportions, per gender (F, M), age (A1, A2, A3), and OSA-severity
(01, 02, 03). Decreased (i.e., RR < 100%) and increased (i.e., RR > 100%) risk-ratios are depicted with red and green shaded
backgrounds, respectively. Significant effects are in bold and highlighted with a star (*).

and RR-CATE and corresponding Cls for varying age (and fixed AHI), whereas the bottom
plots (2a-c) for varying AHI (and fixed age). One can observe, that the effect of OSA remains
significant over the entire range of both, age and AHI. The magnitude of the difference tends
to decrease with age (c.f., 1b-c), from CATE of about 4.5% in children to 1.5% in older age,
likely due to generally shorter sleep with decreasing REM% and lower number of sleep cy-
cles. The effect’s size increases rapidly with AHI (c.f., 2b-c), which typically increases with
age. The outcomes for M are illustrated in Supplementary Figure B.13.

Figure 5.4: Effects of age and OSA-severities on NREM-REM oscillations,
P(NREM <= REM), in females.
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Another two highly sensitive derived markers of OSA include sleep- and sleep-stage-
fragmentation from Eq. 5.10 and 5.12, referring to probabilities of transitions between wake-
fulness and sleep, and switching from one non-W stage to the other, respectively. The ef-
fect of the sleep-fragmentation was significant across all groups except O1-M and peaked
at 192.33 (5.66)% for A1-O3-F. The sleep-stage-fragmentation was increased in all groups,
peaking at 174.94 (10.42)% in A1-O3-F. The sleep-stage-fragmentation marker is in-depth
elaborated in Supplementary Figures B.14 and B.15, for F and M, respectively.

The increased fragmentation is reflected in decreased sleep- and sleep-stage-compactness
from Eq. 5.9 and 5.11, referring to staying in not-interrupted sleep and sleep-stage, respec-
tively. Reduced sleep-compactness, down to 88.42 (-9.65)% in A3-O3-F, seems specific to F,
suggesting their more frequent apnea-related arousals than M. The sleep-stage-compactness
was reduced in all categories of F, down to 76.77 (-16.54)% in A3-O3. This decrease, however,
was not present for A3-M and A2-O1-M.

The reduced stage-specific-compactness metrics (e.g., REM — REM) were already elabo-
rated in the section on P-specific transition %’s. Yet, the stage-specific-fragmentation mark-
ers (Eq. 5.13) show significant alterations due to OSA across almost all demographic groups.
The only gender-specific difference can be observed in wake-fragmentation, which is in-
creased in all cases of F (likely due to more frequent awakenings experienced), up to 192.1
(2.77)% in A1-O3, but not for O1- and A3-O2-M. The fragmentation related to non-REM (N1,
N2, N3) stages increased in all OSA and demographics groups, ranging from 118.29 (1.18)%
in N1-fragmentation in A1-O1-M to 178.61% (4.05%) in A1-O3-F. The most pronounced ef-
fects were visible in REM-fragmentation, up to 219.51 (2.32)% in A1-O3-F, referring to more
than twice as many transitions leaving REM sleep.

Markovian transition matrix PM derived from P

Finally, we present the main findings based on PM derived from P through row normaliza-
tion as shown in Eq. 5.14. While P quantifies the overall probabilities (%) of the 25 sleep-
stage transitions, PM conditions on the presence of a specific stage, summing to 100% per
row. Therefore, whereas P evaluates overall chances of observing specific transitions in the
hypnogram during the night (e.g., 36.4% of N2 — N2 in healthy A1-F), the PM evaluates
the distribution of the next sleep stage given the current stage (e.g., 84.3% to stay in N2 in
healthy A1-F), offering another perspective on the underlying mechanisms of sleep dynam-
ics. The heatmap in Figure 5.5 depicts how individual transitions of PM (Eq. 5.14) altered due
to specific OSA conditions across different ages and genders. Detailed results on expected
transition probabilities of PM, CATE, and RR-CATE for comparisons of OSA vs healthy are
provided in heatmap Supplementary Figures B.7-B.9 and B.10-B.12 for F and M, respectively.

Figure 5.5: Heatmap of RR-CATE values for OSA effects on individual
dimensions of row-normalized Markovian transition matrix PM across
gender, age, and OSA severity.
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W-transitions: Despite increased occurrences of P-transitions from W in F, the respec-
tive PM-dynamic was not significantly altered, indicating that the mechanism of the W-
transitions remains similar to healthy subjects, but those transitions tend to occur more
often. This suggests that for OSA-F, the overall increased W% is the main trigger of the
We-related transitions in P. Conversely, M exhibit increased W — (N2, N3, REM) transitions,
up to 250.5 (1.3)% in A3-O3 for W — N2, across all ages and OSA severities, suggesting an
increased sleep pressure due to its disruption induced by apneic events.

N1i-transitions: Both genders showed increased N1 — N3, up to 169.4 (0.9)% in A3-O1-F.
Only F experience increased N1 — W, up to 156.5 (4.7)% in A3-O1, and decreased N1 — N1,
as low as 76.5 (-10.3)% in A1-O1. Increased N1 — REM transitions were present in all F, up
to 201.1 (3.4)% in A3-O1, but only in some of the O1-M, up to 122.7 (1.1)% in A3.

N2-transitions: All groups have decreased N2 — N2, down to 88.4 (-9.8)% in A1-O3-F,
and, except for A1-O3-F, significantly increased N2 — N3 transitions, up to 145.6 (2.2)% in
A3-O3-F. All F groups have increased N2 — W transitions, up to 177.6 (1.6)% in A3-O3-F,
which is present also in all O3-M. N2 — N1 increased for all O2 and O3 groups, up to 179.8
(4.2)% in A3-O3-F, and N2 — R increased for all O3.

N3-transitions: Across all groups, the N3 dynamic had significantly increased transitions
into REM, peaking up to 293.1 (2.1)% in A3-O3-F, pointing to almost three times higher
occurrence of these atypical transitions in OSA. Additionally, decreased N3 — N3, as low
as 77.9 (-18.0)% in A1-O3-M, and increased N3 — N1, up to 316.8% (2.5%) in A3-O3-F, were
noted for all except O1-M. Transitions N3 — W increased in all (A2, A3)-F, up to 214.1%
(2.6%) in A3, and only in O3-M of the same demographics.

REM-transitions: The most prominent effects of OSA are visible in changed REM dynam-
ics. The decrease in REM — REM in both genders of all ages, down to 77.1 (-20.4)% in
A3-O3-F, is compensated by increased transitions into all NREM-stages, up to 345.8 (5.9)%
in REM — N1 for A1-O3-F. The increased REM — W is specific for all F, up to 254.8 (5.3)% in
A1-O3-F. For M, these transitions are decreased partially for all O3 and A3-O2, up to 180.0%
(2.8%) in A3-O3.

Stage-survival: Finally, following Eq. 5.15, the diagonal elements of PM (i.e., probabilities
of W — W, N1 — NI, etc.) simplistically approximate the average expected duration
of individual sleep stages, bridging transition dynamics with investigations modelling the
sleep-bout durations. Here, naturally, significantly decreased probabilities of staying in a
given stage introduced above are equivalent to significantly decreased stage durations.

5.3.3 Predictive Performance of P Markers on External Data

The results of the previous sections focused on quantifying the effects of OSA, specifically
explaining how OSA impacts sleep dynamics and its markers. To illustrate the informative-
ness of these markers, we developed a simple logistic regression model for each of the 25
transition proportions in P. The binary outcome variable was defined as moderate sleep-
disordered breathing, indicated by AHI > 15, and the predictions were based on three pre-
dictors: age, gender, and the percentage of a specific transition. The inclusion of age and
gender was motivated by the observed heterogeneity of OSA effects with respect to these
factors. Each of these logistic regression models, trained on the study dataset (BSDB), was
used to make predictions on the SHHS1 and SHHS2 subsets of SHHS, which contain obser-
vational data on subjects who underwent baseline PSG (SHHS1) and follow-up PSG several
years later (SHHS2, N = 2,621).

The results in Table 5.2 indicate that each transition proportion included in the simple
predictive model demonstrated significant predictive power, as all AUROCs and their con-
fidence intervals were much greater than 50%. The average AUROC performance across
proportions was 66.77% for SHHS1 and 65.98% for SHHS2, with standard deviations of
1.79% and 1.82%, respectively, highlighting practical equivalence in generalizations between
SHHS1 and SHHS2. This robustness is particularly notable given that (i) we used a simple
logistic regression model that assumes monotonic effects of individual predictors and no in-
teractions between them, (ii) we predicted moderate sleep-disordered-breathing (AHI > 15)
using only age, gender, and the percentage of a single transition, (iii) the models were trained
on a relatively small dataset of 622 patients, and (iv) the generalization was performed from
the clinical population of BSDB to the broader public represented by SHHS. All AUROCsSs are
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Table 5.2: AUROC with 95% CI for predicting moderate sleep-disordered

breathing from individual sleep-stage transition proportions.

Transition (Predictor)

SHHST (N = 5,734)

SHHS2 (N = 2,621)

WS W 67.84% (6647, 69.21)  66.51 (64.46, 68.55)
W — N1 68.71% (67.36,70.07)  67.97* (65.95, 69.99)
W — N2 67.04% (65.66, 68.42)  66.03* (63.98, 68.09)
W — N3 66.18% (64.78, 67.57)  65.62* (63.55, 67.69)
W R 68.42% (67.06, 69.78)  68.47* (66.46, 70.48)
N1 — W 69.28% (67.93,70.62)  68.39* (66.38, 70.39)
N1 — N1 66.8% (65.42, 68.18)  65.57* (63.51, 67.63)
N1 — N2 66.74% (65.35,68.12)  66.27* (64.22, 68.33)
N1 — N3 67.2* (65.83, 68.58)  66.23* (64.18, 68.28)
N1 — R 67.54% (6617, 68.91)  66.86* (64.82, 68.9)
N2 — W 65.18% (63.78, 66.58)  63.79* (61.7, 65.89)
N2 — N1 65.73% (6434, 67.13)  65.04* (62.97, 67.11)
N2 — N2 59.82* (58.37,61.28)  59.89* (57.74, 62.05)
N2 — N3 67.43* (66.06, 68.8)  66.46* (64.41, 68.51)
N2 — R 66.06% (64.67, 67.45)  65.16* (63.09, 67.23)
N3 — W 65.82% (64.42,67.23)  65.12% (63.04, 67.2)
N3 — N1 67.19% (65.82, 68.57)  66.27* (64.22, 68.32)
N3 — N2 67.45% (66.07, 68.82)  66.49% (64.44, 68.54)
N3 — N3 67.89% (66.52, 69.26)  67.61* (65.58, 69.64)
N3 — R 66.94% (65.56, 68.32)  65.57* (63.51, 67.64)
R W 64.87% (6347, 66.28)  62.9% (60.79, 65.01)
R — N1 67.45% (66.08, 68.82)  67.15% (65.11, 69.18)
R — N2 66.41* (65.02, 67.8)  66.01* (63.95, 68.06)
R — N3 67.03% (65.65, 68.41)  66.19% (64.14, 68.24)
R—R 68.18% (66.82, 69.54)  67.88* (65.86, 69.89)
Mean + SD 66.77 + 1.79 65.98 + 1.82

Notes: Results are shown for SHHSI (Sleep Heart Health Study baseline) and SHHS2 (follow-up), of N = number of subjects after
exclusion criteria. Mean + SD (standard deviation) summarizes performance across all transitions. Asterisk (*) denotes significant
predictive power with AUROC (> 50%).

very similar, which can be explained by the fact that all transitions in P are interdependent
and numerically share related information.

5.3.4 Interactive R Shiny app

The above-presented results focused on three categories age (30, 50, 70 years), OSA severity

(mild, moderate, severe), and both genders, considering a case without sleep-comorbidities.

For a deeper exploration of our findings, the volume of which is beyond the scope of this pa-

per, we created a freely accessible app (https:/ /mystatsapps.shinyapps.io/Causal_Sleep_Dynamics/)
that interactively displays results for arbitrary values of predictors. As an input, the user
specifies the transition(s) of interest by clicking out some of the 25 (5x5) dimensions, age,

OSA severity (AHI), and the presence of comorbidities (as indicated in Eq 5.30). Addition-

ally, the user chooses whether CATE and RR-CATE should be displayed for age or AHI (=
CATE-variable).

As an output, the app displays a total of six panels. The most important one, Effects of
0S4, displays expected probabilities (%) of selected transitions for healthy vs OSA together
with corresponding CATE and RR-CATE. All these outputs are supplemented by 95% CI and
are depicted for selected age (range 0-100 years) or AHI (range 5-100), and both genders.

The Percentual Transition Matrix and Markovian Transition Matrix tabs show
the expected matrix of sleep-stage transitions P and the derived row-normalized PM for
healthy and OSA subjects of both genders and specified characteristics. In addition, each
tab shows matrices of CATE and RR-CATE depicted as heatmaps supplemented with 95%
CL

The Dirichlet Regression Coefficients tab summarizes regression coefficients as
presented in Supplementary Table B.1. The dimensions of specified transitions of interest
from the input are highlighted.
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The Marginal Effects of All Predictors tab approximate the Eq. 5.18 by calculat-
ing the difference in the outcome by a row-indicated change in the predictors” value. The
marginal effects that are supplemented with 95% CI are shown concerning four baselines
(healthy, OSA) x (female, male), of specified characteristics from the input. Due to the com-
plex relationship of marginal effect with all Dirichlet dimensions its value changes with the
values of predictors (c.f., Eq. 5.18). Hence, their understanding can be particularly useful
in understanding the interplay between different levels of demographics, OSA severity, and
particularly their interactions with comorbidities, that have been so far understudied.

Finally, the Sleep Stage Survival tab depicts survival curves of individual sleep stages,
based on diagonal elements on PM and Eq. 5.15. Notably, as this quantity is based on the
whole-night PM, survival curves illustrate the overall average duration of individual stages.

5.4 Discussion

Sleep is a complex phenomenon whose finest mechanisms are yet to be fully deciphered.
Scoring sleep into a hypnogram of five sleep-wake stages translates it into a simplified,
human-readable code, enabling the calculation of PSG markers and their interpretation by
clinical personnel. Currently, likely due to non-standardized methodologies and reliance on
aggregate counts or summary indices, the representation of sleep-stage dynamics in clini-
cal PSG reports remains limited [8], [187]. Although such markers are reported, they often
lack normative values and standardized interpretation guidelines, which may limit their
full clinical potential. Yet, existing studies provide strong evidence that more granular char-
acteristics of sleep-stage transitions [98]-[107] or sleep-stage duration/survival [108]-[114]
can be specific for various sleep conditions and age. For clinical, economic, and ethical
reasons, most of the related research has in common that PSG data were collected in a non-
randomised way and were analysed retrospectively, hence subjected to considerable con-
founding [174]. A minority of studies investigating sleep dynamics addressed confounding
either by analyzing subjects with restricted demographic ranges (e.g., [98], [99], [108]), or
by selecting typically age- and gender-matched controls (e.g., [100], [102], [104], [114]). This
may limit the findings’ generalizability or underfit the age- and gender-specific phenotypes.

By exploiting techniques of causal inference (IPW-balancing from Eq. 5.25; S-Learner
from Eq. 5.30), our study presents a novel and highly flexible approach to jointly quantify
(i) sleep-stage dynamics, (ii) effect of disorder, and (iii) derive several established as well as
novel digital markers of sleep. We demonstrate our approach to OSA, the most prevalent
sleep condition and a significant risk factor, evidenced to impact sleep macro-strucure and
dynamics [103], [106], [109]-[112].

Working with the observational BSDB database, we initially balanced the dataset using
IPW-reweighting and addressed the confounding of age and gender, whose distributions
differed between healthy and OSA-affected subjects. Ignoring this, it would be challeng-
ing to separate the effects of demographics (e.g., of ageing) from OSA, since its prevalence
and severity increase with age [112]. To quantify sleep-stage dynamics, we proposed to ex-
ploit the matrix P (Eq. 5.1), consisting of 25 (5 x 5) interdependent transition proportions.
Thanks to the flexibility of P to quantify all, the dynamics, derived markers, and Marko-
vian PM, we suggest considering it as a simple digital sleep-fingerprint. All dimensions of
P were modelled jointly as an outcome of Dirichlet regression (Eq. 5.17, 5.30), respecting
their compositional nature (summing to 100%) and allowing their straightforward aggre-
gation to derive many established and novel PSG markers (c.f., Eq. 5.3-5.13). In contrast,
analyzing dependent outcomes, e.g., % of sleep stages and their transitions, separately, such
as using (M)ANOVA [106], would lead to biases and disregard constraints on value ranges
and cumulative sums. Considering predictors of age and gender allowed outcome model’s
(Eq. 5.30) adaptation to nonlinear changes in sleep due to ageing and quantification of pos-
sible gender phenotypes [18], [139], [166]. Most importantly, the inclusion of the OSA indi-
cator followed the causal S-learner framework [180], allowing direct quantification of OSA
effects in terms of CATE and RR-CATE (c.f., Eq. 5.27-5.28) by comparing expected outcomes
for healthy individuals of given demographics with hypothetically matched OSA-subject
of specified OSA-severity (AHI). Our modelling approach avoids discretization of age and
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AH]I, and hence allows quantification of personalized (up to OSA-severity and demograph-
ics) effects/markers, closely aligning the needs of precision medicine. Even so, it is im-
portant to recall that the BSDB dataset contained only 2 cases of paediatric OSA (age < 18
years) and therefore, the conclusions should be taken with care when generalizing them to
the pediatric OSA-population. Uniquely, the richness of BSDB allowed us to account for in-
teractions between OSA and several other sleep comorbidities - a clinically well-known and
relevant fact (c.f., [10], [188]-[191]), so far either overlooked (e.g., [103], [109]), being admit-
ted but not handled (c.f., [112]), or leading to analysis of subjects with no sleep-comorbidities
(e.g., [106], [110]). With 48.6% of OSA subjects in our observational dataset having at least
one additional sleep comorbidity, addressing these interactions is crucial for reducing bias
and accurately estimating the impact of OSA from other conditions.

The estimated outcome model provides three main dimensions of our results. First, the
quantification of sleep fingerprint P provides information on the % of time spent in indi-
vidual transitions and compactness of sleep-stages. Several transitions were significantly
increased by OSA for all demographics and AHI-severity groups: W — (N2, N3), N1 —
N3, N3 — (N1, REM), and REM — (N1, N3), all peaking with RR-CATE >200%. Despite
their rare presence in healthy subjects, our findings suggest they may be a sensitive marker
of OSA. In addition, all OSA-F had significantly increased (N1, N2, N3, REM) — W, W —
REM, N1 — REM, REM — (W, N2), and decreased REM — REM, suggesting their higher
vulnerability to awakenings and REM-disruptions in comparison to M, for whom these ef-
fects were observed only partially. This finding may also be linked to more likely REM-OSA
in F [192]. These results suggest that female OSA patients may experience subtler forms of
sleep disruption, such as increased REM instability and awakenings, which could contribute
to the under-recognition of OSA burden in women if relying solely on oxygen desaturation
metrics. Secondly, by aggregating dimensions of P, one can derive standard PSG markers
(e.q., % of sleep-stages), and many novel proposed ones, that may be specific to particular
conditions. For all demographic and AHI groups, OSA significantly increased NREM-REM
oscillations (c.f., Eq. 5.7), overall sleep-stage fragmentation (c.f., Eq. 5.12), and (N1, N2, N3,
REM)-specific fragmentations (c.f., Eq. 5.13). In addition, all, sleep-, light-sleep, and deep-
sleep-awakenings (c.f., Eq. 5.3-5.5), were increased for all moderate and severe-OSA groups.
Finally, row-normalizing P yields the Markovian PM, which quantifies the probabilistic dis-
tribution of the next phase given the current state, thus investigating deeper dynamic mech-
anisms. For all age and AHI groups, OSA increased N1 — N3, N3 — REM, REM — (N1,
N2, N3), and decreased REM — REM and N2 — N2. All moderate and severe OSA had also
increased N3 — N1 and decreased N3 — N3. For all OSA-M, an additional increase in W
— (N2, N3, REM) and for all OSA-F increase in N1 — (W, REM), (N2, REM) — W and de-
creased N1 — N1 was observed. Furthermore, we demonstrated that PM can also be used to
model sleep-stage survival (Eq. 5.15), bridging the two principal directions of sleep dynam-
ics research: sleep-transitions [98]-[107] and sleep-stage bout duration quantification [108]-
[114]. The merit of the stage survival analysis includes the evaluation of the functional form
of the distribution. We can learn their statistical property which provides insights into the
underlying mechanism.

To underscore the diagnostic utility of our findings, we evaluated the predictive power
of individual transition proportions in P on external data from SHHS, containing a broad
population of subjects from the general public. For each transition, we developed a sim-
ple logistic regression model using age, gender, and the specific transition percentage as
predictors, and assessed its ability to identify moderate sleep-disordered breathing (AHI >
15). Results showed significant predictive utility across all 25 transitions, with all AUROC
values exceeding 50% (range of 59.82-69.28), and their average of 66.77% for SHHS1 and
65.98% for SHHS2, with respective standard deviations of 1.79% and 1.82%. This robust per-
formance highlights the generalizability of the derived markers from the BSDB dataset to a
broader population while confirming the informativeness of individual transitions as pre-
dictors of sleep-disordered breathing. Higher predictive performance can be expected when
including additional predictors not reflected in P (e.g., total-sleep-time, sleep-latency), their
interactions with specific proportion, using all proportions jointly, or using a more complex
predictive model than logistic regression.
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5.5 Conclusion

In summary, our findings from different perspectives confirm that OSA is associated with re-
duced continuity of N2, N3, and REM sleep, reflected by increased sleep fragmentation [103],
[106], [109]-[112] at both the conventional sleep-to-wake level and in the proposed mark-
ers of stage-specific dynamics. By exploiting the matrices P and PM, we identified OSA-
specific transitions contributing to these alterations, particularly atypical transitions from
light to deep sleep and oscillations between N3 and REM. These transitions, though rare
in healthy individuals, may serve as sensitive markers of OSA, possibly reflecting compen-
satory mechanisms where the body attempts to regain restorative states, either after their
frequent disruption by apneic events or following long-term accumulation of disrupted and
unrefreshing sleep. These findings contribute to growing evidence that OSA phenotypes
vary across demographic groups and may benefit from personalized clinical interpretation.
Our results suggest that females with OSA exhibit increased REM-stage instability and a
higher frequency of awakenings from multiple sleep stages, despite often presenting with
milder oxygen desaturation—patterns that may elude detection by AHI alone when com-
pared to males [193]-[195]. This aligns with prior reports of REM- or arousal-dominant OSA
profiles in women, often accompanied by insomnia-like symptoms [18], [139]. By quantify-
ing stage-specific dynamics, our framework may support more refined diagnostic stratifica-
tion and treatment decisions—especially in subgroups historically underrepresented or mis-
characterized by standard PSG indices. For instance, women with OSA—who often present
with insomnia-like symptoms and have a higher risk of comorbid depression—may benefit
from personalized treatment approaches that contextualize available markers, such as REM-
related instability, frequent awakenings, or shorter apneas [195], to more precisely identify
the plausible contributing factors—be it OSA, insomnia, depression, or others.. This may
guide the use of CPAP with cognitive behavioral therapy for insomnia (CBT-I), or consider-
ing oral appliance therapy (OAT) in milder-AHI cases [194], [195]. The results of our work
are also available as an interactive app, allowing in-depth exploration of results and pro-
posed markers for arbitrary demographics, OSA severity, and their interactions with other
sleep comorbidities.

Our approach to support diagnostics, has broader applicability beyond the OSA use-
case, as sleep dynamics and their markers can be specific to other sleep disorders, such
as narcolepsy, insomnia, periodic limb movement disorder, and others. With the rise of
telemedicine and increasing use of wearables, investigating sleep dynamics and its mark-
ers could become a valuable screening tool for assessing the risk of psychiatric (e.g., de-
pression, schizophrenia, etc.) and neurodegenerative disorders (e.g., Parkinson’s disorder,
Alzheimer’s disease, etc.), which are evidenced to be associated with disrupted sleep [3], [6],
[33]. Even though the consumer devices provide - compared to clinical PSG - lower quality
signals and hypnograms, adaptation and re-estimation of our approach to these data has still
great potential to provide valuable insights. Furthermore, with advances in automatic sleep-
scoring tools that offer hypnodensity beyond the standard hypnogram [61], our framework
could enhance the understanding of sleep micro-events and more granular sleep dynamics,
when hypnograms on less than 30-second windows would be used as data for our model.

5.6 Limitations

Our future work will extend our approach to address several of its limitations. Following
the ideas of Schlemmer et al. (2015) [105], we aim to extend it to the second-order sleep-stage
transitions that would require quantifying a 125 (= 5 x 25) dimensional transition cube. Next,
we plan to account for time spent asleep and investigate dynamics at different times of the
night. Currently, we have focused on transitions aggregated over the entire sleep period,
but recognizing the non-stationary nature of sleep offers opportunities for identifying even
more specific markers. This would also concern the quantification of sleep-stage survival or
duration, which our current work approximated by an overall night expectation. Addition-
ally, we plan to consider whether the subject’s apnea events are REM- or NREM-dominant,
which may reveal additional phenotypes, and to assess whether the proposed markers can
also help distinguish obstructive sleep apnea (OSA) from central sleep apnea (CSA). Further,
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we plan to investigate in greater detail the interaction of OSA with comorbidities, which can
already be explored in our app. Finally, our current framework captures sleep dynamics at
the macro-structural (sleep-stage) level, relying on stage annotations from standard hypno-
grams [8]. It does not directly account for EEG-based micro-events such as brief arousals or
microstructural instability captured by the Cyclic Alternating Pattern [196]-[200], which has
shown clinical relevance in characterizing sleep instability, evaluating treatment response
(e.g., to CPAP), and supporting diagnostics. With the rise of automatic sleep-scoring algo-
rithms that produce hypnodensity outputs [61]—i.e., probabilistic stage predictions at sub-
30-second resolution—there is growing potential to adapt our framework to this finer tem-
poral scale. The domains of sleep-stage and micro-structural dynamics can now be seen as
complementary, and our future work will aim to bridge them.
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Chapter 6

Unveiling Sleep Dysregulation in
Chronic Fatigue Syndrome

with and without Fibromyalgia
Through Bayesian Networks

Abstract

Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM) often co-occur as medically un-
explained conditions linked to disrupted physiological regulation, including altered sleep.
Building on the work of Kishi et al. [201], who identified differences in sleep-stage transitions
in women with CFS and CFS+FM, we exploited the same strictly controlled clinical cohort
using a Bayesian Network (BN) to quantify detailed patterns of sleep and its dynamics.
Our BN confirmed that sleep transitions are best described as a second-order process [107],
achieving a next-stage predictive accuracy of 70.6%, validated on two independent data sets
with domain shifts (60.1-69.8% accuracy). Notably, we demonstrated that sleep dynam-
ics can reveal the actual diagnoses. Our BN successfully differentiated healthy, CFS, and
CFS+FM individuals, achieving an AUROC of 75.4%. Using interventions, we quantified
sleep alterations attributable specifically to CFS and CFS+FM, identifying changes in stage
prevalence, durations, and first- and second-order transitions. These findings reveal novel
markers for CFS and CFS+FM in early-to-mid-adulthood women, offering insights into their
physiological mechanisms and supporting their clinical differentiation.

Keywords:
Chronic Fatigue Syndrome, Fibromyalgia, Sleep Dynamics, Polysomnography, Bayesian Network

6.1 Introduction

Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM) co-occur in up to 70% of cases [202].
These conditions share symptoms such as disrupted sleep and exhaustion but have dis-
tinct clinical profiles: CFS is characterized by severe, unexplained fatigue worsened by exer-
tion [203], whereas FM is defined by widespread musculoskeletal pain and sensory hyper-
sensitivity [204]. Both conditions disproportionately affect females, with prevalence up to
four times higher than in males [205], and are most commonly reported in young to middle-
aged adults [203], [204], [206]. They are frequently accompanied by other clinical conditions,
including psychiatric and specific sleep disorders [207], [208], complicating the quantifica-
tion of their underlying effects. Consequently, clinical reviews of existing - mostly observa-
tional - studies often lack evidence of their systematic impacts on sleep architecture [208].

The study cohort by Kishi et al. [201] minimized confounding factors and collected
polysomnographic (PSG) data from a strictly controlled set of healthy (H), CFS, and CFS+FM
women aged 25-55. Exploratory data analysis revealed changes in sleep stage durations and
proportions and identified first-order transitions as potential markers enabling clinical in-
terpretation of physiological dysregulation in CFS and CFS+FM.
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Recent research in individuals with or without sleep disorders showed that sleep-stage
transitions are optimally modelled and analyzed as a second-order process [105], [107].
Leveraging these insights and the CFS/FM dataset [201], we (i) implement a Bayesian Network
(BN) capable of both next-stage prediction and diagnostics, (ii) validate the second-order optimality
even in a clinical cohort, and based on that (iii) identify novel markers for CFS and CFS+FM based
on two-stage transitions, providing novel insights into their physiology and supporting their
clinical differentiation.

6.2 Materials and Methods

6.2.1 Data

Primary Cohort. The data from [201] comprises PSG recordings from 52 women, carefully
selected to ensure homogeneity and avoid confounding. The cohort included 26 healthy
controls (H, aged 38 + 8 years), 14 individuals with CFS only (aged 37 £ 9 years), and 12
individuals with CFS and FM (CFS+FM) (age: 41 & 6 years). Rigorous exclusion criteria
were applied, including the presence of clinically evident sleep disorders or other psychi-
atric conditions. Subjects also refrained from alcohol, caffeine and strenuous activities be-
fore the study, and menstruating individuals were evaluated during the follicular phase of
their cycles. The PSG data were recorded during a single night in a controlled hospital envi-
ronment, with sleep stages scored every 30 seconds. This carefully curated data set enables
robust estimation of the underlying effects of CFS and CFS+FM in early to mid-adulthood
women.

Validation Cohorts. The Bern Sleep—Wake Registry (BSWR) from the University Hospital Bern
and the open-access Sleep Heart Health Study (SHHS) are clinical and general-population
data sets used to assess the robustness and validate the next-stage predictions of our de-
veloped model. To ensure demographic alignment with the primary cohort, subsets of 834
and 1227 women aged 20-60 were selected from the BSWR and baseline-SHHS (SHHS1),
respectively. The BSWR challenged the model’s predictive capabilities with a population of
sleep-disordered subjects, while SHHS1 assessed it in a general population.

To ensure consistency across analyses, sleep-scoring in all data sets was standardized to five
sleep-wake stages following the AASM guidelines [8]: W = Wake, R = Rapid-eye-movement
sleep, and (N1, N2, N3) non-R sleep-states.

Preprocessing. Having a controlled homogeneous study population (women of the same
age), we considered Health Status (HS): H, CFS, CFS+FM, as the only demographic variable.
When modelling sleep dynamics, we ignored the PSG recordings before the first non-W
stage. We identified continuous bouts (runs) of each stage—denoted S;, indexed by t—and
recorded their durations (D). This reduced the original 44,581 sleep-stage-epochs to 7,254
bouts. For each bout, we also recorded the time-since-sleep-onset (T;, TSSO) and cumulative
characteristics (C¢) monitoring either sleep-time (CST=N1+N2+N3+R) or restorative-sleep-
time (CRST=N3+R). To utilize the existing Bayesian inference implementation [209], we dis-
cretized the TSSO into five 90 minutes categories (<90, 90-180,..., >360) of expected sleep
cycles and split C; and D; variables into four groups based on (25, 50, 75)%-quantiles, with
the possible additional class of 0, if present in the corresponding variable. The validation co-
horts underwent the same preprocessing, yielding 113,071 and 150,296 bouts, respectively.

6.2.2 Bayesian Networks to Capture Sleep Stage Dynamics

A Bayesian Network (BN) is a statistical framework that encodes probabilistic relationships
between variables and can represent cause-effect relationships under additional causal as-
sumptions [209]. These relationships can be learned from data (structure learning), defined
by experts (incorporating domain knowledge), or by combining both approaches. Repre-
sented as a Directed Acyclic Graph (DAG), BNs offer several advantages, including reduced
parameter complexity and interpretable predictions—a critical requirement in the healthcare
field.
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A compelling feature of BNs is their ability to fix specific nodes (variables) at desired
levels, such as the health status (HS) to H or CFS, representing what is referred to as an in-
tervention. This enables do-calculus and the simulation of causal counterfactuals [210], [211],
addressing what-if questions such as ours of how sleep patterns change if a healthy individual
were to develop CFS or CFS+FM. Dynamic BNs (DBNs) extend the approach to temporal pro-
cesses by incorporating dependencies across time, including lagged features. This makes
them particularly suited for modelling sleep transitions.

Experimental Setup. Rather than relying only on data-driven structure learning algorithms,
we predefined dependencies using expert knowledge, as shown in Figure 1. This included
mandatory (solid) edges encoding the impact of all previous stages on the following ones (in
red) and the impact of HS on S, C, D (in green). The possible (dashed) impact of TSSO (T) on
S,C, D (in yellow) was also considered. Further, we hypothesized that transitions in S might
be better explained by considering cumulative sleep variables C (in orange), naturally de-
pending on T. Existing work suggested that including stage-duration D, depending on S (in
red), might boost next-stage predictions (in blue) [107]. To systematically evaluate each vari-
able’s inclusion and identify the optimal structure, including BN lag/order (0-4), we fitted
the BN for each possible combination of non-mandatory nodes and their associated depen-
dencies (edges), and used linear regression to associate BN performance (for next-stage and
HS prediction) with indicators of each variable’s inclusion. Clinically, beyond quantifying
the effects of CFS and CFS+FM (HS-node), this allowed us to test whether the cumulative
sleep (CST, CRST) better explains sleep dynamics than TSSO. Despite the well-known effect
of TSSO on sleep macro-architecture (e.g., higher R% in the second half of the night), its
influence on dynamics remains inconclusive [107].

6.3 Results

6.3.1 Descriptive Statistics

Traditional sleep variables of the primary dataset are described in detail in the original
work, which also reports their Tukey-Kramer multiple comparisons concerning the HS [201].
The significant differences were identified for the total sleep time [mins] (H > CFS), N1 and
N2 [mins] (H > CFS+FM), N3 [mins] (CFS+FM > H), and REM [mins] (H > CFS), c.f., Table 2
in [201].

Occurence of stage-specific bouts and their duration is presented in Table 6.1. H ex-
perienced significantly more R-bouts than both CFS conditions and more N1-bouts than
CFS+FM. In addition, CFS+FM exhibit more N3-bouts than CFS only. The subject-aggregated
means of stage-specific bout durations did not exhibit significant differences across HS.

Table 6.1: Mean (SD) bout statistics for healthy (H), CFS, and CFS+FM

subjects.

Stage | Characteristic H CFS CFS+FM Significant Pairs
W Bouts 22.5(6.4) 22.5(8.5) 19.7 (5.6) -

Duration 2.4 (1.5) 3.6 (3) 32(21) -
N1 Bouts 44.6(17.2) 375(17.7) 29.8 (8.9) H - (CFS+FM)*

Duration 1(0.2) 1(0.2) 0.9 (0.2) -
N2 Bouts 50.2(16) 43.1(11.9) 52.7 (14.8)

Duration 5(2) 5.1(1.7) 4.1(2.1) -
N3 Bouts 18.4 (10.2) 15.6 (6.6) 25.1(12) CFS - (CFS+FM)*

Duration 22(22) 2.8 (1.9) 3.3(2) -
R Bouts 13.4(7) 6.5 (4.8) 8.2(3.8) | H-CFS*™; H - (CFS+FM)*

Duration 8.2 (5.8) 12.6 (8.5) 10.8 (7.9) -

Notes: Bouts indicate the average number of stage runs, and Duration their mean length in minutes. Significant pairwise
comparisons according to the Tukey-Kramer procedure are marked with * and ** for p-value < (0.05 and 0.01), respectively.

6.3.2 Structure Identification

The structure of BN was selected based on the computational experiment described above,
testing all expertly-predefined node combinations from Figure 6.1 under restricted settings
of temporal ordering and HS being the underlying cause of transitions. This evaluation



88 Chapter 6. Unveiling Sleep Dysregulation in Chronic Fatigue Syndrome
with and without Fibromyalgia Through Bayesian Networks

used HS-balanced 3-fold cross-validation (CV) with subject-wise splits, allowing perfor-
mance quantification for each variable combination while ensuring a reasonable number
of subjects were included in the testing fold.

Figure 6.1: Full-structure Bayesian network with lag = 2.
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Notes: HS = health status (healthy, CFS, or CFS + FM); T; = time since sleep onset; C; = cumulative sleep; S; = sleep stage; D; =
sleep-stage duration, chronologically indexed by ¢.

The performance metrics used included: next-stage accuracy and Fl1-score, and aver-
age AUROC (of AUROC:s specific to H, CFS, and CFS+FM). The results are summarized in
Table 6.2.

Table 6.2: The impact of BN-included variables on the performance metrics.

Variable Accuracy [S;] Fl1-score [S;] AUROC [HS]
lag=0 44.00 50.84 71.59
lag=1 68.03 72.75 74.13
lag =2 72.08 73.07 74.29
lag =3 68.91 70.05 75.63
lag =4 64.78 65.94 75.85
TSSO -4.14 -4.62 -4.14
Stage-Duration -3.29 -3.87 2.45
CST -1.53 -1.65 -3.98
CRST -12.03 -12.56 -8.42
Model’s F(9, 51) 1252.09 2323.33 4715.47
Model's RZy o 0.995 0.997 0.999

Notes: Significant variable associations and model explanations based on F-test are highlighted as p-value < 0.05, 0.01 , and

0.001 , respectively. The Rgdjusted (not tested) and F-statistic refer to regression models evaluating the systematic impact of
included variables on the performance metric across different BN-settings and not to any specific BN.

Based on next-stage performance metrics, we identified lag=2 as optimal, confirm-
ing [107], as both accuracy and Fl-score were the highest and appear to decrease with
larger lags. The AUROC, indicating capability to identify HS, was up to 1.56% better for
higher lags, but their consideration would lead to an expected decrease of up to 7.3% in
accuracy/Fl-score. All TSSO, CST, and CRST yielded a systematic decrease in all perfor-
mance metrics. This may suggest that sleep dynamics and HS identification are either
unrelated to these variables or that the BN was under their inclusions over-parametrized, as
the number of parameters to predict the S; just from S;_1, S;_», HS involves 75 = 5x5x3 pa-
rameters which scale by 4-5 with inclusion of every additional (TSSO, CST, CRST) variable.
Based on that, we chose the BN of lag = 2 with included stage durations as the final model
to demonstrate the CFS and CFS+FM effects. Despite slightly reduced next-stage predictive
accuracy due to duration inclusion, this model seems to significantly enhance the identifica-
tion of HS. Our evaluations tried to find a compromise between the best performance in the
next stage and diagnosis identifications.
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6.3.3 Performance and Generalization

The final BN (lag = 2, including stage durations) achieved 70.61 (1.9)% and 69.2 (2.7)% in
mean (5D) on-subject next-stage accuracy and F1-score, and the HS AUROC of 75.36 (8.3)%.
For each subject, we estimated HS probabilities by averaging posterior queries over all
triplets of sleep stages and durations.

To further test the robustness of the final BN to capture sleep dynamics, we evaluated its
predictive accuracy on BSWR and SHHSI1. Despite training on a small sample of 52 strictly
controlled subjects, BN achieved 69.78 (7.25)% and 60.1 (11.62)% in mean (SD) on-subject ac-
curacy, 70.94 (9.1)% and 59.83 (11.56)% in on-subject F1-score, on BSWR and SHHSI, respec-
tively. Considering that both test data sets represent out-of-domain samples from general
and clinical cohorts, respectively, with considerable domain shifts, these results suggest the
particular robustness of our BN. In contrast, similar work reported 62.2% testing accuracy
(corresponded to in-domain cross-validation assessment) on a broad sample of 3,202 PSG
recordings with excluded sleep-disorders [107].

6.3.4 Effects of CFS and CFS+FM via Interventions

We evaluated three interventions by fixing the HS node of our final BN to H, CFS, and
CFS+FM levels, allowing sampling from arbitrary nodes under specified conditions. As-
suming no hidden confounding, which is reasonable in our strictly controlled cohort, com-
paring samples for CFS-vs-H and (CFS+FM)-vs-H enables estimating the causal effects of
the two conditions. Arbitrary 95% credible intervals (CI) were constructed by generating
1,000 1,000 samples and calculating median (= estimate) and (2.5, 97.5)%-quantiles (= CI-
bounds).

Bouts Duration: Figure 6.2 presents BN-based Cls for expected stage durations. Dis-
cretized D; levels were represented by mid-points and multiplied by obtained samples.
Both CFS and CFS+FM exhibit prolonged W and N3 durations, indicating reduced sleep
efficiency and increased physically-restorative drive. CFS additionally exhibits extended R
stages, linked to cognitive restoration, despite fewer R bouts. In contrast, CFS+FM shows
shorter N1 durations, likely compensating for increased W and N3. Notably, CFS does
not display reduced durations in any stage, suggesting compact sleep despite decreased
efficiency.

Figure 6.2: Expected durations of sleep-stage bouts for H, CFS, and CFS+FM

groups.
Status 2
Healthy ;I»
CFS g 8 8
CFS+FM ZIﬁ EI
w P E
2 <
24 5 g
£ 3
s 3
=) s &
< ARd!
2 :‘IE
@ E B
g : ERRE AR
5 AT [ F _ g -
g il 2 i1 5. &l
B 0§z ¥ g fls AR
i+ S U 5 2 g+ & 3
8 | 2 8 s 5 iIg &
b E BE &1 81 5 5
. P C itk :
s ¢ § 5
0.26 (0.08, 0.44) 5 § % 0.51 (0.31, 0.69) 0.71 (0.44, 0.94)
o | ) L | |

L
0.48 (0.28, 0.68) -0.19 (-0.29, -0.08) -0.61 (-0.85, -0.37) 0.72(0.52, 0.92)
Overall w N1 N2 N3 R
Stage

Notes: Durations are shown with 95% confidence intervals (CIs) as vertical error bars. Horizontal brackets indicate significant
between-group differences, reported with their estimates and 95% Cls.

First-order transitions (S; | S;_1) expected for H are shown in Figure 6.3.a and the CFS
and CFS+FM effects in Figure 6.3.(b-c). The effects were quantified without conditioning
on any particular stage and describe the overall sleep dynamics. Below, we write in bold
alterations by at least 10%. CFS showed reduced R% and increased N1—+W, R—W that were
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compensated by decreased N1:=R. The changes were more pronounced in CFS+FM, which
showed increased (N2, N3)% and decreased (N1, R)%. Further, CFS+FM exhibited signif-
icantly increased (W, N1, R)—=N2, N2—N3, N3—(W, N1), and decreased (W, N2, R)—N1,
N1—R, and N3—N2. Our findings confirm all alterations found by [201] in their Figure 1.
We additionally identified increased N1—W (c.f., [102]) in CFS (compensation for decreased
N1—R) and disruptions in N2 for CFS+FM [201].

Figure 6.3: Lag-1 sleep-stage transition dynamics for Healthy (H), Chronic
Fatigue Syndrome (CFS), and CFS with Fibromyalgia (CFS+FM).
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Notes: Panel (a) illustrates the expected transitions for H, with node sizes proportional to the prevalence of S; 1 stages and edges
indicating transition (S; | S;_1) probabilities. Panels (b) and (c) depict the differences in stage prevalence and transition
probabilities due to CFS and CFS+FM, in comparison to H, respectively. Positive and negative values are shown in blue and red,
respectively, and significant alterations are annotated with their estimates and 95% credible intervals.

Second-order transitions (S; | S;_1,S;_») in Figure 6.4 provide deeper insights into sleep
dynamics. The first row represents expected transitions for H, while rows 2 and 3 depict the
effects of CFS and CFS+FM. Each column (a—e) corresponds to a different starting stage S;_».
In some cases, the alterations are only in S;_1 (nodes), or follow-up transitions (S;_1—S;,
edges), both conditioned on S;_, and extending the unconditioned first-order results from
Figure 6.3.

In CFS, key disruptions included increased R—W (with subsequent increases in N1 and
decreases in R) and R—N2 (followed by increased N1, N3, and decreased W, R), along with
reduced R—N1. These patterns suggest an impaired ability to achieve or maintain restora-
tive R sleep, compensated by non-restorative transitions within light sleep (N1, N2). Ad-
ditionally, W—R, common in healthy individuals during the second half of the night, was
decreased and supplemented by W—N1. More frequent N1—W, at the expense of N1—R,
further contributed to reduced sleep-efficiency and increased fragmentation.

In CFS+FM, disruptions included increased R—W (with subsequent increases in N1 and
decreases in N2) and R—N2, along with reduced R—N1 (followed by decreased W and
R, and increased N2). Particularly increased N2—N3 (followed by increased transitions to
W and N1, and reduced to N2), reflecting a compensatory drive for deep sleep (N3) likely
linked to FM’s restorative needs, while also indicating difficulty maintaining smooth sleep
cycling. Reduced W—NT1 and increased W—N2 suggest a shift towards intermediate sleep
stages at the expense of lighter sleep, possibly as a response to pain-related disruptions. In-
creased awakenings from N3 (compensated by reduced N3—N2) and from R further desta-
bilized transitions between restorative and lighter stages, amplifying sleep fragmentation
and reducing efficiency. These findings align with FM’s symptomatology, where widespread
pain increases the need for deep sleep (N3) but disrupts restorative sleep transitions, high-
lighting the need for tailored treatments to improve both sleep and pain management.
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Figure 6.4: Lag-2 sleep-stage transition dynamics for Healthy (H), Chronic
Fatigue Syndrome (CFS), and CFS with Fibromyalgia (CFS+FM).
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6.4 Discussion

In this study, we constructed a Bayesian Network (BN) to quantify the effects of Chronic
Fatigue Syndrome (CFS) and its interaction with Fibromyalgia (FM) on sleep dynamics.
Using a strictly controlled dataset [201], we confirmed that second-order transitions (S; |
S¢—1,St—2) optimally describe sleep patterns, extending findings from non-clinical popu-
lations [107]. Despite a relatively small dataset of 7,254 bouts from 52 subjects, our BN
achieved robust next-stage predictions with in-domain (out-of-domain) accuracies of 70.6%
(60.1-69.8%), respectively. This capability enabled the successful differentiation of healthy
(H), CFS, and CFS+FM groups (AUROC: 75.4%), showcasing sleep dynamics’ potential for
diagnostics. Based on that, we used interventions to quantify the effects of CFS and CFS+FM
compared to H on different aspects of sleep dynamics.

Both conditions exhibited prolonged wakefulness (W) and N3 stages, reflecting reduced
sleep efficiency (aligning with insomnia-symptoms in CFS [207]) and increased physical
restoration needs, particularly pronounced in CFS+FM. Additionally, CFS showed extended
R durations related to an increased sympathetic activity and a higher need for cognitive
restoration, while CFS+FM demonstrated reduced durations of N1 and N2. Interestingly,
the duration of any stage did not decrease in CFS, suggesting that their sleep - despite re-
duced efficiency - may remain relatively compact.

First-order transitions confirmed all previous findings [201], and - thanks to the joint es-
timation of transition-probabilities in our BN (as opposed to the pairwise comparisons in
[201]), revealed three additional compensatory transitions. CFS is marked by frequent and
prolonged awakenings from the N1 and R stages, disrupting “healthy” oscillations between
them. This suggests reduced sleep efficiency at the expense of R sleep, potentially contribut-
ing to fatigue from both, insufficient sleep quantity and inadequate autonomic or cognitive
restoration. In contrast, CFS+FM is characterized by awakenings from deep N3 sleep, into
which they tend to transition more frequently. FM, associated with physical pain and dis-
comfort [204], appears to drive both the increased N3 duration and the pressure to transition
to N2 instead of N3 across stages.
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The second-order transitions provided a novel and detailed perspective on sleep alter-
ations. Both conditions exhibited increased transitions into W, particularly from R, reflect-
ing reduced sleep efficiency. For CFS, fewer alterations were observed, consistent with their
longer bouts. The results highlighted CFS-specific patterns of awakenings from N1 and R,
difficulties maintaining R (due to transitions into N2), and challenges achieving R. These
disruptions may represent the patients’ common complaint of “unrefreshing sleep”, either
as a cause or a consequence of fatigue, as commonly reported in CFS. In contrast, CFS+FM
showed more widespread alterations, including frequent awakenings from both R and N3,
coupled with a marked compensatory drive to achieve and sustain N3, likely driven by the
physical symptoms of FM.

6.5 Conclusion

Our study confirms that sleep transitions are best described as a second-order process, even
in diseased clinical subjects. Using a strictly controlled cohort of young-to-middle-aged
women, we identified the effects of CFS and CFS+FM on alteration sleep and its dynam-
ics, supporting their clinical differentiation. These findings highlight the potential of sleep
dynamics as a non-invasive diagnostic tool and may suggest differing therapeutic needs tai-
lored to the unique sleep disruptions observed in these conditions. Our findings should not
be directly generalized to males and older subjects, as our study population did not include
them, necessitating further evaluations in these groups.
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Chapter 7

Sleep-Stage Dynamics Predict
Current Sleep-Disordered
Breathing and Future
Cardiovascular Risk

Abstract

Sleep-disordered breathing (SDB) is a major contributor to cardiovascular morbidity and
disrupts both the macrostructure and dynamics of sleep stages (W, N1, N2, N3, REM).
While specific alterations in sleep macrostructure, such as reduced durations of N3 and
REM, have been linked to cardiovascular risk, the predictive value of sleep-stage dynamics
remains unexplored. Using data from the prospective Sleep Heart Health Study, we applied
a flexible forest-based modelling approach to a carefully selected cohort of 2579 subjects free
from prior cardiovascular events and sleep-altering medications to minimize confounding.
First, we demonstrate that a random forest classifier reliably identifies moderate-to-severe
SDB (apnea-hypopnea index; AHI >15), achieving AUROC=76.1%, from sleep-stage archi-
tecture, dynamics, and common risk factors (demographics, BMI, smoking status) alone,
without direct respiratory measurements. This highlights a dependency chain in which
SDB correlates with altered sleep patterns that, in turn, encode cardiovascular risk. Second,
a random survival forest robustly predicted future cardiovascular events (concordance-
index=73.3%) over >10 years follow-up. Comparable results with and without including
AHI as a predictor indicate that sleep patterns encode cardiovascular risk independently of
direct SDB measurement. Partial dependence analyses revealed monotonic SDB risk profiles
and predominantly U-shaped associations for cardiovascular risk, identifying ranges of total
sleep time, wake after sleep onset, and REM/N3 continuity linked to minimal or elevated
risk. Notably, rare transitions such as N3—N1 or REM—N3, even occurring once per night,
emerged as sensitive markers of cardiovascular vulnerability, increasing risk by up to 10%.
Our findings extend prior evidence on linear associations between sleep macrostructure and
cardiovascular outcomes, revealing non-linear patterns and positioning sleep dynamics as
promising non-invasive biomarkers for diagnostics and early risk stratification.

Keywords: Cardiovascular risk, Sleep-disordered breathing, Sleep, Sleep-stage dynamics, Polysomnog-
raphy, Machine learning, Explainable Al, Non-invasive biomarkers

7.1 Introduction

Sleep-disordered breathing (SDB), particularly obstructive sleep apnea (OSA), is a well-
established contributor to both cardiovascular morbidity [212]-[214] and mortality [2], [7],
[215]. The pathophysiology of SDB involves intermittent hypoxia, intrathoracic pressure
swings, and repeated arousals, which activate the sympathetic nervous system, trigger ox-
idative stress, and induce systemic inflammation and endothelial dysfunction—processes
that collectively accelerate vascular remodelling and atherogenesis [5], [213], [214], [216]. In
parallel, SDB promotes metabolic dysregulation through impaired insulin sensitivity and
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altered adipokine signalling, contributing to obesity and further elevating cardiovascular
risk [5], [213]. These mechanisms are reflected in many population-based studies. For exam-
ple, moderate-to-severe SDB, defined by an apnea—hypopnea index (AHI) greater than 15,
capturing the hourly rate of partial or complete breath arrests, was associated with a nearly
3-fold increased risk of incident ischemic stroke in men [212]. Similarly, SDB was prospec-
tively linked with incident hypertension over four years, with over a 2-fold increased risk
observed in those with AHI > 5, independent of obesity and baseline blood pressure [4].

Beyond its contribution to cardiovascular morbidity, SDB is also associated with in-
creased risks of all-cause and cardiovascular mortality, with nearly double the risk of stroke
or death compared to individuals without the condition, even after adjusting for major con-
founders [215]. Severe SDB has also been linked to a 46% higher risk of all-cause mortal-
ity over long-term follow-up [2]. Importantly, SDB may alter the temporal distribution of
deaths: sudden cardiac death in individuals with OSA is more likely to occur during the
night, particularly between midnight and 6 AM, in contrast to the early morning peak seen
in the general population [217]. A severe SDB has been associated with a 2.5-fold increased
risk of sudden cardiac death [7].

Beyond respiratory disturbances, SDB leads to marked alterations in sleep macro-
architecture, described by five sleep-wake states [8]: wakefulness (W), rapid eye move-
ment (REM) sleep, and three non-REM (NREM) stages: light (N1, N2) and deep slow-wave
(N3) sleep, each representing a distinct physiological state [13], [165]. Specifically, SDB is
associated with reduced proportions of N3 and REM sleep, critical for physical and cogni-
tive restoration, respectively, as well as increased time in wake after sleep onset (WASO),
and frequent awakenings and micro-arousals that fragment sleep continuity [25], [218],
[219]. These changes lead to lighter, less efficient sleep dominated by N1 and N2 stages,
which contributes to daytime symptoms and heightened sympathetic activity—an aspect
of autonomic imbalance linked to cardiovascular risk [25], [218]. These macro-structural
abnormalities may serve as both markers and mediators of downstream cardiometabolic
dysfunction.

In addition to altered stage composition, SDB disrupts the temporal continuity and or-
ganization of sleep stages—a feature referred to as sleep-stage dynamics [26], [106], [109],
[115]. The dynamics describe how individuals transition between stages over time and may
capture subtle signatures of sleep instability that are not evident in static macrostructure
metrics such as stage proportions or durations. The dynamic patterns have been shown to re-
flect diverse physiological and pathological conditions beyond SDB [100]-[102], [104], [105],
[107], [114], [116], [171]. Importantly, specific sleep-stage transitions may reflect underlying
physiological needs: frequent transitions into deep slow-wave sleep (N3) signal elevated
homeostatic sleep pressure and physical restoration processes [13], [220], while disrupted
or shortened REM periods signal impaired cognitive and emotional recovery [221]-[223].
Prior work has shown that SDB-individuals exhibit irregular and less predictable sleep-stage
transitions, accompanied by abnormal heart rate variability patterns [109]. Transition-based
modelling approaches have revealed elevated transition entropy and reduced stage persis-
tence, indicating a loss of normal sleep structure in SDB subjects [26]. Recent analyses have
further demonstrated that these dynamic patterns vary systematically by age, gender, and
apnea severity, with distinct fragmentation profiles across REM and NREM stages [106],
[115].

Notably, disrupted sleep macro-architecture has been linked to increased cardiovascular
risk and mortality. Reduced slow-wave sleep (N3) is associated with incident hypertension,
possibly reflecting impaired nocturnal blood pressure regulation [37], [38], while lower REM
sleep has been linked to higher all-cause and cardiovascular mortality [39]. Diminished delta
wave activity during sleep, related to reduced N3, has also been associated with long-term
cardiovascular outcomes [40]. Abnormal total sleep duration, as well as poor self-reported
sleep quality, show associations with cardiovascular and all-cause mortality [41]-[44].

Although disrupted sleep macro-architecture has been repeatedly associated with cardio-
vascular outcomes and mortality [5], [37]-[44], [216], the prognostic relevance of sleep-stage
dynamics—able to capture detailed physiological signatures—remains unexplored. Since
SDB affects both cardiovascular outcomes [2], [4], [7], [212]-[215] and sleep-stage dynam-
ics [26], [106], [109], [115], these two domains are statistically linked, suggesting that sleep



7.2. Materials and Methods 95

dynamics may encode predictive signals relevant for cardiovascular risk modelling. Fur-
thermore, dynamic sleep patterns have been associated with a range of other conditions,
including insomnia, chronic fatigue syndrome, pain syndromes (fibromyalgia), sleep brux-
ism, and neurocognitive impairment [100]-[102], [104], [105], [107], [114], [116], [171], which
may also contribute to cardiovascular vulnerability. This interplay highlights the potential
of sleep dynamics as integrative, non-invasive digital markers for diagnostics and long-term
cardiovascular risk assessment.

Study contributions and research question. We present the first investigation to eval-
uate whether and eventually how sleep-stage dynamics, alongside conventional sleep
macrostructure metrics and common risk factors (demographics, BMI, smoking status),
carry prognostic value for long-term cardiovascular outcomes. Using data from the prospec-
tive, longitudinal, community-based Sleep Heart Health Study (SHHS) [182], we define a
primary analysis cohort consisting of individuals without prior cardiovascular events and
free from medications altering sleep architecture or cardiovascular physiology (e.g., antide-
pressants, beta-blockers, diuretics, aspirin). This design reduces confounding and enhances
the generalizability of our findings to broader populations. For modelling, we adopt forest-
based approaches [224]-[227], which offer a flexible non-parametric framework robust to
overfitting, variable interactions, multicollinearity, and non-linear effects. We consider four
groups of predictors, capturing static and dynamic properties of sleep and relevant risk
factors: (i) percentages of sleep-stage transitions (e.g., W — N1) relative to the time after sleep
onset characterizing sleep-stage dynamics; (ii) conventional sleep metrics (e.g., total sleep time
[TST], WASO); (iii) demographics (age, gender); and known (iv) risk factors including body
mass index (BMI) and smoking status.

Our study presents four key contributions:

1. Identification of current SDB status: We apply a Random Forest (RF) classifier to
identify individuals with moderate-to-severe SDB (AHI > 15) and demonstrate that
characteristic changes in sleep architecture and dynamics carry diagnostic informa-
tion about underlying respiratory disturbance, and hence, a possible link to long-term
cardiovascular health.

2. Prediction of long-term cardiovascular risk: We use a Random Survival Forest (RSF)
to estimate long-term cardiovascular risk. By comparing models with and without
an AHI predictor characterizing the SDB severity, we assess whether the four sets of
predictors alone can encode the prognostic information attributable to SDB.

3. Validation and generalizability: We assess the RF and RSF models through cross-
validation within the primary study cohort and across additional SHHS subgroups,
including baseline or follow-up polysomnography (PSG) data from individuals with
prior cardiovascular events or medication use. A further validation is performed using
the external Bern Sleep-Wake Registry (BSWR). In BSWR, SDB predictions are directly
evaluated, while cardiovascular risk estimates are regressed against various sleep dis-
orders and other comorbidities.

4. Interpretability and novel markers via partial effects: We use partial dependence
plots from the R(S)F models to assess how individual predictors influence both SDB
and cardiovascular risk, revealing non-linear effects, candidate thresholds for clinical
risk-stratification, and suggesting novel diagnostic and prognostic markers.

7.2 Materials and Methods

7.2.1 Data sets
Sleep Heart Health Study (SHHS)

The SHHS is a multi-center, prospective cohort study designed to investigate the car-
diovascular consequences of sleep-disordered breathing (SDB) in middle-aged and older
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adults [182]. The SHHS recruited participants from existing population-based cardio-
vascular and respiratory cohorts across the United States between 1995 and 1998. The
baseline exam (SHHS1) was conducted on 6441 subjects and included in-home overnight
polysomnography (PSG), comprehensive medical questionnaires, and cardiovascular as-
sessments. A subset of 3295 participants underwent a second PSG study (SHHS2) about 5-8
years later as part of a follow-up evaluation. Participants have been longitudinally followed
for over a decade to track major cardiovascular events and mortality. All PSG recordings
in SHHS1 and SHHS2 were conducted without positive airway pressure (PAP) therapy,
allowing participants to be considered untreated at the time of measurement. The SHHS
data set comprises PSG biosignal data with sleep scoring annotations, detailed medication
information, demographic and anthropometric measures, and details on the timing and
type of cardiovascular outcomes. This study design enables the investigation of both cross-
sectional and longitudinal relationships between sleep architecture and cardiovascular risk
in a community-based population. In total, data from the 5839 participants who consented
to share their information are available for research purposes.

Cardiovascular events: The outcome of interest was defined as the first occurrence of any
major cardiovascular event recorded in SHHS and following the PSG assessment, including
both clinical diagnoses and surgical interventions: angina, angioplasty, coronary artery by-
pass graft (CABG), congestive heart failure (CHF), myocardial infarction (MI), myocardial
infarction procedure (MIP), percutaneous transluminal coronary angioplasty (PTCA), revas-
cularization procedures, coronary stenting, or stroke. These events represent a mixture of
atherosclerotic disease manifestations and interventional procedures commonly conducted
in high-risk individuals. For survival analyses, we defined the event time as the number of
days from the PSG recording (SHHS1 or SHHS2) to the first occurrence of any listed event.
If no event occurred, the number of days to the most recent follow-up contact or recorded
death since the PSG study was used as the censoring time. In addition, we identified whether
individuals had experienced any of these cardiovascular events prior to the PSG study and
used this information for stratification and assessments of the models’ generalizability.

Medication-related confounders: To account for potential pharmacological confound-
ing, we created a binary indicator variable at both baseline (SHHS1) and follow-up (SHHS2)
identifying subjects who were taking medications known or suspected to alter sleep-stage
composition or cardiovascular risk. Based on clinical expertise, we flagged use of medi-
cations from several categories listed in SHHS metadata: psychiatric agents (e.g., tricyclic
antidepressants, monoamine oxidase inhibitors, other antidepressants, antipsychotics, ben-
zodiazepines), neurological agents (e.g., dopaminergic medications for Parkinson’s disease,
cholinesterase inhibitors for Alzheimer’s disease), and selected cardiovascular drugs (e.g.,
beta-blockers, alpha-blockers, ACE inhibitors with diuretics, vasodilators, loop and thiazide
diuretics). Aspirin was also included due to its high use and reported influence on slow-
wave sleep. Medication status of subjects was extracted using SHHS drug codes, and the
resulting indicator variable was used to support stratification and generalizability assess-
ments across subgroups with and without pharmacological confounding.

Cohort stratification and notation: We analyzed a total of 8442 PSG recordings, com-
prising 5791 baseline recordings from SHHS1 and 2651 follow-up recordings from SHHS2.
Each of these PSGs of unique individuals was successfully linked to available clinical and
demographic metadata, including medications, cardiovascular event histories, event dates,
and censoring information. To support subgroup analyses and generalizability tests, we or-
ganized the data according to three key attributes: (i) study wave (SHHS1 or SHHS2); (ii) prior
cardiovascular events at the time of PSG recording (E = 1 if any event occurred before PSG,
E = 0 otherwise); and (iii) presence of medications known to influence sleep or cardiovascular
physiology (M = 1 if such medications were reported, M = 0 if not). The Supplementary
Table C.4 presents the number of subjects/PSGs (N) in each stratum, along with the number
of subjects who developed an event following the PSG study, and the distribution of subject
ages and genders. Our modelling efforts focused primarily on baseline subjects with no pre-
vious events or confounding medications, SHHS1(E = 0, M = 0), enabling the most precise
evaluation of how specific sleep or demographic patterns associate with current SDB and the
development of future cardiovascular events, not confounded by medication intake or prior
events. The remaining subsets of data were used for validation and robustness assessments.



7.2. Materials and Methods 97

Bern Sleep-Wake Registery (BSWR)

To assess external validity and generalizability, we exploited the Bern Sleep-Wake Registry
(BSWR) from Inselspital, University Hospital Bern. The BSWR contains over two decades
of clinical polysomnography (PSG) data, starting from 2000. Most individuals in the BSWR
suffer from one or more sleep disorders, with annotations including demographic informa-
tion, clinical diagnoses, and relevant comorbidities beyond sleep-related conditions. For this
study, we excluded daytime PSG recordings, studies shorter than 3 hours, instances where
patients failed to fall asleep, and recordings involving positive airway pressure (PAP) ther-
apy. Our final data set included 3702 PSG recordings from 3417 unique individuals aged
0-91 years (62.8% males), with a conclusive sleep diagnosis, complete demographic data
(age, gender), and a calculated apnea-hypopnea index (AHI) to quantify the severity of
sleep-disordered breathing (SDB). We primarily used the BSWR for external validation of
moderate-to-severe SDB detection (AHI > 15). As BSWR currently lacks harmonized and
matched time-to-event histories of cardiovascular outcomes, it was not feasible to use it for
direct validation of long-term cardiovascular risk prediction. Instead, we leveraged the rich
clinical annotations within the BSWR to evaluate associations between the model-predicted
cardiovascular risk and specific sleep diagnoses, as well as relevant non-sleep comorbidities
(e.g., prior stroke, diabetes). This strategy enabled both intuitive clinical validation and an
indirect quantification of how individual clinical conditions relate to predicted cardiovascu-
lar risk. The Supplementary Table C.2 presents the occurrence of different clinical conditions,
including conclusive sleep disorders and non-sleep comorbidities, across BSWR subjects,
and their stratification by sleep-disordered breathing status (AHI<15 vs AHI>15).

Data Preprocessing

All PSG recordings from both the SHHS and BSWR cohorts were scored into five stan-
dard sleep stages: Wake, N1, N2, N3, and REM, according to AASM guidelines [8]. Older
recordings originally scored using the Rechtschaffen and Kales (R&K) guidelines were har-
monized by merging the N3 and N4 stages into a single AASM-compliant N3 stage. The
apnea-hypopnea index (AHI) was computed using the recommended AASM definition (v2.2,
2015) and used to derive binary sleep-disordered breathing (SDB) labels, with moderate-to-
severe SDB defined as AHI > 15 and no-to-mild SDB defined as AHI<15. Gender was en-
coded as a binary male indicator (1 = male, 0 = otherwise); in all cases, the non-male category
corresponded to participants self-identifying as female. Smoking status was encoded as a
categorical variable with four levels: current, ex, never, or not-available (NA). Established sleep
macrostructure features—such as total sleep time (TST), Wake After Sleep Onset (WASO),
and stage-specific latencies—were computed directly from the hypnograms. Sleep dynam-
ics were captured, following our prior work [115], as a 5x5 matrix of sleep-stage transition
proportions P, where each entry p; ; denotes the percentage of all epochs, relative to the time
after sleep onset, during which a transition from stage i to stage j occurred. For cardiovas-
cular risk modelling, survival objects were constructed using the time from the PSG study
(either baseline SHHSI or the follow-up SHHS2) to the first joint cardiovascular event or
censoring at the last contact.

7.2.2 Prediction, Validation, and Effect Quantification using Random
(Survival) Forests

Modelling approach and predictors. To detect moderate-to-severe SDB (AHI>15), we em-
ployed a binary Random Forest (RF) classifier. For long-term cardiovascular risk prediction,
we used Random Survival Forests (RSF), a non-parametric extension of RF for right-censored
time-to-event data using the log-rank test as a splitting criterion [227]. Both RF and RSF
are ensemble-based approaches, known for their robustness to overfitting, ability to capture
non-linear relationships, and resilience to multicollinearity and high-dimensional settings
(cf. [224]-[226]), making them particularly advantageous when using many correlated pre-
dictors such as the 25 sleep-stage transition proportions (P), where functional dependencies
exist as all sum up to 100%. Each RF or RSF model was trained using the following predic-
tor sets: sleep dynamics captured by 25 transition proportions, conventional sleep metrics not
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encoded in dynamics features: TST, WASO, and (sleep, N3, REM)-latencies, and demographic
or lifestyle variables: age, gender, BMI, and smoking status. Additionally, for RSF, we experi-
mented by adding AHI as an additional predictor to compare performance in cardiovascular
risk prediction with and without the inclusion of direct SDB measurement. For both RF and
RSE, we used default values of hyperparameters provided by the randomForestSRC R pack-
age (v3.1.1), which have been shown to perform reliably [228].

Validation was carried out in three tiers. First, we used 5-fold cross-validation (CV) on
the primary SHHS-baseline cohort of subjects without prior cardiovascular events or med-
ication use, SHHSI(E = 0, M = 0), with approximately equal-sized folds created using fast
anticlustering [229], balancing the distribution of demographics and outcomes (age, gender,
AHI, SDB- and cardiovascular-events prevalence). Second, models were tested on the re-
maining cohorts from SHHS1 and SHHS2 (cf. Supplementary Table C.4), with additional
control for subjects used during the models’” training. This assessed performance and dis-
criminative power in the same subjects but several years later, i.e., by using SHHS2(E = 0,
M = 0), and also in out-of-domain subjects with medications or prior events, which typi-
cally have higher rates of SDB prevalence, cardiovascular events, and different distributions
of demographics (cf. Supplementary Tables C.5-C.11). Third, external generalization was
tested on a completely out-of-domain BSWR clinical data set, which, unlike SHHS, primar-
ily contains a symptomatic clinical population suffering from multiple sleep disorders and
non-sleep comorbidities. Selection of subjects with evaluated AHI enabled direct generaliz-
ability assessment of RF model in BSWR. The log-odds-transformed RSF-predicted cardio-
vascular risk in BSWR was regressed against different clinical conditions present in BSWR,
while controlling for age, gender, BMI, and AHI, allowing for assessments of possible links
between various conditions and an elevated cardiovascular risk.

Performance metrics for RF classification included the Area Under the Receiver Operat-
ing Characteristic curve (AUROC), Pearson’s correlation between the predicted probability
of moderate-to-severe SDB and the observed AHI, as well as accuracy, sensitivity, speci-
ficity, and precision. For RSEF, model performance was evaluated using Harrell’s concor-
dance index (C-index), the Integrated Brier Score (IBS), and time-dependent AUROC (tdAU-
ROC), each assessing the model’s ability to rank individuals according to their actual risk.
Discriminative ability of RSF was further assessed via two-sample t-tests comparing the
mean predicted mortality scores—interpreted as individual risk estimates scaled to event
frequency [228]—between those who did and did not experience a future event. Lastly,
log-rank tests were used to compare event incidence between high- and low-risk groups,
stratified by the median predicted mortality.

Towards novel markers through partial effects. Beyond evaluating performance of
R(S)F models, we assessed their partial effects quantifying the isolated contribution of each
predictor to model output. Specifically, we used the partial.rfsrc function from the
randomForestSRC package [228], which quantifies changes in expected model prediction
when one predictor is varied over its domain while all other features are held fixed and
averaged over their empirical joint distribution. For REF, this yielded the partial effect of each
variable on the probability of present moderate-to-severe SDB; for RSF, it revealed how each
predictor influences the long-term (10 years) cardiovascular risk. These partial dependence
functions provide interpretable insights into potential non-linearities, plateaus, or U-shaped
effects, enabling models” explanation and importantly, supporting clinical interpretation
of the relationship between specific sleep (dynamics and macrostructure) parameters and
cardiopulmonary outcomes. Based on this, partial effects may serve as future diagnostic or
risk stratification markers.

7.3 Results

The Results section is organized following our main objectives: (i) Descriptive statistics, sum-
marizing demographics, SDB prevalence, and clinically established sleep markers, strati-
fied by the occurrence of future cardiovascular events in the primary study cohort used for
model development; (ii) Performance of the RF classifier for identifying current moderate-to-
severe SDB (AHI >15); (iii) Performance of RSF for predicting cardiovascular risk, assessed both
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with and without inclusion of the AHI predictor. Sections (ii) and (iii) also report the par-
tial effects of individual predictors to investigate their risk associations, and evaluate model
performance across SHHS test subgroups and the external BSWR data set.

7.3.1 Descriptive statistics

Table 7.1 summarizes demographic characteristics, SDB prevalence and severity, and sleep
macro-structure metrics for the primary SHHS1(E = 0, M = 0) cohort, which excludes in-
dividuals with prior cardiovascular events (E = 1) or sleep-altering medications (M = 1).
Statistics are presented for the entire cohort (overall) and stratified by the occurrence of a car-
diovascular event during the follow-up period of up to 15 years. Cardiovascular events refer
to a pooled composite outcome, including diagnoses such as stroke, myocardial infarction,
heart failure, or surgical procedures such as coronary revascularisation (cf. Data sets).

Out of the 2579 subjects, 326 experienced at least one cardiovascular event during follow-
up. When compared to subjects who did not develop the event, these individuals were sig-
nificantly older at baseline (mean age 68.6 vs. 58.1 years), more likely to be male (55.5% vs.
44.4%), and had a different composition of smoking status profiles (e.g., 14.1% vs. 10.4%
current smokers, and 43.9% vs. 49.5% never smokers). BMI did not differ between the com-
pared groups, potentially due to group differences in demographics and their interactions
with smoking status. These demographic and lifestyle differences are consistent with estab-
lished cardiovascular risk factors [4], [214], [230]-[233].

Subjects who developed events had higher mean AHI values (18.3 vs. 15.7 events/hour)
and greater prevalence of moderate-to-severe SDB (47.5% vs. 37.5%), reflecting the link be-
tween SDB and cardiovascular risk [2], [5], [7], [212]-[216]. However, since AHI increases
with age, this association may also reflect age distribution differences [230], [231].

Sleep macrostructure also differed: those who developed events had shorter TST and
longer WASO, resulting in lower sleep efficiency (SE = %). They also showed
altered sleep-stage composition, with higher W%, and reduced N3 and REM%—stages crit-
ical for physical and cognitive restoration. These changes likely reflect both elevated cardio-
vascular risk and age- or SDB-related alterations of sleep structure.

These statistics provide a descriptive overview of group-level trends and are not in-
tended as clinically conclusive findings. Rather, they highlight the need for a more flexible
modelling approach that can simultaneously account for multiple confounding variables,
capture their interactions, and accommodate potential non-linear effects. Accordingly, in
the following sections, we employ Random Forest and Random Survival Forest models to
numerically isolate the contributions of key risk factors—such as age, smoking, BMI, and
SDB severity—to cardiovascular outcomes and sleep-related metrics.
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Table 7.1: Descriptive characteristics of SHHS]1 (E = 0, M = 0) cohort
stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 2579 2253 326
Age 59.43 (11.16) 58.11 (10.59) 68.57 (10.73)  <0.001
Gender (Male)* 1182 (45.8) 1001 (44.4) 181 (55.5)  <0.001
Smoking* 0.041

Current 281 (10.9) 235 (10.4) 46 (14.1)

Ex 1010 (39.2) 874 (38.8) 136 (41.7)

Never 1259 (48.8) 1116 (49.5) 143 (43.9)

NA 29(1.1) 28 (1.2) 1(0.3)

BMI 27.73(4.92)  27.66(4.96) 2821 (4.63)  0.062
CAHI 16.00 (14.76) ~ 15.66 (14.59) ~  1834(15.71)  0.002
SDB (AHI>15)* 999 (38.7) 844 (37.5) 155 (47.5) 0.001
SDB category™* 0.012
Mixed 429 (16.6) 362 (16.1) 67 (20.6)
NREM-dominant 78 (3.0) 68 (3.0) 10 (3.1)
REM-dominant 369 (14.3) 310 (13.8) 59 (18.1)
AHI<15 1580 (61.3) 1409 (62.5) 171 (52.5)
NA 123 (4.8) 104 (4.6) 19 (5.8)

" TST [mins] 365.10 (63.93)  366.36 (63.09)  356.33(68.90)  0.008
WASO [mins] 90.14 (54.66) 88.46 (53.80) 101.74 (59.09)  <0.001
SE [%] 72.29 (12.01) 72.53 (11.79) 70.64 (13.34) 0.008
SL [mins] 50.63 (43.05) 51.11 (43.18) 47.31 (42.00) 0.136
REML [mins] 104.81 (140.70)  104.30 (136.67) 108.35 (166.06) 0.627
DL [mins] 60.90 (185.96)  58.67 (182.37) 76.32 (208.77) 0.109
W [%] 19.65 (11.57) 19.28 (11.31) 22.19(12.95)  <0.001
N1 [%] 4.02 (2.84) 3.99 (2.81) 4.20 (3.05) 0.200
N2 [%] 45.34 (11.43) 45.28 (11.26) 45.78 (12.52) 0.455
N3 [%] 14.70 (9.50) 14.95 (9.49) 12,93 (9.35)  <0.001
REM [%] 16.30 (6.13) 16.50 (6.10) 14.89 (6.14)  <0.001

Notes: Continuous variables are reported as mean (SD) and compared using Welch's two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.

7.3.2 Identification of current SDB status
Predictors and training of RF

To identify the presence of SDB, we trained an RF classifier using a total of 34 predic-
tors: 25 sleep-stage transition proportions capturing sleep dynamics; 5 conventional sleep
macrostructure metrics not encoded in dynamics (TST, WASO, and latencies to sleep onset,
N3, and REM); and 4 commonly recognized risk factors accounting for demographic and
lifestyle variation (age, gender, BMI, and smoking status). We did not include SE, as it is a
function of TST, WASO, and SL. The binary outcome label indicated moderate-to-severe SDB
(positive class, AHI>15) versus no-or-mild SDB (negative class, AHI<15), supported by ev-
idence linking AHI>15 to substantially elevated risks of stroke, cardiovascular morbidity,
and mortality [2], [7], [212].

Given the imbalance between 38.7% of positive and 61.3% of negative cases, we used a
quantile-based RF implemented in randomForestSRC R package [228], [234], effectively mit-
igating class dominance. To quantify the uncertainty in performance metrics (e.g., AUROC,
accuracy), we performed repeated training using 5-fold cross-validation on anticluster-based
data splits (see Methods) of the primary cohort SHHSI(E = 0, M = 0). For generalization
assessments on the remaining SHHS subsets and BSWR, and the interpretation of partial
effects, a final RF model was estimated on the complete set of 2579 subjects.

All RF models used default hyperparameters: a minimum terminal node size of 1, 10
candidate split points per variable, an AUROC-based splitting criterion, and the square root
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of the number of considered predictors as the number of variables to try to split each node.
Each forest consisted of 1000 trees, and missing input values were imputed using the built-in
out-of-bag terminal node imputation algorithm [227], [234].

Performance and generalization of RF

The first part of Table 7.2 reports the mean (standard deviation) performance metrics in the
primary cohort SHHS1(E=0, M=0), assessed using cross-validation. Across five anticluster
splits, the data set contained approximately 316 controls (AHI<15) and 200 positive cases
(AHI>15) on average. The RF classifier demonstrated strong discriminative ability, achiev-
ing an AUROC of 76.1 (2.2)% for distinguishing moderate-to-severe SDB cases from healthy-
to-mild controls based on sleep parameters (i.e., transition %’s, macrostructure) combined
with other variables (demographics, BMI, smoking status) alone. The strong performance
was further supported by a strong positive correlation of 0.45 (0.05) between the predicted
probabilities of the positive class and the subject’s actual AHI values. The RF achieved an
accuracy of 70.0 (1.6)%, sensitivity of 46.8 (4.6)%, specificity of 84.7 (1.1)%, and precision of
65.9 (1.9)%. Considering that SDB is typically quantified using respiratory and oxygen de-
saturation signals, the obtained performance metrics indicate a favourable balance between
case detection and a low false positive rate.

Table 7.2 also presents performance metrics for different SDB phenotypes: REM-dominant
(AHI>15 in REM sleep only; ~74 cases), NREM-dominant (AHI>15 in non-REM sleep only;
~16 cases), and Mixed (AHI>15 in both REM and NREM sleep; ~86 cases). Although the
original RF was optimized for overall SDB discrimination (i.e., AHI>15 vs. AHI<15), the
AUROC remained high across these subgroups: approximately 74% for REM- and NREM-
dominant SDB and 79.4% for Mixed cases. Other performance metrics were similarly robust,
with a drop in precision for NREM-dominant SDB due to the small number of cases.

Next, Table 7.2 provides 95% confidence intervals (Cls) for AUROC and correlation co-
efficients, along with performance metrics for additional test subsets from the SHHS1 base-
line study (including participants on medications or with prior cardiovascular events) and
the SHHS2 follow-up. Stratification further considered whether PSG recordings came from
previously unseen (out-of-domain) individuals, not included in RF training, highlighted by
the T superscript. The results indicate that SDB detection remained robust even for SHHS1
participants with medications or prior events, achieving AUROC values >71% in all cases.
Similar performance was observed across all subsets in the follow-up study: for the SHHS2
participants without medications or prior events used in RF training, SHHS2(E = 0, M =
0), AUROC reached 77.3%, and in unseen test follow-up medication- and event-free partic-
ipants, SHHS2(E = 0, M = 0), performance further improved to 80.6%, underscoring the
model’s strong generalizability and robustness to domain shifts, as the follow-up partici-
pants are naturally older from their baseline assessment. The performance on all test strata
is particularly strong, given that post-event or medicated individuals exhibit altered sleep
patterns [235]-[238], and these cohorts are on average older (cf. Supplementary Tables C.5-
C.11).



Table 7.2: Random Forest identification of moderate-to-severe sleep-disordered breathing across SHHS and BSWR test datasets.

Dataset AHI>15(N) AHI<15(N) AUROC  p(Pamr-15, AHI)  Accuracy Sensitivity = Specificity —Precision
SHHS1V(E=0,M =0) 199.8 (1.1) 316 (1) 76.1 (2.2) 0.45 (0.05) 70.0(1.6) 46.8 (4.6) 84.7 (1.1) 65.9(1.9)
REM-dominant 73.8 (1.1) 316 (1) 74.1(2.9) 0.45(0.05) 76.9(1.2) 43.0 (5.9) 84.7 (1.1) 39.6 (3.3)
NREM-dominant 15.6 (0.9) 316 (1) 74.9 (5.5) 0.37 (0.06)  83.1(0.8) 50.0 (8.0) 84.7 (1.1) 13.9(1.3)
Mixed 85.8 (0.8) 316 (1) 79.4 (3.2) 047 (0.07) 77.8(1.3) 52.4(7.1) 84.7 (1.2) 48.1(3.0)
"SHHS1f(E=0,M=1) 1179 1349 74.1(722,76.0) 0.43(0.40,046) ¢ 680 557 787 ¢ 69.5
SHHS1'(E=1,M=0) 67 45 73.6(63.9,83.4) 0.47(0.31,0.60) 59.8 53.7 68.9 72.0
SHHS1'(E=1,M=1) 323 249 71.1(66.9,75.3) 0.44(0.37,0.50) 65.4 60.7 71.5 73.4
"SHHS2fE=0,M=0) 7 70 107 80.6(73.8,87.4) 0.6 (0.44,0.65) 740 643 804 ¢ 68.2
SHHS2Y'(E=0,M =1) 443 488 69.5(66.1,72.8) 0.42(0.36,0.47) 65.5 61.9 68.9 64.3
SHHS2Y(E=1,M =0) 26 9 722(53.6,90.8) 0.48(0.17,0.70) 60.0 61.5 55.6 80.0
SHHS2F(E=1,M=1) 189 115 75.2(69.6,80.8) 0.47 (0.38,0.56) 69.1 70.4 67.0 77.8
"SHHS2(E=0,M=0) 230 404 773(735,81.0) 053(047,059) 71.6 543 814 ¢ 62.5
SHHS2 (E=0,M=1) 237 316 78.8(75.1,82.5) 0.49(0.43, 0.55) 70.5 62.4 76.6 66.7
SHHS2 (E=1,M =0) 1 1 -(--) 1.0(--) 50.0 100.0 0.0 50.0
SHHS2 (E=1,M=1) 5 10 68.0(28.2,100) 0.08 (-0.45,0.57) 66.7 60.0 70.0 50.0
“BSWRY 1602 2100 76.0 (74.5,77.5) 0.49(0.47,052) ¢ 674 428 861 70.1

Notes: Evaluations included subjects with and without previous cardiovascular events (E = 0 and E = 1) or medications (M = 0 and M = 1), from baseline (SHHS1) and follow-up (SHHS2) Sleep Heart Health Study, and the Bern
Sleep-Wake Registry (BSWR). Cross-validation assessment in the primary study cohort SHHS1 (E = 0, M = 0) is presented as mean (standard deviation) and highlighted by bold font an

ClCV

superscript. Datasets containing

out-of-domain subjects are highlighted by superscript. Results are based on the Random Forest classifier estimated on SHHS1(E = 0, M = 0). Table presents numbers (N) of cases (AHI>>15) and controls (AHI<15), 95%

confidence intervals for Area Under the Receiver Operating Characteristic (AUROC) and Pearson’s correlation coefficient of predicted probability of positive class (Pam1-15) with actual AHI value, and the achieved performance
metrics (%).

<01

YSIY[ Te[ndSeAOIpIe)) aInjn, pue Sunjjeaiq

pa13pIosI(]-dad]s JuaLiny) 1o1pal sonueul (] a8eig-daorg 4 193dey)



7.3. Results 103

The RF maintained robust performance in the out-of-domain BSWR (Supplementary Ta-
bles C.1-C.2), which primarily includes patients with diverse sleep disorders rather than
a general population sample, as in SHHS. Despite the altered sleep patterns expected in
BSWR, the RF achieved an AUROC of 76.0%, a correlation of 0.49 between predicted prob-
ability and AHI, an accuracy of 67.4%, sensitivity of 42.8%, specificity of 86.1%, and a pre-
cision of 70.1%. These results highlight strong discriminative ability and high precision,
indicating that individuals with high predicted probabilities are frequently true SDB cases.

SDB risk-profiles via partial effects of RF

As described in Methods, the trained RF enables quantification of partial effects for individ-
ual predictors X;. These effects mathematically represent the change in the RF output (i.e.,
the predicted probability of moderate-to-severe SDB) when iterating over all (or, for com-
putational efficiency, a subset of) observed values of X;, substituting these and averaging
predictions across all N observations in the data set while holding other variables fixed. As
N predicted outcomes are obtained for each considered value of X;, the expected partial
effect is estimated as the mean, and uncertainty is expressed using quantile-based confi-
dence intervals computed around this estimate. Plotting partial effects and their associated
intervals yields a “risk profile” that shows how variations in X; relate to the RF-predicted
SDB-probability.

Figure 7.1 illustrates the partial effects of demographic (age, gender) and lifestyle (BMI,
smoking) variables on the probability of moderate-to-severe SDB (AHI>15). Both age and
BMI exhibit sigmoidal profiles, reflecting an accelerated risk increase within specific ranges
before reaching a plateau. For age, the predicted SDB probability rises sharply from 33% to
45% between 45 and 70 years. A similar, but even steeper, trend is observed for BMI: the risk
increases from about 30% at BMI <25 to >50% for BMI>35. Partial effects further indicate
a 6% higher predicted risk in males (36% in females vs. 42% in males). These associations
are consistent with established age, obesity, and gender differences in SDB prevalence[230],
[231], [239]. Interestingly, ex-smokers show a 1% higher predicted risk compared to both
current and never-smokers, potentially reflecting post-cessation weight gain[232], [233] or
underlying health issues prompting cessation. It is important to note that these partial effects

Figure 7.1: Partial effects and their 95% ClIs for the risk of
moderate-to-severe sleep-disordered breathing (AHI>15) for the age in
years, Body Mass Index (BMI), gender (0 = female, 1 = male), and smoking
status.
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are contingent upon the population characteristics of the RF training cohort. In particular,
the SHHS design oversampled individuals with snoring to increase statistical power for
long-term cardiovascular outcomes [182]. Consequently, baseline SDB risk estimates (e.g.,
for individuals in their early 40s) may be inflated relative to the general population.

Figure 7.2 shows the partial effects of sleep macro-architecture markers used as RF in-
puts. The SDB risk increases markedly when TST falls below 300 minutes (5 hours) and
when WASO exceeds 100 minutes, reflecting reduced sleep efficiency and prolonged wake-
fulness, likely due to apnea-related arousals. In contrast, the sleep-onset latency (SL) shows
no clear association with SDB risk, whereas delays in entering REM sleep (REML) and deep
sleep (DL) beyond 100 minutes are associated with an approximate 2% increase in risk.

Figure 7.3 details partial effects for sleep-stage transition proportions p; ; (cf. Methods),
computed relative to the total number of sleep-stages from sleep onset to the end of the PSG
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Figure 7.2: Partial effects and their 95% ClIs for the risk of
moderate-to-severe sleep-disordered breathing (AHI>15) for the minutes of
Total Sleep Time (TST), Wake After Sleep Onset (WASQO), Sleep Latency (SL),

REM Latency (REM), and Deep-sleep Latency (DL).
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recording. As shown in Table 7.1, the average after-onset PSG-duration (sleep period time) of
455.2 minutes (TST + WASO = 365.10 + 90.14) corresponds to approximately 910 epochs, such
that a 1% (= 0.01) change in transition proportion corresponds to roughly 9 transitions per
PSG. For interpretability, we focus on transitions associated with >2% change in predicted
risk, supported by non-overlapping deviations in 95% CI profiles of their partial effects.

o W-transitions: The SDB risk increases by ~2% when pw n1 > 0.04 (~36 transitions),
reflecting frequent awakenings followed by light sleep in SDB subjects. Similarly,
pw,N2 > 0.02 (~18 transitions) is associated with >2% higher risk, suggesting that
SDB subjects experience heightened homeostatic sleep pressure and atypically bypass
the intermediate N1 stage after awakenings. Notably, py repm > 0.08 corresponds to
a dramatic risk increase (>5%), indicating that direct transitions from wake to REM,
possibly related to higher restorative pressure or REM sleep fragmentation, are highly
sensitive markers of SDB.

* Nl-transitions: The SDB-risk increases by >6% when pn;w > 0.01 (~9 transitions),
suggesting frequent arousals of SDB subjects from lightest sleep. Notably, px1 rEM >
0.005 (~4 transitions) is linked to a ~2% higher risk, possibly reflecting atypical tran-
sitions to REM from N1 in SDB patients, similar to those from W.

¢ N2-transitions: Higher proportions of pyow > 0.03 (~27 transitions) correspond to a
~8% SDB-risk increase, indicative of frequent awakenings from N2, likely linked to
disruptions driven by experienced apnea events.

* N3-transitions: A SDB-risk increase ~3% is observed when pn3 N3 < 0.1, correspond-
ing to ~90 uninterrupted epochs of N3, suggesting that SDB subjects are often unable
to achieve more than 45 minutes of continuous deep sleep over the entire night.

* REM-transitions: The SDB-risk rises by ~3% when preprw > 0.015 (~13 transitions),
highlighting increased REM-awakenings in SDB. In contrast, higher persistence within
REM (prem,rem > 0.2, ~180 epochs, = 1.5 hours) links to a lower risk, suggesting
difficulties in retaining uninterrupted REM-sleep in SDB.

The estimated partial effects mechanistically explain RF decisions when identifying SBD. In
addition, they characterize risk profiles, which may suggest thresholds that can be used as
clinical instruments (markers) for diagnostics and risk stratification.

7.3.3 Prediction of long-term cardiovascular risk
Predictors and training of RSF

To quantify the risk of future cardiovascular events, we trained a RSF using the same 34
predictors as for RF, including 25 sleep-stage transition proportions, 5 sleep macro-structure
metrics (TST, WASO, and latencies to sleep onset, N3, and REM), and 4 demographic and
lifestyle variables (age, gender, BMI, and smoking status). To evaluate the added prognostic
value of including a direct measure of SDB, we trained RSF models both with and without
apnea-hypopnea index (AHI) as a predictor.
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Figure 7.3: Partial effects and their 95% ClIs for the risk of
moderate-to-severe sleep-disordered breathing (AHI>15) for relative
frequencies of individual transitions between sleep-stages (W, N1, N2, N3,
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As described in Methods, the RSF target was a survival outcome comprising an event
indicator (1 if the participant experienced a cardiovascular event after the sleep study, 0
otherwise) and the time-to-event, defined as the number of days since the PSG study to
either the first event or the most recent follow-up, if censored. The RSF aimed to map the
links between survival outcomes and the included predictors, and to quantify their influence
via partial dependence analysis subsequently.

The RSF was trained using randomForestSRC R package [228], [234] on the primary co-
hort SHHS1(E = 0, M = 0), to minimize confounding and maximize the generalizability to
a general, medications- and prior-event-free population. To assess uncertainty in predictive
performance and discrimination metrics (e.g., time-dependent AUROC [td AUROC], Inte-
grated Brier Score [IBS], Harrell’s concordance index [C-index], log-rank test), we applied a
5-fold cross-validation with anticluster-based splits (see Methods). For generalization assess-
ments on remaining SHHS subsets and BSWR, and interpretation of partial effects, a final
RSF was trained on the complete set of 2579 subjects.

During training, default RSF hyperparameters were used: a minimum terminal node size
of 15, 10 candidate split points per variable, C-index splitting criterion, and the square root
of the number of predictors as the number of variables to try to split each node. Each RSF
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comprised 1000 trees, and missing input values were imputed using the built-in out-of-bag
terminal node imputation algorithm [227].

Performance and generalization of RSF

Table 7.3 and Supplementary Table C.12 summarize the performance and discrimination
metrics of RSF trained while including and omitting the AHI as a predictor, respectively.
Results are shown for the primary study cohort and for subjects across SHHS1 and SHHS2
subsets who were free of prior cardiovascular events at the time of PSG assessment. The first
column of each table, labelled SHHS1<V(E = 0, M = 0), reports cross-validation results within
the primary cohort, expressed as a mean (standard deviation) for each metric. Each anticlus-
ter fold comprised, on average, about 516 subjects, of whom 65 developed a cardiovascular
event during follow-up and 451 remained event-free. The RSF’s ability to rank individuals
by their actual cardiovascular risk was evaluated using three standard metrics: C-index, IBS,
and tdAUROC. For C-index and tdAUROC, values of 100% indicate perfect discrimination,
50% random chance, and 0% inverted predictions. In contrast, lower IBS values indicate
better calibration. For all metrics, cardiovascular risk was quantified via the RSF-predicted
mortality score, representing an individual’s standardized risk relative to a hypothetical pop-
ulation of subjects of matched characteristics [228], [234].



Table 7.3: Performance of the Random Survival Forest model including AHI predictor across SHHS and BSWR datasets of subjects with no previous
cardiovascular events (E = 0).

Metric SHHS1<V SHHS1? SHHS2 SHHS2* SHHS2 SHHS2*
(E=0,M=0) (E=0,M=1) (E=0,M=0) (E=0,M=0) (E=0M=1) (E=0M=1)
Events (N) 65.2 (2.4) 567 43 19 64 137
Event-free (N) 450.6 (2.7) 1961 591 158 489 794
" Cindex T 7325 69.7 745 793 706 ¢ 66.6
IBS 6.7 (0.4) 12 4.1 6.2 7 8.8
1-year tdAUROC 774 (124) 69.7 8 781 724 e 64.5
5-year td AUROC 74.5 (6.6) 72.6 73.7 84.5 71.7 69.2
10-year td AUROC 75.1 (2) 74.1 91.6 100 75.1 69.4
“Mortality E=1) 20.8(1.9) 234 252 356 295 315
Mortality (E = 0) 11.4 (0.5) 14.5 14.1 15.8 17.9 21.7
Mortality Diff. 9.5 (2) 8.8 11.1 19.8 11.6 9.8
Mortality Diff. CI-low 5.6 (1.5) 7.5 5.0 10 6.7 6.4
Mortality Diff. CI-high 13.3 (2.5) 10.2 17.3 29.6 16.6 13.3
p-value (t-test) 0.000024 (0.000034) <10°° 0.0007 0.000422 0.000014 <10°°
" Events (N), high-risk 496 27) 403 3 16 49 95
Events (N), low-risk 15.6 (2.3) 164 8 3 15 42
x> 23 (6.1) 157.6 19.5 10.5 225 28.1
p-value (log-rank test)  0.000047 (0.000103) <107 0.00001 0.001221 0.000002 <107

Notes: The <V superscript denotes performance obtained via 5-fold cross-validation (CV) on the in-domain event- and medication-free (E = M = 0) baseline cohort SHHS1(E = 0, M = 0). All other columns evaluate the
performance of the final RSF model fitted to the entire baseline cohort, applied to potentially out-of-domain subjects (*) from either the baseline (SHHS1) or follow-up (SHHS2) studies, including subgroups taking medication
(M =1). For each scenario, the number of subjects with events and without events (event-free) is reported. Model performance is assessed using Harrell’s Concordance Index (C-index), Integrated Brier Score (IBS), and the
time-dependent Area Under the Receiver Operating Characteristic curve (tdAUROC) at 1, 5, and 10 years. Discriminatory ability is evaluated via two-sided t-tests comparing predicted mortality between event and non-event
subjects, including 95% confidence intervals (CI) for the difference (Diff.). Additionally, log-rank tests with Chi-squared (x?) statistics compare event rates between high- and low-risk groups stratified by median predicted
mortality. For the in-domain CV, mean (SD) of all metrics is reported.
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Notably, a comparison of Table 7.3 and Supplementary Table C.12 reveals no measurable
performance gain from including AHI. The performance metrics achieved with vs. without
AHI predictor were statistically identical: C-index at 73.0 (2.5) vs. 73.3 (2.5), IBS at 6.7 (0.4)
for both cases, and the (1, 5, 10)-year tdAUROC at [77.4 (12.4), 74.5 (6.6), 75.1 (2.0)] vs. [77.1
(12.2), 74.9 (6.2), 75.3 (2.3)], respectively. Considering a 20 bound around the mean as an
indicator of significant difference, there is not a single case in which the two models would
differ. Comparable performance between the two RSFs is further confirmed by a discrimi-
natory assessment using a t-test, which compares the mean difference in predicted mortal-
ity between subjects who developed an event and those who did not, and a log-rank test
comparing high- and low-risk individuals identified by the median threshold on predicted
mortality. For RSF with and without AHI, the cross-validation-averaged mean differences
were 9.5 (95% CI: 5.6-13.3, p-val ~ 2.4 x 10~°) and 9.8 (95% CI: 5.8-13.7, p-val ~ 1.3 x 1075),
respectively, whereas the log-rank x? statistics were 23 (p-val ~ 4.7 x 10~°) and 26 (p-val
~ 5 x 107°), respectively. Finally, Supplementary Figures C.1 and C.13 illustrate the dis-
tribution of the primary study population concerning cardiovascular cases, survivors, and
censoring, as well as the performance metrics (td AUROC, IBS) for the RFS with and without
AHI, respectively, yielding identical trends.

This robust finding suggests that, despite the well-known clinical evidence linking SDB
to future cardiovascular events [2], [5], [7], [212]-[216], directly including AHI as a predic-
tor does not provide any measurable improvement in model performance when common
risk factors (demographics, BMI, smoking status), sleep macro-architecture and dynamics
are already controlled for. This observation can be interpreted from two complementary
perspectives. First, as shown in the previous experiment, the same set of predictors can ef-
fectively capture SDB-related patterns. It is therefore likely that correlations between SDB
and cardiovascular risk are indirectly encoded in these features, allowing the RSF to lever-
age this information without requiring explicit measurement of AHI. Second, the onset of
cardiovascular events may be influenced by broader alterations in sleep macrostructure and
dynamics that extend beyond SDB-specific patterns. The RSF, being a flexible and highly ca-
pable modelling approach (1000 trees), is well-suited to detect such complex relationships.
These could include subtle patterns reflecting the downstream effects of other “hidden” con-
ditions, such as neuropsychiatric, metabolic, renal, or other comorbidities that might be si-
multaneously associated both with altered sleep patterns [34], [35], [240] and an increased
risk of cardiovascular events [241]-[244].

Table 7.3 and Supplementary Table C.12 further present the generalization performance
of the final RSF with and without the AHI predictor, respectively, on remaining test cohorts
of subjects without prior cardiovascular events. The results are stratified by medication use
(M = 1) and indication of out-of-domain subjects (}), unseen by RSF during their training.
In all scenarios, the models with and without AHI achieved stable and comparable perfor-
mance across cohorts, with C-index values ranging 66.6-79.3% and 66.6-78.3%, IBS values
4.1-12% and 4.1-11.9%, 1-year td AUROC 64.5-85% and 64.1-85.2%, 5-year td AUROC 69.2—
84.5% and 69.2-83.4%, and 10-year td AUROC 69.4-100% and 69-100%, respectively. Strong
discriminative performance was further supported by significant differences in predicted
mortality between event-free individuals and those who developed cardiovascular events,
as determined by a t-test and a log-rank test comparing high- and low-risk groups, in both
RSF models and all scenarios. This suggests that RSF performance in subjects without prior
events is robust to domain shifts, as medication-taking subjects are typically older, and to
potential alterations in sleep induced by medications.

Supplementary Tables C.13 and C.14 present results of the final RSF with and without
the AHI predictor, respectively, for baseline (SHHS1) and follow-up (SHHS2) subjects who
had experienced at least one cardiovascular event before the corresponding PSG assessment.
These individuals were generally older and exhibited higher incidence rates (in their case,
recurrence) of cardiovascular events. For comparison, the mean (standard deviation) age
in the primary SHHS1(E = 0, M = 0) cohort used for RSF training was 59.4 (11.2) years
with a 12.6% incidence (=326/2579) of cardiovascular events, whereas SHHS1(E =1, M =
0) subjects” age was 68.6 (11.9) years with an incidence of 53.6%, and SHHS1(E =1, M = 1)
had subjects” age of 70.7 (9.7) years with an incidence of 55.9%. The SHHS2 cohorts were,
on average, even older. Despite these differences, predicted cardiovascular risk remained
informative in these populations (with C-index and td AUROC exceeding 50% and IBS below
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50% in most cases). However, overall discriminatory ability was notably reduced. This
decline in performance is not unexpected, as the RSF models were trained on a considerably
younger, event-free population and are unlikely to generalize well to post-event subjects
whose sleep patterns are likely to substantially differ [235]-[238].

Finally, Figures from Supplementary Sections C.4 andC.5 depict the distribution of car-
diovascular cases, survivors, and censoring, as well as the performance metrics (td AUROC,
IBS) for individual study subgroups concerning study wave (SHHS1, SHHS2), medications,
prior cardiovascular events, and training vs. unseen subjects, for RFS with and without AHI,
respectively.

Cardiovascular risk-profiles via partial effects of RSF

To examine associations between risk factors (demographics, BMI, smoking), sleep patterns
(macrostructure, dynamics), and long-term cardiovascular outcomes, we analyzed partial
effects from the RSF model, including AHI as a predictor. This adjustment accounts for SDB
(AHI) and reduces potential bias. For comparison, we also assessed partial effects from the
RSF model without AHI, which showed similar predictive performance.

Figure 7.4 shows the partial effects of demographic factors (age, gender), lifestyle vari-
ables (BMI, smoking status), and SDB severity (AHI) on the 10-year cardiovascular event-
free probability, interpreted as the complement of risk. The event-free probability remains
stable until ~age 55, then declines, with a steep drop beyond age 80. BMI and AHI exhibit
similar risk profiles due to their strong correlation. The highest event-free probability is ob-
served for BMI values between 22-27; risk increases by ~1% at lower BMI (possibly linked
to smoking-related leanness) and up to 3% for BMI>35. A minimal cardiovascular risk is as-
sociated with an AHI of <15, supporting the clinical threshold that distinguishes mild from
moderate SDB. Interestingly, near-zero AHI values are associated with a slight increase in
risk, possibly due to poor sleep efficiency (low TST, high WASO), which can reduce AHI yet
elevate cardiovascular risk. Partial effects also suggest a 1.5% higher risk in males and a ~2%
increase for current smokers versus never-smokers. Ex-smokers show a modest 0.5% higher
risk than never-smokers but 1.5% lower risk than current smokers. These associations align
with established evidence linking age, obesity, SDB, and smoking to elevated cardiovascular
risk [4], [212]-[214].

Figure 7.4: Partial effects and their 95% ClIs for 10-year cardiovascular
event-free probability for the age in years, Body Mass Index (BMI),
Apnea-Hypopnea Index (AHI), gender (0 = female, 1 = male), and smoking
status, for RSF with AHI predictor.
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Figure 7.5 shows partial effects of sleep macro-architecture markers on 10-year event-
free probability. Unlike Figure 7.2, where these predictors (except sleep latency, SL) exhib-
ited monotonic, sigmoidal risk profiles for SDB, their associations with cardiovascular risk
are predominantly U-shaped. This pattern suggests a “healthy optimum” range with max-
imal event-free probability, beyond which risk increases bidirectionally. Optimal TST ap-
pears around 360 minutes, with both short and long durations, reflecting insufficient sleep
and hypersomnia, respectively, linked to up to a 3% increase in cardiovascular risk at the
extremes. Short TST may arise from socially or psychiatrically induced sleep deprivation,
renal dysfunction, or medical conditions. At the same time, long TST may result from cen-
tral disorders of hypersomnolence, chronic medical conditions like metabolic dysfunction,
systemic inflammation, neurodegeneration, or frailty [41]-[43], all of which contribute to
cardiovascular vulnerability. The lowest risk occurs at WASO of 50-80 minutes. Both very
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low and very high WASO are associated with elevated risk: low WASO (~1.5% risk increase)
may indicate sleep deprivation, frailty, advanced age, or neurodegenerative changes, while
extremely high WASO (>200 minutes) suggests severe sleep fragmentation that may origi-
nate in insomnia, depression, chronic pain, or SDB. Sleep latency (SL) below 20 minutes or
above 120 minutes corresponds to a ~1.5% higher risk. Prolonged SL may reflect hyper-
arousal, insomnia, or anxiety, whereas very short SL could signal excessive sleepiness due
to sleep deprivation (e.g., due to long-term SDB); however, SL can also be affected by dis-
comfort or unfamiliarity with PSG recording. Very short REM latency (REML) is associated
with a ~3.5% risk increase, potentially reflecting sleep deprivation, narcolepsy, depression,
or metabolic dysregulation. Prolonged REML (>200 minutes) shows a modest risk increase,
possibly driven by SDB [39], [222]. Similarly, both very short and prolonged deep-sleep
latency (DL) are associated with higher risk (~1.5% and ~3.5%, respectively), likely reflect-
ing chronic sleep deprivation, impaired sleep homeostasis, or fragmentation from SDB and
depression [38], [219].

Figure 7.5: Partial effects and their 95% ClIs for 10-year cardiovascular
event-free probability for the minutes of Total Sleep Time (TST), Wake After
Sleep Onset (WASO), Sleep Latency (SL), REM Latency (REM), and
Deep-sleep Latency (DL), for RSF with AHI predictor.
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Figure 7.6 shows the partial effects of individual sleep-stage transition proportions p; ;
(cf. Methods), computed relative to the total number of sleep-stage epochs after sleep onset.
On average, a post-onset PSG spans ~910 epochs, so a 1% (= 0.01) change in transition
proportion corresponds to roughly 9 transitions per PSG. We focus on clinically relevant
transitions with partial effects linked to >2% changes in predicted event-free probability,
supported by non-overlapping 95% Cls.

* W-transitions: The trend in pyy w mirrors WASO, with continuous wakefulness beyond
50% linked to a 4% increase in cardiovascular risk. The optimal range for pw n1 (a
marker of fragmentation) is 0.01-0.03, with risk rising by 2% above 0.1. Direct transi-
tions from W to N2, bypassing normal N1 sleep initiation, increase risk by 2% beyond
0.04. Notably, pw N3 > 0.004 (~3 transitions) may signal severe homeostatic sleep
pressure and associate with up to a 6% risk increase.

* Nl-transitions: Frequent N1—W transitions (pn1,w > 0.02) reflecting heightened sleep
instability, rise risk by >2%. Prolonged periods of light sleep (pn1,n1 > 0.15, ~1 hour)
show a linear association with ~2% higher risk. Notably, even a single N1—+N3 tran-
sition (pn1,n3 ~ 0.001) links to >6% risk, suggesting abnormal homeostatic responses.
Further, py1rem > 0.01, reflecting atypical REM initiation, shows exponential risk
increases, reaching 2% risk increase.

* N2-transitions: Cardiovascular risk rises sharply (>7%) when pyo N1 > 0.004 (~3 tran-
sitions), indicating instability in intermediate NREM state. The lowest risk occurs with
uninterrupted N2 sleep comprising 30-50% of post-onset time; deviations increase risk
by >3%, particularly when pn2 N2 > 0.6, possibly reflecting reduced progression into
N3 or REM sleep. Both insufficient (pn2,n3 < 0.005) and excessive (pn2,n3 > 0.06)
deep sleep transitions are associated with an elevated risk, reflecting disturbed sleep
pressure.

* N3-transitions: Deep-sleep disruptions strongly predict cardiovascular risk. IN3-
awakenings, py3w > 0.1 increase risk by ~2%. Atypical pn3 N1 > 0.001 transitions
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link to up to 10% higher risk per single occurrence. Minimal continuous N3 sleep
(pn3,N3 = 0) increases risk by 4%, while rare pn3 rep > 0.001 associate with ~4% risk
increase.

* REM-transitions: REM awakenings, prep w, outside the [0.05, 0.15] range increase risk
by up to 2%. The prepn1 > 0.01 transitions exhibit exponential risk growth (up to
3%), indicating heightened cortical arousals. Atypical prepm,n3 are linked to 8-12%
higher risk for one or two nightly events, respectively. Optimal continuous REM sleep
(prEM,REM) lies between [0.15, 0.25] corresponding to ~1.5 hours of uninterupted REM
over the night, while deviations are associated with >2% risk. The REM sleep dis-
ruptions likely reflect autonomic imbalance, mood-related dysregulation, or compen-
satory mechanisms.

By comparing the partial effects from the RSF and RF models, we observe that while SDB risk
is primarily associated with monotonic trends (e.g., lower TST, REM, N3, and higher WASO),
cardiovascular risk often exhibits non-linear patterns. This likely reflects the influence of
diverse clinical conditions beyond SDB that alter sleep parameters at both extremes. Finally,
Supplementary Figures C.25-C.27 display partial effects from the RSF model without the
AHI predictor, showing trends consistent with those described above.

Figure 7.6: Partial effects and their 95% CIs for 10-year cardiovascular
event-free probability for the relative frequencies of transitions between
sleep-stage (W, N1, N2, N3, REM), for RSF with AHI predictor.
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Correlation of predicted cardiovascular risk with sleep disorders and non-sleep comor-
bidities

The generalization tests above suggest that our RSF model accurately predicts cardiovascu-
lar risk, even under domain shifts involving older individuals and those on confounding
medications. Leveraging the clinically rich BSWR data set, which spans a full spectrum of
sleep disorders and selected non-sleep comorbidities, we next investigated how these con-
ditions correlate with predicted cardiovascular risk. Each sleep disorder exhibits a distinct
pattern of sleep disruption, which may differentially influence cardiovascular risk. Our goal
was to determine whether specific sleep disorders and comorbidities are systematically as-
sociated with changes in predicted risk. Identifying such associations could provide insight
into the cardiovascular relevance of individual sleep pathologies and help highlight high-
risk patient subgroups.

Supplementary Table C.2 summarizes the prevalence of major sleep-disorder classes and
specific clinical conditions across the BSWR cohort and their associations with moderate-
to-severe SDB (AHI > 15). Supplementary Table C.3 provides further details on the de-
mographic and clinical profiles (gender, age, BMI, and AHI) of each condition, comparing
them to those of strictly healthy individuals. All seven major classes of sleep disorders sig-
nificantly differed from healthy controls, showing higher mean age, BMI, and AHI, sug-
gesting that individuals with sleep disorders tend to present with a riskier cardiovascular
profile. While the healthy group comprised mostly women (58%), all sleep disorder cate-
gories—except insomnia and hypersomnia—had a significantly higher proportion of men
(>61.9%).

Across all major sleep disorder classes, we observed higher average predicted cardiovas-
cular risk. However, this increase cannot be directly attributed to the disorders themselves,
as individuals with sleep disorders also differed significantly from controls in demograph-
ics, BMI, and AHI. To address this, we quantified the adjusted risk using logistic regression
models with log-odds-transformed predicted risk as the outcome, adjusting for age, gender,
BMI, AHI, and a binary indicator for the specific condition. Each model was estimated in a
case-control design contrasting healthy individuals with those affected by a given condition.
The adjusted effect, reported in the final column of Supplementary Table C.3, represents the
systematic percentual increase in predicted cardiovascular risk relative to healthy controls,
after accounting for differences in demographics, BMI, and AHIL

Even the adjusted models revealed significant risk increases across all major sleep dis-
order classes: SDB was associated with a 17.8%, 95% CI: (9.5, 26.8), increase in risk, in-
somnia 12.4% (2.9, 22.7), hypersomnia 11.0% (3.7, 18.9), movement-related disorders 20.3%
(8.6, 33.2), parasomnias 24.5% (13.3, 36.9), circadian rhythm disorders 27.5% (10.3, 47.3), and
isolated symptoms or normal variants 10.9% (2.9, 19.5). Specific conditions within these cat-
egories exhibited variability, as evidenced by a 39.2% (23.5, 56.9) increase for central sleep
apnea, a 44.4% (27.0, 64.1) increase for NREM parasomnias, and non-significant effects for
narcolepsy type 2, short-term insomnia, and idiopathic hypersomnia. Among comorbidities,
the largest risk increase was observed for neurodegenerative diseases, 45.8% (21.4, 75.1); di-
abetes, 39.4% (13.9, 70.7); and current cardiac disease or prior event, 25.1% (8.7, 44.0).

These observed associations between sleep disorders, comorbidities, and elevated car-
diovascular risk underscore the interrelationship between sleep and cardiovascular health.
They also suggest that distinct patterns of sleep disruption, attributable to specific condi-
tions, elevate the cardiovascular risk at different levels. However, further studies in cohorts
with long-term monitored cardiovascular outcomes are needed to validate these observa-
tions, as such data are not currently available in BSWR.

7.4 Discussion

A wide range of clinical conditions, including both sleep disorders and non-sleep comorbidi-
ties, can disrupt sleep macrostructure by altering total sleep duration, increasing fragmenta-
tion, and modifying the distribution of sleep stages [8], [13], [36], [165], [245], [246]. In par-
ticular, SDB, affecting up to 23.4% and 49.7% middle to older-aged women and men [231],
respectively, induces characteristic macrostructural changes, including reductions in REM
and N3 sleep, increased fragmentation, and altered stage composition [25], [26], [218], [219].
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SDB has also been linked to elevated cardiovascular morbidity and mortality, including hy-
pertension, stroke, and sudden cardiac death [2], [4], [5], [7], [212]-[216]. Statistically, if
a condition such as SDB alters both sleep macrostructure and the cardiovascular health,
macrostructural sleep patterns may carry predictive information about cardiovascular risk,
at least in an associative sense. Supporting this, reduced total sleep duration, as well as
lower proportions of N3 and REM sleep, have been associated with increased cardiovas-
cular risk [37]-[43]. Emerging evidence suggests that sleep-stage dynamics—the temporal
patterns of transitions between stages—may offer deeper insights into physiological regu-
lation and disease-specific signatures [26], [100], [105]-[107], [109], [115], [171]. While prior
studies focused on static macrostructural features, the prognostic relevance of dynamic sleep
patterns for cardiovascular outcomes remains largely unexplored. Since alterations in sleep
dynamics, like those in macrostructure, often arise as downstream effects of conditions such
as SDB, diabetes, chronic pain, and neurodegenerative disorders, these patterns may encode
signals relevant to cardiovascular risk.

Our study leveraged data from the SHHS, a prospective cohort originally designed to in-
vestigate the relationship between SDB and cardiovascular risk [182]. We used these data to
examine the dependency chain linking SDB (a major cardiovascular risk factor), sleep char-
acteristics (macrostructure, dynamics), common risk factors (demographics, BMI, smoking
status), and long-term cardiovascular outcomes. Specifically, we assessed (i) whether SDB
can be predicted from sleep parameters and common risk factors, and (ii) whether long-term
cardiovascular risk can be predicted using the same features, both with and without explicit
knowledge of SDB severity. To quantify these relationships, we applied forest-based meth-
ods [224], [227]—Random Forest (RF) for SDB identification and Random Survival Forest
(RSF) for cardiovascular risk prediction. These models are well-suited for capturing com-
plex, non-linear relationships, robust to overfitting and multicollinearity, and support inter-
pretability through partial dependence analyses. Notably, we analyzed R(S)F partial effects
to determine whether individual predictors exhibited predominantly linear associations, as
often assumed in prior studies using restrictive methods such as ANOVA [37] or regression-
based models [38]-[43], or displayed non-linear patterns suggesting ranges of clinical optima
with minimal risk. All models were trained on a carefully stratified SHHS baseline cohort,
which was free from prior cardiovascular events and medication use, thereby minimizing
confounding and enhancing the generalizability of our findings to a broader population.

The RF demonstrated that SDB can be reliably detected from the considered predictors.
Cross-validation in the primary study cohort yielded an AUROC of 76.1% for identifying
moderate-to-severe SDB (AHI >15), with strong generalization across REM- and NREM-
dominant phenotypes (74.1-74.9%) and mixed SDB (79.4%). SDB detection remained ro-
bust even in unseen subgroups with prior events or medications from SHHS1 (73.6-74.1%),
SHHS?2 follow-up cohorts (69.5-80.6%), and in a fully out-of-domain clinical BSWR (76.0%).
These findings demonstrate that SDB can be reliably inferred from sleep parameters and
common risk factors only, even in medication or prior-event-confounded subgroups, and
without direct access to respiratory signals typically required for clinical diagnosis. Partial
dependence analyses revealed predominantly monotonic trends, with SDB risk increasing
sharply above age 50, BMI >25, in males and ex-smokers, consistent with existing evi-
dence [5], [213], [214], [218], [230]-[233]. Macrostructural sleep markers of SDB included
TST <300 minutes, WASO >100 minutes, and prolonged REM and N3 latencies, confirm-
ing that apneic events cause fragmented and inefficient sleep, with delayed progression into
restorative states [106], [218], [219], known to be important for brain recreation. Novel in-
sights emerged from sleep-stage transition proportions (pi—rom,j=to) Proposed in our previ-
ous work [115], where p;; = 0.01 corresponds to roughly nine transitions per night while
pii = 0.1 indicates about 45 minutes of uninterrupted time in stage i. Several transitions
proved to be highly sensitive markers, associated with >5% increases in SDB risk, includ-
ing pw N2 > 0.02, pw rem > 0.01, pn1,w > 0.02, pyo,w > 0.02, and reduced REM continuity
(prEM,REM < 0.1). While prior studies have quantified the effects of how the SDB alters sleep
macrostructure and dynamics [26], [105], [106], [109], [115], our findings suggest that these
patterns alone enable effective screening of SDB, with partial effects providing mechanistic
insight into these associations.

The RSF models further quantified the extent to which cardiovascular risk can be strat-
ified from the same set of predictors. Two versions were trained: one that included SDB
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severity (AHI) and one that excluded it. Strikingly, inclusion of AHI did not improve perfor-
mance on any discrimination or calibration metric assessing predictive capability to capture
cardiovascular risk. For example, the cross-validation yielded C-indices of 73.0% and 73.3%,
10-year td AUROCs of 75.1% and 75.3%, and IBS values of 6.7% for models with and without
AHI, respectively, with significant log-rank tests having p-values of the same order. These
findings suggest that in a flexible-enough model (RSF), demographic factors, BMI, smoking
status, and sleep parameters sufficiently capture pathological signatures of cardiovascular
risk, to the point that adding AHI offers no additional predictive benefit. This likely re-
flects the ability of these predictors to encode not only SDB-related patterns (as shown by
the SDB-identification experiment) but also other pathological, possibly undiagnosed pro-
cesses—such as diabetes [241], renal dysfunction [242], cancer [247], pain syndromes [244],
or neurodegeneration [243]—that may jointly influence sleep and cardiovascular outcomes.

Supporting this, RSF partial effects of individual predictors revealed non-linear, often
U-shaped risk profiles (in contrast to the monotonic effects in RF for SDB detection), sug-
gesting clinical optima and thresholds of increased cardiovascular risk. Minimal risk was
observed for age under 55 years, BMI € [20,25], AHI <15, and never-smokers. Macrostruc-
tural markers of minimal risk included TST € [300,400] minutes and WASO € [40, 100] min-
utes, while deviations from these ranges—along with excessively short or long sleep-onset,
REM, and N3 latencies—were associated with higher risk. Sleep-stage continuities in N2,
N3, and REM stages exhibited protective ranges at pna N2 € [0.3,0.5], pn3 3 € [0.1,0.3], and
pPrREMREM € [0.15,0.25], corresponding to about [135, 225], [45,135], and [67.5, 112.5] min-
utes, respectively. These U-shaped risk profiles confirm prior associations between reduced
TST, N3, and REM sleep durations with cardiovascular morbidity and mortality [38]-[43],
while extending them by showing that risk also increases above optimal values—a nuance
not captured in earlier studies constrained to linear models. In addition, rare or highly atyp-
ical transitions, seldom observed in healthy sleep, were strongly associated with sharply
monotonically increased risk. For instance, >3% risk increase was linked to py n3 > 0.002,
pniw > 0.03, pn1ns > 0.001, pnznt > 0.003, pnzn2 > 0.6, pns,n1 > 0.001, pnans < 0.05,
PN3,REM > 0.002, PREM,N1 > 0.0075, PREM,N3 > 0.001, and absence of continuous REM
sleep (prem,rem ~ 0). Notably, even a single occurrence of such atypical transitions (e.g.,
PN1,N3, PN3,N1, PREM,N3) during a night may serve as a sensitive marker of cardiovascu-
lar risk, whether driven by SDB or other underlying conditions. Our findings extend the
existing knowledge that sleep dynamics are not only useful for describing present clinical
conditions, but also provide signals correlating with future health events.

Movel validation confirmed strong generalization of RSF predictions across SHHS sub-
groups with medication use (C-index >66.6%, IBS <12%, tdAUROC >69%, and significant
log-rank test in all baseline or follow-up subgroups). However, performance was reduced in
subjects with prior cardiovascular events, likely due to altered sleep-wake patterns caused
by events (cf. [235]-[238]) and also much older age. In the BSWR data set, predicted cardio-
vascular risk was positively associated with all seven major sleep disorder classes (SDB, in-
somnia, hypersomnia, parasomnias, movement disorders, circadian-rhythm disorders, and
isolated symptoms), with estimated adjusted increases in cardiovascular risk ranging from
10.9% to 27.5% compared to healthy controls. Among non-sleep comorbidities, neurode-
generative diseases, diabetes, and existing cardiac disease were associated with the highest
increases (>25%). These findings collectively support the strong interplay between sleep and
cardiovascular health.

7.5 Conclusion

Our study demonstrates that sleep macrostructure and stage dynamics jointly encode sen-
sitive markers of both current SDB and long-term cardiovascular risk. Leveraging carefully
curated data from the large prospective SHHS cohort, we show that SDB can be reliably iden-
tified from sleep patterns and demographics alone, without the need for direct respiratory
measurements. While we confirm established associations between short duration of TST,
REM, and N3 with cardiovascular risk, the use of a flexible RSF modelling approach uncov-
ered non-linear U-shaped relationships, revealing that excessive amounts of specific sleep
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features (including TST, REM) are also linked to increased risk—patterns overlooked by tra-
ditional linearly restricted methods. Notably, partial effects—providing insights into asso-
ciations between risk and individual predictors—were largely monotonic for SDB, whereas
cardiovascular risk exhibited predominantly U-shaped profiles, suggesting distinct physio-
logical mechanisms and thresholds that could serve as novel markers in clinical decision-
making. This suggests that cardiovascular vulnerability involves broader processes beyond
SDB, reflected as downstream effects encoded in disrupted sleep. Hence, sleep architecture
and dynamics act as a mirror of health, capturing signatures of current physiological states
and predicting future disease risk. Together, they position sleep-stage patterns as promis-
ing, non-invasive biomarkers for diagnosing current conditions and stratifying long-term
cardiovascular risk. With the rise of wearable technologies and automated sleep scoring,
combined with additional biosignals such as respiratory patterns, oxygen saturation, and
heart rate, these insights highlight the potential for large-scale, unobtrusive, and long-term
monitoring, as well as future screening tools for cardiovascular health.

7.6 Limitations

This study has several limitations. Despite using partial dependence analysis in the R(S)F
framework, the quantified effects should be interpreted cautiously, as the modelling ap-
proach captures numerical associations and hence, partial effects should not be viewed as
causal. In addition, as altered sleep patterns likely reflect downstream effects of differ-
ent underlying conditions, the treatment interventions should target the root causes (e.g.,
SDB, diabetes management) rather than modifying sleep parameters in isolation. Next, our
models were trained on participants free from prior cardiovascular events and medications,
which, although improving generalizability, limits applicability in these subgroups. While
forest-based methods can internally handle interactions between predictors, incorporating
explicit age-gender interactions may be valuable, particularly given the protective effect of
pre-menopause on cardiovascular outcomes. Additionally, we modelled a pooled compos-
ite cardiovascular endpoint, which may obscure specific risk patterns for individual out-
comes. Future work could leverage competing risk models to disentangle and address each
cardiovascular event separately. External validation of cardiovascular risk predictions in the
BSWR data set was limited to adjusted associations with clinical conditions due to the lack of
standardized time-to-event data. Therefore, in our future work, we plan to integrate causal
knowledge on clinical relations, expand modelling to include key pharmacological classes
and menopausal status, and harmonize data across multiple cohorts tracking long-term out-
comes to enable robust cross-cohort validation.
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Chapter 8

Discussion

This final chapter synthesizes the six manuscripts presented in the preceding Chapters 2-7
and summarizes their main contributions, including both technical advances and clinical
implications. In addition to outlining these contributions, it also discusses the limitations
of the individual studies and of the thesis as a whole, and considers how these may be
addressed in future work.

8.1 Summary of research findings

In line with the Introduction Chapter 1, the main contributions of this dissertation are
grouped into two thematic branches. The first branch, Integration of Automated Sleep Scoring
into Clinical Practice, encompasses Chapters 2—4 and addresses ethical and legal require-
ments for deploying Al in healthcare, with a focus on human oversight (Chapter 2) and
algorithmic fairness (Chapters 3—4) in the context of sleep scoring. The second branch,
Digital Biomarkers from Sleep-Stage Dynamics, spans Chapters 5-7 and applies explainable
machine learning to uncover novel insights into sleep-disordered breathing, chronic fatigue
and pain syndromes, and long-term cardiovascular outcomes.

8.1.1 Integration of Automated Sleep Scoring (ASS) into Clinical Practice

Chapter 2: Bridging Al and Clinical Practice: Integrating Automated Sleep Scoring with
Uncertainty-Guided Physician Review

This study addressed the challenge of aligning Al predictions with physician responsibil-
ity in sleep scoring [95]. Motivated by the fact that inter-scorer agreement between human
experts typically ranges from 75-85% [14], [15], [48], [65]-[69], ASS algorithms trained on
large, heterogeneous datasets containing scoring patterns of multiple experts achieve com-
parable levels in performance metrics [80], [141]. As a consequence, approximately 15-25%
of epochs remain discordant between algorithmic and human scoring, even for state-of-the-
art systems. When deploying ASS in clinical practice, efficient mechanisms for human over-
sight are therefore essential, as unguided review can take nearly as much time as manual
scoring from scratch, limiting its clinical utility. Whereas most prior work has focused on
optimizing performance metrics of ASS algorithms, relatively few studies have investigated
their effective deployment in human-in-the-loop pipelines. Uncertainty estimation has been
proposed as a potential solution, but existing approaches typically rely on functions of the
predicted probabilities (i.e., softmax scores) [64], [93], [94], [122]-[124], and have rarely been
evaluated for clinical usability across diverse sleep disorders.

In this work, we systematically compared several softmax-based uncertainty metrics and
further introduced a novel LSTM-based auxiliary confidence network. Unlike softmax-only
approaches, this network integrates both the softmax outputs and representations from in-
termediate layers of the deep-learning classifier U-Sleep, thereby leveraging sequential fea-
tures of PSG data. In identifying predictions likely to disagree with expert scorers, the con-
fidence network outperformed all softmax-based baselines across both the in-domain and
two out-of-domain test sets scored by individual senior physicians (AUROC >82.5% in all
cases). The ability to accurately flag potentially misclassified epochs is a prerequisite for
establishing efficient human oversight. Through simulated querying of predictions below
varying confidence thresholds, we demonstrated that revising fewer than 29% of the least
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confident stages was sufficient to reach near-perfect agreement between ASS system U-Sleep
and physicians (x > 0.90). Moreover, the in-depth evaluations revealed that predicted confi-
dence scores were significantly lower for algorithm—human disagreements, and that subject-
level mean confidence scores positively correlated with classification performance metrics,
supporting their interpretability at both the epoch and subject levels, independent of sleep-
disorder status.

Together, these results demonstrate that incorporating uncertainty estimation provides a
practical and effective mechanism for human oversight, substantially reducing the burden
of review, and hence also the overall cost of PSG assessment, while maintaining clinical
reliability. Unlike earlier studies limited to restricted cohorts, our work provides the first
comprehensive evaluation of uncertainty-based approaches in ASS across a full spectrum
of sleep disorders, within both in-domain and out-of-domain tests, demonstrating both the
superiority of the proposed confidence network and its robustness across diverse patient
populations.

Chapter 3: Framework for Algorithmic Bias Quantification and its Application to Auto-
mated Sleep Scoring

In this study, we developed a general framework for quantifying algorithmic bias that is
applicable to any predictive model in a regression setting [96]. Existing validation methods
typically rely on correlation analyses, which measure linear association between predicted
and reference values, or Bland—-Altman (BA) plots, which assess the magnitude of prediction
errors relative to reference values [134]. While informative, both approaches rely on restric-
tive assumptions such as linearity and homoscedasticity of errors, and they overlook the
potential influence of external factors such as demographic or clinical characteristics [136].

To overcome these limitations, our study proposed to model the systematic error
(bias), defined as prediction-reference differences, possibly conditional on external fac-
tors (sensitive attributes), using Generalized Additive Models for Location, Scale and Shape
(GAMLSS) [138]. Within this framework, the systematic error is captured using an ex-
tended normal distribution with separate predictors for expectation (location) and variabil-
ity (scale). This setup allows flexible modelling of both the mean error and its dispersion,
and enables nonlinear effects of external factors (e.g., age) to be captured through splines
or more complex predictor bases such as neural networks. Once estimated, the bias model
supports hypothesis testing of factor-specific effects (i.e., factor-driven biases), estimation
of arbitrary conditional quantiles (e.g., 5% worst- or best-case scenarios), and calculation of
coverage within a clinically defined Region of Practical Equivalence (ROPE).

As a use case, we applied the framework to the state-of-the-art deep-learning-based ASS
algorithm U-Sleep [59], [60], evaluated on 4,075 PSGs from the Bern Sleep-Wake Registry.
Whereas most ASS studies report only epoch- or subject-level classification metrics, few as-
sess the validity of sleep-scoring—derived clinical markers, despite their central role in di-
agnostics and decision-making. We therefore focused on wake percentage (W%), which di-
rectly reflects the ability of the ASS system to distinguish sleep-wake states and underpins
the calculation of sleep efficiency and related indices such as TST, WASO, and awakening
rate [8]. The bias was model under consideration of the spline effect for the age, and lin-
ear effects of gender, AHI, and PLMI, for both location and scale distributional parameters.
Most importantly, the analysis revealed systematic, nonlinear age effects on W% errors: U-
Sleep consistently underestimated W% in children (median bias of up to -8% in newborns),
with both bias magnitude and variability highest at the youngest and oldest age ranges.
These findings reflect imbalances in the original U-Sleep training data and illustrate how the
framework can uncover clinically meaningful biases as well as technical insights.

Together, this work introduces a practical and flexible methodology for detecting and
quantifying bias in predictive algorithms. While illustrated on ASS, the framework is
broadly applicable to other systems where predictive numerical outputs underpin clinical,
scientific, or industrial decision-making (e.g., apnea detectors predicting AHI values, wear-
ables assessing blood saturation, pricing models). By explicitly modelling bias distributions
conditional on arbitrary external factors, it enables a transparent assessment of fairness and
reliability, in line with regulatory requirements such as the EU Al Act, MDR, and MedDO.
Crucially, as illustrated in our use case, it may also highlight gaps or imbalances in training
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data, providing actionable guidance for data curation or stratified model retraining. The
ability to quantify potentially nonlinear error distributions dependent on external factors
makes it suitable for clinical certification assessments of predictive software tools.

Chapter 4: Beyond Accuracy: Extending Bias Quantification to Performance Metrics and
Clinical Markers

In this follow-up study [97], we extended the bias quantification framework from Chapter 3
to also cover algorithmic classification performance metrics, which are typically bounded
between 0-1 (0-100%). For this purpose, we proposed to employ the zero-and-one-inflated
Beta distribution within the GAMLSS framework [138], [148]. This choice enables flexible
modelling of both the central tendency and variability of performance metrics, possibly de-
pending on external factors, while accounting for extreme cases of perfect (1) or failed (0)
classification. Such an approach allows a more comprehensive assessment of model validity
and capability across, e.g., demographic and clinical, subgroups, directly addressing con-
cerns about fairness and equity of predictive models in healthcare.

As a use case, we compared two widely used ASS systems: the state-of-the-art deep-
learning algorithm U-Sleep [59], [60] and the ML-based YASA [58]. The evaluation included
a wide set of hypnogram-derived clinical markers (e.g., TST, WASO, REML) where biases
were assessed using extended normal distribution (cf., Chapter 3) together with two stan-
dard performance metrics: macro-F1 and accuracy, using an inflated Beta distribution. Re-
sults revealed systematic differences in biases between the algorithms, with nonlinear age
effects and linear worsening effects of AHI and PLMI. These findings suggest that both de-
mographic and clinical factors substantially affect model performance and should be con-
sidered in fairness assessments, or when using these ASS tools in clinical decision-making.

Importantly, the observed age-related biases in both clinical markers and performance
metrics may reflect the absence of age as an explicit input variable of ASS systems, related to
the omitted variable bias phenomenon. As both sleep architecture [118], [156] and raw PSG
biosignals [119], [157] evolve with age, algorithms lacking age information may struggle to
learn these interactions, and equal performance across age groups cannot be guaranteed.
Despite that, vast majority of ASS tools ignore age as its imput [58], [59], [73].

Furthermore, our study assessed whether biases in hypnogram-derived markers lead to
reduced diagnostic value. Using obstructive sleep apnea (OSA) as an example, we demon-
strated that when predictive errors are consistent (i.e., systematic biases), simple machine
learning classifiers such as LASSO logistic regression or Random Forest can adapt to them
and achieve comparable performance regardless of whether they were trained on reference
markers derived from physician scoring or on biased predictions from ASS. This illustrates
that, on the one hand, predictions must be treated with caution and carefully validated, yet
on the other hand, they may still provide valuable information despite their inherent biases.

Together, the extension of the bias-quantification framework to performance metrics
demonstrated that the fairness and reliability of ASS (or other predictive) systems cannot
be fully assessed through mean-level performance summaries alone. By modelling full
performance distributions, the framework provides subgroup-specific insights into system-
atic strengths and weaknesses of algorithms, offering practical guidance for data curation,
model retraining, and regulatory evaluation.

In summary, automated sleep scoring (ASS) has reached a level where it provides clini-
cally meaningful insights but remains constrained by the inter-scorer variability of human
experts, which limits achievable performance. Physicians must therefore remain the final
decision-makers, supported by mechanisms for effective human oversight (Chapter 2). To
ensure fair, transparent, and clinically reliable use of ASS, it is also crucial to understand al-
gorithmic behaviour and potential biases in both clinical markers and performance metrics
(Chapters 3-4). Since such variability is intrinsic to human scoring, the integration of ASS
into clinical workflows is best supported by transparent disclosure of the underlying scoring
mechanisms, their uncertainties, and potential biases. Along these lines, recent benchmark-
ing initiatives, most notably SLEEPYLAND [73], have created a platform allowing transpar-
ent and standardized comparisons of state-of-the-art ASS algorithms on common datasets.
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Importantly, this effort has also incorporated the bias-quantification framework developed
in Chapters 3-4, highlighting its practical value for promoting transparency and fairness
evaluation.

8.1.2 Digital Biomarkers from Sleep-Stage Dynamics

Chapter 5: Novel Digital Markers of Sleep Dynamics: A Causal Inference Approach Reveal-
ing Age and Gender Phenotypes in Obstructive Sleep Apnea

In this study [115], we developed a framework to quantify novel digital biomarkers of
sleep disorders based on sleep-stage dynamics extracted from an observational clinical PSG
database. A major methodological challenge in such settings is the presence of confound-
ing: case—control distributions are not randomized, demographic profiles differ substan-
tially, and patients frequently suffer from comorbidities. Except for a few routinely reported
indices, such as the number of awakenings or total transition rates, current clinical PSG
evaluation does not systematically focus on sleep-stage dynamics, despite their potential to
reveal deeper physiological and pathological mechanisms of sleep regulation (cf. [98]-[114]).

Motivated by this gap, our work proposed a simple yet characteristic biomarker of sleep
disorders—the raw 5 x 5 matrix P of sleep-stage transition proportions—and a methodolog-
ical approach for its estimation from observational data. Marker P functionally relates to
established hypnogram-derived metrics (e.g., sleep-stage proportions) while indirectly also
capturing overall stage durations, thereby linking to previously studied aspects of sleep-
stage fragmentation [98]-[107] and continuity [108]-[114].

Our methodological framework combined elements of causal inference to minimize bias
in estimating disease effects on marker P. It consisted of two main components: (i) a propen-
sity score model estimating disease probability conditional on key confounders, satisfying the
positivity assumption, i.e., ensuring sufficient overlap of covariate distributions between
cases and controls [177], and (ii) an outcome model quantifying the effect of disease on P, cor-
responding to a causal S-learner [180], while adjusting for interactions with comorbidities
and demographics. The causal estimand of interest was the conditional average treatment
effect (CATE), representing the difference in expected outcomes (i.e., dynamics captured in
P) between cases and controls, personalized to the levels of predictors in the outcome model.
Previous studies of sleep disorders have often ignored confounding and typically reported
only unadjusted case—control differences in disease effects or markers using simple statisti-
cal tests, with very few considering the role of ageing and demographics [9], [17], [166], or
sleep comorbidities, despite their high prevalence in clinical populations [190], [191], [240].

We demonstrated this framework in the context of obstructive sleep apnea (OSA), one
of the most prevalent sleep disorders, affecting an estimated 17% of the general adult pop-
ulation [149] and up to 23.4% and 49.7% of middle- to older-aged women and men [231],
and known to be a major risk factor for cardiovascular morbidity and all-cause mortality [2],
[213], [215]. The study dataset, a subset of the Bern Sleep-Wake Registry (BSWR), included
62 healthy controls and 560 OSA cases, with more than 48% of the latter presenting at least
one additional sleep comorbidity. Propensity score weighting using logistic regression was
applied to balance demographic confounders, and a Dirichlet outcome regression was em-
ployed to jointly model all dimensions of P, adjusting for OSA and its interactions with
OSA severity (AHI), demographics, and comorbidities. The Dirichlet formulation further
enabled aggregation across matrix dimensions, allowing us to derive novel interpretable
metrics such as stage-specific fragmentation rates and NREM continuity, complementing ex-
isting hypnogram-derived PSG indices. Uniquely, the outcome model fitted the rich BSWR
cohort enabled personalized CATE estimation of OSA effects on sleep dynamics, disentan-
gled from the influence of comorbid sleep conditions. To facilitate exploration and broader
research community outreach, we additionally developed an interactive web application.

Our main findings indicated that markers of NREM—-REM oscillations and stage-specific
fragmentation were consistently increased across all OSA severities and demographic
groups. Moreover, we identified distinct gender-specific phenotypes, with females exhibit-
ing higher vulnerability to awakenings and REM-related disruptions, which may explain
their more frequent reports of insomnia- or depression-like symptoms in OSA [193]-[195].
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In summary, this study presented a flexible framework for quantifying novel digital mark-
ers of sleep disorders based on sleep-stage dynamics from observational clinical data, and
demonstrated its utility in OSA. Beyond establishing new markers, we showed that they
are also predictive of disease presence, underscoring their potential for both clinical stratifi-
cation and mechanistic insights, in line with the overarching goals of this thesis to develop
interpretable and clinically meaningful computational tools for sleep medicine.

Chapter 6: Unveiling Sleep Dysregulation in Chronic Fatigue Syndrome with and without
Fibromyalgia Through Bayesian Networks

In this study [116], we investigated how Chronic Fatigue Syndrome (CFS) and its frequent
comorbidity Fibromyalgia (FM) affect sleep regulation and sleep-stage dynamics. Both syn-
dromes are more prevalent in females, share overlapping symptoms such as non-restorative
sleep and daytime fatigue, yet differ in clinical presentation: CFS being dominated by exer-
tional fatigue and FM by widespread pain [203], [204]. Their frequent co-occurrence [202]
makes clinical differentiation challenging, while standard PSG indices often yield inconsis-
tent results [208]. Sleep-stage dynamics, by characterizing transitions and temporal struc-
ture, may therefore provide deeper insights into physiological dysregulation and support
clinical distinction.

We analyzed a small but high-quality dataset collected by Kishi et al. [201], comprising
PSG recordings from 26 healthy women, 14 with CFS, and 12 with CFS+FM, all aged 25-55.
This strictly controlled experimental cohort minimized variability and confounding: groups
were demographically matched, participants were free of psychiatric or sleep disorders, in-
structed to abstain from alcohol, caffeine, and strenuous activity, and recorded during the
follicular menstrual phase to reduce hormonal effects. While Kishi et al. identified differ-
ences in stage prevalence and first-order transitions using simple statistical tests, these anal-
yses offered only limited insight. To extend this work, we developed a dynamic Bayesian
Network (BN) with an expertly informed causal structure to jointly model stage prevalence,
bout durations, and transitions, and to quantify the specific impacts of CFS and CFS+FM.
The controlled study design minimized confounding and enabled a causal interpretation of
the estimated effects.

Our results confirmed that sleep dynamics are best described as a second-order process,
with an optimal lag of two previous stages. This finding aligns with reports in general pop-
ulations [107] and suggests its validity even in our clinical cohort. The final BN achieved
robust next-stage predictions with an in-domain accuracy of 70.6% and generalization ac-
curacies of 60.1-69.8% on two independent validation cohorts. It also differentiated healthy,
CFS, and CFS+FM subjects with an AUROC of 75.4%. Beyond prediction, we performed sim-
ulated interventions by fixing the health status node of BN (healthy, CFS, or CFS+FM) and
sampling sleep trajectories under individual conditions. This approach, conceptually similar
to do-calculus [210], allowed us to estimate the causal effect of each condition on sleep dy-
namics. The results revealed prominent alterations, including prolonged wakefulness and
N3 durations in both conditions, extended REM bouts in CFS, and reduced N1/N2 durations
in CFS+FM. Together, these patterns suggest that CFS is marked by impaired maintenance of
restorative REM sleep, contributing to unrefreshing sleep complaints [102], [207], while FM
is associated with compensatory increases in deep sleep but instability in cycling, consistent
with pain-related sleep disruption [204].

In summary, this study applied Bayesian Networks as an approach that directly and
transparently encodes cause—effect structures, providing a complementary tool to the causal
inference framework used in Chapter 5 for estimating effects (markers) on sleep-stage dy-
namics. Using strictly controlled clinical data, the BN confirmed the second-order nature
of sleep, achieved strong predictive and diagnostic performance, and quantified disorder-
specific alterations through simulated interventions. Importantly, the analysis of first-order
transitions confirmed and extended the existing findings [201], while second-order transi-
tions revealed novel alterations not previously described. These estimated effects, together
with detailed insights into individual transitions, can be regarded as novel digital markers,
as they not only captured disorder-specific dysregulation but also demonstrated diagnos-
tic capability. Methodologically, whereas the OSA study in Chapter 5 captured sleep dy-
namics via a raw matrix of stage transition proportions, here we assessed them in terms
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of stage bouts, their identifiers, and durations, offering a complementary representation of
sleep. Collectively, these findings underscore the potential of sleep-stage dynamics as dig-
ital biomarkers, supporting clinical differentiation and providing mechanistic insights into
complex conditions such as CFS and FM.

Chapter 7: Sleep-Stage Dynamics Predict Current Sleep-Disordered Breathing and Future
Cardiovascular Risk

In this study [117], we investigated the predictive value of sleep for long-term cardiovascular
outcomes, with a particular focus on sleep-stage dynamics. In particular, sleep-disordered
breathing (SDB, such as OSA) is a well-established risk factor for cardiovascular morbidity
and mortality [2], [7], [212]-[215]. At the same time, SDB is known to disrupt both sleep
macrostructure, reducing proportions of restorative N3 and REM sleep and increasing light
sleep (N1, N2) and fragmentation [25], [26], [218], [219], and sleep-stage dynamics, i.e., the
temporal continuity and organization of transitions between stages [26], [106], [109], [115].
Some prior studies have linked certain macrostructural features, such as reduced slow-wave
(N3) and REM sleep, to elevated cardiovascular risk [37]-[40]. However, to date, no work
has directly assessed the predictive power of sleep-stage dynamics. Given that dynamics
capture finer-grained regulatory signatures of body physiology, they may provide unique
prognostic information beyond static macrostructure metrics (cf. [98]-[114]). To test this,
we used flexible forest-based models [224], [227], capable of capturing non-linear effects and
complex interactions beyond the limitations of regression-based approaches, to jointly assess
whether sleep macrostructure, dynamics, and established risk factors (age, BMI, smoking)
encode predictive patterns of cardiovascular risk. Our intuition was that, because OSA is
both a major cardiovascular risk factor and a condition that profoundly alters sleep architec-
ture, it is reasonable to expect that sleep-stage dynamics would contain predictive signatures
of cardiovascular vulnerability.

To assess these relations, we used data from the prospective, community-based Sleep
Heart Health Study (SHHS) [182], focusing on 2579 participants without prior cardiovas-
cular events or sleep-altering medications, thereby minimizing confounding and enhanc-
ing generalizability. We first applied a Random Forest classifier and demonstrated that
moderate-to-severe SDB can be reliably identified from sleep parameters and common risk
factors alone (AUROC = 76.1%), with robust generalization across REM-, NREM-, and
mixed-dominant phenotypes as well as out-of-domain validation cohorts. Since SDB is a
major cardiovascular risk factor, its detectability from sleep patterns implies that the un-
derlying patterns related to SDB detection should also carry prognostic information about
cardiovascular outcomes. Consistent with this, our Random Survival Forest predicted long-
term cardiovascular risk with strong performance (concordance index = 73.3%, 10-year
time-dependent AUROC = 75.3%). Strikingly, adding the apnea-hypopnea index (AHI,
i.e., direct measurement of SDB) to the predictor set did not improve model performance,
indicating that sleep architecture and dynamics, together with demographics and lifestyle
factors, already encode the prognostic information attributable to SDB measurement.

Analysis of partial effects provided mechanistic insights into how individual predictors
relate to SDB and cardiovascular risk. For SDB detection, effects were largely monotonic:
risk increased steadily with age, BMI, and male sex, and sleep macrostructure showed as-
sociations with SDB such as short total sleep time, long wake after sleep onset, and delayed
REM or N3 latency. In contrast, cardiovascular risk was characterized by predominantly
U-shaped associations, suggesting the presence of "optimal ranges" for many sleep parame-
ters: for example, event-free survival was maximized for total sleep time of 6-7 hours, wake
after sleep onset of 50-80 minutes, and intermediate ranges of N2, N3, and REM continu-
ity, whereas both lower and higher values were linked to elevated risk. Importantly, rare
and atypical transitions, such as N3—+N1, REM—N3, or excessive awakenings from N2,
were associated with sharp increases in cardiovascular risk, even if they occurred only once
or twice per night. These results extend prior work that identified linear associations be-
tween macrostructural sleep features and cardiovascular outcomes [37]-[40], by revealing
non-linear patterns and highlighting sleep-stage dynamics as sensitive markers of cardio-
vascular vulnerability.
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Together, these findings establish that sleep architecture and, critically, sleep-stage dy-
namics encode valuable prognostic information about cardiovascular health. The ability to
identify SDB from sleep patterns alone, and to predict cardiovascular outcomes with com-
parable accuracy even without direct respiratory measurements, demonstrates that sleep
carries integrative signatures of systemic health. By capturing both monotonic trends in
established risk factors and previously unreported non-linear associations reflecting physio-
logical optima, our work extends current research and highlights the added value of flexible
modelling approaches. Importantly, some of the prognostic alterations in sleep dynamics
may represent downstream effects of conditions beyond SDB, such as metabolic, neuropsy-
chiatric, or degenerative disorders, that simultaneously associate with sleep and cardiovas-
cular outcomes. Rare transitions and disruptions of stage continuity, in particular, provide
novel diagnostic and prognostic markers with potential utility for clinical risk stratification.
With the increasing availability of large-scale sleep data from wearable devices and auto-
mated scoring systems, these results highlight a pathway toward unobtrusive cardiovascu-
lar risk screening and long-term monitoring. Ultimately, incorporating sleep-stage dynamics
into precision medicine frameworks could enhance early detection of at-risk individuals and
support preventive interventions targeting cardiovascular morbidity and mortality.

Across these three studies, we demonstrated that sleep-stage dynamics can offer robust
digital biomarkers of health and disease. Using complementary approaches—causal in-
ference in OSA, Bayesian Networks in CFS/FM, and machine learning for cardiovascular
outcomes—we showed that dynamics capture disorder-specific alterations, support diag-
nostic differentiation, and provide prognostic information beyond traditional PSG indices.
With their non-invasive nature and suitability for long-term monitoring, sleep-stage dy-
namics hold substantial promise for translation into home-based assessment and precision
medicine. Lastly, given the predictive power of sleep in quantifying cardiovascular risk,
future clinical practice may consider incorporating sleep assessment as an extension to es-
tablished risk scores, such as the Framingham Risk Score [248], [249] or SCORE2 [250].

8.2 Conclusions

This dissertation explored the methodological, ethical, and translational aspects of compu-
tational sleep research across two interconnected lines of work. Specifically, it examined
how automated sleep scoring (ASS) can be integrated into clinical practice to support expert
decision-making, while also demonstrating how sleep-stage dynamics can be leveraged to
uncover novel digital biomarkers for sleep disorders and related health conditions.

The first part (Chapters 2—4) focused on the integration of ASS into clinical practice. Here,
the key contributions included (i) establishing mechanisms for effective human oversight
based on uncertainty estimation, thereby aligning algorithmic predictions with physician
responsibility; and (ii) developing a flexible framework to quantify predictive algorithmic
bias in both clinical markers and performance metrics. These works demonstrated that fair-
ness, transparency, and reliability, core requirements of ethical and legal mandates such as
the EU Al Act and MDR, can be systematically assessed and improved. While illustrated
on ASS, the proposed approaches are general in their design and applicable beyond sleep
scoring, offering tools for evaluating and certifying predictive algorithms in other areas of
healthcare and beyond. Together, they provide a pathway for deploying ASS systems in
ways that are clinically trustworthy, interpretable, and compliant with regulatory standards.

The second part (Chapters 5-7) investigated novel digital biomarkers derived from sleep-
stage dynamics, with applications spanning sleep-disordered breathing, chronic fatigue and
pain syndromes, and long-term cardiovascular outcomes. Across these studies, we applied
complementary methodological frameworks to address the challenge of confounding in ob-
servational or clinical data: causal meta-learners in OSA, Bayesian Networks in CFS/FM,
and Random (Survival) Forests for SDB and cardiovascular risk. Whereas the first two ap-
proaches explicitly targeted causal estimation of disease effects on sleep dynamics, the latter
relied on associative learning applied to prospective longitudinal data, demonstrating that
the revealed associations were predictive of future outcomes. Importantly, explainability
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techniques via partial effects allowed mechanistic insights into how individual predictors
relate to both current sleep disorder and long-term cardiovascular vulnerability.

Taken together, our work suggests and supports sleep-stage dynamics as a class of dig-
ital markers that extend standard PSG assessments, which report basic sleep macrostruc-
ture metrics only. Beyond them, markers of sleep dynamics provide a means to assess di-
verse physiological signatures, distinguish between clinical conditions, and uncover prog-
nostic information relevant for future health outcomes. With the increasing availability and
widespread adoption of consumer-grade wearables, these findings highlight the potential
for longitudinal applications, where sleep dynamics can be monitored unobtrusively in in-
dividuals or across clinical cohorts over extended periods. Such approaches could enable
scalable, real-world screening and follow-up, ultimately contributing to precision medicine
and preventive healthcare.

In summary, this dissertation pursued two complementary goals. The first was to de-
velop strategies for integrating ASS into clinical workflows in a transparent and fair manner,
providing tools for efficient human-in-the-loop review and systematic assessment of algo-
rithmic biases. The second moved beyond sleep-stage classification to demonstrate how in-
formation embedded in polysomnographic (PSG) recordings—particularly sleep-stage dy-
namics—can be leveraged as digital biomarkers to support diagnosis, clinical differentia-
tion, and risk stratification across diverse health conditions. Collectively, these contributions
show that automated methods can both facilitate and standardize clinical sleep scoring,
while also revealing that sleep encodes valuable physiological and predictive signals, un-
derscoring its potential as a cornerstone of precision medicine and long-term digital health
monitoring.

8.3 Limitations

This thesis is subject to several limitations that should be acknowledged. In the first branch
(Chapters 2—4), although we showed that uncertainty estimation can enable efficient hu-
man oversight and introduced a flexible framework to quantify algorithmic bias, the eval-
uations were restricted to automated sleep scoring and a selected set of PSG-derived fea-
tures. Broader application to other predictive systems in healthcare and beyond, as well as
prospective testing in real-world clinical workflows, remains necessary to confirm general-
izability and applicability of the proposed frameworks. Another limitation is that the pro-
posed approaches currently lack automated open-source implementations, which restricts
their immediate uptake by the wider research and clinical community and limits opportu-
nities for independent validation and extension. First steps in this direction have already
been taken, as the proposed bias-quantification framework has been incorporated into the
SLEEPYLAND benchmarking platform [73], and integration of the uncertainty-based over-
sight methods is planned for future work.

In the second branch (Chapters 5-7), each study was subject to specific data-related and
methodological constraints. Both the OSA (Chapter 5) and CFS/FM (Chapter 6) studies re-
lied on a single PSG night per subject, which limits the ability to capture night-to-night vari-
ability in sleep dynamics. The OSA analysis was further based on observational clinical data,
which—even after applying causal inference techniques—cannot fully exclude residual con-
founding and may reduce external validity to the general population. The CFS/FM study,
while conducted on a strictly controlled experimental dataset that minimized variability and
confounding, was restricted to middle-aged women, limiting its generalizability to other
populations. The cardiovascular risk study (Chapter 7) benefitted from a large prospec-
tive cohort, yet its reliance on associative machine learning means that causal interpreta-
tion of the results is not warranted. In addition, individual cardiovascular outcomes (e.g.,
stroke, myocardial infarction) were pooled into a composite endpoint, potentially masking
condition-specific patterns or the competing risks. Finally, the markers of sleep dynamics
were derived from human-scored hypnograms and may therefore be affected by inter-scorer
variability and annotation noise, particularly in datasets where certain scorers contributed
disproportionately, although this could not be verified with the data available in our stud-
ies. Looking ahead, it may be valuable to quantify digital markers of sleep dynamics derived
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also from ASS-predicted hypnograms, which could prove more robust to scorer-related vari-
ability and allow analyses at a finer temporal granularity than the conventional 30-second
window.

In summary, across all studies, some broader challenges remain. Most analyses were ret-
rospective in design and based on PSG data collected in controlled or clinical settings, which
may not fully capture naturalistic sleep or long-term variability. Validation on indepen-
dent datasets was conducted, but further large-scale replication, including in prospective,
longitudinal, or wearable-based cohorts, is essential to establish robustness and scalability.
Addressing these limitations, especially through open-source dissemination, multi-cohort
validation, and integration with consumer technologies, will be key for translating the pre-
sented methods and findings into clinical and public health practice.
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Appendix A

Supplementary Materials for
Chapter 4

A.1 Statistical characteristics of derived PSG markers

Table A.1: Descriptive statistics of sleep metrics from physician scoring and
predictions by U-Sleep and YASA.

Metric Sleep Scoring  Mean SD Q10 Q25 Q50 Q75 Q90 Min  Max
Sleep Latency - 17.8 239 2.0 45 10.5 21.5 40.5 0.0 3395
[minutes] U-Sleep 154 208 1.5 4.0 8.5 18.0 36.0 0.0 2045

YASA 263 292 4.0 8.5 17.0 33.0 60.0 0.0 306.5
REM Latency - 139.5 809 59.0 775 119.0 1845 2589 0.0 502.0
[rminutes] U-Sleep 131.1 847 48.0 725 111.0 1770 252.0 0.0 896.5
YASA 1124 664 45.2 67.5 97.5 1495 2015 0.0 4865
Total Sleep Time - 3383 89.0 2395 2915 3375 3820 4248 0.0 8485
[minutes] U-Sleep 3436 894 2470 297.0 342.0 3850 4285 0.0 865.0
YASA 301.1 940 1922 2488 3025 351.0 398.0 0.0 7685
WASO - 642 53.8 12.5 25.0 50.0 89.2  135.0 0.0 9520
[rminsutes] U-Sleep 613 525 12.5 23.5 46.5 84.0 1320 0.0 9320
YASA 92.8 62.8 29.0 46.5 780 1245 1740 3.0 980.0
Sleep Cycles - 2.6 14 1.0 1.5 2.5 35 4.0 0.0 11.0
N] U-Sleep 2.8 14 1.0 2.0 2.5 35 45 0.0 10.5
YASA 2.6 1.2 1.0 1.5 2.5 35 4.0 0.0 9.5
Sleep-stage Transitions - 21.2 7.3 12.6 16.1 20.5 25.3 30.8 1.2 64.4
[N/ hour] U-Sleep 14.6 49 9.3 11.3 13.9 17.2 20.8 0.9 62.3
YASA 171 5.4 11.2 13.5 16.4 19.9 239 0.2 69.8
Awakenings - 35 22 14 2.1 3.1 44 6.0 0.0 27.9
[N/ hour] U-Sleep 33 1.8 1.5 22 3.0 42 55 0.0 20.6
YASA 49 23 2.6 3.3 45 6.0 7.9 0.2 28.6
Sleep Efficiency - 80.1 149 60.4 73.4 83.7 91.2 94.9 0.0 100.0
%] U-Sleep 815 144 62.4 75.4 85.3 91.8 95.2 0.0 100.0
YASA 713 172 484 62.5 74.9 84.5 89.4 0.0 98.1
W - 199 149 5.1 8.8 16.3 26.6 39.6 0.0 100.0
%] U-Sleep 185 144 4.8 8.2 14.7 24.6 37.6 0.0 100.0
YASA 28.7 172 10.6 15.5 25.1 375 51.6 1.9 100.0
N1 - 159 103 5.8 8.7 13.4 20.3 29.1 0.0 85.5
%] U-Sleep 10.6 7.8 35 5.4 8.5 13.4 20.0 0.0 69.2
YASA 5.1 3.8 1.2 2.6 44 6.8 9.5 0.0 39.2
N2 - 355 123 19.2 27.7 36.3 439 50.1 0.0 87.4
%] U-Sleep 445 121 29.1 37.8 455 52.1 58.5 0.0 96.9
YASA 399 101 27.2 34.6 41.0 46.4 514 0.0 73.5
N3 - 162 103 2.7 9.0 15.4 22.3 29.3 0.0 75.3
(%] U-Sleep 13.1 8.6 14 6.7 12.8 18.7 24.0 0.0 58.6
YASA 13.7 8.4 1.6 7.3 13.7 19.6 24.7 0.0 48.6
REM - 12.6 6.9 33 7.8 12.5 17.2 21.4 0.0 48.5
%] U-Sleep 13.3 72 34 8.3 13.4 18.1 22.3 0.0 54.9
YASA 12.6 6.5 3.5 8.0 12.7 17.3 21.0 0.0 441

Notes: For each metric, the mean, standard deviation (SD), quantiles (Q10, Q25, Q50, Q75, Q90), minimum (Min), and maximum
(Max) are reported. Paired Wilcoxon signed-rank tests compared model predictions against physician-based reference values, with

significant results highlighted by model name according to p-value thresholds: 0.05, 0.01 ,and 0.001 .
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A.2 Statistical characteristics of raw errors in algorithm-
derived PSG markers

Table A.2: Summary of prediction errors in sleep metrics from U-Sleep and
YASA compared to physician scoring.

Metric-Error Algorithm  Mean SD Q10 Q25 Q50 Q75 Q90 Min Max
Sleep Latency U-Sleep 25 147  -100 20 0.0 0.5 3.0 -271.0 1605
[minutes| YASA 85 192 0.0 1.0 35 100 225 -2665 262.5
REM Latency U-Sleep -0.3  69.1 -456 25 0.0 35 445 -4105 608.0
[minutes] YASA -184 790 -1125 280 45 0.0 508 -3945 4115
Total Sleep Time U-Sleep 52 246 -120 -35 20 105 255 -3535 263.0
[minutes| YASA -373 423 815 -470 -260 -140 -60 -5325 164.5
WASO U-Sleep 2.8 241 215 -85 -15 40 145 -259.0 3175
[minutes] YASA 288 385 1.0 90 200 388 680 -2420 4265
Sleep Cycles U-Sleep 0.2 0.7 0.0 0.0 0.0 0.0 1.0 -8.0 5.0
[N] YASA -0.0 09 -1.0 0.0 0.0 0.0 1.0 -10.5 3.5
Sleep-stage Transitions = U-Sleep -6.5 6.0 -13.7 -9.9 -6.2 3.0 -01 -39.8 36.0
[N/hour] YASA 40 64 -115 -78 -39 03 34 382 375
Awakenings U-Sleep -0.1 1.5 -1.5 -0.7  -01 0.5 13 -171 9.5
[N/hour] YASA 14 22 -0.8 0.2 12 2.5 42  -127 156
Sleep Efficiency U-Sleep 13 57 27 -08 0.6 26 62  -66.3 634
[%] YASA -88 98 -194 -11.3 -62 -33 -15 999 402
\% U-Sleep -1.3 57 -62 26 06 0.8 27 634 663
(%] YASA 88 9.8 1.5 3.3 62 113 194  -402 999
N1 U-Sleep 54 76 -144 86 41 -1.0 15  -615 411
[%] YASA -108 100 234 -150 86 44 -17 -774 346
N2 U-Sleep 9.0 9.1 0.0 32 75 131 200  -30.1 78.3
(%] YASA 45 89 -5.0  -0.7 3.7 9.0 153 -781 516
N3 U-Sleep -3.1 6.1 -102 57 22 00 28 -753 306
[%] YASA 25 6.0 9.7 48 -14 0.5 32 753 230
REM U-Sleep 07 31 -1.9 03 0.5 1.9 38 376 353
(%] YASA 00 41 42  -15 0.3 2.1 4.1 -39.8 250

Notes: The table reports the mean error, standard deviation (SD), quantiles (Q10, Q25, Q50, Q75, Q90), minimum (Min), and
maximum (Max). Paired Wilcoxon signed-rank tests compared model predictions against physician-based reference values, testing
whether differences were symmetrically distributed around zero. Significant results highlight the corresponding model name

(U-Sleep or YASA) according to p-value thresholds: 0.05 , 0.01 ,and 0.001 .

A.3 Partial effects of age on U-Sleep and YASA performance

.
metrics
Figure A.1: Partial effects of age on U-Sleep accuracy.
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Notes: The left panel shows the estimated expected bias (location parameter) across ages, while the right panel illustrates its
variability (scale parameter). Shaded areas represent 95% confidence intervals.
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Figure A.2: Partial effects of age on U-Sleep Fl-score.
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Notes: The left panel shows the estimated expected bias (location parameter) across ages, while the right panel illustrates its
variability (scale parameter). Shaded areas represent 95% confidence intervals.

Figure A.3: Partial effects of age on YASA accuracy.
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Notes: The left panel shows the estimated expected bias (location parameter) across ages, while the right panel illustrates its
variability (scale parameter). Shaded areas represent 95% confidence intervals.

Figure A.4: Partial effects of age on YASA F1-score.
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Notes: The left panel shows the estimated expected bias (location parameter) across ages, while the right panel illustrates its
variability (scale parameter). Shaded areas represent 95% confidence intervals.
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A.4 Performance Plots

Figure A.5: Expected distribution of subject-specific accuracy for U-Sleep
across demographic and clinical subgroups.
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Notes: Expected distribution of the subject-specific accuracy based on the zero-and-ones-inflated Beta performance model for
U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, showing the expected performance variability across subjects” characteristics.
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Figure A.6: Expected distribution of subject-specific F1-score for YASA
across demographic and clinical subgroups.
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Notes: Expected distribution of the subject-specific macro Fl-score based on the zero-and-ones-inflated Beta performance model
for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as

a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median,

while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99%
in red, reflecting the expected performance variability across subjects’ characteristics.



146 Appendix A. Supplementary Materials for Chapter 4

Figure A.7: Expected distribution of subject-specific accuracy for YASA
across demographic and clinical subgroups.
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with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the subject-specific accuracy based on the zero-and-ones-inflated Beta performance model for
YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while

the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, showing the expected performance variability across subjects’ characteristics.

A.5 Partial effects of age on bias in U-Sleep and YASA de-
rived percentage of wakefulness

Figure A.8: Partial effects of age on bias in U-Sleep-derived wakefulness
percentage (W%).
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Notes: The left panel shows the estimated expected bias (location parameter) across ages, while the right panel illustrates its
variability (scale parameter). Shaded areas represent 95% confidence intervals.
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Figure A.9: Partial effects of age on bias in YASA-derived wakefulness

percentage (W%).
o _
= =
; -
C}I -
a [=] =
5 5 =
1= 1=
@ @
TR L=
L ! L o 7
L2}
o ¢
L]
2
L=« B
' T T T T T | | T T
0 20 40 &0 80 0 20 40 60 80
Age Age

Notes: The left panel shows the estimated expected bias (location parameter) across ages, while the right panel illustrates its
variability (scale parameter). Shaded areas represent 95% confidence intervals.

A.6 Biasin clinical PSG markers based on YASA predictions

Figure A.10: Expected distribution of the bias in the sleep latency (SL,
minutes) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the sleep latency (SL, minutes) based on the generalized normal distribution for YASA
predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.11: Expected distribution of the bias in the REM latency (REML,
minutes) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the REM latency (REML, minutes) based on the generalized normal distribution for
YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while

the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in

red, illustrating the expected performance variability across subjects” characteristics.
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Figure A.12: Expected distribution of the bias in the total sleep time (TST,
minutes) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the total sleep time (TST, minutes) based on the generalized normal distribution for
YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while

the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in

red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.13: Expected distribution of the bias in the wake after sleep onset
(WASO, minutes) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.0., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the wake after sleep onset (WASO, minutes) based on the generalized normal
distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents

the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.14: Expected distribution of the bias in the number (#) of sleep

with respect to age (AHI = PLMI = 0)
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cycles for YASA predictions.

(ii) Expected error distribution for male
with respect to AHI (50 y.o., PLMI = 0)

(iii) Expected error distribution for male
with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the number (#) of sleep cycles based on the generalized normal distribution for YASA
predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while

the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.15: Expected distribution of the bias in the hourly rate (# / hour) of
sleep stage transitions for YASA predictions.

. (i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
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Notes: Expected distribution of the bias in the hourly rate (# / hour) of sleep stage transitions based on the generalized normal
distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents

the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.16: Expected distribution of the bias in the hourly rate (# / hour) of
awakenings for YASA predictions.
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Notes: Expected distribution of the bias in the hourly rate (# / hour) of awakenings based on the generalized normal distribution
for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as
a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median,
while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99%
in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.17: Expected distribution of the bias in the sleep efficiency
percentage (SE, %) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the sleep efficiency percentage (SE, %) based on the generalized normal distribution for
YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects” characteristics.
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Figure A.18: Expected distribution of the bias in the wakefulness percentage
after sleep onset (W, %) for YASA predictions.
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Notes: Expected distribution of the bias in the wakefulness percentage after sleep onset (W, %) based on the generalized normal

distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated

distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents

the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.19: Expected distribution of the bias in the N1 sleep percentage
after sleep onset (N1, %) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the N1 sleep percentage after sleep onset (N1, %) based on the generalized normal
distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents

the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.20: Expected distribution of the bias in the N2 sleep percentage
after sleep onset (N2, %) for YASA predictions.
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Notes: Expected distribution of the bias in the N2 sleep percentage after sleep onset (N2, %) based on the generalized normal
distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents

the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in

orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.



158

Appendix A. Supplementary Materials for Chapter 4

Figure A.21: Expected distribution of the bias in the N3 sleep percentage
after sleep onset (N3, %) for YASA predictions.
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(iii) Expected error distribution for male
with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the N3 sleep percentage after sleep onset (N3, %) based on the generalized normal
distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents

the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.22: Expected distribution of the bias in the REM sleep percentage
after sleep onset (REM, %) for YASA predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the REM sleep percentage after sleep onset (REM, %) based on the generalized normal
distribution for YASA predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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A.7 Bias in clinical PSG markers based on U-Sleep predic-
tions

Figure A.23: Expected distribution of the bias in the sleep latency (SL,
minutes) for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the sleep latency (SL, minutes) based on the generalized normal distribution for U-Sleep
predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.24: Expected distribution of the bias in the REM latency (REML,
minutes) for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
= with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.o., AHI = 0)
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Notes: Expected distribution of the bias in the REM latency (REML, minutes) based on the generalized normal distribution for
U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.25: Expected distribution of the bias in the total sleep time (TST,
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Notes: Expected distribution of the bias in the total sleep time (TST, minutes) based on the generalized normal distribution for
U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.26: Expected distribution of the bias in the wake after sleep onset
(WASO, minutes) for U-Sleep predictions.

(i) Expected error distribution for male
with respect to age (AHI = PLMI = 0)
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Notes: Expected distribution of the bias in the wake after sleep onset (WASO, minutes) based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.27: Expected distribution of the bias in the number (#) of sleep

(i) Expected error distribution for male
with respect to age (AHI = PLMI = 0)
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Notes: Expected distribution of the bias in the number (#) of sleep cycles based on the generalized normal distribution for U-Sleep
predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.28: Expected distribution of the bias in the hourly rate (# / hour) of
sleep stage transitions for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the hourly rate (# / hour) of sleep stage transitions based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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U-Sleep - Physician ( awakenings [#/hour] ) U-Sleep - Physician ( awakenings [#/hour] )

Figure A.29: Expected distribution of the bias in the hourly rate (# / hour) of
awakenings for U-Sleep predictions.
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Notes: Expected distribution of the bias in the hourly rate (# / hour) of awakenings based on the generalized normal distribution
for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution
as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median,
while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99%

in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.30: Expected distribution of the bias in the sleep efficiency
percentage (SE, %) for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the sleep efficiency percentage (SE, %) based on the generalized normal distribution for
U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated distribution as a
function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents the median, while
the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in orange, and 1-99% in
red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.31: Expected distribution of the bias in the wakefulness percentage
after sleep onset (W, %) for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the wakefulness percentage after sleep onset (W, %) based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.32: Expected distribution of the bias in the N1 sleep percentage
after sleep onset (N1, %) for U-Sleep predictions.
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Notes: Expected distribution of the bias in the N1 sleep percentage after sleep onset (N1, %) based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.33: Expected distribution of the bias in the N2 sleep percentage
after sleep onset (N2, %) for U-Sleep predictions.
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Notes: Expected distribution of the bias in the N2 sleep percentage after sleep onset (N2, %) based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.34: Expected distribution of the bias in the N3 sleep percentage
after sleep onset (N3, %) for U-Sleep predictions.
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Notes: Expected distribution of the bias in the N3 sleep percentage after sleep onset (N3, %) based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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Figure A.35: Expected distribution of the bias in the REM sleep percentage
after sleep onset (REM, %) for U-Sleep predictions.

(i) Expected error distribution for male (i) Expected error distribution for male (iii) Expected error distribution for male
with respect to age (AHI = PLMI = 0) with respect to AHI (50 y.o., PLMI = 0) with respect to PLMI (50 y.0., AHI = 0)
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Notes: Expected distribution of the bias in the REM sleep percentage after sleep onset (REM, %) based on the generalized normal
distribution for U-Sleep predictions, stratified by gender (top row: males, bottom row: females). The graphs display the estimated
distribution as a function of bias-inducing variables (age, AHI, and PLMI) on the horizontal axis. The solid black line represents
the median, while the shaded areas correspond to different percentile ranges: 25-75% in green, 5-95% in yellow, 2.5-97.5% in
orange, and 1-99% in red, illustrating the expected performance variability across subjects’ characteristics.
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B.1 Outcome model of Dirichlet regression

Table B.1: Estimated coefficients with bootstrapped 95% CI for the Dirichlet regression outcome model (Eq. 5.30).

Intercept

Tinale

X(Age>50)/10

Tosa

Tosa X Imale

Tosa x X(an1=5)/10

Tosa X Tinsomnia_Com

Tosa X INTI_Com

Tosa X TotherHyp_Com

Tosa X Iparasomnia_Com

Tosa X Ivtovement_Com

W-W
W — N1
W — N2
W — N3
W-—=R

N1 -»W
N1 — N1
N1 — N2
N1 — N3
N1 —-R
N2 - W
N2 - N1
N2 — N2
N2 — N3
N2 - R
N3 - W
N3 — N1
N3 — N2
N3 — N3
N3 —-R
R—-W

R— N1
R—N2
R—N3
R—R

1117 (0.25, 1.94)
0.65 (-0.33, 2.00)
0.74* (0.28, 2.03)

0.44 (-2.04,0.32)
049 (-2.21, 0.52)
-0.06 (-0.11, 0.02)
031 (-0.28, 0.71)
0.82* (0.39, 1.65)
0.51* (0.13, 1.11)
-0.87* (-1.91,-0.26)
0.07 (-0.72, 0.47)
0.59* (0.21, 1.00)
0.18 (-0.18, 1.46)
0.20% (0.10, 0.96)
-0.54% (-1.21,-0.18)
0.06 (-1.36, 0.32)
-0.02 (-0.06, 0.02)
0.08 (-0.16, 0.31)
0.36* (0.10, 0.93)
0.46* (0.26, 0.85)
-0.55% (-1.46, -0.30)
-0.05 (-0.67, 0.28)
-1.08* (-1.32,-0.71)
0.21 (-0.52, 0.51)
-0.04 (-0.11, 0.16)

0.8 (-0.64, 0.09)
0.17 (-0.59, 0.48)
-0.02 (-0.04, 0.01)
0.01 (-0.13, 0.18)
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-0.42* (-0.89, -0.18)
0.03 (-1.16, 0.45)
-0.06* (-0.10, -0.04)
-0.09 (-0.28, 0.10)
0.08 (-0.17, 0.49)
0.31% (0.14, 0.68)
-0.25% (-1.11,-0.05)

0.01 (-0.29, 0.22)
-1.34% (-1.47,-1.12)
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-0.00 (-0.05, 0.19)
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-0.09 (-0.24, 0.18)
0.13% (0.03, 0.27)
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-0.02 (-0.19, 0.13)
0.47* (0.18, 0.84)
-0.14 (-0.57, 1.46)
0.13* (0.02, 0.77)
0.32 (-0.79, 0.02)
0.05 (-1.78, 0.50)
-0.13% (-0.19, -0.08)
0.27 (-0.56, 0.01)
-0.45 (-0.74, 0.28)
0.31% (0.06, 0.62)
-0.60* (-1.19,-0.32)
-0.24 (-0.67, 0.09)
2.76* (1.65, 3.17)
-0.46 (-1.10,1.20)

0.10 (-0.23, 1.68)
-0.96* (-1.86, -0.57)
0.17 (-2.32, 0.92)
-0.23* (-0.33,-0.12)
-0.67* (-1.15,-0.07)
0.27 (-0.89,1.21)
1.03* (0.49, 1.58)
-0.83* (-2.01,-0.21)
-0.20 (-0.87, 0.37)
-1.47* (-1.60, -1.34)
0.12 (-0.23, 0.34)
0.04* (0.01, 0.24)
-0.21* (-0.36, -0.10)
0.13 (-0.37, 0.25)
-0.02% (-0.04, -0.01)
-0.04 (0.1, 0.02)
0.03 (-0.04, 0.20)
0.11* (0.04, 0.23)
-0.12* (-0.34, -0.06)
-0.02 (-0.16, 0.07)
-0.82% (-1.10,-0.51)
022 (-0.18, 1.54)
0.11* (0.01, 0.73)
-0.26 (-0.72, 0.03)
0.12 (-1.42, 0.25)

~0.06* (-0.11, -0.04)
-0.13 (-0.31, 0.02)
0.23 (-0.04, 0.81)
0.33% (0.17, 0.66)
-0.41% (-1.18,-0.17)
-0.17 (-0.53, 0.06)
-0.82* (-1.52, -0.30)
0.36 (-0.19, 2.02)
0.12 (-0.01, 1.19)
-0.02 (-0.87, 0.30)
-0.25 (-1.93, 0.25)
-0.04 (-0.10, 0.01)
-0.28* (-0.52, -0.02)
0.25 (-0.14, 0.90)
0.32* (0.08, 0.95)
-0.47* (-1.47,-0.23)
-0.24 (-0.68, 0.10)
-0.98* (-1.24, -0.68)
0.02 (-0.31, 1.08)
-0.05 (-0.11, 0.18)
-0.31% (-0.68, -0.04)
-0.01 (-1.06, 0.35)
-0.04* (-0.07,-0.02)
-0.08 (-0.24, 0.04)
-0.08 (-0.25, 0.26)

0.19% (0.05, 0.44)
-0.14*% (-0.44, -0.01)
0.03 (-0.20, 0.23)
-1.59* (-1.65, -1.50)
-0.01 (-0.09, 0.40)
0.03 (-0.00, 0.23)
-0.14* (-0.26, -0.09)
0.01 (-0.46, 0.10)
-0.01% (-0.03, -0.01)
-0.03 (-0.10, 0.02)
0.04 (-0.02, 0.22)
0.10% (0.05, 0.22)
-0.12* (-0.33,-0.04)
-0.03 (-0.16, 0.03)
2.57* (2.29, 2.99)
-0.14 (-0.48, 1.26)
0.01 (-0.12, 0.57)
-1.19% (-1.97, -0.76)
0.28 (-1.23, 0.74)
-0.15* (-0.22,-0.08)
-0.42% (-0.92, -0.01)
0.08 (-0.62, 1.10)
0.76* (0.29, 1.16)
-0.68* (-1.48,-0.13)
0.19 (-1.05, 0.31)

Notes: Significant estimates are highlighted in bold (*). Rows correspond to individual dimensions representing each of the 25 possible sleep-stage transition proportions.
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B.2 Comparison based on matrices of transition proportions P

Figure B.1: Expected matrices of transition proportions P for healthy females and females with different OSA severities, each stratified by age.

(1a) 30 years old female, healthy (1b) 30 years old female, OSA (AHI = 5) (1c) 30 years old female, OSA (AHI = 15) (1d) 30 years old female, OSA (AHI = 30)
1.0 18 06 03 03 w 15 23 1.0 06 06 w 16 25 1.1 06 07 w 1.7 29 13 07 08
03,29] [1.0,25] [0.4,22] 02,12] [0:2,1.3] 02,43] 11.3,29] [0.7,4.3] [0.4,25] 0.3,2.9] [0.2,46] [14,32] [0.8,5.0] [0.4,27] [0.4,3.1] [0.2,53] [1:6,36] [0.9,5.5] [05,2.9] [0.4,3.4]
w07 40 37 03 04 w1 43 06 09 “ 6 10 N 18 52 56 07 12
P514 11653 [850 D214 0307 0616 849 B35S D425  [0512 ©7.18 0857 [B7.60 0428 0513 0822  [10.71] B3.68] 0531 [0514]

Probability [%] Probability [%] Probability [%] Probability [%]
w1 w10 w1 m 10

° ° ° °
g 3 8 s
g . g . g ! g .
@ 13 22 363 23 10 10 B 18 9 368 35 14 10 B o 2 3 3 15 10 B o 23 40 330 34 17 10
€ (0835 [1533)  [42.408] (1535 [06.23] 10° £ (1259 [21,38) |[60,411) [24.55 [10,40] 100 £ 1362 [23.42) [147.098] (24,51 [10.40] 100 £ (1566 [28,49) [131,380) [22.47] [11,40] 100
S S 5 S
@ 10" i 10" [ 10" [ 10"
2 2 2 2
. 06 04 18 193 03 1 . 29 169 06 o . 09 08 29 143 05 o o 10 10 29 121 07 10
0411 0315 (1282 | [16,266] (0212 [06.15] 0535 (19,53 [09,288] [04,25] 0715 0638 (18,48 [08.216 [04.27 07,18 0642 (1843 [07.,185 [05.29]
A 05 05 08 03 193 " 09 11 10 05 127 A 09 12 11 06 124 " 10 13 12 07 18
03,12 03,09 [0323 [0211] | [187,341] [0520] 03,14 (0647 [04.25  [83,20] 0521 0315 [07.49 (04,26 [83,193] 0521 0317 07,55 [05.28  [76180]
w Nt N2 N3 R w Nt N2 N3 R w Nt N2 N3 R w Nt N2 N3 R
To Stage To Stage To Stage To Stage
(2a) 50 years old female, healthy (2b) 50 years old female, OSA (AHI = 5) (2¢) 50 years old female, OSA (AHI = 15) (2d) 50 years old female, OSA (AHI = 30)
3 21 3 03 w 48 26 07 04 05 w 5 5 05 w 56 33 09 06 07
(861 [17.27) (0306 (02,04 [02.04] (17.76] 232 (0613 [04.09] [04,10] (881 2435 (0616 (0410 [04.11] (19,89 639 (0718 (0512 [0514]
i 10 60 38 02 05 N 16 52 43 04 0 N 18 61 48 05 11 N 22 75 55 06 12
0813 4576 B347 0203 08,07 013,19  [3,66] B957] 03101 (08,12 0521 7,75 K462 D411 0813 (18,25 [33,93] [51,69] [0512 [09,14]
Probability [%] Probability [%] Probability [%] Probability [%]
g agr o - 1o ) w10 o agers
) ' p:d 1 8 ' pos 1
@\, 11 23 375 22 08 10 B 16 29 374 33 12 10 @\, z 33 12 10 B\ 19 40 330 32 13 10
£ 0817 (1831 [81419 [17,30 [0612 100 £ (13,29 [2538) |[B21,400) [29.51] [10,22] 100 £ (1532 [29.42 [08,879 [28,49) [10.24] 100 £ (16,35 [36,49) [272,354) [27.45 [11,25] 100
S S S S
& 10" i 10" i 10" [ 10"
2 2 2 2
e 05 03 18 183 03 10 . 6 28 149 05 10 e 0 5 28 133 [ 1o e 7 28 11 06 10
04,08 0204 [14.26] | [4,208] [02.04] 06,111 0512 24,45 [B7177]  [04,09] 06,111 0514 [2444] [50,155 [04.10] 07,141 0615 23,41 [2,182] (0512
A 05 05 04 02 154 A 08 10 07 04 97 A 09 11 07 05 94 A 09 13 08 06 89
03,08 03,09 [03.06] [0203] [187,204] 0713 07131 0513 08,09  [60,141] 07.14]  [0814] (0614 [0410 [80,138) 07,15 0815 0617 [0512 | [3130)
w Nt N2 N3 R w N1 N2 N3 R w Ni N2 N3 R w Nt N2 N3 R
To Stage To Stage To Stage To Stage
(3a) 70 years old female, healthy (3b) 70 years old female, OSA (AHI = 5) (3¢) 70 years old female, OSA (AHI = 15) (3d) 70 years old female, OSA (AHI = 30)
w109 22 03 02 02 W 1as 27 04 03 04 w182 29 05 03 04 w83 33 05 04 05
[©8,185] [1532 [01.04] [01,03 [01,03] [93.172] 21,38 [0208 [02,04] [02,08 [100,181) [24.39] [(03.07] [02,05 [02,07] M2181] 7,43 (0307 0205 [03,07]
N 12 84 36 02 05 N 1 0 a9 03 10 N 2 0 43 04 10 N X 43 04 11
08,17 | [66,108] [23.46] (00,08 [03.07] (14.24]  [44,84] [B249] [0204] (07,12 (627  [5296] 18853 0205 [0813) [20,30] [66,115] [42,60] [03,05] [09,14]
Probability [%] Probability [%] Probability [%] Probability [%]
2 w10t % m 10° g w10t % w10
g g g g
@ o 09 22 359 20 06 10' B 5 345 29 09 10' B Y 28 09 10' [ 14 36 296 27 09 10"
£ 0313 14,30 288,404 01230 03,10 P £ 07,18 135 |[B06.387 [2437 (0612 1o £ 0819  [2540] |[82,388 435 0612 10 £ 09.20] [0,45 (66,31 R332 [7.13] 1o
s S S S
@ 10" [ 10" [ 10" [ 10"
2 2 2 2
e 04 02 17 161 02 10 e 04 25 126 03 o e 25 12 04 o N 24 92 04 1o
02,08 01,08 [10.29]  [©5333 [01,03] (0407 0206 [21,35 [69,224] [02,05] 0408 0208 [21.34 [61,214] [02.05] (0508 03,06 [2031] [2,171] [3,05
A 05 05 03 02 109 s 7 9 04 03 68 A 0 05 04 65 s o 05 04 60
02,08 (0209 [01.05 (01,03 [59,17.0) (0512 0712 0207 [02.04] [45109] (0512 0713 (0207 (02,05 [44,104] 0512 0813 [03,07) [02.05] [42,94]
w Nt N2 N3 R w N1 N2 N3 R w Nt N2 N3 R w Nt N2 N3 R
To Stage To Stage To Stage To Stage

Notes: OSA severities are represented by AHI levels of 5, 15, and 30, and ages by 30, 50, and 70 years. Estimates are shown with 95% bootstrapped confidence intervals (Cls).
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Figure B.2: Differences (CATE) in matrices of transition proportions P between healthy females and females with different OSA severities, each
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Figure B.3: Risk ratio (RR-CATE) of matrices of transition proportions P between healthy females and females with different OSA severities, each
stratified by age.
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Figure B.4: Expected matrices of transition proportions P for healthy males and males with different OSA severities, each stratified by age.
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Notes: OSA severities are represented by AHI levels of 5, 15, and 30, and ages by 30, 50, and 70 years. Estimates are shown with 95% bootstrapped confidence intervals (CIs).
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Figure B.5: Differences (CATE) in matrices of transition proportions P between healthy males and males with different OSA severities, each stratified
by age.
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Figure B.6: Risk ratio (RR-CATE) of matrices of transition proportions P between healthy males and males with different OSA severities, each stratified
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182 Appendix B. Supplementary Materials for Chapter 5

B.3 Effect tables for markers of sleep macro-structure and
dynamics

Notes: Probabilities are expressed as percentages. Estimates include conditional average treatment effects (CATE) and risk-ratio

Table B.2: Expected probabilities and estimated OSA effects (CATE,
RR-CATE) for 30-year-old females.

Quantity Estimate Healthy OT: OSA (AHI = 5) O2: OSA (AHI = 15) 03: OSA (AHI = 30)
P(W) 417 (2.85, 7.15) 628 (445, 11.24) 6.85 (475, 11.67) 7.74 (534, 12.55)
CATE 21 (0.87, 4.29) 2.68* (142, 4.94) 3.57* (2.11,5.91)
RR-CATE 15047* (118.71,199.74)  164.35* (129.93,212.12)  185.63* (143.44, 236.11)
P(N1) % 8.93 (7.14,11.04) 1052 (8.87,12.22) 12 (1017, 13.57) 14.45 (11.34, 16.46)
CATE 1.59 (-0.52, 3.74) 3.07* (0.78,5.23) 5.53* (2.8,7.61)
RR-CATE 117.87 (94.82,146.85)  134.41* (107.51,164.96)  161.94* (125.03, 197.44)
P(N2) % 43.03 (35.97, 46.7) 45.99 (35.57, 49.56) 45.29 (34.95, 48.5) 43.98 (3444, 47.83)
CATE 2.95 (-2.47,7.24) 226 (-3.24,6.9) 094 (-4.71,5.28)
RR-CATE 106.86 (94.35, 118.57) 105.25 (92.97, 117.03) 102.2 (89.66, 113.11)
P(N3) % 2245 (7.76,29.61) 21.02 (1132, 28.36) 19.62 (11.16, 26.19) 17.65 (11.24, 23.86)
CATE 143 (-6.72,5.62) 2.83 (-7.76,5.96) -4.8 (-9.49, 6.39)
RR-CATE 93.63 (75.77, 164.23) 87.4 (71.79,165.62) 78.61 (63.55, 171.61)
P(REM) 21.42 (1578, 39.37) 162 (11.82, 28.76) 1624 (11.7, 28.3) 16.18 (11.55,27.31)
CATE -5.22% (-12.13, -1.35) -5.18* (-12.89, -1.7) -5.24* (-13.99, -1.88)
RR-CATE 75.62* (63.08, 93.18) 75.8* (63.54,91.42) 75.53* (62.73,90.04)
P((N1,N2,N3,REM) — W) % 3.12(22,6.87) 482 (3.24,10.16) 529 (3.6, 10.48) 6.02 (4.04,11.3)
CATE 1.69* (0.7, 3.64) 2.16* (1.12, 3.83) 2.89* (1.6, 4.53)
RR-CATE 154.24* (126.08,195.75)  169.25* (135.59,209.54)  192.55* (15132, 230.47)
P((N1,N2) — W) % 2.01 (135, 4.25) 311(21,7.13) 3.46 (2.36,7.37) 402 (2.72,7.83)
CATE 1.1% (0.46, 2.38) 1.45* (0.74, 2.88) 2,01 (1.18, 3.49)
RR-CATE 154.75* (121.62,200.22)  172.33* (137.19,215.64)  200.35* (154.77, 253.65)
P(N3 — W) % 0.59 (0.45, 1.09) 0.84 (0.61, 1.46) 0.89 (0.66, 1.49) 0.98 (0.72, 1.56)
CATE 0.25* (0.03, 0.53) 0.3% (0.1, 0.58) 0.39* (0.17, 0.69)
RR-CATE 141.77* (10475, 190.72) 151.7% (113.57, 199.84) 165.96* (124.65, 219.4)
P(REM — W) % 053 (0.25,1.21) 0.88 (0.46, 2.05) 0.93 (0.5,2.09) 1.02 (0.51,2.12)
CATE 0.35* (0.08, 1.1) 0.41* (0.12,0.93) 0.49* (0.16, 0.96)
RR-CATE 166.23* (115.25,259.61) 177.15* (122.92, 270.8) 192.6* (130.02, 293.61)
P(NREM = REM) % 319 (2.19,7.53) 553 (4.07, 15.36) 6.02 (4.39,16.38) 6.78 (4.98,17.83)
CATE 2.33* (1.19,7.93) 2.83* (156, 8.93) 3.59* (2.06,10.38)
RR-CATE 173.18% (135.99,244.33)  188.79% (145.45,260.22)  212.48* (159.99, 292.82)
P(N1 = N2) % 5.89 (4.25, 8.34) 7.17 (5.41,9.46) 8.1(6.07,9.92) 9.61 (7.14,11.37)
CATE 1.28 (0.2, 2.42) 2.21* (059, 3.37) 3.72* (157, 5.04)
RR-CATE 121.73(97.19,150.33)  137.52* (108.78,167.48)  163.24* (125.05, 193.52)
P(Sleep compactness) 92.82 (85.85, 95.05) 89.31 (76.67,92.32) 88.21 (75.49, 91.52) 86.49 (73.31, 90.45)
CATE -3.52* (-8.83,-1.43) -4.62* (-10.46, -2.37) -6.34% (-12.18, -4.02)
RR-CATE 96.21* (89.76, 98.45) 95.02* (87.88, 97.4) 93.17* (85.11, 95.75)
P(Sleep fragmentation) % 6.13 (4.26,13.87) 9.24 (6.28,23.18) 10.23 (7.14, 24.35) 11.79 (8.03, 26.05)
CATE 3.11% (143, 9.04) 4.1% (2.22,10.58) 5.66* (3.38, 11.96)
RR-CATE 150.7% (124.39,1902)  166.87* (139.17,204.44)  192.33* (160.07, 236.24)
P(Sleep-stage compactness) % 78.91 (61.89, 82.74) 68.93 (36.64, 74.62) 66.28 (3447, 72.21) 62.15 (30.04, 68.79)
CATE -9.98* (-25.15, -6.58) -12.64* (-28.1,-9.02) -16.76* (-32.37, -12.66)
RR-CATE 87.35% (58.8, 91.84) 83.98* (55.19, 88.7) 78.76* (49.17, 84.41)
P(Sleep-stage fragmentation) % 1391 (10.74, 23.49) 20.37 (16, 40.05) 21.93 (17.32, 40.28) 24.33 (18.83, 42.09)
CATE 6.46* (3.09, 16.83) 8.02* (4.56, 17.45) 10.42% (6.5, 18.44)
RR-CATE 146.46* (124.33, 187.22) 157.66* (134,198.38)  174.94* (148.28,216.31)
P(W = W) 1.05 (0.33,2.92) 1.46 (0.18,4.27) 1.57 (0.19, 4.64) 1.73 (0.17,5.32)
CATE 0.41 (-0.35,2.23) 052 (-0.28,2.52) 0.68 (:0.21,2.97)
RR-CATE 139.22 (42.54, 274.01) 149.7 (44.75,299.99) 164.95 (45.63, 333.06)
P(N1 — N1) % 401 (1.59, 5.26) 3.53(0.77,4.91) 4.14(0.86,5.73) 52(1.03,7.1)
CATE 048 (-1.85,0.73) 0.13 (-1.44, 1.4) 1.19 (1.1, 2.86)
RR-CATE 88.06 (37.68, 118.66) 103.3 (43.8, 136.66) 129.7 (54.59, 171.73)
P(N2 — N2) % 36.34 (24.17, 40.75) 36.85 (16.05, 41.1) 35.44 (14.74, 39.78) 33.03 (13.14, 38)
CATE 0.5 (-6.46, 5.55) -0.9 (-8.42, 4.06) 331 (-10.99, 1.39)
RR-CATE 101.39 (68.82, 115.48) 97.51 (62.45, 110.85) 90.89 (54.45, 104.41)
P(N3 — N3) 19.26 (159, 26.61) 15.9 (0.87, 23.85) 1433 (0.78, 21.61) 12.11 (0.68, 18.55)
CATE -3.36 (-8.53,0.35) -4.93* (-9.66, -0.44) -7.15% (-11.67, 0.76)
RR-CATE 82.55 (43.2, 104.4) 74.38* (40.56, 91.4) 62.87* (29.6,77.92)
P(REM — REM) % 193 (13.72, 34.14) 12.66 (828, 20.06) 12.37 (8.32,19.29) 11.81 (7.62, 18.04)
CATE -6.65* (-16.35, -2.47) -6.93* (-17.11,-2.97) -7.49* (-18.28, -3.86)
RR-CATE 65.57* (49.07, 83.92) 64.08* (46.32, 81.8) 61.18* (42.31, 77.66)
P(W-fragmentation) % 3.01 (2.09,7.01) 442 (3.06,12.3) 494 (3.51,13.03) 5.77 (4, 14.79)
CATE 1.41* (0.65, 5.38) 1.94* (1.05, 6.47) 2.77* (1.74,7.97)
RR-CATE 147.02* (125.01,186.42)  164.39% (139.85, 201.78) 192.1% (163.44, 238.83)
P(N1-fragmentation) % 5.16 (3.94,7.31) 7.02 (5.7, 9.56) 7.86 (6.47,10.26) 921 (7,52, 11.44)
CATE 1.86* (0.96, 2.8) 2.71* (1.65, 3.78) 4.05* (2.86,5.17)
RR-CATE 136.16* (11595, 162.61)  152.47* (130.35,178.28)  178.61* (143.53, 209.53)
P(N2-fragmentation) 6.78 (5.13, 12.06) 9.65 (7.38,18.19) 1031 (7.8, 18.48) 1133 (847, 18.81)
CATE 2.86* (1.26,5.9) 3.53* (1.81,5.97) 4.55* (2.69, 6.7)
RR-CATE 142.19* (118.74,170.61)  151.99* (127.54,18291)  167.08* (139.25,199.61)
P(N3-fragmentation) % 315 (2.3, 6.58) 5.05 (3.71,12.17) 526 (3.92,12.5) 554 (4.11,12.97)
CATE 1.9% (0.77, 6.35) 2.11* (1.02, 6.56) 2.39* (1.18, 6.62)
RR-CATE 160.31* (123.48,224.18)  166.87* (132.04,23058)  175.86* (138.11, 238.99)
P(REM-fragmentation) % 1.94 (1.21, 4.89) 347 (245, 10.09) 379 (2.7,10.78) 426 (3.06,11.58)
CATE 1.53* (0.75, 5.22) 1.84* (0.97, 5.95) 2.32* (1.29,7)
RR-CATE 178.76* (134.92,258.28)  194.95* (147.82,280.14)  219.51* (165.81, 312.96)

CATE (RR-CATE).
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Table B.3: Expected probabilities and estimated OSA effects (CATE,
RR-CATE) for 50-year-old females.

Quantity Estimate THealthy O1: OSA (AHI=5) 02: O5A (AHI = 15) 03: OSA (AHI = 30)
P(W) % 659 (4.83,9.19) 951 (7.29, 12.83) 103 (811, 13.63) 1146 (9.19, 14.72)
CATE 2.92* (029, 6.05) 3.7% (1.11,6.77) 4.87* (2.14,7.86)
RR-CATE 144.3* (104.48, 208.14) 156.17* (114.78, 221.8) 173.85* (126.1, 244.19)
P(N1) 112 (9.66, 13.59) 12.33 (10.63, 13.97) 14.04 (12,07, 15.91) 16.85 (14.28, 18.41)
CATE 1.13 (-1.63, 3.67) 283 (-0.11,5.36) 5.65* (2.13,7.98)
RR-CATE 110.1 (86.24, 135.03) 125.29 (99.12, 151.07) 150.4* (117.31, 180.77)
P(N2) % 43.99 (40.42, 48.3) 45.87 (43.03, 49) 44.83 (42.38, 47.65) 43 (40.43, 45.75)
CATE 1.88 (-3.03, 6.14) 0.85 (-4.33,5.13) -0.99 (-6.38, 3.08)
RR-CATE 104.28 (93.63, 115.16) 101.93 (91, 112.67) 97.75 (86.82, 107.5)
P(N3) 9 21.29 (1126, 24.02) 19.49 (12.84, 22.54) 18.05 (12.38,20.5) 16.02 (11.57, 18.25)
CATE -1.81 (-5.97,3.33) 3.25(-7.51,2.15) 5.28(-9.29,1.1)
RR-CATE 915 (72.53, 128.84) 84.75 (68.01, 123.55) 75.22 (60.11, 112.02)
P(REM) 16.92 (15.51, 22.66) 12.8 (11.05, 18.45) 12.79 (11.08, 18.39) 12.67 (11.04, 18.38)
CATE -4.13* (-7.41,-1.08) -4.14% (-7.11,-1.2) -4.25% (-7.32,-1.23)
RR-CATE 75.61* (63.48, 93.29) 75.56* (64.48, 92.93) 74.9* (63.2,92.36)
P((N1,N2,N3,REM) — W) % 3.08 (2.6, 4.38) 471 (4.06,7.35) 5.16 (4.48,7.77) 5.86 (5.02, 8.6)
CATE 1.63* (091, 3.19) 2.08* (1.34,3.81) 2.78* (1.94, 4.76)
RR-CATE 153.03* (129.36,197.2)  167.68* (141.27,208.08)  190.25* (158.06,239.26)
P((N1,N2) — W) 2,05 (1.65, 2.95) 316 (2.72, 4.69) 352 (3.05,5.1) 4.08 (347,5.9)
CATE 1.11* (059, 1.99) 1.46* (0.95, 2.46) 2.03* (1.4, 3.24)
RR-CATE 154.05* (125.49,200.21)  171.38* (141.51,22497)  198.82* (162.16, 251.85)
P(N3 = W) 052 (0.42, 0.77) 0.72 (057, 1.09) 0.77 (061, 1.12) 0.83 (0.67, 1.15)
CATE 0.2* (0.03, 0.46) 0.25* (0.07, 0.49) 0.31* (0.14, 0.54)
RR-CATE 139.15* (105.33, 191.21) 148.04* (113.09, 200.2) 160.43* (122.7, 213.34)
P(REM — W) 051 (0.33,0.79) 0.83 (0.6, 1.34) 0.88 (0.7, 1.4) 0.94 (0.74,1.52)
CATE 0.32* (0.09, 0.78) 0.37* (0.13,0.77) 0.44* (0.17, 0.84)
RR-CATE 163.17* (114.04,284.16)  172.87* (121.72,302.79)  186.19* (128.28, 307.05)
P(NREM = REM) % 275 (2.07,3.73) 477 (3.96,7.34) 517 (4.34,8) 5.76 (4.85, 8.8)
CATE 2.01* (1.08, 4.42) 2.41* (1.34,5.09) 3.01* (1.78, 6.07)
RR-CATE 173.2% (133.27,253.24)  187.76* (140.87,274.42)  209.38* (153.92, 308.82)
P(N1 = N2) 6.06 (5.12, 7.63) 7.24 (643, 9.46) 813 (7.32,10.42) 9.56 (8.73,11.75)
CATE 1.18 (-0.08, 2.65) 2.07* (0.77, 3.61) 3.5% (2.11,5.21)
RR-CATE 119.5(98.73,15025)  134.22* (11138,169.78)  157.84* (130.84, 192.88)
P(Sleep compactness) 90.39 (87.53,92.32) 86.29 (81.86, 88.51) 85.04 (80.68, 87.24) 83.15 (78.95, 85.5)
CATE -4.1* (-8.04, -1.22) -5.35* (-8.92, -2.57) 7.24% (-11.29, -4.49)
RR-CATE 95.46* (91.07, 98.63) 94.08* (89.48,97.11) 91.99% (87.49, 94.94)
P(Sleep fragmentation) % 6.09 (5.31,8.39) 8.91 (7.69, 14.29) 9.82 (849, 15.36) 11.25 (9.61, 16.91)
CATE 2.82* (155, 6.03) 3.73* (2.34,7.29) 5.16* (3.61,9.23)
RR-CATE 146.23* (124.43,185.01)  161.26* (136.57, 198.55) 184.62* (155.03, 230.8)
P(Sleep-stage compactness) % 76.97 (71.41,78.93) 67.13 (53.56, 70.5) 6453 (51.15, 67.77) 60.6 (47.5, 63.3)
CATE -9.85% (-19.52, -7.1) -12.44* (-21.56, -9.78) -16.38* (-24.97,-13.75)
RR-CATE 87.21% (73.02,90.71) 83.84% (70.12, 87.17) 78.73* (65.58, 82.08)
P(Sleep-stage fragmentation) % 13.42 (11.04, 17.5) 19.16 (17.2,29.1) 20.51 (18.28, 29.68) 2255 (20.13, 31.66)
CATE 5.74* (2.85, 14.85) 7.09* (3.97, 15.67) 9.13* (5.63,17.11)
RR-CATE 142.78* (120.55,198.49)  152.82* (127.93,20573)  168.03* (139.01,219.11)
P(W — W) 351 (1.82, 6.07) 4.8 (1.68,7.56) 5.13 (1.75,8.07) 5.6 (1.92,891)
CATE 1.29 (-147,4.12) 1.62 (128, 4.51) 2.09 (-0.93, 5.24)
RR-CATE 136.65 (48.5, 264.53) 146.08 (53.57, 288.02) 159.46 (56.6, 309.79)
P(N1 — N1) % 6.02 (446, 7.56) 52 (2.34,6.61) 6.07 (2.68,7.5) 7.55 (3.27,9.26)
CATE -0.82 (-3.36,0.8) 0.05 (-2.87,1.72) 1.53 (-1.97, 3.47)
RR-CATE 86.44 (43.49, 114.53) 100.81 (5132, 131.2) 125.39 (65.66, 165.26)
P(N2 — N2) 37.55 (33.15,41.94) 37.37 (32.08, 39.99) 35.73 (30.25, 37.95) 32.99 (27.23,35.42)
CATE 0.18 (-7.32, 4.63) -1.82 (-9.5,3.01) -4.55 (-12.92, 0.09)
RR-CATE 99.52 (82.57, 113.95) 95.16 (75.88, 108.8) 87.87 (67.8,100.27)
P(N3 — N3) 18.34 (7.43,20.79) 14.86 (5.7, 17.68) 1331 (4.96, 15.55) 11.15 (419, 13.2)
CATE -3.48 (-7.51,0.55) -5.03* (-9.05,-1.16) 7.19* (-10.64, -2.35)
RR-CATE 81.03 (49.63, 105.85) 72.59% (44.01,91.8) 60.77* (39.8, 76.63)
P(REM — REM) % 15.07 (13.69, 20.4) 9.7 (8.03, 14.05) 9.42 (7.99,13.8) 891 (7.28,13.01)
CATE -5.37% (-9.41,-2.3) -5.64* (-9.83, -2.68) -6.15* (-10.56, -3.05)
RR-CATE 64.36* (50.52, 84.26) 62.54* (50.52, 81.8) 59.15* (45.33, 79.15)
P(W-fragmentation) % 3.01 (2.62,4) 4.2/(3.55,6.48) 4.66 (4.02,7.11) 5.39 (459, 8.52)
CATE 1.18* (0.6,2.7) 1.65* (0.9, 3.31) 2.38* (1.65, 4.44)
RR-CATE 139.27% (119.02,17329)  154.69* (133.34,19031)  178.86* (152.82, 225.96)
P(N1-fragmentation) 545 (4.72,6.8) 7.34 (658, 9.43) 8.18 (7.48,10.29) 95 (8.7,115)
CATE 1.89* (0.88, 3.13) 2.72* (1.8,3.98) 4.05* (3, 5.45)
RR-CATE 134.50% (11531, 150.43)  149.96* (131.13,17485)  174.24* (149.31, 198.76)
P(N2-fragmentation) 6.4 (5.32, 8.59) 8.97 (8, 14.33) 9.54 (851, 14.65) 10.41 (9.35,15.37)
CATE 2.53* (1.1, 6.61) 3.1% (1.66,7.07) 3.97* (2.54,7.94)
RR-CATE 139.3* (116,03, 183.45)  148.19* (121.75,191.06) 161.68* (135.07, 202.4)
P(N3-fragmentation) % 293 (2.23,4.29) 459 (3.88,7.89) 473 (3.99, 8.03) 49 (4.15,8.33)
CATE 1.66* (0.59, 4.89) 1.8* (0.79, 4.81) 1.97* (0.93, 4.67)
RR-CATE 156.56* (117.24,230.22)  161.32% (122.44,232.53)  167.29* (128.36, 238.25)
P(REM-fragmentation) 1.68 (1.19,2.37) 298 (2.46,4.7) 3.23(2.72,5.02) 3.6 (3,5.37)
CATE 1.3* (0.64, 3.01) 1.55* (0.84, 3.28) 1.92* (1.14,3.67)
RR-CATE 177.4* (131,47, 280.3) 192.2% (144.46,301.09)  214.16* (157.16, 324.83)

Notes: Probabilities are expressed as percentages. Estimates include conditional average treatment effects (CATE) and risk-ratio
CATE (RR-CATE).
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Notes: Probabilities are expressed as percentages. Estimates include conditional average treatment effects (CATE) and risk-ratio

Table B.4: Expected probabilities and estimated OSA effects (CATE,
RR-CATE) for 70-year-old females.

Quantity Estimate Healthy OT: OSA (AHI = 5) O2: OSA (AHI = 15) 03: OSA (AHI = 30)
P(W) % 3.8 (7.73, 20.64) 1874 (13.44, 22.39) 19.94 (14.68, 23.54) 21.63 (1657, 24.99)
CATE 4.94 (-4.07,11.5) 6.14 (-2.46, 12.33) 7.83 (:0.68, 13.55)
RR-CATE 135.8 (79.4, 225.94) 144,51 (87.08, 242.92) 156.75 (96.45, 267.43)
P(N1) % 13.45 (10.83, 16.5) 13.68 (10.24, 16.48) 15.45 (11.91, 18.02) 18.33 (14.32, 20.73)
CATE 0.23 (-3.09, 3.34) 2(-1.78,5.02) 4.87* (1.03, 8.02)
RR-CATE 101.7 (76.75, 127.51) 114.84 (89.14,140.83)  136.23* (105.89, 166.41)
P(N2) % 41.67 (34.75, 46.54) 41.83 (37.94, 46.19) 40.36 (36.81, 44.91) 37.96 (34.94, 42.21)
CATE 0.16 (-4.67, 7.61) 13 (-6.17,5.71) 3.71(-8.8, 4.44)
RR-CATE 100.39 (89.51, 121.1) 96.87 (86.38, 116.94) 91.1 (80.64, 111.68)
P(N3) % 18.69 (11.54, 34.87) 16.47 (11.19, 25.59) 15.06 (10.31, 24.49) 13.09 (9.34, 20.67)
CATE 221 (-11.12,2.79) 3.63 (-12.84, 0.61) -5.6* (-15.5, 0.66)
RR-CATE 88.16 (64.41, 115.1) 80.57 (61.66, 102.97) 70.04* (52.99, 93.94)
P(REM) 12.39 (6.86, 18.64) 9.27 (649, 13.55) 9.19 (658, 13.02) 8.99 (6,53, 12.45)
CATE 3.12 (-6.41,0.65) 321 (-6.65,0.8) 3.4 (-7.42,0.65)
RR-CATE 74.81 (6193, 108.95) 74.13 (61.67, 110.74) 72.57 (58.98, 107.88)
P((N1,N2,N3,REM) — W) % 2.89 (176, 4.04) 433(3.19,6.02) 472 (359, 6.39) 53 (4.15,6.77)
CATE 1.44* (0.81, 2.59) 1.82* (122, 2.96) 2.4* (1.81,352)
RR-CATE 149.69* (125.93,205.77)  162.94* (136.15,227.13)  183.04* (15134, 257.14)
P((N1,N2) — W) % 2.02 (1.25,2.84) 3.05 (2.24, 4.08) 337 (2.56, 4.45) 3.87 (3.07,4.82)
CATE 1.03* (0.54, 1.84) 1.35* (0.92, 2.15) 1.85* (1.4, 2.64)
RR-CATE 151.07% (122.94,203.07)  166.94* (137.15, 228.97) 191.67* (155.42, 261.8)
P(N3 — W) % 0.42 (0.25, 0.55) 057 (0.41, 0.74) 0.6 (0.45, 0.78) 0.64 (0.49, 0.81)
CATE 0.15* (0.02, 0.35) 0.18* (0.05,0.37) 0.22* (0.09, 0.41)
RR-CATE 134.54* (103.84, 209.11) 141.49* (109.8,218.61)  150.68* (116.73,230.17)
P(REM — W) 0.45 (0.19, 0.75) 0.71 (047, 1.19) 0.75 (049, 1.17) 0.79 (0.54, 1.18)
CATE 0.26* (0.06, 0.53) 0.29* (0.09, 0.56) 0.34* (0.12, 0.6)
RR-CATE 157.76* (110.52,3345)  165.22* (11534,349.12)  174.87* (120.53, 385.77)
P(NREM = REM) % 2.24 (127, 3.46) 3.82(2.38,5.02) 409 (3.05,5.21) 449 (33,5.38)
CATE 1.58* (0.85, 2.52) 1.86* (1.02, 2.76) 2.25* (1.34, 3.09)
RR-CATE 170.81* (129.14,284.15)  183.08* (135.16,303.51)  200.68* (143.42, 330.32)
P(N1 = N2) % 576 (3.82, 7.61) 6.66 (5.39, 8.42) 739 (6.04,9.22) 8.54 (7.14,10.54)
CATE 09 (-0.41,2.98) 1.63* (037,3.7) 2.78* (151, 4.79)
RR-CATE 115.55 (94.17, 178) 1283% (105.39,196.79)  148.27* (122.41, 225.89)
P(Sleep compactness) 83.3 (76.47, 89.69) 77.47 (72.87, 83.36) 75.9 (71.72, 81.81) 73.65 (70.14, 79.12)
CATE -5.83 (-12.03, 3.03) 7.4 (-13.69, 1.33) -9.65* (-15.89, 0.76)
RR-CATE 93 (86.19, 103.88) 91.12 (84.42, 101.74) 88.42* (81.88,99.03)
P(Sleep fragmentation) % 579 (3.58, 7.86) 812 (5.96,11.21) 8.87 (6.72,11.91) 10.01 (7.78,12.72)
CATE 2.32* (1.22,4.35) 3.08* (2.01,4.97) 4.22* (3.16,6.22)
RR-CATE 140.11* (118.84,184.86)  153.08* (129.66,204.25)  172.79* (144.49, 237.49)
P(Sleep-stage compactness) % 71.21 (66.28, 79.03) 60.88 (54.79, 68.14) 58.35 (53.03, 65.4) 54.67 (50.01, 62.23)
CATE -10.33* (-15.96,-3.3) -12.87* (-18.33,-6.4) -16.54* (-21.92,-9.7)
RR-CATE 85.5* (78.04, 94.81) 81.93* (75.07, 90.62) 76.77* (70.92, 86.32)
P(Sleep-stage fragmentation) % 12.09 (7.7, 16.15) 16,59 (13.43,21.14) 1756 (14.4, 21.82) 18.98 (15.98, 22.68)
CATE 4.5% (1.81,9.37) 5.47% (2.72,10.01) 6.89* (3.7, 11.3)
RR-CATE 137.23* (112.42,230.9)  145.24* (117.68, 234.03) 157.03* (126, 255.23)
P(W = W) 1091 (4.79, 1851) 1441 (9.29,17.2) 15.23 (10.04, 18.13) 1633 (11.23,19.13)
CATE 35(-5.93,9.37) 432 (-5.09,9.86) 5.43 (-3.51, 10.84)
RR-CATE 132.12 (60.79, 257.6) 139.62 (67.22, 272.05) 149.77 (74.8,292.61)
P(N1 - N1) % 8.35 (657, 10.76) 6.98 (4.45, 8.43) 8.05 (5.22,9.61) 9.83 (655, 11.54)
CATE 137 (-4.15,0.72) 0.31(-3.22, 1.84) 1.48 (-1.84, 3.87)
RR-CATE 83.57 (49.73,110.6) 96.35 (60.43, 125.95) 117.76 (79.01, 155.24)
P(N2 - N2) % 35.85 (29.77, 40.35) 34.5 (30.6,38.71) 32.61(29.19, 36.5) 29.59 (26,58, 33.06)
CATE 136 (-6.04, 4.57) -3.25(-7.91,2.61) -6.26 (-11.26,0.82)
RR-CATE 96.22 (83.82, 114.11) 90.95 (79.1, 108.59) 82.53 (70.26, 102.74)
P(N3 — N3) 16.14 (9.49, 33.3) 12.64 (6.87, 22.38) 11.2 (6.08,21.43) 921 (5.23,17.07)
CATE 35 (-12.45, 1.11) -4.94* (-13.98,-132) -6.93% (-16.72, 2.62)
RR-CATE 78.34 (56.09, 106.72) 69.37% (50.76, 91.53) 57.08* (42.04, 78.53)
P(REM — REM) % 10.87 (5.9, 17.05) 676 (4.53,10.91) 649 (437,10.14) 6.04 (4.24,9.38)
CATE -4.1* (-7.73, -0.55) -4.37* (-8.19,-0.58) -4.83* (-8.96,-0.85)
RR-CATE 62.23* (49.83,91.26) 59.77% (48.03, 93.54) 55.55% (42.97, 87.33)
P(W-fragmentation) % 2.9 (1.82,3.94) 3.79 (2.77,5.17) 415 (3.13,5.4) 471 (3.68,5.94)
CATE 0.89* (0.36, 1.78) 1.25* (0.75, 2.08) 1.81* (134, 2.74)
RR-CATE 130.55* (11034, 171.89)  143.23* (122.03,18449)  162.55* (138.65, 218.91)
P(N1-fragmentation) % 539 (3.84, 6.86) 7.08 (5.69, 8.61) 7.8 (6.51,9.36) 892 (7.62,10.35)
CATE 1.69% (0.72, 3.21) 2.41% (145, 3.95) 3.53* (.56, 5.23)
RR-CATE 131.36* (111.36, 185.69) 144.83* (122.94,2053)  165.62* (139.92, 231.63)
P(N2-fragmentation) 5.68 (3.42, 7.75) 7.64 (6.1, 10) 8.04 (6.58,10.24) 8.64(7.19,10.72)
CATE 1.96* (0.71,4.31) 2.36* (1.12, 4.55) 2.96* (1.69, 5.05)
RR-CATE 134.4% (111.99,229.52)  141.51* (114.46,238.97) 152.04* (124.4, 253)
P(N3-fragmentation) % 2.54 (152, 3.79) 3.83 (3.04,5.18) 3.88 (3.08, 5.09) 3.93(3.13,4.93)
CATE 1.29* (03,2.71) 1.34* (037, 2.65) 1.39* (045, 2.55)
RR-CATE 150.72* (109.06,278.93)  152.91* (110.17, 275.26) 154.84* (112.07, 268.2)
P(REM-fragmentation) % 1.37 (0.74,2.21) 2.38(1.73,3.27) 255 (1.9,3.38) 279 (2.02, 3.53)
CATE 1.01% (042, 1.62) 1.17* (055, 1.78) 1.41% (074, 2.01)
RR-CATE 173.23* (123.6, 301.1) 185.4% (131.69, 314.71) 202.79% (142.65, 332.9)

CATE (RR-CATE).
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Table B.5: Expected probabilities and estimated OSA effects (CATE,
RR-CATE) for 30-year-old males.

Quantity Estimate THealthy O1: OSA (AHI=5) 02: O5A (AHI = 15) 03: OSA (AHI = 30)
P(W) % 624 (441,9.27) 6.6 (459, 11.36) 7.16 (4.95, 11.89) 801 (5.61, 12.25)
CATE 0.35 (-1.68, 4.55) 0.92 (-1.05, 5.07) 1.76 (:0.36, 6.27)
RR-CATE 105.69 (76.98, 186.83) 114.68 (85.13, 201.2) 128.26 (94.34, 224.75)
P(N1) 1151 (8.83, 14) 1242 (10.39, 14.18) 14.09 (11.59, 15.7) 16.85 (13.59, 18.63)
CATE 09 (-0.97,3.82) 2.57* (0.66, 5.26) 5.33* (2.6, 8.02)
RR-CATE 107.85 (91.92,140.3)  122.36* (105.28, 159.89) 146.31* (12047, 187.6)
P(N2) % 43.53 (35.5, 48.16) 47.15 (31.96, 49.36) 46.11 (3157, 48.49) 44.3 (31.25,47.09)
CATE 3.62 (-4.01,6.34) 257 (-4.99,5.7) 0.77 (-7.05, 3.88)
RR-CATE 108.3 (90.39, 116.23) 10591 (87.91, 113.33) 101.76 (84.46, 109.71)
P(N3) 9 16.93 (5.67,21.61) 16.1 (9.13,23.13) 15.03 (8.94, 21.79) 1353 (8.7, 19.75)
CATE 0.83 (-5.03,7.79) 191 (-6.21, 6.34) -3.41(-7.25,5.82)
RR-CATE 95.1 (72.79,173.01) 88.74 (68.08, 173.22) 79.88 (62.77, 178.25)
P(REM) 21.77 (17.6, 38.26) 17.73 (12.45, 32.81) 17.62 (12.51, 32.06) 1732 (12.07, 31.15)
CATE -4.04 (-10.82, 1) 416 (-10.92, 0.54) -4.46* (-11.44, -0.25)
RR-CATE 81.43 (57.64, 105.31) 80.91 (57.82, 102.88) 79.54* (5434, 98.67)
P((N1,N2,N3,REM) — W) % 3.97 (2.74,5.53) 494 (3.27,9.76) 539 (3.57,10.25) 6.08 (4.03,10.95)
CATE 097 (-0.16, 4.48) 1.42* (02, 5) 2.11* (0.66, 5.33)
RR-CATE 124.42 (95.66, 197.26) 135.75* (105.9, 209.74) 153.11* (119.35, 219.6)
P((N1,N2) — W) 265 (2.01,4) 328 (2.17,7.33) 3.63 (239, 7.66) 418 (2.78,7.96)
CATE 0.64 (-0.14,3.1) 0.99* (0.11, 3.55) 1.54* (0.47, 3.94)
RR-CATE 123.99 (94.43, 189.08) 137.23* (105.04,200)  158.07* (120.57, 219.84)
P(N3 = W) % 0.57 (0.3, 0.88) 0.72 (0.52, 1.25) 0.76 (0.56, 1.26) 0.83 (0.59, 1.31)
CATE 0.14 (-0.04, 0.62) 0.19* (0.01, 0.67) 0.25* (0.1,0.7)
RR-CATE 125.09 (94.73, 248.93) 132.88* (100.93,256.6)  143.77* (11555, 267.93)
P(REM — W) 0.75 (0.36,1.32) 0.94 (049, 2.19) 0.99 (0.53,2.21) 1.07 (0.55, 2.04)
CATE 0.19 (-0.26, 1.06) 0.24 (-0.21,1.06) 032 (-0.14, 1.06)
RR-CATE 125.45 (68.89, 278.93) 132.72 (72.47, 279.01) 142.71 (75.83, 275.8)
P(NREM = REM) % 419229, 6) 5.75 (4.26, 14.95) 622 (457, 15.85) 691 (5.18,17.1)
CATE 1.56* (0.63, 10.4) 2.03* (1.08, 11.05) 2.73* (1.64, 11.75)
RR-CATE 137.26* (11538,329.3)  148.46* (126.77,337.19)  165.11* (138.22, 348.28)
P(N1 = N2) 6.74 (5.51,9.8) 8.04 (6.05, 10.06) 9.02 (6.83,10.91) 106 (8.1, 12.59)
CATE 1.3 (-0.93,2.28) 228 (-0.41,3.28) 3.86* (0.27, 4.94)
RR-CATE 119.35 (88.57, 136.32) 133.89 (95.73, 153.19) 157.27* (102.64, 182.3)
P(Sleep compactness) 90.09 (86.76,93.12) 88.91 (77.31,92.11) 87.86 (75.78, 91.49) 86.23 (73.58,90.35)
CATE -1.18 (-12.26, 1.46) 223 (-13.14, 0.35) -3.85* (-14.94,-0.97)
RR-CATE 98.69 (86.34, 101.66) 97.52 (85.03, 100.39) 95.72* (83.55, 98.9)
P(Sleep fragmentation) % 7.64 (5.14,10.41) 943 (6.36, 22.33) 1037 (7, 23.46) 11.83 (7.99, 25.47)
CATE 1.79 (-0.15,12.7) 2.73* (0.69, 14.03) 4.2* (1.85, 15.68)
RR-CATE 123.47 (97.84, 231.34) 135.8% (109.56, 244.75)  154.96* (12699, 267.12)
P(Sleep-stage compactness) % 74.39 (65.36, 80.53) 68.28 (39.47, 74.61) 65.7 (37.23,71.94) 61.74 (33.12, 68.45)
CATE -6.11% (-28.22,-1.72) -8.7* (-31.06, -4.67) -12.66* (-34.15, -8.66)
RR-CATE 91.78* (57.61, 97.68) 88.31* (53.79, 93.69) 82.99* (49.69, 88.56)
P(Sleep-stage fragmentation) % 15.7 (12.01, 22.29) 20.63 (163, 37.53) 22.16 (17.53, 38.56) 24.5 (19.28, 40.46)
CATE 4.93* (2.07,15.87) 6.46* (3.51,17.25) 8.8* (5.62, 18.57)
RR-CATE 131.44* (112,95, 178.98) 141.18* (122.93,180.9)  156.07* (137.57, 196.56)
P(W — W) 227 (0.56,4.3) 1.66 (0.2, 5.04) 1.77 (0.21, 5.48) 1.93 (0.21,5.95)
CATE 0.61 (-2.04,2.34) 0.5 (-1.96, 2.83) -0.34 (-1.86,3.53)
RR-CATE 72.97 (27.74,209.34) 77.9 (28.66, 222.01) 84.89 (30.26, 252.4)
P(N1 — N1) % 517 (2.5,7.02) 47(1.2,601) 5.47 (129, 7.09) 6.8 (1.45,8.75)
CATE 0.47 (-2.46, 1.46) 031 (-2.03, 2.41) 1.63 (-1.27, 4.05)
RR-CATE 90.98 (45.72, 136.63) 105.94 (52.65, 156.15) 131.56 (67.16, 194.25)
P(N2 — N2) 36.43 (25.04, 41.75) 38.02 (14.13, 41.41) 36.3 (13.4,39.8) 33.47 (10.67, 37.31)
CATE 1.59 (-11.16, 4.74) 0.13 (1211, 2.87) 2.96* (-13.94,-0.23)
RR-CATE 104.37 (56.45, 114.73) 99.65 (54.01, 107.84) 91.87* (45.9,99.37)
P(N3 — N3) 13.74 (1.39,19.1) 1152 (0.29, 19.09) 103 (0.27,17.7) 8.61 (0.24,15.4)
CATE 2.23(-8.07,6.21) 3.4 (-8.55, 4.26) -5.13 (-10.17, 1.88)
RR-CATE 83.81 (18.41, 155.79) 74.96 (16.25, 139.74) 62.66 (13.37,116.7)
P(REM — REM) % 19.05 (15.74, 34.09) 14.04 (9.12, 23.19) 13.62 (8.99, 22.08) 12.86 (8.21, 20.54)
CATE -5.01* (-12.62, -0.82) -5.43* (-13.65, -1.78) -6.19* (-15.34, -2.91)
RR-CATE 73.68* (46.42, 95.58) 71.48* (44.74, 89.62) 67.5% (41.94, 83.34)
P(W-fragmentation) % 3.67 (2.4, 4.71) 449 (3.07,12.63) 498 (343, 13.44) 5.76 (3.98, 14.9)
CATE 0.82 (-0.09,8.2) 1.32* (043,9.21) 2.09* (1.08,10.29)
RR-CATE 122.43 (97, 282.77) 135.86* (111.56,299.2)  156.97* (132.91, 323.74)
P(N1-fragmentation) 6.46 (5.06,8.57) 7.64 (6.16,10.09) 8.5 (6.91,10.92) 9.85 (8.09, 12.24)
CATE 1.18* (026, 2.35) 2.04* (1.07, 3.08) 3.39* (2.28, 4.4)
RR-CATE 118.29% (104.19, 140.53) 131.5% (117.26, 154.57) 152.39* (133.8, 174.95)
P(N2-fragmentation) 7.46 (5.96,11.83) 976 (7.27,16.94) 1043 (7.77,17.27) 11.45 (8.41,17.67)
CATE 2.3* (0.54, 5.29) 2.97* (0.94,5.77) 4% (155, 6.24)
RR-CATE 130.91* (107.81,162.45)  139.87* (113.93, 165.49) 153.61* (122.92, 181.7)
P(N3-fragmentation) % 3.13(2.19,4.81) 458 (3.38,10.81) 474 (351,10.99) 496 (3.7, 11.26)
CATE 1.45* (0.69, 6.26) 1.61* (0.86, 6.41) 1.82* (1.1, 6.42)
RR-CATE 146.22* (121.73, 238.07) 151.37* (128.16,236.6)  158.23* (136.63, 243.25)
P(REM-fragmentation) 262 (131,3.75) 3.59 (2.54,10.36) 3.88 (2.75,10.83) 432 (3.06,11.6)
CATE 0.97* (0.16,7.21) 1.26* (048, 7.82) 1.7% (0.87, 8.38)
RR-CATE 137.07* (105.93,322.35)  148.33* (117.64,343.87)  165.09* (133.09, 368.89)

Notes: Probabilities are expressed as percentages. Estimates include conditional average treatment effects (CATE) and risk-ratio
CATE (RR-CATE).
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Notes: Probabilities are expressed as percentages. Estimates include conditional average treatment effects (CATE) and risk-ratio

Table B.6: Expected probabilities and estimated OSA effects (CATE,
RR-CATE) for 50-year-old females.

Quantity Estimate Healthy OT: OSA (AHI = 5) O2: OSA (AHI = 15) 03: OSA (AHI = 30)
P(W) % 1124 (6.32, 14.97) 1023 (8.07, 12.87) 10.99 (8.65, 13.52) T2.08 (9.58, 14.94)
CATE -1(-477,5.2) 0.25 (-4.31, 6.31) 0.84 (-3.04,7.9)
RR-CATE 91.08 (67.3,179.25) 97.77 (7051, 196.92) 107.52 (78.54, 216.37)
P(N1) % 1392 (11.14, 16.57) 14.65 (12.98, 16.52) 1657 (14.99, 18.22) 19.71 (18.14, 21.23)
CATE 073 (-1.52,3.8) 2.65* (0.5, 5.49) 5.79* (3.49, 8.58)
RR-CATE 10521 (90.75,13495)  119.02* (10332, 150.89)  141.56* (123.49, 176.82)
P(N2) % 42.78 (40.29, 47.62) 46.56 (42.59, 48.67) 45.15 (4137, 46.85) 42.79 (38.66, 44.68)
CATE 3.79 (-3.26, 6.64) 237 (-4.88, 4.75) 0.01 (-7.33,1.96)
RR-CATE 108.85 (93.17, 116.39) 105.55 (89.76, 111.91) 100.03 (85.14, 104.85)
P(N3) % 15.41 (8.24,19.16) 1472 (7.67,17.32) 13.61 (7.51,15.62) 12.06 (7.73, 13.75)
CATE 0.69 (-6.21,6.17) -1.81 (-6.96, 4.71) -3.36 (-8.05,2.76)
RR-CATE 95.51 (65.63, 161.66) 88.29 (63, 147.19) 7823 (57.57, 126.81)
P(REM) 16.65 (13.92,23) 13.83 (12.06,21.33) 13.69 (12.13,21.48) 13.37 (11.58,20.8)
CATE 2.82(-9.2,2.94) 2.96 (-9.35,2.55) -3.29 (-9.84,2.05)
RR-CATE 83.08 (58.65, 116.08) 82.2 (58.03, 113.47) 80.26 (55.27, 112.83)
P((N1,N2,N3,REM) — W) % 3.89 (2.81,4.89) 4.83 (408, 7.49) 5.5 (452, 8.01) 59(5.1,8.7)
CATE 0.93 (-0.18, 4.31) 1.36* (0.22,4.7) 2.01* (0.73, 5.36)
RR-CATE 123.93 (95.69, 233.47) 134.9% (104.54,246.1)  151.53* (116.55, 269.71)
P((N1,N2) — W) % 272 (2.12,3.28) 334 (2.81,5.1) 3.68 (3.17,5.59) 4.23 (3.66,6.27)
CATE 062 (:0.12,2.8) 0.97* (0.22,3.12) 1.51% (0.68, 3.77)
RR-CATE 12282 (96.02,214.24)  135.67* (107.12, 226.57) 155.7% (121.47, 257.59)
P(N3 — W) % 049 (0.27, 0.6) 0.62 (0.5,0.91) 0.65 (0.53, 0.92) 0.7 (0.59, 0.95)
CATE 0.13 (-0.04, 0.56) 0.16 (0, 0.57) 0.21% (0.08, 0.59)
RR-CATE 126.26 (94.09,285.85)  133.21% (100.83,293.09)  142.55* (113.48, 289.69)
P(REM — W) 0.69 (038, 1.04) 0.87 (0.69, 1.6) 092 (0.74, 1.64) 0.98 (0.78,1.57)
CATE 0.18 (-0.29, 0.99) 023 (-0.26, 1.05) 029 (-0.25,1.1)
RR-CATE 126.63 (69.68, 327.29) 133.05 (7448, 338.65) 1415 (76.35, 344.74)
P(NREM = REM) % 357 (2.06,4.17) 492 (4.17,7.93) 529 (4.63, 8.25) 5.82 (5.13,9.05)
CATE 1.36* (0.59, 5.02) 1.72* (1.03, 5.45) 2.25* (139, 6.12)
RR-CATE 138.03* (115.19, 322.55) 148.3* (127.19,333.03)  163.19* (135.24, 347.69)
P(N1 = N2) % 6.67 (5.58,8.53) 8.03 (7.22,11.05) 895 (8.15,11.9) 104 (9.44,13.2)
CATE 1.37 (:0.64, 3.14) 2.28* (021, 4.01) 3.73* (1.59,5.37)
RR-CATE 120.48 (92.28,145.73)  134.24* (102.62,160.17)  155.96* (11933, 184.75)
P(Sleep compactness) 85.13 (81.26, 90.66) 85.49 (81.46, 87.39) 84.31 (80.57, 86.34) 82.55 (79.16, 84.74)
CATE 0.36 (-6.99, 4.58) -0.83 (-8.26, 3.63) 259 (-1021, 2.07)
RR-CATE 100.42 (92.38, 105.67) 99.03 (90.93, 104.45) 96.96 (88.7, 102.55)
P(Sleep fragmentation) % 7.52 (5.6, 9.16) 9.1(7.75, 14.61) 9.96 (8.62, 15.84) 1127 (9.77,17.24)
CATE 1.58 (-0.46, 8.5) 2.44* (041, 9.44) 3.75* (143,10.52)
RR-CATE 120,95 (94.71,231.03)  132.38* (104.62,244.07)  149.83* (116.84, 268.84)
P(Sleep-stage compactness) % 70.53 (66.74, 76.39) 66.25 (53.63, 69.03) 63.77 (51.35, 66.39) 60.08 (47.63, 62.8)
CATE 428 (-18.11,0.4) -6.75* (-19.95, -2.64) -10.45* (:22.81,-6.6)
RR-CATE 93.94 (75.3, 100.6) 90.42* (71.73,96.17) 85.19* (67.67, 90.29)
P(Sleep-stage fragmentation) % 14.6 (12.21,16.73) 19.24 (17.38, 28.47) 20.53 (18.59, 29.25) 2246 (20.37, 30.79)
CATE 4.63* (1.93,12.96) 5.93* (3.34, 14) 7.86* (5.18, 15.38)
RR-CATE 131.74* (11214, 182.36)  140.58* (120.97,188.27)  153.82* (132.46, 200.52)
P(W = W) 7.34 (3.15,10.9) 5.41(1.99, 7.71) 573 (2.1,84) 618 (2.33,9.09)
CATE -1.93 (-5.73, 3.84) -1.61 (-5.5,4.5) -1.16 (-5.04, 5.34)
RR-CATE 73.66 (36.6, 213.54) 78.09 (38.66, 223.98) 84.17 (41.58, 239.56)
P(N1 - N1) % 7.46 (5.36,9.7) 6.85 (4.4,7.99) 7.92 (5.15,8.92) 9.73 (5.87,10.89)
CATE -0.61 (-3.63,2) 046 (-2.42,2.93) 227 (-0.9,4.96)
RR-CATE 91.83 (60.77, 136.2) 106.21 (71.69, 153.63) 130.45 (87.87, 191.07)
P(N2 - N2) % 3619 (33.54, 40.89) 38.13 (29.83, 39.94) 36.16 (27.67, 37.6) 32.97 (24.66, 34.48)
CATE 1.94 (7.08, 4.81) 0.04 (-8.8,2.31) -3.22% (-12.03, -1)
RR-CATE 105.35 (80.47, 114.4) 99.9 (76.64, 106.67) 91.09* (68.65, 97.12)
P(N3 — N3) 12.58 (5.16, 16.85) 10.64 (1.77,13.24) 9.46 (168, 11.51) 7.82 (125, 9.85)
CATE -1.94 (-8.96, 4.8) -3.13 (-9.45,3.27) 477 (1057, 1.2)
RR-CATE 84.59 (26.11, 160.79) 75.15 (23.56, 142.39) 62.13 (20, 116.59)
P(REM — REM) % 14.29 (12,02, 20.89) 10.63 (9.07, 15.82) 10.24 (8.83, 16.01) 957 (7.98, 14.74)
CATE -3.66 (-10.28, 0.27) -4.05* (-10.69, -0.47) -4.73* (-11.41,-1.35)
RR-CATE 74.37 (47.68,102.02) 71.66* (45.58, 97.18) 66.93* (42.1,91.3)
P(W-fragmentation) % 3.63 (276, 4.24) 427 (3.6,7.24) 471 (4.01,7.9) 537 (4.65,8.81)
CATE 0.64 (-0.31,3.97) 1.08* (0.12, 4.68) 1.74* (071, 5.23)
RR-CATE 117.75 (91.99,223.8)  129.68* (102.91,242.99)  148.01% (118.69, 265.48)
P(N1-fragmentation) % 6.68 (5.68,7.58) 7.92 (7.11,10.71) 8.75 (7.98,11.37) 10.05 (9.2, 12.87)
CATE 1.24% (019, 3.22) 2.08* (1.1,3.96) 3.37* (2.28,5.24)
RR-CATE 118.65* (102.67, 150.56) 131.12* (1145, 16356)  150.49* (132.49, 183.02)
P(N2-fragmentation) 681 (5.74,8.11) 8.98 (8.04, 13.65) 9.54 (8.61,14.16) 1039 (9.41, 14.75)
CATE 2.17* (0.54, 6.23) 2.74* (0.96, 6.73) 3.58* (151,7.4)
RR-CATE 131.94* (106.68, 180.12) 140.2* (112.16, 187.98) 152.65* (119.04, 199.3)
P(N3-fragmentation) % 2.8(2.07,3.14) 4.1(353,6.75) 419 (3.65, 6.75) 431 (3.79, 697)
CATE 1.3% (0.66, 4.02) 1.4* (0.74, 4.15) 1.51* (0.85, 4.05)
RR-CATE 146.53* (122.09, 247.27) 149.99* (126, 245.88) 154* (129.54, 235.46)
P(REM-fragmentation) % 222(1.12,2.71) 3.07 (2.62,5.16) 329 (2.82,5.3) 362 (3.13,5.72)
CATE 0.85* (0.17, 3.46) 1.07* (0.4, 3.63) 1.4% (0.72, 4.01)
RR-CATE 138.16* (107.36,329.54)  148.39% (116.67,340.06)  163.17* (128.56, 342.75)

CATE (RR-CATE).
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Table B.7: Expected probabilities and estimated OSA effects (CATE,
RR-CATE) for 70-year-old females.

Quantity Estimate THealthy O1: OSA (AHI=5) 02: O5A (AHI = 15) 03: OSA (AHI = 30)
P(W) % 24.25 (9.24, 31.04) 20.28 (1457, 23.61) 21.39 (15.68, 24.18) 2289 (1757, 25.22)
CATE 3.98 (-12.28,7.19) 2.87 (-10.6, 8.48) -1.37 (-8.93,10.23)
RR-CATE 83.61 (58.88, 179.93) 88.17 (64.35, 190.48) 94.36 (70.98, 208.42)
P(N1) 15.26 (12.59, 17.75) 16.17 (14.35, 19.68) 18.14 (16.67, 21.86) 21.3(19.9,25.12)
CATE 091 (-2.07, 4.87) 2.88 (0,7.05) 6.04* (3.33,10.05)
RR-CATE 105.97 (88.64,135.5)  118.86* (100.01,148.98)  139.58* (11892, 173.61)
P(N2) % 36.95 (3421, 45.05) 41.6 (38.29, 45.66) 39.8 (37.04, 43.64) 36.96 (34.69, 40.61)
CATE 4.65 (-2.41,10.6) 2.85 (-3.78, 8.58) 0.01 (-6.45, 4.89)
RR-CATE 112.58 (94.63, 130.46) 107.71 (9172, 124.14) 100.03 (85.57, 114.11)
P(N3) 9 12.32 (6.17,19.21) 12.15 (856, 15.05) 11.07 (7.99, 13.4) 9.6 (7.31,11.37)
CATE 0.16 (-9.43, 4.58) -1.24(-9.87,3.39) 272 (-1059, 1.97)
RR-CATE 98.69 (49.31, 162.84) 89.92 (46.76, 147.29) 77.91 (42.11, 130)
P(REM) 1122 (6.3,21.78) 9.8 (8.31,13.78) 9.61 (8.34,13.08) 9.26 (8.03,12.03)
CATE -1.42 (-8.22,3.48) -1.61 (-8.95,3.42) -1.96 (-10.27, 3.21)
RR-CATE 87.32 (58.31, 155.78) 85.61 (57.35, 154.62) 82.5 (53.48, 150.53)
P((N1,N2,N3,REM) — W) % 3.46 (1.76,5.31) 439 (3.53,5.99) 475 (3.96, 6.23) 528 (45, 6.55)
CATE 093 (-0.1,3.15) 1.28* (03,3.38) 1.81* (0.92, 3.83)
RR-CATE 126.78 (97.65,27451)  137.01* (107.01,287.19) 152.28* (118.33, 318.1)
P((N1,N2) — W) 254 (1.4,3.7) 3.18 (2.54,4.22) 349 (2.92,4.45) 3.96 (3.46,4.87)
CATE 0.64* (0.01,1.93) 0.95% (0.32, 2.27) 1.42* (0.8, 2.81)
RR-CATE 125.16* (100.25,234.19)  137.22% (109.17,259.82)  155.72* (122.68, 293.63)
P(N3 = W) % 036 (0.14, 0.46) 0.48 (0.37, 0.59) 0.5 (0.39, 0.6) 0.52 (0.42, 0.62)
CATE 0.1 (-0.01,037) 0.13* (0.02, 0.41) 0.16* (0.06, 0.42)
RR-CATE 130.99 (97.6,352.35)  136.52* (105.43,363.08)  143.46* (112.55, 385.68)
P(REM — W) 056 (0.17,1.17) 0.74 (055, 1.17) 0.76 (058, 1.16) 0.8 (0.61,1.14)
CATE 0.18 (-0.24, 0.55) 02 (-0.23,0.57) 0.24 (-0.23, 0.6)
RR-CATE 131.38 (77.78, 452.58) 136.36 (78.9, 473.86) 142.4 (80.22, 447.72)
P(NREM = REM) % 272 (142, 3.48) 3.88 (3.03,4.74) 412(3.35,4.9) 445 (3.82,5.22)
CATE 1.16* (0.55, 2.75) 1.4% (0.82,2.86) 1.73* (1.09, 3.12)
RR-CATE 142.56* (117.62,277.57)  151.35% (125.04,290.05)  163.59* (133.12,320.97)
P(N1 = N2) 578 (4.38,9.42) 723 (649, 9.17) 7.96 (7.23,9.96) 9.08 (8.4, 11.09)
CATE 1.45 (0.8, 3.93) 217 (-0.02, 4.56) 3.3* (1.34,5.53)
RR-CATE 125.01 (9153, 189.09) 137.6(99.81,201.05)  156.98* (113.74, 223.75)
P(Sleep compactness) 72.49 (64.61,87.34) 759 (71.91,81.17) 74.46 (71.08, 79.54) 72.46 (69.58, 77.56)
CATE 3.41(7.93,12.57) 1.97 (1956, 10.49) -0.03 (-11.87,8.2)
RR-CATE 104.7 (90.85, 118.97) 102.72 (88.99, 115.82) 99.96 (8631, 112.71)
P(Sleep fragmentation) % 6.72 (3.57,1033) 821 (6.6, 10.69) 8.9 (7.43,11.21) 9.92 (8.49, 12.25)
CATE 1.49 (-0.42, 5.25) 2.18* (0.37, 5.76) 3.21* (134, 6.81)
RR-CATE 122,22 (95.17,250.28)  132.44* (104.15,261.75) 147.7* (113.64, 289.47)
P(Sleep-stage compactness) % 60.46 (53.83, 71.54) 59.56 (55, 64.01) 57.23 (53.36, 61.45) 53.93 (50.72, 58.13)
CATE 0.9 (-11.58, 5.88) 3.23(-13.72,2.9) -6.53 (-16.86, 0.31)
RR-CATE 98.51 (83.6, 110.46) 94.65 (80.89, 105.56) 89.2 (75.93, 100.6)
P(Sleep-stage fragmentation) % 12.03 (8.14, 17.09) 1634 (14.29, 19.79) 17.24 (15.23, 20.49) 1853 (17.02, 21.52)
CATE 431% (1.79,10.1) 5.2% (2.77,10.34) 6.5% (3.98, 10.88)
RR-CATE 135.82* (111.39, 224.05) 143.25% (116.4,22695)  154.04* (124.69, 239.48)
P(W — W) 20.79 (5.55, 26.66) 15.89 (10.1,18.62) 16.64 (1091, 19.14) 17.61 (12.07, 19.78)
CATE 49 (-13.62, 5.95) -4.15 (-12.72, 6.81) -3.18 (-10.73, 7.89)
RR-CATE 76.42 (50.56, 209.13) 80.03 (53.06, 222.71) 84.71 (57.23,234.23)
P(N1 — N1) % 9.43(6.19,11.12) 8.99 (7.34,11.23) 1027 (8.68, 12.48) 1239 (10.81, 15.18)
CATE -0.45 (-3.15, 2.45) 0.84 (-1.6, 3.6) 2.95* (048, 5.59)
RR-CATE 95.27 (72.01,136.91) 108.85 (86.65, 154.44)  131.28* (104.19, 189.99)
P(N2 — N2) 31.52 (28.89, 37.56) 3445 (30.83, 38.17) 3227 (29.1,35.36) 28.89 (26.32, 31.94)
CATE 293 (-3.34,7.11) 0.75 (-4.82, 4.42) 2.63 (-8.14,0.51)
RR-CATE 109.3 (90.85, 123.11) 102.38 (86.68, 113.78) 91.67 (78.04, 101.58)
P(N3 — N3) 10.1 (4.16, 17.88) 8.86 (5.38,12.2) 7.78 (4.87,10.51) 632 (4.1,832)
CATE 124 (-11.52, 3.46) 232 (-11.89, 2.35) 3.79 (-12.42, 0.84)
RR-CATE 87.76 (36.17, 171.39) 77.02 (32.56, 146.38) 62.53 (28.65, 119.37)
P(REM — REM) % 9.4 (5.48,20.11) 7.26 (6.07,10.79) 691 (5.9,10.11) 633 (5.39,9.11)
CATE 215 (-9.37, 1.95) 2.5 (-10.57,1.67) -3.07 (-12.08, 1.21)
RR-CATE 77.16 (47.39, 136.07) 73.44 (4574, 131) 67.35 (41.12, 121.62)
P(W-fragmentation) % 3.5 (1.81,5.02) 3.82(3.07,4.97) 415 (342,5.2) 465 (3.99,5.67)
CATE 057 (-0.43,2.19) 09 (-0.08,2.5) 1.39* (0.37,2.97)
RR-CATE 117.37 (90.6, 219.1) 127.59 (98.35,238.16)  142.83* (107.28,262.14)
P(N1-fragmentation) 6.12 (442, 8.02) 7.49 (6.58, 9.06) 8.19 (7.34,9.74) 9.24 (857, 10.94)
CATE 1.37* (0.05, 4.43) 2.07* (1.01, 5.04) 3.12* (2.08,6)
RR-CATE 122.43* (100.68, 199.22) 133.8% (11274, 214.14)  151.02* (126.83, 234.56)
P(N2-fragmentation) 5.49 (3.49, 8.55) 7.5 (6.53,9.65) 7.88(7,9.91) 845 (7.7,10.22)
CATE 2.01* (036, 4.42) 2.4% (0.75,4.7) 2.96* (1.31,5.11)
RR-CATE 136.67* (104.35,227.21)  143.69* (108.64, 234.71) 154.01* (11591, 246.5)
P(N3-fragmentation) % 221 (1.18,3.3) 333(2.77,4.2) 3.35 (2.84, 4.09) 336 (2.86, 4)
CATE 1.13* (039, 2.38) 1.15* (043, 2.28) 1.15* (046, 2.09)
RR-CATE 151.09* (110.91,297.74)  152.13* (115.04,289.05)  152.37* (115.08, 273.77)
P(REM-fragmentation) 1.68 (0.8,2.41) 241 (1.96,3.12) 255 (2.07,3.2) 2.76 (2.33,3.3)
CATE 0.73* (0.23,1.79) 0.87* (0.36, 1.86) 1.07* (0.53,1.97)
RR-CATE 143.11% (110.63,313.22)  151.73* (116.31,328.02)  163.67* (123.05,338.27)

Notes: Probabilities are expressed as percentages. Estimates include conditional average treatment effects (CATE) and risk-ratio
CATE (RR-CATE).
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B.4 Comparison based on derived Markovian matrices PM

Figure B.7: Expected derived Markovian transition matrices PM for healthy females and females with different OSA severities, each stratified by age.

(1a) 30 years old female, healthy

137

N 82 a3
(53,108) 24,121
9 53

2 .
[19,114]  [34,84]

From Stage
5

N5 26 18 83
[17,125] [09,188] [45,388]

25

R h340 (745 (1859

w N1 N2
To Stage

(2) 50 years old female, healthy

60

z

25 52
(17,371 [88,69]

From Stage
5

N5 24 14 87
21,601  [10,36]  [68,184]

30 a0 26
[20,40]  [1549) [16,35]

w N1 N2 N3
To Stage
(32) 70 years old female, healthy
w pass ps2a
M o418

21
09,31]

From Stage
&

23
08,38 0222

H

91
183,175
a7 38 23

21,551 [19,78  [09,34]

w N1 N2
To Stage

78304 2152

N3

39
@189 2258

22
115,32

48
B1,7.4]

N3

85

[44,17.4]

a7
180,73

24
15,72

43
124,68]

41
28,60]

19
[1.4,26]

15
103,30]

34
[21,5.1]

16

(07,25

(1b) 30 years old female, OSA (AHI = 5) (1c) 30 years old female, OSA (AHI = 15)

94 104 95 107

w 62.201]  [59,220) w [53,199) (64,223
N 120 53 89 N 52 85
(65.149] 38.254) [48,112) [86,258) (46,107

Probability [%] Probability [%] Probability [%]
102 107 107

3 )
10’ g 62 31 10' F 4. 7. 33 10'
B y : : B o : :
10° £ [26,170]  [48,92] [54.148]  [24.115] 100 £ [29,185]  [54,107] 122,117 10°
5 5
L £ o g o
2 [yt et
1o N 40 36 138 27 10 [ 43 148 32 0
[25.126] [21,276] [80,419] 116,192) [9,129] (26,208 [84,395] 20,205]
n 54 . g . : 6
(83,68 (12,88  [39,164] (587] [12107) [45.176)
w Nt N3 R w Nt N3 R

N2 N2
To Stage To Stage

(2b) 50 years old female, OSA (AHI = 5) (2¢) 50 years old female, OSA (AHI = 15)

w 77 49 54 w 79 50 57
B5.116] [39,127] [58,184] [36,114] [4.1,129]

Nt 128 35 79 Nt 35 76
1107, 15.4] 28,79 (62,99 28,78  [60,96]

Probability [%] Probability [%] Probability [%]
10° 10° 10°

3 s
o g . ! g !
B o 4 63 74 25 10 @, o7 74 27 10
100 £ 18,63 (55,80 [1.108]  [21,48) 100 £ Ba71  66.93] 63,108 [23.49] 100
5 H
10" = 10" = 10"
[ e W e [ e
1o 37 29 145 23 10 48 35 28 o
8,81 288 [122.360] 07,72 BS588  [27.98] 122.80]
: 3 53 a4 L e 90 g
6584 [@5101] R677  [23.51] [$9.87] K7.107] [40,84]
w Nt Ns R w Nt N R

N2 N2
To Stage To Stage

(3b) 70 years old female, OSA (AHI = 5) (3c) 70 years old female, OSA (AHI = 15)

18 21
(1227  [13.34)

147 24 17 20

[121,217] (1439 [11.27)  [12,33] 115,39)

132 23 68 131 22 65

[11.4,17.0] 115,28 [54,88] [11.4,167] 0527 [52,80)

Probability [%] Probability [%] Probability [%]
10° 10° 107

& )

" S 1 g "
10° 228 Y 64 68 20 10! @\ 32 7 22 10
100 £ [8.41] (5281 14,30 10° £ [20,45]  [60,94] (15,31 100

2 2
] 107 i 10" [ 107"
2 o2 T
10 . 35 24 20 10 . 40 28 25 10
1.7.56] [0.9,4.4] 07,37 [1.9.6.3] [1.1,5.0] 19.5,28.6] (0.9, 4.1]
R 78 102 48 35 R 82 1.0
B7.110] [67,142] 863  [21.45] 69,112 [65,148)
w N1 N3 R w N1 N3 R

N2 N2
To Stage To Stage

(1d) 30 years old female, OSA (AHI = 30)

95 12
[53,199) [65,229]

z

122 51 80
168,152 35,263 [41,102)

Probability [%]
10°

°
g :
By 51 1 76 37 10
E 84,205 [66,13.0] [65.133] 24,119 10°
[ 10"
e
N 55 55 163 41
[34,138] [33,310] [90,383] 15,225]
n 63 75 44
85,93 [12,123] [51,194] [3.1,105)

w Nt N3 R

N2
To Stage

(2d) 50 years old female, OSA (AHI = 30)

.1 60

v 36,112 [@3,13.1]
Nt 128 34 74

(105,153 27.76)  [57,89]

Probability [%]
10°

73 30 10

44 93 %
64,103  [25,55] 10"

8,82  [83,114]

From Stage
z
g

52 45
M a3 psiz0)

76 102 65 45
53,94 [50,121] [49,96] [33.63]

w Nt N3 R

N2
To Stage

(3d) 70 years old female, OSA (AHI = 30)

157
[133,219]

26 19 22
17,39 01827 [1.4,34]

131 22 60
[115,164] [14,26] (49,73

Probability [%]
10°

70 25 10

g

g

By 87 04

£ 24,51 (7,118 118,33] 100

5

H o
[y

] 37 32 10
2572 1461 113,50]
a8 125 56 45

[56.116] [7,162] [37.73] [28.54]

w Nt N3 R

N2
To Stage

Notes: OSA severities are represented by AHI levels of 5, 15, and 30, and ages by 30, 50, and 70 years. Estimates are shown with 95% bootstrapped confidence intervals (Cls).

nd SPOLIIBUI UBIAONIRJA] PIALISP UO paseq uostiedwo) #'q

681



(1a) 30 years old female, OSA (AHI = 5) - Healthy

w 5 - 17 19
[(136,133] 147,08 (12,98  [1563  [13,64]
Nt

38" 103° 04 19° a2
[06,59] [168,55] [44,43] 08,145  [08,67]

0 1 EX 22 07
0263  [07,28] [182-14] 00571  [02,47]

From Stage
K

N3 14 1.9° " 101 12"
[21,36] [0.8,10.1] [14,121] [234,-32] [0.5,5.4]
R . 43" 3.1 20" -124°
07,52] 0.4,7.2] [1.1,109] [1.0,5.9] [235,-66]
w N1 N2 N3 R
To Stage

(2a) 50 years old female, OSA (AHI = 5) - Healthy

0. 3.4 17 1.0 e
(238,188 [37.50] (1078  [1274]  [11.68
N1 43" 14 14" 39"
[20,638] 58] [1.9,10.0] [0.6,5.0] 1.3,6.3]
°
3
g
B o .9 1 7 B 06
E 02.26] [05,3.0] [189,-13] [0.1,5.2] [0.2,23]
5
&
o g 08 140
[03,33) [0.7,6.0] [28,166] 296,54 0.6,4.1)
N o - 20° 138
[16.55) 1.4,73] 0.9,53] 1.1,37) [19.9,-6.9]
w N1 N2 N3 R
To Stage
(3a) 70 years old female, OSA (AHI = 5) - Healthy
w 2 - 6 04 4
[123,151]  [-126,8.4] 05,17 [07.1.4] 08,17
. ar 140 20 osr 34
[24.82) [-28.7,-6.9] [1.5,13.7] [05,1.6] [16,5.8]
°
3
g
B 08 44 20° 05
E 03,17 [05,29] (88,-0.9] [0.1,3.9] [0.3,1.5]
5
&
o 12 120 62" S 100
03.26] D426 [25123 (88,401  [03.21]
I 64" 23 200 148"
1866 2092  [07.39] (10,30  [206,72]
w N1 N2 N3 R
To Stage

Notes: OSA severities are represented by AHI levels of 5, 15, and 30, and ages by 30, 50, and 70 years. Estimates are shown with 95% bootstrapped confidence intervals (Cls).
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Figure B.8: Differences (CATE) in derived Markovian transition matrices PM between healthy females and females with different OSA severities, each
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Figure B.9: Risk ratio (RR-CATE) of derived Markovian transition matrices PM between healthy females and females with different OSA severities,
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Figure B.10: Expected derived Markovian transition matrices PM for healthy males and males with different OSA severities, each stratified by age.
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Figure B.11: Differences (CATE) in derived Markovian transition matrices PM between healthy males and males with different OSA severities, each
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Figure B.12: Risk ratio (RR-CATE) of derived Markovian transition matrices PM between healthy males and males with different OSA severities, each
stratified by age.
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B.5. Effect plots for sample dynamics markers 195

B.5 Effect plots for sample dynamics markers

Figure B.13: Effects of age and OSA-severities on NREM-REM oscillations,
P(NREM = REM), in males.
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Figure B.14: Effects of age and OSA-severities on sleep-stage fragmentation,
in females.
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Notes: The sleep-stage fragmentation represents the probability of transitioning from one (non-wake) sleep stage to a different one,
according to Eq. 5.12. The left plots (1a, 2a) depict expected probabilities for varying age with fixed AHI = 30, and for varying AHI
with fixed age = 30. Based on that, the central (1b, 2b) and right (1c, 2¢c) plots depict age- and AHI-related CATE and RR-CATE.

Figure B.15: Effects of age and OSA-severities on sleep-stage fragmentation,

in males.
(1) Expected Probabilities, Healthy vs OSA (AHI = 30) Male (1b) CATE (Age), Healthy vs OSA (AHI = 30) Male (1¢) RR-CATE (Age), Healthy vs OSA (AHI = 30) Male
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Notes: The sleep-stage fragmentation represents the probability of transitioning from one (non-wake) sleep stage to a different one,
according to Eq. 5.12. The left plots (1a, 2a) depict expected probabilities for varying age with fixed AHI = 30, and for varying AHI
with fixed age = 30. Based on that, the central (1b, 2b) and right (1c, 2c) plots depict age- and AHI-related CATE and RR-CATE.
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C.1 Bern Sleep-Wake Registery (BSWR)

C.1.1 Descriptive statistics

Table C.1: Characteristics of Berner Sleep-Wake Registry (BSWR) cohort
stratified by no-to-mild SDB (AHI < 15) versus moderate-to-high SDB (AHI

> 15).

Variable Overall AHI <15 AHI>15 p-value
N 3702 2100 1602
Age 48.28 (19.37) 42.64 (19.53) 55.66 (16.46)  <0.001
Gender (Male)* 2325 (62.8) 1151 (54.8) 1174 (73.3)  <0.001
Smoking* 0.017

Current 179 (4.8) 99 (4.7) 80 (5.0)

Ex 67 (1.8) 27 (1.3) 40 (2.5)

Never 221 (6.0) 115 (5.5) 106 (6.6)

NA 3235 (87.4) 1859 (88.5) 1376 (85.9)

"BMI 2694(646)  2552(6.23)  2881(6.29) <0.001
CAHI 19.02 (20.19)  ~  6.31(423)  35.69(20.71)  <0.001
SDB (AHI>15)* 1602 (43.3) 0 (0.0) 1602 (100.0)  <0.001
SDB category™ <0.001

Mixed 951 (25.7) 0(0.0) 951 (59.4)

NREM-dominant 484 (13.1) 0(0.0) 484 (30.2)

REM-dominant 137 (3.7) 0(0.0) 137 (8.6)

AHI<15 2100 (56.7) 2100 (100.0) 0 (0.0

NA 30 (0.8) 0 (0.0 30 (1.9)

TSTImins] ~ 33913 (89.41) ~ 35488 (91.52) 31849 (82.16) ~ <0.001

WASO [mins] 64.83 (54.42) 56.47 (49.68) 75.78 (58.30)  <0.001
SE [%] 80.03 (14.69) 82.42 (13.58) 76.89 (15.47)  <0.001
SL [mins] 18.64 (25.84) 18.20 (24.83) 19.22 (27.11) 0.235
REML [mins] 172.40 (186.46) 161.62 (169.84) 186.52 (205.42) <0.001
DL [mins] 7492 (185.01)  50.74 (137.39) 106.61 (229.36)  <0.001
W [%] 16.45 (13.74) 14.04 (12.54) 19.60 (14.58)  <0.001
N1 [%] 16.87 (10.92) 13.05 (7.77) 21.89 (12.34)  <0.001
N2 [%] 36.40 (12.46) 39.00 (11.46) 33.00 (12.89)  <0.001
N3 [%] 16.93 (10.68) 19.36 (10.70) 13.73 (9.78)  <0.001
REM [%] 13.35 (7.05) 14.55 (6.93) 11.79 (6.90)  <0.001

Notes: Continuous variables are reported as mean (SD) and compared using Welch’s two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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C.1.2 Occurrence of clinical conditions

Table C.2 shows the number and percentage, N (%), of PSG recordings in the BSWR, strati-
fied by conclusive sleep diagnoses and non-sleep comorbidities and by the presence of sleep-
disordered breathing (SDB): no-to-mild (AHI<15) versus moderate-to-severe (AHI>15).
Out of 3702 recordings from 3417 unique subjects, 2100 had AHI<15 and 1602 had AHI>15.
A total of 88 recordings corresponded to healthy individuals without any sleep diagnosis
or on-sleep comorbidity, or undergoing PSG as healthy controls in some of the Inselspital’s
conducted clinical studies, without any clinical condition identified. The classification of
major sleep disorder categories in the table is consistent with ICSD-3 (International Clas-
sification of Sleep Disorders, Third Edition), which defines seven major groups, such as
SDB, Insomnias, and Central Disorders of Hypersomnolence (Hypersomnias). Within the
most prevalent classes, we also considered the most relevant/common diagnoses subcat-
egories (e.g., OSA and CSA within SDB, NT1 and NT2 within Hypersomnias) versus the
less frequent “Other” conditions (e.g., hypoventilation and hypoxia syndrome in SDB). Rare
categories (e.g., circadian rhythm disorders) and those with non-specific clinical profiles
(e.g., isolated symptoms and normal variants) were grouped into a single main class.

We further grouped the available comorbidities into broader condition categories. The
Brain category comprises individuals with a history of major neurological events, including
stroke, intracerebral hemorrhage, and traumatic brain injury (TBI), as well as cases with sus-
pected TBl-related diagnoses. This grouping captures subjects with structural brain injuries
that may influence sleep physiology or contribute to comorbid conditions. The Neurodegen-
erative category comprises individuals with a confirmed or probable diagnosis of a neurode-
generative disorder. This includes Parkinson’s disease, atypical Parkinsonian syndromes,
amyotrophic lateral sclerosis (ALS), dementia, and other specified neurodegenerative con-
ditions. The Headache category includes individuals with a confirmed or probable diagnosis
of migraine, tension-type headache, post-traumatic headache, cluster headache, trigeminal
neuralgia, and other specified headache syndromes. The Psychiatric category includes indi-
viduals with a confirmed or probable psychiatric disorder. This encompasses depression,
bipolar disorder, anxiety and panic disorders, conversion disorder, post-traumatic stress
disorder (PTSD), attention-deficit/hyperactivity disorder (ADHD), and substance-related
disorders (alcohol and drug abuse), as well as other specified psychiatric conditions. The
Diabetes category includes individuals with a confirmed or probable diagnosis of diabetes
mellitus. The Cardial category includes probable or confirmed hypertension, coronary heart
disease, atrial fibrillation, and other cardiac comorbidities. The Pulmonary category includes
individuals with a confirmed or probable diagnosis of chronic respiratory disease, includ-
ing chronic obstructive pulmonary disease (COPD), asthma, and other specified pulmonary
conditions.
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Table C.2: Health conditions in the Berner Sleep-Wake Registry (BSWR)
stratified by no-to-mild SDB (AHI < 15) versus moderate-to-high SDB (AHI

> 15).

Diagnosis N (%) AHI<15 AHI>15 p-value

Total 3702 2100 1602

Healthy 88 (2.4) 88 (4.2) 0(0.0)0 <0.001

Sleep Disorders:

Sleep-disordered breathing (SDB) 2695 (72.8) 1120 (53.3) 1575(98.3) <0.001
Obstructive Sleep Apnea (OSA) 687 (18.6) 323 (15.4) 364 (22.7) <0.001
Central Sleep Apnea (CSA) 111 (3.0) 33 (1.6) 78 (4.9) <0.001
Other 1957 (52.9) 786 (37.4) 1171 (73.1) <0.001

“Tnsomnias """ T T T TT TS 87 (132) ~ 337(160) ~ ~ 150 (9.4)" ~<0.001 °
Chronic 105 (2.8) 81 (3.9) 24 (1.5) <0.001
Short-term 2(0.1) 2(0.1) 0(0.0) 0.602
Other 385 (10.4) 257 (12.2) 128 (8.0) <0.001

“Hypersomnias ~ 7T 77777 715 (193) ~ 584 (278) ~ ~ 131(8.2) ~<0.001
Narcolepsy Type 1 (NT1) 58 (1.6) 36 (1.7) 22 (1.4) 0.488
Narcolepsy Type 2 (NT2) 8(0.2) 7(0.3) 1(0.1) 0.161
Idiopathic Hypersomnia (IH) 24 (0.6) 24 (1.1) 0(0.0) <0.001
Excessive Daytime Sleepiness (EDS) 388 (10.5) 332 (15.8) 56 (3.5) <0.001
Other 310 (8.4) 251 (12.0) 59 (3.7) <0.001

“ Movement-related 265(72)  166(7.9)  99(6.2)  0.051
Restless Leg Syndrome (RLS) 182 (4.9) 101 (4.8) 81 (5.1) 0.789
Periodic Limb Movement Disorder (PLMD) 34 (0.9) 27 (1.3) 7 (0.4) 0.012
Other 50 (1.4) 38 (1.8) 12 (0.7) 0.009

- Parasomnias 193(5.2) 124(59)  69(43)  0.036
REM 55 (1.5) 49 (2.3) 6(04) <0.001
NREM 128 (3.5) 68 (3.2) 60 (3.7) 0.456
Other 17 (0.5) 10 (0.5) 7(0.4) 1.000

" Circadian-thythm-related =~~~ 47(1.3)  32(15)  15(09)  0.152

~ Isolated symptoms and norm variants =~ | 1771 (47.8) 994 (47.3) 777 (485)  0.502

Non-sleep Comorbidities:

Brain 64 (1.7) 34 (1.6) 30 (1.9) 0.646

Neurodegenerative 81 (2.2) 47 (2.2) 34 (2.1) 0.900

Epilepsy 49 (1.3) 35(1.7) 14 (0.9) 0.052

Headache 73 (2.0) 51 (2.4) 22 (1.4) 0.030

Psychiatric 204 (5.5) 145 (6.9) 59 (3.7) <0.001

Diabetes 41 (1.1) 22 (1.0) 19 (1.2) 0.810

Cardial 134 (3.6) 54 (2.6) 80 (5.0) <0.001

Pulmonary 50 (1.4) 35(1.7) 15 (0.9) 0.078

Notes: Number and percentage (N, %) of different health conditions in BSWR, stratified by the presence of no-to-mild
sleep-disordered breathing (SDB; AHI < 15) versus moderate-to-severe SDB (AHI > 15). Equality of proportions between SDB
groups was assessed using the chi-squared test or Fisher’s exact test when expected cell counts were less than 5. Results are
reported as p-values, with significant differences highlighted as follows: for p < 0.05, for p < 0.01, and for p < 0.001.
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C.1.3 Characteristics of clinical conditions, predicted risk, and their comparison to healthy. 0
g
Table C.3: Summary statistics and adjusted cardiovascular risk in the Bern Sleep-Wake Registry (BSWR). 5
2
Diagnosis Gender-Male Age BMI AHI Predicted Risk ~ Adjusted Risk [%] __r;E
Healthy 37 (42.0%) 32.86(18.81) 22.63(5.31)  2.68 (1.85) 17.14 (4.10) NA 'S
Sleep Disorders: n;v
Sleep-disordered breathing (SDB) 1868 (69.3%)***  51.1 (19.0)**  27.6 (6.5/**  24.6 (20.8)**  27.9 (9.9)*** 17.8 (9.5, 26.8)** %
Obstructive Sleep Apnea (OSA) 476 (69.3%)** 519 (17.1** 27.8 (65)** 22.7 (19.8)**  27.1 (8.4)** 18.5 (9.4, 28.3)*** &
Central Sleep Apnea (CSA) 74 (66.7%) 456 (247)%*  25.0 (6.0  29.6 (22.9)**  28.0 (9.5)*** 39.2 (23.5, 56.9)** T.
C Other | 1359(60d%) | SLLI9Y™ | 277(66)™ 24908 282(103)™  174(88,267)" &
Tnsomnias 262 (53.8%) 53.6 (15.4) ~ 26,6 (5.3 138 (15.7)™% _ 26.7 (9.5 12.4 (29, 22.7* 3
Chronic 61 (58.1%)* 50.4 (15.8)%**  26.2 (44)™* 9.5 (9.4 244 (9.3 204 (5.6, 37.3)** S
Short-term 2 (100.0%) 61.0 (5.7)* 255 (3.5) 54 (1.1) 272 (3.7) 41.4 (-10.5, 123.3) v
Other 202 (52.5%) 545 (153)%*  26.6 (5.5  15.0 (16.8)**  27.4 (9.8)*** 14.7 (4.5, 25.9)* =
" Hypersomnias 346 (484%)  395(15.5)% = 266 (6.4)™* 93 (13.1)**  21.1(69* = 11.0(3.7,18.9)%* Z
Narcolepsy Type 1 (NT1) 27 (46.6%) 37.3(16.7) 27.6 (5.00** 144 (16.1)**  23.1 (7.5)* 22.9 (8.8, 38.9)*
Narcolepsy Type 2 (NT2) 6 (75.0%) 29.8 (20.6) 23.9 (5.0) 7.4 (8.8) 23.3 (8.9) 12.7 (-11.8, 44.0)
Idiopathic Hypersomnia (TH) 2 (8.3%)** 263 (7.07* 243 (3.8) 2.7 (2.0) 17.2 (32) 13.7 (-1.7, 31.4)
Excessive Daytime Sleepiness (EDS) 162 (52.3%) 39.3 (15.0)** 26.8 (6.8)*** 9.5 (13.0)*** 20.7 (6.3)*** 9.7 (1.4,18.8)*
Other 179 (46.1%) 40.1 (1547 26.6 (6.7)**  82(12.00%*  20.9 (7.1y*** 10.8 (2.9, 19.2)*
" Movement-related 164 (61.9%)* = 532(17.5)%*  273(64)"* 165 (185 282 (1L.1** = 20.3(8.6,33.2)**
Restless Leg Syndrome 103 (56.6%)* 58.2 (15.1)**  27.7 (6.5***  19.3(20.3)***  30.0 (11.8)*** 23.4 (8.5, 40.4)**
Periodic Limb Movement Disorder 23 (67.6%)* 51.1 (17.7)***  26.2 (4.7)** 9.7 (9.8)*** 27.2 (9.2)** 32.6 (13.2, 55.3)***
Other 38 (76.0%)*** 37.2 (15.6) 26.8 (6.7 113 (133  22.6 (7.4)*** 12.9 (-0.5, 28.2)
" Parasomnias ~ 128(66.3%)** = 539 (19.1)*** 258 (5.1)"* 143 (145 273 (85  245(133,36.9)**
REM 36 (65.5%)* 34.8 (16.1) 243 (40 6981  21.1(53) 16.1 (3.6, 30.2)*
NREM 83 (64.8%)** 629 (12.4)* 262 (5.2 17.8 (15.7)**  30.2 (7.8)** 44.4 (27.0, 64.1)***
Other 14 (82.4%)* 50.6 (20.8y* 263 (5.4)* 114 (83 282 (11.7)* 17.3(-9.2,51.5)
" Circadian-thythm-related 33 (70.2%)*  445(17.0)**  27.6 (5.6)"** 145(152)** 268 (9.5 ~ 275(10.3,47.3)*
Isolated symptoms and norm variants 1162 (65.6%)***  52.0 (17.7)***  27.4 (6.0)**  18.6 (18.9)**  27.4 (10.4)*** 10.9 (2.9, 19.5)**
Non-sleep Comorbidities:
Brain 47 (734%)*  53.6 (1420 27.4 (4.6)™* 215 (2L8)**  25.6 (9.1 10.2 (-5.5, 28.5)
Neurodegenerative 45 (55.6%) 63.9 (9.7 262 (4.8)** 18.0 (17.8)** 29.9 (9.3)*** 45.8 (21.4, 75.1)***
Epilepsy 35 (71.4%)* 447 (1437 265 (5.7 114 (12.3)**  23.0 (6.3)*** 14.5 (0.9, 30.0)*
Headache 36 (49.3%) 422 (155 277 (7.1)** 164 (21.8)** 227 (8.4)** 13.0 (0.6, 27.0)*
Psychiatric 105 (51.5%) 458 (162  28.1(6.2** 12.9 (15.4)**  23.6 (7.5)** 21.2 (10.1, 33.3)**
Diabetes 29 (70.7%)** 55.9 (14.3)***  30.0 (8.7y***  25.7 (25.5)**  28.6 (9.3)*** 39.4 (13.9, 70.7)** N
Cardial 108 (80.6%)***  57.2 (12.4)**  30.7 (6.3)**  27.8 (24.2)***  29.5 (9.0)*** 25.1 (8.7, 44.0)** =
Pulmonary 33 (66.0%)* 465 (167 293 (8.0)** 157 (20.1)**  23.8 (9.5)*** 19.0 (2.3, 38.3)*

Notes: The table reports Gender (N (%) of males) and mean (standard deviation) for Age, Body Mass Index (BMI), Apnea-Hypopnea Index (AHI), and predicted cardiovascular risk (mortality) in Bern Sleep-Wake Registry
(BSWR). The adjusted risk, reported as an estimate (95% CI), quantifies the systematic percentual difference in predicted risk for specific diagnoses (conclusive sleep disorders and non-sleep comorbidities) using logistic
regression adjusting for gender, age, BMI, and AHI. Significant differences in comparison to healthy controls are highlighted as: * if p-val<0.05, ** if p-val<0.01, and *** if p-val<0.001.
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C.2 Sleep Heart Health Study (SHHS)

Table C.4: Subsets of SHHS database stratified based on prior
cardiovascular event status (E) and medication use (M).

Dataset N N-events Age Gender
SHHS1 (E=0,M=0) 2579 326 59.43 (11.16) 1182 (45.8)
SHHS1(E=0,M=1) 2528 567 64.97 (10.15) 1157 (45.8)
SHHS1(E=1,M=0) 112 60 68.61 (11.86) 67 (59.8)
SHHS1 (E=1,M=1) 572 320 70.67 (9.68) 354 (61.9)
SHHS2 (E=0,M=0) 811 62 63.16 (10.49) 358 (44.1)
SHHS2 (E=0,M=1) 1484 201 68.73(9.60) 647 (43.6)
SHHS2 (E=1,M =0) 37 15 70.97 (10.55) 22 (59.5)
SHHS2 (E=1,M=1) 319 178  73.52(9.06) 199 (62.4)

Notes: Summary statistics include the number of subjects (N), the number who developed a cardiovascular event during
follow-up (N-events), the mean (SD) of age in years, and the number (%) of males.

C.21 SHHS1

Table C.5: Descriptive characteristics of SHHS1 (E = 0, M = 1) cohort
stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 2528 1961 567
Age 64.97 (10.15) 63.32 (9.97) 70.68 (8.57)  <0.001
Gender (Male)* 1157 (45.8) 859 (43.8) 298 (52.6)  <0.001
Smoking* <0.001

Current 221 (8.7) 166 (8.5) 55(9.7)

Ex 1121 (44.3) 831 (42.4) 290 (51.1)

Never 1174 (46.4) 954 (48.6) 220 (38.8)

NA 12 (0.5) 10 (0.5) 2(0.4)

BMI 2864 (5.22)  2860(5.24) 2877(5.14) 0507
CAHL 18.89(16.90) ~ 1827 (16.85) ~  21.05(16.90)  0.001
SDB (AHI>15)* 1179 (46.6) 863 (44.0) 316 (55.7)  <0.001
SDB category* <0.001
Mixed 574 (22.7) 425 (21.7) 149 (26.3)
NREM-dominant 108 (4.3) 78 (4.0) 30 (5.3)
REM-dominant 379 (15.0) 271 (13.8) 108 (19.0)
AHI<15 1349 (53.4) 1098 (56.0) 251 (44.3)
NA 118 (4.7) 89 (4.5) 29 (5.1)

TST [mins] 358.28 (63.24)  359.36 (63.05)  354.54(63.82)  0.110
WASO [mins] 95.97 (55.62) 93.97 (54.94) 102.90 (57.42) 0.001
SE [%] 70.89 (12.11) 71.06 (12.11) 70.28 (12.11) 0.175
SL [mins] 52.19 (42.78) 53.47 (43.32) 47.75 (40.56) 0.005
REML [mins] 122.90 (169.81)  122.04 (167.02) 125.89 (179.24) 0.634
DL [mins] 83.39 (228.77)  81.04 (225.39) 91.53 (240.14) 0.336
W [%] 20.98 (11.79) 20.58 (11.67) 22.38 (12.09) 0.001
N1 [%] 4.16 (2.85) 4.13 (2.81) 4.25 (3.00) 0.383
N2 [%] 45.87 (12.38) 45.80 (12.44) 46.09 (12.19) 0.622
N3 [%] 13.95 (9.99) 14.22 (9.98) 13.00 (9.98) 0.010
REM [%] 15.04 (6.27) 15.26 (6.23) 14.28 (6.35) 0.001

Notes: Continuous variables are reported as mean (SD) and compared using Welch’s two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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Table C.6: Descriptive characteristics of SHHS1 (E = 1, M = 0) cohort
stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 112 52 60
Age 68.61 (11.86) 64.25 (13.48) 72.38 (8.74)  <0.001
Gender (Male)* 67 (59.8) 26 (50.0) 41 (68.3) 0.075
Smoking* 0.401

Current 10 (8.9) 5(9.6) 5(8.3)

Ex 55 (49.1) 22 (42.3) 33 (55.0)

Never 47 (42.0) 25 (48.1) 22 (36.7)

BMI 27.80 (4.96) 27.73 (6.13) 27.86 (3.72) 0.896
CAHL 2099 (15.27)  18.97(1237) 22.74(17.31)  0.194
SDB (AHI>15)* 67 (59.8) 30 (57.7) 37 (61.7) 0.814
SDB category* 0.524
Mixed 26 (23.2) 9(17.3) 17 (28.3)
NREM-dominant 9 (8.0) 4 (7.7) 5(8.3)
REM-dominant 24 (21.4) 14 (26.9) 10 (16.7)
AHI<15 45 (40.2) 22 (42.3) 23 (38.3)
NA 8(7.1) 3(5.8) 5(8.3)

CTST [mins] 349.95(73.14) 37017 (57.88)  332.42(80.58)  0.006
WASO [mins] 101.90 (64.26) 81.72 (46.60) 119.39 (72.25) 0.002
SE [%] 69.66 (13.70) 73.91 (10.40) 65.98 (15.16) 0.002
SL [mins] 50.80 (41.73) 49.58 (35.41) 51.86 (46.79) 0.774
REML [mins] 124.81 (196.57) 126.16 (185.06) 123.63 (207.58) 0.946
DL [mins] 81.23 (222.33)  44.66 (139.63) 112.92 (271.93) 0.105
W [%] 22.47 (13.87) 18.03 (10.05) 26.32 (15.55) 0.001
N1 [%] 4.72 (3.27) 4.22 (2.96) 5.15 (3.49) 0.134
N2 [%] 45.44 (13.11) 47.31 (12.40) 43.82 (13.58) 0.160
N3 [%] 12.33 (9.73) 14.30 (11.16) 10.63 (8.01) 0.046
REM [%] 15.04 (6.39) 16.14 (5.68) 14.08 (6.84) 0.089

Notes: Continuous variables are reported as mean (SD) and compared using Welch’s two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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Table C.7: Descriptive characteristics of SHHS1 (E = 1, M = 1) cohort
stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 572 252 320
Age 70.67 (9.68) 68.50 (10.28) 72.38(8.83)  <0.001
Gender (Male)* 354 (61.9) 153 (60.7) 201 (62.8) 0.670
Smoking* 0.557
Current 46 (8.0) 21 (8.3) 25 (7.8)
Ex 305 (53.3) 128 (50.8) 177 (55.3)
Never 221 (38.6) 103 (40.9) 118 (36.9)

BMI 28.08 (5.14) 27.81 (5.01) 28.29 (5.23) 0.271
CAHL 22.06 (17.36) 2023 (16.35) ~  23.50(18.02)  0.025
SDB (AHI>15)* 323 (56.5) 131 (52.0) 192 (60.0) 0.067
SDB category* 0.296
Mixed 164 (28.7) 62 (24.6) 102 (31.9)
NREM-dominant 34 (5.9) 14 (5.6) 20 (6.2)
REM-dominant 82 (14.3) 37 (14.7) 45 (14.1)
AHI<15 249 (43.5) 121 (48.0) 128 (40.0)
NA 43 (7.5) 18 (7.1) 25(7.8)

" TST [mins] 347.37(69.96)  354.70 (66.21) 34159 (72.37)  0.026
WASO [mins] 101.47 (58.91) 96.46 (56.00) 105.42 (60.91) 0.071
SE [%] 68.79 (13.51) 70.26 (13.25) 67.63 (13.61) 0.021
SL [mins] 57.04 (49.31) 55.19 (47.87) 58.49 (50.44) 0.427
REML [mins] 130.81 (202.14) 114.44 (170.03) 143.70 (223.64) 0.086
DL [mins] 117.64 (274.90)  90.64 (232.66) 138.89 (302.73) 0.037
W [%] 2258 (12.94)  21.30 (12.07) 2359 (13.51)  0.035
N1 [%] 4.38 (3.22) 4.38 (2.90) 4.38 (3.46) 0.995
N2 [%] 46.09 (13.68) 46.30 (12.71) 45.92 (14.42) 0.745
N3 [%] 12.58 (10.50) 12.94 (9.68) 12.30 (11.10) 0.463
REM [%] 14.37 (6.43) 15.08 (6.31) 13.81 (6.47) 0.019

Notes: Continuous variables are reported as mean (SD) and compared using Welch’s two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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C.2.2 SHHS2
Table C.8: Descriptive characteristics of SHHS2 (E = 0, M = 0) cohort
stratified by cardiovascular event status.
Variable Overall Event-free Event developed p-value
N 811 749 62
Age 63.16 (10.49)  62.52 (10.16) 70.89 (11.39)  <0.001
Gender (Male)* 358 (44.1) 321 (42.9) 37 (59.7) 0.015
Smoking* 0.010
Current 62 (7.6) 51 (6.8) 11 (17.7)
Ex 296 (36.5) 272 (36.3) 24 (38.7)
Never 445 (54.9) 418 (55.8) 27 (43.5)
NA 8(1.0) 8(1.1) 0(0.0)

‘BMI 2772 (4.69) 2770 (4.69) 2790(473)  0.749
“AHLI 15.84 (15.38) 1546 (15.16) ~  20.35(17.33)  0.016
SDB (AHI>15)* 300 (37.0) 268 (35.8) 32 (51.6) 0.019
SDB category* 0.003
Mixed 158 (19.5) 143 (19.1) 15 (24.2)
NREM-dominant 20 (2.5) 18 (2.4) 2(3.2)
REM-dominant 106 (13.1) 96 (12.8) 10 (16.1)
AHI<15 511 (63.0) 481 (64.2) 30 (48.4)

NA 16 (2.0) 11 (1.5) 5(8.1)
"TST[mins]  384.11(60.69) 385.78(59.02)  363.86(75.76)  0.006
WASOQO [mins] 155.78 (65.97) 154.41 (65.70) 172.35 (67.59) 0.040
SE [%] 64.53 (10.36)  64.74 (10.28) 62.03 (11.10) 0.047
SL [mins] 59.44 (39.19)  60.15 (39.28) 50.88 (37.36) 0.073
REML [mins] 99.65 (107.53)  97.15 (100.56) 129.87 (168.91) 0.021
DL [mins] 48.33 (132.58) 47.30 (132.59) 60.79 (132.83) 0.442
W [%] 28.45 (10.67)  28.16 (10.53) 32.03 (11.75) 0.006
N1 [%] 3.79 (3.76) 3.72 (3.80) 4.58 (3.09) 0.084
N2 [%] 40.38 (9.28) 40.35 (9.30) 40.79 (9.05) 0.715
N3 [%] 11.95 (7.86) 12.18 (7.88) 9.19 (7.19) 0.004
REM [%] 15.43 (5.40) 15.60 (5.39) 13.41 (5.18) 0.002

Notes: Continuous variables are reported as mean (SD) and compared using Welch’s two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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Table C.9: Descriptive characteristics of SHHS2 (E = 0, M = 1) cohort
stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 1484 1283 201
Age 68.73 (9.60) 67.95 (9.51) 73.72(8.68)  <0.001
Gender (Male)* 647 (43.6) 537 (41.9) 110 (54.7) 0.001
Smoking* 0.082

Current 101 (6.8) 80 (6.2) 21 (10.4)

Ex 644 (43.4) 552 (43.0) 92 (45.8)

Never 719 (48.5) 634 (49.4) 85 (42.3)

NA 20 (1.3) 17 (1.3) 3(1.5)

‘BMI 2872(5.30)  2879(532)  2826(5.19)  0.190
CAHI 18.60 (16.29) ~ 1818(16.17) ~  21.31(16.85)  0.011
SDB (AHI>15)* 680 (45.8) 569 (44.3) 111 (55.2) 0.005
SDB category* 0.036
Mixed 376 (25.3) 310 (24.2) 66 (32.8)
NREM-dominant 52 (3.5) 43 (3.4) 9 (4.5)
REM-dominant 226 (15.2) 195 (15.2) 31 (15.4)
AHI<15 804 (54.2) 714 (55.7) 90 (44.8)
NA 26 (1.8) 21 (1.6) 5(2.5)

" TST [mins] 373.67 (71.17) 37693 (70.01) ~ 352.85(75.07)  <0.001
WASO [mins] 166.48 (74.83)  163.83 (73.64) 183.40 (80.18) 0.001
SE [%] 62.26 (11.95) 62.72 (11.78) 59.34 (12.59)  <0.001
SL [mins] 64.18 (46.50)  64.55 (46.24) 61.85 (48.15)  0.445
REML [mins] 118.48 (131.83) 114.62 (119.67) 143.11 (190.70) 0.004
DL [mins] 67.58 (182.98)  62.35 (173.68) 100.95 (231.55) 0.005
W [%] 30.44 (12.33) 29.91 (12.04) 33.81 (13.60)  <0.001
N1 [%] 3.88 (3.05) 3.79 (2.41) 4.43 (5.61) 0.006
N2 [%] 40.32 (10.44)  40.51 (10.36) 39.10 (10.89)  0.077
N3 [%] 11.03 (8.09) 11.20 (8.09) 9.90 (8.02) 0.033
REM [%] 14.34 (5.69) 14.58 (5.60) 12.75(6.04)  <0.001

Notes: Continuous variables are reported as mean (SD) and compared using Welch's two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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Table C.10: Descriptive characteristics of SHHS2 (E = 1, M = 0) cohort

stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 37 22 15
Age 70.97 (10.55)  69.45 (12.55) 73.20 (6.43) 0.296
Gender (Male)* 22 (59.5) 11 (50.0) 11 (73.3) 0.281
Smoking* 0.242
Current 2 (5.4) 2(9.1) 0 (0.0
Ex 17 (45.9) 8 (36.4) 9 (60.0)
Never 18 (48.6) 12 (54.5) 6 (40.0)

BMI 27.74 (5.06) 27.34 (5.73) 28.34 (3.98) 0.562
CAHT T 3487 (16.70) 7480 (19.32) ~ 2496 (1256) ~ 0.979 "
SDB (AHI>15)* 27 (73.0) 15 (68.2) 12 (80.0) 0.676
SDB category™ 0.689
Mixed 15 (40.5) 7 (31.8) 8 (53.3)
NREM-dominant 3(8.1) 2(9.1) 1(6.7)
REM-dominant 8 (21.6) 5(22.7) 3(20.0)
AHI<15 10 (27.0) 7 (31.8) 3(20.0)

NA 1(2.7) 1(4.5) 0(0.0)
"TST[mins] 36289 (65.95) 35898 (75.93)  368.63(49.76)  0.668
WASO [mins] 182.27 (74.72)  188.80 (89.27) 172.70 (47.33) 0.528
SE [%] 59.95 (10.58)  59.23 (12.05) 61.00 (8.24) 0.623
SL [mins] 65.80 (41.20)  65.36 (42.79) 66.43 (40.20) 0.939
REML [mins] 78.95(50.29)  75.27 (50.41) 84.33 (51.38) 0.598
DL [mins] 45.00 (62.72)  37.82(37.15) 55.53 (88.58) 0.407
W [%] 32.88 (11.30)  33.72 (13.45) 31.66 (7.39) 0.594
N1 [%] 3.76 (2.34) 3.87 (2.67) 3.60 (1.84) 0.739
N2 [%] 39.74 (9.57)  39.09 (10.67) 40.70 (7.96) 0.623
N3 [%] 10.38 (7.23) 9.20 (6.12) 12.12 (8.52) 0.232
REM [%] 13.23 (5.87) 14.13 (6.92) 11.92 (3.69) 0.266

Notes: Continuous variables are reported as mean (SD) and compared using Welch’s two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.
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Table C.11: Descriptive characteristics of SHHS2 (E = 1, M = 1) cohort
stratified by cardiovascular event status.

Variable Overall Event-free Event developed p-value
N 319 141 178
Age 73.52 (9.06) 71.02 (9.87) 75.50 (7.84)  <0.001
Gender (Male)* 199 (62.4) 92 (65.2) 107 (60.1) 0.410
Smoking* 0.471

Current 24 (7.5) 13 (9.2) 11 (6.2)

Ex 161 (50.5) 73 (51.8) 88 (49.4)

Never 129 (40.4) 54 (38.3) 75 (42.1)

NA 5(1.6) 1(0.7) 4(22)

‘BMI 28.03 (4.54)  28.00(438)  28.05(467) 0922
CAHI 2356 (17.73) = 2325(17.40) ~  23.80(18.03)  0.784
SDB (AHI>15)* 194 (60.8) 90 (63.8) 104 (58.4) 0.386
SDB category™* 0.822
Mixed 122 (38.2) 55 (39.0) 67 (37.6)
NREM-dominant 14 (4.4) 6(4.3) 8 (4.5)
REM-dominant 45 (14.1) 23 (16.3) 22 (12.4)
AHI<15 125 (39.2) 51 (36.2) 74 (41.6)
NA 13 (4.1) 6 (4.3) 7 (3.9)

" TST [mins] 353.08 (76.90) ~ 354.40 (77.68) 352.03(76.48)  0.785
WASO [mins] 182.43 (79.74)  187.70 (86.63) 178.26 (73.81) 0.295
SE [%] 59.34 (12.32) 59.10 (13.26) 59.54 (11.56) 0.752
SL [mins] 62.49 (42.57)  62.05 (42.98) 62.84 (42.35)  0.869
REML [mins] 124.07 (164.14) 113.00 (144.40) 132.83 (178.15) 0.285
DL [mins] 105.08 (248.30) 102.35 (251.51) 107.23 (246.42) 0.862
W [%] 33.69 (13.32) 34.11 (14.35) 33.36 (12.47) 0.618
N1 [%] 4.41 (3.13) 417 (2.74) 4.61 (3.40) 0.215
N2 [%] 40.18 (11.10)  39.96 (10.95) 40.36 (11.25)  0.750
N3 [%] 9.09 (7.72) 8.90 (7.91) 9.24 (7.58) 0.696
REM [%] 12.62 (5.59) 12.86 (5.70) 12.43 (5.51) 0.497

Notes: Continuous variables are reported as mean (SD) and compared using Welch's two-sample t-test. Categorical variables,
denoted by superscript *, are reported as counts (percentages) and compared using the chi-squared test. When expected cell counts
were less than 5, Fisher’s exact test was used instead.



C.3 Performance of Random Survival Forest model

Table C.12: Performance of the Random Survival Forest (RSF) model without AHI predictor across SHHS and BSWR datasets of subjects with no
previous cardiovascular events (E = 0).

Metric SHHS1<Y SHHS1t SHHS?2 SHHS2*t SHHS2 SHHS2t
(E=0,M=0) (E=0,M=1) (E=0,M=0) (E=0,M=0) (E=0,M=1) (E=0M=1)
Events (N) 65.2 (2.4) 567 43 19 64 137
Event-free (N) 450.6 (2.7) 1961 591 158 489 794
" Cindex 73325 69.7 741 783 701 e 66.6
IBS 6.7 (0.4) 11.9 4.1 6.2 7.1 8.8
" l-year tdAUROC ~ 771(122 69.8 82 771 72 ¢ 64.1
5-year td AUROC 74.9 (6.2) 72.7 73.6 83.4 71.4 69.2
10-year td AUROC 75.3 (2.3) 74.2 - 100 - 69
“Mortality E=1) 211(1.8) 235 249 345 292 317
Mortality (E = 0) 11.3 (0.5) 14.5 14.1 16 17.9 21.6
Mortality Diff. 9.8 (1.8) 8.9 10.7 18.5 11.3 10.1
Mortality Diff. CI-low 5.8 (1.3) 7.6 4.7 9.1 6.4 6.6
Mortality Diff. CI-high 13.7 (2.4) 10.3 16.8 28 16.2 13.6
p-value (t-test) 0.000013 (0.000014) <107 0.000856 0.000587 0.000019 <107
" Events (N), high-risk 50.8(1.9) 405 36 16 48 95
Events (N), low-risk 14.4 (1.9) 162 7 3 16 42
x> 26 (4.7) 162.5 22.1 104 20 28.4
p-value (log-rank test)  0.000005 (0.00001) <10°° 0.000003 0.001237 0.000008 <10°°

Notes: The ¢V superscript denotes performance obtained via 5-fold cross-validation (CV) on the in-domain event- and medication-free (E = M = 0) baseline cohort SHHS1(E = 0, M = 0). All other columns evaluate the
performance of the final RSF model fitted to the entire baseline cohort, applied to potentially out-of-domain subjects (*) from either the baseline (SHHS1) or follow-up (SHHS2) studies, including subgroups taking medication
(M = 1). For each scenario, the number of subjects with events and without events (event-free) is reported. Model performance is assessed using Harrell’s Concordance Index (C-index), Integrated Brier Score (IBS), and the
time-dependent Area Under the Receiver Operating Characteristic curve (tdAUROC) at 1, 5, and 10 years. Discriminatory ability is evaluated via two-sided t-tests comparing predicted mortality between event and non-event
subjects, including 95% confidence intervals (CI) for the difference (Diff.). Additionally, log-rank tests with Chi-squared (x?) statistics compare event rates between high- and low-risk groups stratified by median predicted

mortality. For the in-domain CV, mean (SD) of all metrics is reported.
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Table C.13: Performance of the Random Survival Forest model including AHI predictor across SHHS and BSWR datasets of subjects with previous
cardiovascular events (E = 1).

Metric SHHS1* SHHS1* SHHS2 SHHS2* SHHS2 SHHS2*
(E=1,M=0) (E=1,M=1) (E=1,M=0) (E=1,M=0) (E=1,M=1 (E=1,M=1)
Events (N) 60 320 2 13 15 163
Event-free (N) 52 252 0 22 0 141
" C-index 608 626 00 566 629 ¢ 60.8
IBS 274 28.5 22 22.6 32.8 28.9
" 1-year tdAUROC 292 649 - 781 1000 ¢ 62.5
5-year td AUROC 66.6 67.4 - 57.2 91.7 65.5
10-year td AUROC 73.2 69.3 - - - -
“Mortality (E=1) 251 273 252 25 298 ¢ 346
Mortality (E = 0) 18.1 21.0 - 254 - 27.1
Mortality Diff. 7.0 6.3 - -0.4 - 7.5
Mortality Diff. CI-low 1.2 3.6 - -11.5 - 3.1
Mortality Diff. CI-high 12.7 9.0 - 10.7 - 119
p-value (t-test) 0.017856 0.000005 - 0.94043 - 0.000846
" Events (N), high-risk 36 184 1 7 7 ¢ 95
Events (N), low-risk 24 136 1 6 8 68
X2 9.2 33.1 1.0 0.6 2.6 16.3
p-value (log-rank test) 0.002405 <10°° 0.317311 0.442614 0.106251 0.000053

Notes: The columns evaluate the performance of the final RSF model fitted to the entire event- and medication-free (E = M = 0) baseline cohort SHHS1(E = 0, M = 0), applied to potentially out-of-domain subjects (*) from either
the baseline (SHHS1) or follow-up (SHHS2) studies, including subgroups taking medication (M = 1). For each scenario, the number of subjects with events and without events (event-free) is reported. Model performance is
assessed using Harrell’s Concordance Index (C-index), Integrated Brier Score (IBS), and the time-dependent Area Under the Receiver Operating Characteristic curve (tdAUROC) at 1, 5, and 10 years. Discriminatory ability is
evaluated via two-sided t-tests comparing predicted mortality between event and non-event subjects, including 95% confidence intervals (CI) for the difference (Diff.). Additionally, log-rank tests with Chi-squared (x?) statistics
compare event rates between high- and low-risk groups stratified by median predicted mortality.
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Table C.14: Performance of the Random Survival Forest model without AHI predictor across SHHS and BSWR datasets of subjects with previous
cardiovascular events (E = 1).

Metric SHHS1? SHHS1' SHHS2 SHHS2" SHHS2 SHHS2*
(E=1,M=0) (E=1,M=1) (E=1,M=0) (E=1,M=0) (E=1,M=1) (E=1M=1)
Events (N) 60 320 2 13 15 163
Event-free (N) 52 252 0 22 0 141
" Ceindex: 61.7 622 0 5.6 619 ¢ 61.1
IBS 27.4 28.5 21.8 22.4 32.8 28.8
" l-year tdAUROC 301 644 - 792 100 ¢ 63
5-year td AUROC 67.8 67 - 57.4 91.7 66
10-year td AUROC 73.7 69.1 - - - -
“Mortality (E=1) 250 273 251 255 301 346
Mortality (E = 0) 18.0 21.0 - 25.5 - 26.9
Mortality Diff. 7.0 6.3 - 0 - 7.7
Mortality Diff. CI-low 1.1 3.6 - -11.3 - 3.3
Mortality Diff. CI-high 12.8 9.0 - 11.3 - 12.1
p-value (t-test) 0.019666 0.000006 - 0.997352 - 0.000583
" Events (N), high-risk 3% 181 T 7 7 95
Events (N), low-risk 24 139 1 6 8 68
x> 9.2 304 1.0 0.6 1.1 16.1
p-value (log-rank test) 0.002405 <10°° 0.317311 0.442614 0.286982 0.000061

Notes: The columns evaluate the performance of the final RSF model fitted to the entire event- and medication-free (E = M = 0) baseline cohort SHHS1(E = 0, M = 0), applied to potentially out-of-domain subjects (*) from either
the baseline (SHHS1) or follow-up (SHHS2) studies, including subgroups taking medication (M = 1). For each scenario, the number of subjects with events and without events (event-free) is reported. Model performance is
assessed using Harrell’s Concordance Index (C-index), Integrated Brier Score (IBS), and the time-dependent Area Under the Receiver Operating Characteristic curve (td AUROC) at 1, 5, and 10 years. Discriminatory ability is
evaluated via two-sided t-tests comparing predicted mortality between event and non-event subjects, including 95% confidence intervals (CI) for the difference (Diff.). Additionally, log-rank tests with Chi-squared (x?) statistics
compare event rates between high- and low-risk groups stratified by median predicted mortality.
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C.4 Survival Plots for RSF with AHI predictor

C.4.1 Primary study cohort

Figure C.1: Cardiovascular outcomes and RSF (including AHI predictor)
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated based
on cross-validation (CV), with the time-dependent area under the ROC curve (tdAUROC) and the integrated Brier score (IBS),
reported as mean values with standard deviations (SD). A bar over N (e.g., Niotal) denotes the average number of subjects across
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C.4.2 SHHSI1 test subjects

Figure C.2: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS1(E =0, M = 1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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Figure C.3: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS1T(E=1,M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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Figure C.4: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS1T(E=1,M =1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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C.4.3 SHHS?2 train subjects

Figure C.5: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2 (E = 0, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (tdAUROC) and the integrated Brier score (IBS).
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Figure C.6: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2 (E =0, M = 1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (td AUROC) and the integrated Brier score (IBS).
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Figure C.7: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2 (E =1, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (tdAUROC) and the integrated Brier score (IBS).
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Figure C.8: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2 (E =1, M = 1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (td AUROC) and the integrated Brier score (IBS).
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C.4.4 SHHS?2 test subjects

Figure C.9: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2T(E =0, M = 0).

SHHS2t (E=0,M=0): (Nygta = 177, Nepeos = 19, NPV 0)

events —

100

90

80

70

Metrics:
- IBS
< 60
L - AUC
S
8 50 .
5 Population:
o
o Cases
o 40
. Censored
Survivors
30
20
10

— = 0 — .
*
- =
—o— —*
[ =
0

1 5 10
Follow-up Years

Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. t denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (td AUROC) and the
integrated Brier score (IBS).
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Figure C.10: Cardiovascular outcomes and RSF (including AHI predictor)

performance metrics for SHHS2T(E=0,M =1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the

integrated Brier score (IBS).
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Figure C.11: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2T(E=1, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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Figure C.12: Cardiovascular outcomes and RSF (including AHI predictor)
performance metrics for SHHS2F(E=1,M =1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects.  denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the

integrated Brier score (IBS).
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C.5 Survival Plots without AHI predictor

C.5.1 Primary study cohort

Figure C.13: Cardiovascular outcomes and RSF (excluding AHI predictor)
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated based
on cross-validation (CV), with the time-dependent area under the ROC curve (tdAUROC) and the integrated Brier score (IBS),

reported as mean values with standard deviations (SD). A bar over N (e.g., Niotal) denotes the average number of subjects across
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C.5.2 SHHSI1 test subjects

Figure C.14: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS1(E =0, M = 1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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Figure C.15: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS1T(E=1, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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Figure C.16: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS1T(E=1,M=1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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C.5.3 SHHS?2 train subjects

Figure C.17: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2(E = 0, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (tdAUROC) and the integrated Brier score (IBS).
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Figure C.18: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2(E =0, M =1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (td AUROC) and the integrated Brier score (IBS).
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Figure C.19: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2(E =1, M = 0).

SHHS2(E =1, M = 0): (Ngg = 2, Nggges = 2, NI, = 2)

100
90
80
70 .
Metrics:
. -0 IBS
2 -~ 1dAUC
S
S 50 .
§ Population:
ﬂa-.J 40 . Cases
. Censored
. Survivors
30
20
10
0

1 2 3 4
Follow-up Years

Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (tdAUROC) and the integrated Brier score (IBS).
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Figure C.20: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2(E=1, M =1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. Performance is evaluated with
the time-dependent area under the ROC curve (td AUROC) and the integrated Brier score (IBS).
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C.5.4 SHHS?2 test subjects

Figure C.21: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2'(E = 0, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. t denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (td AUROC) and the
integrated Brier score (IBS).
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Figure C.22: Cardiovascular outcomes and RSF (excluding AHI predictor)

performance metrics for SHHS2T(E=0,M =1).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the

integrated Brier score (IBS).
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Figure C.23: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2T(E=1, M = 0).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects. * denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (tdAUROC) and the
integrated Brier score (IBS).
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Notes: The plot shows the distribution of cardiovascular cases, survivors, and censored subjects.  denotes evaluation on
model-unseen subjects. Performance is evaluated with the time-dependent area under the ROC curve (td AUROC) and the
integrated Brier score (IBS).
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Figure C.24: Cardiovascular outcomes and RSF (excluding AHI predictor)
performance metrics for SHHS2T(E=1,M =1).
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C.6 Partial Effects for RSF without AHI predictor
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Figure C.25: Partial effects and their 95% CIs for 10-year cardiovascular
event-free probability for the age in years, Body Mass Index (BMI),
Apnea-Hypopnea Index (AHI), gender (0 = female, 1 = male), and smoking
status, for RSF without AHI predictor.
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Figure C.26: Partial effects and their 95% ClIs for 10-year cardiovascular
event-free probability for the minutes of Total Sleep Time (TST), Wake After
Sleep Onset (WASO), Sleep Latency (SL), REM Latency (REM), and
Deep-sleep Latency (DL), for RSF without AHI predictor.
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Figure C.27: Partial effects and their 95% CIs for 10-year cardiovascular
event-free probability for the relative frequencies of transitions between
sleep-stage (W, N1, N2, N3, REM), for RSF without AHI predictor.
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